
HP-(JX Concepts and Tutorials
Vol. 2: Programming Environment

F/i;' HEWLETT
~~ PACKARD

r'.,.'".
~

HP-UX Concepts and Tutorials
Vol. 2: Programming Environment

Manual Reorder No. 97089-90030

(£) Copyright 1985 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved, No pan
of this document may be photocopied. reproduced or translated to another language without the prior wrillen
consent of Hewlett-Packard Company. The information contained in this document is subject to change without
notice.

Use of this manual and flexible disC(s) or tape cartridge{s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations. is expressly prohibited.

Restricted Rights Legend

Use. duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (bX3XB) of
the Rights in Technical Data and Software clause in OAR 7-104,9(a).

(£) Copyright 1980. BeD Telephone Laboratories. Inc.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins. Colorado 80525

Printing History

Nd~~ edituionds of thiskamanual wbill .incorpd0brate all md.a~erial udPdated. since Ithe pretviouds ~
e ltIon. p ate pac ges may e Issue etween e ItIons an contam rep acemen an
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

July 1984...First Edition - Part numbered 97089-90004 was 4 volumes and was shipped
with HP-UX 4.0 on Series 500 Computers and with HP-UX 2.1, 2.2, 2.3, and 2.4 on
Series 200 Computers. Each volume did not have an individual part number. This
was obsoleted in April, 1985 and replaced with Manual Kit #97070-87903 which
includes:

Title
Vol. 1: Text Processing and Formatting
Vol. 2: Programming Environment
Vol. 3: Software Development Tools
Vol. 4: Shells and Miscellaneous Tools
Vol. 5: Data Communications
Vol. 6: Graphics

Manual PIN
97089-90020
97089-90030
97089-90040
97089-90050
97089-90060
97089-90070

Binder PIN
9282-1023
9282-1023
9282-1023
9282-1023
9282-1023
9282-1023

April 1985...Edition 1 - Volume 2: Programming Environment

ii

Contents
The articles contained in HP- UX Concepts and Tutorials are provided to help you use the
commands and utilities provided with HP-UX. The articles have several sources. Some
were written at Hewlett-Packard specifically for HP computers. Others were written at
Bell Laboratories or University of California at Berkeley and have been tailored for HP
computers.

HP- UX Concepts and Tutorials has six volumes:

• Volume 1: Text Processing and Formatting

• Volume 2: Programming Environment

• Volume 3: Software Development Tools

• Volume 4: Shells and Miscellaneous Tools

• Volume 5: Data Communications

• Volume 6: Graphics

~ This is "Vol. 2: Programming Environment" and the articles it includes are:

1. HP-UX Programming

2. Using C on the HP 9000 Series 500 Computer

3. Using the C Library Routines

4. Lint: C Program Checker

5. MC68000 Assembler on HP-UX

6. Ratfor: A Preprocessor for a Rational FORTRAN

7. Native Language Support

8. Using curses and terminfo

iii

Warranty Statement

Hewlett-Packard products are warranted against delects in materials and workmanship. For Hewlett·Packard computer system products sold
in the U.S.A. and Canada. this warranty applies lor ninety (90) days Irom the date 01 shipment.' Hewlett-Packard will. at its option. repair or
replace equipment which proves to be defective during the warranty period. This warranty includes labor. parts, and surface travel costs. if
any. Equipment returned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs neceessitated by misuse 01 the equipment.

or by hardware. software. or interfacing not provided by Hewlett·Packard are not covered by this warranty.

HP warrants that itS software and flnTlware designated by HP for use with a CPU win execute its programming instructions when property
installed on that CPU. HP does not warrant that the operation of the CPU, software. or firmware will be uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. INCLUDING BUT NOT LIMITED TO. THE IMPLIED WARRANTY OF MERCHANTABIL·
ITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT·PACKARED SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

HP 9000 Series 200
For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes with a 9Q.day. Return-to-HP
warranty during which time HP wia repair your Model 216. however, the computer must be shipped to an HP Repair center.

All other Series 200 computers come with a go·Day On·Site warranty during which time HP wiD travel to your site and repair any defects.
The folloWing minimum configuration of equipment is necessary to run the appropriate HP diagnoStiC programs: 1) .5 Mbyte RAM: 2) HP·

compatible 3.5"or 5.25"disc drive for loading system functional tests. or a system install device for HP·UX installations; 3) system console

consisting of a keyboard and video display to allow interaction with the CPU and to report the results of the diagnostics.

To order or to obtain additional infonnation on HP support services and service contracts, call the HP Support Services Telemarketing center
at (800) 835-4747 or your local HP 5aJes and Support office.

'For other countries. contact your local sales and Support Office to determine warranty terms.

iv

Table of Contents

HP-UX Programming
Introduction .. 1
Basics 2

Program Arguments .. 2
The "Standard Input" and "Standard Output" 2

The Standard 110 Library .. 4
File Access .. 4
Error Handling - Stderr and Exit. .. 6
Miscellaneous I/O Functions 7

Low-level 110 8
File Descriptors .. 8
Read and Write. .. 9
Open, Creat, Close, Unlink 10
Random Access - Lseek. 12
Error Processing 12

Processes " 13
The "System" Function. .. 13
Low-level Process Creation - ExecJ and Execv. .. 13
Control of Processes - Fork and Wait 14
Pipes 15
Signals - Interrupts and All That. .. 18

Appendix - The Standard I/O Library. .. 22
General Usage. .. 22
Calls 23

ii .

~..

HP-UX Progranuning

Introduction
This tutorial describes how to write programs that interface with the HP-UX operating system in a
non-trivial way_ This includes programs that use files by name, that use pipes, that invoke other
commands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of the HP-UX
Reference manual. There is no attempt to be complete; only generally useful material is dealt with.
It is assumed that you will be programming in C, so you must be able to read the language roughly
up to the level of The C Programming Language. Some of the material in this tutorial is based on
topics covered more carefully there. You should also be familiar with HP-UX itself.

1

Basics

Program Arguments
When a C program is run as a command, the arguments on the command line are made available
to the function main as an argument count argc and an array argv of pointers to character strings
that"contain the arguments. By convention, argv[O] is the command name itself, so argc is always
greater than O.

The following program illustrates the mechanism: it simply echoes its arguments back to the
terminal. (This is essentially the echo command.)

Main(auc, argu)
int auci
char *argu[];
{

int i;

1* echo arguMents *1

for (i = 1; i < auci i++)
printf("%s%c", argu[iJ, (i(argc-l) ?

}

t \n t) ;

argv is a pointer to an array whose individual elements are pointers to arrays of characters; each is
terminated by \ 0, so they can be treated as strings. The program starts by printing argv[1]and loops
until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them around
so other routines can get at them, you must copy them to external variables. ~

The "Standard Input" and "Standard Output"
The simplest input mechanism is to read the "standard input", which is generally the user's
terminal. The function getchar returns the next input character each time it is called. A file can be
substituted for the terminal by using the < convention: if prog uses getchar, then the command line

prog <tile

causes prog to read file instead of the terminal. Prog itself need know nothing about where its input
is coming from. This is also true if the input comes from another program via the HP-UX pipe
mechanism:

otherprof : prOf

provides the standard input for prog from the standard output of otherprog.

Getcharreturns the value EOFwhen it encounters the end-of-file (or an error) on whatever you are
reading. The value of EOF is normally defined to be -1, but it is unwise to take any advantage of
that knowledge. As will become clear shortly, this value is automatically defined for you when you ~
compile a program, and need not be of any concern.

2 HP-UX Programming

Similarly, putchar(c) puts the character c on the "standard output", which is also by default the
terminal. The output can be captured on a file by using >: if prog uses putchar,

prog)outfile

writes the standard output on outfiJe instead of the terminal. outfiJe is created if it doesn't exist; if it
already exists, its previous contents are overwritten. And a pipe can be used:

prog l otherprog

puts the standard output of prog into the standard input of otherprog.

The function print£, which formats output in various ways, uses the same mechanism as putchar
does, so calls to print! and putchar may be intermixed in any order; the output will appear in the
order of the calls.

Similarly, the function scan!provides for formatted input conversion; it will read the standard input
and break it up into strings, numbers, etc., as desired. scan! uses the same mechanism as getchar,
so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with getchar,
putchar, scan!, and print! may be entirely adequate, and it is almost always enough to get started.
This is particularly true if the HP-UX pipe facility is used to connect the output of one program to
the input of the next. For example, the following program strips out all ASCII control characters
from its input (except for new-line and tab).

"include <stdio.h)

main()
{

1* ccstrip: strip non-graphic characters *1

int ci
while «c = getchar(\:) != EOF)

if «c)= ' , 8.&: c < 0177) :: c == '\t' :: c == '\n')
putchar(c) i

e)(i t (0) i
}

The line

#include <stdio.h)

should appear at the beginning of each source file. It causes the C compiler to read a file (lusr/
incJude/stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat file1 file2 ••• : ccstrip)output

and thus avoid learning how to access files from a program. By the way, the call to exit at the end is
not necessary to make the program work properly, but it assures that any caller of the program will
see a normal termination status (conventionally 0) from the program when it completes. Section 6
discusses status returns in more detail.

HP-UX Programming 3

The Standard I/O Library
The standard 110 library is a collection of routines intended to provide efficient and portable I/O
services for most C programs. The standard I/O library is available on each system that supports C,
so programs that confine their system interactions to its facilities can be transported from one
system to another essentially without change.

In this section, we will discuss the basics of the standard 110 library. The appendix contains a more
complete description of its capabilities.

File Access
The programs written so far have all read the standard input and written the standard output, which
we have assumed are magically pre-defined. The next step is to write a program that accesses a file
that is not already connected to the program. One simple example is we, which counts the lines,
words and characters in a set of files. For instance, the command

we lC.e y.e

prints the number of lines, words and characters in x.e and y.e and the totals.

The question is how to arrange for the named files to be read'\. -that is, how to connect the file
system names to the 110 statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard library
function fopen. Fopen takes an external name (like x.e or y.e), does some housekeeping and
negotiation with the operating system, and returns an internal name which must be used in .~

subsequent reads or writes of the file. J

This internal name is actually a pointer, called a file pointer, to a structure which contains informa
tion about the file, such as the location of a buffer, the current character position in the buffer,
whether the file is being read or written, and the like. Users don't need to know the details, because
part of the standard I/O definitions obtained by including stdio. h is a structure definition called FILE.
The only declaration needed for a file pointer is exemplified by

FILE *fp, *fopen() i

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE
(FILE is a type name, like int,notastructuretag).

The actual call to fopen in a program is

fp = fopen«name> , <mode»;

The first argument of fopen is the <name> of the file, as a character string. The second argument is
the <mode>, also as a character string, which indicates how you intend to use the file. The only ~
allowable modes are read (rA) wri te (w) or append (a))

4 HP-UX Programming

If a file that you open for writing or appending does not exist, it is created (if possible). Opening an
existing file for writing causes the old contents to be discarded. Trying to read a file that does not
exist is an error, and there may be other causes of error as well (like trying to read a file when you
don't have permission). If there is any error, (open will return the null pointer value NULL (which is
defined as zero in stdio. h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which gete and pute are the simplest. gete returns the next character from a file; it
needs the file pointer to tell it what file. Thus

c = !letc(fp)

places in e the next character from the file referred to by fp; it returns EOF when it reaches end of
file. pute is the inverse of getc.

putc(c, fp)

puts the character e on the file fp and returns c. Gete and pute return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided for
them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointers are called stdin, stdout, and stde". Normally these are all connected to
the terminal, but may be redirected to files or pipes as described in Section 2.2. Stdin, stdout and
stde" are pre-defined in the 110 library as the standard input, output and error files; they may be
used anywhere an object of type FILE * can be. They are constants, however, not variables, so
don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is one that
has been found convenient for many programs: if there are command-line arguments, they are
processed in order. If there are no arguments, the standard input is processed. This way the
program can be used stand-alone or as part of a larger process.

#include <stdio.h>

main(aHc, argv)
int argci
char *argv[];
{

1* wc: count lines, words, chars *1

int c, i, inward;
FILE *fp, *fopen();
long linect, wordct, charcti
long tlinect = 0, twordct = 0, tcharct Oi

i = 1 i
fp = stdini
do {

if (arge > 1 ~& (fp=fopen(argv[il, "r")) == NULL) {
fprintf(stderr, "wc: can't open Is\n", ar!fv[il)i
continue;

}

linect = wordct charct inward Oi

HP-UX Programming 5

while «e = ~ete(fp)) != EOF) {
eharet++i
if (e == '\n')

lineet++;
if (e == ' , :: c == '\t' :: e == '\n')

inword = Oi
else if (inword == 0) {

inword = 1i
wordet++;

}

}

printf("17Id 17ld 17Id", lineet, wordct, eharetli
printf(ar~c > 1 ? " 1s\n" : "\n", ar~v(i]) i
felose(fp) i
tlineet += lineeti
twordet += wordet;
teharct += eharct;

} while (++i < ar~e) i
if (ar~e > 2)

printf("17Id 17ld 171d total\n", tlineet, twordet, teharet) i
ex i t (0) ;

The function !print! is identical to print! except that the first argument is a file pointer that specifies
the file to be written.

The function {close is the inverse of {open; it breaks the connection between the file pointer and the
external name that was established by {open, freeing the file pointer for another file. Since there is a ~.

limit on the number of files that a program can have open simultaneously, it's a good idea to release }
resources when they are no longer needed. There is also another reason to call {close on an output
file - it flushes the buffer in which putc is collecting output ({close is called automatically for each
open file when a program terminates normally).

Error Handling - Stderr and Exit
Stderr is assigned to a program in the same way that stdin and stdout are. Output written on stderr
appears on the user's terminal even if the standard output is redirected. We writes its diagnostics on
stderr instead of stdout so that if one of the files can't be accessed for some reason, the message
finds its way to the user's terminal instead of disappearing down a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate program
execution. The argument of exit is available to whatever process called it (see Section 6), so the
success or failure of the program can be tested by another program that uses this one as a
sub-process. By convention, a return value of 0 signals that all is well; non-zero values signal
abnormal situations.

Exit itself calls {close for each open output file, to flush out any buffered output, then calls a routine ~
named _exit. The function _exit causes immediate termination without any buffer flushing; it may }
be called directly if desired.

6 HP-UX Programming

Miscellaneous I/O Functions
The standard 110 library provides several other 110 functions besides those previously illustrated.

Normally output with pute, etc., is buffered (except to stderr); to force it out immediately, use
fflush(fp).

Fseanfis identical to scan!, except that its first argument is a file pointer (as with fprint!) that specifies
the file from which the input comes; it returns EOF at end of file.

The functions sseanf and sprintf are identical to fseanf and fprint!, except that the first argument
names a character string instead of a file pointer. The conversion is done from the string for sseanf
and into it for sprint!.

fgets(bu!, size, fp) copies the next line from fp, up to and including a new-line, into buf, at most
size-l characters are copied; it returns NULL at end of file. fputs(bu!, fp) writes the string in bufonto
file fp.

The function ungete(e, fp) "pushes back" the character onto the input stream fp; a subsequent call
to gete, {scan!, etc., will encounter c. Only one character of push-back per file is permitted.

HP-UX Programming 7

Low-level I/O
This section describes the bottom level of 110 on the HP-UX system. The lowest level of 110 in
HP-UX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are qUite simple, this isn't as bad as it sounds.

File Descriptors
In the HP-UX operating system, all input and output is done by reading or writing files, because all
peripheral devices, even the user's terminal, are files in the file system. This means that a single,
homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of your
intent to do so, a process called "opening" the file. If you are going to write on a file, it may also be
necessary to create it. The system checks your right to do so (Does the file exist? Do you have
permission to access it?), and if all is well, returns a small positive integer called a file descriptor.
Whenever I/O is to be done on the file, the file descriptor is used instead of the name to identify the
file. (This is roughly analogous to the use of REAO(S, •••) and WRITE(S, •••) in FORTRAN) All
information about an open file is maintained by the system; the user program refers to the file only
by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things, the
file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements exist to
make this convenient. When the command interpreter (the "shell") runs a program, it opens three
files, with file descriptors 0, I, and 2, called the standard input, the standard output, and the
standard error output. All of these are normally connected to the terminal, so if a program reads file
descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O without worrying about
opening the files.

If I/O is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named
files. Similar observations hold if the input or output is associated with a pipe. Normally file
descriptor 2 remains attached to the terminal, so error messages can go there. In all cases, the file
assignments are changed by the shell, not by the program. The program does not need to know
where its input comes from nor where its output goes, so long as it uses file 0 for input and 1 and 2
for output.

8 HP-UX Programming

Read and Write
All input and output is done by two functions called read and write. For both, the first argument is a
file descriptor. The second argument is a buffer in your program where the data is to come from or
go to. The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, 0);

o_writteo = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading, the
number of bytes returned may be less than the number asked for, because fewer than n bytes
remained to be read. (When the file is a terminal, read normally reads only up to the next new-line,
which is generally less than what was requested.) A return value of zero bytes implies end of file,
and -1 indicates an error of some sort. For writing, the returned value is the number of bytes
actually written; it is generally an error if this isn't equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are 1,
which means one character at a time ("unbuffered"), and 512, which corresponds to a physical
block size on many peripheral devices. This latter size will be most efficient, but even character at a
time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This
program will copy anything to anything, since the input and output can be redirected to any file or
device.

odefine BUFSIZE 512 1* best size for HP-UX *1

Main() 1* co py input to o... tput *1
{

char buf[BUFSIZE] ;
int n;

while lIn = readlO, buf, BUFSIZE» > 0)
write(1, buf, n);

exitlO) ;

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to be
written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like getchar,
putchar, etc. For example, here is a version of getchar which does unbuffered input.

#define CMASK 0377 1* for MaKing char's> 0 *1
getchar() 1* unbuffered single character input *1
{

char c;

return«readlO, &c, 1) > 0) ? c & CMASK EOF)i

HP-UX Programming 9

c must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it
negative. (The constant 0377 is appropriate for Series 200/500 computers, but not necessarily for
other computers and systems.)

The second version of getchar does input in big chunks, and hands out the characters, one at a
time.

#detine CMASK 0377
#detine BUFSIZE 512
Htchar()
<

static char
static char
static int

1* tor Making char's> 0 *1

1* buttered version *1

bufCBUFSIZEl i
*bufp = buti
n = Oi

it (n == Ol < 1* bufter is empty *1
n = read(O, but, BUFSIZE)i
bufp = but;

}

return«(--n)= 0) ? *butp++ & CMASK EOFli

Open, Creat, Close, Unlink
Other than the default standard input, output and error files, you must explicitly open files in order
to read or write them. There are two system entry points for this, open and creat [sic].

Open is rather like the lopen discussed in the previous section, except that instead of returning a file)
pointer, it returns a file descriptor, which is just an into

int fdi

fd = open(naMe, rWModeli

As with lopen, the name argument is a character string corresponding to the external file name. The
access mode argument is different, however: rwmode is 0 for read, 1 for write, and 2 for read and
write access. open returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided to create new
files, or to re-write old ones.

fd = creat(nallle, Plllode)i

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file already
exists, creat will truncate it to zero length; it is not an error to creat a file that already exists.

10 HP-UX Programming

1* RW for owner, R for group, others *1

If the file is brand new, creat creates it with the protection mode specified by the pmode argu
ment. In the HP-UX file system, there are nine bits of protection information associated with a file,
controlling read, write and execute permission for the owner of the file, for the owner's group, and
for all others. Thus a three-digit octal number is most convenient for specifying the permissions. For
example, 0755 specifies read, write and execute permission for the owner, and read and execute
permission for the group and everyone else.

To illustrate, here is a simplified version of the HP-UX utility cp, a program which copies one file to
another. (The main simplification is that our version copies only one file, and does not permit the
second argument to be a directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644

nlain(argc, argv)
int argc;
char *argv[];
{

int fl, f2, nj
char buf[BUFSIZElj

1* cp: COpy fl to f2 *1

if (argc != 3)
error("Usa!le: CP fronl to", NULLl;

if «fl = open(ar!lv[l], 0)) == -1)
error("cp: can't open Is", ar!lv[l]);

if «f2 = creat(argu[2], PMDDE) == -1)
error(" cp : can't create Is", ar!lv[Z]);

while «n = read(fl, buf, BUFSIZE») > 0)
if (write(f2, blJf, n) != rd

error(" cp : write error", NULL) j
exit(O) j

error(sl, 52)
char *51, HZ;
{

printf(sl, 52);
printf("\n")j
exit(!>j

1* print error message and die *1

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must be
prepared to re-use file descriptors. The routine close breaks the connection between a file descrip
tor and an open file, and frees the file descriptor for use with some other file. Termination of a
program via exit or return from the main program closes all open files.

The function unlink«filename» removes the file <filename> from the file system.

HP-UX Programming 11

Random Access - Lseek
File I/O is normally sequential: each read or write takes place at a position in the file right after the
previous one. When necessary, however, a file can be read or written in any arbitrary order. The
system call lseek provides a way to move around in a file without actually reading or writing:

Isee!«fd, offset, ori~in);

forces the current position in the file whose descriptor is fd to move to position offset, which is taken .~
relative to the location specified by origin. Subsequent reading or writing will begin at that position. .
offset is a long, fd and origin are ints. origin can be 0, 1, or 2 to specify that offset is to be measured
from the beginning, from the current position, or from the end of the file respectively. For example,
to append to a file, seek to the end before writing:

Isee!«fd, OL, 2);

To get back to the beginning ("rewind"),

1see k (f d, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek, it is possible to treat files more or less like large arrays, at the price of slower access. For
example, the follOWing simple function reads any number of bytes from any arbitrary place in a file.

~et(fd, pas, buf, n)
int fd, n;
lon~ pas;
char *bufi
{

1* read n bytes froM position pas *1

Iseeklfd, pos, 0); 1* Ht to pos *1
returnlreadlfd, buf, n»)j

Error Processing
The routines discussed in this section, and in fact all the routines which are direct entries into the
system can incur errors. Usually they indicate an error by returning a value of - 1. Sometimes it is
nice to know what sort of error occurred; for this purpose all these routines, when appropriate,
leave an error number in the external cell errno. The meanings of the various error numbers are
listed in the entry for ermo(2) in the HP-UX Reference. Your program can, for example, determine
if an attempt to open a file failed because it did not exist or because the user lacked permission to
read it. Perhaps more commonly, you may want to print out the reason for failure. The routine
perrorwill print a message associated with the value of ermo; more generally, sys_ermo is an array
of character strings which can be indexed by erma and printed by your program.

12 HP-UX Programming

Processes
It is often easier to use a program written by someone else than to invent one's own. This section
describes how to execute a program from within another.

The "System" Function
The easiest way to execute a program from another is to use the standard library routine system.
System takes one argument, a command string exactly as typed at the terminal (except for the
new-line at the end) and executes it. For instance, to time-stamp the output of a program,

mai n I)
{

systeml"date") i
1* rest of processing *1

If the command string has to be built from pieces, the in-memory formatting capabilities of sprint!
may be useful.

Remember that gete and pute normally buffer their input; terminal 110 will not be properly synchro
nized unless this buffering is defeated. For output, use £flush; for input, see setbuf in the appendix.

Low-level Process Creation - Execl and Execv
If you're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library's system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
exec/. To print the date as the last action of a running program, use

elCec)I"/bin/date", "date", NULLl;

The first argument to execJ is the file name of the command; you have to know where it is found in
the file system. The second argument is conventionally the program name (that is, the last compo
nent of the file name), but this is seldom used except as a place-holder. If the command takes
arguments, they are strung out after this; the end of the list is marked by a NULL argument.

The execJ call overlays the existing program with the new one, runs that, then exits. There is no
return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an execJ call from the first.

The one exception to the rule that the original program never gets control back occurs when there is
an error, for example if the file can't be found or is not executable. If you don't know where date is
located, say

elCecl("/bin/date", "date", NULL);
elCecll"/usr/bin/date", "date", NULLl;
fprintf(stderr, "Someone stole 'date'\n");

HP-UX Programming 13

/* in child */

A variant of exed called execv is useful when you don't know in advance how many arguments
there are going to be. The call is

execvlfilenaMe, ar~p);

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL so
execv can tell where the list ends. As with exed, filename is the file in which the program is found,
and argp[Ol is the name of the program. (This arrangement is identical to the argv array for program
arguments.)

Neither of these routines provides the niceties of normal command execution. There is no automa
tic search of multiple directories - you have to know precisely where the command is located. Nor
do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument list. If you want
these, use exed to invoke the shell sh, which then does all the work. Construct a string comman
dline that contains the complete command as it would have been typed at the terminal, then say

execl("/bin/sh", "sh", "-c", cOMMandline, NULL);

The shell is assumed to be at a fixed place, Ibin/sh. Its argument - c says to treat the next argument
as a whole command line, so it does just what you want. The only problem is in constructing the
right information in commandline.

Control of Processes - Fork and Wait
So far what we've talked about isn't really all that useful by itself. Now we will show how to regain
control after running a program with exed or execv. Since these routines simply overlay the new
program on the old one, 'to save the old one requires that it first be split into two copies; one of these ~
can be overlaid, while the other waits for the new, overlaying program to finish. The splitting is done }
by a routine called fork

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between the
two is the value of proc...id, the "process id." In one of these processes (the "child"), proc...id is
zero. In the other (the "parent"), proc...idis non-zero; it is the process number of the child. Thus the
basic way to call, and return from, another program is

if lfork() == 0)
execll"/bin/sh", "shU, "_COl, Chid, NULL);

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the program.
In the child, the value returned by fork is zero, so it calls exed which does the command and then
dies. In the parent, fork returns non-zero so it skips the exec/. (If there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can be
done with the function wait

int status;

if (forK() :::: 0)
execlL ••);

wait(&:status) ;

14 HP-UX Programming

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns the
process id of the terminated child, if you want to check it against the value returned by fork.) Finally,
this fragment doesn't deal with any funny behavior on the part of the child (which is reported in
status). Still, these three lines are the heart of the standard library's system routine, which we'll
show in a moment.

The status returned by wait encodes in its low-order eight bits the system's idea of the child:s
termination status; it is 0 for normal termination and non-zero to indicate various kinds of problems.
The next higher eight bits are taken from the argument of the call to exit which caused a normal
termination of the child process. It is good coding practice for all programs to return meaningful
status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at the
right files, and all other possible file descriptors are available for use. When this program calls
another one, correct etiquette suggests making sure the same conditions hold. Neither fork nor the
exec calls affects open files in any way. If the patent is buffering output that must come out before
output from the child, the parent must flush its buffers before the exec/. Conversely, if a caller
buffers an input stream, the called program will lose any information that has been read by the
caller.

Pipes
A pipe is an 110 channel intended for use between two cooperating processes: one process writes
into the pipe, while the other reads. The system looks after buffering the data and synchronizing the
two processes. Most pipes are created by the shell, as in

Is : pr

which connects the standard output of Is to the standard input of pro Sometimes, however, it is most
convenient for a process to set up its own plumbing; in this section, we will illustrate how the pipe
connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[Zli

stat:: pipe(fd);
if (stat ::: -1)

1* there was an error ••• *1

Fd is an array of two file descriptors, where fd[O] is the read side of the pipe and Id[l] is for writing.
These may be used in read, write and close calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a pipe
which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is closed, a
subsequent read will encounter end of file.

HP-UX Programming 15

To illustrate the use of pipes in a realistic setting, let us write a function called popen(cmd, mode),
which creates a process cmd Oust as system does), and returns a file descriptor that will either read
or write that process, according to mode. That is, the call

fout = popen(" pr ", WRITE);

creates a process that executes the pr command; subsequent write calls using the file descriptor fout
will send their data to that process through the pipe.

Popen first creates the the pipe with a pipe system call; it then forks to create two copies of itself.
The child decides whether it is supposed to read or write, closes the other side of the pipe, then calls
the shell (via execl) to run the desired process. The parent likewise closes the end of the pipe it does
not use. These closes are necessary to make end-oE-file tests work properly. For example, if a child
that intends to read fails to close the write end of the pipe, it will never see the end of the pipe file,
just because there is one writer potentially active.

-include <stdio.h>

.define READ 0

.define WRITE 1

.define tst(a, b) (Mode
static int popen_pid;

popen(cMd, mode)
char *cMdi
int modei
{

int p[Zl;

READ? (b) (a))

if (pipe(p) < 0)
return(NULLl ;

if «popen_pid = fork()) == 0) {
close(tst(p[WRITEl, p[READl)) i
close(tst(O, 1»);
dup(tst(p[READl, p[IolRITEl)) i
c!ose(tst(p[READl, p[WRITEl));
eKecl(l/bin/sh", "sh", "_ C", CMd, 0) i

_eKit(l); 1* disaster has occurred if we get here *1
}

if (popen_pid -1)
return (NULL);

c!ose(tst(p[READl, p[WRITEl))i
ret urn (t st (p[IolR ITE], p[RE AD l)) ;

16 HP-UX Programming

~.

"

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child process
that will read data from the parent. Then the first close closes the write side of the pipe, leaving the
read side open. The lines

close(tst(O, 1);
dup(tst(p[REAOJ, p[WRITEJ));

are the conventional way to associate the pipe descriptor with the standard input of the child. The
close closes file descriptor 0, that is, the standard input. dup is a system call that returns a duplicate
of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor for the pipe (read side)
to file descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, this is a bit
tricky, but it's a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from the
parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by popen. The
main reason for using a separate function rather than close is that it is desirable to wait for the
termination of the child process. First, the return value from pclose indicates whether the process
succeeded. Equally important when a process creates several children is that only a bounded
number of unwaited-for children can exist, even if some of them have terminated; performing the
wait lays the child to rest. Thus:

uinclude <signal.h>

pclose(fd) 1* close pipe fd *1
int fd;
{

register r, (*hstat)(), (*istat)(), (*qstat)l);
int status;
extern int popen_pidi

close(fd) ;
istat signallSIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN) j

while «r = wait(&Hatus) != popen_pid &Se r != -1>i
if lr == -1)

status = -1;
sign a1ISIGI NT, is tat) j

signalISIGQUIT, qstat) j

sign a I ISIGHUP, hs tat) t

return(status) ;

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the
single shared variable popen_pid; it really should be an array indexed by file descriptor. A popen
function, with slightly different arguments and return value is available as part of the standard I/O
library discussed below. As currently written, it shares the same limitation.

HP-UX Programming 17

Signals - Interrupts and All That
This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there's nothing very useful that can be done from within
C about program faults, which arise mainly from illegal memory references or from execution of
peculiar instructions, we'll discuss only the outside-world signals:

Interrupt

Quit

Hangup

Terminate

Sent when the DEL character is typed;

Generated by the FS character;

Caused by hanging up the phone; and

Generated by the kill command.

When one of these events occurs, the signal is sent to all processes which were started from the
corresponding terminal; unless other arrangements have been made, the signal terminates the
process. In the quit case, a core image file is written for debugging purposes.

The routine that alters the default action is called signal. It has two arguments: the first specifies the
signal, and the second specifies how to treat it. The first argument is just a number code, but the
second is the address, and is either a function, or a somewhat strange code that requests that the
signal either be ignored or that it be given the default action. The include file signal. h gives names
for the various arguments, and should always be included when signals are used. Thus

cinclude <signal.h>

signal(SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous value of
the signal. The second argument to signal may instead be the name of a function (which has to be
declared explicitly if the compiler hasn't seen it already). In this case, the named routine will be
called when the signal occurs. Most commonly this facility is used to allow the program to clean up
unfinished business before terminating, for example to delete a temporary file:

cinclude <signal.h>

ll1ai n()
{

int onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, onintr);

1* Process •• •*1

ex i t (0) ;
}

onintr(
{

unlink(teMPfile) ;
exit(lH

}

18 HP-UX Programming

Why the test and the double call to signal? Recall that signals like interrupt are sent to all processes
started from a particular terminal. Accordingly, when a program is to be run non-interactively
(started by &), the shell turns off interrupts for it so it won't be stopped by interrupts intended for
foreground processes. If this program began by announcing that all interrupts were to be sent to the
onintr routine regardless, that would undo the shell's effort to protect it when run in the back
ground.

~ The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that signal
returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to stop
what it is doing and return to its own command-processing loop. Think of a text editor: interrupting
a long printout should not cause it to terminate and lose the work already done. The outline of the
code for this case is probably best written like this:

uinclude <signal.h>
Uinclude <setjmp,h>
jmp_buf
sjbufj

mai n (I
{

int (*istatl(I, onintr(I j

istat = signal(SIGINT, SIG_IGN) j 1* save original status *1
setjmp(sjbuf)j 1* save current stack position *1
if (istat != SIG_IGNI

sifnal(SIGINT, onintrlj

1* main processing loop *1
}

onintr(
{

printf("\nlnterruPt\n"1 j
lonfjmp(sjbuf); 1* return to saved state *1

The include file setjrnp. h declares the type jrnp_bufan object in which the state can be saved. sjbuf
is such an object; it is an array of some sort. The setjrnp routine then saves the state of things. When
an interrupt occurs, a call is forced to the onintr routine, which can print a message, set flags, or
whatever. Jongjrnp takes as argument an object stored into by setjrnp, and restores control to the
location after the call to setjrnp, so control (and the stack level) will pop back to the place in the
main routine where the signal is set up and the main loop entered. Notice, by the way, that the
signal gets set again after an interrupt occurs. This is necessary; most signals are automatically reset
to their default action when they occur.

HP-UX Programming 19

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal sets a
flag and then returns instead of calling exit or !ongjmp, execution will continue at the exact point it
was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the tenninal
when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it were ~
really true, as we said above, that "execution resumes at the exact point it was interrupted", the }
program would continue reading the terminal until the user typed another line. This behavior might
well be confusing, since the user might not know that the program is reading; he presumably would
prefer to have the signal take effect instantly. The method chosen to resolve this difficulty is to
terminate the terminal read when execution resumes after the signal, returning an error code which
indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for "errors"
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,
wait, and pause.) A program whose onintr program just sets intRag, resets the interrupt signal, and
returns, should usually include code like the following when it reads the standard input:

if 1getchar() == EOF)
if (intflagl

1* EOF caused by interrupt *1
else

1* true end-of-file *1

A final subtlety to keep in mind becomes important when signal-catching is combined with execu-
tion of other programs. Suppose a program catches interrupts, and also includes a method (like "!" ,)
in the editor) whereby other programs can be executed. Then the code should look something like
this:

if lfork() == 0)
ellecl<. ••);

signaiISIGINT, SIG_IGN);
wait(&status) ;
signal(SIGINT, onintr);

1* ignore interrupts *1
1* until the child is done *1
1* restore interrupts *1

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call catches its
own interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop, and
probably read your terminal. But the calling program will also pop out of its wait for the subprogram
and read your terminal. Having two processes reading your terminal is very unfortunate, since the
system figuratively flips a coin to decide who should get each line of input. A simple way out is to
have the parent program ignore interrupts until the child is done. This reasoning is reflected in the
standard I/O library function system:

20 HP-UX Programming

oinclude <signal.h>

systeM(sl
char *si
(

/* run command string s */

int status, pid, wi
register int (*istatl(I, (*qstat)(Ii

if «pid = forkl II == 01
ellee1(l/bin/sh", "sh", "_e", s, Oli
_ellit(1271 i

}

istat = signallSICINT, SIC_ICNI i
qstat = signal(SICQUIT, SIC_ICNI;
while «w = wait(~statusll != pid &~ w != -II

if (w == -II
status = -Ii

signal(SICINT, istatl i
signal(SIGQUIT, qstatli
return(statusl;

As an aside on declarations, the function signal obviously has a rather strange second argument. It
is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine
itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so they coincide
with no possible actual functions. For the enthusiast, here is how they are defined for Series
200/500 computers; the definitions should be sufficiently ugly and nonportable to encourage use of
the include file.

odefine SIC_DFL
odefine SIC_IGN

(int 1*)() 10
lint (*)(1)1

HP-UX Programming 21

Appendix - The Standard I/O Library
The standard 1/0 library was designed with the following goals in mind.

• It must be as efficient as possible, both in time and in space, so that there will be no hesitation
in using it no matter how critical the application.

• It must be simple to use, and also free of the magic numbers and mysterious calls whose use
mars the understandability and portability of many programs using older packages.

• The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the one
upon which the program was written.

General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no special
library argument is needed for loading. All names in the include file intended only for internal use
begin with an underscore (_) to reduce the possibility of collision with a user name. The names
intended to be visible outside the package are

stdin

stdout

stderr

EOF

NULL

FILE

BUFSIZ

gete, getehar,
pute, putehar,
feof, ferror,
Fileno

The name of the standard input file

The name of the standard output file

The name of the standard error file

is actually -1, and is the value returned by the read routines on end-of-file or
error.

is a notation for the null pointer, returned by pOinter-valued functions to indi
cate an error

expands to struct -iob and is a useful shorthand when declaring pointers to
streams.

is a number (viz. 512) of the size suitable for an 110 buffer supplied by the user.
See setbuf, below.

are defined as macros. Their actions are described below; they are mentioned
here to point out that it is not possible to redeclare them and that they are not
actually functions; thus. for example, they cannot have breakpoints set on
them.

The routines in thiS package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderrare, in effect, constants and cannot
be assigned to.

22 HP-UX Programming

Calls
FILE *fopen «filename>, <type» char *<filename> , *<type> i

opens the file and, if needed, allocates a buffer for it. <filename> is a character string specifying
the name. <type> is a character string (not a single character). It may be "r", "w", or "a" to
indicate intent to read, write, or append. The value returned is a file pointer. If it is NULL, the
attempt to open failed.

FILE *freopen(filenaMe, type, ioptr) char *filename, *typei FILE *ioptri

closes the stream named by ioptr, if necessary, then reopens it as if by (open. If the attempt to
open fails, NULL is returned. Otherwise ioptr, now refers to the new file. Often the reopened
stream is stdin or stdout.

int getc(ioptr) FILE *ioptri

returns the next character from the stream named by <ioptr>, which is a pointer to a file such
as returned by (open, or the name stdin. The integer EOFis returned on end-of-file or when an
error occurs. The null character is a legal character.

int fgetc(ioptr) FILE *ioptri

acts like gete but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE *ioptri

writes the character c on the output stream named by ioptr, which is a value returned from
(open or perhaps stdout or stderr. The character is returned as value, but EOF is returned on
error.

fputc(c, ioptr) FILE *ioptri

acts like pute but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptri

closes the file corresponding to ioptr after any buffers are emptied. Any buffering allocated by
the I/O system is freed. (close is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptri

writes out any buffered information on the (output) stream named by ioptr. Output files are
normally buffered if and only if they are not directed to the terminal; however, stderr always
starts off unbuffered and remains so unless setbu{ is used, or unless it is reopened.

exit(errcode) i

terminates the process and returns its argument as status to the parent. This is a special version
of the routine which calls fflush for each output file. To terminate without flushing, use _exit.

HP-UX Programming 23

feof(ioptr) FILE *ioptr;

returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptri

returns non-zero when an error has occurred while reading or writing the named stream. The
error indication lasts until the file has been closed.

fetchar();

is identical to fe t c (s t din) .

putchar(c);

is identical to put c (c, s t d 0 utI.

char *fgets(s, n, ioptrl char *si FILE *ioptr;

reads up to n - 1 characters from the stream ioptr into the character pointer s. The read
terminates with a new-line character. The new-line character is placed in the buffer followed by
a null character. Fgets returns the first argument, or NULL if error or end-of-file occurred.

fputs(s, ioptr) char *si FILE *ioptri

writes the null-terminated string (character array) s on the stream ioptr. No new-line is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptri

pushes the argument character c back on the input stream named by ioptr. Only one character
can be pushed back.

printf(format, al, ••• I char *forlllat;

fprintf(ioPtr, forlllat, al, ••• I FILE *ioptri char *format;

sprintf(s, format, al, • lchar *s, *formati

print! writes on the standard output. !print! writes on the named output stream. sprint! puts
characters in the character array (string) named by s. The specifications are as described in
section print! (3) of the HP-UX Reference.

scanf(forlllat, al, ••• I char *forlllati

fscanf(iOPtr,\ format,\ al, •••) FILE *ioptri char *formati

sscanf(s, format, al, •) char *s, *formati

scan! reads from the standard input. !scan! reads from the named input stream. sscan! reads
from the character string supplied as s. Scanf reads characters, interprets them according to a
format, and stores the results in its arguments. Each routine expects as arguments a control
string format, and a set of arguments, each of which must be a pointer, indicating where the ~
converted input should be stored. ,

Scan! returns as its value the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input character does not match what was
called for in the control string.

24 HP-UX Programming

freadlptr, sizeofl*ptrl, niteMs, ioptrl FILE *ioptr;

reads nitems of data beginning at ptr from file ioptr. No advance notification that binary I/O is
being done is required; when, for portability reasons, it becomes required, it will be done by
adding an additional character to the mode-string on the fopen call.

fwritelptr, sizeofl*ptrl, niteMs, ioptrl FILE *ioptr;r like fread, but in the other direction.

rewindlioptrl FILE *ioptri

rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

sYsteM(strin~l char *strin~i

string is' executed by the shell as if typed at the terminal.

~etw(ioPtrl FILE *ioptri

returns the next 32-bit word from the input stream named by ioptr. EOF is returned on
end-of-file or error, but since this a perfectly good integer feof and ferror should be used.

putw(w, ioptrl FILE *ioptri

writes the integer won the named output stream.

~ setbuf(ioptr, bufl FILE *ioptri char *bufi

setbufcan be used after a stream has been opened but before I/O has started. If buf is NULL,
the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a character
array of sufficient size: charb uf[BUFS I Z] i

fileno(ioptrl FILE *ioptri

returns the integer file descriptor associated with the file.

fseek(ioPtr, offset, ptrnaMel FILE *ioptr; lon~ offseti

adjusts the location of the next byte in the stream named by ioptr. offset is a long integer. If
ptrname is 0, the offset is measured from the beginning of the file; if ptmame is 1, the offset is
measured from the current read or write pointer; if ptrname is 2, the offset is measured from the
end of the file. The routine accounts properly for any buffering. (When this routine is used on
HP-UX systems, the offset must be a value returned from £tell and the ptrname must be 0).

~
\

lon~ ftell(ioptrl FILE *ioptri

returns the byte offset (measured from the beginning of the file) associated with the named
stream. Any buffering is properly accounted for. (On HP-UX systems the value of this call is
useful only for handing to fseek, so as to position the file to the same place it was when £tell was
called.)

HP-UX Programming 25

getpw(uid, buf) char *buf;

searches the password file for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *malloc(num);

allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any ,~
purpose. NULL is returned if no space is available.

char *calloc(nuM, size);

allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available.

cfree(ptr) char *ptr;

Space is returned to the pool used by calJoc. Disorder can be expected if the pointer was not
obtained from call 0 c.

The following are macros whose definitions may be obtained by including <ctype.h>.

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isspace(c)

ispunct(c)

isalnumlc)

isprintlc)

iscntrl(c)

isascii(c)

toupper(c)

tolower(c)

returns non-zero if the argument is alphabetic.

returns non-zero if the argument is upper-case alphabetic.

returns non-zero if the argument is lower-case alphabetic. \~
returns non-zero if the argument is a digit.

returns non-zero if the argument is a spacing character: tab,

returns non-zero if the argument is any punctuation character, Le., not a space,
letter, digit or control character.

returns non-zero if the argument is a letter or a digit.

returns non-zero if the argument is printable-a letter, digit, or punctuation char
acter.

returns non-zero if the argument is a control character.

returns non-zero if the argument is an ASCII character, Le., less than octal 0200.

returns the uppercase character corresponding to the lowercase letter c.

returns the lowercase character corresponding to the uppercase letter.

26 HP-UX Programming

Table of Contents

Using C on HP9000 Series 500 Computers
Introduction 1
Data Types and Manipulations 1

Data Type Sizes 1
Char Data Type 1
Register Data Type 1
Integer Overflow 1
Division by Zero 2
Identifiers 2
Shift Operators 2
Bit Fields 2

Code/Data Limitations 2
Portability Considerations 3

ii

Using C on HP 9000
Series 500 Computers

Introduction

The purpose of this article is to describe the machine dependent features of the C programming
language as it is implemented on the HP 9000 Series 500 computers. No attempt is made here to
fully describe C. When applicable. page numbers are given that reference pages in the Kernighan
and Ritchie text. The C Programming Language. which are related to the discussion.

Data Types and Manipulations

Data Type Sizes
The following table gives the sizes and alignment requirements of the six data types implemented in
C (page 34):

Type
char
short

int
long
float

double

Size
8 bits
16 bits
32 bits
32 bits
32 bits
64 bits

Alignment Requirements
byte boundary

half word
full word
full word
full word
full word

Char Data Type
The char data type is treated as signed by default. This implies that. if a char is assigned to an int.
sign extension will take place (page 40).

Register Data Type
Because the Series 500 computers are stack machines, declaring a variable to be register is
ignored, and is treated as a no-op (page 81).

Integer Overflow
Integer overflow does not generate an error by default (page 185).

1

Division by Zero
Whenever division by zero occurs, you get the (somewhat misleading) error message .. Floating
exception" at run-time.

Identifiers
Internal identifiers have 16 significant characters. External identifiers have 15 significant characters ~
(page 179).)

Shift Operators
An arithmetic shift is performed if the left operand is signed. If the left operand is unsigned. a logical
shift is performed (page 45). (Remember that integer constants are treated as signed unless cast to
unsigned.)

Bit Fields
Bit fields are assigned left to right. and are treated as unsigned (page 138).

Code/Data Limitations

The following limitations exist on the Series 500 computers:

a maximum of 2A 19 bytes of local variables in any procedure;

a maximum of 2A 19 bytes of parameters in any function call;

any branch instruction generated by a procedure must be within 2A 18 bytes of its target;

structure functions cannot return a structure bigger than 2 A 24 bytes.

If you violate any of the above limits, you get the message II impossible reach II from the assembly
step of cc. Other limitations are:

a maximum of 255 procedures in any single compilation (i.e. any single ".c" file and
everything it #includes). If you exceed this, you get II proctable overflow II from the assembler;

a maximum of 32 767 lines of assembly code generated by cc. If you exceed this, you get II too
many lines" from the assembler. To work around this, break your program up into smaller
pieces;

a maximum of 2 A 19 bytes of global scalar data (includes all global scalar variables, all static
scalar variables, all global and static structures, and 4 bytes for each global or static array). If
you exceed this, you get II byte offset too large" from the linker, ld.

When compiling with cc, you can recognize assembler errors by the fact that they make reference to .~
a file called Itmplctm3x, where x is a single letter. Also, you can use the -v option to watch the
compilation process, and note where the error occurs.

2 C Differences

Portability Considerations

The following list should be kept in mind when transporting C code to the Series 500 computers
from other machines:

the Series 500 computers do not swap bytes:

dereferencing a null pointer for a read or write operation generates a run-time error. On some
other machines, dereferencing a null pointer for a read operation returns zero:

beware of attempts to use absolute addressing. The use of hard-coded addresses is not likely
to work on any machine to which you want to port code:

even though the stack grows toward higher memory addresses, parameters are stacked toward
decreasing addresses. Thus, if you want to use a pointer to step through a variable length
parameter list, you must decrement the pointer.

C Differences 3

4 C Differences

Table of Contents

Using the C Library Routines
Part 1: Standard Input/Output Routines. .. 3

Input/Output Using Stdin and Stdout .. 4
Single-character Input/Output. .. 4
String Input/Output. .. 5
Formatted Input/Output. .. 6

Scant 6
Conversion Specifications .. 7
Integer Conversion Characters .. 7
Character Conversion Characters. .. 7
Roating-point Conversion Characters .. 8
Literal Characters .. 9
Examples 9
Printf 12
Literal Characters. .. 12
Conversion Specifications. .. 12
Conversion Characters 13
Examples 15

Input/Output from/to Strings .. 17
Reading Data from a String. .. 17
Writing Data Into a String .. 19

Input/Output Using Ordinary Files 21
Opening Ordinary Files 21
Single-character Input/Output. .. 23
Character Push-back 25
String Input/Output .. 26
Formatted Input/Output. .. 28
Binary Input/Output. .. 29

Stream Status and Control Routines. .. 33
Stream Status Inquiry Routines. .. 33
Re-positioning Stream 110 Operations (rewind, !tell, (seek). 35
Stream Control Routines. .. 39

(close 39
setbuf 39
setvbuf 40
{flush 41
£reopen 42

Converting Between File Pointers and File Descriptors .. 43
Interprocess Communication. .. 45

ii

Part 2: Math Routines 47
Absolute Value Functions. .. 48
Power, Square Root, and Logarithmic Functions. .. 49
Trigonometric Functions 50
Miscellaneous Functions. .. 53

Calculating Upper and Lower Bounds '.' 53
Calculating Remainders. .. 53
Calculating A Hypotenuse. .. 55
Generating Random Numbers .. 55
Hoating-point Exponentiation Routines. .. 56

Part 3: Character Conversion and Classification .. 57
Converting Between Uppercase and Lowercase .. 57
Character Classification .. 57

String Manipulation 58
Concatenating Strings .. 58
Copying Strings .. 58
Comparing Strings .. 60
Finding the Length of a String 61
Finding Characters in Strings " 61

Miscellaneous String Routines. .. 63
Finding Characters Common to Two Strings 63
Breaking a String into Tokens. .. 63

Part 4: Date and Time Manipulation. .. 65

~
\

Using the C Library Routines

The purpose of this tutorial is to illustrate the use of the library routines described in Section 3 of the
HP-UX Reference manual that are most commonly used. Examples are included to demonstrate
programming techniques.

This article assumes that you have a working knowledge of the C programming ianguage. No
attempt is made here to explain or teach C programming techniques, other than those that are
relevant to a particular library routine.

Material is presented in three sections, each dealing with the following topics in the order listed:

• Standard Input/Output Routines,

• Math Routines, including trigonometric and other functions, and

• String Manipulation Routines.

1

2 C Library Routines

'----------__I~lart~dardInput/Output Routines .[TI

There are more library routines in this category than in any other. Described under this heading are
routines that perform all kinds of input and output, from single characters to entire strings. Also
described are routines that adjust I/O buffering, routines that enable input from or output to files,
and routines that enable random access to data. These routines require that the include file stdio.h
be #included in C programs containing calls to them.

The standard I/O routines are inseparably linked with files. A file must be opened before its contents
can be used. Three "files" are automatically opened for you by the system. Including stdio.h in
your program assigns buffering to them. These three "files" are the standard input, standard
output, and standard error files. Their names are stdin, stdout, and stderr, respectively.

Actually, it is more accurate to think of these "files" as pipes connecting two points. Each pipe
accepts data at one end, and transfers the data to its destination at the other end. These pipes have
only limited ability to store data. Once a certain number of bytes have been written into the pipe,
data must be read from the other end before the pipe can accept more data. Writing data into a
pipe is analogous to pumping water into a pipeline. The pipeline is able to hold some water, but if
the valve at the receiving end of the pipe is shut, the pipeline is soon unable to hold any more
water. Opening the valve is analogous to reading data from the pipe. Once water has been
removed from the pipeline, more water can be pumped in at the source.

Once a certain volume of water has been allowed to flow out of a pipeline, that same water no
longer exists in the pipeline. This is also true for data that has been received from stdin, stdout, and
stderr. Reading data from stdin, for instance, removes that data from stdin. You can see that stdin,
stdout, and stderr are very different from ordinary files. Not only can they store small amounts of
data, but that data exists only until it is read (unless it is "pushed back" - - see Character
Push-Back later in this article).

Stdin is opened for reading. This means that your program can only receive data from stdin; it
cannot write data into it. By default, stdin's source of data is your terminal's keyboard. Thus,
whatever you type at your keyboard provides the data that flows through stdin and becomes
available to your program at the other end. By default, stdin is buffered via a buffer containing
exactly BUFSIZ bytes, where BUFSIZ is a constant defined in stdio.h. For Series 200 and Series
500 computers, BUFSIZ is 1024. Due to terminal driver characteristics, data you type in at your
keyboard is not available to a program until you press RETURN (or its eqUivalent).

Stdout is opened for writing, which means that your program is the source of data for stdout. Your
program cannot, however, read data from stdout. By default, the destination of stdout is your
terminal's screen. Thus, data fed into stdout appears on your screen. Stdout is typically used for all
output that arises from successful execution of a program (status reports, lists of tasks being
performed, etc.). Like stdin, stdout is buffered via a buffer containing BUFSIZ bytes.

3

Stderr is also opened for writing, allowing your program to feed data into it, but disallowing
reading. Just like stdout, stderr's destination is your terminal's screen by default. Stderr is typically
used to output data which arises from an erroneous condition in a program, such as error messages,
warnings, etc. Stderr is unbuffered by default, which means that data written to stderr is transferred
to its destination one byte at a time.

The buffering for these pipes, as well as for any open file, can be modified - see the Stream Status
and Control Routines section later in this tutorial.

Of course, your program would be severely limited in its UO capabilities if it had only these three
pipes to work with. Therefore, ordinary text files can be opened for reading, or created/opened for
writing, appending, or both reading and writing. Directories can also be opened, but only for
reading. These features are discussed later in this article. For now, the use of stdin and stdout is
described (stderr is also left for later discussion).

Input/Output Using Stdin and Stdout
This section describes those routines which are capable of UO using stdin and stdout only. The
routines discussed are getchar and putchar (single character 110), gets and puts (string 110), and
scan!and print! (formatted I/O of all types).

Single-character Input/Output
This section describes the two basic input and output routines, getchar and putchar. Getchar is a ~
macro defined in stdio.h which reads one character from stdin. Similarly, putchar is also a macro)
defined in stdio.h. Putchar writes one character on stdout.

As an example, consider the following program, which simply reads stdin and echos whatever it
finds to stdout. The program terminates when it receives an at-sign (@) from stdin.

#include <stdio.h>
mai n()
{

int ci

while«c = getchar(» != '@')
putchar(c);

put ctla r (, \ n ') ;

Why is c declared an int instead of a char? For most applications, char works fine. In certain cases,
however, sign extension, bit shifting, and similar operations cause strange results with chars.
Therefore, int is used here, and in all follOWing examples, to be safe.

The final putchar statement in the program is used to output a new-line so that your shell prompt ~
appears at the beginning of a new line, instead of at the end of the last line of output. Type it in and
give it a try! Remember that your input is not available to the program until you press RETURN.

4 Standard Input/Output Routines

Getchar and putchar are most useful in filters - - programs which accept data and modify it in
some way before passing it on. Suppose you want to write a program which puts parentheses
around each vowel encountered in the input. It's easy to do with these routines:

#include <stdio.h>
ma i n I)
{

int c;

whilellc = Utchar(») !:: '\n') {
iflvowel(c») {

putchar('l');
putchar(c) ;
putchar(')') ;

}e I se
putcharlc) ;

}

vowellc)
cha r c;
{

if(c=='a' :: c=::'A' :: c::='e' :: c=='E' :: c::='i' :: c::::'I'
:: c=::'o' :: c::::'Q' :: c::='u' :: c=='U')

return(!);
else

return(O) ;

The vowel test is placed in the function vowel, since it tends to clutter up the main program. This
program terminates when it encounters a new-line.

String Input/Output
The gets function reads a string from stdin and stores it in a character array. The string is terminated
by a new-line in the input, which gets replaces with a NULL character in the array. Its companion
function, puts, copies a string from a character array to stdout. The string is terminated by a NULL
character in the array, which puts replaces with a new-line in the output.

The simple "echo" program from the last section can be rewritten using gets and puts.

#include <stdio.h>
Main()
{

char line[BOl, *getsl);

while«Htslline» !:: NULL>
putslline);

This program, as written, runs forever. To terminate it, press BREAK (or its equivalent). Later, when
string comparison and string length routines are introduced, an intelligent termination condition can
be written for this program.

Standard InpuUOutput Routines 5

Formatted Input/Output
The scanf and print! routines are powerful tools enabling you to read and write data in formatted
form, respectively.

Scanf
Scanfis the formatted-input library routine. Its syntax is:

scan f <format, [item[, item ...]) i

where format is a character pointer to a character string (or the character string itself enclosed in
double quotes), and item is the address of a variable.

The purpose of the format is to specify how the data to be read is presented on stdin, and what
types of data are found there. The format consists of two things: conversion specifications, and
literal characters.

Conversion Specifications
A conversion specification is a character sequence which tells scanf how to interpret the data
received at that point in the input. For example, if a conversion specification says "treat the next
piece of data as a decimal integer", then that data is interpreted and stored as a decimal integer.

In the format, a conversion specification is introduced by a percent sign (%), optionally followed by
an asterisk (*) (called the assignment suppression character), optionally followed by an integer
value (called the field width). The conversion specification is terminated by a character specifying
the type of data to expect. These terminating characters are called conversion characters.

When a conversion specification is encountered in a format, it is matched up with the correspond
ing item in the item list. The data formatted by that specification is then stored in the location
pointed to by that item. For example, if there are four conversion specifications in a format, the first
specification is matched up with the first item, the second specification with the second item, and so
on.

The number of conversion specifications in the format is directly related to the number of items
specified in the item list. With one exception, there must be at least as many items as there are
conversion specifications in the format. If there are too few items in the item list, an error occurs; if
there are too many, the excess items are simply ignored. The one exception occurs when the
assignment suppression character (*) is used. If an asterisk occurs immediately after the percent sign
(before the field width, if any), then the data formatted by that conversion specification is discarded.
No corresponding item is expected in the item list. This is useful for skipping over unwanted data in
the input.

6 Standard Input/Output Routines

Conversion Characters
There are eight conversion characters available. Three of them are used to format integer data,
three are used to format character data, and two are used for floating-point data.

The integer conversion characters are:

d

o

x

a decimal integer is expected;

an octal integer is expected;

a hexadecimal integer is expected;

The character conversion characters are:

c a single character is expected;

s a character string is expected;

a character string is expected;

The floating-point conversion characters are:

e, f a floating-point number is expected;

Integer Conversion Characters
The d, 0, and x conversion characters read characters from stdin until an inappropriate character is
encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).

For d, an inappropriate character is any character except +, -, and 0 thru 9. For 0, an inappropri
ate character is any character except +, -, and 0 thru 9. That's right - 8 and 9 are allowed in
octal numbers! If you enter, say, 1294 to be interpreted by the 0 conversion character, it still
interprets the entire number as octal, and converts the digits to the octal digit range. Thus, 1294
actually gets stored as 1314 (octal). For x, an inappropriate character is any character except +, -,
othru 9, and the characters a - f and A thru F. Note that negative octal and hexadecimal values
are stored in their 2's complement form with sign extension. Thus, they may look unfamiliar if you
print them out later (using print! - see below).

These integer conversion characters can be capitalized or preceded by a lower-case L (I) to indicate
that a long int should be expected rather than an int. They can also be preceded by h to indicate a
short int. The corresponding items in the item list for these conversion characters must be pointers
to integer variables of the appropriate length.

Character Conversion Characters
The c conversion character reads the next character from stdin, no matter what that character is.
The corresponding item in the item list must be a pointer to a character variable. If a field width is
specified, then the number of characters indicated by the field width are read. In this case, the
corresponding item must refer to a character array large enough to hold the characters read.

Standard Input/Output Routines 7

Note that strings read using the c conversion character are not automatically terminated with a
NULL character in the array. Since all C library routines which utilize strings assume the existence
of a NULL terminator, be sure you add the NULL character yourself. Otherwise, library routines
are not able to tell where the string ends, and you'll get puzzling results.

The s conversion character reads a character string from stdin which is delimited by one or more
space characters (blanks, tabs, or new-lines). If no field width is given, the input string consists of all
characters from the first non-space character up to (but not including) the first space character. Any ~
initial space characters are skipped over. If a field width is given, then characters are read, beginning
with the first non-space character, up to the first space character, or until the number of characters
specified by the field width is reached (whichever comes first). The corresponding item in the item
list must refer to a character array large enough to hold the characters read, plus a terminating
NULL character which is added automatically.

An important point to remember about the 5 conversion character is that it cannot be made to read
a space character as part of a string. Space characters are always skipped over at the beginning of a
string, and they terminate reading whenever they occur in the string. For example, suppose you
want to read the first character from the following input line:

Hello, there!"

(lO spaces followed by "Hello, there!", the double quotes being added for clarity). If you use %c,
you get a space character. However, if you use %15, you get "H" (the first non-space character in
the input).

The [conversion character also reads a character string from stdin. However, this character should ~
be used when a string is not to be delimited by space characters. The left bracket is followed by a list .J
of characters, and is terminated by a right bracket. If the first character after the left bracket is a
circumflex ("), then characters are read from stdin until a character is read which matches one of
the characters between the brackets. If the first character is not a circumflex, then characters are
read from stdin until a character not occurring between the brackets is found. The corresponding
item in the item list must refer to a character array large enough to hold the characters read, plus a
terminating NULL character which is added automatically.

The three string conversion characters provide you with a complete set of string-reading capabili
ties. The c conversion character can be used to read any single character, or to read a character
string when' the exact number of characters in the string is known beforehand. The 5 conversion
character enables you to read any character string which is delimited by space characters, and is of
unknown length. Finally, the [conversion character enables you to read character strings that are
delimited by characters other than space characters, and which are of unknown length.

Floating-point Conversion Characters
The e and f conversion characters read characters from stdin until an inappropriate character is
encountered, or until the number of characters speCified by the field width, if given, is exhausted ~
(whichever comes first). }

8 Standard Input/Output Routines

Both e and f expect data in the following form: an optionally signed string of digits (possibly
containing a decimal point), followed by an optional exponent field consisting of an E or e followed
by an optionally signed integer. Thus, an inappropriate character is any character except +, -, " 0
thru 9, E, or e.

These floating-point conversion characters may be capitalized, or preceded by a lower-case L (I), to
indicate that a double value is expected rather than a float. The corresponding items in the item list
for these conversion characters must be pointers to floating-point variables of the appropriate
length.

Literal Characters
Any characters included in the format which are not part of a conversion specification are literal
characters. A literal character is expected to occur in the input at exactly that point. Note that since
the percent sign is used to introduce a conversion specification, you must type two percent signs
(%%) to get a literal percent sign.

Examples
Suppose that you have to read the following line of data:

NAME: Joe Kool; AGE: 27i PROF: Elec Engri SAL: 39550

To get the vital data, you must read two strings (containing spaces), and two integers. You also
have data that should be ignored, such as the semicolons and the identifying strings ("NAME:").
How do you go about reading this?

First, note that the identifying strings are always delimited by space characters. This suggests use of
the s conversion character to read them. Second, you can never know the exact sizes of the NAME
and PROF fields, but note that they are both terminated by a semicolon. Thus, you can use [to
read them. Finally, the d conversion character can be used to read both integers. (Note: on 16-bit
processors, you probably need to use a long int to read the salaries. Thus, D or ld should be used
instead of d.)

The following code fragment successfully reads this data:

char nallle[lIO], prof[1I0] i
int age, salarY;

scanf("1*s1*[]I[. ;]I*c1*s1dI*c1*s1*[]Ie· i]I*cI*s1d" ,name ,&age ,\
prof ,&salarY);

Standard Input/Output Routines 9

For easier understanding, break the format into pieces:

%*s This reads the string "NAME:". Since an asterisk is given, the string is simply read and
discarded.

%d

%d

This gets rid of all blanks occurring between "NAME:" and the employee's name. Note
that this gets rid of one or more blanks, giving the format some flexibility.

This reads all characters from the current character up to a semicolon, and assigns the /~
characters to the array name. J
This gets rid of the semicolon left over after reading the name.

This reads the next identifying string, "AGE:", and discards it.

This reads the integer age given, and assigns it to age. The semicolon after the age
terminates %d, because that character is not appropriate for an integer value. Note that
the address of age is given in the item list (&age) instead of the variable name itself. If this
is not done, a memory fault occurs at run-time.

This gets rid of the semicolon following the age.

This reads the next identifying string, uPROF:", and discards it.

This removes all blanks between "PROF:" and the next string.

This reads all characters up to the next semicolon, and assigns them to the character array
prot

This gets rid of the semicolon following the profession string.

This reads the final identifying string, "SAL:", and discards it. ~

This reads the final integer and assigns it to the integer variable salary. Again, note that
the address of salary is given, not the variable name itself.

Although somewhat confusing to read, this format is quite flexible, since it allows for multiple spaces
between items and varying identifying strings (i.e. "PROFESSION:" could be specified instead of
"PROF:"). The following scan!call reads the same data, but is much less flexible:

scanf("NAME: I[Ajlj AGE:Idj PROF: I[Ajlj SAL: Id",nall\l!,hH,prof,&:salary)j

Here, literal characters are used to exactly match the characters in the input line. This works fine if
you can be sure that the data always appears in this form. If one typing variation is made, however,
such as typing "SALARY:" instead of "SAL:", the scanffails.

Scan! waits for more data as long as there are unsatisfied conversion specifications in the format.
Thus, a scan!call like

scanf("%f'If'If", &:floatl, &:float2, &:float31 j

10 Standard Input/Output Routines

where fJoatl, fJoat2, and fJoat3 are all variables of type float, allows you to enter data in several
ways. For example,

111.77 29,8 13.0

is read correctly by scan!, as is

Note: using decimal points in floating-point data is recommended whenever floating-point variables
are being read. However, scan/converts integer data to floating-point if the conversion specification
so demands. Thus, "13.0" in the previous example could have been entered as "13" with no side
effects.

~
\Z

14 , 77 RETURN 29,8 RETURN 13.0 RETURN

~
~

As a final example, consider the input string

abcdef137 dl11,77ghijklmnop

Suppose that the following code fragment is used to read this string:

char arrl[10l, arr2[10l, arr3[10l, arr4[10];
float floatl;
scanf(II4c%[A31I6cIf%[ghijtll]",arrl ,arr2,arr3,8.floatl,arr4l;

What values are stored in the variables listed? (Give this some thought before reading on.) As
before, break up the format into separate conversion specifications, and see what data is demanded
by each.

%4c reads four characters, and assigns them to arr1. Thus, the string "abed" is assigned to
arrl. Note that an extra character, NULL, is appended to the end of the string.

%[A3] reads all characters from the current character up to the character "3". This assigns
"efl", along with an added NULL character, to the array arr2.

%6c reads the next six characters and stores them in the array arr3. Thus, "37 d14" is
assigned to arr3, terminated by a NULL character.

%f reads a floating-point value which, due to the lack of a field width, is terminated by the
first "inappropriate" character. Thus, the value ".77" is assigned to floatl.

%[ghijkl] reads all characters up to the first character not occurring between the brackets. This
stores the string "ghijkl", along with an appended NULL character, in the array arr4.

Note that there are some characters left in 5tdin that were not read. What happens to these
characters? Do they just go away? No! Any characters left unread in the input remain there! This
can cause unexpected errors. Suppose that, later in the above program fragment, you want to read
a string from stdin using %5. No matter what string you type in as input, it will never be read,
because the %5 conversion specification is satisfied by reading "mnop" - the characters left over
from the previous read operation! To solve this, always be sure you have read the entire current line
of input before attempting to read the next. To fix this in the previous scan/example, just add a %*5
conversion specification at the end of the format. This reads and discards the left-over characters.

Standard Input/Output Routines 11

Printf
Printfis the other half of the formatted 1/0 team. It enables you to output data in formatted form. Its
syntax is identical to that of scant

printt(forll1att [iteM[t item ... l\:]);

where the format is a pointer to a character string (or the character string itself enclosed in double
quotes) which specifies the format and content of the data to be printed. Each item is a variable or
expression specifying the data to print.

Printfs format is similar in many respects to that of scanl It is made up of conversion specifications
and literal characters. As in scan£, literal characters are all characters that are not part of a conver
sion specification. Literal characters are printed on stdout exactly as they appear in the format.

Literal Characters
Included in the list of literal characters are escape sequences, which are sequences beginning with a
backslash ("".e) which stand for other characters. The follOwing list shows the escape sequences
defined for printf (and scan£, though less frequently used):

backspace;

new-line (carriage-retumlJine-feed sequence); output begins at the beginning of a new
line;

carriage-return without a line-feed; output begins at the beginning of the current line
(data already printed on that line is over-printed);

tab; ~
literal backslash;

the character represented by the octal number nnn in the ASCII character set. Nnn must
begin with a zero. For example, "007 is an ASCII bell, which beeps the bell on your
terminal.

Conversion Specifications
A conversion specification for printf is very similar to that of scan£, but is a bit more complicated.
The follOwing list shows the different components of a conversion specification in their correct
sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output a
literal percent sign, you must type two percent signs (%%);

2. Zero or more nags, which affect the way a value is printed (see below);

3. an optional decimal digit string which specifies a minimum field width;

4. an optional precision consisting of a dot (.) followed by a decimal digit string;

5. an optional I (lower-case L) or h, indicating a long or short integer argument; ~

6. a conversion character, which indicates the type of data to be converted and Printed.)

As in scan£, a one-to-one correlation must exist between each specification encountered and each
item in the item list.

12 Standard Input/Output Routines

The available flags are:

+

~\ blanK

causes the data to be left-justified within its output field. Normally, the data is right
justified.

causes all signed data to begin with a sign (+ or -). Normally, only negative values have
signs.

causes a blank to be inserted before a positive signed value. This is used to line up
positive and negative values in columnar data. Otherwise, the first digit of a positive value
is lined up with the negative sign of a negative value. If the "blank" and "+" flags both
appear, the "blank" flag is ignored.

causes the data to be printed in an "alternate form". Refer to the descriptions of the
conversion characters below for details concerning the effects of this flag.

A field width, if specified, determines the minimum number of spaces allocated to the output field
for the particular piece of data being printed. If the data happens to be smaller than the field width,
the data is blank-padded on the left (or on the right, if the - flag is specified) to fill the field. If the
data is larger than the field width, the field width is simply expanded to accommodate the data. An
insufficient field width never causes data to be truncated. If no field width is specified, the resulting
field is made just large enough to hold the data.

The precision is a value which means different things depending on the conversion character
specified. Refer to the descriptions of the conversion characters below for more details.

Note: a field width or precision may be replaced by an asterisk (*). If so, the next item in the item list
is fetched, and its value is used as the field width or precision. The item fetched must be an integer.

Conversion Characters
conversion character specifies the type of data to expect in the item list, and causes the data to be
formatted and printed appropriately. The integer conversion characters are:

d

u

o

('
. x

an integer item is converted to signed decimal. The precision, if given, specifies the
minimum number of digits to appear. If the value has fewer digits than that specified by
the precision, the value is expanded with leading zeros. The default precision is one (1). A
null string results if a zero value is printed with a zero precision. The # flag has no effect.

an integer item is converted to unsigned decimal. The effects of the precision and the #
flag are the same as for d.

an integer item is converted to unsigned octal. The # flag, if specified, causes the
precision to be expanded, and the octal value is printed with a leading zero (a C conven
tion). The precision behaves the same as in d above, except that printing a zero value
with a zero precision results in only the leading zero being printed, if the # flag is
specified.

an integer item is converted to hexadecimal. The letters abcdef are used in printing
hexadecimal values. The # flag, if specified, causes the precision to be expanded, and the
hexadecimal value is printed with a leading "Ox" (a C convention). The precision be
haves as in d above, except that printing a zero value with a zero precision results in only
the leading "Ox" being printed, if the # flag is specified.

Standard Input/Output Routines 13

X same as x above, except that the letters ABCDEF are used to print the hexadecimal
value, and the # flag causes the value to be printed with a leading "OX".

The character conversion characters are as follows:

c

s

the character specified by the char item is printed. The precision is meaningless, and the
flag has no effect.

the string pointed to by the character pointer item is printed. If a precision is specified,
characters from the string are printed until the number of characters indicated by the
precision has been reached, or until a NULL character is encountered, whichever comes
first. If the precision is omitted, all characters up to the first NULL character are printed.
The # flag has no effect.

9

E

The floating-point conversion characters are:

f the float or double item is converted to decimal notation in style f, that is, in the form

[-Jddd.ddd

where the number of digits after the decimal point is equal to the precision. If no precision
is specified, six (6) digits are printed after the decimal point. If the precision is explicitly
zero, the decimal point is eliminated entirely. If the # flag is specified, a decimal point
always appears, even if no digits follow the decimal point.

e the float or double item is converted to scientific notation in style e; that is, in the form

[-]d.dddAe±ddd

where there is always one digit before the decimal point. The number of digits after the
decimal point is equal to the precision. If no precision is given, six (6) digits are printed
after the decimal point. If the precision is explicitly zero, the decimal point is eliminated
entirely. The exponent always contains exactly three digits. If the # flag is specified, the
result always contains a decimal point, even if no digits follow the decimal point.

same as e above, except that E is used to introduce the exponent instead of e (style E).

the float or double item is converted to either style f or style e, depending on the size of
the exponent. If the exponent resulting from the conversion is less than - 4 or greater
than the precision, style e is used. Otherwise, style f is used. The precision specifies the
number of significant digits. Trailing zeros are removed from the result, and a decimal
point appears only if it is followed by a digit. If the # flag is specified, the result always has
a decimal point, even if no digits follow the decimal point, and trailing zeros are not
removed.

G same as the 9 conversion above, except that style E is used instead of style e.

The items in the item list may be variable names or expressions. Note that, with the exception of the ~.,

s conversion, pointers are not required in the item list (contrast this with scants item list). If thes"
conversion is used, a pointer to a character string must be specified.

14 Standard Input/Output Routines

~.

Examples
Here are some examples of printfconversion specifications and a brief description of what they do:

%d output a signed decimal integer. The field width is just large enough to hold the value.

% - *d output a signed decimal integer. The left-justify flag (-) and the blank flag are specified.
The asterisk causes a field width value to be extracted from the item list. Thus, the item
specifying the desired field width must occur before the item containing the value to be
converted by the d conversion character.

% + 7.2f output a floating-point value. The + flag causes the value to have an initial sign (+ or
-). The value is right-justified in a 7-column field, and has exactly two digits after the
decimal point. This conversion specification is ideal for a debit/credit column on a finance
worksheet. (If the + sign is not necessary, use the blank flag instead.)

Consider the following program, which reads a number from stdin, and prints that number,
followed by its square and its cube:

#include <stdio.h>
Main ()
{

printfl"Enter your number: H);
scanf("IF", P!:x);
printf("Your number is Ig\n", x);
printfl"Its square is Ig\nIts cube is ZJ\n", x*x, x*x*x);

The 9 conversion character is used so that the decision about whether or not to use an exponent is
automated. Note that the item list contains expressions to calculate x squared and x cubed. Also
note that the address of the variable is required in order to read a value for it, but printing requires
the variable name itself.

Standard Input/Output Routines 15

How about a program that accepts a decimal integer, and then prints the integer itself, its square,
and its cube in decimal, octal, and hexadecimal? Easy enough:

#include <stdio.h>
mainl)
{

lon!l n, n2, n3;

1* !let value *1

printf{"Enter your number: ");
scanf C"10", &n);

1* print headin!ls *1

printfC"\n\n

1* do the cOMPutation *1

Dec illlal Octal Hexadecilllal \n");

nZ = n * n;
n3 = n * n * n;
printfC"n itself:
printfC"n squared:
printfl"n cubed:

7.71 d
I7ld
I7ld

ISlo
ISlo
1910

I6l x\ nil, n, n, n);
I6lx\n", nZ, nZ, nZl;
I6lx\n", n3, n3, n3);

This program prints the headings "Decimal". "Octal", and "Hexadecimal", and then prints out the
data in tabular form. Programs which print tabular data always require some tinkering with the
formats to make things come out right. Type this in and try it yourself.

Strings are especially easy to manipulate using print!. The follOWing simple program illustrates this:

#include <stdio.h>
ma inC)
{

char first[lSl, 1ast[ZSl;

printfl"Enter your first and last names: "l;
scanfCIIsIs", first, last);
printfC"\nWell, hello Is, it's !lood to meet You!\n", firstl;
printfC"Is, huh? Are you any relation to that famous\n", last);
printfC"computer prO!lrammer, Mortilller Zi!lfelder Is?\n", lastl;
printfC"No, sorry, that was my mistake. I was thinking of\n"lj
printfl"Q'ls, not 'l.s.\n", last, lastl;

This program shows how easily strings can be inserted in text. Try variations of your own.

16 Standard Input/Output Routines

Input/Output from/to Strings
Two library routines, sscanfand sprint/, enable you to read data from a smng, and write data into a
smng. These routines behave identically to scanf and print/, respectively, except that sscanf reads
data from a character string instead of from stdin, and sprint!writes data into a string instead of on
stdout.

Reading Data from a String
Sscanfenables you to read data directly from a smng. The syntax for an sscanfcall is

sscanflstring, format, (Hem(, it.em ...)]);

where string is the name of a character array containing the data to be read, and format and item
are familiar terms from the previous section. Thus, the only difference between sscanf and scanf,
syntactically speaking, is sscanfs inclusion of a new parameter, string.

The following program simply reads a string of your choosing from stdin, stores it in the character
array string, and prints out the first word of that string:

cinclude <stdio.h>
main()
{

char string(SOl, word[25), *gets();

1* get the string *1

printfl"Enter your st.ring: ");
Ht.s(string) ;

1* get the first word *1

sscanflstring, "Is", word);
printf("The first word is Is.\n", word);

Of course, sscanf is rarely used in this way. Sscanf is more often used as a means of converting
ASCII characters into other forms, such as integer or floating-point values. For example, the
following program uses sscanf to implement a five-function calculator:

cinclude <stdio.h>
Mai n I)
{

char line(SOl, *gets(), op[4l;
long n1, n2i
double arg1, arg2i

1* print prOMPt (» and Ht input *1

printfl "\0> ") i
get.slline);

Standard Input/Output Routines 17

1* be!lin loop *1

whilelline[Ol != 'q') {
sscanflline, "1*s1s", op);
iflop[Ol == '+') (

sscanf(line, "IF1*sIF", &ar!ll, &ar!lZH
printfl"Answer: I!I\n\n", ar!ll+ar!lZ);

else iflop[Ol == '1-') (
sscanflline, "1FI*sIF", &ar!ll, &aHZ);
printfl"Answer: I!I\n\n", aHll-ar!lZ);

else iflop[Ol == '*') (
sscanflline, "IFI*sIF", hHl, hHZ);
printfl"Answer: I!I\n\n", ar!ll*ar!lZ);

else iflop[Ol == '1') (
sscanf<line, "IFI*sIF", &ar!ll, &ar!lZli
printfl"Answer: I!I\n\n", ar!ll/ar!lZ);

else if(op[Ol == 'I') (
sscanf<line, "IOI*sIO", &n1, &n2li
whilelnl)= n2)

n1 1-= n2;
printf("Answer: Ild\n\n", nl);

else
printf("Can't reco!lnize operator: Is\n\n", op);

printfl") ");
!lets<line) ;

}

The calculator program accepts input lines having the form

value <operator> value

where value is any number, and <operator> is the symbol +, -, *, I, or %, standing for addition,
subtraction, multiplication, division, or remainder, respectively. All functions except remainder are
handled internally in floating-point, but values for these functions can be typed with or without a
decimal point. Values for the remainder function must not have a decimal point. There must be at
least one space between each value and the operator.

Note the use of sscanf in this program. The entire input line is read using gets. Then, the different
parts of the input line are read from line using sscanf. Notice that the input line is stored as an ASCII
string in line, but portions of it are converted to floating-point or integer values, depending on the
operator.

Examples of valid entries are

15.778 * 3.89
Z7 I 8
17 + 39.72
etc.

The program terminates when it reads a line beginning with "q", such as "quit".

18 Standard Input/Output Routines

There are two things that differ between reading data from stdin, and reading data from a string.
First, you remember that reading data from stdin causes that data to "go away" - - it is no longer
contained in stdin. This is not true for a string. Since the data is stored in a string, it is always there,
even if that data has been read several times. Second, since the data read from stdin disappears as
you read it, the next read operation from stdin always begins where the previous read operation
terminated. This is not true when you read from a string using sscanl Each successive read
operation begins at the beginning of the string. Thus, if you want to read five words from a string
stored in a character array, you must read them in a single sscanfcall. If you try to read one word in
five separate sscanf calls, each call starts reading at the beginning of the string, and you end up
reading the same word five times!

Writing Data Into a String
The sprint! routine enables you to write data into a character string. Its syntax is

s p r i n t f (string, format, [iteml, item ...]) ;

which is identical to that of sscanl String is the name of the character string into which the data is
written. Format and item are familiar terms from the previous discussion of print!. In fact, the only
difference between sprint! and print! is that sprint! writes data into a character array, while print!
writes data on stdout.

The following program acts as a "formatter" for personal data. Suppose that this program is used to
provide a "friendly" user interface to gather personal data. The data received is then reformatted
into a string which is passed along to another program, such as a data base maintainer. The string
contains the data entered by the user, but in a form using strict field widths for the various pieces of
data. The data base program requires these field widths in order for the data to be processed
correctly, but there is no reason to burden the user with this requirement. This "formatter" program
lets the user enter data in a convenient form (without the fixed field restrictions imposed by the data
base).

ainclude <stdio,h>
ma i n I)
{

char name(31), prof(31), hdate(7), curve(3), strin~CB1);

char *format = "I30s12dI30sISldISsI2dIZs";
int age, ranK;
lon~ salary;

1* start aSKin~ questions *1

printf("\nName (30 chars maK): ");
~ets(narne) ;
while(narne(O) != ')'1 {

printfl"A~e: ");
scanf("IdI*c", &a~el;

printf("Job title (30 chars maK): ");
~ets(prof) ;
printfl"SalarY IS di~its maK, no cammal: "I;
scanf(IIDI*c", &salaty);
printf("Hire date (numerical MMDDYY): ");
gets(hdate) ;
printf("Percentile ranKin~ (omit \"II\"I: ");
scanf("IdI*c", &ranKI;
printf("Pay curve: ");
~ets(curve) ;

Standard Input/Output Routines 19

1* forMat strin~ *1

s p r i nt f 1st r i n ~ tf 0 rM at, naM eta ~ e ,p r 0 f ,s a 1a r y ,h date, ran k tcur ve) j

printfl"\nIs\n", string);

1* start next round *1

printfl"\nName (30 chars max): II) j

~ets(naMe) ;

This program asks you questions to obtain typical company information such as name, age, job
title, salary, hire date, ranking, and pay curve. This data is then packed into a 78-character string
using sprint!. The string is printed on your screen in this program, but in an actual working
environment, this string would probably be passed directly to the data base program. Note that
sprintfs format is specified as an explicit character pointer. When lengthy, unchanging formats are
used, this is often more convenient than typing the entire format string, especially if the item list is
long.

As an exercise, consider the scan! calls in the previous program. Notice that a %*c conversion
specification is included in the formats of the scanfs which are reading integer values (age, salary,
rank). Why is this necessary? If you aren't sure, take the %*c's out of those formats, re-compile the
program, run it, and note its behavior. (Hint: remember that a new-line character terminates the
read operation for %d and %0 conversions, and leaves the new-line unread in stdin.)

20 Standard Input/Output Routines

a

w

r+

Input/Output Using Ordinary Files
So far, you have been using library routines which can perform lIO only by using stdin and stdout.
This section introduces routines that enable you to open existing ordinary files for reading, writing,
or both, and to create ordinary files. Routines that enable you to perform I/O to and from ordinary
files are also described.

Opening Ordinary Files
Before a file can be read from or written to, it must be opened. A file is opened using the {open
library routine. The syntax of an {open call is

topenl<filename>, <type» i

where <filename> is a character pointer to a character string specifying the name of the file to be
opened, and <type> is a character pointer to a one- or two-character string specifying the 110
operation for which the file is opened. The available <type>s are:

r opens the file for reading at the beginning of the file. The file must already exist, or an
error occurs.

opens the file for writing at the beginning of the file. If the file exists, its previous contents
are destroyed. If the file does not exist, it is created.

opens the file for writing at the end of the file (appends data to the end of the file). If the
file does not exist, it is created for writing.

opens the file for both reading and writing, starting at the beginning of the file. The file
must already exist, or an error occurs.

w + opens the file for both reading and writing, starting at the beginning of the file. If the file
already exists, its previous contents are destroyed. If the file does not exist, it is created.

a + opens the file for both reading and writing, starting at the end of the file. If the file does not
exist, it is created.

When a file is opened for an append operation «type> is "a" or "a +"), it is impossible to
overwrite the existing file contents. Fseek can be used to reposition the file pointer to any position in
the file, but when output is written to the file, the pointer is disregarded. When the append
operation (which begins at the end of the existing file) is completed, the file pointer is repositioned
to the end of the appended output.

In exchange for a filename and a type, {open opens a "pathway" between your program and the
file. This "pathway" is called a stream. If you open the file for reading, then the stream provides
one-way data transfer from the file to your program. If you open the file for writing, then data
transfer flows from your program to the file. Finally, if the file is opened for both reading and
writing, the resulting stream is bi-directional.

Fopen also associates a buffer with the stream. This gives the stream the ability to store a small
amount of data. By default, the capacity of the buffer is equal to BUFSIZ bytes, where BUFSIZ is a
constant defined in stdio.h. For the Series 200 and Series 500 computers, BUFSIZ is defined to be
1024.

Standard Input/Output Routines 21

The buffer size can be increased, decreased, or set to zero by using setbufor setvbul If the buffer
size is allowed to remain at default size, a maximum of BUFSIZ bytes of data can be present on the
stream at any given time. If the buffer size is reduced to zero, then the stream can transfer only one
byte at a time.

Since fopen takes care of all the intricacies of building a stream and allocating a buffer, all you need
to know is how to find your end of the stream. Fopen provides you with this information by
returning to you a value called a file pointer (often called a stream pointer). A file pointer "points" '~
to the newly-created stream, and keeps track of where the next VO operation takes place (in the
form of a byte offset relative to the beginning of the associated buffer).

Is all this talk about streams and data transfer from a source to a destination beginning to sound
familiar? Do you remember the "pipeline and water" analogy given at the beginning of this section?
These two discussions should sound almost identical, because stdin, stdout, and stderr are actually
file pointers to pre-opened streams! Stdin is a file pointer to a stream which transfers data from your
tty (terminal) file to your program. Stdout and stderr are file pointers to two diHerentstreams which
both transfer data from your program to your tty file. Be sure to note that stdout and stderr are
different streams flowing in the same direction between the same two points!

Once you have a file pointer in your possession, you need never refer to the open file by its name
again. A file pointer provides access to all the information needed by other standard VO routines to
read from or write to the file.

The following program fragment shows how the {open routine is used:

linclude <stdio.h>
mai n()
{

FILE *fp;

fp = fopen("/users/tom/bin/datafile", Urn);
if (f p == NULll {

printf("Can't open datafile.\n");
exit(1);

This {open call, if successful, opens /users/tom/bin/datafile for reading. The file pointer returned by
{open is stored in !p. Note that !p's value is checked to see if it is NULL. This is because {open
returns a NULL pointer if the indicated file cannot be opened. It is good practice to check the value
of a file pointer - - this is the only error indication facility that {open provides.

The previous example also introduces a new type declaration, FILE. The FILE declaration is
defined in stdio.h. In the example above, it defines !p as a variable containing a file pointer. Note
that explicit declarations of functions returning file pointers is unneccessary - - stdio.h declares all ~.
such functions for you. J

22 Standard Input/Output Routines

Before moving on, keep in mind that several things can stop you from successfully opening a file.
First, HP-UX limits the number of files simultaneously open in a process (refer to the System
Administrator Manual supplied with your system to find your system's limit). Remember that stdin,
stdout, and stderr are automatically opened for you, so the maximum you can explicitly open is
three fewer than the system limit. Second, you must have permission to open the file for the
particular type you have specified (this permission is granted or denied by the file's mode). Third,
trying to open a non-existent file using type r or r + always fails. Fourth, if the filename is specified
incorrectly, contains a non-existent directory name, or contains an intermediate component which
is not a directory, the open fails. This is not a complete list, but it contains some of the common
reasons why an attempt to open a file might fail.

Single-character Input/Output
Now that you know how to open files and obtain file pointers, you have a whole new set of 110
routines at your disposal, enabling you to perform all kinds of 110 operations. In fact, there are
about three times as many available routines that utilize file pointers as there are routines that are
limited to stdin and stdout only!

In this section, only those routines that read or write one character at a time are discussed. These
routines are gete, pute, fgete, and !pute. Gete and pute are macros defined in stdio.h which read
one character from the specified stream, and write one character on the specified stream, respec
tively. They have the following syntax:

Utc (stream) i
put c (c, stream);

where stream is a file pointer obtained from fopen, and e is a variable of type char (or int) indicating
the character to write on the indicated stream. A simple version of the HP-UX eat command can be
written using these routines:

#include <stdio.h>
main(ar!lc, ar!lv)
int ar!lC i
char *ar!lv[li
(

int ci
FILE *fpj

if(ar!lc != 2) {
printf("Usa!le: cat file\n"l j
exit(l)i

fp = fopen(ar!lv[ll, "r"l i
if (f p == NULLl {

printf("Can't open !.s.\n", ar!lv[l])i
exit(lli

}

while«c !letc(fp)l!= EOFI
putc(c, stdoutlj

putc('\n', stdoutli

exit(OI j
}

Standard Input/Output Routines 23

This program accepts a single argument which is assumed to be the name of a file whose contents
are to be printed on the user's terminal. The specified·file is opened for reading, and the resulting
file pointer fp is used in gete to read a character from the file. Each character read is written on
stdout using pute (note that stdout, as well as stdin and stderr, are perfectly legal file pointers). The
reading and writing loop is terminated when the constant EOF is returned from gete, indicating that
the end of the file has been reached. This constant is defined in stdio.h.

Note that gete and pute can be made to behave exactly like the getehar and putehar routines ~
discussed earlier by specifying the appropriate file pointer. In other words, }

utc(stdin) ;

is identical to

!fetchar() ;

and

put c(c, stdout) ;

is identical to

putchar(c) ;

Thus, the pute call in the previous program could just as easily have been

putchar(c) ;

without altering the behavior of the program. However, if the destination of the data is somewhere
other than the user's terminal, the flexibility of pute is reqUired. Take, for example, the following
program, which is a simple version of the HP-UX ep command:

#include <stdio.h>
Mainlar~c, ar~v)

int ar~c;

char *ar!lv[];
{

int c;
FILE *f rOM' *to;

if(ar!lc != 3) {
printf("Usa!le: CP frOMfile tofile\n");
exit(1) ;

frOM = fopen(ar!lu[1l, "r");
if(froM == NULL) {

printf("Can't open 15.\n", ar!lu[1l);
exit(ll ;

}

to = fopen(ar!lu[Zl, "w");
if(to == NULL> {

printf("Can't create 15.\n", ar!lu[2l);
exit(1li

}

while«c = !letc(froM» != EOFI
putc(c, to);

exit(O) ;
}

24 Standard Input/Output Routines

This program accepts two arguments. The first is the name of the file to be copied, and the second is
the name of the file to be created. The first file is opened for reading, and the second file is created
for writing. The data from the first file is then copied directly to the newly-created file.

The fgete and fpute routines are actual functions, not macros. Their syntax and usage is identical to
that of gete and pute, so no examples are given here illustrating their use. However, here are some
distinctions between the macro and function versions of these routines to help you decide which to
use:

• A function call takes time, since the function call still exists at run-time. A macro call, however,
takes no time at all, because the macro call is replaced with the actual code making up the
macro during compilation, before run-time. Thus, generally speaking, programs containing
macros run faster than programs containing the eqUivalent function calls.

• A function's code is localized in one section of the program. Each function call causes a jump to
that section to execute the function. A macro call, however, is replaced with its code every
where that macro call appears. Thus, programs containing macro calls generally reqUire more
space than programs containing the eqUivalent function calls.

• You may take the address of a function, and pass it as an argument. You cannot do this with a
macro.

Given these gUidelines, decide which routines to use based on your own constraints.

Character Push-Back
The ungetc routine enables you to push back a single character onto an input stream. This
character is then returned by the next getc call (or equivalent).

Ungetc's syntax is as follows:

ungetc(C, stream) j

whe re c is the character to be pushed back, and stream is the input stream where the push-back is
to occur. Note that c must be a character that has been previously read from stream.

The following program simply reads one character from stdin, pushes it back onto stdin, re-reads
the character, and checks to make sure that this character and the character originally pushed back
are the same. A message is printed on stdout stating the outcome of the comparison.

uinclude <stdio.h)
Main()
{

int cl, c2i

cl = Htchar() j
ungetc(cl, stdin) j
c2 = getchar() i
if(cl == c2)

printf("They're the same!\n")j
else

printf("Oops! They're different!\n");
}

Standard Input/Output Routines 25

One character's worth of push-back is guaranteed as long as something has been read from the
stream prior to the push-back attempt, and provided that the stream is buffered. More characters
could possibly be pushed back, but determining exactly how many characters of push-back you
can safely perform is qUite possibly not worth the effort. However, for completeness. the following
statement is included as a method for determining the number of characters of push-back available
at any given time:

nUMPb = ftel 1(stream) 'l. BUFSIZ + 1;

where /tell is a function discussed in a later section, stream is a file pointer. and BUFSIZ is a constant
defined in stdio.h containing the size of the buffer in bytes. After execution, numpb contains the
number of characters of push-back available at that time.

String Input/Output
The {gets and !puts routines enable you to read or write strings from or to specified streams. Their
syntax is as follows:

fg e t 5 (string, n, stream);
f put 5 (string, stream);

where string is a pointer to a character string, and stream is a file pointer to the input or output
stream.

Fgets reads a character string from the specified stream, and stores it in the character array pointed
to by string. Fgets reads n - 1 characters, or up to a new-line character, whichever comes first. If a
new-line character is encountered, it is retained as part of the string (contrast this with gets, which
replaces the new-line with a NULL character). Fgets appends a NULL character to the string.

Fputs writes the character string pointed to by string on the specified stream, stopping when a
NULL character is encountered. Fputs does not append a new-line character to the string when it is
written. This is because !puts is intended for use with {gets, which incorporates a new-line character
into the string if a new-line is encountered in the input.

The cp program written earlier can be re-written using {gets and {puts:

#include <stdio.h>
Main(ar!lc, .ar!lv)
int ar!lc;
char *ar~v[];

{

char c, line[25S], *fHts();
FILE *froM, *to;

if(ar~c != 3) {
printf("Usa~e: CP fromfile tofile\n");
e)(it(l)j

frOM = fopen(ar!lv[l], " r ")j
if(frOM == NULL>

printf("Can't open Zs.\n", argv[1]);
e)(it(l)j

}

26 Standard Input/Output Routines

to = fopen(argv[Z], "w"l;
if (to == NULLl {

printfl"Can't create 1s.\n", argv[Z])i
exitllH

while(fgets(line, Z5S, from) != NULLl
fputslline, to);

ex i t (0) ;

This program functions exactly like the previous version of cp above. Note that fgets's return value
is compared to NULL in the while loop, since fgets returns the NULL pointer when it reaches the
end of its input.

This program can easily be converted to a simple cat command. It only reqUires four changes. Can
you see what they are? First, change the argc comparison such that it reads

iflar!lc != Z) ...

(You might also want to change the associated usage message!) Second, remove the to file pointer,
since you don't need it anymore. Third, remove the block of code which uses {open to open the
new file, and assigns a value to to. Fourth, change the £puts call such that it reads

fputs(line, stdout);

Here's the new cat command:

=include <stdio.h>
rnain(ar!lc, ar!lv)
int ar!lc;
char *ar!lv[]i
{

char c, lineCZ5S], *fgets();
FILE *frorn;

if(ar!lc < Z) {
printfl"Usage: cat file\n");
exitll)i

}

frOM = fopen(ar!lv[1], "r");
if(froM == NULL) {

printf("Can't open 1s.\n", ar!lv[1]);
exitllH

whilelfgets(line, Z56, from) != NULL)
fputs(line, stdout);

ex i t (0) i

Standard Input/Output Routines 27

Formatted Input/Output
Just as there are versions of scant and print!which perform string liD, so there are versions which
enable I/O using files. Fscanf enables you to read data of all types from a specified stream, and
!print!provides the capability of writing data on a stream. Their syntax is as follows:

fs can f lstream, format t [item[, item]]);
f P r i n t f l stream t format, (item[, item]]);

Stream is a file pointer to an open stream. Format and item should be familiar terms from previous
discussions.

The following program illustrates the use of the fscanf and !print! routines:

#include <stdio.h>
rnainlargc, aUu)
int argc;
char *argv[];
{

int count = 0;
FILE *file;

iflargc != 2) {
fprintflstderr, "Usage: wdcnt filenarne\n");
eKit l !) ;

file = fopenlargvClJ, Urn);
iflfile == NULL) {

fprintflstderr, "Can't open ls.\n"t arguC!]);
eKitl!);

whilelfscanflfilet "I*s") != EOF)
count++;

printfl"Nurnber of words found: Id\n", count);

eKit(O);

This program, named wdcnt (for "word count"), counts the number of "words" in the file specified
as its only argument. A word is defined as a string of non-space characters.

Note how !print! is used in this program. You learned in a prior discussion that stderr is typically
used to output error messages or warning statements. In this program, !printfis used to direct error
messages to stderr. You don't lose anything by doing this, since data written on stderr appears on
your terminal by default. However, you gain some important flexibility. Now that error output is
written on a different stream than normal output, the error output (or the normal output) can be ~....\
redirected to another destination. For example, invoking the previous program as J

$ wdcnt <fiIel> 2>e rrmS!ls

28 Standard Input/Output Routines

causes all output arising from erroneous conditions to be collected in the file emnsgs. For the
wdcnt program, this is somewhat trivial, since the program terminates upon any error. However, for
programs which output any number of warnings without terminating, this is a very useful capability.
Not only does it keep normal, desired output from getting cluttered up with error messages, but it
enables you to save output for later examination at your leisure. Thus, it is good programming
practice to write error messages and warnings on stderr, and use stdout (or whatever your
destination file is) to output normal data.

Binary Input/Output
The routines described in this section deal with data in its binary form - that is, the data is never
converted to ASCII for user viewing. These routines are used to transfer raw data between two
points, such as from a variable to a data file, or vice versa.

Two routines, getw and putw, are used to read or write an integer word (an int) to or from a stream,
respectively. Their syntax is as follows:

Htw(stream) i
putw (w, stream) i

where stream is a file pointer to the input or output stream, and w is the integer word to be output
by putw.

The following program "sorts" a data file which has presumably been created earlier, and contains
raw integer data. The program divides this data file into two new data files, one containing integer
data whose absolute value is less than or equal to 32767, the other containing data whose absolute
value is larger than 32767.

~include <stdio.h>
lllain(aHc, aHv)
int auc;
char *aHv[li
{

int word;
FILE *dfile, *datale, *datHti

if(argc != Z) {
fprintf(stderr, "usage: intsort filenallle\n");
exit(ll;

dfile = fopen(argv[!l, "r");
if(dfile == NULL) {

fprintf("Can't open Is.\n", argv[!l);
exit(ll;

datale = fopen("dfle", "w"l;
if(datale == NULL) {

fprintf("Can't create dfle file.\n") i
exit(!);

dataH fopen("dfgt", "w");

Standard Input/Output Routines 29

if(dataft == NULL) {
fprintf("Can't create dfft file.\n~);

exit(Ui

while(lword = fetwldfile)) != EOF) {
if(word <= 32767 ~~ word >= -32767)

putwlword, datale);
else

Putw(word, dataft);

ex i t (0) ;
}

This program reads a word from the specified data file. If its absolute value is less than or equal to
32767, the word is written on a file called dfle in the user's current directory. Otherwise, the word is
written on a file called dfgt in the current directory.

Note that this program works only on machines that use four-byte integers. Also, the comparison
between word and the constant EOF is faulty, since EOF is defined to be - 1, a valid integer. The
section entitled Stream Status Inquiry Routines describes standard va routines which fix this
problem.

Both of these routines transfer four bytes at a time. Again, there is no ASCII conversion associated
with these routines, so if you attempt to print the contents of a file containing integer data output by
putw, you will get garbage. Note that it makes little sense to input binary data from stdin, as in

fetwlstdinl;

unless stdin is redirected from a file containing binary data. Using getw to read data from your
keyboard is futile. If you type in a valid-looking integer, like "1728", getw reads the ASCII values of
those characters and stores them as an integer. This results in data being read which is very different
from what you probably intended.

Two other routines, called !read and !write, provide much more flexible binary data input and
output. Their syntax is as follows:

fread«char *)Ptr, sizeofl*ptr), nitellls, streaMl;
fwrite«char *lptr, sizeof(*ptrl, niteMs, streaml;

.~

where ptris a pointer to the beginning of a block (array) of data. This argument is cast as a character
pointer because these routines expect a pointer of this type. The second argument specifies the
number of bytes per unit of data (four bytes per int, one byte per char, x bytes per struct, etc.).
The C operator sizeof is usually used to obtain this value. The third argument, nitems, is an integer
specifying the number of units of data to read or write. For example, if ptr points to the beginning of
a structure, sizeof(ptr) tells how many bytes make up that structure, and nitems tells how many ~
structures to read. Actually, the second and third arguments above may be reversed in the argu-)
ment list with no ill effects, because internally these routines simply multiply the two integers
together to obtain the total number of bytes to read. Finally, stream is a file pointer to the input or
output stream.

30 Standard Input/Output Routines

As an example, suppose you have a program which keeps track of certain employee data. Each
employee is to be described in a single structure, Here is a simple program to do that:

name[lJOl; 1* name *1
jobrQOl; 1* job tit le *1
salarYi 1* salarY *1
hi re[Sl 1* hi r e date *1
curve[Zl 1* pa}' curve *1
ranK; 1* percentile rankin~ *1

1* no. of employees *1

uinclude <stdio.h>
struct emp {

char
char
1on ~

char
char
int

}

#define EMPS QOO
Mai n ()
{

int items;
struct emp staff[EMPSli
FILE *data;

data = fopen("/usr/lib/employees/empdata", "r") i
if(data == NULL) {

fprintf(stderr, "Can't open employee data file.\n");
ex i t (1) ;

items = fread«char *)staff, sizeof(staff[Ol), EMPS, data);
if(iteMs != EMPS) {

fprintf(stderr, "Insufficient data found.\n") i
ex it (1) ;

fclose(data) ;
archive("/usr/lib/emploYees/empdata") i

1* EMPloYee information processin~ ~oes here. *1

1* Processin~ is done. Write out new eMPloYee records. *1

data = fopen("/usr/lib/employees/empdata", "w");
if(data == NULL) {

fprintf(stderr, "Can't create new employee file.\n");
exit(l)i

,.,..
~

iteMs = fwrite«char *)staff, sizeof(staffC01), EMPS, data);
if(items != EMPS) {

fprintf(stderr, "Write error!\n");
exit(l);

}

ex i t (0) ;
}

archive(filename)
char *filenamei
{

Standard Input/Output Routines 31

This program reads the employee information contained in the binary file /usrllib/employees/
empdata. The data in this file consists of concatenated streams of bytes describing each employee
of a certain 400-employee company. The bytes are written such that, when read correctly, the
bytes correspond exactly with the emp structure defined in the program. The staffarray is an array
of structures containing one structure for each employee.

In the Fread call, the sizeof(staff[O}) expression returns the number of bytes in the emp structure. ~
Since the same number of bytes are in each employee structure, any element of the staff array ,
could have been specified as the sizeof argument; staff[Oj is used in this example. (By counting the
number of bytes in each structure member, you can get an approximation of the number of bytes
returned by the sizeof operator: 40 + 40 + 8 + 6 + 2 + 4 = 100 bytes. This may vary due to
padding performed by a programming language, or by machine architecture.) Specifying EMPS as
the nitems argument tells Fread to read 400 such structures. Thus, 100 x 400 = 40000 bytes are
read, filling in the information for the members of each structure contained in the staff array.

The archive function is not shown here, but simply saves the old employee information in empdata
in an employee information archive of some kind. After the information is archived, the empdata
file is overwritten with the new, updated employee information.

A new routine, called Iclose, is introduced here. Fclose simply closes the stream associated with the
file pointer specified. This is necessary in order to re-open the file for writing. Once it is open for
writing, !write is used to overwrite its previous contents with the new data.

One final note about these two routines: they return the number of items of data which have been
read or written. Thus, you can compare this number with whatever you specified for nitems to see if ~
everything you wanted read or written actually was. This return value is used twice in the above . .Y
program to flag probable read and write errors.

The Fread and !write routines can be made to read any type of data. The following examples show
some Fread calls which read several different types of data:

To read a long integer:

lon~ nint;
tread((char *)&nint, sizeot(nint), 1, streaM);

To read an array of 100 long integers:

lon~ ninUIOO];
tread«char *)nint, sizeot(nint[O]), 100, stream)j

To read a double precision floating-point value:

double fpoint;
tread«char *)&tpoint, sizeot(tpoint), 1, stream);

To read an array of 50 floating-point values:

tloat tpoint[SO];
tread«char *)tpoint, sizeot(fpoint[O]), so, stream);

32 Standard Input/Output Routines

To get the equivalent fwrite calls, just substitute "£Write" in place of "fread" in the previous
examples. You can see how much more flexible Fread and fwrite are than getw and putw. Whereas
getw and putw are limited to reading or writing a single four-byte integer per call, Fread and fwrite
can be made to read or write any number of variables of any type.

Stream Status and Control Routines
This section discusses standard I/O routines which enable you to:

• Determine whether or not an error has occurred on an open stream (feof, ferror, clearerr);

• Re-position the location of the next I/O operation on an open stream (rewind, /tell, fseek);

• Control various attributes of an open stream, such as buffering, flushing, etc. (fclose, setbuf,
fflush, Freopen);

• Convert a file pointer to a file descriptor, and vice versa (fileno, fdopen).

Stream Status Inquiry Routines
This section describes three routines, feof, ferror, and clearerr, which enable you to determine the
status of an open stream at any given time.

Feof is a macro defined in stdio.h which returns a non-zero value if the end-of-file has been
reached on an input stream. Its syntax is as follows:

feof (stream) ;

Do you remember the example program which illustrated the use of getw and putw? It was noted
that comparing getvJs return value to the constant EOF was faulty, because getw returns an integer,
and EOF is defined to be a valid integer (- 1). How then do you determine if end-of-file has been
reached when routines like getw are being used? You use feol

The example program for getw/putw can be changed to use feot

=~nclude <stdio.h>
l1Iain(ar!tc, ar!ru)
int ar!tc;
char *ar!rv[];
{

int word;
FILE *dfile, *datale, *data!rt;

if(ar!rc != 2) {
fprintf(stderr, "usa!re: intsort filenaMe\n");
e lC i t (1) j

}

dfile = fopen(ar!rv[1], "r");
if(dfile == NULL) {

fprintf("Can't open Is.\n", argu(1]);
elCit(ll j

}

datale fopenl"dfle", "w")j

Standard Input/Output Routines 33

it(datale == NUll) {
tprintf("Can't create dfle file.\n");
exit(1);

dataft = topenl"dfft", "w");
ifldataft == NUll) {

fprintfl"Can't create dfft file.\n");
exit(1) ;

}

forI il) {
ifllword = utwldfile) != EOF) {

if(word <= 32767 && word)= :-32767)
putw(word, datale);

else
putwlword, datHt);

} else {
iflteofldfile»

break;
else

putw(word, datale);
}

}

exit(O) ;
}

An infinite loop is set up around the getw/putw process. Whenever getw returns an integer equal to
EOF, feofis used to find out if end-of-file has been reached. If it has, the loop (and the program) ,
terminates; if not, the integer is written on dfle, and the loop continues.

Ferror is a routine which examines the specified stream to determine whether or not a read or write
error has occurred. Its syntax is

fe r r0 r Istream) ;

Ferror, like feof, is intended to clarify ambiguous return values from standard VO routines. Actually,
only getw and putw require the use of ferror to determine if an error has occurred. Both of these
routines return EOF on end-of-file or error. Since these routines deal with integer data, however,
you need feof and ferror to determine if the EOF returned actually indicated an error or an
end-of-file, or if it's just a -1.

If an error has occurred on a stream, ferror returns a non-zero value.

Whenever an error occurs on an open stream, a flag is set to indicate the error. It is this flag that
ferror checks to determine whether or not an error has occurred. This flag is not reset when it is
checked. Thus, if an error has occurred, the error flag for that stream remains set. This could lead to ~
misleading information if an ferror call indicates that an error has occurred, when in reality the error]
occurred long ago. The cJearerr routine clears (or resets) the error indication flag for the specified
stream. This routine should be used whenever an error has been indicated, so that the same error is
not indicated at a later time. Cleareds syntax is

clearerrlstream) ;

34 Standard Input/Output Routines

Because ferror and clearerr are used infrequently in typical programs, no examples are given
specific to their use. The feof example above illustrates the general scenario in which all three of
these routines are used.

He-positioning Stream I/O Operations
There are three routines, rewind, !tell, and fseek, which enable you to move the location of the next

~ 110 operation on an open stream.

Rewind simply positions the next I/O operation at the beginning of the file. Its syntax is

rewin d(stream I i

For example, suppose a particular application program can put a password on a data file it uses.
This password is stored in encrypted form on the first line of the file. The line is recognized as a
password line if the first two characters are "*p". If the file has no password line, then access to the
file is unrestricted. If a password line is found, the user is prompted for the password before access is
permitted. The following code can be used to look for a password line:

ainclude <stdio.h>
Main(ar!fc, aHv)
int argci
char *argv[l;
<

FILE *pswdi
char line[258li

if(argc != 21 <
fprintf(stderr, "Usage: getpswd file\n")i
e><it(lli

pswd = fopen(ar!fv[ll, "r"li
if(pswd == NULL) <

fprintf(stderr, "Can't open Is.\n", argv[ll1i
e>< i t (1 I i

f!fets(line, 258, pswdli
if(line[Ol == '*' && line[ll =: 'P')

1* asK for and checK password *1

} else
rewind(p5wd) i

1* apPlication program goes here *1

e>< i t (0) ;

If the first two characters of the first line are "*p", then code is executed which asks for and checks a
password. However, if the first line is not a password line, the file is assumed to be unprotected, and
the line just read is probably part of the data. Thus, the file must be rewound so the data contained
in the first line is available to the application program.

Standard Input/Output Routines 35

The !tell routine returns a long integer specifying the current position of the next 110 operation on
an open stream. This position is expressed as a byte offset relative to the beginning of the open file.
Its syntax is as follows:

he 11 (stream) ;

The £Seek routine enables you to re-position the next 110 operation on an open stream to any
location you wish. Its syntax is ~

f see k (stream, offset, ptrname);

where stream is a file pointer to the open stream, offset is a long integer specifying the number of
bytes to skip over, and ptrname is an integer indicating the reference point in the file from which
offset bytes are measured. The possible values for ptrname are:

o move offset bytes from the beginning of the file;

1 move offset bytes from the current position in the file;

2 move offset bytes from the end of the file.

Offset can be either negative or positive, indicating backward or forward movement in the file,
respectively.

The following program illustrates the use of the !tell and (seek library routines. The program prints
each line of an n-line file in this order: line 1, line n, line 2, line n-l, line 3, ...

uinclude <stdio.h>
main(ar!lc, ar!lv)
int ar!lc;
char fargv[];
(

char lineCZ5S];
int newlinesi
long front, rear, ftell() i
FILE *fp;

front = 0;
rear = 0;

if(argc < Z) (
fprintf(stderr, "Usage: print filename\n");
exit(lli

fp = fopen(argv[l], Urn) i
if (f p == NULL> (

fprintf(stderr, "Can't open 1s.\n", argvCl]);
exit(1)i

}

newlines = countnl(fp) 1 Zi

fseek(fp, 0, Zli
rear = hell(fp)i

36 Standard Input/Output Routines

Standard Input/Output Routines 37

while(front < rear) {
fseeK(fp, front, 0) i
fltets(line, 256, fp)i
fputs(line, stdout)i
front = ftell(fp) i
findnl(fp, rear) j
rear = ftell(fp) i
if(newlines == 1) {

if(rear <= front)
breaki

}

fltets<Iine, 256, fp)i
fputs<Iine, stdout)j

}

ex i t (0) j

}

countnl(fp)
FILE *fp;
{

char c;
int count = 0;

while«(c = ltHc(fp)) != EOF) {

if(c == '\n')

count++;
}

rewind(fp) i
return(count) ;

}

findnl(fp, offset)
FILE *fp;
lonlt offset;
{

char ci

fseeK(fp, (offset-2), 0);
while«c = ltetc(fp)) != '\n')

fseek(fp, -2,1);
}

}

This program uses !tell and fseek to print lines from a file starting at the beginning and the end of the
file, and converging toward the center. The countnl (count new-lines) function counts the number
of lines in the file so the program can decide whether or not to print a line in the final loop (this
prevents the middle line being printed twice in files with an odd number of lines). The findnl (find
new-line) function seeks backwards in the file for the next new-line. When found, this positions the
next I/O operation such that fgets gets the next line back from the end of the file.

Note the use of fseek in this program. All three types of seeks are represented here. The first fseek of
the program is done relative to the end of the file. All other fseeks in the main program are done
relative to the beginning of the file. Finally, findnl contains an fseek which is relative to the current
position.

Recall the employee data routine, where each employee is described by the structure

struct eblP {
char name[llOJi 1* name *1
char job[llOli 1* job title *1
long salarYi 1* sal a ry *1
char hire[SJi 1* hire date *1
char curve[Zli 1* pay curve *1

~int rank i 1* percentile ranking *1
}

That routine simply read in the data for 400 employees all at once. Suppose you want the program
to be selective, so that you can specify (by employee number, 1 - 400) which employee's
information you want. This is easily done using (seek. The following program fragment shows how:

int eMPno, bytesi
long total i
FILE *datai
struct ell1P eMPinfoi

1* check for usage error and open data file *1

sscanf(argv[1I, "Id", &ell1pno)i
bytes = sizeof(eMPinfo) i
total = (eMPno - 1) * bytesi
fseek(data, total, 0) i
fread«char *)&eMPinfo, sizeof(eMPinfo), 1, data)i

1* print out desired inforMation *1

ex i t (0) i

In this program, argv[1] contains, via a command-line argument, the employee number about
whom information is desired. This employee number is converted to integer form using sscanl The
number of bytes per employee structure is obtained using sizeof, and is stored in bytes. The total
number of bytes to skip in the data file is found by multiplying the employee number (minus one)
times the number of bytes per employee structure. This is stored in total. Then, {seek is used to seek
past the specified number of bytes, relative to the beginning of the data file. This leaves the next 110
operation positioned at the start of the specified employee's information. The information is read
using fread.

Note

If you have a stream which is open for both reading and writing, a read
operation cannot be followed by a write operation without one of the
following occurring first: a rewind, an {seek, or a read operation which
encounters end-of-file. Similarly, a write operation cannot be followed
by a read operation unless a rewind or {seek is performed.

38 Standard Input/Output Routines

Stream Control Routines
The routines described here help you control certain attributes of file pointers. The routines de
scribed are Iclose, setbuf, setvbuf, ffJush, and freopen.

fclose
You have already seen Iclose in action in the previous example program which read an employee
data file. Fclose flushes the buffer associated with the specified stream, and, if the buffer was
allocated automatically by the standard I/O system, frees the space allocated to that buffer. The
stream is then closed, breaking the connection between your file pointer and the stream.

You may be wondering why so many example programs have been written that open files but
never explicitly close them. There are two reasons why this is permissible. First, you'll notice that all
programs in this tutorial that open files end with a call to exit. The exit system call automatically
performs an Iclose for every open file in that process. Second, when a program is compiled with ee
(or Ie, or pc), an exit call is automatically compiled in with your code. Keep in mind, however, that it
is generally bad programming practice to rely on the system to clean up after you! If you explicitly
open any files, you should explicitly close them when you are done. If this is too much trouble, at
least include an exit call at each termination point in the program. (All future example programs in
this article will contain Iclose calls.)

setbuf
Setbul and setvbul routines enable you to assign your own buffering to an open stream. Setbul
syntax is

setbuf (stream I bufferl;

where stream is a file pointer to an already-open stream, and buffer is a pointer to a character array
or is NULL.

Normally (i.e. without user intervention), a standard I/O buffer is obtained through a call to
malloe(3C) (memalle(2) on the Series 500) upon the first call to gete or pute (which all I/O routines
evefltually call). The standard I/O system normally buffers 110 in a buffer which is BUFSIZ bytes
long. Exceptions are Stdout, which, when directed to a terminal, is line-buffered, and stderr, which
is normally unbuffered.

Setbul enables you to change the buffer used for all standard 110 routines. For example, the
following code fragment causes the array buffer to be used for buffering:

FILE *fp;
char buffer[8UFSIZ];

fp :: fopen(argv[l] I "rill;

setbuf(fpI bufferl;

Standard Input/Output Routines 39

This fragment shows the correct order of events. Pirst, the file is opened (it need not be opened for
reading), then the buffering is assigned using setbuf. From that point on, any input taken from fp is
buffered through the array buffer.

Buffering can be eliminated altogether by specifying the NULL pointer in place of the buffer name,
as in

setbuf (fp t NULL);

This causes input or output using fp to be completely unbuffered.

Setbuf is limited to buffer sizes of either BUFSIZ bytes or zero. Setbuf assumes that the character
array pointed to by "buffer"is BUFSIZ bytes. Passing setbuf a (non-NULL) pointer to a smaller
array can cause severe problems during operation because the standard I/O routines may overwrite
memory following the end of the too-small buffer.

Note: Using an automatic array as a standard I/O buffer can be dangerous. Automatic variables are
only defined in the code block in which they are declared. Thus, buffering which relies on an
automatic array is only in effect dUring the current code block (main program or function). If you
pass a file pointer to another function, and the stream pointed to by that file pointer is buffered
using an automatic array, then memory faults or other errors can occur. Here's the rule: if you use
an automatic array for stream buffering, the stream should be used and closed only in the code
block containing the array declaration. To avoid this restriction, use external arrays for buffering:

external char buffer[BUFSIZ];

setbuf(fpt buffer);

setvbuf
Setvbuf, like setbuf, enables you to assign a character array for vuffering, but also provides the
means to specify the size of the buffer to be used and the type of buffering to be done. Setvbuf
syntax is

5 e t" bu f (stream t buffer t type t size)

where stream is a file pointer to an already-open stream, bufferis a pointer to a character array or is
NULL, type tells how stream is to be buffered, and size defines how large the buffer is. Acceptable
values for type (defined in stdio.h) include:

-IOFBF
-IOLBF

-IONBF

Input/output is fully buffered.

Output is line buffered. The buffer is flushed each time a new line is written, the
buffer is full, or input is requested.

Input/output is completely unbuffered.

40 Standard Input/Output Routines

If type - 10NBF is specified, stream is totally unbuffered. Since no buffer is needed, values for
buffer and size are ignored. For example, the following two calls, though different, are functionally
identical:

setubuf(fp, NULL, -IONBF, 01
setbuf (fp, NULl)

When type is - IOFBF or - 10LBF, buffering for stream is determined by buffer and size. If buffer
is not the NULL pointer, it must point to a character array of size bytes. All buffering of stream is
then handled through this array.

FILE Hpj
char buffer (256]
char *filename;
int It, retcodej
fp=fopen(filename, "w");

retcode=setvbuf(fp, buffer, =IOFBF, 256);
if (reteode !=O) error el;

This fragment causes stream fp to be buffered through the 256-byte array buffer. Serious run-time
errors can occur if the buffer array is not the size specified in the call to setvbuf(here 256 bytes). As
with setbuf, it is dangerous to use an automatic array for the buffer. Note that the return value of
setvbufcan be used to verify that the request was completed successfully.

If buffer is the NULL pointer and type is specified as -IOFBF or - IOLBF, setvbuf automatically
allocates a buffer of size bytes through a call to ma//oc (3c) on Series 200 computers or memallc (2)
on Series 500 computers. If size is zero, a buffer of size BUFSIZ will be used. This behavior can be
used to change the buffer size for a stream even if you still want the standard I/O system to
automatically allocate the buffer. This is particularly useful when a buffer larger than the specified
BUFSIZ is desired.

FILE * fp;
char * filename;
int retcode;

fp = fopen(filenaMe, "rt")
retcode=setvbuf(fp, NULL, -IOFBF, 20QS)j

if(retcode !=Ol error(H

This fragment buffers stream fp through a 2048-byte buffer that is allocated by the system.

ffJush
The ffJush routine forces all buffered data for an output stream to be written out to that file. Its
syntax is

f fl us h(stream) ;

wh ere stream is a file pointer to an output stream.

Standard Input/Output Routines 41

Fflush is performed automatically by (close (and, therefore, by exit). Therefore, there is often no
reason to call ffJush explicitly. Situations do arise, however, where it is necessary to manually {flush
a stream. For example, data written to a terminal is line-buffered by default, which means that the
system waits for a new-line before writing the buffer onto the terminal screen. This is often satisfac
tory, but there are times when you want whatever has been written so far to be written to the screen
without waiting for the new-line. In such situations, (flush must be used.

Another situation when explicit fflushing is necessary arises whenever you have written less than a ~
buffer-full of data to a file, and you want the contents of that file processed by another function, or
by an HP-UX command. Since less than a buffer-full of data was written, the data is still in the
buffer; the file is still empty. Performing an (flush causes the buffered data to be written out to the
file, enabling other functions or commands to utilize the file's contents.

£reopen
The final routine in this section is £reopen. As its name implies, £reopen enables you to, in a single
step, close a stream and then re-open it with a different type and/or file name. Its syntax is

f reopen lfilename, type, stream);

where filename is a pointer to a character string specifying the name of the source or destination file
for the newly-created stream. Type is identical to that of (open discussed earlier. Stream is a file
pointer to the old stream, which is closed and then re-opened. The name of the file pointer remains
the same.

For example, the following program accepts lines of data from your terminal and writes them into a
file. When only a new-line is typed from the terminal, the program qUits reading data, and echos the ~
contents of the file to the terminal. J

ainclude <stdio.h>
rna i n ()
{

FILE *fp, *oldfp;
char line[80l, *f~etsl);

fp = fopenl"datafile", "w");
iflfp :::: NULL> {

fprintflstderr, "Can't create datafile.\n");
exitll>i

fgetslline, 80, stdinl;
whilelline[Ol != "\n" {

fputslline, fp);
fgetslline, 80, stdin);

oldfp = freopenl"datafile", "r", fp);
if(oldfp == NULL) {

fprintflstderr, "Can't re-open datafile.\n");
exitllli

42 Standard Input/Output Routines

while(fgets(line, 80, fp) != NULL)
fputs<line, stdoutl j

fclose(fp)j
ex i t (0) j

Just like fopen, £reopen returns a NULL pointer if an error occurs. If successful, £reopen returns the
value of the old file pointer.

Freopen is commonly used to attach the names stdin, stdout, and stderr to other files, so that the
source or destination of these file pointers can be redirected. For example,

freopen("/ usr /lib/data/datafile", " r", stdin) i

attaches stdin to the data file /usrl/ib/data/datafile. Other functions can now be called which read
from stdin, and the result is that their source of input has been redirected. Similarly,

freopen("/users/bill/archives/cal.a", II a" , stdout) i

attaches stdout to the indicated file, thus redirecting any future stdout data to that file.

Converting Between File Pointers and File Descriptors
A file pointer is actually a pointer to a structure containing information about a stream. This
information includes a pointer to the beginning of the buffer, a pointer to the current location in the
buffer, a flag specifying whether the stream is open for reading, writing, or both, a count of the
characters in the buffer, and an integer called a file descriptor.

System calls, such as open and creat, return a file descriptor when a file is opened. System calls use
file descriptors to refer to open files in much the same way that library routines use file pointers.
(The main difference between using a file descriptor and using a file pointer is that a file descriptor
has no associated buffering.) Since a program often contains both system calls and library routines,
a way of converting between file pointers and file descriptors is provided.

Note
Extreme care should be exercised when converting between file poin
ters and file descriptors. Whenever you convert a file pointer to a file
descriptor, you should perform an ffJush first.

In general, you should never convert file pointers to file descriptors
unless you need a file descriptor for a system call that provides a utility
not available in the C library package (such as dup(2) or fcnt1(2)).
Similarly, file descriptors should never be converted to file pointers
unless a file descriptor has been created by a system call which provides
a utility not provided in the C library package, and you want to assign
system buffering to it.

Two routines, fileno and fdopen, provide a way to convert between the two types of parameters.
Fileno is a macro which, given a file pointer, returns the associated file descriptor. Its syntax is

fi 1en 0 (stream) i

Standard Input/Output Routines 43

where stream is a file pointer to an open stream whose associated file descriptor is desired. Thus,

FILE *fp;
int fd;

fp fopenl"filel"t "r"l;
fd = filenolfpl;

returns the integer file descriptor in Id, associated with the file pointer !p.

The Idopen routine enables you to convert a file descriptor into a file pointer. Its syntax is

f d0 pen Ifildes, type);

where Ii/des is an integer file descriptor obtained from the open, dup, creal, or pipe system calls.
Type is the same as that for lopen discussed earlier. Thus,

int fd;
FILE *fp;

1* obtain fd via appropriate system call *1

fp = fdopen(fdt "r"l;
if(fp == NULL> {

fprintf(stderr, "Can't convert file descriptor.\n"l;
exit(t);

}

converts the file descriptor Id into a file pointer, Ip. Fdopen returns a NULL pointer if the operation
fails.

Fdopen can be useful for opening a file in a way unlike any of the standard types of lopen.

include <fcntl.h>

int fd;
FILE *fp
char *filenallle;

fd= open(filenallle, O_WRONLYIO_CREATt 06661;
fp= fdopen(fdt"w");
fseek(fdtOL,Z)

This code fragment uses the open system call to open a file for general write access, then uses
Idopen to assign buffering to the file. The constants O_WRONLY and O_CREAT are defined in the ~
include file /usr/incJude/lcntJ.n, and are described in open (2). (O_WRONLY causes open to open the .)
file for writing only; O-CREAT creates the file if it does not already exist.) This technique opens the file
in a way that does not correspond exactly to any of the available types in lopen: "w" would
truncate the current file contents, "r+.. would fail if the file does not already exist (and would allow
reading of the file), and "aU does not permit seeking backwards and rewriting the current file
contents.

44 Standard Input/Output Routines

~""/'"'''',

Interprocess Communication
So far, you've been communicating between an active process (your program) and a passive object
(a file). What if you want to communicate between two active processes? Suppose you want to
create a stream between two programs, with one program (process) pumping data onto the stream,
and the other reading data from the other end. How is this done?

The popen routine exists for this purpose. Its syntax is

popen (command, type);

where command is a pointer to a character string specifying a command line. Type is a pointer to a
Single-character string which is either r (for reading) or w (for writing).

For example, suppose you are writing a program which processes text in some way. Your program
handles normal text perfectly, but unfortunately your source files are all coded in troffconstructs. If
you could only filter out all those pesky troff constructs, your program would work fine. Cheer up!
It's easily done. There is an HP-UX command called deroffwhich filters out troffconstructs. All you
have to do is make sure that all input to your program passes through deroff first. Here's how:

oinclude <stdio.h>
rna i n ()
{

FILE *popen(), Hpj

fp = popen("deroff /users/bin/text/*.tx", "r")j
if (f p == NULl) {

fprintf(stderr, "Can't create stream.\n");
exitllH

1* begin processing text; read text from fp! */

pclose(fp)j

Popen returns a file pointer to the newly-opened stream. If an error occurs, a NULL pointer is
returned. When successfully executed, popen enables your program to read from the file pointer !p,
the data from which is the standard output from the deroff command. In this example, deroff is
invoked such that it processes all files in /userslbin/text which end with ". tx". Note that popen's
return value must be declared explicitly because it is not declared in stdio.h.

Because deroff processes stdin if no arguments are given, the following popen call

fp = popen("deroff", "r"lj

enables your program to receive filtered text from stdin instead of from ordinary files. The result of
executing the previous example is exactly the same as if you had typed

de r 0 f f / use r 5 / bin / t ext / *. t x : your program

at your keyboard in response to a shell prompt.

Streams that are opened by popen must be closed with pclose. Thus,

pclose(fp) j

closes the stream created in the previous example.

Standard Input/Output Routines 45

If a type of w is specified instead of r, then the data flow is reversed, with the result that your
program supplies the data for the specified command.

Note that, though popen's return value is called a file pointer, it is actually somewhat different than
the file pointers you are already familiar with. In general, a file pointer returned by POpen should
not be used in those previously-discussed library routines which modify file pointers returned by
lopen. Also, file pointers opened by popen must be closed with pclos€; Iclose is not sufficient.

So far, popen has been characterized as a "filter-maker", in that streams to or from a command ~
have been created so that data can be modified in some way before being passed on. Sometimes,
however, POpen is used to execute a command which supplies information valuable to the prog-
ram. For example, the find command accepts dot (.) as a valid directory name. Upon receipt of a
dot, find discovers the actual path name of dot by creating a stream from the pwd command. as
follows:

cha r d i r [100 l ;
FILE *popen (), *fp;

fp :: popen("pw d", II r");
if (fp == NULL> (

fprintf(stderr, "Can't execute pwd.\n");
exit(ll;

}

fg e t 5 (d i r, 100, f p) ;

pcloselfp);

The preceding example reads the output of the pwd command into the character array dir, thus
supplying the current value of dot. The follOWing program creates a list of the login names of users ~
currently logged in:)

oinclude <stdio.h>
Ma i nI)
(

char name[lOl, line[SOJ, *fgets();
FILE *popen(), *fp;

fp = popen(" who", " r ");
if (f p == NULL> {

fprintf(stderr, "Can't execute who.\n");
exit(lli

printf("Users currently logged in:\n");
while(futs(line, SO, fp) != NULl) {

sscanf(line, "15"' naMe);
printf(l\tIs\n", name);

pclose(fp) ;
exitIO);

}

A stream is created for reading from the who command. Each line from who is read, and the first
field from each line is read and printed.

You may have only one popen-ed stream in a process at any given time.

46 Standard Input/Output Routines

'-------------__1~2art_ Math Routines .~

Described in this section are absolute value, power, square root, logarithmic, trigonometric, and
other functions performing many different kinds of mathmatical calculations.

An include file named math.h exists for use with these routines. Math.h contains type declarations
of all the math routines which do not return an int, and a definition of the constant HUGE. Many
math routines return a "huge" value when an error occurs, so HUGE is set equal to this "huge"
value, enabling you to check for errors easily. You need not include math.h in your program if you
remember to explicitly declare each math routine's return type, and if you don't need HUGE.

Some of the math routines reside in the standard C library, Ilibllibc.a. This library also contains all
the standard I/O routines and the system calls described in section 2 of the HP-UX Reference
manual. This library is loaded automatically by the C compiler, cc, so you need not worry about
explicitly telling the linker (Ie/) to search this library to find the functions contained in it. However,
many math routines reside in the library Ilibllibm.a, which is not automatically loaded. Thus, if you
try to compile a program containing a math routine from /ibm.a, you get a complaint from Jd.

This is fixed in the following way. Suppose you have a program named yourprog.c, and this
program contains a math function from /ibm.a. To compile the program, type

The -I option causes Jd to look for and search a library named Ilibllibx.a, where x is the letter
specified after the -I option. Thus, this command line tells Jd to search Ilibllibm.a.

How do you know which functions reside in which library? The HP-UX Reference manual provides
gUidance here. Ilibllibc.a contains all of section 2, plus all routines in section 3 having the suffixes
(3C) and (35). Ilibllibm.a contains all the routines in section 3 having the suffix (3M). To aid you in
deciding how to compile your programs, the routines discussed below include references to the
HP-UX Reference manual.

47

Absolute Value Functions
The abs (abs(3C» and labs (found under floo~3M)) functions return the absolute value of their
integer or floating-point argument, respectively. For example, the following program calculates
integer absolute values until a zero is entered from the keyboard:

maine)
<

int value;

printt("Enter value: ");
scant("Id", ~value);

while(value != 0) <
printf("Absolute value of
printf("Enter value: ");
scanf("Id", ~value);

}

ell i t (0) ;

Id is Id.\n", value, abs(value)j

The floating-point eqUivalent of the previous program is shown below:

mai n()
<

double value, fabs()j

printf("Enter value: ");
scanf("Ilf", ~value);

while(value != 0.0) <
printf("Absolute value of I.12~ is I.12~.\n", value, fabs(value»);
printf("Enter value: ");
scanf("Ilf", ~value);

}

ell i t (0) ;

}

The first program above can be compiled without the -I option, but the second must be compiled
using the -1m option.

48 Math Routines

Power, Square Root, and Logarithmic Functions
This section describes the following five functions, all of which are found under exp(3M) in the
HP-UX Reference manual:

exp(x)

log(x)

loglO(x)

pow(x, y)

sqrt(x)

returns e to the x power.

returns the natural logarithm of x (In(x)).

returns the common logarithm of x (log(x)).

returns x to the y power.

returns the square root of x.

All functions return double values, and expect double arguments. Since their syntaxes are similar,
the follOwing logarithm calculator example suffices for all five of these functions:

#include <math.h>
Main(arH, ar9'v)
int ar9'ci
char *ar9'v[];
{

double value;

sscanf(ar9'v(IJ, "Ilf", &value) i
printf("Natural logarithM of %.129' = %.12g\n", value, lo!t(value»;
printf("Common lo!tarithm of %.12g = %.12g\n", value, logI0(value» i

This program accepts its single argument, and returns the natural and common logarithms of that
argument.

All five of these functions must be compiled using the -1m option to cc.

Math Routines 49

Trigonometric Functions
A full set of trigonometric functions are provided in the math library. They are as follows:

sin(x)

cos(x)

tan(x)

asin(x)

acos(x)

atan(x)

atan2(y, x)

sinh(x)

cosh(x)

tanh(x)

returns the sine of the radian argument x.

returns the cosine of the radian argument x.

returns the tangent of the radian argument x.

returns the arc sine of x in the range -pi/2 to pi/2, where -1 < = x < = 1.

returns the arc cosine of x in the range 0 to pi, where - 1 < = x < = 1.

returns the arc tangent of x in the range -pi/2 to pi/2.

returns the arc tangent of y/x in the range -pi to pi.

returns the hyperbolic sine of the radian argument x.

returns the hyperbolic cosine of the radian argument x.

returns the hyperbolic tangent of x.

.~

The following program uses some of these routines, as well as two routines from the preVious
section, to obtain the dimensions and angles of a right triangle:

#include <stdio.h>
#include <math.h>
ma i n()
{

double sideA, sideB, sideC, anga, angb, tempC;
double pi = fabs(acos(-l.»;
double torads = pi/1BO. j
double todegs = lBO./pij
double angc = 90.;

printf("Using the following conventions for sides and angles:\n")j
triangle();
printf("\nEnter all known information:\n")j
printf("\tA = ")j
scanf("Ilf", ~sideA);

printf("\tB = "I;
scanf("Ilf", ~sideB) j
printf("\tC = "I;
scanf("Ilf", ~sideC)j

printf("\tAngle a = ") j
scanf("Ilf", ~anga)j

printf("\tAngle b = ") j
scanf("Ilf", &:angb)j
if(sideA ~&: sideB ~&: sideC) {

tempC = sqrt(pow(sideA, 2.) + pow(sideB, 2.)j
if(fabs(sideC - tempC) > 0.001) {

printf("Sides invalid.\n") j
exit(lli

}

anga acos(sideB/sideC) * todegs;
angb 90. - angaj

50 Math Routines

else if(sideA && sideB) {
sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.»);
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

else if(sideB && sideC) {
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2. I);
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

else if(sideA && sideC) {
sideB = sqrt(pow(sideC, 2.1 - pow(sideA, 2.1);
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

else if<sideA) (
if(anga && angb) (

sideC = sideA/cos(angb*torads);
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2. I);

} else if(anga) (
sideC = sideA/sin(anga*toradsl;
sideB = sqrt(pow(sideC, 2.) - pow(sideA, 2.»;
angb = 90. - ann;

} else if(angb) {
sideC = sideA/cos(angb*toradsl;
sideB = sqrt,(pow(sideC, 2.) - pow(sideA, 2.»;
ann = 90. - angb;

else (
printf("Insufficient inforMat,ion.\n");
e IC i t (1 I ;

}

else if(sideB) (
if(anga && angb) (

sideC = sideB/sin(angb*t,orads);
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.)1 i

else if(anga) {
sideC = sideB/cos(anga*t,orads);
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.»;
angb = 90. - anga;

else if(angbl (
sideC = sideB/sin(angb*torads);
sideA = sqrt(pow(sideC, 2.) - pow(sideB, 2.»;
anga = 90. - angbi

} else (
printf("Insufficient inforMation.\n"l;
eICit(l);

}

else if(sideC) {
if(anga && angb) (

sideA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads)i

} else if(anga) {
sideA = sideC * sin(anga*torads)i
sideB = sideC * cos(anga*torads)i
angb = 90. - angai

else if(angb) {
sideA = sideC * cos(angb*torads)i
sideB = sideC * sin(angb*torads);
anga = 90. - angbi

Math Routines 51

} else (
printt("Insutticient intormation.\n");
exit(lH

}

else (
printt("Insufficient intormation,\n");
ellit(lH

printt("\n\tSide A = %.2t\t\tAngle a = %,2t degrees\n", sideA, anga);
printt("\tSide B %.2t\t\tAngle b = %.2t degrees\n", side8, angb);
printt("\tSide C %.2t\n", sideC);

}

triangle()
(

FILE *fopen(), *tri;
char line[SO], *fgets();

tri = topen("triangle", "r");
it(tri == NULL) (

printfl"Cannot open triangle tile.\n");
exit(l);

while(tgets(line, 50, tri) != NULL)
tputslline, stdout);

fclose(tril;

The triangle function prints out the contents of a file in the current directory called triangle. The ~
contents of this file should contain an ASCII approximation of a right triangle: }

/ I

/
/

/ a
/

C / B
/

/
/

/ b c_l

/ -------- :- :
A

This triangle, made up of slashes, vertical bars, and underscores, shows the naming convention for
the sides and angles. The program then asks for the known data; enter a value of zero for those
parameters that are unknown. The dimensions and angles are then calculated based on the data
you have supplied. If there is insufficient information, you are told about it.

The hyperbolic functions are found under sinh(3M) in the HP-UX Reference manual. All others are
found under trig(3M). Thus, the -1m argument must be used when compiling code containing
these functions.

52 Math Routines

~./''''
~

~
~

Miscellaneous Functions

Calculating Upper and Lower Bounds
Two functions, floor and ceil (see fl001i3M)), enable you to obtain integers (returned as doubles)
defining an upper and a lower bound for a number or a series of numbers. Floor returns a double
precision representation of the the largest integer which is still not greater than floors argument.
Similarly, ceil returns a double precision representation of the smallest integer which is still greater
than ceils argument.

The following program returns the floor and ceiling values for the number specified as its argument:

oinclude <math.h>
mainlaUc, ar!lv)
int ar!lc i
char *ar!lv[Ji
{

double valuei

sscanflar!lv[lJ, "Ilf", &value) i
printfl"Floor = I!li Ceilin!l = I!I\n", floor(value), ceillvalue» i

If you type this in and run it, you see that floor and ceil provide two double values representing the
smallest range in which the numbers used to obtain that range will fit. For example, if you have a
program which reads three values from a source file, and these values are 4.79, 19.6, and 21.1,
you can get the smallest possible range in which these numbers fit by running floor on each number
(and keeping the smallest floor value), and then running ceil on each number (and keeping the
largest ceiling value). For the above three numbers, this yields a floor value of 4, and a ceiling value
of 22.

Code containing these functions must be compiled using the -1m cc option. Math.h need not be
included if you remember to explicitly declare that these functions return double values.

Calculating Remainders
This section covers two functions, {mod and modI. The {mod function (see floor(3M)) returns the
remainder (in double precision form) resulting from dividing {mods first argument by its second.
For example,

frnodll0" lI,)

divides 10 by 4, and returns the remainder (2, in this case). The following program accepts two
numbers, divides the first by the second, and displays the results in a form showing the number of
times the divisor goes evenly into the dividend, and the remainder, if any.

Math Routines 53

cinclude <math.h>
mainlaUc, aUu)
into aUc;
char *aUu[];
{

into result.;
double number, diu, rem;

sscan1(aUuU], "111", 8rnuMber);
sscant(auv[3l, "Ilt" , 8rdiv);

result = number/diu;
print.11"Zg = (Id)(Ig)", number, result, diu);
if(lrem = tmodlnumber, diu») != 0.0)

print.tl" + Ig\n", remli
}

This program is set up so that it can be invoked in sentence style. If you name the compiled version
of this program "divide", then you can say

$ divide 33.27 by 11

Since argv[2] is ignored in the code, "by" is harmless, and the two numbers are parsed correctly.

Code containing a call to Imodmust be compiled with the -1m ccoption. However, you need not
include math.h in your program, as long as you declare Imods return type appropriately.

The other function, modI (see frexp(3C)), is not really a remainder function in the same sense that .')
£mod is a remainder function. In Imod, a division actually takes place. In mod£, however, no
division takes place. ModI simply accepts a double value, and splits it into its integer and fractional
parts. Its syntax is

modt Ivalue , iptr);

where value is the number to be split into two parts, and iptris a pointer to a double variable where
the integer part of value is to be stored. Mod!s return value is the signed fractional part of value.

The following program shows modI in action:

main(argc, argu)
into argc;
char *auv[H
{

double ualue, iptr, trac, modtlli

sscant(argv[ll, "Ilt", 8rualue);
trac = tllodt(value, 8riptr);
printt("Integer part: Zg; Fractional part.: Zg\n", iptr, frac);

The program accepts one argument, the value, and then prints the integer and fractional parts of
that value. Note that the address of iptr is passed to mod£, because modI expects the address of a
double variable where the integer part can be stored.

54 Math Routines

~'

Code containing calls to mod! does not require the -1m option dUring compilation. Also, the
math.h include file is of no use to modI, so it can be omitted.

Calculating A Hypotenuse
The hypot function (see hypot(3M)) returns the square root of the sum of the squares of its two
arguments, yielding the length of the hypotenuse of a right triangle, or the Euclidian Distance.

Thus, in the previous program which calculated the sides and angles of a right triangle, the line of
code which read

sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.»;

could be replaced with

sideC = hypot(sideA, sideB);

thus eliminating one function call (hypot contains a call to sqrt).

Code containing calls to hypot must be compiled using the -1m option to cc.

Generating Random Numbers
The rand and srand routines (see rand(3C)) exist for the generation of random numbers. Rand is
the random number generator itself, and srand enables you to specify a starting point (or seed) for
rand.

The following program simply sets up an infinite loop and lets rand run for awhile (to terminate it,
just press BREAK, or its eqUivalent):

Main()
{

unsigned value;

srand(l);
forI;;) {

value = rand();
printf("RandoM nUMber is Iu\n", valueli
sleep(l);

Note that rand and srand deal only with unsigned integers. If you let this program run for awhile,
you'll notice that the random values returned are quite large, and don't often venture below 1000.
If your application requires smaller random numbers, divide the value returned by rand by some
appropriate divisor until a number in the desired range is obtained.

Srand initializes the random number generator to a particular starting point. In the above program,
1 is used, but you can specify any positive integer you like.

The sleep library routine causes the program to "pause" for the number of seconds specified (1, in
this case).

Math Routines 55

Floating-Point Exponentiation Routines
Two routines, frexp and ldexp (see frexp(3C)), are covered in this section. Frexp accepts a double
value, and returns two values, x and n, such that

value :: K * Z"n

where x is a double quantity of magnitude less than 1, and n is an integer exponent. Frexp's syntax ~
is ,

f r eK P (value, eptr) i

where value is the value to be processed, and eptr is a pointer to an integer variable where the
exponent n is to be stored. The quantity x is returned as frexp's return value.

The folloWing program accepts a number argument and uses frexp to output that number's repre
sentation in the form shown above:

main(ar~c, ar~v)

int aHc i
char *ar~v[] i
{

double value, K' freKP() i
int eptrj

sscanf(ar~v[l], "Xlf", &value)i
K:: freKP(value, &eptr)i
printf("t.!l':: 'X.~ * Z"Xd\n", value, K' eptr)i

}

Ldexp accepts a double value and an integer exponent exp, and returns a double quantity equal to

<value> * Z" <exponent>

The follOWing program accepts two number arguments, value and exp, and outputs the result:

main(ar!l'c, ar!l'v)
int ar!l'ci
char *ar!l'v[]i
{

double value, result, ldeKP()j
int eKPj

sscanf(ar!l'v[l], "Zlf", &value);
sscanf(ar~v[Z], "Zd", &eKP) i
result:: ldeKP(value, eKP)i
printf("Z!l' * Z"Zd :: Z~\n", value, eKP, result);

}

Neither of these routines reqUire math.h or the use of the -1m cc option.

56 Math Routines

L.....- C_h_ar_act_e_r_C_o_n_v_e_rs_io_n ~ I Pgart I_ and Classification
This section discusses those routines found under conv(3C) and ctype(3C) which enable you to
convert between upper- and lower-case, and classify characters as digits, non-printing, upper-case,
etc.

Converting Between Uppercase and Lowercase
Four routines are documented under conv(3C) which enable you to convert between upper- and
lowercase. They are toupper, t%wer, _toupper, and _t%wer.

Toupper and t%wer are functions which accept a single integer argument in the range - 1 through
255. If the integer taken as a character represents a lower-case character, toupper returns the
corresponding upper-case character. Similarly, t%wer returns the corresponding lower-case char
acter. Both routines return the argument unchanged if it does not represent a lower-case character
(toupper) or an upper-case character (t%wer).

_toupper and _t%wer are macros defined in ctype.h. _toupper accepts a single integer argument
which must represent a lower-case character; the corresponding upper-case character is returned.
Similarly, _t%wer must be given an upper-case character, and returns the corresponding lower
case character. If an argument is specified which is not a lower-case character (_toupper) or an
upper-case character (_t%wer), garbage is returned.

The macro versions of these routines are faster than the functions, so if you can guarantee that only
lower-case or upper-case characters are passed to the macros, you should probably use them.
However, the function versions are handy for tasks like

for(i=O; array[il != NULLi i++)
array[il = toupper(array[il);

which converts every lowercase character found in array to uppercase. The functions enable you to
be more lenient about the arguments passed to them. In the above program fragment, no argument
checking is needed; if the argument isn't a lowercase character, it is returned unchanged.

Character Classification
The ctype(3C) entry in the HP-UX Reference lists routines which test their single argument and
return a non-zero value if the test is positive, and 0 otherwise.

All of these routines are macros defined in ctype.h. Because their syntaxes are identical, the
foUowing example suffices for all ctype macros:

for(i=O; array[il != NULLi i++) {
if(islower(arraY[il))

array[il = _toupper(array[il) i

57

This program fragment shows one way to change all occurrences of a lower-case character in array
to upper-case using the macro _toupper. The macro is/ower is used to make sure that only
lower-case characters are passed to _toupper.

String Manipulation
String(3C) in the HP-UX Reference manual documents an extensive list of string manipulation
routines enabling you to perform several operations on character strings. This section describes the
string(3C) package in detail.

Concatenating Strings
Strcat and strncat enable you to append a copy of one string onto the end of another. Their

. syntaxes are:

strcat(sl, s2);
strncat(Sl, s2, n);

where 51 and 52 are character pointers to NULL-terminated character strings. Strcat appends the
entire string pointed to by 52 (up to the first NULL character encountered) onto the end of string 51.
Strncatdoes the same thing, except that at most n characters are appended to 51 (or up to a NULL
character, whichever comes first). (Note that string 52 need not be NULL-terminated when using
5trncat if n is less than or equal to the length of 52.) Both routines return a character pointer to the
NULL-terminated result.

Neither of these routines checks to make sure that there is room in 51 for the additional characters ~
of 52. Thus, to be safe, 51 should always be a declared array haVing plenty of space for the
additional characters of 52, plus a terminating NULL character.

Copying Strings
Strcpyand strncpy copy one string of characters into another. Their syntaxes are:

strcpy(sl, s2);
strncpy(sl, s2, n);

where 52 is a character pointer to the string to be copied, and 51 is a character pointer to the
beginning of the string into which the contents of string 51 are copied. Strcpy copies the entire
string, up to (and including) the first NULL encountered. Stmcpy copies up to n characters, or up to
(and including) the first encountered NULL, whichever occurs first. (String 52 need not be NULL
terminated when using 5tmCpy if n is less than or equal to the length of 52.) Both routines return the
value of 51.

The follOWing program uses the 5trcat routine discussed earlier and strcpy to build a character string
representing the lower-case alphabet, one character at a time. ~

58 Character Conversion and Classification

#include <stdio.h>
tnai n ()
{

int b = 'b', z = IZI, ii
char alpha[30J, chr[QJi

ch r[1 J = NULLi
strcPY(alpha, "a");
printf("Is\n", alpha);

for(i = b; i <= zi i++)
chr[OJ = i;
strcat(alpha, chr);
printf("Is\n", alpha);

}

The array chr is always going to be a two-character array consisting of the next character in the
alphabet followed by NULL. Thus, the second element of chr is set to NULL early in the program.
The first chrelement is then successively set to the next lower-case character in the for loop, and the
resulting two-character string is concatenated onto the end of the alphabet assembled so far in
alpha. Note the use of strcpy to initialize alpha. Remember that C transforms one or more charac
ters enclosed in double quotes into a character pointer to those characters followed by a NULL.
Thus, the strcpy statement above copies the character "a" followed by a NULL character into
alpha.

There are some things to be aware of when using strcat, stmcat, sfrcpy, and stmcpy. These routines
all modify string sl in some way, but none of them check for overflow in that string. Therefore, be
sure there is enough room in sl to hold the added or copied characters plus a terminating NULL.
Also, be sure you use a character array for 51 (not just a character pointer), especially when using
strcat or stmcat. This is because an explicitly-declared array has sufficient memory allocated to it to
contain all of its elements, but a character pointer simply points to a single location in memory.
Concatenating a string to the end of a string contained in an array is guaranteed to work, provided
the array is large enough. However, concatenating a string to a string of characters referenced by a
simple character pointer is dangerous, since the concatenated characters could overwrite data in
memory. For example,

char array[100J, *ptr = "abcdef";

strcat(arraYt ptr)i

works fine, since you are guaranteed that 100 storage elements have been set aside for the array.
However,

char *ptrl = "abcdef", *ptr2 = "ghiJKl"i

strcat(ptrl t ptrZ) i

is asking for trouble. Although C makes sure that there is enough room for the initialiZing strings
("abcdef' and "ghijkl" in this example), there are no guarantees that there is enough room to add
characters to the end of one of these strings. Therefore, the last fragment could easily overwrite
valid data occurring after the string pointed to by ptr1.

Since string s2 is not modified, you can use arrays or character pointers with no ill effects.

Character Conversion and Classification 59

Comparing Strings
Strcmp and strncmp compare two strings and return an integer indicating the result of the compari
son. Their syntaxes are:

strcMP(sl, s2);
strncMP(sl, s2, n);

where 51 and s2 are character pointers to the NULL-terminated character strings to be compared.
Strcmp compares the entire strings, stopping as soon as the result is determined. Stmcmp compares
at most n characters of both strings (neither string need be NULL-terminated if n is less than or
equal to the length of the shorter string). The integer returned uses the following convention:

<0 51 is lexicographically less than 52;

=0 51 and 52 are equal;

>0 51 is lexicographically greater than 52.

The following program fragment uses 5tmcmp to analyze the contents of a file coded with the man
macros (see man(7)). It reads each line of the file and keeps a count of the number of times selected
macros are used, and prints a summary of its findings at the end.

~include <stdio.h>
Main(aHc, ar~v)

int aHc;
char *aUv[J;
{

char *ffets(), line[lOO];
FILE *fp;
int nsh, npp, ntp, nrs, nre, npd, nip, nmisc, nlines;

nsh = npp = ntp = nrs = nre = npd = nip = nmisc = nlines 0;

if(arfc != 2) {
fprintf(stderr, "Usa~e: count file\n");
exit (2) ;

fp = fopen(arfv[l], Urn);
if (f p == NULL> {

fprintf(stderr, "Can't open ts.\n", ar~v[l]);

exit(lH

while(ffets(line, 100, fp) != NULL) {
if(strncMP(1ine, ".SH", 3) == 0)

nsh++;
else if(strncmp(line, ".PP", 3) 0)

npp++;
else if(strncmp(line, ".TP", 3) 0)

ntp++;
else if(strncMP(line, ".RS", 3) 0)

n rs++;
else if(strncMP(line, ".RE", 3) 0)

n re++;

60 Character Conversion and Classification

else if(strncMP(line, ".PO" , 3) 0)
npd++;

else if(strncMP(1ine, ".Ip", 3) 0)
nip++i

else if(line[Ol == '. ')
nmisc++i

nlines++i
}

printf(IINo. of lines: Id\n\n", nlines);
printf(IINo. of .SH's: Id\n", nsh) i
printf("No. of .PP's: Id\n", npp);
printf(IINo. of .IP's: Id\n", ntp)i
printf(IINo. of .RS's: Id\n", nrs) i
printf(IINo. of .RE's: Id\n", nre);
printf(IINo. of .PO's: Zd\n", npd);
printf(IINo. of .IP's: Zd\n", nip);
printf(IINo. of misc. macros: %d\n", nMisc);

fclose(fp) i
e)(i t (0) ;

In the above program, stmcmp is used to compare the first three characters of each line read. If the
first three characters match a particular macro, the appropriate counter is incremented. If the line
begins with ".", but is not one of the macros being searched for, the "miscellaneous" counter is
incremented. The total number of lines in the file is also given.

Finding the Length of a String
The strlen routine returns an integer specifying the number of non-NULL characters in a string. Its
syntax is:

strlen(S) ;

where s is a character pointer to the NULL-terminated string whose length is to be taken. For
example, if you execute

len = st r len (string) i

then the integer len contains the total number of non-,""s-lNULL,""s + 1 characters in the string
pointed to by string. Thus,

s t r i n 9' [len l

points to the terminating NULL in string

Finding Characters in Strings
~ The strchr, strrchr, and strpbrk routines enable you to locate a particular character within a string.

Strchr and strrchr return a character pointer to an occurrence of a specified character in a string.
Their syntaxes are:

strchr(S, c);
strrchr(S, c);

Character Conversion and Classification 61

where 5 is a character pointer to the string of interest, and e is a variable of type char specifying the
character to search for.

Strehr returns a character pointer to the first occurrence of character e in string 5. Similarly, 5trrehr
returns a character pointer to the last occurrence in string 5. Both routines return a NULL if the
character does not occur in the string pointed to by 5. For example,

char *ptr, *strchrl), strin!f[lOOJi

while«ptr :: strchrlstrin!fl '@') !:: NULLI
*ptr:: 'll';

replaces all occurrences of "@" in the array 5tring with "#", starting from the beginning of the
array and working toward the end. The same operation can be done using

while«ptr:: strrchrlstrin!fl '@') !:: NULLI
*ptr:: '#';

which replaces all @'s with #'s, starting from the end of the array, working backward toward the
beginning.

The 5trpbrk routine returns a character pointer to the first occurrence in string 51 of any character
contained in string 52, or NULL if none of the characters in 52 occur in 51. Its syntax is:

st rpb rk lsI I s2);

For example, suppose you have to read lines of input in which are embedded numerical data which ~,.

must be read. For simplicity, assume that the following conventions are used: j

• Positive numbers do not begin with "+";

• Fractional numbers always begin with zero, as in 0.25;

• The first occurrence of a digit in the string signals the beginning of the number to be read.

Given these rules, the follOWing code fragment does the job:

char line[100l I *chrs :: "-0123458789", *ptr;
float value;

ptr:: strpbrk(line, chrsli
sscanf(ptrl "If", S.valueli

The character pointer ehrs is initialized to point to a string of characters which might introduce the
embedded number. Strpbrk then finds the first occurrence of one of these characters in line, and
returns a pointer to that location in ptr. Finally, ptr is passed to sseanf, which interprets ptr as if it
were a pointer to the beginning of a string from which input is to be taken. The number is read
correctly because ptr points to the beginning of a number, and because the %f conversion termin- ~
ates at the first inappropriate character. }

62 Character Conversion and Classification

Miscellaneous String Routines

Finding Characters Common to Two Strings
The 5trspn and 5trc5pn routines return an integer giving the length of the initial segment of string 51
which consists entirely of characters found in string 52. Strcspn is similar, but returns an integer
giving the length of the initial segment of 51 which consists entirely of characters not found in string
52. Their syntaxes are:

strspn(s1, s2) i

st rcspn(s1, s2) i

For example, suppose you have the follOwing two strings:

"A tattle-tale never wins."

for string 51, and

II -Aatle"

for 52. Executing

5tr5pn(51, 52) i

with the strings shown returns a value of 14, since the first 14 characters in 51 all occur in 52 - "A
tattle-tale ". If you execute

5trc5pn(sl, s2) i

using the same strings, you get 0, because there is no initial segment of 51 which contains characters
not found in 52.

Breaking a String into Tokens
A token is a string of characters delimited by one or more token delimiters. The 5trtok routine
divides string 51 into one or more tokens. The token separators consist of any characters contained
in string 52. Its syntax is:

strtok(s1, s2) i

where 51 is a character pointer to the string which is to be broken up into tokens, and 52 is a
character pointer to a string consisting of those characters which are to be treated as token separ
ators.

Strtok returns the next token from 51 each time it is called. The first time 5triok is called, both 51 and
52 must be specified. On subsequent calls, however, 51 need not be specified (a NULL is specified
in its place). Strtok remembers the string from call to call. String 52 must be specified each call, but
need not contain the same characters (token separators) each time.

Strtok returns a pointer to the beginning of the next token, and writes a NULL character into 51
immediately following the end of the returned token. Strtok returns a NULL when no tokens
remain.

Character Conversion and Classification 63

For example, suppose you are reading lines from /etdgettydefs, which is the speed table for getty(8)
-see gettydefs(5). The lines in this file contain several fields delimited by pound signs (#). Thus,
the following code could be used to read the fields of each line:

int count = 0;
char *delillls = "#", *token, *au1, *strtok(), line[256];
au1 = line;

while«token = strtok(ar~1, delillls) != NULl) {
count++;
printf("field '%.d: '%.s\n", count, token);
i1(count == 1)

ar!l1 = NULL;
}

This code sees to it that strtok's first argument is NULL after the first call. Also, note that delims did
not change from call to call, but it could have. This greatly increases the power of strtok, since it
enables you to change the token delimiters between calls.

64 Character Conversion and Classification

'----_------'1~4art~ate and Time Manipulation .[TI

Ctime(3C) describes a set of routines which enable you to access the date and time as maintained
by the system clock. This package knows about daylight saving time, and automatically converts
between standard time and daylight saving time when appropriate.

Most of the ctime routines require the quantity returned by time(2), which is the number of seconds
that have elapsed since 00:00:00 GMT (Greenwich Mean Time), January 1,1970.

The ctime routine converts the time(2) value into a 26-character ASCII string of the form

Fri May 11 09:53:03 19Sa\n\0

where "".n" is a new-line character, and "".0" is a terminating NULL character. Ctime's syntax is:

c tiM e (value) i

where value is a pointer to a long integer value representing the number of elapsed seconds since
00:00:00 GMT, January I, 1970 (as returned by time(2)). Note that value is a pointer to the
quantity returned by time(2), not just the quantity itself. Using time(2) and ctime, you can write
your own simplified version of the date(1) command:

uinclude <stdio.h>
Ma i n ()
(

char *strt *ctiMe() i
long tiMe(), nsecondsi

nseconds = tiMe«long *)0) i
str = ctiMe(~nseconds) i
printf("'Is", str) i

The rest of the routines in ctime(3C) reqUire the include file time.h, which contains the definition of
a structure called tIn. This structure is made up of several variables which contain the various
components of the date and time. It looks as follows:

struct tM {
int tM_seci
int tM_Mini
int tM_houri
int tM_Mdayi
int tM_Moni
int tM_yeari
int tlll_wdayj
int tM_ydayi
int tM_isdsti

65

The meaning associated with each structure member is:

tm-sec the "seconds" portion of the system's 24-hour clock time;

tlll-lllin the "minutes" portion of the system's 24-hour clock time;

tDLhour the "hours" portion of the system's 24-hour clock time;

tlll-llldaythe day of the month, in the range 1 thru 31;

tlll-lllon the month of the year, in the range 0 thru 11 (0 = January);

till-year the current year - 1900;

tlll-wdaythe day of the week, in the range 0 thru 6 (0 = Sunday);

tlll-yday the day of the year, in the range 0 thru 365;

tlll-isdst a flag which is non-zero if daylight saving time is in effect.

The /oca/time and gmtime routines accept a pointer to a quantity such as returned by time(2), and
fill in the various components of the tm structure. Loea/time corrects the time for the local time zone
and possible daylight saving time, while gmtime converts directly to GMT time (this is the time used
by HP-UX). Both routines return a pointer to a structure of type tm which can be used to access the
various components of the tm structure.

For example, the following code fragment assigns values to the tm structure members for the local
time zone:

#include <tiMe.h)

struct tm *ptr, *localtime();
long time(), nsecondsi

nseconds = time(long *)0);
ptr = localtime(~nseconds) i

Once this code is executed, you can use ptrto access the different components of the local time. For
example, ptr - >tnwnon references the month of the year, and ptr - >tlll-wday references the
day of the week. (Gmtime is used in exactly the same way, so this example suffices for it also).

The asctime routine converts the time contained in a tm structure into ".s-IASCn".s + 1 repre
sentation such as that returned by date(l) and ctime. Its syntax is:

as ctim e (ptr) ;

where ptr is a pointer to a structure of type tm whose members have previously been assigned
values with /oca/time or gmtime, or explicitly by you. Asctime returns a character pointer to the
same NULL-terminated 26-character string as returned by ctime.

66 Date and Time Manipulation

~:":""
~'

Asctime provides a way for you to obtain the current time, modify it explicitly in some way, and
then print the result in ASCII form. The date command shown earlier can be re-written using
/oea/time and asetime:

"include <stdio.h>
"include <time.h>
ma i n l I
{

10n9 timel), nseconds;
struct tm *ptr, *localtimell;
char *strin9, *asctimel);

nseconds = time(llon9 *)0);
ptr = localtimel&nsecondsl;

1* the user may modify the current time in tm here *1

strin9 = asctime(ptr);
printt("Is", string);

This program illustrates a rather indirect way to obtain the date, but it does enable you to modify
the date stored in tm before you print it out. If all you want to do is print the date, the qUickest way is
to use the time/ctime combination,

Of all the ctime routines, perhaps the most useful is /oca/time. It enables you to break the current
time up into referencable chunks which can then be examined for such applications as personal
calendar programs, program schedulers, etc. Many of the tm values can be used as indices into
arrays containing strings identifying months and days. For example, declaring an external array like

char *month[) = { "January", "February", "March", "April",
"MaY", "June", "Jul)'", "August", "September",
"October", "November", "December"

} ;

enables you to use tlll-Jllon as an index into this array to obtain the actual month name. The same
thing can be done with tllL.wday if you initialize an array containing the names of the days of the
week. The etime(3C) package makes it easy to design programs which depend upon the time or
date. Try creating your own versions of ea/endarl.l), at(l), or even cron(8)!

Date and Time Manipulation 67

68 Date and Time Manipulation

Table of Contents

Lint C Program Checker
Introduction 1
Error Detection 1
Problem Detection 2

Problem Code: Unused Variables and Functions 2
Suppressing Lint 3

Problem Code: Set/Used Information 3
Problem Code: Unreachable Code 4

Suppressing Lint 4
Problem Code: Function Value 4
Problem Code: Type Matching 5

Suppressing Lint 6
Problem Code: Portability 6

Suppressing Lint 7
Problem Code: Strange Constructions 7

Suppressing Lint 8
Problem Code: Obsolete Constructions 8

How to Use Lint. 9
Directives 9
Option List. 10

ii

Lint
C Program Checker

Introduction
Lint is a program checker and verifier for C source code. Its main purpose is to supply the program
mer with warning messages about problems with the source code's style, efficiency, portability, and
consistency. Once the C code passes through the compiler with no errors, lim can be used to locate
areas, undetected by the compiler, that may require corrections.

Error messages and lim warnings are sent to the standard error file (the terminal by default). Once
the code errors are corrected, the C source file(s) should be run through the C compiler to produce
the necessary object code.

Error Detection
Lint can detect all of the code errors that the C compiler detects. An example of an error message
would be:

illegal initialization

These errors must be corrected before the compiler can be used to produce object code.

Although lint can be used for error detection, it cannot recover from all of the code errors it finds. If
lint encounters an error that it can not recover from, it sends the message:

cannot recover from earlier errors - goodbye!

and then terminates.

Lint limits the number of code errors that it detects to 30. Once 30 errors have been found in the
source file(s), any additional error causes the message:

too many errors

to be sent to the standard error file, and lint terminates. Because of this limitation and lint's inability
to recover from some errors, the compiler should be used for error detection. Once the error
causing code has been corrected, lint can be used on the source code for finding some of its ineffi
ciencies and bugs.

1

Problem Detection
The main purpose of lint is to find problem areas in C source code. The detected code may not be
considered an error by the C compiler; it can be converted into object code. However, lint con
siders the code to be inefficient, nonportable, bad style, or a possible bug.

Comments about problems that are local to a function are produced when they are detected. They
have the form:

warning: <message text>

Information about external functions and variables is collected and analyzed after lint has processed
the files handed to it. At that time, if a problem has been detected, it sends a warning message with
the form:

<message text>

followed by a list of external names causing the message and the files where the problem occurred.

Code causing lint to issue a warning message should be analyzed to determine the source of the
problem. Sometimes the programmer has a valid reason for writing the problem code. Usually,
though, this is not the case. Lint can be very helpful in uncovering subtle programming errors.

Lint checks the source code for certain conditions, about which it issues warning messages. These
can be grouped into the following categories:

1. variable or function is declared but not used;
2. variable is used before it is set;
3. portion of code is unreachable;
4. function values are used incorrectly;
5. type matching does not adhere strictly to C rules;
6. code has portability problems;
7. code construction is strange;
8. code construction is obsolete.

The code that you write may have constructions in it that lint objects to but that are necessary to its
application. Warning messages about problem areas that you know about and do not plan to
correct provide useless information and make helpful messages harder to find. There are two
methods for suppressing warning messages from lint that you do not need to see. The use of lint op
tions is one. The lint command can be called with any combination of its defined option set. Each
option has lint ignore a different problem area. The other method is to insert lint directives into the
source code. Lint directives are discussed later.

Problem Code: Unused Variables and Functions
Lint objects if source code declares a variable that is never used or defines a function that is never
called. Unused variables and functions are considered bad style because their declarations clutter
the code. They can also be the cause of a program bug if their use is essential.

2 Lint

An unused local variable can result in one of two lint warning messages. If a variable is defined to
be static and is not used lint responds with:

warning: static variable <name> unused

Unused automatic variables cause the message:

warning: <name> unused in function <name>

A function or external variable that is unused causes the message:

name defined but never used

followed by the function or variable name and the file in which it was defined. Lint also looks at the
special case where one of the parameters of a function is not used. The warning message is:

warning: argument unused in function: <ar9-name> in <func_name>

If functions or external variables are declared but never used or defined lint responds with

name declared but never used or defined

followed by a list of variable and function names and the names of files where they were declared.

Suppressing Lint
Sometimes it is necessary to have unused function parameters to support consistent interfaces
between functions. The -v option can be used with lint to have warnings about unused parameters
suppressed. However, the -v option does not suppress comments when parameters are defined as
register variables. Unused register variables result in an inefficient use of the computer's resources,
since qUick-access hardware is often allocated for their storage.

If lint is run on a file which is linked with other files at compile time, many external variables and
functions can be defined but not used, as well used but not defined. If there is no guarantee that the
definition of an external object is always seen before the object is used, it is declared extern. The-u
option can be used to stop complaints about all external objects, whether or not they are declared
extern. If you want to inhibit complaints about only the extern declared functions and variables, use
the -x option.

Problem Code: Set/Used Information
A probable bug exists in a program if a variable's value is used before it is assigned. Although lint at
tempts to detect occurrences of this, it takes into account only the physical location of the code. If
code using a static or external variable is located before the variable is given a value the message
sent is:

warning: <name> may be used before set

Lint 3

Since static and external variables are always initialized to zero this may not point out a program
bug. Lint also objects if automatic variables are set in a function but not used. The message given is:

warning: <name> set but not used in function

Problem Code: Unreachable Code
Lint checks for three types of unreachable code. Any statement following a goto, break, continue, j~
or return statement must either be labeled or reside in an outer block for lint to consider it
reachable. If neither is the case, lint responds with:

warning: statement not reached

The same message is given if lint finds an infinite loop. It only checks for the infinite loop cases of
while(l) and £or(;;). The third item that lint looks for is a loop that cannot be entered from the top.
If one is found then the message sent is:

warning: loop not entered from top

Lint's detection of unreachable code is by no means perfect. Warning messages can be sent about
valid code. It can also overlook commenting on code that cannot be reached. An example of this is
the fact that lint does not know if a called function ever returns to the calling function (e.g. exit). Lint
does not identify code following such a function call as being unreachable.

Suppressing Lint

Programs that are generated by yacc or lex can have many unreachable break statements. Normal
ly, each one causes a complaint from lint. The -b option can be used to force lint to ignore un
reachable break statements.

Problem Code: ·Function Value
The C compiler allows a function containing both the statement

return();

and the statement

return (expression);

to pass through without complaint. Lint, however, detects this inconsistency and responds with the ~...
message: J

warning: function <name> has return(e); and return;

4 Lint

Problem Code: Type Matching
The C compiler does not strictly enforce the C language's type matching rules. At the loss of some
type checking, the C compiler gains speed. An important role of line is to enforce the type checking
that the compiler neglects. It does this in four areas:

1.
2.
3.
4.

pointer types;
long and int type matching;
enumerations;
operations on structures and unions.

The types of pointers used in assignment, conditional, relational, and initialization statements must
agree exactly. For example, the code:

int *p;
char *q;

p = q;

would cause lint to respond with the message:

warning: illegal pointer combination

Adding and subtracting integers and pointers are legal. Any other binary operation on them results
in the message:

warning: illegal combination of pointer and integer: op <operator>

An example of code causing this message would be:

int s, *t;.

t = s;

Assignments of long integer variables to integer variables are possible in the C language. However,
on some machines the amount of storage supplied for the two types differs, and so the accuracy of a
value could be lost in the conversion. Lint detects these assignments as possible program bugs. If a
long integer is assigned to an integer, lint responds with:

warning: conversion from long may lose accuracy

Line checks enumerations to see that variables or members are all of one type. Also, the only
enumeration operations it allows are assignment, initialization, equality, and inequality. If lint finds
code breaking any of these guidelines, it sends the message:

Lint 5

warning: enumeration type clash, operator <operator>

Structure and union references are subject to more type checking by lint than by the C compiler.
Lint requires that the left operand of -> be a pointer to a structure or a union. If it isn't a pointer,
lint's response is:

warning: struct/union or struct/union pointer required

The left operand of . must be a structure or a union, which lint also indicates with the message
above. The right operand of -> and. must be a member of the structure or union implied by the
left operand. If it isn't then lint's message is:

warning: illegal member use <name>

where <name> is the right operand.

Suppressing Lint

You may have a legitimate reason for converting a long integer to an integer. Lint's -a option inhi
bits comments about these conversions.

Problem Code: Portability
Lint aids the programmer in writing portable code in five areas:

1. character comparisons;
2. pointer alignments;
3. uninitialized external variables;
4. length of external variables;
5. type casting.

Character representation varies on different machines. Characters may be implemented as signed
values or as unsigned values. As a result, certain comparisons with characters give different results
on different machines. The expression

c<O

where c is defined as type character, is always true if characters are unsigned values. If, however,
characters are signed values the expression could be either true or false. Where character compar
isons could result in different values depending on the machine used, lint outputs the message:

warning: nonportable character comparison

6 Lint

Legal pointer assignments are determined by the alignment restrictions of the particular machine
used. For example, one machine may allow double precision values to begin on any integer boun
dary, but another may restrict them to word boundaries. If integer and word boundaries are dif
ferent, code containing an assignment of a double pointer to an integer pointer could cause prob
lems. Lint attempts to detect where the effect of pointer assignments is machine dependent. The
warning that it sends is:

warning: possible pointer alignment problem

Another machine dependent area is the treatment of uninitialized external variables. If two files
both contain the declaration

inta;

either one word of storage is allocated or each occurrence receives its own word of storage, depen
ding on the machine. If the files that lint is processing contain multiple definitions of the same unini
tialized external variable, lint responds with:

warning: <name> redefinition hides earlier one

The amount of information about external symbols that is loaded depends on the machine being
used: the number of characters saved and whether or not upperllower case distinction is kept. Lint
truncates all external symbols to six characters and allows only one case distinction. (It changes up
per case characters to lower case.) This provides a worst-case analysis so that the uniqueness of an
external symbol is not machine dependent.

The effectiveness of type casting in C programs can depend on the machine that is used. For this
reason, lint ignores type casting code. All assignments that use it are subject to lint's type checking
(see Problem Code: Type Matching).

Suppressing Lint

The -p option stops comments about two types of portability problems:

1. pointer alignment problems,
2. multiple definitions of external variables.

Lint's objections to legal casts can also be suppressed. To do so, use its -c option.

Problem Code: Strange Constructions
A strange construction is code that lint considers to be bad style or a possible bug.

Lint looks for code that has no effect. An example is:

*p+ +;

Lint 7

where the * has no effect. The statement is equivalent to lip + +; ... In cases like this the message:

warning: null effect

is sent.

The treatment of unsigned numbers as signed numbers in comparisons causes lint to report:

warning: degenerate unsigned comparison

The following code would produce such a message:

unsigned x;

if(x < 0) ...

Lint also objects if constants are treated as variables. If the boolean expression in a conditional has
a set value due to constants, such as

if (1 != 0) ...

lint's response is:

warning: constant in conditional context

If the NOT operator is used on a constant value, the response is:

warning: constant argument to NOT

To avoid operator precedence confusion, lint encourages using parentheses in expressions by sen
ding the message:

warning: precedence confusion possible; parenthesize!

Lint judges it bad style to redefine an outer block variable in an inner block. Variables with different
functions should normally have different names. If variables are redefined, the message sent is:

warning: <name> redefinition hides earlier one

Suppressing Lint

To stop lint's comments about strange constructions, use its -h option.

8 Lint

Problem Code: Obsolete Constructions
C contains two forms of old syntax which, through the evolution of the language, are now officially
discouraged. One is a group of assignment operators. Previously acceptable = +, =-, =*, =/,
=%, =«, =», =&, =~, and =1 have been changed to + =, -=, *=, /=, %=, «=,
> > = , & =, ~ = , and I=. If lint sees the older form, it responds with:

r-' warning: old-fashioned assignment operator

The second syntax change deals with initialization. An older version of C allowed:

inta 0;

to initialize a to zero. Initialization now requires that an equals sign appear between the variable and
the value it is to receive:

inta = 0;

Lint's response to the earlier version is:

warning: old-fashioned initialization: use =

~'

Lint 9

HowtoUseLint
To use lim, you must be logged into the HP-UX system and have a shell prompt on your screen.
From here you can run lim on a single C source file:

$ lint filename.c

or on several source files which are to be linked together:

$ lint file1.c file2.c file3.c

The reappearance of your shell prompt after invoking lim tells you that lim has finished processing
your files. If no messages were sent to your standard error file, lim found nothing wrong with your
code.

10 Lint

Directives
The alternative to using options to suppress lint's comments about problem areas is to use direc
tives. Directives appear in the source code in the form of code comments. Lint recognizes five direc
tives.

I*NOTREACHED*I stops an unreachable code comment about the next line of code.

1*NOSTRICT*1 stops lint from strictly type checking the next expression.

I*ARGSUSED*I stops a comment about any unused parameters for the following function.

I*VARARGSn*1 stops lint from reporting variable numbers of parameters in calls to a func
tion. The function's declaration follows this comment. The first n
parameters must be present in each call to the function; lint comments if
they aren't. If "I*VARARGS*I II appears without the n, none of the
parameters need be present.

1*LlNTLIBRARY* I must be placed at the beginning of a file. This directive tells lint that the file is
a library file and to suppress comments about unused functions. Lint objects
if other files redefine routines that are found there.

Lint 11

OptionList
The following is a list of the options available when using lint:

-a suppress complaints about assignments of integers to longs and of longs to integers.

-b suppress complaints about unreachable break statements.

suppress complaints about legal casts. Without this option typecasting is ignored.

-h suppress complaints about legal but strange constructions (see Problem Code: Strange Con
structions).

-n do not check the compatibility of code against any libraries (standard and portable lint li
braries, directive-defined libraries).

-p suppress some portability checks (see Problem Code: Portability).

-u suppress complaints about externals (functions and variables) that are used but not defined,
or that are defined but not used (see Problem Code: Unused Variables and Functions, Prob
lem Code: Set/Used Information).

-v

-x

suppress complaints about unused function parameters. If a parameter is unused and is also
declared as a register variable, the warning is not suppressed.

suppress complaints about unused variables with external declarations (see Problem Code:
Set/Used Information).

-Dname[= dej]
define the string name to lint, as if a #define control line were used. If no definition is given,
then name is given the value 1. This option is also used by the C compiler.

-Uname
remove any initial definition of name, as if a #undef control line were used. This option is
also used by the C compiler.

-Idir change the algorithm for searching for #include files whose names do not begin with II / II •

The dir directory is searched before the directories on the standard list. Thus, #include files
whose names are enclosed in double quotes (II II) are searched for first in the directory of
the source file, then in the directory specified by each -I option, and finally in the directories
on the standard list. If a #include file's name is enclosed in angle brackets « », the source
file's directory is not searched. This option is also used by the C compiler. ~

12 Lint

~:./..

"

Table of Contents

MC68000 Assembler on HP-UX 1
Instruction Fonnat. .. 1

In General. .. 1
Symbols 1
Local Labels. .. 1
Opcodes 1
Size Suffixes .. 2
Expressions. .. 2

Pseudo-Op Syntax and Semantics. .. 3
Interfacing Assembly Routines. .. 4

Unking 4
Calling Conventions. .. 4
Language Dependencies. .. 7

C 7
Fortran 7
Pascal 7

Conversion from the Pascal Language System (PLS) 9

ii

MC68000 Assembler on HP-UX

Instruction Format
In General
Assembly instructions are written one per line. Mnemonic operation codes (opcodes) and
register symbols must be written in lower case. Upper and lower case characters may not be
used interchangeably. that is. it is a case sensitive assembler. Instructions are free format with
respect to spaces.

If a label is present. it must start in column one of the line. The opcode must start in column two
or later. Blanks are not permitted within the operand field. The first blank encountered after the
start of the operand field begins the comment field.

Label 'tlOVe a1,a2 COltlltlent field

A "*,, in column one indicates a comment.

*
*
*

These are COMMents.

Symbols
Symbols must begin with an alphabetic character, but may contain letters, numbers, @, $ and _.
Symbols may contain any number of characters. The restriction is that each instruction must be
contained on one line.

* is a symbol having the value of the program counter.

Register symbols are those used to refer to the predefined registers. They are a0 ... a7, dO ... d 7,
s P, PC. CC r, and sr.

Local Labels
A local label has the form <digit>$. A local label may be used to label any machine instruction.
Any number of occurrences of the same local label may occur within an assembly source file.
When a local label is referenced, the reference will refer to the nearest declaration of the local
label.

1

Opcodes
Most opcodes and their syntaxes are defined in the MC68000 User's Manual. Size suffixes are only
allowed for those operations which include a size field in the instruction and for the conditional
branch bee. In addition to the opcodes listed in the manual, the Series 200 will recognize some
variants. For the bee instruction the form j c c may be used. Also, j b 5 r may be used in place of
b 5 r. In these cases, the assembler will decide the appropriate size for the instruction. No size
suffix can be used.

Size Suffixes
Size suffixes are used in the language to specify the size of the operand in the instruction,
including addressable locations and registers. All instructions which can operate on more than
one data size will assume the default size of word (16 bits) unless a size suffix is used. Size
suffixes can also be appended to address register specifications when used in indexed addres
sing. Operand sizes are defined as follows:

Suffix Data Unit Bits

b byte 8
'''' word 16

long 32

Expressions
Expressions are evaluated in left to right order, and parentheses are permitted. Symbols which
refer to defined labels are permitted in expressions. The value of these symbols is their relative
value within the assembled code. The only operations which can be done on these symbols are
addition and subtraction. One label can be subtracted from another: the result is an absolute ,
value. A label can be added to an absolute value but not to another symbol. The allowed
operators are:

Operator Operation

+ Addition
Subtraction

* Multiplication
/ Division
'x. Modulus

Bitwise or
&: Bitwise and

Bitwise exclusive or
-(Shift left
> Shift right

2 MC68000 Assembler

Pseudo-Op Syntax And Semantics
The following is a list of the commands which direct the assembler to take the described actions. For
a list of the machine commands, see the MC68000 User's Manual.

align <name>,<modulus>
Create a global symbol of type align. When the loader sees this symbol it will create a hole
beginning at symbol <name> whose size will be such that the next symbol will be aligned on a
<modulus> boundary.

asciz '<string>'
Put a null terminated <string> into the code at this point.

bss
Put the following assembly into the uninitialized data segment.

eomm <name>.<size>
Create a global symbol <name>, put it in the bss segment with size <size>.

data
Place the following assembly in the initialized data segment.

de[.bl.wl.l] <expr>I' <string>'[,<expr>I'<string>']
Place the list of expressions <expr> or strings <string> into the code at this point. Size suffixes
may be used to specify the units of storage into which the values will be placed. Default is word.
In the case of string literals, the amount of storage needed will be determined by the assembler
and each character will be assigned into a unit.

ds[.bl.wl.l] <expr>
The units of space are specified by the size suffix. The number of units is determined by the
expression.

equ <expr>
Assigns the value and attributes of the expression to the label.

even
Forces even word alignment.

globl < name>[.< name>]...
Declares the list of names to be global symbols.

include "<name>"I«name»
Specifies a file to be merged into the assembly at the point where the instruction is located. The
file will be searched for according to the conventions of C (see manual page for cc).

text
Place the following assembly in the code segment.

MC68000 Assembler 3

Interfacing Assembly Routines
In order to know how to use the assembler effectively, it will be necessary to know how to
interface to the various higher level languages that the HP-UX Series 200 supports.

Linking
In order for a symbol to be known externally it must be declared in a !II 0 b 1 statement. It is not
necessary for a symbol defined externally to be declared in a module. If a symbol is not defined, ~
it is assumed to be externally defined. It is, however, recommended that all external symbols be)
declared in a !II 0 b 1 statement, since this will avoid possible name confusion with local sym-
bols.

Calling Conventions
All languages currently supported on the Series 200 follow certain conventions regarding the
calling of subroutines. These conventions must be followed in order to call or be called by a
higher level language.

The calling conventions can be summarized as follows:

• Parameters are pushed in reverse order and taken off in the same order as the procedure
call;

• The calling routine pops the parameters from the stack upon return;

• The called routine saves and restores the registers it uses (except dO, dl, aO, al);

• Function results are generally returned in dO, dl;

• t st. b required for all stack space used plus that reqUired for the link of any routine called; ~
and Y

• 1 in k/ u n 1 k instructions are used to allocate local data space and to reference parameters.

These conventions can be more easily understood by means of an example. The best would be
to examine the code output by the compiler to do this. This can be easily done using C since it
outputs assembly language instructions. Consider the following C program.

Illain()
{

test(1,2);
}

test(i ,j)

register int i, J;
{

int It;
k = i + J;
return k;

}

4 MC68000 Assembler

It will produce the following assembly language instructions.

1 data
2 text
3 globl _Main
4 _Main

~
5 linK a6,#- __ F1

6 tst.b - __ Ml-8(a7)
7 Movehl.l # __51,- __ F1(a6)

8 Move.l #2,-(sp)
9 Move.l #l,-(sp)

10 Jbsr _test
11 addq #8,sp
12 J ra L12
13 L12 unU, a6
14 rts
15 __ F1 equ 0
16 __ 51 equ 0
17 __ M1 equ 0
18 data
19 text
20 globl _test
21 _test
22 lin ~, a6,#- __ F2

r 23 t st. b - __ M2-8(a7)
24 hlO v el,l. 1 # __ 52,- __ F2(a6)

25 hlO v e • 1 8(a6) ,d7
26 hlove.l 12(a6) ,d6
27 1110 V e • 1 d7,dO
28 ad d. 1 d6,dO
29 1TI0ve.l dO,-1l(a6)
30 hlove.l -ll<a6) ,dO
31 Jra L111
32 Jra L111
33 L111 IIlovehl.l - __ F2(a6) ,#192
34 un l~, a6
35 rts
36 __ F2 equ 12
37 __ 52 eql.l 192
38 __ M2 equ 0

39 data

~
Things to note are that when the parameters are pushed by the calling routine (_"lain), the
second parameter is pushed first and the first parameter is pushed second (lines 8 and 9). When
the called routine (_ t est) goes to access the parameters (lines 25 and 26), it finds the first
parameter first on the stack and the second parameter second. Line 25 accesses the first
parameter and line 26 accesses the second parameter.

MC68000 Assembler 5

Also note that the stack is popped upon return from the subroutine (line 11) and not by the
subroutine itself. Since the called routine makes use of d6 and d 7, it pushes those registers on
the stack (line 24) and then pops them (line 33) before it returns.

The function result is placed in dO before returning (line 30). If the function returned a double
precision floating point number, that number would have been placed in dO and d 1.

A t 5 t • b instruction (line 23) is needed before any use is made of stack space in any assembly
language routine. The t 5 t • b makes sure that there is enough stack space for this routine. If the
test fails, the operating system can detect this and get more stack space for the process. If the
test is not done, the program may die unnecessarily with a segmentation violation. The amount
of space that must be tested for is the sum of:

• The amount of space taken by the link instruction;

• The greatest amount of space used for any parameters that may be pushed;

• The constant 8 to account for subroutine jumps and the link which that routine may do.

C and other higher level languages use the link and unlk instructions (lines 22, 34) in all
routines. The link instruction is used to allocate local data space and to allow a constant
reference point for accessing parameters. The following illustration shows what happens when
the link instruction on line 22 is executed.

Before the link:

8(sp) value of j)
4(sp) value of i

(sp) return address

After the link:

12(a6) value of j

8(a6) value of i

4(a6) return address

(a6) old (a6)

-4(a6) value of k (sp)

)
Note how the parameter i is accessed on line 25. On line 29 the local variable k is set. The link
instruction is not necessary in assembly language code. If it is not there, however, the routine
will not show up in a stack backtrace from adb. If ali nk instruction is done, an un 1 K must be
done before returning.

6 MC68000 Assembler

Language Dependencies
C
In C, all variables and functions declared by the user are prefixed with an underbar. Thus, a
variable named t est in C would be known as _ t est at the assembly language level. All global
variables can be accessed through this name using a long absolute mode of addressing. C will
always push a four-byte quantity on the stack for pointers and any form of integer (char, short,
long). C will always push eight bytes for a floating point number (floats are converted to
double).

Fortran
Fortran uses the same naming convention as C, and externals can be accessed in the same
fashion. Fortran will always push the address of its parameter for user-defined functions.

Pascal
In Pascal. any exported user-defined function is prefixed by the module name surrounded by
underbars. For Pascal. then, a function named f Ij n.~ in module t est would be known as
_ t est _ f I.l n.~ to an assembly language programmer. If a procedure is declared external as in:

procedure proc; external;

all calls to pro c will emit a reference to _ pro c.

Global variables are accessed as a 32-bit absolute relative to the global base. In the example
below, the global variable i 1 would be accessed as:

move.l test+Oxa,dO

FollOWing is the example:

Pascal [Rev 2.1Ma 4/19/83] test.p

1:0 0 $list 'test.l',tables$
2:0 0 program test;
3:0 1 var
4:0 8 1 it ,i2: integer;
5:0 1 procedure P;
G:O 2 uar
7:0 -4 2 j: integer;
B:C 2 begin

Pa!le 1

Dump of P
j

P dUMP complete

uar leu= OdZ addr=-00000004 local

9:C 2 end;
10:C 1 begin

DUMP of TEST
i 1
i2
P

test

TEST dUMP COMPlete

uar leu= Odl addr=OOOOOOOa lon!labs globalbase
uar leu= Odl addr=OOOOOOOO longabs !llobalbase
proc leu= Odl entry: 00000000

proc leu= OdO entry: 00000012

test
test

11:C 1 end.

MC68000 Assembler 7

Pascal will always push a four-byte quantity on the stack for pointers and integers. For a
user-defined function, any parameter greater than four bytes will be passed as an address.

The manual pages for these compilers should be consulted for further information. Assembly
listings can be generated by C and Fortran. These can be consulted to get valuable information.
The only current means for looking at the code generated by Pascal is through the debugger
adb.

8 MC68000 Assembler

Conversion from the
Pascal Language System (PLS)

A translator (atrans) is provided to assist in converting from PLS assembly language to HP-UX
assembly language syntax. All code to be ported should be run through the translator first.
Lines that will require human intervention will be noted by the translator. To see exactly what
the tasks are that it performs, check the manual page.

atrans will not detect or alter parameter passing conventions which are pushed in the opposite
order on PLS.

as assumes r 0 r g 0 for all assemblies. as does not generate relative references to external
symbols; all external references are absolute. As such, code size can increase when being
ported from the PLS to HP-UX.

as does not have support for Pascal modules.

as will accept the same syntax as the PLS assembler for all machine instructions with these
exceptions:

Additions:
• as will accept j c c where c c is a condition code accepted by bee. In this case, as will

decide the length of the instruction reqUired.

• as will accept a greater number of operators for expressions. Parentheses are permitted
within expressions.

• as will accept an immediate operand for the register list in a hi 0 V e ,,1 instruction. Needed for
compiler.

• as will allow numeric value for displacement as in 12 (pet oj G). Needed for compiler.

• as will accept <digit> $ to specify a local label.

Differences:
• as is a case-sensitive assembler. All opeodes and register names must be listed in lower

case.

• as accepts (p c) to specify pc-relative references. This is the only way to specify pc
relative.

• The PLS assembler will assume pc with index in some cases for a parameter of the form
8 (a0). as will not.

The greatest differences occur in the pseudo-ops that are supported. The only PLS pseudo-ops
that are supported are dc, oj 5, e q 1I, and inc III de. The translator will handle some of the other
pseudo-ops, but others will have to be handled by hand.

MC68000 Assembler 9

10 MC68000 Assembler

Table of Contents

Rador: A Preprocessor for a Rational Fortran
Introduction .. 2
Language Description .. 3

Design .' 3
Statement Grouping. .. 3
The "else" Clause 4
Nested ifs .. 5
If-else Ambiguity 6
The "switch" Statement. .. 7
The "do" Statement 8
"Break" and "next" .. 9
The "while" Statement. .. 9
The "for" Statement. .. 11
The "repeat-until" Statement 12
More on break and next 13
The "return" Statement. .. 13
Cosmetics. .. 14
Free-form Input 14
Translation Services 14
The "define" Statement. .. 15
The "include" Statement. .. 16
Pitfalls, Botches, Blemishes and other Failings 16

Experience .. 17
Good Things. .. 17
Bad Things. .. 17

Conclusions 18
Appendix: Usage on HP-UX .. 18

ii

~.

Ratfor: A Preprocessor
for a Rational FORTRAN

Although FORTRAN is not a pleasant language to use, its universality and relative efficiency
maintain its position in the computer market. The Ratfor language, by providing control flow
statements, attempts to conceal the main deficiencies of FORTRAN while retaining its desirable
qualities. The Ratfor preprocessor converts input code into FORTRAN output code. The facilities
provided include:

• Statement grouping

• If -e I s e and s wit ch for decision-making

• While, for, do, and repeat-until forlooping

• Brea k and ne)(t for controlling loop exits

• Free-form input such as multiple statementsllines, and automatic continuation

• Simple comment convention

• Translation of >, > =, etc., into .gt., .ge., etc.

• Ret urn function for functions

• 0efin e statement for symbolic parameters

• Inc 1ude statement for including source files.

1

Introduction
Most programmers agree that FORTRAN is an unpleasant language to program in, yet there are
many occasions when they are forced to use it, especially when FORTRAN is the only language
thoroughly supported on the local computer, or the application requires intensive computation.

FORTRAN's worst deficiency is probably in control flow statements, conditional branches and
loops, that express the logic of program flow. For example, FORTRAN's primitive conditional ~."''''>

statements force the user into at least two statement numbers and two implied GOTOs to handleaj
single arithmetic IF. This leads to unintelligible code that is eschewed by good programmers.

The Logical IF is better, in that the test part can be stated clearly, but hopelessly restrictive because
the statement that follows the IF can only be one FORTRAN statement (with some further restric
tions!). And of course there can be no ELSE part to a FORTRAN I F: there is no way to specify an
alternative action if the I F is not satisfied.

The FORTRAN DO restricts the user to going forward in an arithmetic progression. It is fine for" 1 to
N in steps of 1 (or 2 or ...)", but there is no direct way to go backwards, or even (in ANSI
FORTRAN) to go from 1 to N-l. And of course the DO is useless if one's problem doesn't map into
an arithmetic progression.

The result of these failings is that FORTRAN programs must be written with numerous labels and
branches. The resulting code is particularly difficult to read and understand, and thus hard to debug
and modify.

When one is faced with an unpleasant language, a usheful technique is to define a new language that ~.,..
overcomes the deficiencies, and to translate it into t e unpleasant one with a preprocessor. This is }
the approach taken with Ratfor (The preprocessor idea is not new, and FORTRAN preprocessors
are widely used).

2 Ratfor

Language Description

Design
Ratfor attempts to retain the merits of FORTRAN (universality, portability, efficiency) while hiding
the worst FORTRAN inadequacies. The language is FORTRAN except for two aspects. First, since
control flow is central to any program, regardless of the specific application, the primary task of
Ratfor is to conceal this part of FORTRAN from the user, by providing decent control flow struc
tures. These structures are sufficient and comfortable for structured programming in the narrow
sense of programming without GOTOs. Second, since the preprocessor must examine an entire
program to translate the control structure, it is possible at the same time to clean up many of the
"cosmetic" deficiencies of FORTRAN, and thus provide a language which is easier and more
pleasant to read and write.

Beyond these two aspects - control flow and cosmetics - Ratfor does nothing about the host of
other weaknesses of FORTRAN. Although it would be straightforward to extend it to provide
character strings, for example, they are not needed by everyone, and of course the preprocessor
would be harder to implement. Throughout, the design principle which has determined what
should be in Ratfor and what should not has been Ratfor doesn't know any FORTRAN. Any
language feature which would require that Ratfor really understand FORTRAN has been omitted.
We will return to this point in the section on implementation.

Even within the confines of control flow and cosmetics, we have attempted to be selective in what
features to provide. The intent has been to provide a small set of the most useful constructs, rather
than to throw in everything that has ever been thought useful by someone.

The rest of this section contains an informal description of the Ratfor language. The control flow
aspects will be quite familiar to readers used to languages like Algol, PUI, Pascal, etc., and the
cosmetic changes are equally straightforward. We shall concentrate on shOWing what the language
looks like.

Statement Grouping
FORTRAN provides no way to group statements together, short of making them into a subroutine.
The standard construction "if a condition is true, do this group of things," for example,

if (x) 100)
(call error("x)100"); err = 1; return}

cannot be written directly in FORTRAN. Instead a programmer is forced to translate this relatively
clear thought into murky FORTRAN, by stating the negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(Shx)100)
err = 1
return

10 •••

When the program doesn't work, or when it must be modified, this must be translated back into a
clearer form before one can be sure what it does.

Ratfor 3

Ratfor eliminates this error-prone and confusing back-and-forth translation; the first form is the way
the computation is written in Ratfor. A group of statements can be treated as a unit by enclosing
them in the braces {and }. This is true throughout the language: wherever a single Ratfor statement
can be used, there can be several enclosed in braces. (Braces seem clearer and less obtrusive than
begin and end or do and end, and of course do and end already have FORTRAN meanings.)

Cosmetics contribute to the readability of code, and thus to its understandability. The character ~
">" is clearer than ".GT. ", so Ratfor translates it appropriately, along with several other similar '"
shorthands. Although many FORTRAN compilers permit character strings in quotes (like
1111 II x)10011 II "), quotes are not allowed in ANSI FORTRAN, so Ratfor converts it into the right
number of H's because computers count better than people do.

Ratfor is a free-form language: statements may appear anywhere on a line, and several may appear
on one line if they are separated by semicolons. The example above could also be written as

if (x) 100) {
call error(lI x)100 1l

)

err = 1
return

}

In this case, no semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor or otherwise), no braces
are needed:

if (y <= 0.0 ~ z <= 0.0)
write(S, 20) y, z

No continuation need be indicated because the statement is clearly not finished on the first line. In
general Ratfor continues lines when it seems obvious that they are not yet done. (The continuation
convention is discussed in detail later.)

Although a free-form language permits wide latitude in formatting styles, it is wise to pick one that is
readable, then stick to it. In particular, proper indentation is vital, to make the logical structure of the
program obvious to the reader.

The "else" Clause
Ratfor provides an "else" statement to handle the construction "if a condition is true, do this thing,
otherwise do that thing."

if (a <= b)
{ sw 0; write(S, 1) a, b

else

~{ sw = 1; write(St 1) b, a }

This writes out the smaller of a and b, then the larger, and sets swappropriately.

4 Ratfor

The FORTRAN eqUivalent of this code is circuitous indeed:

if (a • !It. b) !Ioto 10
sw :; 0
write(S, 1) a, b
!Ioto 20

10 sw = 1
write(S, 1) b, a

20

This is a mechanical translation; shorter forms exist, as they do for many similar situations. But all
translations suffer from the same problem: since they are translations, they are less clear and
understandable than code that is not a translation. To understand the FORTRAN version, one must
scan the entire program to make sure that no other statement branches to statements 10 or 20
before one knows that indeed this is an ii-else construction. With the Ratfor version, there is no
question about how one gets to the parts of the statement. The if-else is a single unit, which can be
read, understood, and ignored if not relevant. The program says what it means.

As before, if the statement following an ifor an else is a single statement, no braces are needed:

if (a <:; b)
sw 0

else
sw

Tile syntax of the jfstatement is

if «legal FORTRAN condition>)
Ratlor statement

else
Ratlor statement

where the else part is optional. The <legal FORTRAN condition> is anything that can legally go
into a FORTRAN Logical IF. Ratfor does not check this clause, since it does not know enough
FORTRAN to know what is permitted. The Ratlor statement is any Ratfor or FORTRAN statement,
or any collection of them in braces.

Nested ifs
Since the statement that follows an jfor an else can be any Ratfor statement, this leads immediately
to the possibility of another ifor else. As a useful example, consider this problem:

The variable f is to be set to - 1 if x is less than zero, to + 1 if x is greater than 100, and to 0
otherwise. In Ratfor, we write

if (x < 0)

f = -1
else if (x > 100)

f = +1
else

f 0

Here the statement after the first e 1s e is another i f - e I s e. Logically it is just a single statement,
although it is rather complicated.

Hatfor 5

This code says what it means. Any version written in straight Fortran will necessarily be indirect
because Fortran does not let you say what you mean. And as always, clever shortcuts may tum out
to be too clever to understand a year from now.

Following an else with an ifis one way to write a multi-way branch in Ratfor. In general the structure

if (...)

else if (.. .)

else if (...)

else

provides a way to specify the choice of exactly one of several alternatives. (Ratfor also provides a
switch statement which does the same job in certain special cases; in more general situations, we
have to make do with spare parts.) The tests are laid out in sequence, and each one is followed by
the code associated with it. Read down the list of decisions until one is found that is satisfied. The
code associated with this condition is executed, and then the entire structure is finished. The trailing
else part handles the "default" case, where none of the other conditions apply. If there is no default
action, this final else part is omitted:

if (x < 0)

x = 0
else if (x > 100)

x = 100

If-else Ambiguity
There is one thing to notice about complicated structures involving nested ifs and elses. Consider

if (x > 0)
if (y > 0)

write(S, 1) x, y
else

write(S, 2) y

There are two ifs and only one else. Which ifdoes the else go with?

This is a genuine ambiguity in Ratfor, as it is in many other programming languages. The ambiguity
is resolved in Ratfor (as elsewhere) by saying that in such cases the else goes with the closest
previous elseed un-it Thus in this case, the else goes with the inner if, as we have indicated by the
indentation.

6 Ratfor

It is a wise practice to resolve such cases by explicit braces, just to make your intent clear. In the case
above, we would write

if (x > (I) {

if (~. > 0)
write(S,1) XI Y

else
write(S, 2) Y

which does not change the meaning, but leaves no doubt in the reader's mind. If we want the other
association, we must write

if (X > 0) {
if(~'>O)

write(S, 1) XI Y

else
write(G, 2) Y

The "switch" Statement
The switch statement provides a clean way to express multi-way branches which branch on the
value of some integer-valued expression. The syntax is

sw it c h «expression» {
case <exprl>:
statements
case <expr2> I <expr>

statements

default:
statements
}

Each case is followed by a list of comma-separated integer expressions. The <expression> inside
switch is compared against the case expressions <exprl>, <expr2>, and so on in tum until one
matches, at which time the statements following that case are executed. If no cases match
<expression>, and there is a default section, the statements with it are done; if there is no default,
nothing is done. In all situations, as soon as some block of statements is executed, the entire switch
is exited immediately. (Readers familiar with C should beware that this behavior is not the same as
the C switch.)

Ratfor 7

The "do" Statement
The do statement in Rattor is quite similar to the DO statement in FORTRAN, except that it uses no
statement number. The statement number, after all, serves only to mark the end of the DO, and this
can be done just as easily with braces. Thus

do i = 1, n {
xli) 0.0
y Ii) 0.0
zli) = 0.0

is the same as

do 10 i = 1, n
xli) 0.0
y Ii) 0.0
zli) = 0.0

10 continue

The syntax is:

do <legal FORTRAN text>
Ratfor statement

The part that follows the keyword do has to be something that can legally go into a FORTRAN DO

statement. Thus if a local version of FORTRAN allows DO limits to be expressions (which is not
currently permitted in ANSI FORTRAN), they can be used in a Rattor do.

The Ratforstatement part will often be enclosed in braces, but as with the if, a single statement need
not have braces around it. This code sets an array to zero:

doi=1,n
xli) = 0.0

Slightly more complicated,

do i = 1, n
do J = 1, n

mli,j)=O

sets the entire array m to zero, and

doi=1,n
do J = 1, n

ifli(j)
mli, j) -1

else if Ii == j)
flI Ii, j) 0

else
lilli, j) = +1

sets the upper triangle of m to - 1, the diagonal to zero, and the lower triangle to + 1. (The
operator = = is "equals"; that is, ".EQ.".) In each case, the statement that follows the do is
logically a single statement, even though complicated, and thus needs no braces.

8 Ratfor

"Break" and "next"
Ratfor provides a statement for leaving a loop early, and one for beginning the next iteration. Bre aK

causes an immediate exit from the do; in effect it is a branch to the statement after the do. Ne)l t is a
branch to the bottom of the loop, so it causes the next iteration to be done. For example, this code
skips over negative values in an array:

do i :: 1, n {
if ()l(i) < 0.0)

ne)lt
<process positive element>

Brea k and ne)l t also work in the other Ratfor looping constructions discussed in the next few
sections.

Brea k and next can be followed by an integer to indicate breaking or iterating that level of enclosing
loop; thus

breaK 2

exits from two levels of enclosing loops, and Brea K 1 is eqUivalent to b rea K. ne)l t 2 iterates the
second enclosing loop. (Realistically, multi-level breaKS and nutS are not likely to be much used
because they lead to code that is hard to understand and somewhat risky to change.)

The "while" Statement
One of the problems with the FORTRAN DO statement is that it generally insists upon being done
once, regardless of its limits. If a loop begins

DO I :: 2, 1

this will typically be done once with I set to 2, even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do can easily be preceded by a test

if (j <:: K)
do i :: j, K

but this has to be a conscious act, and is often overlooked by programmers.

A more serious problem with the DO statement is that it encourages that a program be written in
terms of an arithmetic progression with small positive steps, even though that may not be the best
way to write it. If code has to be contorted to fit the requirements imposed by the FORTRAN DO, it is
that much harder to write and understand.

Ratfor 9

To overcome these difficulties, Ratfor provides a whi I e statement, which is simply a loop: "while
some condition is true, repeat this group of statements". It has no preconceptions about why one is
looping. For example, this routine to compute sin(x) by the Maclaurin series combines two termina
tion criteria.

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - x**3/3! + x**5/5!
sin = x
terM = x
i = 3
while (abs(terM»e ~ i(100) {

terM = -terM * x**2 I float(i*(i-1»
sin sin + term
i = i + 2

}

re turn
end

Notice that if the routine is entered with term already smaller than e, the loop will be done zero
times, that is, no attempt will be made to compute x**3 and thus a potential underflow is avoided.
Since the test is made at the top of a wh i I e loop instead of the bottom, a special case disappears:
the code works at one of its boundaries. (The test i<100 is the other boundary, making sure the
routine stops after some maximum number of iterations.)

As an aside, a sharp character "#" in a line marks the beginning of a comment; the rest of the line is
comment. Comments and code can co-exist on the same line - one can make marginal remarks,
which is not possible with FORTRAN's "C in column 1" convention. Blank lines are also permitted ~.'
anywhere (they are not in FORTRAN); they should be used to emphasize the natural divisions of a j
program.

The syntax of the wh i I e statement is

wh i I e (legal FORTRAN condition)
Ratfor statement

As with the if, legal FORTRAN condition is something that can go into a FORTRAN Logical IF, and
Ratfor statement is a single statement, which may be multiple statements in braces.

The whi I e encourages a style of coding not normally practiced by FORTRAN programmers. For
example, suppose nextch is a function which returns the next input character both as a function
value and in its argument. Then a loop to find the first non-blank character is just

while (nextch(ich) == iblanKl

A semicolon by itself is a null statement, which is necessary here to mark the end of the wh i I e; if it ~.'

were not present, the whi I e would control the next statement. When the loop is broken, i ch }
contains the first non-blank. Of course the same code can be written in FORTRAN as

100 if (nextch(ich) .eq. iblanKl goto 100

but many FORTRAN programmers (and a few compilers) believe this line is illegal. The language at
one's disposal strongly influences how one thinks about a problem.

10 Ratfor

The "for" Statement
The for statement is another Ratlor loop, which attempts to carry the separation of loop-body from
reason-for-looping a step further than the whi le. A fo r statement allows explicit initialization and
increment steps as part of the statement. For example, a 00 loop is just

for (i = 1i i <= ni i = i + 1) ...

~ This is equivalent to

i = 1
while (i <= 0)

i = i +

The initialization and increment of i have been moved into the for statement, making it easier to see
at a glance what controls the loop.

The for and while versions have the advantage that they will be done zero times if n is less than 1;
this is not true of the do.

The loop of the sine routine in the previous section can be rewritten with a for as

for (i=3i abs(term) > e ~ i < 100i i=i+2)
term = -term * x**2 / float(i*(i-1»
sin = sin + term

}

The syntax of the for statement is

for «init> i <condition> i <increment»
Ratfor statement

<init> is any single FORTRAN statement that is executed once before the loop begins.

<increment> is any single FORTRAN statement, that gets done at the end of each pass through
the loop, before the test.

<condition> is, again, anything that is legal in a logical IF.

Any of <init>, <condition>, and <increment> can be omitted, although the semicolons must
always be present. A non-existent <condition> is treated as always true, so for(;;) is an indefinite
repeat (but see the repeat-until in the next section).

The for statement is particularly useful for backward loops, chaining along lists, loops that might be
done zero times, and similar things which are hard to express with a DO statement, and obscure to
write out with IFs and GOTOs. For example, here is a backwards 00 loop to find the last non-blank
character on a card:

for (i = 80i i > Oi i = i - 1)
if (card(i) != blanK)

b re aK

Ratfor 11

(! =is the same as •NE .). The code scans the columns from 80 through to 1. If a non-blank is found,
the loop is immediately broken break and next work in lors and whiles just as in dos}. If i reaches
zero, the card is all blank.

This code is rather nasty to write with a regular FORTRAN DO, since the loop must go forward, and
we must explicitly set up proper conditions when we fall out of the loop. (Forgetting this is a
common error.) Thus:

DO 10 J = 1, 80
I = 81 - J
I F I CARD I I) • NE. BLANK) GO TO 11

10 CONTINUE
1=0

11

The version that uses the lor handles the termination condition properly for free; i is zero when we
fall out of the lor loop.

The increment in a lor need not be an arithmetic progression; the following program walks along a
list (stored in an integer array plr) until a zero pointer is found, adding up elements from a parallel
array of values:

sum = 0.0
for Ii = firsti i > Oi i Ptrli)

sum = sum + value(i)

Notice that the code works correctly if the list is empty. Again, placing the test at the top of a loop
instead of the bottom eliminates a potential boundary error.

The "repeat-until" Statement
In spite of the dire warnings, there are times when one really needs a loop that tests at the bottom
after one pass through. This service is provided by the repeat-until.

repeat
Rat/or statement

un til (legal FORTRAN condition)

The Rat/or statement part is done once, then the condition is evaluated.

If it is true, the loop is exited.
- If it is false, another pass is made.

The until part is optional, so a bare repeat is the cleanest way to specify an infinite loop.

Of course such a loop must ultimately be broken by some transfer of control such as stop, return, or
break, or an implicit stop such as running out of input with a READ statement.

It is a matter of observed fact that the repeat-until statement is much less used than the other ~
looping constructions; in particular, it is typically outnumbered ten to one by lor and while. Be
cautious about using it, for loops that test only at the bottom often don't handle null cases well.

12 Ratfor

More on break and next
Break exits immediately from do, while, for, and repeat-until. Next goes to the test part of do, while
and repeat-until, and to the increment step of a for.

The "return" Statement
The standard FORTRAN mechanism for returning a value from a function uses the name of the
function as a variable. The variable is assigned by the program, and the last value stored in it is the
function value upon return. For example, here is a routine equal which returns 1 if two arrays are
identical, and zero if they differ. The array ends are marked by the special value - 1.

equal - COMPare str1 to strZ;
#

return 1 if equal, 0 if not
integer function equal(str1, strZl
integer str1(100l, strZ(100l
integer i
for (i = 1i strl(il == strZ(il; + 1l

if (strl(il == -1l {
equal = 1
return

}

equa I 0
return
end

In many languages (e.g., PUn one instead says

re turn (<expression> l

to return a value from a function. Since this is often clearer, Ratlor provides such a return statement.
In a function f, return (expression) is equivalent to

{ F = <expression>; <return>

For example, here is equal again:

equal _ COMPare str1 to strZi
#

return 1 if equal t 0 if not
integer function equal(str1, strZ)
integer str1(100), strZ(100)
integer i
for (i = 1i strl(i) == strZ(ili i + 1l

if (strl(i) == -1l
return(1l

return(Ol
end

If there is no parenthesized expression after return, a normal RETURN is made. (Another version of
equal is presented shortly.)

Ratfor 13

Cosmetics
As previously stated, the visual appearance of a language has a substantial effect on how easy it is to
read and understand programs. Accordingly, Ratfor provides a number of cosmetic facilities which
may be used to make programs more readable.

Free-form Input
Statements can be placed anywhere on a line. Long statements are continued automatically, as are ~
long conditions in if, while, (or, and until. Blank lines are ignored. Multiple statements may appear ':i
on one line if they are separated by semicolons. No semicolon is needed at the end of a line if Ratfor
can make some reasonable guess about whether the statement ends there. Lines ending with any
of the characters

+ *

are assumed to be continued on the next line. Underscores are discarded wherever they occur; all
others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a FORTRAN label, and placed
in columns 1-5 upon output. Thus

write(6, 100); 100 forMat("hello")

is converted into

wr i t e (Gt 100)
100 forMat(Shhello)

Translation Services
Text enclosed in matching single or double quotes is converted to nHf f f but is otherwise unaltered
(except for formatting - it may get split across card boundaries dUring the reformatting process).
Within quoted strings, the backslash ("'.) serves as an escape character: the next character is taken
literally. This provides a way to get quotes (and of course the backslash itself) into quoted strings:

"\\\'"

is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.)

Any line that begins with the character (%) is left absolutely unaltered except for stripping off the
(%) and moving the line one position to the left. This is useful for inserting control cards, and other
things that should not be transmogrified (like an existing FORTRAN program). Use (%) only for
ordinary statements; not for the condition parts of if, while, etc.; or the output may be positioned
incorrectly.

14 Ratfor

The following character translations are made, except within single or double quotes or on a line
beginning with a percent sign (%).

Input Translated output

.eq.

~
! = .ne.

.gt.

>= .ge.

.It.

<= .Ie.

&: .and.

.or.

.not.

.not.

In addition, the following translations are provided for input devices with restricted
character sets.

$(

$)

The "define" Statement
Any string of alphanumeric characters can be defined as a name; thereafter, whenever that name
occurs in the input (delimited by non-alphanumerics) it is replaced by the rest of the definition line.
(Comments and trailing white spaces are stripped off). A defined name can be arbitrarily long, and
must -begin with a letter.

De fin e is typically used to create symbolic parameters:

define ROWS 100
define eOlS 50
dimension a(ROWS), b(ROWS, eOlS)

if (i > ROWS: j > eOlS) .••

Alternately, definitions can be written as

define(ROWS, 100)

In this case, the defining text is everything after the comma up to the balancing right parenthesis;
this allows multi-line definitions.

Ratfor 15

It is generally a wise practice to use symbolic parameters for most constants, to help make clear the
function of what would otherwise be mysterious numbers. As an example, here is the routine equal
again, this time with symbolic constants.

define YES 1
define NO 0
define EOS -1
define ARB 100
equal - COMPare str1 to str2;
#

return YES if equal, NO if not
integer function equal(str1, strZ)
integer str1(ARB), str21ARB)
integer i
for (i = 1i str1<i> == str2(ili + 1)

if lstrl(i) == EOS)
returnlYES)

return(NO)
end

The "include" Statement
The statement

include file

inserts the file found on input stream f i Ie into the Ratfor input in place of the inc Iud e statement.
The standard usage is to place COMMON blocks on a file, and include that file whenever a copy is
needed: ~

subroutine x
include commonblocks

end
subroutine y

include cOMMonblocks

end

This ensures that all copies of the COMMON blocks are identical

Pitfalls, Botches, Blemishes and other Failings
Ratlor catches certain syntax errors, such as missing braces, eI se clauses without an if, and most
errors involving missing parentheses in statements. Beyond that, since Ratlor knows no FORTRAN,
any errors you make will be reported by the FORTRAN compiler, so you will from time to time
have to relate a FORTRAN diagnostic back to the Ratfor source.

Keywords are reserved. Using iF, else, etc., as variable names will typically wreak havoc.

Don't leave spaces in keywords. Don't use the Arithmetic IF.

The FORTRAN nH convention is not recognized anywhere by Ratfor; use quotes instead.

16 Ratfor

Experience

Good Things
HIt's so much better than FORTRAN" is the most common response of users when asked how well
Ratfor meets their needs. Although cynics might consider this to be vacuous, it does seem to be true
that decent control flow and cosmetics converts FORTRAN from a bad language into quite a
reasonable one, assuming that FORTRAN data structures are adequate for the task at hand.

Although there are no quantitative results, users feel that coding in Ratfor is at least twice as fast as
in FORTRAN. More important, debugging and subsequent revision are much faster than in FOR
TRAN. Partly this is simply because the code can be read. The looping statements which test at the
top instead of the bottom seem to eliminate or at least reduce the occurrence of a wide class of
boundary errors. And of course it is easy to do structured programming in Ratfor; this self-diScipline
also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Ratfor tend to be as readable as
programs written in more modem languages like Pascal. Once one is freed from the shackles of
FORTRAN's clerical detail and rigid input format, it is easy to write code that is readable, even
esthetically pleasing. For example, here is a Ratfor implementation of a linear table search:

A(III+1) x
for (i = 1; A(i) != x; i = i + 1)

if (i > m)

m :: i
B(i)

}

else
B(i) :: B(i) + 1

Bad Things
The biggest single problem is that many FORTRAN syntax errors are not detected by Ratfor but by
the local FORTRAN compiler. The compiler then prints a message in terms of the generated
FORTRAN, and in a few cases this may be difficult to relate back to the offending Ratfor line,
especially if the implementation conceals the generated FORTRAN. This problem could be dealt
with by tagging each generated line with some indication of the source line that created it, but this is
inherently implementation-dependent, so no action has yet been taken. Error message interpreta
tion is actually not so arduous as might be thought. Since Ratfor generates no variables, only a
simple pattern of IFs and GaTOs, data-related errors like missing 0 I MENS I ON statements are easy to
find in the FORTRAN. Furthermore, there has been a steady improvement in Ratfor's ability to
catch trivial syntactic errors like unbalanced parentheses and quotes.

There are a number of implementation weaknesses that are a nuisance, especially to new users. For
example, keywords are reserved. This rarely makes any difference, except for those hardy souls
who want to use an Arithmetic IF. A few standard FORTRAN constructions are not accepted by
Ratfor, and this is perceived as a problem by users with a large corpus of existing FORTRAN
programs. Protecting every line with a (%) is not really a complete solution, although it serves as a
stop-gap. The best long-term solution is provided by the program struct, which converts arbitrary
FORTRAN programs into Ratlor.

Rador 17

Users who export programs often complain that the generated FORTRAN is "unreadable" because
it is not tastefully formatted and contains extraneous CONTINUE statements. To some extent this can
be ameliorated (Ratfor now has an option to copy Ratfor comments into the generated FOR
TRAN), but it has always seemed that effort is better spent on the input language than on the output
esthetics.

One final problem is partly attributable to success; since Ratfor is relatively easy to modify, there are
now several dialects of Ratfor. Fortunately, so far most of the differences are in character set, or in ~
invisible aspects like code generation. J

Conclusions
Ratfor demonstrates that with modest effort it is possible to convert FORTRAN from a bad language
into quite a good one. A preprocessor is clearly a useful way to extend or ameliorate the facilities of
a base language.

When designing a language, it is important to concentrate on the essential requirement of proViding
the user with the best language possible for a given effort. One must avoid throwing in "features";
things which the user may triVially construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems pointless for Ratfor
to prepare a neatly formatted listing of either its input or its output. The user is presumably capable
of the self-discipline required to prepare neat input that reflects his thoughts. It is much more
important that the language prOVide free-form input so he can format it neatly. No one should read ~
the output anyway except in the most dire circumstances. }

Appendix: Usage on HP-UX
Beware. Local customs vary. Check with a native before going into the jungle.

The program rattoris the basic translator; it takes either a list of file names or the standard input and
writes FORTRAN on the standard output. Options include -Gx, which uses x as a continuation
character in column 6 (HP-UX uses & in column 1), and - C, which causes Ratfor comments to be
copied into the generated FORTRAN.

The program rc prOVides an interface to the rattor command which is much the same as cc. Thus

rc [<options>] <files>

compiles the files specified by <files>. Files with names ending in .r are Ratfor source; other files
are assumed to be for the loader. The flags -c and -Gx described above are recognized, as are

-c compile only; don't load.
- f save intermediate FORTRAN .!files
- r Ratfor only; implies - c and - f.
-2 use big FORTRAN compiler (for large programs)
-U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

18 Ratlor

Table of Contents
Overview

Getting Started 1
Who Will Use Native Language Support? 1
Manual Organization 1
Conventions Used In This Manual 2
Using Other HP- UX Manuals 3

Chapter 1: Introduction to Native Language Support
What Is NLS? 5
Scope of Native Language Support 6

Aspects of NLS Support 6
Pre-localized Commands 8

Supported Native 'Languagcs and Character Scts 9
8-Bit Character Sets 9
Native Languages 1:3

Chapter 2: Native Language Support
File Hierarchy 15
Configuring Native Languages 16

Installation of Optional Languages 16
Environment Changes 16

Accessing NLS Features 17
NLS HP-UX Commands 17
Library Support for NLS 17

Chapter 3: Programming With Native Language Support
NLS Header Files 19
Library Routines 19

Convert Date/Time to String 19
Convert Floating Point to String 20
C Routines to Translate Characters 20
C Routines That Classify Characters 20
Get Message From Catalog 21
Information on User's Nativc Language 21
Print Formatted Output With Numbered Arguments 22
Non-ASCII String Collation 23
Convert String to Double Precision Number 23

Application Guidelines 24
Example C Programs 24

Example 1 24
Exalnple 2 25

Chapter 4: Message Catalog System
Introduction 27
Creating a Message Catalog 29

Preview: Incorporating NLS into Commands 29
Following the Flow 30
Format of Source Message File 33
Printmsg, Fprintmsg and Sprintmsg 34

Accessing Applications Catalogs 35
File System Organization and Catalog Naming Conventions 35
Localization 36

6 Steps to Localize an Example Program 36

Appendix A: Pre-localization Commands 39

Appendix B: Native Language Support Library 41

Appendix C: Peripheral Configuration
European Character Sets 43
Japanese Character Sets 43
ISO 7-bit Substitution 43
Character Set Support by Peripherals 43

Appendix D: Character Sets 45

Glossary

Index

ii

... 53

Overvievv
Getting Started
If you're like most people, reading computer manuals is not your favorite pastime. We strongly
urge you to read the remainder of this chapter. This manual assumes that you have read these
first few pages; if you choose not to do so, you are on your own.

One other note: the best way for us to improve the quality of documentation is through your
feedback. Please use one of the reply cards at the back of this manual to tell us what was helpful,
what was not, and why. Feel free to comment on depth, technical accuracy, organization, and
style. Your comments are appreciated.

Who WiDI Use Native Language Support?
OEMs (Original Equipment ManUfacturers), ISVs (Independent Software Vendors), applications
programmers, and Hewlett-Packard Country Software Centers will be the primary users of
Native Language Support (NLS). These are the people writing or translating programs for
multi-national use.

This manual has been written with these users in mind.

Manual Organization
Overview
Defines the NLS user audience, explains the conventions used in the manual, and identifies other
manuals referenced within this one.

Chapter 1: Introduction to Native Language Support
Presents the basic description and scope of Native Language Support. This includes the as
pects of NLS (Character Set Support, Local Customs, and Messages), pre-localization, and the
character sets as well as native languages supported.

Chapter 2: Native Language Support on HP-UX
Identifies the HP-UX dIrectories and files in which the NLS tools reside, provides an installa
tion guide for the optional languages, and identifies the library calls (and commands) that an
applications programmer needs in order to access NLS features.

Chapter 3: Programming With Native Language Support
Presents the header files specific to NLS, a detailed description of the C library routines (with
their syntax), and example C programs (with their command lines and output).

Chapter 4: Message Catalog System
Explains how local language message files are created and updated, where they are kept, and by
what conventions they are named. This includes a diagram and description of the general flow
of the message catalog system, ways to access catalogs by use of library routines, file naming
conventions and an example of program output in a local language other than American English.

Overview 1

Appendix A: Pre-localized Commands
Describes the HP-UX commands that currently incorporate Native Language Support.

Appendix B: Native Language Support Library
Overview of NLS library routines and routines affected by NLS.

Appendix C: Peripheral Configuration
Table summary of Series 200/500 peripherals that support alternate character sets.

Appendix D: Character Sets
ASCII, Roman and Katakana character sets with their decimal and binary representations.

Conventions Used In This Manual
The following naming conventions are used throughout this manual.

• Italics indicate files and HP-UX commands, system calls, and subroutines found in the
HP- UX Reference manual as well as titles of manuals. Italics are also used for symbolic
items either typed by the user or displayed by the system as discussed below. Examples
include /usr/Lib/nLs/american/prog.cat, date (1), and ptY(4). The parenthetic number
shown for commands, system calls, and other items found in the HP- UX Reference is a
convention used in that manual.

• Boldface is used when a word is first defined and for general emphasis.

• Computer font indicates a literal typed by the user or displayed by the system. A typical
example is:

findstr prog.c > prog.str
Note that when a command or file name is part of a literal, it is shown in computer font 'J
and not italics. However, if the command or file name is symbolic (but not literal), it is
shown in italics as the following example illustrates.

findstr progname > output-fiLe-name

In this case you would type in your own progname and output-fiLe-name.

• Environment variables such as LANG or PATH are represented in uppercase characters.

• Unless otherwise stated, all references such as "see the nLtoupper(3C) entry for more
details" refer to entries in the HP- UX Reference manual. Some of these entries will
be under an associated heading. For example, the nLtoupper(3C) entry is under the
nLconv(3C) heading. If you cannot find an entry where you expect it to be, use the
HP- UX Reference Manual's Permuted Index.

2 Overview

Using Other HP-UX Manuals
This manual may be used in conjunction with other HP-UX documentation. References to these
manuals are included, where appropriate, in the text.

• The HP-UX Reference manual contains the syntactic and semantic details of all com
mands and application programs, system calls, subroutines, special files, file formats,
miscellaneous facilities, and maintenance procedures available on the Series 200/500 HP
UX Operating System.

• The HP-UX Portability Guide documents the guidelines and techniques for maximizing
the portability of programs written on and for HP9000 computers running the HP-UX
Operating System. It covers the portability of high level source code (C, Pascal, FOR
TRAN) and transportability of data and source files between commonly used formats.

• The HP- UX System Administrator Manual provides step-by-step instructions for installing
the HP-UX Operating System software, explains certain concepts used and implemented
in HP-UX, describes system boot and login, and contains the guide for implementing
administrative tasks.

Overview 3

4 Overview

Introduction to
Native Language Support 1

~'

The features of Hewlett-Packard Native Language Support (NLS) enable the applications de
signer or programmer to adapt applications to an end user's local language needs.

What Is NLS?
A well-written application program manipulates data and presents it appropriately for the users
and its own use. Users who are less technically sophisticated benefit from application programs
that interact with them in their native language and conform to their local customs. Native
language refers to the user's first language (learned as a child), such as Finnish, Portuguese, or
Japanese. Local customs refer to local conventions such as date, time, and currency formats.

Programs written with the intention of providing a friendly user interface often make assump
tions about the user's local customs and language. Program interface and processing require
ments vary from country to country; sometimes even within a country. Much existing software
does not take this into account, making it appropriate for usc only in the country or locality for
which it was originally written.

The solution to this problem is to design application programs that can be easily localized. Lo
calization is the process of adapting a software application or system for use in different countries
or local environments. In many cases, a user's native language or data processing requirements
may differ dramatically from those in the environment of the software developer. Traditionally,
localization has been achieved by modifying a program for each specific country. Applications
that have been designed with localization in mind provide a better solution. Localization can
then be accomplished with little or no modification of tables and language-dependent features
which are totally independent of the compiled code.

An applications designer must write the application program with built-in provisions for local
ization. Functions that vary with local language or custom cannot be hard-coded. For example,
all messages and prompts must be stored in an external file or catalog. Character comparisons
and upshifting (using the IShiftl key, on most keyboards, to get uppercase characters) must be
accomplished by external system-level routines or instructions. External files and catalogs can
then be translated, and the program localized without rewriting or recompiling the application
program.

Native Language Support (NLS) provides the tools for an a.pplications designer or programmer
to produce localizable applications. These tools may include architecture and peripheral sup
port, as well as software facilities within the operating systems and subsystems. NLS addresses
the internal functions of a program (such as sorting) as well as its user interface (which includes
displayed messages, user inputs, and currency formats.)

Introduction to Native Language Support 5

Scope of Native Language Support
NLS facilities allow application programs to be designed and written with a local language
interface for the end user and for locally correct internal processing. The end user then interacts
with localized programs produced by applications programmers who have used NLS tools to
write the applications.

For the programmer, the interface has not changed. Most HP-UX interfacing, subsystems, pro
grammer productivity tools, and compilers have not been localized. Applications programmers
may still use American English to interact with HP-UX and its subsystems. For example, it is
possible to write a complete local language application program using C, but the C compiler
retains the English-like characteristics. For example, C key words such as main, ij, while, and
printj are still in English.

Aspects of NLS Support
The following aspects of native language support are included in HP-UX software. These three
aspects, Character Set Support, Local Customs, and Messages, describe the extent of local
ization of an application. The applications programmer should consider each aspect carefully
when creating software that is language independent.

Character Set Support
A major NLS objective is to provide the capabilities for adapting character sets and sequences to
local language needs. This takes into account that character code size determines the maximum
number of distinct characters contained in a set. The default set is 7-bit ASCII character set;
all programs not localized use this character set. 7-bit ASCII is sufficient to span the Latin
alphabet used in many European Languages including upper- and lowercase, punctuation, and ~
special symbols.

The 8th bit of a character byte is normally never stripped or modified. So Hewlett-Packard
has defined character sets with bytes in the range 0 to 255 for foreign languages instead of
ASCII's 0 to 127. Using the extra bit allows expansion to support European languages that
have additional characters, accented vowels, consonants with special forms and special symbols.
(See roman8(7).) This 8-bit character code handles the phonetic Japanese Katakana character
set and others. (See kana8(7) and the section on Supported Native Languages and Character
Sets.}'

For languages with larger character sets, such as Kanji (the Japanese ideographic character set
based on Chinese), 16-bit character codes are required. NLS does not presently offer 16-bit
character sets.

All sorting, shifting and type analysis of characters is done according to the local conventions
for the native language selected. While the ROMAN8 character set has uppercase and lowercase
for most alphabetic characters, some languages discard accents when characters are shifted to ~....,
uppercase. European French discards accents while Canadian French does not. If there is no J
notion of case in the underlying language (such as Katakana) alphabetic characters are not
shifted at all.

6 Introduction to Native Language Support

Each language uses its own distinct collating sequences (the sequence in which characters ac
ceptable to the computer are ordered). The ASCII collation order is actually not even adequate
for American dictionary usage. Different languages sort characters from the ROMAN8 set in
different orders. For example, Spanish requires character pairs such as "ch" and "11" to be
sorted as single characters. Therefore, "ch" falls at the end of the sorted pairs "cg", "ci", and
"cz"; and "II" similarly falls after "lk", "1m", and "lz". Certain ideographic character sets,
which represent ideas by graphic symbols, can have multiple orderings. An instance of this is
Japanese ideograms (use of graphic symbols to represent Kanji) which can be sorted in phonetic
order; based on the number of strokes in the ideogram; or according, first, to the radical (root)
of the character and, second, to the number of strokes added to the radical.

On the subject of directionality, the assumption that displayed text goes from left to right does
not hold for all languages. Some Middle Eastern languages such as Hebrew go from right to
left; while some Far Eastern languages use vertical columns, starting from the right.

Local Customs
Some aspects of NLS relate more to the local customs of a particular geographic area. These
aspects, even when supported by a common character set, change from region to region. Con
sequently, date and time, number, currency information, and so on are presented in a way
appropriate to the user's language. For instance, although Great Britain, the United States,
Canada, Australia, and New Zealand share the English language, other aspects of data repre
sentation differ according to local custom.

The representation of numbers, variations in the symbol indicating the radix character (period
in the U.S.)' modification of the digit grouping symbol (comma in the U.S.), and the number of
digits in a group (three in the U.S.), are all based on the user's native customs. For example, the
United States and France both represent currency using decimals and commas, but the symbols
are transposed (2,345.77 vs. 2.345,77).

Currency units and how they are subdivided vary with region and country. The symbol for a
currency unit can change as well as the symbols placement. It can precede, follow, or appear
within the numeric value. Similarly, some currencies allow decimal fractions while others use
alternate methods for representing smaller monetary values.

Computation and proper display of time, 24 versus 12-hour clocks, and date information must
be considered. The HP-UX system clock runs on Greenwich Mean Time (GMT). Corrections
to local time zones consist of adding or subtracting whole or fractional hours from GMT. Some
regions, instead of using the common Gregorian calender system, number (or name) the years
based upon seasonal, astronomical, or historical events. For example, in Arabic, time of day is
measured from the previous sunset; in India, the calendar is strictly lunar (with a leap month
every few years); in Japan years are based upon the reign of the emperor.

Names for days of the week and months of the year also varies with language. Abbreviations
can be other than three characters or disallowed. Ordering of the year, month, and day, as well
as the separating delimiters, is not universally defined. For example, October 7, 1986 would be
represented as 10/7/1986 in the U.S., 7.10.1986 in Germany, and 1986/10/7 in Japan.

Chapter 3: Programming With NLS describes the library routines used to access these features.

Introduction to Native Language Support 7

Messages
The need to make messages readable by users is perhaps the most significant justification for
implementing Native Language Support. The user can choose the language for prompts, re-
sponse to prompts, error messages, and mnemonic command names at run time. Thus it is not
necessary to recompile source code when a user in yet another country decides he or she wants
translated messages. Keep in mind the syntax of another language may force a change in the
structure of the sentence if messages are built in segments (using printf(9S)). For example, in
German, "output from standard out and file" becomes "Aus und sammlung aus dem standarden ~.

ausgabe", which translates literally to "out and file from standard output.")
To do this, user messages must be put in a message catalog from which they are retrieved by
special library calls. Chapter 4: Message Catalog System explains how to create and access
message catalogs.

Example: a fully localized version of pr would

• never strip the 8th bit of a character code

• properly format the date in each page header

• use the message catalog system to select user error messages

Pre-localized Commands
Pre-localization is program modification that makes use of language-dependent library routines
not limited to 7-bit character processing. These routines are enhanced to ensure the proper
handeling of 8-bit data.

Localization consists of taking the pre-localized command and adding the necessary message 'J.
catalogs and tables to make it run in a particular language (such as French).

Pre-localization allows the message catalogs and tables to be specified at run time, rather than
having the information hard-coded and compiled into the commands.

A localized message file contains messages in the desired native language. Some HP-UX com
mands have been enhanced to check for localized message files.

To pre-localize source code, original commands are replaced by commands that incorporate NLS
prior to compilation of the program source code. These pre-localized commands are listed in
Appendix A: Pre-localized Commands.

8 Introduction to Native Language Support

":.'"('

Supported Native Languages
and Character Sets
The NLS system is based on 15 native languages and 3 character sets. These character sets are
built into the operating system. Tables and files associated with supported languages will be
available through Hewlett-Packard sales offices.

Within NLS, each supported language is associated with a 7-bit or 8-bit character set (one
character set may support several languages). Before the introduction of NLS, the only widely
supported character set was ASCII, a 12B-character set designed to support American English
text. ASCII uses only seven bits of an B-bit byte to encode each character. The eighth or high
order bit is usually zero, except in some applications where it is used for other purposes. For
this reason, ASCII is referred to as a "7-bit" code.

a-Bit Character Sets
An 8-bit byte can contain any of 256 unique values, making it is possible to build supersets of
ASCII which permit encoding and manipulation of characters required by languages other than
American English. These supersets are referred to as 8-bit compatible or extended character
sets. These sets have five distinct ranges: 0 to 31 and 127 are control codes; 32 is space; 33 to
126 are printable characters; 128 to 160 and 255 are extended control characters; and 161 to
254 are extended printable characters (see Table 1.1.) New printable characters are added by
defining code values in the range 161 to 254.

Table 1.1 8-bit Character Set Structure

COL BIT 80 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
ROW BIT 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 C SP E
0 - X -

0 0 0 1 1 N T
0 0 1 0 2 T E

0 0 1 1 3 R USASCII N
0 GRAPHIC D EXTENDED

0 1 0 0 4 L (printable) E PRINTABLE
0 1 0 1 5 CHARACTERS D CHARACTERS

0 1 1 0 6 C (33-126) (HH-254)

0 C
0 1 1 1 7 D H
1 0 0 0 8 E A

S R
1 0 0 1 9 (0-31) A
1 0 1 o 10 C

T
1 0 1 1 11 E
1 1 0 0 12 R
1 1 0 1 13

S
(128-

1 1 1 o 14 1(0)

1 1 1 1 15 rrn f255

Introduction to Native Language Support 9

NLS supports two 8-bit character sets: ROMAN8 (see Table 1.2) and KANA8 (see Table 1.3)

Table 1.2 ROMAN8 Character Set

COL BIT
80 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

ROW BIT 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 N DL (SP) 0 @ p , - a A A I>u P
0 0 0 1 1 S D1 ! 1 A Q a q A e i A ~M

0 0 1 0 2 S ~
II 2 B R b A 0 s ax r

0 0 1 1 3 E D.1 I 3 C S C 5 E 0 U IE f)x

0 1 0 0 4 E:, D+ $ 4 D T d t E a a- d:

0 1 0 1 5 ~ \ % 5 E U e u E y e i i !
0 1 1 0 6 'l Sy 8c 6 F V f v f N 6 " i ! -

0 1 1 1 7 *
Ea

,
7 G W Y '" u 6 1

9 CI.I n ae 4"

1 0 0 0 8 Os c (8 H X h
,

i a A 6 1
N X 2"

1 0 0 1 9 "' ~) 9 I Y ; Y
. (, e I 0 .!.

1 0 1 0 10 Lr Sa * . J Z j z ...
)(0 ij 5 ~.

1 0 1 1 11 v Ec + ; K (k { .. £ U 0 S «T

1 1 0 0 12 FF "5 < L " 1 I '" a It S •,
1 1 0 1 13 <it ~ - = M J m } 0 § e ... U »

1 1 1 0 14 \ 's . > N n ... 0 0 (3 y ±
1 1 1 1 15 Sx ~ / ? 0 - 0 L Q Y

10 Introduction to Native Language Support

Table 1.3 KANAB Character Set

COL BIT ~ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
ROW BIT 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 N D
L e @ p , p - ~ ...u

0 0 0 1 1 S D1 ! 1 A Q a q 0 '1 f c.M

0 0 1 0 2 s ~ " 2 B R b r .(") ,tIe r

0 0 1 1 3 E D:1 • 3 C S C 5 .. " T ~Ie

0 1 0 0 4 D+ • 4 D T d t , 1: ~ it

0 1 0 1 5 ~ "k % 5 E U e u . jf t .1

0 1 1 0 6 '& Sy 8c 6 F y f v =i' " - 3-
0 1 1 1 7 ~ £,

,
7 G W 9 CAl ? f ~ -;

1 0 0 0 8 BS
c (8 H X h x " ? ~ I)
N

1 0 0 1 9 "' 'k) 9 I V i Y ., ~ J .1,

1 0 1 0 10 L, \ * . J Z j z z: :J ., ".
1 0 1 1 11 y Ec + ; K [k { "

, t: []
T

1 1 0 0 12 FF "5 , < L • 1 I " !) .,
"

1 1 0 1 13 CJt c;. - = M] m } ~ ~ '\ j

1 1 1 0 14 ~ ~ . > H A n ... !I 1! it. .,

1 1 1 1 15 ~ ~ / ? 0 0 '!I ~ ~
0-

NLS 8-bit character sets support all ASCII characters (with the exception that the graphic
for back slash ("\") in I{ANA8 is yen ("V")) in addition to the characters needed to sup
port several W·estern European-based languages and Katakana. More character sets will be
implemented in the future.

The use of 8-bit character sets for NLS implies that in character data, all bits of every byte have
significance. Application software must take care to preserve the eighth (high order) bit and
not allow it to be modified or reused for any special purpose. Also, no differentiation should be
made between characters ha.ving the eighth bit turned off and those with it turned on, because
all characters have equa.l status in any extended character set.

Introduction to Native Language Support 11

Peripherals playa key role in a system's ability to represesent a particular language. Sometimes,
even within a single document, several character sets are needed. For example, this document's
tables needed line drawing characters; another section contains French and Arabic examples;
while the technical section uses mathmatical symbols. Hewlett-Packard peripherals (generally)
use the above model to handle multiple character sets (see Figure 1.1).

1;-e~1
51/ '" SO

S l-m7SM I
ESC (10 ESC) 10

I \

~
~

Figure 1.1 8-bit Character Set Support Model

The Active Set is the one printed, plotted, or displayed on the terminal. Sz (shift in) and Sa
(shift out) characters are used to invoke or activate the Base or Alternate character set. The
Base Set is the language-oriented set while the Alternate Set is for special symbols. The escape
sequences ~(ID and~) ID are used to designate, from the collection of available character sets,
the Base and Alternate Set. ID designates ID Field in this context; see Table 1.4 for a table of
example character sets with their ID Field number. All sets in this model are 8-bit character
sets.

Table 1.4 Character Set ID Numbers

8-bit
Character Set Name ID Field

Start up Base/Default Set @

Greek8 Character Set 8B
Hebrew8 Character Set 8D
Kana8 Character Set 8H
Line Draw8 Character Set 8L
Math/Special Symbol8 Set 8M
Turkish8 Character Set 8T
Roman8 Character Set 8U
Arabic8 Character Set 8V

12 Introduction to Native Language Support

Native Languages
Each supported native language is based on one of the three character sets. They consist of
several language-dependent characteristics defined in various tables and accessed by C library
routines and HP-UX commands. These characteristics include rules on upshifting, downshifting,
date and time format, currency, and collating sequence.

Hewlett-Packard has assigned a unique language name and language number to each language
included in NLS (see Table 1.5). In some cases, Hewlett-Packard has introduced more than one
supported language corresponding to a single natural language. For example, NLS supports both
French (language number 7) and Canadian-French (language number 2) because upshifting is
handled differently in French and Canadian-French.

Each of the supported languages can also be considered a language family which is applicable in
several countries. German (language number 8), for example, can be used in Germany, Austria,
Switzerland, and any other place it is requested.

In addition to the native languages supported, an artificallanguage, native-computer (language
number 0), represents the way the computer dealt with language before the introduction of
NLS. Whenever language number 0 is used in a native language function, the result is identical
to that of the same function performed before the introduction of NLS. NLS library calls with
the language parameter equal to 0 will always work correctly, even when no native languages
have been configured on the system.

Table 1.5 Supported Native Languages and Character Sets

Language Language
Num Abbreviation Name

00 n-computer native <'Oll1l>l1ter
01 american amerkan
02 c-french canadian frcndl
03 danish danish
04 dutch dutch
05 english cnglish
06 finnish finnish
07 french frcnch
08 german g('rman
09 italian it.alian
10 norwegian norwegian
11 portuguese port.uguese
12 spanish spanish
13 swedish swedish
14-40 f('s('rved
41 katakana katakana
42-80 reserved

Introduction to Native Language Support 13

14 Introduction to Native Language Support

Native Language Support 2
File Hierarchy
A set of directories and files has been added to HP-UX in which the NLS tools and language
dependent entities, such as message catalogs and shift tables, reside.

Pre-localized HP-UX commands and C library routines for NLS are in standard directories
(/bin, JusT/bin, and lusT/lib), but there are some special directories and files for NLS language
dependent features.

• The language configuration file, /usT/lib/nls/config, is a file containing all the native
languages that can be configured into a system. Your system has a table like this:

00 n-computer
01 american
02 c-french
03 danish
04 dutch
05 english
06 finnish
07 french
08 german
09 italian
10 norwegian
11 portugese
12 spanish
13 swedish
41 katakana

Your computer is always configured for native-computer, language number 0 (see Table
1.5). The presence of the actual resources corresponding to each language will vary with
the system. This file is used by langinfo routines; it must be updated before pre-localized
commands can work correctly.

• The following directories are of the form /usr/lib/nls/$LANG where $LANG is a native
language (such as american).

/usT/lib/nls/$LANG/collate8 contains the collating sequence for a given language.

/usT/lib/nls/$LANG/ctype contains information on character set type for the language
$LANG.

/usr/lib/nls/$LANG/info.cat contains language-dependent information used by langinfo.
/usr/lib/nls/$LANG/shift has shift tables (uppercase to lowercase or vice-versa).

Native Language Support 15

Configuring Native Languages
To use a language other than native-computer (the default lanugage on HP-UX) you must
purchase the support software for the optional language and update the environment accordingly.

Installation of Optional Languages
Native Language Support (NLS) comes with only native-computer as a language. Other l"an
guages (such as German) must be ordered as an option from your Hewlett-Packard sales office.

A language includes the tables needed for collating, upshifting, downshifting, character type,
language information, and message catalogs. The three character sets already present are stan
dard in HP-UXj only the language tables are optional. Not all character sets are supported on
all peripherals, so peripherals which support the desired character set must be obtained.

To install:

• Perform the actual installation using the optinstall command, as explained in the chap
ter of the HP- UX System Administrator's Manual entitled The System Administrator's
Toolbox.

• Optinstall automatically installs the language support files in the correct directory as
described in the previous section File Hierarchy.

After a language has been installed, language-specific information provided by NLS can be used
by any application program requesting it.

Environment Changes
To support HP-UX NLS, changes to the user environment within HP-UX were needed. One
new environment variable LANG (LANGuage) was created and TZ (Time Zone) was modified.
TZ allows input about different time zones while LANG specifies the language you want to use.

LANG
LANG is a the environment variable that must be set to the native language you desire. LANG
contains the language name in American English. It is used to select the character set, lexical
order, upshift and downshift tables, and other conventions that vary with language and locality.
LANG can be set in /etc/profile as a default native language, or it can be set by any individual
user in .profile or .login. For .profile use:

LANG = american
export LANG

For .login use:

setenv LANG american

If LANG is not set, all programs using LANG default to the native computer language.

TZ
TZ is a variable that holds time zone information. TZ has been changed to allow fractional
offsets from GMT (Greenwich Mean Time). Specification of daylight savings time is taken into
account as well as name differences and starting and ending date differences.

16 Native Language Support

Accessing NLS Features
On HP-UX, the use of NLS features is optional. These features must be requested by the
applications programmer through library calls or interactively by the user through a localized
HP-UX command. The C library routines used for NLS can also be accessed from Pascal and
FORTRAN. A description of how to access C library routines from Pascal and FORTRAN is
documented in the HP-UX Portability Guide.

NLS HP-UX Commands
There are several HP-UX commands that were created specifically to access the message catalog
features. They are described in detail in the Chapter 4: Message Catalog System.

• findstr - find strings in programs not previously localized for inclusion in message catalogs.

• gencat - generate a formatted message catalog file.

• insertmsg - use findstr output to insert calls to getmsg.

• findmsg - extracts strings from pre-localized C programs for inclusion in message catalogs.

• dumpmsg - reverse the effect of gencat; take a formatted message catalog and make a
modifiable message catalog source file.

Library Support for NLS
There are several G library routines that ac<;ess the language tables and message catalogs (see
Appendix B: Native Language Support Library). These are documented in Chapter 9: Program
ming With Native Language Support.

Native Language Support 17

18 Native Language Support

I~.·······'"'" J

Programming With
Native Language Support 3
This chapter describes the NLS header files and the C library routines that are used by Native
Language Support (NLS). Two example programs are also provided.

NLS Header Files
There are three header files in /usr/include specific to NLS: msgbuf.h, nLctype.h, and langinfo.h.

Library Routines
Most NLS library routines have counterparts within the standard HP-UX system. These rou
tines produce similar results; but, instead of assuming particular formats, they use additional
parameters to format information how the user prefers to see it.

NLS Library routines are listed below. Routines that have counterparts in the standard C
library are mentioned, but not described in detail. Other NLS routines that were added to the
C library are described in more detail. Manual pages for all these routines are included in the
HP- UX Reference. NLS routines are discussed in this chapter in the same sequence as in the
HP-UX Reference, Section 3.

Convert Date/Time to String
nLctime, nLasctime

Syntax
nl_ctime(clock. format. langid)
nl_asctime(tm. format, langid)

The nLctime command extends the capabilities of ctime in two ways. First the format specifica
tion allows the date and time to be output in a variety of ways. format uses the field descriptors
defined in date (1). If format is the null string, the D_ T_FMT string defined by langinfo{SC)
is used. Second langid provides month and weekday names (when selected as alphabetic by
the format string) to be in the user's native language. The nLasctime command is similar to
asctime, but like nLctime allows the date string to be formatted and the month and weekday
names to be in the user's native language. However, like asctime, it takes tm as its argument.
See also ctime{SC).

Programming With Native Language Support 19

Convert Floating Point to String
nLgcvt

Syntax
nl_gcvt(value, ndigit, buf, langid)

The nLgcvt command differs from gcvt only in that it uses langid to determine what the radix
character should be. If langid is not valid, or information for langid has not been installed, the
radix character defaults to a period. .~
See ecvt(9C).

C Routines to Translate Characters
nLconv(9C)

This manual page includes nLtoupper and nLtolower.

Syntax
nl_toupper(c,langid)
nl_tolower(c,langid)

These routines are similar to the routines in conv(3C). They function the same way, but use
a second parameter whose value is expected to be one of the values defined in langid(7). If
langid has not been installed or if shift information for langid has not been installed, toupper
and tolower is used for characters below 127, while characters 127 and above are returned
unchanged (toupper and tolower are used with ASCII character set only).
See also conv(9C).

C Routines That Classify Characters
nLctype(3C)

This manual page includes nLisalpha, nLisupper, nLislower, nLisalnum, nLispunct, nLisprint,
and nLisgraph. These routines classify the characters by using the tables in /usr/lib/nls.

Syntax
All these routines have the same parameter list:

routine(c, langid)

where routine is any of the routines in nLctype.

nLisalpha

nLisupper

nLislower

nLisalnum

nLispunct

nLisprint

nLisgraph

c is a letter

c is an upper case letter

c is a lower case letter

c is an alphanumeric (letter or digit)

c is a punctuation character (neither control nor alphanumeric)

c is a printing character

c is a printing character, like nLisprint except false for space

20 Programming With Native Language Support

These routines classify character-coded integer values by table lookup. The command langid is
as defined in langid(7). Each returns non-zero for true, zero for false. All are defined for the
range -1 to 255. If langid is not defined or if type information for that language is not installed,
isalpha, isupper, etc. from ctype(9C) is used, returning 0 for values above 127.

If the argument to any of these routines is not in the domain of the function, the result is
undefined.

Get Message From Catalog
getmsg(9C)

This added routine is used to retrieve a message from a message catalog.

Syntax
getmsg(fd, set_num, msg_num, buf, buflen)

where fd is the file descriptor pointing to the catalog (file) containing the messages, seCnum is
the set number designating a group of messages in the catalog, msg_num is the message number
within that set, buf is the character array that will hold the returned message, and buflen is the
number of bytes of the message that can be put into bu! The function itself returns a pointer
to the character string in bu! If fd is invalid or seCnum or msg_num are not in the catalog, it
returns a pointer to an empty (null) string.

Information on User's Native Language
langinfo{9C)

This includes the routines langinfo, langtoid, idtolang and currlangid. The command langinfo
retrieves a null-terminated string containing information unique to a language or cultural area.

Syntax
langinfo(langid, item)
langtoid(langname)
idtolang(langid)
currlangidO

where langid is language information and item can be one of the following:

D_T_FMT - string for formatting date{l), nl_ctime, and nl_asctime.

DAY_l - IISunday" in English

DAY_7 - II Saturday II in English
MON_l - IIJanuaryll

MON_12 - IIDecember ll
RADIXCHAR - IIdecimal point" (',' on the European Continent)
THOUSEP - separator for thousands
YESSTR - affirmative response for [yIn] questions
NOSTR - negative response for [yIn] questions
CRNCYSTR - symbol for currency preceded by '-' if it precedes the

number, '+' if it follows the number.
e.g. II-fll for Dutch, 11+ Kr ll for Danish.

Programming With Native Language Support 21

The idtolang command takes the integer langid and returns the corresponding character string
(language name) defined in langid(7). If langid is not found, an empty string is returned. The
command langtoid is the reverse of idtolang. The currlangid command looks for aLANG string
in the user's environment. If it finds it, it returns the corresponding integer (language number)
listed in langid(7). Otherwise it returns 0 to indicate a default to ASCII native-computer.

Print Formatted Output With Numbered Arguments
printmsg(9C)

This manual page includes printmsg, fprintmsg and sprintmsg, which are derived from their
counterparts in printj(9S).

Syntax
printmsg (format [. arg] ...)
fprintmsg (stream. format [, arg] ...)
sprintmsg (s. format [, arg] ...)

The conversion character % used in printf is replaced by the sequence %digit$, where digit is
a decimal digit n in the range 1-9. The conversion should be applied to the nth argument,
rather than to the next unused one (you specify which parameter you want this conversion
applied to). All other aspects of formatting are unchanged. All conversions must contain the
%digit$ sequence, and it is the user's responsibility to make sure the numbering is correct. All
parameters must be used exactly once.
See also printJ(9S).

Example
The following example prints a language-independent date and time format.

printmsg(format. weekday. month, day. hour, min);

For American usage format would be a pointer to the string:

"%1$s, %2$s %3$d. %4$d:%5$.2d"

producing the output:

Sunday, July 3, 10:02.

For German usage, format would be a pointer to the string:

"%1$8, %3$d %2$8 %4$d:%5$.2d"

which outputs:

Sonntag, 3 Juli 10:02.

22 Programming With Native Language Support

Non-ASCII String Collation
nLstring(3C)

This manual page includes strcmp8, strncmp8, strcmp16, and strncmp16.

Syntax
strcmp8(81. 82. langid)
strncmp8(sl. 82. n. langid)
strcmp16(81. 82. file_name)
strncmp16(sl. 82. n, file_name)

The command strcmp8 compares string sl and s2 according to the collating sequcncc specified
by langid (the language number). An integer greater than, equal to, or less than 0 is returned,
depending on whether the collation of sl is greater than, equal to, or less than that of s2. If
langid or the collation sequence file is not installed, the native machine collating sequence is
used. Trailing blanks in string .'31 or s2 are ignored. The command strncmp8 makes the same
comparison but looks at only n characters. The strcmp16 and strncmp16 commands are similar,
but use the 16-bit collating sequence table in file_name. There can be one of several tables, so
the table file_name, must be specified rather than simply sending the value langid.
See nLstring(3C).

Convert String to Double Precision Number
nLstrtod, nL ato!

Syntax
nl_8trtodCstr. ptr, langid)
nl_atofCstr. langid)

The nLstrtod and nLatoJ commands are similar to the standard routines, strtod and atoJ, but
use langid to determine the radix character. If langid is not valid, or information for langid has
not been installed, the radix character defaults to a period.
See also strtod(3C).

Programming With Native Language Support 23

Application Guidelines
When writing an application program, do not use hard-coded message statements. Store all
messages to the user in a separate message catalog where they can be accessed via NLS library
commands. This allows users who prefer other native languages to modify the messages to fit
their own needs.

The library routines provided for NLS guarantee correct and standard conversions to formats
in all supported native languages. You can also create any formats or tables that are beyond ~
those supported by HP to fit your specific needs.

Example C Programs
Here are two example C programs that show how to use some of the Chapter 3 NLS commands.

Example 1
This C program is representative of changes to ctime that adapt it for NLS. The commands
nCconv(9C), nCctype(9C), nCstring(9C), nCstrod and nCatod are handled in a similar manner.

#include <langinfo.h>
main 0

{
int langid;
long timestamp;

langid = currlangid();

time(×tamp);
printf("%s". ctime(×tamp»;
printf("%s". nl_ctime(×tamp,"".langid»;

}

The command lines used are:

LANG = american
export LANG
cc test_ctime.c -0 test_ctime
test_ctime

The output is:

Tue Feb 26 15:56:34 1990
Tue Feb 26 15:56:34 1990

The command lines to change the language to French are:

LANG = french
export LANG
test_ctime

The output is:

Tue Feb 26 15:56:34 1990
Mar 1990 Avr 26 15h56

24 Programming With Native Language Support

Example 2
This C program uses the printmsg(3C) routines to output the same message in a variety of ways.

#include <stdio.h>
mainO

{

char *a = "Hello,";
char *b = "world!";
char Buf[100];

printf("Hello, world!\n");
printf(%s %s\n", a, b);

printmsg("Hello, world!\n");
printmsg("%1$s %2$s\n", a, b);
printmsg("%2$s %1$s\n", a, b);

fprintf(stdout, "Hello, world!\n");
fprintf(stdout, "%1$s %2$s\n". a, b);

fprintmsg(stdout, "Hello, world!\n");
fprintmsg(stdout, "%1$s %2$s\n", a, b);
fprintmsg(stdout, "%2$s %1$s\n". a, b);

sprintf(buf, "Hello, world!\n");
printf("%s", buf);
sprintf(buf, "%s %s\n", a. b);
printf("%s". buf)

sprintmsg(buf, "Hello, world!\n");
printf("%s", buf);
sprintmsg(buf, "%1$s %2$s\n", a, b);
printf (II%S", buf);
sprintmsg(buf, "%2$s %1$s\n", a, b);
printf ("%s", buf);
}

The command lines used are:

cc test_pmsg.c -0 test_pmsg
test_pmsg

The output is:

Hello, world!
Hello. world!
Hello. world!
Hello, world!
world! Hello,
Hello, world!
Hello, world!
Hello, world!
Hello. world!
world! Hello.
Hello. world!
Hello, world!
Hello. world!
Hello, world!
world! Hello,

Programming With Native Language Support 25

26 Programming With Native Language Support

Message Catalog System 4
This chapter explains how localized message files are created and updated, where they are kept,
and by what conventions they are named.

Introduction
In order to simplify the localization process, applications programmers should write programs
that do not require recompiling of code when they are localized. If the code can remain unmodi
fied, the functionality of an application is not affected when translations are made. This reduces
support problems because only one version of the application exists. Also this, minimizes the
possibility of introducing additional bugs into the product and reduces the localization time.

Localizable programs use text (prompts, commands, messages) from an external message catalog
file. This allows text to be translated (part of the localization process) without modifying
program source code or recompiling. If the external message catalog file is inaccessible for
any reason (such as accidentally removed, not yet created, or whatever), the internally stored
messages written in the original language can be used.

A message catalog system is used to separate strings such as prompts and messages from the
main code of a program. This makes it very easy for another country to translate the information
and have the program run properly without modifying its source code. The HP-UX message
catalog system uses HP-UX commands to help create the catalogs and C library routines to
access those catalogs. Message catalog commands work only with the C programming language,
but the library routines can be accessed from C, Pascal, and FORTRAN programs.

Message Catalog System 27

The message catalog commands are:

• findstr - find strings for inclusion in message catalogs

• gencat - generate a formatted message catalog file

• insertmsg - use findstr output to insert calls to getmsg

The C library routines specific to message catalogs are:

• getmsg - get a message from the catalog

• printmsg, jprintmsg, sprintmsg - print formatted output with numbered arguments

The steps an applications programmer would take to simplify the localization process are:

• modify existing programs using findstr, insertmsg, gencat

• maintain modified programs using findmsg, gencat

• translate message files using dumpmsg, gencat

28 Message Catalog System

Creating a Message Catalog
To make a program easier to localize, string literals such as the error messages and prompts
should be placed in a separate file that is accessed by the program at run time. (Hard-coded
messages can be left in; they are useful in source for clarifying code.) This way a program can
easily access any localized message file without modification of the program. Hewlett-Packard
has developed a set of tools to extract print statements from C programs. This set of tools is
referred to as the Message Catalog System.

Preview: Incorporating NLS into Commands
The general flow of the message catalog system is diagrammed in Figure 4.1. The three HP
UX commands: findstr, insertmsg, and gencat extract messages from C programs and build
a message catalog. The filenames are prog.c, prog.str, prog.msg, and prog.cat. (They can be
named anything you prefer. Names, discounting the .c suffix, should be equal to or less than 9
characters in length. The suffixes used here are only a suggested naming convention.)

The name prog.c represents any C program containing hard-coded messages. The name prog.str
represents an intermediate file containing all strings from the source file surrounded by double
quotes (""). The new C program is named nLprog.c (where prog.c is the original C program)
with references made to a message file instead of hard-coded messages. The final object file
produced by compiling nLprog.c is prog. The file prog.msg contains the numbered messages and
sets that are used to generate the final message file. The final message file is prog. cat.

Message Catalog System 29

Following the Flow
The next sections describe in detail the steps used when creating a message catalog (see Figure
4.1).

Hndstr

stdout

insertmsg
stdout

edit. remove

non-NL strings

compile. Ifnk

with NLS libs
(lib.o)

edit. add other

NLS routines

gtJncat

stdout

Figure 4.1 Flow of the Message Catalog

edit. translate

messages

30 Message Catalog System

findstr
findstr examines files of C source code (prog.c in this case) for string constants that do not
appear in comments. These strings, along with the surrounding quotes, are placed on standard
output. Each extracted string is preceded by the file name, start position in the file, and string
length. The output should be redirected to a file for editing.

Syntax

findstr prog.c > prog.str

prog.str
prog.str, the output from findstr which is created when the user redirects output from findstr
into a file, contains' all quoted strings that do not appear in comments from the C program
(prog.c) used as input to findstr. This includes error messages, format statements, system calls,
and anything else that is surrounded in double quotes. Preceding the strings is a copy of the
filename (prog.c), from which the strings came, followed by the byteposition and bytecount. The
file prog.str can be called any name. Message files should contain nothing but messages, so you
must edit prog.str to remove all other types of quoted strings.

Syntax

prog.c:byteposition:bytecount:flstring"

The parameters byteposition and bytecount apply to the source program at the time findstr is
run. Any changes to prog. c will invalidate these numbers. Do not modify these parameters.

insertmsg
insertmsg uses prog.c and prog.str to create both the new C source file (nLprog.c) and a file
(prog.msg) containing the messages for translation into local languages. prog.msg is used by
gencat.

Syntax

insertmsg prog.str > prog.msg

Here, prog.str is the edited output from findstr (see above section on prog.str). The routine
insertmsg creates a new file (nLprog.c), for each file named in prog.str. For this example, all the
lines in prog.str refer to prog.c.

Message Catalog System 31

These lines:

#ifdef NLS
#define NL_SETN 1
#include <msgbuf.h>
#else NLS
#define nl_msg(i, s) (s)
#endif NLS

are inserted by insertmsg at the beginning of each new file (in this case nLprog.c). Then for
each line in prog.str, it surrounds the string with an expression of the form:

nl_msg(l, "Hello, world\n");

where 1 is the message number.

This is expanded at run time by a macro in msgbuj.h. Then insertmsg places a file on the
standard output that can be used as input to gencat (see section below on prog.msg). If in
sertmsg doesn't find the opening or closing double quote where it expects it in prog.str, it
prints "insertmsg exiting : lost in strings file" and dies. If this happens check the strings
file to make sure that the lines kept there haven't been altered. Re-running findstr on prog.c
reconstructs prog.str to its unedited form.

output from insertmsg
There are two branches from insertmsg: the new ".c" file (nLprog.c) and the messages going to
stdont (assumedly redirected into a file, referred to here as prog.msg).

~~ ~
This is the new source of your program. It consists of all the source in the original program, }
with the messages in prog.str changed to be of the form shown above, and an additional #define
and #include statement at the beginning of the file.

The programmer must now hand edit the file nLprog.c to insert a call

#ifdef NLS
nl_catopen("prog");
#endif NLS

where prog.cat is the final message file (.cat will be appended to prog by the nLcatopen macro).
If a set number other than 1 is desired (for merging several message catalog files, separating
them by set number only) change the NL_BETN define statement accordingly.

prog.msg
This is what insertmsg places on stdont to be used as the input to gencat. This file needs to be
hand edited to define the $set number to match the NL_BETN in nLprog.c. Messages in this
file are automatically numbered from 1 upward, in the same order as they appear in the file
prog.str. The same number will also be placed in the call to nLmsg (the macro placed around ~

the message by insertmsg). J

32 Message Catalog System

Example

$set 1
1 Good morning
2 error, monday morning
$set 2
15 Hello. world!
16 Thank goodness its Friday!!
17 CRASH

gencat
gencat generates a formatted message catalog (prog.cat) from the information in prog.msg.

Syntax

gencat prog.cat prog.msg ...

The prog. msg file consist of sets of messages along with comments and are merged into a format
ted file (prog.cat) that can be accessed by getmsg. If prog.cat does not exist, it will be created.
If it exists, its messages are included in the new nLprog.c unless the set and message numbers
collide, in which case the new supersedes the old. See the section on prog. msg for details on the
input file format. If a message source line has a number but no text then the existing message
corresponding to tl:is number is deleted from the catalog.

To delete an entire message set, place the directive

$DELSET set_number

at the beginning of a line between sets.

prog.cat
prog.cat is the final message catalog, created by gencat, which is then accessed by the new source
program. gencat is a binary file and cannot be read directly by a user.

The file prog.cat will be stored as /usr/lib/nls/american/prog.cat where american is the value of
LANG when this file is accessed and "prog" is the program name string entered by hand into
the nLcatopen statement. You must be logged in as super user to place the file in that directory.

Multiple commands may share the same physical file or share the same name in the nLcatopen
macro. Each message catalog name (program name with .cat appended) must be linked to the
same file. Messages can be distinguished, either by set number or by message number.

prog
prog is the object file produced by compiling nLprog.c. Do not confuse this file with "prog"
called by nLcatopen that has .cat appended.

Message Catalog System 33

Format of Source Message File
The source message catalog consists of the following lines:

$set n comment
This line, followed by the message text lines, specifies the set number of the following messages
until the next $set, $delset, or end of file appears. The n denotes the set number (1-255). Set
numbers must be in ascending order within a single source file. Any string following the set
number is treated as comment.

$delset n comment
This line deletes an entire message set from the existing catalog file. The n denotes the set
number (1-255). Any string following the set number is treated as comment.

$ comment
This line is used as a comment line.

m message text
The m denotes the message number (1-32767). If message text exists, the message is stored in
the catalog file with the set number specified by $set and message number m. If the message
text does not exist, the message corresponding to the set number and message number is deleted
from the existing catalog file. Message numbers must be in ascending order within a single set.

Certain special characters are used in the text strings; certain non-graphic characters and the
backslash "\" can be specified using the following table (Table 4.1) of escape sequences:

Table 4.1 Escape Sequences

Description Symbol Sequence

newline NL(LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
bit pattern ddd \ddd

The escape sequence \ddd consists of backslash followed by 1, 2, or 3 octal digits which are used
to specify the value of the desired character. If the character following a backslash is not one of
those specified, the backslash is ignored. Backslash "\" is also used to continue a string to the
next line. The following two lines are considered a single string:

1 This line continues \
to the next line.

which is equivalent to:

1 This line continues to the next line.

Note that, in this case, backslash "\" must immediately precede the newline character.

34 Message Catalog System

Printmsg, Fprintmsg and Sprintmsg
The commands printmsg, fprintmsg and sprintmsg arc derived from their counterparts in
printf(3S), with the understanding that the conversion character %is replaced by the sequence
%digit$. Digit is the decimal n, in the range 1-9, and indicates that this conversion should be
applied to the nth argument, rather than to the next unused one. All conversion specifications
must contain the %digit$ sequence, and numbered correctly. All parameters must be used ex
actly once. These commands arc used to handle the message catalog system with the messages
that have two or more parameters.

Accessing Applications Catalogs
Message catalogs are accessed from any supported language program, such as C, Pascal, or
FORTRAN, using C library routines. These C library routines consist of some new library
functions and some altered, pre-existing C library routines.

All HP-UX shell commands and C library routines that. are associated with NLS or that have
been changed due to NLS are documented in the HP- UX Reference and arc listed in Appendix
A: Pre-localized Commands of this manual.

To use the C library routines from a Pascalor FORTRAl" program please refer to the HP-UX
Portability Guide.

File System Organization and
Catalog Naming Conventions
Any application that has been localized into several languages will have separate message cat
alogs (files) for each language. The routine ntcatopen assumes the message file will be under
/usr/lib/nls/language/filename.cat where language is the the language contained in the LANG
environmental variable and filc~name is the name of the file specified in the call to ntcatopen in
the source program (usually the program name).

The directory /usr/lib/nls is writable only by root.

For example, original, unlocalized data might be stored in a file whose full path name is
/usr/lib/nls/n-computer/prog.cat. The file /usr/lib/nls/german/prog.cat would contain the
same data modified for German, and /usr/tib/n Is/span ish/prog. cat would contain Spanish data.
It is the responsibility of the application program to determine (at run time) which file to open.

Message Catalog System 35

Localization
Suppose you have the following C program, hello.c, and you want to localize the output. The
source file of hello.c looks like this:

maine)
1* This program prints a greeting and the date *1
{
printf("hello, world\n");
system("date");
}

6 Steps to Localize an Example Program

1. Execute findstr, redirecting the output to hello.str.

Sfindstr hello.c > hello.str

2. Edit hello.str. The file hello.str contains all the strings from heLlo.c that are surrounded
by double quotes. It contains the following lines:

hello. c :67: 16: "hello. world\n II
hello.c:93:6:"date ll

The file hello.str needs to be edited so it contains only messages that should appear on
the screen. Notice that date is enclosed with double quotes, but should not be included
in the message file. Edit hello.str so it contains only the line:

hello.c:67:16: lI hello. world\n"

3. Execute insertmsg, redirecting output to a file called hello. msg.

insertmsg hello.str > hello.msg ~
In addition to the messages output to hello.msg, insertmsg creates the new source file,
nLhello.c, which contains the original source plus a new #define line and #include line,
plus an altered message line. Your directory should now contain the following files relating
to this example:

hello.c hello.msg hello.str

4. Edit nLhello.c. The file currently looks like:

#Udef NLS
#define NL_SETN 1 I*set number*1
#include <msgbuf.h>
#else NLS
#define nl_msg(i. s) (8)
#endif NLS
MainO
1* This program prints a greeting and the date *1
{

printf«nl_msg(l. IIhello. world\n ll»);
system(lIdate ll);

}

The macro nLmsg will be expanded at compile time (see section on insertmsg). Both the
set number and the message number will be set to 1.

36 Message Catalog System

The file needs to be edited so it refers to the final message file. Decide now what you
want to call the final message file (in this example it will be called hello. cat) and insert
the line:

nl_catopen("hello");

This line opens a file called hello. cat in a directory corresponding to the native language
defined in the LANG environmental variable. If LANG is not defined, the hard-coded
messages in the source are used. This means that you never need to change the source
code. You simply need to change the value of LANG and create a message file stored in
/usr/lib/nls/$LANG/hello.cat if you wish to localize hello.c for a new language.

Final source file looks like this:

#ifdef NLS
#define NL_SETN 1 /*set number*/
#include <msgbuf.h>
#else NLS
#define nl_msg(i. s) (s)
#endif NLS
mainO
/* This program prints a greeting and the date */

{
#ifdef NLS
nl_catopen("hello");
#endif NLS
printf«nl_msg(l, "hello.world\n"»);
system("date");
}

5. Edit hello.msg to define $set to match the set number in nLhello.c, if different. It should
be the same unless you are creating a message file other than the one created by insertmsg.
The file msghello looks like:

$set 1
1 hello. world\n

6. Execute gencat specifying the file hello. cat used in step #4 the output file. The input file
is hello. msg.

gencat bello. cat hello.msg

This file should be stored as /usr/lib/nls/american/hello.cat.

You now have a localizable program. If your native language is English, you also have a localized
message file. If your native language is something other than English, you still need to localize
the message file. Let's say your native language is German, and rather than printing the message
"hello, world" to the screen, you wish to print "Guten Tag Welt, wie geht es dir?".

Edit hello.msg or create a new file to read:

$set 1
1 Guten Tag Welt. wie geht es dir?\n

Execute gencat by typing in:

gencat hello.cat hello.msg

Message Catalog System 37

Store the new hello.cat message file in /usr/lib/nls/german/hello.cat and change your LANG
environment variable to german.

When you re-execute the program, it will automatically use the German message file rather than
the American English message file. Execute hello to verify that it works. If the LANG variable
is not defined, or the message catalog does not exist, the hard-coded message will appear.

38 Message Catalog System

Pre-localization Commands A
Series 500 HP-UX 5.0 has limited support for users whose native language is other than American
English. To provide this support, several HP-UX commands have been enhanced to allow
processing of files and keyboard entries which contain 8-bit (256 symbol) characters such as
filenames and data. These commands are identified as 8-bit compatible (pre-localized). They
have also been enhanced to generate prompts, text output, and error messages in one of several
native languages. The format of output can also be set according to local customs. These
commands are identified as localized. The table below identifies the commands and the NLS
Level to which they have been localized (8-bit or fully localized). (See HP-UX Reference Manual
pages for further detail.)

Previous HP-UX systems only supported 7-bit (128 symbol) character sets, and fully supported
only the ASCII 7-bit set. Commands not listed in the following table (such as csh and vz) are not
supported. Processing 8-bit character data with a 7-bit-only commands yields unpredictable
results. Typically the consequence is the 8th bit is stripped off, yielding an arbitrary (but
predictable) 7-bit ASCII character code.

Table A.I NLS-Compatible HP-UX Commands

Name(*) NLS Level Description

accept(IM) localized allow LP requests
at(l) 8-bit time schedule a process
aterm(l) 8-bit general purpose asynchronous terminal emulation
basename(1) 8-bit extracts portions of path names
cancel(l) localiz(!d cancel spooler printer output
cat(l) localized concatenate and print file
cc(l) 8-bit c compiler
cdb(1) localized c debugger
chmod(l) 8-hit change file mode (permissions, etc.)
cmp(l) localized compare two files
comm(l) localized select or reject lines ('ommon to two sorted files
cp(l) localized copy a file
cpio(l) 8-bit copy file archives in and out
cron(1) 8-bit clock daemon
cu(l) 8-bit call UNIX1; terminal emulator
date(l) localized print/set the date
diff(1) localized differential file comparator
disable(l) localized disable a spooled print er
echo(l) 8-bit echo (print) argument s
ed(l) localized (line oriented) text editor
enable(l) localized enable a spooled printer
env(l) 8-hit set environment for (~onunand execution
expr(l) 8-bit evaluates arguments as an expression

I UNIX is a trademark of AT&T Dcll Laboratorics, Inc.
• Number denotes Hp· UX References mallllal scctioll.

Pre-localization Commands 39

Table A.l NLS-Compatible HP-UX Commands (cont.)

Name(*) NLS Level Description

fc(l) 8-bit FORTRAN 77 compiler
t77(1) 8-bit FORTRAN 77 compiler
find(l) 8-bit find files
getopt(l) 8-bit parse command options
lp(l) localized line printer spooler
lpadmin(1M) localized configure LP spooling system
Ipsched(lM) localized start LP spooling system
Ipshut(lM) localized stop LP spooling system
Is(l) 8-bit list contents of directories
mail(l) 8-bit send and receive mail
mkdir(l) 8-bit make a directory
more(l) 8-bit file browser
mvdir(l) 8-bit move a directory
newgrp(l) 8-bit log into new group
passwd(l) 8-bit change login passwd
pc(l) 8-bit HP Series 200 Pascal compiler
pc(l) 8-bit HP Series 500 Pascal compiler
pr(l) localized print file(s)
reject(8) localized deny LP spooler requests
rmdir(l) 8-bit remove directories
sh(l) 8-bit bourne shell command interpreter
sort(1) localized sort/merge text files
tar(l) 8-bit tape file archiver
tee(l) 8-bit pipe fitting
uniq(l) localized report repeated lines in a file
uucp(l) 8-bit UNIXI-to-UNIXI copy
uulog(l) 8-bit maintains summary log of uucp
uuname(l) 8-bit lists the uucp names of known systems
wall(l) 8-bit broadcast message to all users
wc(l) localized word/line/byte count
write(l) localized interactively write to another user

40 Pre-localization Commands

Native Language
Support Library B
The following library calls have been added to HP-UX to facilitate the development of fully
localized programs. These are included in the standard C library /usr/lib/libc.a.

Table B.1 NLS Library

Name(*) Description

catrcad(3C) adds MPE/RTE filetypc support to getmsg
ctimc(3C) time conversion routines
evct(3C) convert binary numbers to string numerics
nLconv(3C) character casefolding routines
nLctype(3C) character classification
getmsg(3C) get native language message from catalog
langinfo(3C) get native language information
nLst ring(3C) string comparison routines
printmsg(3C) print formatted numeric output
strtod(3C) convert string numeric to binary number routines

Other HP-UX system and library calls are 8-bit compatible, with the following exceptions.
Localized versions exist for many of these (see above) and should be used for new program
development.

Table B.2 Non-NLS HP-UX System and Library Calls

Name(*) Description

atof(3C) convert ASCII string numerics to various binary forms
conv(3C) ASCII character casefolding routines
ctime(3C) date and time conversion routines
ctype(3C) character classification routines
ecvt(3C) convert binary number to ASCII string numeric
qsort(3C) quick sort
regex(3C) regular expression compile/execute
string(3C) character string operations

Native Language Support Library 41

42 Native Language Support Library

Peripheral Configuration c
European Character Sets
For European languages, many HP peripherals support the Hewlett-Packard ROMAN8 charac
ter set. ROMAN8 is a full superset of ASCII and offers 88 additional local language symbols.
Older HP peripherals may use the HP Roman Extension set, which is a subset of ROMAN8.
Roman Extension is missing ROMAN8 Characters Athru I, U, U, C, ¥, f, ¢, Athru ±.
See Table 1.2, ROMAN8 Character Set.

Japanese Character Sets
Many HP peripherals support an alternate 8-bit character set known as KANA8. The first 128
codes in the KANA8 set are JASCn (same as ASCII except substitutes "¥" for LL\") and the
last 128 codes are Katakana.

ISO 7-bit Substitution
1807 stands for International Standards Organization 7-bit character substitution. For each
IS07 language, certain ASCII character codes infrequently used in ordinary text (such as those
for "I" and "{ ") are designated to generate different local-language symbol (such as "~" or "re"
in Danish). Unfortunately, the designated ASCII codes represent special characters often used
in HP-UX (and all other UNIX and UNIX-like systems). The use of ISO 7-bit substitution is
neither recommended nor supported.

Character Set Support by Peripherals
ROMAN8 terminals can simultaneously display any characters in their set. Their keyboards
have keycaps only for the specified local language, but you can enter any ROMAN8 character
by use of the IEXTENDI key. You can also use most 8-bit terminals in IS07 mode (see discussion
above).

Plotter ROM (internal) fonts are normally used for draft-quality plots. Final plots are normally
done with host-generated (software) vector fonts. DGL/9000 graphics presently generate only
ASCII characters.

The following table summarizes the character set support of Series 200/500 peripherals. The
Ordering Information column indicates what action you must take to obtain a peripheral which
is not ASCII.

Peripheral Configuration 43

Table C.I Peripheral Localization Summary

Peripheral Character Ordering Comments
Deviee Set(s) Support Information

9020A Computer ASCII only Keyboard option
9020B Computer ASCII only Keyboard option
9020C Computer ASCII only Keyboard option
98700H Display Sta. ASCII only Product suffix
HP 110 Terminal ROMAN8 Std. Product suffix
HP 150 Terminal ROMAN8 Std. Product suffix
2392A Terminal ROMAN8 Std. Keyboard option Missing A thru ±.
2622A Terminal Roman Ext. Std. Keyboard option
2623A Terminal Roman Ext. Std. Keyboard option
2624B Terminal -------- ----------- Not recommended for NLS
2625A Terminal ROMAN8 Std. Keyboard option
2626A Terminal Roman Ext. Std. Keyboard option
2627A Terminal Roman Ext. Std. Keyboard option
2628A Terminal ROMAN8 Std. Keyboard option
2647F Terminal ASCII only NA
2703A Terminal Roman Ext. Std. Keyboard option
2225A ThinkJet@ ROMAN8 Std. NA
2563A Printer ROMAN8 Std. KANA8 option
2565A Printer ROMAN8 Std. KANA8 option
2566A Printer ROMAN8 Std. KANA8 option
2601A Printer Substitution Accessory Series 500 only,

change print wheel
2602A Printer Substitution Accessory Series 500 only,

change print wheel
26088 Printer Roman Ext. Option 002 Series 500 only
2631B/G Printer Roman Ext. Std. Formerly Option 009
2671A/G Printer Roman Ext. Std. NA Series 200 only
2673A Printer Roman Ext. Std. NA Series 200 only
2680A Printer Roman Ext. Std. NA Series 500 only
2686A LaserJet@ ROMAN8 Std. NA
2688A Printer ROMAN8 Std. NA Series 500 only,

not all fonts ROMAN8
2932A Printer ROMAN8/KANA8 Std. NA
2934A Printer ROMAN8/KANA8 Std. NA
82906A Printer ROMAN8 Std KANA8 option Series 200 only
97090A Printer Roman Ext. Std. NA Series 500 only
9876A Printer Roman Ext. Std. NA
7470A Plotter IS07 only NA
7475A Plotter IS07 only NA
7580A Plotter IS07 only NA
7585A Plotter IS07 only NA
7586A Plotter IS07 only NA

44 Peripheral Configuration

Character Sets
This section provides the table for the following character sets:

• ASCII Character Set

• Roman Character Sets

• Katakana Character Set

D

Character Sets 45

Table D.I ASCII Character Set

ASCII
EQUIVALENT FORMS HP-IB

Char. Dec Binary

NUL 0 00000000

SOH 1 00000001 GTL

STX 2 00000010

ETX 3 00000011

EOT 4 00000100 SOC

ENO 5 00000101 PPC

ACK 6 00000110

BEL 7 00000111

BS 6 00001000 GET

HT 9 00001001 TCT

LF 10 00001010

VT 11 00001011

FF 12 00001100

CA 13 00001101

SO 14 00001110

SI 15 00001111

OLE 16 00010000

DCl 17 00010001 LLO

DC2 18 00010010

DC3 19 00010011

DC4 20 00010100 DCl

NAK 21 00010101 PPU

SYNC 22 00010110

ETB 23 00010111

CAN 24 00011000 SPE

EM 25 00011001 SPD

SUB 26 00011010

ESC 27 00011011

FS 26 00011100

GS 29 00011101

AS 30 00011110

US 31 00011111

46 Character Sets

ASCII EOUIVALENT FORMS HP·IB
Char. Dec Binary

space 32 00100000 LAO

! 33 00100001 LAI

" 34 00100010 lA2

35 00100011 LA3

$ 36 00100100 LA4

% 37 00100101 LA5

& 36 00100110 LA6

39 00100111 LA7

(40 00101000 LA6

) 41 00101001 lA9

* 42 00101010 LA10

+ 43 00101011 LA11

, 44 00101100 LA12

- 45 00101101 LA13

46 00101110 LA14

I 47 00101111 LA15

0 48 00110000 LA16

1 49 00110001 LA17

2 50 00110010 LA18

3 51 00110011 LA19

4 52 00110100 LA20

5 53 00110101 LA21

6 54 00110110 LA22

7 55 00110111 LA23

8 56 00111000 LA24

9 57 00111001 lA25

58 00111010 LA26

. 59 00111011 LA27

< 60 00111100 LA28

= 61 00111101 LA29

> 62 00111110 LA30

? 63 00111111 UNL

Table D.I ASCII Character Set (cont.)

~

~

~

ASCII
EOUIVALENT FORMS

Hp·IB
Char. Dae Binary

(Il 64 01000000 TAO

A 65 01000001 TAl

B 66 01000010 TA2

C 67 01000011 TA3

0 68 01000100 TA4

E 69 01000101 TA5

F 70 01(100110 TA6

G 71 01000111 TA7

H 72 01001000 TA8

I 73 01001001 TA9

J 74 01001010 TAlO

K 75 01001011 TAIl

L 76 01001100 TAI2

M 77 01001101 TAI3

N 78 01001110 TA14

0 79 01001111 TAI5

P 80 01010000 TA16

a 81 01010001 TA17

R 82 01010010 TAI8

S 83 01010011 TA19

T 84 01010100 TA20

U 85 01010101 TA21

V 86 01010110 TA22

W 87 01010111 TA23

X 88 01011000 TA24

y 89 01011001 TA25

Z 90 01011010 TA26

[91 01011011 TA27

" 92 01011100 TA28

I 93 01011101 TA29

~ 94 01011110 TA30

- 95 01011111 UNT

ASCII
EQUIVALENT FORMS

Hp·IB
Char. Dec Binary

96 01100000 SCO

a 97 01100001 SCI

b 98 01100010 SC2

C 99 01100011 SC3

d 100 01100100 SC4

e 101 01100101 SC5

I 102 01100110 SC6

9 103 01100111 SC7

h 104 01101000 SC8

I 105 01101001 SC9

J 106 01101010 SCIO

k 107 01101011 SCll

I 108 01101100 SC12

m 109 01101101 SC13

n 110 01101110 SC14

0 III 01101111 SC15

P 112 01110000 SC16

Q 113 01110001 SCI7

r 114 01110010 SC18

5 115 01110011 SC19

I 116 01110100 SC20

U 117 01110101 SC21

y 118 01110110 SC22

w 119 01110111 SC23

x 120 01111000 SC24

y 121 01111001 SC25

Z 122 01111010 SC26

{ 123 01111011 SC27

I 124 01111100 SC28

I 125 01111101 SC29

- 126 01111110 SC30

DEL 127 01111111 SC31

Character Sets 47

Table D.2 Roman Character Set

ASCII EQUIVALENT FORMS

Char. Dec Binary

" 0 00000000u

1ft 1 00000001

~ 2 00000010

\ 3 00000011

'r 4 00000100

\ 5 00000101

" 6 00000110I(

~ 7 00000111,
8 00001000

1 9 00001001

'"
10 00001010

~ 11 00001011

'r 12 00001100

c 13 00001101R

" 14 00001110

~ 15 00001111

i 16 00010000

0, 17 00010001

~ 18 00010010

~ 19 00010011

'1 20 00010100

N 21 00010101IC

~ 22 00010110

.. 23 00010111

'F. 24 00011000

" 25 00011001, 26 00011010

~
27 00011011

IS 28 00011100, 29 00011101

" 30 00011110

" 31 00011111

48 Character Sets

ASCII EQUIVALENT FORMS

Char. Dec Binary

32 00100000, 33 00100001

II 34 00100010

35 00100011

$ 36 00100100

" 37 00100101

& 38 00100110

I 39 00100111

(40 00101000

) 41 00101001

* 42 00101010

+ 43 00101011

1 44 00101100

- 45 00101101

46 00101110

/ 47 00101111

0 48 00110000

1 49 00110001

2 50 00110010

3 51 00110011

4 52 00110100

5 53 00110101

6 54 00110110

7 55 00110111

8 56 00111000

9 57 00111001

: 58 00111010

j 59 00111011

< 60 00111100

• 61 00111101

> 62 00111110

? 63 00111111

ASCII EQUIVALENT FORMS

Char. Dec Binary

@ 64 01000000

A 65 01000001

B 66 01000010

C 67 01000011

0 68 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

J 74 01001010

K 75 01001011

L 76 01001100

H 77 01001101

N 78 01001110

0 79 01001111

P 80 01010000

Q 81 01010001

R 82 01010010

S 83 01010011

T 84 01010100

U 85 01010101

V B6 01010110

W 67 01010111

X 68 01011000

Y 89 01011001

Z 90 01011010

[91 01011011

\ 92 01011100

] 93 01011101

,., 94 01011110

- 95 01011111

ASCII EQUIVALENT FORMS

Char. Dec BInary

, 96 01100000

a 97 01100001

b 98 01100010

C 99 01100011

d 100 01100100

e 101 01100101

f 102 01100110

9 103 01100111

h 104 01101000

i lOS 01101001

j 106 01101010

lc 107 01101011

1 108 01101100

m 109 01101101

n 110 01101110

0 III 01101111

P 112 01110000

q 113 01110001

r 114 01110010

S 115 01110011

t 116 01110100

U 117 01110101

V 118 01110110

W 119 01110111

X 120 01111000

Y 121 01111001

Z 122 01111010

{ 123 01111011

I 124 01111100

} 125 01111101

- 126 01111110

127 01111111

Table D.2 Roman Character Set (cont.)

ASCII EQUIVALENT FORMS

Char. Dec Binary

160 10100000

A 161 10100001

A 162 10100010

t 163 10100011

! 164 10100100

it 165 10100101

:t 166 10100110

:'t 167 10100111

, 168 10101000

169 10101001

... 170 10101010

.. 171 10101011

.... 172 10101100

U 173 10101101

0 174 10101110

I: 175 10101111

- 176 10110000

IS 177 101100011

6 178 101100102

179 10110011

<; 180 10110100

~ 181 10110101

f:i 182 10110110

ft 183 10110111

i 184 10111000

l 185 10111001

a 186 10111010

£ 187 10111011

¥ 188 10111100

§ 189 10111101

! 190 10111110

¢ 191 10111111

ASCII EQUIVALENT FORMS

Char. Dec Binary

a 192 11000000

~ 193 11000001

0 194 11000010

Q 195 11000011

4 196 11000100

~ 197 11000101

6 198 11000110

U 199 11000111

~ 200 11001000

~ 201 11001001

0 202 11001010

U 203 11001011

a 204 11001100

e 205 11001101

0 206 11001110

i.i 207 11001111

A 208 11010000

t 209 11010001

0 210 11010010

.4 211 11010011

a 212 11010100

1 213 11010101

flJ 214 11010110

a: 215 11010111

Ji. 216 11011000

1 217 11011001

0 218 11011010

0 219 11011011

I!: 220 11011100

1 221 11011101

a 222 11011110

0 223 11011111

ASCII EQUIVALENT FORMS

Char. Dec Binary

A 224 11100000

X 225 11100001

a 226 11100010

D 227 11100011

d 228 11100100

1: 229 11100101

t 230 11100110

0 231 11100111

0 232 11101000

0 233 11101001

i5 234 11101010

a 235 11101011

§ 236 11101100

U 237 11101101

Y 238 11101110

Y 239 11101111

It 240 11110000

P 241 11110001

F 242 111100102

F 243 11110011J

F 244 11110100
4

F 245 111101015

- 246 11110110

1- 247 11110111

t 248 11111000

A 249 11111001

2 250 11111010

« 251 11111011

• 252 11111100

» 253 11111101

± 254 11111110

255 11111111

Character Sets 49

Table D.3 Katakana Character Set

ASCII EQUIVALENT FORMS

Char. Dec Binary

~~, ° OOOOOOOO

~ 1 00000oo1

~.: 2 00000010

~< 3 00000011

E, 4 00000100

r.,. 5 00000'0'

~: 6 00000110

D 7 00000111

E:.:: 8 00001000

H
9 00001001T

If 10 00001010

.....
11 00001011T

Fj= 12 00001'00

o~: 13 00001101

4) 14 00001110

'I 15 00001111

(:.. 16 00010000

(i. 17 00010001

(~ 18 00010010

(~: 19 00010011

(~ 20 00010100

r~: 21 00010101

~:.. 22 00010110

Ii: 23 00010111

';~ 24 00011000

F.. 25 00011001

:i: 26 00011010

~: 27 00011011

F::: 28 00011100

I~ 29 00011101

1",~ 30 00011110

I~ 31 00011111

50 Character Sets

ASCII EQUIVALENT FORMS

Char. Dec Binary

32 00100000

! 33 00100001

II 34 00100010

35 00100011

$ 36 00100100

~.~ 37 00100101

t.: 38 00100110

.' 39 00100111

, 40 00101000

", 41 00101001

* 42 00101010

+ 43 00101011

, 44 00101100

- 45 00101101

46 00101110

..' 47 00101111

(1 48 00110000

1 49 00110001

2 50 00110010

:~: 51 00110011

4 52 00110100

C'
53 00110101'-'

6 54 00110110

7 55 00110111

::: 56 00111000

";.I 57 00111001

: 58 00111010

, 59 00111011

60 00111100

= 61 00111101

62 00111110

.-,
63 00111111:

ASCII EQUIVALENT FORMS

Char. Dec BInary

@ 64 0100000o

A 65 01000001

E: 66 01000010

C 67 01000011

D 66 01000100

E 69 01000101

F 70 01000110

G 71 01000111

H 72 01001000

I 73 01001001

.] 74 01001010.... 75 01001011".

L 76 01001100

t01 77 01001101

t·~ 76 01001110

[I 79 01001111

F' 80 01010000

G! 81 01010001

F.: 82 01010010

~3 83 01010011

T 84 01010100

U 85 01010101

\11 86 01010110

lot 87 01010111

::< 88 01011000

0.... 89 01011001

Z 90 01011010

[91 01011011

¥ 92 01011100

] 93 01011101

.'. 94 01011110

- 95 01011111

ASCII EQUIVALENT FORMS

Char. Dec Binary

". 96 01100000

.:t 97 01100001

b 98 01100010

C 99 01100011

d 100 01100100

e:' 101 01100101

f 102 01100110

';I 103 01100111

h 104 01101000

i 105 01101001

j 106 01101010

k 107 01101011

1 108 01101100

m 109 01101101

n 110 01101110

CI 111 01101111

P 112 01110000

q 113 01110001

to. 114 01110010

.: 115 01110011

t 116 01110100

U 117 01110101

I.,.' 118 01110110

1...1 119 011 '011 1

':.:' 120 01111000

I.) 121 01111001

Z 122 011 11010

.: 123 01111011

I 124 011 11 100

: 125 01111101

"'.' 126 01111110

127 01111111

Table D.3 Katakana Character Set (cont.)

ASCII EQUIVALENT FORMS

Char. Dec Binary

NOTE 128 10000000

NOTE 129 10000001

NOTE 130 10000010

NOTE 131 10000011

NOTE 132 10000100

NOTE 133 10000101

NOTE 134 10000110

NOTE 135 10000111

NOTE 136 10001000

NOTE 137 10001001

NOTE 138 10001010

NOTE 139 10001011

NOTE 140 10001100

NOTE 141 10001101

NOTE 142 10001110

NOTE 143 10001111

~F' 144 10010000

~F' 145 10010001

~F' 146 10010010

fF, 147 10010011

fF, 148 10010100

fF, 149 10010101

fF, 150 10010110

fF· 151 10010111

~F' 152 10011000

fF, 153 10011001

fF, 154 10011010

fF, 155 10011011

fF· 156 10011100

fF· 157 10011101

~F' 158 10011110

~F' 159 10011111

ASCII EQUIVALENT FORMS

Char. Dee Binary

160 10100000

a 161 10100001

r 162 10100010

J 163 10100011

164 10100100

165 10100101

? 166 10100110

7 167 10100111

,f 168 10101000

~ 169 10101001

:I: 170 10101010

::f 171 10101011

to 172 10101100

.J. 173 10101101

3 174 10101110

'" 175 10101111

- 176 10110000

7 177 10110001

·1 178 10110010

') 179 1011001 I

I 180 10110100

::1 181 10110101

:tJ 182 10110110

T 183 10110111

:J 184 10111000

) 185 10111001

:J 186 10111010

t.t 187 10111011

:.' 188 10111100

-::' 189 101 I 1101

t 190 10111110

') 191 10111111

ASCII EQUIVALENT FORMS

Char. Dee Binary

';:J 192 11000000

f 193 11000001

I ~.1 194 11000010

j- 195 11()()O1)ll

~. 196 11000100

t 197 11000101

- 198 11000110-
::.:' 199 1100011 I

...
200 11001000·t,

) 201 11001001

1"1 202 11001010

t 203 11001011

J 204 11001100

..
205 11001101

ito 206 11001110

~ 207 11001111

-, 208 11010000

.::. 209 11010001

... 210 11010010

"= 211 11010011

1"" 212 11010100

1 213 11010101

=:J 214 11010110

7 215 11010111

I) 216 11011000

1[· 217 11011001

[. 218 11011010

0 219 1101 lOll

r) 220 11011100

- 221 I lOll 101

222 11011110

D 223 11011111

ASCII EQUIVALENT FORMS

Char. Dec Binary

IF' 224 11100000

fF, 225 11 100001

fF, 226 11100010

IF' 227 11100011

~F' 228 11100100

~F' 229 11100101

fF, 230 11100110

fF, 231 1110011 I

fF, 232 11101000

fF, 233 11101001

fF, 234 11101010

~F' 235 11101011

fr 236 11101100

fF, 237 11101101

fF, 238 11101110

fF, 239 11101111

fF, 240 11110000

~F' 241 11110001

'F' 242 11110010

fF, 243 11110011

'F' 244 11110100

'F' 245 11110101

fF, 246 11110110

~F' 247 11 I 10111

~F' 248 11 I I 1000

'F' 249 11111001

fF, 250 11111010

ff' 251 11111011

IF' 252 11111100

If' 253 11111101

If' 254 11111110

rn 255 1I 111111

Character Sets 51

52 Character Sets

Glossary

16-bit character set

8-bit character set

applications program

applications programmer

ASCII

bit

byte

character

character set

collating sequence

command

command interpreter

comment

compiler

control character

formed from pairs of ROMAN8 printable 8-bit characters. This al
lows representation of up to 35344 characters, as would be needed
to support Chinese, Japanese, and Korean languages.

an extended ASCII (American Standard Code for Information In
terchange) set. The characters include letters, numbers, punctua
tion, control characters, and foreign character sets.

a program that typically has a better user interface than the op
erating system and performs a specific application.

a person who writes programs for an end-user.

American Standard Code for Information Interchange. A 128
character set represented by 7-bit binary values. (ASCII does not
define the value of the eighth bit.)

a contraction of BInary digiT. A bit can have a value of 0 or 1.

a unit of data storage consisting of 8 bits. A byte can represent
one ASCII, KANA8, or ROMAN8 character.

a language unit, usually consisting of 7 (ASCII) or 8 (KANA8,
ROMAN8) bits.

a set of characters used in a programming language or computer.
They can differ in size, character type and collating sequence.

the ordering sequence assigned to characters or a group of char
acters when they are sorted and ordered by a computer.

a program which is executed by the shell command interpreter.
Arguments following the command name are passed on to the
command program. You can write your own command programs,
either as compiled programs or as shell scripts (written in the shell
command language).

a program that reads lines typed at the keyboard or from a file,
and interprets them as requests to execute other programs. The
command interpreter for HP-UX is called the shell.

an expression used to document a program or routine that has no
effect on the execution of the program.

a program that translates a high-level language into machine
dependent form.

a member of a character set that produces action in a device other
than a printed or displayed character. In ASCII, control characters
are those in the code range 0 thru 31, and 127. Control characters
are generated by simultaneously pressing a displayable character
key and ICNTLI.

Glossary 53

default search path

device

directory

downshifting

editor

end-user

environment

file name

ideogram

ideographic

1807'

KANAB

Kanji

Katakana

LANG

54 Glossary

the sequence of directory prefixes that sh, time, and other HP-UX
commands apply when searching for a file known by an incomplete
path name. It is defined by PATH in environ. login sets PATH
= :bin:/usr/bin, which means that your working directory is the
first directory searched: followed by /bin, followed by /usr/bin.

a piece of peripheral equipment, usually used to input or output
data.

a file used to catalog other files on a mass storage medium. Each
directory contains entries for its own unique files. The directory
information includes name, type, length, location, and protection.

a peripheral's provision for producing lowercase letters by using
the IShiftl key (on most keyboards).

a program that allows you to create and modify text files based
on text and commands entered from a terminal.

a person who uses existing programs and applications.

the set of conditions (snch as your working directory, home direc
tory, and type of terminal you are using) that exist when you log
in.

a sequence of 14 or fewer characters which uniquely identifies a
file in a directory. Any character except. "I" can be used.

Hewlett-Packard's implementation of the ISO's (International ~
Standard Organization) 8-bit character code set.)

Hewlett-Packard's implementation of the ISO's (International
Standard Organization) 16-bit character code set.

the use of graphic symbols to represent ideas.

representing an idea by use of a character or symbol rather than
a word; the use of ideograms.

International Standards Organization 7-bit character substitu
tion. The character graphics associated with some less-used ASCII
codes are changed to other characters needed for a particular lan
guage.

the Hewlett-Packard supported 8-bit character set for support of
phonetic Japanese (Katakana).

the Japanese ideographic character set based on Chinese charac
ters. The set consists of roughly 50,000 characters.

The Japanese phonetic character set typically used in traditional ')
data processing, telegrams, or to express foreign things and names.
The set consists of 64 characters including punctuation.

the Unix environment variable (LANGuage) that should be set to
the American English name of the native language desired.

library

library routine

local customs

localization

message catalog

message catalog system

native language

natural language

NLS

operating system

parameter

path name

peripheral

pre-localization

program

a set of subroutines contained in a file that can be accessed by a
user program.

one of a collection of programs within the HP-UX operating sys
tem. Each routine performs a unique task.

refers to a region's local conventions such as date, time, and cur
rency formats.

the adaptation of software for use in different countries or local
environments.

the external file containing prompts, responses to prompts, error
messages, and mnemonic command names in the user's native
language.

a set of tools developed by Hewlett-Packard to extract print state
ments from C programs and place them in the message catalog.

a person's or user's first language (learned as a child) such as
Japanese, Finnish, or American English.

the spoken or written language as opposed to a computer imple
mentation of a language.

Native Language Support. The Hewlett-Packard model that pro
vides capabilities for reducing or eliminating the barriers that
would make HP-UX difficult to use in a native language.

a program which manages the computer's resources. It provides
the programmer with utilities, including I/O routines, peripheral
handling routines, and high-level languages.

in a program, a quantity that may be given different values. It
is usually used to pass conditions or selected information to a
subroutine that is used by different main routines or by different
parts of one main routine. Its value frequently remains unchanged
throughout anyone such use.

a sequence of directory names separated by slashes (f), and ending
in a file name (any type).

a device connected to the computer's processor that is used to
accept information from or provide information to an external
environment.

modification to application programs before compilation to make
use of language-dependent library routines and to ensure that 8
bit data can be handled properly.

a sequence of instructions to the computer, either in the form of
a compiled high-level language or a sequence of shell command
language instructions in a text file.

Glossary 55

prompt

pseudo-teletype

pty

radix character

ROMANS

root directory

shell

shell script

space

standard input

standard output

string

supported language

syntax

teletype

teletypewriter

56 Glossary

a character displayed by the system on a terminal indicating that
the previous command has been completed and the system is ready
for another command. It is usually a "$" or "%", but can be
redefined to any character string.

a pair of interconnected character devices; a master device and a
slave device. Anything written on the master is given to the slave
as input and anything written on the slave is presented as input
to the master.

abbreviation for pseudo-teletype.

the actual or implied character that separates the integer portion
of a number from the fractional portion.

the Hewlett-Packard supported 8-bit character set for Europe. It
includes all of ASCII plus those characters necessary to support
the major western European languages.

the highest level directory of the hierarchical file system, in which
other directories are contained. In HP-UX, the "I" refers to the
root directory.

the shell is both a command language and a programming lan
guage that provides the user-interface to the HP-UX operating
system.

a sequence of shell commands and shell programming language
constructs, usually stored in a text file, for invocation as a user ~
command (program) by the shell.

a blank character. In ASCII a space is represented by character
code 32 (decimal).

the source of input data for a program. The default standard input
is the terminal keyboard, but the shell may redirect the standard
input to be from a file or pipe.

the destination of output data from a program. The default stan
dard output is the terminal CRT, but the shell may redirect the
standard output to be a file or pipe.

a connected sequence of characters, words, or other elements.

the computer-implemented version of a written or spoken lan
guage.

the rules governing sentence structure in a spoken language, or
statement structure in a computer language such as that of a com
piler program.

a trademark for a form of teletypewriter.

a peripheral for telegraphic data communication with a computer.

upshifting

USAscn
variable

working directory

a peripheral's provision for producing uppercase letters by using
the IShiftl key (on most keyboards).

A less common name for ASCII. See ASCII.

a storage location for data.

the directory in which you currently reside. Also, the default
directory in which path name searches begin, when a given path
name does not begin with "I".

Glossary 57

58 Glossary

If)

Index

a
\Accessing NLS Features 17
Active Set 12
Alternate Set 12
ASCII, 7-bit 6,7,9,11,39,53
Aspects of NLS:

Character Set Support 6-7
Introduction of 6-8
Local Customs 7
Messages 7

atof 23

b
Backslash 34
Backspace 34
Base Set 12
Bit Pattern 34

c
C:

Accessing Message Catalogs from 35
Example Program 1 24
Example Program 2 25
Key Words 6
Library /usr/lib/libc.a 41
Library Routines 15,17
Message Catalog Commands 27,28

Carriage Return 34
Case 6
Character Code:

16-bit 6
8-bit 6

Character Set Support Model:
Active Set 12
Alternate Set 12
Base Set 12
ID Field 12

Character Set Support:
16-bit 6
7-bit 6
8-bit 6
By Peripherals 43

Collating Sequences 7
Directionality of Text 7
Introduction of 6-7
Language Num and Name 13

Character Set:
7-bit 9 ")
8-bit 9,12
8-bit Compatible 9
8-bit Structure 9
8-bit Support Model 12
European 43
Extended 9
ID Numbers 12
Japanese 6,7,43
KANA8 6,10,11,43,54
Names 12
ROMAN8 6,7,10,43,56
Support By Peripherals 43
Supported 13

Characters:
Control 9
Escape Sequences 12,34
Extended Control Characters 9 ~
Extended Printable 9)
Printable 9
Shift In 12
Shift Out 12

Collating Sequences 7,15,53
Commands:

dumpmsg 17,28
findmsg 17,28
findstr 17,28,30,31,36
Fully Localized 8,39
gencat 17,28,30,33,37
HP-UX NLS 17,39-40
Incorporating NLS into 29
insertmsg 17,28,30,31,36
Message Catalog 28
NLS Compatible HP-UX 39-40
Pre-localization 39
See Routine 68 ~

Compatible,8-bit 9,39 . }
Configuration File, jusrjlibjnlsjconfig 15
Control Codes 9
conv(3C) 20
ctime(3C) 19,24
ctype(3C) 21
currlangid 21,22,24

d
date(l) 19
Directionality of Text 7
Directory:

/bin 15
/usr/bin 15
/usr/include 19
/usr/lib 15
/usr/lib/nls 20

Downshifting 13,54
dumpmsg 17,28

e
Escape Sequence:

Backslash 34
Backspace 34
Bit Pattern 34
Carriage Return 34
Character 12
Form Feed .. 34
Horizontal Tab 34
Newline 34

European Character Set .. 43
evct(3C) 20
Extended:

Character Sets 9
Control Characters 9
Printable Characters .. 9

f
File:

Format of Source Message File 34
.login 16
.profile 16
/etc/profile 16
/usr/lib/nls/config 15
langinfo.h 19
Language Configuration 15
Localized Message 27
msgbuf.h 19
nl_ctype.h 19
System Organization of 35

findmsg 17,28
findstr 17,28,30,31,36
Form Feed .. 34

FORTRAN 17,27,35
fprintf 25
fprintmsg 22,25,28,35
Fully Localized Commands 8,39

9
gencat 17,28,30,33,37
getmsg(3C) 21,28
GMT (Greenwhich Mean Time) 7,16

h
Header Files 19
Horizontal Tab 34
HP-UX:

NLS Commands .. 17,39-40
Non-NLS Library Calls 41
Portability Guide 3,17,35
Reference Manual 3,19,35,39
System Administrator Manual 3,16

i
ID:

Field 12
Numbers 12

Ideograms 7,54
Ideographic 6,7,54
idtolang 21,22
insertmsg 17,28,30,31,36
IS07 (7-bit Substitution) 43
ISV's (Independent Software Vendors) 1

j
Japanese Character Set 43 ~
JASCII 43 J

k
KANA8 6,10,11,43,54
Kanji 6,54
Katakana 6,43,54

I
LANG (LANGuage) 15,16,24,35,37,38,54
langid(7) 20,21,22
langinfo(3C) 19,21
langinfo.h 19
langtoid 21
Language:

Configuration File 15
Configuring .. 16
Definition of 16
Family 13
Name 13
Native 5,55
Natural 13,55
Number 13
Supported 13,56

Library:
C Routines 15,17
NLS Routines 19-23,41
Non-NLS 41
Support for NLS 17

Local Customs:
Currency Units 7
Day and Week Names 7
Definition of 5,55
Introduction to 7
Representation of Numbers 7
Time 7

Localization:
6 Steps 36-37
Definition of 5,55
Steps for Simplifying the Process 28

Localized Message File:
Definition of 8
Example of 36-37
Introduction to 27-28

Localized:
Fully 8,39
Message File 8,37
Output 36-37

m
m (Message File Line) 34
Manual Page:

conv(3C) 20
ctime(3C) 19,24
ctype(3C) 21
date(l) 19
evct(3C) 20
getmsg(3C) 21,28
langid(7) 20,21,22
langinfo(3C) 19,21
nl_conv(3C) 20,24
nl_ctype(3C) 20,24
nLstring(3C) 23,24
printf(3S) 7,22,25,35
printmsg(3C) 22,25,28
strod(3C) 23

Message Catalog Command:
findstr 17,28,30,31,36
gencat 17,28,30,33,37
insertmsg 17,28,30,31,36

Message Catalog System:
Definition of 29,55
Introduction to 27-36

Message Catalog:
Accessing 35
Commands 28
Creating 29
Definition of 8,55
Flowof 30
Naming Conventions 35

Message File Line:
$ comment 34
$delset n comment 33,34
$set 34
m message text 34

Message File:
/usr/lib/nls/$LANG/hello.cat 37
/usr/lib/nls/american/hello.cat 37
/usr/lib/nls/german/hello.cat 38
Format of 34

Messages 8
msgbuf.h 19

n
Native Language:

Configuring 66
Definition of 5,55
Supported 13

native-computer 13,15,16,22
Natural Language 13,55
Newline 34
NLS:

Accessing Features of 17
Aspects of 6-7
Compatible HP-UX Commands 39-40
Configuring the Native Language 16
Definition of 5,55
File Hierarchy 15
Header Files 19
HP-UX Commmands 17
Introduction to 5-13
Library Routines 19-23,41
Library Support for 17,41
Non-NLS HP-UX Library Calls 41
Programming With 19-25
Scope of 6-8
What It Is? 5
Who Will Use It? 1

nl_asctime 19
nl_atof 23,24
nl_catopen 35,37
nl_conv(3C) 20,24
nl_ctime 19,24
nl_ctype(3C) 20,24
nl_ctype.h 19
nl_gvt 20
nl_isalnum 20,21
nl_isalpha 20,21
nl_isgraph 20,21
nl_islower 20,21
nl_isprint 20,21
nl_ispunct 20,21
nl_isupper 20,21
nl_string(3C) 23,24
nl_strtod 23,24
nl_tolower 20
nl_toupper 20

o
OEM's (Original Equipment Manufacturers) 1
opinstall 16

p
Pascal 17,27,35
Pathname:

/usr/lib/nls/$LANG 15
/usr/lib/nls/$LANG/collate8 15
/usr/lib/nls/$LANG/ctype 15
/usr/lib/nls/$LANG/info.cat 15
/usr/lib/nls/$LANG/shift 15
/usr/lib/nls/german/prog.cat 35
/usr/lib/nls/language/filename.cat 35
/usr/lib/nls/n-computer/prog.cat 35
/usr/lib/nls/spanish/prog.cat 35

Peripheral Localization Summary 43
Pre-localization:

Commands 39-40
Definition of 8,55

Pre-localized:
8-bit Compatible 39
Commands 8,15,39

Printable Characters .. 9
printf(3S) 7,22,25,35
printmsg 22,25,28,35
Program:

C Example 1 24
C Example 2 25
Example of Localization 36-37
Localizable 27

r
Roman Extension 43
ROMAN8 6,7,10,43,56
Routine:

C 15,17
ctime 19,24
currlangid 21,22,24
fprintf 25 ~
fprintmsg 22,25,28,35
getmsg 21,28
idtolang : 21,22
langid 20,21
langinfo 15,19,21
langtoid 21

Message Catalog Specific 28
nl_asctime .. 19
nl_atof 23,24
nl_catopen 35,37
nl_ctime 19,24
nl_ctype 20,24
nl_gvt 20
nl_isalnum 20,21
nl_isalpha 20,21
nl_isgraph 20,21
nl_islower 20,21
nl_isprint 20,21
nl_ispunct 20,21
nl_isupper 20,21
nl_strtod 23,24
nl_tolower 20
nl_toupper 20
opinstall 16
printf 22,25
printmsg 22,25,28,35
sprintf 25
sprintmsg 22,25,28,35
strcmp16 23
strcmp8 23
strncmp16 23
strncmp8 23
tolower 20
toupper 20

S
Scope of NLS 6-8
Shift In 12
Shift Out .. 12
sprintf 25
sprintmsg 22,25,28,35
strcmp16 23
strcmp8 23
strncmp16 23
strncmp8 23
strod(3C) 23

t
tolower :.............................. 20
toupper 20
TZ (Time Zone) 16

U
Upshifting 5,13,57

'~

r
Table of Contents
Using Curses and Terminfo

Introduction 1
Display Data Handling 2

Output Data Structure .. 2
Applications Program Structure 3
Applications Program Operation 5

Keyboard Input 6
Keypad Character Handling 7
Keyboard Input Program Example 9

Display Highlighting 10
Multiple Windows 13

Pads 13
Creating Windows 14
Using Multiple Windows 14
Subwindows 16

Multiple Terminals 17
Low-Level Terminfo Usage 19
A Larger Example 21

Use of Escape in Program Control 22
Program Routines 23

Program Structure Considerations 24
Terminal Initialization Routines 25
Option Setting Routines 25
Terminal Configuration Routines 27
Window Manipulation Routines 28
Terminal Data Output Routines 29
Window Writing Routines 29
Window Data Input Routines 31
Terminal Data Input Routines 31
Video Highlighting Attribute Routines 32
Miscellaneous Functions 33

curses Routines 34
Description of Routines 36
Terminfo Routines 55
Termcap Compatibility Routines 57
Program Operation 58

Insert/Delete Line 58
Additional Terminals 58
Multiple Terminals 59

ii

Video Highlighting 60
Special Keys 62
Scrolling Regions 63
Mini-Curses 63
TTY Mode Functions 64

Example Programs 66
SCATTER 66
SHOW 67
HIGHLIGHT 68
WINDOW 70
TWO 71
TERMHL 73
EDITOR 75

Subject Index

~..,..,.,..,

Using Curses
and Terl11info

r Introduction
This tutorial describes the operation of curses{3x} and terminfo{5}. It is intended for use
by programmers who are interested in writing screen-oriented software using the curses
package. curses uses terminfo when interacting with a given terminal in the system and
when formatting display data for subsequent output to the terminal display.

curses is a versatile cursor and screen control package that has many capabilities. It
is designed to efficiently utilize terminal screen control and display capabilities, thus
limiting its demand for computer CPU resources. It can create and move windows and
subwindows, use display highlighting features, and support other terminal capabilities
that enhance visual interaction with display terminal users. All interaction with a given
terminal is tailored to the terminal type which is obtained from the environment variable

·TERM).

curses also interacts with the terminal keyboard, and can handle user inputs. Its ability
to handle keys that produce multi-character sequences (such as arrow keys) as ordinary
keys can be used to add versatility to application programs.

Using Curses and Terminfo 1

Display Data Handling

Output Data Structure
curses uses data structures called windows to collect display text, then transfers the)
data structures to the terminal display screen during execution of refresh routines. Each
window contains a two-dimensional data array for storing text and character highlighting
attributes. Other data structures associated with the window contain the current cursor
position and various pointers, and fill other curses needs.

Two windows are always present when curses is active. Current screen is named curscr
for programming purposes, and represents the current screen. It is used as a reference
when optimizing output operations to the CRT screen. The standard screen window,
named stdscr, is the default destination for all text output operations that are not directed
to a window specified in the function. Both CUTSCT and stdscr have the same row and
column dimensions as the physical display screen.

Additional program-definable windows can be created and dimensioned as programming
needs dictate. Such windows can be any size, provided they do not exceed the rowand/or
column capacity of the physical display screen.

When a program requires a window that is larger than the available display screen, pads
are used. Pads have the same structure and characteristics as a window, but they can
be any size within the limits of reasonable memory usage (each pad requires two bytes
per character position plus data structure overhead).

Text and Highlighting Data Format
Every window data structure contains, among other things, a two-dimensional array of
16-bit data words, each word corresponding to a displayable character in the window.
Seven bits in each 16-bit word contain the 7-bit character code of the character associated
with the corresponding screen display position. The remaining nine bits specify which
highlighting attributes, if any, are to be used when the character is displayed. The
window data structure also contains a set of current attributes that are used to form
the attribute bits as each word is placed in the array by addch or its equivalent. If text
highlighting is to be changed for a given character or set of characters, an update to
the current attribute set must be performed by attrset (or its equivalent) before addch is
performed. The beginning default attribute set disables all highlighting.

2 Using Curses and Terminfo

Applications Program Structure
Consider the following example of an application program structure that uses curses:

#include <curses.h>

initscr(); /* Initialization */

cbreak();/* Various optional mode settings */
nonlO;
noechoO;

while (!done) {/* Main body of program */

/* Sample calls to draw on screen */
move(row,col);
addch(ch);
printw(IIFormatted print with value %d\n ll

, value);

/* Flush output */
refreshO;

}

endwin();/* Clean up */
exit(O);

One of curses' major advantages is its ability to optimize the process of updating termi
nal screen contents, thus reducing the demand for CPU and I/O resources by reducing
the amount of data handling required for requested changes in displayed text. This is
accomplished by comparing the current screen contents with the window being trans
ferred, then transmitting only those text and control characters that are needed to most
efficiently update the screen. Other screen contents remain undisturbed.

NOTE

Most terminals are equipped with hardware scrolling whose oper
ating characteristics make it impossible to write characters in the
extreme lower right-hand character position.

Using Curses and Terminfo 3

In order to optimize screen updates, curses must have access to a data base that reflects
current screen contents. When an application program starts execution, the current
screen is unknown. To provide a starting current screen reference, a screen clearing
operation must be set up early in the program by a call to initscr(} which identifies the ~
terminal, initializes data structures, and enables the clearok option in curses so that theY
screen is cleared during the first refresh operation in the program. Upon completion of
the first refresh operation, the terminal screen is an exact replica of the text stored in the
current screen data base. Use of initscr(} in a typical program is shown in the preceding
sample program structure example.

When initialization is complete, other operating modes and options can be selected as
dictated by program needs. Available operating modes include cbreak(} and idlok(stdscr,
TRUE) which are explained in detail later. During program execution, screen output is
handled through routines such as addch(ch) and printw(fmt,args). They are equivalent
to putchar and print/, respectively, but use curses in addition to the usual other system
facilities. Cursor and character positioning are performed by move and other similar
calls.

All of the routines mentioned send their output to program-specified window data struc
tures; not directly to the display screen. The window data structure represents all or
part of a CRT display screen, and contains the following items: ~

• An array of characters to be displayed on the screen area defined by the window
boundaries,

• Present cursor location,

• Current set of video attributes, and

• Various operating modes and options.

There is little need to be concerned with windows (unless you use several windows during
program operation), except to recognize that the data structure corresponding to a given
window acts as a buffer/data accumulator for display output requests.

Accumulated contents of a window data structure are sent to the display screen by
use of refresh(} or an equivalent function for windows and pads (functionally similar
to a flush). curses considers many different ways of handling the output operation,
taking into account the various available terminal characteristics, similarities between
the current screen display and the desired pattern, and other factors. Refresh operations
are usually handled using as few characters as possible, but not always.

4 Using Curses and Terminfo

When the application program is finished, certain clean-up operations should be per
formed before termination. While the amount of clean-up needed varies, depending on
program structure and capabilities, termination should always include a call to endwin().
endwin() restores all terminal settings to their original state prior to program execution,
places the cursor at the bottom left corner of the screen, and dismantles data structures
that are no longer needed.

Among the example programs at the end of this tutorial is a program named scatter
that reads a file and displays the file contents in random order on the CRT display
screen. While some application programs assume that terminals have twenty-four 80
character lines of available display space, many terminals do not. To accommodate
display terminals having various screen sizes, the variables LINES and COLS are defined
by initscr to specify the current screen size. Application programs should always use
screen-size variables rather than assuming a 24x80 display screen.

Applications Program Operation
During program operation, no data is output to the display terminal until refresh is called.
Instead, program routines such as move and addch place data in a window data structure
called stdscr (standard screen) that is maintained by curses. curses also maintains a
replica of what is on the current physical screen in curscr for updating purposes.

When refresh or an equivalent function is called, curses compares the curscr window
with what is presently contained in stdscr (or other specified window or pad). The
results of the comparison are combined with terminal hardware capabilities to construct
character streams that most efficiently update the physical display to the desired contents.
Available terminal capabilities are considered while comparing stdscr and curscr so that
the most efficient means of updating the screen can be determined. This sequence is
referred to as cursor optimization, and is the basis for naming the curse,., package. During
the update operation, curscr is also changed to reflect the contents of the updated screen.

Using Curses and Terminfo 5

Keyboard Input
curses capabilities include more than screen writing functions. Several keyboard input
functions are also supported, including special handling of certain keys that normally ~

generate a sequence of two or more characters (usually an escape code followed by a ,
single character~ but not always). Such keys can then be treated as ordinary single
character keys for improved programming versatility.

The most commonly used keyboard input function is getch() which waits for the terminal
user to type a character on the terminal keyboard, then returns the character to the
calling program. getch is similar to getchar, except that it uses curses instead of other
HP-UX facilities. getch is particularly useful in programs that use cbreak() or noecho()
options because getch supports several terminal- and system-dependent options that are
not accessible through getchar. Available getch options include:

• keypad enables programmers to use non-typing keys such as arrow keys, function
keys, and other special keys that transmit escape sequences or other multi-character
sequences as ordinary single-character keys. Keypad character code length requires
16-bit integer variables for storage.

• nodelay enabled option causes getch to return immediately with the value -1 if no
input character is waiting. This avoids program delays that would otherwise result
when no response from the terminal is available.

• getstr can be used to input an entire string of characters up to a newline instead of a
single character. It also handles echo, erase, and kill character functions associated
with the input operation.

Example programs at the end of this tutorial show how these options are used.

6 Using Curses and Terminfo

Keypad Character Handling
When keypad is enabled, keypad character sequence conversion tables in the terminfo
data base are used to map keypad character sequences into corresponding single, 16
bit character form. Each supported keypad key must produce a unique character or
character sequence when pressed. All convertible sequences must be included in the
terminfo data base. If any sequence is absent from the table, it cannot be converted,
so it is handled in unaltered form. The following special keys are assigned the values
and names indicated. Some of the keys listed may not be supported on given terminals,
depending on the terminal model and its internal operating characteristics, and whether
the conversion sequence is in terminfo.

NOTE

Keypad character codes do not fit in a normal 8-bit data element.
Therefore a char variable cannot be used. Use a larger (16-bit)
variable for storing and handling keypad character codes.

Using Curses and Terminfo 7

Keypad Character Code Values

Character
Name Octal Value Key name

KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 Down Arrow key
KEY_UP 0403 Up Arrow key
KEY_LEFT 0404 Left Arrow key
KEY_RIGHT 0405 Right Arrow key
KEY_HOME 0406 Home Up (to upper left corner) key
KEY_BACKSPACE 0407 Backspace key (unreliable)
KEY_FO 0410 Function Key 0
.
KEY_F(n) 041O+(n) Function Key (n)
KEY_DL 0510 Delete Line key
KEY_IL 0511 Insert Line key
KEY_DC 0512 Delete Character key
KEY_IC 0513 Insert Character or Enter Insert Mode key
KEY_EIC 0514 Exit Insert-character Mode Key
KEY_CLEAR 0515 Clear Screen key
KEY_EOS 0516 Clear to End-or-Screen key
KEY_EOL 0517 Clear to End-of-line key
KEY_SF 0520 Scroll Forward 1 Line
KEY_SR 0521 Scroll Reverse (backwards) 1 line
KEY_NPAGE 0522 Next Page key
KEY_PPAGE 0523 Previous Page key
KEY_STAB 0524 Set Tab key
KEY_CTAB 0525 Clear Tab key
KEY_CATAB 0526 Clear All Tabs key
KEY_ENTER 0527 Enter or Send key (unreliable)
KEY_SRESET 0530 Soft (partial) Reset key (unreliable)
KEY_RESET 0531 Reset or Hard Reset key (unreliable)
KEY_PRINT 0532 Print or Copy key
KEY_LL 0533 Home Down (to lower left) key

8 Using Curses and Terminfo

Keyboard Input Program Example
The example program show at the end of this tutorial contains an example use of getch.
Show displays a file, one screen at a time; advancing to the next page each time the space
bar is pressed. Nearly any exercise for curses can be created by constructing an input
file that contains a series of 24-line pages~ each page varying slightly from the previous
page.

In the show program:

• cbreak is used so that only the space bar need be pressed (use of RETURN is
unnecessary) .

• Noecho is used to prevent the character transmitted by the space bar from being
echoed during refresh calls so that refresh operations are not adversely affected.

• nonl is called to enable additional screen optimization.

• idlok allows insert and delete line. This capability helps streamline updates in some
instances~ but produces undesirable effects in other cases. Therefore an option to
allow or disallow the capability has been provided.

• clrtoeol clears from cursor to end of current line.

• clrtobot clears from cursor to end of current line, then clears all subsequent lines to
the bottom of the screen.

Using Curses and Terminfo 9

• Bold (bit 12):
A_BOLD = 0010000

• Invisible (bit 13):
A_INVIS = 0020000

• No print or display (bit 14):
A_PROTECT = 0040000

• Alternate Character Set (bit 15):
A_ALTCHARSET = 0100000

Display Highlighting
curses supports nine highlighting attributes, each of which has a corresponding 16-bit
integer constant named in the include file <curses .h>. The value of each constant is
selected such that one bit (corresponding to the attribute) in the 16-bit integer is set while
all other bits are cleared. Here is a list of the nine attributes with their corresponding
enable-bit positions. The name and octal value of each constant is also shown (note that
only six digits are needed to represent the 16-bit value; the leading zero identifies the
constant as an octal value).

• Standout (bit 7):
A_STANDOUT = 0000200

• Underlining (bit 8):
A_UNDERLINE = 0000400

• Inverse Video (bit 9):
A_REVERSE = 0001000)

• Blinking (bit 10):
A_BLINK = 0002000

• Dim (bit 11):
A_DIM = 0004000

addch and waddchr store window characters as 16-bit data words where the lower seven
bits (0-6) of each word contain the character code and the upper nine bits (7-15), when
set, enable the corresponding display highlighting attributes when that character is dis
played on a terminal. Each attribute bit corresponds to one of the highlighting functions
listed above. Obviously, any selected highlighting feature that is not available on a given
terminal cannot be used even though the capability is standard fare for curses. How
ever, when a requested attribute is not available on a given terminal, curses attempts to
identify and use a suitable substitute. If none is possible, the attribute is ignored.

Three other constants in <curses. h> are also useful:

• A_NORMAL (value = 0000000) can be used as an argument for attTset to disable all
attributes. attrset(A_NORMAL) is equivalent to attrset(O), but more descriptive.

• A_ATTRIBUTES has an octal value of 0177600. It can be used in a bit-level logical AND
to remove character bits, isolating the attributes attached to a given character.

• A_CHARTEXT has an octal value of 0000177. It is useful in a bit-level logical AND to
discard all except the lower seven bits of the data word; in effect, separating the .,
character from its highlighting attributes.

10 Using Curses and Terminfo

~'

curses maintains a set of current attributes for each window. Whenever text is being
placed in a given window by the program, the current attribute bits for the selected
window are added to each character of text data, forming a 16-bit word for each character
handled. To select a specific combination of attributes, a program call to attrset (or
attron) with new attribute values must precede text output to the window. This can
be used to enable one or more attributes when all were previously disabled, disable all
currently enabled attributes (attrset(O)), or change the current set to any other new
current set.

To enable one or more attributes in the current set without altering other active or
inactive attributes, call attron. A call to attroff performs the opposite function, disabling
the selected attributes without disturbing any other attributes in the current set.

curses always uses current attribute values, so a call to attrset, attron, or attroff (or their
related window functions) must be used whenever you begin, end, or change any selected
highlighting option. Here is an example program segment that illustrates how to set a
word in boldface then restore normal display attributes for remaining text:

printw(lIA word in II);
attrset(A_BOLD);
printw(lI boldface ll

);

attrset(O);
printw(1I really stands out.\n ll);

refreshO;

In this example, the space characters before and after the word boldface are included in
text blocks outside (before and after) the attrset calls. This technique prevents curses
from applying display highlights to the spaces, thus avoiding possible undesirable effects;
especially in situations where curses attempts to substitute an alternative for unavailable
highlighting features.

The attribute A_STANDOUT offers unique program flexibility. In many interactive programs,
displayed text needs to be enhanced to attract attention. However, it is not critical that
the text be displayed with specific attributes. Many multi-terminal systems contain var
ious terminal models that do not support identical highlighting features. For versatility,
A_STANDOUT uses the terminal characteristics stored in the terminfo data base to determine
the most pleasing highlighting feature available on the terminal being addressed (usually
bold or inverse video), then uses that feature when sending corresponding text to the se
lected window on the terminal display screen. Two functions, standout() and standend()
are provided so you can conveniently enable and disable A_STANDOUT highlighting.

Using Curses and Terminfo 11

attrset can be used to select only one (such as A_BOLD, shown in the earlier example in
this section) or multiple attributes (such as A_REVERSE and A_BLINK for blinking inverse
video). To change only one attribute or a certain combination of attributes while leaving
the others undisturbed, use attron() and attroff().

The example program highlight at the end of this tutorial demonstrates typical use of
attributes. The program uses a text file as input, and embedded escape sequences in
the file to control attributes. In the example program, \U enables underlining, \B selects
bold, and \N restores normal text. An initial call to scrollok allows the terminal to scroll
if the text file exceeds the capacity of a single display screen. When scrollok is active,
if any text extends beyond the lower screen boundary, curses automatically scrolls the
internally stored window up one line, then calls refresh to update the terminal display
screen each time a line of input text exceeds the lower screen boundary. The scrolling
process continues until end-of-file is reached on the input file.

The highlight program comes about as close to being a filter as is possible with curses.
It is not a true filter because curses interacts directly with the terminal screen. curses'
ability to optimize interaction between HP-UX programs and terminals is inherently
linked to its direct monitoring of the current CRT screen and the windows where display
text is being held for output through refresh operations. This capability requires that
curses clear the screen as part of the first refresh operation so that it has a known
beginning reference condition, then maintain a continually up-to-date data structure
that reflects current screen contents and cursor location.

12 Using Curses and Terminfo

".\

Multiple Windows
A window is a data structure that represents all or part of the CRT display screen. It
contains a two-dimensional array of 16-bit character data words, a cursor, a set of current
attributes, and several flags. Each 16-bit character data word contains:

• A 7-bit character code in the lower seven bits, and

• A 9-bit video highlighting code in the upper nine bits. Each bit enables one of nine
attributes when set, each attribute represented by one of the respective bits.

curses provides a full-screen window called stdscr and a set of functions that use stdscr.
Another window called curser that represents the current physical display screen is also
provided.

It is important that you clearly understand that a window is only a data structure. Use
of more than one window does not imply the presence of more than one terminal, nor
does it involve more than one process. A window is nothing more than a data object that
can be copied to all or part of the terminal screen. curses, as presently implemented,
cannot handle windows that are larger than the available display screen (use pads for
such applications).

~. Pads
Pads are data structures that are essentially identical to windows, except that they
can be larger than the available terminal screen size, and, as a result, must be handled
differently. For example, a special refresh function is required that knows how to transfer
only a specified part of the total pad area to the current screen instead of the entire pad.
Other window operations do not depend on the size of the structure, so they can treat
windows and pads identically. In such instances, a single function supports pads and
windows (such as addch, delwin, and similar functions).

Using Curses and Terminfo 13

Creating Windows
Additional windows can be created so that the applications program can maintain several
different screen images. Images can then be alternated under program control as needs
dictate. Windows can be useful in editors, games, and other applications such as when ~
handling interactive processes involving multiple users on multiple terminals.)

Overlapping windows can also be constructed so that changes to one window are easily
copied onto the overlapping area of the second. Several curses routines have been pro
vided specifically to handle such cases. overlay and overwrite copy one window onto the
second, each handling the copy operation differently. wrefresh can be used to refresh the
terminal screen, but in some cases it is more efficient and pleasing to perform a series
of internal window operations that are equivalent to refresh, but which do not update
the screen. This is done by using a series of calls to wnoutrefresh (or its equivalent for
pads), followed by a single doupdate that copies the series of refreshes onto the physical
screen in a single operation. This is readily provided because refresh is really a call to
wnoutrefresh followed by a call to doupdate.

To create a new window, use the function:

newwin{lines, cols, begin_row, begin_col}

The newwin function call returns a pointer to the newly created window whose dimensions
are lines by cols, and whose upper left-hand corner is positioned at screen location
begin_row and begin_col.

Using Multiple Windows
All operations that affect stdscr have a corresponding function for use with other named
windows. These functions' names are formed by adding the letter w in front of the stdscr
function name. For example, the window function that corresponds to addch is named:

waddch{mywin, c}

To update the contents of the currently displayed screen to match the contents of a
window, use:

wrefresh{mYWin}

Whenever the boundaries of two or more windows overlap and thus conflict, the most ~
recently refreshed window becomes the currently displayed screen in that area of the }
display area that is defined by the window size and location.

14 Using Curses and Terminfo

~\

Any call to the non-w version of any window function (stdscr function calls) is converted
to its w-prefixed counterpart. Thus~ a call to addch{c) produces a call to waddch{stdscr,
c)~ automatically adding the stdscr argument in the process.

The example program window at the end of this tutorial shows how windowing can be
handled. The main display is kept in stdscr. When the user wants to put something else
on the screen~ a new window is created that covers part of the screen. A call to wrefresh
on that window causes the window to be written over stdscr on the display screen. A
subsequent call to refresh on stdscr causes the original window to be fully restored to the
screen, eliminating the temporarily displayed window.

Examine the touchwin calls in window that precede refresh calls on overlapping windows.
touchwin calls prevent optimization by curses, thus forcing wrefresh to completely over
write the entire window area on the physical screen (previously displayed data is thus
erased in the window area only). In some situations~ if the touchwin call is omitted,
only part of the window is written and existing information from a previous window may
remain in the newly written window area.

For improved screen addressability, a set of move functions are available in conjunction
with most common window functions. They produce a call to move before the other
function is called, so that the cursor can be relocated before the window function is
executed. Here are some examples:

• mvaddch{row,co[,ch) is equivalent to move{row,co[); addch{ch)

• mvwaddch{row,co[,win,ch) is equivalent to wmove{win,row,co[); waddch{win,ch).

Refer to the curses routines section of this tutorial for more detailed descriptions of the
window routines and their related move functions.

Using Curses and Terminfo 15

SubwindoW5
Subwindows can be created within any existing window or pad. Subwindows are identical
to normal windows except that the subwindow's character data structure occupies the
same memory locations as the corresponding character positions in the main window.
This means that whenever a character is placed in a subwindow, the main window au- ~
tomatically contains the same character in the same location with the same highlighting
attributes. In fact, as a result of shared character storage, any character stored in the
character array automatically receives the current attributes for the window or subwin-
dow through which it was stored, regardless of how many subwindows overlap the storage
location. This feature greatly simplifies combining windows in a single display for some
types of applications.

Each subwindow has its own cursor location, can be configured with a soft scrolling
region, and generally has the same capabilities as any normal window, but, except for
shared character storage, is completely independent of the original window it is associated
with. Because of shared character data structures, curses does not allow deletion of any
window (delwin(win) or pad that has one or more undeleted subwindows.

If subwindows are created within a pad, care must be exercised in the choice of correct
refresh functions and other program characteristics to ensure correct data handling.

16 Using Curses and Terminfo

Multiple Terminals
curses can produce simultaneous output on multiple terminals. This capability is useful
in single-process programs that access a common data base such as multi-player games.
Output to multiple terminals is a complex issue, and curses does not solve all of the
related programming problems. For example, it is the program's responsibility to deter
mine the special file name for each terminal line and what type of terminal is connected
to that line. The normal method, checking the environment variable $TERM, does not
work because each process can only examine its own environment. Another issue that
must be addressed is the case of multiple programs reading data from a single terminal
line, a situation that produces race conditions which must be avoided because a program
that wants to take over a terminal cannot arbitrarily stop whatever program is currently
running 011 that terminal (particularly where security considerations make this action
inappropriate, though it is appropriate for some applications such as inter-terminal com
munication programs).

Race conditions mayor may not be a problem, depending on the overall relationships
of running programs and processes. For example, if a curses program is looking for
input from a terminal, there must be no other program looking for input from the same
terminal (such as a shell). On the other hand, if two programs are sending output to the
same terminal at the same time, the result is usually no worse than an unusable screen
display. In any event, for interaction with the terminal to flow smoothly, conflicts in
terminal access must be prevented.

A typical solution requires the user logged onto each terminal line to run a program that
notifies the master program that the user is interested in joining the master program.
The master program is given the notification program's process id, the name of the tty
link, and the type of terminal being used. The notification program then goes to sleep
until the master program finishes. During termination, the master program wakes up
the notification program and all programs exit.

curses handles multiple terminals by always having a current terminal. All function calls
always pertain to the current terminal. The master program should set up each terminal,
saving a reference (pointer) to the terminal in its own variables. When it is ready to
interact with a given terminal, the master program should set the current terminal (use
seLterm) according to program needs, then use ordinary curses routines.

Terminal references have type struct screen *. To initialize a new terminal, call
newterm(type,jd). newterm returns a screen reference to the terminal being set up.
type is a character string that names the kind of terminal being used. fd is a stdio file
descriptor to be used for input and output to the terminal (if only output is needed, the
file can be opened for output only). The newterm call replaces the normal call to initscr.

Using Curses and Terminfo 17

To select a new current terminal, call seLterm(sp) where sp is the screen reference
returned by newterm for the terminal being selected. seLterm returns a screen reference
to the previous terminal.

A full set of windows and options must be maintained for each terminal according to ~
program needs. Each terminal must be initialized separately with its own newterm call.)
Options such as cbreak and noecho, and functions such as endwin and refresh must be set
(or called) separately for each terminal. Here is a typical scenario for sending a message
to each terminal:

for (i=O; i <nterm; i++) {
set_term(terms[i]);
mvaddstr(O,O,"Important message");
refreshO;

}

The sample program two at the end of this tutorial contains a full example of how this
technique is implemented. The program pages through a file, showing one page to the
first terminal; the next page to the second. It then waits for a space character to be
typed on either terminal, then sends the next page to the terminal that sent the space
character. Each terminal has to be put into nodelay mode separately. No standard
multiplexer is available in current HP-UX versions, so it is necessary to busy wait or call
sleep(l); between each check for keyboard input. two waits one second between checks ~
for available terminal keyboard characters.

two is only a simple example of two-terminal curses. It does not handle notification as
described above; instead, it requires the name and type of the second terminal on the
program procedure line. As written, two requires that the command sleep 100000 be
typed on the second terminal to put it to sleep while the program runs, and the the
first-terminal user must have read and write permission on the second terminal.

18 Using Curses and Terminfo

Low-Level Terminfo Usage
Some programs need access to lower-level primitives than those offered by curses. For
such programs, the terminfo-level interface is provided. This interface does not manage
the CRT screen, but gives programs access to strings and capabilities that can be used
to manipulate the terminal.

Use of terminf~level routines is discouraged. Whenever possible, higher-level curses
routines should be used instead, in order to maintain portability to other systems and
handle a wider variety of terminal types. curses takes care of all of the anomolies, glitches,
and personality defects present in physical terminals, but at the terminfo level they must
be dealt with in the program. Also, there is no guarantee that the terminfo interface will
not change with new releases of HP-UX or be upward compatible with previous releases.

There are two circumstances where use of terminfo routines is appropriate. On instance
is where a special-purpose program sends a special string to the terminal (such as pro
gramming a function key, setting tab stops, sending output to a printer port, or dealing
with the status line). The second is when writing a filter. A typical filter performs one
transformation on the input stream without clearing the screen or addressing the cursor.
If this transformation is terminal-dependent and clearing the screen is inappropriate,

~ terminfo routines are preferred.

A program written at the terminfo level uses the framework shown here:

#include <curses.h>
#include <term.h>

Setupterm(O,l.0);

putp(clear_screen);

reset_shell_mode() ;
exit (0) ;

The call to setupterm handles initialization (setupterm(O,l,O) invokes reasonable de
faults). If setupterm cannot determine the terminal type, it prints an error message
and exits. The calling program should call reseLshelL mode before exiting.

Global variables with such names as clear_screen and cursor_addrest~ are defined during
the call to setupterm. When outputting these variables, use calls to putp or tputs for
better programmer control during output. Global variable strings should not be output
to the terminal through printf because they contain padding information that must be
processed. A program (such as print/) that transmits unprocessed strings will fail on
terminals that require padding or use XonjXoff flow-control protocol.

Using Curses and Terminfo 19

Higher-level routines described previously are not available at the terminfo level. The
programmer must determine output needs and structure programs accordingly. For a list
of terminfo capabilities and their descriptions, see terminfo(5) in the HP-UX Reference.

The example program termhl at the end of this tutorial shows simple use of terminfo. It
is similar to highlight, but uses terminfo instead of curses. This version can be used as a
filter. The strings used to enter bold and underline mode, and to disable all highlighting
attributes are demonstrated.

The program was made more complex than necessary in order to illustrate several ter
minfo properties. For example, vidattr could have been used instead of directly out
putting enter_boLd_mode, enter_underLine_mode, and exiLattribute_mode. In fact, the
program could easily be made more robust by using vidattr because there are several
ways to change video attributes. However, this program was structured only to illustrate
typical use of terminfo routines.

The function tputs(cap,affcnt,outc) adds padding information to the capability cap. Some
capabilities contain strings such as $<20>, which means to pad for 20 milliseconds. tputs
adds enough pad characters to produce the desired delay. cap is the string capability to
be output; affcnt is the number of lines affected by the output (for example, inserLLine
may have to copy all lines below the current line, and may require time proportional
to the number of lines being copied). By convention, affcnt is 1 if no lines are affected
rather than 0 because affcnt is multiplied by the amount of time required per item, and
a zero time may be undesirable. outc is the name of a routine that is to be called with
each character being sent.

In many simple programs, affcnt is set to 1, and outc just calls putchar. For such
programs, the terminfo routine putp(cap) is a convenient abbreviation. The example
program termhl could be simplified by using putp.

Note the special check for the underLine_char capability. Some terminals, rather than hav
ing a code to start underlining and a code to stop underlining, use a code to underline the
current character. termhl keeps track of the current mode, and outputs underLine_char,
if necessary, whenever the current character is to be underlined. Low-level details such as
this are a major reason why curses routines are preferred over terminfo routines. curses
takes care of all the different terminal keyboard and display functions and highlighting
sequences instead of forcing such details onto the application program.

20 Using Curses and Terminfo

A Larger Example
The example program editor is a very simple screen editor that has been patterned after
the vi editor and illustrates how curses can be used for such applications. editor uses
stdscr as a buffer for simplicity, whereas a more useful editor would maintain a separate
data structure for editing operations, then display the pertinent contents of that separate
structure on the screen. Editor, as written, requires a file size equal to screen size. It also
cannot handle lines longer than the screen, and has no provision for control characters
in the file.

Several program characteristics are of interest. The routine that writes the file back
to the file system shows how mvinch is used to retrieve characters from given window
positions. The data structure used does not provide for keeping track of the number of
characters in a line nor the number of lines in the file, so trailing blanks are eliminated
when the file is written out.

editor uses built-in curses functions insch, delch, insertln, and deleteln. These functions
behave much like equivalent functions on intelligent terminals when inserting and deleting
characters and lines.

The command interpreter accepts not only ASCII characters, but also special (non
typing) keys. This is important _. a good program accepts both. Defining the keyboard
so that every special key has its function defined on a normal typing key as well provides
a desirable increase in flexibility. The benefit for new users, for example, is that they
can use arrow keys without having to remember that the same functions are available
on h, j, k, and I keys in the normal typing area. On the other hand, an experienced user
may prefer to keep his fingers on the home typing row where he can work faster, so the
typing key equivalent of special keys is appreciated. Handling both classes of keys also
widens the variety of terminals the program can interact with because some terminals
may not be equipped with arrow or other special keys on the keyboard. Providing an
ASCII character synonym for each special keypad key provides better overall program
and system flexibility, and makes the program more salable and easier to learn.

Note the call to mvaddstr in the input routine. addstr is roughly equivalent to the fputs
function in C. Like fputs, addstr does not add a trailing newline. It is equivalent to a
series of calls to addch, using the characters in the string. mvaddstr moves the current
cursor position to the specified location in the window before writing the string into the
data structure.

Using Curses and Terminfo 21

The control-L command demonstrates a feature that most programs using curses should
include. Frequently, an independent program operating beyond the control of curses
may write something to the terminal screen, or some other event such as line noise
causes the physical screen to be altered without curses being notified. In such a case,
ICTRLH L Ican be used to clear and redraw the current screen at the user's request. This
is accomplished by a call to clearok(curser) which sets a flag that causes the next refresh
to clear the screen. A call to refresh follows immediately so that the screen is immediately
redrawn using the data in curser so that there is no wait for other program activities or
completion of a pending keyboard input. There is also no loss of current screen data.

Note also the call to flash() which flashes the screen (unless the terminal has no flashing
capability, in which case it rings the bell instead). Replacing the bell with the flash
ing capability is useful in environments where the sound of the bell is objectionable or
distracting. Still, there may be instances where an audible signal is still needed for cer
tain purposes, even in quiet environments. In such cases, the beep() routine can still
be called instead whenever a real beep is preferred. If beep is called and the terminal
is not equipped to process the call, curses substitutes the flash in its place if possible,
and vice versa. Thus, a terminal with no beep capability receives a flash sequence when
beep is called; a terminal that cannot flash receives a beep sequence when flash is called.
If the terminal has neither capability, ... well, ... some situations do present certain
limitations - do without or get a different terminal because both are ignored in such a
case.

Use of Escape in Program Control
Another important programming practice is terminating the input command with
control-D; not escape. It is very tempting to use escape as a command because the
escape key is one of the few special keys that is available on nearly every terminal key
board (return and break are the only others). However, using escape as a separate key
introduces an ambiguity which is handled by curses as follows:

Most terminals use sequences of characters beginning with an escape character (called
escape sequences) to control the terminal. They also use similar escape sequences to
transmit special keys to the computer. If the computer sees an escape character from
the terminal, it cannot immediately determine whether the user pressed the escape key,
or whether a special key was pressed instead. curses handles the ambiguity by waiting
for up to one second. If another character is received within the one-second time limit,
the escape and second character are compared with possible escape sequences. If the
character pair represents a valid possibility, the wait is extended for up to one more ~
second, or until the next character is received. The cycle continues until a valid special \
key sequence is completed or a character is received that could not be part of a valid
sequence (or the time limit expires).

22 Using Curses and Terminfo

While this technique works well most of the time, it is not foolproof. For example,
a user could press the escape key then press one or more other keys that represent a
valid sequence before the time limits expired (less than one second between successive
key strokes). curses would then think that a special key had been pressed. Another
disadvantage is the inevitable delay from the time a key is pressed until it can be processed
by the program when an escape key is pressed, possibly even accidentally.

Many existing programs use escape as a fundamental command which often cannot be
changed without incurring the wrath of a large group of users. Such programs cannot
make use of special keys without dealing with the aforementioned ambiguity, and must,
at best, resort to a timeout solution. The pathway is clear. When designing new pro
grams and updating older ones, avoid using the escape key for program control whenever
possible.

Program Routines
This and the following sections describe curses routines that are available to program
mers. In this section, the routines are discussed in groups by function in the context of
program operation. The next sections list curses, terminfo, and termcap compatibility
routines alphabetically for easy reference, and each is discussed in greater detail. Both
are helpful as tutorial and reference information, expanding on the information contained
in the curses{9X} and terminfo{S} entries in the HP-UX Reference.

The curses routines discussed in this section operate on pads, windows, and subwindows.
In general, windows and subwindows are treated identically by most routines. Subwin
dows share character data structures with the original window, but have their own cursor
location and other non-character data structures. Unless indicated otherwise, all refer
ences to windows during discussion of window routines apply equally to windows and
subwindows.

Using Curses and Terminfo 23

Program Structure Considerations
All programs using curses should include the file <curses.h> which defines several curses
functions as macros and establishes needed global variables as well as the datatype WINDOW

(window references are always of type WINDOW *). curses also defines the WINDOW * con
stants stdscr (the standard screen that is used as a default for all routines that interact
with windows) and curscr (the current screen, used as a reference for low-level operations
when updating the current display or clearing and redrawing a scrambled display. The
integer constants LINES and eOLS are defined, and contain values equal to the number of
available lines and columns in the physical display. The constants TRUE and FALSE are
also defined with the values 1 and 0, respectively. Two additional constants are defined;
the values returned by most curses routines. OK is returned when the routine was able
to successfully complete its assigned task. ERR indicates that an error occurred (such as
an attempt to place the cursor outside a defined window boundary or create a window
larger than the physical screen); thus, the task was not successfully completed.

The include file <curses .h> that must be specified at the beginning of the program
automatically includes <stdio. h> and an appropriate tty driver interface file, presently
<termio.h>. Including <stdio.h> again in a subsequent program statement is harmless
though wasteful, but including a tty driver interface file could cause a fatal error if the
file is not the same as the one selected by curses.

Any program that uses curses should include the loader option

-lcurses

in its makefile, whether the program operates at the curses or terminfo level. If the
program only needs curses' screen output and optimization capabilities, and no non
default windows are involved, you can improve output speed and processing efficiency by
restricting the program to the mini-curses package. Mini-curses is selected by using the
compilation flag

-DMINlCURSES

Routines supported by mini-curses are marked by asterisks in the complete list of curses
routines at the beginning of the curses Routines section of this tutorial. They are also
similarly marked in the HP-UX Reference under curses(3X).

24 Using Curses and Terminfo

Terminal Initialization Routines
Program entry and exit states must be handled correctly to maintain system integrity and
proper terminal operation. If the program interacts with only one user/terminal, initscr
should be the first function call in the program. It sets up the necessary data structures
and makes sure that terminal handling and screen clearing are properly initialized. The
program should call endwin before terminating, ensuring that the terminal is restored to
its original operating state and the cursor is placed in the lower left corner of the screen.
endwin also dismantles data structures and other program entities that were created by
curses and are no longer needed.

If the program must interact with multiple terminals during operation, newterm should
be used for each terminal instead of the single call to initscr. newterm returns a variable
of type SCREEN * which should be saved and used each time that terminal is referenced.
Two file descriptors must be present, one for input, and one for output. Use endwin
for each terminal prior to program termination to restore previous terminal states and
dismantle data structures that were created by curses and are no longer needed. During
program operation with multiple terminals, seLterm is used to switch between terminals.

Another initialization function is longname which returns a pointer to a static area con
taining a verbose description of the current terminal upon completion of a call to initscr,
newterm, or setupterm.

Option Setting Routines
These routines set up options within curses. Arguments specify the window to which the
option applies, and the boolean flag which must be TRUE or FALSE (not 1 or 0) specifies
whether the option is enabled or disabled. Default for all functions in this group is
FALSE (disabled).

• clearok(win, boolean_flag), when set, clears and redraws the entire screen on the
next call to refresh or wrefresh.

• idlok(win, boolean_flag), when set, allows curses to use the insert/delete line fea
tures of the terminal if they are available. This feature tends to be visually annoying
if used in applications where it is not really needed. Insert/delete character capa
bilities are always considered by curses, and are not related to insert/delete line
considerations.

• keypad(win, boolean_flag), when set, enables handling of special keys from the ter
minal keyboard as single values instead of character sequences.

Using Curses and Terminfo 25

• leaveok(win,boolean-flag), when set, allows curses to ignore cursor position and
relocation at the end of an operation. This feature helps simplify program operation
when the cursor is not used or cursor position is not important.

• meta(win,boolean_ftag), when set, handles characters from the (getch) function as
8-bit entities instead of the usual seven. However, this feature has no value if other
programs and networks interacting with the data can only pass 7-bit characters.

This feature is useful for applications where an extended non-text character set
is needed and the terminal has a meta shift key available. Curses takes whatever
measures are needed to handle the 8-bit input, including the use of raw mode, if
necessary. In most cases, the character size is set to 8, parity checking disabled,
and 8th-bit stripping is disabled. For the data to continue unaltered, all programs
using it must also be capable of handling 8-bit character codes.

• nodelaY(win,boolean_ftag), when set, makes getch a non-blocking call. When en
abled, getch returns immediately with the value -1 if no input is ready. If not
enabled, the program hangs until a terminal key is pressed.

• intrjlush(win,boolean_flag), when set, flushes all output in the tty driver queue if
an interrupt key (interrupt, quit, or suspend, if available on the system) is pressed
on the terminal keyboard. While this capability provides faster interrupt response,
the flush destroys the representative relationship between curscr and the current
physical display contents.

• typeahead(jile_descriptor), when set, enables typeahead for the specifieq file where
file_descriptor is the terminal input file. A file descriptor value of zero selects
stdin; -1 disables typeahead checking.

• scrollok(win,boolean_jlag), when set, enables scrolling on the specified window
whenever the cursor position exceeds the lower boundary of the window (or scrolling
region, if set). Boundary crossing results when a newline occurs on the bottom line
or a character is placed in the last character position of the bottom line. If scrollok
is enabled, the window or scrolling region is scrolled up one line, and a refresh
operation is performed to update the terminal screen. idlok must be enabled on
the terminal to get a physical scrolling effect on the visible display. If scrollok is
disabled, the cursor is left on the bottom line, and no advances are allowed beyond
the last character position.

• setscrreg(top,bottom) and wsetscrreg(win,top,bottom) are used to set software scrol
ling regions within a given window. If. this option and scrollok are both active,
the scrolling region is scrolled up one line and refresh is called to update the screen
whenever the cursor position is moved beyond the lower limit of the scrolling region
in the window. To get a scrolling effect on the terminal screen, idlok must also be
enabled.

26 Using Curses and Terminfo

Terminal Configuration Routines
These routines are used to set or disable various operating modes that are supported by
the terminal being used.

• cbreak() and nocbreak() enable and disable single-character mode. When cbreak is
enabled, characters are received and processed from the terminal keyboard as they
are typed. When nobreak is active, characters are held by the tty driver until a
newline key is received before making the line available to the program. Interrupt
and flow control characters are not affected by either option. cbreak enabled is the
preferred operating mode for most interactive programs. Default is nobreak active.

• echo() and noecho() select direct echoing of characters back to the terminal display
as they are received by the tty driver, or transfer the characters to the program
without returning them to the terminal display. noecho can be used to process
incoming text under program control then echo selected characters to a controlled
area of the screen or not echo at all.

• nl() and nonl() select or disable conversion of newline characters into a carriage
return line-feed sequence on output and conversion of incoming return character(s)
into newlines. By disabling newline conversions, curses can use line-feed capability
more effectively, resulting in better cursor motion.

~. • raw() and noraw() select or disable raw mode. Raw mode is similar to cbreak in
that characters are passed to the program as they are typed, but interrupt, quit,
and suspend characters are not interpreted, so they do not generate a signal. Raw
mode also handles characters as 8-bit entities. BREAK handling is not affected.

• resetty() and savetty() restore and save tty modes. savetty saves the current state
in a buffer. resetty restores the terminal to the state that was obtained by the last
previous call to suvetty.

Using Curses and Terminfo 27

Window Manipulation Routines
Window manipulation routines are used to create, move, and delete windows, subwin
dows, and pads, and perform certain other operations. newwin, newpad, and subwin cre
ate new structures. delwin deletes window, pad, and subwindow structures, and mvwin
relocates a window to a different area within the physical screen boundary. touchwin, '~
overlay, and overwrite affect optimization and character replacement during refresh and
window copying operations as follows:

• touchwin forces the entire window to be rewritten to the screen during refresh.

• overlay copies non-blank characters from one window onto the overlapping area of
another.

• overwrite overwrites all characters from one window onto the overlapping area of
another.

Pad functions are related to window functions, with some differences. Pads are essentially
the same as windows but usually larger than the available screen size so that only part
of the pad can be displayed at any given time. Pads cannot be directly transferred to
the terminal screen by use of window refresh functions. Pad refresh functions must be
used instead, so that the appropriate area of the pad can be specified for display.

When a new window, subwindow, or pad is created, the function returns a pointer that
should be stored in a variable for later use when accessing the window or pad. The
returned variable then becomes the win argument for writing to the window (or pad),
deleting the window (or pad), and for other text and cursor operations that include
win as an argument. Except for prefresh, pnoutrefresh, and newpad, all pad operations
use the appropriate window function for all text and cursor manipulations and other
pad/window activities.

28 Using Curses and Terminfo

Terminal Data Output Routines
All data transfers from a pad or window to the terminal display are handled by pad and
window refresh/update functions:

• refresh{} and wrefresh(win) transfer the contents of the default or specified window
to the current screen window and to the terminal display.

• doupdate() and wnoutrefresh (win) are used to accumulate several window copy
operations to the standard screen window by using multiple calls to wnoutrefresh
(win)~ then transferring the current screen window to the terminal screen by calling
doupdate{}.

• prefresh(. ..) and pnoutrefresh(. ..) are equivalent to wrefresh and wnoutrefresh, ex
cept that the pad and area within the pad are specified. pnoutrefre.'3h is followed
by the doupdate function that is normally used with window updates.

Window Writing Routines
Placing Text in the Window
These routines are used to write data in windows, subwindows~ and pads. Only the root
function is listed here. Other related functions are listed with the root function in the
alphabetical curses Routines section later in this tutorial.

Routines that use the win argument operate on the stdscr window if win is not specified.
The cursor can be relocated before a function is executed by adding mvonto the beginning
of the function name. This produces a move(y,x) or wmove(win~y,x)call on the default
or specified window associated with the function, followed by a call to the remaining
window writing routine. Row (y) and column (x) coordinates begin with (0,0) in the
upper left-hand corner of the window or screen (not (1,1). Use of the mv prefix was also
discussed earlier. See the section, Using Multiple Windows.

• move(y,x) and wmove(win,y,x) move the cursor in the given window or pad.
move(y,x) is equivalent to wmove(stdscr,y,x).

• addch(ch) and related functions (see curses routines section for related functions)
write a single character in the given window or pad. mv prefixed to the base function
name causes the current cursor/character position to be changed to the specified
y •x location before the character is placed. Cursor position after the placement is
determined by the type of character written.

• addstr(str) and related functions place the specified string in the selected window.
mv prefixed to the base function name causes the current cursor/character position
to be changed to the specified y. x location before the string is placed. Cursor po
sition after the placement is determined by the characters contained in the written
string.

Using Curses and Terminfo 29

• erase() and werase(win) place blanks in the entire window or pad, destroying all
previous window contents.

• clear() and wclear(win) are similar to erase(). They erase the window by filling it
with blanks, but they also call clearok() which clears the terminal screen on the ~
next rejresh() for that window. ,

• clrtoeol() and clrtobot() and their related window/pad functions erase the specified
window/pad from the present cursor position to the end of the cursor line or to the
end of the window or pad, respectively.

Inserting and Deleting Text in the Window
The following routines are used to insert and delete lines and characters in the window.
These operations are performed on the window only, and have no effect on the terminal
at the time of execution.

• delch and related window and move routines delete a single character from the
current or specified new cursor position.

• deleteln() and wdeleteln(win) remove the current cursor line from the default or
specified window.

• insch(c) and related routines insert the specified character in front of the current
cursor position and move succeeding text appropriately to accommodate the new ~
character. }

• insertln() and winsertln(win) insert a blank line at the present cursor line position
and move the existing cursor line (and subsequent lines) down one position. The
bottom line in the window is lost. The inserted line becomes the new cursor line.

Formatted Output to the Window
printw is functionally similar to printjexcept the output is handled by addch which places
the formatted data in the window.

Miscellaneous Window Operations
scrollw(win) is used to scroll a given window up one line each time the function is called.
box(win,vert,hor) uses the specified characters to draw a box around the specified window.
When the window is boxed, the top and bottom rows and left and right columns in the
window are no longer available for normal text use.

30 Using Curses and Terminfo

Window Data Input Routines
Two functions are available that are used to obtain data from a given window. getyx(y, x)
is used to obtain the present cursor position for use by the program. inch() and related
functions can be used to retrieve any character in a given window. The returned character
includes video highlighting attribute bits, each of which is set or cleared according to the
original highlighting attributes that were stored with the character when it was written
to the window.

Terminal Data Input Routines
getch and its related window and move routines are the basic building block for all
program input from the terminal. getch handles individual characters, one at a time,
returning a character as a 16-bit integer value each time it returns from a call.

If echo is enabled, getch also places each character at the current cursor position in the
window associated with the function and updates the terminal screen with a refresh on
the window as the character is received and processed (the cursor is advanced as each
character is written to the window). If noecho is active instead, input character(s) are
not placed in the window.

getstr and its related functions generate a series of calls to getch to read an entire line,
one character at a time, up to the terminating newline character. The line is stored in
the specified string before getstr returns to the calling program.

scanwand its related functions perform formatted processing on the input line after it
has been placed in a special buffer used by getstr. (If echo is enabled, the string is also
placed in the associated window, but only the characters stored in the buffer are used by
scanw. When scanning is complete, the processed results string results are placed in the
specified args variables.

Using Curses and Terminfo 31

Video Highlighting Attribute Routines
Each character written into a window is stored as a 16-bit word. Seven bits contain
the character code; the remaining nine bits control video highlighting. As each word is
stored, the 7-bit character code is combined (through a bit-level logical OR operation) ~
with the current set of nine video highlighting attributes to obtain the 16-bit result. .,
Video attribute routines are used to construct the current attribute set that is used
during character storage.

Highlighting attributes can be specified as a complete set by using attrset or wattrset.
Using 0 (or A_NORMAL) as an argument for attrset disables all highlighting.

Highlighting can be altered from the present state by turning individual attributes on
or off without altering the state of other attributes in the set. This is done with attron,
attrolJ, wattron, and wattroff.

As characters are stored in a given window, the current attributes are attached to each
character. To change highlighting, attributes must be changed before the next charac
ter is written to the window. When deciding where to change highlighting attributes,
remember that highlighting applies to non-printing space and tab characters as well as
visible characters.

standout and standend provide easy access to the A_STANDOUT attribute. standout is equiv
alent to a call to attron(A_STANDOUT), and adds A_STANDOUT to the currently active
set of attributes (if any are active). However, standend is not the opposite. standend is
equivalent to attrset(O), not attroff(A_STANDOUT). Thus, a call to standout with un
derlining on would maintain underlining until another highlighting call. standend, on the
other hand, would not only terminate the previous standout call, but would terminate
underlining as well.

Attribute functions and arguments must be logically conceived. For example, at
tron(A_NORMAL) and attroff(A_NORMAL), though executable, do nothing because
all bits in A_NORMAL are cleared (value is zero). The bit-level logical OR of attron
has no effect (all bits zero), and attroff is ineffectual because A_NORMAL is inverted
(all bits set to 1) before a bit-level logical AND is used to clear the selected highlighting
attribute.

32 Using Curses and Terminfo

Miscellaneous Functions
beep/flash
beep() and flash() are used to signal the terminal operator. If the terminal does not
support the called function, the other is substituted where possible. Thus a call to beep
flashes the screen if the terminal has no beep capability; a call to flash produces a beep
if no flashing video capability is available.

Portability Functions
Several functions have been included to aid portability of curses between various systems:

• baudrate() returns the terminal datacomm line speed as an integer baud rate value.
The returned value can then be used for program and system configuration pur
poses.

• erasechar() returns the terminal erase character that has been chosen by the user.
This character is used to cancel the last previous character. Interactive programs
should include cancellation capabilities so users can correct typographical errors
during keyboard inputs.

• killchar() is similar to the erase character, but cancels the entire line where the
character appears.

• flushinp() discards any typeahead characters when an interrupt character is de
tected. This enables users to interrupt a series of commands or other activities
that have accumulated in the typeahead buffer and terminate the current process
without waiting for the typeahead queue to empty. Normally used for aborts, this
function and the related program structure must be handled carefully to ensure
proper termination of program processes before the program exits.

Delay Functions
Delay functions are not highly portable, but are frequently needed by programs that use
curses, especially real-time interactive response programs. Use of these functions should
be avoided where possible:

• draino(ms) is used to reduce the amount of data being held in the output queue.
The main purpose of this function is to keep the program (and keyboard) from
getting ahead of the screen. With careful program design, use of this function
should be unnecessary in most cases.

• napms(ms) suspends program operation for a specified time. It is similar to sleep,
but offers higher resolution (resolution varies, depending on system resources).
napms uses a call to select for its time base reference.

Using Curses and Terminfo 33

curses Routines
curses supports the following functions. Those marked with an asterisk are also supported
by Mini-curses (some unmarked routines might work, but are not officially supported by
Mini-curses. Proceed at your own risk if you try them).

addch(ch)*
addstr(str).
attroff(attrs)*
attron(attrs)*
attrset(attrs)·
baudrateO·
beepO·
box(win,vert,hor)
cbreakO·
clearO·
clearok(win, boolean_flag)
clrtobotO
clrtoeolO
delay_ output(ms)*
delchO
deletelnO
delwin(win)
doupdateO
draino (ms)
echoO·
endwinO·
eraseO·
erasecharO·
jixtermO
flashO·
flushinpO·
getchO
getstr(str)
gettmodeO
getyx(win,y,x)
has_icO·
has_ilO·
idlok(win,boolean_flag)·
inchO·
initscrO·
insch(c)

34 Using Curses and Terminfo

insert/nO
intrflush (win, boolean_flag)
keypad(win,boolean_flag)
kilicharO·
leaveok(win, boolean_flag)
longnameO
meta(win, boolean_flag)*
move(y,x)·
mvaddch(y,x,ch)*
mvaddstr(y,x,str)*
mveur(oldrow,oldeol,

newrow,newcol)
mvdelch(y,x)
mvgeteh(y,x)
mvgetstr(y,x,str)
mvineh(y,x)
mvinseh(y,x, e)
mvprintw(y,x,/mt, args)
mvseanw(y, x,fmt, args)
mvwaddeh(win, y,x, ch)
mvwaddstr(win, y,x, str)
mvwdeleh(win, y,x)
mvwgeteh(win,y,x)
mvwgelslr(win,y,x,slr)
mvwin(win, beg_ y, beg_x)
mvwineh(win,y,x)
mvwinsch(win, y,x, c)
mvwprintw(win, y, x,fmt, args)
mvwscanw(win, y,x,fmt, args)
napms(ms)
newpad(num_lines,num_eols)
newterm(type,fdout,/din)*
newwin(num_lines,num_cols,

beg_y,beg_x)
nlO*
noebreakO*

nodelay(win, boolean_flag)
noecho()*
nonl()*
noraw()*
overlay(winl,win2)
overwrite(winl, win2)
pnoutrefresh(pad, pminrow,

pmincol,sminrow,
smincol, smaxrow,
smaxcol)

prefresh(pad, pminrow,
pmincol, sminrow,
smincol, smaxrow,
smaxcol)

printw(fmt, args)
raw()*
refresh()*
resetterm()*
resetty()*
saveterm()*
savetty()*
scanw(Jmt, args)
scroll(win)
scrollok(win, boolean_flag)
setscrreg(t, b)
setterm(type)
setupterm(term,filenum, errret)
seLterm(new)*
standend()*
standout()*
subwin(orig_win,n_lines,

n_cols,beg_y, beg_x)
touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win,attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win, c)
winsertln(win)
wmove(win,y,x)
wnoutrefresh(win)
wprintw(win,fmt, args)
wrefresh(win)
wscanw(win,fmt, args)
wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

Using Curses and Terminfo 35

Description of Routines
The curses package includes the following functions. Function names that are associated
with operations on user-specified windows contain a w or mvw prefix, and the window
must be included as a parameter in the function call. If no w or mvw prefix is present,
or if the window is not specified in the parameter set, the operation is performed on the
default window stdscr. Programs that use the curses package are subject to the normal
rules of C compiler statement syntax.

Routines are listed alphabetically by function keyword which is printed in slanted bold
type. When two or more functions are related to a common keyword, the root keyword
is listed in bold, followed by a list of related function names in normal italics. The
individual related functions are also included elsewhere in the list with references back
to the root keyword where a detailed explanation of all keywords related to the root
keyword is located.

addch(ch)
waddch(win,ch)
mvaddch(y,x, ch)
mvwaddch(win, y,x, ch)

Places the character ch in the window at the current cursor position for that window, ~
then advances the cursor to the next position. If ch is a tab, newline, backspace, the
cursor is moved appropriately, but no text is altered. If ch is a control character other
than tab, newline, or backspace, the character is drawn using AX notation (where x is
a printable character preceded by A to indicate a control character - see unctrl(ch)). If
the character is placed at the right margin, an automatic newline is performed. At the
bottom of the scrolling region, the region is scrolled up one line if scrollok is enabled.

The ch parameter is an integer; not a character. addch performs a bit-level logical OR
between the 16-bit character and the current attributes if any are active. Highlighting
of individual characters can also be handled by the program if the current attributes are
all zero (disabled) by performing an equivalent bit-level logical OR operation between
the 7-bit character code in bit positions 0 through 6 and selected video attribute bits
in bit positions 7 through 15 to create a single 16-bit integer representing the character
and its associated highlighting attributes. If no highlighting attributes for the window
are currently active, any attributes added to the character by the program or already
present from the source are preserved. Ilf any arehactive, they are hadded to the character ~
and any attached attributes without a tering ot er attributes. T us, you can copy text J
(including attributes) from one place to another with inch and addch.

36 Using Curses and Terminfo

addch is used with StdSCT window; waddch with window win; mvaddch moves the cursor
to row Y, column x, then places the character at that location; mvwaddch is identical to
mvaddch, but operates on a specified window win. If win is not specified, default is to
stdscr. All row and column references are relative to the upper left corner whose corner
character position is represented by row 0, column O.

addstr(str)
waddstr(win, str)
mvaddstr(y,x,str)
mvwaddstr(win,y,x,str)

Places the character string specified by str at the current cursor position (addstr and
waddstr) or at the specified location in the window (mvaddstT and mvwaddstr). String
placement consists of a series of character placements using the addch routine. str must
be terminated by a null character.

attroff(attrs)
wattroff(win, attrs)

Disables the specified video highlighting attributes without affecting other attributes.
Any or all of the following attributes can be specified (multiple attributes must be sep
arated by the C logical OR operator, I which performs a bit-level logical OR on all
attributes specified in the function call): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,
A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT, and A_ALTCHARSET.

attron(attTs)
wattron(win, attrs)

Enables the specified video highlighting attributes without affecting other attributes.
Any or all of the following attributes can be specified (multiple attributes must be sep
arated by the C logical OR operator, I which performs a bit-level logical OR on all
attributes specified in the function call): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,
A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT, and A_ALTCHARSET.

attrset(attrs)
wattrset(win,attrs)

Enables the specified video highlighting attributes, and disables all others. Any or all of
the following attributes can be specified (multiple attributes must be separated by the
C logical OR operator, I which performs a bit-level logical OR on all attributes spec
ified in the function call): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM, A_BOLD,
A_INVIS (invisible), A_PROTECT, and A_ALTCHARSET. attrset(O), attrset(A_NORMAL), and
standend() (or stan dend(win)) are equivalent functions that disable all attributes (nor
mal display). See standend().

Using Curses and Terminfo 37

baudrate()
Returns the terminal serial I/O datacomm speed. The value returned is the integer baud
rate (such as 9600) rather than a table index value (such as B9600). If the baud rate is
External A or External B, the value -1 is returned instead.

beep()
Used to signal the terminal user with an audible signal. If no audible signal is available on
the terminal, the screen is flashed instead (see flash()). If neither capability is available,
no output is sent to the terminal.

box(win, vert,hor)
Draws a box around the specified window. vert specifies the character to be used for left
and right columns; hor specifies the character for top and bottom rows. Usable window
space is reduced by two lines and columns when a box is present.

cbreak()
nocbreak()

These functions place the terminal in and out of CBREAK mode, respectively. When cbreak
(character-mode operation) is active, each typed character is immediately available to the
program. If disabled (nocbreak), the tty driver holds characters until a newline character
is received, then releases the entire line to the program (line-mode operation). Interrupt ~
and flow control characters are not affected by cbreak; default is nocbreak, but most }
interactive programs that use curses run with cbreak enabled.

clear()
wclear(win)

Similar to erase and werase, but clearok is also called so that the terminal screen is
cleared by the next call to refresh for that window. clearok sets a flag to clear the screen,
blanks are placed in the window, and the next call to refresh outputs a screen clearing
operation or blanks or both to the terminal, depending on terminal capabilities.

clearok(win, boolean_flag)
If set, the next wrefresh call for the specified window clears and redraws the entire screen
(instead of just the area represented by the specified window). If win specifies curscr, the
next call to wrefresh for any window clears and redraws the entire screen. This is useful
when current screen contents are uncertain, or in some cases for a more pleasing visual
effect.

cleartobot() !)
wcleartobot(win)

Clears all character positions from the current cursor position to the right margin, and
all lines below the current cursor line to the end of the window.

38 Using Curses and Terminfo

c1eartoeol()
wcleartoeol(win)

Clears all character positions from the current cursor position to the right margin. The
rest of the window remains undisturbed.

delay_output (ms)
See terminfo routines in the next section of this tutorial.

delch(}
wdelch(win)
mvdelch(y,x)
mvwdelch(win,y,x)

The character at the present cursor position is deleted. All remaining characters on the
line to the right of the deleted character are moved left one position. Other lines are not
disturbed. The operation is performed only on the window, and does not use the terminal
hardware delete-character feature because no terminal operation has been performed.

deleteln(}
wdeleteln(win)

The present cursor line is deleted. All remaining lines in the window below the cursor
line are moved up one position, leaving a blank line at the bottom of the window. This
window operation does not interact directly with the terminal when performed, so no
terminal hardware delete-line feature is used.

delwin (win)
Deletes the specified window and releases all memory associated with it. If the window
contains subwindows, all subwindows must be deleted first.

doupdate()
wnoutrefresh(win)
pnoutrefresh(pad, . ..)

wnoutrefresh (or pnoutrefresh) and doupdate essentially divide wrefresh into two inde
pendent functions that can be called separately for more efficient handling of multi
ple output operations to windows and pads. In normal operation, wrefresh(win) calls
wnoutrefresh(win) to copy the named window to the virtual screen, then uses doupdate
to update the physical screen to match the virtual screen. When outputting multiple
windows, wnoutrefresh(win) can be used successively, once for each window; followed
by a single doupdate(} to transfer the new screen to the terminal, probably with fewer
characters transmitted. pnoutrefresh is used similarly when writing to pads.

Using Curses and Terminfo 39

drain0 (ms)
Suspends program operation until the output queue has been reduced sufficiently
("drained") so that the remaining characters can be transmitted in not more than ms

milliseconds. For example, draino(50) at 1200 baud would suspend program execution ~
until no more than 6 characters remain to be sent (6 characters @ 1200 baud require)
about 50 ms transmit time). This routine is used to keep the program (and thus the
keyboard) from getting ahead of the screen. If the operating system does not support the
I/O controls (ioctls) that are needed to implement draino, the value ERR is returned;
otherwise OK is returned.

echo()
noecho()

Enables or disables echoing of characters by getch through the specified window and back
to the terminal as each character is typed on the keyboard and subsequently processed
by getch. Default is echo (enabled). In some interactive programs, it is preferable to
suppress echoing by getch (noecho), then let the program place incoming characters in a
controlled area of the screen 'or not return them at all, as needs dictate.

endwin()
endwin should always be called before exiting from a curses-based program. Restores
tty modes, places the cursor in the lower left corner of the terminal screen, resets the ~
terminal into the proper n on-visual mode, and removes data structures that are no
longer needed by the exiting program.

erase()
werase(win)

Copies blanks to every character position in the specified or default window. As each
blank is stored in the window, the highlighting attribute bits are set to zero (disabled).

erasechar()
Returns the user's chosen erase character from the terminfo data base. The returned
character should be interpreted by the program as an "erase previous character" com
mand whenever it is received from the terminal.

fixterm()
Restores the current terminal to the state it was in prior to the most recent call to
resetterm(). State information stored by the most recent previous call to saveterm() ~
provides the needed restoration information. See resetterm(). }

40 Using Curses and Terminfo

tIash()
Used to signal the terminal user by flashing the screen. If the terminal has no screen
flashing feature, the audible signal is sounded instead (see beep()). If neither capability
is available, no output is sent to the terminal.

tIushinp()
Discards any typeahead characters in the typeahead buffer (characters that have been
typed on the terminal but are still waiting to be handled by the program.

getch()
wgetch(win)
mvgetch()
mvwgetch(win)

Takes a character from the terminal keyboard input buffer as a 16-bit integer, processes
it, and returns it to the program as a 16-bit integer. Character processing and return
conditions vary as follows:

If mv is placed in front of getch or wgetch, the cursor position for the selected window
is moved to the specified location which becomes the new current cursor position. This
operation is completed before any character processing begins.

If echo is active and the character is a normal typing character (keypad and meta char
acters are discussed later), the character is placed in the current cursor position by a
call to waddch from getch. During character placement in the window, a bit-level logical
OR in waddch attaches current highlighting attributes to the character. waddch is fol
lowed immediately by a call to wrefresh which updates the terminal screen with the echo
character.

If an escape character is received, special timeouts are set up to determine whether the
character is part of a multiple-character keypad sequence. See Use of Escape in Program
Control topic earlier in this tutorial for a detailed discussion of how escape is handled.

If meta is enabled and the character is not a keypad sequence, the 16-bit input character
is logical ORed with octal 0377 to mask the upper bits to zero and return an 8-bit text
character value. The eighth bit interferes with the A_STANDOUT highlighting attribute
bit in the same position, so noecho is usually chosen for programs that operate with meta
active.

If meta is not enabled, text characters are logical ORed with octal 0177 to mask the
upper bits to zero and return a 7-bit character value. Echoing is handled in the normal
manner if enabled.

Using Curses and Terminfo 41

If keypad is not enabled, function key sequences are treated as individual characters and
handled as normal text.

If keypad is enabled, each function key sequence (usually an escape sequence) is handled ~
as a single-character keycode which is assigned a 16-bit integer value in a range beginning }
at 0401 (octal) and a name that starts with KEY_ (a complete list of keypad character
value and name definitions is included in the keypad discussion near the beginning of
this tutorial). The character value is not placed in the window for echoing, even if echo
is enabled.

If nodelay is active: if no input is available in the keyboard input buffer when getch is
called, getch returns with the value -1 and no other action is taken. If nodelay is not
active, the program hangs until text is available in the buffer. Depending on the current
cbreak setting, text is made available to the program as each character is received
(cbreak), or incoming characters are held by the tty driver until a newline is received
then they are made available to the program (nocbreak).

getstr(str)
wgetstr(win,str)
mvgetstr(y,x,str)
mvwgetstr(win,y,x,str) ~

This routine is used to input an entire line from the terminal. It is equivalent to getch,)
except that it handles an entire string instead of single characters. Handling of each
character is identical to getch except that text and meta characters are packed into the
string variable str instead of being returned to the program as individual 16-bit integers.
Keypad characters (except for kill, erase, key_left (left arrow), and backspace) are not
recognized and cannot be handled through getstr.

During execution, getstr generates a series of calls to getch until a newline is received,
at which time it returns. The 16-bit integers returned by successive calls to getch are
stripped of their unneeded upper bits (except recognized keypad keys) before packing
into a string variable beginning at the location identified by the character pointer str.

If echo is enabled, incoming string characters are also placed in the associated window
(by getch) as they are received and processed, and echoed to the terminal (by refresh).
If noecho is active, characters are not placed in the window; they are only placed in str.

gettmode()
(Get tty mode). Dummy entry point. Performs no useful function.

42 Using Curses and Terminfo

getyx(win,y,x)
Places the current cursor position of the specified window in the specified two integer
variables y and x. This is a macro, so no & is necessary.

has_ic()
Returns a value indicating whether or not the terminal has insert/delete character capa
bility. Zero value indicates the capability is not present; non-zero: capability present.

has_il()
Returns a value indicating whether or not the terminal has insert/delete line capability.
Zero value indicates the capability is not present; non-zero: capability present.

idlok (win, boolean_flag)
Insert and Delete Line OK. If enabled, curses can use hardware insert/delete line capa
bilities when the terminal is so equipped. If disabled, curses does not use the capability.
Use only when the program requires it (such as a screen editor). idlok is disabled by
default because it tends to be annoying when used in applications where it is not really
needed. If insert/delete line cannot be used, curses redraws changed portions of all lines
that do not match the desired result.

inch()
winch(win)
mvinch(y,x)
mvwinch(win,y,x)

Returns the character located at the current or specified position in the specified window
as a 16-bit integer. If any attributes are set for that position, their values are included in
the value returned. To extract only the character or the attributes, perform a bit-level
logical AND on the returned value, using the predefined constant A_CHARTEXT (octal 0177)
or A_ATTRIBUTES (octal 0177600).

initscr()
The first function called in curses-based programs. Determines terminal type, and ini
tializes curses data structures as appropriate. Also sets indicators so that the first call
to refresh clears the terminal screen and updates curscr to reflect the cleared screen.

insch(c)
winsch(win, c)
mvinsch(y,x, c)
mvwinsch(win, y, x, c)

Inserts the character (byte, usually a 7-bit code) specified by c at the current cursor
position position or at the specified location in the standard or specified window (current
attributes are attached during the placement operation). All characters beginning at the

Using Curses and Terminfo 43

insertion location are moved right one position for the remainder of the line. If the line
is full, the rightmost character is discarded. This does not interact with the terminal so
no hardware insert-character feature is used.

insertln () ~
winsertln(win)

Inserts a blank line between the current cursor line and the line above it. The current
line and subsequent lines of text in the window are moved down one position, and the
blank line becomes the new current cursor line. The bottom line of text is discarded if
it cannot fit inside the window. This is a window operation that does not interact with
the terminal, so no hardware insert-line feature is used.

intrflush (win, boolean_flag)
Causes tty driver queue to be flushed on interrupt. When enabled, an interrupt, quit, or
suspend keypress from the terminal flushes all output from the tty driver queue, providing
a faster response to the interrupt. However, curses loses its record of what is currently
displayed on the screen when the interrupt occurs. Disabling the option prevents the
flush. Default is flush enabled. Requires proper support from the underlying driver.

keypad(win, boolean_flag)
Enables keypad character handling for the user terminal associated with win. When
true, the terminal operator can press any key that generates multiple-character sequences ~
(such as a function key), and getch returns a single 16-bit integer value representing the
function key (the returned character must be handled as a 16-bit value). If keypad is
disabled (default), curses handles keypad sequences as normal text. keypad also enables
and disables keypad keys on the terminal if the terminal hardware is equipped to support
such command sequences from the external computer.

killchar()
Returns the line-kill character chosen by the terminal user. This character, when typed
by the user, is a command to the program to cancel the entire line being typed.

leaveok(win, boolean_flag)
Upon completion of normal refresh operations (leaveok disabled) the terminal hardware
cursor is placed at the current cursor location for the window being refreshed. A call
to leaveok(win, TRUE) prior to refresh allows refresh operations to leave the terminal
hardware cursor in any convenient position instead of updating it to the current window
cursor position when refresh is finished. This is useful for applications where the cursor ~.,

is not used because it reduces the need for cursor movements. When possible, the cursor /
is made invisible when leaveok is specified for the window. Once leaveok is set TRUE for
a given window, it remains active for the duration of the program or until another call
sets it FALSE.

44 Using Curses and Terminfo

longname()
Returns a pointer to a static area containing a verbose description of the current terminal.
This static area is defined only after a call to initscr, newterm, or setupterm.

meta (win, boolean_flag)
When enabled, text characters are returned by getch as 8-bit character codes (masked by
octal 0377) instead of 7-bit (masked by octal 0177) characters. Returns the value OK if
the request succeeds; ERR if the terminal or system cannot handle 8-bit character codes.

meta is useful for extending the non-text command set in applications where the t.erminal
has a meta shift key. curses takes whatever measures are necessary to arrange for 8-bit
input. When meta is true, HP-UX sets datacomm configuration to 8-bit character length,
no parity checking, and disables 8th-bit stripping. Remember that if any program or
facility handling the data can only pass 7-bit codes or strips the 8th bit, 8-bit handling
is not possible.

move (y,x)
wmove(win,y,x)

Places the cursor associated with the specified or default window at the specified row (y)
and column (x) where the upper left corner of the window is row 0, column O. The cursor
is not moved on the display screen until a refresh or equivalent function is executed.

mvaddch(y,x,ch)
Same as move(y,x); addch(ch). See addch(ch).

mvaddstr(y,x,str)
Same as move(y,x); addstr(str). See addstr(str).

mvcur(oldrow, oldcol, newrow, newcol)
Optimally moves the cursor from (oldrow, oldcol) to (newrow, newcol). The user program
is expected to keep track of the current cursor position. Unless a full-screen image is kept,
curses must make pessimistic assumptions that sometimes result in less than optimal
cursor motion. For example, if the cursor needs to be moved a few spaces to the right,
the task could be accomplished by retransmitting the characters between the present and
the desired position; but if curses cannot access the screen image, it cannot determine
what those characters are.

mvdelch(y,x)
Same as move(y,x); delch(). See delch().

Using Curses and Terminfo 45

mvgetch(y,x)
Same as move(y,x); getch(). See getch().

mvgetstr(y,x,str)
Same as move(y,x); getstr(str). See getstr(str).

mvinch(y,x)
Same as move(y,x); inch(). See inch().

mvinsch (y,x, c)
Same as move(y,x); insch(c). See insch(c).

mvinsch(y,x, c)
Same as move(y,x); insch(c). See insch(c).

mvprintw(y,x,fmt, args)
Same as move(y,x); printw(fmt,args). See printw (fmt,args).

mvscanw(y,x,fmt, args)
Same as move(y,x); scanw(fmt,args). See scanw(fmt,args).

mvwaddch (win, y,x, ch)
Same as wmove(win,y,x); waddt;h(win,ch). See addch(ch).

mvwaddstr(win, y,x,str)
Same as wmove(win,y,x); waddstr(win,str). See addstr (str).

mvwdelch(win, y,x)
Same as wmove(win,y,x); addch(ch). See delch().

mvwgetch(win, y,x)
Same as wmove(win,y,x); wgetch(win).· See getch().

mvwgetstr(win,y,x, str)
Same as wmove(win,y,x); wgetstr(win,str). See getstr(str).

mvwin(win, beg_y, beg_x)
Moves the specified window so that the upper left-hand comer is located at character
position (beg_y, beg_x). If the move causes any part of the relocated window to lie outside ~
the physical screen boundary, the command is considered to be in error, and the window
remains in its original location.

46 Using Curses and Terminfo

mvwinch(win, y,x)
Same as wmove(win,y,x); winch(win). See inch().

mvwinsch(win, y,x, c)
Same as wmove(win,y,x); winsch(win,c). See insch(c).

mvwprintw(win, y,x,/mt, args)
Same as wmove(win,y,x); wprintw(win,/mt,args). See printw(fmt,args).

mvwscanw(win, y,x,/mt, args)
Same as wmove(win,y,x); wscanw(win,/mt,args). See scanw(fmt,args).

napms(ms)
Suspends program operation for ms milliseconds. napms is similar to sleep, but has
higher resolution. The resolution actually provided depends on the resolution of available
operating system facilities. If a resolution of at least 0.100 sec is not available, the routine
rounds to the next higher second, calls sleep, and returns ERR. Other wise the value OK
is returned.

newpad(num_lines, num_cols)
Creates a new pad data structure. A pad is similar to a window, but it is not restricted
by physical screen size nor is it associated with a particular part of the screen. Pads are
useful when a large window is needed and only part of the window will be displayed at
any given time. Automatic refreshes from pads (such as scrolling or input echo) do not
occur. Refresh cannot be used with a pad as an argument. Instead, the routines prefresh
and pnoutrefresh are used. Pad refresh routines require additional parameters to specify
what part of the pad to display, and where to display it on the screen.

newterm(type,Jpout,/pin)
Used instead of initscr in programs that output to more than one terminal. newterm
should be called once for each terminal. It returns a variable of type struct screen *
which should be saved for use as a reference to that terminal. Arguments are: a string
defining the terminal type, a file pointer for the output file, and another for the input
file if needed (interactive terminal).

newwin(num_lines, num_cols,beg_y,beg_x)
Create a new window with the specified number of lines and columns whose upper left
hand corner is located at the specified row and column of the physical screen, and return
a window pointer (the upper left-hand corner of the physical screen is row 0, column
0). If the number of lines and/or columns is specified as zero, the default value LINES
minus beg_y and COLS minus beg_x is used instead. A screen buffer for the window is
also created. To create a new full-screen window, use newwin(O,O,O,O).

Using Curses and Terminfo 47

nl{}
nonl{}

Defines handling of newline characters. When enabled (nij, newline is translated into a
carriage-return and line-feed on output, and carriage-return is translated into a newline
character on input. curses initially enables newline, but if it is disabled by nonl, curses ~
can make better use of line feed capability, resulting in faster cursor motion.

nocbreak{)
See cbreak{}.

nodelay(win, boolean_flag)
Makes getch a non-blocking call. When enabled, if no input is ready, a call to getch
returns -1. If disabled, getch hangs until a key is pressed.

noecho{}
See echo{}.

nonl{}
See nl{}.

noraw{}
See raw{}.

overlay(win1,win2)
overwrite(winl, win2)

Copies win1 onto win2 for all screen area where the two windows overlap. overlay copies
only visible (non-blank) text, and does not disturb those win2 character positions where
win1 is blank. overwrite copies all of overlapping win1 onto win2, including blanks, thus
destroying all original data in the overlapping area of win2.

overwrite(win1,win2)
See overlay.

pnoutrefresh (pad, pminrow, pmincol, sminrow,smincol, smaxrow,smaxcol)
See prefresh.

prefresh(pad, pminrow,pmincol, sminrow,smincol, smaxrow,smaxcol)
pnoutrefresh (pad, pminrow,pmincol, sminrow,smincol, smaxrow, smaxcoij ~

Analogous to wrefresh and wnoutrefresh, except that pads are involved instead of win-
dows. Additional parameters specify what part of the pad and screen are to be used.
pminrow and pmincol identify the upper left corner of the pad area to be displayed. smin-
row, smincol, smaxrow, and smaxcol de fine the display boundaries on the physical screen.

48 Using Curses and Terminfo

The lower right-hand corner of the pad area being displayed is calculated from the screen
boundary parameters because both rectangles must be the same size. Both rectangles
must lie completely within their respective structures.

printw(fmt, args)
wprintw(win,!mt, args)
mvprintw(y,x,!mt, args)
mvwprintw(win,y,x, fmt,args)

These commands are functionally equivalent to print/. Characters that would normally
be output by printf are instead output by waddch on the associated window.

raw()
noraw()

Places the terminal in or out of raw mode. Raw mode is similar to cbreak mode in that
characters are immediately passed to the user program as they are typed on the terminal
keyboard, except that interrupt and quit characters are passed as normal text instead
of generating a special interrupt signal. Raw mode handles all terminal I/O as 8-bit
characters instead of 7. BREAK key behavior may vary, depending on the terminal.

refresh()
wrefresh(win)

These functions output window data to the terminal (other routines only manipulate data
structures). wrefresh copies the named window to the physical screen on the terminal by
using wnoutrefresh(win) followed by doupdate(), taking into account what is already on
the screen in order to optimize the transfer. refresh() is similar, except it uses stdscr as
the default screen. Unless leaveok is enabled, the cursor is placed at the location of the
window cursor when the operation is complete.

resetterm ()
saveterm()
jixterm()

resetterm restores the current terminal to the operating condition it was in when curses
was started. The "current curses state" is saved by saveterm() for possible future use by
jixterm(). resetterm and jixterm should be used in all shell escapes. Equivalent routines
are also available at the terminfo level.

reset ty()
savetty()

Restores (resets) the tty modes to those stored in the buffer by the last previous savetty()
command. This means that only one set of states can be stored at any given time. See
savetty().

Using Curses and Terminfo 49

saveterm()
Preserves the current terminal curses state for possible future use by fixterm. See reset
term() and fixterm().

savetty() ~
Saves the current state of the tty modes in a buffer for possible later use by Tesetty().
See resetty().

scanw(fmt, args)
wscanw(win,fmt, args)
mvscanw(y, x,fmt, args)
mvwscanw(win,y,x,fmt, aTgS)

Corresponds to scanf(9S). Calls wgetstT which inputs characters from the terminal and
places them in a buffer until newline is received. When newline is received, the string in
the buffer serves as input for the scan which processes the buffered string and places the
result in the appropriate args. Uses getch for character input and echo handling.

scroll(win)
Scrolls the window up one line by moving the lines in the window data structure. As an
optimization, if the window being scrolled is StdSCT, and the scrolling region is the entire
window, the physical screen is scrolled at the same time.

scrollok(win, boolean_flag)
Controls window handling when the cursor advances beyond the bottom boundary of the
window or scrolling region due to a newline in the bottom line or a character placed in
the last character position of the bottom line. If scrolling is disabled, the cursor is left on
the bottom line (characters are accepted until the bottom line is full, but newlines are
ignored). If the cursor crosses the bottom boundary while sCToliok is enabled, a wrefresh
is performed on the window, then the window and terminal are scrolled up one line. idlok
must also be called before a physical scrolling effect can be produced on the terminal
screen.

setscrreg(t, b)
wsetscTreg(win, t, b)

Sets up a software scrolling area in window win or StdSCT. t and b are the top and bottom
lines of the scrolling region (line 0 is the top line of the window). If this option and
scrollok are both enabled, an attempt to move off the bottom margin causes all lines in
the scrolling region to scroll up one line. Note that this process has nothing to do with
the physical scrolling region capability that exists in some terminals (only the text in the
window is scrolled). If the terminal has scrolling region or insert/delete line capabilities,
they will probably be used by the output routines during refresh. idlok must be enabled
before a scrolling effect can be produced on the terminal screen (see sCTollok).

50 Using Curses and Terminfo

setterm (type)
Low-level interface used by old curses and included here for compatibility with earlier
software.

setupterm (term,filenum, errret)
terminfo routine. See terminfo routines in the next section of this tutorial for description.

seCterm (new)
Switches to a different terminal. The screen reference new becomes the new current
terminal, and the function returns the previous terminal. All other calls affect only the
current terminal. This function is used to handle multiple terminals interacting with a
single program.

standend()
wstandend(win)

Equivalent to attrset(O) and attrset(A_NORMAL). Turns off all video highlighting at
tributes for the default (stan-
dend) or specified (wstandend) window.

standout()
wstandout(win)

Equivalent to attron(A_STANDOUT). Turns on the video highlighting attributes used
for standout highlighting for the terminal being used. Does not alter other attributes in
effect at the time. standout applies to the default window stdscr. wstandout affects the
specified window.

sUbwin(orig_win,num_lines,num_cols, beg_y,beg_x)
Creates a new window containing the specified number of lines and columns within
existing window oris_win. beg_y and beg_x specify the starting row and column position
of the window on the physical screen (not relative to window oris_win). The subwindow
uses that part of the main window character data storage structure that corresponds to
its own area (each window maintains its own pointers, cursor location, and other items
pertaining to window operation; only character st.orage is shared). Thus, the subwindow
always contains character data (including highlighting attributes) that is identical to
the data contained in the corresponding area of the original window, regardless of which
window is the target of a write operation (highlighting bits are determined by the current
attributes in effect for the window through which each character was stored). When using
subwindows, it is often necessary to call touchwin before refresh in order to maintain
correct display contents.

Using Curses and Terminfo 51

touchwin (win)
Discards optimization information on the specified window so that the entire window
must be completely rewritten during refresh. This is sometimes necessary when using
overlapping windows because changes to one window do not update the overlapping
window structure in such a manner that a subsequent refresh operation can be handled
correctly.

traceoff()
Dummy entry point. Performs no useful function.

traceon()
Dummy entry point. Performs no useful function.

typeahead(Jd}
Sets the file descriptor for typeahead check. fd is an integer obtained from open or fileno.
Setting typeahead to -1 disables typeahead check. Default file descriptor is 0 (standard
input). Typeahead is checked independently for each screen; for multiple interactive
terminals, it should be set to the appropriate input for each screen. A call to typeahead
always affects only the current screen.

unctrl(ch} ')
Converts the character code represented by ch into a printable form if it is an unprintable
control character. The converted character is printed as an alpha-numeric character
preceded by ~ where C) represents the control key, and the alpha-numeric character
corresponds to the key that is pressed in conjunction with the control key to produce the
control character.

waddch(win,ch}
See addch(ch}.

waddstr(win, str}
See addstr(str}.

wattroff(win, attrs}
See attroff(attrs}.

wattron (win, attrs)
See attron(attrs}.

52 Using Curses and Terminfo

wattrset (win, aUrs)
See attrset(aUrs).

~
wc1ear(win)
See clear().

wcleartobot{win)
See cleartobot().

wc1eartoeol(win)
See cleartoeol().

wdelch (win)
See delch().

wdeleteln (win)
See deleteln().

werase{win)

~
See erase().

wgetch{win)
See getch()

wgetstr{win,str)
See getstr{str)

winch (win)
See inch()

winsch (win, c)
See insch(c).

winsertln (win)
See insert/n().

~
wmove{win,y,x)
See move{y,x).

Using Curses and Terminfo 53

wnoutrefresh(win}
See doupdate(}.

wprintw(win,fmt, args}
See printw(Jmt,args}.

wrefresh (win)
See rejresh(}. See also doupdate(}.

wscanw(win,jmt, args)
See scanw(jmt, args}.

wsetscrreg(win, t, b)
See setscrreg(t,b}.

wstandend(win}
See standend{).

wstandout(win}
See standout{}.

54 Using Curses and Terminfo

~
\'

Terminfo Routines
delay_output(ms)
Inserts a delay into the output stream for the specified number of milliseconds by inserting
sufficient pad characters to effect the delay. This should not be used in place of a high
resolution sleep, but rather to slow down or hold off the output. Due to system buffering,
it is unlikely that a delay can result in a process actually sleeping. ms should not exceed
about 500 because of the large number of pad characters used to produce such delays.

putp(str)
Outputs a string capability without use of an affcnt (see tputs). The string is sent to
putchar with an affcnt of 1. It is used in simple applications that do not require the
output processing capability of tputs.

setupterm(term,jilenum, errret)
Initializes the specified terminal. term is the character string representing the name or
model of the terminal; filenum is the HP-UX file descriptor of the terminal being used
for output; errret is a pointer to the integer in which a success/failure indication is
returned. The values returned can be: 1 (initialize complete); -1 (terminfo data base
not found); or 0 (no such terminal).

If 0 is given as the value of term, the default value of TERM is obtained from the
enviroment. errret can be specified as 0 if no error code is wanted. If errret is default
(0), and something goes wrong, setupterm prints an appropriate error message and exits
rather than returning. Thus, a simple program can call setupterm(O,l,O) and not provide
for initialization errors.

If the environment variable TERMINFO is set to a path name, setupterm checks for a
compiled terminfo description of the terminal under that path before checking jete/term.
Otherwise, only jete/term is checked.

setupterm uses filenum to check the tty driver mode bits, and changes any that might
prevent correct operation of low-level curses routines. Tabs are not expanded into spaces
because various terminals exhibit inconsistent uses of the tab character. If the HP
UX system is expanding tabs, setupterm removes the definition of the tab and backtab
functions because they may not be set correctly in the terminal. Other system-dependent
changes such as disabling a virtual terminal driver may also be made here, if deemed
appropriate by setupterm.

Using Curses and Terminfo 55

setupterm also initializes the global variable ttytype (an array of characters) to the value
of the list of names for the terminal in question. The list is obtained from the begining
of the terminfo description.

Upon completion of setupterm, the global variable cur_term points to the current struc- ~
ture of terminal capabilities. A program can use two or more terminals at once by calling
setupterm for each terminal, and saving and restoring cur_term.

nl() is enabled, so newlines are converted to carriage return-line feed sequences on output.
Programs that use cursor_down or scroll_forward should avoid these two capabilities or
disable the mode with nonl(). setupterm calls reseCprog_mode after any changes are
made.

tparm(instring,pl,p2,p9,p4,pS,p6,p 7,p8,p9)
Instantiates a parameterized string. Up to nine parameters can passed (in addition to
the input string) that define what operations are to be performed on instring by tparm.
The resultant string is suitable for output processing by tput.

tputs(cp, affent, oute)
Processes terminfo(S) capability strings for terminal devices. The padding specification,
if present, is replaced by enough padding characters to produce the specified time delay. ~
The resulting string is passed, one character at a time, to the routine oute which expects J
a single character parameter each time it is called. Often, oute simply calls putchar to
complete its task. cp is the capability string, and affcnt is the number of units affected
(such as lines or characters). For example, the affcnt for inserCline is the number
of lines on the screen below the inserted line; that is, the number of lines that will
have to be moved on the terminal. In certain cases, affcnt is used to determine the
number of padding characters that must be created in the output string to produce the
required delay(s), based on known terminal characteristics (obtained from the terminal
identification data base).

vidattr(attrs)
Transmits the appropriate string to stdout to activate the specified video attributes which
can include any or all of the following: A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,
A_DIM, A_BOLD, A_BLANK (invisible), A_PROTECT, and A_ALTCHARSET (multiple attributes must
be separated by the C logical OR operator I).

56 Using Curses and Terminfo

vidputs(attr8,putc)
Transmits the appropriate string to the terminal, activating the specified video highlight
ing attributes. attrs can include any or all of the following (multiple attributes must be
separated by the C logical OR operator I): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,
A_DIM, A_BOLD, A_BLANK (invisible), A_PROTECT, and A_ALTCHARSET. putc is a putchar-like
function. Previous highlighting attributes are preserved by this routine and restored
upon return.

Termcap Compatibility Routines
Several routines have been included in curses that support programs written with calls
to termcap routines. Calling parameters are the same as for equivalent termcap calls, but
the routines are emulated using the terminfo data base. These routines may be removed
in future releases of HP-UX.

tgetent(bp, name)

tgetflag{id)

tgetnum(id)

tget8tr(id,area)

tgoto{cap, col, row)

tput8{cap, affcnt,fn)

Obtains and returns with termcap entry for name

Returns the boolean entry for id.

Returns the numeric entry for id.

Returns the string entry for id and places the result in area.

Attaches col and row parameters to the capability cap.

Equivalent to the terminfo routine tput8. Parameters are
identical for both cases.

Using Curses and Terminfo 57

Program Operation
This section describes how curses routines behave and how they are used in a typical
programming environment.

Insert/Delete Line
The output optimization routines associated with curses use terminal hardware in
sert/delete line capabilities provided the routine

idlok(stdscr,TRUE);

has been called to enable the capability. By default, insert/delete line during refresh is
disabled (FALSE); not for performance reasons (there is no speed penalty involved), but
because experience has shown that not only is insert/delete line frequently not needed
(especially in simple programs); it can sometimes be visually annoying when used by
curses. Insert/delete character is always available to curses if it is supported by the
terminal.

Additional Terminals
Curses can be used, even when absolute cursor addressing is not provided on the terminal,
as long as the cursor can be moved from any location to any other location. curses ~
considers available cursor control options such as local motions, parameterized motions,
home, and carriage return.

curses is intended for use with full-duplex, alphamumeric, video display terminals. No
attempt is made to handle half-duplex, synchronous, hard copy, or bitmapped terminals.
Bitmapped terminals can be handled by programming the bitmapped terminal to em
ulate an ordinary alphanumeric terminal. This prevents curses from using the bitmap
capabilities, but curses was not designed for bitmapping.

curses can also deal with terminals that have the "magic cookie" glitch in their display
highlighting behavior. The term "magic cookie" means that changes in highlighting are
controlled by storing a "magic cookie" character in a location on the screen. While this
"cookie" takes up a space, preventing an exact implementation of what the programmer
wanted, curses takes the extra character space into account, and moves part of the line
to the right when necessary. In some cases, this unavoidably results in losing text along
the right-hand edge of the screen, but curses compensates where possible by omitting ~
extra spaces. }

58 Using Curses and Terminfo

Multiple Terminals
Some applications require that text be displayed on more than one terminal at the same
time from the same process. This is easily accomplished, even when the terminals are
different types.

curses maintains all information about the current terminal in a global variable called

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler accepts declarations
of variables that are pointers. The user program should declare one screen pointer
variable for each terminal that is to be handled. The routine:

struct screen *
newterm(type,fdout,fdin)

sets up a new terminal of the specified type and output is handled through file descrip
tor fdout. This is comparable to the usual program call to initscr which is essentially
equivalent to

newterm(getenv("TERM"),stdout)

A program that uses multiple terminals should call newterm for each terminal, and save
the value returned as a reference to that terminal for other calls.

To change to a different terminal, call

set_term (term)

which returns the old value of variable SP. Do not assign to SP because certain other
global variables must also be changed.

All curses routines always interact with the current terminal. seLterm is used to change
from one terminal to the next in a multi-terminal environment. When the program
is ready to terminate, each terminal should be selected in turn by a call to seLterm,
then cleaned up with screen clearing and cursor locating routines, followed by a call to
endwin() for that terminal. Repeat the sequence for each additional terminal used by
the program. The example program TWO demonstrates the technique.

Using Curses and Terminfo 59

Video Highlighting
Video highlighting attributes can be displayed in any combination on terminals that sup
port the various attribute capabilities. Each character position in screen data structures
is allotted 16 bits: seven for the character code; the remaining nine for highlighting at- ""
tributes, one bit per attribute. Each respective bit is associated with one of the following y
attributes: standout, underline, inverse video, blink, dim, bold, invisble, protect, and
alternate character set. Standout selects the visually most pleasing highlighting method,
and should be used by all programs that do not need a specific higWighting combina-
tion. Underlining, inverse video, blinking, dim, and bold are standard features on most
popular terminals, though they are not usually all present on a single terminal (for ex-
ample, no current terminal implements both bold and dim). Invisible means that visible
characters are displayed as blanks for security reasons (such as when echoing passwords).
Protected and Alternate Character Set are subject to the characteristics of the terminal
being used. Invisible, protected, and alternate character set attributes are subject to
change or substitution by curses, and should be avoided unless necessary.

When characters are stored, each character is combined with the current attributes
variable associated with the window. The variable is formed by using one of the following
routines:

attrset(attrs) wattrset(win,attrs)
attron(attrs) wattron(win,attrs) ,
attroff(attrs) wattroff(win,attrs)
standout() wstandout(win)
standend() wstandend(win)

The following attributes can be specified in the attrs argument for corresponding at
tribute set/on/off routines.

A_STANDOUT A_BLINK A_INVIS
A_UNDERLINE A_DIM A_PROTECT
A_REVERSE A_BOLD A_ALTCHARSET

When specifying multiple attributes, they should be separated by the C logical OR
operator (I). Thus, to specify blinking underline and disable all other attributes on the
stdscr window, use attrset (A_BLINK IA_UNDERLINE) .

curses forms the current attributes word as follows:

• Each attribute (such as A_UNDERLINE) is stored as a 16-bit word where all bits are
zero except the bit that represents the corresponding attribute in a stored character ,
word (for example, 0000010000000000 controls blinking).

60 Using Curses and Terminfo

• All attributes forming the attrs argument are combined using the logical OR op
erator to create a single 16-bit word containing all attributes in the argument. For
example, the three attribute words

0000010000000000,
0001000000000000, and
0000001000000000 are combined to form
0001011000000000 which identifies the new attributes.

• Three things can be done with the new attributes word. It can be used as the new
current attributes (attrset or wattrset); or the new attributes can be added to any
currently active attributes (attron or wattron), or deleted from the currently active
attributes (attroff or wattroff).

• If attrset (or wattrset) was called, the routine stores the new attributes in the current
attributes variable and returns. The previous set of current attributes is destroyed.

• If attron (or wattron) was called, the routine performs a logical OR of the current
attributes with the new attributes, then places the result in the current attributes
variable and returns. The revised current attributes variable contains all previously
active attributes plus the new attributes.

• If attroff (or wattroff) was called, the routine inverts the new attributes, performs
a logical AND on the inverted new attributes and the current attributes, then
places the result in the current attributes variable and returns. The altered current
attributes variable contains all previously active attributes except those specified
in the call, which are now disabled.

• standout and wstandout obtain their highlighting attributes from the terminJo data
base, then perform the same operation as attron prior to returning.

• standend and wstandend disable all attributes then return. They are equivalent to
attrset{O) and attrset{A_NORMAL).

• attrset{O) and wattrset{win, 0) set the 16-bit current attributes variable value to zero
which disables all attributes. A_NORMAL can be substituted for zero as an argument.

The preceding scenarios assume that the specified attributes are available on the cur
rent terminal. In every case, the terminJo data base is used to determine whether the
selected attribute is present. If it is not, curses attempts to find a suitable substitute
before forming the new attribute set. If the terminal has no highlighting capabilities, all
highlighting commands are ignored.

Using Curses and Terminfo 61

Three other constants (defined in <curses. h>), in addition to the previously listed at
tributes are also available for program use if needed:

• A_NORMAL has the octal value 0000000, and can be used as an attribute argument
for attrset to restore normal text display. attrset(O) is easier to type, but less
descriptive. Both are equivalent.

• A_ATTRIBUTES has the octal value 0177600. It can be logically ANDed with a char
acter data word to isolate the attribute bits and discard the character.

• A_CHARTEXT has the octal value 0000177. It can be logically ANDed with a character
data word to isolate the character code and discard the attributes.

Special Keys
Most terminals have special keys, such as arrow keys, screen/line clearing keys, insert
and delete line or character keys, and keys for user functions. The character sequences
that such keys generate and send to the host computer vary from terminal to terminal.
curses provides a convenient means for handling such keys through the use of keypad
routines. Keypad capabilities are enabled by the call:

keypad (stdscr ,TRUE)

during program initialization, or

keypad (win ,TRUE)

when setting up and initializing other windows, as appropriate. When keypad is enabled,
keypad character sequences are passed to the program by getch, but they are converted
to special character values starting at 0401 octal (keypad character codes are listed in
the keypad discussion early in this tutorial). Keypad codes are 16-bit values, and must
not be stored in a char type variable because the upper bits must be preserved.

When keypad keys are used in a program, avoid using the escape key for program control
because most keypad sequences begin with escape. If escape is used for program control,
an ambiguity results that is not easily dealt with, and, at best, results in sluggish program
response to all escape sequences as well as significant potential for incorrect program
operation.

62 Using Curses and Terminfo

Scrolling Regions
Each window has a programmer-accessible scrolling region that is normally set to include
the entire window. curses contains a routine that can be used to change the scrolling
region to any location in the window by specifying the top and bottom margin lines. The
routines are called by

setscrreg(top,bottom)

for the stdscr window ~ or

wsetscrreg(win ,top ,bottom)

for other windows. When the cursor advances beyond the bottom line in the region, all
lines in the region are moved up one line (destroying the top line in the process) and
a new line at the bottom of the region becomes the new cursor line. If scrolling has
been enabled by a call to scrollok for that window, scrolling takes place, but only within
the window boundary (if scrollok is not enabled, the cursor stays on the bottom line
and no scrolling can occur). The scrolling region is a software feature only, and only
causes a given window data structure to scroll. It mayor may not translate to use of the
hardware scrolling region that is featured on some terminals or hardware insert/delete
line capabilities on the terminal.

r-' Mini-Curses
All calls to refresh copy the current window to an internal screen image (stdscr). For
simpler applications where window capabilities are not important and all operations can
be handled by the standard screen, the screen output optimization capabilities of curses
can be obtained through the low-level curses interface routines supported by mini-curses.
Mini-curses is a subset of full curses, so any program that runs on the subset can also
run on full curses without modification.

A complete list of commands is shown at the beginning of the curses commands section in
this tutorial. Commands that are supported by mini-curses are marked with an asterisk
(some that are not marked may also be accessible - if a program calls routines that are
not, an error message showing undefined calls is produced by the compiler at compile
time).

mini-curses routines are limited to commands that deal with the stdscr window. Certain
other high-level functions that are convenient but not essential (such as scanw, printw,
and getch) are not available, as well as all commands that begin with w. Low-level
routines such as hardware insert/delete line and video attributes are supported, as are
mode-setting routines such as noecho.

Using Curses and Terminfo 63

To access mini-curses, add -DMINlCURSES to the CFLAGS in the makefile. If any routines
are requested that are not available in mini-curses, an error diagnostic such as

Undefined:
m_getch
m_waddch

is listed to indicate that the program contains calls (in this case to getch and waddch)
that cannot be linked because they are not available.

Remember that the preprocessor is involved in the implementation of mini-curses, so
any programs that are compiled for use with mini-curses must be recompiled if they are
to be used with full curses.

TTY Mode Functions
In addition to the save/restore functions savetty() and resetty(), other standard routines
are provided by curses for entering and exiting normal tty mode.

• resetterm() restores the terminal to its state prior to curses' start-up.

• jixterm performs the equivalent of an undo on the previous jixterm on that terminal;
it restores the "current curses mode" using the results of the most recent call to
saveterm().

• endwin automatically calls resetterm.

• Routines that handle control-Z (on systems that have process control) also use
resetterm() and jixterm().

Programs that use curses should use these routines before and after shell escapes, and
also if the program has its own routines for dealing with control-Z. These routines are
also available at the terminfo level.

Typeahead Check
When a user types something during a screen update, the update stops, pending a future
update. This is useful when several keys are pressed in sequence, each of which produces
a large amount of output. For example in a screen editor, the "forward screen" (or "next
page") key draws the next screenful of text. If the key is pressed several times in rapid
succession, rather than drawing several screens of text, curses cuts the updates short
and only displays the last requested full screen. This feature is automatic, and cannot
be disabled. It requires support by certain routines in the HP-UX operating system.

64 Using Curses and Terminfo

~."''''''
~.

getstr
No matter whether echo is enabled or disabled, strings typed and input by getstr are
echoed at the current cursor location. Erase and kill characters assigned by the user for
his (or her) terminal are considered when handling input strings. Thus it is unnecessary
for interactive programs to deal directly with erase, echo, and kill when processing a line
of text from the terminal keyboard.

longname
The longname function does not require any arguments. It returns a pointer to a static
storage area that contains the actual long (verbose) terminal name.

Nodelay Mode
The program call

nodelay(stdscr,TRUE)

puts the terminal in "no delay" mode. When nodelay is active, any call to getch returns
the value -1 if there is nothing available for immediate input. This feature is helpful for
real-time situations where a user is watching terminal screen outputs and presses a key
when he wants to respond. For example, a program can be producing a text pattern on
the screen while maintaining an open opportunity for the user to press certain keys to
alter the output pattern, change cursor direction, or produce some other effect.

Using Curses and Terminfo 65

Example Programs

SCATTER
This program takes the first 23 lines from the standard input, then displays them in
random order on the display terminal screen.

#include <curses.h>
#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS] :

mainO
{

1* Screen Array *1

register int row = O.
col = 0;

register char c:
int char_count = 0: 1* count non-blank characters *1
long t:
char buf[BUFSIZ]:

initscrO:
for (row = 0: row < MAXLINES: row++)

for (col = 0: col < MAXCOLS;
s[row] [col] = ' ';

1* initialize screen array *1
col++)

row = 0;
col = 0;
1* Read screen in *1
while ((c = getchar(» != EOF && row < LINES) {

if (c != '\n' && col < COLS) {
1* Place char in screen array *1
s[row] [col++] = c;
if (c != ' ')

char_count++;
} else {

col = 0;
row++;

}
}

66 Using Curses and Terminfo

argc;
*argv[] ;

time(kt); 1* Seed the random number generator *1
srand«int)(t&0177777L»;

while (char_count) {
row = rand() % LINES;
col = (rand() » 2) % eOLS;
if (s [row] [col] != ' , && s [row] [col] != EOF) {

move(row.col);
addch(s[row) [col);
s[row] [col) = EOF;
char_count--;
refresh();

}
}

endwinO;
exit(O);

}

SHOW
This example program displays a file taken from the standard input, one screen at a
time. Press the terminal space bar to advance to the next screen.

#include <curses.h>
#include <signal.h>
main(argc.argv)

int
char

{
FILE *fd;
char linebuf[BUFSIZ];
int line;
void done().perror().exit();

if (argc != 2) {
fprintf(stderr. !tusage: %s file\n u • argv[O);
exit (1) ;

}

if

}

(fd = fopen(argv[1]. UrU»
perror(argv[1]) ;
exit(2);

NULL) {

Using Curses and Terminfo 67

signal (SIGINT, done);
initscrO;
noechoO;
cbreakO;
nonlO;
idlok(stdscr,TRUE);

/* enable more screen optimization */
/* allow insert/delete line */

while (1) {
move(O,O);
for (line = 0; line < LINES; line++) {

if (fgets(linebuf. sizeof linebuf, fd) == NULL) {
clrtobotO;
doneO;

}
move(line,O);
printw("y's", linebuf);

}

refreshO;
if (getch() ==)q)

done 0 ;
}

}
void

doneO
{

move(LINES-1,O);
clrtoeolO;
refreshO;
endwin();
exit(O);

}

HIGHLIGHT
This example program displays text taken from the standard input. Highlighting is
determined by embedded character sequences in the file. \ U starts underlining, \B
starts bold highlighting, and \N restores normal display characteristics.

#include <curses.h>

main(argc.argv)
char **argv;

{

FILE *fd;
int c,c2;

if (argc != 2) {

68 Using Curses and Terminfo

}

fprintf(stderr. "Usage: highlight file\n");
exit (1) ;

}

fd = fopen(argv[1] ."r");
if (fd == NULL) {

perror(argv [1]) ;
exit(2);

}

initscrO;
scrollok(stdscr.TRUE);

for (;;) {
c = getc(fd);
if (c == EOF)

break;

if (c == '\\1) {
c2 = getc(fd);
switch(c2) {
case 'B':

attrset(A_BOLD) ;
continue;

case IU':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(O) ;
continue;

}

addch(c);
addch(c2);

} else
addch(c);

}

fclose(fd);
refreshO;
endwin();
exit(O);

Using Curses and Terminfo 69

WINDOW
This program demonstrates the use of multiple windows.

#include <curses.h>

WINDOW

maine)
{

*cmdwin;

int i,c;
char buf[120];

initscrO;
nonlO;
noecho();
cbreakO;

cmdwin = newwin(3,COLS,O,O); /* top 3 lines */
for (i=O; i < LINES; i++)

mvprintw (i ,0, "This is line %d of stdscr", i) ;

for (;;) {
refreshO;
c = getchO;
switch(c) {
case 'c': /* Enter command from keyboard */

werase(cmdwin); /* clear window */
wprintw(cmdwin,"Enter command:");
wmove(cmdwin,2,O);
for (i=O; i < COLS; i++)

waddch(cmdwin,'-');

wmove(cmdwin,l,O);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin,buf);
touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.
*/

eraseO;
for (i=O; i < LINES; i++)

mvprintw(i,O,I%s",buf) ;
refresh();
break:

case 'q':
endwin();

70 Using Curses and Terminfo

exit(O);
}

}
}

TWO
This program shows how to handle two terminals from a single program.

#include <curses.h>
#include <signal.h>

struct screen *me. *you;
struct screen *set_term();

FILE *fd. *fdyou;
char linebuf[512] ;

main(argc,argv)
char **argv;

{
int done 0 :
int c;

if (argc != 4) {
fprintf(stderr."Usage: two othertty otherttytype inputfile\n");
exit(1);

}

fd = fopen(argv[3] ."r");
fdyou = fopen(argv[1] ,"W+") ;
signal (SIGINT , done); /* die gracefully */

me = newterm(getenv(IITERM").stdout.stdin); /* initialize my tty */
you = newterm(argv[2] ,fdyou.fdyou); /* Initialize his/her terminal*/

set_term(me) :
noecho():
cbreakO:
nonlO;
nodelay(stdscr,TRUE);

set_term(you);
noecho();
cbreakO:
nonlO;
nodelay(stdscr,TRUE);

/* Set modes for my terminal */
/* turn off tty echo */
/* enter cbreak mode */
/* Allow linefeed */
/* No hang on input */

/* Dump first screen full on my terminal */
dump_page(me);

Using Curses and Terminfo 71

/* Dump second screen full on his/her terminal */
dump_page(you);

for (;;) { /* for each screen full */
set_term(me);
c = getchO;
if (c == 'q') /* wait for user to read it */

done 0 ;
if (c == • ')

dump_page(me);

set_term(you);
c = getchO;
if (c == 'q') /* wait for user to read it */

done 0 ;
if (c == • ')

dump_page(you);
sleep(1) ;

}
}

dump_page (term)
struct screen *term;

{

int line;

set_term(term);
move(O,O);
for (line=O; line < LINES-1; line++) {

if (fgets(linebuf,sizeof linebuf,fd) == NULL) {
clrtobotO;
done 0 ;

}
mvprintw(line,O,I%s",linebuf);

}

standout 0 ;
mvprintw (LINES-i, 0 , "--More--") ;
standendO;
refresh(); /* sync screen */

}

/*
* Clean up and exit.
*/

donee)
{

/* Clean up first terminal */
set_term(you);

72 Using Curses and Terminfo

move(LINES-l,O);
clrtoeolO;
refresh();
endwin();

/* to lower left corner */
/* clear bottom line */
/* flush out everything */
/* curses clean up */

/* to lower left corner */
/* clear bottom line */
/* flush out everything */
/* curses clean up */

/* Clean up second terminal */
set_term(me);
move(LINES-l,O);
clrtoeolO;
refreshO;
endwin();

exit(O);
}

TERMHL
This program is equivalent to the earlier example program HIGHLIGHT, but uses teT
minfo routines instead.

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining */

main (argc, argv)
char **argv;

{
FILE *fd:
int c,c2;
int outehO:

if (argc > 2) {
fprintf (stderr, "Usage: tenthl [f i 1e] \n II) ;
exit (1) ;

}

if (arge == 2) {
fd = fopen(argv[l] ,"r");
if (fd == NULL) {

perror(argv[l]);
exit(2);

}
} else {

fd =stdin;
}

setupterm(O,l,O);
for (;;) {

e = getc(fd);

Using Curses and Terminfo 73

if (c == EOF)
break;

if (c == '\\') {
c2 = getc(fd);
switch(c2) {
case 'B':

tputs(enter_bold_mode.1.outch);
continue;

case 'U':
tputs(enter_underline_mode.1.outch);
ulmode = 1;
continue;

case 'N':
tputs(exit_attribute_mode.1.outch);
ulmode = 0;
continue;

} else

}
fclose(fd);
fflush(stdout);
resetterm0 ;
exit(O);

}
putch(c) ;
putch(c2);

putch(c) ;

}

1*
* This function is like putchar. but it checks for underlining.
*1

putch(c)
int c;

{
outch(c);
if (ulmode && underline_char) {

outch('\b') ;
tputs(underline_char.l.outch);

}
}

1*
* Outchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*1

outch(c)
int c;

{
putchar(c);

}

74 Using Curses and Terminfo

EDITOR
This program is a very simple screen-oriented editor that is similar to a small subset of
vi. For simplicity, the stdscr window is also used as the editing buffer.

#include <curses.h>
#define CTRL(c) ('c'&037)
main(argc,argv)

char **argv;
{

int i,n,l;
int c;
FILE *fd;

if (argc != 2) {
fprintf(stderr,UUsage: edit file\n ll);

exit (1) ;
}

fd = fopen(argv[l] ,Urll);
if (fd == NULL) {

perror(argv[l]);
exit(2);

}

initscrO;
cbreakO;
nonlO;
noechoO;
idlok(stdscr, TRUE);
keypad (stdscr, TRUE);

/* Read in the file */
while «c = getc(fd» != EOF)

addch(c);
fclose(fd) ;

move(O,O);
refresh();
editO;

/* Write out the file */
fd = fopen(argv[l] ,"W II

);

for (1=0; I < LINES; 1++) {
n = len(l);
for (i=O; i<n; i++)

putc(mvinch(l,i),fd);
putc (, \n ' ,fd) ;

}

Using Curses and Terminfo 75

fclose(fd) ;
endwin();
exit(O);

}
len(lineno)

int
{

lineno;

int linelen = COLS-1;

while (linelen >= 0 k& mvinch(lineno,linelen) ")
linelen-- ;

return linelen + 1;
}

1* Global value of current cursor position *1
int row,col;

editO
{

int c;
for (;;) {

move (row ,col) ;
refreshO;
c = getchO;
switch(c) { 1* Editor commands *1

1* hjkl and arrow keys: move cursor *1
1* in direction indicated *1
case 'h':
case KEY_LEFT:

if (col > 0)
col-- ;

break;

case 'j':
case KEY_DOWN:

if (row < LINES-i)
row++;

break;

case 'k':
case KEY_UP:

if (row > 0)
row--;

break;

case '1':
case KEY_RIGHT:

if (col < COLS-1)

76 Using Curses and Terminfo

col++;
break;

1* i: enter input mode *1
case KEY_IC:
case 'i':

input 0 ;
break;

1* x: delete current character *1
case KEY_DC:
case 'x':

delchO;
break;

1* 0: open up a new line and enter input mode *1
case KEY_IL:
case '0':

move(++row,col=O);
insertlnO;
input 0 ;
break;

1* d: delete current line *1
case KEY_DL:
case 'd':

deletelnO;
break;

1* AL:
case
case

redraw screen *1
KEY_CLEAR:
CTRL(L):
clearok(curscr) ;
refreshO;
break;

}
}

1* w: write and quit *1
case 'w':

return;

1* q: quit without writing *1
case 'q' :

endwinO;
exit (1) ;

default:
flashO;
break;

}

Using Curses and Terminfo 77

1*
* Insert mode: accept characters and insert them.
* End with AD or EIC.
*1

input()
{

int c;
standout 0 ;
mvaddstr(LINES-l. COLS-20. lIINPUT MODEll);
standendO;
move(row.col);
refresh() ;

for (;;) {
c = getchO;
if (c == CTRL(D) I I c == KEY_EIC)

break;
insch(c) ;
move (row. ++col);
refreshO;

}
move(LINES-l. COLS-20);
clrtoeolO;
move(row.col) ;
refreshO;

}

78 Using Curses and Terminfo

Index

a
addch 2,4,10,29,36
addstr 29,37
alternate character set 10
arrow keys 1,62
attributes 10,11
attroff 11,32,37,61
attron 11,37,61
attrset 2,10,11,37,61

b
baudrate 33,38
beep 22,33,38
blinking highlight 10
bold highlight 10
box 30,38

c
cbreak 4,9,27,38
clear 30,38
clearok 4,25,38
cleartobot 38
cleartoeol 39
clrtobot 9,30
clrtoeol 9,30
COLS 5
configuration routines 27
current attributes 11
current screen 2
current terminal 17
curser 2

curses 1
curses routines 34,35
curses.h 10

d
data output routines 29
delay functions 33
delay_output 39,55
delch 30,39
deleteing text 30
deleteln 30,39
delwin 39
dim highlight 10
doupdate 29,39
draino 33,40

e
echo 27,40
endwin 5,25,40~64

erase 30,40
erasechar 33,40
ERR 24
escape sequences 22
example programs:

editor 21,75
highlight 12,68
scatter 66
show 12,67
termhl 20,73
two 18,59,71
window 15,70

f
fixterm 40,64
flash 22,33,41
flush 4
flushinp 33,41

9
getch 6,31,41
getstr 31,42,65
gettmode 42
getyx 31,43

h
half-bright highlight 10
has_ic 43
has_il 43
highlight escape sequences 12
highlighting 2
highlights 10,32,60

•
I

idiok 25
idlok 4,9,43
inch 31,43
include files 24
initialization routines 25
initscr 4,25,43
input routines 31
insch 30,43
inserting text 30
insertln 30,44
intrflush 26,44
inverse video 10
invisible highlight 10

k
keyboard input 6
keypad 6,7,25,44,62
keypad codes 8
killchar 33,44

I
leaveok 26,44
LINES 5
loader options 24
longname 25,45,65
low-level access 19

m
magic cookie 58 ')
manipulation routines 28
meta 26,45
mini-curses 24,63,64
move 29,45
multiple terminals 17,59
mvaddch 45
mvaddstr 45
mvcur 45
mvdelch 45
mvgetch 46
mvgetstr 46
mvinch 46
mvinsch 46
mvprintw 46
mvscanw 46
mvwaddch 46 ~
mvwaddstr 46 ,
mvwdelch 46
mvwgetch 46
mvwgetstr 46
mvwin 46

lllvwinch 47
lllvwinsch 47
rnvwprintw 47
lnvwscanw 47

n
napnls 33,47
newpad 47
newterrn 17,25,47,59
newwin 14,47
nl 27,48
nocbreak 48
nodelay 26,48
nodelay nlode 65
noecho 9,27,48
non print highlight 10
nonl 9,27,48
noraw 27,48

o
OK 24
options 25
overlay 14,28,48
overwrite 14,28,48

p
padding 2
pads 13
pnoutrefresh 29,48
portability functions 33
prefresh 29,48
printw 4,30,49
putp 55

r
race conditions 17
raw 27,49
refresh 4,12,22,29,49')
resetterm 49,64
resetty 27,49

5
saveterm 50
savetty 27,50
scanw 31,50
screen size 5
scroll 50
scrollok 26,50
scrollw 30
setscrreg 26,50,63
setterm 51 .~

setupterm 19,25,51,55)
set_term 17,18,51
standard screen 2
standend 32,51
standout 32,51,61
standout highlight 10
stdscr 2
struct screen 59
sttron 32
sttrset 32
subwin 51
Subwindows 16

t
TERM 1
termcap routines 57
terminfo 1
terminfo-Ievel access 19
touchwin 15,28,52
tparm 56
tputs 20,56
traceoff 52
traceon 52
tty mode ' 64
typeahead 26~52~64

u
unctrl 52
underlining highlight 10

v
vidattr 20,56
vidputs 57

VI
waddch 14,52
waddchr 10
wattroff 32~61

wattron 32,61
wattrset 61
wclear 30
wdeleteln .. 30
window 2
windows 13

Windows:
Creating , 14
Multiple 13
Subwindows 16

wmove 29
wnoutrefresh , 29
wrefresh 14,29
writing routines 29
wsetscrreg 63
wstandout 61

Manual Comment Sheet Instruction
If you have any comments or questions regarding this manual, write them on the enclosed comment
sheets and place them in the mail. Include page numbers with your comments wherever possible.

If there is a revision number, (found on the Printing History page), include it on the comment sheet.
Also include a return address so that we can respond as soon as possible.

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use
staples.

Thank you for your time and interest.

Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

97089-90030

HP-UX Concepts and Tutorials
Vol. 2: Programming Environment

Last Date: _
(See the Printing History in the front of the manual)

April 1985

Name: _

Company: _

Address: _

Phone No: _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

r

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

97089-90030

HP-UX Concepts and Tutorials
Vol. 2: Programming Environment

Last Date: _
(See the Printing History in the front of the manual)

April 1985

Name: _

Company: _

Address: _

Phone No: _

r

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WIll BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

97089-90030

HP-UX Concepts and Tutorials
Vol. 2: Programming Environment

Last Date: _
(See the Printing History in the front of the manual)

April 1985

Name: _

Company: _

Address: _

Phone No: _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

r

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

~'•. ''''''''(.I

Reorder Number
97089·90030
Printed in U.S.A. 4/85

Flidl HEWLETT
a:~ PACKARD

I 111\\
97089-90601

Mfg. No. Only

	HP-UX Programming
	C Differences
	C Library Routines
	Lint
	Assembler
	Ratfor
	NLS
	curses and terminfo
	99-cover-back

