
HP 9000 Series 200/500 Computers

" .

. .

" HP-OX Selected Articles

. .

"

.. -

Flin- HEWLETT
~~ PACKARD

HP-UX Selected Articles
for the HP 9000 Series 2001500

Manual Part No. 97089-90003

© Copyright 1983, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1980, Bell Telephone Laboratories, Inc.

© Copyright 1979. 1980, The Regents of the University of California.

This software and documentation is based in parton the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

November 1983 ... First Edition

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products sold in the U.SA and Canada, this warranty applies for ninety (90) days from the date of delivery:
Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment. or by hardware. software. or interfacing not
provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming Instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter­
rupted or error free.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett­
Packard shall not be liable for errors contained herein or for incidental or consequential damages In connection with the
furniShing, performance or use of this material.

~ For other countries, contact your iocal Sales and Suppor~ Office to determine warranty terms

Preface

The articles contained in this manual are provided to help you use the commands and utilities provi­
ded with HP-UX. The articles have several sources. Some were written at Hewlett-Packard specifi­
cally for the HP 9000 family of computers. Others were written at Bell Laboratories or the Universi­
ty of California at Berkeley (UCB), and remain in their original state. Thus, it is possible that some
options and/or descriptions of command behavior may not apply to your system.

The articles included are:

1. System Overview
2. Edit: A Tutorial
3. Ex Reference Manual
4. The Vi Editor
5. The Ed Editor
6. Sed - A Non-Interactive Text Editor
7. Awk - A Pattern Scanning and Processing Language
8. Shell Programming
9. UNIX* Programming

10. Make - A Program for Maintaining Computer Programs
11. Source Code Control System User's Guide
12. Using C on the HP 9000 Series 500 Computers
13. Lint - C Program Checker
14. Nroff/T roff User's Manual
15. Memorandum Macros
16. Lex - A Lexical Analyzer Generator
17. Yacc: Yet Another Compiler-Compiler
18. Uucp Implementation Description
19. Using the System Console with HP 9000 Series 200 Computers
20. HP-UX and the HP 9000 Model 520 as System Console
21. MC68000 Assembler on HP-UX

*UNIX is a trademark of Bell Laboratories, Inc.

Table of Contents
Introduction and System Overview for Series 500 Computers

The Pieces .. 1
Where are the Pieces Located? ... 3
How Do the Pieces Fit? ... 4
Where Can I Learn More? ... 5

Introduction and System Overview
for the Series 500 Computers

HP-UX is a powerful and flexible operating system, providing many tools for developing and
running application programs. Supplied with HP-UX is, seemingly, a mountain of material. Where
do you start? How do you learn to use the system?

This section provides an overview of the system by describing its parts, their functions, and the
methods in which they interact. It also provides a gUide through the documents supplied with
HP-UX, explaining where you may find detailed information about its various components.

The Pieces
HP-UX is composed of several functional "pieces", each of which is described in the following
paragraphs.

• The kernel - the heart of the operating system. It is a program that controls the allocation of
system resources. For example, it allocates memory to run programs, schedules programs for
execution, allocates computer (CPU) time among running programs, and takes care of the
technical intricacies of communicating with peripheral devices.

The kernel is automatically loaded and run when the computer is powered-up (generally the
responsibility of the system administrator). Unless you are the system administrator, this should
already be done for you by the time you are ready to use the system.

• Commands - executable programs performing specific tasks. This includes the programs
supplied with HP-UX as well as the ones that you create.

Some commands are simple, performing a specific function with little or no user interaction.
For example, the who command, when executed, prints the user name of each user currently
logged in (accessing the system). Other commands are more complex, continually interacting
with you to perform their tasks. For example, the ed command, when executed, allows you to
create a text file from the characters entered from the keyboard. It has several subprograms
(such as append, replace, insert, etc.) that are accessed by supplying certain "key characters"
to the main program.

• Shell - a program (command) that acts as your interface to HP-UX. It is automatically run
when you successfully log in (gain access to the system). The shell's main purpose is to wait for
information to be typed on the keyboard. Once the information is entered, it passes the
information on to the kernel as the name of a program to be executed. It also transfers any
optional data and parameters entered with the program name.

Beyond its job as a simple command interpreter, the shell also provides its own programming
language. This language includes control-flow contructs (such as for - next, while, and if - then
- else). The shell's programming language is used primarily for writing shell scripts (described
next).

• Script or shell script - text file containing a series of program names and shell programming
language constructs. When executed, a shell script can replace typing from the keyboard (and
thus free your time for other activities) by providing command names and parameters to the
shell for execution. Since its language provides control-flow statements, it can examine the
output of one command and decide which command(s) to execute next.

For example, suppose that you want to see both a list of everyone using the system and a list
identifying the tasks that each user is performing. You could execute the individual commands
who (prints a list of everyone using the system) and ps (prints a list identifying each task being

-1-

performed on the system). However, if this operation is to be performed often, you would
spend more time typing than necessary. By creating a shell script (described in the Shell
Programming section later in this manual) that contains both commands, you would only have
to execute the script to obtain the desired information. The whodo command is a script
performing exactly this function. It also includes many commands to format and present the
data in a more concise form.

• Subroutine - a sequence of computer instructions for performing a specific task. A subroutine
can only be used by a program (that is, it cannot act as a free-standing program). A subroutine
can be used repeatedly in one or more programs, thus allowing you to use the same sub­
routine each time the function is needed. There is no need to write or even enter the program
code to perform the task; you need only use the name of the existing subroutine to obtain its
function.

Subroutines are provided with your system to keep you from having to re-invent the code that
performs a function. For example, suppose that while writing a program, you found that you
needed an arctangent function. You could write your own arctangent function using the math
functions available in your programming language. Alternately, you could simply call the atan
subroutine (provided with HP-UX) from your program.

• Library - a collection of related subroutines. For example, a math library might include trigo­
nometric functions, logarithmic functions, and numeric base conversion functions. A math
library and an 1/0 library are included with the standard libraries supplied with HP-UX. Other
libraries may be supplied with the various programming languages and application packages
you purchase.

• System call- a "link" or "hook" into the capabilities provided by the HP-UX kernel. Many of
the base level capabilities used in the kernel are available for use in your programs. Functional­
ly, the system call is similar to the subroutine. Both are previously written routines which you
may use in your application programs. Subroutines are stored in disc files while system calls
reside in the kernel.

• Language - a programming language, such as C, FORTRAN, and Pascal. Each language
actually consists of at least one command (a compiler for the language) and usually one or
more libraries. The compiler translates a text file (assuming it has the expected form and
syntax) into binary code which the computer can understand and execute.

• Ordinary file - a file containing a program or data (binary code or ASCII text) such as a
command or shell script.

• Special file - a file defining the attributes of a peripheral device, such as the communication
protocol and the location of a disc drive or a printer. When output is directed to or input is
directed from a special file, the kernel uses the information in the special file to communicate
with the peripheral device. The complexities of actual device to device communication are left
to the kernel. The program operates independently of the device(s) with which it communi­
cates.

• Directory (file) - an ordinary file containing a list of ordinary files, special files, and other
directories. Directories are used to organize the files that form the HP-UX hierarchical file
system.

-2-

Where are the Pieces Located?
The pieces that form HP-UX (previously described) are located at various places in the system. The
other documents supplied with your system describe the organization of the HP-UX file system and
teach its use and methods of access. This section simply identifies the location of the major pieces
that form HP-UX.

The kernel is stored in a special part (called the boot area) of a mass storage medium. At computer
power-up, it is automatically loaded by the loader - a program that permanently resides in the
computer.

The commands and libraries are stored in ordinary files on the disc. Their location is specified by the
directory in which they are located (as described by the text and diagram that follow).

Commands are distributed between three directories. The most commonly used commands (such
as ls, who, and ed) are stored in the /bin directory. Less frequently used commands (such as get,
delta, and lint) are stored in the /usr/bin directory.

Commands located in the jete directory are typically used for system management or system
maintenance. Often, these commands can only be accessed by the system manager or super-user.
(The super-user is a system user with special capabilities; he is identified by a special user ID.)

The libraries supplied with HP-UX are located in the directories /lib and /usrllib.

Special files are located in the directory Idev.

The files and directories that you and other users create are usually stored in the directory /users.
Typically, each user has his own directory in /users. That directory, in turn, contains the directories
and ordinary files that he has created.

Location of Features in the HP-UX File System

libraries
(subroutines)

-3-

infrequently
used commands

system manager
commands

How Do the Pieces Fit?
Now that you are familiar with the various pieces of HP-UX, you are probably saying to yourself
''That's nice. But how do all of the pieces fit together?". The easiest way to show this is through an
example. Let's follow Joe Programmer through his task of creating and running a program:

1. If the system is not loaded and running, Joe (or his system administrator) switches on power
to the computer. The computer's system loader program finds and loads the HP-UX kernel.

2. Once the kernel is loaded, some initial set-up is performed and then the login program is run.
When the program is ready, it displays the prompt:

109' in:

Joe types in his user name, which he obtained from the system administrator. He is then
prompted for his password (assuming Joe has been wise enough to assign himself a
password). Once his user name and password have been correctly entered, Joe is logged
in.

3. The system displays some information (such as the message of the day) and then auto­
matically runs the shell program. This allows Joe to execute any program he wishes. He
executes the mail command to send his boss a message informing him that he is three
days ahead of schedule "because of the incredible power of HP-UX". He knows that the
message will be received when his boss logs in.

Next, Joe executes the Is command to see what files are present in his directory. He
executes the rm command to remove a file containing an early version of his project
report that he no longer needs.

4. Now Joe starts to write a Pascal program to plot test data (for quality assurance) from last
month's Widget production. He executes his favorite text editing program (such as vi or
ed) to create the new program. He enters the text which forms the program from his
terminal:

PROGRAM PLOT_DATA (INPUT,OUTPUT);
(*PLOTS Q/A TEST DATA FROM WIDGET PRODUCTION*)

I,.JAR
NUM_PRODUCED, NUM_FAILED : INTEGER;

•••

END.

His program probably includes calls to HP-UX libraries and to the libraries supplied with the
Pascal Programming Language (possibly to provide math functions). Additionally, it may
include HP-UX system calls (calls to the intrinsics).

5. Once he is satisfied with the program, he instructs the text editing program to save (write) his
program in a file named "ploLdata. p". He then terminates the text editing program.

6. Next, Joe converts the text file into executable code by executing the pc command (the
Pascal compiler). The compiler checks the file for correct syntax and, catching an error,
informs Joe that his program contains an error. Joe again executes the text editing progam,
instructing it that he wishes to edit the text contained in the file "ploLdata. p". Once the error
is corrected, he re-saves the file and terminates the editing program.

7. Once more Joe executes the compiler and this time finds that no syntax errors are found.
Executing the mv command, he moves the compiled code to a file named "pi oUt" .

-4-

8. Finally, Joe executes his program, directing its output to the special file /dev/pJt9872 (a
special file created by the system manager for accessing the HP 9872 Plotter). He enters:

plot_it > Idev/plt8872 (RETURN)

Assuming Joe is a good programmer, he finds his data plotted on the HP 9872. Pleased
with himself, he logs off (terminates his login session) by pressing CD while holding the
(CTRL) key depressed.

The following prompt verifies that he is no longer accessing the system and that the terminal
is ready for the next user (possibly you?) to login:

lo!l' in:

Running More Than One Task
Although HP-UX provides virtual memory support for both code and data, this support does not
allow a task to be completely swapped from main memory. A minimum of 16 Kbytes of main
memory is consumed by each task until it terminates. Therefore, it is possible when multiple tasks
are competing for main memory to get an out-of-memory message (usually: "not enough mem­
ory" or "MEMORY FAULT"). The task that failed to get the needed memory is killed, while other
tasks proceed normally. A task that was killed by the system can be restarted at any future time, but
preferably when the system is less loaded.

If You Get an Error
The err command has been included to help you obtain more information about why an error is
occurring. If you encounter an error that you believe is a bug, execute /bin/err immediately after the
error occurs. This will list three numbers that you should record and use in describing the problem
to your support engineer. Note that the numbers are updated as each occurs. Be sure to record
them before another error happens.

Where Can I Learn More?
Now that you are aquainted with the pieces that form HP-UX and have seen how the pieces are
used in a typical application, you are probably wondering where you can learn more about HP-UX.
The best way to learn HP-UX is to attend an HP-UX training class. Contact your HP sales
representative for more information about the courses.

Whether or not you attend a training course, you should read the documents supplied with HP-UX.
Where do you start? The following list describes the documents shipped with HP-UX and indicates
the order in which they should be read.

1. If your computer has not yet been installed or if you want to verify that the computer is
operating properly, read the Installation and Test manual supplied with your computer. A
list of the materials supplied with your computer is supplied in the Unpacking Instructions
for the HP 9000 Series 500 Computers (HP part number 97080-90092), as well as a
"roadmap" briefly describing the documents supplied with the system.

2. If you are responsible for installing HP-UX, read the System Administrator Manual (HP
part number 97089-90047). This manual provides instructions for installing HP-UX.

-5-

3. For a basic understanding of HP-UX, read the article entitled "Introduction and System
Overview" in the HP-UX Selected Articles manual (HP part number 97089-90003). It
introduces you to some fundamental terms and provides an overview of the system. Addi­
tionally, it includes a detailed description of the documents provided with HP-UX and
indicates the order in which they should be read.

4. To start learning how to use HP-UX, read the softcover text Introducing the UNIX! System
(HP part number 98680-90025). You will need to obtain a user name (and optionally, a
password) from your system administrator so that you can try the interactive examples in the
text. Working with the system is the easiest way to learn its use.

If you are the system administrator and are the first user on the system, use the user name
g u est when logging in (when you are so directed by the text). Otherwise, obtain a user
name and password from your system administrator before working the examples in the
text.

Once you know how to use the system, the order in which the remaining manuals are read depends
on the task(s) you need to accomplish and the options (such as programming languages) purchased
with HP-UX. Select and read only the documents that apply.

5. If you are responsible for installing, managing and maintaining HP-UX (for example, adding
users to the system, backing-up the file system, and adding peripherals to the system) read
the System Administrator Manual (HP part number 97089-90047). It describes the system
administrator's job and his responsibilies. It also explains the concepts of HP-UX that are
needed to manage and maintain the system. Additionally, it provides instructions for per­
forming the specific tasks that are the system administrator's responsiblity (in the chapter
entitled "System Administrator's Toolbox").

6. To learn how to use a specific application program (such as the vi or ed text editor programs),
read the appropriate articles in the manual, HP-UX Selected Articles (HP part number
97089-90003) .

7. The HP-UX Reference (HP part number 09000-90006) provides syntax and semantic
information about the HP-UX commands, system calls, subroutines, and data files. It also
provides some limited tutorial information about device access and complex procedures. Be
sure to read the section entitled "Introduction". It describes in detail the contents of the
manual and provides tutorial information about accessing HP-UX from your terminal or
computer keyboard.

8. To learn how to write shell scripts with the shell's programming language, read the article
entitled "Shell Programming" in the manual, HP-UX Selected Articles (HP part number
97089-90003) .

9. To learn how to write programs in the C Programming Language, read the softcover text, C
Programming Language (HP part number 97089-90000).

a. Once you know how to program in C, you may want to access the power of HP-UX
directly from C. The article entitled "UNIX Programming" in the HP-UX Selected
Articles manual (HP part number 97089-90003) shows you how to access the HP-UX
system calls and subroutines from a C-Language program.

10. For a description of the features provided with the FORTRAN Programming Language, read
the FORTRAN Reference Manual (HP part number 97081-90001).

1 UNIX is a Trademark of Bell Telephone Laboratories, Inc.

-6-

11. For a description of the features provided with the Pascal Programming Language, read the
Pascal Reference Manual (HP part number 97082-90001).

12. To learn how to access the Device-independent Graphics Library from a program, you
should read:

• DGL Device Handlers Manual (HP part number 97085-90005)

• GRAPHICS/9000 DGL Programmer's Reference Manual (HP part number 97084-
90000)

• GRAPHICS/9000 DGL Supplement for HP-UX Systems (HP part number 97084-
90002).

13. To learn how to configure or use the data communications utilities, read HP-UX Asynchro­
nous Communications Guide (HP part number 97076-90001).

-7-

-8-

Table of Contents

Edit: A Tutorial
Abstract .. 1
Session 1: Creating a File of Text ... 4

Asking for Edit ... 4
The" Command not found" Message .. 5
Asummary .. 5
Entering Text. .. 5
Messages from Edit .. 5
Text Input Mode .. 6
Writing Text to Disk ... 6
Logging Off ... 7

Session 2 .. 8
Adding More Text to Your File ... 8
Interrupt. ... 8
Making Corrections ... 8
Listing What's in the Buffer .. 9
Finding Things in the Buffer ... 9
The Current Line ... 10
Numbering Lines (nu) .. 10
Substitute Command (s) .. 10
Another Way to List What's in the Buffer .. 12
Saving the Modified Text ... 12

Session 3 .. 13
Moving Text in the Buffer. .. 13
Copying Lines (copy) .. 14
Deleting Lines (d) .. 14
A Word or Two of Caution ... 15
Undo (u) to the Rescue .. 15
More About the Dot (.) and Buffer End ($) .. 16
Moving Around in the Buffer (+ and -) .. 16
Changing Lines (c) .. 17

Session 4 .. 18
Making Commands Global (g) ... 18
More About Searching and Substituting ... 19
Special Characters , ... 19
Issuing UNIX Commands From the Editor .. 20
Filenames and File Manipulation .. 20
The File (f) Command ... 20
Reading Additional Files (r) .. 21
Writing Parts of the Buffer .. 21
Recovering Files .. 21
Other Recovery Techniques ... 21
Further Reading and Other Information .. 22
Using Ex .. 22

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no
prior familiarity with computers or with text editing. Its aim is to lead the
beginning UNlxt user through the fundamental steps of writing and revising a
file of text. Edit, a version of the text editor ex, was designed to provide an
informative environment for new and casual users.

This edition documents Version 2 of edit and ex.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

August 31, 1980

tUN IX is a trademark of Bell laboratories.

-1-

-2-

Edit: A Tutorial

Ricki B/au

James Joyce

Computing Services
University of California

Berkeley, California 94720

Text editing using a terminal connected to a computer allows one to create, modify, and
print text easily. A specialized computer program, known as a text editor, assists in creatin& and
revising text. Creating text is very much like typing on an electric typewriter. Modifying text
involves telling the text editor what to add, change, or delete. Text is printed by giving a com­
mand to print the file contents, with or without special instructions as to the format of the
desired output.

These lessons assume no prior familiarity with computers "Or with text editing. They con­
sist of a series of text editing sessions which will lead you through the fundamental steps of
creating and revising a file of text. After scanning each lesson and before beginning the next,
you should follow the examples at a terminal to get a feeling for the actual process of text edit­
ing. Set aside some time for experimentation, and you will soon become familiar with using
the computer to write and modify text. In addition to the actual use of the text editor, other
features of UNIX will be very important to your work. You can begin to learn about these other
features by reading "Communicating with UNIX" or one of the other tutorials which provide a
general introduction to the system. You will be ready to proceed with this lesson as soon as
you are familiar with your terminal and its special keys, the login procedure, and the ways of
correcting typing errors. Let's first define some terms:

program

UNIX

edit

file

filename

A set of instructions given to the computer, describing the sequence of steps
which the computer performs in order to accomplish a specific task. As an exam­
ple, a series of steps to balance your checkbook is a program.

UNIX is a special type of program, called an operating system, that supervises the
machinery and all· other programs comprising the total computer system.

edit is the name of the UNIX text editor which you will be learning to use, a pro­
gram that aids you in writing or revising text. Edit was designed for beginnin&
users, and is a simplified version of an editor named ex.

Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, log out, and return to use it at a later
time. Files contain anything you choose to write and store in them. The sizes of
files vary to suit your needs; one file might hold only a single number, and
another might contain a very long document or program. The only way to save
information from one session to the next is to write it to a file, storing it for later
use.

Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor­
mation in a file, you use the name of that file in a UNIX command, and the system
will automatically locate the file.

-3-

disk

buffer

Files are stored on an input/output device called a disk. which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, on which information is recorded.

A temporary work space, made available to the user for the duration of a session
of text editing and used for building and modifying the text file. We can imagine
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

Session 1: Creating a File of Text

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure.

If the terminal you are using is directly linked to the computer, turn it on and press car­
riage return, usually labelled "RETURN". If your terminal connects with the computer over a
telephone line, tum on the terminal, dial the system access number, and, when you hear a
high. pitched tone, place the receiver of the telephone in the acoustic coupler. Press carriage
return once and await the login message:

:login:

Type your login name, which identifies you to UNIX, on the same line as the login mes­
sage, and press carriage return. If the terminal you are using has both upper and lower case,be
sure you enter your login name in lower case; otherwise UNIX assumes your terminal has only
upper case and will not recognize lower case letters you may type. UNIX types ":Iogin:" and
you reply with your login name, for example "susan":

:Iogin: susan (and press carriage return)

(In the examples, input typed by the user appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it to prevent others from seeing it. The message is:

Password: (type your password and press carriage relllm)

If any of the information you gave during the login sequence was mistyped or incorrect. t.::>\IX
will respond with

Login incorrect.
:Iogin:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a O!o at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit. the text editor. Now is a con·
venient time to choose a name for the file of text which you are about to create. To begin your
editing session type edit followed by a space and then the filename which you have selected. for
example "text". When you have completed the command, press carriage return and wait for
edit's response:

·4·

% edit text (fiJllowed by a carriage return)
"text" No such file or directory

If you typed the command correctly. you will now be in communication w1th edit. Edit has set
aside a buffer for use as a temporary working space during your current editinl session. It also
checked to see if the file you named, "text", already existed. As we expected, it was unable to
find such a file since "text" is the name of the new file that we will create. Edit confirms this
with the line:

"text" No such file or directory

On the next line appears edit's prompt ":", announcing that edit expects a command from you.
You may now begin to create the new file.

The "Command not found" message

If you misspelled edit by typing, say, "editor", your request would be handled as follows:

% editor
editor: Command not found.
%

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named
"editor". Since there is no program named "editor", UNIX reported that the program was "not
found." A new % indicates that UNIX is ,ready for another command, so you may enter the
correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some­
thing like this:

Entering text

:login: susan
Password:

... A Message of General Interest ...

% edit text
"text" No such file or directory

You may now begin to enter text into the buffer. This is done by appending text to what­
ever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, you are creating text. Most edit commands have two
forms: a word which describes what the command does and a shorter abbreviation of that word.
Either form may be used. Many beginners find the full command names easier to remember,
but once you are familiar with editing you may prefer to type the shorter abbreviations. The
command to input text is "append" which may be abbreviated "a". Type append and press
carriage return.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize. edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, "add" instead of

-5-

"append" or "a", you will receive this message:

: add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new":" appeared to let
you know that edit is again ready to receive a command.

Text input mode

By giving the command "append" (or using the abbreviation "a"), you entered text input
mode. also known as append mode. When you enter text input mode, edit responds by doing
nothing. You will not receive any prompts while in text input mode. This is your signal that
you are t9 begin entering lines of text. You can enter pretty much anything you want on the
lines. The lines are transmitted one by one to the buffer and held there during the editing ses­
sion. You may append as much text as you want, and whell you wish to stop entering text lines
you should type a period as the Ollly character 011 the line alld press carriage return. When you give
this signal that you want to stop appending text, you will exit from text input mode and reenter
command mode. Edit will again prompt you for a command by printing ":".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and. type any· other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus­
trating, be sure to type only the period and carriage return.

This is as good a place as any to learn an important lesson about computers and text: a
blank space is a character as far ,as a computer is concerned. If you so much as type a period
followed by a blank (that is, type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see. including
"thiss") :

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a carriage return that gets you out of append mode. If
while typing the line you hit an incorrect key, recall that you may delete the incorrect character
or cancel the entire line of input by erasing in the usual way. Refer to "Communicating with
U:-IIX" if you need to review the procedures for making a correction. Erasing a character or
cancelling a line must be done before the line has been completed by a carriage return. We will
discuss changes in lines already typed in session 2.

Writing text to disk

You are now ready· to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor's buffer is temporary and will last only until the end of the
editing session. Thus, learning how to write a file to disk is second in importance only to enter­
ing the text. To write the contents of the buffer to a disk file, use the command "write" (or its
abbreviation "w"):

-6-

: write

Edit will copy the buffer to a disk file. If the file does not yet exist, a new file will be created
automatically and the presence of a "New file" will be noted. The newlyacreated file will be
given the name specified when you entered the editor, in this case "text". To confirm that the
disk file has been successfully written, edit will repeat the filename and iive the number of
lines and the total number of characters in the file. The buffer remains unchanied by the
"write" command. All of the lines which were written to disk will still be in the buffer. should
you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

in response to your write command. If this happens. you can specify the filename in a new
write command:

: write text

After the "write" (or "w") type a space and then the name of the file.

Logging off

We have done enough for this first lesson on using the UNIX text editor, and are ready to
quit the session with edit. To do this we type "quit" (or "q") and press carriage return:

: write
"text" [New file] 3 lines. 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal we also need to exit from
UNIX. In response to the UNIX prompt of "%" type the command logout or a "control d".
This is done by holding down the control key (usually labelled "CTRL") and simultaneously
pressing the d key. This will end your session with UNIX and will ready the terminal for the
next user. It is always -important to logout at the end of a session to make absolutely sure no
one could accidentally stumble into your abandoned session and thus gain access to your files,
tempting even the most nonest of souls.

This is the end of the first session on UNIX text editing.

-7-

Session 2
Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give passll'ord and carriage rewfII)

%

This time when you say that you want to edit, you can specify the name of the file you worked
on last time. This will start edit working and it will fetch the contents of the file into the
buffer, so that you can resume editing the same file. When edit has copied the file into the
buffer. it will repeat its name and tell you the number of lines and characters it contains. Thus.

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 char­
acters of text into the buffer. Edit awaits your further instructions. In this session, we will
append more text to our file, print the contents of the buffer, and learn to change the text of a
line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com­
mand to enter text input mode. When append is the first command of your editing session. the
!ines you enter are placed at the end of the buffer. We'll soon discuss why this happens. Here
we'll use the abbreviation for the append command, "a":

Interrupt

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Should you press the RUBOUT key (sometimes labelled G-ELETE) while working with edit. it
will send this message to you:

Interrupt

Any command that edit might be executing is terminated by rubout or delete. causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text that you were trping
when the append command was interrupted will not be entered into the buffer.

Making corrections

If you have read a general introduction to UNIX, such as "Communicating with U:-';IX".
you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.
Accounts normally start out using the number sign (#) as the erase charactero but it's possible
for a different erase character to be seiectedt. We'll show "#" as the erase character in our

tt!-.;rx accounts may be "personalized" in other ways, too. If you're using an established account. check with
someone who is familiar with your account to find out if it has any other non-standard characteristics which
may affect your work. Accounts for students in classes are often given class commands and other special
features; the leaching assistant or instructor is the best source of information about these changes.

-8-

examples, but if you've changed your erase character to backspace (control-H) or somethin~
else. be sure to use your own erase character.

If you make a bad start in a line and would like to begin a~ain, erasin& individual charac­
ters with a "#" is cumbersome - what if you had 15 characters in your line and wanted to ~et
rid of them? To do so either requires:

This is yukky tex###############

with no room for the great text you'd like to type, or,

This is yukky tex@This is great text.

When you type the at-sign (@), you erase the entire line typed so far. (An account may select
a different line erase character to use in place of @. If your line erase character has been
changed, use it where the examples show "@".) You may immediately begin to retype the
tine. This, unfortunately, does not help after you type the line and press carriage return. To
make corrections in lines which have been completed, it is necessary to use the editing com­
mands covered in this session and those that follow.

Listing what's in the buffer

Having appended text to what you wrote in Lesson 1, you might be curious to see what is
in the buffer. To print the contents of the buffer, type the command:

: 1,$p

The "1" stands for line 1 of the buffer, the "$" is a special symbol designating the last line of
the buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer.
Thus, "l,$p" gives you:

This is some sample text..
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character whiCh can 'f be printed-;which is done by
striking a key while the CTRL key is depressed. In printing lines. edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character "control-A" into the word "illustrate" by accidently holding down the CTRL key
while typing "a". Edit would display

it does iIlustr" Ate the editor.

if you asked to have the line printed. To represent the control-A. edit shows "-A". The
sequence "A" followed by a capital letter stands for the one character entered by holding down
the CTRL key and typing the letter which appears after the "A". We'll soon discuss the com­
mands which can be used to correct this typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, as sug­
gested. Let's correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find "thiss"
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for "thiss" and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

-9-

: Ithissl

By typing Ithissl and pressing carriage return edit is instructed to search for "thiss". If we
asked edit to look for a pattern of characters which it could not find in the buffer. it would
respond "Pattern not found". When edit finds the characters "thiss", it will print the line of
text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line which it just printed, ready to make a change in
the line.

The current Jine

At all times during an editing session, edit keeps track of the line in the buffer where it is
positioned. In general, the line which has been most recently printed. entered, or changed is
considered to be the current position in the buffer. The editor is prepared to make changes at
the current position in the buffer. unless you direct it to act in another location. When you
bring a file into the editor, you will be positioned at the last line in the file. If your initial edit­
ing command is "append", the lines you enter are added to the end of the file. that is, they are
placed after the current position. You can refer to your current position in the buffer by the
symbol period (J usually known by the name "dot". If you type "." and carriage return you
will be instructing edit to print the current line:

And thiss is some more text .

.If you want to know the number of the current line, you can type. = and carriage return.
and edit will respond with the line number:

. =
2

If you type the number of any line and a carriage return, edit will position you at that line and
print its contents:

:2
And thiss is some more text.

You should experiment with these commands to assure yourself that you understand what they
do.

~umbering lines {nul

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Notice that the shortest abbreviation for the number command is "nu" (and not "n" which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example. "l.Snu" lists all
lines in the buffer with the corresponding line numbers.

Substitute command (s)

Now that we have found our misspelled word it is time to change it from "thiss" to
"this". As far as edit is concerned, changing things is a matter of substituting one thing for
another. As a stood for append, so s stands for substiTlITe. We will use the abbreviation "s" to
reduce the chance of mistyping the substitute command. This command will instruct edit to
make the change:

-10-

2s/thiss/thisl

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want sub­
stitution. Inside the first set of slashes are the characters that we want to chan&e, followed by
the characters to replace them and then a closing slash mark. To summarize:

2s1 what is to be changed I what to change to I

If edit finds an exact match of the characters to be changed it will make the chan&e only in the
first occurrence of the characters. If it does not find the characters to be changed it will
respond:

Substitute pattern match failed

indicating your instructions could not be carried out. When edit does find the characters which
you want to change, it will make the substitution and automatically print the changed line, so
that you can check that the correct substitution was made. In the example,

: 2s/thiss/thisl
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact
match is found, "thiss" will be changed to "this", Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

: s/thiss/thisl

edit will assume that we mean to change the line where we are currently positioned ("."), In
this case, the command without a line number would have produced the same result because
we were already positioned at the line we wished to change.

For another illustration of substitution we may choose the line:

Text editing is strange, but nice.

We might like to be a bit more positive. Thus, we could take out the characters "strange,
but " so the line would read:

Text editing is nice.

A-command which will first position edit at that line and then make the substitution is:

: Istrange/s/strange, but II

What we have done here is combine our search with our substitution. Such combinations
are perfectly legal. This illustrates that we do not necessarily have to use line numbers to iden­
tify a line to edit. Instead, we may identify the line we want to change by asking edit to search
for a specified pattern of letters which occurs in that line. The parts of the above command are:

Istrangel tells edit to find the characters "strange" in the text
s tells edit we want to make a substitution
Istrange, but II substitutes nothing at all for the characters "strange; but"

You should note the space after "but" in "/strange, but I". If you do not indicate the
space is to be taken out, your line will be:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we real­
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an "a" or a "4".

-11-

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer. other
commands can be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

:1z

edit will start with line I and continue printing lines. stopping either when the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the
next segment of text. give the command

:z

If no starting line number is given for the z command, printing will start at the "current" line.
in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work. and so we should end the second ses­
sion. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (q! quits)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you have done during the editing session since the latest
write command. Since in this lesson we have not written to disk at all. everything we have
done would be lost. If we did not want to save the work done during this editing session. we
would have to type "q!" to confirm that we indeed wanted to end the session immediately. los­
ing the contents of the buffer. However, since we want to preserve what we have edited. we
need to say:

:w
"text" 6 lines, 171 characters

and then,

:q
Ofo logout

and hang up the phone or tum off the terminal when UNIX asks for a login name. This is the
end of the second session on UNIX text editing.

-12-

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. You should try to 10Kin without lookinl at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you say

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
"text" into the buffer. If you did forget to tell edit the name of your file, you can Ket it into
the buffer by saying:

: e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated "e" when you're in the editor, tells edit that
you want to erase anything that might already be in the buffer and bring a copy of the file
"text" into the buffer for editing. You may also use the edit (e) command to change files in
the middle of an editing session or to give edit the name of a new file that you want to create.
Because the edit command clears the buffer, you will receive a warning if you try to edit a new
file without having saved a copy of the old file. Thi~ gives you a chance to write the contents
of the buffer to disk before editing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command:

:2,4m$

This command directs edit to move lines 2. 3, and 4 to the end of the buffer ($). The format
for the move command is that you specify the first line to be moved, the last line to be moved.
the move command .om", and the line after which the moved text iste be placed. Thus,

: 1,6m20

would instruct edit to move lines 1 through 6 (inclusive) to a position after line 20 in the
buffer. To move only one line, say, line 4, to a position in the buffer after line 6, the com·
mand would be "4m6".

Let's move some text using the command:

:S,$ml
2 lines moved
it does illustrate the editor.

After executing a command which changes more than one line of the buffer, edit tells how
many lines were affected by the change. The last moved line is printed for your inspection. If
you want to see more than just the last line, use the print (p), Z, or number (nu) command to
view more text. The buffer should now contain:

·13-

This is some sample text.
It doesn't mean much here. but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

We can restore the original order by typing:

: 4,$ml

or, combining context searching and the move command:

: I And this is some/,/This is text/m/This is some samplel

The problem with combining context searching with the move command is that the chance of
making a typing error in such a long command is greater than if one types line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines. leaving the original
lines where they were. Copy has the same format as the move command. for example:

: 12.15copy $

makes a copy of lines 12 through 15. placing the added lines after the buffer's end (S)' Experi­
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is "co" (and not the letter "c" which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the tine to be deleted. you can type that number
followed by "delete" or "d". This example deletes line 4:

:4d
It doesn't mean much here. but

Here "4" is the number of the line to be deleted and "delete" or "d" is the command to
delete the line. After executing the delete command. edit prints the line which has become the
current line (".").

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

: ladded in Session 2.1
This is text added in Session 2.
:d
It doesn't mean much here. but

The "/added in Session 2,/" asks edit to locate and print the next line which contains the indi­
cated text. Once you are sure that you have correctly specified the line that you want to delete.
you can enter the delete (d) command. In this case it is not necessary to specify a line number
before the "d". If no line number is given. edit deletes the current line (.....), that is. the line
found by our search. After the deletion. your buffer should contain:

-14-

This is some sample text.
And this is some more text.
Text editing is nice.
lt doesn't mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:2,3d

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for
delete.

Again, this presumes that you know the line numbers for the lines to be deleted. If you
do not you might combine the search command with the delete command as so:

: / And this is some/ ,IText editing is nice.ld

This tells the editor to start deleting with the next line that contains the characters" And this is
some" and continue until it has deleted the line containing "Text editing is nice."

A word or two of caution:

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited -
that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted. which
edit will do as easily as if you had meant it. For this reason. it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing carriage return to send the command
on its way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command. To
undo the previous command, type "u" or "undo". Undo can rescue the contents of the buffer
from many an unfortunate mistake. However, its powers are not unlimited, so it is still wise to
be reasonably careful about the commands you give. It is possible to undo only commands
which have the power to change the buffer, for example delete. append, move, copy, substi­
tute, and even undo itself. The commands write (w) and edit (e) which interact with disk files
cannot be undone, nor can commands such as print which do not change the buffer. Most
importantly. the only command which can be reversed by undo is the last "undo-able" com­
mand which you gave.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines which were formerly numbered 2 and 3. Executing undo at this
moment will reverse the effects of the deletion, causing those two lines to be replaced in the
buffer.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now "dot" (the current line).

-15-

More about the dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its contexL It can be used:

1. to exit from append mode we type dot (and only a dot) on a line and press carriage
return;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

. =

Thus if we type ". =" we are asking for the number of the line and if we type"." we are aske

ing for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign (5=) edit
will print the line number corresponding to t.he last line in the buffer.

"." and "$" therefore represent line numbers. Whenever appropriate, these symbols can
be used in place of line numbers in commands. For example

: .,Sd

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and -)

It is frequently convenient during an editing session to go back and re-read a previous
line. We could specify a context search for a line we want to read if we remember some of its
text, but if we simply want to see what was written a few, say 3, lines ago, we can type

-3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
We can move forward in the buffer similarly:

+2p

instructs edit to print the line which -is 2 ahead of our current position.

You may use "+" and "-" in any command where edit accepts line numbers. Line
numbers specified with" +" or "-" can be combined to print a range of lines. The command

; -1,+2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer ($).

Try typing only" -"; you will move back one line just as if you had typed" -1 p". Typ­
ing the command" +" works similarly. You might also try typing a few plus or minus signs in
a row (such as .. + + +") to see edit's response. Typing a carriage return alone on a line is the
equivalent .of typing" + Ip"; it will move you' one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead. perhaps by typing a
.. +" or a carriage return alone on the line. edit will remind you that you are at the end of the
buffer:

At end-of-file

Similarly, if you try to move to a position before the first line. edit will prim one of these mes­
sages:

-16-

Nonzero address required on this command
Negative address - first buffer line is 1

The number associated with a buffer line is the line's "address", in that it can be used to locate
the line.

Changing lines (d

There may be occasions when you want to delete certain lines and insert new text in their
place. This can be accomplished easily with the change (d command. The change command
instructs edit to delete specified lines and then switch to text input mode in order to accept the
text which will replace them. Let's say we want to change the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you can type:

: t,2c
2 lines changed
This text was created with the UNIX text editor.

In the command t,2e we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After a carriage return enters the change command, edit notifies yc;>u if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

-17-

Session 4
This lesson covers several topics. starting with commands which apply throughout the

buffer. characters with special meanings. and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing. and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com­
mand repeatedly, once for each time the change needs to be made. Edit. however. provides a
way to make commands apply to the entire contents of the buffer - the global (g) command.

To print all lines containing a certain sequence of characters (say, "text") the command
is:

:g/text/p

The "g" instructs edit to make a global search for all lines in the buffer containing the charac­
ters "text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed on the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word "text" to the word "material" the cotnmand would be a combination of
the global search and the substitute command:

: g/text/s/text/material/g

Note the "g" at the end of the global command which instructs edit to change each and every
instance of "text" to "material". If you' do not type the "g" a~ the end of the command only
the first instance of "text" in each line will be changed (the normal result of the substitute
command). The "g" at the end of the command is independent of the "g" at the beginning.
You may give a command such as:

: 14s/text/material/g

to change every instance of "text" in line 14 alone. Further. neither command will change
"Text" to "material" because "Text" begins with a capital rather than a lower-case (.

Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a "p" at the end of the global command:

: g/text/s/text/material/gp

The usual qualification should be made about using the global command in combination with
any other in essence, be sure of what you are telling edit to do to the entire buffer. For
example.

:gl/d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu­
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small buffer of text to see what it can do for
you.

-18-

More about searching and substitutinl

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same strini
of characters. To change "noun" to "nouns" we may type either

: Inoun/s/noun/nounsl

as we have done in the past. or a somewhat abbreviated command:

: Inoun/sllnounsl

In this example. the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks which indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the characters to be changed."

Similarly. the last context search may be repeated by typing a pair of slashes with not~ing
between them:

: Idoesl
It doesn't mean much here, but
:11
it does illustrate the editor.

Because no characters are specified for the second search. the editor scans the buffer for the
next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction. use question marks (?) instead of slashes to surround the character
string.

It's also possible to repeat the last substitution without having to retype the entire com­
mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and replacement patterns. After altering the current line by typing

: s/noun/nounsl

we could use the command

: Inouns/&

or simply

:11&

to make the same change on the next line in the buffer containing the characters "nouns".

Special characters

Two characters have special meanings when used in specifying searches: "$" and "A".
"$" is taken by the editor to mean "end of the line" and is used to identify strings which
occur at the end of a line.

: g/ingS/slled/p

tells the editor to search for all lines ending in "ing" (and nothing else, not even a blank
space), to change each final "ing" to "ed" and print the changed lines.

The symbol "A" indicates the beginning of a line. Thus,

: sl" It. I

instructs the editor to insert" 1." and a space at the beginning of the current line.

The characters "$" and "A" have special meanings only in the context of searching. At

-19-

other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to temporarily lose its special
significance by typing another special character, the backslash (\), before it.

: sI\S/dollar/

looks for the character "S" in the current line and replaces it by the word "dollar". Were it
not for the backslash, the "S" would have represented "the end of the line" in your search.
rather than the character "S". The backslash retains its special significance unless it is pre­
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor.
and so they require the use of UNIX system commands (also referred to as "shell" ~ommands.
as "shell" is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named "junk" type:

: !rm junk ,

The exclamation mark (!) indicates that the rest of the line is to be processed as a U:"IX com­
mand. If the buffer contents have not been written since the last change. a warning will be
printed before the command is executed. The editor prints a "!" when the command is com­
pleted. The tutorial "Communicating with UNIX" describes useful features of the system, of
which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the currelll filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename. it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file. edit. as we
have seen, supplies the current filename. You can have the editor write onto a different file by
including its name in the write command:

: w chapter3
"chapter3" 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the \\'rite com­
mand unless it is the first filename given in the editing session. Thus, in the next write command
which does not specify a name, edit will write onto the current file and not onto the file
"chapter3".

The file (f) command

To ask for the current filename. type file (or f). In response, the editor provides current
information about the buffer, including the filename. your current position. and the number of
lines in the buffer:

: f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written. the editor
will tell you that the file has been "[Modified]". After you save the changes by writing onto a
disk file. the buffer will no longer be considered modified:

-20-

:w
"text" 4 lines, 88 characters
: f
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer without des­
troying the text already there. To use it, specify the line after which the new text will be
placed, the command r. and then the name of the file.

: Sr bibliography
"bi bliography" 18 lines, 473 characters

This command reads in the file bibliography and adds it to the buffer after the last line. The
current filename is not changed by the read command unless it is the first filename given in the
editing session.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

: 45,Sw ending

Here all lines from 45 through the end of the buffer are written onto the file named ending.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer.

Recovering files

Under most circumstances, edit's crash recovery mechanism is able to save work to within
a few lines of changes after a crash or if the phone is hung up accidently. If you lose the con­
tents of an editing buffer in a system crash, you will normally receive mail when you login
which gives the name of the recovered file. To recover the file, enter the editor and type the
command recover (red, followed by the name of the lost file.

: recover chap6

Recover is sometimes unable to save the entire buffer successfully. so always check the con­
tents of the saved buffer carefully before writing it back onto the original file.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message "Quota exceeded", you have tried to
use more disk storage than is allotted to your account. Proceed with cautioll because it is likely
that only a part of the editor's buffer is now present in the file you tried to write. In this case
you should use the shell escape from the editor (!) to remove some files you don't need and try
to write the file again. If this is not possible and you cannot find someone to help you, enter
the command

: preserve

and then seek help. Do not simply leave the editor. If you do, the buffer will be lost, and you
may not be able to save your file. After a preserve, you can use the recover command once the
problem has been corrected.

-21-

If you make an undesirable change to the buffer and issue a write command before dis­
covering your mistake, the modified version will replace any previous version of the file.
Should you ever lose a good version of a document in this way. do not panic and leave the edi­
tor. As long as you stay in the editor. the contents of the buffer remain accessible. Depending
on the nature of the problem, it may be possible to restore the buffer to a more complete state
with the undo command. After fixing the damaged buffer, you can again write the file to disk.

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor caJled ex. These lessons are intended to intwduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands. just a
selection of commands which should be sufficient to accomplish most of your editing tasks.
You can find out more about the editor in the Ex Reference Manual. which is applicable to both
ex and edit. The manual is available from the Computer Center Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know. •

Using ex
As you become more experienced with using the editor, you may still find that edit con­

tinues to meet your needs. However. should you become interested in using ex. it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters "~", "S". and "\" have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char­
acters have special meanings in ex, as described in the £y; Reference Manual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit­
ing, open and visual. in which the editor behaves quite differently than in normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing "0". Type the ESC key and then a "Q" to get out of open or visual mode
and back into the regular editor command mode. The document All IntrodlictiOlr to Display Edit­
ing with Vi provides a full discussion of visual mode.

This tutorial was produced at the Computer Center 0/ the University 0/
Cali/ornia, Berkeley. We welcome comments and suggestions concern­
ing this item and the UNIX documentation in gelferal.

Table of Contents

Ex Reference Manual
Starting Ex .. 1
File Manipulation .. 2

Current File ... 2
Alternate File ... 2
Filename Expansion .. 2
Multiple Files and Named Buffers ... 2
Read Only ... 2

Exceptional Conditions ... 3
Errors and Interrupts .. 3
Recovering from Hangups and Crashes .. 3

Editing Modes ... 3
Command Structure ... 3

Command Parameters ... 4
Command Variants ... 4
Flags After Commands .. 4
Comments .. 4
Multiple Commands per Line · .. 4
Reporting Large Changes .. 4

Command Addressing .. 4
Addressing Primitives ... 4
Combining Addressing Primitives ... 5

Command Descriptions ... 5
Regular Expressions and Substitute Replacement Patterns ... 14

Regular Expressions ... 14
Magic and Nomagic ... 14
Basic Regular Expression Summary ... 14
Combining Regular Expression Primitives .. 15
Substitute Replacement Patterns .. 15

Option Descriptions .. 15
Limitations .. 19
Update to Ex Reference Manual .. 21

Command Line Options .. 21
Commands ... 21
Options ... 21
Environment Enquiries .. 22

Vi Tutorial Update ... 22
Deleted Features ... 22
Change in Default Option Settings ... 22
Vi Commands ... 22
Macros .. 23

1. Starting ex

Ex Reference Manual
Version 3.5/2.13 - September, 1980

William Joy

Revised jar versions 3.512. J 3 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol­
lows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ­
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP
variable contains a pathname (beginning with a /) then the editor will seek the description of
the terminal in that file (rather than the default letc/termcap.) If there is a variable EXINIT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source corn·
mand. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t

ex { -] [- y] [- t tag] [- r] [-I] [-" n] [- x 1 [- R] [+ com ma nd 1 name ...

The most common case edits a single file with no options, i.e.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The -y option is equivalent to using vi rather -than
ex. The -t option is equivalent to an initial tag command, editing the file containing the tag
and positioning the editor at its definition. The -r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The -I option sets up for editing LISP, setting the showmatch and
lisp options. The -w option sets the default window size to n. and is useful on dialups to start
in small windows. The -x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, which should already be encrypted using the same key, see
crypt(I). The - R option sets the readonly option at the start. * Name arguments indicate files
to be edited. An argument of the form + command indicates that the editor should begin by

The financial support of an IBM Graduate Fellowship and the National Science Foundation under &rants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.
t Brackets' [' '1' surround optional parameters here.
* Not available in all v2 editors due to memory constraints.

-1-

executing the specified command. If command is omitted, then it defaults to "S". positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form "/pat" or line numbers, e.g. "+100" starting at line 100.

2. File manipulation

2.1. Current flle
Ex is normally editing the contents of a single file, whose name is recorded in the CUrrell!

file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.
After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even jf it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists.·

2.2. Alternate flle
Each time a new value is given to the current file name, the previous current file name is

saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion
Filenames within the editor may be specified using the normal shell expansion conven­

tions. In addition, the character 'Ok' in filenames is replaced by the current file name and the
character '#' by the a/ternate file name. t

2.4. Multiple flies and named buffers
If more than one file is given on the command line, then the first file is edited as

described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the argu­
ment list may be edited with the next command. The argument list may also be respecified by
specifying a list of names to the next command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file. ex
has a group of named buffers. These are similar to the normal buffer, except that only a lim­
ited number of operations are available on them. The buffers have names a through :.;

2.5_ Read only
It is possible to use ex in read only mode to look at files that you have no intention of

modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readoniy option is set. It can be turned on with the - R command line option. by the
view command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really

• The file command will say" [Not edited)" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a No write since last change diagnostic is received. * It is also possible to refer to A through Z; the upper case buffers are the same as the lower bUI commands
append to named buffers rather than replacing if upper case names are used.

-2-

know what you are doing. You can write to a different file, or can use the! form of write. even
while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts
When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error

diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints "Interrupt" and returns to its command level. If the primary input
is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the -r option. If you were
editing the file resume. then you should change to the directory where you were when the crash
occurred, giving the command

ex -r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex -r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes
Ex has five distinct modes. The primary mode is command mode. Commands are entered

in command mode when a ':' prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append. insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a '.' alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

S. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.-

• As an example, the command substitute can be abbreviated '5' while the shortest available abbreviation for
the set command is 'se',

-3-

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com·
mands also may take a trailing count specifying the number of lines to be involved in the com·
mand.t Thus the command "lOp" will print the tenth line in the buffer while "delete 5" will
delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command nameJ:

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an '!' immediately after the command name. Some of the default variants
may be controlled by options~ in this case, the '!' serves to toggle the defaulL

5.3. Flags after commands

The char1lcters '#', 'p' and '\' may be placed after many commands." In this case. the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'po is rarely necessary. Any number of
'+' or '-' characters may also be given with these flags. If they appear. the specified offset is
applied to the current line value before the printing command is executed.

SA. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
Quote: ft. Any command line beginning with" is ignored. Comments beginning with" may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line
More than one command may be placed on a line by separating each pair of commands by

a 'I' character. However the Klobal commands, comments, and the shell escape '!' musI be the
last command on a line. as they Ilre not terminated by a 'r.
5.6. Reporting large chanles

Most commands which change the contents of the editor buffer give feedback if the scope
of the change exceeds a threshold given by the report option, This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such ~ global or visual, you will be informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives
The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus'.' is rarely used alone as an address.

t Counts are rounded down if necessary.
* Examples would be option names in a set command i.e. "set number". a file name in an edit command. a
regular expression in a subs/IIUle command. or a target address for a COp'I' command. I.e. "1.5 copy 25",
•• A 'p' or 'I' must be preceded by a blank or tab except in the single special case 'dp',

-4-

n

$

%

The nth line in the editor's buffer, lines beini numbered sequentially
from 1.

The last line in the buffer.

+n -n

/pat/ ? pat?

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buffer line. t
Scan forward and backward respectively for a line containing pat, a reau­
lar expression (as defined below). The scans normally wrap around the
end of the buffer. If all thl:t :s desired is to print the next line contain ina
pat, then the trailing / or ? may be omitted. If pat is omitted or expli­
citly empty, then the last regular expression specified is located.;

" 6 X Before each non-relative motion of the current line '.', the previous
current line is marked with a tag, subsequently referred to as ''''. This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command. usinl sin lie lower case
letters x and the marked lines referred to as "x'.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ',' or ';'.
Such address lists are evaluated left-to-right. When addresses are separated by';' the current
line'.' is set to the value of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then all but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer. t

7. Command descriptions

The following form is a prototype for all ex commands:

a,ddress command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com·
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(.) append
text

abbr: a

Reads the input text and places it after the specified line. After the command, '.'
addresses the last line input or the specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

t The forms '.+3' '+3' and '+++' are all equivalent; if the current line is line 100 they all address line
103.
* The forms \1 and \? scan using the last regular expression used in a scan; after a substitute II and ??
would scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in this case is the current line '.';
thus' .100' is equivalent to ' .. 100'. It is an error to give a prefix address to a command which expects none.

-5-

a!
texT

args

The variant flag to append toggles the setting for the autoindent option during the input of
text.

The members of the argument list are printed, with the current argument delimited by . ['
and 'J',

(. , .) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles aUloindent during the change.

(• , •) copy addr flags abbr: co

A copy of the specified lines is placed after addr. which may be '0'. The current line''­
addresses the last line of the copy. The command t is a synonym for copy.

(• , .) delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end. the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file

abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been. a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non­
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the trail­
ing newline character, it will be supplied and a complaint will be issued. This command
leaves the current line '.' at the last line read';

t I.e., that it is not a binary file such as a directory. a block or character special file other than Idl?\'lrry. a ter­
minal. or a binary or executable file (as indicated by the first word).
i If executed from within open or visual. the current line is initially the first line of the file.

-6-

e! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +nfile

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+ Ipat".

abbr: r
Prints the current file name, whether it has been '[Modified)' since the last write com­
mand, whether it is read only, the current line, the number of lines in the buffer, and the
percentage of the way through the buffer of the current line.·

file file

The current file name is changed to file which is considered '[Not edited]'.

(1 , S) global lpatl cmds· abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with'.' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a '\'. If cmds (and pos­
sibly the trailing I delimiter) is omitted, each line matching pat is printed. Append. insert,
and change commands and associated input are permitted; the'.' terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options autoprint and autoindent are inhibited during a global. (and possibly the trailini I
delimiter) and the value of the report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark ,,,, is set to the value of '.' before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

g! lpatl cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.) insert
text

abbr: i

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com­
mand differs from append only in the placement of text

• In the rare case that the current file is ; [Not edited]' this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer.

-7-

.,
I.

text

The variant toggles autoindent during the insert.

(. , ,+ 1) join count ./lags abbr: j

" J.

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a '.' at
the end of the line, or none if the first following character is a ')'. If there is already
white space at the end of the line, then the white space at the start of the next line will be
discarded.

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.) k x

The k command is a synonym for mark, It does not require a blank or tab before the fol­
lowing letter.

(• • 0) list count ../lags

Prints the specified lines in a more unambiguous way: tabs are printed as 'T and the end
of each line is marked with a trailing ~$'. The current line is left at the last line printed.

map Ihs rhs

The map command is used to define macros for use in visual mode. Lhs should be a sin­
gle character, or the sequence "#n", for n a disit, referring to function key n. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type "#n". See section
6.9 of the "Introduction ~o Display Editing with Vi" for more details.

(.) mark x

Gives the specified line mark x. a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form "x' then addresses this line. The current line is not
affected by this command.

(• , •) mOTe addr abbr: m

Tne move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

nut abbr: n

n!

The next ftle from the command line argument list is edited.

The variant" suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n file/ist
n +commandfilelist

-8-

The specified filelist is expanded and the resultina list replaces the current araument list;
the first file in the new list is then edited. If command. is aiven (it must contain no
spaces), then it is executed after editing the first such file.

(. , .) number count flags abbr: II or DU

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open flags abbr: 0

(•) open / pat / flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vi for more details.
t

preserve
The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don't know how to save your work. After a preserve you should seek help.

(.•.) print count abbr: p or P
Prints the specified lines with non-printing characters printed as control characters '"x';
delete (octal 177) is represented as '"?'. The current line is left at the last line printed.

(•) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored" By using a named buffer, text may be restored that
was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write command
was issued, and does not qUit. t Normally, you will wish to save your changes, and you
should give a write command; if you wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(•) read file abbr: r
Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

* Not available in all v2 editors due to memory constraints.
• But no modifying commands may intervene between the delete or yank and the put. nor may lines be
moved between files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list.

-9-

Address '0' is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter­
minates. After a read the current line is the last line read.;

(.) read !command

Reads the output of the command command into the buffer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone··
or a system crash·· or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

shell

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a '?' causes the current value of that option to be
printed. The '?' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to tum them on or 'set no option' to tum them
off; string and numeric options are assigned via the form 'set option-value'.

More than one parameter may be given to set; they are interpreted left-toorighL

abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , .) substitute I pat I repll options COUllf flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with T characters. By typing
an 'y' one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl
must be escaped by preceding it with a '\'. Other metacharacters available in pat and repl
are described below.

; Within open and visual the current line is set to the first line read rather than the last .
•• The system saves a copy of the file you were editing only if you have made changes to the file.

-10-

stop
Suspends the editor, returning control to the top level shell. If auto write is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operatin& system.

(. , •) substitute options count ./fags abbr: s
If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the" command.

(• , •) t addr flags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.*
The tags file is normally created by a program such as crags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address­
ing form which can be. used by the editor to find the tag; this field is usually a contextual
scan using '/patl' to be immune to minor changes in the file. Such scans are always per­
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. *

unabbreviate word abbr: una
Delete word from the list of abbreviations.

undo abbr: u
Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as "". After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap Ihs

The macro expansion associated by map for Ihs is removed.

(1 , S) v / pat / cmds

A synonym for the global command variant I!, running the specified cmds on each line
which does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

* If you have modified the current file before giving a tag command. you must write it out; giving another
tag command. specifying no tag will reuse the previous tag.
* Not available in all v2 editors due to memory constraints.

-11-

(•) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be '-' • 'T' or .: as in
the z command to specify the placement of the specified line on the screen. By default. if
type is omitted, the specified line is placed as the first on the screen. A count specifies an
initial window size; the default is the value of the option window. See the document All
Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual + n file

From visual mode, this command is the same as edit.

(1 • $) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came· from. If a file is specified,
then text will be written to that file.· If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and ~dited file, the editor considers that there
has been "No write since last change" even if· the buffer had not previously been
modified.

(1 • $) write> > file abbr: w»
Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command. as w! does.

"It name

If any changes have been made and not written, writes the buffer out. Then. in any case.
quits.

(. , •) yank buffer count abbr: ya

Places the specified lines in the named buffer. for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place; see the put command description .

• The editor writes to a file only if it is the current file and is ediled. if the file does not exist, or if the file is
actually a teletype, Idevllty. ldevlnull. Otherwise, you must give the variant form w! to force the write.

-12-

(. + 1) z count

Print the next count lines, default window.

(.) z type count

Prints a window of text with the specified line at the top. If ty~ is '-' the line is placed
at the bottom; a '.' causes the line to be placed in the center.· A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the char~
acter '!' is replaced with the text of the previous command. Thus, in particular. '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been" [No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a_warning. A
single '!'is printed when the command completes.

(addr, addr) ! command

Takes the specified address range and supplies it as standard input to command; the result­
ing output then replaces the input lines.

($) =
Prints the line number of the addressed line. The current line is unchanged.

(, , .) > countjiags
(. , .) < countjiags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white char­
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

('+1,.+1)
(.+1,.+1)1

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file .

• Forms 'z-' and 'zt' also exist; 'z-' places the current line in the center, surrounds it with lines of '-'
characters and leaves the current line at this line. The form 'zl' prints the window before 'z-' would. The
characters '+', 'T' and '-' may be repeated for cumulative effect. On some v2 editors, no rype may be
given.

-13-

(• , •) &: options count ./fags

Repeats the previous substitute command.

(• , •) - options count ./fags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular' expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous reg­
ular expression used elsewhere (referred to as the previous scanning regular expression.) The
previous regular expression can always be referred to by a null re, e.g. '/I' or '??'.

8.2. Magic: and nomagic:

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character .\. to
use them as "ordinary" characters. With nomagic, the default for edit. regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a .\ '. Note that '\' is thus always
a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic. t

8.3. Basic: regular expression summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characte~s T at the beginning of a
line, 'S' at the end of line, •• ' as any character other than the first. '.', '\' .. ['.
and ,-, are not ordinary characters and must be escaped (preceded) by '\' to be
treated as such.

t At the beginning of a pattern forces the match to succeed only at the begin­
ning of a line.

S At the end of a regular expression forces the match to succeed only at the end
of the line.

\<

\>

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under­
line and after a character not one of these.

Similar to '\ <', but matching the end of a "variable" or "word", i.e. either
the end of the line or before character which is neither a letter. nor a digit. nor
the underline character.

t To discern what is true with nomDgic it suffices to remember that the only special characters in Ihis case will
be T at the beginning of a regular expression, 'So at the end of a regular expression. and "\'. With nomQ~IC
the characters ,-. and '&;' also lose their special meanings related to the replacement pattern of a substitute.

-14-

(string] Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by '-' in string
defines the set of characters collatin& between the specified lower and upper
bounds, thus '[a-z)' as a re&ular expression matches any (sin&ie) lower-case
letter. If the first character of string is an T then the construct matches those
characters which it otherwise would .not; thus '[f a - z)' matches anythin& but a
lower-case letter (and of course a newline). To place any of the characters T,
'[', or '-' in string you must escape them with a precedin& '\'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest strin&
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men­
tioned above may be followed by the character '.' to form a regular expression which matches
any number of adjacent occurrences (including 0) of characters matched by the regular expres­
sion it follows.

The character ,-, may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences '\ (' and '\)' with side effects in the substitute replacement patterns.

8.S. Substitute replacement patterns

The basic metacharacters for the replacement pattern are '&' and '.'; these are given as
'\&' and '\ -. when nomagic is set. Each instance of '&' is replaced by the characters which the
regular expression matched. The metacharacter ,-, stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character '\'. The sequence '\n' is replaced by the text matched by the n-th regular
subexpression enclosed between '\(' and '\)'.t The sequences '\u' and '\1' cause the immedi­
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences '\U' and '\L' turn such conversion on, either until
'\E' or '\e' is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cur­
sor up to the preceding tab stop one can hit "D. The tab stops going backwards are
defined at multiples of the shiftwidth option. You cannot backspace over the indent,
except by sending an end-of-file with a "D.

t When nested. parenthesized subexpressions are present. fI is determined by counting occurrences of .,('
starting from the left.

-15-

Specially processed in this mode is a line with no characters added to it. which turns into a
completely blank line (the while space provided for the autoindent is discarded,) Also spe­
cially processed in this mode are lines beginning with an 'T' and immediately followed by
a AD. This causes the input to be repositioned at the beginning of the line. but retaining
the previous indent for the next line. Similarly. a '0' followed by a AD repositions at the
beginning but without retaining the previous indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete. copy. join, move. substitute. t. undo
or shift command. This has the same effect as supplying a trailing 'p' to each such com­
mand. Autoprint is suppressed in globals. and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a next. rewind. stop. tag. or ! command, or a AT (switch files) or AI (taggoto)
command in visual. Note. that the edit and ex commands do not autowrite. In each case.
there is an equivalent way of switching when autowrite is set to avoid the autowrlle (edit
for next, rewind! for.l rewind. stop! for stop, tag! for tag, shell for !, and :e # and a :ta!
command from within visual).

beautify, bf default:nobeautify

Causes all control characters except tab. newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beaut!t ..
does not apply to command input.

directory, dir default: dir- Itmp

Specifies the directory in which ex places its buffer file. If this directory in not writable.
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of g and e suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be
as in the - command, instead· of like &. **

errorbells, eb default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error mes­
sage in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, ht default: ht - 8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ie default: noic

** Version 3 only .
• Bell ringing in open and visual on errors is nol suppressed by setting noeb.

-16-

lisp

list

All upper case characters in the text are mapped to lower case in relular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

default: nolisp

Autoindent indents appropriately for lisp code, and the () { } II and II commands in open
and visual are modified to have meaning for lisp.

default: nolist

All printed lines will be displayed (more) unambiguously. showing tabs and end-of-lines
as in the list command.

malic: default: magic for ex and vit

mesg

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only T and '$' having special effects. In addition the metacharacters ,-, and '&.' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a '\'.

default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set. **

Dumber. DO default: nonumber

open

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para-IPLPPPQPP LIbp

Specifies the paragraphs for the (and } operations in open and visual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode inp~t is prompted for with a':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t Nomagit: for edit
U Version 3 only.

-17-

remap default: remap

If on, macros are repeatedly tried until they are unchanged. H For example. if 0 is
mapped to 0, and 0 is mapped to I, then if remap is set, 0 will map to l, but if noremap is
set, it will map to O.

report default: report=5t

scroll

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

default: scroll == 1/2 window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode, and the number of lines printed by a command mode =
command (double the value of scro/l).

sections default: sections-SHNHH HU

Specifies the section macros for the II and 11 operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh-/bin/sh

Gives the path name of the shell forked for the shell escape command'!'. and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw- 8
Gives the width a software tab stop, used in reverse tabbing with AD when using auroln­
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or I
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen. slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin­
telligent. See An Introduction 10 Display Editing with Vi for more details.

tabstop, ts default: ts- 8
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, tl default: tl=O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

U Version 3 only.
t 2 for edif.

-18-

tal~ default: tags-tags /usr/lib/taas

A path of files to be used as tag files for the tag command. ** A requested tag is searched
for in the specified files, sequentially. By default (even in version 2) files called tals are
searched for in the current directory and in /usr/Jib (a master file for the entire system.)

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window-speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium
(200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

w"pscan, ws default: ws
Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm-O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany. wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the pre·
vious inserted and deleted text in open or visual. 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals and
Unix systems.

** Version 3 only.

·19·

-20-

Ex changes - Version 3.1 to 3.S
This update describes the new features and changes which have been made in converting

from version 3.1 to 3.5 of ex. Each chanae is marked with the first version where it appeared.

Update to Ex Reference Manual

Command line options

3.4 A new command called view has been created. View is just like vi but it sets readon(r.

3.4 The encryption code from the v7 editor is now part of ex. You can invoke ex with the
-x option and it will ask for a key, as ed. The ed x command (to enter encryption mode
from within the editor) is not available. This feature may not be available in all instances
of ex due to memory limitations.

Commands

3.4 Provisions to handle the new process stopping features of the Berkeley TTY driver have
been added. A new command, stop, takes you out of the editor cleanly and efficiently.
returning you to the shell. Resuming the editor puts you back in command or visual
mode, as appropriate. If auto write is set and there are outstanding changes, a write is done
first unless you say "stop!".

3.4 A

:vi <file>

command froin visual mode is now treated the same as a

:edit <file> or :ex <file>

command. The meaning of the vi command from ex command mode is not affected.

3.3 A new command mode command xiI (abbreviated x) has been added. This is the same as
wq but will not bother to write if there have been no changes to the file.

Options

3.4 A read only mode now lets you guarantee you won't clobber your file by accident. You
can set the on/off option readonly (ro), and writes will fail unless you use an ! after the
write. Commands such as x. ZZ, the autowrite option, and in general anything that writes
is affected. This option is turned on if you invoke ex with the - R flag.

3,4 The wrapmargin option is now usable. The way it works has been completely revamped.
Now if you go past the margin (even in the middle of a word) the entire word is erased
and rewritten on the next line. This changes the semantics of the number Jiven to wrap­
margin. 0 still means off. Any other number is still a distance from the right edge of the
screen, but this location is now the right edge of the area where wraps can take place,
instead of the left edge. Wrapmargin now behaves much like filUnojustify mode in nroff.

3.3 The options w300. w1l00. and w9600 can be set. They are synonyms for window. but only
apply at 300, 1200, or 9600 baud, respectively. Thus you can specify you want a 12 line
window at 300 baud and a 23 line window at 1200 baud in your EXINIT with

:set w300-12 w1200-23

3.3 The new option timeout (default on) causes macros to time out after one second. Tum it
off and they will wait forever. This is useful if you want multi character macros, but if
your terminal sends escape sequences for arrow keys, it will be necessary to hit escape
twice to get a beep.

-21-

3.3 The new option remap (default on) causes the editor to attempt to map the result of a
macro mapping again until the mappinl fails. This makes it possible, say, to map q to #
and #1 to something else and get ql mapped to something else. TUining it oft'makes it
possible to map "L to I and map "R to "L without having "R map to I.

3.3 The new (string) valued option lags allows you to specify a list of tag files, similar to the
"path" variable of csh. The files are separated by spaces (which are entered preceded by
a backslash) and are searched left to right. The default value is "tags lusr/lib/tags",
which has the same effect as before. It is recommended that "tags" always be the first
entry. On Ernie CoVax, lusr/lib/tags contains entries for the system defined library pro­
cedures from section 3 of the manual .

. Environment enquiries
3.4 The editor now adopts the convention that a null strina in the environment is the same as

not being set. This applies to TERM, TERMCAP, and EXINIT.

Vi Tutorial Update

Deleted features
3.3 The "q" command from visual no longer works at all. You must use "Q" to get to ex

command mode. The "q" command was deleted because of user complaints about hitting
it by accident too often.

3.5 The provisions for changing the window size with a numeric prefix argument to certain
visual commands have been deleted. The correct way to change the window size is to use
the z command, for example zS<cr> to chanle the window to 5 lines.

3.3 The option "mapinput" is dead. It has been replaced by a much more powerful mechan­
ism: ":map!".

Cbanle in default option settlnls
3.3 The default window sizes have been changed. At 300 baud the window is now 8 lines (it

was 112 the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen
size, which was usually also 16 for a typical 24 line CRT). At 9600 baud the window is
still the full screen size. Any baud rate less than 1200 behaves like 300. any over 1200
like 9600. This change makes ,,; more usable on a large screen at slow speeds.

VI commands
3.3 The command "'lX' from vi is the same as ":x<:cr> ". This is the recommended way to

leave the editor. Z must be typed tWIce to avoid bitting it accidently.
3.4 The command "z is the same as ":stop<cr>". Note that if you have an arrow key that

sends "z the stop function will take priority over the arrow function. If you have your
"susp" character set to something besides "z. that key will be honored as well.

3.3 It is now possible from visual to string several search expressions together separated by
semicolons the same as command mode. For example, you can say

/foo/;/bar

from visual and it will move to the first "bar" after the next "foo". This also wotks
within one line.

3.3 "R is now the same as "L on terminals where the right arrow key sends -L (This includes
the Televideo 912/920 and the ADM 31 terminals.)

-22-

3.4 The visual page motion commands AF and AB now treat any preceding counts as number
of pages to move, instead of changes to the window size. That is, rF moves forward 2
pages.

Macros

3.3 The "mapinput" mechanism of version 3.1 has been replaced by a more powerful
mechanism. An "!" can follow the word "map" in the map command. Map!'ed macros
only apply during input mode, while map'ed macros only apply during command mode.
Using "map" or "map!" by itself produces a listing of macros in the corresponding
mode.

3.4 A word abbreviation mode is now available. You can define abbreviations with the abbre­
viate command

:abbr foo find outer otter

which maps "foo" to "find outer otter". Abbreviations can be turned off with the unab­
breviate command. The syntax of these commands is identical to the map and unmap
commands, except that the ! forms do not exist. Abbreviations are considered when in
visual input mode only, and only affect whole words typed in, using the conservative
definition. (Thus "foobar" will not be mapped as it would using "map!") Abbreviate
and unabbreviate can be abbreviated to "abn and "una", respectively.

-23-

-24-

Table of Contents

The Vi Editor
Preliminary Notes ... 1
Creating an Ordinary File .. 1
Invoking Vi ... 2
Moving Around in the File ... 3

Cursor-Positioning Keys ... 5
Scrolling and Paging .. 5
Moving From Line to Line .. 5
Skipping Over Sentences, Paragraphs, and Sections ... 6
Searching for a Pattern .. 7
Moving Within a Line ... 10
Returning to Your Previous Position ... 11

Adding, Deleting, and Correcting Text ... 11
Inserting and Appending Text .. 12
Character Corrections .. 13
Line Corrections .. 14
Copying and Moving Text. ... 15
Shifting Lines ... 17
Continuous Text Input ... 17
Undoing a Command .. 17

Special Vi Commands .. 18
Setting Vi Options .. 18
Defining Macros .. 22
Defining Abbreviations .. 23
Reading Data Into Your Current File .. 24
Writing Edited Text Onto a File .. 24
Editing Other Files ... 25
Editing the Next File in the Argument List ... 26
Filtering Buffer Text Through HP-UX Commands .. 27

Vi and Ex .. 28
The Shell Interface .. 28

Getting Into Vi ... 28
Getting Back to the Shell .. 29

Miscellaneous Topics .. 30
Vi Initialization ... 30
Recovering Lost Lines ... 31
Entering Control Characters in Your Text ... 31
Adjusting the Screen .. 31
Printing Your File Status .. 32

Appendix A: Character Functions , ... 33
Appendix B: Example .exrc File · ... 39

The Vi Editor

Vi is a display-oriented, interactive text editor. The contents of your file are displayed on your
screen, so you can see the result of each vi command as soon as the command is executed. There
is rarely any doubt about the current state of your file.

Preliminary Notes

Vi has two peculiar traits that might prove somewhat confusing to the beginning user. The first is
that many of your commands do not print on your terminal when you type them in. Be assured that
vi is still listening to you, however. If you watch the screen when you type in a command, vi usually
gives some indication that your command has been received and interpreted. More specifically, the
only commands that will print on your terminal are those that begin with /, :, 7, and!. If these
characters are embedded in a long string of commands, only those characters after and including
one of those above will be printed.

The second trait is that vi always uses the bottom line of the screen for command output, error
messages, and echoed command lines. This is where you should look for information and
command verification.

Creating an Ordinary File

The remainder of this article discusses the various commands and features of the vi editor.
Because many vi commands do not print on the screen when they are executed, it is difficult to
represent the results that appear on your screen before and after a command has executed. Thus,
this article is designed to be read while you have access to a computer so you can try each
command as it is discussed.

To be able to try each command, you need a file with some text in it. To create a file, type

$ vi filename

where filename is the name of the file you are creating. This file name is completely up to you.
Vi responds by printing

"filename" [new file]

at the bottom of your screen, and prints a tilde n at the beginning of each line on the screen. The
tilde is a special character that vi uses to mark the end of the text in a file that already exists, or, in
the case of a new file, to show that there is currently no text in the file. The tildes are simply
markers that are used for your convenience; they do not become part of the text in your file.

You are now ready to put text in your file. To do this, type a (for append). Even though the
command does not print on your screen, vi is now waiting for your text. As you type in your text,
note that everything you type appears on your screen, and that the tilde on each line disappears as
you begin typing on that line.

-1-

It does not really matter what you type in for your text, but you need at least two paragraphs of
material (paragraphs must be separated by at least one blank line). That amount of text ensures that
most of the commands can be illustrated on your file. When you are done entering text, press
[ESC], and exit the editor by typing ZZ. You should now have a shell prompt on your screen.

Material Covered:

vi file ...
[ESC], [ALT], ctrl-[
[DEL], [RUB], ctrl-?

Invoking Vi

command; invokes vi with one or more file arguments;
commands; end text insertion or modification;
commands; generate an interrupt.

You invoke vi the same way you invoke any shell command. Vi accepts several options and a list
of file names, which are the names of the files you want to create or edit. For a list of the available
options, refer to the HP-UX Reference manual. For example,

$ vi file 1 file2 file3

invokes vi with filel, file2, and file3 as arguments. Filel is created or edited first. Vi remembers
file2 and file3 so that you can create or edit them after you are finished with file1. Begin editing the
file you created previously by typing

$ vi filename

where filename is the name of the file you created. Note that vi prints out either a screenful of text
from filename, or the entire contents of filename followed by a tilde on each remaining empty
line. Vi does the latter if filename does not contain enough text to fill the screen. Your cursor is
positioned at the beginning of the first line of the file. Vi is now waiting for your commands.

Vi always copies the contents of the file you are editing into a special buffer. All additions,
deletions, and corrections are performed on the copy in the buffer. This way, the original file
remains unchanged until you are sure you want to change it. Then, when you are finished editing
the file, you can tell vi to overwrite the previous contents of the file with the revised text in the
buffer. Even if you are creating a file, the text you put in your file is actually put in the buffer.
The text remains there until you tell vi to transfer it to the file you are creating.

Once you have invoked vi, it enters a do-nothing state in which it waits for a command. This is
called a quiescent state. You can determine what state vi is in by pressing [ESC] or [DEL]. [ESC] is
used to end text insertion and to cancel partially formed commands. If you press [ESC] and vi
responds by ringing the bell, then vi is in a quiescent state. If vi does not ring the bell, then it is
busy executing a command. Ctrl-[generates the same sequence as the [ESC] or [AL T] key on
your keyboard. [DEL] generates an interrupt, which forces vi to stop whatever it is doing and
return to a quiescent state. The DEL signal can also be generated with ctrl-?

Once vi is in a quiescent state, there are several things you can do. They are shown in the following
diagram.

-2-

The Shell

! t
Line-Oriented Adding, Deleting, Visual Mode (vi) -
Mode (ex) -

Qu iescent State and
Quiescent State Correcting Text

~ t ~ t
Moving Around

Special
vi

inthe File Commands

Moving Around in the File

Material Covered:

[I], k, ctrl-P commands; move the cursor up one line in the same column;
[~], I, [SPACE] commands; move the cursor one character to the right;
[~], j, ctrl-J, ctrl-N commands; move the cursor down one line in the same column;
[.r,-], h, [BACKSPACE], ctrl-H

ctrl-D
ctrl-U
ctrl-E
ctrl-Y
ctrl-F
ctrl-B
+, [RETURN], ctrl-M

nG

H

M

L

m
%

commands; move the cursor one character to the left;
command; scroll down;
command; scroll up;
command; scroll up one line;
command; scroll down one line;
command; move forward one page in the file;
command; move backward one page in the file;
commands; move the cursor to the first printable character on the
next line;
command; move cursor to the first printable character on the
previous line;
command; move cursor to first printable character on line number
n; default n = last line of the file;
command; move cursor to the first printable character of the first
line on the screen;
command; move cursor to the first printable character of the middle
line on the screen;
command; move cursor to the first printable character of the last
line on the screen;
command; mark a particular line with a label;
command; show matching left or right parenthesis or brace;
command; move cursor to the beginning of the most previous
sentence;
command; move cursor to the beginning of the next sentence;

-3-

{

}
[[

]]

/
?
n
N

$

[...]

*
w

w

b

B

e

E

fe

Fe

te

Te

h, 0 (zero)

command; move cursor to the beginning of the most previous
paragraph;
command; move cursor to the beginning of the next paragraph;
command; move cursor to the beginning of the most previous
section;
command; move cursor to the beginning of the next section;
command; initiates a forward pattern search;
command; initiates a backward pattern search;
command; repeats the most previous pattern search;
command; repeats the most previous pattern search in the opposite
direction;
metacharacter; used in pattern searches to match a pattern at the
beginning of a line;
meta character; used in pattern sedrches to match a pattern at the
end of a line;
metacharacter; used in pattern searches to strip away the special
meaning of a metacharacter;
metacharacter; used in pattern searches to match any single
character;
metacharacter; used in pattern searches to match a pattern at the
beginning of a word;
metacharacter; used in pattern searches to match a pattern at the
end of a word;
metacharacters; used in pattern searches to match anyone of the
enclosed characters;
metacharacter; used in pattern searches to match zero or more
instances of the preceding character;
command; move cursor forward to the beginning of the next word,
or to the next punctuation mark, whichever comes first;
command; move cursor forward to the beginning of the next word,
ignoring punctuation;
command; move cursor backwards to the beginning of the
previous word, or to the most previous punctuation mark,
whichever comes first;
command; move cursor backwards to the beginning of the
previous word, ignoring punctuation;
command; move cursor forward to the end of the next word, or to
the next punctuation mark, whichever comes first;
command; move cursor forward to the end of the next word,
ignoring punctuation;
command; move cursor forward to the next instance of the
specified character, e;
command; move cursor backwards to the next instance of the
specified character, e;
command; move cursor forward to the first character to the left of
the next instance of the specified character, e;
command; move cursor backwards to the first character to the right
of the next instance of the specified character, e;
command; repeats the most previous f, F, t, or T command;
command; repeats the most previous f, F, t, or T command, in the
opposite direction;
commands; move cursor to the first printable character on the

-4-

$

or

current line;
command; move cursor to the end of the current line;
command; move cursor to specified column number in current line;
commands; returns cursor to its most previous position.

This section describes several commands that enable you to move around in your file. You
should try each of these commands as they are discussed to familiarize yourself with them.

Cursor-Positioning Keys

If your terminal has cursor-positioning keys, these keys can be used in vi to position the cursor in
the file you are editing. The h, j, k, and I commands perform the same functions as the cursor­
positioning keys. The h command moves the cursor one space to the left ([BACKSPACE] and ctrl-H
also moves the cursor one space to the left). The j command moves the cursor down one line in
the same column (as do ctrl-J and ctrl-N), the k command moves the cursor up one line in the
same column (as does ctrl-P), and the I command moves the cursor one space to the right ([SPACE]
also moves the cursor one space to the right). These commands are summarized below:

Scrolling and Paging

[t] = k = ctrl-P
[~] = I = [SPACE]

[~] = j = ctrl-J = ctrl-N
[~] = h = [BACKSPACE] = ctrl-H

The ctrl-D command scrolls down in the file, leaving several lines of continuity between the
previous screenful of text and the new screenful of text (note that [CTRL] must be held down while
the next key is pressed). The ctrl-U command scrolls up in the file, also leaving several lines of
continuity on the screen. If either ctrl-D or ctrl-U is preceded by a number argument, then the
number of lines scrolled is equal to that specified number, and remains so until changed again.

If you want more control over the scrolling process, the ctrl-E command exposes one more line
at the bottom of the screen, and the ctrl-Y command exposes one more line at the top. Preceding
ctrl-E or ctrl-Y with a number causes the command to be executed that many times.

There are two paging commands, ctrl-F and ctrl-B, which move forward and backward one
page in the file, respectively. Both commands leave a few lines of continuity between screenfuls of
text. Giving a number argument to either of these paging commands executes the command that
many times.

Note that paging moves you more abruptly than scrolling does, and leaves you fewer lines of
continuity between screenfuls of text.

Moving From Line to Line

The + and - commands move the cursor to the first printable character on the next line or the
previous line, respectively. [RETURN] or ctrl-M have the same effect as +. A preceding number
argument executes these commands that many times.

-5-

The G command, when preceded by a line number, positions the cursor at the beginning of that
line in the file. For example, 3G positions the cursor at the beginning of the third line. If you do not
specify a number, the cursor is positioned at the beginning of the last line of the file.

The H command positions the cursor at the beginning of the first line on the screen. If you
precede H with a number, as in 4H, the cursor is positioned at the beginning of the fourth line on
the screen.

The M command positions the cursor at the beginning of the middle line on the screen. The M
command ignores any line number argument.

The L command positions the cursor at the beginning of the last line on the screen. You can
precede the L command by a number, as in 4L, which positions the cursor at the beginning of the
fourth line above the bottom of the screen.

Note that the H, M, and L commands reference the first, middle, and last lines of the current
screenful of text. They do not reference the first, middle, and last lines of the entire file.

The m command enables you to mark specific lines with a label so that you can return to them.
The label must be a single, lower-case letter in the range "a" through "z". To mark a line, first
move the cursor to the particular line (using any of the commands described in Moving Around in
the File), and type m?, where ? is the label you have selected. For example, + + + me moves
the cursor ahead three lines and marks that line with the label "e".

To reference a line you have marked, precede your label with a grave accent n. For example, 'e
moves the cursor to the line you marked with the label "e". Note also that the cursor is placed
in exactly the same spot within the line that it was when you marked the line. If you are not
particularly interested in a specific position within a marked line, use an apostrophe n instead of
a grave accent. Thus, ~ e moves the cursor to the beginning of the line marked by the label "e",
regardless of where the cursor was in the line when you marked it. Try marking a few lines, using
both the apostrophe and grave accent, until you are familiar with their differences.

Marks are defined until you begin editing another file, or until you leave the editor. Marks cannot
be erased.

The % command shows you the matching left or right parenthesis or brace for the parenthesis or
brace currently marked by the cursor.

Skipping Over Sentences, Paragraphs, and Sections

The (and) (left and right parentheses) commands move the cursor to the beginning of the
previous and next sentences, respectively. A sentence is defined to end at a period, an
exclamation point, or a question mark, followed either by two spaces or the end of a line. Any
number of closing parentheses, brackets, double quotes, or single quotes may follow the period,
exclamation point, or question mark, as long as they occur before the two spaces or the end of the
line. The (and) commands can be preceded by a number to move the cursor over several
sentences at once.

-6-

The {and} (left and right braces) commands move the cursor to the beginning of the previous
and next paragraphs, respectively. A paragraph is defined as a block of text beginning and ending
with a blank line, or a block of text delimited by macro invocations. The default list of macros
(from the -ms and -mm macros packages) includes .IP, .LP, .PP, .QP, .P, .LI, and .bp. These
macros are used so that files containing nroff/troff text can be easily edited with vi. You may add
your own macro names to those already recognized by appropriately setting the paragraphs option
(see Setting Vi Options later in this article). The { and} commands can be preceded by a number to
move the cursor over several paragraphs at once.

The [[and]] (double left and right brackets) commands move the cursor to the beginning of the
previous and next sections, respectively. A section is defined as beginning and ending with a line
containing a ctrl-L (formfeed character) in the first column, or as a block of text delimited by macro
invocations. The default list of macros defining a section is .NH, .SH, .H, and .HU. You may add
your own macro names to those already understood by appropriately setting the sections option
(see Setting Vi Options later in this article). If [[or]] is preceded by a number argument, it is
interpreted to be the new window size (number of lines per screenful of text).

Searching for a Pattern

You can tell vi to search for a particular pattern (string of characters) in your file. To do this, type a
slash (I), followed by the pattern you want to search for, followed by [RETURN]. Note that the
entire command is printed at the bottom of your screen. If vi finds the pattern, vi positions the
cursor at the beginning of the pattern. If the pattern cannot be found, vi prints an error message
and returns the cursor to its location prior to the search.

The slash initiates a forward search, with wraparound, starting from the current position of the
cursor. Replacing the slash with a question mark (?) initiates a backward search, with wraparound,
starting from the current position of the cursor. If a number argument is specified before / or ?, it is
interpreted to be the new window size (number of lines per screenful of text).

If you want your pattern to match only at the beginning of a line, begin your pattern with a caret
('). If you want your pattern to match only at the end of a line, end your pattern with a dollar sign
($).

Here are some examples:

/test[RETURN]

This is a forward search for the string "test". Note that this pattern matches "re-test", "testing",
" detestable", or "test" . To find only the word "test" standing alone (but not at the end of a
sentence, or just before a comma), type

/ test [RETURN]

The spaces require that" test" not be part of another word.

?AToday[RETURN]

-7-

This is a backward search for the string II Today II appearing only at the beginning of a line.

Iregret$[RETURN]

This is a forward search for the string II regret II appearing only at the end of a line.

The n command enables you to repeat the most recently executed search. Each time n is
typed, the previous search is re-executed. The N command also repeats the most recently executed
search, but in the opposite direction. These commands are handy for finding a particular
occurrence of a pattern without having to re-type the search each time.

There are times when you want to position the cursor at the beginning of the line containing the
pattern. This can be done by typing your search command in a slightly different way. For
example,

Ikeyl + O[RETURN]

searches forward and positions the cursor at the beginning of the line containing the string
II key ". You can also position the cursor at the beginning of a line relative to the line containing
the pattern. For example,

IFlFOI-3[RETURN]

searches forward and positions the cursor at the beginning of the third line before the line
containing the string II FIFO ". Also,

?CRT? + 2[RETURN]

searches backward and positions the cursor at the beginning of the second line after the line
containing the string II CRT II •

There are two options, magic and nomagic, which affect the way you can specify patterns (see
the section entitled Setting Vi Options). If the nomagic option is set, then only the characters ~ and
$ have special meaning in patterns. If you want to include either of these characters in the actual
pattern you search for, they must be preceded by a backslash ("'-). The backslash quotes the
character immediately following it, and strips away any special meaning that character might
have. For example,

1"'-~L[RETURN]

searches for the string II 'L ". The backslash was necessary to keep the caret from being
interpreted to mean II match this pattern at the beginning of a line II •

If the magic option is set, then you have several other special characters that you can use in
patterns, including' and $. The. (dot) matches any character, as in

Ichap. [RETURN]

-8-

which matches any five-character string that begins with "chap". The character combinations
"'- < and "'-> match the beginning of a word and the end of a word, respectively. For example,

?"'- <how[RETURN]

matches any word beginning with "how", including "how" itself. Also,

led"'->[RETURN]

matches any word ending with "ed", including "ed" itself. ,

Brackets are also special, and match anyone of the characters enclosed in them. For example,

lfile[123] [RETURN]

matches" file 1 " , "file2", and" file3". If the characters inside the brackets are preceded by a ~,
then the brackets match any single character not enclosed in them, as in

Ichap[~1234][RETURN]

which matches any five-character string beginning with " chap", except "chap 1", " chap2 " ,
"chap3 ", and "chap4". If you want to specify large spans of letters or numbers, as in a through z,
or 0 through 9, they can be abbreviated inside the brackets, as in [a-z] or [0-9].

The asterisk (*) matches zero or more instances of the character immediately preceding it. For
example,

Ib*[RETURN]

matches zero or more b's. Note that this is a useless search, since zero b's can be found much
quicker than one or more b's. To find one or more b's, you must type

/bb*[RETURN]

Also,

/[123] [123] * [a-z] [RETURN]

matches a one,_ two, or three, followed by any number of one's, two's, and three's, followed by
a single lower-case letter. Experiment with the asterisk until you understand the implications of
matching zero or more occurrences of a pattern.

If the magic option is set, then the characters~, $,., "'- <, "'->, [,], and * have special meaning
and must be quoted with a backslash if you want them to be literally matched in a pattern (note
that the characters "'-<and "'-> must each be preceded by a backslash, as in "'- "'- "'- < and
"'- "'- "'->). If the nomagic option is set, then only ~ and $ require a backslash to be literally
matched. Note that, to match a backslash literally, it also must be preceded with a backslash.

-9-

The characters A, $, ., '" <, "'>, L], *, and", are commonly called metacharacters whenever
their special meanings are utilized. This helps to distinguish between their normal, literal use, and
their use as special characters.

Moving Within a Line

The wand W commands advance the cursor to the beginning of the next word in the sentence,
wrapping around to the next line if necessary. The difference between the two commands is that
the w command also stops at each punctuation mark it encounters; the W command does not stop
at punctuation.

The band B commands move the cursor backwards to the beginning of the previous word,
wrapping around to the previous line if necessary. The b command stops at punctuation, while the
B command does not.

The e and E commands advance the cursor to the end of the next word in the sentence,
wrapping around to the next line if necessary. The e command stops at punctuation, while the
E command does not.

Note that the w, W, b, B, e, and E commands all wrap around to lines other than the current
line. These commands can be preceded by a number to move the cursor over several words at
once.

The f and F commands move the cursor forward or backward, respectively, to the next
occurrence of the specified character. The cursor is placed on the specified character. For example,
fc moves the cursor forward to the first occurrence of the character "c", and F: moves the cursor
backwards to the first occurrence of a colon. The f and F commands can be preceded by a
number, as in 3fr, which moves the cursor forward to the third occurrence of the character "r".
Both f and F work only on the current line, and do not wrap around to other lines.

The t and T commands are identical to the f and F commands, except that the cursor is placed
one character to the left or right of the specified character, respectively. For example, 2Tm moves
the cursor backwards to the second occurrence of the character "m" , and places the cursor one
character to the right. 3t. moves the cursor forward to the third occurrence of a period, and places
the cursor one character to the left.

The; command repeats the most previously executed f, F, t, or T command. Thus, fi;;; is identical
to 4fi, and Tj; is identical to 2Tj. The, command also repeats the most previously executed f, F, t,
or T command, but in the opposite direction. Thus, if you execute Tk, a subsequent, searches
forward in the current line for the letter k.

The A (caret) command moves the cursor to the first printable character on the current line. The 0
(zero) command is a synonym for A. Any number argument is ignored.

The $ command moves the cursor to the end of the current line. If a number argument n is
specified, $ moves the cursor to the nth end of line it finds. Thus, $ can wrap around to other lines,
but only if preceded by a number argument (note that several explicitly typed $' s will not do this).

-10-

The I (vertical bar) command moves the cursor to the character in the column specified by a
preceding number argument. If no number is given, I is a synonym for A and 0, in that it moves the
cursor to the first printable character in the line.

Note that the f, F, t, T, A, 0, and I commands work only on the current line. If you want to use
these commands on a line other than the current line, you must first move the cursor to the line of
interest.

Returning to Your Previous Position

The -- (two grave accents) command and the -- (two apostrophes) command both return you to
your previous position. These commands can be used after you have executed a search command
or one of the commands listed under Moving Around in the File, and you want to get back to where
you were. Vi remembers only your last previous position.

Adding, Deleting, and Correcting Text

Material Covered:

a
A
o
o
x
X
r

s
d

D
c

C

y
Y,yy
"

a-z

p
p
«
»
<

>

J

command; insert text before cursor;
command; insert text at the beginning of a line (same as Ai);
command; append text after cursor;
command; append text at the end of a line (same as $a);
command; create new line below line containing cursor;
command; create new line above line containing cursor;
command; delete character marked by cursor;
command; delete character immediately before character marked by cursor;
command replace character marked by cursor with another character;
command; replace one or more characters with one or more characters;
command; delete; can be combined with several other commands specifying what is
to be deleted;
command; delete from current location through end of line (same as d$);
command; change; can be combined with several other commands specifying what is
to be changed;
command; change from current location through end of line (same as c$);
command; re-execute last operation which changed text in buffer;
command; copy specified amount of text into a specified buffer;
commands; copy the specified number of complete lines into a specified buffer;
operator; introduces buffer name in which text is saved by previous y or Y
commands;
buffers; the buffer names in which text can be saved with y or Y commands; there is,
in addition, an unnamed buffer;
command; puts saved text back into the file, after or below the cursor;
command; puts saved text back into the file, before or above the cursor;
command; shifts the specified number of lines one shift-width to the left;
command; shifts the specified number of lines one shift-width to the right;
command; shifts the specified lines one shift-width to the left; can be combined with
other commands;
command; shifts the specified lines one shift-width to the right; can be combined with
other commands;
command; joins the specified number of lines together;

·11·

u command; reverses the last change made to the file;
U command; restores the current line back to its state before editing began;

Inserting and Appending Text

The i and a commands are used for inserting and appending text, respectively. The i command
places text to the left of the cursor, and the a command places text to the right of the cursor. Both
commands are cancelled by [ESC].

You may insert or append many lines of text, or just a few characters, with the i and a
commands. To type in more than one line of text, press [RETURN] at the place in your text where
you want the new line to appear. When you are inserting or appending text, [RETURN] causes vi to
create a new line, and to copy the remainder of the current line onto the new line.

If a number n is specified before the i or a command, then the text you add is duplicated n-1 times
when [ESC] is pressed. This works only if there is room on the current line for the duplications. For
example, if you type Sa at some particular point in a line, and your appended text is "hi", then,
when [ESC] is pressed, the text actually appended will be expanded to "hihihihihi".

If you want to start adding text on a new line that does not currently exist, you can create a new line
in your text with the 0 and 0 commands. The 0 command creates a new line after the line
containing the cursor, and the 0 command creates a new line before the line containing the cursor.
The 0 and 0 commands can create only one new line, but pressing [RETURN] while using the 0

and 0 commands causes vi to create an additional new line for you. The 0 and 0 commands are
cancelled by [ESC], and ignore any preceding number argument. Thus, the only difference
between the i, a, 0, and 0 commands is that the 0 and 0 commands automatically create a new
line on which text can be added, while the i and a commands do not. New lines can be created with
all four commands simply by pressing [RETURN].

During an insert or append operation, if a ctrl-«t is typed as the first character of the text to be
inserted/appended, the ctrl-«i is replaced by the most previous text that was inserted or appended.
A maximum of 128 characters are saved from the previous text addition. If more than 128
characters were inserted or appended in the last text addition, the ctrl-«t function is not available
during the current text addition.

If you are in insert or append mode, the autoindent option is set, and you are at the beginning of a
line, ctrl-T causes shiftwidth white space to be inserted at that point. White space inserted in this
manner can be back-tabbed over with ctrl-D in insert or append mode. Ctrl-D is necessary because
shiftwidth white space cannot be backspaced over.

The ctrl-W sequence enables you to back up over words (similar to b in command mode) while in
insert or append mode. All words backed over are deleted from the text addition, even though the
characters still appear on your screen.

The keys you use at the shell level to erase characters or entire lines can also be used in vi.
When you are inserting or appending text, single characters can be erased with [BACKSPACE], and
entire lines can be erased with ctrl-U. (Note that [BACKSPACE] and ctrl-U are the default keys
assigned to erase single characters and entire lines. Your keys may have been re-defined. Check
with your system administrator.) Note that you cannot erase characters which you did not insert
or append, and that you cannot backspace into a previous line.

-12-

Experiment with the i, a, 0, and 0 commands until you are familiar with what each command
does. Be sure to note the effects of pressing [RETURN] with each of these commands.

Character Corrections

The x command deletes the character marked by the cursor. You can delete more than one
character by preceding x with a number. 3x, for example, deletes the next three characters,
including the one marked by the cursor.

The X command deletes the character immediately before the one marked by the cursor.
Preceding X with a number deletes that many characters before the current location of the cursor.

Both x and X work only on the current line; they cannot delete characters on any line other than the
current line.

The r command replaces one character with another. For example, rT replaces the character
marked by the cursor with the character "T ". If a number n precedes the r command, then n
characters are replaced by the single character you type next. For example, 4rt replaces the next
four characters with the letter t.

The s command replaces one or more characters with the specified string of characters. When
not preceded by a number, the s command replaces a single character with the specified string.
For example,

sTTY[ESC]

replaces the character marked by the cursor with the string" TTY". When preceded by a number,
the s command replaces the specified number of characters, beginning with the character marked
by the cursor, with the specified string of characters. For example,

4sinteresting[ESC]

replaces the next four characters with the string "interesting". Note that the s command prints a
dollar sign at the end of the text to be replaced so you can see the extent of the change. The
dollar sign is removed when you press [ESC].

The d command can be combined with several of the commands previously discussed to delete
characters and words. For example, dw deletes the next word, and db deletes the previous
word. d[SPACE] deletes the character marked by the cursor (this is equivalent to the the x
command). The d command can be preceded by a number to delete several words or
characters, as in 3db, which deletes the last three words. The d command can also be used with
the f, F, t, and T commands. For example, dtr deletes everything from the current position of the
cursor up to (but not including) the next "r" that appears in the current line. Experiment with these
combinations until you are familiar with their effects.

The c command can also be combined with several other commands to change characters
and words. The c command can be preceded by a number. Here are some examples:

-13-

c5wyesterday[ESC]

This changes the next five words to the string "yesterday". Note that the " c " and the "5 "
could be interchanged with the same result.

4cbvariable name[ESC]

This changes the previous four words to the string "variable name" .

c[SPACEjin a buffer[ESC]

This changes the character marked by the cursor to the string "in a buffer" .

cfqHP-UX operating system[ESC]

This changes everything from the current position of the cursor up to (and including) the first
occurrence of a "q" to the string "HP-UX operating system". The c command can be used
similarly with the F, t, and T commands.

Note that the c command marks the end of the text to be changed with a dollar sign so you
can see the extent of the change. The dollar sign is removed after you press [ESC].

Line Corrections

The d and c commands can also delete or change lines or groups of lines. The d command
can be appended to itself to delete one complete line. For example, dd deletes the current line,
and 5dd deletes the current line and the next four lines.

The d command can be combined with several other commands. For example, dL deletes
everything from the current position of the cursor through the last line on the screen. d3L deletes
everything from the current position of the cursor through the third line from the bottom of the
screen. The d command can also be used with a search, so that

d/market$[RETURN]

deletes everything from the current position of the cursor up to the beginning of the string
"market", which must occur at the end of a line. Try the d command with the (,), {, }, [[, and]]
commands to delete one or more sentences, paragraphs, or sections.

Note that any of the commands discussed under Moving Around in the File can be combined with
the d command to delete specific portions of text. Also note that, if you delete five or more lines, vi
informs you of the number of lines deleted with a message at the bottom of your screen.

The 0 command is shorthand for d$, causing all characters from the cursor to the end of the line to
be deleted. Any preceding number argument is ignored.

The c command can also be appended to itself (thus creating the cc command) to change one
complete line. S is a synonym for cc. For example,

-14-

ccEnter the value for variable A. [ESC]

changes the current line to the sentence "Enter the value for variable A. " .

4SPlace illustration here. [ESC]

This changes the current line and the three lines following it to the sentence "Place illustration
here. ". Note that the S command was used, and that the results are the same as if cc had been
used.

cMPlace output on TTY 4. [RETURN]Call exit routine. [ESC]

This changes everything from the current position of the cursor to the middle line on the screen to
the two sentences "Place output on TTY 4. " and "Call exit routine. ". Note that each sentence is
on a separate line.

)c([RETURN]Insert new paragraph here. [RETURN][ESC]

Here, the initial ")" moves the cursor to the beginning of the next paragraph, and then the entire
previous paragraph is changed to a blank line, followed by the sentence "Insert new paragraph
here. " , followed by another blank line.

+ c1while/-l [RETURN]continue; [ESC]

The initial "+" advances the cursor to the first printable character on the next line. Then,
everything from the beginning of that line up to and including the line before the next "while"
statement is changed to the single statement "continue; " .

Like the d command, the c command can be combined with any of the commands discussed
under Moving Around in the File, and vi informs you when five or more lines are being changed.
Also, as in previous c examples, the end of the text to be changed is marked with a $. Try some of
the other combinations not covered above until you are familiar with how c works.

The C is equivalent to c$, causing all the characters from the cursor to the end of the line to be
changed to the text that follows. Any preceding number argument is ignored.

The. (dot) command repeats the last command which made a change in the text. Thus, dw
is the same as 6dw, in that both commands delete the next six words. The dot command can be
used to re-execute any command which modified the buffer text, but is limited to that command
which was executed most recently.

Copying and Moving Text

The y command copies a specified portion of text into a buffer. There are 26 named buffers,
named "a" through "z", and one unnamed buffer. If you do not specify a buffer name, the
copied text is automatically placed in the unnamed buffer. For example, yw copies the next word
into the unnamed buffer, and y2B copies the previous two words into the unnamed buffer.

-15-

When specifying a buffer name, the name must be preceded by a double quote ("). This tells vi
that the character to follow is a buffer name. For example,) II ay2(copies the previous two
sentences into buffer II a" (the initial) ensures that complete sentences are copied). Also,

II tyrtwo[RETURN]

copies everything from the current position of the cursor up to the line beginning with the string
II two " , and puts the text in buffer lit".

Note that the y command starts copying at the current position of the cursor. Thus, partial
words or sentences may be copied if the cursor is in the middle of a word or sentence when you
give the y command. Note also that, when copying forward in the file, the character marked by the
cursor is included in the copied text. When copying backwards, however, the copied text begins
with the character preceding the character marked by the cursor.

The Y command is used to copy complete lines of text, regardless of the position of the cursor
within the line. For example, 3Y copies three lines, including the current line, into the unnamed
buffer. "f6Y copies six lines, including the current line, into buffer II f". Also,

" gY/inventory[RETURN]

copies every line from the current line up to and including the line containing the string
II inventory" , and saves them in buffer II g". A synonym for Y is yy.

The p and P commands put the copied text back into the file relative to the location marked by the
cursor. The p command puts the text after or below the cursor, and the P command puts the text
before or above the cursor. Exactly where the text is placed in relation to the cursor is determined
by the amount of text being placed. If there is room on the current line for the text, then the text
is placed after (p) or before (P) the cursor. If there is too much text to fit on one line, then vi
creates one or more new lines below (p) or above (P) the cursor, and puts the text there. For
example, II rp puts the text contained in buffer "r" into the file after or below the cursor. If no
buffer name is specified, the text in the unnamed buffer is put back into the file.

Up to now, the copied text has been left in its original location and duplicated elsewhere in the
file. If you do not want the text left in its original location, you can use the d command. For
example, 5dd deletes the next five lines, and saves them in the unnamed buffer (that's right - every
deletion you perform is saved in the unnamed buffer until it is overwritten by the next deletion).
"wd2} deletes the next two complete paragraphs (if the cursor is at the beginning of a
paragraph) and saves them in buffer II w ". The p or P command can then be used to put the
deleted text elsewhere in the file.

You can copy text from one file into another. First, save the text in any of the named buffers.
Once the text is saved, stop editing the current file and begin editing the file in which the text is to
be inserted (the commands used to edit other files are described in the section entitled Editing Other
Files). Now use the p or P command to put the saved text into the file. Do not use the unnamed
buffer to transfer text from one file to another, because the contents of the unnamed buffer are
lost when you change files.

-16-

Shifting Lines

The < < and> > commands move the specified number of lines one shift-width to the left or right,
respectively. One shift-width is equal to the number of columns specified by the shiftwidth
option (see the section entitled Setting Vi Options). For example, 4> > moves four lines one
shift-width to the right. The < < and> > commands are limited to numerical arguments only.

The < and> commands can be used with numbers and other commands to shift large groups
of lines. For example, >3L moves every line from the current line to the third line from the bottom
of the screen one shift-width to the right. Also,

<!RAM[RETURN]

moves every line from the current line to the first line containing the string" RAM" one shift­
width to the left. The < and > commands may be combined with any of the commands
discussed under Moving Around in the File.

Continuous Text Input

When you are typing in large amounts of text, it is convenient to have your lines automatically
broken and continued on the next line so that you do not have to press [RETURN]. The
wrapmargin option enables you to do this (see the section entitled Setting Vi Options). For
example, if the wrapmargin option is set equal to 10, vi breaks each line at least 10 columns from
the right-hand edge of the screen.

If you want to join broken lines together, use the J command. For example, 3J joins three lines
together, beginning with the current line. Vi supplies white space at the place or places where the
lines were joined, and moves the cursor to the first occurrence of the supplied white space.

Undoing a Command

The u command reverses the last change you made to your text. The u command is able to undo
only the last change you have made. Note that a u command also undoes itself. If you have
made several changes to a line, and you want to reverse all of the changes, use the U command.
The U command restores the current line back to the state it was in when you began editing it.

-17-

Material Covered:

:set
autoindent
auto write

ignorecase
list
magic
number
shiftwidth
showmatch
slowopen
wrapmargin
timeout
read only
paragraphs
sections
:map
:unmap
ctrl-V
:ab
:una
:r

:w
:e
:n
!

Special Vi Commands

command; enables, disables, sets, or lists options;
option; enables/disables automatic indentation;
option; enables/disables automatic writing to the vi buffer after an editing
session;
option; disables/enables upper- and lower-case distinction;
option; enables/disables tab and end-of-line markers;
option; enables/disables extended set of metacharacters;
option; enables/disables line numbering;
option; defines number of columns per shift-width;
option; enables/disables parenthesis-, brace-, and bracket-matching;
option; enables/disables screen refresh only when [ESC] is pressed;
option; defines number of columns in right margin;
option; enables/disables one second time limit for macro entry;
option; enables/disables write protection for file;
option; defines the macro names recognized by the { and} commands;
option; defines the macro names recognized by the [[and]] commands;
command; defines macros;
command; deletes macros;
command; used to alter the meaning of special keys or characters;
command; defines abbreviations;
command; deletes abbreviations;
command; read contents of file or output of shell command into current
file;
command; write part or all of vi buffer to current file or to another file;
command; edit same file over again, or begin editing another file;
command; edit next file in vi argument list;
command; enables portions of the vi buffer to be filtered through an HP­
UXcommand.

Setting Vi Options

Vi has several options that you can set for the duration of your editing session.

The autoindent option, when set, automatically indents each line of text so that it begins in the
same column as the previous line. While inserting text, you cannot backspace over this
indentation, but you can backtab over it with ctrl-D. This option is helpful when typing in
program text. To enable this option, type

:set ai(RETURN]

Disable this option by typing

:set noai(RETURN]

-18-

The default is noai.

The autowrite option, when set, automatically writes the contents of the vi buffer to the current
file you are editing when you quit editing the current file. This is helpful when you change files or
leave the editor using commands that do not normally save the contents of the vi buffer. To
enable this option, type

:set aw[RETURN]

Disable this option by typing

:set noaw[RETURN]

The default is noaw.

The ignorecase option, when set, causes vi to ignore case in searches. To enable this option, type

:set ic[RETURN]

Disable this option by typing

:set noic[RETURN]

The default is noic.

The list option, when set, causes a tab to be printed as 1\ AI 1\ , and marks the end of each line with a
dollar sign. To enable this option, type .

:set list[RETURN]

Disable this option by typing

:set nolist[RETURN]

The default is nolist.

The magic option, when set, causes the period, left and right brackets, the asterisk, and the
character combinations '" < and '" > to be treated in a special way when used in search patterns
(see the section entitled Searching for a Pattern). To enable this option, type

:set magic[RETURN]

Disable this option by typing

:set nomagic[RETURN]

The default is no magic.

-19-

The number option, when set, causes line numbers to be prefixed to each text line on your
screen. To enable this option, type

:set nu[RETURN]

Disable this option by typing

:set nonu[RETURN]

The default is nonu.

The shiftwidth option enables you to specify the number of co\u.,ms to skip when using <, < <,
>, », ctrl-D, and ctrl-T (see the section entitled Shifting Lines). Ctrl-D backtabs over inserted
shift-widths (using <, «, >, or ») or any indentation provided by the autoindent option.
Ctrl-T inserts one shift-width at the beginning of the current line during text insertion. To set this
option, type

:set sw = val[RETURN]

where val is the number of columns to skip. The default is sw = 8.

The showmatch option, when set, causes vi to show you the opening parenthesis, brace, or
bracket when you type the corresponding closing parenthesis, brace, or bracket. This is helpful
in complex mathematical expressions. To enable this option, type

:set sm[RETURN]

Disable this option by typing

:set nosm[RETURN]

The default is nosm.

The slowopen option, when set, causes vi to wait until you press [ESC] to update the screen
after inserting or appending text. This is used on slow terminals to decrease the amount of time
spent waiting for the screen to be updated. To enable this option, type

:set slow[RETURN]

Disable this option by typing

:set noslow[RETURN]

The default is slow.

The wrapmargin option enables you to specify the number of columns you want in your right
margin. This is used when you are using continuous text input (see section entitled Continuous Text
Input). To set this option, type

-20-

:set wm = val[RETURN]

where val is the number of columns in your right margin. The default is wm = O.

The timeout option, when set, places a one second time limit on the amount of time it takes you
to type in a macro name (see the section entitled Defining Macros). To enable this option, type

:set to[RETURN]

Disable this option by typing

:set noto[RETURN]

The default is to.

The readonly option, when set, places write protection on the file you are editing. This is used
when you want simply to look at a file, and you want to ensure that you do not inadvertently
change or destroy the contents of the file. To enable this option, type

:set readonly[RETURN]

Disable this option by typing

:set noreadonly[RETURN]

The default is noreadonly.

The paragraphs option contains the list of macro names recognized by the { and} commands as
marking the beginning and end of a paragraph. Suppose you have three macros, .PG, .P, and .EP,
that you want vi to recognize as paragraph delimiters. All you have to do is type

:set para = PGP EP[RETURN]

Note that, if a macro name is only one character long, you must type the single character macro
name, followed by a space. The default paragraph string is

para = IPLPPPQPbpP LI

You may add your macros to this string, or completely redefine it using different macro names.

The sections option contains the list of macro names recognized by the [[and]] commands as
marking the beginning and end of a section. Sections is defined in exactly the same way as
paragraphs above. The default list of macro names is

sect = NHSHH HU

There are several other options available, but they are less commonly used than these. You can
get a list of all possible options and their settings by typing

-21-

:set all[RETURN)

A list of all the options which you have changed is generated by typing

:set[RETURN)

If you want to know the value of a particular option, type

:set opt? [RETURN)

where opt is the name of the option. Note that multiple options can be set on one line, as in

:set ai aw nu[RETURN)

If a number argument is specified before the :set command, it is interpreted to be the new window
size (number of lines per screenful of text).

Defining Macros

Vi has a macro facility which enables you to substitute a single keystroke for a longer sequence of
keystrokes. If you are repeatedly typing the same sequence of commands, then you can
probably save time and typing by defining a macro to perform the sequence of commands for you.

You use the :map command to define a macro. After the :map command, you type the key or
keys that invoke the macro, and then the sequence of keystrokes that you want to put in the macro.
For example,

:map d d4w[RETURN)

causes d to delete the next four words every time it is pressed. Also,

:map c II ctrl-V[RETURN)dwiYou ctrl-V[ESC)[RETURN)

causes c to find an occurrence of "I ", delete it, and replace it with "You ". The ctrl-V command
tells vi to simply enter the next keystroke into the text of the macro and to ignore any special
meaning that keystroke might have. The ctrl-V command is used above to flag [RETURN) and
[ESC), both of which would have terminated the :map command before it was completed.
Instead, [RETURN) and [ESC) are entered as keystrokes in the macro string. The final [RETURN)
terminates the :map command.

If the macro name specified consists of a pound sign (#) followed by a number in the range 0-9,
then a special function key on your terminal is mapped. For example,

:map #3 ccILLUSTRATION GOES HEREctrl-V[ESC)[RETURN)

maps special function key number 3 such that, when pressed, it changes the current line to the line
" ILLUSTRATION GOES HERE". Of course, this feature is valid only on terminals which have
special function keys.

-22-

Vi normally allows only one second to enter a macro name, so you should use only one keystroke
to invoke the macro. However, if the notimeout option is set, vi imposes no time limit. If this is the
case, you can use up to 10 keystrokes to invoke a macro. The sequence of keystrokes that define
the macro can contain up to 100 keystrokes.

The u (undo) command, when invoked after a macro has been executed, reverses the effects of the
entire macro.

Previously defined macros can be deleted with the :unmap command. For example, to delete
the c macro defined above, type

:unmapc

If a number argument is specified before the :map or :unmap command, it is interpreted to be the
new window size (number of lines per screenful of text).

Defining Abbreviations

You can define an abbreviation with the :ab command. For example,

:ab CRT cathode ray tube[RETURN]

defines "CRT" as an abbreviation that is expanded to "cathode ray tube" everywhere you type
" CRT" in the text. Also,

:ab cs Department of Computer Sciences[RETURN]

defines "cs " as an abbreviation that is expanded to "Department of Computer Sciences"
everywhere you type "cs" in the text.

The abbreviation name must contain only letters, digits, or underscores. Vi only expands
abbreviations when they are delimited by white space on both sides, or by white space on the
left and punctuation on the right. Abbreviations are not expanded if they appear as part of another
word.

Abbreviations can be deleted with the :una command. For example,

:una cs

deletes the abbreviation associated with "cs".

If a number argument is specified before the :ab or :una command, it is interpreted to be the new
window size (number of lines per screenful of text).

-23-

Reading Data Into Your Current File

The :r command enables you to read the contents of a file or the standard output from a shell
command into the file you are currently editing. For example,

:r tesLdata[RETURN]

reads the contents of the file tesLdata into the current file after the cursor. Also,

:7r std_dev[RETURN]

reads the contents of the file std_dev into the current file after line seven.

You can also read the output from a shell command into your file by typing

:r !cmd[RETURN]

where cmd is the name of the shell command. For example,

:r !ls[RETURN]

reads a list of the files in your working directory into the file you are editing, beginning at the current
cursor position.

If a number argument is specified before the :r command, it is interpreted to be the new window size
(number of lines per screenful of text).

Writing Edited Text Onto a File

The :w command is used to write the current contents of the vi buffer onto a file. The contents
of the vi buffer remain unchanged. It is a good idea to write the contents of the vi buffer onto a
file periodically, especially if you have been editing the file for a long time, and have made
Significant changes. That way, should a system crash or a power failure occur, some or all of
your changes are saved.

If you specified a file name when you invoked vi, then you need not specify a file name if you
want to write to the current file. Vi remembers the name of the file you are editing or creating,
and writes to that file by default. For example, if you invoked vi as

$ vi tesLdata

then you need only type

:w[RETURN]

to write the contents of the vi buffer onto tesLdata. However, if ybu did not specify a file name
when you invoked vi, then you must supply a file name with the :w command. For example, if you
invoked vi as

-24-

$ vi

then you must type

:w filename[RETURN]

where filename is the name of the file on which you want the contents of the vi buffer to be
written.

Yau can write your changes to an existing file other than the one you are editing. For example,

:w! format[RETURN]

writes your changes to the file format. Note that the exclamation point tells vi to overwrite the
previous contents of format with the contents of the vi buffer.

You can also write your changes to a file that does not yet exist. For example,

:w thesis[RETURN]

causes vi to create a file called thesis, and writes all your changes on thesis.

You can specify that a portion of your text be written to another file that does not yet exist. For
example,

:2,35w prog(RETURN]

creates a file called prog and writes line 2 through line 35 of the current file on prog. The same
thing can be done with a file that already exists, as in

:3,10w! list[RETURN]

writes line 3 through line 10 of the current file on the file called list. The exclamation point
causes the previous contents of list to be destroyed and replaced by the specified portion of the vi
buffer.

If a number argument is specified before the :w command, it is interpreted to be the new window
size (number of lines per screenful of text).

Note that, while you may append other files to the file you are currently editing, vi provides no
facilities that enable you to append the current file to another file.

Editing Other Files

The :e command enables you to edit other files without leaving vi. For example,

:e report[RETURN]

-25-

tells vi to stop editing the current file and to start editing report. If report does not exist, vi creates
it for you. Note that vi requires a :w command to precede a :e command, so that the previous
contents of the vi buffer are saved (unless the autowrite option is set, in which case vi is silent).

You can also tell vi to start editing a file beginning with a particular line. For example,

:e + test[RETURN]

tells vi to start editing test, beginning with the last line of the file. Also,

:e + M letter[RETURN]

tells vi to start editing letter at the middle line of the screen. Any vi command discussed in the
section entitled Moving Around in the File and not containing any spaces can be inserted after the
" + " in the previous examples. For example,

:e + ICAEI + Octrl-V[RETURN] cov_let[RETURN]

tells vi to start editing cov_let, with the cursor positioned at the beginning of the first line containing
the string "CAE". Note that ctrl-V had to be used to flag [RETURN] so that the :e command is
not terminated before it is completed.

If you decide that you do not like the changes you have made to a file, you can discard the changes
and begin editing the same file over again by typing

:e![RETURN]

The exclamation point tells vi that you know what you are doing, and that you do not want to
save the current contents of the vi buffer. To discard the changes and begin editing a different
file, type

:e! name[RETURN]

where name is the name of the file you want to edit. Again, the exclamation point tells vi that a :w
command is not necessary.

If a number argument is specified before the :e command, it is interpreted to be the new window
size (number of lines per screenful of text).

Editing the Next File in the Argument List

The :0 command tells vi to stop editing the current file and begin editing the next file in the
argument list. For example,

:n[RETURN]

tells vi to start editing the next file in the argument list. Vi insists that you use a :w command
before you begin editing the next file, unless you type

-26-

:n![RETURN]

which tells vi to discard any changes you have made to the current file, and begin editing the next
file.

If a number argument is specified before the :n command, it is interpreted to be the new window
size (number of lines per screenful of text).

Filtering Buffer Text Through HP-UX Commands

Portions of the vi buffer text can be given as input to an HP-UX command, the output of which is
then re-inserted into the previous location of that text. The! command is used to invoke filtering.

For example, suppose you have a list of items, one per line, that you want to sort alphabetically.
This is easily done in several ways. If a single ! is used, then you must supply modifiers which
specify the extent of the text to be sorted. Let's assume that your file looks like this:

.PP
crackers
peas
roast
apples
oranges
tomatoes
grapes
.PP

.PP is an nroffltroff paragraph macro, which is recognized by { and} as beginning and ending a
paragraph. Thus, if your cursor is positioned at the beginning of the first .PP macro, and you type

! }sort[RETURN]

then the list of grocery items is replaced by the output from the sort command. The} command is
used to select the next paragraph as input for sort.

A second way to sort the same text is by typing

7!!sort[RETURN]

If two !'s are typed, then whole lines are assumed, and the number argument specifies how many
whole lines to sort. For this example to work, your cursor must be somewhere on the "crackers"
line.

Note that, in both of the above examples, a single! and the command name is all that is printed at
the bottom of your screen. No number arguments or modifiers are echoed.

Any HP-UX command with useful output can be used in place of sort, depending on what you want
to do. Since vi has no right margin justification function, another useful command might be nroff,
which could be used to justify right margins or perform other formatting.

-27-

Note that filtering affects only the buffer contents, not the actual contents of your current file.

Vi and Ex

Material Covered:

Q command; escape from vi into ex;
vi command; escape from ex back to vi.

Vi is actually one mode of editing within the editor ex. In fact, all of the commands beginning with:
are also available in ex. You can escape to the ex line-oriented editor by giving the command Q.
When the Q command is given, vi responds with a line of information, and then ex takes over and
prints the ex prompt (:). To get from ex to vi, type vi after the ex prompt. Vi clears the screen and
prints a screenful of text, with your current line at the time you typed vi at the top of the screen.

There are several things which can be done more easily in ex, the most notable of which are global
searches and substitutions. Thus, you may find yourself, after a while, switching between the two
editing modes to access functions which are better handled by one or the other. For information
concerning the ex editor, refer to the Ex Reference Manual included in HP-UX Selected Articles.

The Shell Interface

Material Covered:

vi command; invokes the vi editor;
view command; invokes the vi editor in read-only mode;
:! command; escape to the shell for the duration of one command;
:sh command; escape to the shell indefinitely;
ZZ command; writes the contents of vi buffer to current file and leaves editor;
:q! command; discards contents of vi buffer and leaves editor.

Getting Into Vi

There are two ways to invoke vi from the shell, one of which is to type

$vi

optionally followed by the names of the files you want to edit. You can also invoke vi by typing

$ view

optionally followed by the names of the files you want to edit. View is the same editor as vi,
except that the readonly option is automatically set. This protects the contents of a file from being
aCcidentally overwritten or destroyed. View is used whenever you want to look at an important file,
but you do not want to change its contents.

-28-

Note that the read only option can be disabled or overridden while you are in view. Nothing
prevents you from typing

:set noreadonly[RETURN]

which simply changes view into vi. Also, you can still overwrite the contents of a file when the
read only option is set by using a :w! command.

Getting Back to the Shell

You can get back to the shell temporarily in either of two ways. You can execute a shell
command while editing a file by typing

: !crnd[RETURN]

where crnd is the name of.the shell command you want to execute. For example,

: !ls[RETURN]

prints a list of all the files in your working directory. Once the command has been executed,
you can either enter another command with :1, or you can continue editing where you left off by
pressing [RETURN]. If you press [RETURN], vi responds by clearing the screen and displaying the
text you were working on before the shell command was executed.

You can escape to a shell temporarily by typing

:sh[RETURN]

This puts you in a shell, where you can execute as many commands as you want. When you
want to continue editing, press ctrl-D. Vi clears the screen and displays the text you were working
on.

If a number argument is specified before the :! or :sh command, it is interpreted to be the new
window size (number of lines per screenful of text).

There are two ways to return to the shell permanently. If you want to save all your changes to the
current file and return to the shell, use the ZZ command. ZZ writes the contents of the vi buffer
onto the current file (if any changes have been made), and leaves the editor.

If you do not want to save the changes you have made to the current file, then use :q!. :q!
simply leaves the editor and discards the contents of the vi buffer. The file you were editing is left
unchanged. You should be very sure that this is what you want to do, since the contents of the vi
buffer are permanently lost.

If a number argument is specified before the :q! command, it is interpreted to be the new window
size (number of lines per screenful of text).

-29-

Material Covered:

.profile

EXINIT

.exrc

buffers 1-9

ctrl-V
z
ctrl-L
ctrl-G, :f

Vi Initialization

Miscellaneous Topics

file; automatically executed by the shell at login; can contain macros,
abbreviations, and option settings; must reside in your home directory;
variable; placed in .profile file; contains macro, abbreviation, and option
information;
file; contains ex and vi initialization constructs; this file is automatically
scanned by ex if EXINIT is not defined;
buffers; contain the last nine text deletions performed during the current edit
session;
operator; enable control characters to be inserted in file;
command; adjust and redefine window size;
command; refreshe the screen;
command; provide information about your current edit session.

Option settings, macros, and abbreviations last only the length of your editing session, after
which they either return to default settings or become undefined. If you do not want to bother
with resetting these things each time you invoke vi, you can put your option settings, macros, and
abbreviations in a file called .profile. This file is automatically executed by the shell when you log
in. The .profile file must reside in your home directory.

If you include vi information in your .profile, they must be placed in a string and set equal to the
variable EXINIT. EXINIT is a variable that is assumed by the system to contain information
pertinent to the vi editor. For example, to set the autoindent, autowrite, and number options and
define two macros, put the following two statements in your .profile file in your home directory:

EXINIT= 'set ai aw nulmap @ ddlmap # x'
export EXINIT

This EXINIT string sets the autoindent, autowrite, and number options and defines the two
macros @ and #, which delete one line and one character, respectively. Note that each set and
map is separated from the next by a vertical bar (I), and that the entire string is enclosed in single
quotes and set equal to EXINIT. The export command makes the information in EXINIT available to
all processes you create.

If EXINIT is not defined when vi is invoked, then vi looks for the file .exrc in your home directory. If
it is found, vi scans its contents, assuming that the information contained therein consists of various
commands for setting up mapping, abbreviations, options, etc.

If the amount of initialization for vi is extensive, it is usually more convenient to forget about EXINIT,
and use the .exrc file instead, since, to use EXINIT, the information must be specified in a string
enclosed in single quotes. This could prove to be a very long string if there is a lot of initialization to
do. Strings this size are normally hard to read and hard to input.

-30-

Appendix B at the end of this article contains a listing of the default .exrc file shipped with your
system. You are free to use this file as your own .exrc file if you wish. To do so, simply copy the file
letc!d.exrc into your home directory, and rename it .exrc. Your system administrator may have
already done this for you. To find out, list the files in your home directory using Is -a.

Recovering Lost Lines

Vi has nine buffers, numbered 1 through 9, in which the last nine text deletions are automatically
stored. Thus, you can specify one of these buffers with the p or P command to recover a deletion.
For example, "3p puts the deleted text stored in buffer 3 into the vi buffer after or below the cursor.

The . command, which repeats the last command that made a change in your text, automatically
increments the buffer number if the last command referenced a numbered buffer. Thus, "lp
prints out all the text deleted in the last nine deletions. If you want to put a particular block of
deleted text back into your file, but you do not know which buffer to look in, you can perform a
sequence of commands like "lpu.u;u. (and so on), which prints the contents of each buffer until
you find the text you want. The u command gets rid of the unwanted text you encounter as you
search.

Note that text stored in buffers 1 through 9 is preserved between files (as long as you do not exit the
editor itself), so you may insert deleted text from one file into another by using buffers 1-9 and the p
or P command.

Entering Control Characters in Your Text

If you need to put a control character in your text, you must precede the control character with a
ctrl-V. The ctrl-V causes a caret n to be printed on your screen, showing that the next character
is to be interpreted as a control character. For example, to enter a ctrl-L in your text, type

ctrl-V ctrl-L

This causes two characters, "~L", to be printed on your screen. If you try to backspace over them,
however, you can see that they are actually one character.

You may enter any control character into your file except one: the null character (ctrl-@). There is
also a restriction that applies to the line-feed character (ctrl-J). A linefeed is not allowed to occur
anywhere except the beginning of a line, because vi uses the linefeed to separate lines in your file.

Adjusting the Screen

If a transmission error or the output from a program causes your screen to become cluttered, you
can refresh the screen by pressing ctrl-L. Vi clears the screen and reprints the text you were
working on.

The z command is used to position specific lines on the screen. z[RETURN] places the current
line at the top of the window, z. places the current line in the middle of the Window, and z­
places the current line at the bottom of the window. If a number argument n is specified after z but
before the modifier, then the window size is changed to be n lines long after z has executed. If n is
specified before z, then z places line number n (instead of the current line) at the top, middle, or
bottom of the new screen. For example, zlO- places the current line at the bottom of a lO-line

-31-

window. Also, 6z. places line number 6 at the middle of the screen, leaving the window size
unchanged.

Printing Your File Status

If you are editing a file and lose track of where you are in the file, or if you forget the name of the
file you are editing, the ctrl-G command can help you. In response to the ctrl-G command, vi
prints the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and how much of the buffer you have already edited (expressed as a percentage). The
:f command is a synonym for ctrl-G.

-32-

Appendix A: Character Functions

This appendix gives the vi meanings associated with each character in the ASCII character set. The
characters are presented in the following order: control characters, special characters, digits,
upper-case characters, and lower-case characters. For each character, its meaning is given as a
command and during an insert, as appropriate. (Note that the control key (CTRL) is represented by
A in the follOWing list).

AI (TAB)

AJ (LF)
AK
AL (FF)
AM (CR)

AS
AT

Not a command character. If it is typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 characters are
saved from the last insert; if more characters were inserted, the mechanism is not
available. A A(a cannot be part of the file text due to the editor's implementation.
Unused.
Moves backward one page. A preceding integer specifies the number of pages to move
over. Two lines of continuity are kept if possible.
Unused.
As a command, scrolls forward one half of a page. A preceding integer specifies the
number of logical lines to scroll for each command. This integer is remembered for all
future AD and AU commands. During an insert, AD backtabs over autoindent white
space inserted at the beginning of a line. This white space cannot be backspaced over.
Exposes one more line at the bottom of the screen, leaving the cursor at its present
position, if possible.
Moves forward one page. A preceding integer specifies the number of pages to move
over. Two lines of continuity are kept if possible.
Prints the name of the current file, whether it has been modified, the current line
number, the number of lines in the file, and how much of the buffer you have already
edited (expressed as a percentage).
Same as left arrow (see h). During an insert, eliminates the last input character,
backing over it but not erasing it. The character remains so you can see what you typed
if you wish to type something only slightly different.
Not a command character. When inserted, it prints as some number of spaces. When
the cursor is at a tab character, it rests at the last of the spaces which represent the tab.
The spacing of tabstops is controlled by the tabstop option.
Same as down arrow (see j).
Unused.
Causes the screen to be cleared and redrawn.
Advances to the next line, at the first printable character on the line. If preceded by an
integer, vi advances that many lines. During an insert, AM causes the insert to continue
onto another line.
Same as down arrow (see j).
Unused.
Same as up arrow (see k).

Not a command character. In input mode, AQ quote the next character, the same as AV,
except that some teletype drivers do not allow AQ to be seen by vi. Use AV instead.
Redraws the current screen, eliminating logical lines not corresponding to physical lines
(lines with only a single (a character on them). On hardcopy terminals in open mode,
AR retypes the current line.
Unused.
Not a command character. During an insert, with autoindent set and at the beginning
of the line, inserts shiftwidth white space.

-33-

SPACE

"

$

%

&

Scrolls up one page. A preceding integer specifies the number of lines to scroll. This
integer is remembered for all future ~D and ~U commands. On a dumb terminal, ~U will
clear the screen and redraw it further back in the file.
Not a command character. In input mode, ~V quotes the next character so that it is
possible to insert non-printing and special characters into the file, and include special
characters in macros, abbreviations, etc.
Not a command character. During an insert, ~W mimics a b command, thus deleting all
inserted characters from the current cursor location to the beginning of the previous
word. The deleted characters remain on display. (See ~H).
Unused.
Exposes one more line at the top of the screen, leaving the cursor in its present position,
if possible.
Unused.
Cancels a partially formed command, such as a z command when no following
character has yet been given. It also terminates inputs on the last line (read by
commands such as :, I, and ?), and ends insertions of new text into the buffer. If an
ESC is given when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus press ESC if you don't know what is happening until the editor
rings the bell.
Unused.
Searches for the word which immediately follows the cursor. It is eqUivalent to typing
the ex command :ta, followed by that word, followed by RETURN.
(Control-~), eqUivalent to the ex command :e #, which returns you to the previous
position in the last edited file, or edits a file you specified if you got a "No write since
last change" diagnostic, and you don't want to type the file name again. (In the latter
case, you will have to do a :w before M will work. If you don't want to write the file,
then do a :e! # instead).
Unused.
Same as right arrow (see I).
An operator which processes lines from the buffer with reformatting commands.
Follow! with the object to be processed, and then the command name terminated by
RETURN. Doubling! and preceding it by a count causes count lines to be filtered;
otherwise the count is passed on to the object after the!. Thus, 2!}sort, followed by
RETURN, sorts the next two paragraphs by running them through the sort command.
To read a file or the output of a command into the buffer use :r. To simply execute a
command use:!.
Precedes a named buffer specification. There are named buffers 1 - 9 used for saving
deleted text, and named buffers a - z into which text can be placed.
The macro character which, when followed by a number, will substitute for a function
key on terminals without function keys. In input mode, if this is your erase character, it
will delete the last character you typed in input mode, and must be preceded with a ""­
to insert it, since it normally backs over the last input character you gave.
Moves to the end of the current line. If you execute :set list, then the end of each line
will be shown by printing a $ after the end of the displayed text in the line. Given a
count, $ advances to the end of the line that many lines from the current line (i.e. 3$
advances to the end of the line two lines after the current line).
Moves to the parenthesis or brace which balances the parenthesis or brace at the
current cursor position.
A synonym for the ex command, :&.
When followed by another I, returns to the previous context at the beginning of a line.
The previous context is set whenever the current line is moved in a non-relative way.
When followed by a letter a - z, returns to the line which was marked with this letter

-34-

with the m command, at the first non-space character in the line. When used with an
operator, such as d, the operation takes place over complete lines.
Moves to the beginning of a sentence, or to the beginning of a LISP s-expression if the
lisp option is set. A sentence ends at a., !, or? which is followed by either the end of a
line or by two spaces. Any number of closing),], ", and I characters may appear after
the " !, or ?, and before the spaces or end of line. Sentences also begin at paragraph
and section boundaries. A count advances that many sentences.
Advances to the beginning of a sentence. A count repeats the effect. See the
description of (above for a description of a sentence.

* Unused.
+ Same as carriage-return when used as a command.

Reverses the last f, F, t, or T command, looking the other way in the current line. A
count repeats the search.
Moves to the previous line at the first non-white-space character. This is the inverse of
+ and RETURN. If the line moved to is not on the screen, the screen is scrolled, or
cleared and redrawn if this is not possible. If a large amount of scrolling would be
required, the screen is also cleared and redrawn, with the current line at the center.
Repeats the last command which changed the vi buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit. to delete more
words/lines. Given a count, it passes it on to the command being repeated.
Used to initiate a forward search for a pattern. If you press / aCcidentally, you can use
BACKSPACE to return to your previous position.

o Moves to the first character on the current line. Also used to form numbers after an
initial 1-9.

1 - 9 Used to form numeric arguments to commands.
A prefix to a set of commands for file and option manipulation and escapes to the
system. Input is given on the bottom line and terminated with RETURN, and the
command is then executed. You can return to your previous position by pressing DEL
or RUB if you press: aCcidentally.
Repeats the last single character search using f, F, t, or T. A count iterates the basic
scan.

< An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, < affects lines when repeated, as in «. Counts cause < to act on more
than one line.
Re-indents a line for LISP, as though the line was typed in with the lisp and autoindent
options set.

> An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects lines
when repeated, as in > >. A count causes> to act on more than one line.

? Initiates a backwards search for a pattern. If you press / aCcidentally, you can use
BACKSPACE to return to your previous position.

(it A macro character. If this is your kill character, you must escape it with a '" to type it in
during input mode, as it normally backs over the input you have given on the current
line.

A Appends at the end of a line, a synonym for Sa.
B Backs up one word, where words are composed of non-blank sequences, placing the

cursor at the beginning of the word. A count repeats the command.
C Changes the rest of the text on the current line; a synonym for c$.
D Deletes the rest of the text on the current line; a synonym for d$.
E Moves forward to the end of a word. A count repeats the command.
F Finds a single following character, backwards in the current line. A count repeats the

search.
G Moves to the line number given as a previous argument, or the end of the file if no

-35-

H

J

K
L

M
N
o
P

preceding argument is given. The screen is redrawn with the new current line in the
center if necessary.
Homes the cursor to the top line of the screen. If a count is given, the cursor is moved
to the count-th line on the screen. In all cases, the cursor is moved to the first non­
white-space character on the line.
Inserts at the beginning of a line; a synonym for Ai.
Joins lines together, supplying appropriate white space: one space between words, two
spaces after a " and no spaces at all if the first character of the line to be appended is).
A count causes that many lines to be joined rather than the default two.
Unused.
Moves the cursor to the first non-white-space character of the last line on the screen. If
a count is given, the cursor is moved to the first non-white-space character of the
count-th line from the bottom.
Moves the cursor to the middle line on the screen. at the first non-space character.
Scans for the next match of the last pattern given to / or?, but in the opposite direction.
Opens a new line above the current line and inputs text there, up to an ESC.
Puts the last deleted text back before or above the cursor. The text goes back as whole
lines above the cursor if it was deleted as whole lines. Otherwise, the text is inserted
before the current location of the cursor. May be preceded by a buffer name to retrieve
the contents of that buffer.

Q QUits from vi and goes to ex mode. In this mode, whole lines form commands, ending
with RETURN. All: commands can be given; the editor supplies the: prompt.

R Replaces characters on the screen with characters you type (overlay fashion).
Terminates with ESC.

S Changes whole lines; a synonym for CC. A count substitutes for that many lines. The
line~ are saved in numeric buffers, and erased on the screen before the substitution
begins.

T Tak~s a single following letter. locates the character before the cursor in the current line,
and places the cursor just after that character. A count repeats the command that many
times.

U Restores the current line to its state before you started changing it.
V Unused.
W Moves forward to the beginning of a word in the current line, where words are defined

as sequences of non-space characters. A count repeats the command.
X Deletes the character before the cursor. A count repeats the command, but only

characters on the current line are deleted.
Y Yanks a copy of the current line into the unnamed buffer, to be put back by a later p or

P. A count yanks that many lines. Can be preceded by a buffer name to put text into
that buffer.

ZZ Exits the editor (same as :x). If any changes have been made, the buffer is written out
to the current file, and the editor terminates.

[[Backs up to the previous section boundary, which is marked by a particular macro
invocation (the names of which are specified in the sections option), or by AL
(formfeed). Lines beginning with { also stop [L making it useful for looking backwards
through C programs. If the lisp option is set, [[also stops at each (it finds at the
beginning of a line.

'" Unused.
II Moves forward to a section boundary (see description of [[).

Moves to the first non-space character on the current line.
(Underscore) Unused.
When followed by a " returns to the previous context. The previous context is set
whenever the current line is moved in a non-relative way. When followed by a lower-

-36-

a

b

c

d

e
f

g
h

k
I
m

n
o
p
q
r

s

t

u

v
w
x

case letter, returns to the position which was marked with this letter with an m
command. When used with an operator such as d, the operation takes place from the
exact marked place to the current position within the line; if you use I, the operation
takes place over complete lines.
Appends arbitrary text after the current cursor position. The insert can continue onto
multiple lines by using RETURN within the insert. A count causes the inserted text to be
replicated, but only if the inserted text is all on one line. The insertion terminates with
ESC.
Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the command.
An operator which changes the following object, replacing it with the following input
text up to an ESC. If more than part of a single line is affected, the text which is being
changed is saved in the numeric named buffers. If only part of the current line is
affected, then the last character to be changed away is marked with a $. A count
causes that many objects to be changed.
An operator which deletes the following object. If more than part of a line is affected,
the text is saved in the numeric buffers. A count causes that many objects to be
affected.
Advances to the end of the next word. A count repeats the command.
Finds the first instance of the next character following the cursor on the current line. A
count repeats the command.
Unused.
Left arrow. Moves the cursor one character to the left. Like the other arrow keys,
either h, the left arrow key, or one of the synonyms (AH) has the same effect. A count
repeats the command.
Inserts text before the cursor. Otherwise, i is like a.
Down arrow. Moves the cursor down one line in the same column. If the position does
not exist, vi comes as close as possible to the same column. Synonyms include AJ
{linefeed} and AN.
Up arrow. Moves the cursor up one line in the same column. Synonym is AP.
Right arrow. Moves the cursor one character to the right. SPACE is a synonym.
Marks the current position of the cursor in the mark register which is specified by the
next character (a - z). Return to this position or use with an operator by preceding the
mark letter with - or-.
Repeats the last search specified with / or?
Opens a new line below the current line. Otherwise, 0 is like O.
Puts text after/below the cursor. Otherwise, p is like P.
Unused.
Replaces the single character marked by the cursor with a single character you type.
The new character may be a RETURN (this is the easiest way to split lines). A count n
replaces the next n characters with the character you type.
Changes the single character marked by the cursor to the text which follows, up to an
ESC. Given a count, that many characters are replaced by the text. The last character
to be changed is marked with a $.
Advances the cursor up to the character before the next character typed on the current
line. A count repeats the command.
Undoes the last change made to the current buffer. If repeated, will alternate between
these two states. It is thus its own inverse. When used after an insert which inserted
text on more than one line, the lines are saved in the numeric buffers.
Unused.
Advances to the beginning of the next word. A count repeats the command.
Deletes the single character marked by the cursor. A count causes that many

-37-

y

z

{

I
}

A? (DEL)

characters to be deleted. Works only on the current line.
An operator which yanks the following object into the unnamed temporary buffer. If
preceded by a buffer name, the text is placed in that buffer also. Text can be recovered
with a later p or P.
Redraws the screen with the current line placed as specified by the following character:
RETURN specifies the top of the screen, . specifies the center of the screen, and -
specifies the bottom of the screen. A count may be given after z and before the
following character to specify the new window size for the redraw. A count before z
gives the number of the line to place in the center of the screen instead of the current
line.
Moves to the beginning of the preceding paragraph. A paragraph begins at a macro
invocation defined in the paragraphs option, and at the beginning of a section. A
paragraph also starts at a blank line.
Places the cursor on the character in the column specified by the count.
Advances to the beginning of the next paragraph. See { for the definition of a
paragraph.
Unused.
Interrupts the editor, returning it to command mode.

-38-

Appendix B: Example .exrc File

The following is a reproduction of the default .exrc file shipped with your system. It is useful as an
example of how it can be used to set up certain vi and ex parameters prior to your editing session.
These contents can be changed at any time should the need arise to customize the editors for a
particular application. Also, note that the line numbers in the following listing do not appear in the
file, but are included to clarify the explanatory material that follows.

1 set autoindent autowrite showmatch wrapmargin = 0 report = 1
2 map AW :set wrapmargin = 8AM
3 map AZ A!}sort _bAM
4 map AX {!}sort _bAM
5 map A[h IG
6 map A[H IG
7 map A[F G
8 map A[V AB
9 map A[U AF

10 map A[T AYk
11 map A[S AEj
12 map A[Q
13 map A[P x
14 map A[l 0
15 map A[M dd
16 map A[K 0
17 map A[J OjdG$
18 map! A[A AV
19 map! A[O AH
20 map! A[C AV
21 map! A[B AM
22 map! A[l AM
23 map! A[Q A[
24 map! A[R A[

In the above, the A character indicates that the CTRL (control) key is held down while the next
following key is pressed. The A[sequence is the escape sequence, and is equivalent to the ESC key
(if any) on your terminal. Here is a line-by-line description of the contents of the default .exrc file:

LINE ACTION

1 enables the autoindent, autowrite, and showmatch options, sets the wrapmargin option
to 0, and sets the report option to one line.

2 maps the control-W sequence to the ex command:

:set wrapmargin = 8

The control-M at the end of the sequence is a carriage-return. This is entered into the .exrc
file by pressing control-V followed by a carriage-return.

3 maps the control-Z sequence to a shell escape sequence. This sequence pipes the data from
the beginning of the current line to the end of the current paragraph into the sort(1)
command.

-39-

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

_ . .I

maps the control-X sequence to a shell escape sequence. This sequence pipes,the data
from the beginning of the current paragraph to the end of the current paragraph into tPe
sort(I} command. .
maps escape-h, a sequence often transmitted by the HOME key, to the editor command IG
(go to line one of the file). This enables you to use the HOME key while editing in vi.
performs the same function as line 5.
maps escape-F, the sequence transmitted by the HOME DOWN key, to the editor command
G (go to the last line of the file). This enables you to use the HOME DOWN key while editing
in vi.
maps escape-V, the sequence transmitted by the PREV PAGE key, to the editor command
'B (go back one page). This enables you to use the PREV PAGE key while editing.
maps escape-U, the sequence transmitted by the NEXT PAGE key, to the editor command
'F (go forward one page).
maps escape-T, the sequence transmitted by the ROLL DOWN key, to the editor commands
'Yk (scroll up one line; move cursor down one line).
maps escape-S, the sequence transmitted by the ROLL UP key, to the editor commands 'Ej
(scroll up one line; move cursor down one line).
maps escape-Q, the sequence transmitted by the INSERT CHAR key, to the editor command
i (start insert mode).
maps escape-P, the sequence transmitted by the DELETE CHAR key, to the editor command
x (delete current character).
maps escape-L, the sequence transmitted by the INSERT LINE key, to the editor command
a (create a new line above the current line, and start insert mode).
maps escape-M, the sequence transmitted by the DELETE LINE key, to the editor command
dd (delete current line).
maps escape-K, the sequence transmitted by the CLR LINE key, to the editor command D
(delete to the end of the current line).
maps escape-J, the sequence transmitted by the CLR DISPLAY key, to the editor commands
DjdG$ (delete to end of line, go down one line, delete to end of file).
maps escape-A, the sequence transmitted by the UP ARROW key, to the sequence 'V
(causes cursor to move one space to the right) when it is used in insert mode (map! causes a
key to be defined in insert mode only).
maps escape-D, the sequence transmitted by the LEFT ARROW key, to the sequence 'H
(causes cursor to move one space to the left) when it is used in insert mode.
maps escape-C, the sequence transmitted by the RIGHT ARROW key, to the sequence 'V
(causes cursor to move one space to the right) when it is used in insert mode.
maps escape-B, the sequence transmitted by the DOWN ARROW key, to the sequence 'M
(carriage-return) when it is used in insert mode.
maps escape-L, the sequence transmitted by the INS LINE key, to the sequence 'M
(carriage-return) when it is used in insert mode. This makes the INS LINE key have the same
definition in vi as it has in REMOTE mode.
maps escape-Q, the sequence often transmitted by-the INS CHAR key, to the escape key
during insert mode.
maps escape-R, the sequence often transmitted by the INS CHAR key, to the escape key
during insert mode.

-40-

Table of Contents

The Ed Editor
Creating an Ordinary File .. 1
Getting Acquainted with Ed ... 2

Invoking Ed ... 2
Prompting ... 3
Error Messages .. 3

Moving Around in the File ... 3
Line Pointers ... 4

Pointer to the Current Line ... 4
Pointer to the Last Line ... 6
Setting Pointers to Lines ... 7

Searching for Strings .. 8
Forward Searches .. 8
Backward Searches .. 9
Repeating a Search .. 9
Line Number Arithmetic with Searches ... 9
Using Metacharacters With Searches ... 10

Adding, Deleting, and Correcting Text. .. 12
Printing Lines .. 13
Appending Text. .. 14
Inserting Text. .. 15
Deleting Text. .. 15
Undoing Commands ... 16
Changing Lines ... 16
Moving Lines ... 17
Copying Lines ... 18
Modifying Text Within a Line ... 19
Making Commands Effective Globally .. 22
Joining Lines Together .. 25
Splitting Lines Apart ... · 25

Special Ed Commands .. 26
Finding the Currently Remembered File Name ... 26
Writing Buffer Text Onto a File ... 27
Reading Files Into the Buffer .. 28
Editing Other Files ... 29
Silencing the Character Counts .. 30
Encrypting and Decrypting Text ... 31

The Shell Interface .. 33
Escaping to the Shell Temporarily .. 33
Exiting the Editor ... 34

Miscellaneous Topics .. 35
Interrupting the Editor. ... 35
Editing Scripts .. 35

The Ed Editor

Ed is an interactive, line-oriented text editor. Its purpose is to enable you to create ordinary files,
and to add to, delete, or modify the text in those files.

Creating an Ordinary File
The remainder of this chapter contains several examples illustrating ed commands. These ex­
amples are more instructive if you try each of them on some text of your own. Thus, create an or­
dinary file by typing in the commands and text shown below in bold (portions of the example text
shown below are taken from A User Guide to the UNIX System, by Rebecca Thomas and Jean
Yates).

$ ed testfile
?testfile
a
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

w
461
q
$

Be sure to type in the text exactly as it is shown above. The mistakes are corrected later in the ex­
amples.

-1-

Material Covered:

ed
edfile
p

h
H

Invoking Ed

Getting Acquainted with Ed

command; invokes ed without a file name argument;
command; invokes ed with a file name argument;
command; enables/disables ed prompt (*);
command; explains the last question mark given by ed;
command; enables/disables verbose error messages; explains the last question
mark given by ed, and all future question marks.

Ed can be invoked in one of two ways. The first is to simply type ed, followed by [RETURN]. For
example,

$ed

invokes ed without a file name argument. When invoking ed this way, you must specify the file
you want to edit with a separate command. It is more common to invoke ed by typing

$ ed filename

where filename is the name of the file you want to edit. This combines the two separate com­
mands mentioned above into a single command.

Ed responds differently depending on whether or not the file already exists. Try creating a new file
called newfile:

$ ed newfile
?newfile

Ed responds with "?newfile", which means that ed cannot find that file in your working directory.
This is to be expected, since the file does not yet exist. Ed is now waiting for your commands to
create and edit newfile.

If the file already exists, ed reads its contents into a buffer named /tmp/e#, where # is the number
of the process running ed. Ed then displays a count of the characters contained in that file. You
have a file called testfile in your working directory. You are probably still in ed from the previous
example, so type q[RETURN] to exit ed, then edit testfile by typing

$ ed testfile
461

Ed tells you that testfile currently contains 461 characters. Do not exit ed this time, but leave it in
its current state. The examples that follow pick up where you left off above.

-2-

Prompting
One of the most noticeable features of ed is its lack of prompts. When you type in a command,
ed attempts to execute it, and, if successful, ed returns silently to you for another command. If
an error is encountered, or a command cannot be executed for some reason, ed prints a question
mark, and then silently waits for you to figure out the problem.

Many people find this silence desirable, but for those who do not, there are commands that make ed
more friendly. The P command causes ed to prompt you with an asterisk (*). Executing the P
command again turns off the prompt. By default, ed's prompt is disabled.

Error Messages
As mentioned above, ed's default error message is a single question mark (?). As you gain ex­
perience with ed, these question marks become easier to interpret, but for the beginning user, it can
be somewhat difficult to discover the problem. Fortunately, ed provides commands to eliminate this
vagueness. The h command explains the last question mark printed by ed. The H command also
explains the last question mark, but also causes a more deSCriptive explanation of the problem to
replace all future question marks. Executing the H command again disables the descriptive ex­
planation.

Material Covered:

Moving Around in the File

(dot) pointer to the current line;
operator; yields line number;

p command; prints specific lines;
+ n operator; increments dot by n; default n = 1;
-n operator; decrements dot by n; default n = 1;
$ pointer to the last line of the file;

shorthand notation for the range "1,$";
shorthand notation for the range" .,$";

k command; creates a pointer to a specific line;
I ... I command; initiates a forward search for the string of characters enclosed

between the slashes;
? ... ? command; initiates a backward search for the string of characters enclosed

between the question marks;
metacharacter; matches any single character when used in a search string;

"'-.n metacharacter; strips away the special meaning (if any) of the character n
when used in a search string;

$ metacharacter; when specified as the last character in a search string,
matches the string at the end of a line;
metacharacter; when specified as the first character in a search string,
matches the string at the beginning of a line;

n* metacharacter; matches zero or more adjacent occurrences of the character
n when used in a search string;

[...] metacharacters; match anyone of the characters enclosed between them
when used in a search string;
metacharacter; stands for "any character except" when specified as the first
character inside [...], causing the braces to match anyone character not en-

-3-

closed between them;
metacharacters; match a specified number of occurrences of the single
character enclosed between them when used in a search string.

Your position in a file is always relative to a specific line. Ed does not provide commands that
move you from character to character. There are five commands that enable you to reference
specific lines in a file.

Line Pointers
Of the five commands mentioned above, three are pointers to specific lines in the file.

Pointer to the Current Line

Ed maintains a line pointer called dot (.), which always pOints to the current line in the file.
The current line is defined to be the last line affected by an ed command. The following table
lists some of the more common ed operations, and the value of dot after these operations have been
performed:

After this operation ... Dot points to ...

Invoking ed Last line of file.

Search for pattern Closest line containing pattern, relative to
your previous position.

Delete last line of file New last line of file.

Delete line(s) other than last line Line follOWing last deleted.

Appending, inserting, or changing text Last line entered.

Read from a file Last line read in.

Write to a file Your previous position; dot is not changed.

Substitute new text for old text Last line affected by subsitution.

Execute a shell command Your previous position; dot is not changed.

Set a line pointer Your previous position; dot is not changed.

Any unsuccessful or erroneous command Your previous position; dot is not changed.

Dot can be used as a line number argument for ed commands. Assuming you are still editing test­
file, type

.p
to the file.

-4-

The p command prints specific lines from the ed buffer, thus .p prints the current line. Note that
dot is automatically set to the last line of the file when you first begin editing. You can also specify a
range of line numbers with dot. For example,

.-3,.p
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the last four lines of the file. Has the value of dot changed? No, because the last line affec­
ted by the p command was still the last line of the file. Now try

.-5,.-3p
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" * .
important to note that ed always makes changes to the

which prints the fifth line before dot to the third line before dot. What is dot's value now? Find out
by typing

.p
important to note that ed always makes changes to the

Dot is now set to the last line affected by the previous p command.

Note that dot need not be typed when specifying ranges. Whenever ed sees the + and­
operators, ed assumes that they refer to the current value of dot. For example,

-2,+2p
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" * .
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

prints the range of lines from two lines before dot to two lines after dot. Dot is set to the last line
printed.

The + and - operators can be used independently to increment or decrement dot by one,
respectively. For example, the command

--,+p
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

-5-

prints the range of lines from dot decremented by two to dot incremented by one. Also, you can
step forward through your text, one line at a time, with a series of plus signs, or step backward with
a series of minus signs. Note that [RETURN] is equivalent to +. [RETURN] increments dot by one
and prints the resulting current line.

The p command provides one other shortcut. Whenever a line number, or one or more operators
pointing to a line, appear on a line by themselves, the p command is assumed. Some examples are:

8
original file are not changed until you write the changes

ed keeps a copy of the file you are editing. It is", '" *.
++
copy of yourrr file in the buffer. The contents of the

If a range appears on a line by itself, only the last line of the range is printed. For example,

-,+
original file are not changed until you write the changes

You can find out the current value of dot by typing

8

which tells you that dot is currently pointing to the eighth line of the file.

Note that you cannot manually set the value of dot. A command like

.=6
?

produces an error. Ed reserves to itself the right to change the value of dot, although you may
indirectly change dot's value through ed commands.

Pointer to the Last Line

Ed also maintains a pointer, called $, which always points to the last line of the file. For example,

$
to the file.

prints the last line of the file. $ can also be used in ranges, as in

1,$-6p
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds

-6-

which prints the first three lines of testfile. Also,

+4,$p
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the last three lines of the file. Note that the + and - operators can apply to $ only when $ is
explicitly typed. By themselves, + and - always apply to dot.

You can find out the value of $ by typing

$=
9

which tells you that the ninth line is the last line in the file. Note that = does not change the value of
dot.

The value of $ changes only when a command creates a new last line. $ is not user-settable.

Because the "1,$" and" .,$" ranges are so commonly used when editing with ed, ed provides a
shorthand notation for each range. The comma can be used in place of "1,$", so that,p prints all
the lines in the file. Also, the semicolon means the same thing as ".,$", so ;p prints all the lines
from the current line to the end of the file.

Setting Pointers to Lines

The k command creates a pointer to a specific line, so you can reference that line without
knowing its line number. The pointer name must be a lower-case letter. Creating a pointer does
not change the value of dot. For example,

to the file.
-4ka
-2kb

to the file.

creates two pointers, a and b, which point to the fourth line before dot, and the second line be­
fore dot, respectively. Note that dot does not change.

To reference a line with a line pointer you have created, precede its letter name with a single
quote n, as in

~a,~bp

ed keeps a copy of the file you are editing. It is", '" *.
important to note that ed always makes changes to the
copy of yourrr file in the-buffer. The contents of the

-7-

which prints all lines from the line pOinted to by a to the line pointed to by b.

A pointer set by the k command always points to the same line, even if that line's line number
changes. Thus, the k command does not create pointers to specific line numbers, but to specific
lines.

Once a pointer has been created, the only way to delete it is to delete the line it points to. Oth­
erwise, that pointer continues to exist until your editing session is over. You can, however, re­
assign a pointer to another line, as in

~ap

ed keeps a copy of the file you are editing. It is"'" "'" *.
2ka
~ap

texct entry mode. In command mode, the edytor interprets

which re-assigns a to the second line of the file.

You can find out the current line number of a pointer by typing

~a=

2
~b=

7

which tells you that a is currently pointing to line number 2, and b is currently pointing to line num­
ber 7.

Searching for Strings
Ed provides a facility which enables you to search for a particular string of characters in your file.
A string of characters searched for in this manner is called a pattern.

Forward Searches
To initiate a forward search, enclose the pattern between two slashes, and press [RETURN]. For
example,

/unput/
your unput as a command. In text entry mode, ed adds

searches for the pattern "un put". If the pattern is found, dot is set to the line containing the pattern,
and the line is printed on your screen. An unsuccessful search looks like this:

/bob/
?

-8-

The value of dot is unchanged.

Ed searches forward in your file, starting with the line following the current line. If your pattern
has not been found by the time ed gets to the end of the file, ed wraps around to the beginning of
your file and continues looking. Ed searches until the pattern is found, or until ed reaches the line
prior to the starting line of the search.

Backward Searches

You can search backwards in your file by enclosing the pattern between two question marks.
For example,

?file?
to the file.

searches backwards from the current line, looking for a line containing the string II file ". Ed
found the pattern after wrapping around to the end of the file.

Repeating a Search

Ed remembers the last pattern that was matched. Thus, if you want to repeat a search, you simply
type two slashes or question marks. The pattern itself need not be re-typed. For example,

?file?
original file are not changed until you write the changes
??
copy of yourrr file in the buffer. The contents of the
??
ed keeps a copy of the file you are editing. It is", '" *.

initiates a backward search for the pattern II file II , then finds the next two instances of II file ". Note
that a repeated search need not be in the same direction as the initial search. For example,

Ibufferl
copy of yourrr file in the buffer. The contents of the
??
your input to the text located in a special buffer where

initiates a forward search for II buffer ", then repeats the search backwards.

Line Number Arithmetic with Searches
The + and - operators can be used with searches to position yourself at specific lines. For ex­
ample,

Inotel +
copy of yourrr file in the buffer. The contents of the

-9-

searches forward for a line containing "note" , and positions you on the following line. Also,

?text?
your input to the text located in a special buffer where
??--
The ed editor operates in two modes: command mode and

searches backwards for the second line containing "text", and positions you two lines before it.

Note that, although searches have wrap-around capabilities, the + and - operators do not. Thus,
an error results if a + or - operator attempts to increment or decrement dot to values greater than
$, or less than one.

The = operator can be used with forward and backward searches to find the line number refer­
red to by the search, as in

lunput/=
3

Note that dot is not set to the line containing "unput" in the last example, because = does not
change the value of dot.

Using Metacharacters With Searches

There are several characters that have special meaning within the context of a search. These
characters, consisting of ., *, [,], A, $, "-., "-. {, and "-.}, are called metacharacters.

The. metacharacter matches any single character except a new-line. Thus, the search

I.nputl
your unput as a command. In text entry mode, ed adds
II
your input to the text located in a special buffer where

first matches "unput" in line 3, and then, when repeated, matches "input" in line 4.

The * metacharacter matches zero or more occurrences of the character immediately preceding it.
For example,

lyour*1
ed keeps a copy of the file you are editing. It is"-. "-. *.

matches "you" in the line displayed. Ed stops searching when it finds the first string of charac­
ters that matches the given pattern. Thus, "your" or "yourrr" can also be matched with the
above search, depending on the current line when the search is initiated.

The last example shows that, even though an "r" is explicitly typed in Iyour* I, there need not
be an "r" in the string of characters that are actually matched. This is because zero occurrences
of the preceding character is considered a legal match when the asterisk is used. Keeping this in
mind, consider the search Ir*l. Is it useful? No, because zero or more r's can be found on every

-10-

line in the file. If you want to search for one or more r's, type Irr* I.

The "'{and "'} metacharacters enable you to control how many occurrences of a particular
character are matched. For example, the search Ig '" {4 ",}I finds a string of four g's. The integer
between the two metacharacters specifies how many instances of the preceding character are to be
matched. Note that this construct matches exactly four g's, not four or more. Thus, "yourrr" can
be matched by

Ir'" {3 ",}I
copy of yourrr file in the buffer. The contents of the

If you put a comma after the integer, the", { ... "'} construct matches at least the specified num­
ber of occurrences. For example, 133.3'" {4, "'}I matches "33. ", followed by at least four 3's.
Finally, two integers separated by a comma can be placed in the", { ... "'} construct to define an in­
clusive range which specifies the number of occurrences to match. An example is
1-13'" {2,S",} I-I, which matches -1331-, -13331-, -133331-, or -1333331-.

The [and] metacharacters match anyone of the characters enclosed between them. For ex­
ample, Ih[iau]tl matches "hit", "hat", or "hut". A range of characters can be specified by typing
the beginning and ending character of the range, separated by a minus sign. An example is
l[a-zA-Z][O-9][O-9]*I, which searches for a single upper- or lower-case letter, followed by one or
more digits (the * applies only to the [...] construct immediately preceding it). The minus sign
loses its special meaning within the [...] construct if it occurs at the beginning (after an initial A, if
any), or at the end of the character list.

If the first character after the left bracket is a circumflex n, then the [...] construct matches any
single character not included between the brackets. For example, WO-9WO-9]*1 matches one or
more occurrences of any character except a digit. The A has special meaning in the [...] construct
only when it is the first character after the left bracket.

Note that the metacharacters ., *, [, "', $, '" {, and "'} have no special meaning when listed within
the [...] construct. Also, the right bracket does not terminate the construct if it is the first character
listed after the left bracket (after an initial A, if any). For example, l[]a-r]1 searches for a single
right bracket, or a lower-case letter in the range a through r.

The A is also special when typed at the beginning of a string within a search, and requires that the
string be matched at the beginning of a line. For example,

redl
ed keeps a copy of the file you are editing. It is'" '" *.

searches for a line beginning with "ed". The A is special only when typed at the beginning of a
search string. If A is embedded in a pattern, or if it is the only character in the pattern, it is matched
literally.

The various ways to use A can be illustrated with rTa-z]/. The first A means "match the follOWing
pattern at the beginning of a line". The second A is literal; it has no special meaning. The third A, as
the first character inside the brackets, means "match any single character except". Thus, this
search looks for a A, followed by any single character except a lower-case letter, occurring at the
beginning of a line.

-11-

The $ metacharacter is special when typed at the end of a string within a search, and requires that
the string be matched at the end of a line. For example,

land$1
The ed editor operates in two modes: command mode and

searches for a line ending with "and". Also, rTEST$1 searches for a line consisting of the single
word "TEST".

The $ is special only when typed at the end of a search string. When embedded in the string,
the $ is matched literally.

The "- (backslash) metacharacter is used to strip away the special meaning associated with a
metacharacter. This is useful when you need to match a metacharacter literally in a string. To strip
away the special meaning of a metacharacter, simply precede it with ,,-. For example,

1"-"-"-"-"-* "-.$1
ed keeps a copy of the file you are editing. It is"- "-* .

matches the string" "-"-*. " at the end of a line. Note that "- itself must also be preceded with
"- to be matched literally. If you attempt to match the string without using the "- (as in
1"-"-* .$/), ed interprets the search to mean "search for zero or more occurrences of a backslash
followed by any single character at the end of a line", which is obviously not what you want.
Also,

lfile"-.$I
to the file.

matches "file. " at the end of a line. If you are ever in doubt about whether or not a character has
special meaning, it is safe to precede it with "- just to be sure. If the character has no special
meaning, then the "- is ignored.

Adding, Deleting, and Correcting Text
Material Covered:

command; list specific lines;
n command; print lines with line numbers;
a command; append lines of text after current line;
i command; insert lines of text before current line;
d command; delete lines of text;
c command; change lines of text;
m command; move lines of text;
t command; copy lines of text;
j command; join lines together;
s command; substitute new text for old text;
9 comman~; global; perform command list on selected lines of entire file;
G command; interactive global; on each line selected in the entire file, perform a

user-specified command;
v command; global; perform command list on all lines not selected in the entire

·12·

v

%

&

Printing Lines

file;
command; interactive global; on each line not selected in the entire file, perform
one user-specified command;
command; reverse the most recent modification to the buffer;
metacharacters; used in left-hand side of s command to break up pattern into
pieces that can be referenced individually;
metacharacter; used in right-hand side of s command to duplicate right-hand
side of most recent s command;
metacharacter; used in right-hand side of s command to duplicate left-hand side
of same s command.

Besides p, there are two other commands that enable you to print specific lines in the ed buffer.
The 1 (list) command is similar to p, but gives you slightly more information. The 1 command
enables you to see characters that are normally invi.sible. Backspace and tab are represented by
overstrikes, and other invisible characters, such as bell, vertical tab, and formfeed, are
represented by "-.nnn, where nnn is the octal equivalent of the character in the ASCII character set.

The 1 command also breaks long lines into smaller lines of 72 characters each. Thus, if you have
lines of text in a file that are longer than 72 characters, 1 breaks them down into 72-character
lines so they can fit on your screen. A "-. is printed at the end of each line that is broken.

Print out the contents of testfile with the 1 command, and look for any invisible characters:

,1
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is"-. "-. *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

If you did not make any typing errors that could produce invisible characters, the output looks as
shown above. Note that a carriage return and a line feed are not considered invisible, since the
placement of text on your screen indicates their presence.

Since some invisible characters can cause strange terminal behavior, you almost always want to
eliminate them from your text. This is where the 1 command can save you time and effort by mak­
ing these characters visible.

The n (number) command also enables you to print specific lines, but differs from p and 1 in that
each line is preceded by its line number and a tab character. Try printing out the contents of
testfile with n:

-13-

,n
1 The ed editor operates in two modes: command mode and
2 texct entry mode. In command mode, the edytor interprets
3 your unput as a command. In text entry mode, ed adds
4 your input to the text located in a special buffer where
5 ed keeps a copy of the file you are editing. It is", '" *.
6 important to note that ed always makes changes to the
7 copy of yourrr file in the buffer. The contents of the
8 original file are not changed until you write the changes
9 to the file.

Note that the line numbers and tab characters are display enhancements only, and do not
become part of the text in the ed buffer.

The p command is the most common command used to print lines in the ed buffer. Keep in
mind, however, that wherever it is legal to use the p command, the I and n commands may also be
used. The I and n commands leave dot pointing to the last line printed.

Appending Text
The a (append) command appends one or more lines of text after the specified line. By default,
the lines of text are added after line dot. Dot is left pointing to the last line appended. After the a
command is typed, everything you enter is appended to the specified line. To stop appending text,
type a period at the beginning of a line, all by itself. This terminates the a command, and re­
turns you to command mode. For example,

Oa
The ed editor is a simple, easy-to-use text editor.

1,3p
The ed editor is a simple, easy-to-use text editor.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

The a command is one of the few ed commands that accepts 0 as a line number, enabling you to
add text to the beginning of the file, as above. Note that the period at the beginning of an empty
line terminates the appended text. The following example can easily occur by forgetting to type
the terminating period (do not try this example!):

$a
It is always comforting to know that your original
file remains intact until you are sure you want to
change it.
1,$p
$-4,$p
;1

$-7,$p
original file are not changed until you write the changes
to the file.
lt is always comforting to know that your original

-14-

file remains intact until you are sure you want to
change it.
1,$p
$-4,$p
;1

This poor user typed in the three lines of text that he wanted to append to the end of his file, and
then attempted to print out the results. Ed, however, was still appending text, and calmly added
the user's commands to the file. The user finally realized his mistake, typed the solitary period,
and printed out the last eight lines of his file, three of which were the three commands he attemp­
ted to execute. The moral of the story is: REMEMBER THE PERIOD!

If you type the a command and then change your mind, simply type a solitary period on the next
line. This terminates the a command and adds no lines to the file. Dot is left pointing to the line
you specified when you typed the a command.

Inserting Text
The i (insert) command is similar to the a command, except that the added text is inserted be­
fore the specified line. By default, the added text is inserted before line dot. Dot is left pointing to
the last line inserted. Like the a command, the inserted text is terminated by a solitary period at
the beginning of a line. For example,

2i
Also, it takes very little time to learn.

1,3p
The ed editor is a simple, easy-to-use text editor.
Also, it takes very little time to learn.
The ed editor operates in two modes: command mode and

If you type the i command and then change your mind, simply type a solitary period on the next
line. This terminates the i command and adds no lines to the file. Dot is left pointing to the line
you specified when you typed the i command.

Deleting Text
The d (delete) command deletes one or more lines of text from the file. If no lines are specified, line
dot is deleted. After a deletion, dot is left pointing to the line following the last line deleted. If the
last line of the file is deleted, dot points to the new last line. For example,

$d
a
on top of the original contents of your file.

$-l,$p
original file are not changed until you write the changes
on top of the original contents of your file.

-15-

The current last line is deleted, and a new one is typed in its place using the a command. The a
command is used because dot is left pointing at the new last line after the deletion. Thus, it is con­
venient to append after dot to create the desired last line.

The d command can delete several lines at once by specifying a range of lines, as follows:

3,6d
,p
The ed editor is a simple, easy-to-use text editor.
Also, it takes very little time to learn.
ed keeps a copy of the file you are editing. It is", '" * .
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

This shows that testfile currently contains 7 lines of text, since lines 3 through 6 have been deleted.

Undoing Commands
The u (undo) command reverses the effect of the most recent command that made a change to
any of the text in the buffer. Use it now to restore the four lines you just deleted:

u
,p
The ed editor is a simple, easy-to-use text editor.
Also, it takes very little time to learn.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" * .
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

Note that the u command reverses only the most recent command that modified text. Commands
that have been succeeded with one or more other commands cannot be reversed with u. Besides
d, u also reverses the a, i, c, g, G, v, V, j, m, r, s, and t commands. Dot is left pointing to the last line
affected by the reversal.

Changing Lines
The c (change) command replaces one or more lines with the text you specify. The c command
is a combination of the d and i commands, in that the specified lines are deleted, and the text you
type in is inserted in their place. Like the a and i commands, the replacement text is termina­
ted with a solitary period at the beginning of a line. Dot is left pointing to the last line of repla­
cement text typed in. For example,

-16-

1,2c
The ed editor is easy to learn and easy to use.

1,3p
The ed editor is easy to learn and easy to use.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

In this example, the first two lines are deleted and replaced with a single line. Of course, you can
also replace a single line with several lines, as in

2c
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor operates in two modes: command mode and

1,/texct/p
The ed editor is easy to learn and easy to use.
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

which replaces the second line of the file with five lines.

If you type the c command and then change your mind, simply type a solitary period at the be­
ginning of the next line. This terminates the c command with no changes made, and leaves dot
pointing to the first line you specified when you typed the c command.

Moving Lines
The m (move) command moves one or more lines to a new position in the file. By default, m
moves line dot. Dot is left pointing to the last line moved. For example,

2,5m$
,p
The ed editor is easy to learn and easy to use.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is ~ ~ * .
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
It was designed to enable the user to get his work done

·17·

with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

which moves lines two through five to the end of the file. Note that m appends the moved lines
after the specified line. Thus, line number zero is legal as a destination line number, enabling you
to move lines to the beginning of the file. The destination line cannot be one of the lines being
moved.

Note that the m command, as well as any command that accepts line number arguments, accepts
pattern searches and line pointers (set by the k command) to reference specific lines. For example,
2,/user/ + + + m$ has the same effect as 2,5m$ in the previous example. Using pattern
searches and line pointers becomes more valuable when you edit large files.

Copying Lines
The t command copies one or more lines and places the copy at a specified location in the file. By
default, t copies line dot. Dot is left pointing to the last line copied, in its new location. For example,

lt$
.-4,$-lt1
,p
The ed editor is easy to learn and easy to use.
lt was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
lt was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor is easy to learn and easy to use.

This example copied the first line and moved it to the end of the file. Then, the four lines before
the new last line were copied and moved after the first line of the file, producing the text shown
above.

The only difference between the m and t commands is that t copies the indicated lines and
moves them to a new position, leaving the original lines intact. The m command moves the
specified lines from their original position to a new position. No new text is created.

-18-

Modifying Text Within a Line
The s (substitute) command is the only ed command that enables you to change one or more
characters within a line, without having to type the line over again. By default, s modifies text
on line dot. Dot is left pointing to the last line in which a modification has occurred.

The s command enables you to correct the mistakes in your file. Of course, you could use the d
and i commands and re-type each line containing an error, but that is more work than is neces­
sary. For example,

/texct/
texct entry mode. In command mode, the edytor interprets
s/texct/text/p
text entry mode. In command mode, the edytor interprets

All s command lines are of the form

s/replace this/with this/

Thus, the above example first searches for the line containing the string "texct", and then replaces
" texct" with " text" on that line. Note that the p command is appended to the s command to
verify that the intended substitution took place.

Note that the pattern search in the previous example can be included on the s command line.
The s command accepts one line number, to perform a specific replacement on a single line, or two
line numbers separated by a comma, to perform a replacement on a range of lines. For example,

/unput/s/ /input/p
your input as a command. In text entry mode, ed adds

which searches for the pattern "un put" and replaces it with "input". Another feature is illus­
trated in the above example. Note that the replace this portion of the s command is empty. This is
because the replace this portion of the s command is a pattern search, just like those discussed un­
der Searching for Patterns. You recall from that discussion that ed remembers the last pattern you
searched for. Thus, since" unput" is the last pattern you searched for, it need not be re-typed
in the s command. Ed remembers the pattern and supplies it for you.

Metacharacters can be used in the s command. The replace this portion recognizes all the meta­
characters discussed under Searching for Patterns, plus two additional metacharacters, "(and ,,).
These two metacharacters are used to break up the replace this portion into pieces that can be
referenced indiVidually. For example, in line 1 of the file, suppose you want to interchange the
phrases "easy to learn" and "easy to use". The obvious way to do that is to re-type the entire
line, but there is an easier way:

Is/"(ea.*rn") and "(ea.*se,,)/,,2 and "lip
The ed editor is easy to use and easy to learn.

Although it is hard to read, it is handy to be able to define pieces of patterns and rearrange them
in the with this portion. In the above example, the entire replace this portion matches "easy to
learn and easy to use". The first "(... ") matches" easy to learn", and the second "(... ")
matches "easy to use". These pieces are referred to in the with this portion with "n, where n re­
fers to the n-th occurrence of a "(... ") pair in the replace this portion, counting from the left.

-19-

Thus, the with this portion interchanges the two pieces defined in the replace this portion.

Here is another example. Suppose you have a file containing information like

Alderson, Mike
Anderson, David
Belford, John
Donally, Kyle

and you want to rearrange each name so that the first name is first, followed by the last name.
Re-typing each line could take forever, but the task is easy using the "'.(and "'.) metacharacters.
The command

does the job. The first "'.(... "'.) pair matches any number of characters except a comma -
the last name. The comma-space between each last and first name is explicitly matched. Finally,
the second "'.(... "'.) pair matches any number of any characters - the first name. These pieces
are rearranged in the with this portion.

Note that the two portions of an s command do not have to be delimited by slashes. You can use
any character except a space or a new-line, as long as you use the same character throughout the
command line. For example, the previous example can be made a bit more clear by using a capital
o as the delimiter:

You must be careful to choose a delimiter that is not already used in the s command line.

The with this portion of the s command recognizes only the"'. metacharacter, plus two new meta­
characters, & and %. All other metacharacters previously discussed are interpreted literally in this
portion.

The & metacharacter is recognized only in the with this portion, and stands for whatever is
matched by the pattern in the replace this portion. For example,

2s/done/& quickly/p
It was designed to enable the user to get his work done qUickly

The & stands for whatever pattern is matched in the replace this portion, so it stands for "done"
in this example. Thus, this example replaces "done" with "done quickly". As another example,
first add the line "ed is great" to the end of the file:

$a
ed is great

-20-

Now use & tp create two sentences out of one:

$s/.*I&? &!/p
ed is great? ed is great!

The & must be preceded by ""- to be interpreted literally.

The % is also recognized only in the with this portion, and stands for whatever was specified in the
with this portion of the last s command that was executed. For example,

Is/ed editor/ed text editor/p
The ed text editor is easy to use and easy to learn.
led editorlsll%/p
The ed text editor operates in two modes: command mode and
Ilsll%/p
The ed text editor is easy to learn and easy to use.

In the first s command, the with this portion has to be explicitly typed out. Thereafter, a % is
the only character appearing in the with this portion, and stands for "ed text editor". Since the
replacement text is the same for the remaining s commands, it does not need to be re-typed. Note
also how ed's pattern memory is utilized, especially in the last s command above.

The % is special only when it is the only character in the with this portion. If % is included in a
string of one or more characters, it is no longer special. You can also precede the % with a ""- to
cause literal interpretation.

Now that you know all about the s command, you can go through and fix the remaining errors in
your file. Here are some suggestions:

ledy/slledi/p
text entry mode. In command mode, the editor interprets

+ 3s/""- ""- ""- ""- ""-* ""-.lIp
ed keeps a copy of the file you are editing. It is
Iyourrr lsi Iyour Ip
copy of your file in the buffer. The contents of the

Note that, in the second s command above, the with this portion is empty. This is legal, and is
often used when you want to replace erroneous text with nothing at all.

Finally, note that the s command operates only on the first occurrence of a pattern on a specified
line. Thus, if there are two or more patterns on a line that are identical to the pattern specified in
the replace this portion, only the first occurrence is actually replaced. The s command must be re­
executed once for each additional pattern that is to be replaced on the same line.

The s command must replace text on at least one of the addressed lines, or ed prints a question
mark.

-21-

Making Commands Effective Globally
The 9 (global) command is used to execute one or more commands on several lines. The lines
on which the commands are to be executed are usually specified by pattem searches. The form of
a 9 command is

x,yglpatternl command list

where x and yare optional line number arguments, pattern is the pattern to be searched for, and
command list is the list of one or more commands to be executed on each line containing pattern. If x
andy are misSing, "1,$" is assumed.

The 9 command first marks every line containing the specified pattern. Then, dot is successively
set to each marked line, and the list of commands is executed. If only one command is speci­
fied, it is placed on the same line as the 9 command. If several commands are specified, the first
command is placed on the same line as the 9 command, and all other commands are placed on the
following lines. Every line of a multi-line command list is terminated by "- except the last.
Ending a line with "- in this way quotes the following new-line, and hides it from the 9 command,
thus preventing the new-line from terminating the 9 command prematurely. If no commands are
specified, the p command is assumed. Any command except g, G, v, and V can be used in the
command list.

The 9 command can be used as a modifier for the s command, enabling the s command to re­
place all the occurrences of a particular pattern on a line, instead of just the first. For example,

$s/edlThe & editor/gp
The ed editor is great? The ed editor is great!

which replaces both instances of "ed" on the last line with "The ed editor". The 9 command is
often used with the s command in this way to avoid having to repeat the s command once for
every additional pattern you want to change on a line. Note that, if the p command is omitted, the
line is not printed after the substitution is done.

The 9 command becomes more powerful when you specify more than one command to be ex­
ecuted. For example, suppose that you want to change every instance of the string "ed" to "ED",
and then mark every line on which the substitution occurs by preceding the line with a series of as­
terisks. This can be done by typing

g/ed/sllED/g"­

i"-

,p

The ED text EDitor is easy to use and easy to learn.

It was designED to enable the user to get his work done qUickly
with the least possible amount of interference from the

EDitor. This is evident in the lack of prompts and the
curt error messages.

The ED text EDitor operates in two modes: command mode and

-22-

text entry mode. In command mode, the EDitor interprets

your input as a command. In text entry mode, ED adds

your input to the text locatED in a special buffer where

ED keeps a copy of the file you are EDiting. It is

important to note that ED always makes changes to the
copy of your file in the buffer. The contents of the

original file are not changED until you write the changes
on top of the original contents of your file.

It was designED to enable the user to get his work done
with the least possible amount of interference from the

EDitor. This is evident in the lack of prompts and the
curt error messages.

The ED text EDitor is easy to learn and easy to use.

The ED EDitor is great? The ED EDitor is great!

This example, though not very useful, illustrates how the 9 command can be used to perform a
script of ed commands on specific lines. Note that the 9 command accepts as input all lines up to
and including the first line that does not end in ",,-. Thus, the first line that is not part of the 9 com­
mand above is the line containing ,po Note also that the period that usually must be typed to
end the i command is not necessary if the line containing the period is also the last line of the 9
command. Thus, the period, along with the line on which it is typed, can be omitted.

A 9 command can be included in a 9 command list only when it is part of another command, as il­
lustrated in the last example. It is illegal to try to nest command lists by specifying 9 command lists
within other command lists.

The v command is identical to the 9 command, except that the command list is executed on all
lines that do not contain the specified pattern.

If the results of a 9 command are not exactly what you had in mind, you can use the u command
to restore your text to its previous state.

u
,p
The ed text editor is easy to use and easy to learn.
It was designed to enable the user to get his work done quickly
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor operates in two modes: command mode and
text entry mode. In command mode, the editor interprets

-23-

your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor is easy to learn and easy to use.
The ed editor is great? The ed editor is great!

Note that the u command also reverses itself, so you can follow one u command with another to
get back text that you have already reversed.

The G (interactive global) command is used when you have one command to execute on each line
containing a specific pattern, but this command varies depending on the line. The 9 or v command
is not appropriate in this case, since the command list for these commands is constant.

The G command is invoked in the form

x,yG/pattern/

where x andy are line number arguments (if not specified, "1,$" is assumed), and pattern is the
particular pattern you want to match in a line. G first marks every line containing a string that
matches pattern. Then, dot is successively set to each marked line, and the resulting current line is
printed on your screen. After the current line is printed, G waits for you to enter any single com­
mand, and the command you enter is executed. You may specify any command except the a, i,
e, g, G, v, or V commands. Note that your command can address and affect lines other than the
current line. A new-line is interpreted to be a null command. The G command can be terminated
prematurely by pressing [DEL] or [BREAK]; otherwise it terminates normally when all lines in the
file have been scanned for a string matching pattern.

Here is an example:

G/editor/
The ed text editor is easy to use and easy to learn.
s/easy/simple/
editor. This is evident in the lack of prompts and the

The ed text editor operates in two modes: command mode and
s/The ed text editor/ed/
text entry mode. In command mode, the editor interprets
s/the editor/ed/
editor. This is evident in the lack of prompts and the

The ed text editor is easy to learn and easy to use.
s/easy to use/simple to use/
The ed editor is great? The ed editor is great!
sW?]*? //

-24-

In this example, G looks for all the lines containing "editor", and executes the commands you
specify. Note that a new-line was typed on each of the two blank lines above, causing no command
to be executed.

The & character can be typed in place of a command. This causes the most recent command
executed within the current invocation of G to be re-executed.

The V command is identical to the G command, except that the lines that are marked and printed
are those that do not contain a string that matches pattern.

The u command can be used to reverse all the effects of a G command.

Joining Lines Together
The j (join) command joins two or more lines together. By default, j appends line dot + 1 to line
dot, but you can specify a range of lines to be joined. Note that j does not add any white space
between the joined lines. Dot is left pointing to the line created after the specified lines have been
joined.

As an example, try joining the last two lines of the file together. First, however, you need to
shorten line $-1 so the joined line fits on one line of the screen. Do this by typing

$-ls/easy to learn and lip
The ed text editor is simple to use.

Now join the last two lines together with

jp
The ed text editor is simple to use. The ed editor is great!
s/~.T/. Tip
The ed text editor is simple to use. The ed editor is great!

The last s command in this example is used to insert two spaces between the two joined lines.
Note that the p command can be appended to the j command to verify that the two lines have
been joined.

Splitting Lines Apart
The s command can be used to split a single line into two separate lines. This is done by inserting
a new-line between the characters where the split is desired. To do this, the new-line must be pre­
ceded by ~ to avoid terminating the s command prematurely. Thus, you can split the two lines
that were joined in the previous example into two separate lines with the s command (you cannot
use the u command to split the last line into two lines now - why?). Do this by typing the fol­
lowing:

s/~. T/.T/p
The ed text editor is simple to use. The ed editor is great!
s/~.T/.~
TI
$-l,$p

-25-

The ed text editor is simple to use.
The ed editor is great!

The first s command gets rid of the extra white space in the sentence (note that the u command
could have been used here). The second s command inserts a new-line between the period and
the capital T, thus creating two separate lines. Note that, although the second s command takes up
two lines, it is actually one command.

Special Ed Commands
Material Covered:

f command; set/print currently remembered file name;
delimiter; set dot's value;

w command; writer characters in buffer to file, or read standard output from a shell
command;

r command; read contents of file into buffer, or read standard output from shell com­
mand;

e, E commands; begin editing another file, or read standard output from shell com­
mand;
option; silences character counts generated by w, r, e, E, or an invocation of ed;

X command; initiates text encryption mode;
-x option; initiates text encryption mode.

Finding the Currently Remembered File Name
If you invoke ed with a file name argument, ed remembers that file name until your editing session
is over, or until the file name is changed as a result of commands that are discussed later in this sec­
tion. The f (file name) command enables you to find out at any time what file name ed is remem­
bering. For example,

f
testfile

which tells you that ed is remembering testfile as the current file name.

The f command also enables you to change the current file name. For example, to change the
current file name to file2, type

f file2
file2

Ed echoes" file2" so you can verify that the current file is set correctly. Now change the file name
back to the current file, or errors could result in later operations:

f testfile
testfile

-26-

If no file name is specified when ed is invoked, then ed initially remembers no current file name.
Thus, this file name must be supplied when using the w, r, e, or E commands (discussed later), or it
can be set with the f command.

Writing Buffer Text Onto a File
The w (write) command writes the text contained in the ed buffer onto the specified file, or onto
the currently remembered file if no file name is specified. If the write is successful, a count of the
number of characters written is printed. Dot is left unchanged.

The w command accepts zero, one, or two line number arguments specifying the line or lines to
be written. If no line number arguments are given, "1,$" is assumed.

Try the w command by typing

w
986

The previous contents of testfile have now been overwritten by the contents of the ed buffer.
The number 986 tells you that the write was successful, and that 986 characters were written.

Note that the ed buffer is not affected by the w command. Its contents are still the same. In
fact, all of the line pointers (dot, $, and any that you have set) are still pointing to the same lines as
they were prior to the w command. Thus, you may write out the contents of the ed buffer several
times during an edit session without disturbing the current state of the editor. It is a good idea to
write often, especially if you have been editing a long time and have made many changes.
Depending on how often you write, you can be sure that a current version of your file resides in
the relative safety of the file system, should a system crash or a power failure eat up whatever data is
in the ed buffer.

You can tell ed to write to a file other than the currently remembered file by typing

red/;ron/w filel
561

This command writes the range of lines from the line beginning with "ed" to the line beginning
with "on" onto the file file1. If filel exists, its previous contents are completely overwritten by the
specified lines of text. If filel does not exist, it is created with a file mode of 666 (modified by the
current value of the file creation mask, umask) and the specified text is written on it. Again, the
number returned indicates that ed was successful in writing 561 characters on the file.

The semicolon that appears in the last example is new. If a comma had been used to separate the
two searches, ed would have started the search for a line beginning with "ed" from the current line.
After finding that line, however, ed would return to the current line to search for the line beginning
with "on". The value of dot would be reset only after finding the line beginning with "on", with
the result that a single line address is passed to the w command, causing a single line to be written.
The semicolon causes the value of dot to be set to the line beginning with "ed", so that the
second search is carried out with respect to this line, instead of the previous current line. Thus, two
addresses are processed, and the correct lines are written. The semicolon can always be used in
place of a comma to force dot to be set at that point in the construct.

-27-

You can also run shell commands with the w command. The shell command is introduced with!.
For example,

w!ls
file 1
testfile
986

runs is and also writes the current contents of the buffer to the currently remembered file. Note
that the output from is appears on your screen, but is not added to the actual contents of the buf­
fer (the listing that appears on your screen may be longer than that shown above). After the listing is
produced, ed writes the contents of your buffer to the currently remembered file, and reports the
number of characters written. Note that there is no way to run a shell command and write to a
file other than the currently remembered file with the w command. Note also that! is illegal if the
editor was invoked from a restricted shell (see rsh(l) in the HP-UX Reference manual).

The currently remembered file name is set to the file name you specify with the w command, if the
specified file name is the first file name mentioned since ed was invoked. Otherwise, the currently
remembered file name is not affected. A shell command introduced with ! is never remembered
as the current file name.

Reading Files Into the Buffer
The r (read) command reads the contents of a specified file, or the currently remembered file, if
no file is specified, into the ed buffer after the specified line. If no line is specified, the contents are
read in after line $. Dot is set to the last line read in.

To illustrate the r command, first create a new file called readfile:

w
986
e readfile
?readfile
a
Here is some text that is to be read in.
It is used to illustrate the r command.

w
81

You now have a file in your working directory called readfile, containing the text shown above.
Now begin editing testfile again, and read in the contents of readfile:

e testfile
986
Or readfile
81
1,5p
Here is some text that is to be read in.
It is used to illustrate the r command.
The ed text editor is simple to use and easy to learn.

·28·

It was designed to enable the user to get his work done qUickly
with the least possible amount of interference from the

This example reads the contents of readfile into testfile after line 0, or at the beginning of the file.
Ed responds by printing the number of characters that were read in. The first five lines of the buf­
fer are printed to verify that the text is placed correctly.

You can also run shell commands with the r command. The shell command is introduced with !.
For example,

Icurt/r !date
29
6,9p
editor. This is evident in the lack of prompts and the
curt error messages.
Thu Jul22 10:59: 13 MDT 1982
ed operates in two modes: command mode and

which reads the output from date into testfile after the line containing the pattern "curt". The
lines surrounding the insertion are printed to verify that the read executed correctly. Note that,
unlike the w command, the output from the command becomes part of the text in the buffer.
Also, the number of characters read from the command is printed on your screen, but the actual
output appears only in the buffer. Note that the! is illegal if the editor was invoked from a res­
tricted shell.

The currently remembered file name is reset to the file name you specify with the r command, if
the specified file name is the first file name mentioned since ed was invoked. Otherwise, the
currently remembered file name is not affected. A shell command introduced by ! is never
remembered as the current file name.

An r command can be reversed with the u command. Try this now:

u
6,8p
editor. This is evident in the lack of prompts and the
curt error messages.
ed operates in two modes: command mode and

Note that the date and time are no longer present in the buffer.

Editing Other Files
The e (edit) command discards the entire contents of the ed buffer and reads in the specified file. If
no file is specified, then the currently remembered file is read. Dot is set to the last line of the buf­
fer.

If you have made any changes to the buffer since the last w command, ed requires that you pre­
cede the e command with a w command to save the contents of the buffer. If you are sure that you
want to discard the contents of the buffer, you can invoke the e command a second time. This
forces ed to discard the buffer contents and read in the new file. For example,

-29-

e filel
?
e filel
561

The question mark after the first invocation of e is to warn you that you have made changes to the
current contents of the buffer, and that these changes will be lost if you do not write them on test­
file. The second invocation of e tells ed II I don't care! Do it anyway! ". Ed complies by discarding
the current buffer and reading in the contents of filel. Ed reports to you the number of characters
read.

If you are sure that you want to discard the current contents of the buffer without saving them,
you can use the E (Edit) command. E is similar to e, except that ed does not check to see if any
changes have been made to the current buffer. Thus, you do not have to type the e command
twice.

If you have made several changes to the buffer, and then decide that you do not like what you
have done, you can start editing the same file all over again by typing e or E with no specified file
name. This causes the contents of the currently remembered file to be read into the buffer, des­
troying the previous contents. Of course, if you have written some of the changes you have
made to the current file already, there is no qUick and easy way to reverse them.

If you specify a file name with the e or E command, that file name becomes the new current file,
and is remembered for future use with w, r, e, or E.

You can also execute shell commands with the e or E command. The shell command is introduced
with!. For example,

E !Is
23
,p
file 1
readfile
testfile

This example runs the shell command Is, and places its output in the ed buffer, destroying
whatever was in the buffer previously. The number of characters placed in the buffer is printed for
you. The actual list of files and the number of characters read into the buffer may be different than
those shown above. Note that ! is illegal if the editor was invoked from a restricted shell A shell
command is never remembered as the current file name.

Silencing the Character Counts
If the character counts that ed produces (when ed is invoked, or with the w, r, e, or E commands)
are annoying or are not helpful, they can be silenced with the - option. It is specified when ed is in­
voked, as in

$ ed - filename

-30-

The - option also suppresses the question mark generated by the e and q commands whenever
they are not preceded by a w command (the q command is discussed in the next section).

Encrypting and Decrypting Text
Ed provides a feature that enables you to encrypt and decrypt the text in a file so that other users
are not able to read your files. The text is encrypted and decrypted by means of the DES encryp­
tion algorithm (see crypt(l) in the HP-UX Reference manual). To encrypt your text, you must sup­
ply a key, which is simply a string of one or more characters. The key determines the manner in
which the DES algorithm encrypts your text. You must remember this key.

The X (encrypt) command enables you to encrypt the text in the ed buffer. The X command ac­
cepts no arguments, but prompts you to enter a key. The echoing on your screen is disabled while
you enter the key, so there is no visible record of it. For example,

E file1
561
,p
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor operates in two modes: command mode and
text entry mode. In command mode, ed interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
X
Enter file encryption key:
w
561
q
$

This example edits file 1 , and prints out its contents. After the X command is invoked, you are
prompted to enter a key. This key can be any string of characters, but whatever it is, do not forget
your key! When the w command is invoked, the text in the buffer is encrypted according to the key
you entered and written on file1. The q command, which is discussed later, exits the editor and
leaves you at the shell level. Now execute the cat command to try to print out the contents of file1:

$ cat file1
(garbage)

$

-31-

You probably got a screenful of garbage. If your bell beeped a couple of times, this is because
the text is encrypted into invisible characters as well as visible characters. There is no practical
way for another user to tell what is actually contained in your file.

To edit a file containing encrypted text, use the -x option when ed is invoked:

$ ed -x filel
Enter file encryption key:
561
,p
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor operates in two modes: command mode and
text entry mode. In command mode, ed interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

The -x option is the same as the X command, except that it is used when you invoke ed. When
prompted for the key, you must enter the same key that you entered when the text was encrypted.
Otherwise, the text in that file is inaccessible. This is why it is so important that you remember
your key. After the key is entered, the text in filel is decrypted and read into the ed buffer. You
may now edit the text normally.

When you are done editing, if you invoke the w command to write your changes to the file, the
text is encrypted according to your key. If you want to change your key or disable encryption alto­
gether, you must use the X command. When you are prompted for your key, either type in your
new key to change the encryption key, or simply type a new-line. If you type a new-line, a null
key is entered, and encryption is disabled. Disable encryption now by typing

X
Enter file encryption key: (new-line)
w
561

The contents of filel are now in a readable form.

Note that, when encryption is enabled, all subsequent e, r, and w commands encrypt the text in the
ed buffer.

As a general rule, text encryption is seldom needed by the typical user except when extreme secu­
rity is required. The HP-UX file system has its own security system which is sufficient for most
security needs. Using text encryption often and/or on several files at once is a dangerous prac­
tice, since you must remember your key to successfully edit these files. You should therefore ex­
ercise caution when using the text encryption feature.

-32-

The Shell Interface
Material Covered:

command; execute shell command;
q command; exit editor after checking for changes to the buffer;
Q command; exit editor without checking buffer for changes.

Escaping to the Shell Temporarily
The! command enables you to execute a shell command from within the ed editor. To do this,
type a !, followed by the shell command. For example,

!(date;who) >whofile

executes the date and who commands, and redirects their output into the file whofile. Note that ed
returns a ! to tell you when the command has completed execution.

If the character % appears anywhere in the shell command, it is replaced with the currently remem­
bered file name. Thus,

!sort % >sortedfile
sort filel >sortedfile

sorts (in reverse alphabetical order) the current contents of filel. Note that the current con­
tents of file I , not the ed buffer, are sorted. The sorted version of file I is redirected to the file sor­
tedfile. The 110 redirection in the last two examples is used so that the output from these shell
commands does not clutter up your screen while you are editing. Note that, if the output from a
shell command is printed on your screen, the output does not become part of the ed buffer unless!
is used with the r, e, or E commands.

A final feature of the ! command is the ability to re-execute the last shell command you exe­
cuted with !, without having to re-type the entire command. This is done by typing two exclama­
tion points, as in

!!
!

which re-executes the last shell command executed within the ed editor. Thus, sort % >sorted­
file is re-executed.

If a shell command contains any metacharacters, ed echoes the command line back to you with all
metacharacters expanded (this is what ed did in the first sort example above). For example,

!cat * > bigfile
cat filel readfile sortedfile testfile whofile >bigfile
!

-33-

which echoes the expanded command line, then executes the command.

Exiting the Editor
The q (quit) command exits the editor. The contents of the buffer are not automatically written on
the current file. If you have made any changes to the buffer since the last time you invoked the
w command, ed requires that you issue the w command before exiting with q. Invoking the q
command a second time forces ed to let you exit without writing the contents of the buffer on
the current file. To illustrate this command, first add some text to the buffer, then try to exit without
writing:

$a
Here is some extra text.

q

?
q
$

A change is made to the buffer by adding a single line of text to the end of the buffer. When the first
q command is typed, ed sees that there have been changes to the buffer since the last write, so ed
issues a question mark. This warns you that there are changes to the text in the buffer that will not
be saved if you exit without writing. The second q command forces ed to discard the contents of
the buffer and exit. Be very sure that this is what you want to do, since you cannot recover the
buffer contents once you have exited. The $ is the default shell prompt, indicating that you
are once more at the shell level (your shell prompt may be different).

If you know that you want to discard the contents of the buffer and exit, but you do not want to
type the q command twice, use the Q command. The Q command is similar to q, but ed does not
check to see if changes have been made to the contents of the buffer.

The - option previously discussed disables the question mark that ed issues when you do not write
before executing an e or q command. You are living dangerously when it is disabled, however.
That question mark has kept many users from aCcidentally throwing away hours of work. Besides,
the E and Q commands are implemented for those special cases when you want to discard the
contents of the buffer.

-34-

Miscellaneous Topics
Material Covered:

[DEL], [RUB], [BREAK] keys; any of these keys generates an interrupt signal to ed;

Editing Scripts

Interrupting the Editor
[DEL], [RUB], or [BREAK] causes ed to stop whatever command it is executing and return to
you for a command. Ed tries to restore the state of your file to whatever it was before the com­
mand was issued. This is easily done if ed is interrupted while printing, since dot is not set until
printing is done. If ed is reading or writing files, or performing substitutions or deletions, however,
the state of the buffer (and the current file) is unpredictable; dot mayor may not be changed.
Thus, it is usually safer to let ed finish whatever it is doing, rather than risk finding the buffer or the
current file in some garbled state.

Editing Scripts
An editing script is simply a file containing a list of ed commands. If you have several files on
which a specific list of commands must be executed, it is easier to use an editing script than it is to
invoke ed once for every file, and perform the tasks in each.

Suppose you have several files named file1, file2, ... , and you want to perform some specific
substitutions, additions, and deletions on each. First, create a file (called script, for example),
and put all the ed commands that you want to execute, in the order that they must be executed, in
the file:

$ ed script
?script
a
Or !date
1s/.*$/& DATE OF LAST UPDATE/
$-3,$d
g/Karl Harrison/s//Georgia Mitchell/
w
q

w
87
q
$

The file script now contains ed commands to put the current date and time at the beginning of
each file, append "DATE OF LAST UPDATE" to the date and time, delete the last four lines of
each file, and replace every instance of "Karl Harrison" in each file with "Georgia Mitchell".
Note that the wand q commands are included so that the script writes the buffer on each file
and exits the editor automatically.

-35-

To use script, invoke ed as follows:

$ ed - filel <script
$ ed - file2 <script

etc.

The I/O redirection character < causes ed, when invoked, to take its input from script. Thus, as
ed is invoked with each file name, that file is edited according to the commands contained in script.

-36-

Table of Contents

Sed - A Non-interactive Text Editor
Abstract .. 1
Introduction .. 2
Overall Operation ... 2

Command-line Flags ... 3
Order of Application of Editing Commands .. 3
Pattern-space .. 3
Examples .. 3

ADDRESSES: Selecting Lines for Editing .. 3
Line-number Addresses ... 4
Context Addresses ... 4
Number of Addresses ... 4
Examples .. 5

FUNCTIONS .. 5
Whole-line Oriented Functions ... 5

Example .. 6
Substitute Function .. 6

Examples ... 8
Input-output Functions .. 8

Examples ... 9
Multiple Input-line Functions .. 9
Hold and Get Functions ... 1 0

Example .. 10
Flow-of-Control Functions ... 10
Miscellaneous Functions .. 11

Reference ... 11

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIxt operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efficiently in one pass

through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

tUN IX is a Trademark of Bell Laboratories.

-1-

Introduction

Sed is a non-interactive context editor designed to be especially u.;eful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac­
tive and non-interactive operation, considerable changes have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem­
blance between the two editors is in the class of patterns ('regular expressions') they recognize;
the code for matching patterns is copied almost verbatim from the code for ed. and the descrip­
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's Manual[1]. (Both code and description were written by Dennis M. Ritchie.>

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:

[address 1 ,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

-2-

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after

s functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com­
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com­
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of­
control commands, t and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands, can be controlled by one address (or address-pair) by
grouping the commands with curly braces ('{ }')(Sec. 3.6.).

-3-

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ,", at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period'.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ,*, matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets ,[]' matches any character in the string,

and no others. If, however, the first character of the string is circumflex '"',
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\ (' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression '\d'means the same string of characters matched by an expression
enclosed in '\ (' and '\)' earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of '\ (' counting from
the left. For example, the expression '"\ (.*\)\1' matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., '/ /') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters C $. * [] \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash '\'.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addr~sses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

-4-

and the process is repeated.

Two addresses are separated by a comma.

Examples:

lanl
lan.*anl
rani
1,/

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines
matches all lines

1\,/
Ir*anl

matches line 5

1\ (an\). *\ II
matches lines 1,3,4 (number = zero!)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then- the single character func­
tion name, possible arguments enclosed in angles « », an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are flot part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions

(2M -- delete lines

The d function deletes from the file (does not write to the 0utput) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2) n -- next line

(l)a\

The fl function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the fl command.

< text> -- append lines

(1) i\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character ('\') immediately preceding the new­
line. The < text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, < text> will be written to the out­
put regardless of wha.t later commands do to the line which triggered it. The
triggering line may be deleted entirely; < text> will still be written to the out­
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

< text> -- insert lines

-5-

(2)c\

The i function behaves identically to the a function, except that < text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

< text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in < text>. Like a and i, c must be followed by a newline hid­
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and i, < text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed be/ore the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap­
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by < pattern» with < replace­
ment>. It can best be read:

Substitute for <pattern>, <replacement>

-6-

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con­
text address is that the context address must be delimited by slash ('/') charac­
ters; < pattern> may be delimited by any charhcter other than space or new­
line.

By default, only the first string matched by < pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of < pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The < replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in < replacement>. Instead, other char­
acters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the ath substring matched
by parts of < pattern> enclosed in '\ (' and '\)'. If nested sub­
strings occur in < pattern>, the ath is determined by counting
opening delimiters ('\ (').

As in patterns, special characters may be made literal by
preceding them with backslash ('\').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of < pattern> begins just after the
end of the inserted characters; characters put into the line from
< replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w < filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by < filename>. If
< filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand < filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see beloW), combined.

-7-

Examples:

The following command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and,.on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,; ?:]I*P&* Igp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

IX/s/anl AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IX/s/anl AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2) p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by < filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand < filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s fUl}ctions, combined.

(1)r < filename> -- read the contents of a file

The read function reads the contents of < filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a

-8-

functions and the r functions is written to the output in the order that the func­
tions are executed.

Exactly one space must separate the rand < filename> . If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

IKubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces contaInIng
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2) D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
neWline), read another line from the input. In any case, begin the list of edit­
ing commands again from its beginning.

(2) P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

-9-

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2) h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des­
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

Ih
lsi did.*1 I
Ix
G
s/\nl :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: . :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2) { -- Grouping

The grouping command 'I' causes the next set of commands to be applied (or
not applied) "as a block to the input lines selected by the addresses of the group­
ing command. The first of the commands under control of the grouping may
appear on the same line as the' {' or on the next line.

-10-

The group of commands is terminated by a matching '}' standing on a line by
itself.

Groups can be nested.

(O):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by band t functions. The < label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same < label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no < label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2}t < label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to < label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions
(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(1)q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora­
tories, 1978.

-11-

-12-

Table of Contents

Awk - A Pattern Scanning And Processing Language
Abstract .. 1
Introduction .. 2

Usage .. 2
Program Structure ... 2
Records and Fields .. 2
Printing ... 3

Patterns .. 3
BEGIN and END ... 3
Regular Expressions ... 4
Relational Expressions ... 4
Pattern Ranges .. 4

Actions ... 4
Built-in Functions .. 5
Variables, Expressions, and Assignments .. 5
Field Variables ... 5
String Concatenation ... 6
Arrays ... 6
Flow-of-Control Statements ... 6

Design .. 6
Implementation ... 7
References .. 8
Examples .. 9

Awk - A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those patterns. A wk makes certain data selec­
tion ~nd transformation operations easy to express; for example, the a~j'k pro­
gram

length> 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 == 0

prints all lines with an even number of tields; and the program

I $1 = log($1); print 1

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc­
tions as in patterns, as well as arithmetic and string expressions and assign­
ments, if-else, while, for statements, and multiple output streams.

This report contains a user's guide, a discussion of the design and imple­
mentation of awk, and some timing statistics.

September I, 1978

-1-

1. Introduction
A wk is a programming language designed

to make many common information retrieval and
text manipulation tasks easy to state and to per­
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified~ this action will be performed on each
line that matches the pattern.

Readers familiar with the UNIXt program
grep I will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

(print $3, $2)

prints the third and second columns of a table in
that order. The program

$2 - fAISlef

prints all input lines with an A, B, or C in the
second field. The program

$1 != prev (print; prev = $1)

prints all lines in which the first field is different
from the previous first field.

1.1. Usage

The command

awk program [files)

executes the awk commands in the string pro­
gram on the set of named files, or on the stan­
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

tUNIX is a Trademark or Bell Laboratories.

-2-

awk -1 pfile [tiles)

1.2. Program Structure

An awk program is a sequence of state­
ments of the form:

pattern
pattern

action
action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat­
terns can be printed several times.) If there is no
pattern for an action, then the action is per­
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" ter­
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into "fields." Fields are normally
separated by white space - blanks or tabs - but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument - Fe may also be used
to set FS to the character e.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print I
prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used; for example

{ print NR, NF, $0 I
prints each record preceded by the record
number and the number of fields.

Output may be diverted to multiple files;
the program

{ print $1 >"fo01"; print $2 >"fo02" I
writes the first field, $1, on the file fo01, and
the second field on file fo02. The > > notation
can also be used:

print $1 »"foo"

appends the output to' the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >$2

-3-

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is to.

Similarly, output can be piped into another
process (on UNIX only); for instance,

print I "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10Id\n", $1, $2

prints $1 as a floating poinf number 8 digits
wide, with two after the decimal point, and $2 as
a IO-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string· valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con­
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN {FS = ":" I
... rest of program ...

Or the input lines may be counted by

END {print NR I
If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

Ismithl

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name "smith". If a line contains "smith"
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu­
lar expression forms found in the UNIX text edi­
tor ed' and grep (without back-referencing). In
addition, awk allows parentheses for grouping, I
for alternatives, + for "one or more", and? for
"zero or one", all as in lex. Character classes
may be abbreviated: [a-zA-ZO-9) is the set
of all letters and digits. As an example, the awk
program

I[Aa)ho I [Ww)einberger I [Kk)ernighanl

will print all lines which contain any of the
names "Aho," "Weinberger" or "Kernighan,"
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

I\lAI I

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari­
able matches a regular expression (or does not
match it) with the operators - and !-. The
program

$1 - IUJ)ohnl

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury", and so on.
To restrict it to exactly UJ)ohn, use

$1 - rUJ)ohn$1

The caret - refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres­
sion involving the usual relational operators <,
< =, = =, !=, > =, and >. An example is

-4-

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 > = "s"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators II (or), &&
(and), and! (not). For example,

$1 > = "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with "s",
but is not "smith". && and II guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 { ... I
In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive). For example,

Istartl, Istopl

prints all lines between start and stop, while

NR = = 100, NR = = 200 { ... I
does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi­
colons. These action statements can be used to
do a variety of bookkeeping and string manipu­
lating tasks.

3.1. Built-in Functions

Awk provides a "length" function to com­
pute the length of a string of characters. This
program prints each record, preceded by its
length:

Iprint length, $O}

length by itself is a "pseudo-variable" which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

Iprint length ($0), $O}

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func­
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 II length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
!) and is at most n characters long. If n is omit­
ted, the substring goes to the end of 5. The
function index(s1,52) returns the position
where the string 52 occurs in s1, or zero if it
does not.

The function sprintf(f, e1, e2, ...) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

x = sprintf("%8.2f %1 Old", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign­
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa wl'ienever context
demands it. For instance,

x = 113 11 + "4"

assigns 7 to x. Strings which cannot be inter-

-5-

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

I s1 + = $1; s2 + = $2 }
ENOl print s1, s2 }

Arithmetic is done internally in floating
point. The arithmetic operators are +, -, *, /,
and % (mod). The C increment + + and decre­
ment - - operators are also available, and so
are the assignment operators + =, - =, * =,
/ =, and % =. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace tne first field
with a sequence number like this:

I $1 = NR; print}

or accumulate two fields into a third, like this:

($1 = $2 + $3; print $0)

or assign a string to a field:

if ($3 > 1 000)
$3 = "too big"

print

which replaces the third field by "too big" when
it is, and in any case prints the record.

Field references may be numerical expres­
sions, as in

(print $i, $0 + 1), $0 + n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 = = $2) ...

fields are treated as strings.

Each input line is split into fields automati­
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ... , array!n).
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS is used as the
separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prints the two fields separated by " is". Vari­
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub­
scripts may have any non-null value, including
non-numeric strings. As an example of a con­
ventional numeric subscript, the statement

x[NR) = $0

assigns the current input record to the NR-th ele­
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro­
gram

I x[NR) = $0 I
END I .. , program ... I

The first action merely records each input line in
the array x.

Array elements may be named by non­
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro­
gram

lapplel I x["apple") + + I
lorangel I x["orange") + + I
END I print x["apple"), x["orange")

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

-6-

i = 1
while (j < = NF) I

print $i
++i

The for statement is also exactly that of C:

for (j = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state­
ment which is suited for accessing the elements
of an associative array:

for (j in array)
statemellt

does stafement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur­
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, <=, >, >=, == ("is equal to"), and
! = ("not equal to"); regular expression matches
with the match operators - and !-; the logical
operators II, &&, and !; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con­
tinue statement causes the next iteration to
begin.

The statement next causes av.'k to skip
immediately to the next record and begin scan­
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro­
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim­
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general­
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed I provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

Lex) provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli­
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con­
venient numeric processing, variables, more gen­
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn't do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ­
ing or debugging the code. We· have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa­
tions, while probably a bad idea for a general­
purpose programming language, is desirable in a
language that is meant to be used for tiny pro­
grams that may even be composed on the com­
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called "report generation" - processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim­
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro­
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

-7-

5. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yaee;4 the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-IlnO of the UNIX
programs we, grep, egrep, /grcp, sed, lex, and
awk on the following simple tasks:

I. count the number of lines.

2. print all lines containing "doug".

3. print all lines containing "doug", "ken"
or "dmr".

4. print the third field of each line.

5. print the third and second fields of each
line, in that order.

6. append all lines containing "doug",
"ken", and "dmr" to files "jdoug",
"jken", and "jdmr", respectively.

7. print each line prefixed by "Iine­
number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already men­
tioned the others. In all cases the input was a
file containing I 0,000 lines as created by the
command Is -I; each line has the form

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 charac-
ters. Times for lex do not include compile or
load.

As might be expected, all'k is not as fast
as the specialized tools we, sed, or the programs
in the grep family, but is faster than the more
general tool lex. In all cases, the tasks were
about as easy to express as awk programs as pro­
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

References

l. K. Thompson and D. M. Ritchie, UNIX

Programmer's Manual, Bell Laboratories
(May 1975). Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

3. M. E. Lesk, "Lex - A Lexical Analyzer
Generator," Compo Sci. Tech. Rep. No.
39, Bell Laboratories, Murray Hill, New
Jersey (October 1975).

4. S. C. Johnson, "Yacc - Yet Another
Compiler-Compiler," Compo Sci. Tech.
Rep: No. 32, Bell Laboratories, Murray
Hill, New Jersey (July 1975).

·8·

Program 2
we 8.6

grep 11.7 13.1
egrep 6.2 11.5
j'grep 7.7 13.8
sed 10.2 11.6
lex 65.1 150.1
awk 15.0 25.6

3

11.6
16.1
15.8

144.2
29.9

Task
4

29.0
67.7
33.3

5

30.5
70.3
38.9

6 7 8

16.1
104.0 81.7 92.8
46.4 71.4 31.1

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally
too long to show.

AWK:

1. END (print NR)

2. Idougl

3. Ikenldougldmrl

4. (print $3)

5. (print $3, $2)

6. Ikenl
Idougl
Idmrl

(print >"jken")
(print >"jdoug")
(print >"jdmr"l

7. (print NR "; " $0)

8. (sum = sum
END (print sum)

SED:

1. $=

2. /doug/p

3. Idoug/p
Idoug/d
Ike nIp
Iken/d
Idmr/p
Idmr/d

+ $41

4. Ir j- [j-r j- [j-\([" j*\) .-/511\ 1/p

5. 1[" j- [J.\ ([" j-\) [J.\ ([")0\) .-/sll\2 \ 1/p

6. Iken/w jken
Idoug/w jdoug
Idmr/w jdmr

-9-

LEX:

1. %(
int i;
%1
%%
\n i++;

%%
yywrapO (

printf("%d\n", i);

2. %%
'.*doug.*$

\n

printf("%s\n", yytext);

Table of Contents
Shell Programming

Terminology ... 1
Creating a Simple Shell Script ... 1

Example .. 2
Creating the Script. ... 2
Running the Script. ... 3

Parameters .. , .. 4
Types of Parameters .. 4

Common Parameters ... 4
Positional Parameters ... 4
Special Parameters ... 5

How to Use Parameters ... 5
Parameter Substitution .. 7

Quoting .. 9
The Backslash ... 9
The Single Quote .. 9
The Double Quote ... 11
The Grave Accent. ... 12

Using Parameters in Shell Scripts ... 12
Examples .. 12

Example 1 - The Compile Shell Script ... 12
Example 2 - The Modfile Shell Script.. ... 13
Example 3 - Comments and Here Documents ... 14

Command Separators ... 15
The Semicolon .. 15
The Ampersand ... 15
Mixing; and & Separators .. 16
The Double Ampersand ... 16
The Double Vertical Bar. .. 16
Mixing && and II Separators .. 17
Mixing;, &, &&, and II Separators ... 17

Command Grouping ... 18
Grouping With Parentheses ... 18
Grouping With Braces ... 20

Control-Flow Constructs ... 20
The FOR Construct ... 20

Examples ... 21
The CASE Construct ... 22

Examples ... 22
The IF Construct. ... 23

Examples ... 23
The WHILE Construct ... 24

Example .. 24
The UNTIL Construct .. 25

Example .. 25
An Example Shell Program ... 26
For More Information .. 28

Shell Programming

The shell is perhaps one of the most versatile programs in your HP-UX system. The shell has two
main roles. Its most common role is that of a command interpreter - reading input from your ter­
minal, and interpreting it as a request for a particular program to be executed. The shell as a
command interpreter is discussed in the supplied tutorial text by Jean Yates.

The second role of the shell is that of a programming language. The shell programming langu­
age is a structured programming language that is directly recognized and executed by the shell; it
requires no compilation. It includes structured programming constructs like if, case, for, while, and
until. In addition, all HP-UX commands, as well as any commands you may have written yourself,
can be executed within a shell program. Other capabilities, such as parameters, parameter substi­
tution, command substitution, and comments, are also supported.

This article describes the shell programming language in detail, including tutorial examples as ap­
propriate.

Terminology
The terms shell script and shell program are often used interchangeably to refer to a program
written in the shell programming language. In this article, however, these two terms are used dif­
ferently. For the remainder of this article, shell script refers to a list of commands that is executed
once, in the order the commands are listed. A shell script contains no conditional testing, no
looping, no branching, and no structured programming constructs; it mayor may not contain
one or more parameters. A shell program refers to those procedures that do not qualify as shell
scripts. The term procedure refers to both shell scripts and shell programs. It is used when descri­
bing concepts that are common to both.

Creating a Simple Shell Script
A simple shell script is one in which no parameters occur. A simple shell script is useful when the
follOWing two conditions are true:

you anticipate having to perform one or more tasks several times over a period of time, and

the tasks you must perform, the commands needed to perform those tasks, and the ar­
guments to the commands never change.

A simple shell script is not well adapted to change, because you are required to edit the script if
changes are necessary. However, a simple shell script can save you a lot of time and typing, as
well as relieve you of certain mundane chores, if you have a well-defined set of objectives for your
script.

-1-

Example
Suppose you want to monitor the user activity on a multi-user system. After conSidering the prob­
lem, you decide that your script should give you the follOWing information:

1. the current date and time;
2. the names of the users currently logged in;
3. a list of all the processes on the system;
4. the number of disc blocks being used by each user.

You can see that each numbered item is satisfied by a single command:

1. date
2. who
3. ps -e
4. du lusers

To make the output more readable, you decide to include the echo command, also. You now
have a complete list of all the commands you need to perform the tasks at hand. All that remains is
to put them all together in your script.

Creating the Script

Any procedure is simply an ASCII text file. Thus, you may use the editor of your choice to create
your script. The editor ed is used in this example.

You decide that status is a good name for the script, since it gives information about the status
of the system at a particular date and time. In the following editing session, your input is shown in
bold:

$ ed status
?status
a
echo" Current date and time: 'date'''-n''
echo ""-nUsers logged in: "-n "
who
echo ""-nCurrent processes: "-n "
ps-e
echo ""-nUser disc usage: "-n "
du lusers
echo ""-n* * * * * * * * * *"-n"

w
204
q
$

You now have a file called status containing the commands you want to run.

-2-

Running the Script
You can execute status by typing

$ sh status

which creates a new shell to run the script. A more common way, however, is to mark status as
executable, so that it may be executed just like other commands. To do this, use the chmod com­
mand, and type

$ chmod 755 status

which sets the mode of status such that everybody may read and execute status, but only you
can modify it. (Note that you are free to assign whatever mode you want, as long as you give
yourself execute permission. You should also give yourself read and write permission, because
you cannot read or modify your script without them!) You may now execute status by typing

$ status

which causes the shell to execute the commands contained in status. The output appears on
your terminal.

You have already saved yourself a lot of typing with status, but there is still more you can do.
Suppose you want to collect this information in a file called logfile for later inspection. You can do
this by typing

$ status > >logfile

The append redirection > > is used instead of > so that successive invocations of status do not
overwrite the old contents of logfile. In this way, you can keep a history of user activity that is
updated as often as status is executed.

The only problem with this is that you are required to manually execute status every time you
want to update logfile. However, there is a command, called cron, that executes commands on a
scheduled basis, according to entries in the file lusrlliblcrontab. Thus, you can schedule status
to be run as often as once a minute (note that crontab may be protected such that no one ex­
cept the super-user may edit it - ask your super-user for details). Your only task is to check
logfile periodically to get the information you need, and remove information that is no longer
useful.

-3-

Parameters
Procedures almost always make use of at least one parameter. A parameter is a string of one or
more characters that is made to stand for another string of characters. Parameters are similar in
many respects to variables in other programming languages.

Types of Parameters
Parameters can be divided into three types: common parameters, positional parameters, and
special parameters.

Common Parameters

A common parameter is a name consisting of a series of letters, digits, and/or underscores. The
first character must be a letter or an underscore. Common parameters are completely user­
defineable. Values are assigned to common parameters by writing

parameter = value

where value is the value to be assigned to parameter. The values of common parameters are
always character strings. Some examples of valid assignment statements are:

dir = /usr/lib/gates
user = fred
null =

cwdir = 'pwd'

In these examples, the string "/usr/lib/gates" is assigned to dir, "fred" is assigned to user, and
the null string is assigned to null. In the last example, the name of your current working directory
is assigned to cwdir using command substitution. Whenever a command is enclosed in grave ac­
cents (' '), the command is replaced by its output when the command is executed. Command
substitution is explained in the supplied tutorial text by Jean Yates.

Positional Parameters

Whenever you give the shell a command to execute, the shell automatically sets the values of ten
positional parameters named $0, $1, $2, ... $9. Each positional parameter contains the value of
one argument specified on a command line. For example, if you type

$ cc prog1.c prog2.c prog3.c

then the shell sets $0 equal to "cc", $1 equal to "progl.c", $2 equal to "prog2.c", and $3 equal
to "prog3.c". $4 through $9 are set equal to the null string. Thus, $0 always contains the name of
the invoked command, and $1 through $9 contain the values of the command's arguments, if any,
in the order they are specified. The null string is assigned to all positional parameters not given a
value on the command line.

-4-

If more than ten arguments (including the command name) are specified on the command line,
only the first ten are assigned to positional parameters. The remaining arguments are saved, but are
not accessible until the shift command is used. The shift command shifts the value of $2 to $1, $3 to
$2, $4 to $3, etc. Thus, the remaining arguments are shifted into $9 one at a time, until eventu­
ally all the remaining arguments are addressable through positional parameters.

These parameters are available for use in procedures, and enable you to write procedures that
accept arguments. Their values cannot be changed except with the set and shift commands (docu­
mented in Special Commands under sh(l), in the HP-UX Reference manual}.

Special Parameters

Several parameters are" special", either because they are used elsewhere by the HP-UX sys­
tem, or because they are automatically set by the shell. Parameters that are automatically set by
the shell are:

the number of non-null positional parameters in decimal; can be greater than 10;

the flags supplied to the shell on invocation, or by the set command; flags are stored in - as a
character string, with each character in the string specifying a shell flag that has been set;

? the decimal value returned by the last synchronously executed (Le. not executed in the
background) command;

$ the process 10 of the shell running the current procedure;

the process number of the last background (asynchronous) command invoked.

The values of these parameters cannot be changed.

Parameters that are used by the system are HOME, PATH, TERM, SHELL, EXINIT, MAIL, TZ,
PSI, PS2, and IFS. Some of these parameters (TERM, PATH, and possibly MAIL, SHELL, and
EXINIT) are environment parameters, which are used to set up the environment in which your
processes run. These parameters should not be changed indiscriminately. For example, PATH
tells the shell which directories it should search to find the programs you want to execute. If you
redefine PATH with some unrelated value, the shell no longer knows where to look. Thus, as
a safety precaution, all of the above parameters should be avoided for general use in pro­
cedures, whether they are part of the environment or not.

How to Use Parameters
Once a parameter has been assigned a value, you may obtain its value by preceding the
parameter with a dollar sign ($). For example,

dirname = /users/bill/dir1
cd$dirname

-5-

This example assigns the string" /users/bilVdirl" to dirname, and then uses dirname to change the
current working directory. The cd command, after substituting the value of dirname, is equivalent
to

cd /users/bill/ dir 1

The dollar sign signals the shell that the following characters specify a parameter, and that the
parameter's value is to be substituted in its place. If you had omitted the dollar sign in the pre­
vious example, the shell would assume that you want to change your current working directory to a
directory called "dirname".

Whenever a parameter is preceded by a dollar sign, the parameter is said to be dereferenced.
All parameters must be dereferenced to obtain their values (positional parameters always appear
with a dollar sign, and thus are always dereferenced).

One or more characters can be added to the end of a parameter value by enclosing the parameter
name in braces, and explicitly typing the added character(s}. For example,

dirname = /users/bill/dir
cd ${dirname}l

cd ${dirname}2

This example assigns "/users/bill/dir" to dirname, and then appends a single character to dir­
name in subsequent cd commands. The two cd commands are eqUivalent to

cd /users/bill/dirl

and

cd /users/bill/dir2

respectively. Note that the appended character does not affect the value of dirname. The fol­
lowing example shows how characters can be added to the beginning and the end of a parameter
value:

fn=progl
dirname = /users/bill
mv $fn $dirname/bill.${fn}.R2

Although somewhat difficult to read, this example shows a commonly used method of building
file names from parameters. Using the given values of fn and dirname, the mv command is
equivalent to

-6-

mv progl /userslhilllhill.progl.R2

which moves prog1 from the current working directory to the directory /users/bill, and renames
it bHl.prog1.R2. Note that the braces are necessary only when a parameter name is followed by one
or more characters that are not to be interpreted as part of the parameter name. (Note also that the
braces are not necessary if the parameter name is immediately followed by a slash (I), as shown by
dirname in the previous example.)

Parameter Substitution
There are constructs that enable you to substitute other values in place of parameter values,
depending on whether or not the parameter is set or null. The four constructs are:

${parameter:-word}
If parameter is set and non-null, then dereference its value. Otherwise, substitute word,
where word can be any valid parameter value.

${parameter: = word}
If parameter is not set or is null, then set it to word. The value of parameter is then dereferen­
ced. Positional parameters may not be set in this way.

${parameter:?word}
If parameter is set and is non-null, then dereference its value. Otherwise, print word and exit
from the current process. If word is omitted, then the message "parameter null or not set" is
printed.

${parameter: + word}
If parameter is set and is non-null, then substitute word. Otherwise, substitute a null value.

Here are some examples:

echo "The directory being processed is ${l:-'pwd'}. "

This statement could exist in a procedure that performs a specific task on each file in a particular
directory. The first argument to the procedure ($1) is the name of the directory to process. If no
directory is specified, the current working directory is used. This echo statement reports which
directory is being processed. If $1 is set, its value is printed; otherwise, command substitu­
tion is used to print the name of the current working directory.

pr ${whichfiles: = *} >/dev/lp

This statement could be used to print one or more files on the line printer Idevllp. The parameter
whichfiles could be either a single file name, or a pattern of special characters, specifying the
file(s) to print. If whichfiles is set, its value is dereferenced, and the specified files are printed.
If whichfiles is not set or is null, it is set equal to an asterisk (*). Its value is then dereferenced,
causing all the files in the current working directory to be printed.

cd ${arg3:?" Arg3 not set"}

-7-

This statement could appear in a procedure to inform the user when a necessary argument (arg3,
in this case) has not been set. In this example, arg3 is the name of a directory which must be
specified. If arg3 is set, the cd command is executed; otherwise, the message "arg3: Arg3 not set"
is printed, and the process is terminated. The initial " arg3:" in the message is added by the
shell as an additional identifier. (Note that, if your terminal is set to echo all eight bits of an ASCII
character, you might get garbage output on your terminal.)

${dimame: + 'echo cd $dimame'}

In this example, if dirname is set, then the command "cd $dimame" is substituted. Otherwise, no
action is taken. The echo command used inside command substitution marks is necessary for the
following reasons:

The shell expects a single word of information follOwing the + in this example. Thus, the cd
command and its argument must be enclosed in double quotes to force the shell to treat it as
a single word.

Enclosing "cd $dirname" in double quotes is not enough, however, because a subtle error
is generated. For example, suppose you typed the following lines in a shell program:

dimame = lusers/bill
${ dimame: + "cd $dirname " }

The shell sees that "cd $dimame" is to be treated as a single word, and looks for a com­
mand named "cd lusers/bill" (instead of a command named "cd" with an argument of
"/userslbill")! Expressed in this way, the shell cannot distinguish two arguments; it only sees
one argument and, obViously, an error is generated.

The solution to this is to allow the echo command to pass two distinct arguments to the shell,
but still make the entire construct look like a single word. This is easily done, because a com­
mand substitution construct is always treated as a single word by the shell. Thus, the double
quotes surrounding "cd $dimame" are not necessary, and the construct 'echo cd $dir­
name' causes this example to execute correctly.

The braces are necessary in all four of the previously described constructs. If the colon is om­
itted in any of the constructs, the shell simply checks to see if parameter is set or not, and no other
action is taken.

-8-

Quoting
There are four characters used to quote other characters in procedures. These characters are the
backslash ("'), the single quote n, the double quote ("), and the grave accent (').

The Backslash
The special meaning of a character can be stripped away by preceding that character with a
backslash. Whenever a character is preceded by a backslash, the character is said to be quoted, and
it is interpreted literally. For example,

The first argument tells echo to print all files in the current directory whose names begin with
"prog" , followed by any number of characters, followed by ". c ". The second argument tells echo
to print "*list*", since both asterisks are quoted, and are thus interpreted literally. The third ar­
gument tells echo to print all files in the current directory whose names are" lib?3" followed by any
single character. The first question mark is literal; the second stands for any single character.

The backslash is the most powerful quoting character, in that it can quote all special characters, in­
cluding itself. It is also the most limited in scope, since it can quote only one character at a time.
The following list shows all the characters that are special to the shell, all of which are quotable with
a backslash:

? * [1 '" $, " - I & ; () < > { } new-line

Note that, if a new-line is quoted by a backslash, the new-line is ignored completely.

If you are ever in doubt about whether or not a character needs quoting, it is safe to precede
the character with a backslash; if the character has no special meaning, the backslash is ignored.

The Single Quote
The single quote quotes all the special characters except the single quote itself. It has the added
advantage of enabling you to quote several characters at once. For example,

prints the exact characters listed between the single quotes. Even the backslash is treated literally.
This means that a string like

echo 'Can ",'t find file'

does not work as expected, because the backslash loses its quoting ability when enclosed between
single quotes. Thus, there is no way to put a single quote between single quotes without inad­
vertently confusing the shell.

-9-

The previous example produces a subtle error that deserves more explanation. If you type

$ echo 'Can",'t find file'

to the shell, the shell first examines the command line looking for syntax errors. It sees first the string
"echo" , followed by the quoted string "can",", followed by the characters "t find file" , followed
by the beginning of another quoted string. But wait a minute! Where's the rest of the second
quoted string? The shell needs more input, so it types

$ echo 'Can ",'t find file'
>

back at you. The> is the shell's default secondary prompt, which the shell uses to signal that more in­
formation is needed. Suppose you then type

$ echo 'Can ",'t find file'
> text'

just to complete the command line so echo will run. Well, this satisfies the shell's syntax rules, so the
shell prepares to execute the folloWing command line:

echo Can "'t find file(new-line}text

(Note that, although the single quotes have disappeared, their effect can be seen in that the
backslash in the first quoted string has been interpreted literally.) Where did the new-line come
from? It was the first character of the second quoted string! The command now runs "successful­
ly" , and you get

$ echo 'Can",'t find file'
> text'
Can find file
text
$

on your screen. Hold on! Where's the "'" t"? And where did all the spaces come from? This time
it's not the shell's fault. The echo command has a few tricks of its own in the form of escape sequences.
Escape sequences are character pairs consisting of a backslash and another character (for a com­
plete list of echo's escape sequences, refer to echo(l) in the HP-UX Reference manual}. Each escape
sequence is interpreted to mean something else, and", t causes echo to output a tab.

There are two lessons to learn from this. First, do not try to embed a single quote inside a string
quoted by single quotes. You will invariably confuse the shell (and yourself, when you try to figure
out what went wrong)! Second, beware of escape sequences in arguments to echo. It can be very
difficult to figure out why literal characters disappear when using echo to print them on your screen.

Since $ and - are quoted within single quotes, parameter and command substitution cannot be per­
formed. For example,

-10-

echo '${ cmdname}: current working directory is 'pwd'. '

still echoes the exact characters shown between the single quotes.

The single quote also forces the shell to interpret several words as a single word (a word is a
string of one or more characters, delimited by one or more spaces, tabs, and/or new-lines).
Thus, many words can be enclosed in single quotes and assigned to a parameter. For example,

errmesg = 'Cannot find specified file. '

assigns the string "Cannot find specified file. " to errmesg. The space characters embedded in the
string no longer delimit words. Instead, the shell treats the entire string as a single word. If errmesg
is later dereferenced, the string will look exactly as it did when it was assigned to errmesg.

The Double Quote
The double quote quotes all special characters except ",-, $, ", and '. Since the backslash is not
quoted within double quotes, it may be used to quote these four characters. In the following ex­
ample,

echo "The computer responds "'- "Not found"'- " and exits. "

the backslash is used to quote the double quote character. Thus, a double quote may be inclu­
ded in a string enclosed in double quotes. Note that the backslash itself must also be quoted to be
interpreted literally within double quotes.

The infamous example given in the last section can be executed with no surprises using double
quotes:

echo" Can't find file. "

This time, all characters show up as expected on your screen.

Since $ and' are not quoted, parameter and command substitution are permitted. For ex­
ample,

echo" $dirname processed at 'date'. "

prints out the name of the directory currently being processed, and the date and time at which it
was processed. Note that braces are not required around dirname, since it is separated from the
next word by a space. The backslash can be used to quote $ and " to prevent parameter and com­
mand substitution from occurring.

The double quote also enables you to assign several words to a parameter. For example,

descr = "print date and time"
cmd=date
cmddescr = "$cmd - $descr"

-11-

This example assigns the short description of date to descr, using double quotes to force the shell to
interpret the four words as a single word. The string" date" is assigned to cmd. Finally, the two
parameters are dereferenced as shown, and assigned to cmddescr. Thus, cmddescr now con­
tains a string similar to that found under the NAME heading in the HP-UX Reference manual.

The Grave Accent
The grave accent is used to signal the shell that a command substitution is to be performed. No
special characters are quoted within grave accents. Whatever characters you type between grave
accents are interpreted exactly as if they were typed after the shell prompt. For example,

echo" File contents: "-n'cat *UX*[1-5j'''

This example outputs the heading" File contents: " , followed by a new-line ("-n). Then, the cat
command is executed to print out the contents of all files in the current working directory whose
names contain the characters "UX", and end with a single digit in the range 1 through 5. Note
that, even though the command substitution is enclosed in double quotes, the characters *, [,
and 1 are treated as unquoted in the command substitution.

The backslash may be used to quote characters within a command substitution.

Using Parameters in Shell Scripts
Adding parameters to shell scripts makes them more flexible and adaptable to your changing
needs. Positional parameters are especially useful, in that they enable you to pass arguments to
your shell scripts.

Examples

Example 1 - The Compile Shell Script

Compile is a short shell script that accepts one argument. It is useful when you have several C
programs that you want to compile, one at a time. Each a.out file that is produced is renamed
such that it has the same name as its corresponding source file, with the ". c " suffix removed.
Compile contains the following lines:

cc $1
fn = 'base name $1 .c'
mv a.out $fn

The basename command strips away all but the last component of a path name, and optionally
removes a specified suffix (see basename(1) in the HP-UX Reference manual). Thus, if you in­
voke compile by typing

$ compile /users/fred/programs/prog1.c

-12-

the shell sets $1 equal to "/userslfredlprograms/prog1.c", and the commands in compile become

cc luserslfred/programs/prog 1. c
fn = 'basename luserslfred/programs/prog1.c .c'
mv a.out prog1

The basename command removed" luserslfred/programs/" and ".C" from the string contained in
$1, causing fn to be set equal to "prog1". Thus, no matter what directory the source file is located
in, you always end up with an executable file in your current working directory with a name simi­
lar to that of its source file.

Note that you can also invoke compile as

$ compile prog1.c

with the same results. The basename command removes parts of a path name only if those parts
exist. Thus, the only part that is removed from" prog1.c" is ".c". Compile can therefore be used
to compile C programs no matter where the source files reside.

Example 2 - The Modfile Shell Script

The modfile shell script copies a file from one directory into another, edits it according to a script
of ed commands, and records the fact that the file has been copied in a bookkeeping file. It ac­
cepts three arguments: the source directory, the destination directory, and the name of the file
to be copied, respectively. Modfile contains the following lines:

log = lusers/kb/logfile
edsc = lusers/kb/tools/edscript
cp $11$3 $2
ed - $2/$3 <$edsc
echo" $3 copied and edited." > >$Iog

Absolute path names are used for log and edsc so that modfile does not depend on your current
working directory. Thus, you can type

$ modfile luserslfred . file 1

which copies file1 from luserslfred into your current working directory, or

$ modfile .. /Cprogs lusers/bill prog4.c

which copies prog4.c from the directory Cprogs in your parent directory into luserslbill. Thus,
modfile enables you to copy a file from any directory into any other directory, no matter what your
current working directory is, provided the modes of the specified directories permit you to copy
files.

The - option silences ed so that no character counts appear on your screen. The file edscript con­
tains a list of one or more ed commands that ed is to apply to each file that is copied. Finally, the out­
put from the echo command is redirected to the file luserslkblZogfiZe, so that a record of the action tak­
en is saved as a convenient reminder.

-13-

Note that modfile is written so that changes can be made without having to actually change the
code. The directory names and the file to be copied are all parameters, and the file edscript
can be edited to change the way ed modifies the copied file.

Example 3 - Comments and Here Documents
A comment is introduced by a pound sign (#), and continues until the next new-line. All charac­
ters between the pound sign and the new-line are ignored by the shell. Comments can be added to
the modfile shell script as follows:

Initialize parameters

log = lusers/kb/logfile
edsc = lusers/kb/tools/edscript

Copy file

cp $11$3 $2

Modify copied file

ed - $2/$1 <$edsc

Write record

echo" $1 copied and edited." > >$Iog

It is good programming practice to provide comments in your shell scripts where necessary. They
not only help others understand your scripts, but they can also help refresh your memory if you re­
visit a script that you have set aside for awhile.

A here document is a type of 110 redirection that enables you to include input to a certain program
inside the shell script itself. A here document has the following form:

command [args ... 1 < < [- 1 word

word

The < < redirection tells the shell that the input for command is to be taken from the following here
document. Word consists of one or more characters, and signals the beginning and the end of the
here document. All lines between the beginning and ending word are given to command as its
standard input. If any character of word is quoted, then all characters within the here document
are quoted. Otherwise, parameter and command substitution take place, the characters ",,-,
$, and' are special, and the first character of word must be quoted if it is used within the here do­
cument. If - is appended to < <, then all leading tabs are removed from the here document and
from word.

-14-

The ed command in modfile

ed - $2/$3 <$edsc

can be rewritten to use a here document, as shown:

ed - $2/$3 < <-"'-%
/for/c
while(i ! = limit) {

g/exit/d
%

In this example, % defines the beginning and end of a here document containing four lines of
input for ed. % is preceded by a -, to strip away all leading tabs in the document, and by ",-, to en­
sure that all characters in the document are quoted. The here document is indented for clarity.

Using a here document in modfile requires that you edit modfile if you want to change the way
ed modifies the copied file. However, by including the here document, you can eliminate the file
edscript. Also, it is more convenient to debug a procedure if a command's input is readily acces­
sible. Here documents become more valuable as the size and complexity of the procedure grows.

Command Separators
The characters ;, &, &&, and II can be used to separate one or more commands or pipelines,
causing sequential, asynchronous (background), or conditional execution of the commands or pi­
pelines.

The Semicolon
The semicolon (;) causes sequential execution of each command or pipeline specified. It is
equivalent to a new-line. For example,

cd /users/kb; mv . .ffred/filel .; Is

causes the shell to execute the cd command, then the mv command, and finally the Is command.
Sequential execution means that the shell waits for each command to finish before executing the
next one. Thus, only one additional process exists at any given time. Note that sequential execu­
tion is the normal mode of execution for the shell, so a semicolon is not needed after the Is com­
mand to ensure that it executes sequentially.

The Ampersand
The ampersand (&) causes asynchronous execution of each command or pipeline specified. For
example,

cc prog1.c prog2.c & sort -d -0 filel filel & wc textfile &

-15-

causes the shell to create a new process for each command listed. Asynchronous execution
(sometimes referred to as executing a command in the background) means that the shell does not
wait for termination of the first command before executing the next. Thus, depending on how
long each command executes, three processes can exist at the same time in the previous ex­
ample. The first process is compiling prog1.c and prog2.c, the second is sorting filel, and the
third is counting the number of lines, words, and characters in textfile. Note that the ampersand fol­
lowing the wc command must be specified, or the wc command is executed sequentially.

The shell reports the process numbers of each process created by a & separator. Thus, if you exe­
cute the above example, three numbers are printed on your screen which identify the three pro­
cesses created. These are provided for your convenience, should you decide to terminate these
processes prematurely with the kill command.

Mixing; and & Separators
Sequential execution works well with commands that have short execution times, and asynchro­
nous execution works well with commands that have long execution times. It is helpful to be able
to choose the type of execution based on the execution time of a command. The semicolon and
ampersand separators can be intermixed on a line, so you can avoid having to wait for lengthy
commands. For example,

cc prog1.c prog2.c prog3.c & cd lusers/bill; Is -I

Here, the shell creates a new process and executes cc in that process. Then, without waiting for
cc to finish, the shell sequentially executes cd and Is, waiting for the cd command to finish before
executing the Is command.

Note that a syntax error is generated if a semicolon and an ampersand appear adjacent to each
other.

The Double Ampersand
The double ampersand (&&) causes the next command or pipeline in the sequence to be execu­
ted only if the previous command or pipeline executes successfully. For example,

test -d lusers/kb/tools && cd lusers/kb/tools

first checks to make sure that luserslkbltools exists. If so, the current working directory is changed
to luserslkbltools. If not, no further action is taken.

The Double Vertical Bar
The double vertical bar (II) causes the next command or pipeline in the sequence to be exe­
cuted only if the previous command or pipeline was unsuccessful. For example,

test -d lusers/kb/tools II mkdir lusers/kb/tools

-16-

first checks to see if the directory luserslkbltools exists. If so, no further action is taken. If not, the
directory is created using mkdir.

Mixing && and II Separators
The && and II separators can also be intermixed on a line. For example,

test -d lusr/tmp && rm lusr/tmpl * II echo "Permission denied"

which first checks to see if the directory lusrltmp exists. If so, all files in lusrltmp are removed. If rm
fails, the message "Permission denied" is printed. If lusrltmp does not exist, no further action is
taken.

Mixing ;, &, &&, and II Separators
All four command separators can be intermixed on a line, but the interpretation of the actual exe­
cution sequence becomes more complex. For example,

test -d Itools && cd Itools; test -z "$fn" II sort -0 $fn $fn &

The shell uses ; and & to terminate a command sequence. Thus, this example contains two
command sequences. The first command sequence is

test -d Itools && cd Itools;

which first checks to make sure that the directory ltools exists. If it does, it becomes the current
working directory; if not, no further action is taken. Since sequential execution is required by the
semicolon, the shell executes this command sequence first, waiting until the test and cd com­
mands have finished before executing the second command sequence. The second command
sequence is

test -z "$fn" II sort -0 $fn $fn &

which first checks to see if the value of fn has a zero length. If not, the contents of the file speci­
fied by fn is sorted; otherwise, no further action is taken. Note that the terminating & places this
entire command sequence in the background, not just the sort command.

All four command separators are rarely combined in a single command line as shown above.
Other constructs in the shell programming language provide the same functions in a much more
readable format. Also, the time required to design and debug lengthy sequences of commands
is prohibitive. If space is a consideration, however, there is no more compact way of expressing a
particular command sequence.

-17-

Command Grouping
The left and right parentheses () and the left and right braces {} can be used to force several
commands to be grouped together in a single unit.

Grouping With Parentheses
All commands enclosed in parentheses are passed to a new shell process to be executed. For
purposes of discussion, new process refers to the process that is created to execute the
parenthesized commands, and calling process refers to the process that reads the parenthesized
commands, creates the new process, and passes the commands to the new process. Both pro­
cesses have their own shell. For instance, in this example,

(who;ls)

the calling process creates a new process to which the who and is commands are passed. The
new process executes who and is sequentially. The calling process waits for the new process to
signal that the commands have been executed. When the signal is received, the new process dies,
and the calling process reads the next command.

The & separator can be used to cause asynchronous execution in one or both of the processes.
For example,

(cd $HOME; ed - newfile <script; rm script) &

The & in this example is seen only by the calling process. The new process sees

cd $HOME; ed - newfile <script; rm script

and executes each command sequentially. The calling process treats the entire parenthesized
sequence as a command that is to be run asynchronously. Thus, the process number of the new
process is reported, and the calling process proceeds to the next command, without waiting for the
new process to signal that the job is completed. (Note that the cd command affects only the
current working directory in the new process; the calling process's current working directory is
unchanged.)

If the sequence is typed as follows,

(cd $HOME; ed - newfile <script &)

then only the new process is aware of the & separator. The calling process simply sees a
command that is to be run sequentially, and waits for a signal from the new process before con­
tinuing. The new process sees

cd $HOME; ed - newfile <script &

Thus, cd is executed sequentially, and a separate process is created to execute ed. The new
process reports the process number of the process that is executing ed, signals the calling process
that the job is completed, and dies, even though ed is still executing asynchronously. The calling
process then reads the next command.

-18-

Parentheses can be nested, with the result that more than one new process is created. For example,

test -f $fn && (ed - $fn <edl && (rm edl; sort -0 $fn $fn &)) &

The calling process sees

test -f $fn && (...) &

which tells it to execute the sequence asynchronously. Thus, the calling process creates another
process (process A) to execute the sequence, reports the process number of that process, and
reads the next command. As far as the calling process is concerned, the specified command
sequence has been executed.

Meanwhile, process A sees

test -f $fn && (...)

which is everything that the calling process saw, except that the final & is missing. Thus, process A
begins sequential execution of its command sequence. It first executes the test command, and, if
unsuccessful, signals the calling process and dies. Nothing more is done. If successful, however,
process A creates a new process (process B) to execute everything within the first level of
parentheses. Because there is no & separator, process A waits for a signal from process B that the
job is done. When process B's signal is received, process A in turn signals the calling process that
the job is done. Note that process A's signal is ignored by the caning process, regardless of
whether or not process B is created, since the calling process has already proceeded on to the next
command.

Process B comes to life and sees

ed - $fn <edl && (...)

Thus, process B begins sequential execution of its command sequence. The ed command is
executed and, if unsuccessful, process B signals process A that the job is done, and dies. If suc­
cessful, process B creates a new process (process C) to execute everything between the second level
of parentheses. Process B then waits for a signal from process C that the job is completed. When
process C's signal is received, process B sends a signal to process A, which in turn signals the cal­
ling process.

Process C sees the following command sequence:

rm edl; sort -0 $fn $fn &

Process C first executes the rm command. When rm has terminated, process C creates another
process (process D) to execute the sort command, reports process D's process number, signals
process B that the job is done, and dies.

Finally, process D sees the following command:

-19-

sort -0 $fn $fn

Process D sequentially executes the sort command. When sort has terminated, process D signals
process C that the job is done, and dies. Process C, however, has already died, so process D's sig­
nal is ignored. In fact, process D probably begins its task after processes C, B, and A have already
died!

Command sequences like the previous example are seldom, if ever, used. Designing a com­
mand sequence that performs exactly like you want it to perform takes a great deal of time. There
are other constructs available that perform the same functions and are much easier to read and de­
bug. However, command sequences like the previous example are ideally suited to those pro­
grammers who want their procedures to be as concise as possible.

Grouping With Braces
Braces are useful for grouping two or more commands together for the purpose of redirecting
their combined input or output. Braces do not in themselves cause the creation of new processes.
For example, in the following procedure,

{
date
Is
pr *
} >dircontents

date, Is, and pr are executed sequentially, and their output is collected in the file dircontents.
Note that the braces do not create a new process to execute the commands. The braces are sim­
ply used to cause the 1/0 redirection to apply to all three commands.

The ;, &, &&, and II separators can be used within braces, and braces can be nested. They are
most commonly used as shown in the previous example, with each brace appearing on a line by
itself, and any number of valid commands andlor control-flow constructs appearing between
them.

Control-Flow Constructs
With the introduction of control-flow constructs, procedures cease to be shell scripts, and
become shell programs. Control-flow constructs are perhaps the most useful elements of the
shell programming language, for they enable you to create powerful shell programs that incor­
porate conditional testing, branching, and looping.

The FOR Construct
The for construct enables you to execute a set of commands once for every new value assigned
to a parameter. The for construct has the following syntax:

for name [in wordlist 1
do command-list
done

·20·

Name is any valid parameter name. W ordlist contains a list of one or more values that are to be as­
signed to name. One at a time, a value from wordlist is assigned to name, and the list of commands
in command-list is executed. Execution terminates when there are no more values left in wordlist.
If the in clause is omitted, then name is assigned the value of each positional parameter that is
set, and execution terminates when all positional parameters have been used.

Examples

for i in *.C
do

cc $i
mv a.out 'basename $i .c'

done

This example is a variation of the compile shell script discussed earlier. The parameter i is assig­
ned the name of each file in your current working directory that ends in ".c". That file is then
compiled, and the resulting a.out file is renamed such that its name is the same as its corresponding
source file with the ".c" removed. Execution ends when i has been assigned the names of all C
source files in your current working directory.

for dir in Idev lusr lusers !lib lete Ibin Itmp
do

done

num = 'Is $dir I wc -w'
echo "$num files in $dir"

This example assigns each directory name to dir. The contents of each directory are listed, and the
number of files is counted with wc and assigned to num. The number of files in each directory is
then printed.

for i
do

done
sort -d -0 ${i}.srt $i

Since the in clause is missing, i is assigned the value of each positional parameter that is set on the
command line. The result is that each file that is specified on the command line is sorted. The sor­
ted version is placed in a file having the same name as the unsorted file, with a ".srt" appended to
it.

Note that the wordlist part of the for construct can be almost anything. Some examples are

for i in $1

which enables you to specify wordlist from the command line, or

for file in $dir/[a-f]?[1-4].c

-21-

which causes wordlist to include all files in the directory specified by dir that begin with a lower­
case letter in the range a through f, followed by any single character, followed by a digit in the range
1 through 4, followed by ".c".

Note that do or done is recognized only when following a new-line or semicolon.

The CASE Construct
The case construct enables you to execute a specific set of commands, depending on the value
of a parameter. The case construct has the following syntax:

case $name in
pattern] [I pattern2 ... 1) command-listl ;;

esac

Name is a dereferenced parameter name. The patterns are strings of one or more literal
characters and/or the special characters *, ?, [,], and ",,-. The command-list is a list of one or more
commands to be executed if one of the associated patterns matches the value of name. The last
command in command-list must be terminated with a double semicolon (;;).

Examples

case $fn in

esac

*.c) cc $fn
mv a.out 'basename $fn .c' ;;

*.f) fc $fn
mv a.out 'basename $fn .f ;;

*.p) pc $fn
mv a.out 'basename $fn .p' ;;

*) echo "$fn: not a source file. "
exit 1 ;;

This example compares the value of fn with each pattern listed, in the order in which the patterns
are listed. If fn is a file name ending in ".c", then the commands associated with the "*.c" pat­
tern are executed, and so on. The final pattern consisting of a single asterisk acts as a default condi­
tion. If none of the other patterns are matched, the commands associated with the asterisk are
executed, since the asterisk matches anything. It is important that the asterisk be listed last, be­
cause any patterns follOWing the asterisk are never matched. Note that the case construct ter­
minates after a match is made.

for i
do case $i in

-[dO 1) echo "Please specify directory. "
read dir;;

-bl-r) rflag=y;;
*) echo "$i: unknown option. "

-22-

esac
done

exit 1 ;;

This example illustrates how a case construct may be included within a for construct. This com­
bination is very common, and is most often used to process options from the command line. This
particular example accepts -d, -D, -b, and -r as valid options, and flags any others as invalid.
The case construct is executed once for every positional parameter set on the command line. The
first pattern matches -d or -0, both of which require the user to enter a directory name from his
terminal (the read command is described under Special Commands in sh(l), in the HP-UX Re­
ference manual). The second pattern matches either -b or -r, both of which set rflag equal to II y II
(note that the second pattern could be written as "_[br]II). Finally, any other option prompts an
error message, and the process is terminated.

The IF Construct
The if construct enables you to execute certain commands, depending on the result of one or
more conditional tests. The if construct has the following syntax:

if command-listl
then command-list2
elif command-list3
then command-list4

else command-listn
fi

Only the if, then, and terminating fi are necessary; all elif sections and the else section are op­
tional. Each command-list is a list of one or more commands. The list associated with if is executed
first. If the last command of the list is successful, the list associated with the first then is executed,
and the construct is terminated. If the list associated with if is unsuccessful, the list associated
with the next elif is executed. If that elif s list is successful, the list associated with the next then is
executed, and so on. If all elif lists are unsuccessful, the list following else is executed, and
the if construct terminates.

Examples

'f [f II $fn II] 1 --w
then

ed - $fn <script
fi

This example shows the if construct in its simplest form. The square brackets are the alternate
syntax for the test command, and are equivalent to

-23-

test -f -w "$fn"

Thus, if the file specified by tn is both an ordinary file and writable, then it is edited according to
the ed commands in script. Otherwise, no action is taken. Note that this it construct is
equivalent to

test -f -w "$fn" && ed - $fn <script

if [-f -r /users/kb/$fn 1
then

diff /users/kb/$fn $fn >diffile
elif [-f -r /users/bill/$fn 1
then

diff /users/bill/$fn $fn >diffile
elif [-f -r /userslfred/$fn 1
then

diff /userslfred/$fn $fn >diffile
else

echo" Can't find $fn for comparison. "
fi

This example shows all the parts of an it construct. Here, the directories /users/kb, /users/bill, and
/users/fred are searched for the file specified by tn. If it is found, it is compared to a file with the
same name in your current working directory. The output from dilf is redirected into a file called
diffile. The else clause functions as a default; if all other tests fail, the echo command is executed.

The WHILE Construct
The while construct repeatedly executes a list of commands and, if the last command in the list
is successful, executes a second list of commands. The while construct has the following syntax:

while command-listl
do command-list2
done

Command-list] is a list of one or more commands that is repeatedly executed. If the last com­
mand in this list executes successfully, the commands in command-list2 are executed. The loop ter­
minates when the last command in command-list] executes unsuccessfully.

Example

while [-n "$1" 1
do

done

sort -d -0 $1 $1
ed - $1 <edscript
pr -f $1 >/dev/lp
shift

-24-

This example operates on the positional parameter $1. The while loop continues as long as the
value of $1 has a non-zero length. First, the file name specified by $1 is sorted. Then, it is edited
according to the ed commands in edscript, and printed on the system's line printer. The shift com­
mand moves the value of $2 to $1, $3 to $2, $4 to $3, and so on. Thus, different files are sorted,
edited, and printed each time through the loop, even though the parameter name stays the
same. The loop terminates when a null value is shifted in for $1.

The UNTIL Construct
The until construct repeatedly executes a list of commands and, if the last command in the list is
unsuccessful, executes a second list of commands. The until construct terminates when the last
command in the first command list executes successfully. Thus, the while and until constructs dif­
fer only in the condition required to terminate the loop. The until construct has the following syn­
tax:

until command-list]
do command-list2
done

Command-listl is a list of one or more commands that is repeatedly executed. If the last
command in command-list] executes unsuccessfully, the commands in command-list2 are execu­
ted. The until construct terminates when the last command in command-list] executes successfully.

Example

until who I grep fred >/dev/null
do

sleep 300
done
write fred <fredletter

This example checks to see if Fred is logged in. If not, the process "sleeps" for five minutes,
and checks again. This continues until Fred finally logs in, at which time the until construct ter­
minates, and the message in fredletler is sent to Fred via the write command. Note that the out­
put from grep is redirected to Idevlnull, which essentially discards the data into the system's "bit
bucket". A shell program like this can be executed in a background process to ensure that a
particular user gets an important message as soon as he logs in.

-25-

An Example Shell Program
The following is a shell program that is used to print files on the system's line printer, /dev/lp.

rd=n
range = *
dir= 'pwd'
days =

Parse options.

while [-n "$1"
do case $1 in

-c) rd=y # raw dump
shift ;;

-d) shift # directory name
dir=$l
shift ;;

-f) shift # last-modified time
days = $1
shift ;;

-r) shift # files to print
range = $1
shift ;;

*) echo II $1: unrecognized option. II

exit 1 ;;
esac
done

Move to specified directory.

cd $dir

If -f specified, move all affected files.

if [-n "$days" 1
then

mkdir .. /temp
find. -mtime $days -exec mv {} .. /temp "-;

fi

Begin printing.

for i in $range
do case $rd in

n) pr -f -r $i >/dev/lp;;
y) cat $i >/dev/lp

echo II "-n"-n II >/dev/lp;;
esac
done

·26·

Printing is done. Clean-up time.

test -n II $days" && (mv .. /temp/* .; rmdir .. /temp)
exit 0

This shell program, called print, accepts four options:

the -c option, which specifies that the contents of the files are to be printed with no for­
matting (i.e. a II raw dump"). The cat command is used for this. The -c option requires
no argument. If the -c option is not specified, then the contents of the files are printed out
with a heading and page numbers. The pr command is used for this.

the -d option, which implies that the argument to follow specifies the name of the directory
containing the files to be printed. If the -d option is not specified, the user's current working
directory is used.

the -f option, which implies that the argument to follow specifies an argument for the
find command. If -f is specified, a temporary directory called temp is created in the parent
directory, and the find command is used to move all files of a certain modification date to
temp, thus excluding them from the printing. The -f argument can have the following three
forms:

+ n exclude those files modified more than n days ago;

-n exclude those files modified less than n days ago;

n exclude those files modified exactly n days ago.

This argument is combined with the -mtime option of the find command (seefind(l) in the
HP-UX Reference manual). If the -f option is not specified, no files are excluded on the
basis of modification date.

the -r option, which implies that the argument to follow specifies a string of literal and/or
special characters. The string is used in the in clause of a for construct to print a subset of
the files in the directory. If the -r option is not specified, an asterisk is used, causing all files
to be printed.

The following examples show some of the valid ways to invoke print:

print -c

causes all the files in the current working directory to be printed in II raw II form using cat.

print -d /users/bill/Cprogs -r "'-[a-f"'-l"'- * -f +3 --c

does several things. First, the current working directory is changed to /users/billlCprogs.
Then, the directory /users/billltemp is created, and all files in Cprogs modified more than 3 days
ago are moved to temp, thus excluding them from the printing. Finally, all files in Cprogs that
begin with a lower-case letter in the range. a through f are printed in II raw II form using cat. Note
that the special characters in [a-f]* must be quoted to prohibit the shell from expanding the pat-

-27-

tern, and replacing it with the files that match it in the current working directory. When the printing
is done, all the files in temp are moved back to Cprogs, and temp is removed.

print -r thesis -d luserslbill/school

prints the single file thesis in the directory lusersibilllschool. The pr command is used to produce a
formatted printing.

Using the case construct to parse options enables you to specify them in any order on the
command line. The only requirements are that the options be immediately followed by their im­
plied arguments, and that all options and arguments be delimited by spaces.

For More Information
The sh(l) entry in the HP-UX Reference manual functions as a comprehensive, though somewhat
cryptic, reference for the shell programming language. Some topics are not covered in this chapter
because of infrequent use, or because one example is sufficient to give gUidance in several areas.
Most of the omitted topics are related to the shell's special commands, which are discussed under
Special Commands in the sh(l) entry. You should read this section thoroughly to familiarize
yourself with the many commands that are built directly into the shell.

Many HP-UX commands are actually shell programs. The HP-UX Reference manual specifies
which commands are shell programs under the appropriate manual entries. The following is a list
of some of them:

letc/rc
letc/whodo
letc/mkdev

It is helpful to examine the contents of these commands to see how the shell programming language
is used. Since these files contain ASCII data, you can print them out using cat, provided your sys­
tem administrator has assigned permissions to these files that enable you to do so.

-28-

Table of Contents

UNIX Programming - Second Edition
Abstract .. 1
Introduction .. 2
Basics ... 2

Program Arguments ... 2
The Standard Input and Standard Output .. 2

The Standard I/O Library .. 4
File Access ... 4
Error Handling - Stderr and Exit ... 6
Miscellaneous I/O Functions ... 6

Low-Level I/O .. 6
File Descriptors .. 6
Read and Write ... 7
Open, Creat, Close, Unlink .. 8
Random Access - Seek and Lseek .. 1 0
Error Processing .. 10

Processes .. 11
The "System" Function .. 11
Low-Level Process Creation - Exec! and Execv ... 11
Control of Processes - Fork and Wait .. 12
Pipes ... 13

Signals - Interrupts and All That ... 15
References .. 18
Appendix - The Standard I/O Library ... 19

General Usage ... 19
Calls .. 19

UNIX Programming - Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNlxt system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard I/O library. The topics discussed include

• handling command arguments

• rudimentary 110; the standard input and output

• the standard 110 library; file system access

• low-level 110: open, read, write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.

There is also an appendix which describes the standard 110 library in detail.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

-1-

1. INTRODUCTION
This paper describes how to write programs that interface with the UNIX operating system

in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt to catch interrupts and other signals during execu­
tion.

The document collects material which is scattered throughout several sections of· The UNIX
Programmer's Manual OJ for Version 7 UNIX. There is no attempt to be complete; only gen­
erally useful material is dealt with. It is assumed that you will be programming in C, so you
must be able to read the language roughly up to the level of The C Programming Language [2].
Some of the material in sections 2 through 4 is based on topics covered more carefully there.
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

2 . 1. Program Arguments
When a C program is run as a command, the arguments on the command line are made

available to the function main as an argument count argc and an array argv of pointers to
character strings that contain the arguments. By convention, argv [0] is the command name
itself, so argc is always greater than O.

The following program illustrates the mechanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.)

main (argc, argv)
int argc;
char *argv [] ;
{

int i;

1* echo arguments *1

for (i = 1; i < argc; i++)
printf("%s%c", argv[i], (i<argc-1) ? ' , : '\n');

argv is a pointer to an array whose individual elements are pointers to arrays of characters;
each is terminated by \0, so they can be treated as strings. The program starts by printing
argv [1] and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The "Standard Input" and "Standard Output"
The simplest input mechanism is to read the "standard input," which is generally the

user's terminal. The function getchar returns the next input character each time it is called.
A file may be substituted for the terminal by using the < convention: if prog uses getchar,

-2-

then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog I prog

provides the standard input for prog from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on what­
ever you are reading. The value of EOF is normally defined to be -1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character c on the "standard output," which is also by
default the terminal. The output can be captured on a file by using >: if prog uses pu tchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it
doesn't exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

prog I otherprog

puts the standard output of prog into the standard input of otherprog .

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order; the output
will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same
mechanism as getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs 110 with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For example, the following program strips out
all ascii control characters from its input (except for newline and tab).

#include <stdio.h>

main ()
{

1* ccstrip: strip non-graphic characters *1

The line

int Cj

while «c = getchar()) != EOF)
if «c >= ' , && C < 0177) I I c

putchar(c)j
exit(O)j

#include <stdio.h>

'\t' " c '\n')

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat file1 file2 ... I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exi t at the
end is not necessary to make the program work properly, but it assures that any caller of the

-3-

program will see a normal termination status (conventionally 0) from the program when it com­
pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD 110 LIBRARY
The "Standard I/O Library" is a collection of routines intended to provide efficient and

portable I/O services for most C programs. The standard I/O library is available on each sys­
tem that supports C, so programs that confine their system interactions to its facilities can be
transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix con­
tains a more complete description of its capabilities.

3 . 1. File Access

The programs written so far have all read the standard input and written the standard out­
put, which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

wc x.c y.c

prints the number of lines, words and characters in x. c and y. c and the totals.

The question is how to arrange for the named files to be read - that is, how to connect the
file system names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the stan­
dard library function fopen. fopen takes an external name (like x. c or y. C), does some
housekeeping and negotiation with the operating system, and returns an internal name which
must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don't need to know the
details, because part of the standard I/O definitions obtained by including stdio. h is a struc­
ture definition called FILE. The only declaration needed for a file pointer is exemplified by

FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a
type name, like int, not a structure tag.

The actual call to fopen in a program is

fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argu­
ment is the mode, also as a character string, which indicates how you intend to use the file.
The only allowable modes are read ("r"), write ("W"), or append (IIa ll).

If a file that you open for writing or appending does not exist, it is created (if possible).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not exist is an error, and there may be other causes of error as well Oike trying to
read a file when you don't have permission). If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putc are the simplest. getc returns the next character from
a file; it needs the file pointer to tell it what file. Thus

c = getc(fp)

places in c the next character from the file referred to by fp; it returns EOF when it reaches
end of file. putc is the inverse of getc:

-4-

putc(c, fp)

puts the character c on the file fp and returns c. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are pro­
vided for them. These files are the standard input, the standard output, and the standard error
output; the corresponding file pointers are called stdin, stdout, and stderr. Normally
these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin, stdout and stderr are pre-defined in the 110 library as the standard
input, output and error files; they may be used anywhere an object of type FILE * can be.
They are constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are processed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process.

#include <stdio.h>

main(argc, argv)
int argc;

/* wc: count lines, words, chars */

char *argv[];
(

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct 0;

i = 1;
fp stdin;
do (

if (argc > 1 && (fp=fopen(argv[i], "r")) == NULL) (
fprintf(stderr, "we: can't open %s\n", argv[i]);
continue;

linect = wordct = charct = inword 0;
while ((c = getc(fp)) != EOF) (

charct++;
if (c == '\n')

linect++;
if (c == ' , II c == ,\t' II c

inword = Oi
else if (inword == 0) (

inword = 1;
wordct++i

'\n')

printf (II%7ld %7ld %7ld", linect, wordct, charct) iO
printf(argc > 1 ? II %s\n" : "\n", argv[i])i
fclose(fp) i

tlinect += linecti
twordct += wordcti
tcharct += charcti

while (++i < arge)i
if (arge > 2)·

printf("%7ld %7ld %7ld total\n", tlineet, twordet, teharct)i
exit(O)i

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written.

-5-

The function fclose is the inverse of fopen; it breaks the connection between the file
pointer and the external name that was established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files that a program may have open simul­
taneously, it's a good idea to free things when they are no longer needed. There is also another
reason to call fclose on an output file - it flushes the buffer in which putc is collecting out­
put. (fclose is called automatically for each open file when a program terminates normally')

3.2. Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output
written on stderr appears on the user's terminal even if the standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can't be accessed
for some reason, the message finds its way to the user's terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exi t to terminate
program execution. The argument of exi t is available to whatever process called it (see Sec­
tion 6), so the success or failure of the program can be tested by another program that ,uses this
one as a sub-process. By convention, a return value of 0 signals that all is well; non~zero
values signal abnormal situations.

exi t itself calls fclose for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exi t causes immediate termination without any
buffer flushing; it may be called directly if desired.

3 . 3. Miscellaneous 110 Functions

The standard I/O library provides several other 1/0 functions besides those we have illus­
trated above.

Normally output with putc, etc., is buffered (except to stderd; to force it out immedi­
ately, use fflush (fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprintf) that specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprintf.

fgets (buf, size, fp) copies the next line from fp, up to and including a newline,
into buf; at most size-1 characters are copied; it returns NULL at end of file.
fputs (buf, fp) writes the string in buf onto file fp.

The function ungetc (c, fp) "pushes back" the character c onto the input stream fp; a
subsequent call to getc, fscanf, etc., will encounter c. Only one character of push back per
file is permitted.

4. LOW-LEVEL 110
This section describes the bottom level of 1/0 on the UNIX system. The lowest level of

1/0 in UNIX provides no buffering or any other services; it is in fact a direct entry into the
operating system. You are entirely on your own, but on the other hand, you have the most
control over what happens. And since the calls and usage are quite simple, this isn't as bad as
it sounds.

4 . 1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files,
because all peripheral devices, even the user's terminal, are files in the file system. This means
that a single, homogeneous interface handles all communication between a program and peri­
pheral devices.

-6-

In the most general case, before reading or writing a file, it is necessary to inform the sys­
tem of your intent to do so, a process called "opening" the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a file descriptor. Whenever I/O is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S, .. .) and
WRITE(6, .. J in Fortran.} All information about an open file is maintained by the system~ the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the "shell") runs a program, it
opens three files, with file descriptors 0, I, and 2, called the standard input, the standard out­
put, and the stan'dard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O
without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors ° and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor­
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file ° for
input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and wri teo For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read = read(fd, buf, n)i

n_written = write(fd, buf, n)i

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and -1 indicates an error of some sort. For writing, the returned value is
the number of bytes actually written; it is generally an error if this isn't equal to the number

. supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1, which means one character at a time ("unbuffered"), and 512, which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient, but even
character at a time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

-7-

#define BUFSIZE 512 1* best size for PDP-11 UNIX *1

main()
{

1* copy input to output *1

char buf[BUFSIZE)i
int ni

while «n = read(O, buf, BUFSIZE» > 0)
write(1, buf, n)i

exit(O)i

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by wri te; the next call to read after that will return zero.

It is instructive to see how read and wri te can be used to construct higher level routines
like getehar, putchar, etc. For example, here is a version of getehar which does
unbuffered input.

#define CMASK 0377 1* for making char's> 0 *1

getchar() 1* unbuffered single character input *1
(

char Ci

return«read(O, &c, 1) > 0) ? c & CMASK : EOF)i

e must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the POP-II but not necessarily for
other machines.)

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

#define CMASK
#define BUFSIZE

0377 1* for making char's> 0 *1
512

getchar() 1* buffered version *1
{

static char
static char
static int

buf[BUFSIZE)i
*bufp = bufi
n = Oi

if (n == 0) 1* buffer is empty *1
n = read(O, buf, BUFSIZE)i
bufp = bufi

return«--n >= 0) ? *bufp++ & CMASK EOF)i

4.3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files
in order to read or write them. There are two system entry points for this. open and ere at
[sic1.

open is rather like the fopen discussed in the previous section. except that instead of
returning a file pointer, it returns a file descriptor, which is just an into

-8-

int fd;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided
to create new files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, erea t will truncate it to zero length; it is not an error to ere a t a file that
already exists.

If the file is brand new, ereat creates it with the protection mode specified by the pmode
argument. In the UNIX file system, there are nine bits of protection information associated
with a file, controlling read, write and execute permission for the owner of the file, for the
owner's group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only one file: and does not
permit the second argument to be a directory.)

#define NULL 0
#define BUFSIZE 51,2
#define PMODE 0644 /* RW for owner, R for group, others */

main(argc, argv)
int argc;

/* cp: copy f1 to f2 */

char *argv[];
{

int f1, f2, n;
char buf[BUFSIZE];

if (argc ! = 3)
error ("Usage: cp from to", NULL);

if «f1 = open(argv[1], 0» == -1)
error("cp: can't open %s", argv[1]);

if «f2 = creat(argv[2], PMODE» == -1)
error("cp: can't create %S", argv[2]);

while «n = read(f1, buf, BUFSIZE» > 0)
if (write(f2, buf, n) != n)

error("cp: write error", NULL);
exit(O);

error(s1, s2) /* print error message and die */
char *s1, *52;

printf(s1, s2);
printf (" \n") ;
exit(1);

-9-

As we said earlier. there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file descriptors. The routine c lose breaks the connection between
a file descriptor and an open file, and frees the file descriptor for use with some other file. Ter­
mination of a program via exi t or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file system.

4 . 4. Random Access - Seek and Lseek

File I/O is normally sequential: each read or wri te takes place at a position in the file
right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system call lseek provides a way to move around in a file without actu­
ally reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to posItIOn offset,
which is taken relative to the location specified by origin. Subsequent reading or writing will
begin at that position. offset is a long; fd and origin are int's. origin can be 0, I,
or 2 to specify that offset is to be measured from the beginning. from the current position,
or from the end of the file respectively. For example, to append to a file, seek to the end
before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi­
trary place in a file.

get(fd, pos, buf, n) 1* read n bytes from position pos *1
int fd, n;
long pos;
char *buf;

lseek(fd, pos, 0); 1* get to pos */
return(read(fd, buf, n));

In pre-version 7 UNIX,. the basic entry point to the I/O system is called seek. seek is
identical to lseek. except that its offset argument is an int rather than a long. Accord­
ingly, since POP-II integers have only 16 bits, the offset specified for seek is limited to
65,535; for this reason, origin values of 3, 4, 5 cause seek to multiply the given offset by
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, I,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks. first one
which selects the block, then one which has origin equal to I and moves to the desired byte
within the block.

4 . 5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of -I.
Sometimes it is nice to know what sort of error occurred; for this purpose all these routines,
when appropriate, leave an error number in the external cell errno. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer's
Manual, so your program can, for example, determine if an attempt to open a file failed

-10-

because it did not exist or because the user lacked permission to read it. Perhaps more com­
monly, you may want to print out the reason for failure. The routine perror will print a mes­
sage associated with the value of errno; more generally, sys_errno is an array of character
strings which can be indexed by errno and printed by your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one's own. This
section describes how to execute a program from within another.

5 • 1. The "System" Function

The easiest way to execute a program from another is to use the standard library routine
system. system takes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

main()
(

system("date") ;
1* rest of processing *1

If the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful.

Remember than getc and putc normally buffer their input; terminal 110 will not be prop­
erly synchronized unless this buffering is defeated. For output, use fflush; for input, see
setbuf in the appendix.

5.2. Low-Level Process Creation - Execl and Execv

If you're not using the standard library, or if you need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan­
dard library's system routine is based on.

The most basic operation is to execute another program without returning, by using the rou­
tine execl. To print the date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an execl call from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can't be found or is not executable. If you don't
know where date is located, say

execl (" Ibin/date;', "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance how many
arguments there are going to be. The call is

-11-

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL so execv can tell where the list ends. As with execl, filename is the file in which
the program is found, and argp [0] is the name of the program. (This arrangement is identi­
cal to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of mUltiple directories - you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argu­
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commandline that contains the complete command as it would have been
typed at the terminal, then say

execl("/hin/sh", "sh" , "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con­
structing the right information in commandline.

5.3. Control of Processes - Fork and Wait

So far what we've talked about isn't really al\ that useful by itself. Now we wil\ show how
to regain control after running a program with execl or execv. Since these routines simply
overlay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overlaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine cal\ed fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the "process id." In one of these processes (the "child"),
proc_id is zero. In the other (the "parent"), proc_id is non-zero; it is the process number
of the child. Thus the basic way to cal\, and return from, another program is

if (fork() == 0)
execl("/bin/sh", "sh" , "-c", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child, the value returned by fork is zero, so it cal\s execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If
there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wait:

int status;

if (fork() == 0)
execl (...) ;

wait (&status) ;

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or
the possibility that there might be more than one child running simultaneously. (The wait
returns the process id of the terminated child, if you want to check it against the value returned
by fork.) Finally, this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status). Stil\, these three lines are the heart of the standard library's
system routine, which we'll show in a moment.

The status returned by wait encodes in its low-order eight bits the system's idea of the
child's termination status; it is 0 for normal termination and non-zero to indicate various kinds
of problems. The next higher eight bits are taken from ·the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to

-12-

return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point­
ing at the right files, and all other possible file descriptors are available for use. When this pro­
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei­
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
execl. Conversely, if a caller buffers an input stream, the called program will lose any infor­
mation that has been read by the caller.

5.4. Pipes

A pipe is an I/O channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn­
chronizing the two processes. Most pipes are created by the shell, as in

Is I pr

which connects the standard output of Is to the standard input of pro Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

int fd[2]i

stat = pipe(fd)i
if (stat == -1)

1* there was an error ... *1

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is
for writing. These may be used in read, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd (just as system does), and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen ("pr", WRITE) i

creates a process that executes the pr command; subsequent write calls using the file descrip­
tor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other side
of the pipe, then calls the shell (via exec 1) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child that intends to read fails to close the write end of the
pipe, it will never see the end of the pipe file, just because there is one writer potentially active.

-13-

#include <stdio.h>

#define
#define
#define
static

READ °
WRITE
tst (a, b) (mode
int popen_pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2];

if (pipe(p) < 0)
return(NULL);

READ? (b)

if ((popen_pid = fork ()) == 0) {
close(tst(p[WRITE] , p[READ]));
close(tst(O, 1));

(a))

dup(tst(p[READ] , p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl("/bin/sh", "sh" , "-c", cmd, 0);
_exit(1); 1* disaster has occurred if we get here *1

if (popen_pid == -1)
return(NULL);

close (tst(p[READ] , p[WRITE]));
return(tst(p[WRITE], p[READ]));

The sequence of e loses in the child'is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close(tst(O, 1));
dup(tst(p[READ] , p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it's a standard idiom,) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we sti\1 need a function pelose to close the pipe created by
popen. The main reason for using a separate function rather than elose is that it rs desirable
to wait for the termination of the child process. First, the return value from pelose indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unwaited-for children can exist, even if some of them have ter­
minated; performing the wai t lays the child to rest. Thus:

-14-

#include <signal.h>

pclose(fd)
int fd;

1* close pipe fd *1

register r, (*hstat)(), (*istat)(), (*qstat)();
int status;
extern int popen_pidi

close(fd);
istat
qstat
hstat
while
if (r

signal (SIGn;;:, ': cG_IGN) ;
= signal (SIGQI'IT, SIG_IGN);
= signal(SIGHUP, SIG_IGN);
((r = wait(&status)) != popen_pid && r !=

== -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, qstat);
signal (SIGHUP, hstat);
return(status);

-1) ;

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid; it really should be an array indexed by file descrip­
tor. A popen function, with slightly different arguments and return value is available as part
of the standard I/O library discussed below. ,As currently written, it shares the same limitation.

6. SIGNALS - INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world
(like interrupts), and with program faults. Since there's nothing very useful that can be done
from within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which
is sent when the DEL character is typed; quit, generated by the FS character; hangup, caused by
hanging up the phone; and terminate, generated by the kill command. When one of these
events occurs, the signal is sent to aff processes which were started from the corresponding ter­
minal; unless other arrangements have been made, the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal. h gives names for the various arguments, and should always be included
when signals are used. Th us

#include <signal.h>

signal (SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal (SIGINT, SIG_DFL)i

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument to signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to

-15-

allow the program to clean up unfinished business before terminating, for example to delete a
temporary file:

#include <signal.h>

main()
(

int onintr()j

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, onintr)j

/* Process ... */

exit(O)j

onintr ()
{

unlink(tempfile)j
exit(1)j

Why the test and the double call to signal? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is to be run non­
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground processes. If this program began by announcing that all inter­
rupts were to be sent to the onintr routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that signal returns the previous state of a particular signal. If signals were already being
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbufj

main()
(

int (*istat) (), onintr()j

istat = signal(SIGINT, SIG_IGN)j /* save original status */
setjmp(sjbuf)j /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT, onintr)j

/* main processing loop */

-16-

onintr ()
{

printf("\nInterrupt\n")j
longjmp(sjbuf)j /* return to saved state */

The include file setjmp. h declares the type jmp_buf an object in which the state can be
saved. sjbuf is such an object; it is an array of some sort. The setjmp routine then saves
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which
can print a message, set flags, or whatever. longjmp takes as argument an object stored into
by setjmp, and restores control to the location after the cal1 to setjmp, so control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine cal1ed on occurrence of a signal
sets a flag and then returns instead of cal1ing exi tor longjmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly cal1ed; it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted," the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know th~t the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are reads
from a terminal, wait, and pause.) A program whose onintr program just sets intflag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like "!" in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() == 0)
execl (...) j

signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr)j /* restore interrupts */

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the cal1ing program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function system:

-17-

#include <signal.h>

system(s) 1* run command string s *1
char *s;
(

int status, pid, w;
register int (*istat) (), (*qstat) ();

if «pid = fork()) == 0)
exec 1 ("/bin/sh", "sh", "-e", s, 0);
_exit(127);

istat = signal(SIGINT, SIG_IGN)i
qstat = signal(SIGQUIT, SIG_IGN);
while «w = wait(&status)) != pid && w != -1)

if (w == -1)
status = -1;

signal (SIGINT, istat)j
signal (SIGQUIT, qstat);
return(status);

As an aside on declarations, the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for the PDP-Il; the definitions should be sufficiently ugly and non portable to
encourage use of the include file.

#define
#define

References

(int (*) ())O
(int (*) ()) 1

[l) K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual. Bell Laboratories,
1978.

(2) B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, Inc.,
1978.

(3) B. W. Kernighan, "UNIX for Beginners - Second Edition." Bell Laboratories, 1978.

-18-

Appendix - The Standard liD Library

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard I/O library was designed with the following goals in mind.

I. It must be as efficient as possible, both in time and in space, so that there will be no hesita­
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-II running a version of UNIX.

1. General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually -1, and is the value returned by the read routines on end-of-file 'or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to in-dicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user.
See setbuf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out­
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con­
stants and may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *typei
opens the file and, if I}eeded, allocates a buffer for it. filename is a character string
specifying the name. type is a character string (not a single character). It may be "r",
"w", or "a" to indicate intent to read, write, or append. The value returned is a file
pointer. If it is NULL the attempt to open failed.

FILE *freopen(filename, ty'pe, ioptr) char *filename, *typei FILE *ioptri

-19-

The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by ioptr, which is a pointer to a file
such as returned by fopen, or the name stdin. The integer EOF is returned on end-of­
file or when an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character c on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value,
but EOF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the 110 system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by ioptr is written out. Output
files are normally buffered if and only if they are not directed to the terminaL however,
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is
reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls fflush for each output file. To terminate without flush­
ing, use _exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar();
is identical to getc (stdin).

putchar(c);
is identical to putc (c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointer s. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument, or NULL if error or end-of-file
occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;

-20-

The argument character c is pushed back on the input stream named by ioptr. Only one
character may be pushed back.

printf(format, a1, ...) char *formati
fprintf(ioptr, format, a1, ...) FILE *ioptri char *formati
sprintf(s, format, a1, ...)char *s, *formati

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section printf(3) of the UNIX Programmer's Manual.

scanf(format, a1, ...) char *formati
fscanf(ioptr, format, a1, ...) FILE *ioptri char *formati
sscanf(s, format, a1, ...) char *s, *formati

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects
as arguments a control string format, and a set of arguments, each of which must be a
pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is
returned; note that this is different from 0, which means that the next input character does
not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptri
reads ni tems of data beginning at ptr from file ioptr. No advance notification that binary
110 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptri
Like fread, but in the other direction.

rewind (ioptr) FILE *ioptri
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system (string) char *stringi
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptri
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A "word"
is 16 bits on the PDP-II.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptri char *bufi
setbuf may be used after a stream has been opened but before 110 has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf[BUFSIZ]i

fileno(ioptr) FILE *ioptri
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptri long offseti
The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. The routine accounts properly for any buffering. (When

-21-

this routine is used on non-UNIX systems, the offset must be a value returned from ftell and
the ptrname must be 0).

long ftell(ioptr) FILE *ioptri
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to fseek, so as to position the file to the same place it was when
ftell was called.)

getpw(uid, buf) char *bufi
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user 10 then 1 is returned.

char *rnalloc(nurn)i
allocates nurn bytes. The pointer returned is sufficiently well aligned to be usable for any pur­
pose. NULL is returned if no space is available.

char *calloc(nurn, size);
allocates space for nurn items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available.

cfree(ptr) char *ptri
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloc.

The following are macros whose definitions may be obtained by including <ctype . h>.

isalpha (c) returns non-zero if the argument is alphabetic.

i supper (c) returns non-zero if the argument is upper-case alphabetic.

islower (c) returns non-zero if the argument is lower-case alphabetic.

i sdig i t (c) returns non-zero if the argument is a digit.

isspace (c) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab, form feed, space.

ispunct (c) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

i salnurn (c) returns non-zero if the argument is a letter or a digit.

isprint (c) returns non-zero if the argument is printable - a letter, digit, or punctuation
character.

iscntrl (c) returns non-zero if the argument is a control character.

isascii (c) returns non·zero if the argument is an ascii character, i.e., less than octal 0200.

touppe~ (c) returns the upper-case character corresponding to the lower-case letter c .

tolower (c) returns the lower-case character corresponding to the upper-case letter c.

-22-

Table of Contents
Make - A Program for Maintaining Computer Programs

Abstract .. 1
Introduction .. 2
Basic Features ... 2
Description Files and substitutions ... 4
Command Usage .. 5
Implicit Rules .. 6
Example ... 7
Suggestions and Warnings .. 9
Acknowledgments .. 9
References .. 9
Appendix. Suffixes and Transformation Rules ... 10

Make - A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be
reprocessed or recompiled after a change is made in some part of the source.
Make provides a simple mechanism for maintaining up-to-date versions of pro­
grams that result from many operations on a number of files. It is possible to
tell Make the sequence of commands that create certain files, and the list of
files that require other files to be current before the operations can be done.
Whenever a change is made in any part of the program, the Make command
will create the proper files simply, correctly, and with a minimum amount ot
effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to
date, and then create the target if it has not been modified since its generators
were. The description file really defines the graph of dependencies; Make does
a depth-first search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to
encapsulate commands in a single file for convenient administration.

August 15, 1978

-1-

Introduction

It is common practice to divide large programs into smaller, more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a macro
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc[I]
or Lex [2]). The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on
which others, which files have been modified recently, and the exact sequence of operations
needed to make or exercise a new version of the program. After a long editing session, one
may easily lose track of which files have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in a program that will not
work, and a bug that can be very hard to track down. On the other hand, recompiling every­
thing in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of pmgram
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number (hat ha've been
edited since the last "make". In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the prob­
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features

The basic operation of make is to update a target file by ensuring that all of the files on
which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file ~as last
modified.

To illustrate, let us consider a simple example: A program named prOK is made by compil­
ing and loading three C-language files x.e, y.e, and z.e with the /S library. By convention, the
output of the C compilations will be found in files named x.o, y.o, and z.o. Assume that the
files x.c and y.e share some declarations in a file named de/"s, but that z.e does not. That is, x.c

-2-

and y.e have the line

#include "defs"

The following text describes the relationships and operations:

prog: x.O y.O z.o
cc x.O y.O z.o -IS -0 prog

x.o y.O: defs

If this information were stored in a file named make.file, the command

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.e, z.e, or defs.

Make operates using three sources of information: a user-supplied description file (as
above), file names and "last-modified" times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ".0" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.O depend on the file dels. From the file system, make discov­
ers that there are three" .e" files corresponding to the needed" .0" files, and uses built-in
information on how to generate an object from a source file (i.e., issue a "cc -c" command). .

The following long-winded description file is equivalent to the one above, but takes no
advantage of make's innate knowledge:

prog: x.o y.O z.o
cc x.o y.O z.o -IS -0 prog

x.o: x.c defs
cc -c x.c

y.O: y.c defs
cc -c y.c

z.o : z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.e
(but not z.e) would be recompiled, and then prog would be created from the new" .0" files. If
only the file y.e had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.e or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and substitute macros.
Thus, an entry "save" might be included to copy a certain set of files, or an entry "cleanup"

-3-

might be used to throwaway unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed. This
technique is useful for maintaining remote archives and listings.

Make' has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer
than one character must be parenthesized. The name of the macro is either the single character
after the dollar sign or a name inside parentheses. The following are valid macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $ <. They will be discussed later. The following. fragment
shows the use:

OBJECTS = x.o y.O z.o
UBES = -IS
prog: $(OBJECTS)

cc $(OBJECTS) $(UBES) -0 prog

The command

make

loads the three object files with the IS library. The command

make "UBES = -II -IS"

loads them with both the Lex ("-II") and the Standard (,'-IS") libraries, since macro
definitions on the command line override definitions in the description. (It is necessary to
quote arguments with embedded blanks in UNlxt commands.)

The following sections detail the form of description files and the command line, and dis­
cuss options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency
information, and executable commands. There is also a comment convention: all characters
after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp
are totally ignored. If a non-comment line is too long, it can be continued using a backslash. If
the last character of a line is a backslash, the backslash, newline, and following blanks and tabs
are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

tUNIX is a Trademark of Bell Laboratories.

-4-

2 = xyz
abc = -II -Iy -IS
UBES =

The last definition assigns UBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

targetl [target2 .. .1 :[:] [dependent 1 .. .1 [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters "*" and "?" are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi­
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear
on more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

I. For the usual single-colon case, at most one of these dependency lines may have a com­
mand sequence associated with it. If the target is out of date with any of the dependents
on any of the lines, and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon ,case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com­
mand line is printed and then passed to a separate invocation of the Shell after substituting for
macros. (The printing is suppressed in silent mode or if the command line begins with an @
sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the" - i" flags has been specified on the make command line, if
the fake target name ".lGNORE" appears in the description file, or if the command string in
the description fiJe begins with a hyphen. Some UNIX commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., cd and Shell control commands) that have meaning only within a
single Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be "made". $? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below), $< is the name of the related file
that caused the action, and $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ".DEFAULT" are used. If there is no such name, make
prints a message and stops.

Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description
file names, and target file names.

make [flags] [macro definitions] [targets]

-5-

The following summary of the operation of the command explains how these arguments are
in terpre ted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed
and the assignments made. Command-line macros override corresponding definitions found in
the description files.

Next, the flag arguments are examined. The permissible flags are

- I Ignore error codes returned by invoked commands. This mode is entered if the fake tar­
get name ".IGNORE" appears in the description file.

- s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ".SILENT" appears in the description file.

- r Do not use the built-in rules.

- n No execute mode. Print commands, but do not execute them. Even lines beginning with
an "@" sign are printed.

- t Touch the target files (causing them to be up to date) rather than issue the usual com­
mands.

- q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

- p Print out the complete set of macro definitions and target descriptions

-d Debug mode. Print out detailed information on files and times examined.

- f Description file name. The next argument is assumed to be the name of a description
file. A file name of "-" denotes the standard input. If there are no "-f" arguments,
the file named makdile or Makdile in the current directory is read. The contents of the
description files override the built-in rules if they are present>.

Finally, the remaining arguments are assumed to be the names of targets to be made; they
are done in left to right order. If there are no such arguments, the first name in the descrip"tion
files that does not begin with a period is "made".

I mplicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to
supply default dependency information and implied commands. (The Appendix describes these
tables and means of overriding them.) The default suffix list is:

.0

.C

.e

.r

.f

.S

.y

.yl'

.ye

.1

Object file
C source file
Efl source file
Ratfor source file
Fortran source file
Assembler source file
Yacc-C source grammar
Yacc-Ratfor source grammar
Yacc-Efl source grammar
Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

-6-

~o~
.(.r.e ..f .s .y .yr .ye ./ .d

~ \ \
.y.1 .yr .ye

If the file x.o were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x./, that grammar would be run through Lex before compil­
ing the result. However, if there were no x.c but there were an .l"-'/, make would discard the
intermediate C-Ianguage file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler
names are the macros AS, CC, RC, EC, Y ACC, Y ACCR, Y ACCE, and LEX. The command

make CC = newcc

will cause the "newcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands
to be issued with optional flags. Thus,

make "CFLAGS = -0"

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain
the make command itself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

-7-

Description file for the Make command

P = und -31 opr -r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT = lint - p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make lusr/bin/make
cp make lusr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $? 1 $P
touch print

test:
make -dplgrep -v TIME >lzap
lusr/bin/mak.e -dp 1 grep -v TIME >2zap
diff 1 zap 2zap
rm 1 zap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.e version.e gram.e
rm gram.c

arch:
ar uv Isys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description tlle:

cc - c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc - c dosys.c
yacc gram.y
mv y. tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o mise.o files.o dosys.o gram.o -IS -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description tlle,
make found them using its suffix rules and issued the needed commands. The string of digits

-8-

results from the "size make" command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print"
entry prints only the files that have been changed since the last "make print" command. A
zero-length file prill! is maintained to keep track of the time of the printing; the $? macro in the
command line then picks up only the names of the files changed since Will! was touched. The
printed output can be sent to a different printer or to a file by changing the definition of the P
macro:

make print "P = opr -sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file
x.c has a "#include "defs"" line, then the object file x.o depends on def's; the source file x.c
does not. (If deli; is changed, it is not necessary to do anything to the file x.c, while it is neces­
sary to recreate x. oj

To discover what l/1ake would do, the "-n" option is very useful. The command

make -n

orders l/1(/ke to print out the commands it would issue without actually taking the time to exe­
cute them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition
to an include file), the "- C: (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, l/1ake updates the modification times on the affected file.
Thus, the command

make - ts

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of lIIake and destroys all memory of the
previous relationships.

The debugging flag ("-d") causes lIIake to print out a very detailed description of what it
is doing, including the file times. The output is verbose, and recommended only as a last
resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance
control. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs
during development of I/wk('.

References

1. S. C. Johnson, "Yael.' - Yet Another Compiler-Compiler", Bell Laboratories Computing
Science Technical Report #32, July 1978.

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator", Computing Science Technical
Report #39, October 1975.

-9-

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the" - r" flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a ".r"
file to a ".0" file is thus" .r.o". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule ".r.o" is used. If
a command is generated by using one of these suffixing rules, the macro $.. is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro $ < is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first
name that is formed that has both a file and a rule associated with it is used. If new names are
to be appended, the user can just add an entry for ".SUFFIXES" in his own description file;
the dependents will be added to the usual list. A ".SUFFIXES" line without any dependents
deletes the current list. (It is necessary to clear the current list if the order of names is to be
changed) .

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC=yacc
YACCR=yacc -r
Y ACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o :

$(CC) $(CFLAGS) -c $<
.e.o .r.o .f.o :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<
.s.o:

.y.o :

.y.c :

$(AS) -0 $@ $<

$(Y ACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

-10-

Table of Contents

Source Code Control System User's Guide
General .. 1
SCCS for Beginners .. 1

Terminology .. 2
Creating an SCCS File via" Admin" .. 2
Retrieving a File via" Get" .. 2
Recording Changes via" Delta" .. 3
Additional Information About "Get" ... 4
The "Help" Command ... 5

Delta Numbering .. 5
SCCS Command Conventions ... 7
SCCS Commands .. , ... 8

The" Get" Command ... 9
ID Keywords .. 10
Retrieval of Different Versions ... 10
Retrieval With Intent to Make a Delta .. 12
Concurrent Edits of Different SID .. , 13
Concurrent Edits of Same SID .. 13
Keyletters That Affect Output.. .. 14

The "Delta" Command .. 15
The "Admin" Command .. l 7

Creation of SCCS Files ... 17
Inserting Commentary for the Initial Delta ... 18
Initialization and Modification of SCCS File Parameters ... 18

The "Prs" Command ... 19
The "Help" Command ... 21
The "Rmdel" Command .. 21
The "Cdc" Command .. 22
The "What" Command .. 22
The" Sccsdiff" Command ... 23
The "Comb" Command ... 23
The "Val" Command ... 24

SCCS Files ... 24
Protection .. 24
Formatting ... 25
Auditing .. 25

An SCCS Interface Program .. 26
General ... 26
Function .. 26
A Basic Program .. 27
Linking and Use .. 27

Determination of New SID (Table 4.A) .. 28
SCCS Interface Program (Table 4.8) ... 29

4. SOURCE CODE CONTROL SYSTEM USER'S GUIDE

GENERAL

The Source Code Control System (SeeS) is a collection of the UNIX software commands which help individ­
uals or projects control and account for changes to files of text. The source code and documentation of software
systems are typical examples of files of text to be changed. The SCCS is a collection of programs that run under
the UNIX operating system. It is convenient to conceive of secs as a custodian of files. The sees provides facili­
ties for the following:

• Storing files of text

• Retrieving particular versions of the files

• Controlling updating privileges to files

• Identifying the version of a retrieved file

• Recording when, where, and why the change was made and who made each change to a file.

These types of facilities are important when programs and documentation undergo frequent changes be­
cause of maintenance and/or enhancement work. It is often desirable to regenerate the version of a program
or document as it existed before changes were applied to it. This can be done by keeping copies (on paper or
other media), but this method quickly becomes unmanageable and wasteful as the number of programs and doc­
uments increases. The sees provides an attractive solution because the original file is stored on disk. Whenever
changes are made to the file, the secs stores only the changes. Each set of changes is called a "delta".

This section, together with relevant portions of the UNIX System User's Manual is a complete user's guide
to sees. The following topics are covered:

• sees for Beginners: How to make an sees file, how to update it, and how to retrieve a version thereof.

• How Deltas Are Numbered: How versions of sees files are numbered and named.

• sees Command Conventions: Conventions and rules generally applicable to all secs commands.

• secs Commands: Explanation of all sees commands, with discussions of the more useful arguments.

• secs Files: Protection, format, and auditing of sees files including a discussion of the differences be­
tween using sees as an individual and using it as a member of a group or project. The role of a "project
secs administrator" is introduced.

Neither the implementation of sees nor the installation procedure for sees are described in this section.

Throughout this section, each reference of the form name(lM), name(7), or name(8) refers to entries in
the UNIX System Administrator's Manual. All other references to entries of the form name(N), where "N"
is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of the UNIX System
User's Manual.

SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a UNIX system, create files, and use the text editor.
A number of terminal-session fragments are presented. All of them should be tried since the best way to learn
secs is to use it.

-1-

To supplement the material in this section, the detailed sees command descriptions in the UNIX System
User's Manual should be consulted.

A. Terminology

Each sees file is composed of one or more sets of changes applied to the null (empty) version of the file,
with each set of changes usually depending on all previous sets. Each set of changes is called a "delta" and is
assigned a name, called the sees IThntification string (SID). The SID is composed of at most four components.
The first two components are the "release" and "level" numbers which are separated by a period. Hence, the
first delta (for the original file) is called "1.1", the second "1.2", the third "1.3", etc. The release number can
also be changed allowing, for example, deltas "2.1", "3.1", etc. The change in the release number usually indicates
a major change to the file.

Each delta of an sees file defines a particular version of the file. For example, delta 1.5 defines version
1.5 of the sees file, obtained by applying to the null (empty) version of the file the changes that constitute deltas
1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

B. Creating an SCCS File via "admin"

Consider, for example, a file called lang that contains a list of programming languages:

c
pl/i
fortran
cobol
algol

Custody of the langfile can be given to sees. The following admin command (used to "administer" sees
files) creates an sees file and initializes delta 1.1 from the file lang.

admin -ilang s.lang

All sees files must have names that begin with "s.", hence, s.Jang. The -i keyletter, together with its value
lang, indicates that admin is to create a new sees file and "initialize" the new sees file with the contents
of the file lang. This initial version is a set of changes (delta 1.1) applied to the null sees file.

The admin command replies

No id keywords (cm7)

This is a warning message (which may also be issued by other sees commands) that is to be ignored for the
purposes of this section. Its significance is described under the get command in the part "sees COMMANDS".
In the following examples, this warning message is not shown, although it may actually be issued by the various
commands. The file langshould now be removed (because it can be easily reconstructed using the get command)
as follows:

rm lang

C. Retrieving a File via "get"

The lang file can be reconstructed by using the following get command:

get s.lang

-2-

The command causes the creation (retrieval) of the latest version of file s.lang and prints the following mes­
sages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of five lines of text. The retrieved text
is placed in a file whose name is formed by deleting the "s." prefix from the name of the sees file. Hence, the
file lang is created.

The "get s.lang" command simply creates the file lang (read-only) and keeps no information regarding its
creation. On the other hand, in order to be able to subsequently apply changes to an sees file with the delta
command, the get command must be informed of your intention to do so. This is done as follows:

get -e s.lang

The -e key letter causes get to create a file lang for both reading and writing (so it may be edited) and places
certain information about the sees file in another new file. The new file, called the p-fiJe, will be read by the
delta command. The get command prints the same messages as before except that the SID of the version to
be created through the use of delta is also issued. For example:

get -e s.lang
1.1
new delta 1.2
5 lines

The file lang may now be changed, for example, by:

ed lang
27
$a
snobol
ratfor

w
41
q

D. Recording Changes via "delta"

In order to record within the sees file the changes that have been applied to lang, execute the following
command:

delta s.lang

Delta prompts with:

comments?

the response to which should be a description of why the changes were made. For example:

comments? added more languages

The delta command then reads the p-fiJe and determines what changes were made to the file lang. The
delta command does this by doing its own get to retrieve the original version and by applying the diff(1) com­
mand to the original version and the edited version.

-3-

When this process is complete, at which point the changes to lang have been stored in s.lang, delta outputs:

1.2
2 inserted
o deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next three lines of output refer to the number
of lines in the file s.lang.

E. Additional Information About \\get"

As shown in the previous example, the command

get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done by starting with the original version of the
file and successively applying deltas (the changes) in order until all have been applied.

In the example chosen, the following commands are all equivalent:

get s.lang
get -r1 s.lang
get -r1.2 s.lang

The numbers following the -r keyletter are SIDs. Note that omitting the level number of the SID (as in "get
-r1 s.lang") is equivalent to specifying the highest level number that exists within the specified release. Thus,
the second command requests the retrieval of the latest version in release 1, namely 1.2. The third command
specifically requests the retrieval of a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indicated by
changing the release number (first component of the SID) of the delta being made. Since normal automatic num­
bering of deltas proceeds by incrementing the level number (second component of the SID), the user must indi­
cate to sees the need to change the release number. This is done with the get command:

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2. The get command also inter­
prets this as a request to change the release number of the delta the user desires to create to 2, thereby causing
it to be named 2.1, rather than 1.3. This information is conveyed to delta via the p-file. The get command then
outputs

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create. If the file is
now edited, for example, by:

ed lang
41
/cobol/d
w
35
q

-4-

and delta executed:

del ta s.lang
comments? deleted cobol from list of languages

the user will see by delta's output that version 2.1 is indeed created:

2.1
o inserted
1 deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be created in a similar
manner. This process may be continued as desired.

F. The "help" Command

If the command:

get abc

is executed, the following message will be output:

ERROR [abc]: not an sees file (col)

The string "col" is a code for the diagnostic message and may be used to obtain a fuller explanation of that
message by use of the help command:

help col

This produces the following output:

col:
" not an sees file "
A file that you think is an sees file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an sees message.
Detailed explanations of almost all sees messages may be found in this manner.

DELTA NUMBERING

It is convenient to conceive of the deltas applied to an sees file as the nodes of a tree in which the root
is the initial version of the file. The root delta (node) is normally named "1.1" and successor deltas (nodes) are
named "1.2", "1.3", etc. The components of the names of the deltas are called the "release" and the "level" num­
bers, respectively. Thus, normal naming of successor deltas proceeds by incrementing the level number, which
is performed automatically by sees whenever a delta is made. In addition, the user may wish to change the
release number when making a delta to indicate that a major change is being made. When this is done, the re­
lease number also applies to all successor deltas unless specifically changed again. Thus, the evolution of a par­
ticular file may be represented as in Fig. 4.1.

-5-

1.1 1.2

RELEASE
1.3 1.4 2.1 2.2

RELEASE 2

Fig. 4.1- Evolution of an sees File

Such a structure may be termed the "trunk" of the sees tree. Figure 4.1 represents the normal sequential
development of an sees file in which changes that are part of any given delta are dependent upon all the preced-
ing deltas. -

However, there are situations in which it is necessary to cause a branching in the tree in that changes ap­
plied as part of a given delta are not dependent upon all previous deltas. As an example, consider a program
which is in production use at version 1.3 and for which development work on release 2 is already in progress.
Thus, release 2 may already have some deltas precisely as shown in Fig. 4.1. Assume that a production user re­
ports a problem in version 1.3 and that the nature of the problem is such that it cannot wait to be repaired in
release 2. The changes necessary to repair the trouble will be applied as a delta to version 1.3 (the version in
production use). This creates a new version that will then be released to the user but will not affect the changes
being applied for release 2 (Le., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a branch of the tree, and its name consists of four components; the release and
level numbers, as with trunk deltas, plus the "branch" and "sequence" numbers. The delta name will appear
as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta with the first
such branch being 1, the next one 2, etc. The sequence number is assigned, in order, to each delta on a particular
branch. Thus, 1.3.1.2 identifies the second delta of the first branch that derives from delta 1.3. This is shown
in Fig. 4.2.

BRANCH 1

1.1 1.2 1.3 1.4 2.1 2.2

Fig. 4.2 - Tree Structure With Branch Deltas

The concept of branching may be extended to any delta in the tree. The naming of the resulting deltas pro­
ceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk deltas contain

-6-

exactly two components, and the names of branch deltas contain exactly four components. Second, the first two
components of the name of branch deltas are always those of the ancestral trunk delta, and the branch compo­
nent is assigned in the order of creation of the branch independently of its location relative to the trunk delta.
Thus, a branch delta may always be identified as such from its name. Although the ancestral trunk delta may
be identified from the branch delta's name, it is not possible to determine the entire path leading from the trunk
delta to the branch delta. For example, if delta 1.3 has one branch emanating from it, all deltas on that branch
will be named 1.3.1.n. If a delta on this branch then has another branch emanating from it, all deltas on the
new branch will be named 1.3.2.n (see Fig. 4.3). The only information that may be derived from the name of delta
1.3.2.2 is that it is the chronologically second delta on the chronologically second branch whose trunk ancestor
is delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all the deltas between
it and trunk ancestor 1.3. -

1.3.2.2

1.1 1.2 1.3 1.4 2.1 2.2

Fig. 4.3 - Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree structures. Al­
though this capability has been provided for certain specialized uses, it is strongly recommended that the sees
tree be kept as simple as possible because comprehension of its structure becomes extremely difficult as the
tree becomes more complex.

SCCS COMMAND CONVENTIONS

This part discusses the conventions and rules that apply to sees commands. These rules and conventions
are generally applicable to all sees commands with exceptions indicated. The sees commands accept two types
of arguments:

• keyletter arguments

• file arguments.

Keyletter arguments (hereafter called simply "keyletters") begin with a minus sign (-), followed by a lower­
case alphabetic character, and in some cases, followed by a value. These key letters control the execution of the
command to which they are supplied.

File arguments (which may be names of files and/or directories) specify the file(s) that the given sees com­
mand is to process. Naming a directory is equivalent to naming all the sees files within the directory. Non­
sees files and unreadable files [because of permission modes via chmod(l)] in the named directories are si­
lently ignored.

In general, file arguments may not begin with a minus sign. However, if the name "-" (a lone minus sign)
is specified as an argument to a command, the command reads the standard input for lines and takes each line

-7-

as the name of an sees file to be processed. The standard input is read until end of file. This feature is often
used in pipelines with, for example, the find(1) or Is(1) commands. Again, names of non-SeeS files and of un­
readable files are silently ignored.

All key letters specified for a given command apply to all file arguments of that command. All key letters
are processed before any file arguments with the result that the placement of keyletters is arbitrary (Le.,
key letters may be interspersed with file arguments). File arguments, however, are processed left to right. Some­
what different argument conventions apply to the help, what, sccsdiff, and val commands.

eertain actions of various sees commands are controlled by flags appearing in sees files. Some of these
flags are discussd in this part. For a complete description of all such flags, see admin(1) section in the UNIX
System User's Manual. --

The distinction between the real user [see passwd(1)] and the effective user of a UNIX system is of concern
in discussing various actions of sees commands. For the present, it is assumed that both the real user and the
effective user are one and the same (Le., the user who is logged into a UNIX system). This subject is discussed
further in "sees FILES".

All sees commands that modify an sees file do so by writing a temporary copy, called the x-file, which
ensures that the sees file will not be damaged should processing terminate abnormally. The name of the x-file
is formed by replacing the "s." of the sees file name with "x.". When processing is complete, the old sees file
is removed and the x-file is renamed to be the sees file. The x-file is created in the directory containing the
sees file, given the same mode [see chmod(1)] as the sees file, and owned by the effective user.

To prevent simultaneous updates to an sees file, commands that modify sees files create a lock-file, called
the z-file, whose name is formed by replacing the "s." of the sees file name with "z.". The z-file contains th(
process number of the command that creates it, and its existence is an indication to other commands that the
sees file is being updated. Thus, other commands that modify sees files will not process an sees file if the
corresponding z-file exists. The z-file is created with mode 444 (read-only) in the directory containing the see~
file and is owned by the effective user. This file exists only for the duration of the execution of the command
that creates it. In general, users can ignore x-files and z-files. The files may be useful in the event of system
crashes or similar situations.

The sees commands produce diagnostics (on the diagnostic output) of the form:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help command to obtain a further explanation of
the diagnostic message. Detection of a fatal error during the processing of a file causes the sees command to
terminate processing of that file and to proceed with the next file, in order, if more than one file has been named.

sees COMMANDS

This part describes the major features of all the sees commands. Detailed descriptions of the commands
and of all their arguments are given in the UNIX System User's Manual and should be consulted for furtheI
information. The discussion below covers only the more common arguments of the various sees commands.

The commands follow in approximate order of importance. The following is a summary of all the sees com­
mands and of their maj or functions:

get Retrieves versions of sees files.

delta Applies changes (deltas) to the text of sees files, Le., creates new versions.

admin ereates sees files and applies changes to parameters of sees files.

-8-

prs

help

rmdel

cdc

what

sccsdiff

comb

val

Prints portions of an sees file in user specified format.

Gives explanations of diagnostic messages.

Removes a delta from an sees file; allows the removal of deltas that were created by mis­
take.

Changes the commentary associated with a delta.

Searches any UNIX system file(s) for all occurrences of a special pattern and prints out
what follows it; is useful in finding identifying information inserted by the get command.

Shows the differences between any two versions of an sees file.

Combines two or more consecutive deltas of an sees file into a single delta; often reduces
the size of the sees file.

Validates an sees file.

A. The "get" Command

The get command creates a text file that contains a particular version of an sees file. The particular ver­
sion is retrieved by beginning with the initial version and then applying deltas, in order, until the desired ver­
sion is obtained. The created file is called the g-file. The g-file name is formed by removing the "s." from the
sees file name. The g-file is created in the current directory and is owned by the real user. The mode assigned
to the g-file depends on how the get command is invoked.

The most common invocation of get is:

get s.abc

which normally retrieves the latest version on the trunk of the sees file tree and produces (for example) on
the standard output:

1.3
67 lines
No id keywords (cm7)

which indicates that:

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file.

The generated g-file (file "abc") is given mode 444 (read-only) since this particular way of invoking get is
intended to produce g-files only for inspection, compilation, etc., and not for editing (i.e., not for making deltas).

In the case of several file arguments (or directory-name arguments), similar information is given for each
file processed, but the sees file name precedes it. For example:

get s.abc s.def

-9-

produces:

ID Keywords

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
11.7
85 lines
No id keywords (cm7)

In generating a g-file to be used for compilation, it is useful and informative to record the date and time
of creation, the version retrieved, the module's name, etc. within the g-file, so this information will appear in
a load module when one is eventually created. The SCCS provides a convenient mechanism for doing this auto­
matically. Identification (ID) keywords appearing anywhere in the generated file are replaced by appropriate
values according to the definitions of these ID keywords. The format of an ID keyword is an uppercase letter
enclosed by percent signs (%). For example:

%1%

is defined as the ID keyword that is replaced by the SID of the retrieved version of a file. Similarly, %H% is
defined as the ID keyword for the current date (in the form "mm/dd/yy"), and %M% is defined as the name
of the g-file. Thus, executing get on an SCCS file that contains the PL/I declaration:

DCL ID CHAR(lOO) VAR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR(lOO) VAR INIT('MODNAME 2.3 07/07177');

When no ID keywords are substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in the SCCS file causes
it to be treated as an error. For a complete list of the approximately 20 ID keywords provided, see get(l) in
the UNIX System User's Manual.

Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default version of an SCCS file. Nor­
mally, the default version is the most recent delta of the highest-numbered release on the trunk of the SCCS
file tree. However, if the SCCS file being processed has a d (default SID) flag, the SID specified as the value
of this flag is used as a default. The default SID is interpreted in exactly the same way as the value supplied
with the -r keyletter of get.

The -r keyletter is used to specify a SID to be retrieved, in which case the d (default SID) flag (if any) is
ignored. For example:

get -r1.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the standard output:

1.3
64 lines

-10-

A branch delta may be retrieved similarly:

get -r1.5.2.3 s.abc

which produces (for example) on the standard output:

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the -r keyletter (as above) and the particular version
does not exist in the sees file, an error message results. Omission of the level number, as in:

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given release if the given release
exists. Thus, the above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest level number within the
highest-numbered existing release that is lower than the given release. For example, assuming release 9 does
not exist in file s.abc and that release 7 is actually the highest-numbered release below 9, execution of:

get -r9 s.abc

might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below release 9. Similarly, omission of the
sequence number, as in:

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given branch if it exists.
(If the given branch does not exist, an error message results.) This might result in the following output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest (top) version in a particular release (i.e., when no -r keyletter
is supplied or when its value is simply a release number). The latest version is defined as that delta which was
produced most recently, independent of its location on the sees file tree. Thus, if the most recent delta in re­
lease 3 is 3.5,

get -r3 -t s.abc

might produce:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same command might produce:

3.2.1.5
46 lines

-11-

Retrieval With Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication of the intent to make a delta, and
as such, its use is restricted. The presence of this keyletter causes get to eheck:

1. The user list (a list of login names and/or group IDs of users allowed to make deltas) to determine if the
login name or group ID of the user executing get is on that list. Note that a null (empty) user list behaveE
as if it eontained all possible login names.

2. The release (R) of the version being retrieved satisfies the relation:

floor is < or = to R which is
< or = to ceiling

to determine if the release being accessed is a protected release. The "floor" and "ceiling" are specified
as flags in the sees file.

3. The release (R) is not locked against editing. The "lock" is specified as a flag in the sees file.

4. Whether or not multiple concurrent edits are allowed for the sees file as specified by the j flag in the
sees file.

A failure of any of the first three conditions causes the processing of the corresponding sees file to termi­
nate.

If the above checks succeed, the -e key letter causes the creation of a g-file in the current directory with
mode 644 (readable by everyone, writable only by the owner) owned by the real user. If a writable g-file already
exists, get terminates with an error. This is to prevent inadvertent destruction of a g-file that already exisb
and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by get when the -e key letter is specified be­
cause the generated g-file is to be subsequently used to create another delta, and replacement of ID keywords
would cause them to be permanently changed within the sees file. In view of this, get does not need to checb
for the presenee of ID keywords within the g-file, so the message

No id keywords (cm7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a p-filewhich is used to pass informatiOl
to the delta command.

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output:

1.3
new delta 1.4
67 lines

If the -r and/or -t keyletters are used together with the -e keyletter, the version retrieved for editing is a
specified by the -r and/or -t keyletters.

-12-

The keyletters -i and -x may be used to specify a list [see get(l) in the UNIX System User's Manual for
the syntax of such a list] of deltas to be included and excluded, respectively, by get. Including a delta means
forcing the changes that constitute the particular delta to be included in the retrieved version. This is useful
if one wants to apply the same changes to more than one version of the sees file. Excluding a delta means forc­
ing it to be not applied. This may be used to undo in the version of the sees file to be created the effects of
a previous delta. Whenever deltas are included or excluded, get checks for possible interference between such
deltas and those deltas that are normally used in retrieving the particular version of the sees file. Two deltas
can interfere, for example, when each one changes the same line of the retrieved g-file. Any interference is indi­
cated by a warning that shows the range of lines within the retrieved g-file in which the problem may exist.
The user is expected to examine the g-file to determine whether a problem actually exists and to take whatever
corrective measures (if any) are deemed necessary (e.g., edit the file).

Warning: The -i and -x keyletters should be used with extreme care.

The - k keyletter is provided to facilitate regeneration of a g-file that may have been accidentally removed
or ruined subsequent to the execution of get with the -e keyletter or to simply generate a g-file in which the
replacement of ID keywords has been suppressed. Thus, a g-file generated by the -k key letter is identical to
one produced by get executed with the -e keyletter. However, no processing related to the p-file takes place.

Concurrent Edits of Different SID

The ability to retrieve different versions of an sees file allows a number of deltas to be "in progress" at
any given time. This means that a number of get commands with the -e keyletter may be executed on the same
file provided that no two executions retrieve the same version (unless multiple concurrent edits are allowed).

The p-file (created by the get command invoked with the -e keyletter) is named by replacing the "s." in
the sees file name with "p.". It is created in the directory containing the sees file, given mode 644 (readable
by everyone, writable only by the owner), and owned by the effective user. The p-file contains the following in­
formation for each delta that is still "in progress":

• The SID of the retrieved version.

• The SID that will be given to the new delta when it is created.

• The login name of the real user executing get.

The first execution of get -e causes the creation of the p-file for the corresponding sees file. Subsequent
executions only update the p-file with a line containing the above information. Before updating, however, get
checks that no entry already in the p-file specifies as already retrieved the SID of the version to be retrieved
unless multiple concurrent edits are allowed.

If both checks succeed, the user is informed that other deltas are in progress and processing continues. If
either check fails, an error message results. It is important to note that the various executions of get should
be carried out from different directories. Otherwise, only the first execution will succeed since subsequent exe­
cutions would attempt to overwrite a writable g-file, which is an sees error condition. In practice, such multiple
executions are performed by different users so that this problem does not arise since each user normally has
a different working directory. See "Protection" under the part "sees FILES" for a discussion of how different
users are permitted to use sees commands on the same files.

Table 4.A shows, for the most useful cases, the version of an sees file retrieved by get, as well as the SID
of the version to be eventually created by delta, as a function of the SID specified to get.

Concurrent Edits of Same SID

Under normal conditions, gets for editing (-e key letter is specified) based on the same SID are not permit­
ted to occur concurrently. That is, delta must be executed before a subsequent get for editing is executed at

-13-

the same SID as the previous get. However, multiple concurrent edits (defined to be two or more successive
executions of get for editing based on the same retrieved SID) are allowed if the j flag is set in the SCCS file.
Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by:

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta command corresponding to the first get pro­
duces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta command corresponding
to the second get produces delta 1.1.1.1.

Keyletters That Affect Output

Specification of the -p keyletter causes get to write the retrieved text to the standard output rather than
to a g-file. In addition, all output normally directed to the standard output (such as the SID of the version re­
trieved and the number of lines retrieved) is directed instead to the diagnostic output. This may be used, for
example, to create g-files with arbitrary names:

get -p s.abc > arbitrary-file-name

The -p keyletter is particularly useful when used with the "!" or "$" arguments of the send(IC) command.
For example:

send MOD=s.abc REL=3 compile

given that file compile contains:

Ilplicomp job job-card-information
I I stepl exec plickc
IlplLsysin dd *
~-s

~!get -p -rREL MOD
1*
II

will send the highest level of release 3 of file s.abc. Note that the line "~-s", which causes send to make ID
keyword substitutions before detecting and interpreting control lines, is necessary if send is to substitute
"s.abc" for MOD and "3" for REL in the line "~!get -p -rREL MOD".

The -s keyletter suppresses all output that is normally directed to the standard output. Thus, the SID of
the retrieved version, the number of lines retrieved, etc., are not output. This does not, however, affect messages
to the diagnostic output. This keyletter is used to prevent nondiagnostic messages from appearing on the user's
terminal and is often used in conjunction with the -p keyletter to "pipe" the output of get, as in:

get -p -s s.abc I nroff

-14-

The -g keyletter is supplied to suppress the actual retrieval of the text of a version of the sees file. This
may be useful in a number of ways. For example, to verify the existence of a particular SID in an sees file,
one may execute:

get -g -r4.3 s.abc

This outputs the given SID if it exists in the sees file or it generates an error message if it does not. Another
use of the -g keyletter is in regenerating a p-file that may have been accidentally destroyed:

get -e -g s.abc

The -I keyletter causes the creation of an I-file, which is named by replacing the "s." of the sees file name
with "1.". This file is created in the current directory with mode 444 (read-only) and is owned by the real user.
It contains a table (whose format is described in get(l) in the UNIX System User's Manual) showing which del­
tas were used in constructing a particular version of the sees file. For example:

get -r2.3 -1 s.abc

generates an I-file showing the deltas applied to retrieve version 2.3 of the sees file. Specifying a value of "p"
with the -I keyletter, as in:

get -lp -r2.3 s.abc

causes the generated output to be written to the standard output rather than to the I-file. The -g keyletter may
be used with the -I keyletter to suppress the actual retrieval of the text.

The -m key letter is of use in identifying, line by line, the changes applied to an sees file. Specification
of this keyletter causes each line of the generated g-file to be preceded by the SID of the delta that caused that
line to be inserted. The SID is separated from the text of the line by a tab character.

The -n keyletter causes each line of the generated g-file to be preceded by the value of the %M% ID
keyword and a tab character. The -n keyletter is most often used in a pipeline with grep(l). For example, to
find all lines that match a given pattern in the latest version of each sees file in a directory, the following may
be executed:

get -p -n -s directory I grep pattern

If both the -m and -n keyletters are specified, each line of the generated g-file is preceded by the value of the
%M% ID keyword and a tab (this is the effect of the -n keyletter) and followed by the line in the format pro­
duced by the -m keyletter. Because use of the -m keyletter and/or the -n keyletter causes the contents of the
g-file to be modified, such a g-file must not be used for creating a delta. Therefore, neither the -m keyletter
nor the -n keyletter may be specified together with the -e keyletter.

See get(l) in the UNIX System User's Manual for a full description of additional get keyletters.

B. The "delta" Command

The delta command is used to incorporate the changes made to a g-file into the corresponding sees file,
i.e., to create a delta, and therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-file. The delta command examines the p-file
to verify the presence of an entry containing the user's login name. If none is found, an error message results.
The delta command also performs the same permission checks that get performs when invoked with the -e

-15-

keyletter. If all checks are successful, delta determines what has been changed in the g-file by comparing it
via diff(1) with its own temporary copy of the g-file as it was before editing. This temporary copy of the g-file
is called the d-file (its name is formed by replacing the "s." of the sees file name with "d.") and is obtained
by performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user executing delta because the user
who retrieved the g-filemust be the one who will create the delta. However, if the login name of the user appears
in more than one entry (Le., the same user executed get with the -e keyletter more than once on the same sees
file), the -r keyletter must be used with delta to specify an SID that uniquely identifies the p-file entry. This
entry is the one used to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is

delta s.abc

which prompts on the standard output (but only if it is a terminal):

comments?

to which the user replies with a description of why the delta is being made, terminating the reply with a new
line character. The user's response may be up to 512 characters long with new lines, not intended to terminate
the response, escaped by backslash "\".

If the sees file has a v flag, delta first prompts with

MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a terminal.) The standard
input is then read for MR numbers, separated by blanks and/or tabs, terminated in the same manner as the
response to the prompt "comments?". In a tightly controlled environment, it is expected that deltas are created
only as a result of some trouble report, change request, trouble ticket, etc. (collectively called here Modification
Requests [MRs)) and that it is desirable or necessary to record such MR number(s) within each delta.

The -y and/or -m keyletters may be used to supply the commentary (eomments and MR numbers, respec­
tively) on the command line rather than through the standard input:

delta -y" descriptive comment" -m" mrnum1 mrnum2" s.abc

In this case, the corresponding prompts are not printed, and the standard input is not read. The -m keyletter
is allowed only if the sees file has a v flag. These keyletters are useful when delta is executed from within
a shell procedure [see sh(1) in the UNIX System User's Manual.]

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via keyletters,
is recorded as part of the entry for the delta being created and applies to all sees files processed by the same
invocation of delta. This implies that if delta is invoked with more than one file argument and the first file
named has a v flag all files named must have this flag. Similarly, if the first file named does not have this flag,
then none of the files named may have it. Any file that does not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created delta (obtained
from the p-file entry) and the counts of lines inserted, deleted, and left unchanged by the delta. Thus, a typical
output might be:

1.4
14 inserted
7 deleted
345 unchanged

-16-

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not agree with
the user's perception of the changes applied to the g-file. The reason for this is that there usually are a number
of ways to describe a set of such changes, especially if lines are moved around in the g-file, and delta is likely
to find a description that differs from the user's perception. However, the total number of lines of the new delta
(the number inserted plus the number left unchanged) should agree with the number of lines in the edited g-file.

If in the process of making a delta delta finds no ID keywords in the edited g-file, the message

No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This indicates that any ID keywords
that may have existed in the sees file have been replaced by their values or deleted during the editing process.
This could be caused by creating a delta from a g-file that was created by a get without the -e key letter (recall
that ID keywords are replaced by get in that case) or by accidentally deleting or changing the ID keywords dur­
ing the editing of the g-file. Another possibility is that the file may never have had any ID keywords. In any
case, it is left up to the user to determine what remedial action is necessary, but the delta is made, unless there
is an i flag in the sees file indicating that this should be treated as a fatal error. In this last case, the delta
is not created.

After processing of an sees file is complete, the corresponding p-file entry is removed from the p-file. All
updates to the p-file are made to a temporary copy, the q-file, whose use is similar to the use of the x-file which
is described in the part "sees COMMAND CONVENTIONS". If there is only one entry in the p-file, then the
p-file itself is removed.

In addition, delta removes the edited g-file unless the -n keyletter is specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s (silent) keyletter suppresses all output that is normally directed to the standard output, other than
the prompts "comments?" and "MRs?". Thus, use of the -s keyletter together with the -y keyletter (and possi­
bly, the -m keyletter) causes delta neither to read the standard input nor to write the standard output.

The differences between the g-file and the d-file (see above), which constitute the delta, may be printed on
the standard output by using the -p key letter. The format of this output is similar to that produced by diff(l).

C. The "admin" Command

The admin command is used to administer sees files, that is, to create new sees files and to change pa­
rameters of existing ones. When an sees file is created, its parameters are initialized by use of key letters or
are assigned default values if no key letters are supplied. The same key letters are used to change the parameters
of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting "corrupted" sees files.
(Discussed in "Auditing" under the part "sees FILES".) Newly created sees files are given mode 444 (read­
only) and are owned by the effective user. Only a user with write permission in the directory containing the
sees file may use the admin command upon that file.

Creation of SCCS Files

An sees file may be created by executing the command

admin -ifirst s.abc

-17-

in which the value "first" of the -i keyletter specifies the name of a file from which the text of the initial delta
of the sees file s.abc is to be taken. Omission of the value of the -i keyletter indicates that admin is to read
the standard input for the text of the initial delta. Thus, the command

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not contain ID keywords, the message

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the command also sets the i flag (not to
be confused with the -i keyletter), the message is treated as an error and the sees file is not created. Only
one sees file may be created at a time using the -i keyletter.

When an sees file is created, the release number assigned to its first delta is normally "1", and its level
number is always "1". Thus, the first delta of an sees file is normally "1.1". The -r keyletter is used to specify
the release number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1". Because this keyletter is only meaningful
in creating the first delta, its use is only permitted with the -i keyletter.

Inserting Commentary for the Initial Delta

When an sees file is created, the user may choose to supply commentary stating the reason for creation
of the file. This is done by supplying comments (-y key letter) and/or MR numbers (-m key letter) in exactly
the same manner as for delta. The creation of an sees file may sometimes be the direct result of an MR. If
comments (-y keyletter) are omitted, a comment line of the form

date and time created YY/MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v flag must also be set (using the -f keyletter
described below). The v flag simply determines whether or not MR numbers must be supplied when using any
sees command that modifies a "delta commentary" [see sccsfile(4) in the UNIX System User's Manual] in
the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that the -y and -m keyletters are only effective if a new sees file is being created.

Initialization and Modification of SCCS File Parameters

The portion of the sees file reserved for descriptive text may be initialized or changed through the use of
the -t keyletter. The descriptive text is intended as a summary of the contents and purpose of the sees file.

When an sees file is being created and the -t key letter is supplied, it must be followed by the name of
a file from which the descriptive text is to be taken. For example, the command

admin -ifirst -tdesc s.abc

-18-

specifies that the descriptive text is to be taken from file dese.

When processing an existingSeeS file, the -t keyletter specifies that the descriptive text (if any) currently
in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the sees file is to be replaced by the contents of dese; omission of the file
name after the -t keyletter as in

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized, changed, or deleted through the use of the -f and -d keyletters,
respectively. The flags of an sees file are used to direct certain actions of the various commands. See admin(1)
in the UNIX System User's Manual for a description of all the flags. For example, the i flag specifies that the
warning message stating there are no ID keywords contained in the sees file should be treated as an error,
and the d (default SID) flag specifies the default version of the sees file to be retrieved by the get command.
The -f keyletter is used to set a flag and, possibly, to set its value. For example:

admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value "modname" specified for the m flag is the value that
the get command will use to replace the %M% ID keyword. (In the absence of the m flag, the name of the g-file
is used as the replacement for the %M% ID keyword.) Note that several-f keyletters may be supplied on a
single invocation of admin and that -f key letters may be supplied whether the command is creating a new
sees file or processing an existing one.

The -d keyletter is used to delete a flag from an sees file and may only be specified when processing an
existing file. As an example, the command

admin -dm s.abc

removes the m flag from the sees file. Several -d key letters may be supplied on a single invocation of admin
and may be intermixed with -f keyletters.

The sees files contain a list (user list) of login names and/or group IDs of users who are allowed to create
deltas. This list is empty by default which implies that anyone may create deltas. To add login names and/or
group IDs to the list, the -a keyletter is used. For example:

admin -axyz -awql -a1234 s.abc

adds the login names "xyz" and "wql" and the group ID "1234" to the list. The -a keyletter may be used whether
admin is creating a new sees file or processing an existing one and may appear several times. The -e key letter
is used in an analogous manner if one wishes to remove (erase) login names or group IDs from the list.

D. The "prs" Command

The prs command is used to print on the standard output all or parts of an sees file in a format, called
the output "data specification," supplied by the user via the -d keyletter. The data specification is a string con­
sisting of sees file data keywords (not to be confused with get ID keywords) interspersed with optional user
text.

Data keywords are replaced by appropriate values according to their definitions. For example:

:1:

-19-

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is defined as the
data keyword for the SCCS file name currently being processed, and :C: is defined as the comment line associ­
ated with a specified delta. All parts of an SCCS file have an associated data keyword. For a complete list of
the data keywords, see prs(l) in the UNIX System User's Manual.

There is no limit to the number of times a data keyword may appear in a data specification. Thus, for exam­
ple:

prs -d " :1: this is the top delta for :F: :1:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that delta using the -r keyletter. For
example:

prs -d ":F: : :1: comment line is: :C:" -r1.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r key letter is not specified, the value of the SID defaults to the most recently created delta.

In addition, information from a range of deltas may be obtained by specifying the -lor -e keyletters. The
-e keyletter substitutes data keywords for the SID designated via the -r keyletter and all deltas created earli­
er. The -1 keyletter substitutes data keywords for the SID designated via the -r keyletter and all deltas created
later. Thus, the command

may output

prs -d:I: -r1.4 -e s.abc

1.4
1.3
1.2.1.1
1.2
1.1

and the command

may produce

prs -d:I: -r1.4 -1 s.abc

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

-20-

Substitution of data keywords for all deltas of the sees file may be obtained by specifying both the -e and
-I keyletters.

E. The "help" Command

The help command prints explanations of sees commands and of messages that these commands may
print. Arguments to help, zero or more of which may be supplied, are simply the names of sees commands
or the code numbers that appear in parentheses after sees messages. If no argument is given, help prompts
for one. The help command has no concept of key letter arguments or file arguments. Explanatory information
related to an argument, if it exists, is printed on the standard output. If no information is found, an error mes­
sage is printed. Note that each argument is processed independently, and an error resulting from one argument
will not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:

produces

help ge5 rmdel

ge5:
" nonexistent sid"
The specified sid does not exist in the
given file.
eheck for typos.

rmdel:
rmdel -rSID name ...

F. The "rmdel" Command

The rmdel command is provided to allow removal of a delta from an sees file. Its use should be reserved
for those cases in which incorrect global changes were made a part of the delta to be removed.

The delta to be removed must be a "leaf" delta. That is, it must be the latest (most recently created) delta
on its branch or on the trunk of the sees file tree. In Fig. 4.3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed;
once they are removed then deltas 1.3.2.1 and 2.1 can be removed, etc.

To be allowed to remove a delta, the effective user must have write permission in the directory containing
the sees file. In addition, the real user must either be the one who created the delta being removed or be the
owner of the sees file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete SID of the delta to be removed (i.e.,
it must have two components for a trunk delta and four components for a branch delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the sees file. Before removal of the delta, rmdel checks that
the release number (R) of the given SID satisfies the relation:

floor < = R < = ceiling

-21-

The rmdel command also checks that the SID specified is not that of a version for which a get for editing has
been executed and whose associated delta has not yet been made. In addition, the login name or group ID of
the user must appear in the file's "user list", or the "user list" must be empty. Also, the release specified can
not be locked against editing. That is, if the I flag is set [see admin(l) in the UNIX System User's Manual],
the release specified must not be contained in the list]. If these conditions are not satisfied, processing is termi­
nated, and the delta is not removed. After the specified delta has been removed, its type indicator in the "delta
table" of the sees file is changed from "D" (delta) to "R" (removed).

G. The "cdc" Command

The cdc command is used to change a delta's commentary that was supplied when that delta was created.
Its invocation is analogous to that of the rmdel command, except that the delta to be processed is not required
to be a leaf delta. For example:

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the sees file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old commentary associ­
ated with the specified delta is kept, but it is preceded by a comment line indicating that it has been changed
(i.e., superseded), and the new commentary is entered ahead of this comment line. The "inserted" comment line
records the login name of the user executing cdc and the time of its execution.

The cdc command also allows for the deletion of selected MR numbers associated with the specified delta.
This is specified by preceding the selected MR numbers by the character "!". Thus:

cdc -r1.4 s.abc
MRs? mrnum3 !mrnum1
comments? deleted wrong MR number and inserted correct MR number

inserts "mrnum3" and deletes "mrnum1" for delta 1.4.

H. The "what" Command

The what command is used to find identifying information within any UNIX system file whose name is
given as an argument to what. Directory names and a name of "-" (a lone minus sign) are not treated specially,
as they are by other sees commands, and no keyletters are accepted by the command.

The what command searches the given file(s) for all occurrences of the string "@(#)", which is the replace­
ment for the %Z% ID keyword [see get(l)], and prints (on the standard output) what follows that string until
the first double quote (,.), greater than (», backslash (\), new line, or (nonprinting) NUL character. For exam­
ple, if the sees file s.prog.c (a e language program) contains the following line:

char id[] ,. %Z% %M%:%I%";

and then the command

get -r3.4 s.prog.c

is executed, the resulting g-file is compiled to produce "prog.o" and "a.out". Then the command

what prog.c prog.o a.out

-22-

produces
prog.c:

prog.c:3.4
prog.o:

prog.c:3.4
a.out:

prog.c:3.4

The string searched for by what need not be inserted via an ID keyword of get; it may be inserted in any
convenient manner.

I. The "sccsdiff" Command

The sccsdiff command determines (and prints on the standard output) the differences between two speci­
fied versions of one or more sees files. The versions to be compared are specified by using the -r key letter,
whose format is the same as for the get command. The two versions must be specified as the first two arguments
to this command in the order they were created, i.e., the older version is specified first. Any following key letters
are interpreted as arguments to the pr(l) command (which actually prints the differences) and must appear
before any file names. The sees files to be processed are named last. Directory names and a name of "-" (a
lone minus sign) are not acceptable to sccsdiff.

The differences are printed in the form generated by diff(l). The following is an example of the invocation
of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

J. The "comb" Command

The comb command generates a "shell procedure" [see sh(l) in the UNIX System User's Manual] which
attempts to reconstruct the named sees files so that the reconstructed files are smaller than the originals. The
generated shell procedure is written on the standard output. Named sees files are reconstructed by discarding
unwanted deltas and combining other specified deltas. The sees files that contain deltas no longer useful
should be discarded. It is not recommended that comb be used as a matter of' routine; its use should be restricted
to a very small number of times in the life of an sees file.

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of ancestor del­
tas necessary to preserve the "shape" of the sees file tree. The effect of this is to eliminate middle deltas on
the trunk and on all branches of the tree. Thus, in Fig. 4.3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated.
Some of the keyletters are summarized as follows:

The -p key letter specifies the oldest delta that is to be preserved in the reconstruction. All older deltas
are discarded.

The -c keyletter specifies a list [see get(l) in the UNIX System User's Manual for the syntax of such
a list] of deltas to be preserved. All other deltas are discarded.

The -s keyletter causes the generation of a shell procedure, which when run, produces only a report sum­
marizing the percentage space (if any) to be saved by reconstructing each named sees file. It is recom­
mended that comb be run with this keyletter (in addition to any others desired) before any actual
reconstructions.

It should be noted that the shell procedure generated by comb is not guaranteed to save space. In fact, it
is possible for the reconstructed file to be larger than the original. Note, too, that the shape of the sees file
tree may be altered by the reconstruction process.

-23-

K. The "val" Command

The val command is used to determine if a file is an sees file meeting the characteristics specified by an
optional list of key letter arguments. Any characteristics not met are considered errors.

The val command checks for the existence of a particular delta when the SID for that delta is explicitly
specified via the -r keyletter. The string following the -y or -m key letter is used to check the value set by
the t or m flag, respectively [see admin(l) in the UNIX System User's Manual for a description of the flags].

The val command treats the special argument "-" differently from other sees commands. This argument
allows val to read the argument list from the standard input as opposed to obtaining it from the command line.
The standard input is read until end of file. This capability allows for one invocation of val with different values
for the keyletter and file arguments. For example:

val-
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file s.abc has a value "c" for its "type" flag and value "abc" for the "module name" flag. Once
processing of the first file is completed, val then processes the remaining files, in this case, s.xyz, to determine
if they meet the characteristics specified by the keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the occurrence of a specific error [see val(l)
for a description of possible errors and the codes]. In addition, an appropriate diagnostic is printed unless sup­
pressed by the -s keyletter. A return code of "0" indicates all named files met the characteristics specified.

SCCS FILES

This part discusses several topics that must be considered before extensive use is made of sees. These topics
deal with the protection mechanisms relied upon by sees, the format of sees files, and the recommended pro­
cedures for auditing sees files.

A. Protection

The sees relies on the capabilities of the UNIX software for most of the protection mechanisms required
to prevent unauthorized changes to sees files (i.e., changes made by non-SeeS commands). The only protection
features provided directly by sees are the "release lock" flag, the "release floor" and "ceiling" flags, and the
"user list".

New sees files created by the admin command are given mode 444 (read-only). It is recommended that
this mode not be changed as it prevents any direct modification of the files by non-SeeS commands. It is further
recommended that the directories containing sees files be given mode 755 which allows only the owner of the
directory to modify its contents.

The sees files should be kept in directories that contain only sees files and any temporary files created
by sees commands. This simplifies protection and auditing of sees files. The contents of direetories should
correspond to convenient logical groupings, e.g., subsystems of a large project.

The sees files must have only one link (name) because the commands that modify sees files do so by creat­
ing a copy of the file (the x-file, see "sees COMMAND CONVENTIONS") and, upon completion of processing,
remove the old file and rename the x-file. If the old file has more than one link, this would break such additional
links. Rather than process such files, sees commands produce an error message. All sees files must have
names that begin with "s.".

-24-

When only one user uses sees, the real and effective user IDs are the same; and the user ID owns the direc­
tories containing sees files. Therefore, sees may be used directly without any preliminary preparation.

However, in those situations in which several users with unique user IDs are assigned responsibility for
one sees file (e.g., in large software development projects), one user (equivalently, one user ID) must be chosen
as the "owner" of the sees files and be the one who will "administer" them (e.g., by using the admin com­
mand). This user is termed the "sees administrator" for that project. Because other users of sees do not have
the same privileges and permissions as the sees administrator, they are not able to execute directly those com­
mands that require write permission in the directory containing the sees files. Therefore, a project-dependent
program is required to provide an interface to the get, delta, and if desired, rmdel and cdc commands.

The interface program must be owned by the sees administrator and must have the "set user ID on execu­
tion" bit "on" [see chmod(l) in the UNIX System User's Manual], so that the effective user ID is the user ID
of the administrator. This program invokes the desired sees command and causes it to inherit the privileges
of the interface program for the duration of that command's execution. Thus, the owner of an sees file can
modify it at will. Other users whose login names or group IDs are in the "user list" for that file (but are not
the owner) are given the necessary permissions only for the duration of the execution of the interface program.
These other users are thus able to modify the sees files only through the use of delta and, possibly, rmdel
and cdc. The project-dependent interface program, as its name implies, must be custom-built for each project.

B. Formatting

The sees files are composed of lines of ASCII text arranged in six parts as follows:

Checksum

Delta Table

User Names

Flags

Descriptive Text

Body

A line containing the "logical" sum of all the characters of the file (not including this
checksum itself).

Information about each delta, such as type, SID, date and time of creation, and commen­
tary.

List of login names and/or group IDs of users who are allowed to modify the file by adding
or removing deltas.

Indicators that control certain actions of various sees commands.

Arbitrary text provided by the user; usually a summary of the contents and purpose of the
file.

Actual text that is being administered by sees, intermixed with internal sees control
lines.

Detailed information about the contents of the various sections of the file may be found in sccsfile(5). The
checksum is the only portion of the file which is of interest below.

It is important to note that because sees files are ASCII files they may be processed by various UNIX soft­
ware commands, such as ed(l), grep(l), and cat(l). This is very convenient in those instances in which an sees
file must be modified manually (e.g., when the time and date of a delta was recorded incorrectly because the
system clock was set incorrectly) or when it is desired to simply look at the file.

Caution: Extreme care should be exercised when modifying SCCS files with non-SCCS
commands.

c. Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an sees file or portions
of it (i.e., one or more "blocks") can be destroyed. The sees commands (like most UNIX software commands)

-25-

issue an error message when a file does not exist. In addition, sees commands use the checksum stored in the
sees file to determine whether a file has been corrupted since it was last accessed [possibly by having lost one
or more blocks or by having been modified with ed(l)]. No sees command will process a corrupted sees file
except the admin command with the -h or -z keyletters, as described below.

It is recommended that sees files be audited for possible corruptions on a regular basis. The simplest and
fastest way to perform an audit is to execute the admin command with the -h keyletter on all sees files:

admin - h s.file1 s.file2 ...
or

admin -h directory1 directory2 ...

If the new checksum of any file is not equal to the checksum in the first line of that file, the message

corrupted file (c06)

is produced for that file. This process continues until all the files have been examined. When examining directo­
ries (as in the second example above), the process just described will not detect missing files. A simple way to
detect whether any files are missing from a directory is to periodically execute the Is(l) command on that direc­
tory and compare the outputs of the most current and the previous executions. Any file whose name appears
in the previous output but not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner the file is restored depends upon the extent of the corrup­
tion. If damage is extensive, the best solution is to contact the local UNIX system operations group and request
the file be restored from a backup copy. In the case of minor damage, repair through use of the editor ed(l)
may be possible. In the latter case after such repair, the following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into agreement with the actual contents of the file.
After this command is executed on a file, any corruption that existed in the file will no longer be detectable.

AN SCCS INTERFACE PROGRAM.

A. General

In order to permit UNIX system users with different user identification numbers (user IDs) to use sees
commands upon the same files, an sees interface program is provided to temporarily grant the necessary file
access permissions to these users. This part discusses the creation and use of such an interface program. The
sees interface program may also be used as a preprocessor to sees commands since it can perform operations
upon its arguments.

B. Function

When only one user uses sees, the real and effective user IDs are the same; and that user's ID owns the
directories containing sees files. However, there are situations (e.g., in large software development projects)
in which it is practical to allow more than one user to make changes to the same set of sees files. In these cases,
one user must be chosen as the "owner" of the sees files and be the one who will "administer" them (e.g., by
using the admin command). This user is termed the "sees administrator" for that project. Since other users
of sees do not have the same privileges and permissions as the sees administrator, the other users are not
able to execute directly those commands that require write permission in the directory containing the sees
files. Therefore, a project-dependent program is required to provide an interface to the get, delta, and if de­
sired, rmdel, cdc, and unget commands. Other sees commands either do not require write permission in the
directory containing sees files or are (generally) reserved for use only by the administrator.

-26-

The interface program must be owned by the sees administrator, must be executable by nonowners, and
must have the "set user ID on execution" bit "on" [see chmod(l) in the UNIX System User's Manual] so that,
when executed, the effective user ID is the user ID of the administrator. This program's function is to invoke
the desired sees command and to cause it to inherit the privileges of the sees administrator for the duration
of that command's execution. In this manner, the owner of an sees file (the administrator) can modify it at
will. Other users whose login names are in the user list for that file (but who are not its owners) are given the
necessary permissions only for the duration of the execution of the interface program. They are thus able to
modify the sees files only through the use of delta and, possibly, rmdel and cdc.

C. A Basic Program

When a UNIX program is executed, the program is passed as argument 0, which is the name that invoked
the program, and followed by any additional user-supplied arguments. Thus, if a program is given a number
of links (names), the program may alter its processing depending upon which link invokes the program. This
mechanism is used by an sees interface program to determine which sees command it should subsequently
invoke [see exec(2) in the UNIX System User's Manual].

A generic interface program (inter.c, written in e language) is shown in Table 4.B. Note the reference to
the (unsupplied) function "filearg". This is intended to demonstrate that the interface program may also be used
as a preprocessor to sees commands. For example, function "filearg" could be used to modify file arguments
to be passed to the sees command by supplying the full path name of a file, thus avoiding extraneous typing
by the user. Also, the program could supply any additional (default) keyletter arguments desired.

D. Linking and Use

In general, the following demonstrates the steps to be performed by the sees administrator to create the
sees interface program. It is assumed, for the purposes of the discussion, that the interface program inter.c
resides in directory "/xl/xyz/sccs". Thus, the command sequence

cd /xllxyz/sccs
cc ... inter.c -0 inter ...

compiles inter.c to produce the executable module inter (the " ... " represent other arguments that may be re­
quired). The proper mode and the "set user ID on execution" bit are set by executing:

chmod 4755 inter

For example, new links are created by:

In inter get
In inter delta
In inter rmdel

The names of the links may be arbitrary provided the interface program is able to determine from them the
names of sees commands to be invoked. Subsequently, any user whose shell parameter PATH [see sh(l) in
the UNIX System User's Manual] specifies directory "/xllxyz/sccs" as the one to be searched first for execut­
able commands may execute, e.g.:

get -e /xl/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link "get"). The interface program then executes
"/usr/bin/get" (the actual sees get command) upon the named file. As previously mentioned, the interface
program could be used to supply the pathname "/xllxyz/sccs" so that the user would only have to specify

get -e s.abc

to achieve the same results.

-27-

TABLE 4.A

DETERMINATION OF NEW SID

SID -b KEYLETTER OTHER SID SID OF DELTA
CASE SPECIFIED" USEDt CONDITIONS RETRIEVED TO BE CREATED

1 nonet no R defaults to mR mRmL mR.(mL + 1)

2 none:j: yes R defaults to mR mRmL mR.mL.(mB + 1).1

3 R no R> mR mRmL R1§

4 R no R = mR mRmL mR.(mL + 1)

5 R yes R> mR mRmL mRmL.(mB + 1).1

6 R yes R = mR mR.mL mR.mL.(mB + 1).1

7 R - R < mR and hRmL** hRmL.(mB + 1).1
R does not exist

8 R - Trunk successor RmL RmL.(mB + 1).1
in release > R
and R exists

9 R.L no No trunk successor RL R(L + 1)

10 RL yes No trunk successor RL RL.(mB + 1).1

11 RL - Trunk successor RL RL.(mB + 1).1
in release ~ R

12 R.L.B no No branch successor RL.B.mS RL.B.(mS + 1)

13 RL.B yes No branch successor R.L.B.mS RL.(mB + 1).1

14 R.L.B.S no No branch successor R.L.B.S RL.B.(S + 1)

15 R.L.B.S yes No branch successor RL.B.S RL.(mB + 1).1

16 R.L.B.S - Branch successor RL.B.S RL.(mB + 1).1

* "R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" components of the SID,
respectively; "m" means "maximum". Thus, for example, "R.mL" means "the maximum level num­
ber within release R"; "R.L.(mB + 1).1" means "the first sequence number on the new branch (i.e.,
maximum branch number plus 1) of level L within release R". Note that if the SID specified is of
the form "R.L", "RL.B", or "RL.B.S", each of the specified components must exist.

t The -b keyletter is effective only if the b flag [see admin(l)] is present in the file. In this table, an
entry of "-" means "irrelevant".

:j: This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the
file, the SID obtained from the d flag is interrupted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

§ This case is used to force the creation of the first delta in a new release.

** "hR" is the highest existing release that is lower than the specified, nonexistent, release R

-28-

TABLE 4.B

SCCS INTERFACE PROGRAM "inter.c"

main(argc, argv)
int argc;
char *argv[];
{

register int i;
char cmdstr[LENGTH]

/*
Process file arguments (those that don't begin with "-").
*/
for (i = 1; i < argc; i++)

if (argv[i][O] != '-')
argv[i] = filearg(argv[i]);

/*
Get "simple name" of name used to invoke this program
(Le., strip off directory-name prefix, if any).
*/
argv[O] = sname(argv[O]);

1*
Invoke actual sees command, passing arguments.
*/
sprintf(cmdstr, "/usr/bin/%s", argv[O]);
execv(cmdstr, argv);

-29-

NOTES

-30-

Table of Contents

Using C on HP9000 Series 500 Computers
Introduction .. 1
Data Types and Manipulations .. 1

Data Type Sizes ... 1
Char Data Type ... 1
Register Data Type .. 1
Integer Overflow .. 1
Division by Zero .. 2
Identifiers .. 2
Shift Operators .. 2
Bit Fields ... 2

Code/Data Limitations .. 2
Portability Considerations ... 3

Using C
Series 500

Introduction

on HP9000
Computers

The purpose of this article is to describe the machine dependent features of the C programming
language as it is implemented on the HP 9000 Series 500 computers. No attempt is made here to
fully describe C. When applicable, page numbers are given that reference pages in the Kernighan
and Ritchie text, The C Programming Language, which are related to the discussion.

Data Types and Manipulations

Data Type Sizes
The following table gives the sizes and alignment requirements of the six data types implemented in
C (page 34):

Type Size Alignment Requirements
char 8 bits byte boundary
short 16 bits half word

int 32 bits full word
long 32 bits full word
float 32 bits full word

double 64 bits full word

Char Data Type
The char data type is treated as signed by default. This implies that, if a char is assigned to an int,
sign extension will take place (page 40).

Register Data Type
Because the Series 500 computers are stack machines, declaring a variable to be register is
ignored, and is treated as a no-op (page 81).

Integer Overflow
Integer overflow does not generate an error by default (page 185).

-1-

Division by Zero
Whenever division by zero occurs, you get the (somewhat misleading) error message "Floating
exception" at run-time.

Identifiers
Internal identifiers have 16 significant characters. External identifiers have 15 significant characters
(page 179).

Shift Operators
An arithmetic shift is performed if the left operand is signed. If the left operand is unsigned, a logical
shift is performed (page 45). (Remember that integer constants are treated as signed unless cast to
unsigned.)

Bit Fields
Bit fields are assigned left to right, and are treated as unsigned (page 138).

Code/Data Limitations

The following limitations exist on the Series 500 computers:

a maximum of 2~19 bytes of local variables in any procedure;

a maximum of 2~19 bytes of parameters in any function call;

any branch instruction generated by a procedure must be within 2~18 bytes of its target;

structure functions cannot return a structure bigger than 2~24 bytes.

If you violate any of the above limits, you get the message "impossible reach" from the assembly
step of cc. Other limitations are:

a maximum of 255 procedures in any single compilation (Le. any single ".c" file and
everything it #includes). If you exceed this, you get" proctable overflow" from the assembler;

a maximum of 32 767 lines of assembly code generated by cc. If you exceed this, you get" too
many lines" from the assembler. To work around thiS, break your program up into smaller
pieces;

a maximum of 2~19 bytes of global scalar data (includes all global scalar variables, all static
scalar variables, all global and static structures, and 4 bytes for each global or static array). If
you exceed this, you get "byte offset too large" from the linker, ld.

When compiling with cc, you can recognize assembler errors by the fact that they make reference to
a file called Itmplctm3x, where x is a single letter. Also, you can use the -v option to watch the
compilation process, and note where the error occurs.

-2-

Portability Considerations

The following list should be kept in mind when transporting C code to the Series 500 computers
from other machines:

the Series 500 computers do not swap bytes;

dereferencing a null. pointer for a read or write operation generates a run-time error. On some
other machines, dereferencing a null pointer for a read operation returns zero;

beware of attempts to use absolute addressing. The use of hard-coded addresses is not likely
to work on any machine to which you want to port code;

even though the stack grows toward higher memory addresses, parameters are stacked toward
decreasing addresses. Thus, if you want to use a pointer to step through a variable length
parameter list, you must decrement the pointer.

-3-

Table of Contents

Lint C Program Checker
Introduction .. 1
Error Detection ... 1
Problem Detection .. 2

Problem Code: Unused Variables and Functions ... 2
Suppressing Lint .. 3

Problem Code: Set/Used Information .. 3
Problem Code: Unreachable Code .. 4

Suppressing Lint .. 4
Problem Code: Function Value .. .4
Problem Code: Type Matching .. 5

Suppressing Lint .. 6
Problem Code: Portability ... 6

Suppressing Lint .. 7
Problem Code: Strange Constructions ... 7

Suppressing Lint .. 8
Problem Code: Obsolete Constructions ... 8

How to Use Lint. ... 9
Directives .. 9
Option List. ... 10

Lint

C Program Checker

Introduction
Lint is a program checker and verifier for C source code. Its main purpose is to supply the program­
mer with warning messages about problems with the source code's style, efficiency, portability, and
consistency. Once the C code passes through the compiler with no errors, lint can be used to locate
areas, undetected by the compiler, that may require corrections.

Error messages and lint warnings are sent to the standard error file (the terminal by default). Once
the code errors are corrected, the C source file(s) should be run through the C compiler to produce
the necessary object code.

Error Detection
Lint can detect all of the code errors that the C compiler detects. An example of an error message
would be:

illegal initialization

These errors must be corrected before the compiler can be used to produce object code.

Although lint can be used for error detection, it cannot recover ~rom all of the code errors it finds. If
lint encounters an error that it can not recover from, it sends the message:

cannot recover from earlier errors - goodbye!

and then terminates.

Lint limits the number of code errors that it detects to 30. Once 30 errors have been found in the
source file(s), any additional error causes the message:

too many errors

to be sent to the standard error file, and lint terminates. Because of this limitation and lint's inability
to recover from some errors, the compiler should be used for error detection. Once the error­
causing code has been corrected, lint can be used on the source code for finding some of its ineffi­
ciencies and bugs.

·1·

Problem Detection
The main purpose of lint is to find problem areas in C source code. The detected code may not be
considered an error by the C compiler; it can be converted into object code. However, lint con­
siders the code to be inefficient, nonportable, bad style, or a possible bug.

Comments about problems that are local to a function are produced when they are detected. They
have the form:

warning: <message text>

Information about external functions and variables is collected and analyzed after lint has processed
the files handed to it. At that time, if a problem has been detected, It sends a warning message with
the form:

<message text>

followed by a list of external names causing the message and the files where the problem occurred.

Code causing lint to issue a warning message should be analyzed to determine the source of the
problem. Sometimes the programmer has a valid reason for writing the problem code. Usually,
though, this is not the case. Lint can be very helpful in uncovering subtle programming errors.

Lint checks the source code for certain conditions, about which it issues warning messages. These
can be grouped into the following categories:

1. variable or function is declared but not used;
2. variable is used before it is set;
3. portion of code is unreachable;
4. function values are used incorrectly;
5. type matching does not adhere strictly to C rules;
6. code has portability problems;
7. code construction is strange;
8. code construction is obsolete.

The code that you write may have constructions in it that lint objects to but that are necessary to its
application. Warning messages about problem areas that you know about and do not plan to
correct provide useless information and make helpful messages harder to find. There are two
methods for suppressing warning messages from lint that you do not need to see. The use of lint op­
tions is one. The lint command can be called with any combination of its defined option set. Each
option has lint ignore a different problem area. The other method is to insert lint directives into the
source code. Lint directives are discussed later.

Problem Code: Unused Variables and Functions
Lint objects if source code declares a variable that is never used or defines a function that is never
called. Unused variables and functions are considered bad style because their declarations clutter
the code. They can also be the cause of a program bug if their use is essential.

-2-

An unused local variable can result in one of two lint warning messages. If a variable is defined to
be static and is not used lint responds with:

warning: static variable <name> unused

Unused automatic variables cause the message:

warning: <name> unused in function <name>

A function or external variable that is unused causes the message:

name defined but never used

followed by the function or variable name and the file in which it was defined. Lint also looks at the
special case where one of the parameters of a function is not used. The warning message is:

warning: argument unused in function: <arg_name> in <funcname>

If functions or external variables are declared but never used or defined lint responds with

name declared but never used or defined

followed by a list of variable and function names and the names of files where they were declared.

Suppressing Lint

Sometimes it is necessary to have unused function parameters to support consistent interfaces
between functions. The -v option can be used with lint to have warnings about unused parameters
suppressed. However, the -v option does not suppress comments when parameters are defined as
register variables. Unused register variables result in an inefficient use of the computer's resources,
since quick-access hardware is often allocated for their storage.

If lint is run on a file which is linked with other files at compile time, many external variables and
functions can be defined but not used, as well used but not defined. If there is no guarantee that the
definition of an external object is always seen before the object is used, it is declared extern. The-u
option can be used to stop complaints about all external objects, whether or not they are declared
extern. If you want to inhibit complaints about only the extern declared functions and variables, use
the -x option.

Problem Code: Set/Used Information
A probable bug exists in a program if a variable's value is used before it is assigned. Although lint at­
tempts to detect occurrences of this, it takes into account only the physical location of the code. If
code using a static or external variable is located before the variable is given a value the message
sent is:

warning: <name> may be used before set

-3-

Since static and external variables are always initialized to zero this may not point out a program
bug. Lint also objects if automatic variables are set in a function but not used. The message given is:

warning: <name> set but not used in function

Problem Code: Unreachable Code
Lint checks for three types of unreachable code. Any statement following a goto, break, continue,
or return statement must either be labeled or reside in an outer block for lint to consider it
reachable. If neither is the case, lint responds with:

warning: statement not reached

The same message is given if lint finds an infinite loop. It only checks for the infinite loop cases of
while(l) and for(;;). The third item that lint looks for is a loop that cannot be entered from the top.
If one is found then the message sent is:

warning: loop not entered from top

Lint's detection of unreachable code is by no means perfect. Warning messages can be sent about
valid code. It can also overlook commenting on code that cannot be reached. An example of this is
the fact that lint does not know if a called function ever returns to the calling function (e.g. exit). Lint
does not identify code following such a function call as being unreachable.

Suppressing Lint

Programs that are generated by yacc or lex can have many unreachable break statements. Normal­
ly, each one causes a complaint from lint. The -b option can be used to force lint to ignore un­
reachable break statements.

Problem Code: Function Value
The C compiler allows a function containing both the statement

return();

and the statement

return (expression);

to pass through without complaint. Lint, however, detects this inconsistency and responds with the
message:

warning: function <name> has return(e); and return;

-4-

Problem Code: Type Matching
The C compiler does not strictly enforce the C language's type matching rules. At the loss of some
type checking, the C compiler gains speed. An important role of lint is to enforce the type checking
that the compiler neglects. It does this in four areas:

1. pointer types;
2. long and int type matching;
3. enumerations;
4. operations on structures and unions.

The types of pointers used in assignment, conditional, relational, and initialization statements must
agree exactly. For example, the code:

int *p;
char *q;

p = q;

would cause lint to respond with the message:

warning: illegal pOinter combination

Adding and subtracting integers and pointers are legal. Any other binary operation on them results
in the message:

warning: illegal combination of pointer and integer: op <operator>

An example of code causing this message would be:

int s, *t;

t = s;

Assignments of long integer variables to integer variables are possible in the C language. However,
on some machines the amount of storage supplied for the two types differs, and so the accuracy of a
value could be lost in the conversion. Lint detects these assignments as possible program bugs. If a
long integer is assigned to an integer, lint responds with:

warning: conversion from long may lose accuracy

Lint checks enumerations to see that variables or members are all of one type. Also, the only
enumeration operations it allows are assignment, initialization, equality, and inequality. If lint finds
code breaking any of these gUidelines, it sends the message:

-5-

warning: enumeration type clash, operator <operator>

Structure and union references are subject to more type checking by lint than by the C compiler.
Lint requires that the left operand of -> be a pOinter to a structure or a union. If it isn't a pointer,
lint's response is:

warning: structlunion or structlunion pOinter required

The left operand of . must be a structure or a union, which lint also indicates with the message
above. The right operand of -> and. must be a member of the structure or union implied by the
left operand. If it isn't then lint's message is:

warning: illegal member use <name>

where <name> is the right operand.

Suppressing Lint

You may have a legitimate reason for converting a long integer to an integer. Lint's -a option inhi­
bits comments about these conversions.

Problem Code: Portability
Lint aids the programmer in writing portable code in five areas:

1. character comparisons;
2. pointer alignments;
3. uninitialized external variables;
4. length of external variables;
5. type casting.

Character representation varies on different machines. Characters may be implemented as signed
values or as unsigned values. As a result, certain comparisons with characters give different results
on different machines. The expression

c<O

where c is defined as type character, is always true if characters are unsigned values. If, however,
characters are signed values the expression could be either true or false. Where character compar­
isons could result in different values depending on the machine used, lint outputs the message:

warning: non portable character comparison

Legal pointer assignments are determined by the alignment restrictions of the particular machine
used. For example, one machine may allow double precision values to begin on any integer boun­
dary, but another may restrict them to word boundaries. If integer and word boundaries are dif­
ferent, code containing an assignment of a double pointer to an integer pointer could cause prob­
lems. Lint attempts to detect where the effect of pointer assignments is machine dependent. The
warning that it sends is:

-6-

warning: possible pointer alignment problem

Another machine dependent area is the treatment of uninitialized external variables. If two files
both contain the declaration

inta;

either one word of storage is allocated or each occurrence receives its own word of storage, depen­
ding on the machine. If the files that lint is processing contain multiple definitions of the same unini­
tialized external variable, lint responds with:

warning: <name> redefinition hides earlier one

The amount of information about external symbols that is loaded depends on the machine being
used: the number of characters saved and whether or not upper/lower case distinction is kept. Lint
truncates all external symbols to six characters and allows only one case distinction. (It changes up­
per case characters to lower case.) This provides a worst-case analysis so that the uniqueness of an
external symbol is not machine dependent.

The effectiveness of type casting in C programs can depend on the machine that is used. For this
reason, lint ignores type casting code. All assignments that use it are subject to lint's type checking
(see Problem Code: Type Matching).

Suppressing Lint

The -p option stops comments about two types of portability problems:

1. pointer alignment problems,
2. multiple definitions of external variables.

Lint's objections to legal casts can also be suppressed. To do so, use its -c option.

Problem Code: Strange Constructions
A strange construction is code that lint considers to be bad style or a possible bug.

Lint looks for code that has no effect. An example is:

*p+ +;

where the * has no effect. The statement is equivalent to "p + +; " . In cases like this the message:

warning: null effect

is sent.

The treatment of unsigned numbers as signed numbers in comparisons causes lint to report:

-7-

warning: degenerate unsigned comparison

The following code would produce such a message:

unsigned x;

if (x < 0) ...

Lint also objects if constants are treated as variables. If the boolean expression in a conditional has
a set value due to constants, such as

if (1 ! = 0)

lint's response is:

waming: constant in conditional context

If the NOT operator is used on a constant value, the response is:

warning: constant argument to NOT

To avoid operator precedence confusion, lint encourages using parentheses in expre'ssions by sen­
ding the message:

warning: precedence confusion possible; parenthesize!

Lint judges it bad style to redefine an outer block variable in an inner block. Variables with different
functions should normally have different names. If variables are redefined, the message sent is:

warning: <name> redefinition hides earlier one

Suppressing Lint

To stop lint's comments about strange constructions, use its -h option.

Problem Code: Obsolete Constructions
C contains two forms of old syntax which, through the evolution of the language, are now officially
discouraged. One is a group of assignment operators. Previously acceptable = +, = -, = *, = I,
=%, =«, =», =&, =~, and =1 have been changed to + =, -=, *=,1=, %=, «=,
> > = , & =, ~ = , and 1 = . If lint sees the older form, it responds with:

warning: old-fashioned assignment operator

The second syntax change deals with initialization. An older version of C allowed:

·8·

int a 0;

to initialize a to zero. Initialization now requires that an equals sign appear between the variable and
the value it is to receive:

int a = 0;

Lint's response to the earlier version is:

warning: old-fashioned initialization: use =

Howto Use Lint
To use lint, you must be logged into the HP-UX system and have a shell prompt on your screen.
From here you can run lint on a single C source file:

$ lint filename.c

or on several source files which are to be linked together:

$ lint file1.c file2.c file3.c

The reappearance of your shell prompt after invoking lint tells you that lint has finished processing
your files. If no messages were sent to your standard error file, lint found nothing wrong with your
code.

Directives
The alternative to using options to suppress lint's comments about problem areas is to use direc­
tives. Directives appear in the source code in the form of code comments. Lint recognizes five direc­
tives.

I*NOTREACHED*I stops an unreachable code comment about the next line of code.

stops lint from strictly type checking the next expression.

stops a comment about any unused parameters for the following function.

stops lint from reporting variable numbers of parameters in calls to a func­
tion. The function's declaration follows this comment. The first n
parameters must be present in each call to the function; lint comments if
they aren't. If "I*VARARGS*I" appears without the n, none of the
parameters need be present.

1* LINTLIBRARY * I must be placed at the beginning of a file. This directive tells lint that the file is
a library file and to suppress comments about unused functions. Lint objects
if other files redefine routines that are found there.

·9·

Option List
The following is a list of the options available when using lint:

-a suppress complaints about assignments of integers to longs and of longs to integers.

-b suppress complaints about unreachable break statements.

-c suppress complaints about legal casts. Without this option typecasting is ignored.

-h suppress complaints about legal but strange constructions (see Problem Code: Strange Con­
structions) .

-n do not check the compatibility of code against any libraries (standard and portable lint li­
braries, directive-defined libraries).

-p suppress some portability checks (see Problem Code: Portability).

-u suppress complaints about externals (functions and variables) that are used but not defined,
or that are defined but not used (see Problem Code: Unused Variables and Functions, Prob­
lem Code: Set/Used Information).

-v suppress complaints about unused function parameters. If a parameter is unused and is also
declared as a register variable, the warning is not suppressed.

-x suppress complaints about unused variables with external declarations (see Problem Code:
Set/Used Information).

-Dname[= def1
define the string name to lint, as if a #define control line were used. If no definition is given,
then name is given the value 1. This option is also used by the C compiler.

-Uname
remove any initial definition of name, as if a #undef control line were used. This option is
also used by the C compiler.

-Idir change the algorithm for searching for #include files whose names do not begin with "/".
The dir directory is searched before the directories on the standard list. Thus, #include files
whose names are enclosed in double quotes (" ") are searched for first in the directory of
the source file, then in the directory specified by each -I option, and finally in the directories
on the standard list. If a #include file's name is enclosed in angle brackets « >), the source
file's directory is not searched. This option is also used by the C compiler.

-10-

Table of Contents

Nroff/Troff User's Manual
Introduction .. 1
Usage ... 1
References .. 2
Summary and Index ... 3
Escape Sequences for Characters, Indicators, and Functions .. 6
Predefined General Number Registers ... 7
Predefined Read-Only Number Registers ... 7
Reference Manua1. ... , 8

General Explanation .. 8
Form of input ... 8
Formatter and device resolution .. 8
Numerical parameter input ... 8
Numerical Expressions ... 9
Notation ... 9

Font and Character Size Control .. 9
Character set .. 9
Fonts ... 10
Character size .. 10

Page Control ... 11
Text Filling, Adjusting, and Centering ... 12

Filling and adjusting .. 12
Interrupted text .. 12

Vertical Spacing ... 13
Base-line spacing .. 13
Extra line-space .. 13
Blocks of vertical space ... 13

Line Length and Indenting ... 14
Macros, Strings, Diversion, and Position Traps .. 14

Macros and strings .. 14
Copy mode input interpretation .. 15
Arguments ... 15
Diversions .. 15
Traps ... 16

Number Registers .. 17
Tabs, Leaders, and Fields ... 18

Tabs and leaders .. 18
Fields ... 18

Input/Output Conventions and Character Translations ... 19
Input character translations ... 19
Ligatures .. 19
Backspacing, underlining, overstriking, etc .. 19
Control characters .. 20
Output translation .. 20
Transparent throughput. ... 20
Comments and concealed newlines .. 20

Table of Contents (continued)

Local Horizontal and Vertical Motions, Width Function ... 20
Local Motions .. 20
Width Function .. 21
Mark horizontal place ... 21

Overstrike, Bracket, Line-drawing, and Zero-width Functions 21
Overstriking ... 21
Zero-width characters ... 21
Large Brackets ... 21
Line drawing .. 21

Hyphenation ... 22
Three Part Titles .. : ... 23
Output Line Numbering ... 23
Conditional Acceptance of Input .. 24
Environment Switching .. 24
Insertions from the Standard Input ... 25
Input/Output File Switching ... 25
Miscellaneous .. 25
Output and Error Messages .. 26

Tutorial Examples ... 27
Introduction ... 27
Page Margins ... 27
Paragraphs and Headings .. 28
Multiple Column Output .. 28
Footnote Processing .. 29
The Last Page .. 30

Table 1 - Font Style Examples ... 31
Table 2 - Input Naming Conventions for Non-ASCII Characters ... 32
Summary of Changes to NrofflTroff ... 34

Options ... 34
Old Requests ... 34
New Requests ... 34
New Predefined Number Registers ... 34

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

NROFF and TROFF are text processors under the PDP-II UNIX Time-Sharing System 1 that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu­
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik­
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to eti-tbed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is

nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con­
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan­
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option Effect

-0 list Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N - M and
means pages N through M; a initial - N means from the beginning to page N; and
a final N - means from N to the end.

-nN Number first generated page N

-sN Stop every N pages. NROFF will halt prior to every N pages (default N= 1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

- m name Prepends the macro file /usr/lib/tmac. name to the input files.

- raN Register a . (one-character) is set to N

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

-1-

NROFF Only

- T name Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Model 37 Teletype<!l, tn300 for the GE TermiNet 300 (or any ter­
minal without half-line capabilities), 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-t

-f

-w
-b

-a

-pN

-g

TROFF Only

Direct output to the standard output instead of the phototypesetter.

Refrain from feeding out paper and stopping phototypesetter at the end of the run.

Wait until phototypesetter is available, if currently busy.

TROFF will report whether the phototypesetter is busy or available. No text pro­
cessing is done.

Send a printable (ASCII) approximation of the results to the standard output.

Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument; for example,

nroff -04,8-]0 -T 300S -mabc file] file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file] and file2,
specifies the output terminal as a DASI-,300S, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table­
construction preprocessor TBL3. A reverse-line postprocessor COL 4 is available for multiple-column
NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbl files I eqn I troff - t options I teat

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

[1] K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975).

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum.

(3) M. E. Lesk, Tbl - A Program to Format Tables, Bell Laboratories internal memorandum.

(4) Internal on-line documentation, on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum.

-2-

SUMMARY AND INDEX

Request Initial q No
Form Value· Argument Notes# Explanation

1. General Explanation

2. Font and Character Size Control

.ps±N

.ss N

.csFNM

.bd FN

.bd SF N

.ft F

. fp N F

10 point
12/36em
off
off
off
Roman
R,I,B,S

3. Page Control

.pl ±N 11 in

.bp ±N N=1

.pn ±N N=l

.po ± N 0; 26/27 in

.ne N

.mk R none

.rt ±N none

previous
ignored

previous
ignored

11 in

ignored
previous
N=1V
internal
internal

E
E
P
P
P
E

v
Bt,v

v
D,v
D
D,v

4. Text Filling, Adjusting, and Centering

. br B

.fi fill B,E

. nf fill B,E

. ad c adj,both adjust E

. na adjust E

. ce N off N= 1 B,E

5. Vertical Spacing

.vs N 1/6in;12pts

.Is N N=1

.sp N

.sv N

. os

.ns

.rs
space

previous
previous
N=1 V
N=1 V

6. Line Length and Indenting

E,p
E
B,v
v

D
D

Point size; also \s±Nt
Space-character size set to N/36 em. t
Constant character space (width) mode (font F). t
Embolden font F by N-l units. t
Embolden Special Font when current font is F.t
Change to font F = x, xx, or 1-4. Also \fx, \f(xx, \fN
Font named F mounted on physical position 1 ~ N~ 4 .

Page length.
Eject current page; next page number N
Next page number N
Page offset.
Need N vertical space (V = vertical spacing).
Mark current vertical place in register R.
Return (upward only) to marked vertical place.

Break .
Fill output lines .
No filling or adjusting of output lines .
Adjust output lines with mode c .
No output line adjusting .
Center following N input text lines.

Vertical base line spacing (V).
Output N-l Vs after each text output line.
Space vertical distance N in either direction.
Save vertical distance N
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

.11 ±N 6.5 in previous E,m Line length .

.in ± N N=O previous B,E,m Indent.

.ti ± N ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

. de xx yy

. am xx yy

.ds xx string -

.as xx string -

.yy= ..

. yy= ..
ignored
ignored

Define or redefine macro xx; end at call of yy .
Append to a macro .
Define a string xx containing string.
Append string to string xx.

'Values separated by";" are for NROFF and TROFF respectively.

#Notes are explained at the end of this Summary and Index

tNo effect in NROFF.

;The use of" • " as control character (instead of ".") suppresses the break function.

-3-

I/No Request
Form

Initial
Value Argument Notes Explanation

.rm xx

.ro xx yy

.di xx

.da xx

. wh Nxx

. ch xx N

.dt N xx

.it N xx

.em xx none

8. Number Registers

.nr R ±N M

. af R c

. rr R
arabic

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields

. ta Nt ... 0.8; O.Sin none

.tc c

.Ic c

.fc a b

none

off

none
none
off

D
D
v
v
D,v
E

u

E,m
E
E

Remove request, macro, or string.
Rename request, macro, or string xx to yy.
Divert output to macro xx.
Divert and append to xx.
Set location trap; negative is w.r.t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap.
End macro is xx.

Define and set number register R; auto-increment by M
Assign format to register R (c=l, i, I, a, A) .
Remove register R .

Tab settings; left type, unless t=R(right), C(centered) .
Tab repetition character.
Leader repetition character.
Set field delimiter a and pad character b.

10. Input and Output Conventions and Character Translations

. ec c \

.eo on

.Ig N -; on.

.ul N off

. cu N off

.uf F Italic

. cc c

.c2 c

\

on
N=l
N=l
Italic

Set escape character .
Turn off escape character mechanism.
Ligature mode on if N>O .

E Underline (italicize in TROFF) N input lines.
E Continuous underline in NROFF; like ul in TROFF .

Underline font set to F (to be switched to by uD.
E Set control character to c .
E Set nobreak control character to c .

. tr abcd.... none 0 Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation.

.nh hyphenate

.hy N hyphenate hyphenate

.he c \% \%

. hw word1 ... ignored

14 . Three Part Titles.

. tl 'left' center' right'

. pc c % off

.It ±N 6.5 in previous

15. Output Line Numbering .

. nm ± N M S I off

.nn N N=l

16. Conditional Acceptance of Input

.if c anything

E
E
E

E,m

E
E

No hyphenation.
Hyphenate; N = mode.
Hyphenation indicator character c .
Exception words.

Three part title.
Page number character .
Length of title .

Number mode on or off, set parameters.
Do not number next N lines.

If condition c true, accept anything as input,
for multi-line use \{anything\}.

-4-

l/No Request
Form

Initial
Value Argument Notes Explanation

.if ! e anything

. if N anything

. if !N anything

. if 'string]' string2' anything

.if !' string]' string2' anything

. ie e anything

. el anything

17. Environment Switching.

.ev N N=O previous

u
u

u

18. Insertions from the Standard Input

.rd prompt

. ex
prompt=BEL-

19. Input/Output File Switching

. so filename

. nx filename

. pi program

20. Miscellaneous

.mc eN

end-of-file

E,m

If condition c false, accept anything .
If expression N > 0, accept anything .
If expression N ~ 0, accept anything .
If string1 identical to string2, accept anything .
If string1 not identical to string2, accept anything.
If portion of if-else; all above forms (like if) .
Else portion of if-else .

Environment switched (push down).

Read insertion.
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file .
Pipe output to program (NROFF only) .

Set margin character c and separation N.
.tm string
. ig yy

off
newline
.yy= ..
all

Print string on terminal (UNIX standard message output).
Ignore till call of yy .

.pm t Print macro names and sizes;

. n B
if t present, print only total of sizes.
Flush output buffer .

21. Output and Error Messages

N~tes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Sedion Number Cross Reference

ad 4 cc 10 ds 1 fe 9 ie 16 II 6 nh 13 pi 19 rn 1
af 8 ce 4 dt 1 Ii 4 if 16 Is 5 nm 15 pi 3 rr 8
am 1 ch 1 ee 10 fl 20 ig 20 It 14 nn 15 pm 20 rs 5
as 1 cs 2 el 16 fp 2 in 6 me 20 nr 8 pn 3 rt 3
bd 2 cu 10 em 1 ft 2 it 1 mk 3 ns 5 po 3 so 19
bp 3 da 1 eo 10 he 13 Ie 9 na 4 nx 19 ps 2 sp 5
br 4 de 1 ev 11 hw 13 Ig 10 ne 3 os 5 rd 18 ss 2
c2 10 di 1 ex 18 hy 13 Ii 10 nf 4 pc 14 rm 1 sv 5

-5-

ta 9 vs 5
tc 9 wh 1
ti 6
tl 14
tm 20
tr 10
uf 10
ul 10

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sequence

10.1 \\
10.1 \e
2.1 \'
2.1 \.
2.1 \-
7 \.

11.1 \ (space)
11.1 \0
11.1 \1
11.1 \"
4.1 \Ie

10.6 \!
10.7 \"
7.3 \,N

13 \%
2.1 \(xx
7.1 \.x, \.(xx
9.1 \a

12.3 \b'abc .. :
4.2 \c

11.1 \d
2.2 \fx,\f(xx,\fN

11.1 \h' N'
11.3 \kx
12.4 \1' Nc'
12.4 \L'Nc'
8 \nx,\n(xx

12.1 \o'abc .. :
4.1 \p

11.1 \r
2.3 \sN, \s ± N
9.1 \t

11.1 \u
11.1 \v'N'
11.2 \w'string'
5.2 \x'N'

12.2 \zc
16 \(
16 \)
10.7 \ (newline)

\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
, (acute accent); equivalent to \(aa
• (grave accent); equivalent to \ (ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line ind.icator
Beginning of comment
Interpolate argument 1 ~ N~ 9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion 0/2 line in NROFF)
Change to font named x or xx, or position N
Local horizontal motiert; move right N (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (9ptionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion 0/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative be/ore, positive cUter)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \\, \., \", \', \., \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2).

·6·

Predefined General Number Registers

Section Register
Reference Name

3 %
11.2 ct
7.4 dl
7.4 dn

dw
dy

11.3 hp
15 In

mo
4.1 nl

11.2 sb
11.2 st

yr

Description

Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1-7).
Current day of the month (1-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Registers

Section Register
Reference Name

7.3 .S
. A

11.1 .H
. T

11.1 .V
5.2 .a

• c
7.4 • d
2.2 of
4 oh
6 oi
6 01

4 on
3 00

3 op
2.3 oS
7.5 ot
4.1 ou
5.1 oV

11.2. oW
oX
oy

7.4 oZ

Description

Number of arguments available at the current macro level.
Set to 1 in TROFF, if -a option used; always 1 in NROFF .
A vailable horizontal resolution in basic units.
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
A vail able vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of lines read from current input file .
Current vertical place in current diversion; equal to nl, if no diversion .
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion.
Current indent.
Current line length.
Length of text portion on previous output line.
Current page offset.
Current page length.
Current point size.
Distance to the next trap.
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register.
Reserved version-dependent register.
Name of current diversion.

-7-

REFERENCE MANUAL

1. General Explanation

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a con­
trol character-normally. (period) or • (acute accent) -followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character' suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number regis­
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis­
introduced, two-character name as in \n (xx.

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions. of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev­
ice indicated by the -T option (default Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points, V is the current verti­
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i Inch 432 240
e Centimeter 432x50/127 240x50/127
P Pica = 1/6 inch 72 240/6
m Em = Spoints 6xS C
n En = Em/2 3xS C, same as Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as - > (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta, It, po, me, \h, and \1; Vs for the vertically­
oriented requests and functions pi, wh, eh, dt, sp, SV, ne, rt, \v, \x, and \L; p for the vs request; and
u for the requests nr, if, and ie. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additianal inappropriate default scaling.

-8-

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, I N becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, I N becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp 13.2c

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, -, I, *, % (mod), and the logical operators <, >, <=, >=, = (or ==-),
& (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.25H\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the
argument may take the forms N, + N, or -Nand that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini­
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are sp, wh, ch, nr, and if. The requests
ps, ft, po, VS, Is, ll, in, and It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \ (xx where xx is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

acute accent
,

close quote
grave accent

, open quote
- minus - hyphen

The characters " " and - may be input by \', \', and \- respectively or by their names (Table II).
The ASCII characters @, #, ", " " <, >, \, {, }, -, A, and exist only on the Special Font and are
printed as a I-em space if that Font is not mounted.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

-9-

characters " " and _ print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \fx, \f(xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22,24,28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \s±N (1 ~N~9) to
increment/decrement the size by N; \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Request Initial If No
Form Value Argument Notes· Explanation

.ps ±N 10 pain t previous

.ss N 12/36 em ignored

.cs FN M off

.bd F N off

E

E

P

P

Point size set to ± N. Alternatively imbed \sN or \s ± N.
Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, - N will work because the previ­
ous requested value is also remembered. Ignored in
NROFF.

Space-character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on for font
F (if mounted); the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of
the character's point size; if M is given, the em is M­
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is F are also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

The characters in font Fwill be artificially emboldened by
printing each one twice, separated by N-l basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

"Notes are explained at the end of the Summary and Index above.

-10-

.bd S F N off

.ft FRoman previous

.fp N F R,I,B,S ignored

3. Page control

P

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd S B 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \fF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named F is
mounted on position N 0-4). It is a fatal error if F is
not known. The phototypesetter h~s four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I, B,
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and - N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request
Form

.pl ±N

.bp ±N

.pn ±N

.po ±N

.ne N

Initial
Value

11 in

N=l

/fNo
Argument

11 in

N=l ignored

0; 26/27 int pre.vious

N=l V

Notes Explanation

v Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

B*,v Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

Page number. The next page (when it occurs) will have
the page number ± N. A pn must occur before the ini­
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the %
register.

v Page offset. The current left margin is set to ± N. The
TROFF initial value provides about 1 inch of paper mar­
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (tine-length) + (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .0 register.

D,v Need N vertical space. If the distance, D, to the next
trap position (see §7.5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

·The use of " • " as control character (instead of ". ") suppresses the break function.

tValues separated by";" are for NROFF and TROFF respectively.

-11-

omk R none' internal D

ort ±N none internal D,v

40 Text Filling, Adjusting, and Centering

distance to the bottom of the page. If D < V, another
line could still be output and spring the trap. In a diver­
sion, D is the distance to the diversion trap, if any, or is
very large.

Mark the current vertical place in an internal register
(both associated with the current diversion level), or in
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ± N (w.r. t. current place) is given,
the place is ± N from the top of the page or diversion or,
if N is absent, to a place marked by a previous mk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence omk R ...
osp l\nRu.

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out­
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current line length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character "\ " (backslash­
space). The adjusted word spaci,ngs are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF, they are normally nonuniform because of quantization
to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
text length on the last line output is available in the on register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the oh register.

An input text line ending with 0, ?, or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminat­
ing the partial line with a \c. The next encountered input text line will be considered to be a continua­
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat­
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter­
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Request Initial
Form Value

obr

/fNo
Argument Notes

B

Explanation

Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

-12-

.n fill on B,E

.nf fill on B,E

.ad c adj,both adjust E

.na adjust E

.ce N off N=1 B,E

5. Vertical Spacing

Fill subsequent output lines. The register .u is 1 in fill
mode and ° in nofill mode.

Nofil!. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust­
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type

I adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N=O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144 inch = 1/2 point in TROFF, and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out­
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document).
The current V is available in the. v register. Multiple- V line separation (e. g. double spacing) may be
requested with Is.

5.2. Extra line-space. If a word contains a vertica!ly tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x' N' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame­
ter (here'), the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

Request
Form

.vsN

.Is N

lfNo Initial
Value Argument Notes Explanation

1/6in;12pts previous E,p

N= 1 previous E

Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N' (see above).

Line spacing set to ± N N-l Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

-13-

.sp N N t v

.sv N N==lV

.os

.ns space

.rs space

Blank text line.

6. Line Length and Indenting

B,v

v

D

D

B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the dis­
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis­
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no effect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os). Subse­
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned off.

Causes a break and output of a blank line exactly like
sp 1.

The maximum line length for fill mode may be set with n. The indent may be set with in; an indent
applicable to only the next output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of 11,
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .I and .i respectively. The length of three-part titles pro­
duced by tl (see §14) is independently set by It.

Request Initial If No
Form Value Argument Notes Explanation

.11 ±N 6.5in

.in ±N N=O

.ti ±N

previous

previous

ignored

E,rn Line length is set to ± N. In TROFF the maximum
(line-length) + (page-offset) is about 7.54 inches.

B,E,rn Indent is set to ± N. The indent is prepended to each
output line.

B,E,rn Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo­
lated by name at any pdint. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rrn. Macros are created
by de and di, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

-14-

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with *x and
*(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \. are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed new lines indicated by \ (newline) are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \ \ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \, \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \$N, which interpolates
the Nth argument (I~N~9). If an invoked argument doesn't exist, a null string results. For exam­
ple, the macro xx may be defined by

.de xx \ "begin definition
Today is \\$1 the \\$2.

\ "end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nojill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

-15-

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in §lO.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the Oth diversion level). These are the diver­
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input­
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §T5). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail­
able in the .t register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The.t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Request Initial If No
Form Value Argument Notes Explanation

.de xx yy

. am xxyy

.ds xx string -

. as xx string -

.rm xx

.rn xxyy

.di xx

.yy= ..

. yy= ..

ignored

ignored

ignored

ignored

end D

Define or redefine the macro xx. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is
called. In the ab~ence of yy, the definition is terminated
by a line beginning with " .. ". A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. " .. " can be
concealed as \\ .. which will copy as \ .. and be reread as
" "

Append to macro (append version of de) .

Define a string xx containing string. Any initial double­
quote in string is stripped off to permit initial blanks.

Append string to string xx (append version of ds).

Remove request, macro, or string. The name xx is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

Rename request, macro, or string xx to yy. If yyexists, it
is first removed.

Divert output to macro xx. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request di or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used.

-16-

.da xx

.wh Nxx

.ch xx N

.dt N xx

.it N xx

.em xx none

8. Number Registers

end

off

off

none

D

v

v

D,v

E

Divert, appending to xx (append version of dO.
Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In tije absence of xx, the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position N in the current diver­
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro xx after
N lines of text input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n- (xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha­
betic according to the format specified by af.

Request
Form

Initial
Value

.nrR ±NM

QNo
Argument Notes Explanation

u The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M

-17-

oaf R c arabic

orr R ignored

90 Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

i O,i,ii,iii,iv, v, ...
I O,I,II,III,IV, V, ...
a O,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string bf repeated charac­
ters. The length of the generated entity is governed by internal tab stops specifiable with tao The
default difference is that tabs generate motion and leaders generate a string of periods; tc and Ie offer
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting,
right adjusting, and centering. lIT the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-string consists of the input charac­
ters following the tab (or leader) up to the next tab (or leader) or end of line; and W is the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string
Left D Following D

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padoing indicator is A, #A xxxA right # specifies a right-adjusted string with the
string xxx centered in the remaining space.

-18-

Request
Form

.ta Nt ...

.tc c

If No Initial
Yalue Argument Notes Explanation

0.8; 0.5in none

none none

E,m

E

Set tab stops and types. t-R, right adjusting; t=C,
centering; t absent, ieft adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 0.8in. The stop values
are separated by spaces, and a valuf! preceded by + is
treated as an increment to the previous stop value.

The tab repetition character becomes c, or is removed
specifying motion .

.Ie c none E The leader repetition character becomes c, or is removed
specifying motion .

. fe a b off off The field delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence Of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ee, and all that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with eo, and restored with ee.

Request
Form

.ee c

Initial
Yalue

\

If No
Argument Notes Explanation

\ Set escape character to \, or to c, if given.

.eo on Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - ft, fl, fI, ffi, and tH.
They may be input (even in NROFF) by \(fi, \(0, \(ff, \(Fi, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial If No
Form Yalue Argument Notes Explanation

.lg N off; on on Ligature mode is turned on if N is absent or non-zero,
and turned off if N=O. If N=2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \f F, the underline font may be
selected by ul and cu. Underlining is restricted to' an output-device-dependent subset of reasonable
characters.

-19-

Request
Form

.ul N

.cu N

.uf F

Initial
Value

off

off

Italic

If No
Argument

N=l

N=l

Italic

Notes Explanation

E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a ul will take effect, but the restora­
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre­
ment N. If N> 1, there is the risk that a trap interpo­
lated macro may provide text lines within the span;
environment switchinl1, can prevent this.

E A variant of ul that causes every character to be under­
lined in NROFF. Identical to ul in TROFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character ' may be
changed, if desired. Such a cha'nge must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Request Initial If No
Form Value Argument Notes Explanation

.cc c E The basic control character is set to c, or reset to ".".

.c2 c E The nobreak control character is set to c, or reset to "'''.

10.5. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ­
ing diversion).

Request Initial
Form Value

.tr abcd.... none

If No
Argument Notes Explanation

o Translate a into b, c into d, etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \0; the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one
with the escape \. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \". The newline at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a com­
ment can be on a line by itself by beginning the line with . \ ".

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \ v' N' and \h' N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the positive directions are rightward and downward A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

-20-

Vertical Effect in Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF

\v'N' Move distance N \h'N' Move distance N
\ (space) Unpaddable space-size space

\u 1/2 em up 1/2 line up \0 Digit-size space
\d 1/2 em down 1/2 line down
\r 1 em up 1 line up \1 1/6 em space ignored

\A 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'0.4m'\s+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w'string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .ti - \w'l. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu-\n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders Oike e); 1 means
that at least one character has a descender (\ike y); 2 means that at least one character is tall (\ike H);
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h'l\nxu+2u'word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1.0verstriking. Automatically centered overstriking of up to nine characters is provided by the over­
strike function \0' string' . . The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical motion. As examples, \o'e\" pro­
duces e, and \0'\ (mo\ (sl' produces ~.

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\ (ci\ (pi will produce ED, and
\ (br\z\ (rn \ (ul\ (br will produce the smallest possible constructed box O.
12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(r II J ~ ~ It J r 1) that can be combined into various bracket styles. The function \b'string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line (1/2 line in NROFF). For example, \b'\Oc\Of'E\I\b'\(rc\(rf'\x' -0.5m'\x'O.5m' produces [EJ.

12.4. Line drawing. The function \J'Nc' will draw a string of repeated c's towards the right for a dis­
tance N. (\1 is \ (lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made be/ore drawing the string. Any space
resulting from N / (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _, underrule _, and root­
en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen­
tered on a distance N. As an example, a macro to underscore a string can be written

.de us
\\$1\1 'IO\(ul'

-21-

or one to draw a box around a string

.de bx
\(br\1\\SI\1\ (br\1 'IO\(rn'\l 'IO\(ul'

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words and Iwords in a box I.
The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in NROFF), with the first two characters overlapped, if necessary, to form a continu­
ous line. The default character is the box rule I (\ (br); the other suitable character is the bold vertical I
(\ (bv). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the l/2-em wide underrule were designed to form corners when using 1-em
vertical spacings. For example the macro

.de eb

.sp -1 \"compensate for next automatic base-line spacing

.nf \ "avoid possibly overflowing word buffer
\h' -.5n'\L'I\\nau-1'\I'\\n(.Iu+ln\(ul'\L' -1\\nau+l'\I'I0u-.5n\(ul' \"draw box
.fi

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
using .mk a) as done for this paragraph.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with hy, several variants
may be set. A hyphenation indicator 'character, may be imbedded in a word to specify desired hyphena­
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually nul!) non-alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Notes Explanation

.nh

.hyN

hyphenate

on,N=l

.hc c \%

.hw word1 ...

on,N=l

\%

ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N~ 1, or off for
N=O. If N=2, last lines (ones that will cause a trap)
are not hyphenated. For N = 4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive; i. e. N= 14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default \%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

-22-

14. Three Part Titles.

implied; i. e. dig-it implies dig-its. This list is exam­
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. tl may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request
Form

Initial
Value

.tl 'left' center right'

.pc c %

.It ±N 6.5in

/fNo
Argument Notes Explanation

off

previous

The strings left, center, and right are respectively left­
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over­
lapping is permitted. If the page-number character (ini­
tially %) is found within any of the field!> it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string del­
imiter.

The page number character is set to c, or removed. The
page-number register remains %.

E,m Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles;
page-offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by tl are not numbered. Numbering can be temporarily suspended with

6 nn, or with an .nm followed by a later .nm +0. In addition, a line number indent I, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed (the others will appear

9 as blank number fields).

Request
Form

Initial
Value

.nm ±NMSI

. nn N

/fNo
Argument

off

N=1

Notes Explanation

E Line number mode. If ± N is given, line numbering is
turned on, and the next output line numbered is num­
bered ±N. Default values are M= 1, S= 1, and 1=0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss­
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

E The next N text output lines are not numbered .

As an example, the paragraph portions of this section are numbered with M = 3: .nm 1 3 was
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm + 0 was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on
numbering with the line number of the next line to be 5 greater than the last numbered line, with

15 M = 5, with spacing S untouched, and with the indent 1 set to 3.

-23-

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expres­
sion, string1 and string2 are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

Request Initial If No
Form Value Argument Notes Explanation

.if c anything

. if ! c anything

. if N anything

. if ! N anything

. if 'string]' string2' anything

. if ! 'string]' string2' anything

. ie c anything

. el anything

u

u

u

The built-in condition names are:

Condition
Name

0

e
t
n

If condition c true, accept anything as input; in multi-line
case use \{anything\}.

If condition c false, accept anything .

If expression N > 0, accept anything .

If expression N ~ 0, accept anything .

If string1 identical to string2, accept anything .

If string1 not identical to string2, accept anything .

If portion of if-else; all above forms (like if) .

Else portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi­
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line {text, macro, or whatever} or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \ { and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el {else} request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.if e .tl ' Even Page %'"

which outputs a title if the page number is even; and

.ie \n%>1 \{\
'sp 0.5i
.tl 'Page %'"
'sp 11.2i \}
.el .sp 12.5i

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

-24-

number registers, and macro and string definitions. All environments are initialized with default
parameter values.

Request Initial If No
Form Value Argument Notes Explanation

.ev N N=O previous Environment switched to environment 0 ~ N~ 2. Switch­
ing is done in push-down fashion so that restoring a pre­
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two new lines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key­
board, a pipe, or a file.

Request Initial
Form Value

.rd prompt

.ex

If No
Argument Notes Explanation

prompt=BEL- Read insertion from the standard input until two new-
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from, the terminal keyboard while output is being printed on the terminal,
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Request
Form

.so filename

. nx filename

.pi program

Initial
Value

20. Miscellaneous

Request
Form

.mc eN

Initial
Value

If No
Argument Notes Explanation

end-of-file

1f!«J
Argument

off

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested .

Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

Pipe output to program (NROFF only). This request
must occur before any printing occurs. No arguments are
transmitted to program.

Notes Explanation

E,m Specifies that a margin character c appear a distance N to
the right of the right margin after each non-empty text
line (except those produced by t1). If the output line is
too-long (as can happen in nofill mode) the character will

-25-

.tm string newline

.il YY .yy= ..

.pm t all

.n

21. Output and Error Messages.

B

be appended to the line. If N is not given, the previous
N is used; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para­
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. 11 behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if t
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debugging to
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's standard message output. The latter is different from the standard output, where NROFF format­
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected. •

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
err~rs having only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by
an output line that grew too large to tit in the line buffer; in both cases\ a message is printed, the
offending excess is discarded, and the affected word or line is marked at the point of truncation with a •
in NROFF and a'" in TROFF. The philosophy is to continue processing, if possible, on the grounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the in,bility to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

-26-

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors·
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con­
centrate conditional parameter initialization like
that which depends on whether TROFF or NROFF
is being used.

T2. Page Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at - N (N
from the page bottom) for the footer. The sim­
plest such definitions might be

.de hd \ "define header
'sp Ii

.de fo
'bp

.wh 0 hd

.wh -Ii fo

\"end definition
\ "define footer

\ "end definition

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the first page,
only if the definition and trap exist prior to the

·For example: P. A. Crisman, Ed., The Compatible Time­
Sharing System, MIT Press, 1965, Section AH9.01 (Descrip­
tion of RUNOFF program on MIT's CTSS system).

-27-

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and sp that normally
cause breaks are invoked using the no-break coo­
trol character • to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \ "header

.if t .tl '\(rn"\(rn' \"troff cut mark

.if \\n%>1 \{\
'sp 10.5i-l \"tl base at 0.5i
.tt "- % -" \"centered page number
.ps \ "restore size
.ft \ "restore font
· vs \} \ "restore vs
• sp 11.0i \ "space to 1.0i
.ns \ "turn 011 no-space mode

.de fo \ "footer

.ps 10 \ "set footer/header size

.ft R \ "set font
· vs 12p \ "set base-line spacing
.if \\n%=1 \{\
'sp l\\n(.pu-0.5i-l \"tl base 0.5i up
.tl "- % -" \} \"first page number
'bp

.wh 0 hd

.wh -Ii fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used, a
cut mark is drawn in the form of root-en's at each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

much as the base-line spacing. The no-space
mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow­
ing:

. de fo

.nr sl \ \n (.S \ "current size

.ps

.Dr s2 \ \n {.s

. ---

.de hd

.ps \\n{s2

.ps \\n{sl

\ "previous size
\ "rest of footer

\ "header stuff
\ "restore previous size
\ "restore current size

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during the
footer's page ejection:

.de bn \ "bottom number

.tI •• - % -" \ "centered page number

• wh -O.Si-lv bn \"tl base O.Si up

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

. de pg \ "paragraph

.br \"break

.ft R \ "force font,

.ps 10 \ "size,
• vs Up \ "spacing,
. in 0 \ "and indent
.sp 0.4 \ "prespace
.ne 1+\\n(.Vu \"want more than lIlne
.ti 0.2i \ "temp inden.t

The first break in pg will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec­
tion heading macros to set parameters only once.

-28-

The prespacing parameter is suitable for TROFF;
a larger space, at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the .V is the available vertical resolu­
tion) .

A macro to automatically number section head­
ings might look like:

.de sc \ "section

. --- \ "force font, etc .

.sp 0.4 \ "prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.fi
\\n+S.

.nr SOl

The usage is .sc, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading, 0.4 line in the. following pg,
and one line of the paragraph text. A word con­
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space .

.de Ip

.pg

.in O.Si

.ta 0.2i O.Si

.ti 0
\t\ \SI\t\c

\ "labeled paragraph

\ "paragraph indent
\ "label, paragraph

\ "flow into paragraph

The intended usage is ".lp label"; label will begin
at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.4iR O.Si.
The last line of lp ends with \c so that it will
become a part of the first line of the text that fol­
lows .

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro­
duce the bottom margin. The header can initial­
ize a column register that the footer will incre­
ment and test. The following is arranged for two
columns, but is easily modified for more.

.de hd

.Dr cI 0 1

.mk

\"header

\" in it column count
\ "mark top of text

.de fo \ "footer

.ie \\n + (c1< 2 \ {\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

.ns \} \ "no-space mode

.el \ {\

.po \\nMu \ "restore left margin

'bp \}

.11 3.li \ "column width

.Dr M \\n(.o \"save left margin

Typically a portion of the top of the first page
contains full width text; the request for the nar­
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and contra/lines ...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com­
pletely fit in the available space.

.de hd \ "header

.Dr X 0 1

.Dr Y O-\\nb

.ch fo -\\nbu

.if\\n(dn .fz

.de fo

.Dr dn 0

.if \\nx \ {\

\ "init footnote count
\ "current footer place
\ "reset footer trap
\ "leftover footnote

\ "footer
\ "zero last diversion size

.ev 1 \ "expand footnotes in evl

. nf \ "retain vertical size

.FN \ "footnotes

.rm FN \ "delete it

.if "\\n(.z"fy" .di \"end overflow diversion

.Dr x 0 \ "disable fx

-29-

.ev \} \ "pop environment

'bp

.de fx \ "process footnote overflow

.if \\nx .di fy \ "divert overflow

.de fn \ "start footnote

.da FN \ "divert (append) footnote

.ev 1 \ "in environment 1

.if\\n+x=1 .fs \"if first, include separator

.fi \ "fill mode

.de ef \ "end footnote

.br \ "finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \"end diversion

.Dr y -\\n(dn \"new footer position,

.if\\nx=I.Dr y -(\\n(.v-\\nz) \
\ "uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+tv» (\\n(.p+\\ny) \

.ch fo \\n (nlu + tv \ "it didn't fit

.de fs
\1' Ii'
.br

\" separator
\" 1 inch rule

.de fz \" get leftover footnote

.fn

.nf \ "retain vertical size

.fy \ "where fx put it

.ef

.Dr b l.Oi \ "bottom margin size

.wh 0 hd \"header trap

.wh 12i fo \"footer trap, temp position

.wh -\\nbu fx\"fx at footer position

.ch fo -\\nbu \"conceal fx with fo

The header hd initializes a footnote count regis­
ter x, and sets both the current footer trap posi­
tion register y and the footer trap itself to a nom­
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ­
ment 1, and increments the count x; if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per­
mit user redefinition. The footnote end macro. ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

footnote, available in dn; then on the first foot­
note, y is further decremented by the difference
in vertical base-line spacings of the two environ­
mep..ts, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower (on the page) of y or the current
page position (nO plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment 1, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-Iate triggering of the
footer can result in the footnote rereading finish­
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject, any traps encountered are pro­
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en
\c
'bp

.em en

\ "end-macro

will deposit a null partial word, and effect
another last page.

-30-

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point. and with non­
alphanumeric characters separated by 1,4 em space. The Special Mathematical Font was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson, New Hampshire. The Times
Roman, Italic, and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFG HIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,/:;=?[]I
• D - - _ 1,4 1/2 J,4 fi fl ff ffi. ft1 0 t I ¢ ® ©

Times Italic

abcdefghijklmnopqrstuvwxyz
A BCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ (Yll & () , , * + - . , I: " = ? [11
• D - - _ '14 '12 ·1Jt.1i flfl.ffi ff! 0 t I ¢ ® ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+ -.,/:;=?(]1
• D - - _ 1/4 liz 3/4 fi fl ff ffi fH 0 t I ¢ ® ©

Special Mathematical Font

,,'\A_'_/< > {}#@+_=*
a~y8€~~OLKA~vgo~P~~TV¢X~W
r~eA:srrLY<p'Vn

J- ~ ~ - ~ = -;r. - -1 ! x -7- + U n C :J ~ :2 00 0
§ v..., J ex: 0 E :j:----@ lOr l) H H lUll

-31-

Table II

Input Naming Conventions for " ',and
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote fi \ (fi fi
open quote fl \(fi fl

\(em 3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi ffi

\(hy hyphen ill \(FI ill
\- current font minus \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
1/4 \(14 1/4 ® \(rg registered
1/2 \(12 1/2 © \(co copyright
3,4 \(34 3/4

Non-ASCII characters and " " _, +, -, -, and. on the special font.

The ASCII characters @, #, ", " " <, >, \, (,), -, ., and _ exist only on the special font and are
printed as a I-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pl math plus K \(*k kappa
\(mi math minus A \(*1 lambda
\(eq math equals JL \(*m mu

* \ (** math star v \(*n nu
§ \(sc section ~ \ (*c xi

\(aa acute accent 0 \(*0 omicron
\(ga grave accent 7T' \(*p pi
\(ul underrule p \ (*r rho

/ \(sl slash (matching backslash) cr \(*s sigma
a \ (*a alpha ., \(ts terminal sigma
{3 \(*b beta 'T \(*t tau
'Y \(*g gamma v \(*u upsilon
8 \(*d delta 1> \(*f phi
E \(*e epsilon X \(*x chi
~ \(*z zeta tfJ \(*q psi
YJ \(*y eta w \(*w omega
() \(*h theta A \(*A Alphat

\ (*i iota B \(*B Betat

-32-

Input Character Input Character
Char Name Name Char Name Name

r \(*G Gamma I \(br box vertical rule
~ \(*D Delta * \(dd double dagger
E \(*E Epsilont ",. \(rh right hand
Z V*Z Zetat ... \(Ih left hand
H \(*Y Etat @ \(bs Bell System logo
0 \(*H Theta I \(or or
I V*I lotat 0 \(ci circle
K V*K Kappat f \(It left top of big curly bracket
A V*L Lambda l \Ob left bottom
M \(*M Mut l Vrt right top
N \(*N Nut J \(rb right bot - V*C Xi i \Ok left center of big curly bracket :::.
0 V*O Omicront ~ \(rk right center of big curly bracket
n V*p Pi I \(bv bold vertical
P \(*R Rhot t \ (If left floor {left bottom of big
I. \(*S Sigma square bracket)
T \(*T Taut J \(rf right floor (right bottom)
y \(*U Upsilon r \ (Ie left ceiling (Ieft top)
ct> \(*F Phi 1 \(rc right ceiling (right top)
X V*X Chit
'I' V*Q Psi
n V*W Omega
-J \(sr square root

Vrn root en extender
~ \(>= >=
~ V<= <=
- \ (= = identically equal
- V-= appro x =

\(ap approximates
~ \0= not equal
-+ \(-> right arrow - \«- left arrow
1 \(ua up arrow
! \(da down arrow
x \(mu multiply

\ (di divide
± V+- plus-minus
U \(cu cup (union)
n Vca cap (intersection)
c \(sb subset of
~ Vsp superset of
~ \(ib improper subset
;;2 \(ip improper superset
00 \ (if infinity
a \(pd partial derivative
'V Vgr gradient

Vno not
J \ (is integral sign
ex: Vpt proportional to
0 \(es empty set
E \(mo member of

-33-

Options

-h

-z

Old Requests

.ad c

. so name

New Request

.ab text

.fz F N

Summary of Changes to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s
and diagnostics).

The adjustment type indicator "c" may now also be a number previously obtained from
the" .j" register (see below).

The contents of file "name" will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text" on the message output and terminates without further processing. If "text"
is missing, "User Abort." is printed. Does not cause a break. The output buffer is
flushed.

forces [ont "F" to be in si~e N. N may have the form N, +N, or -N. For example,
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s + 2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.fz S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ".fp" request specifying a font on some position must precede
".fz" requests relating to that position.

New Predefined Number Registers.

.k

.j

. P

. L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode.

Read-only. 1 if the current page is being printed, and zero otherwise .

Read-only. Contains the current line-spacing parameter ("Is") .

General register access to the input line-number in the current input file. Contains the
same value as the read-only ".c" register.

-34-

Table of Contents

Memorandum Macros
Introduction .. 1

Purpose ... 1
Conventions .. 1
Document Structure .. 1
Input Text Structure ... 2
Definitions ... 2

Usage ... 3
The Mm Command ... 3
The -cm or -mm Flag .. 4
Typical Command Lines .. 4
Parameters Set From Command Line .. 6
Omission of -cm or -mm Flag .. 8

Formatting Concepts ... 8
Basic Terms ... 8
Arguments and Double Quotes .. 9
Unpaddable Spaces ... 9
Hyphenation ... 1 0
Tabs .. 10
BEL Character .. 11
Bullets ... 11
Dashes, Minus Signs, and Hyphens .. 11
Trademark String ... 11
Use of Formatter Requests ... 12

Paragraphs and Headings ... 12
Paragraphs .. 12

Paragraph Indention ... 12
Numbered Paragraphs ... 13
Spacing Between Paragraphs ... 13

Numbered Headings ... 14
Normal Appearance ... 14
Altering Appearance ... 15

Unnumbered Headings ... 17
Headings and Table of Contents .. 18
First-Level Headings and Page Numbering Style .. 18
User Exit Macros .. 18
Hints for Large Documents .. 20

Lists .. 20
List Macros .. 20

List-Initialization Macros ... 20
List-Item Macro .. 23
List-End Macro ... 24
Example of Nested Lists .. 24

Table of Contents (continued)

List-Begin Macro and Customized Lists .. 26
User-Defined List Structures , .. 27

Memorandum and Released-Paper Style Documents ... 30
Sequence of Beginning Macros .. 30
Title ... 30
Authors ... 31
TM Numbers , ... 31
Abstract. .. 32
Other Keywords .. 32
Memorandum Types ... 33
Date Changes .. 34
Alternate First-Page Format ... 34
Example .. 34
End of Memorandum Macros ... 35

Signature Block .. 35
"Copy to" and Other Notations ... 35
Approval Signature Line ... 37

One-Page Letter .. 37
Displays .. 37

Static Displays ... 37
Floating Displays ... 39
Tables ... 40
Equations .. 41
Figure, Table, Equation, and Exhibit Titles .. 42
List of Figures, Tables, Equations, and Exhibits .. .42

Footnotes ... 43
Automatic Numbering of Footnotes .. 43
Delimiting Footnote Text ... 43
Format Style of Footnote Text .. 43
Spacing Between Footnote Entries ... 44

Page Headers and Footers .. 45
Default Headers and Footers .. 45
Header and Footer Macros .. 45

Page Header .. 45
Even-Page Header ... 45
Odd-Page Header .. 46
Page Footer ... 46
Even-Page Footer .. 46
Odd-Page Footer ... 46
First Page Footer .. 46

Default Header and Footer With Section-Page Numbering ... 46
Strings and Registers in Header and Footer Macros ... 46
Header and Footer Example .. 47
Generalized Top-of-Page Processing47

Table of Contents (continued)

Generalized Bottom-of-Page Processing ... 48
Top and Bottom (Vertical) Margins .. .48
Proprietary Marking ... 48
Private Documents .. 49

Table of Contents and Cover Sheet.. ... 49
Table of Contents .. 49
Cover Sheet .. 51

References .. 51
Automatic Numbering of References .. 51
Delimiting Reference Text .. 51
Subsequent References ... 52
Reference Page ... 52

Miscellaneous Features ... 52
Bold, Italic, and Roman Fonts .. 52
Justification of Right Margin ... 53
SCCS Release Identification .. 54
Two-Column Output ... 54
Column Headings for Two-Column Output. ... 55
Vertical Spacing ... 55
Skipping Pages .. 55
Forcing an Odd Page .. 56
Setting Point Size and Vertical Spacing ... 56
Producing Accents ... 57
Inserting Text Interactively ... 57

Errors and Debugging ... 58
Error Terminations ... 58
Disappearance of Output ... 58

Extending and Modifying MM Macros .. 59
Naming Conventions ... 59

Names Used by Formatters ... 59
Names Used by MM ... 59
Names Used by CW, EQN/NEQN, and TBL Programs .. 60
Names Defined by User .. 60

Sample Extensions .. 60
Appendix Headings .. 60
Hanging Indent With Tabs .. 60

Summary ... 62
Examples .. 63
Useful Tables .. 67

I V. MEMORANDUM MACROS

1 . Introduction

1.1 Purpose

This section is a guide and reference manual for users of Memorandum Macros (MM). These macros provide
a general purpose package of text formatting macros for use with the UNIX operating system text formatters
nroff and troff (refer to troff(1) in the User's Manual-UNIX Operating System for more details). A reference
of the form name(N) points to page name in section N of the User's Manual.

1.2 Conventions

Each part of this section explains a single facility of MM. In general, the earlier a part occurs, the more
necessary the information is for most users. Some of the later parts can be completely ignored if MM defaults
are acceptable. Likewise, each part progresses from general case to special-case facilities. It is recommended
that a user read a part in detail only to the point where there is enough information to obtain the desired format,
then skim the rest of the part because some details may be of use to only a few.

Numbers enclosed in curly brackets ({}) refer to paragraph numbers within this section. For example, this
is paragraph {1.2}.

In the synopses of macro calls, square brackets ([]) surrounding an argument indicate that it is optional.
Ellipses (...) show that the preceding argument may appear more than once.

Figure 4.1 shows both nroff and troff formatter outputs (of files using MM macros) for a simple letter.
In those cases in which the behavior of the two formatters is obviously different, the nroff formatter output
is described first with the troff formatter output following in parentheses. For example:

The title is underlined (italic).

means that the title is underlined by the nroff formatter and italicized by the troff formatter.

1.3 Document Structure

Input for a document to be formatted with the MM text formatting macro package has four major segments,
any of which may be omitted; if present, the segments must occur in the following order:

• Parameter setting segment sets the general style and appearance of a document. The user can control
page width, margin justification, numbering styles for heading and lists, page headers and footers {9},
and many other properties of the document. Also, the user can add macros or redefine existing ones.
This segment can be omitted entirely if the user is satisfied with default values; it produces no actual
output, but performs only the formatter setup for the rest of the document.

• Beginning segment includes those items that occur only once, at the beginning of a document, e.g., title,
author's name, date.

• Body segment is the actual text of the document. It may be as small as a single paragraph or as large
as hundreds of pages. It may have a hierarchy of headings up to seven levels deep {4}. Headings are auto­
matically numbered (if desired) and can be saved to generate the table of contents. Five additional levels
of subordination are provided by a set of list macros for automatic numbering, alphabetic sequencing,
and "marking" of list items {5}. The body may also contain various types of displays, tables, figures, ref­
erences, and footnotes {7, 8, ll}.

• Ending segment contains those items that occur only once at the end of a document. Included are signa­
ture(s) and lists of notations (e.g., "Copy to" lists) {6.11}. Certain macros may be invoked here to print

-1-

information that is wholly or partially derived from the rest of the document, such as the table of con­
tents or the cover sheet for a document {10}.

Existence and size of these four segments varies widely among different document types. Although a spe­
cific item (such as date, title, author names, etc.) may differ depending on the document, there is a uniform way
of typing it into an input text file.

1.4 Input Text Structure

In order to make it easy to edit or revise input file text at a later time.

• Input lines should be kept short

• Lines should be broken at the end of clauses

• Each new sentence should begin on a new line.

1.S Definitions

Formatter refers to either the nroff or troff text-formatting program.

Requests are built-in commands recognized by the formatters. Although a user seldom needs to use these
requests directly {3.10}, this section contains references to some of the requests. For example, the request

.sp

inserts a blank line in the output at the place the request occurs in the input text file.

Macros are named collections of requests. Each macro is an abbreviation for a collection of requests that
would otherwise require repetition. The MM package supplies many macros, and the user can define additional
ones. Macros and requests share the same set of names and are used in the same way.

Table 4.A is an alphabetical list of macro names used by MM. The first line of each item lists the name of
the macro, a brief description, and a reference to the paragraph in which the macro is described. The second
line illustrates a typical call of the macro.

Strings provide character variables, each of which names a string of characters. Strings are often used
in page headers, page footers, and lists. These registers share the pool of names used by requests and macros.
A string can be given a value via the .ds (define string) request; and its value can be obtained by referencing
its name, preceded by "\ *" (for I-character names) or "\ *(" (for 2-eharacter names). For instance, the string
DT in MM normally contains the current date, thus the input line

Today is \ *(DT.

may result in the following output:

Today is December 16,1981.

The current date can be replaced, e.g.:

.ds DT 01/01/79

by invoking a macro designed for that purpose {6.8}. Table 4.B is an alphabetical list of string names used by
MM. A brief description, paragraph reference, and initial (default) value(s) are given for each.

-2-

Number registers fill the role of integer variables. These registers are used for flags and for arithmetic
and automatic numbering. A register can be given a value using a .nr request and be referenced by preceding
its name by \n (for I-character names) or \n((for 2-character names). For example, the following sets the value
of the register d to one more than that of the register dd:

.nr d 1 +\n(dd

Table 4.C is an alphabetical list of number register names giving for each a brief description, paragraph refer­
ence, initial (default) value, and legal range of values (where [m:n] means values from m to n, inclusive.

Paragraph 14.1 contains naming conventions for requests, macros, strings, and number registers. Table 4.A,
4.B, and 4.C list all macros, strings, and number registers defined in MM.

2. Usage

This part describes how to access MM, illustrates UNIX operating system command lines appropriate for
various output devices, and describes command line flags for the MM text formatting macro package.

2.1 The mm Command

The mm(l) command can be used to prepare doc\~ments using the nroff formatter and MM; this command
invokes nroff with the -cm flag {2.2}. The mm command has options to specify preprocessing by tbl and/or
by neqn and for postprocessing by various output filters. Any arguments or flags that are not recognized by
the mm command, e.g., -rC3, are passed to the nroff formatter or to MM, as appropriate. Options, which can
occur in any order but must appear before the file names, are:

OPTION

-e

-t

-c

-E

-y

-12

-T450

-T450-12

-T300

-T300-12

-T300s

-T300s-12

-T4014

MEANING

The neqn is to be invoked; also causes neqn to read lusrlpubleqnchar [see eqnchar(7)].

The tbl(l)is to be invoked.

The col(1)is to be invoked.

The -e option of the nroff formatter is to be invoked.

The -mm (uncompacted macros) is to be used instead of -cm.

The 12-pitch mode is to be used. The pitch switch on the terminal should be set to 12 if nec­
essary.

Output is to a DA8I 450. This is the default terminal type [unless $TERM is set; see sh(I)].
It is also equivalent to -TI620.

Output is to a DA8I 450 in 12-pitch mode.

Output is to a DA8I 300 terminal.

Output is to a DA8I 300 in 12-pitch mode.

Output is to a DA8I 3008.

Output is to a DA8I 3008 in 12-pitch mode.

Output is to a Tektronix 4014.

-3-

OPTION MEANING

-T37 Output is to a TELETYPE® Model 37.

-T382 Output is to a DTC-382.

-T4000a Output is to a Trendata 4000A.

-TX Output is prepared for an EBCDIC line printer.

-Thp Output is to an HP264x (implies -c).

-T43 Output is to a TELETYPE® Model 43 (implies -c).

-T40/4 Output is to a TELETYPE® Model 40/4 (implies -c).

-T745 Output is to a Texas Instrument 700 series terminal (implies -c).

-T2631 Output is prepared for an HP2631 printer where -T2631-e and -T2631-c may be used for
expanded and compressed modes, respectively (implies -c).

-TIp Output is to a device with no reverse or partial line motions or other special features (im­
plies -c).

Any other -T option given does not produce an error; it is equivalent to -TIp.

A similar command is available for use with the troff formatter [mmt(1)].

2.2 The -em or -mm Flag

The MM package can also be invoked by including the -cm or -mm flag as an argument to the formatter.
The -cm flag causes the precompacted version of the macros to be loaded. The -mm flag causes the file
lusrlJibltmacltmac.m to be read and processed before any other files. This action defines the MM macros, sets
default values for various parameters, and initializes the formatter to be ready to process the input text files.

2.3 Typical Command Lines

The prototype command lines are as follows (with the various options explained in {2.4}):

• Text without tables or equations:

mm [options] file ...
or
nroff [options] -cm file ...

mmt [options] file ."
or
troff [options] -cm file ...

• Text with tables:

mm -t [options] file ...
or
tbl file ... I nroff [options] -cm

-4-

mmt -t [options] file ...
or
tbl file ... : troff [options] -cm

• Text with equations:

mm -e [options] file ...
or
neqn /usr/pub/eqnchar file ... : nroff [options] -cm

mmt -e [options] file ...
or
eqn /usr/pub/eqnchar file ... : troff [options] -cm

• Text with both tables and equations:

mm -t -e [options] file ...
or
tbl file ... : neqn /usr/pub/eqnchar - : nroff [options] -cm

mmt -t -e [options] file ...
or
tbl file ... : eqn /usr/pub/eqnchar - : troff \ [options] -cm

When formatting a document with the nroff processor, the output should normally be processed for a spe­
cific type of terminal because the output may require some features that are specific to a given terminal, e.g.,
reverse paper motion or half-line paper motion in both directions. Some commonly used terminal types and the
command lines appropriate for them are given below. More information is found in paragraph {2.4} of this part,
and 300(1), 450(1), 4014(1), hp(l), col(l), termio(4), and term(5) of the User's Manual - UNIX Operating
System.

• DASI 450 in 10-pitch, 6 lines/inch mode, with 0.75 inch offset, and a line length of 6 inches (60 charac­
ters) where this is the default terminal type so no -T option is needed (unless $TERM is set to another
value):

mm file ...
or
nroff -T450 - h -cm file ...

• DASI 450 in 12-pitch, 6 lines/inch mode, with 0.75 inch offset, and a line length of 6 inches (72 charac­
ters):

mm -12 file ...
or
nroff -T450-12 - h -cm file ...

or to increase the line length to 80 characters and decrease the offset to 3 characters:

mm -12 -rW80 -r03 file ...
or
nroff -T450-12 -rW80 -r03 - h -cm file ...

• Hewlett-Packard HP264x CRT family:

mm -Thp file ...

-5-

or
nroff -cm file ... I colI hp

• Any terminal incapable of reverse paper motion and also lacking hardware tab stops (Texas Instru­
ments 700 series, etc.):

mm -T745 file ...
or
nroff -cm file ... I col -x

The tbl(1) and eqn(1)/neqn formatters, if needed, must be invoked as shown in the command lines illus­
trated earlier.

If 2-column processing {12.4} is used with the nroff formatter, either the -c option must be specified to
mm(1) [mm(1) uses col(1) automatically for many terminal types {2.1}] or the nroff formatter output must
be postprocessed by col(1). In the latter case, the -T37 terminal type must be specified to the nroff formatter,
the -h option must not be specified, and the output of col(1) must be processed by the appropriate terminal
filter [e.g., 450(1)]; mm(1) with the -c option handles all this automatically.

2.4 Parameters Set From Command Line

Number registers are commonly used within MM to hold parameter values that control various aspects of
output style. Many of these values can be changed within the text files with .nr requests. In addition, some of
these registers can be set from the command line. This is a useful feature for those parameters that should not
be permanently embedded within the input text. If used, the number registers (with the possible exception of
the registerPbelow) must be set on the command line (or before the MM macro definitions are processed). The
number register meanings are: .

REGISTER MEANING

-rAn n = 1 has effect of invoking the .AF macro without an argument {6.9 J .
n = 2 permits use of Bell System logo, if available, on a printing device (currently available
for Xerox 9700 only).

-ren sets type of copy (e.g., DRAFT) to be printed at bottom of each page {9.2.4}.
n = 1 for OFFICIAL FILE COPY.
n = 2 for DATE FILE COPY.
n = 3 for DRAFT with single spacing and default paragraph style.
n = 4 for DRAFT with double spacing and 10-space paragraph indent.

-rD1 sets debug mode.
This flag requests formatter to continue processing even if MM detects errors that would
otherwise cause termination. It also includes some debugging information in the default
page header {9.2.1, 12.3} .

-6-

REGISTER MEANING

-rEn controls font of Subject/Date/From fields.
n = 0, fields are bold (default for the troff formatter).
n = 1, fields are Roman font (regular text-default for the nroff formatter).

-rLk sets length of physical page to k lines.
For the nroff formatter, k is an un scaled number representing lines.
For the troff formatter, k must be scaled.
Default value is 66 lines per page.
This flag is used, for example, when directing output to a Versatec* printer.

-rNn specifies page numbering style.

n

0
1
2
3
4
5

n = 0 (default), all pages get the prevailing header {9.2.1}.
n = 1, page header replaces footer on vage 1 only.
n = 2, page header is omitted from page l.
n = 3, "section-page" numbering {4.5} occurs (.FD {8.3} and .RP {1l.4} defines
footnote and reference numbering in sections).
n = 4, default page header is suppressed; however, a user-specified header is not affected.
n = 5, "section-page" and "section-figure" numbering occurs.

PAGE 1 PAGES 2FF.

header header
header replaces footer header
no header header
"section-page" as footer same as page 1
no header no header unless .PH defined
"section-page" as footer and "section-figure" same as page 1

Contents of the prevailing header and footer do not depend on number register N value; N
controls only whether the header (N=3) or the footer (N=5) is printed, as well as the page
numbering style. If header and footer are null {9.2.1, 9.2.4 } , the value of N is irrelevant.

- rO k offsets output k spaces to the right.

-rPn

-rSn

For the nroff formatter, k is an un scaled number representing lines or character positions.
For the troff formatter, k must be scaled.
This flag is helpful for adjusting output positioning on some terminals. The default offset,
if this regular is not set on the command line, is 0.75 inches.

Note: Register name is the capital letter "0".

specifies that pages of the document are to be numbered starting with n.
This register may also be set via a .nr request in the input text.

sets point size and vertical spacing for the document. The default n is 10, i.e., 10-point type
on 12-point vertical spacing, giving six lines per inch {12.9} . This flag applies to the troff
formatter only.

* Registered Trademark of Versatec, Inc.

-7-

REGISTER MEANING

- rT n provides register settings for certain devices.
If n is 1, line length and page offset are set to 80 and 3, respectively.
Setting n to 2 changes the page length to 84 lines per page and inhibits underlining; it is
meant for output sent to the Versatec printer.
The default value for n is o.
This flag applies to the nroff formatter only.

-rU1 controls underlining of section headings.
This flag causes only letters and digits to be underlined. Otherwise, all characters (includ­
ing spaces) are underlined {4.2.2.4.2}.
This flag applies to the nroff formatter only.

-rW k sets page width (line length and title length) to k.
For the nroff formatter, k is an un scaled number representing character positions.
For the troff formatter, k must be scaled.
This flag can be used to change page width from the default value of 6 inches (60 charac­
ters in 10 pitch or 72 characters in 12 pitch).

2.5 Omission of -cm or -mm Flag

If a large number of arguments is required on the command line, it may be convenient to set up the first
(or only) input file of a document as follows:

zero or more initializations of registers listed in {2.4}
.so lusr/lib/tmac/tmac.m
remainder of text

In this case, the user must not use the -em or -mm flag [nor the mm(l) or mmt(l) command); the .so
request has the equivalent effect, but registers in {2.4} must be initialized before the .so request because their
values are meaningful only if set before macro definitions are processed. When using this method, it is best to
lock into the input file only those parameters that are seldom changed. For example:

.nr W 80

.nr 0 10

.nr N 3

.so lusr/lib/tmac/tmac.m

.H 1 " INTRODUCTION"

specifies, for the nroffformatter, a line length (W) of 80, a page offset (0) of 10, and "section-page" (N) number­
ing.

3. Formatting Concepts

3.1 Basic Terms

Normal action of the formatters is to fill output lines from one or more input lines. Output lines may be

-8-

justified so that both the left and right margins are aligned. As lines are being filled, words may also be hyphen­
ated {3.4} as necessary. It is possible to turn any of these modes on and off (.SA {12.2}, H:v {3.4}, and the .nf and
.fi formatter requests). Turning off fill mode also turns off justification and hyphenation.

Certain formatting commands (requests and macros) cause filling of the current output line to cease, the
line (of whatever length) to be printed, and subsequent text to begin a new output line. This printing of a par­
tially filled output line is known as a break. A few formatter requests and most of the MM macros cause a break.

Formatter requests {3.10} can be used with MM; however, there are consequences and side effects that each
such request might have. A good rule is to use formatter requests only \vhen absolutely necessary. The MM
macros described herein should be used in most cases because:

• It is much easier to control (and change at any later point in time) overall style of the document.

• Complicated features (such as footnotes or tables of contents) can be obtained with ease.

• User is insulated from peculiarities of the formatter language.

3.2 Arguments and Double Quotes

For any macro call, a null argument is an argument whose width is zero. Such an argument often has a spe­
cial meaning; the preferred form for a null argument is" " . Omitting an argument is not the same as supplying
(I, null argument (e.g., the .MT macro in {6.7}). Omitted arguments can occur only at the end of an argument
list; null arguments can occur anywhere in the list.

Any macro argument containing ordinary (paddable) spaces must be enclosed in double quotes. A double
quote (II) is a single character that must not be confused with two apostrophes or acute accents (") or with two
grave accents (II). Otherwise, it will be treated as several separate arguments.

Double quotes are not permitted as part of the value of a macro argument or of a string that is to be used
as a macro argument. If it is necessary to have a macro argument value, two grave accents (,,) and/or two acute
accents (II) may be used instead. This restriction is necessary because many macro arguments are processed (in­
terpreted) a variable number of times. For example, headings are first printed in the text and may be reprinted
in the table of contents.

3.3 Unpaddable Spaces

When output lines are justified to give an even right margin, existing spaces in a line may have additional
spaces appended to them. This may distort the desired alignment of text. To avoid this distortion, it is necessary
to specify a space that cannot be expanded during justification, i.e., an unpaddable space. There are several ways
to accomplish this:

• The user may type a backslash followed by a space (\). This pair of characters directly generates an
unpaddable space.

• The user may sacrifice some seldom-used character to be translated into a space upon output.

Because this translation occurs after justification, the chosen character may be used anywhere an unpaddable
space is desired. The tilde ('I.) is often used with the translation macro for this purpose. To use the tilde in this
way, the following is inserted at the beginning of the document:

.tr -

If a tilde must actually appear in the output, it can be temporarily "recovered" by inserting

.tr

-9-

before the place where needed. Its previous usage is restored by repeating the .tr '" after a break or after the
line containing the tilde has been forced out.

Note: Use of the tilde in this fashion is not recommended for documents in which the tilde is used within
equations.

3.4 Hyphenation

Formatters do not perform hyphenation unless requested. Hyphenation can be turned on in the body of the
text by specifying

.nr Hy 1

once at the beginning of the document input file. Paragraph 8.3 describes hyphenation within footnotes and
across pages,

If hyphenation is requested, formatters will automatically hyphenate words if need be. However, the user
may specify hyphenation points for a specific occurrence of any word with a special character known as a hy­
phenation indicator or may specify hyphenation points for a small list of words (about 128 characters).

If the hyphenation indicator (initially, the 2-character sequence "\ %") appears at the beginning of a word,
the word is not hyphenated. Alternatively, it can be used to indicate legal hyphenation points inside a word.
All occurrences of the hyphenation indicator disappear on output.

The user may specify a different hyphenation indicator .

. He [hyphenation-indicator]

The circumflex (A) is often used for this purpose by inserting the following at the beginning of a documenl
input text file:

Note: Any word containing hyphens or dashes (also known as em dashes) will be hyphenated immedi­
ately after a hyphen or dash if it is necessary to hyphenate the word, even if the formatter hyphenation
function is turned off.

The user may supply, via the exception word .hw request, a small list of words with the proper hyphenation
points indicated. For example, to indicate the proper hyphenation of the word "printout", the user may specify

.hw print-out

3.5 Tabs

Macros .MT {6.7}, .TC {10.1}, and .CS {lO.2} use the formatter tabs .ta request to set tab stops and then reo
store the default values of tab settings (every eight characters in the nroff formatter; every 1/2 inch in the troff
formatter). Setting tabs to other than the default values is the user's responsibility.

Default tab setting values are 9, 17, 25, ... , 161 for a total of 20 tab stops. Values may be separated by commas,
spaces, or any other non-numeric character. A user may set tab stops at any value desired. For example:

.ta 9 17 25 33 41 49 57 ... 161

A tab character is interpreted with respect to its position on the input line rather than its position on the
output line. In general, tab characters should appear only on lines processed in no-fill (.nf) mode {3.1}.

-10-

The tbl(l) program {7.3} changes tab stops but does not restore default tab settings.

3.6 BEL Character

The nonprinting character BEL is used as a delimiter in many macros to compute the width of an argument
or to delimit arbitrary text, e.g., in page headers and footers {9}, headings {4}, and lists {5}. Users who include
BEL characters in their input text file (especially in arguments to macros) will receive mangled output.

3.7 Bullets

A bullet (.) is often obtained on a typewriter terminal by using an "0" overstruck by a "+". For compatibil­
ity with the troff formatter, a bullet string is provided by MM with the following sequence:

*(BU

The bullet list (.BL) macro {5.1.1.2} uses this string to generate automatically the bullets for bullet-listed items.

3.8 Dashes, Minus Signs, and Hyphens

The troff formatter has distinct graphics for a dash, a minus sign, and a hyphen; the nroff formatter does
not.

• Users who intend to use the nroff formatter only may use the minus sign (-) for the minus, hyphen,
and dash.

• Users who plan to use the troff formatter primarily should follow troff escape conventions.

• Users who plan to use both formatters must take care during input text file preparation. Unfortunately,
these graphic characters cannot be represented in a way that is both compatible and convenient for both
formatters.

The following approach is suggested:

SYMBOL

Dash

Hyphen

Minus

ACTION

Type \ *(EM for each text dash for both nroff and troff formatters. This string generates
an em dash in the troff formatter and two dashes (--) in the nroff formatter. Dash list
(.DL) macros {5.2.1.3} automatically generate the em dash for each list item.

Type - and use as is for both formatters. The nroff formatter will print it as is, and the
troff formatter will print - (a true hyphen).

Type \ - for a true minus sign regardless of formatter. The nroff formatter will effectively
ignore the "\"; the troff formatter will print a true minus sign.

3.9 Trademark String

A trademark string \ *(Tm is available with MM. This places the letters "TM" one-half line above the text
that it follows. For example:

The
.I
User's Manual-UNIX
.R

-11-

yields:

\h' -1 '\ *(Tm
.I
Operating System
.R
is available from the library.

The User's Manual- UNIXTM Operating System is available from the library.

3.10 Use of Formatter Requests

Most formatter requests should not be used with MM because MM providL:; the corresponding formatting
functions in a much more user-oriented and surprise-free fashion than do the basic formatter requests. Howev­
er, some formatter requests are useful with MM, namely the following:

.af Assign format

.br Break

.ce Center

.de Define macro

.ds Define string

.fi Fill output lines

.hw Exception word

.Is Line spacing

.nf No filling of output lines

.nr Define and set number register

.nx Go to next file (does not return)

.rm Remove macro

.rr Remove register

.rs Restore spacing

.so Switch to source file and return

.sp Space

.ta Tab stop settings

.ti Temporary indent

.tl Title

.tr Translate

.! Escape

The .fp, .lg, and .ss requests are also sometimes useful for the troff formatter. Use of other requests with­
out fully understanding their implications very often leads to disaster.

4. Paragraphs and Headings

4.1 Paragraphs

.P [type]
one or more lines of text.

The .P macro is used to control paragraph style.

4.1.1 Paragraph Indention

An indented or a nonindented paragraph is defined with the type argument.

-12-

type Result

o left justified
1 indent

In a left-justified paragraph, the first line begins at the left margin. In an indented paragraph, the para­
graph is indented the amount specified in the Pi register (default value is 5). For example, to indent paragraphs
by ten spaces, the following is entered at the beginning of the document input file:

.nr Pi 10

A document input file possesses a default paragraph type obtained by specifying ".P" before each paragraph
that does not follow a heading {4.2}. Default paragraph type is controlled by the Pt number register. The initial
value of Pt is 0, which provides left-justified paragraphs.

All paragraphs can be forced to be indented by inserting the following at the beginning of the document
input file:

.nr Pt 1

All paragraphs can be indented except after headings, lists, and displays by entering the following at the
beginning of the document input file:

.nr Pt 2

Both the Pi and Pt register values must be greater than zero for any paragraphs to be indented.

Note: Values that specify indentation must be un scaled and are treated as character positions, i.e., as
a number of ens. In the nroff formatter, an en is equal to the width of a character. In the troff formatter,
an en is the number of points (1 point = 1172 of an inch) equal to half the current point size.

Regardless of the value of Pt, an individual paragraph can be forced to be left-justified or indented. The
".P 0" macro request forces left justification; ".P 1" causes indentation by the amount specified by the register
Pi.

If .P occurs inside a list, the indent (if any) of the paragraph is added to the current list indent {5}.

4.1.2 Numbered Paragraphs

Numbered paragraphs may be produced by setting the Np register to 1. This produces paragraphs numbered
within first level headings, e.g., 1.01, 1.02, 1.03, 2.01, etc.

A different style of numbered paragraphs is obtained by using the .nP macro rather than the .P macro for
paragraphs. This produces paragraphs that are numbered within second level headings .

. H 1 "FIRST HEADING"

.H 2 "Second Heading"

.nP
one or more lines of text

The paragraphs contain a "double-line indent" in which the text of the second line is indented to be aligned with
the text of the first line so that the number stands out.

4.1.3 Spacing Between Paragraphs

The Ps number register controls the amount of spacing between paragraphs. By default, Ps is set to 1, yield­
ing one blank space (one-half a vertical space).

-13-

4.2 Numbered Headings

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings. Levell is the highest; level 7 the lowest.

The heading-suffixargument is appended to the heading-text argument and may be used for footnote marks
which should not appear with heading text in the table of contents.

Note: There is no need for a .P macro immediately after a .H or .HU {4.3} because the .H macro also
performs the function of the .P macro. Any immediately following .P macro is ignored. It is, however, good
practice to start every paragraph with a .P macro, thereby ensuring that all paragraphs uniformly begin
with a .P throughout an entire document.

4.2.1 Normal Appearance

The effect of the .H macro varies according to argument level. First-level headings are preceded by two
blank lines (one vertical space); all others are preceded by one blank line (one-half a vertical space). The follow­
ing table describes the default effect of the level argument .

. H 1 heading-text Produces a bold font heading followed by a single blank line (one­
half a vertical space). The following text begins on a new line and is
indented according to the current paragraph type. Full capital let­
ters should normally be used to make the heading stand out .

. H 2 heading-text Produces a bold font heading followed by a single blank line (one­
half a vertical space). The following text begins on a new line and is
indented according to the current paragraph type. Normally, initial
capitals are used .

. H n heading-text Produces an underlined (italicized) heading followed by two spaces
(3 < n < 7). The following text begins on the same line, i.e., these are
run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur even if the heading-text argument is
omitted from a .H macro call.

The following listing gives the first few .H calls used for this part.

.H 1 "paragraphs and headings"

.H 2 "Paragraphs"

.H 3 "Paragraph Indention"

.H 3 "Numbered Paragraphs"

.H 3 "Spacing Between Paragraphs"

.H 2 "Numbered Headings"

.H 3 "Normal Appearance"

.H 3 "Altering Appearance"

.H 4 "Prespacing and Page Ejection"

.H 4 "Spacing After Headings"

.H 4 "Centered Headings"

-14-

.H 4 "Bold, Italic, and Underlined Headings"

.H 5 "Control by Level"

Note: Users satisfied with the default appearance of headings may skip to the paragraph entitled "Un­
numbered Headings" {4.3}.

4.2.2 Altering Appearance

The user can modify the appearance of headings quite easily by setting certain registers and strings at the
beginning of the document input text file. This permits quick alteration of a document's style because this style­
control information is concentrated in a few lines rather than being distributed throughout the document.

4.2.2.1 Prespacing and Page Ejection

A first-level heading (.H 1) normally has two blank lines (one vertical space) preceding it, and all other head­
ings are preceded by one blank line (one-half a vertical space). If a multiline heading were to be split across
pages, it is automatically moved to the top of the next page. Every first-level heading may be forced to the top
of a new page by inserting

.nr Ej 1

at the beginning of the document input text file. Long documents may be made more manageable if each section
starts on a new page. Setting the Ej register to a higher value causes the same effect for headings up to that
level, i.e., a page eject occurs if the heading level is less than or equal to the Ej value.

4.2.2.2 Spacing After Headings

Three registers control the appearance of text immediately following a .H call. The registers are Hb (head­
ing break level), Hs (heading space level), and Hi (post-heading indent).

If the heading level is less than or equal to Hb, a break {3.1} occurs after the heading. If the heading level
is less than or equal to Hs, a blank line (one-half a vertical space) is inserted after the heading. The default
value for Hb and Hs is 2. If a heading level is greater than Hb and also greater than Hs, then the heading (if
any) is run into the following text. These registers permit headings to be separated from the text in a consistent
way throughout a document while allowing easy alteration of white space and heading emphasis.

For any stand-alone heading, Le., a heading not run into the following text, alignment of the next line of
output is controlled by the Hi register.

• If Hi is 0, text is left-justified.

• If Hi is 1 (the default value), text is indented according to the paragraph type as specified by the Pt reg­
ister {4.1}.

• If Hi is 2, text is indented to line up with the first word of the heading itself so that the heading number
stands out more clearly.

To cause a blank line (one-half a vertical space) to appear after the first three heading levels, to have no
run-in headings, and to force the text following all headings to be left-justified (regardless of the value of Pt),
the following should appear at the beginning of the document input text file:

.nr Hs 3

.nr Hb 7

.nr Hi 0

-15-

4.2.2.3 Centered Headings

The He register can be used to obtain centered headings. A heading is centered if its level argument is less
than or equal to He and if it is also a stand-alone heading {4.2.2.2j. The He register is 0 initially (no centered
headings).

4.2.2.4 Bold, Italic, and Underlined Headings

4.2.2.4.1 Control by Level: Any heading that is underlined by the nroff formatter is italicized by the troff
formatter. The string HF (heading font) contains seven codes that specify fonts for heading levels 1 through
7. Legal codes, code interpretations, and defaults for HF codes are:

HF CODE

DEFAULT

FORMATTER 1 2 3 HF CODE

nroff no underline underline bold 3 3 2 2 2 2 2
troff Roman italic bold 3 3 2 2 2 2 2

Thus, levels 1 and 2 are bold; levels 3 through 7 are underlined by the nroff formatter and italicized by the
troff formatter. The user may reset HF as desired. Any value omitted from the right end of the list is assumed
to be a 1. The following request would result in five bold levels and two Roman font levels:

.ds HF 3 3 333

4.2.2.4.2 NROFF Underlining Style: The nroff formatter underlines in either of two styles:

• The normal style (.ul request) is to underline only letters and digits .

• The continuous style (.eu request) underlines all characters including spaces.

By default, MM attempts to use the continuous style on any heading that is to be underlined and is short enough
to fit on a single line. If a heading is to be underlined but is longer than a single line, the heading is underlined
in the normal style.

All underlining of headings can be forced to the normal style by using the -rUl flag when invoking the
nroff formatter {2.4}.

4.2.2.4.3 Heading Point Sizes: The user may specify the desired point size for each heading level with the HP
string (for use with the troff formatter only) .

. ds HP [psI] [ps2] [ps3] [ps4] [ps5] [ps6] [ps7]

By default, the text of headings (.H and .HU) is printed in the same point size as the body except that bold
stand-alone headings are printed in a size one point smaller than the body. The string HP, similar to the string
HF, can be specified to contain up to seven values, corresponding to the seven levels of headings. For example:

.ds HP 12 12 10 10 10 10 10

specifies that the first and second level headings are to be printed in 12-point type with the remainder printed

-16-

in 10-point. Specified values may also be relative point-size changes, for example:

.ds HP +2 +2 -1 -1

If absolute point sizes are specified, then absolute sizes will be used regardless of the point size of the body of
the document. If relative point sizes are specified, then point sizes for headings will be relative to the point size
of the body even if the latter is changed.

Null or zero values imply that default size will be used for the corresponding heading level.

Note: Only the point size of the headings is affected. Specifying a large point size without providing in­
creased vertical spacing (via .HX and/or .HZ) may cause overprinting.

4.2.2.5 Marking Styles--Numerals and Concatenation

.HM [arg1] ... [arg7]

The registers named Hl through H7 are used as counters for the seven levels of headings. Register values
are normally printed using Arabic numerals. The .HM macro (heading mark style) allows this choice to be
overridden thus providing "outline" and other document styles. This macro can have up to seven arguments;
each argument is a string indicating the type of marking to be used. Legal arguments and their meanings are:

ARGUMENT MEANING

1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get the specified number of digits

A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

Lowercase Roman

Omitted arguments are interpreted as 1; illegal arguments have no effect.

By default, the complete heading mark for a given level is built by concatenating the mark for that level
to the right of all marks for all levels of higher value. To inhibit the concatenation of heading level marks, i.e.,
to obtain just the current level mark followed by a period, the heading mark type register (Ht) is set to 1. For
example, a commonly used "outline" style is obtained by:

.HM I A 1 a i

.nr Ht 1

4.3 Unnumbered Headings

.HU heading-text

The .HU macro is a special case of .H; it is handled in the same way as .H except that no heading mark
is printed. In order to preserve the hierarchical structure of headings when .H and .HU calls are intermixed,
each .HU heading is considered to exist at the level given by register Hu, whose initial value is 2. Thus, in the
normal case, the only difference between

.HU heading-text

-17-

and

.H 2 heading-text

is the printing of the heading mark for the latter. Both macros have the effect of incrementing the numbering
counter for level 2 and resetting to zero the counters for levels 3 through 7. Typically, the value of Hu should
be set to make unnumbered headings (if any) be the lowest-level headings in a document.

The .HU macro can be especially helpful in setting up appendices and other sections that may not fit well
into the numbering scheme of the main body of a document {14.2.1}.

4.4 Headings and Table of Contents

The text of headings and their corresponding page numbers can be automatically collected for a table of
contents. This is accomplished by doing the following:

• specifying in the contents level register, CI, what level headings are to be saved

• invoking the .TC macro {10.1} at the end of the document.

Any heading whose level is less than or equal to the value of the CI register is saved and later displayed
in the table of contents. The default value for the CI register is 2, i.e., the first two levels of headings are saved.

Due to the way headings are saved, it is possible to exceed the formatter's storage capacity, particularly
when saving many levels of many headings, while also processing displays {7} and footnotes IS}. If this happens,
the "Out of temp file space" formatter error message (Table 4.D) will be issued; the only remedy is to save fewer
levels and/or to have fewer words in the heading text.

4.5 First-Level Headings and Page Numbering Style

By default, pages are numbered sequentially at the top of the page. For large documents, it may be desirable
to use page numbering of the "section-page" form where "section" is the number of the current first-level head­
ing. This page numbering style can be achieved by specifying the -rN3 or -rN5 flag on the command line {9.3}.
As a side effect, this also has the effect of setting Ej to 1, i.e., each first level section begins on a new page. In
this style, the page number is printed at the bottom of the page so that the correct section number is printed.

4.6 User Exit Macros

Note: This paragraph is intended primarily for users who are accustomed to writing formatter macros .

. HX dlevel rlevel heading-text

.HY dlevel rlevel heading-text

.HZ dlevel rlevel heading-text

The .HX, .HY, and .HZ macros are the means by which the user obtains a final level of control over the
previously described heading mechanism. These macros are not defined by MM. These macros are intended to
be defined by the user. The .H macro invokes .HX shortly before the actual heading text is printed; it calls .HZ
as its last action. After .HX is invoked, the size of the heading is calculated. This processing causes certain fea­
tures that may have been included in .HX, such as .ti for temporary indent, to be lost. After the size calculation,
.HY is invoked so that the user may respecify these features. All default actions occur if these macros are not
defined. If .HX, .HY, or .HZ are defined by the user, user-supplied definition is interpreted at the appropriate
point. These macros can therefore influence handling of all headings because the .HU macro is actually a special
case of the .H macro.

If the user originally invoked the.H macro, then the derived level (dievel) and the real level (rievel) are both
equal to the level given in the .H invocation. If the user originally invoked the .HU macro {4.3}, dievel is equal
to the contents of register Hu, and rievel is O. In both cases, heading-text is the text of the original invocation.

-18-

By the time .H calls .HX, it has already incremented the heading counter of the specified level {4.2.2.5}, pro­
duced blank lines (vertical spaces) to precede the heading {4.2.2.1}, and accumulated the "heading mark", i.e.,
the string of digits, letters, and periods needed for a numbered heading. When .HX is called, all user-accessible
registers and strings can be referenced, as well as the following:

string }O

register ;0

string }2

register ;3

If rlevel is nonzero, this string contains the "heading mark". Two unpaddable spaces (to
separate the mark from the heading) have been appended to this string. If rlevel is 0, this
string is null.

This register indicates the type of spacing that is to follow the heading {4.2.2.2}. A value
of 0 means that the heading is run-in. A value of 1 means a break (but no blank line) is
to follow the heading. A value of 2 means that a blank line (one-half a vertical space) is
to follow the heading.

If "register ;0" is 0, this string contains two unpaddable spaces that will be used to separate
the (run-in) heading from the following text. If "register ;0" is nonzero, this string is null.

This register contains an adjustment factor for a .ne request issued before the heading
is actually printed. On entry to .HX, it has the value 3 if dlevel equals 1, and 1 otherwise.
The .ne request is for the following number of lines: the contents of the "register ;0" taken
as blank lines (halves of vertical space) plus the contents of "register ;3" as blank lines
(halves of vertical space) plus the number of lines of the heading.

The user may alter the values of {O, }2, and ;3 within .HX. The following are examples of actions that might
be performed by defining .HX to include the lines shown:

• Change first-level heading mark from format ;1. to n.O:
.if \\ $1=1 .ds }0\\n(H1.0\<sp> \<sp>
(where <sp> stands for a space)

• Separate run-in heading from the text with a period and two unpaddable spaces:
.if \\ n(;O=O .ds} 2 .\ <sp> \<sp>

• Assure that at least 15 lines are left on the page before printing a first-level heading:
.if \\ $1=1 .nr ;3 15- \\n(;O

• Add three additional blank lines before each first-level heading:
.if \\ $1=1 .sp 3

• Indent level 3 run-in headings by five spaces:
.if \\ $1=3 .ti 5n

If temporary strings or macros are used within .HX, their names should be chosen with care {14.1}.

When the .HY macro is called after the .ne is issued, certain features requested in .HX must be repeated.
For example:

.de HY

.if \\$1=3 .ti 5n

-19-

The .HZ macro is called at the end of .H to permit user-controlled actions after the heading is produced.
In a large document, sections may correspond to chapters of a book; and the user may want to change a page
header or footer, e.g.:

.de HZ

.if \\$1=1 .PF " Section \\$3"

4.7 Hints for Large Documents

A large document is often organized for convenience into one input text file per section. If the files are num­
bered, it is wise to use enough digits in the names of these files for the maximum number of sections, i.e., use
suffix numbers 01 through 20 rather than 1 through 9 and 10 through 20.

Users often want to format individual sections of long documents. To do this with the correct section num­
bers, it is necessary to set register Hl to one less than the number of the section just before the corresponding
.H\ 1 call. For example, at the beginning of Part 5, insert

.nr HI 4

Note: This is not good practice. It defeats the automatic (re)numbering of sections when sections
are added or deleted. Such lines should be removed as soon as possible.

S. Lists

This part describes different styles of lists; automatically numbered and alphabetized lists, bullet lists, dash
lists, lists with arbitrary marks, and lists starting with arbitrary strings, i.e., with terms or phrases to be de­
fined.

5.1 List Macros

In order to avoid repetitive typing of arguments to describe the style or appearance of items in a list, MM
provides a convenient way to specify lists. All lists share the same overall structure and are composed of the
following basic parts:

• A Jist-initialization macro (.AL .BL, .DL, .ML, .RL, or .VL) determines the style of list: line spacing, in­
dentation, marking with special symbols, and numbering or alphabetizing of list items.

• One or more Jist-item macros (.LI) identifies each unique item to the system. It is followed by the actual
text of the corresponding list item.

• The list-end macro (.LE) identifies the end of the list. It terminates the list and restores the previous
indentation.

Lists may be nested up to six levels. The list-initialization macro saves the previous list status (indentation
marking style, etc.); the .LE macro restores it.

With this approach, the format of a list is specified only once at the beginning of the list. In addition by
building onto the existing structure, users may create their own customized sets of list macros with relatively
little effort ({5.3} and {5.4}).

5.1.1 List-Initialization Macros

List-initialization macros are implemented as calls to the more basic .LB macro {5.2}.

-20-

They are:

.AL Automatically Numbered or Alphabetized List

.BL Bullet List

.DL Dash List

.ML Marked List

.RL Reference List

.VL Variable-Item List

5.1.1.1 Automatically Numbered or Alphabetized List

.AL [type] [text-indent] [1]

The .AL macro is used to begin sequentially numbered or alphabetized lists. If there are no arguments, the
list is numbered; and text is indented by Li (initially six) spaces from the indent in force when the .AL is called.
This leaves room for a space, two digits, a period, and two spaces before the text. Values that specify indentation
must be unsealed and are treated as "character positions", i.e., number of ens.

Spacing at the beginning of the list and between items can be suppressed by setting the list space register
(Ls). The Ls register is set to the innermost list level for which spacing is done. For example:

.or Ls 0

specifies that no spacing will occur around any list items. The default value for Ls is six (which is the maximum
list nesting level).

• The type argument may be given to obtain a different type of sequencing. Its value indicates the first
element in the sequence desired. If type argument is omitted or null, the value 1 is assumed.

ARGUMENT INTERPRET A TlON

1 Arabic (default for all levels)

A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

Lowercase Roman

• If text-indent argument is non-null, it is used as the number of spaces from the current indent to the
text, i.e., it is used instead of Li for this list only. If text-indent argument is null, the value of Li will
be used.

• If the third argument is given, a blank line (one-half a vertical space) will not separate items in the list.
A blank line will occur before the first item however.

5. 1. 1. 2 Bu lIet List

.BL [text-indent] [1]

The .BL macro begins a bullet list. Each list item is marked by a bullet (.) followed by one space.

• If the text-indent argument is non-null, it overrides the default indentation (the amount of paragraph
indentation as given in the Pi register {4.1}). In the default case, the text of bullet and dash lists lines
up with the first line of indented paragraphs.

-21-

• If the second argument is specified, no blank lines will separate items in the list.

5.1.1.3 Dash List

.DL [text-indent] [1]

The .DL macro is identical to .BL except that a dash is used as the list item mark instead of a bullet.

5.1.1.4 Marked List

.ML mark [text-indent] [1]

The .ML macro is much like .BL and .DL macros but expects the user to specify an arbitrary mark which
may consist of more than a single character.

• Text is indented text-indent spaces if the second argument is not null; otherwise, the text is indented
one more space than the width of mark.

• If the third argument is specified, no blank lines will separate items in the list.

Note: The mark must not contain ordinary (paddable) spaces because alignment of items will be lost
if the right margin is justified {3.3}.

5.1.1.5 Reference List

.RL [text-indent] [1]

A .RL macro call begins an automatically numbered list in which the numbers are enclosed by square brack­
ets ([]).

• If the text-indent argument is non-null, it is used as the number of spaces from the current indent to
the text, i.e., it is used instead of Li for this list only. If the text-indent argument is omitted or null,
the value of Li is used.

• If the second argument is specified, no blank lines will separate the items in the list.

5.1.1.6 Variable-Item List

.VL text-indent [mark-indent] [1]

When a list begins with a .VL macro, there is effectively no current mark; it is expected that each .L1 will
provide its own mark. This form is typically used to display definitions of terms or phrases.

• Text-indent provides the distance from current indent to beginning of the text.

• Mark indent produces the number of spaces from current indent to beginning of the mark, and it de­
faults to 0 if omitted or null.

• If the third argument is specified, no blank lines will separate items in the list.

An example of .VL macro usage is shown below:

.tr '"

.VL 20 2

-22-

·LI marh1
Here is a description of mark 1;
"mark I" of the .LI line contains a tilde
translated to an unpaddable space in order
to avoid extra spaces between
"mark" and "1" {3.3} .
. LI second'lomark.
This is the second mark also using a tilde translated to an unpaddable space .
. LI third'lomarhlonger'lo than'loindent:
This item shows the effect of a long mark; one space separates the mark from the text.
.LI'Io
This item effectively has no mark because the tilde following the .LI is translated into a space .
. LE

when formatted yields:

mark 1 Here is a description of mark 1; "mark 1" of the .LI line contains a tilde translated to
an unpaddable space in order to avoid extra spaces between "mark" and "I" {3.3}.

second mark This is the second mark also using a tilde translated to an unpaddable space.

third mark longer than indent: This item shows the effect of a long mark; one space separates the mark
from the text.

This item effectively has no mark because the tilde following the .LI is translated into
a space.

The tilde argument on the last .LI above is required; otherwise, a "hanging indent" would have been pro­
duced. A "hanging indent" is produced by using .VL and calling .LI with no arguments or with a null first argu­
ment. For example:

.VL 10

.LI
Here is some text to show a hanging indent.
The first line of text is at the left margin.
The second is indented 10 spaces .
. LE

when formatted yields:

Here is some text to show a hanging indent. The first line of text is at the left margin. The second is
indented 10 spaces.

Note: The mark must not contain ordinary (paddable) spaces because alignment of items will be lost
if the right margin is justified {3.3}.

5.1.2 list-Item Macro

.LI [mark] [1]
one or more lines of text that make up the list item.

The .LI macro is used with all lists and for each list item. It normally causes output of a single blank line
(one-half a vertical space) before its list item although this may be suppressed .

• If no arguments are given, .LI labels the item with the current mark which is specified by the most re­
cent list-initialization macro.

·23·

• If a single argument is given, that argument is output instead of the current mark.

• If two arguments are given, the first argument becomes a prefix to the current mark thus allowing the
user to emphasize one or more items in a list. One unpaddable space is inserted between the prefix and
the mark.

For example:

.BL 6

.LI
This is a simple bullet item .
. LI +
This replaces the bullet with a "plus" .
. LI + 1
This uses a "plus" as prefix to the bullet.
.LE

when formatted yields:

• This is a simple bullet item.

+ This replaces the bullet with a "plus".

+ • This uses "plus" as prefix to the bullet.

Note: The mark must not contain ordinary (paddable) spaces because alignment of items will be lost
if the right margin is justified {3.3}.

If the current mark (in the current list) is a null string and the first argument of .LI is omitted or null, the
resulting effect is that of a "hanging indent", i.e., the first line of the following text is moved to the left starting
at the same place where mark would have started {5.1.1.6}.

5.1.3 List-End Macro

.LE [1]

The .LE macro restores the state of the list to that existing just before the most recent list-initialization
macro call. If the optional argument is given, the .LE outputs a blank line (one-half a vertical space). This option
should generally be used only when the .LE is followed by running text but not when followed by a macro that
produces blank lines of its own such as the .P, .H, or .LI macro.

The .H and .HU macros automatically clear all list information. The user may omit the .LE macros that
would normally occur just before either of these macros and not receive the "LE:mismatched" error message.
Such a practice is not recommended because errors will occur if the list text is separated from the heading at
some later time (e.g., by insertion of text).

5.1.4 Example of Nested Lists

An example of input for the several lists and the corresponding output is shown below. The .AL and .DL
macro calls {5.1.1} contained therein are examples of list-initialization macros. Input text is:

.ALA

.LI
This is alphabetized list item A.

-24-

This text shows the alignment of the second line
of the item.
Notice the text indentations and alignment of left
and right margins .
. AL
.LI
This is numbered item l.
This text shows the alignment of the second line
of the item.
The quick brown fox jumped over the lazy dog's back.
.DL
.LI
This is a dash item.
This text shows the alignment of the second line
of the item.
The quick brown fox jumped over the lazy dog's back.
.LI + 1
This is a dash item with a "plus" as prefix.
This text shows the alignment of the second line of the item.
The quick brown fox jumped over the lazy dog's back.
.LE
.LI
This is numbered item 2 .
. LE
.LI
This is another alphabetized list item B.
This text shows the alignment of the second line
of the item.
The quick brown fox jumped over the lazy dog's back.
.LE
.P
This paragraph follows a list item and is aligned with
the left margin.
A paragraph following a list resumes the normal line
length and margins.

-25-

The output is:

A. This is alphabetized list item A. This text shows the alignment of the second line of the
item. Notice the text indentions and alignment of left and right margins.
1. This is numbered item 1. This text shows the alignment of the second line of the

item. The quick brown fox jumped over the lazy dog's back.

- This is a dash item. This text shows the alignment of the second line of the
item. The quick brown fox jumped over the lazy dog's back.

+ - This is a dash item with a "plus" as prefix. This text shows the alignment
of the second line of the item. The quick brown fox jumped over the lazy
dog's back.

2. This is numbered item 2.

B. This is another alphabetized list item B. This text shows the alignment of the second line
of the item. The quick brown fox jumped over the lazy dog's back.

This paragraph follows a list item and is aligned with the left margin. A paragraph following a list resumes
the normal line length and margins.

S.2 List-Begin Macro and Customized Lists

.LB text-indent mark-indent pad type [mark] [LI-space]\[LB-space]

List-initialization macros described above suffice for almost all cases. However, if necessary, the user may
obtain more control over the layout of lists by using the basic list-begin macro (.LB). The .LB macro is used
by the other list-initialization macros. Its arguments are as follows:

• The text-indent argument provides the number of spaces that text is to be indented from the current
indent. Normally, this value is taken from the Li register (for automatic lists) or from the Pi register
(for bullet and dash lists).

• The combination of mark-indent and pad arguments determines the placement of the mark. The mark
is placed within an area (called mark area) that starts mark-indent spaces to the right of the current
indent and ends where the text begins (i.e., ends text-indent spaces to the right of the current indent).
The mark-indent argument is typically 0.

• Within the mark area, the mark is left justified if the pad argument is 0. If pad is a number n (greater
than 0) then n blanks are appended to the mark; the mark-indent value is ignored. The resulting string
immediately precedes the text. The mark is effectively right justified pad spaces immediately to the left
of text.

• Arguments type and mark interact to control the type of marking used. If t:vpe is 0, simple marking is
performed using the mark character(s) found in the mark argument. If t:vpe is greater than 0, automatic
numbering or alphabetizing is done; and mark is then interpreted as the first item in the sequence to
be used for numbering or alphabetizing, i.e., it is chosen from the set (1, A, a, I, i) as in {5.1.1.l}. This
is summarized in the following table.

-26-

type mark result

0 omitted hanging indent
0 string string is the mark

>0 omitted Arabic numbering
>0 one of: automatic numbering or

1, A, a, I, i alphabetic sequencing

Each nonzero value of type from one to six selects a different way of displaying the marks. The following
table shows the output appearance for each value of type:

VALUE APPEARANCE

1 x.
2 x)
3 (x)
4 [x]
5 <x>
6 {x}

where x is the generated number or letter.

Note: The mark must not contain ordinary (paddable) spaces because alignment of items will be lost
if the right margin is justified {3.3}.

• The LI-space argument gives the number of blank lines (halves of a vertical space) that should be output
by each .LI macro in the list. If omitted, LI-space defaults to 1; the value 0 can be used to obtain compact
lists. If LI-space is greater than 0, the .LI macro issues a .ne request for two lines just before printing
the mark.

• The LB-space argument is the number of blank lines (one-half a vertical space) to be output by .LB itself.
If omitted LB-space defaults to O.

There are three combinations of LI-space and LB-space:

• The normal case is to set LI-space to 1 and LB-space to 0 yielding one blank line before each item in
the list; such a list is usually terminated with a .LE 1 macro to end the list with a blank line.

• For a more compact list, LI-space is set to 0, LB-space is set to 1, and the .LE 1 macro is used at the
end of the list. The result is a list with one blank line before and after it.

• If both LI-space and LB-space are set to 0 and the .LE macro is used to end the list, a list without any
blank lines will result.

Paragraph {5.3} shows how to build upon the supplied list of macros to obtain other kinds of lists.

5.3 User-Defined List Structures

Note: This part is intended only for users accustomed to writing formatter macros.

If a large document requires complex list structures, it is useful to define the appearance for each list level
only once instead of having to define the appearance at the beginning of each list. This permits consistency of

-27-

style in a large document. A generalized list-initialization macro might be defined in such a way that what the
macro does depends on the list-nesting level in effect at the time the macro is called. Levels 1 through 5 of the
lists to be formatted may have the following appearance:

A.

[1]

•
a)

+

The following code defines a macro (.aL) that always begins a new list and determines the type of list accord­
ing to the current list level. To understand it, the user should know that the number register :g is used by the
MM list macros to determine the current list level; it is 0 if there is no currently active list. Each call to a list­
initialization macro increments :g, and each .LE call decrements it.

\" register g is used as a local temporary to save
\" :g before it is changed below
.de aL
.nr g \ \n(:g
.if \ \ng=O .AL A \" produces an A .

\" produces a [1] .if \ \ng= 1 .LB \ \n(Li 0 1 4
.if \ \ng=2 .BL \" produces a bullet

.if \ \ng=3 .LB \ \n(Li 022 a

.if \ \ng=4 .ML +

\" produces an a)

\" produces a +

This macro can be used (in conjunction with .LI and .LE) instead of .AL, .RL, .BL, .LB, and .ML. For example,
the following input:

.aL

.LI
First line .
. aL
.LI
Second line .
. LE
.LI
Third line .
. LE

when formatted yields

A. First line.

[1] Second line.

B. Third line.

-28-

There is another approach to lists that is similar to the .R mechanism. List-initialization, as well as the
.LI and the .LE macros, are all included in a single macro. That macro (defined as .bL below) requires an argu­
ment to tell it what level of item is required; it adjusts the list level by either beginning a new list or setting
the list level back to a previous value, and then issues a .LI macro call to produce the item .

. de bL

.ie \ \n(.$.nr g \\$1

.el .nr g \ \n(:g

.if \ \ng-\ \n(:g>1 .)D

\" if there is an argument,
\" that is the level
\" if no argument, use current level
\" **ILLEGAL SKIPPING OF LEVEL
\" increasing level by more than 1

.if \ \ng> \ \n(:g \{.aL \ \ng-l \" if g > :g, begin new list

.nr \" and reset g to current level

.if \ \n(:g> \ \ng .LC \ \ng

.LI

\" (.aL changes g)
\" if :g > g, prune back to

\" correct level
\" if:g = g, stay within
\" current list
\" in all cases, get out an item

For .bL to work, the previous definition of the .aL macro must be changed to obtain the value of gfrom its
argument rather than from :g. Invoking .bL without arguments causes it to stay at the current list level. The
.LC (List Clear) macro removes list descriptions until the level is less than or equal to that of its argument. For
example, the .R macro includes the call ".LC 0". If text is to be resumed at the end of a list, insert the call ".LC
0" to clear out the lists completely. The example below illustrates the relatively small amount of input needed
by this approach. The input text

The quick brown fox jumped over the lazy dog's back.
.bL 1
First line .
. bL 2
Second line .
. bL 1
Third line .
. bL
Fourth line .
. LC 0
Fifth line.

when formatted yields

The quick brown fox jumped over the lazy dog's back.

A. First line.

[1] Second line.

B. Third line.

C. Fourth line.
Fifth line.

-29-

6. Memorandum and Released-Paper Style Documents

One use of MM is for the preparation of memoranda and released-paper documents (a documentation style
used by Bell Laboratories, Inc.) which have special requirements for the first page and for the cover sheet. Data
needed (title, author, date, case numbers, etc.) is entered the same for both styles; an argument to the .MT
macro indicates which style is being used.

6.1 Sequence of Beginning Macros

Macros, if present, must be given in the following order:

.ND new-date

. TL [charging-case] [filing-case]
one or more lines of text
.AF [company-name]
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg]
.AT [title] ...
. TM [number] ...
. AS [arg] [indent]
one or more lines of text
.AE
.NS [arg]
one or more lines of text
.NE
.OK [keyword] ...
. MT [type] [addressee]

The only required macros for a memorandum for file or a released-paper document are .TL, .AU, and .MT;
all other macros (and their associated input lines) may be omitted if the features are not needed. Once .MT has
been invoked, none of the above macros (except .NS and .NE) can be reinvoked because they are removed from
the table of defined macros to save memory space.

If neither the memorandum nor released-paper document style is desired, the TL, AU, TM, AE, OK, MT,
ND, and AF macros should be omitted from the input text. If these macros are omitted, the first page will have
only the page header followed by the body of the document.

6.2 Title

. TL [charging-case] [filing-case]
one or more lines of title text

Arguments to the .TL macro are the charging-case number(s) and filing-case number(s).

• The charging-case argument is the case number to which time was charged for the development of the
project described in the memorandum. Multiple charging - case numbers are entered as "subarguments"
by separating each from the previous with a comma and a space and enclosing the entire argument
within double quotes .

• The filing-case argument is a number under which the memorandum is to be filed. Multiple filing case
members are entered similarly. For example:

.TL "1 2 3 4 5, 6 7 8 9 0" 9 8 7 6 5 4 3 2 1
Construction of a Table of all Even Prime numbers

The title of the memorandum or released-paper document follows the .TL macro and is processed in fill mode.

-30-

The .br request may be used to break the title into several lines as follows:

.TL 12345
First Title Line
.br
\!.br
Second Title Line

On output, the title appears after the word "subject" in the memorandum style and is centered and bold
in the released-paper document style.

If only a charging case number or only a filing case number is given, it will be separated from the title in
the memorandum style by a dash and will appear on the same line as the title. If both case numbers are given
and are the same, then "Charging and Filing Case" followed by the number will appear on a line following the
title. If the two case numbers are different, separate lines for "Charging Case" and "File Case" will appear after
the title.

6.3 Authors

.AU name [initials] floc] [dept] [ext] [room] [arg] [arg]

.AT [title] '"

The .AU macro receives as arguments information that describes an author. If any argument contains
blanks, that argument must be enclosed within double quotes. The first six arguments must appear in the order
given. A separate .AU macro is required for each author.

The .AT macro is used to specify the author's title. Up to nine arguments may be given. Each will appear
in the signature block for memorandum style {6.11} on a separate line following the signer's name. The .AT must
immediately follow the .AU for the given author. For example:

.AU" J. J. Jones" JJJ PY 9876 5432 1Z-234

.A T Director" Materials Research Laboratory"

In the "from" portion in the memorandum style, the author's name is followed by location and department
number on one line and by room number and extension number on the next. The "x" for the extension is added
automatically. Printing of the location, department number, extension number, and room number may be sup­
pressed on the first page of a memorandum by setting the register Au to 0; the default value for Au is 1. Argu­
ments 7 through 9 of the .AU macro, if present, will follow this normal author information in the "from" portion,
each on a separate line. These last three arguments may be used for organizational numbering schemes, etc.
For example:

.AU" S. P. Lename" SPL IH 9988 7766 5H-444 9876-543210.01MF

The name, initials, location, and department are also used in the signature block. Author information in
the "from" portion, as well as names and initials in the signature block will appear in the same order as the
.AU macros.

Names of authors in the released-paper style are centered below the title. Following the name of the last
author, "Bell Laboratories" and the location are centered. The paragraph on memorandum types {6.7} contains
information regarding authors from different locations.

6.4 TM Numben.

.TM [number] ...

If the memorandum is a technical memorandum, the TM numbers are supplied via the .TM macro. Up to

-31-

nine numbers may be specified. For example:

.TM 7654321 77777777

This macro call is ignored in the released-paper and external-letter styles {6.7}.

6.S Abstract

.AS [arg] [indent]
text of abstract
.AE

If a memorandum has an abstract, the input is identified with the .AS (abstract start) and .AE (abstract
end) delimiters. Abstracts are printed on page 1 of a document and/or on its cover sheet. There are three styles
of cover sheet:

• released paper

• technical memorandum

• memorandum for file {10.2} (also used for engineer's notes, memoranda for record, etc.).

Cover sheets for released papers and technical memoranda are obtained by invoking the .CS macro {lO.2}.

In released-paper style (first argument of the .MT macro {6.7} is 4) and in technical memorandum style if
the first argument of .AS is:

o Abstract will be printed on page 1 and on the cover sheet (if any).

1 Abstract will appear only on the cover sheet (if any).

In memoranda for file style and in all other documents (other than external letters) if the first argument of
.AS is:

o Abstract will appear on page 1 and there will be no cover sheet printed.

2 Abstract will appear only on the cover sheet which will be produced automatically (i.e., without in-
voking the .CS macro).

It is not possible to get either an abstract or a cover sheet with an external letter (first argument of the .MT
macro is 5).

Notations such as a "copy to" list {6.H} are allowed on memorandum for file cover sheets; the .NS and .NE
macros must appear after the .AS 2 and .AE macros. Headings {4.2, 4.3} and displays {7} are not permitted within
an abstract.

The abstract is printed with ordinary text margins; an indentation to be used for both margins can be speci­
fied as the second argument of .AS. Values that specify indentation must be unscaled and are treated as "charac­
ter positions", i.e., as the number of ens.

6.6 Other Keywords

.OK [keyword] ...

Topical keywords should be specified on a technical memorandum cover sheet. Up to nine such keywords
or keyword phrases may be specified as arguments to the .OK macro; if any keyword contains spaces, it must
be enclosed within double quotes.

-32-

6.7 Memorandum Types

.MT [type] [addressee]

The .MT macro controls the format of the top part of the first page of a memorandum or of a released-paper
document and the format of the cover sheets. The type arguments and corresponding values are:

type Value

"" no memorandum type printed

0 no memorandum type printed

none MEMORANDUM FOR FILE

1 MEMORANDUM FOR FILE

2 PROG RAMMER'S NOTES

3 ENG INEER'S NOTES

4 released-paper style

5 external-letter style

" string' string (enclosed in quotes)

If the type argument indicates a memorandum style document, the corresponding statement indicated
under "Value" will be printed after the last line of author information. If type is longer than one character, then
the string itself will be printed. For example:

.MT" Technical Note #5"

A simple letter is produced by calling .MT with a null (but not omitted) or 0 argument.

The second argument to .MT is the name of the addressee of a letter. If present, that name and the page
number replace the normal page header on the second and following pages of a letter. For example:

.MT 1 "John Jones"

produces

John Jones - 2

The addressee argument may not be used if the first argument is 4 (released-paper style document).

The released-paper style is obtained by specifying

.MT 4 [1]

This results in a centered, bold title followed by centered names of authors. The location of the last author is
used as the location following "Bell Laboratories" (unless the .AF macro specifies a different company). If the
optional second argument to .MT 4 is given, then the name of each author is followed by the respective company

-33-

name and location. Information necessary for the memorandum style document but not for the released-paper
style document is ignored.

If the released-paper style document is utilized, most BTL location codes are defined as strings that are the
addresses of the corresponding BTL locations. These codes are needed only until the .MT macro is invoked. Thus,
following the .MT macro, the user may reuse these string names. In addition, the macros for the end of a memo­
randum {6.U} and their associated lines of input are ignored when the released-paper style is specified.

Authors from non-BTL locations may include their affiliations in the released-paper style by specifying the
appropriate .AF macro {6.9} and defining a string (with a 2-character name such as ZZ) for the address before
each .AU. For example:

.TL
A Learned Treatise
.AF " Getem Inc."
.ds ZZ " 22 Maple A venue, Some town 09999"
.AU" F. Swatter" "" ZZ
.AF " Bell Laboratories"
.AU" Sam P. Lename" "" CB
.MT 41

In the external-letter style document (.MT 5), only the title (without the word "subject:") and the date are
printed in the upper left and right corners, respectively, on the first page. It is expected that preprinted statio­
nery will be used with the company logo and address of the author.

6.8 Date Changes

.ND new-date

The .ND macro alters the value of the string DT, which is initially set to produce the current date. If the
argument contains spaces, it must be enclosed within double quotes.

6.9 Alternate First-Page Format

.AF [company-name]

An alternate first-page format can be specified with the .AF macro. The words "subject", "date", and
"from" (in the memorandum style) are omitted and an alternate company name is used.

If an argument is given, it replaces "Bell Laboratories" without affecting other headings. If the argument
is null, "Bell Laboratories" is suppressed; and extra blank lines are inserted to allow room for stamping the doc­
ument with a Bell System logo or a Bell Laboratories stamp.

The .AF with no argument suppresses "Bell Laboratories" and the "Subject/Date/From" headings, thus
allowing output on preprinted stationery. The use of .AF with no arguments is equivalent to the use of -rAl
{2.4}, except that the latter must be used if it is necessary to change the line length and/or page offset (which
default to 5.8i and Ii, respectively, for preprinted forms). The command line options -rOk and -rWk {2.4} are
not effective with .AF. The only .AF use appropriate for the troff formatter is to specify a replacement for "Bell
Laboratories".

The command line option -rEn {2.4} controls the font of the "Subject/Date/From" block.

6.10 Example

Input text for a document may begin as follows:

.TL

-34-

MM\ *(EMMemorandum Macros
.AU" D. W. Smith" DWS PY
.AU" J. R. Mashey" JRM PY
.AU" E. C. Pariser (January 1980 Revision)" ECP PY
.AU "N. W. Smith (June 1980 Revision)" NWS PY
.MT4

Figure 4.1 shows the input text file and both the nroff and troff formatter outputs for a simple letter.

6.11 End of Memorandum Macros

At the end of a memorandum document (but not of a released-paper document), signatures of authors and
a list of notations can be requested. The following macros and their input are ignored if the released-paper style
document is selected.

6.11.1 Signature Block

.FC [closing]

.SG [arg] [1]

The .Fe macro prints "Yours very truly," as a formal closing, if no argument is used. It must be given before
the .SG macro. A different closing may be specified as an argument to .FC.

The .SG macro prints the author's name(s) after the formal closing, if any. Each name begins at the center
of the page. Three blank lines are left above each name for the actual signature.

• If no arguments are given, the line of reference data (location code, department number, author's ini­
tials, and typist's initials, all separated by hyphens) will not appear.

• A non-null first argument is treated as the typist's initials and is appended to the reference data.

• A null first argument prints reference data without the typist's initials or the preceding hyphen.

• If there are several authors and if the second argument is given, reference data is placed on the line
of the first author.

Reference data contains only the location and department number of the first author. Thus, if there are au­
thors from different departments and/or from different locations, the reference data should be supplied manu­
ally after the invocation (without arguments) of the .SG macro. For example:

.SG

.rs

.sp -Iv
PY /MH-9876/5432-JJJ/SPL-cen

6.11.2 "Copy to" and Other Notations

.NS [arg]
zero or more lines of the notation
.NE

Many types of notations (such as a list of attachments or "Copy to" lists) may follow signature and reference
data. Various notations are obtained through the .NS macro, which provides for proper spacing and for break­
ing notations across pages, if necessary.

-35-

Codes for arg and the corresponding notations are:

arg Notations

none Copy to
"" Copy to
0 Copy to
1 Copy (with att.) to
2 Copy (without att.) to
3 Att.
4 Atts.
5 Ene.
6 Encs.
7 Under Separate Cover
8 Letter to
9 Memorandum to
" string' Copy (string) to

If arg consists of more than one character, it is placed within parentheses between the words "Copy" and
"to". For example:

.NS "with att. 1 only"

will generate

Copy (with att. 1 only) to

as the notation. More than one notation may be specified before the .NE macro because a .NS macro terminates
the preceding notation, if any. For example:

.NS 4
Attachment 1-List of register names
Attachment 2-List of string and macro names
.NS 1
J. J. Jones
.NS 2
S. P. Lename
G. H. Hurtz
.NE

would be formatted as

Atts.
Attachment 1-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
J. J. Jones

Copy (without att.) to
S. P. Lename
G. H. Hurtz

The .NS and .NE macros may also be used at the beginning following .AS 2 and .AE to place the notation
list on the memorandum for file cover sheet {6.5}. If notations are given at the beginning without .AS 2, they
will be saved and output at the end of the document.

-36-

6.11.3 Approval Signature Line

.AVapprover's-name

The .A V macro may be used after the last notation block to automatically generate a line with spaces for
the approval signature and date. For example:

.A V " Jane Doe"

produces

APPROVED:

Jane Doe Date

6.12 One-Page Letter

At times, the user may like more space on the page forcing the signature or items within notations to the
bottom of the page so that the letter or memo is only one page in length. This can be accomplished by increasing
the page length with the -rLn option, e.g., -rL90. This has the effect of making the formatter believe that the
page is 90 lines long and therefore providing more space than usual to place the signature or the notations.

Note: This will work only for a single-page letter or memo.

7. Displays

Displays are blocks of text that are to be kept together on a page and not split across pages. They are pro­
cessed in an environment that is different from the body of the text (see the .ev request). The MM package pro­
vides two styles of displays-a static (.DS) style and a floating (.DF) style .

• In the static style, the display appears in the same relative position in the output text as it does in the
input text. This may result in extra white space at the bottom of the page if the display is too long to
fit in the remaining page space .

• In the floating style, the display "floats" through the input text to the top of the next page if there is
not enough space on the current page. Thus input text that follows a floating display may precede it
in the output text. A queue of floating displays is maintained so that their relative order of appearance
in the text is not disturbed.

By default, a display is processed in no-fill mode with single spacing and is not indented from the existing
margins. The user can specify indentation or centering as well as fill-mode processing.

Note: Displays and footnotes {S} may never be nested in any combination. Although lists {5} and para­
graphs {4.1} are permitted, no headings (.H or .HU) {4.2, 4.3} can occur within displays or footnotes.

7. 1 Static Displays

.DS [format] [fill] [rindent]
one or more lines of text
.DE

-37-

A static display is started by the .DS macro and terminated by the .DE macro. With no arguments, .DS
accepts lines of text exactly as typed (no-fill mode) and will not indent lines from the prevailing left margin
indentation or from the right margin.

• The format argument is an integer or letter used to control the left margin indentation and centering
with the following meanings:

format

" "
o or L
lor I
2 or C
3 or CB
omitted

Meaning

no indent
no indent
indent by standard amount
center each line
center as a block
no indent

• The fill argument is an integer or letter and can have the following meanings:

fill

fin

o or N
lor F
omitted

Meaning

no-fill mode
no-fill mode
fill mode
no-fill mode

• The rindent argument is the number of characters that the line length should be decreased, i.e., an in­
dentation from the right margin. This number must be unsealed in the nroff formatter and is treated
as ens. It may be scaled in the troff formatter or else defaults to ems.

The standard amount of static display indentation is taken from the Shegister, a default value of five spac­
es. Thus, text of an indented display aligns with the first line of indented paragraphs, whose indent is contained
in the Pi register {4.1}. Even though their initial values are the same (default values), these two registers are
independent.

The display format argument value 3 (or CB) centers (horizontally) the entire display as a block (as opposed
to .DS 2 and .DF 2 which center each line individually). All collected lines are left justified, and the display is
centered based on width of the longest line. This format must be used in order for the eqn/neqn "mark" and
"lineup" feature to work with centered equations {7.4}.

By default, a blank line (one-half a vertical space) is placed before and after static and floating displays.
These blank lines before and after static displays can be inhibited by setting the register Ds to o.

The following example shows usage of all three arguments for static displays. This block of text will be in­
dented five spaces from the left margin, filled, and indented five spaces from the right margin (i.e., centered).
The input text

.DS I F 5
"We the people of the United States,
in order to form a more perfect union,
establish justice, ensure domestic tranquillity,
provide for the common defense,
and secure the blessings of liberty to
ourselves and our posterity,
do ordain and establish this Constitution for the

-38~

United States of America."
.DE

produces

"We the people of the United States, in order to form a more perfect union, establish justice,
ensure domestic tranquillity, provide for the common defense, and secure the blessings of liberty
to ourselves and our posterity, do ordain and establish this Constitution to the United States of
America."

7.2 Floating Displays

.DF [format] [fill] [rindent]
one or more lines of text
.DE

A floating display is started by the .DF macro and terminated by the .DE macro. Arguments have the same
meanings as static displays described above, except indent, no indent, and centering are calculated with respect
to the initial left margin. This is because prevailing indent may change between the time the formatter first
reads the floating display and when the display is printed. One blank line (one-half a vertical space) occurs be­
fore and after a floating display.

The user may exercise precise control over the output positioning of floating displays through the use of
two number registers, De and Df (see below). When a floating display is encountered by the nroff or troff
formatter, it is processed and placed onto a queue of displays waiting to be output. Displays are removed from
the queue and printed in the order entered, which is the order they appeared in the input file. If a new floating
display is encountered and the queue of displays is empty, the new display is a candidate for immediate output
on the current page. Immediate output is governed by size of display and the setting of the Di register code.
The De register code controls whether text will appear on the current page after a floating display has been
produced.

As long as the display queue contains one or more displays, new displays will be automatically entered there,
rather than being output. When a new page is started (or the top of the second column when in 2-column mode),
the next display from the queue becomes a candidate for output if the Dfregister code has specified "top-of­
page" output. When a display is output, it is also removed from the queue.

When the end of a section (using section-page numbering) or the end of a document is reached, all displays
are automatically removed from the queue and output. This occurs before a .SG, .CS, or .TC macro is processed.

A display will fit on the current page if there is enough room to contain the entire display or if the display
is longer than one page in length and less than half of the current page has been used. A wide (full-page width)
display will not fit in the second column of a 2-column document.

The De and Dfnumber register code settings and actions are as follows:

De Register

CODe ACTION

o No special action occurs (also the default condition).

-39-

CODE ACTION

1 A page eject will always follow the output of each floating display, so only one floating display
will appear on a page and no text will follow it.

Note: For any other code, the action performed is the same as for code 1.

DfRegister

CODE ACTION

o Floating displays will not be output until end of section (when section-page numbering) or
end of document.

1 Output new floating display on current page if there is space; otherwise, hold it until end of
section or document.

2 Output exactly one floating display from queue to the top of a new page or column (when in
2-column mode).

3 Output one floating display on current page if there is space; otherwise, output to the top of
a new page or column.

4 Output as many displays as will fit (at least one) starting at the top of a new page or column.

Note: If De register is set to 1, each display will be followed by a page eject causing a new top of page
to be reached where at least one more display will be output (this also applies to code 5).

5 Output a new floating display on the current page if there is room (also the default condition).
Output as many displays (at least one) as will fit on the page starting at the top of a new page
or column.

Note: For any code greater than 5, the action performed is the same as for code 5.

The .we macro {12.4} may also be used to control handling of displays in double-column mode and to control
the break in text before floating displays.

7.3 Tables

.TS [H]
global options;
column descriptors.
title lines
[.TH [N]]
data within the table .
. TE

The .TS (table start) and .TE (table end) macros make possible the use of the tbl(l) program. These macros
are used to delimit text to be examined by tbl and to set proper spacing around the table. The display function
and the tbl delimiting function are independent. In order to permit the user to keep together blocks that contain
any mixture of tables, equations, filled text, unfilled text, and caption lines, the .TS/.TE block should be enclosed
within a display (.DS/.DE). Floating tables may be enclosed inside floating displays (.DF I.DE).

Macros .TS and .TE permit processing of tables that extend over several pages. If a table heading is needed
for each page of a multipage table, the "H" argument should be specified to the .TS macro as above. Following

-40-

the options and format information, table title is typed on as many lines as required and is followed by the .TH
macro. The .TH macro must occur when ".TS H" is used for a multipage table. This is not a feature of tbl but
of the definitions provided by the MM macro package.

The .TH (table header) macro may take as an argument the letter N. This argument causes the table header
to be printed only if it is the first table header on the page. This option is used when it is necessary to build
long tables from smaller .TS H/.TE segments. For example:

.TS H
global options;
column descriptors.
Title lines
.TH
data
.TE
.TSH
global options;
column descriptors.
Title lines
.THN
data
.TE

will cause the table heading to appear at the top of the first table segment and no heading to appear at the top
of the second segment when both appear on the same page. However, the heading will still appear at the top
of each page that the table continues onto. This feature is used when a single table must be broken into segments
because of table complexity (e.g., too many blocks of filled text). If each segment had its own .TS HI.TH se­
quence, it would have its own header. However, if each table segment after the first uses .TS H/.TH N, the table
header will appear only at the beginning of the table and the top of each new page or column that the table con­
tinues onto.

For the nroff formatter, the -e option [-E for mm(l) {2.111 may be used for terminals, such as the 450,
that are capable of finer printing resolution. This will cause better alignment of features such as the lines form­
ing the corner of a box. The -e is not effective with coJ(l).

7.4 Equations

.DS

.EQ [label]
equation(s)
.EN
.DE

Mathematical typesetting programs eqn(l) and neqn expect to use the .EQ (equation start) and .EN (equa­
tion end) macros as delimiters in the same way that tbl(l) uses .TS and .TE; however, .EQ and .EN must occur
inside a .DS/.DE pair. There is an exception to this rule - if .EQ and .EN are used to specify only the delimiters
for in-line equations or to specify eqn/neqn defines, the .DS and .DE macros must not be used; otherwise, extra
blank lines will appear in the output.

The .EQ macro takes an argument that will be used as a label for the equation. By default, the label will
appear at the right margin in the "vertical center" of the general equation. The Eq register may be set to 1 to
change labeling to the left margin.

The equation will be centered for centered displays; otherwise, the equation will be adjusted to the opposite
margin from the label.

-41-

7.5 Figure, Table, Equation, and Exhibit Titles

.FG [title] [override] [flag]

.TB [title] [override] [flag]

.EC [title] [override] [flag]

.EX [title] [override] [flag]

The .FG (figure title), .TB (table title), .Ee (equation caption), and .EX (exhibit caption) macros are nor­
mally used inside .DS/.DE pairs to automatically number and title figures, tables, and equations. These macros
use registers Fg, Tb, Ec, and Ex, respectively (see paragraph {2.4} on -rN5 to reset counters in sections). For
example:

.FG " This is a Figure Title"

yields

Figure 1. This is a Figure Title

The .TB macro replaces "Figure" with "TABLE", the .EC macro replaces "Figure" with "Equation", and
the .EX macro replaces "Figure" with "Exhibit". The output title is centered if it can fit on a single line; other­
wise, all lines but the first are indented to line up with the first character of the title. The format of the numbers
may be changed using the .af request of the formatter. The format of the caption may be changed from

Figure 1. Title

to

Figure I-Title

by setting the Ofregister to 1.

The override argument is used to modify normal numbering. If flag argument is omitted or 0, override is
used as a prefix to the number; if the flag argument is 1, override is used as a suffix; and if the flag argument
is 2, override replaces the number. If -rN5 {2.4} is given, "section-figure" numbering is set automatically and
user-specified override string is ignored.

As a matter of formatting style, table headings are usually placed above the text of tables, while figure,
equation, and exhibit titles are usually placed below corresponding figures and equations.

7.6 list of Figures, Tables, Equations, and Exhibits

A list of figures, tables, exhibits, and equations are printed following the table of contents if the number
registers Lf, Lt, Lx, and Le (respectively) are set to 1. The Lf, Lt, and Lx registers are 1 by default; Le is ° by
default.

Titles of these lists may be changed by redefining the following strings which are shown here with their
default values:

.ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS

.ds Le LIST OF EQUATIONS

-42-

8. Footnotes

There are two macros (.FS and .FE) that delimit text of footnotes, a string that automatically numbers foot­
notes, and a macro (.FD) that specifies the style of footnote text. Footnotes are processed in an environment
different from that of the body of text. Refer to .ev request.

8.1 Automatic Numbering of Footnotes

Footnotes may be automatically numbered by typing the three characters "\ *F" (i.e., invoking the string
F) immediately after the text to be footnoted without any intervening spaces. This will place the next sequential
footnote number (in a smaller point size) a half line above the text to be footnoted.

8.2 Delimiting Footnote Text

.FS [label]
one or more lines of footnote text
.FE

There are two macros that delimit the text of each footnote. The .FS (footnote start) macro marks the begin­
ning of footnote text, and the .FE (footnote end) macro marks the end. The label on the .FS, if present, will be
used to mark footnote text. Otherwise, the number retrieved from the string Fwill be used. Automatically num­
bered and user-labeled footnotes may be intermixed. If a footnote is labeled (.FS label), the text to be footnoted
must be followed by label, rather than by "\ *F". Text between .FS and .FE is processed in fill mode. Another
.FS, a .DS, or a .DF are not permitted between .FS and .FE macros. If footnotes are required in the title, abstract,
or table {7.3} only labeled footnotes will appear properly. Everywhere else automatically numbered footnotes
work correctly. For example:

Automatically numbered footnote:

This is the line containing the word\ *F
.FS
This is the text of the footnote .
. FE
to be footnoted.

Labeled footnote:

This is a labeled *
.FS *

The footnote is labeled with an asterisk.
.FE
footnote.

Text of the footnote (enclosed within the .FS/.FE pair) should immediately follow the word to be footnoted
in the input text, so that "\ *F" or label occurs at the end of a line of input and the next line is the .FS macro
call. It is also good practice to append an unpaddable space {3.3} to "\ *F" or label when they follow an end-of­
sentence punctuation mark (Le., period, question mark, exclamation point).

Figure 4.2 illustrates the various available footnote styles as well as numbered and labeled footnotes.

8.3 Format Style of Footnote Text

.FD [arg] [1]

-43-

Within footnote text, the user can control formatting style by specifying text hyphenation, right margin
justification, and text indentation, as well as left or right justification of the label when text indenting is used.
The .FD macro is invoked to select the appropriate style.

The first argument is a number from the left column of the following table. Formatting style for each num­
ber is indicated in the remaining four columns. Further explanation of the first two of these columns is given
in the definitions of the .ad, .by, .na, and .nb (adjust, hyphenation, no adjust, and no hyphenation, respectively)
requests in the nroff part of this document.

TEXT LABEL

~ HYPHENA TION ADJUST INDENT JUSTIFICA TION ---_ .. _-

0 .nh .ad yes left
1 .hy .ad yes left
2 .nh .na yes left
3 .hy .na yes left
4 .nh .ad no left
5 .hy .ad no left
6 .nh .na no left
7 .hy .na no left
8 .nh .ad yes right
9 .hy .ad yes right

10 .nh .na yes right
11 .hy .na yes right

If the argument to .FD is greater than 11, the effect is as if ".FD 0" were specified. If the first argument
is omitted or null, the effect is equivalent to ".FD 10" in the nroff formatter and to ".FD 0" in the troff
formatter; these are also the respective initial default values.

If the second argument is specified, then when a first-level heading is encountered, automatically numbered
footnotes begin again with 1. This is most useful with the "section-page" page numbering scheme. As an exam­
ple, the input line

.FD "" 1

maintains the default formatting style and causes footnotes to be numbered afresh after each first-level heading
in a document.

Hyphenation across pages is inhibited by MM except for long footnotes that continue to the following page.
If hyphenation is permitted, it is possible for the last word on the last line on the current page footnote to be
hyphenated. The user has control over this situation by specifying an even .FD argument.

Footnotes are separated from the body of the text by a short line rule. Those that continue to the next page
are separated from the body of the text by afull-width rule. In the troff formatter, footnotes are set in type
two points smaller than the point size in the body of text.

8.4 Spacing Between Footnote Entries

Normally, one blank line (a 3-point vertical space) separates footnotes when more than one occurs on a page.
To change this spacing, the Fs number register is set to the desired value. For example:

.nr Fs 2

will cause two blank lines (a 6-point vertical space) to occur between footnotes.

-44-

9. Page Headers and Footers

Text printed at the top of each page is called page header. Text printed at the bottom of each page is called
page footer. There can be up to three lines of text associated with the header - every page, even page only, and
odd page only. Thus the page header may have up to two lines of text - the line that occurs at the top of every
page and the line for the even- or odd-numbered page. The same is true for the page footer.

This part describes the default appearance of page headers and page footers and ways of changing them.
The term header (not qualified by even or odd) is used to mean the page header line that occurs on every page,
and similarly for the term footer.

9.1 Default Headers and Footers

By default, each page has a centen~d page number as the header. There is no default footer and no even/odd
default headers or footers except as specified in paragraph {9.3}.

In a memorandum or a released-paper style document, the page header on the first page is automatically
suppressed provided a break does not occur before the .MT macro is called. Macros and text in the following
categories do not cause a break and are permitted before the memorandum types (.MT) macro:

• Memorandum and released-paper style document macros (.TL, .AU, .AT, .TM, .AS, .AE, .OK, .ND, .AF,
.NS, and .NE)

• Page headers and footers macros (.PH, .EH, .OH, .PF, .EF, and .OF)

• The .nr and .ds requests.

9.2 Header and Footer Macros

For header and footer macros (.PH .EH, .OH, .PF, .EF, and .OF), the argument [arg] is of the following form:

" 'left-part'center-part'right-part'''

If it is inconvenient to use apostrophe (') as the delimiter because it occurs within one of the parts, it may be
replaced uniformly by any other character. In formatted output, the parts are left justified, centered, and right
justified, respectively.

9.2.1 Page Header

.PH [arg]

The .PH macro specifies the header that is to appear at the top of every page. The initial value is the default
centered page number enclosed by hyphens. The page number contained in the Pregister is an Arabic number.
The format of the number may be changed by the .af macro request.

If "debug mode"is set using the flag -rDl on the command line {2.4}, additional information printed at the
top left of each page is included in the default header. This consists of the Source Code Control System (SCCS)
release and level of MM (thus identifying the current version {12.3}) followed by the current line number within
the current input file.

9.2.2 Even-Page Header

.EH [arg]

-45-

The .EH macro supplies a line to be printed at the top of each even-numbered page immediately following
the header. Initial value is a blank line.

9.2.3 Odd-Page Header

.OH [arg]

The .OH macro is the same as the .EH except that it applies to odd-numbered pages.

9.2.4 Page Footer

.PF [arg]

The .PF macro specifies the line that is to appear at the bottom of each page. Its initial value is a blank
line. If the -rCn flag is specified on the command line {2.4}, the type of copy follows the footer on a separate
line. In particular, if -rC3 or -rC4 (DRAFT) is specified, the footer is initialized to contain the date {6.8} instead
of being a blank line.

9.2.5 Even-Page Footer

.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each even-numbered page immediately preced­
ing the footer. Initial value is a blank line.

9.2.6 Odd-Page Footer

.OF [arg]

The .OF macro is the same as .EF except that it applies to odd-numbered pages.

9.2.7 First Page Footer

By default, the first page footer is a blank line. If, in the input text file, the user specifies .PF and/or .OF
before the end of the first page of the document, these lines will appear at the bottom of the first page.

The header (whatever its contents) replaces the footer on the first page only if the -rNl flag is specified
on the command line {2.4}.

9.3 Default Header and Footer With Section-Page Numbering

Pages can be numbered sequentially within sections by "section-number page-number" {4.5}. To obtain this
numbering style, -rN3 or -rN5 is specified on the command line. In this case, the default footer is a centered
"section-page" number, e.g., 7-2; and the default page header is blank.

9.4 Strings and Registers in Header and Footer Macros

String and register names may be placed in arguments to header and footer macros. If the value of the string
or register is to be computed when the respective header or footer is printed, invocation must be escaped by
four backslashes. This is because string or register invocation will be processed three times:

1. As the argument to the header or footer macro

2. In a formatting request within the header or footer macro

-46-

3. In a .t1 request during header or footer processing.

For example, page number register P must be escaped with four backslashes in order to specify a header
in which the page number is to be printed at the right margin, e.g.:

.PH " "'Page \ \ \ \nP' "

creates a right-justified header containing the word "Page" followed by the page number. Similarly, to specify
a footer with the "section-page" style, the user specifies (see paragraph {4.2.2.5} for meaning of Hl):

.PF " "'- \ \ \ \n(Hl-\ \ \ \nP -'"

If the user arranges for the string a] to contain the current section heading which is to be printed at the
bottom of each page, the .PF macro call would be:

.PF " "\ \ \ \ *(a]" "

If only one or two backslashes were used, the footer would print a constant value for aJ, namely, its value
when .PF appeared in the input text.

9.S Header and Footer Example

The following sequence specifies blank lines for header and footer lines, page numbers on the outside margin
of each page (i.e., top left margin of even pages and top right margin of odd pages), and "Revision 3" on the
top inside margin of each page (nothing is specified for the center):

.PH""

.PF""

.EH " '\ \ \ \nP"Revision 3' "

.OH" 'Revision 3"\\\ \nP' "

9.6 Generalized Top-of-Page Processing

Note: This part is intended only for users accustomed to writing formatter macros.

During header processing, MM invokes two user-definable macros:

• The .TP (top of page) macro is invoked in the environment (refer to .ev request) of the header .

• The .PX is a page header user-exit macro that is invoked (without arguments) when the normal environ­
ment has been restored and with the "no-space" mode already in effect.

The effective initial definition of .TP (after the first page of a document) is

.de TP

.sp 3

.tl \ \ *(}t

.if e 't! \ \ *(}e

.if 0 'tl \ \ *(}o

.sp ~

The string }t contains the header, the string }e contains the even-page header, and the string }o contains the
odd-page header as defined by the .PH, .EH, and .OH macros, respectiYely. To obtain more specialized page ti­
tles, the user may redefine the .TP macro to cause the desired header processing {12.5}. Formatting done within

-47-

the .TP macro is processed in an environment different from that of the body. For example, to obtain a page
header that includes three centered lines of data, i.e., document number, issue date, and revision date, the user
could define the .TP as follows:

.de TP

.sp

.ce 3
777 -888-999
Iss. 2, AUG 1977
Rev. 7, SEP 1977
.sp

The .PX macro may be used to provide text that is to appear at the top of each page after the normal header
and that may have tab stops to align it with columns of text in the body of the document.

9.7 Generalized Bottom-of-Page Processing

.BS
zero or more lines of text
.BE

Lines of text that are specified between the .BS (bottom-block start) and .BE (bottom-block end) macros
will be printed at the bottom of each page after the footnotes (if any) but before the page footer. This block of
text is removed by specifying an empty block, i.e.:

.BS

.BE

The bottom block will appear on the table of contents, pages, and the cover sheet for memorandum for file, but
not on the technical memorandum or released-paper cover sheets.

9.8 Top and Bottom (Vertical) Margins

.VM [top] [bottom]

The .VM (vertical margin) macro allows the user to specify additional space at the top and bottom of the
page. This space precedes the page header and follows the page footer. The .VM macro takes two unsealed argu­
ments that are treated as v's. For example:

.VM 10 15

adds 10 blank lines to the default top of page margin and 15 blank lines to the default bottom of page margin.
Both arguments must be positive (default spacing at the top of the page may be decreased by redefining .TP).

9.9 Proprietary Marking

.PM [code]

The .PM (proprietary marking) macro appends to the page footer a PRIVATE, NOTICE, BELL LABORA­
TORIES PROPRIETARY, or BELL LABORATORIES RESTRICTED disclaimer. The code argument may be:

code Disclaimer

none turn off previous disclaimer, if any

-48-

code Disclaimer
P PRIVATE
N NOTICE
BP BELL LABORATORIES PROPRIETARY
BR BELL LABORATORIES RESTRICTED

These disclaimers are in a form approved for use by the Bell System. The user may alternate disclaimers
by use of the .BSI.BE macro pair.

9.10 Private Documents

.Dr Pv value

The word "PRIVATE" may be printed, centered, and underlined on the second line of a document (preceding
the page header). This is done by setting the Pv register value:

value Meaning

o
I
2

do not print PRIVATE (default)
PRIV A TE on first page only
PRIV A TE on all pages

If value is 2, the user definable .TP macro may not be used because the .TP macro is used by MM to print
"PRIVATE" on all pages except the first page of a memorandum on which .TP is not invoked.

10. Table of Contents and Cover Sheet

The table of contents and the cover sheet for a document are produced by invoking the .TC and .CS macros,
respectively.

Note: This section refers to cover sheets for technical memoranda and released papers only. The mecha­
nism for producing a memorandum for file cover sheet was discussed earlier {6.5}.

These macros normally appear once at the end of the document, after the Signature Block {6.11.1} and Nota­
tions {6.11.2} macros, and may occur in either order.

The table of contents is produced at the end of the document because the entire document must be processed
before the table of contents can be generated. Similarly, the cover sheet may not be desired by a user and is
therefore produced at the end.

10.1 Table of Contents

.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3] [head4] [head5]

The .TC macro generates a table of contents containing heading levels that were saved for the table of con­
tents as determined by the value of the Cl register {4.4}. Arguments to .TC control spacing before each entry,
placement of associated page number, and additional text on the first page of the table of contents before the
word "CONTENTS".

Spacing before each entry is controlled by the first and second arguments ([slevel] and [spacing]). Headings
whose level is less than or equal to slevelwill have spacing blank lines (halves of a vertical space) before them.
Both slevel and spacing default to 1. This means that first-level headings are preceded by one blank line (one­
half a vertical space). The slevel argument does not control what levels of heading have been saved; saving of
headings is the function of the CI register.

-49-

The third and fourth arguments ([tlevelJ and [tab] control placement of associated page number for each
heading. Page numbers can be justified at the right margin with either blanks or dots (called leaders) separating
the heading text from the page number, or the page numbers can follow the heading text.

For headings whose level is less than or equal to tlevel (default 2), page numbers are justified at the right
margin. In this case, the value of tab determines the character used to separate heading text from page number.
If tab is 0 (default value), dots (Le., leaders) are used. If tab is greater than 0, spaces are used.

For headings whose level is greater than tlevel, page numbers are separated from heading text by two spaces
(Le., page numbers are "ragged right", not right justified).

Additional arguments ([headl] .. , [heqd5]) are horizontally centered on the page and precede the table of
contents.

If the .TC macro is invoked with at most four arguments, the user-exit macro .TX is invoked (without argu­
ments) before the word "CONTENTS" is printed, or the user-exit macro .TY is invoked and the word "CON­
TENTS" is not printed.

By defining .TX or .TY and invoking .TC with at most four arguments, the user can specify what needs to
be done at the top of the first page of the table of contents. For example:

.de TX

.ce 2
Special Application
Message Transmission
.sp 2
.in +lOn
Approved: \l'3i'
.in
.sp

.TC

yields the following output when the file is formatted

Special Application
Message Transmission

Approved: _______________ _

CONTENTS

If the .TX macro were defined as .TY, the word "CONTENTS" would be suppressed. Defining .TY as an
empty macro will suppress "CONTENTS" with no replacement:

.de TY

By default, the first level headings will appear in the table of contents left justified. Subsequent levels will
be aligned with the text of headings at the preceding level. These indentations may be changed by defining the

-50-

Ci string which takes a maximum of seven arguments corresponding to the heading levels. It must be given at
least as many arguments as are set by the C] register. Arguments must be scaled; for example, with "C] = 5":

.ds Ci .25i .5i .75i 1i Ii

or

.ds Ci 0 2n 4n 6n 8n

Two other registers are available to modify the format of the table of contents - Oc and Cpo By default,
table of contents pages will have lowercase Roman numeral page numbering. If the Oc register is set to 1, the
.TC macro will not print any page number but will instead reset the Pregister to 1. It is the user's responsibility
to give an appropriate page footer to specify the placement of the page number. Ordinarily, the same .PF macro
(page footer) used in the body of the document will be adequate.

The list of figures, tables, etc. pages will be produced separately unless Cp is set to 1, which causes these
lists to appear on the same page as the table of contents.

10.2 Cover Sheet

.CS [pages] [other] [total] [figs] [thIs] [refs]

The .CS macro generates a cover sheet in either the released paper or technical memorandum style (see
paragraph {6.5} for details of the memorandum for file cover sheet). All other information for the cover sheet
is obtained from data given before the .MT macro call {6.l}. If the technical memorandum style is used, the .CS
macro generates the "Cover Sheet for Technical Memorandum". The data that appear in the lower left corner
of the technical memorandum cover sheet (counts of: pages of text, other pages, total pages, figures, tables, and
references) are generated automatically (0 is used for "other pages"). These values may be changed by supplying
the corresponding arguments to the .CS macro. If the released-paper style is used, all arguments to .CS are ig­
nored.

11. References

There are two macros (.RS and .RF) that delimit the text of references, a string that automatically numbers
the subsequent references, and an optional macro (.RP) that produces reference pages within the document.

11.1 Automatic Numbering of References

Automatically numbered references may be obtained by typing \ *(Rf (invoking the string Rf) immediately
after the text to be referenced. This places the next sequential reference number (in a smaller point size) en­
closed in brackets one-half line above the text to be referenced. Reference count is kept in the Rfnumber regis­
ter.

11.2 Delimiting Reference Text

.RS [string-name]

.RF

The .RS and .RF macros are used to delimit text of each reference as shown below:

A line of text to be referenced.\ *(Rf
.RS
reference text
.RF

-51-

11.3 Subsequent References
The .RS macro takes one argument, a string-name. For example:

.RS aA
reference text
.RF

The string aA is assigned the current reference number. This string may be used later in the document as
the string call, \ *(aA, to reference text which must be labeled with a prior reference number. The reference
is output enclosed in brackets one-half line above the text to be referenced. No .RS/.RF pair is needed for subse­
quent references.

11.4 Reference Page

.RP [arg1] [arg2]

A reference page, entitled by default "References", will be generated automatically at the end of the docu­
ment (before table of contents and cover sheet) and will be listed in the table of contents. This page contains
the reference items (Le., reference text enclosed within .RS/.RF pairs). Reference items will be separated by
a space (one-half a vertical space) unless the Ls register is set to 0 to suppress this spacing. The user may change
the reference page title by defining the Rp string:

.ds Rp " New Title"

The .RP (reference page) macro may be used to produce reference pages anywhere else within a document
(i.e., after each major section). It is not needed to produce a separate reference page with default spacings at
the end of the document.

Two .RP macro arguments allow the user to control resetting of reference numbering and page skipping.

argl Meaning

o reset reference counter (default)
1 do not reset reference counter

arg2 Meaning

o put on separate page (default)
1 do not cause a following .SK
2 do not cause a preceding .SK
3 no .SK before or after

If no .SK is issued by the .RP macro, a single blank line will separate the references from the following/
preceding text. The user may wish to adjust spacing. For example, to produce references at the end of each major
section:

.sp 3

.RP 12

.R 1 " Next Section "

12. Miscellaneous Features

12.1 Bold, Italic, and Roman Fonts

.B [bold-arg] [previous-font-arg] ...

-52-

.I [italic-arg] [previous-font-arg] ...

. R

When called without arguments, the.B macro changes the font to bold and the.1 macro changes to underlin­
ing (italic). This condition continues until the occurrence of the .R macro which causes the Roman font to be
restored. Thus:

.I
here is some text .
. R

yields underlined text via the nroff and italic text via the troff(l) formatter.

If the .B or .I macro is called with one argument, that argument is printed in the appropriate font (under­
lined in the nroff formatter for .I). Then the previous font is restored (underlining is turned off in the nroff
formatter). If two or more arguments (maximum six) are given with a .B or .I macro call, the second argument
is concatenated to the first with no intervening space (1/12 space if the first font is italic) but is printed in the
previous font. Remaining pairs of arguments are similarly alternated. For example:

.I italic "text" right-justified

produces

italic text right -justified

The .B and .I macros alternate with the prevailing font at the time the macros are invoked. To alternate
specific pairs of fonts, the following macros are available:

.IB .BI .IR .R! .RB .BR

Each macro takes a maximum of six arguments and alternates arguments between specified fonts.

When using a terminal that cannot underline, the following can be inserted at the beginning of the document
to eliminate all underlining:

.rm ul

.rm cu

Note: Font changes in headings are handled separately {4.2.2.4.1}.

12.2 Justification of Right Margin

.SA [arg]

The .SA macro is used to set right-margin justification for the main body of text. Two justification flags
are used-current and default. The ".SA 0" call sets both flags to no justification; it acts like the .na request.
The ".SA 1" call sets both flags to cause both right and left justification, the same as the .ad request. However,
calling .SA without an argument causes the current flag to be copied from the default flag, thus performing
either a .na or .ad depending on the default. Initially, both flags are set for no justification in the nroff
formatter and for justification in the troff formatter.

In general, the no adjust request (.na) can be used to ensure that justification is turned off, but .SA should
be used to restore justification, rather than the .ad request. In this way, justification or no justification for the
remainder of the text is specified by inserting ".SA 0" or ".SA 1" once at the beginning of the document.

-53-

12.3 SCCS Release Identification

The REstring contains the SCCS release and the MM text formatting macro package current version level.
For example:

This is version \ *(RE of the macros.

produces

This is version 10.129 of the macros.

This information is useful in analyzing suspected bugs in MM. The easiest way to have the release identifica­
tion number appear in the output is to specify -rDl {2.4} on the command line. This causes the RE string to
be output as part of the page header {9.2.1}.

12.4 Two-Column Output

.2C
text and formatting requests (except another .2C)
.1C

The MM text formatting macro package can format two columns on a page. The .2C macro begins 2-column
processing which continues until a .IC macro (I-column processing) is encountered. In 2-column processing,
each physical page is thought of as containing 2-columnar "pages" of equal (but smaller) "page" width. Page
headers and footers are not affected by 2-column processing. The .2C macro does not balance 2-column output.

It is possible to have full-page width footnotes and displays when in 2-column mode, although default action
is for footnotes and displays to be narrow in 2-column mode and wide in I-column mode. Footnote and display
width is controlled by the .WC (width control) macro, which takes the following arguments:

arg

N

WF

-WF

FF

-FF

WD

-WD

FE

-FE

Meaning

Default mode (-WF, -FF, -WD, FE).

Wide footnotes (even in 2-column mode).

DEFAULT: Turn offWF. Footnotes fO,llow column mode; wide in I-column mode (lC), narrow
in 2-column mode (2C), unless FF is set.

First footnote. All footnotes have same width as first footnote encountered for that page.

DEFAULT: Turn off FF. Footnote style follows settings of WF or -WF.

Wide displays (even in 2-column mode).

DEFAULT: Displays follow the column mode in effect when display is encountered.

DEFAULT: Floating displays cause a break when output on the current page.

Floating displays on current page do not cause a break.

Note: The ".WC WD FF" command will cause all displays to be wide and all footnotes on a page to be
the same width while ".WC N" will reinstate default actions. If conflicting settings are given to .WC, the
last one is used. A ".WC WF -WF" command has the effect of a ".WC -WF".

-54-

12.5 Column Headings for Two-Column Output

Note: This section is intended only for users accustomed to writing formatter macros.

In 2-column processing output, it is sometimes necessary to have headers over each column, as well as head­
ers over the entire page. This is accomplished by redefining the .TP macro {9.6} to provide header lines both for
the entire page and for each of the columns. For example:

.de TP

.sp 2

.tl 'Page \ \nP'OVERALL"

. tl "TITLE"

.sp

.nf

.ta 16C 31R 34 50<C 65R
1 eft<Dcen ter<Drigh tID left<Dcen ter<Drigh t
IDfirst column<D<D<Dsecond column
.fi
.sp 2

where <D stands for the tab character.

The above example will produce two lines of page header text plus two lines of headers over each column.
Tab stops are for a 65-en overall line length.

12.6 Vertical Spacing

.SP [lines]

There exists several ways of obtaining vertical spacing, all with different effects. The .sp request spaces
the number of lines specified unless the no space (.ns) mode is on, then the .sp request is ignored. The no space
mode is set at the end of a page header to eliminate spacing by a .sp or .bp request that happens to occur at
the top of a page. This mode can be turned off by the .rs (restore spacing) request.

The .SP macro is used to avoid the accumulation of vertical space by successive macro calls. Several .SP
calls in a row will not produce the sum of the arguments but only the maximum argument. For example, the
following produces only three blank lines:

.SP 2

.SP 3

.SP

Many MM macros utilize .SP for spacing. For example, ".LE 1" {5.l.3} immediately followed by ".P" {4.1} pro­
duces only a single blank line (one-half a vertical space) between the end of the list and the following paragraph.
An omitted argument defaults to one blank line (one vertical space). Negative arguments are not permitted.
The argument must be un scaled but fractional amounts are permitted. The .SP macro (as well as .sp) is also
inhibited by the .ns request.

12.7 Skipping Pages

.SK [pages]

The .SK macro skips pages but retains the usual header and footer processing. If the pages argument is
omitted, null, or 0, .SK skips to the top of the next page unless it is currently at the top of a page (then it does

-55-

nothing). The ".SK n" skips n pages. The .SK macro always positions text that follows it at the top of a page,
while ".SK I" always leaves one page blank except for the header and footer.

12.8 Forcing an Odd Page

.oP

The .OP macro is used to ensure that formatted output text following the macro begins at the top of an
odd-numbered page. If currently at the top of an odd-numbered page, text output begins on that page (no motion
takes place). If currently on an even page, text resumes printing at the top of the next page. If currently on an
odd page (but not at the top of the page), one blank page is produced, and printing resumes on the next odd­
numbered page after that.

12.9 Setting Point Size and Vertical Spacing

.S [point size] [vertical spacing]

In the troff formatter, the default point size (obtained from the MM register S {2.4}) is 10 points, and the
vertical spacing is 12 points (six lines per inch). Prevailing point size and vertical spacing may be changed by
invoking the .S macro.

The mnemonics D (default value), C (current value), and P (previous value) may be used for both arguments.

• If an argument is negative, current value is decremented by the specified amount.

• If an argument is positive, current value is incremented by the specified amount.

• If an argument is unsigned, it is used as the new value.

• If there are no arguments, the .S macro defaults to P.

• If the first argument is specified but the second is not, then (default) D is used for the vertical spacing.

Default value for vertical spacing is always two points greater than the current point size. Footnotes {S} are two
points smaller than the body with an additiona13-point space between footnotes. A null (" ") value for either
argument defaults to C (current value). Thus, if n is a numeric value:

.S =.S P P

.s "" n =.S C n

.S n "" =.S n C

.S n =.S n D

.s "" =.S C D

.s "" "" =.S C C

.S n n =.S n n

If the first argument is greater than 99, the default point size (10 points) is restored. If the second argument
is greater than 99, the default vertical spacing (current point size plus two points) is used. For example:

.S 100

.S 14 111
=.S 10 12
=.S 14 16

The .SM macro allows the user to reduce by one point the size of a string:

.SM string1 [string2] [string3]

-56-

If the third argument is omitted, the first argument is made smaller and is concatenated with the second
argument if the latter is specified. If all three arguments are present (even if any are null), the second argument
is made smaller and all three arguments are concatenated. For example:

INPUT

.SM X

.SM X Y

.SM Y X Y

.SM YXYX

.SM YXYX)

.SM (YXYX)

.SM Y XYX""

12.10 Producing Accents

OUTPUT

X
XY
YXY
YXYX
YXYX)
(YXYX)
YXYX

The following strings may be used to produce accents for letters:

INPUT OUTPUT

Grave accent c*'
,
c

Acu te accent e*' e
Circumflex 0* a

Tilde n*~ fl

Cedilla c*, ~

Lower-case umlaut u*: ii

Upper-case umlaut U*; U

12.11 Inserting Text Interactively

.RD [prompt] [diversion] [string]

The .RD (read insertion) macro allows a user to stop the standard output of a document and to read text
from the standard input until two consecutive newline characters are found. When newline characters are en­
countered, normal output is resumed.

• The prompt argument will be printed at the terminal. If not given, .RD signals the user with a BEL on
terminal output.

• The diversion argument allows the user to save all text typed in after the prompt in a macro whose name
is that of the diversion.

• The string argument allows the user to save for later reference the first line following the prompt in
the named string.

The .RD macro follows the formatting conventions in effect. Thus, the following examples assume that the
.RD is invoked in no-fill mode (.nf):

.RD Name aA bB

-57-

produces

Name: J. Jones
16 Elm Rd.,
Piscataway

(user types name)

The diverted macro .aA will contain

J. Jones
16 Elm Rd.,
Piscataway

The string bB (\ * bE) contains "J. Jones".

A newline character followed by an EOF (user specifiable CONTROL d) also allows the user to resume nor­
mal output.

13. Errors and Debugging

13.1 Error Terminations

When a macro detects an error, the following actions occur:

• A break occurs.

• The formatter output buffer (which may contain some text) is printed to avoid confusion regarding loca­
tion of the error.

• A short message is printed giving the name of the macro that detected the error, type of error, and ap­
proximate line number in the current input file of the last processed input line. Error messages are ex­
plained in Table 4.D.

• Processing terminates unless register D {2.4} has a positive value. In the latter case, processing continues
even though the output is guaranteed to be deranged from that point on.

The error message is printed by outputting the message directly to the user terminal. If an output filter,
such as 300(1), 450(1), or hp(l) is being used to post-process the nroff formatter output, the message may
be garbled by being intermixed with text held in that filter's output buffer.

Note: If any of cw(l), eqn(l)/neqn, and tbl(l) programs are being used and if the -0 Jist option of the
formatter causes the last page of the document not to be printed, a harmless "broken pipe" message may
result.

13.2 Disappearance of Output

Disappearance of output usually occurs because of an unclosed diversion (e.g., a missing .DE or .FE macro).
Fortunately, macros that use diversions are careful about it, and these macros check to make sure that illegal
nestings do not occur. If any error message is issued concerning a missing .DE or .FE, the appropriate action
is to search backwards from the termination point looking for the corresponding associated .DF, .DS, or .FS
(since these macros are used in pairs).

The following command:

grep -n 'A\.[EDFRT][EFNQS], files ...

-58-

prints all the .DF, .DS, .DE, .EQ, .EN, .FS, .FE, .RS, .RF, .TS, and .TE macros found in files ... , each preceded
by its file name and the line number in that file. This listing can be used to check for illegal nesting and/or omis­
sion of these macros.

14. Extending and Modifying MM Macros

14.1 Naming Conventions

In this part, the following conventions are used to describe names:

n: Digit
a: Lowercase letter
A: Uppercase letter
x: Any alphanumeric character (: a, n, A, or 1, ie., letter or digit)
s: any non alphanumeric character (special character)

All other characters are literals (Le., characters stand for themselves).

Request, macro, and string names are kept by the formatters in a single internal table; therefore, there must
be no duplication among such names. Number register names are kept in a separate table.

14.1.1 Names Used by Formatters

requests: aa (most common)

an (only one, currently: c2)

registers: aa (normal)

.x (normal)

.s (only one, currently: .$)

a. (only one, currently: c.)

% (page number)

14.1.2 Names Used by MM

macros and strings: A, AA, Aa (accessible to users; e.g., macros P and HU, strings F, BU, and Lt)

nA (accessible to users; only two, currently: 1C and 2C)

aA (accessible to users; only one, currently: nP)

s (accessible to users; only the seven accents, currently {12.10})

)x, lx, lx, > x, ?x (internal)

registers: An, Aa (accessible to users; e.g., H1, Fg)

A (accessible to users; meant to be set on the command line; e.g., C)

:x, ;x, #x, ?x, !x (internal)

-59-

14.1.3 Names Used by CW, EQN/NEQN, and TBl Programs

The cw(l) program is the constant-width font preprocessor for the troff formatter. It uses the following
five macro names:

.CD, .CN, .CP, .CW, and .PC.

This preprocessor also uses the number register names eE and e W Mathematical equation
preprocessors, eqn(l) and neqn, use registers and string names of the form nn. The table
preprocessor, tbl(l), uses T&, T#, and TW, and names of the form:

a- a+ al nn na ~a #a #s

14.1.4 Names Defined by User

Names that consist either of a single lowercase letter or a lowercase letter followed by a character other
than a lowercase letter (names .c2 and .nP are already used) should be used to avoid duplication with already
used names. The following is a possible naming convention:

macros:
strings:
registers:

14.2 Sample Extensions

aA (e.g., bG, kW)
as (e.g., c), fJ, pI)
a (e.g., f, t)

14.2.1 Appendix Headings

The following is a way of generating and numbering appendix headings:

.nr Hu 1

.nr a 0

.de aH

.nr a +1

.nr P 0

.PH " "'Appendix \ \na-\ \ \ \ \ \ \ \nP' "

.SK

.HU" \\$1"

After the above initialization and definition, each call of the form .aH "title" begins a new page (with the
page header changed to "Appendix a-n") and generates an unnumbered heading of title, which, if desired, can
be saved for the table of contents. Those who wish apppendix titles to be centered must, in addition, set the regis­
ter He to 1 {4.2.2.3}.

14.2.2 Hanging Indent With Tabs

The following example illustrates the use of the hanging indent feature of variable-item lists {5.l.l.6}. A
user-defined macro is defined to accept four arguments that make up the mark. In the output, each argument
is to be separated from the previous one by a tab; tab settings are defined later. Since the first argument may
begin with a period or apostrophe, the "\&" is used so that the formatter will not interpret such a line as a
formatter request or macro call.

Note: The 2-character sequence "\&" is understood by formatters to be a "zero-width" space. It causes
no output characters to appear, but it removes the special meaning of a leading period or apostrophe.

-60-

The "\t" is translated by the formatter into a tab. The "\c" is used to concatenate the input text that follows
the macro call to the line built by the macro. The macro and an example of its use are:

.de aX

.LI
\&\\$1 \t\ \$2\t\ \$3\t\ \$4\t\c

.ta 8 14 20 24

.VL 36

.aX .nh off \ - no
No hyphenation.
Automatic hyphenation is turned off.
Words containing hyphens
(e.g., mother-in-law) may still be split across lines .
. aX .hy on \- no
Hyphenate.
Automatic hyphenation is turned on .
. aX .hc\ <sp>c none none no
Hyphenation indicator character is set to "c" or
removed.
During text processing, the indicator is suppressed
and will not appear in the output.
Prepending the indicator to a word has the effect
of preventing hyphenation of that word .
. LE

where <sp> stands for a space.

The resulting output is:

.nh off

. hy on

no No hyphenation. Automatic hyphenation is turned off. Words con­
tai ning hyphens (e.g., mother-in-law) may still be split across lines.

no Hyphenate. Automatic hyphenation is turned on .

.hc c none none no Hyphenation indicator character is set to "c" or removed. During
text processing, the indicator is suppressed and will not appear in
the output. Prepending the indicator to a word has the effect of
preventing hyphenation of that word.

-61-

15. Summary

The following are qualities of MM that have been emphasized in its design in approximate order of impor­
tance:

• Robustness in the face of error-A user need not be an nroff/troff expert to use MM macros. When
the input is incorrect, either the macros attempt to make a reasonable interpretation of the error or
an error message describing the error is produced. An effort has been made to minimize the possibility
that a user would get cryptic system messages or strange output as a result of simple errors.

• Ease of use for simple documents-It is not necessary to write complex sequences of commands to pro­
duce documents. Reasonable macro argument default values are provided where possible.

• Parameterization-There are many different preferences in the area of document styling. Many param­
eters are provided so that users can adapt input text files to produce output documents to their respec­
tive needs over a wide range of styles.

• Extension by moderately expert users-A strong effort has been made to use mnemonic naming conven­
tions and consistent techniques in construction of macros. Naming conventions are given so that a user
can add new macros or redefine existing ones if necessary.

• Device independence-A common use of MM is to produce documents on hard copy via teletypewriter
terminals using the nroff formatter. Macros can be used conveniently with both 10- and 12-pitch termi­
nals. In addition, output can be displayed on an appropriate CRT terminal. Macros have been con­
structed to allow compatibility with the troff(1) formatter so that output can be produced on both a
phototypesetter and a teletypewriter/CRT terminal.

• Minimization of input-The design of macros attempts to minimize repetitive typing. For example, if
a user wants to have a blank line after all first- or second-level headings, the user need only set a specific
parameter once at the beginning of a document rather than type a blank line after each such heading.

• Decoupling of input format from output style- There is but one way to prepare the input text although
the user may obtain a number of output styles by setting a few global flags. For example, the .H macro
is used for all numbered headings, yet the actual output style of these headings may be made to vary
from document to document or within a single document.

-62-

INPUT:

.ND "May 31, 1979"
• TL 334455
Out-of-Hours Course Description
.AU "D. W. Stevenson" DWS PY 9876 5432 1X-123
.MT 0
.DS
J. M. Jones:
.DE
.P
Please use the following description for the out-of-hours course
.1
Document Preparation on the UNIX'
.R
.FS •
Trademark of Bell Laboratories •
• FE
• I "Time-Sharing Operating System:"
.P
The course is intended for clerks, typists, and others
who intend to use the UNIX system for preparing documentation.
The course will cover such topics as:
.VL 18
.LI Environment:
utilizing a time-sharing computer system;
accessing the system; using appropriate output terminals •
• LI Files:
how text is stored on the system;
directories; manipulating files •
• LI "Text editing:"
how to enter text so that subsequent revisions are easier to make;
how to use the editing system to add, delete, and move lines of text;
how to make corrections •
• LI "Text processing:"
basic concepts;
use of general purpose formatting packages •
• LI "Other facilities:"
additional capabilities useful to the typist such as the
.1 "spell, diff,"
and
.1 grep
commands, and a desk-calculator package •
• LE
.SG jrm
.NS 0
S. P. 'ename
H. O. Del
M. Hill
.NE

Fig. 4.1 - Examples of a Simple Letter (Sheet 1 of 3)

-63-

nreee OUTPUT:

Bell Laberaterles

subject: Out-of-Hours Course Description -
Case 334455

date: May 31, 1979

J. M. Jones:

from: D. W. Stevenson
PY 9876
1X-123 x5432

Please use the following description for the out-of-hours course
Document Preparation ~ the UNIX. Time-Sharing Operating System:

The course is intended for clerks, typists, and others who intend to use
the UNIX system for preparing documentation. The course will cover such
topics as:

Environment:

Files:

Text editing:

utilizing a time-sharing computer system; accessing
the system; using appropriate output terminals.

how text is stored on the system; directories;
manipulating files.

how to enter text so that subsequent revisions are
easier to make; how to use the editing system to add,
delete, amd move lines of text; how to make
corrections.

Text processing: basic concepts; use of general-purpose formatting
packages.

Other facilities: additional capabilities useful to the typist such as
the spell, ~, and ~ commands, and a desk­
calculator package.

PY-9876-DWS-jrm

Copy to
S. P. Lename
H. O. Del
M. Hi 11

D. W. Stevenson

• Trademark of Bell Laboratories.

Fig. 4.1 - Examples of a Simple Letter (Sheet 2 of 3)

-64-

@
Bell Laboratories

subject: Out-of-Hours Course Description - Case 334455 date: May 31, 1979

J. M. Jones:

from: D. W. Stevenson
PY 9876
lX-123 x5432

Please use the following description for the Out-of-Hours course Document Preparation on the
UNIX* Time-Sharing System:

The course is intended for clerks, typists, and others who intend to use the UNIX system for
preparing documentation. The course will cover such topics as:

Environment:

Files:

Text editing:

utilizing a time-sharing computer system; accessing the system; using
appropriate output terminals.

how text is stored on the system; directories; manipulating files.

how to enter text so that subsequent revisions are easier to make; how to
use the editing system to add, delete, and move lines of text; how to make
corrections.

Text processing: basic concepts; use of general-purpose formatting packages.

Other facilities: additional capabilities useful to the typist such as the spell. diff, and grep
commands, and a desk-calculator package.

PY-9876-DWS-jrm D. W. Stevenson

Copy to
S. P. Lename
H. O. Del
M. Hill

* Trademark of Bell Laboratories.

Fig. 4.1 - Examples of a Simple Letter (Sheet 3 of 3)

-65-

- 1 -

IIIPUT:

.P

.FO 10
This example illustrates several footnote styles
for both labeled and automatically numbered footnotes.
With the footnote style set to the NROFF default,
process the first footnote\·F
.FS
This is the first footnote text example (.FO 10).
This is the default style for NROFF.
The right margin is not justified.
Hyphenation is not permitted.
Text is indented, and the automatically generated label is
right justified in the text-indent space •
• FE
and follow it by a second footnote.·····
.FS •••••
This is the second footnote text example (.FD 10).
This is also the default NROFF style but with a long
footnote label (•••••) provided by the user •
• FE
.FO 1
Footnote style is changed by using the .FO macro to
specify hyphenation, right margin justification,
indentation, and left justification of the label.
This produces the third footnote,\.F
.FS
This is the third footnote example (.FO 1).
The right margin is justified, the footnote text is indented,
and the label is left justified in the text-indent space.
Although not necessarily illustrated by this example,
hyphenation is permitted •
• FE
and then the fourth footnote.\(dg
.FS 4-
This is the fourth footnote example (.FO 1).
The style is the same as the third footnote •
• FE
.FO 6
Footnote style is set again via the .FD macro for no hyphenation,
no right margin justification,
no indentation, and with the label left justified.
This produces the fifth footnote.\·F
.FS
This is the fifth footnote example (.FD 6).
The right margin is not justified, hyphenation is not permitted.
footnote text is not indented,
and the label is placed at the beginning of the first line •
• FE

Fig. 4.2 - Examples of Footnotes (Sheet 1 of 2)

-66-

- 2 -

OUTPUT:

This example illustrates several footnote styles for both
labeled and automatically numbered footnotes. With the
footnote,style set to the NROFF default, process the first
footnote and follow it by a second footnote.· ••• • Footnote
style is changed by using the .FD macro to specify
hyphenation, right margin justification, indentation, and
left just~fication of the label. This produces the third
footnote, and then the fourth footnote.+ Footnote style is
set again via the .FD macro for no hyphenation, no right
margin justification, no indentation, and with the label
left justified. This produces the fifth footnote. 3

,. This is the first footnote text example (.FD 10). This
is the default style for NROFF. The right margin is not
justified. Hyphenation is not permitted. Text is
indented, and the automatically generated label is right
justified in the text-indent space •

••••• This is the second footnote text example (.FD 10).
This is also the default NROFF style but with a long
footnote label (•••••) provided by the user.

2. This is the third footnote example (.FD 1). The right
margin is justified, the footnote text is indented, and
the label is left justified in the text-indent space.
Although not necessarily illustrated by this example,
hyphenation is permitted.

+ This is the fourth footnote example (.FD 1). The style
is the same as the third footnote.

3. This is the fifth footnote example (.FD 6). The right
margin is not justified, hyphenation is not permitted,
footnote text is not indented, and the label is placed at
the beginning of the first line.

Fig. 4.2 - Examples of Footnotes (Sheet 2 of 2)

-67-

TABLE 4.A

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION {PARAGRAPH}

1C I-column processing {12.4}
.1C

2C 2-column processing {12.4}
.2C

AE Abstract end {6.5 }
.AE

AF Alternate format of "Subject/Date/From" block {6.9}
.AF [company-name]

AL Automatically incremented list start {5.1.1.1}
.AL [type] [text-indent] [1]

AS Abstract start {6.5}
.AS [arg] [indent]

AT Author's title {6.31
.AT [title] ...

AU Author information {6.3}
.AU name [initials] floc] [dept] [ext] [room] [arg] [arg] [arg]

A V Approval signature {6.11.3}
.AV [name]

B Bold 112.1}
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev]

BE Bottom block end {9.7}
.BE

BI Bold/Italic {12.11
.BI [bold-arg] [italic-arg] [bold] [italic] [bold] [italic]

BL Bullet list start {5.1.1.2\
.BL [test-indent] [1]

BR Bold/Roman { 12.1 \
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman]

BS Bottom block start {9.7}
.BS

CS Cover sheet {10.2}
.CS [pages] [other] [total] [figs] [tbls] [refs]

DE Display end {7.1}
.DE

DF Display floating start {7.2}
.DF [format] [fill] [right-indent]

DL Dash list start {5.1.1.3}
.DL [text-indent] [1]

-68-

TABLE 4.A (Contd)

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION PARAGRAPH

DS Display static start {7.1}
.DS [format] [fill] [right-indent]

Be Equation caption /7.51
.Ee [title] [override] [flag]

EF Even-page footer {9.2.5}
.EF [arg]

EH Even-page header {9.2.2}
.EH [arg] ;'

EN End equation display {7A}
.EN

EQ Equation display start {7A}
.EQ [label]

EX Exhibit caption ! 7.51
.EX [title] [override] [flag]

Fe Formal closing /6.11\
.Fe [closing]

FD Footnote default format {8.3)
.FD [arg] [1]

FE Footnote end (8.21
.FE

FG Figure title /7.51
.FG [title] [override] [flag]

FS Footnote start 18.21
.FS [label]

H Heading-numbered {4.2}
.H level [heading-text] [heading-suffix]

He Hyphenation character \ 3Al
.He [hyphenation-indicator]

HM Heading mark style {4.2.2.5}
(Arabic or Roman numerals, or letters)
.HM [arg1] ... [arg7]

HU Heading-unnumbered {4.3l
.HU heading-text

HX* Heading user exit X (before printing heading) /4.61
.HX dlevel rlevel heading-text

*See note at end of table.

-69-

TABLE 4.A (Contd)

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION PARAGRAPH

HY* Heading user exit Y (before printing heading) {4.61
.HY dlevel rlevel heading-text

HZ* Heading user exit Z (after printing heading) {4.61
.HZ dlevel rlevel heading-text

I Italic (underline in the nroff formatter) {I2.I}
.I [italic-arg) [previous-font-arg) [italic) [prey) [italic) [prey)

IE Italic/Bold {I2.1}
.IB [italic-arg) [bold-arg] [italic] [bold) [italic] [bold)

IR Italic/Roman {I2.1}
.IR [italic-arg) [Roman-arg) [italic) [Roman) [italic) [Roman)

LB List begin {5.2}
.LB text-indent mark-indent pad type [mark] [LI-space) [LB­
space]

LC List-status clear {5.3}
.LC [list-level)

LE List end {5.1.3}
LE [1]

LI List item {5.1.2}
.L1 [mark) [1)

ML Marked list start {5.1.1.4:
.ML mark [text-indent) [1]

MT Memorandum type \6.71
.MT [type) [addressee) or .MT [4] [1]

ND New date {6.S}
.ND new-date

NE Notation end {6.11.21
.NE

NS Notation start {6.I1.21
.NS [arg]

nP Double-line indented paragraphs {4.I}
.nP

OF Odd-page footer {9.2.61
.OF [arg]

OH Odd-page header {9.2.3}
.OH [arg]

OK Other keywords for the Technical Memorandum cover sheet {6.6)
.OK [keyword) ...

*See note at end of table.

-70-

TABLE 4.A (Contd)

MM MACRO NAMES SUMMARY

MACRO DESCRIPTION PARAGRAPH

op Odd page 112.8}
.OP

P Paragraph {4.1}
.P [type]

PF Page footer {9.2.4\
.PF [arg]

PH Page header 19.2.1:
.PH [arg]

PM Proprietary marking {9.9\
.PM [code]

PX* Page-header user exit {9.6}
.PX

R Return to regular (Roman) font 112.11
.R

RB Roman/bold {12.l}
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold]

RD Read insertion from terminal 112.111
.RD [prompt] [diversion] [string]

RF Reference end 111.2J
.RF

RI Roman/Italic 112.11
.RI [Roman-arg] [italic-arg] [Roman] [italic] [Roman] [italic]

RL Reference list start {5.1.1.5}
.RL [text-inden t] [1]

RP Produce reference page 111.4}
.RP [arg] [arg]

RS Reference start {11.2}
.RS [string-name]

S Set troH formatter point size and vertical spacing {12.9}
.S [size] [spacing]

SA Set adjustment (right-margin justification) default 112.2:
.SA [arg]

SG Signature line {6.11.1}
.SG [arg] [1]

SK Skip pages {12.7l
.SK [pages]

*See note at end of table.

-71-

MACRO

SM

SP

TB

TC

TE

TH

TL

TM

TABLE 4.A (Contd)

MM MACRO NAMES SUMMARY

DESCRIPTION PARAGRAPH

Make a string smaller {12.9}
.SM string1 [string2] [string3]

Space vertically t 12.6}
.SP [lines]

Table title {7.5}
.TB [title] [override] [flag]

Table of contents {lO.l}
.TC [slevel] [spacing] [tlevel] [tab] [head1] [head2] [head3]
[head4] [head5]

Table end (7.3}
.TE

Table header !l7.3}
.TH [N]

Title of memorandum {6.2}
.TL [charging-case] [filing-case]

Technical Memorandum number(s) t6.4)
.TM [number] ...

TP* Top-of-page macro {9.6)
.TP

TS Table start {7.3j
.TS [H)

TX* Table of contents user exit {10.1)
.TX

TY* Table of contents user exit 110.1}
(suppresses "CONTENTS")
.TY

VL Variable-item list start {5.1.1.6}
.VL text-indent [mark-indent] [1]

VM Vertical margins {9.8)
.VM [top] [bottom]

WC Footnote and Display Width control {12.4}
.WC [format]

*Macros marked with an asterisk are not, in general, called (invoked)
directly by the user. They are "user exits" defined by the user and called
by the MM macros from inside header, footer, or other macros.

-72-

TABLE 4.B

STRING NAMES SUMMARY

STRING
NAME DESCRIPTION {PARAGRAPH}

BU Bullet {3. 7}
NROFF: •
TROFF: •

Ci Table of contents indent list {1O.1}
Up to seven args (must be scaled) for heading levels

DT Da~ {6~}
Current date, unless overridded
Month, day, year (e~g., July 16, 1982)

EM Em dash string \3.8\
Produces an em dash in the troff formatter and a double hyphen
in nroff

F Footnote numberer 18.11
NROFF:\u \\n+(:p\d
TROFF:\v'-.4m'\s-3 \\ n+(:p\sO\v'.4m'

HF Heading font list {4.2.2.4.1}
Up to seven codes for heading levels 1 through 7
3 3 2 2 2 2 2 (levels 1 and 2 bold. 3 through 7 underlined in the
nroff formatter and italic in troff)

HP Heading point size list {4.2.2.4.3}
Up to seven codes for heading levels 1 through 7

Le Title for LIST OF EQUATIONS {7.S}

Lf Title for LIST OF FIGURES {7.S}

Lt Title for LIST OF TABLES {7.S}

Lx Title for LIST OF EXHIBITS {7.S}

RE SCCS Release and Level of MM {12.3}
Release.Level (e.g., 10.129)

Rf Reference numberer {ILl}

Rp Title for references {U.4}

Tm Trademark string {3.9} .
Places the letters "TM" one-half line above the text that it follows

Seven accent strings are also available \12.10 I.

Note 1: If the released-paper style is used, then, in addition to the above
strings, certain BTL location codes are defined as strings; these loca­
tion strings are needed only until the .MT macro is called {S.7}.
Currently, the following are recognized:

AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO, HOH, HP, IH, IN,
INH, IW, MH, MV, PY, RD, RR, WB, WH, and WV.

Note 2: Paragraph 1.5 has notes on setting and referencing strings.

-73-

TABLE 4.C

NUMBER REGISTER NAMES SUMMARY

REGISTER DESCRIPTION {PARAGRAPH}

A *t Handles preprinted forms and Bell System logo 12.41
0, [0:2]

Au Inhibits printing author's location, department, room, and
extension in "from" portion of a memorandum (6.3}
1, [0:1]

C*t Copy type {2.4}
Original, Draft, etc. ° (Original), [0:4]

C1 Contents level {4.4}
Level of headings saved for table of contents
2, [0:7]

Cp Placement of list of figures, etc. f10.1}
1 (on separate pages), [0:1]

D*t Debug flag (2.4}
0, [0:1]

De

Df

Ds

Display eject register for floating displays {7.2}
0, [0:1]

Display format register for floating displays {7.2}
5, [0:5]

Static display pre- and post-space {7.1}
1, [0:1]

E*t Controls font of the Subject/Date/From fields {2.4}
1 (nroff) 0 (troff), [0:1]

Ec

Ej

Eq

Ex

Fg

Fs

HI
through
H7

Equation co.unter, used by .EC macro {7.5}
0, [O:?], incremented by one for each .EC call.

Page-ejection flag for headings {4.2.2.1} ° (no eject), [0:7]

Equation label placement 17.4} ° (right-adjusted), [0:1]

Exhibit counter, used by .EX macro {7.5}
0, [O:?], incremented by one for each .EX call.

Figure counter, used by .FG macro {7.5}
0, [O:?], incremented by one for each .FG call.

Footnote space (i.e., spacing between footnotes) {8.4 }
1, [O:?]

Heading counters for levels 1 through 7 {4.2.2.5 }
0, [o:?], incremented by .H of corresponding level or .HU if at
level given by register Hu. H2 through H7 are reset to ° by any
heading at a lower-numbered level.

*tSee notes at end of table.

-74-

REGISTER

Hb

Hc

Hi

TABLE 4.C (Contd)

NUMBER REGISTER NAMES SUMMARY

DESCRIPTION {PARAGRAPH}

Heading break level (after .H and .HU) 14.2.2.2)2, [0:7]

Heading centering level for .H and .HU /4.2.2.31
o (no centered headings), [0:7]

Heading temporary indent (after .H and .HU) 14.2.2.2)
1 (indent as paragraph), [0:2]

Hs Heading space level (after .H and .HU) /4.2.2.2.}
2 (space only after .H 1 and .H 2), [0:7]

H t Heading type \4.2.2.5}
For .H: single or concatenated numbers
o (concatenated numbers: 1.1.1, etc.), [0:1]

Hu Heading level for unnumbered heading (.HU) {4.3}
2 (.HU at the same level as .H 2, [0:7]

Hy Hyphenation control for body of document 13.4)
o (automatic hyphenation off), [0:1]

L*t Length of page 12.4 \
66, [20:?] (11i, [2i:?] in troff formatter)
For nroff formatter, these values are un scaled numbers
representing lines or character positons; for troff formatter,
these values must be scaled ..

Le List of equations 17.6)
o (list not produced) [0:1]

Lf List of figures \7.6l
1 (list produced) [0:1]

Li List indent {5.1.1.1)
6 (nroff) 5 (troff), to:?]

Ls List spacing between items by level {5.1.1.1l
6 (spacing between all levels) [0:6]

Lt List of tables 17.6)
1 (list produced) [0:1]

Lx List of exhibits 17.6\
1 (list produced) [0:1]

N*t Numbering style 12.4)
0, [0:5]

Np Numbering style for paragraphs 14.1)
o (unnumbered) [0:1]

*tSee notes at end of table.

-75-

REGISTER

O*t

TABLE 4.C (Contd)

NUMBER REGISTER NAMES SUMMARY

DESCRIPTION t PARAGRAPH J

Offset of page {2.4}
.75i, to:?] (0.5i, [Oi:?] in troff formatter)
For nroff formatter, these values are unsealed numbers
representing lines or character positions; for troff formatter,
these values must be scaled.

Oc Table of contents page numbering style 110.l1
o (lowercase Roman), [0:1]

Of Figure caption style {7.5}
o (period separator), [0:1]

Pt Page number manager by MM {2.4}
0, to:?]

Pi Paragraph indent 14.11
5 (nroff) 3 (troff), to:?]

Ps Paragraph spacing 14.11
1 (one blank space between paragraphs), to:?]

Pt Paragraph type {4.1l
o (paragraphs always left justified), [0:2]

Pv "PRIV ATE" header {9.10}
o (not printed), [0:2]

Rf Reference counter, used by .RS macro {ILl}
0, to:?], incremented by one for each .RS call.

S*t The troff formatter default point size {2.4}
10, [6:36]

Si Standard indent for displays {7.1}
5 (nroff) 3 (troff), [O:?]

T*t Type of nroff output device 12.4\
O. [0:2]

Tb Table counter, used by .TB macro {7.5}
0, to:?], incremented by one for each .TB call.

U*t Underlining style (nroff) for .H and .HU 12.4\
o (continuous underline when possible), [0:1]

W*t Width of page (line and title length) 12.4l
6i, [10:1365] (6i, [2i:7.54i] in the troff formatter)

* An asterisk attached to a register name indicates that this register can be set
only from the comman line or before the MM macro definitions are read by the
formatter 12.4, 2.51 .

tParagraph 1.5 has notes on setting and referencing registers. Any register
having a single-character name can be set from the command line.

-76-

TABLE 4.0

ERROR MESSAGES

ERROR MESSAGE DESCRIPTION

MM Error Messages

An MM error message has a standard part followed by a variable part. The standard part has the form:

ERROR:(filename)input line n:

Variable parts consist of a descriptive message usually beginning with a macro name. They are listed
below in alphabetical order by macro name, each with a more complete explanation.

Check TL, AU, AS, AE, MT
sequence

Check TL, AU, AS, AE, NS, NE,
MT sequence

CS:cover sheet too long

DE:no DS or DF active

DF:illegal inside TL or AS

DF:missing DE

DF:missing FE

DF:too many displays

DS:illegal inside TL or AS

DS:missing DE

DS:missing FE

FE:no FS active

FS:missing DE

FS:missing FE

H:bad arg: value

H:missing arg

H:missing DE

The correct order of macros at the start of a memorandum is
shown in 16.1}. Something has disturbed this order.

The correct order of macros at the start of a memorandum is
shown in \6.11 . Something has disturbed this order. Occurs if the
.AS 2 {6.5}macro was used.

Text of the cover sheet is too long to fit on one page. The abstract
should be reduced or the indent of the abstract should be decreased

16.51 .

A .DE macro has been encountered, but there has not been a previ­
ous .DS or .DF macro to match it.

Displays are not allowed in the title or abstract.

A .DF macro occurs within a display, i.e., a .DE macro has been
omitted or mistyped.

A display starts inside a footnote. The likely cause is the omission
(or misspelling) of a .FE macro to end a previous footnote.

More than 26 floating displays are active at once, i.e., have been
accumulated but not yet output.

Displays are not allowed in the title or abstract.

A .DS macro occurs within a display, i.e., a .DE has been omitted or
mistyped.

A display starts inside a footnote. The likely cause is the omission
(or misspelling) of a .FE to end a previous footnote.

A .FE macro has been encountered with no previous .FS to match
it.

A footnote starts inside a display, i.e., a .DS or .DF occurs without
a matching .DE.

A previous .FS macro was not matched by a closing .FE, i.e., an
attempt is being made to begin a footnote inside another one.

The first argument to the .H macro must be a single digit from one
to seven, but value has been supplied instead.

The .H macro needs at least one argument.

A heading macro (.H or .HU) occurs inside a display.

-77-

ERROR MESSAGE

H:missing FE

HU:missing arg

LB:missing arg(s)

LB:too many nested lists

LE:mismatched

LI:no lists active

ML:missing arg

ND:missing arg

RF:no RS active

RP:missing RF

RS:missing RF

S:bad arg:value

SA:bad arg:value

SG:missing DE

SG:missing FE

SG:no authors

VL:missing arg

WC:unknown option

Formatter Error Messages

TABLE 4.0 (Contd)

ERROR MESSAGES

DESCRIPTION

A heading macro (.H or .HU) occurs inside a footnote.

The .HU macro needs one argument.

The .LB macro requires at least four arguments.

Another list was started when there were already six active lists.

The .LE macro has occurred without a previous .LB or other list­
initialization macro {5.1.1} . Although this is not a fatal error,
the message is issued because there almost certainly exists some
problem in the preceding text.

The .LI macro occurred without a preceding list-initialization
macro. The latter has probably been omitted or has been separated
from the .11 by an intervening .H or .HU.

The .ML macro requires at least one argument.

The .ND macro requires one argument.

The .RF macro has been encountered with no previous .RS to
match it.

A previous .RS macro was not matched by a closing .RF.

A previous .RS macro was not matched by a closing .RF.

The incorrect argument value has been given for the .S macro
{12.9} .

The argument to the .SA macro (if any) must be either 0 or 1. the
incorrect argument is shown as value.

The .SG macro occurred inside a display.

The .SG macro occurred inside a footnote.

The .SG macro occurred without any previous .AU macro(s).

The .VL macro requires at least one argument.

An incorrect argument has been given to the .WC macro \12.4) .

Most messages issued by the formatter are self-explanatory. Those error messages over which the user
has some control are listed below. Any other error messages should be reported to the local system
support group.

Cannot do ev Caused by:

a. setting a page width that is negative or extremely short
b. setting a page length that is negative or extremely short
c. reprocessing a macro package (e.g., performing a .so request on

a macro package that was already requested on the command
line)

d. requesting the troff formatter (an option on a document that is
longer than ten pages).

-78-

TABLE 4.0 (Contd)

ERROR MESSAGES

ERROR MESSAGE DESCRIPTION

Cannot execute filename Given by the .! request if the filename is not found.

Cannot open filename Indicates one of the files in the list of files to be processed cannot
be opened.

Exception word list full Indicates too many words have been specified in the hyphenation
exception list (via .hw requests).

Line overflow Indicates output line being generated was too long for the format-
ter line buffer capacity. The excess was discarded. Likely causes
for this message are very long lines or words generated through
the misuse of \c of the .cu request or very long equations produced
by eqn(l)/neqn.

Nonexistent font type Indicates a request has been made to mount an unknown font.

Nonexistent macro file Indicates the requested macro package does not exist.

Nonexistent terminal type Indicates the terminal options refer to an unknown terminal type.

Out of temp file space Indicates additional temporary space for macro definitions, diver-
sions, etc. cannot be allocated. This message often occurs because
of unclosed diversions (missing .FE or .DE), unclosed macro defini-
tions (e.g., missing " .. "), or a huge table of contents.

Too many page numbers Indicates the list of pages specified to the -0 formatter option
is too long.

Too many number registers Indicates the pool of number register names is full. Unneeded reg-
isters can be deleted by using the .rr request.

Too many string/macro names Indicates the pool of string and macro names is full. Unneeded
strings and macros can be deleted using the .rm request.

Word overflow Indicates a word being generated exceeds the formatter word
buffer capacity. Excess characters were discarded. Likely causes
for this message are very long lines, words generated through the
misuse of \c of the .cu request, or very long equations produced by
eqn(l)/neqn.

-79-

-80-

Table of Contents

Lex - A Lexical Analyzer Generator
Introduction .. 1
Lex Source ... 3
Lex Regular Expressions ... 3

Operators .. ' 3
Character Classes .. 4
Arbitrary Character .. 4
Optional Expressions .. , 4
Repeated Expressions .. 4
Alternation and Grouping .. 4
Context Sensitivity ... 4
Repetitions and Definitions .. '" ... 5

Lex Actions ... 5
Example .. 6

Ambiguous Source Rules .. 7
Lex Source Definitions .. 8
Usage ... 8

UNIX .. 9
GCOS ... 9
TSO .. 9

Lex and yacc .. 9
Examples .. 9
Left Context Sensitivity ... 11
Character Set. ... 12
Summary of Source Format .. 12
Caveats and Bugs ... 13
Acknowledgments .. 13
References .. 13

1 Introduction.

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in­
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara­
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond­
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord­
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free­
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au­
tomatically to portable Fortran, It is available on the PDP-l\ UNIX, Honeywell GCOS, and IBM OS
systems, Lex is designed to simplify interfacing with Yacc, for those with access to this compiler­
compiler system,

Contents

1. Introduction.
2. Lex Source.
3, Lex Regular Expressions,
4, Lex Actions.
5. Ambiguous Source Rules.
6. Lex Source Definitions.
7. Usage.
8. Lex and Yacc.
9. Examples.

10. Left Context Sensitivity.
II. Character Set.
12. Summary of Source Format.
13. Caveats and Bugs.
14. Acknowledgments,
15. References.

Lex is a program generator designed for lexical process­
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match­
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu­
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog­
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro­
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres­
sion matching needed to complete his tasks, possibly in­
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

-1-

Source - ~ - yylex

Input - ~ - Output

An overview of Lex

Figure 1

write processing programs in the same and often inap­
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called "host
languages." Just as general purpose languages can pro­
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica­
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back­
ground, and the properties of local implementations. At
present there are only two host languages, CUI and For­
tran (in the form of the Ratfor language[2)). 'Lex itself
exists on UNIX, GCOS, and OS/370; but the code gen­
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user's expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yy/ex, The
yy/ex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac­
tions for each expression as it is detected, See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
(\tl+$

is all that is required. The program contains a %% delim­
iter to mark the beginning of the rules, and one rule.

lexical
rules

I
~

I
Input-~

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates "one or more ... "; and the $ indi­
cates "end of line," as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\tl+$
[\tl + printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a iexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [3], Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as­
signs structure to the resulting pieces. The flow of con­
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yy/ex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4], The automaton is
interpreted, rather than compiled, in order to save ~pace.
The result is still a fast analyzer. In particular, the time

grammar
rules

Yacc

yyparse - Parsed input

Lex with Yacc

Figure 2

-2-

taken by a Lex program to recognize and partition an in­
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in­
clude forward context require a significant amount of re­
scanning. What does increase with the number and com­
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun­
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac­
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdeJg, and the input stream is abcde./h, Lex will recog­
nize ab and leave the input pointer just before cd . ..
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

(definitions)
%%
(rules)
%%
(user subroutines)

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re­
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog­
nized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print! is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com­
pound, or takes more than a line, it should be enclosed in

-3-

braces. As a slightly more useful example, suppose 11 IS

desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf("color") ;
printf("mechanize");
printf("gas") ;

would be a start. These rules are not quite enough, since
the word petroleum would become gaseuM, a way of deal­
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex­
pression

a57D

looks for the string a57D.
Operators. The operator characters are

" \ [1 - - .J .• + I () $ / () % < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi­
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz"+ +"

matches the string xyz + + when it appears. Note that a
part of a string may be quoted. It is harmless but un­
necessary to quote an ordinary text character; the expres­
sion

"xyz+ +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac­
ter, the user can avoid remembering the list above of
current operator characters. and is safe should further ex­
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another. less readable. equivalent of the above

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [I (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \ \.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al­
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair [I. The construction
fab} matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig­
nored. Only three characters are special: these are \
and'. The - character indicates ranges. For example,

[a-zO-9<> J

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple­
mentation dependent and will get a warning message.
(E.g., [O-zl in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character - in a
character class, it should be first or last; thus

[-+0-91

matches all the digits and the two signs.
In character classes, the' operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

["abcl

matches all characters except a, b, or c, including all spe­
cial or control characters; or

["a-zA-ZI

is any character which is not a letter. The \ character pro­
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

1\40-\ 1761

matches all printable characters in the ASCII .character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op­
tional element of an expression. Thus

-4-

ab?c

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat­

ed by the operators • and +.

is any number of consecutive a characters, including zero;
while

a+

is one or more instances of a. For example,

[a-zl+

is all strings of lower case letters. And

[A-Za-zl [A-Za-zO-91-

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages. •

Alternation and Grouping. The operator I indicates
alternation:

(ab Icd)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out­
side level;

ablcd

would have sufficed. Parentheses can be used for more
complex expressions:

(ab Icd +)?CeO-

matches such strings as abeJef, eJeJe/, cdef, or cddd; but
not abc, abed, or abcde/

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are • and $. If the first character of an expression is
" the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of " complementation of character classes, since
that only applies within the [I operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the / operator char­
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions as ex­
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con­
sidered "being at the beginning of aline" to be start con­
dition ONE, then the' operator would be equivalent to

<ONE>

Start conditions are explained more fully later.
Repetitions and Definitions. The operators {} specify ei­

ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con­
trast,

a{l,S)

looks for I to S occurrences of a.
Finally, initial % is special, being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be­
ing used with Vacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina­
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at­
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, : as an action
causes this result. A frequent rule is

[\t\nl

·5·

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character l which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"\t"
"\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
[a-zi+. Lex leaves this text in an external character ar­
ray named yytext. Thus, to print the name found, a rule
like

[a-zl + printf("%s", yytext);

will print the string in yylext. The C function print[ac­
cepts a format argument and data to be printed; in this
case, the format is "print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-zl + ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac­
tion'? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or reacIJust, to
avoid this, a rule of the form [a-zi+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-ZJ+ {words + +; chars + = yyleng;)

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext [yyleng-l)

in Cor

yytext (yyleng)

in Ratfor.

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou­
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex­
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a
di fferen t form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro­
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some­
what confusing, so that it might be preferable to write

\'T"I' (
if (yytext[yyleng-lI = = \\')

yymoreO;
else

... normal user processing

which will, when faced with a string such as "abc-." def'
first match the five characters "abc-.; then· the call to
yymore() will cause the next part of the string, "dej, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor­
mal processing".

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of distin­
guishing the ambiguity of "=-a". Suppose it is desired
to treat this as "=- a" but print a message. A rule
might be

=-[a-zA-ZI (
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l);
... action for =- ...
J

which prints a message, returns the letter after the opera­
tor to the input stream, and treats the operator as "=-".
Alternatively it might be desired to treat this as "= -a".
To do this, just return the minus sign as well as the letter
to the input:

=- [a-zA-ZI (
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);
'" action for = .. ,
J

will perform the other interpretation. Note that the ex­
pressions for the two cases might more easily be written

-6-

=-/ [A-Za-zl

in the first case and

=/-[A-Za-zJ

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3", however, makes

=-1[- \t\nl

a still better rule.
In addition to these routines, Lex also permits access to

the I/O routines it uses. They are:

1) input() which returns the next input character;

2) output(c) which writes the character c on the out­
put; and

3) unput(c) pushes the character c back onto the in-
put stream to be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexsfif, which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing I implies
lookahead. Lookahead is also necessary to match an ex­
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup .

Another Lex library routine that the user will some­
times want to redefine is yywrap() which is called when­
ever Lex reaches an end-of-file. If yywrap returns ai,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns O. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end­
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup­
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard I/O library routines, input,

outpUt, unput, yywrap, and lexslif, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer
[a-zl+

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is integers, it is tak·
en as an identifier, because {a-zJ+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in­
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .* dangerous. For exam·
pie,

'.*'

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

'["\nl·'

which, on the above input, will stop after :first'. The
consequences of errors like this are mitigated by the fact
that the. operator will not match newline. Thus expres­
sions like .* stop on the current line. Don't try to defeat
this with expressions like f.\nJ+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some

-7-

Lex rules to do this might be

she s++;
he h++'
\n I '

where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in­
stances of he included ih she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she (s+ +; REJECT;)
he (h + +; REJECT;)
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re­
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char­
acters were in both classes.

Consider the two rules

a [bc]+
a [cd]+

(... ; REJECT;)
(... ; REJECT;)

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule .
for three characters. In contrast, the input aced agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di­
gram to be incremented, the appropriate source is

%%
[a-z][a-z) (digram [yytext [O)J[yytext I1ll + +; REJECT;)
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

6 Lex Source Definitions.

Remember the format of the Lex source:

(definitions)
%%
(rules)
%%
(user routines)

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei­
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen­
erated program. There are three classes of such things.

I) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which c'ontain a com­
ment, are passed through to the generated pro­
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con­
vention.

2) Anything included between lines containing only
%(and %) is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column I, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out­
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %(and %), and begining in column I, is as­
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ­
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the (namel syntax in a rule. Using (D) for the digits
and (E) for an exponent field, for example, might abbre­
viate rules to recognize numbers:

-8-

D
E
%%
(D)+
(D) +"."(D}*((E})?
(D}*"."(D) + ((E})?
(D}+(E)

[0-9)
[TEdel[- +) ?(D) +

printf("integer");
I
I

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35_EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-9) +I"."EQ printf("integer");

could be used in addition to the normal rule for integers.
The definitions section may also contain other com­

mands, including the selection of a host language, a char­
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under "Summary of Source Format>, section 12.

7 Usage.

There are two steps in compiling a Lex source' rogram.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li­
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a e host language source and
lex.yy.r for a Ratfor host environment. There are two
1/0 libraries, one for e defined in terms of the e stan­
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The e programs generated by Lex are slightly different
on OS1370, because the OS compiler is less powerful than
the UNIX or GeOS compilers, and does less at compile
time. e programs generated on GeOS and UNIX are the
same. The e host language is default, but may be expli­
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys­
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor 1/0 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 110 li­
brary, dependent on Fortran character 1/0, is quite slow.
In particular it reads all input lines as 80A I format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

file using a Ratfor host should begin with the "%R" com­
mand.

UNIX. The libraries are accessed by the loader flags
-lie for C and -lIr for Ratfor; the C name may be abbrevi­
ated to -II. So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy.c -11 -IS rc -2 lex.yy.r -llr

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex I/O routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input. outPlit and unput are given, the
library can be avoided. Note the "-2" option in the Rat­
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
"." library. The appropriate command sequences are:

C Host Ratfor Host

.flex source .flex source

.fcc lex.yy.c .flexclib h = .lrc a= lex.yy.r .llexrlib h =

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h =" option); it
may be copied to a permanent file if desired. Note the
"a=" option in the Ratfor compile command; this indi­
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver­
sion, type

exec 'dot.lex.clist (lex)' 'sourcename'
exec 'dot.lex.clist (cload)' 1ibraryname membername'

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file libraryname.LOAD(membername) as
a completely linked load module. The compiling com­
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C­
compiled Lex programs on the as system. Even so, al­
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro­
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how­
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clist (lex)' 'sourcename'

-9-

exec 'dot.lex.clist(rload)' 1ibraryname membername'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.

1. Remove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces­
sor to get Fortran code.

c. Compile the Fortran.

d. Load with the libraries 'hr289.lrl.load' and
'sys l.fortlib'.

The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

S Lex and Yacc .

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylexO. the name required by
Yacc for its analyzer. Normally, the default main pro­
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylex(). In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac­
ing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -11 -IS

The Yacc library (-ly) should be loaded before the Lex li­
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

%%
int k;

[0-91+ {
seanf(-I, yytext, "%d", &k);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d" ,k);

to do just that. The rule [0-91 + recognizes strings of di­
gits; sea'll converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%
int k;

-'1[0-91 + {
scanf(-I, yytext, "%d", &k);
printf("%d", k%7 == 0 ,) k+3: k);
}

- '1(0-9] + ECHO;
[A-la-z] [A-la-zO-91 + ECHO;

Numerical strings containing a "." or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then b else e".

For an example of statistics gathering, here is a pro­
gram which histograms the lengths of words, where a
word is defined as a string of letters.

%%
[a-zl +

\n
%%
yywrapO
{
int i;

int lengs[IOO];

lengs lyylengl + +;
I

printf("Length No, words\n");
forO=O; i< 100; i++)

if (Iengslil > 0)
printf("%5d% I Od\n" ,i,lengs HI);

return (I);
}

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(J); indicates that Lex is to per­
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con­
tinue reading and processing. To provide a yywrap that

-10-

never returns true causes an infinite loop,
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For­
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a faA]
b [bB]
c [eC]

z [zl]

An additional class recognizes white space:

W [\t]*

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

{d){o} {u} {b} {l){e} {wi {pi {r){e){c} {i}{s){i} {oj {n} {
printf(yytext[O] = ='d''? "real" : "REAL");
)

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi­
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica­
tions to avoid confusing them with constants:

,,[- 0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of -. There follow some rules to change double
precision constants to ordinary floating constants.

[0-9)+ {W){d){W)[+-]?{W)[0-9)+ I
[0-9] + {W)"."{W){d){W)[+-] '1{W)[0-9] + I
"."{W)[0-9] + {W){d} {wi [+-],?{W} [0-9] + {

/ * con vert constan ts * /
for(p=yytext; *p ,= 0; p++)

{
if (.p = = 'd' I 'p = = 'D')

"'P= + 'e'- 'd';
ECHO;
)

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds 'e'-fl', which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

fd} Is} Ii} In}
{d}{c}{o}{s}
{d}{s }{q}{r}{t}
{d}{a}{t}{a}{n}

{d}{f} {I}{o} {a} It} printf("%s" ,yytext + 0;

Another list of names must have initial d changed to ini­
tial a:

{d}{I}{o}{g}
{d}{l}{o}{g} 10
{d}{m}{i}{n} 1
{d}{m}{a}{x} 1

yytext[01 = + 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r.

{d} 1 fm} {a} {c} {hi {yytext [01 = + 'r' - 'd';

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z1 [A-Za-zO-91*
[0-91 +
\n

I
I
I
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords a~, identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lel{ical
rules to be applied at different times in the input. For ex­
ample, a compiler preprocessor might distinguish prepro­
cessor statements and analyze them differently from ordi­
nary statements. This requires sensitivity to prior con­
text, and there are several ways of handling such prob­
lems. The - operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa­
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con­
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

-11-

is analyzed, and set some parameter to reflect the change,
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all, It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules, Any rule may be associat­
ed with a start condition, It will only be recognized when
Lex is in that start condition, The current start condition
may be changed at any time, Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c,
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
-a {flag = 'a'; ECHO;}
-b {flag = 'b'; ECHO;}
-c {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
(
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

should be adequate,
To handle the same problem with start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name2

where the conditions may be named in any order. The
word Start may be &bbreviated to s or S. The conditions
may be referenced at the head of a rule with the < >
brackets:

< name 1> expression

is a rule which is only recognized when Lex is in the start
condition name1, To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state,

BEGIN 0;

resets the initial condition of the Lex automaton inter­
preter. A rule may be active in several start conditions:

< name I ,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
-a
-b
-c
\n
<AA>magic
<BB>magic
<CC>magic

(ECHO; BEGIN AA;}
(ECHO; BEGIN BB;}
(ECHO; BEGIN CC;}
(ECHO; BEGIN O;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character I/O
only through the routines Input, output, and unput. Thus
the character representation provided in these ,routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in­
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the 110 rou­
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexsllf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the 110 library, the routine lexsllf should
also be changed to a compatible version. The Ratfor li­
brary 110 system is arranged to represent the letter a as
in the Fortran value lHa while in C the letter a is
represented as the character- constant 'a'. If this interpre­
tation is changed, by providing 110 routines which
translate the characters, Lex must be told about it, by giv­
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con­
taining only "%T". The table contains lines of the form

{integer} (character string}

which indicate the value associated with each character.
Thus the next example maps the lower'and upper case
letters together into the integers I through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

·12·

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char­
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac­
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou­
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and would not work with CDC or Bur­
roughs Fortran compilers. The user is of course welcome
to replace Input, output, unput and lexsllf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave Input and output as routines that read
with 80AI format, but replace lexsllf by a table lookup
routine.

12 Summary of Source Format.

The general form of a Lex source file is:

(definitions}
%%
(rules}
%%
(user subroutines}

The definitions section contains a combination of

1) Definitions, in the form "name space transla­
tion" .

2) Included code, in the form "space code".

3) Included code, in the form

%(
code
%}

4) Start conditions, given in the form

%S name1 name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) A language specifier, which must also precede any
rules or included 'code, in the form "%C" for C
or "%R" for Ratfor.

7) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar­
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k

Parameter
positions
states
tree nodes
transitions
packed character classes

o output array size

Lines in the rules section have the form "expression ac­
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x
!Ix!!

\x
[xy]
[x-zl
[-x]

-x
<y>x
x$
x'?
x'
x+
x~

the character "x"
an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.

(x)
x/y
(xx)
x(m,n)

the translation of xx from the definitions section.
m through n occurrences of x

-13-

13 Caveats and Bugs.

There are pathological expressions which produce ex­
ponential growth of the tables when converted to deter­
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non­
supported features are REJECT, start conditions, or vari­
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho's string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

I. B. W. Kernighan and D. M. Ritchie, The C Pro­
gramming Language, Prentice-Hall, N. 1. (1978).

2.

3.

4.

5.

6.

B. W. Kernighan, Rat/or: A Preprocessor jor a
Rational Fortran, Software - Practice and Experi­
ence, 5, pp. 395-496 (1975).

S. C. Johnson, Yacc: Yet Another Compiler Com­
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975)

B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No.5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora­
tories, Murray Hill, NJ 07974.

-14-

Table of Contents

Yacc: Yet Another Compiler-Compiler
Abstract .. 1
Introduction .. 2
Basic Specifications ... 3
Actions ... 5
Lexical Analysis .. 7
How the Parser Works .. 8
Ambiguity and Conflicts .. 12
Precedence ... 15
Error Handling .. 17
The Yacc Environment. ... 19
Hints for Preparing Specifications .. 20

Input Style ... 20
Left Recursion ... 20
Lexical Tie-ins ... 21
Reserved Words .. 21

Advanced Topics .. 22
Simulating Error and Accept in Actions ... 22
Accessing Values in Enclosing Rules ... 22
Support for Arbitrary Value Types .. 22

Acknowledgements ... 24
References .. 25
Appendix A: A Simple Example .. ; 26
Appendix B: Yacc Input Syntax ... 28
Appendix C: An Advanced Example ... 30
Appendix 0: Old Features Supported but not Encouraged ... 35

Yaee: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com­
puter program that does input can be thought of as definin~ an "input
language" which it accepts. An input language may be as complex as a pro­
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check­
ing their inputs for validity.,

Yacc provides a general tool for describing the input to a computer pro­
gram. The Yacc user specifies the structures of his input, together with cod,e to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 31, 1978

-1-

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : mon th _name day ',' year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma "," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym­
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month name 'r 'a' 'n'
month name : 'F" e' 'b' ;

month name : 'D" e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi­
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a

-2-

month_name was seen; in this case, month_name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month' r day 'r year ;

allowing

7 / 4/ 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per­
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere. 2,3,4 Yacc has been extensively
used in numerous practical applications, including lint,5 the Portable C Compiler, 6 and a system
for typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Sec­
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup­
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec­
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. S.ection 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe­
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen­
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications .
Names refer to either tokens or nonterminal symbols. Yacc requires token names to be

declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the dec/a rations, (grammar)

-3-

rules, and programs. The sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted alsoi thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in / * ... *f, as in C and PLiI.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "'''. As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n'
'\r'
'\"
'\ \'
'\t'
'\b'
'\f
'\xxx'

newline
return
single quote "'"
backslash "\"
tab
backspace
form feed
"xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in gram­
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to Yacc as

A

BCD
E F
G

BCD
E F
G

-4-

It is not necessary that all grammar rules with the same left side appear together in the gram­
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterrninal symbol matches the empty string, this can be indicated in the obvious
way:

empty: ;

Names representing tokens must be declared; this is most simply done by writing

%token name 1 name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key­
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; it. accepts the it:tPut.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri­
ate; see section 3, below. Usually the endmarker represents some reasonably obvious I/O
status, such as "end-of-file" or "end-of-record".

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro­
grams, and alter external vectors and variables. An action is specified by one or more state­
ments, enclosed in curly braces "{" and "}". For example,

A

and

xxx

'(' B ')'
{

YYY ZZZ
{

are grammar rules with actions.

hello(1, "abc"); }

printf("a message\n");
flag = 25; }

To facilitate easy communication between the actions and the parser, the action state­
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

-5-

($$ = 1;)

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A BCD;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr '(' expr ')' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr '(' expr ')' ($$ = $2;)

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte­
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

$ACT 1* empty *1
{ $$ = 1;

A B $ACT C
(x = $2; y = $3;)

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out­
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

-6-

expr expr '+' expr
{ $$ == node ('+', $1, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "%{" and "%}".
These declarations and definitions have global scope, so they are known to the action state­
ments and the lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl­
val.

The parser and the lexical analyzer must agree on these token numbers in order for com­
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look l1ke:

yylexO{
extern int yylval;
int c;

c = getcharO;

switch(c) {

case '0':
case '1':

case '9':
yylval = c-'O';
return (DIGIT);

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error

-7-

handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char­
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
o or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu­
ally it is not; in fact, the default action (represented by a ". ") is often a reduce action.

-8-

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of sym­
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter­
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the gala action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

-9-

%token DING DONG DELL
%%
rhyme

sound

place

sound place

DING DONG

DELL

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram­
mar (with some statistics stripped off the end) is:

-10-

state 0
$accept : _rhYDle $end

DING shift 3
· error

rhYDle goto 1
sound goto 2

state 1
$accept : rhYDle _$end

$end accept
· error

state 2
rhYDle sound ylace

DELL shift 5
· error

place goto 4

state 3
sound DING DONG

DONG shift 6
· error

state 4
rhYDle : sound place_ (1)

reduce 1

state 5
place : DELL (3)

-

reduce 3

state 6
sound DING DONG (2) -

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to CODle, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoDling the
lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becoDles the current state. The next token,
DONG, is read, becoDling the lookahead token. The action in state 3 on the token DONG is

-11-

"shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state ° again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by "$end" in the y.output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr expr - expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram­
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by apply­
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:

-12-

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta­
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap­
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience ha~ suggested that this rewriting is somewhat unna­
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program­
ming language involving an "if-then-else" construction:

stat IF '(' cond T stat
IF '(' cond T stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-ifrule, and the second the if-else rule.

-13-

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) Sl ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) Sl
}

ELSE S2

IF (Cl) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming languages having this con­
struct. Each ELSEis associated with the last preceding "un-ELSE'd" IF. In this example, con­
sider the situation where the parser has seen

IF (C 1) IF (C2) S 1

and is looking at the ELSE It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (Cl) IF (C2) Sl ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (-v) option
output file. For example, the output corresponding to the above conflict state might be:

-14-

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ".", is to be done if the input symbol is not mentioned explicitly.in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF '(' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references2, 3,4 might be consulted; the ser­
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con­
structions for arithmetic expressions can be naturally described by the notion of precedence lev­
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY. expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and

-15-

construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %Ieft, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind­
ing strength. Thus,

%left '+' '-'
%left '*' '/'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right '='

%Ieft '+' '-'
%Ieft '*' '/'

%%

expr expr expr
expr '+' expr
expr expr
expr '*' expr
expr '/' expr
NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a = (b = «(c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary '-'; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre­
cedence of the grammar rule to become that of the following token name or literal. For exam­
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

-16-

%left '+' '-'
%left ' .. 'r

%%

expr expr '+' expr
expr '-' expr
expr '*' expr
expr 'r expr
, -' expr %prec' *'
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc­
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre­
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y. output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard­
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token "error" is

-17-

legal. It then behaves as if the token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state­
ment in which the error was seen. More pl."ecisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini­
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat error ,

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ';'. All tokens after the error and before the next ';' cannot be shifted, and
are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associ­
ated with it performed.

Another form of error rul~ arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error '\n' { printf("Reenter last line: "); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen­
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state­
ment

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

printf("Reenter last line: ");
input

$$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might.take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some

-18-

sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille­
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynchO;
yyerrok;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from instal­
lation to installation). The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the t>alue O.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini­
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a -ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

mainO{
return (yyparse 0);
}

and

include <stdio.h>

yyerror(s) char *s; (
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ­
ment, it may be possible to set this variable by using a debugging system.

-19-

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name

These rules frequently arise when writing specifications of sequences and lists:

list item
list ' , item ,

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

-20-

seq 1* empty *1
seq item

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins
Some lexical decisions depend on context. For example, the lexical analyzer might want

to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara­
tions, followed by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations ".

%%

prog decls stats

decls 1* empty *1
{ dflag == 1;

decls declaration

stats 1* empty *1
{ dflag = 0;

stats statement

other rules ".

The flag djiag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words
Some programming languages permit the user to use words like "if', which are normally

reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the pFOgramming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if is
a keyword, and that instance is a variable". The user can make a stab at it, using the mechan­
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are

-21-

powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value O~ YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by.a digit, but in
this case the digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . ..

THE
YOUNG

DOG
{

CRONE
{

$$ = THE~ }
$$ = YOUNG~

$$ = DOG; }

if($0 = = YOUNG)(
printf("what?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as LintS will
be far more silent.

-22-

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ­
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> '+' '-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype > expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun($< intval > 2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int's, as was true historically.

-23-

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. !magna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al
Abo also deserves special credit for bringing the mountain to Mohammed, and other favors.

-24-

R.eferences

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Gift's, New Jersey (1978).

2. A. V. Aho and S. C. Johnson, "LR Parsing," Compo Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous
Grammars," Comm. Assoc. Compo Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Mass. (1977).

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

-25-

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made
up of the operators +, -, *, I, % (mod operator), & (bitwise and), I (bitwise or), and assign­
ment. If an expression at the top level is an assignment~ the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an ,example of a Yacc specification, the desk calculator does a reasonable job of show­
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli­
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs [26];
int base;

%}

%start list

%token DIGIT LETTER

%left T
%left '&'
%left '+'
%left '*' 'f' '%'
%left UMINUS 1* supplies precedence for unary minus *1

%% I * beginning of rules section *1

list

stat

expr

1* empty *1
list stat '\n'
list error '\n'

{ yyerrok; }

expr
{

LETTER
{

'(' expr ')'
{

expr ' +' expr
{

expr expr

printf("%d\n", $1);
expr
regs [$ 1] = $3; }

$$ $2; }

$$ $1 + $3;

$$ $1 $3;

-26-

expr ' *' expr
($$ $1 * $3;

expr 'r expr
($$ $1 I $3;

expr '%' expr
($$ $1 % $3;

expr '&' expr
($$ $1 & $3;

expr 'I' expr
{ $$ $1 1 $3;

, - expr %prec UMINUS
($$ - $2; }

LETTER
($$ regs [$11;

number

number: DIGIT
{ $$ = $1; base ($1==0)? 8 10;}

number DIGIT
{ $$ = base * $1 + $2; }

%% 1* start of programs *1

yylexO (1* lexical analysis routine *1
1* returns LETTER for a lower case letter, yylval = 0 through 25 *1
1* return DIGIT for a digit, yylval = 0 through 9 *1
1* all other characters are returned immediately *1

int c;

while ((c=getcharO) = = ") {I* skip blanks *1 }

1* c is now nonblank *1

if(islower(c)) {
yylval = c - a;
return (LETTER);
}

if(isdigit(c)) {
yylval = c - '0';
return(DIGIT);
}

return(c);
}

-27-

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con­
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR (2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C IDENTIFIERs.

/* grammar for the input to Yacc */

/ * basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C IDENTIFIER /* identifier (but not literal) foHowed by colon */
%token NUMBER /* [0-9] + */

/ * reserved words: %type = > TYPE, %left = > LEFT, etc. *f

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark */
%token LCURL /* the %{ mark */
%token RCURL /* the %} mark *f

/* ascii character literals stand for themselves */

%start spec

%%

spec

tail

defs

def

rword

defs MARK rules tail

MARK { In this action, eat up the rest of the file
/* empty: the second MARK is optional */

/* empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT

-28-

tag

nlist

nmno

rules

rule

rbody

act

prec

NONASSOC
TYPE

1* empty: union tag is optional *1
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist ',' nmno

IDENTIFIER
IDENTIFIER NUMBER

1* rules section *1

1* NOTE: literal illegal with %type *1
1* NOTE: illegal with %type *1

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
'I' rbody prec

1* empty' *1
rbody IDENTIFIER
rbody act

'{' { Copy action, translate $$, etc. } T

1* empty "I
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

-29-

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis­
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, -, *, /, unary -, and = (assignment), and has 26
floating point variables, "a" through "z". Moreover, it also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z"
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double's.
This structure is given a type name, INTERVAL, by using typedef The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari­
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine ato/is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.

-30-

%{

include < stdio.h >
include <ctype.h>

typedef struct interval
double 10, hi;
} INTERVAL;

INTERVAL vmulO, vdivO;

double atofO;

double dreg[26 1;
INTER V AL vreg[26 1;

%}

%start lines

%union
int ivaI;
double dval;
INTERVAL vval;
}

%token <ivaI> DREG VREG / * indices into dreg, vreg arrays */

%token < dval > CONST /* floating point constant */

%type < dval > dexp / * expression *'
%type < vval > vexp / * interval expression */

%left
%left
%left

%%

lines

line

/* precedence information about the operators */

'+' '-'
'*' '/'

UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp '\n'
{

vexp '\n'
printf("%15.8f\n", $1); }

{
DREG'

printf("(%15.8f , %15.8f)\n" , $1.10, $1.hi); }
, dexp '\n'

VREG
dreg[$I] = $3;

vexp '\n'

-31-

vreg[$I] $3; }
error '\n'

(yyerrok;

dexp CONST
DREG

($$ dreg [$I]; }
dexp '+' dexp

($$ $1 + $3;
dexp -' dexp

($$ $1 - $3;
dexp '*' dexp

($$ $1 * $3;
dexp 'I' dexp

($$ $1 / $3;
'-' dexp %prec UMINUS

($$ - $2; }
'(' dexp ')'

($$ = $2; }

vexp dexp
($$.hi = $$.10 $1;}

'(' dexp ': dexp ')'
(
$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi) (

printf("interval out of order\n");
YYERROR;

}
VREG

}

($$ = vreg[$I];
vexp '+'

(
vexp

$$.hi
$$.10

dexp '+' vexp
($$.hi

, ,
vexp vexp

dexp '-' vexp

$$.10

$$.hi
$$.10

($$.hi
$$.10

vexp '*' vexp
($$

dexp '*' vexp
($$

vexp 'I' vexp

$l.hi + $3.hi;
$1.10 + $3.10;

$1 + $3.hi;
$1 + $3.10;

$l.hi - $3.10;
$1.10 - $3.hi;

$1 - $3.10;
$1 - $3.hi;

vmuI($1.10, $l.hi, $3); }

vmuI($1, $1, $3); }

(if(dcheck($3)) YYERROR;
$$ = vdiv ($1.10, $l.hi, $3); }

-32-

%%

dexp 'I' vexp
(if(dcheck($3)) YYERROR;

vexp
{

, (' vexp ')'
{

$$ = vdiv($1, $1, $3); }
%prec UMINUS
$$.hi = -$2.10; $$.10 = -$2.hi;

$$ = $2; }

define BSZ 50 1* buffer size for floating point numbers *1

yylexO{

I * lexical analysis *1

register c;

while ((c=getchar0) = = ")(1* skip over blanks *1 }

if(isupper(c))(
yylval.ival = c - 'A';
return (VREG);
}

if(islower(c))(
yylval.ival = c - 'a';
return{ DREG); ~
}

if(isdigit(c) II c= =':)(
1* gobble up digits, points, exponents *1

char buf[BSZ+ 1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf) <BSZ + +cp,c=getcharO)(

*cp = c;
if(isdigit(c)) continue;
if(c = = ':)(

if(dot + + II exp) return (
continue;
}

if(c == 'e')(

); 1* will cause syntax error *1

if(exp+ +) return('e'); 1* will cause syntax error *1
continue;
}

1* end of number *1
break;
}

*cp = '\0';
if((cp-buf) > = BSZ) printf("constant too long: truncated\n");

-33-

else ungetc(c, stdin); /* push back last char read */
yylval.dval = atof(buf);
return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; (
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a> b) { v.hi = a' v.lo ,
else (v.hi = b' v.lo = a' , ,

if(c>d) (
if(c>v.hi) v.hi c· ,
if(d<v.lo) v.lo d' ,
}

else (
if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v);
}

b' , }

INTERVAL vrnuI(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck (v) INTER V AL v; (
if(v.hi > = O. && v.lo < = O.)(

printf("divisor interval contains O.\n");
return (1);
}

return (0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

-34-

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con­
tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ''''''.

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

% < is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
% = is the same as %prec

5. Actions may also have the form

=(... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %(and %} used to be permitted at the head of the rules section, as well
as in the declaration section.

-35-

-36-

Table of Contents

Uucp Implementation Description
Abstract .. 1
Introduction .. 2
Uucp - UNIX to UNIX File Copy .. 2

Type 1 ... 3
Type2 ... 3
Type3 ... 4
Type 4 and Type 5 .. 4

Uux - UNIX to UNIX Execution ... 4
Uucico - Copy In, Copy Out .. 5

Scan For Work .. 6
Call Remote System .. 6
Line Protocol Selection .. 7
Work Processing .. 7
Conversation Termination ... 8

Uuxqt - Uucp Command Execution ... 8
Command Execution ... 8

Uulog - Uucp Log Inquiry .. 8
Uuclean - Uucp Spool Directory Cleanup .. 8
Security .. 9
Uucp Installation ... 9

Uucp. h Modification .. 1 0
Makefile Modification ... 10
Compile the System .. 10
Files ReqUired for Execution : ... 10
L-devices ... 10
L-dialcodes .. 10
Login/System Names ... 11
Userfile .. 11
L.sys ... 12

Administration .. 13
SQFILE - Sequence Check File .. 13
TM - Temporary Data Files .. 13
LOG - Log Entry Files .. 14
STST - System Status Files ... 14
LCK - Lock Files .. 14
Shell Files .. 14
Login Entry ... 15
File Modes ... 15

Uucp Implementation Description

D. A. N(Mitz

ABSTRACT

Uucp is a series of programs designed to permit communication between
UNIX systems using either dial-up or hardwired communication lines. This
document gives a detailed implementation description of the current (second)
implementation of uucp.

This document is for use by an administrator/installer of the system. It is
not meant as a user's guide.

October 31,1978

-1-

Introduction

Uucp is a series of programs designed to permit communication between UNixt systems using
either dial-up or hardwired communication lines. It is used for file transfers and remote com­
mand execution. The first version of the system was designed and implemented by M. E.
Lesk.l This paper describes the current (second) implementation of the system.

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp
demons. There are three types of files used for the execution of work. Data .files contain data
for transfer to remote systems. Work .files contain directions for file transfers between systems.
Execution files are directions for UNIX command executions which involve the resources of one
or more systems.

The uucp system consists of four primary and two secondary programs. The primary programs
are:

uucp

uux

uucico

uuxqt

This program creates work and gathers data files in the spool directory for the
transmission of files.

This program creates work files, execute files and gathers data files for the
remote execution of UNIX commands.

This program executes the work files for data transmission.

This program executes the execution files for UNIX command execution.

The secondary programs are:

uulog This program updates the log file with new entries and reports on the status of
uucp requests.

uuclean This program removes old files from the spool directory.

The remainder of this paper will describe the operation of each program, the installation of the
system, the security aspects of the system, the files required for execution, and the administra­
tion of the system.

1. Uucp - UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The uucp command was
designed to look like cp to the user. The syntax is

uucp I option I ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the sys­
tem on which the file or files reside or where they will be copied.

The options interpreted by uucp are:

- d Make directories when necessary for copying the file.

tUNIX is a Trademark of Bell Laboratories.
1 M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link, private communication.

-2-

-c Don't copy source files to the spool directory, but use the specified source
when the actual transfer takes place.

-gletter Put letter in as the grade in the name of the work file. (This can be used to
change the order of work for a particular machine.)

- m Send mail on completion of the work.

The following options are used primarily for debugging:

- r Queue the job but do not start uucico program.

- sdir Use directory dir for the spool directory.

-xnum Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last part
of the source's name. The source name may contain special shell characters such as "?*U'. If
a source argument has a system-name! prefix for a remote system, the file name expansion will
be done on the remote system.

The command

uucp *.c usg!/usr/dan

will set up the transfer of all files whose names end with ".c" to the "/usr/dan" directory on
the"usg" machine.

The source and/or destination names may also contain a-user prefix. This translates to the
login directory on the specified system. For names with partial path-names, the current direc­
tory is prepended to the file name. File names with .. / are not permitted.

The command

uucp usg!-dani*.h -dan

will set up the transfer of files whose names end with ".h" in dan's login directory on system
"usg" to dan's local login directory.

For each source file, the program will check the source and destination file-names and the
system-part of each to classify the work into one of five types:

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote systems.

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains special shell characters
as mentioned above.

After the work has been set up in the spool directory, the uucico program is started to try to
contact the other machine to execute the work (unless the -r option was specified).

Type 1

A cp command is used to do the work. The - d and the - m options are not honored in this
case.

Type 2

A one line work file is created for each file requested and put in the spool directory with the fol­
lowing fields, each separated by a blank. (All work files and execute .files use a blank as the field
separa tor.)

[1] R

-3-

[2] The full path-name of the source or a -user/path-name. The -user part will be
expanded on the remote system.

[3] The full path-name of the destination file. If the -user notation is used, it will be
immediately expanded to be the login directory for the user.

[4] The user's login name.

[5] A" -" followed by an option list. (Only the - m and -d options will appear in
this list.)

Type 3

For each source file, a work file is created and the source file is copied into a data file in the
spool directory. (A" -c" option on the uucp command will prevent the data .file from being
made.) In this case, the file will be transmitted from the indicated source.) The fields of each
entry are given below.

[1] S

[2] The full-path name of the source file.

[3] The full-path name of the destination or -user/file-name.

[4] The user's login name.

[5] A" -" followed by an option list.

[6] The name of the data .file in the spool directory.

[7] The file mode bits of the source file in octal print format (e.g. 0666).

Type 4 and Type 5

Uucp generates a 1I11CP command and sends it to the remote machine; the remote uucico exe­
cutes the 1I11CP command.

2. Uux - UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

lIUX I - J I option J ... command-string

where the command-string is made up of one or more arguments. All special shell characters
such as "< >r" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. All arguments which do not contain a "!" will not be
treated as files. (They will not be copied to the execution machine.) The" -" is used to indi­
cate that the standard input for command-string should be inherited from the standard input of
the lIUX command. The options, essentially for debugging, are:

- r Don't start uucico or uuxqt after queuing the job;

-xnum Num is the level of debugging output desired.

The command

pr abc I uux - usg!lpr

will set up the output of "pr abc" as standard input to an Ipr command to be executed on sys­
tem "usg".

Uux generates an execute file which contains the names of the files required for execution
(including standard input), the user's login name, the destination of the standard output, and
the command to be executed. This file is either put in the spool directory for local execution or
sent to the remote system using a generated send command (type 3 above).

For required files which are not on the execution machine, uux will generate receive command
files (type 2 above). These command-files will be put on the execution machine and executed

-4-

by the uucico program. (This will work only if the local system has permission to put files in
the remote spool directory as controlled by the remote USER F1L E.)

The execute .file will be processed by the uuxqt program on the execution machine. It is made
up of several lines, each of which contains an identification character and one or moreargu­
ments. The order of the lines in the file is not relevant and some of the lines may not be
present. Each line is described below.

User Line

U user system

where the user and system are the requester's login name and system.

Required File Line

F file-name real-name

where the .file-name is the generated name of a file for the execute machine and real-name
is the last part of the actual file name (contains no path information). Zero or more of
these lines may be present in the execute .file. The uuxqt program will check for the
existence of all required files before the command is executed.

Standard I nput Line

I file-name

The standard input is either specified by a "<" in the command-string or inherited from
the standard input of the uux command if the" -" option is used. If a standard input is
not specified, "/dev/null" is used.

Standard Output Line

o file-name system-name

The standard output is specified by a ">" within the command-string. If a standard out­
put is not specified, "/dev/null" is used. (Note - the use of "> >" is not imple­
mentedJ

Command Line

C command (arguments J ...

The arguments are those specified in the command-string. The standard input and stan­
dard output will not appear on this line. All reqllired.files will be moved to the execution
directory (a subdirectory of the spool directory) and the UNIX command is executed using
the Shell specified in the 1I11Cp. h header file. In addition, a shell "PATH" statement is
prepended to the command line as specified in the ullxqt program.

After execution, the standard output is copied or set up to be sent to the proper place.

3. Uucico - Copy In, Copy Out

The Ul/cico program will perform the following major functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be used.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

-5-

a) by a system daemon,

b) by one of the uucp, uux, uuxqt or uucico programs,

c) directly by the user (this is usually for testing),

d) by a remote system. (The uucico program should be specified as the "shell" field in
the "/etc/passwd" file for the "uucp" logins.)

When started by method a, b or c, the program is considered to be in MASTER mode. In this
mode, a connection will be made to a remote system. If started by a remote system (method
d), the program is considered to be in SLA VE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (- s
option not specified) the program will scan the spool directory for systems to call. If a system
name is specified, that system will be called, and work will only be done for that system.

The uucico program is generally started by another program. There are several options used for
execution:

-rl

-ssys

Start the program in MASTER mode. This is used when uucico is started by a
program or "cron" shell.

Do work only for system sys. If - s is specified, a call to the specified system
will be made even if there is no work for system sys in the spool directory.
This is useful for polling systems which do not have the hardware to initiate a
connection.

The following options are used primarily for debugging:

-ddir Use directory dir for the spool directory.

-xnum Num is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico program.

Scan For Work

The names of the work related files in the spool directory have format

type. system-name grade number

where:

Type is an upper case letter, (C - copy command file, D - data file, X - execute file);

System-name is the remote system;

Grade is a character;

Number is a four digit, padded sequence number.

The file

C.res45n003l

would be a work file for a file transfer between the local machine and the "res45" machine.

The scan for work is done by looking through the spool directory for work .files (files with prefix
"C."); A list is made of all systems to be called. Uucico will then call each system and process
all work files.

Call Remote System

The call is made using information from several files which reside in the uucp program direc­
tory. A t the start of the call process, a lock is set to forbid multiple conversations between the
same two systems.

The system name is found in the L.sys file. The information contained for each system is;

-6-

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number if field [3] is ACU or the device name (same as field [3]) if not ACU,

[6] login information (multiple fields),

The time field is checked against the present time to see if the call should be made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into
dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available dev­
ice for the call. The program will try all devices which satisfy [3] and [4] until the call is made,
or no more devices can be tried. If a device is successfully opened, a lock file is created so that
another copy of uucico will not try to use it. If the call is complete, the login information (field
[6] of L.sys) is used to login.

The conversation between the two uucico programs begins with a handshake started by the
called, SLA VE, system. The SLA VE sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence number. The response from the
MASTER is verified by the SLA VE and if acceptable, protocol selection begins. The SLA VE
can also reply with a "call-back required" message in which case, the current conversation is
terminated.

Line Protocol Selection

The remote system sends a message

P proto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an available line protocol
and returns a use-protocol message. The lise-protocol message is

Ucode

where code is either a one character protocol letter or N which means there is no common pro­
tocol.

Work Processing

The initial roles (MASTER or SLA VE) for the work processing are the mode in which each
program starts. (The MASTER has been specified by the "-rl" uucico option.) The MASTER
program does a work search similar to the one used in the "Scan For Work" section.

There are five messages used during the work processing, each specified by the first character of
the message. They are;

S send a file,

R receive a file,

C copy complete,

X execute a 1I11CP command,

H hangup.

The MASTER will send R, S or X messages until all work from the spool directory is complete,
at which point an H message will be sent. The SLA VE will reply with SY, SN, R Y, RN, HY,
HN, XY, XN, corresponding to yes or no for each request.

-7-

The send and receive replies are based on permiSSIOn to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is copied
into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the file has successfully been moved from
the temporary spool file to the actual destination. Otherwise, a CN message is sent. (In the
case of CN, the transferred file will be in the spool directory with a name beginning with
"TM'.) The requests and results are logged on both systems.

The hangup response is determined by the SLA VE program by a work scan of the spool direc­
tory. If work for the remote system exists in the SLA VE's spool directory, an HN message is
sent and the programs switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLA VE and the proto­
cols are turned off. Each program sends a final "00" message to the other. The original
SLA VE program will clean up and terminate. The MASTER will proceed to call other systems
and process work as long as possible or terminate if a - s option was specified.

4. Uuxqt - Uucp Command Execution

The uuxqt program is used to execute execute .files generated by IIUX. The IIl1xqt program may be
started by either the lIucico or IIUX programs. The program scans the spool directory for execute
.files (prefix "X."). Each one is checked to see if all the required files are available and if so,
the command line or send line is executed.

The execllte.file is described in the "Uux" section above.

Command Execution

The execution is accomplished by executing a sh -c of the command line after appropriate
standard input and stand~rd output have been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

5. Uulog - Uucp Log Inquiry

The III1CP programs create individual log files for each program invocation. Periodically, lIulog
may be executed to prepend these files to the system logfile. This method of logging was
chosen to minimize file locking of the logfile during program execution.

The lIulog program merges the individual log files and outputs specified log entries. The output
request is specified by the use of the following options:

-s,s:vs Print entries where sys is the remote system name;

- u user Print entries for user IIser.

The intersection of lines satisfying the two options is output. A null sys or IIser means all sys­
tem names or users respectively.

6. Uuclean - Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a day. I ts function is to remove files
from the spool directory which are more than 3 days old. These are usually files for work
which can not be completed.

The options available are:

- ddir The directory to be scanned is dir.

- m Send'mail to the owner of each file being removed. (Note that most files put
into the spool directory will be owned by the owner of the uucp programs since
the setuid bit will be set on these programs. The mail will therefore most
often go to the owner of the uucp programs,)

-8-

- nhours Change the aging time from 72 hours to hours hours.

- ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be
specified.)

-xnum This is the level of debugging output desired.

7. Security

The uucp system, left unrestricted, will let any outside user execute any com­
mands and copy in/out any file which is readable/writable by the uucp login
user. It is up to the individual sites to be aware of this and apply the protec­
tions that they feel are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by the installer of the uucp system.

- The login for uucp does not get a standard shell. Instead, the uucico program is started.
Therefore, the only work that can be done is through ulicico.

A path check is done on file names that are to be sent or received. The USERFILE supplies
the information for these checks. The USER FILE can also be set up to require call-back for
certain login-ids. (See the "Files required for execution" section for the file description.)

A conversation sequence count can be set up so that the called system can be more
confident that the cal1er is who he says he is.

- The uuxqt program comes with a list of commands that it will execute. A "PATH" shell
statement is prepended to the command line as specifed in the lIuxqt program. The installer
may modify the list or remove the restrictions as desired.

- The L.sys file should be owned by uucp and have mode 0400 to protect the phone numbers
and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also
owned by uucp and have the setuid bit set.)

8. Uucp Installation

There are several source modifications that may be required before the system programs are
compiled. These relate to the directories used during compilation, the directories used during
execution, and the local uucp system-name.

The four directories are:

lib

program

spool

xqtdir

Uusrlsrc/cmd/uucp) This directory contains the source files for generating
the uucp system.

(/usr/lib/uucp) This is the directory used for the executable system pro­
grams and the system files.

(/usrlspoolluucp) This is the spool directory used during uucp execution.

(/usrlspoolluucp/.XQTDIR) This directory is used during execution of exe­
cute.liles.

The names given in parentheses above are the default values for the directories. The italicized
named lib, program, xqtdir, and spoof will be used in the fol1owing text to represent the appropri­
ate directory names.

There are two files which may require modification, the make.life file and the uucp. h file. The
following paragraphs describe the modifications. The modes of spoof and xqtdir should be made
"0777".

-9-

Uucp.h modification

Change the program and the spool names from the default values to the directory names to be
used on the local system using global edit commands.

Change the dtiftne value for MYNA ME to be the local uucp system-name.

makefile modification

There are several make variable definitions which may need modification.

INSDIR This is the program directory (e.g. INSDIR=/usr/lib/uucp). This parameter is
used if "make cp" is used after the programs are compiled.

IOCTL This is required to be set if an appropriate ioctl interface subroutine does not
exist in the standard "C" library; the statement "IOCTL=ioctl.o" is required
in this case.

PKON The statement "PKON=pkon.o" is required if the packet driver is not in the
kernel.

Compile the system The command

make

will compile the entire system. The command

make cp

will copy the commands to the to the appropriate directories.

The programs uucp, uux, and uulog should be put in "/usr/bin". The programs uuxqt, uucico,
and uuclean should be put in the program directory.

Files required for execution

There are four files which are required for execution, all of which should reside in the program
directory. The field separator for all files is a space unless otherwise specified.

L-devices

This file contains entries for the call-unit devices and hardwired connections which are to be
used by uucp. The special device files are assumed to be in the /dev directory. The format for
each entry is

line call-unit speed

where;

line is the device for the line (e.g. culO),

call-unit

speed

The line

is the automatic call unit associated with line (e.g. cuaO), (Hardwired lines
have a number "0" in this field.),

is the line speed.

culO cuaO 300

would be set up for a system which had device culO wired to a call-unit cuaO for use at 300
baud.

L-dialcodes

This file contains entries with location abbreviations used in the L. sys file (e.g. py, mh, boston).
The entry format is

-10-

abb dial-seq

where;

is the abbreviation, abb

dial-seq

The line

is the dial sequence to call that location.

py 165-

would be set up so that entry py7777 would send 165-7777 to the dial-unit.

LOGIN/SYSTEM NAMES

It is assumed that the login name used by a remote computer to ca\1 into a local computer is not
the same as the login name of a normal user of that local machine. However, several remote
computers may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each call.
This name identifies the calling machine to the called machine.

USERFILE

This file contains user accessibility information. It specifies four types of constraint;

[I] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,

[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the following format

login,sys [c I path-name [path-name I ...
where;

login is the login name for a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for lIser.

The constraints are implemented as follows.

[I] When the program is obeying a command stored on the local machine, MASTER
mode, the path-names a\1owed are those given for the first line in the USERFILE
that has a login name that matches the login name of the user who entered the com­
mand. If no such line is found, the first line with a null login name is used.

[2] When the program is responding to a command from a remote machine, SLA VE
mode, the path-names a\1owed are those given for the first line in the file that has
the system name that matches the system name of the remote machine. If no such
line is found, the first one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the
USER F1L E. There may be several lines with the same login name but one of them
must either have the name of the remote system or must contain a null system
name.

[4] If the line matched in ([3]) contains a "c", the remote machine is ca\1ed back
before any transactions take place.

The line

-11-

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
"/usr/xyz".

The line

dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan".

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m, it can only
ask to transfer files whose names start with" /usr/ spool".

The lines

root, /
, /usr

allows any user to transfer files beginning with" /usr" but the user with login root can transfer
any file.

L.sys

Each entry in this file represents one system which can be called by the local uucp programs.
The fields are described below.

system name

The name of the remote system.

time

This is a string which indicates the days-of-week and times-of-day when the system should
be called (e.g. MoTuTh0800-1730).

The day portion may be a list containing some of

Su Mo Tu We Th FrSa

or it may be Wk for any week-day or A ny for any day.

The time should be a range of times (e.g. 0800-1230). If no time portion is specified,
any time of day is assumed to be ok for the call.

device

This is either ACU or the hardwired device to be used for the call. For the hardwired
case, the last part of the special file name is used (e.g. ttyO).

speed

This is the line speed for the call (e.g. 300).

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation is one which appears in the L-dialcodes file (e.g. mh5900, bos­
ton995 - 9980).

For the hardwired devices, this field contains the same string as used for the device field.

-12-

login

The login information is given as a series of fields and subfields in the format

expect send (expect send I ...
where; expect is the string expected to be read and send is the string to be sent when the
expect string is received.

The expect field may be made up of subfields of the form

expect(- send - expectl ...

where the send is sent if the prior expect is not successfully read and the expect following
the send is the next expected string.

There are two special names available to be sent during the login sequence. The string
EOT will send an EOT character and the string BREAK will try to send a BREAK charac­
ter. (The BREAK character is simulated using line speed changes and null characters and
may not work on all devices and/or systems.)

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as illustrated in the password field.

9. Administration

This section indicates some events and files which must be administered for the uucp system.
Some admiflistration can be accomplished by shell files which can be initiated by crontab entries.
Others will require manual intervention. Some sample shell files are given toward the end of
this section.

SQFILE - sequence check file

This file is set up in the program directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system
name of the remote system. The first conversation will add two items to the line, the conversa­
tion count, and the date/time of the most resent conversation. These items will be updated
with each conversation. If a sequence check fails, the entry will have to be adjusted.

TM - temporary data files

These files are created in the spool directory while files are being copied from a remote
machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each
invocation of IIl1cico and incremented for each file received.

After the entire remote file is received, the TM file is moved/copied to the requested destina­
tion. If processing is abnormally terminated or the move/copy fails, the file will remain in the
spool directory.

The leftover files should be periodically removed; the uliclean program is useful in this regard.
The command

uuclean -pTM

will remove all TM files older than three days.

-13-

LOG - log entry files

During execution of programs, individual LOG files are created in the spool directory with infor­
mation about queued requests, calls to remote systems, execution of uux commands and file
copy results. These files should be combined into the LOGFILE by using the uulog program.
This program will put the new LOG files at the beginning of the existing LOGFILE. The com­
mand

uulog

will accomplish the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE should be removed periodically since it is copied each time
new LOG entries are put into the file.

The LOG files are created initially with mode 0222. If the program which creates the file ter­
minates normally, it changes the mode to 0666. Aborted runs may leave the files with mode
0222 and the uulog program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them with the LOGFILE.

STST - system status files

These files are created in the spool directory by the uucico program. They contain information
of failures such as login, dialup or sequence check and will contain a TALKING status when to
machines are conversing. The form of the file name is

STST.sys

where sys is the remote system name.

For ordinary failures (dialup, login), the file will prevent repeated tries for about one hour. For
sequence check failures, the file must be removed before any future attempts to converse with
that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file
must be removed before a conversation is attempted.

LCK - lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system
conversing. This prevents duplicate conversations and multiple attempts to use the same dev­
ices. The form of the lock file name is

LCK .. str

where sIr is either a device or system name. The files may be left in the spool directory if runs
abort. They will be ignored (reused) after a time of about 24 hours. When runs abort and calls
are desired before the time limit, the lock files should be removed.

Shell Files

The lIUCP program will spool work and attempt to start the uucico program, but the starting of
uucico will sometimes fail. (No devices available, login failures etc.). Therefore, the ullcico
program should be periodically started. The command to start uucico can be put in a "shell"
file with a command to merge LOG files and started by a crontab entry on an hourly basis. The
file could contain the commands

program/uulog
program/uucico -rl

Note that the" - r1 " option is required to start the uucico program in MASTER mode.

Another shell file may be set up on a daily basis to remove TM, ST and LCK files and C. or D.
files for work which can not be accomplished for reasons like bad phone number, login changes
etc. A shell file containing commands like

-14-

programiuuc1ean -pTM -pC. -pD.
programluuc1ean -pST -pLCK -n12

can be used. Note the" - n12" option causes the ST and LCK files older than 12 hours to be
deleted. The absence of the" - n" option will use a three day time limit.

A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like

cp spoollLOGFILE spooUo.LOGFILE
rm spoollLOGFILE

can be used.

Login Entry

One or more logins should be set up for uucp. Each of the "/etc/passwd" entries should have
the "programiuucico" as the shell to be executed. The login directory is not used, but if the
system has a special directory for use by the users for sending or receiving file, it should as the
login entry. The various logins are used in conjunction with the USERFILE to restrict file
access. Specifying the shell argument limits the login to the use of uucp (uucico) only.

File Modes

It is suggested that the owner and file modes of various programs and files be set as follows.

The programs IIUCp, IIUX, lIl/cico and uuxqt should be owned by the IIUCP login with the "setuid"
bit set and only execute permissions (e.g. mode 04110. This will prevent outsiders from
modifying the programs to get at a standard shell for the UUcp logins.

The L.sys, SQFlLE and the USERFILE which are put in the program directory should be owned
by the III1CP login and set with mode 0400.

-15-

-16-

Table of Contents

Using the System Console with HP9000 Series 200 Computers

Using the Internal Terminal Emulator. .. 1
Character Entry Group .. , 3
Numeric Pad Group .. , 3
Display Control Group .. , 4

Setting and Clearing Tab Stops ... 4
Cursor Control. .. 4

Edit Group .. 8
Function Key Group. .. 9

Defining User Keys Locally .. 11
Defining User Keys Programmatically 13
Controlling the Function Key Labels Programmatically. .. 13

System Control Group .. 14
The Display ... 16

Memory Addressing Scheme. .. 16
Row Addressing .. 16
Column Addressing .. 17

Cursor Sensing .. 17
Absolute Sensing. .. 17
Relative Sensing .. 17

Cursor Positioning. .. 17
Screen Relative Addressing. .. 18
Absolute Addressing. .. 18
Cursor Relative Addressing .. 19
Combining Absolute and Relative Addressing. .. 20
Display Enhancements ... 21
Raster Control .. 21
Accessing Color (HP 9000 Model 236 with color video) 22

Selecting a Pen (Color Pair) ... 22
Changing Pen Definitions .. 22

Configuring the ITE. .. 26
Configuration Function Keys. .. 26
Terminal Configuration Menu .. 26

Description of Fields. .. 27
Changing the Fields .. 32

ITE Escape Sequences .. 33
Sequence Types .. 34

Keyboard Diagrams for Other Languages 37

Using the System Console
with HP9000 Series 200 Computers

Using the Internal Terminal Emulator
The Internal Terminal Emulator consists of "device driver" code contained in the HP-UX kernel
and associated with the built-in keyboard and display on the Series 200 Models 226 and 236 with
memory management. It also drives the external keyboard and CRT for Series 200 Model 220
computers when the keyboard/HP-IB and composite video interfaces are used for the System
Console.

For the remainder of this article, the Series 200 Models 220, 226 and 236 when mentioned have
memory management. Memory management means your computer contains a central processing
unit designed to run the HP-UX system. To determine if you have memory management, look on
the back of your computer for one of the following product numbers:

• 9920U (Model 220)

• 9826U (Model 226)

• 9836U (Model 236)

• 9836CU (Model 236 with color video)

The system console is a keyboard and display (or terminal) given a unique status by HP-UX and
associated with the special (device) file Idevlconsole. All boot ROM error messages, HP-UX system
error messages, and certain system status messages are sent to the system console. Under certain
conditions (for example, the Single-user state), the system console provides the only mechanism for
communicating with HP-UX.

The HP-UX operating system assigns the system console function according to a prioritized search
sequence when the HP-UX kernel gains control during the boot-up process. When a given interface
board or the Internal Terminal Emulator (ITE) is assigned the system console function, the terminal
associated with that interface board (or the keyboard and display associated with the ITE) becomes
the physical system console. HP-UX's search for a system console terminates as soon as one of the
following conditions is met:

1. An HP 98626A Serial Interface board or HP 98628A Datacomm Interface board that has its
"remote bit" set! is installed in the computer. If this condition is met and an ITE is present,
the ITE is assigned the special (device) file / d e I.J / t t ~. 00 and is considered to be the first
non-system console terminal connected to HP-UX. (If no ITE is present, / d e 1.1 / t t~· 00 is
available for other assignment.)

2. The appropriate hardware (associated with an ITE) is present. This is the general case with
the Series 200 Models 226 and 236.

In the case of multiple occurrences, the HP 98626A Serial Interface board or HP 98628A
Datacomm Interface board with the lowest select code is chosen to be the system con­
sole.

If none of the above conditions are met, no system console exists. While HP-UX tolerates this, you
cannot functionally use HP-UX without a system console.

1 On the HP 98626A Serial Interface board the remote bit is set by cutting a jumper as described in the installation manual supplied with your
computer. On the HP 98628A Datacomm Interface board the remote bit is set by setting a switch on the board as described in that board's
installation manual.

-1-

Note
To install the HP-UX system it is necessary to communicate with the
boot ROM. Because the boot ROM will not use a terminal connected to
an HP 98628A Datacomm Interface Board as its display, HP-UX must
be installed using either the computer's ITE hardware or an HP 98626A
Serial Interface board.

For a complete list of Hewlett-Packard terminals supported by HP-UX, see the "Supported
Peripherals" appendix located in your HP-UX System Administrator Manual.

The keyboard overlay supplied with your Series 200 computer allows you to convert it for use as an
HP-UX system console keyboard. The key labels on the overlay are color-coded as follows:

• Shifted keys are light blue with the exception of four US/KATA keys. The US/KATA keys and
their functions are covered in the "Function Key Group" section. On the overlay, the keys are
labeled from left to right: ',I, """ and ~;

• Unshifted keys are dark brown;

• Control keys are orange;

• Shifted US/KATA keys are dark blue.

The Series 200 computers keyboard is divided into six functional groups:

• Character Entry Group,

• Numeric Pad Group,

• Display Control Group,

• Editing Group,

• Function Key Group,

• Systems Control Group.

These key groups are discussed next.

AOLLOOWl ROlLIJII DJr~Y .:~: JA:':cS tHN"YA

C5:JQ;:JC5:JD!:JC!!:J [:~~:u ~!.'1 ,~ I RECALL I ~~IGAAPHICsl~
tl f2 f3 14 ... , DI5PLAYfCTNS

CLASCR SEllAR CLATAS SOFTRESl:T

D!:JC!!:JQ;:JC!!:JC!!:J SllFTUS/KATAONLY

~~~ 
'5 f6 17 fs 

US ASCII Keyboard and Overlay 

-2-



Character Entry Group 
The character entry keys are arranged like a typewriter, but have some added features. 

( SHIFT) gives you uppercase letters when you are typing in lowercase (caps lock 
off). When you are typing in upper case (caps lock on) , this key will give 
you lower case letters. 

(CAPS LOCK) 

R 
E 

(ENTER) (; 

@[J 

( CTRL) 

R 
N 

[Bj\C"K SPACE) 

sets the unshifted keyboard to either upper case (the power-on default) or 
lower case (normal typewriter operation) letters. 

sends the ReturnDef sequence to the computer (the default is to send CR ). 

When a program is running, this key is used to input information requested 
by the computer. 

sends a tab character (CTRL-I) to the computer. 

provides access to the standard ASCII control characters. 

sends the back space character (CTRL-H) to the computer in the remote 
mode, and in the local mode it moves the cursor one space to the left. 

Numeric Pad Group 
The numeric group of keys is located to the right of the character keys. The layout of the numeric 
key pad is similar to that of a standard office calculator. These keys are convenient for high-speed 
entry of numeric data. 

The numeric key pad on Series 200 computer also provides the non-US ASCII keyboard user with 
a few of the character keys not found on their keyboard. These characters are accessed by holding 
the shift key down and pressing the appropriate numeric key, as shown in the diagram below. 

# @ 

\ 

Additional Numeric Key Pad Characters 

-3-



Display Control Group 
The display control group consists of the keys that control the location of the cursor on the display. 
Each display control key and its function is described in the sections that follow. 

Setting and Clearing Tab Stops 
You can define and delete a series of tab stops by using the following tab fU!1ctions. 

SET TAB 

( RESULT) 
sets tab stops. To set a tab stop move the cursor to the desired location, 
hold the ( SHIFT) key down, and press ( SET TAB). 

CLRTAB 

( PRT ALL) 
deletes tab stops. To delete tab stops, move the cursor to the tab position 
which you want to remove, hold the ( SHIFT) key down, and press ( CLR TAB). 

Cursor Control 
To use the knob (cursor control wheel) and arrow keys, either have the transmit functions mode 
disabled or be in the vi or ex editor. The transmit functions mode specifies whether escape code 
functions are executed locally at the terminal (ITE) or transmitted to the host computer. When the 
system is shipped the default for this mode is: NO. In the vi or ex editor, the arrow keys and knob 
can be used as described in this section. To disable the transmit functions mode: 

press: CJL) (labeled AIDS on the overlay) 

l····· .. 6ii ••••••••• 1''''.''4' •••••••• __ J 

press: [}LJ (config) 

l--·-·---- ."'6110011 •••••••••••• J 

press: [}LJ (terminal) 

-4-



When a screen display similar to the one shown below appears, press the ~ key until the 
cursor is positioned just after the XmitFnctn(A). 

Lan~ua~e USASCII 
ReturnDef NO 

LocalEcho OFF 
}(fTlitFnctn(A) NO 

TERMINAL CONFIGURATION 

CapsLocf, OFF Ascii 8 Bit NO 
InhEolWrp(C) NO 

"ii_.i. _lIiIi liijiQ •• lli.i •• lil.'.'I- _ ••••••• IIII!l's:ISI:lJ.Dj~m·.-;·'ND-

If the word following the label is NO, then the transmit functions mode is not active, so 

press: QL) (config) 

to return to the HP-UX environment. If the word following the XmitFnctn(A) label is a YES, 
then 

press: [}Q (NEXT) 

This turns off the transmit function mode. 

press: CD (SAVE CFG) 

This returns you to the ITE environment. 

When the transmit functions mode is off, there are four keys used to change the location of the 
cursor in the shell environment: 

moves the cursor up in the output area of the display screen. 

moves the cursor down in the output area of the display screen. 

moves the cursor to the left in the output area of the display screen. 

moves the cursor to the right in the output area of the display screen. 

-5-



These same keys when used with the ( SHIFT) key enable you to scroll up and down through the 
screen display, and to move the cursor to its upper or lower home position. These keys are 
listed as follows: 

ROLL DOWN 

shift- CIJ 
ROLL UP 

shift- CO 
"­

shift-~ 

/' 

shift-~ 

scrolls the screen display downward. 

scrolls the screen display upward. 

moves the cursor to its upper home position. 

moves the cursor to its lower home position. 

Another method used to move the cursor is the knob . Rotating the knob either clockwise or 
counter-clockwise moves the cursor horizontally. Rotating the knob while pushing the ( SHIFT) key 
moves the cursor vertically until the top or bottom of the display screen is reached, at that time 
the screen display rolls up or down in display to the next page or previous page. 

What is the next page or previous page? Data in display memory can be accessed (displayed on the 
screen) in blocks that are known as "pages". A page consists of 24 (23 for a Model 226) lines of 
data. The current page is that sequence of lines which appears on the screen at any given time. The 
previous page is the preceding 24 lines in display memory. The next page is the succeeding 24 
lines in display memory. This concept, along with the concept of rolling data through the display 
screen and memory, are shown in the following illustrations. 

A 

MEMORY 
~ 

B. P 
MEMORY 

DISPLAY DISPLAY 
SCREEN SCREEN 

MEMORY MEMORY 

J :1 
ROLL UP ROLL DOWN 

The "Roll Up and Roll Down" Functions 

-6-



LINE 1 LINE 1 

r-----' 
I PREVIOUS 

I 
24 { DISPLAY 24 { I LINES SCREEN LINES PAGE DISPLAY CONTROL 

I DISPLAY MEMORY 

{ 
48 LINES 

I 80 CHARACTERS/LINE 
24 { NEXT I 24 DISPLAY 

LINES I PAGE I LINES SCREEN 
L _____ J 

LINE 48 LINE 48 

Previous Page and Next Page Concepts 

-7-



Edit Group 
The edit group consists of the keys that allow you to modify the data presented on the screen. 
However, the edited data cannot be read back by the system. Typically these features are used to 
modify text within a program or file, to view data which has scrolled out of the screen window and 
to clear the screen. 

To use these features in the vi editor, you should have an .exrc file in your $HOME directory which 
maps these keys to their function using escape code sequences. Reference to this file is made in the 
HP-UX System Administrator Manual and in "The Vi Editor" selected article. 

The ( RECALL) key has been redefined as follows: 

( RECALL) moves you back a page within your text. 
PREV PAGE 

NEXT PAGE 

shift - ( RECALL) 
moves you forward a page within your text. 

All line edit keys and character edit keys function as stated below: 

( CLR -> END) clears the characters in a line from the present cursor position to the end of 
the line. 

( CLR LN ) 

( INS CHR ) 

( DEL CHR ) 

DEL 

shift -[ BACK SPACE) 

causes the line containing the cursor and all text lines below it to move 
down one line, and a blank line to be inserted in the row containing the 
cursor. The cursor will move to the left margin of the blank line. 

deletes the line containing the cursor from display memory. All text lines 
below this line will roll up one row, and the cursor will move to the left 
margin. 

performs the same function as CLR END. 

sets the insert mode, allowing you to insert characters to the left of the 
cursor. 

deletes the character at the cursor. 

sends the DEL character to the computer. 

-8-



Function Key Group 
In the upper left-hand corner of your keyboard next to the knob are a set of ten function keys 
(HP-UX recognizes only eight function keys: OQ through CJLJ ). The remaining keys are used 
as "AIDS" keys which will be discussed later on in this section. The functions performed by these 
keys change dynamically as you use the computer. At any given time the applicable function labels 
for these keys appear across the bottom of the display screen. 

The function key group also includes four US/KA TA keys which are accessed using the numeric key 
pad. These keys are very useful when using HP-UX and they have been given the following names: 

shift-CD 

I 
shift-CD 

"" shift-C[] 

shift-c==J 

accent grave. 

vertical bar. 

backslash. 

tilde. 

The remainder of this section covers the relationship of the eight function keys, CO through 
CJiJ, to the overlay functions: MODES, AIDS and USER KEYS. 

cru ~ 
D 
E 
S 

allows access to one of the modes described in the following sections. An 
example of the function key display is given: 

l············lllIdl:tl;m .. iliiiliiI:lW• , ........... -j 
You may use these function keys to enable and disable various terminal operating modes. Each 
defined mode selection key alternately enables, and disables a particular mode. When the 
mode is enabled, an asterisk (*) appears in the associated key label on the screen, as seen in the 
REMOTE key label above. 

When the remote mode is enabled and a key is pressed, the terminal transmits the associated 
ASCII code to HP-UX. In local mode (remote mode is disabled), when a character key is 
pressed, the associated character is displayed at the current cursor position on the screen 
(nothing is transmitted to HP-UX). 

-9-



When the auto line feed mode is enabled, an ASCII line feed control code is automatically 
appended to each ASCII carriage-return control code generated through the keyboard. ASCII 
carriage-return control codes can be generated through the keyboard in any of the following 
ways: 

• By pressing ( RETURN). 

• By holding down CRTL and pressing CD . 
• By pressing any of the user keys CJLJ through CD, provided that a carriage-return code 

is included in the particular key definition. 

When the display functions mode is enabled, the terminal (ITE) displays ASCII control codes, and 
escape sequences but does not execute them. 

CJQ provides another menu in the display, showing three general control keys: 
AIDS 

l····lIii4ai;N ....... . li.li'.j; •••• I •••• ~_ J 
tab/mrgn 

FlexDisc 

config 

CLR AIDS 

QCl 
( EXECUTE) 

ENTER 

( CONTINUE) 
USER KEYS 

pressing this softkey provides another menu with: SET TAB, CLR TAB, 
and CLR TABS. The first two softkey functions were previously defined in 
the display control group section. The last softkey [CLR TABS] when 
pressed clears all tab stops currently set. 

preSSing this softkey provides another menu with these labels: fd.1 and 
fd. O. Whenever this symbol * appears in the label block the internal disc 
drive 1 (left drive) or 0 (right drive) is in use. 

pressing this softkey provides another menu with only the softkey [termin­
al] in it. If you press this softkey, you get the TERMINAL CONFIGURA­
TION display on your screen as shown in the display control group section 
of this article. 

clears the screen display of the function key labels. The user function keys, 
however, are still enabled. 

not implemented. 

displays eight function keys which can be defined either locally by the user 
or remotely by a program executed in a host computer. By "defined" it is 
meant: 

• You can assign to each key a string of ASCII alphanumeric characters and/or control codes 
(such as carriage return or line feed). 

• You can specify each key's operational attribute: whether its key definition is to be ex­
ecuted locally at the terminal, transmitted to the computer, or both. 

• You can assign to each key an alphanumeric label (up to 16 characters) which, in user keys 
mode, is displayed across the bottom of the screen. 

-10-



Defining User Keys Locally 
When defining a key from the keyboard, the key content may include explicit escape sequences 
(entered using display functions mode) that control or modify the ITE's operation. 

The definition of each user key may contain up to 80 characters (alphanumeric characters, ASCII 
control characters, and explicit escape sequence characters). 

To define USER KEYS locally (from the keyboard), press the ( SHIFT H CONTINUE) (USER KEYS) 
keys simultaneously. The following user keys menu will appear: 

KEY 
DEFINITION ATTRIBUTE LABEL 

FIELD FIELD 

\f1 :(." 
Ecp 
f2 Ii LABEL 
Ecq 
f3 Ii LABEL 
Ecr 
f4 Ii LABEL 
Ecs 
fS Ii LABEL 
Ect 
f6 Ii LABEL 
Ecu 
f7 Ii LABEL 
Ecv 
f8 Ii LABEL 
Ecw 

FIELDS 

! 
I 

t 

, 
c 
L 

,. 
f 

1:_ 

••••• "iIi '1&4'.1110.1 '.'iji'.I'. • ••••••• '.J.i·i@· •••• 

This menu contains the default values for all of the fields. If your screen does not contain the 
default values as shown and you want them set and displayed press CD (DEFAULT). 

The menu contains a set of fields that you access using the ~ key. 

-11-



For each user key the menu contains three unprotected fields: 

ATTRIBUTE FIELD - This one character field always contains an uppercase L, T, or N 
signifying whether the content of the particular user key is to be: 

L Executed locally only. 

T Transmitted to the host computer only. 

N Treated in the same manner as the alphanumeric keys. If the ITE is in local mode, 
the content of the key is executed locally. If the ITE is in the remote mode and 
LocalEcho is disabled (OFF), the content of the key is transmitted to the host 
computer. If the ITE is in remote mode and local echo is enabled (ON), the content 
of the key is both transmitted to the host computer and executed locally. 

The alphanumeric keys are disabled when the cursor is positioned in this field. You change 
the content of this field by pressing OQ (NEXT) or (I) 
(PREVIOUS). 

LABEL FIELD - This field eight character field to the right of the word "LABEL" allows you 
to supply the user key's label. When the ITE is in user keys mode, the key labels are displayed 
from left to right in ascending order across the bottom of the screen. 

KEY DEFINITION FIELD - The entire line (80 characters) immediately below the attribute 
and label field is available for specifying the character string that is to be displayed, executed, 
and/or transmitted whenever the particular key is physically pressed. 

When entering characters into the key definition field you may use the display functions mode. 
Note that this implementation of display functions mode is separate from that which is enabled/ 
disabled via the mode selection keys. When entering the label and key definition you may access 
display functions mode by way of function key IT] (DSPY FN) for the Model 236 and for the 
Model 226 use function key GJ. 

The (ENTER) (RETURN) key can be used to include carriage return (C R) codes (with display 
functions mode enabled) in key definitions. If auto line feed mode is also enabled, the (ENTER) 
(RETURN) key will generate a C R L F , otherwise it is considered a cursor movement key. 

When the user keys menu is displayed on the screen you may use the ( INS CHR ), ( DEL CHR ) and 
( CLR LN ) keys for editing the contents of the label and key definition fields. 

When you are finished defining all the desired keys, press the []L) (AIDS), C@KJ (MODES) 
or (CONTINUE) (USER KEYS) key (in all three cases the user keys menu disappears from the 
screen). When you press (CONTINUE) (USER KEYS), the defined user key labels are displayed 
across the bottom of the screen and the GJ through OQ user keys, as defined by you, are 
enabled. 

-12-



Defining User Keys Programmatically 
From a program executing in a host computer, you can define one or more keys using the following 
escape sequence format: 

Ee&f <attribute> <label length> <string length> <label> <string> 

where: 

<attribute> 
Oa : normal (0 is the default) 
1 a : local only 
2 a : transmit only 

<key> = l-SI<.: fl-f8, (1 is the default) 
respectively 

<label length> = 0 -1 B d (0 is the default) 
<string length> = O-SOL (1 is the default) 

( - 1 causes field to be erased) 

The <attribute>, <key>, <label length> , and <string length> parameters may appear in any 
sequence but must precede the label and key definition strings. You must use an uppercase 
identifier (A, K, D, or L) for the final parameter and a lowercase identifier (a, k, d, or 1) for all 
preceding parameters. FolloWing the parameters, the first 0 through 16 characters, as dis­
ignated by <label length>, constitute the key's label; however, only the first 8 characters are 
recognized. The next 0 through 80 characters, as designated by <string length>, constitute the 
key's definition string. The total number of displayable characters (alphanumeric data, ASCII 
control codes such as CR and L F , and explicit escape sequence characters) in the label string 
must not exceed 16, and in the definition string must not exceed 80. 

Example: Assign login as the label and TOM as the definition for the GJ user key. The key is 
to have attribute .oN". 

After issuing the foregoing escape sequence from your program to the terminal, the GJ portion 
of the user keys menu is as follows: 

f5 N LABEL login 
TOMeR 

If the transmit only attribute (2) is deSignated, the particular user key will have no effect unless 
the terminal is in remote. The Ee&jB sequence turns on the user labels. 

Controlling the Function Key Labels Programmatically 
From a program executing in a host computer, you can control the function key labels display as 
follows by using escape sequences: 

• You can remove the key labels from the screen entirely (this is the equivalent of preSSing 
OLJ (CLR AIDS)). 

• You can enable the mode selection keys (this is the eqUivalent of pressing the ~ 
(MODES) key). 

• You can enable the user keys (this is the equivalent of pressing the (CONTINUE) (USER 
KEYS) key). 

-13-



The escape sequences are as follows: 

EC& j@ Enables the user keys and remove all key labels from the screen. 

EclUA Enables the modes key. 

EclU B Enables the user keys. 

System Control Group 
These keys are located in the upper-right corner of your keyboard. They control system functions 
related to the display, printer and editing operations. 

(PAUSE) § generates special ASCII control character number 27 (escape character). 

Q@ 
C 

DISPLAY FCTNS 

shift- Q@ 

(ALPHA) 
and 
(GRAPHICS) 

DUMP GRAPHICS 

shift -( GRAPHICS) 

DUMP ALPHA 

shift-(ALPHA) 

ANY CHAR 

shift-( STEP) 

(]mJ 
(CLRLN) 

CLR SCR 

shift -(~CL~R-L-N -.. 

not implemented. 

enables display functions mode as defined in the function key group. 
Pressing the (DISPLAY FCTNS) key again cancels the display functions mode. 

These commands work together to control the Alpha and Graphic displays. 
The following table shows how these commands work. 

If And you Result 

Alpha ON Press Alpha No change in display 
Graphics OFF 
Alpha ON Press Graphics Both displays on screen 
Graphics OFF 
Alpha ON Press Alpha Graphic display turned off 
Graphics ON 
Graphics ON Press Graphics No change in display 
Alpha OFF 
Graphics ON Press Alpha Both displays on screen 
Alpha OFF 
Graphics ON Press Graphics Alpha display turned off 
Alpha ON 

not implemented. 

not implemented. 

causes the next three characters typed (must be integers) to be interpreted 
as the decimal specifier of an HP extended ASCII character. 

not implemented. 

was defined in the Edit Group. 

clears the entire alpha portion of the screen display. 

-14-



RESULT 

( PRT ALL) 

SET TAB 

shift -(---RE-SU-LT----,) 

CLRTAB 

shift -(--P-RT-A-LL----,) 

(CLR 1/0) 

SOFT RESET 

shift-(CLR 1/0) 

HARD RESET 

shift-(PAUSE) 

not implemented. 

not implemented. 

sets a tab at the current cursor position. Tabs are in effect in the alpha 
display until cleared by ( CLR TAB). 

clears a tab previously set at the current cursor position. 

not implemented. 

does the following: 

• Sounds the computer's beeper. 

• Disables display functions mode (if enabled). 

• Halts any datacomm transfers currently in progress, clears the datacomm 
buffers, and reinitializes the datacom port according to the appropriate 
power-on datacomm configuration parameters. 

The data on the screen, all terminal operating modes (except display func­
tions mode), and all active configuration parameters are unchanged. 

has the same effect as turning the computer's power off and then back on. 

A hard reset does the follOWing: 

• Sounds the computer's beeper. 

• Clears all of alphanumeric memory. 

• Resets the terminal configuration menu parameters to their power on 
values. 

• Resets certain operating modes and parameters as follows: 

- Disables display functions mode, and caps mode. 

- Turns off the insert character edit function. 

- Resets the user keys to default values. 

- Turns on the alphanumeric display. 

- Resets color pairs to their default values. 

creates an interrupt signal (SIGINT) which is sent to all processes within your 
terminal (ITE). For information on this signal read the sections SIGNAL(2) and 
TTY(4) in your HP-UX Reference. To learn how to use this signal in a shell 
script read "Shell Programming" in your HP-UX Selected Articles. 

-15-



The Display 
The Internal Terminal Emulator's (lTE's) display has many features of its own, video highlights 
(such as inverse video and blinking), raster control, cursor sensing and addressing, and color 
highlight control (for Model 236 computers equipped with a color display). These functions are 
accessed only through escape sequences and are discussed in the sections that follow. As you read 
this section, note the last letter in an extended escape sequence is always capitalized. An extended 
escape sequence consist of the escape-code character followed by at least two subsequent charac­
ters. 

Memory Addressing Scheme 
Display memory positions can be addressed using absolute or relative coordinate values. On the 
Model 220 and 236, display memory is made up of 80 columns (0 thru 79) and two 24 line pages 
(0 thru 47) with 80 characters per line. A Model 26 upgraded for HP-UX use has a display memory 
made up of 50 columns (0 thru 49) and two 23 line pages (0 thru 45) with 50 characters per line. 
The types of addressing available are absolute (memory relative), screen relative, and cursor 
relative. 

Row Addressing 
The figure below illustates the way that the three types of addressing affect row or line numbers. 
The cursor is shown positioned in the fourth row on the screen. Screen row 0 is currently at row 6 of 
display memory. In order to reposition the cursor to the first line of the screen the following three 
destination rows could be used: 

Absolute: row 6 
Screen Relative: row 0 
Cursor Relative: row - 3 

o , 
2 
3 
4 
5 

a.) Absolute: row 6 b.) Screen Relative: row 0 c.) Cursor Relative: row-3 

Row Addressing 

-16-



Column Addressing 
Column addressing is accomplished in a manner similar to row addressing. There is no difference 
between screen relative and absolute addressing. The figure below illustrates the difference be­
tween absolute and cursor relative addressing. The cursor is shown in column 5. 

Whenever the row or column addresses exceed those available, the largest possible value is 
substituted. In screen relative addressing, the cursor cannot be moved to a row position that is not 
currently displayed. For example, in the cursor relative portion of the figure on the previous page 
(showing row addressing), a relative row address of -10 would cause the cursor to be positioned at 
the top of the current screen (relative to row - 3). Column positions are limited to the available 
screen positions. For example, in the following illustration, the absolute column addressing example 
shows limits of 0 and 79, while the relative column addressing example shows limits of - 5 and 
+ 74. The cursor cannot be wrapped around from column 0 to column 79 by specifying large 
negative values for relative column positions. 

o 1 2 3 4 5 6 7 8 9 79 5 -- 4 - 3 -- 2 - 1 0 + 1 + 2 + 3 - 74 

I 

I I 

a) Absolute and Screen Relative b )Cursor Relative 

Column Addressing 

Cursor Sensing 
The current position of the screen cursor can be sensed. The position returned can be the absolute 
position in the display memory or the location relative to the current screen position. 

Cursor sensing functions only when the "terminal" is in remote mode. 

Absolute Sensing 
When a program sends the escape sequence Eca to the terminal, the terminal returns to the 
program an escape sequence of the form EC&: a x x x c y y Y RC R, where xxx is the absolute column 
number and yyy is the absolute row number of the current cursor position. You will later see 
that this escape sequence is identical to the escape sequence for an absolute move of the 
cursor. 

Relative SenSing 
When a program sends the escape sequence EC \, the terminal returns to the program an escape 
sequence of the form Ed: a x x x c y }' Y VCR where xxx is the column number of the cursor and yyy is 
row position of the cursor relative to screen row O. This escape sequence is identical to the 
escape sequence for a relative move of the cursor (discussed later in this article). 

Cursor Positioning 
The cursor can be positioned directly by giving memory or screen coordinates, or by sending the 
escape codes-for any of the keyboard cursor positioning operations. 

-17-



Screen Relative Addressing 
To move the cursor to any character position on the screen, use any of the following escape 
sequences: 

Ecl\:a<column number> c <row number>Y 
Ecl\:a<row number> }' <column number>c 
Ecl\: a <column number> c 
Ecl\:a<row number>Y 

where: <column number> is a decimal number specifying the screen column to which 
you wish to move the cursor. Zero specifies the leftmost column. 

<row number> is a decimal number specifying the screen row (0 thru 23) to 
which you wish to move the cursor. Zero specifies the top row of the screen; 23 
specifies the bottom row. 

When using the escape sequences for screen relative addressing, the data on the screen is not 
affected (the cursor may only be moved around in the 24 rows and 80 columns currently 
displayed, thus data is not scrolled up or down). 

If you specify only <column number>, the cursor remains in the current row. Similarly, if you 
specify only <row number>, the cursor remains in the current column. 

Example 
The follOWing escape sequence moves the cursor to the 20th column of the 7th row on the screen: 

Absolute Addressing 
You can specify the location of any character within display memory by supplying absolute row and 
column coordinates. To move the cursor to another character position using absolute addressing, 
use any of the following escape sequences: 

Ecl\:a<column number> c <row number>R 
Ecl\:a<row number> r <column number>c 
Ecl\: a <column number> c 
Ecl\:a<row number>R 

where: <column number> is a decimal number (0 thru 79) specifying the column coordinate 
(within display memory) of the character at which you want the cursor positioned. Zero 
specifies the first (leftmost) column in display memory, 79 the rightmost column. 

<row number> is a decimal number (0 thru max) specifying the row coordinate (within 
display memory) of the character at which you want the cursor positioned. Zero specifies 
the first (top) row in display memory, max specifies the last. The value of max is specified 
as: 

[24 (lines/page) X num_page (pages)] - 1 

where num_page is the number of pages of display memory specified by the system 
configuration. As shipped to you, the configuration dictates that 2 pages of display 
memory be allocated. Thus, the last row that can be addressed is 47. 

-18-



When using the above escape sequences, the data visible on the screen rolls up or down (if 
necessary) in order to position the cursor at the specified data character. The cursor and data 
movement occur as follows: 

• If a specified character position lies within the boundaries of the screen, the cursor moves 
to that position; the data on the screen does not move. 

• If the absolute row coordinate is less than that of the top line currently visible on the screen, 
the cursor moves to the specified column in the top row of the screen; the data then rolls 
down until the specified row appears in the top line of the screen. 

• If the absolute row coordinate exceeds that of the bottom line currently visible on the 
screen, the cursor moves to the specified column in the bottom row of the screen; the data 
then rolls up until the specified row appears in the bottom line of the screen. 

If you specify only a <column number>, the cursor remains in the current row. Similarly, if you 
specify only a <row number>, the cursor remains in the current column. 

Example 
To position the cursor (rolling the data if necessary) at the character residing in the 60th column of 
the 27th row in display memory, the escape sequence is: 

EC&: a26 r58C 

Cursor Relative Addressing 
You can specify the location of any character within display memory by supplying row and column 
coordinates that are relative to the current cursor position. To move the cursor to another character 
position using cursor relative addressing, use any of the following escape sequences: 

EC&: a ± <column number> c ± <row number> R 
Ec&:a ± <row number> r ± <column number>c 
EC &: a ± <column number>C 
EC &: a ± <row number> R 

where: <column number> is a decimal number specifying the relative column to which you 
wish to move the cursor. A positive number specifies how many columns to the right 
you wish to move the cursor; a negative number specifies how many columns to the 
left. 

<row number> is a decimal number specifying the relative row to which you wish to 
move the cursor. A positive number specifies how many rows down you wish to move 
the cursor; a negative number specifies how many rows up you wish to move the 
cursor. 

-19-



When using the above escape sequences, the data visible on the screen rolls up or down (if 
necessary) in order to position the cursor at the specified data character. The cursor and data 
movement occur as follows: 

• If a specified character position lies within the boundaries of the screen, the cursor moves 
to that position; the data on the screen does not move. 

• If the specified cursor relative row precedes the top line currently visible on the screen, the 
cursor moves to the specified column in the top row of the screen; the data then rolls down 
until the specified row appears in the top line of the screen. 

• If the specified cursor relative row exceeds the bottom line currently visible on the screen, 
the cursor moves to the specified column in the bottom row of the screen; the data then 
rolls up until the specified row appears in the bottom line of the screen. 

If you specify only a <column number>, the cursor remains in the current row. Similarly, if you 
specify only a <row number>, the cursor remains in the current column. 

Example 
To position the cursor (rolling the data if necessary) at the character residing 15 columns to the right 
and 25 rows above the current cursor position (within display memory), use the escape sequence: 

Ec~:a+15c-25R 

Combining Absolute and Relative Addressing 
You may use a combination of screen relative, absolute and cursor relative addreSSing within a 
single escape sequence. 

For example, to move the cursor (and roll the text if necessary) so that it is positioned at the 
character residing in the 70th column of the 18th row below the current cursor position, use the 
escape sequence: 

Ec~:aG8c+18R 

Next, to move the cursor so that it is positioned at the character residing 15 columns to the left 
of the current cursor position in the 4th row currently visible on the screen, use the escape 
sequence: 

Ec~:a-15c 3'( 

Similarly, to move the cursor (and roll the text up or down if necessary) so that it is positioned at 
the character residing in the 10th column of absolute row 48 in display memory, use the escape 
sequence: 

Ec~:a8c 47R 

-20-



Display Enhancements 
The terminal includes as a standard feature the following display enhancement capabilities: 

• Inverse Video - black characters are displayed agains a white background. 

• Underline Video - characters are underscored. 

• Blink Video - characters blink on and off. 

Note 
The Model 226 computer doesn't provide display enhancements. The 
Model 220 computer provides display enhancements if it has an HP 
98204A composite vedio card. The Model 236 computer with color 
video doesn't have the half bright enhancement. 

The display enhancements are used on a field basis. The field can not span more than one line. The 
field scrolls with display memory. Overwriting a displayable character in a field preserves the display 
enhancement. The enhancements may be used separately or in any combination. When used, they 
cause control bits to be set within display memory. 

From a program or from the keyboard, you enable and disable the various video enhancements by 
embedding escape sequences within the data. The general form of the escape sequence is: 

EC& d <enhancement code> 

where enhancement code is one of the uppercase letters A through 0 specifying the desired 
enhancement(s) or an @ to specify end of enhancement: 

Enhancement Character 

@ A B C D E F G H I J K L M N 0 

Half-Bright x x x x x x x x 

Underline x x x x x x x x 

Inverse Video x x x x x x x x 

Blinking x x x x x x x x 

End Enhancement x 

Note that the escape sequence for "end enhancement" (Ec&d@) or the escape sequence for 
another video enhancement, ends the previous enhancement. 

Raster Control 
The terminal provides the ability to enable and disable the alphanumeric display. The escape 
sequences for these capabilities are: 

EC* d E Turn on the alphanumeric display; enable writing to the alphanumeric display. 

EC* d F Turn off the alphanumeriC display; disable writing to the alphanumeriC display. 

-21-



Accessing Color (Series 200 Model 236 with Color Video only) 
To access color on the Series 200 Model 236, you must understand some simple terms. 

Color pair - two colors which define the foreground color (color of the characters) and the 
background color, respectively. At least one of the color pair must be black; displaying color on 
color is not possible. A total of 64 color pairs are possible, but only eight can be displayed at any 
one time. 

Pen # - one of eight predefined color pairs. Pen 0 through pen 7 are initially defined as follows 
(re-defining a color pair is discribed later): 

Pen # foreground color background color 

0 white black 
1 red black 
2 green black 
3 yellow black 
4 blue black 
5 magenta black 
6 cyan black 
7 black yellow 

Pen #0 is the default pen selected by the terminal when writing to the display. 

Pen #7 is always used for displaying the softkey labels. 

Selecting a Pen (Color Pair) 
By using an escape sequence, you can select a pen number other than pen #0 when writing to the 
display. Like other display enhancements, pen selection is used on a field basis. The field cannot 
span more than one line. That is, the pen selection is only active until a new-line character is 
encountered; then the default pen is re-selected. The escape sequence for selecting a pen is: 

Ecll,:!,! 1"1 <parameter> 

where n is the pen number you wish to use, and <parameter> is a single character that 
specifies the action as described below. To select a pre-defined pen number, the necessary 
<parameter> is s. Thus, 

selects the pre-defined pen number 4. 

Changing Pen Definitions 
You may change the pre-defined color pair for any of the eight existing display pens. The three 
primary colors (red, green and blue) are used in various combinations to achieve the desired color. 

-22-



The combinations of red, green, and blue that define foreground and background colors can be 
specified in two notations. The first is RGB (Red-Green-Blue), and the second is HSL (Hue­
Saturation-Luminosity). The notation must be selected before you can redefine pens (if no notation 
type is specified, the "terminal" uses the last notation specified, or RGB notation at power -up) . To 
select a notation type, use the EC&: \) escape sequence used above: 

EC&: \) n <parameter> 

where n is 0 (for RGB) or 1 (for HSL), and <parameter> is the letter m. Thus, the sequence 

selects HSL notation. It does nothing more. 

To specify the quantity of red (hue), green (saturation), and blue (luminosity) to appear in your 
background and foreground colors, the a, b, c, x, y, and z parameters are used. These para­
meters have the following meanings: 

a specifies the amount of red (hue) used in the foreground. 
b specifies the amount of green (saturation) used in the foreground. 
c specifies the amount of blue (luminosity) used in the foreground. 
x specifies the amount of red (hue) used in the background. 
y specifies the amount of green (saturation) used in the background. 
z specifies the amount of blue (luminosity) used in the background. 

Each a, b, c, x, y, and z parameter specified is preceded by a number in the range 0 through 1, in 
increments of 0.01. The following table gives the values needed to define the eight principle colors: 

Sample RGB/HSL Color Definition Values 

R G B Color H S L 

0 0 0 Black X X 0 
0 0 1 Blue .66 1 1 
0 1 0 Green .33 1 1 
0 1 1 Cyan .5 1 1 
1 0 0 Red 1 1 1 
1 0 1 Magenta .83 1 1 
1 1 0 Yellow .16 1 1 
1 1 1 White X 0 1 

X = don·t care (may be any value between 0 and 1) 

The following tables provide algorithms for explicitly defining the ranges of the parameters men­
tioned in the previous table for the Model 236 computer with color video. 

-23-



HSL Definition Algorithm 

parm.1 parm.2 parm.3 
COLOR SELECTED H RANGE S RANGE L RANGE 

BLACK don't care don't care < 0.25 
WHITE don't care <0.25 >= 0.25 

RED .00- .08 >= 0.25 >=0.25 
YELLOW .09- .24 >= 0.25 >= 0.25 

GREEN .25- .41 >= 0.25 >= 0.25 
CYAN .42- .58 >= 0.25 >= 0.25 
BLUE .59- .74 >= 0.25 >= 0.25 

MAGENTA .75- .91 >= 0.25 >= 0.25 
RED .92-1.00 >= 0.25 >= 0.25 

In the RGB color method, when N represents the largest-valued (most intense) color of the three 
color specifications, colors are selected as follows: 

RGB Definition Algorithm 

parm.1 parm.2 parm.3 
COLOR SELECTED RED RANGE GREEN RANGE BLUE RANGE 

BLACK <.25 or <N/2 <.25 or <N/2 <.25 or <N/2 
WHITE >=.25 and >=N/2 >=.25 and >=N/2 >=.25 and >=N/2 

YELLOW >=.25 and >=N/2 >=.25 and >=N/2 <.25 or <N/2 
GREEN <.25 or <N/2 >=.25 and >=N/2 < .25 or <N/2 

CYAN <.25 or <N/2 >=.25 and >=N/2 >= .25 and >= N/2 
BLUE <.25 or <N/2 <.25 or <N/2 >=.25 and >=N/2 

MAGENTA >=.25 and >=N/2 <.25 or <N/2 >=.25 and >=N/2 
RED >=.25 and >=N/2 <.25 or <N/2 <.25 or <N/2 

One final parameter, i, is needed. It is used to assign a pen number to the newly-defined color pair. 
Thus, the escape sequence for changing a color pair definition is: 

E C ~l: t,! <: 0 : 1 > iTI 1"1 a 1"1 b 1"1 C 1"1 x 1"1}' 1"1 Z < pen # > I 

where either a 0 or a 1 precedes the m parameter (selecting either RGB or HSL notation, respec­
tively), and n is one of the legal values from the tables. <pen#> is an integer in the range 0 thru 7 
which precedes the i parameter, and defines that pen number to be the color pair specified by the 
preceding a, b, c, x, y, and z parameters. Omitting any a, b, c, x, y, or z parameter causes a value of 
o to be assigned to the omitted parameter by default. Also, the background parameters can be 
specified before the foreground parameters. 

-24-



Examples 

EC&:V OITl la Ob Oc Ox ly Oz 5I 

This example re-defines pen 5 to specify red characters on a green background. (Note that 236 
computers with color video ignore the green background specification and assign a black one 
instead.) This example is equivalent to 

since omitted parameters (a, b, c, x, y, z) are given default values of O. 

EC&:~J llTl .BBa lb lc 3i OITl lc lx L' BI 

This example re-defines pen 3 to specify blue characters on a black background (HSL notation), 
and pen 6 to specify blue characters on a yellow background (RGB notation). This example 
illustrates how multiple pens can be defined on a single line using different notations. (Again, note 
that the Model 236 with color video will reject the background specification of pen 6, and will use 
black instead.) 

If you should specify color on color when setting up color definitions on the Model 236 computer 
with color video, you will find that the foreground color will remain as chosen and the background 
color will default to black. 

This example re-defines pen 5 to specify a black foreground and a black background, using the 
previous notation type. 

Note 
Supplying neither a foreground nor a background color when defin­
ing a color pair causes both the foreground and background to be 
black. 

·25· 



Configuring the ITE 
The Internal Terminal Emulator is designed so that the various ITE characteristics can be configured 
qUickly by displaying configure "menus" on the screen and then using system function keys to 
change the content of these menus. 

Configuration Function Keys 
To gain access to the configuration menus through the keyboard, press the function key CTI 
(labeled AIDS on the system console overlay). This causes the following softkey display to appear 
at the bottom of the screen: 

l····'ljiin;'N ....... . 11 •• ".;' •••••••• ___ J 

The function keys CD (tab/mrgn) and CD (FlexDisc) were covered in the section "Using the 
Internal Terminal Emulator" along with a brief discussion on the function key OQ (config). 
When you press CD (config) a new softkey display appears at the bottom of your screen. 

l................ .'jlfill" •••••••••••••• j 
'-----------

Pressing OQ (terminal) fills the display with the Terminal Configuration Menu which is covered 
next. 

Terminal Configuration Menu 
After pressing OQ (terminal) your display should look like this: 

Lansuase USASCII 
ReturnDef cR 

LocalEcho OFF 
XfTlitFnctn(A) NO 

TERMINAL CONFIGURATION 

CapsLocK OFF Ascii 8 Bit NO 
InhEolWrp(C) NO 

l.ii8Wi __ IiM 'iiilj,.nl.i "'iidlll- •••• 1 •••••• ,.1.11_44 ... 1.'4 

-26-



Description of Fields 
The TERMINAL CONFIGURATION menu contains a set of unprotected fields that you access 
using the ~ key. Note that all fields can be changed using function keys UJ (NEXT) and 
a=J (PREVIOUS) with the exception of ReturnDef which is changed using the function key 
OQ (DSPY FN). 

There are seven fields which can be changed using the function keys as defined in the next section. 
These fields are described as follows: 

ReturnDef 

LocalEcho 

CapsLoct, 

}(fllitFnctn(A) 

specifies the definition of the (ENTER) key (labeled RETURN key on the 
overlay). The default definition is an ASCII CR. The definition may consist 
of up to two characters. If the second character is a space, it is ignored and 
only the first character is used. 

Default: C R space 

specifies whether characters entered through the keyboard are both dis­
played on the screen and transmitted to the host computer. 

ON (EC!H, 1 L) 

Characters entered through the keyboard are both displayed on the screen 
and transmitted to the host computer. 

determines whether the ITE generates the full 128-characters ASCII set or 
only Teletype-compatible codes. 

ON (EC& t, 1 C) 

The ITE generates only Teletype-compatible codes: uppercase ASCII (OO-SF, 
hex) and DEL (7F, hex). Unshifted alphabetic keys (a-z) generate the codes 
for their uppercase equivalents. The {, I and} keys generate the codes for [, ""', 
and 1 respectively. The keys for generating ~ and' are disabled. 

OFF (EC!H, OC) 

The ITE generates the full 128-character ASCII set of codes. 

Default: OFF 

determines whether the escape code functions are executed at the ITE and 
transmitted to the host computer. 

YES (Ec~: S 1 A) 

The escape code sequences generated by control keys such as CTI and 
CD are transmitted to the host computer. If LocalEcho is ON, the 
function is also performed locally. 

NO (EC~: S OA) 

The escape code sequences for the major function keys are executed local­
ly but NOT transmitted to the host computer. 

Note that display functions will emit EC Z and EC Y to a host computer. 

Default: NO 

-27-



InhEolWrp(C) 

Language 

designates whether or not the end-of-Iine wrap is inhibited. 

NO (EcB: sOC) 

When the cursor reaches the right margin it automatically moves to the left 
margin in the next lower line (a local carriage return and line feed are 
generated). 

YES (E cB:slC) 

When the cursor reaches the right margin it remains in that screen column 
until an explicit carriage return or other cursor movement function is per­
formed (succeeding characters overwrite the existing character in that 
screen column). 

changes the character set on your keyboard to one of the following when 
you press function key CD or ~: 

USASCII (United States) 
SVENSK/SUOMI (Swedish/Finnish) 
FRANCAIS azM (French AZERTY1 layout with mutes) 
FRANCAIS qwM (French QWERTY layout with mutes) 
FRANCAIS az (French AZERTYl layout) 
FRANCAIS qw (French QWERTY layout) 
DEUTSCH (German) 
ESPANOL M (Spanish with mutes) 
ESPANOL (Spanish) 
KATAKANA (Japanese) 

The system console overlay works the same on all the keyboards listed. Dia­
grams of the previously mentioned keyboards can be found at the end of this 
article. 

Series 200 computers support two character sets which contains the special 
characters associated with all of the international languages. These character 
sets are: Extended Roman and KA TAKANA. The following charts show these 
character sets. Note that blank spaces in the chart are given the character hp; 
however, they have not been shown on the charts so that the left half of the 
chart or standard 7 -bit ASCII code could be shown as separate from the right 
half of the chart or 8-bit code. The 8-bit code can be accessed by configuring 
the field ASCII 8 Bit to YES. 

1 The AZERTY characters can be obtained only through a software configuration of the keyboard. Physical AZERTY keyboards or hardware are 
not available on Series 200 computers. 

-28-



COL BIT 
80 0 0 0 0 0 0 0 1 1 1 1 1 1 

1 11 7 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 I 1 

ROW BIT 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 o 1 

4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 H °L (SP) 0 @ p , - a A u P 
0 0 0 1 1 S °1 ! 1 A Q a q e .. .. 
0 0 1 0 2 s ~ " 2 B R b 0 e 1 " r 

0 0 1 1 3 [ 0, .. 3 C S c s 0 U f£ 
I " 

0 1 0 0 4 ~ 0 .. $ 4 D T d t a. .a. ! 
I 

0 1 0 1 5 ~ "Ie " 5 E U e u t;; e I I 
I 

0 1 1 0 6 'l Sy 8- 6 F If f v ~l 6 IZI I 

0 1 1 1 7 (l [. ~ 7 G W 9 ..... 
A, U :oe I n 

1 0 0 0 8 BS c ( a H x h 
, 

i a A H X 

1 0 0 1 9 Ii.r ~ ) 9 I Y i Y 
, 

~ e 'j 

1 0 1 0 10 Lr Sa .. · J Z j 
h 

:t( 0 I) · z 

1 0 1 1 11 v Ec + · K ( k { .. £ U 0 T , 
1 1 0 0 12 FF FS < L " 1 I A, a It , 
1 1 0 1 13 <it ~ - = M J m } § e 'I' 

I 
! 

1 1 1 0 14 ~ Its . > H " n .... 0 f3 
I 

1 1 1 1 15 Sz Us / ? 0 - 0 ,. [; u ~ 

Extended Roman Character Set 

-29-



COL BIT 

ROW BIT 
4 3 2 1 

a a 0 0 

a a a 1 

a a 1 0 

0 a 1 1 

0 1 0 0 

a 1 a 1 

a 1 1 0 

0 1 1 1 

1 0 a a 
1 a 0 1 

1 0 1 0 

1 a 1 1 

1 1 a 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

To use the Extended Roman Character Set, configure your TERMINAL CON­
FIGURATION menu to the language you want, ASCII 8 Bit should be set to 
YES and your terminal (ITE) should be in the romote mode. All characters for 
the various languages mentioned in the menu are now available to you except 
KATAKANA. 

80 0 0 0 0 0 0 0 1 1 11 1 1 1 1 1 
7 0 0 a a 1 1 1 1 a o a 0 1 1 1 1 
6 a a 1 1 a a 1 1 a a 1 1 a a 1 1 
5 0 1 a 1 a 1 a 1 0 1 a 1 a 1 0 1 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

a N DL 0 @ p , 
p - ., =. u 

1 S 01 ! 1 A Q a q 0 
., 'f " .. 

2 s ~ II 2 B R b r -( '\I ;i .. r 

3 E ~ I 3 C S c S J 
., f 'e .. 

4 ~ Dot $ 4 D T d t , l: ~ 
"" 

5 ~ '\ " 5 E U e u . if t .1 

6 Il Sy 8. 6 F V f ., tJ - 3 v -
7 (I. E. 

, 
7 G W "7 '1= ~ .:; 9 w 

8 8s c: ( 8 H X h x .( , ~ I) 
N 

9 tt, 'k ) 9 I Y i Y 0) 'T ) I" 
10 L, Sa * · J 2 j z :r:: :J I) v · 
11 v Ec + · K [ k { ,.. , t: c T , 
12 FF FS , < L ¥ 1 I to :,. J ? 

13 <it \ - = M J m } .:1 A ..... :,. 

14 ~ Its > H " .... :I t! iii " . n 

15 s:r ~ / ? 0 - 0 I '!.I ~ "=? 
0 lD 

KA TAKANA Character Set 

To use the KATAKANA Character Set, configure your TERMINAL CON­
FIGURATION menu to the language KATAKANA, ASCII 8 Bit should be set 
to YES and your terminal (ITE) should be in the romote mode. To type 
Japanese ASCII characters, press ( CTRL) -~. If you want KATAKANA 
characters, press ( CTRL) - CJ. 

-30-



ASCII 8 Bit 

For the French keyboard layouts, the AZERTY2 and QWERTY designations 
refer to the location of the A, Z, Q, and W keys as follows: 

AZERTY: Row 3 = A Z E R T Y 
Row 2 = Q S 0 (etc.) 
Row 1 = W X C (etc.) 

QWERTY Row 3 = Q W E R T Y 
Row 2 = AS 0 
Row 1 = Z X C (etc.) 

For the French and Spanish keyboard layouts, the mutes designation refers to 
the manner in which certain accent character keystrokes are handled (A and·· 
on the French layout and - on the Spanish). If the mutes are enabled, those 
keystrokes will generate the particular accent character but will NOT move the 
cursor. If you then type an applicable vowel, the vowel will appear in the same 
character position as the accent and the cursor then moves to the next column 
(if you type any character other than an applicable vowel, however, the char­
acter will replace the accent character). 

transmitts from full set of 8-bit codes when enabled (YES) and transmits 
only codes less than 128 when disabled (NO). 

Values: YES (Ec!U, 1 I) = 8-bit codes. 
NO (Edd, 0 I) = Standard 7 -bit codes. 

-31-



Changing the Fields 
To change the fields in the display, press the ~ key until the cursor is located under the field 
you wish to change. Next, use the following function keys to change the state of the field. 

SAl,lE CFG 

NE)<T 

PREl,1 I DUS 

DEFAULT 

DSPY FN 

confis 

saves the fields on the configuration menu which you have altered. 

changes the setting of the field you are presently in to the next setting in 
that field. For example, if you press ~ until you are located at the field 
LocalEcho OFF and then press OQ the LocalEcho field changes to ON. 

changes the setting of the field you are presently in to the previous setting in 
that field. For example, if you press ~ until you are located at the field 
LocalEcho ON and then press CJLJ the LocalEcho field changes to OFF. 

causes the fields in the menu to be filled with their default value. The 
default values are as shown in the TERMINAL CONFIGURATION display 
at the beginning of this section. The only exception is the "language" field 
it defaults to the language option shipped with your system. 

enables and disables the display functions mode. Pressing the key once en­
ables the display functions mode and pressing it a second time disables it. 
When enabled * appears in the function key label box. You use the display 
function mode for entering ASCII control characters in the ReturnDef field. 
Note that this implementation of display function is separate from that which is 
enabled/disabled via the mode selection keys. Enabling or disabling display 
functions mode using this function key does NOT alter the effect of the DIS­
PLAY FCTNS mode selection key (and vice versa). 

removes the menu from the screen and changes the function key labels to 
the following: 

l................ ""lIiiOOil •••••••••••• j 
------

-32-



ITE Escape Sequences 
Several Internal Terminal Emulator (ITE) keyboard functions can be activated or controlled by a 
remote computer by use of escape-code sequences. The effect is identical to using non-ASCII keys 
on the ITE keyboard. Escape sequences consist of the escape-code character followed by one or 
more visible (non-control) ASCII characters. 

The sequences listed in this section are recognized and executed by the ITE whether they are 
received from the data communcation link or from the keyboard, although the keyboard is seldom 
used for escape sequences. If an illegal or unrecognized sequence is received, the ITE ignores the 
message and all subsequent data until one of the following characters is received: @, A thru Z, [, """ 
", _, carriage-return, escape-code or any ASCII 7 -bit code less than the character space. 

Sequence Types 
There are two general categories of escape sequences. The two-character ITE control sequences 
are used primarily for ITE, screen, and cursor control. Most of these sequences are eqUivalent to 
keyboard operations that involve a single keystroke or the simultaneous pressing of two keys. 

The extended escape sequences consist of the escape-code character followed by at least two 
subsequent characters. They are used, either for functions that are not included in the two­
character sequences, or for sequences whose inherent complexity requires two or more characters 
in addition to the escape-code in order to define the operation. Absolute and relative cursor 
addreSSing are examples of operations that require longer control sequences. 

Escape Sequences for ITE Control 

Escape 
Code Function 

Ec1 Set tab 
Ee2 Clear tab 
Ee3 Clear all tabs 
Eel! NOT IMPLEMENTED (Set left margin) 
Ee5 NOT IMPLEMENTED (Set right margin) 
Ee8 NOT IMPLEMENTED (Clear all margins) 
Ee @ NOT IMPLEMENTED (Makes the terminal program 

wait approximately one second.) 
EeA Cursor up 
EeB Cursor down 
EeC Cursor right 
EeD Cursor left 
EeE Hard reset (power on reset of ITE) 
EeF Cursor home down 
EeG Move cursor to the left margin 
EeH Cursor home up 
EcI Horizontal tab 
EeJ Clear screen from cursor to the end of memory. 

-33-



Escape Sequences for ITE Control (continued) 

Escape 
Code Function 

EeK Clear line from cursor to end of line 
Eel Insert line 
EeM Delete line 
EeP Delete character 
EeO Start insert character mode 
EeR End insert character mode 
EeS Roll up 
EeT Roll down 
EeU Next page 
Eel.! Previous page 
EeW NOT IMPLEMENTED (Format mode on) 
E C }< NOT IMPLEMENTED (Format mode off) 
EeY Enables display functions mode 
EeZ Disables display functions mode 
Ee [ NOT IMPLEMENTED (Start unprotected field) 
Ee] NOT IMPLEMENTED (End unprotected/transmit-only field) 
E'" e NOT IMPLEMENTED (Primary terminal status request) 
Ee \ Sense cursor position(relative) 
Eea Sense cursor position (absolute) 
Eeb NOT IMPLEMENTED (Unlock keyboard) 
Eec NOT IMPLEMENTED (Lock keyboard) 
Eed NOT IMPLEMENTED (Transmit a block of text to computer) 
Eef NOT IMPLEMENTED (Modem disconnect) 
Ee 9' Soft reset (of ITE) 
Eeh Cursor home up. 
Ee i Backtab 
EeJ NOT IMPLEMENTED (Begin User Key Definition mode) 
Ed; NOT IMPLEMENTED (End User Keys Definition mode) 
Ee 1 NOT IMPLEMENTED (Begin Memory Lock mode) 
EefTl NOT IMPLEMENTED (End Memory Lock Mode) 
EeP Default value for softkey OD 
EeCJ Default value for soft key o::J 
Ee r Default value for softkey ~ 
Ees Default value for softkey OLJ 
Eet Default value for softkey CJLJ 
Eeu Default value for softkey o=J 
Eel) Default value for softkey ~ 
Eel,1 Default value for softkey CJL) 
Eez NOT IMPLEMENTED (Initiate terminal self test) 
E ~ e NOT IMPLEMENTED (Secondary terminal status request) 

-34-



Extended Escape Sequences 

Escape Code 
Sequence Function 

Ec&a <col>c <row>Y Moves the cursor to column "col" and screen row "row" or 
the screen (screen relative addressing). 

EC& a <col> c <row>R Moves the cursor to column "col" and row "row" in memory 
(absolute addressing). 

Ec&a ± <col>c ± <row>Y Moves the cursor to column "col" and row "row" (on the 
screen) relative to its present position ("col" and "row" are 
signed integers). A positive number indicates right or down­
ward movement and a negative number indicates left or up­
ward movement. 

Ec&a ± <col>c ± <row>R Moves the cursor to column "col" and row "row" (on the 
screen) relative to its present position ("col" and "row" are 
signed integers). A positive number indicates right or down­
ward movement and a negative number indicates left or up­
ward movement. 

Ec&qOL NOT IMPLEMENTED (Unlock configuration) 

EC&q 1 L NOT IMPLEMENTED (Lock configuration) 

Ed: d <char> Selects the display.enhancement indicated by <char> to be­
gin at the present cursor position. <char> can be @ or A thru 
O. 

Ec&f«x>A AUTO LF enable: x= 1; disable: x=O 

Ec&K<x>B NOT IMPLEMENTED (BLOCK enable: x= 1; disable: x=O) 

Ec~:K<x>C Caps Lock enable: x= 1; disable: x=O 

EC & K <x> I ASCII8Bits enable: x = 1; disable: x = 0 

Ec&K<x>J NOT IMPLEMENTED (FrameRate 50 Hz : x= 1; 60 Hz 
x=O) 

Ec&K<x>L LocalEcho enable: x= 1; disable: X= 0 

Ec&K<x>M NOT IMPLEMENTED (MODIFY ALL enable: x= 1; disable: 
x=O) 

Ec&K<x>N NOT IMPLEMENTED (SPOWLatch enable: X= 1; disable: 
x=O) 

Ec& f( <x> P Caps Mode is primarily used as a typing convenience and 
affects only the 26 alphabetic keys. When it is enabled, all 
unshifted alphabetic keys generate uppercase letters and all 
shifted alphabetic keys generate lowercase letters. 

enable: x = 1; disable: x = 0 

Ec&K<x>R REMOTE enable: X= 1; disable: x=O 

-35-



Escape Code 
Sequence 

Ec&s<x>A 

Ec&s<x>8 

EC&S<X>C 

Ec&s<x>D 

EcB:s<x>G 

Ec&s<x>H 

EC&W 12F 

EC&W 13F 

Ec*d <parameters> 

EC* 5 <parameter> • 

EC&j < x > 

Ec&f <attribute>a 
<key>k 
<labellength>d 
<string length>L 

Extended Escape Sequences (continued) 

Function 

xmitFnctn(A) enable: x= 1; disable: x=O 

NOT IMPLEMENTED (SPOW(B) enable: X= 1; disable: 
x=O) 

InhEoIWrp(C) enable: X= 1; disable: x=O 

NOT IMPLEMENTED (Line/Page(D) enable: X= 1; disable: 
x=O) 

NOT IMPLEMENTED (lnfHndShk(G) enable: x= 1; disable: 
x=O) 

NOT IMPLEMENTED (lnh DC2(H) enable: x = 1; disable: 
x=O) 

Turns on the display window (top 24 rows) 

Turns off the display window 

List of <parameters> for display control: 

E Turns on alphanumeric display; 

F Turns off alphanumeric display. 

When terminating a string of escape sequences with these 
parameters use a capital letter. 

Read device I.D. Status is parameter number l. 

Enables and disables the function keys (fl thru f8). If x 
equals: 

A Display the Modes set of function key labels, 

B Enable the User function keys. (The user key labels are 
displayed. ) 

@ Remove the function key labels from the screen. The 
User function keys, however, are still active. 

Defines the function keys. Information on how this is done 
can be found in the function key group section of this manual 
under the definition of user keys. 

If an escape sequence is not recognized, the terminal ignores subsequent characters until ASCII 
decimal characters 0 thru 31 or 64 thru 95 is received, terminating the sequence. Note that EC will 
terminate the old sequence and start a new one. 

·36· 



Keyboard Diagrams for Other Languages 
This section shows diagrams of the types of keyboards which are available to the Series 200 user. 
The keyboard option you now have can be configured to anyone of the languages by use of the 
TERMINAL CONFIGURATION menu previously mentioned in this article. 

To change to another keyboard language use the terminal configuration menu and select the 
Language field you want. Then change the ASCII 8 Bit field to YES. Next, save the changed 
configuration menu. Note that the languages accessed through the terminal configuration menu are 
not available in the vi editor. The vi editor only uses the first 128 ASCII characters of your systems 
particular character set. For more information on your keyboard, read the appropriate manual sent 
with your system. 

You will notice as you look at the keyboards that a majority of the character key and numeric key 
labels have changed. To use your keyboard effectively in anyone of these languages, you will have 
to re-label the key caps. 

DISPLAV rlUM~ DUMP ANY 
feTNS ALPliA GRAPHICS CHAR 

!3:J13:J!3:JDWDW ~~IGRAPHICsl~ 
f, 12 '3 14 OISPLAYFCTNS 

UNSHlfTEC 

CLR seR SHTAB CLATAB SOFT RESET 

!3:JC5:J[2:JC5:JQW SHIFTUS/KATAONLV 

~~~~ 
fs Is 17 fa

SVENSK/SUOMI (Swedish/Finnish)

-37-

f, f, f, f,

NEIlTPAGf

{Im$;,~l~~

"" SHIFT
UNSHlfTED

SHIFTUS/KATAQt.lLY

DISPLAY DUMP 00'" ANY
fCTNS ALPHA GRAPHICS CHAR

~~IGAAPHlCsl~
DISPLAYfCTNS

CLASCR SET TAl CLRTAI SOFT RESET

~~~~ 
IREAK 

FRANCAIS azM (French AZERTY3 layout with mutes is not available) 

f, f, 

IIOI.LDOWN NElTPAGE 

G:'f~~FlECALLI 
PREVPAGE 

f, f, 

SHIFT US/KATAONLY ..... 
L::J~ 

c:Ji 
[CONTlNU'] 

DISPLAY DUMP OOMP ANY 
FCTNS ALPHA GRAPHICS CHAR 

~~IGRApttlcsl~ 

CLASCII 

\¥ 

FRANCAIS qwM (French QWERTY layout with mutes) 

3 The AZERTY characters can be obtained only through a software configuration of the keyboard. Physical AZERTY keyboards or hardware are 
not available on Series 200 computers. 

-38-



DlSPt.AY DUMP DUMP ANY 
fCTNS ALPHA GRAPHICS CHAR 

[?:~::JL;~~~_~J~ ~~IGRAPHICsl~ 
PREVPAQE 

CLIITAB SOfT RESET 

~~~~ 

FRANCAIS az (French AZERTY4 layout is not available)

DISPLAY DUMP DUMP ANV
FIOLLOOWN Fcms ALPHA GRAPHICS CHAR

c.:::I:J c.:::I:J r;:T.£lC~3~ ~~IGRAPHICsl~
PREVPAGE DISPlAY FCTNS

Q.RTAB SOFT RESET

~~~~ 

FRANCAIS qw (French QWERTY layout) 

4 The AZERTY characters can be obtained only through a software configuration of the keyboard. Physical AZERTY keyboards or hardware are 
not available on Series 200 computers. 

-39-



DISPlAY DUMP DUMP ANY 
NUT PAGE FeTNS ALPHA GRAPHICS CHAR 

CD CD [2§,.:~J[~2~."::J~ ~~IGAAPHICsICED 
PAEVPAGE 

CLASCR 

S+lFTUSfKATAONlY 

DEUTSCH (German) 

DISPLAY DUMP DUMP ANY 
FeTNS ALPHA GRAPHICS CHAR 

CD CD 
CLRTM SOFTFlESET 

SHIFTIJS/KATAONlY 

~~~~ 

ESPANOL M (Spanish with mutes)

-40-

ESPANOL (Spanish)

KATAKANA (Japanese)

-41-

HARD RESET

G!
c::Ji
a

UNSHlfTED

CTRL

DISPLAV DUMP DUMP ANY
FCTNS ALPHA GRAPHICS CHAR

~~IGRAPHICsl~

\¥

DlSPLAV DUMP DUMP ANY
FCTNS ALf'lM GRAP",ICS C",AR

~~IGRAPHICsl~
DISPLAY FCTNS

CLRTAB

~~~~ 



Notes 

-42-



Table of Contents 

HP-UX and the HP 9000 Model 520 as System Console 
The Keyboard ....................................................................................................................... 2 

Alphanumeric Group ..................................................................................................... 2 
Numeric Pad Group ...................................................................................................... 2 
Display Control Group ................................................................................................... 2 

Setting and Clearing Margins .................................................................................. 2 
Setting and Clearing Tab Stops ............................................................................... 3 
Cursor Control ....................................................................................................... 3 

Edit Group .................................................................................................................... 6 
Insert Character Mode ............................................................................................ 7 

Function Key Group ...................................................................................................... 7 
Modes .................................................................................................................... 7 
AIDS ...................................................................................................................... 8 
User Keys ............................................................................................................... 9 
User-definable Keys ............................................................................................... 9 

The Display ........................................................................................................................ 11 
Memory Addressing Scheme ....................................................................................... 11 

Row Addressing. '" ............................................... " .............................................. 11 
Column Addressing .............................................................................................. 11 

Cursor Sensing ............................................................................................................ 12 
Absolute Sensing .................................................................................................. 12 
Relative Sensing ................................................................................................... 12 

Cursor Positioning ....................................................................................................... 12 
Screen Relative Addressing .......................................................................................... 13 

Example .............................................................................................................. 13 
Absolute Addressing .................................................................................................... 13 

Example .............................................................................................................. 14 
Cursor Relative Addressing .......................................................................................... 14 

Example .............................................................................................................. 15 
Combining Absolute and Relative Addressing ............................................................... 15 
Display Enhancements ................................................................................................ 15 
Raster Control ............................................................................................................. 16 
Accessing Color ......................................................................................................... 16 

Selecting a Pen (Color Pair) .................................................................................. 17 
Changing Pen Definitions ..................................................................................... 1 7 
Examples .......... " ...... '" ........................................................................................ 19 

Controlling Configuration and Status ................................................................................... 20 
Re-configuring the Terminal. ........................................................................................ 20 
Sending Terminal Status .............................................................................................. 21 

Primary Terminal Status ....................................................................................... 21 
Secondary Terminal Status ................................................................................... 23 





HP-UX and the HP 9000 Model 520 
As System Console 

The system console is the terminal to which HP-UX sends system loader messages and soft system 
error messages. like other terminals on an HP-UX system, it is also used for general system access 
(such as logging in, running programs, and entering data). The system console: 

• must be connected to the computer via select code O. 
• must not be connected via a modem. 

• must have a device file named Idevlconsofe. 

Each system must have a system console. When HP-UX is run on the HP 9000 Model 520, the 
computer's keyboard and display act as the system console. This article describes the HP 9000 
Model 520 as a terminal and as system console. It also discusses the methods of accessing the 
"terminal's" features: from the keyboard and from a program or command (via escape sequences). 

HP-UX treats your HP 9000 Model 520 as six independent devices. The first device is a 32-bit 
mini-computer composed of a central processing unit, an I/O processor and memory. The second, 
third, fourth and fifth devices are: the built-in thermal printer, the built-in flexible disc drive, the 
built-in Winchester disc drive, and the graphics display. The sixth device is the computer's keyboard 
and display. This last device is the terminal and system console discussed in this article. 

The display portion of the "terminal" consists of a display screen and display memory. The display 
cursor (a blinking underscore on the screen) indicates where the next character entered appears. As 
you enter characters, each is displayed at the cursor position, the ASCII code for the character is 
recorded at the associated position in display memory, and the cursor moves to the next character 
position on the screen. As the screen becomes full, newly entered data causes existing lines to be 
forced off the screen. Data lines forced off the screen are still maintained in display memory and can 
subsequently be moved back onto the screen. The size of display memory is determined by the 
HP-UX configuration. Once the display memory is full, additional data entered causes the older 
data in display memory to be lost. 

Throughout this article, the sequence "",E represents the escape character. Supplying an 
invalid escape sequence causes that sequence to be ignored. Escape sequences with optional or 
required parameters (referred to as "parameterized escape sequences") must be terminated by an 
upper case character before the sequence is implemented. 

-1-



The Keyboard 
The Model 520' s keyboard is divided into major functional groups: the alphanumeric group, the 
numeric pad group, the display control group, the edit group, and the function group. Each 
function group is discussed in the sections below, with an emphasis on features and their access. 

Alphanumeric Group 
This group of keys is similar to a standard typewriter keyboard and consists of the alphabetic, 
numeric, and symbol keys. Included are lower and uppercase alrl:abetic characters, ASCII control 
codes, punctuation characters, and some commercial symbols. 

Numeric Pad Group 
The numeric group of keys is located to the right of the alphanumeric keys. The layout of the 
numeric key pad is similar to that of a standard office calculator. These keys are convenient for 
high-speed entry of large quantities of numeric data. 

Display Control Group 
The display control group consists of the keys that control the location of the cursor on the display. 
Each display control key and its function is described in the sections that follow. The escape code 
for accessing each display control feature is provided with each display control key. Some display 
control features can only be accessed via an escape sequence; no key is associated with the feature. 
The escape code for such features is also proVided in the sections that follow. 

Setting and Clearing Margins 
You can redefine the left and/or right margin. These margins affect the cursor positioning for certain 
functions (such as carriage-return, home up, home down, etc.) and establish operational bounds 
for the insert character and delete character functions. In addition, the left margin is always an 
implicit tab stop. Data to the left of the left margin or to the right of the right margin is still accessible. 

When you are entering data through the keyboard and the cursor reaches the right margin, it 
automatically moves to the left margin in the next lower line. When you press ( RETURN) the cursor 
moves to the left margin in the current line if auto line feed mode is disabled or to the left margin 
in the next lower line if auto line feed mode is enabled. 

Margins can be set with the AIDS keys (discussed in a later section) or with escape sequences: 

",E4 - set the left margin at the current cursor location. 

"",E5 - set the right margin at the current cursor location. 

",E9 - clear both margins; by default the left margin becomes 1, the right margin becomes 
80. 

Attempting to set the left margin to the right of the right margin (or the right margin to the left of 
the left margin) causes the new margin to be rejected; the system beeps to notify you that the 
new margin was not accepted. 

-2-



Setting and Clearing Tab Stops 
You can define a series of tab stops to which you can move the cursor using the tab and back tab 
functions shown below. From the keyboard you set and clear tab stops using the ( TAB SET) and 
( TAB CLEAR) keys. To set a tab stop, move the cursor to the desired location and press 
( TAB SET ). To clear a tab stop, move the cursor to the tab stop position and press ( TAB CLEAR). 
Additionally, you may use the functions provided with the AIDS keys (discussed in a later 
section) to set and clear tab stops. 

Note that the left margin is always an implicit tab stop and cannot be cleared. The escape 
sequences to set and clear tab stops are: 

""El - set a tab stop at the current cursor position. 

""E2 - clear a tab stop previously set at the current cursor position. 

""E3 - clear all tab stops currently set. Note that this feature is available only from softkeys 
(as are the margin functions described above). 

Cursor Control 
Several keys exist on keyboard for changing the location of the cursor: 

Escape 
Key Sequence Feature 

CD ",EA Move the cursor up one row in the current column position. Holding the 
key down causes the cursor to move continuously, row by row, until the 
key is released. When the cursor is in the top row of the screen, moving 
the cursor up actually moves the cursor to the same column position in 
the bottom row of the screen. 

CD ",EB Move the cursor down one row in the current column position. Holding 
the key down causes the cursor to move continuously, row by row, until 
the key is released. When the cursor is in the bottom row of the screen, 
moving the cursor down actually moves the cursor to the same column 
position in the top row of the screen. 

CQ ",EC Move the cursor right one position in the current line; if the current 
position is the right margin, the cursor is moved to the left margin of the 
next line. Holding the key down causes the cursor to move continuous-
ly, column by column, until the key is released. 

~ ",ED Move the cursor left one position in the current line; if the current 
position is the left margin, the cursor is moved to the right margin of the 
previous line. Holding the key down causes the cursor to move con-
tinuously, column by column, until the key is released. 

( SHIFT)~ ",EH or Home up: moves the cursor to the left margin in top row of the 
",Eh screen and rolls the text in display memory down as far as possible so 

that the first line in display memory appears in the top row of the 
screen. 

( SHIFT)CQ ",EF Home down: moves the cursor to the left margin in the bottom line 
of the screen and rolls the text in display memory up as far as 
necessary so that the last line in display memory appears immediate-
ly above the cursor position. 

-3-



Escape 
Key Sequence Feature 

none ",EG Move the cursor to the left margin. 

OK) ",EI Move the cursor forward to the next tab stop. 

e SHIFT)OK) "'Ei Move the cursor backwards to the previous tab stop. 

(ROLL tJ ",ES Roll the text in display memory up one rowan the screen. The top 
row rolls off the screen, the remaining data rolls up one line on the 
screen, and a new line of data rolls from display memory into the 
bottom line of the screen. When the key is held down, the text 
continues to roll upward until the key is released or until the final line 
of data in display memory appears in the top row of the screen. In 
the latter case, pressing or continuing to press down the key has no 
further effect. The roll up and roll down functions are shown in the 
illustrations at the end of this section. 

(ROLL ~) ",ET Roll the text in display memory down one rowan the screen. The 
bottom row rolls off the screen, the remaining data rolls down one line 
on the screen, and a new line of data rolls from the display memory into 
the top line of the screen. When the key is held down, the text continues 
to roll down until the key is released or until the first line of data in 
display memory appears in the top row of the screen. In the latter case, 
pressing or continuing to press down the key has no further effect. The 
roll up and roll down functions are shown in the illustrations at the end 
of this section. 

( SHIFT) (ROLL t) ",EU Roll the text in display memory up so that the next page (see the 
explanation below) of data replaces the current page on the screen. If 
the key is held down, the operation is repeated until the key is released 
or until the final line in display memory appears in the top line of the 
screen. In the latter case, pressing or continuing to hold down the key 
has no further effect. 

The cursor is placed at the left margin, at the top row of the display. 

( SHIFT )(ROLL n ",EV Roll the text in display memory down so that the previous page (see the 
explanation below) of data replaces the current page on the screen. If 
the key is held down, the operation is repeated until the key is released 
or until the first line in display memory appears in the top line of the 
screen. In the latter case, pressing or continuing to hold down the key 
has no further effect. 

The cursor is placed at the left margin, at the top row of the display. 

-4-



The data in display memory can be accessed (displayed on the screen) in blocks that are known as 
"pages". A page consists of 24 lines of data. The current page is that sequence of lines which 
appears on the screen at any given time. The previous page is the preceding 24 lines in display 
memory. The next page is the succeeding 24 lines in display memory. This concept, along with the 
concept of rolling data through the display screen and memory, are shown in the following illustra­
tions. 

A (J B :J 
MEMORY MEMORY 

DISPLAY DISPLAY 
SCREEN SCREEN 

MEMORY 

tJ 
MEMORY 

t) 
ROLL UP ROLL IJOWN 

The "Roll" Data Functions 

LINE 1 LINE 1 

r-----' 
24 { DISPLAY 

24 { 
I PREVIOUS 

t 
LINES SCREEN LINES PAGE I DISPLAY CONTROL 

I DISPLAY MEMORY 

{ 
48 LINES 

I 80 CHARACTERS/LINE 
24 { NEXT I 24 DISPLAY 

LINES I PAGE I LINES SCREEN 
L _____ .J 

LINE 48 LINE 48 

Previous Page and Next Page Concepts 

-5-



Edit Group 
The edit group consists of the keys that allow you to modify the data presented on the screen. 
Currently, however, the edited data cannot be read back by the system. Typically, these features 
are used to modify data presented by programs. For example, the vi text editor program uses these 
features. 

You can edit data on the screen by simply overstriking the old data. In addition, the following edit 
keys and escape sequences may be used: 

Escape 
Key Sequence Function 

( CLEAR SCN ) ",EJ Removes from display memory, all characters from the current location 
of the cursor to the end of display memory. 

( CLEAR LINE ) ",EK Removes from display memory, all characters from the current location 
of the cursor to the end of the current line. 

(INS LN) ",EL The text line containing the cursor and all text lines below it roll down-
ward one line, a blank line is inserted in the screen row containing the 
cursor, and the cursor moves to the left margin of the blank line. Hold-
ing the key down causes the operation to be repeated until the key is 
released. 

(DEL LN) ",EM The text line containing the cursor is deleted from display memory, all 
text lines below it roll upward one row, and the cursor moves to the left 
margin. Holding the key down causes the operation to be repeated until 
the key is released or until there are no subsequent lines of text remain-
ing in display memory. In the latter case, pressing or continuing to hold 
down this key has no further effect. 

( DEL CHR ) ",EP The cursor remains stationary while the character at the current cursor 
location is deleted. All characters between the cursor and the right 
margin move left one column and a blank moves into the line at the 
right margin. 

This function is meant to be used within that portion of the screen 
delineated by the left and right margins. If the cursor is positioned to the 
left of the left margin, the delete character function works as previously 
described. If the cursor is positioned beyond the right margin, the delete 
character function affects those characters from the current cursor posi-
tion through the right boundary of the screen. 

If the key is held down, the terminal continues to delete characters until 
either the key is released or no characters remain between the cursor 
position and the right margin. In the latter case, pressing or continUing 
to hold down this key has no further effect. 

( INS CHR ) ",-t:Q Turn on the insert character mode (see the description that follows). 

( INS CHR ) ",ER Turn off the insert character mode (see the description that follows). 

-6-



Insert Character Mode 
When the "insert character" editing mode is enabled, characters entered through the keyboard or 
received from the computer are inserted into display memory at the cursor position. Each time a 
character is inserted, the cursor and all characters from the current cursor position through the right 
margin move one column to the right. Characters that are forced past the right margin are lost. 
When the cursor reaches the right margin, it moves to the left margin in the next lower line and the 
insert character function continues from that point. 

The edit function is meant to be used within that portion of the screen delineated by the left and 
right margins. If the cursor is positioned to the left of the left margin, the insert character function 
works as previously described. If the cursor is positioned beyond the right margin, however, the 
insert character function affects those characters between the current cursor position and the right 
boundary of the screen. In such a case, when the cursor reaches the right boundary of the screen, it 
moves to the left margin in the next lower line and the insert character function continues from that 
point as described in the previous paragraph. 

When the insert character mode is enabled (and softkey labels are displayed), the characters I Care 
displayed between the fourth and fifth function key labels. These characters are displayed to remind 
you that you are in the insert character mode. 

Function Key Group 
Accross the top right of the keyboard are 16 keys labeled ~ through GL]D. HP-UX recog­
nizes only the first 8 keys, E® through ~ , as function keys. The functions performed by 
these keys change dynamically as you use the terminal. At any given time the applicable 
function labels for these keys appear across the bottom of the display screen. However, soft­
keys are not supported by HP-UX (softkeys are those keys physically located on the display). 

Modes 
When you press the "MODES" key GL1!), the eight ftinction keys are redefined. Pressing a 
redefined key allows access to one of the "modes" described in the following sections. The 
labels for the redefined keys are shown below (keys without labels are undefined): 

E® (LJ!) ~ Q!) ~ (LJD (i:=:EJ C@ 
REMOTE DISPLAY AUTO 

MODE FUNCT LF* 

You may use these function keys to enable and disable various terminal operating modes. Each 
defined mode selection key alternately enables and disables a particular mode. When the mode is 
enabled, an asterisk (*) appears in the associated key label on the screen (for example, auto line 
feed mode is enabled in the key menu above). 

When the remote mode is enabled and a key is pressed, the terminal transmits the associated 
ASCII code to HP-UX. In local mode (remote mode is disabled), when an alphanumeric key is 
pressed the associated character is displayed at the current cursor position on the screen (nothing is 
transmitted to HP-UX). 

-7-



When the auto line feed mode is enabled, an ASCII line feed control code is automatically 
appended to each ASCII carriage return control code generated through the keyboard. ASCII 
carriage return control codes can be generated through the keyboard in any of the following ways: 

• By pressing either ( EXECUTE) or ( RETURN) (HP-UX treats these keys identically). 

• By simultaneously pressing the keys ( CTRL) and CD . 
• By pressing any of the user keys (~ through ~), provided that a carriage-return 

code is included in the particular key definition. 

When the display functions mode is enabled, the terminal operates as follows: 
• In local mode, it displays ASCII control codes and escape sequences but does not execute 

them. For example, if you press ~, the terminal displays ",ED on the screen but does 
not move the cursor one character to the left. 

• In remote mode, it transmits ASCII control codes and escape sequences but does not 
execute them locally. For example, if you press (ROLL n , the terminal transmits ",ES but 
does not perform the "roll up" function. If local echo is enabled (ON) then the ",ES is also 
displayed on the screen. Local echo specifies that the character is not only transmitted, but 
displayed on the terminal as well. 

These same mode selection functions can be accessed via the escape sequences: 

",E&k <x>R - when x is 0, the remote mode is off; when x is 1, the remote mode is on. 

",E&k <x>A - when x is 0, auto line feed mode is off; when x is 1, auto line feed mode is 
on. 

",EY 

AIDS 

- enables display functions; when enabled, all printing and non-printing 
characters are displayed. 

- disables display functions; when disabled, only printing characters are 
displayed. 

When you press the AIDS key G:LJ!J, another menu is displayed, shOWing a single, defined key 
(the MARGINS/TABS key). When this key is pressed, the eight function keys become general 
control keys that you use for setting and clearing margins and tabs from the keyboard. Pressing 
one of the defined keys causes the terminal to issue the appropriate escape sequence for the 
function selected. These escape sequences and their function are discussed with the Display 
Control Group, earlier in this section. 

Note that the MARGINS and TABS keys only send their associated escape sequences to 
HP-UX when display functions are enabled and when the A Strap is set (discussed later in this 
article). If these conditions are not met, the escape sequence is executed locally but is not sent 
to HP-UX. 

-8-



User Keys 
When you press the USER KEYS key ~ , the eight function keys display the user defined key 
labels. In the following section ("User-definable Keys"), the function of the user keys and the 
procedure for defining them is described. To remove the user key labels from the screen (while 
still retaining their defined functions), press ~ (the AIDS key) while holding the ( SHIFT) key 
depressed. 

The USER KEYS key always toggles between displaying the current key labels and the user key 
labels. 

User-definable Keys 
The eight function keys (~ through ~), besides performing the terminal control func­
tions described above, can be defined by a program. In this context, "defined" means: 

• You can assign to each key a string of ASCII alphanumeric characters and/or control codes 
(such as carriage return or line feed). 

• You can specify each key's operation attribute: whether its key definition is to be executed 
locally at the terminal, transmitted to the computer, or both. 

• You can assign to each key an alphanumeric label (up to 16 characters) which, in user keys 
mode (Le. when the USER KEYS key ~ is pressed), is displayed across the bottom of 
the screen. 

The definition of each user key may contain up to 80 characters (alphanumeric characters, ASCII 
control characters, and explicit escape sequence characters). 

To define a user-definable key, enter the escape sequence: 

\E&f <attribute><Key><label len~th><strin~ len~th><label><strin~> 

where < at t rib ute:> is a two character combination from the list Oa, la, or 2a. The default 
value for <: at t rib ute:> is 0 a. The attribute character specifies whether the definition 
of the particular user key is to be: 

a. Treated in the same manner as the alphanumeric keys (Oa). 

If the terminal is in local mode, the definition of the key is executed locally. If the 
terminal is in remote mode and local echo is disabled (OFF), the definition of 
the key is transmitted to the computer. If the terminal is in remote mode and 
local echo is enabled (ON), the definition of the key is both transmitted to the 
computer and executed locally. 

b. Executed locally only (la). 

c. Transmitted to the computer only (2a). 

When the transmit-only attribute (2a) is deSignated, the particular user key has 
no effect unless the terminal is in remote mode. A transmit-only user key 
appends the appropriate terminator to the string (either carriage-return or car­
riage-return/line feed, depending on the state of Auto Line Feed). 

<: ~( e }':> is a two character identifier specifying the key to be defined. The key is 
specified by a value in the range 1k through 8k (lk is the default). For example, to 
specify the fifth user key, enter 5k for < f( e}' :>. Note that this differs from the physical 
key labels on the HP 9000 Model 520's keyboard (they are labeled 0 through 7). 

-9-



<: 1 a b EO 1 1 EO 1"1 9 t h > is the number of characters in the key label. Acceptable values are 
in the range Od through 16d. Specifying a zero length causes the key label to remain 
unchanged. Od is the default value for the label length. 

<: s t r i 1"1 9 1 EO 1"1 9 t h > is the length of the string forming the key definition. Acceptable 
values are in the range -lL through 80L; 1L is the default. Entering a string length 
value of zero causes the key definition to remain unchanged. A string length value of 
-1 causes the key definition to be erased. 

<: 1 a b EO 1 > is the character sequence for the label. 

< s t r i 1"1 9:> is the character sequence for the key definition. 

The <: at t rib u tEO:>, <: f, EO Y :>, <: 1 a b EO 1 1 EO 1"1 9 t h :>, and <: s t r i 1"1 9 1 EO 1"1 9 t h > parameters may 
appear in any sequence but must precede the label and key definition strings. You must use an 
uppercase identifier (A, K, D, or L) for the final paramaterand a lowercase identifier (a, k, d, or 
I) for all preceding parameters. If any of the four fields are omitted, their default values are used. 
At least one of the parameters must be specified because its uppercase identifier is needed to 
terminate the sequence. 

Following the parameters, the first 0 through 16 characters, as designated by 
<: 1 a b EO 1 1 EO 1"1 9 t h :>, constitute the key's label and the next 0 through 80 characters, as desig­
nated by <: s t r i n 9 1 EO 1"19 t h >, constitute the key's definition string. The total number of char­
acters (alphanumeric data, ASCII control codes such as carriage-return and line feed, and 
explicit escape sequence characters) in the label string can exceed 16, but only the first 16 
characters are used. The same is true for the destination string; only the first 80 characters are 
used. 

The initial (power-on) definition of the user keys is: 

• all keys are transmit-only (attribute is 2 a). 

• the user key labels are f 1 through f B. 

• definitions are ",Ep, ",Eq, ",Er, ",Es, ",Et, ",Eu, ",Ev, and ",Ew for keys ~ through 
~, respectively. 

-10-



The Display 
The "terminal's" display has many features of its own, such as video highlights (inverse video and 
blinking), raster control, cursor sensing and addressing, and color highlight control (for Model 520 
Computers equipped with a color display). These functions are accessed only through escape 
sequences and are discussed in the sections that follow. 

Memory Addressing Scheme 
Display memory positions can be addressed using absolute or relative coordinate values. Display 
memory is made up of 80 columns (0 - 79) and any number of 24 line pages (specified by the 
HP-UX configuration). As shipped to you, the display memory has 48 lines (0 - 47) of 80 characters 
(2 screens). The amount of display memory can be determined from byte 0 of the primary terminal 
status (discussed in the section entitled "The Terminal", later in this article). The types of addressing 
available are absolute (memory relative), screen relative, and cursor relative. 

Row Addressing 
The figure below illustates the way that the three types of addressing affect row or line numbers. 
The cursor is shown positioned in the fourth row on the screen. Screen row 0 is currently at row 6 of 
display memory. In order to reposition the cursor to the first line of the screen the following three 
destination rows could be used: 

Absolute: row 6 
Screen Relative: row 0 
Cursor Relative: row -3 

o 
1 
2 
3 
4 
5 

a.) Absolute' row 6 

Column Addressing 

lD 
b.) Screen Relative: row 0 c.) Cursor Relative: row-3 

Row Addressing 

Column addressing is accomplished in a manner similar to row addressing. There is no difference 
between screen and cursor relative column addressing. The figure below illustrates the difference 
between absolute and relative addressing. The cursor is shown in column 5. 

-11-



Whenever the row or column addresses exceed those available, the largest possible value is 
substituted. In screen relative addressing, the cursor cannot be moved to a row position that is not 
currently displayed. For example, in the cursor relative portion of the figure above (showing row 
addressing), a relative row address of -10 would cause the cursor to be positioned at the top of the 
current screen (relative to row - 3). Column positions are limited to the available screen positions. 
For example, in the following illustration, the absolute column addressing example shows limits of 0 
and 79, while the relative column addressing example shows limits of - 5 and 74. The cursor 
cannot be wrapped around from column 0 to column 79 by specifying large negative values for 
relative column positions. 

o 1 2 3 4 5 6 7 8 9 .. 79 -5 -4 - 3 -2 -1 0 + 1 + 2 + 3 . + 74 

I 

I I 

a.1 Absolute 
b.1 Relative 

Column Addressing 

Cursor Sensing 
The current position of the screen cursor can be sensed. The position returned can be the absolute 
position in the display memory or the location relative to the current screen position. (Absolute and 
relative addresses are discussed in the section "Cursor Addressing" . ) 

Cursor sensing is available only when the "terminal" is in remote mode. 

Absolute Sensing 
When a program sends the escape sequence \ E a to the terminal, the terminal returns to the 
program an escape sequence of the form ",E&a xxxc yyyR, where xxx is the absolute column 
number and yyy is the absolute row number of the current cursor position. You will later see 
that this escape sequence is identical to the escape sequence for an absolute move of the 
cursor. 

Relative Sensing 
When a program sends the escape sequence \ E \ , the terminal returns to the program an escape 
sequence of the form ",E&a xxxcyyyY where xxx is the column number of the cursor and yyy 
is row position of the cursor relative to screen row O. This escape sequence is identical to the 
escape sequence for a relative move of the cursor (discussed later in this article). 

Cursor Positioning 
The cursor can be positioned directly by giving memory or screen coordinates, or by sending the 
escape codes for any of the keyboard cursor positioning operations. 

-12-



Screen Relative Addressing 
To move the cursor to any character position on the screen, use any of the following escape 
sequences: 

"'-E&a<column number> c <row number>Y 
"'-E&a<row number> y <column number>C 
"'-E&a<column number>C 
"'-E&a <row number> Y 

where <column number> is a decimal number specifying the screen column to which you wish to 
move the cursor. Zero specifies the leftmost column. 

<row number> is a decimal number specifying the screen row (0 - 23) to which you wish to 
move the cursor. Zero specifies the top row of the screen; 23 specifies the bottom row. 

When using the escape sequences for screen relative addressing, the data on the screen is not 
affected (the cursor may only be moved around in the 24 rows and 80 columns currently displayed, 
thus data is not scrolled up or down). 

If you specify only <column number>, the cursor remains in the current row. Similarly, if you 
specify only <row number>, the cursor remains in the current column. 

Example 
The following escape sequence moves the cursor to the 20th column of the 7th row on the screen: 

\E&aBdSC 

Absolute Addressing 
You can specify the location of any character within display memory by supplying absolute row and 
column coordinates. To move the cursor to another character position using absolute addressing, 
use any of the following escape sequences: 

"'-E&a<column number> c <row number>R 
"'-E&a<row number> r <column number>C 
"'-E&a<column number>C 
"'-E&a<row number>R 

where <column number> is a decimal number (0 - 79) specifying the column coordinate (within 
display memory) of the character at which you want the cursor positioned. Zero specifies the 
first (leftmost) column in display memory, 79 the rightmost column. 

<row number> is a decimal number (a-max) specifying the row coordinate (within display 
memory) of the character at which you want the cursor positioned. Zero specifies the first 
(top) row in display memory, max specifies the last. The value of max is specified as: 

[24 (lines/page) X num_page (pages)] - 1 

where num_page is the number of pages of display memory specified by the system con­
figuration. As shipped to you, the configuration dictates that 2 pages of display memory be 
allocated. Thus, the last row that can be addressed is 47. 

-13-



When using the above escape sequences, the data visible on the screen rolls up or down (if 
necessary) in order to position the cursor at the specified data character. The cursor and data 
movements occur as follows: 

• If a specified character position lies within the boundaries of the screen, the cursor moves to 
that position; the data on the screen does not move. 

• If the absolute row coordinate is less than that of the top line currently visible on the screen, the 
cursor moves to the specified column in the top row of the screen; the data then rolls down 
until the specified row appears in the top line of the screen. 

• If the absolute row coordinate exceeds that of the bottom line currently visible on the screen, 
the cursor moves to the specified column in the bottom row of the screen; the data then rolls 
up until the specified row appears in the bottom line of the screen. 

If you specify only a <column number>, the cursor remains in the current row. Similarly, if you 
specify only a <row number>, the cursor remains in the current column. 

Example 
To position the cursor (rolling the data if necessary) at the character residing in the 60th column of 
the 27th row in display memory, the escape sequence is: 

\E&:a2G r58C 

Cursor Relative Addressing 
You can specify the location of any character within display memory by supplying row and column 
coordinates that are relative to the current cursor position. To move the cursor to another character 
position using cursor relative addressing, use any of the following escape sequences: 

",E&a + / - <column number> c + / - <row number> R 
",E&a + / - <row number> r + / - <column number>C 
",E&a + / - <column number>C 
",E&a + / - <row number>R 

where <column number> is a decimal number specifying the relative column to which you wish to 
move the cursor. A positive number specifies how many columns to the right you wish to 
move the cursor; a negative number specifies how many columns to the left. 

<row number> is a decimal number specifying the relative row to which you wish to move 
the cursor. A positive number specifies how many rows to the right you wish to move the 
cursor; a negative number specifies how many rows to the left. 

When using the above escape sequences, the data visible on the screen rolls up or down (if 
necessary) in order to position the cursor at the specified data character. The cursor and data 
movements occur as follows: 

• If a specified character position lies within the boundaries of the screen, the cursor moves to 
that position; the data on the screen does not move. 

• If the specified cursor relative row precedes the top line currently visible on the screen, the 
cursor moves to the specified column in the top row of the screen; the data then rolls down 
until the specified row appears in the top line of the screen. 

• If the specified cursor relative row precedes the bottom line currently visible on the screen, the 
cursor moves to the specified column in the bottom row of the screen; the data then rolls up 
until the specified row appears in the bottom line of the screen. 

-14-



If you specify only a <column number>, the cursor remains in the current row. Similarly, if you 
specify only a <row number>, the cursor remains in the current column. 

Example 
To position the cursor (rolling the data if necessary) at the character residing 15 columns to the right 
and 25 rows above the current cursor position (within display memory), use the escape sequence: 

\Ee,:a+15c-25R 

Combining Absolute and Relative Addressing 
You may use a combination of screen relative, absolute and cursor relative addressing within a 
single escape sequence. 

For example, to move the cursor (and roll the text if necessary) so that it is positioned at the 
character residing in the 70th column of the 18th row below the current cursor position, use the 
escape sequence: 

\H:aG8c+18R 

Similarly, to move the cursor (and roll the text up or down if necessary) so that it is positioned at 
the character residing in the 10th column of absolute row 48 in display memory, use the escape 
sequence: 

\Ee,:a8c47R 

Display Enhancements 
The terminal includes as a standard feature the following display enhancement capabilities: 

• Inverse Video - black characters are displayed against a white background. 

• Underline Video - characters are underscored. 

• Blink Video - characters blink on and off. 

Note 
The half bright display enhancement is not implemented on this termin­
al. When the half bright enhancement is selected on the HP 9000 
Model 520 with a black-and-white display, it is ignored. Selecting the 
half bright enhancement on the HP 9000 Model 520 with a color 
display causes the terminal to select pen 3. (See the section "Accessing 
Color" later in this article). 

The display enhancements are used on a field basis. The field cannot span more than one line. The 
field scrolls with display memory. Overwriting a displayable character in a field preserves the display 
enhancement. The enhancements may be used separately or in any combination. When used, they 
cause control bits to be set within display memory. 

From a program or from the keyboard, you enable and disable the various video enhancements by 
embedding escape sequences within the data. The general form of the escape sequence is: 

""E&d<enhancement code> 
where enhancement code is one of the uppercase letters A through 0 specifying the desired 
enhancement(s) or an @ to specify end of enhancement: 

-15-



Enhancement Character 

@ A B C D E F G H I J K L M N 0 

Half-Bright x x x x x x x x 

Underline x x x x x x x x 

Inverse Video x x x x x x x x 

Blinking x x x x x x x x 

End Enhancement x 

Note that the escape sequence for "end enhancement" (",E&d@) or the escape sequence for 
another video enhancement, ends the previous enhancement. 

Raster Control 
The terminal provides the ability to enable and disable both its alphanumeric display and its graphic 
display. The escape sequences for these capabilities are: 

"'E*dc - Turn on graphics display; enable writing to the graphics display. 

"'E*dd - Turn off graphics display; disable writing to the graphics display. 

"'E*de - Turn on the alphanumeric display; enable writing to the alphanumeric display. 

",E*df - Turn off the alphanumeric display; disable writing to the alphanumeric display. 

Whether used individually or in combination, the last character of the escape sequence must be 
uppercase. For example, to turn off the graphics display, use the escape sequence ",E*dO. When 
these sequences are combined, an uppercase specifier must terminate the sequence. To turn on the 
graphics display and turns off the alphanumeriC display, use the escape sequence "'E*dcF. 

Accessing Color 
If your Model 520 computer is equipped with a color display, you may access its color capabilities 
from HP-UX. First, you need to understand some simple terms. 

Color pair - two colors which define the foreground color (color of the characters) and the 
background color, respectively. At least one color of the color pair must be black; displaying color 
on color is not possible. A total of 15 color pairs are possible, but only eight can be displayed at any 
one time. 

-16-



Pen # - one of eight predefined color pairs. Pen 0 through pen 7 are initially defined as follows 
(re-defining a color pair is described later): 

foreground background 
Pen # color color 

0 white black 
1 red black 
2 green black 
3 yellow black 
4 blue black 
5 magenta black 
6 cyan black 
7 black yellow 

Pen #0 is the default pen selected by the terminal when writing to the display. 

Pen #7 is always used for displaying the softkey labels. 

Selecting a Pen (Color Pair) 
By using an escape sequence, you can select a pen number other than pen #0 when writing to the 
display. Like other display enhancements, pen selection is used on a field basis. The field cannot 
span more than one line. That is, the pen selection is only active until a new-line character is 
encountered; then the default pen is re-selected. The escape sequence for selecting a pen is: 

"'E&v n<parameter> 

where n is the pen number you wish to use, and <parameter> is a single character that specifies 
what action you want to take. To select a pre-defined pen number, the necessary <parameter> is 
s. If n > 7, HP-UX performs the calculation (n Modulo 8) on the supplied value to determine the 
actual pen number. Thus, 

"'E&v 4S 

selects the pre-defined pen number 4. Note that s is capitalized in the preceding escape sequence. 
This is because escape sequences are terminated by a capital letter. Thus, the last character of any 
escape sequence must be uppercase. However, if a parameter is not the last character of the escape 
sequence, it may appear in lower-case. 

Changing Pen Definitions 
You may change the pre-defined color pair for any of the eight existing display pens. The three 
primary colors (red, green and blue) are used in various combinations to achieve the desired color. 

The combinations of red, green, and blue that define foreground and background colors can be 
specified in two notations. The first is RGB (Red-Green-Blue), and the second is HSL (Hue­
Saturation-Luminosity). The notation must be selected before you can redefine pens (if no notation 
type is specified, the "terminal" uses the last notation specified, or RGB notation at power-up). To 
select a notation type, use the "'E&v escape sequence used above: 

"'E&v n<parameter> 

where n is 0 (for RGB) or 1 (for HSL), and <parameter> is the letter m. Thus, the sequence 

"'E&v 1M 

selects HSL notation. It does nothing more. 

-17-



To specify the quantity of red (hue), green (saturation), and blue (luminosity) to appear in your 
background and foreground colors, the a, b, c, x, y, and z parameters are used. These parameters 
have the following meanings: 

a specifies the amount of red (hue) used in the foreground. 

b specifies the amount of green (saturation) used in the foreground. 

c specifies the amount of blue (luminosity) used in the foreground. 

x specifies the amount of red (hue) used in the background. 

y specifies the amount of green (saturation) used in the background. 

z specifies the amount of blue (luminosity) used in the background. 

Each a, b, c, x, y, and z parameter specified is preceded by a number in the range a through 1, in 
increments of 0.01. The following table gives the values needed to define the eight principle colors: 

R G B Color H S L 

0 0 0 Black X X 0 
0 0 1 Blue 0.66 1 1 
0 1 0 Green 0.33 1 1 
0 1 1 Cyan 0.50 1 1 
1 0 0 Red 1 1 1 
1 0 1 Magenta 0.83 1 1 
1 1 0 Yellow 0.16 1 1 
1 1 1 White X 0 1 

(Note that X's in the above table represent "don't care" situations.) 

One final parameter, i, is needed. It is used to assign a pen number to the newly-defined color pair. 
Thus, the escape sequence for changing a color pair definition is: 

"'E&v <OI1>m na nb nc nx ny nz <pen#>I 

where either a a or a 1 precedes the m parameter (selecting either RGB or HSL notation, respec­
tively), and n is one of the legal values from the table above. <pen#> is an integer in the range a -
7 which, when combined with the i parameter, defines that pen number to be the color pair 
specified by the preceding a, b, c, x, y, and z parameters. Omitting any a, b, c, x, y, or z parameter 
causes a value of a to be assigned to the omitted parameter by default. 

-18-



Examples 
"-.E&v Om 1a Ob Oc Ox 1y Oz 5I 

This example re-defines pen 5 to specify red characters on a green background. (Note that the 
Model 520 will ignore the green background specification and assign a black one instead.) This 
example is equivalent to 

"-.E&v Om 1a 1y 5I 

since omitted parameters (a, b, c, x, y, z) are given default values of o. 
"-.E&v 1m .66a 1b 1c 3i Om 1c 1x 1y 6I 

This example re-defines pen 3 to specify blue characters on a black background (HSL notation), 
and pen 6 to specify blue characters on a yellow background (RGB notation). This example 
illustrates how multiple pens can be defined on a single line using different notations. (Again, note 
that the Model 520 will reject the background specification of pen 6, and will use black instead.) 

"-.E&v Om 1y 1z 1a 1c 4I 

This example re-defines pen 4 to specify a cyan background with magenta characters. This exam­
ple shows how background and foreground specifications can be reversed. The Model 520 will 
accept the magenta foreground, but will reject the cyan background; black will be used instead. 

If the foreground and background colors are both non-black, the foreground color will be used, and 
the background color will be black, regardless of the order in which the parameters are specified. 

This example re-defines pen 5 to specify a black foreground and a black background, using the 
previous notation type. 

Note 
Supplying neither a foreground nor a background color when defining a 
color pair causes both the foreground and background to be black. This 
is like typing on a typewriter without paper or ribbon; you can't see 
what is written. 

-19-



Controlling Configuration and Status 
The terminal provides additional escape sequences for managing its configuration and its status. 

He-configuring the Terminal 
The terminal allows you to reset a few of its configuration parameters via escape sequences. These 
parameters and their escape sequences are: 

Escape Description 
Function Sequence 

Auto Line "'-E&k nA When n is 0, auto line feed mode is off. When n is 1, auto line feed 
Feed Mode mode is on. Default = OFF. 

Local Echo "'-E&k nL Characters entered through the keyboard are displayed on the 
screen and transmitted to the computer when n = 1. When n = 0, 
characters entered through the keyboard are transmitted to the 
computer only; if they are to appear on the screen, the computer 
must "echo" them back to the terminal. Default = OFF. 

Remote Mode "'-E&knR When n is 0, the remote mode is off. When n is 1, the remote mode 
is on. Default = ON. 

Caps Mode "'-E&k nP When caps mode is enabled, all unshifted alphabetic keys generate 
uppercase letters and all shifted alphabetic keys generate lowercase 
letters. This mode is used primarily as a typing convenience and 
affects only the 26 alphabetic keys. 

When n = 1, the caps mode is enabled. When n = 0, the caps 
mode is disabled. Default = OFF. 

From the keyboard, you enable and disable caps mode using the 
( CAPS) key. This key alternately enables and disables caps mode. 

Transmit Function "'-E&s <x>A This escape sequence specifes whether or not escape code se-
(STRAP A) quences are both executed at the terminal and transmitted to HP-

UX. 

When x r 1, t)e escape code sequences generated by control keys 
such as ROLL i and (ROLL n are transmitted to HP-UX. If local 
echo is ON, the function is also performed locally. 

When x = 0, the escape sequences for the major function keys are 
executed locally, but are not transmitted to HP-UX. The default is 
x = O. 

Enable End Of Line ",-E&s<x>C This field specifies whether or not the end-of-line wrap is inhibited. 
Wrap (STRAP C) When x = 0 and the cursor reaches the right margin, it automati-

cally moves to the left margin in the next lower line (a local carriage 
return and line feed are generated). 

When x = 1 and the cursor reaches the right margin, it remains in 
that screen column until an explicit carriage return or other cursor 
movement function is performed (succeeding characters overwrite 
the existing character in that screen column). 

Default = OFF. 

-20-



Sending Terminal Status 
Terminal status is made up of 14 status bytes (bytes 0 through 13) containing information such as 
display memory size, switch settings, configuration menu settings, and terminal errors. There are 
two terminal status requests: primary and secondary. Each returns a set of seven status bytes. 

Primary TerminaI.Status 
You can request the first set of terminal status bytes (bytes 0 through 6) by issuing the following 
escape sequence: 

The terminal responds with an \ E \, and seven status bytes followed by a terminator (a carriage­
return character). A typical primary terminal status request and response is shown in the following 
illustration. 

COMPUTER TERMINAL 

BYTE ASCII BINARY STATUS 

0 4 00110100 
I 4K bytes of display memory (2 pages of 24 lines) 

0 0011 0000 Function key transmission disabled 

I Cursor wraparound disabled 
Configuration 

Straps A·H 

2 < 00111100 

3 8 00111000 l= A"to Ii" fe,d d;"bI" 

Terminal sends secondary status 

4 o 0011 0000 

5 2 0011 0010 

1..1 ---Last Self-Test ok 

6 o 0011 0000 

Primary Terminal Status Example 

-21-



PRIMARY STATUS BYTES 

BYTE 0 DISPLAY MEMORY SIZE 

lSI L1Kbytes 

L..=2Kbytes 

4K bytes 

8K bytes 

This byte specifies the amount of display memory available in the terminal. 

(roughly 2K per page) 

BYTE 1 CONFIGURATION STRAPS A-D 

Strap D ------.... 

Page/Line 

always 0 

Strap C ---------' 

(Inhibit End-of-Line Wraparound) 

1 ~ yes (Enabled) 

o ~ no (Disabled) 

L Strap A 

(Function Key Transmission) 

1 ~ yes (Transmitted) 

o ~ no (Not transmitted) 

'---- Strap B 

(Space Overwrite Latch) 

always 0 

BYTE 2 CONFIGURATION STRAPS E-H 

Strap H 

always 1 

Strap G 

always 1 always 0 

BYTE 3 LATCHING KEYS 

Terminal sendSJ secondary status 

AUTO LF Key 
1 ~ auto LF 
O~ no auto LF 

C CAPS LOCK Key 
always 0 

BLOCK MODE Key 
1 ~ block mode 
0= character mode 

BYTE 4 TRANSFER PENDING FLAGS 

,~'"'." """' ,"00'". J I 
always 0 

ENTER Key Pending 

always 0 

I L '""" , .. " '''",ing 
always 0 

Function Key Pending 

always 0 

BYTE 5 ERROR FLAGS 

Device Error .--J 
(Integral Printer Error) 
always 0 

'------- DataComm 
always 0 

'------- Self-Test 
always 1 

BYTE 6 DEVICE TRANSFER PENDING FLAGS 

I L ,""CO ,,, •• ,.""~ 
always 0 

Device Operation Status 
Pending 
always 0 

(tracks'S", "F", or "U ' completion codes associated with EC&p device 
control sequences.) 

-22-



Secondary Terminal Status 
You can request the second set of terminal status bytes (bytes 7 through 13) by issuing the 
following escape sequence: 

\E~ 

The terminal responds with an \ E : , and seven status bytes followed by a terminator (a carriage­
return character). A typical secondary terminal status request and response is shown in the follow­
ing illustration. 

COMPUTER TERMINAL 

ESC - .. 
ESC I 0400000 CR 

• f t 
Byte 7 Byte 13 

BYTE ASCII BINARY STATUS 

7 a 0011 0000 

8 4 0011 0101 

I Terminal identifies self 

9 a 0011 0000 

10 a 0011 0000 

11 a 0011 0000 

12 a 0011 0000 

13 a 0011 0000 

Secondary Terminal Status Example 

-23-



Secondary Status Bytes 

BYTE 7 Buffer Memory 
(always zero) 

@IL1Kbytes 
L2Kbytes 

4K bytes 
BK bytes 

Memory installed in addition to display memory that is available for use as 
data buffers. Note that the HP 9000 Model 20 terminals always return a 0 value. 

BYTES TERMINAL FIRMWARE CONFIGURATION 

I Lalwayso 
1 = 1/0 firmware installed, integral 

printer present 
0= No APL Firmfare 

0= Non-progr~mmabie I 
terminal . 

1 =Terminal 
identifies 
self 

APL Firmware does not apply. 

BYTE 9 CONFIGURATION STRAPS J·M 
(always zero) 

Strap M ______ .J I' '"'' "'"" '"m""': 1 = yes (Enabled) 

0= no (Disabled) 

Strap K (Clear Terminator) 

1 = yes (Enabled) 

Strap L (Self-Test Inhibit) 

1 = yes (Inhibit test) 

0= no (Allow test) 

Straps J·M do not apply to the terminal. 

0= no (Disabled) 

BYTE 10 KEYBOARD INTERFACE KEYS (N· 

Switch R _____ ---1 L SWitch N Printer (Escape 
Code Transfer) always 0 
always 0 

SWitch P Compatibility 
Mode (Scaled) 
always 0 

1---- Switch Q Compatibility 
Mode (Unsealed) 
always 0 

Straps N-R do not apply 

BYTE 11 CONFIGURATION STRAPS S·V 

(always zero) 

:::::~ ~:::::: 
Straps S-V do not apply to the terminal. 

BYTE 12 CONFIGURATION STRAPS W·Z 
(always zero) 

Strapz-I I 

Strapy~ 
II ",,' W "", Com" .. " 

1 = yes (Inhibit) 

0= no (Allow) 

Strap X 

Straps X, X, Y, and Z do not apply to the terminal. 

BYTE 13 MEMORY LOCK MODE 
(always zero) 

-24-



Table of Contents 

MC68000 Assembler on HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 

Instruction Fonnat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
In General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
Symbols ............................................................. '" ...... 1 
Local Labels ................................................................... 1 
Opcodes ...................................................................... 1 
Size Suffixes ................................................................... 2 
Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 

Pseudo-Op Syntax and Semantics .................................................. " 3 
Interfacing Assembly Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 

Linking .. : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
Calling Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4 
Language Dependencies ......................................................... 7 

C ......................................................................... 7 
Fortran .................................................................... 7 
Pascal ..................................................................... 7 

Conversion from the Pascal Language System (PLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 

The ADB Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 

Invocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
Command Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 
Displaying Infonnation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
Debugging C Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 

Debugging a Core Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 
Setting Breakpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 
Advanced Breakpoint Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 
Other Breakpoint Facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 
Maps ........................................................................... 24 
Variables and Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 
Fonnatted Dumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 
Patching ......................................................................... 29 
Anomalies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 
Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 

Fonnatted Printing ............................................................. 31 
Breakpoint and Program Control ................................................. 31 
Miscellaneous Printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 
Calling the Shell ............................................................... 31 
Assignment to Variables ........................................................ 31 

Fonnat Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 
Expression Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 

Expression Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 
Dyadic Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 
Monadic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 





MC68000 Assembler on HP-UX 

Instruction Format 
In General 
Assembly instructions are written one per line. Mnemonic operation codes (opcodes) and 
register symbols must be written in lower case. Upper and lower case characters may not be 
used interchangeably, that is, it is a case sensitive assembler. Instructions are free format with 
respect to spaces. 

If a label is present, it must start in column one of the line. The opcode must start in column two 
or later. Blanks are not permitted within the operand field. The first blank encountered after the 
start of the operand field begins the comment field. 

Label fT10ve al ta2 

A "*,, in column one indicates a comment. 

* 
* 
* 

Symbols 

These are COMMents. 

COfT1Ment field 

Symbols must begin with an alphabetic character, but may contain letters, numbers, @, $ and _. 
Symbols may contain any number of characters. The restriction is that each instruction must be 
contained on one line. 

* is a symbol having the value of the program counter. 

Register symbols are those used to refer to the predefined registers. They are aO ... a7, dO ... d7, 
sP, PC, cc r, and sr. 

Local Labels 
A local label has the form <digit>$. A local label may be used to label any machine instruction. 
Any number of occurrences of the same local label may occur within an assembly source file. 
When a local label is referenced, the reference will refer to the nearest declaration of the local 
label. 

Opcodes 
Most opcodes and their syntaxes are defined in the MC68000 User's Manual. Size suffixes are only 
allowed for those operations which include a size field in the instruction and for the conditional 
branch b C c. In addition to the opcodes listed in the manual, the Series 200 will recognize some 
variants. For the b C C instruction the form J C C may be used. Also, J b s r may be used in place of 
b sr. In these cases, the assembler will decide the appropriate size for the instruction. No size 
suffix can be used. 

·1· 



Size Suffixes 
Size suffixes are used in the language to specify the size of the operand in the instruction, 
including addressable locations and registers. All instructions which can operate on more than 
one data size will assume the default size of word (16 bits) unless a size suffix is used. Size 
suffixes can also be appended to address register specifications when used in indexed addres­
sing. Operand sizes are defined as follows: 

Suffix Data Unit Bits 

b byte 8 
IAI word 16 
1 long 32 

Expressions 
Expressions are evaluated in left to right order, and parentheses are permitted. Symbols which 
refer to defined labels are permitted in expressions. The value of these symbols is their relative 
value within the assembled code. The only operations which can be done on these symbols are 
addition and subtraction. One label can be subtracted from another; the result is an absolute 
value. A label can be added to an absolute value but not to another symbol. The allowed 
operators are: 

Operator Operation 

+ Addition 
Subtraction 

* Multiplication 
/ Division 
IX. Modulus 

Bitwise or 
& Bitwise and 

Bitwise exclusive or 
< Shift left 
> Shift right 

-2-

-l 



Pseudo-Op Syntax And Semantics 
The following is a list of the commands which direct the assembler to take the described actions. For 
a list of the machine commands, see the MC68000 User's Manual. 

align <name>,<modulus> 
Create a global symbol of type align. When the loader sees this symbol it will create a hole 
beginning at symbol <name> whose size will be such that the next symbol will be aligned on a 
<modulus> boundary. 

asciz '<string>' 
Put a null terminated <string> into the code at this point. 

bss 
Put the following assembly into the uninitialized data segment. 

comm <name>,<size> 
Create a global symbol <name>, put it in the bss segment with size <size>. 

data 
Place the following assembly in the initialized data segment. 

dc[.bl.wl.l] <expr>I' <string>'[,<expr>I' <string>'] 
Place the list of expressions <expr> or strings <string> into the code at this point. Size suffixes 
may be used to specify the units of storage into which the values will be placed. Default is word. 
In the case of string literals, the amount of storage needed will be determined by the assembler 
and each character will be assigned into a unit. 

ds[.bl.wl.l] <expr> 
The units of space are specified by the size suffix. The number of units is determined by the 
expression. 

equ <expr> 
Assigns the value and attributes of the expression to the label. 

even 
Forces even word alignment. 

globl <name>[, <name> ] ... 
Declares the list of names to be global symbols. 

include "<name>"I«name» 
Specifies a file to be merged into the assembly at the point where the instruction is located. The 
file will be searched for according to the conventions of C (see manual page for cc). 

text 
Place the follOWing assembly in the code segment. 

-3-



Interfacing Assembly Routines 
In order to know how to use the assembler effectively, it will be necessary to know how to 
interface to the various higher level languages that the HP-UX Series 200 supports. 

Linking 
In order for a symbol to be known externally it must be declared in a g lob 1 statement. It is not 
necessary for a symbol defined externally to be declared in a module. If a symbol is not defined, 
it is assumed to be externally defined. It is, however, recommended that all external symbols be 
declared in a g lob 1 statement, since this will avoid possible name confusion with local sym­
bols. 

Calling Conventions 
All languages currently supported on the Series 200 follow certain conventions regarding the 
calling of subroutines. These conventions must be followed in order to call or be called by a 
higher level language. 

The calling conventions can be summarized as follows: 

• Parameters are pushed in reverse order and taken off in the same order as the procedure 
call; 

• The calling routine pops the parameters from the stack upon return; 

• The called routine saves and restores the registers it uses (except dO, dl, aO, all; 

• Function results are generally returned in dO, dl; 

• t st. b required for all stack space used plus that required for the link of any routine called; 
and 

• 1 i n f, / un 1 f, instructions are used to allocate local data space and to reference parameters. 

These conventions can be more easily understood by means of an example. The best would be 
to examine the code output by the compiler to do this. This can be easily done using C since it 
outputs assembly language instructions. Consider the following C program. 

frlain() 

{ 

test(l,2); 
} 

test(i,j) 

register int i, j; 
{ 

} 

int f,; 
f, = i + j; 

return f,; 

-4-



It will produce the following assembly language instructions. 

1 data 

2 text 

3 9'10 b 1 _ITlain 

4 _ITl a i n 

5 1 i n f~ aG,#- __ F1 

6 t st. b - __ Ml-8(a7) 

7 ITlO t.l e ITl • 1 # __ 51 t- __ F1 (aG) 

8 ITlO t.l e • 1 #2,-(sp) 

9 ITlO v e • 1 #l,-(sp) 

10 jbsr _test 

11 add9 #8,sp 

12 jra L12 

13 L12 un 1 f~ aG 

14 r t s 

15 __ F1 e9U 0 
16 __ 51 e9U 0 
17 __ M1 e9U 0 
18 data 

19 text 

20 9'lobl _test 

21 _test 

22 1 i rd~ aGt#- __ F2 

23 t st. b - __ M2-8(a7) 

24 ITlovelTl.l # __ 52t- __ F2(aG) 

25 ITlO t.l e • 1 8(aG),d7 

26 ITlO v e • 1 12(aG)tdG 

27 ITlO v e • 1 d7,dO 

28 add. 1 dGtdO 

29 ITlot.le.l dOt-4(aG) 

30 ITlO t.l e • 1 -4(aG),dO 

31 jra L14 

32 jra L14 

33 L14 ITlO t.l elTl. 1 - __ F2(aG) ,#182 

34 un 1 f, aG 

35 rt s 

36 __ F2 e9 U 12 

37 __ 52 e9U 182 

38 __ M2 e9 U 0 
39 data 

Things to note are that when the parameters are pushed by the calling routine (_ III a in), the 
second parameter is pushed first and the first parameter is pushed second (lines 8 and 9). When 
the called routine (_test) goes to access the parameters (lines 25 and 26), it finds the first 
parameter first on the stack and the second parameter second. line 25 accesses the first 
parameter and line 26 accesses the second parameter. 

-5-



Also note that the stack is popped upon return from the subroutine (line 11) and not by the 
subroutine itself. Since the called routine makes use of dG and d7, it pushes those registers on 
the stack (line 24) and then pops them (line 33) before it returns. 

The function result is placed in dO before returning (line 30). If the function returned a double 
precision floating point number, that number would have been placed in dO and d 1. 

A t st. b instruction (line 23) is needed before any use is made of stack space in any assembly 
language routine. The t st. b makes sure that there is enough stack space for this routine. If the 
test fails, the operating system can detect this and get more stack space for the process. If the 
test is not done, the program may die unnecessarily with a segmentation violation. The amount 
of space that must be tested for is the sum of: 

• The amount of space taken by the link instruction; 

• The greatest amount of space used for any parameters that may be pushed; 

• The constant 8 to account for subroutine jumps and the link which that routine may do. 

C and other higher level languages use the link and unlk instructions (lines 22, 34) in all 
routines. The link instruction is used to allocate local data space and to allow a constant 
reference point for accessing parameters. The following illustration shows what happens when 
the link instruction on line 22 is executed. 

Before the link: 

8(sp) value of j 

4(sp) value of i 

(sp) return address 

After the link: 

12(a6) value of j 

8(a6) value of i 

4(a6) return address 

(a6) old (a6) 

-4(a6) value of k (sp) 

Note how the parameter i is accessed on line 25. On line 29 the local variable f, is set. The link 
instruction is not necessary in assembly language code. If it is not there, however, the routine 
will not show up in a stack backtrace from adb. If ali n f, instruction is done, an U 1"1 1 f, must be 
done before returning. 

-6-



Language Dependencies 
C 
In C, all variables and functions declared by the user are prefixed with an underbar. Thus, a 
variable named t est in C would be known as _ t est at the assembly language level. All global 
variables can be accessed through this name using a long absolute mode of addressing. C will 
always push a four-byte quantity on the stack for pointers and any form of integer (char, short, 
long). C will always push eight bytes for a floating point number (floats are converted to 
double). 

Fortran 
Fortran uses the same naming convention as C, and externals can be accessed in the same 
fashion. Fortran will always push the address of its parameter for user-defined functions. 

Pascal 
In Pascal, any exported user-defined function is prefixed by the module name surrounded by 
underbars. For Pascal, then, a function named fun f, in module t est would be known as 
_ t est _ fun f, to an assembly language programmer. If a procedure is declared external as in: 

procedure proc; exte rnal; 

all calls to pro c will emit a reference to _ pro c. 

Global variables are accessed as a 32-bit absolute relative to the global base. In the example 
below, the global variable i 1 would be accessed as: 

iIIO!'! e • 1 test+OxLl,dO 

Following is the example: 

Pascal [Rev 2.1Ma 4/19/83J test.p 

1: D 
2:D 
3:D 
4:D 
5:D 
6:D 
7:D 
8:C 

DUf~P of P 
j 

8 

-4 

P dUf~P COfTlPlete 

9:C 
10: C 

0 $Iist 'test.I' ,tables$ 
0 pro g rafTl t est; 

t) a r 
i 1 t i 2: integer; 

procedure p; 
2 l,l a r 
2 j: integer; 
2 beg i 1'1 

var lev= Od2 addr=-00000004 local 

2 end; 
1 begin 

Page 1 

DUfTlP of TEST 
i 1 
i2 
p 

uar lev= Odl addr=00000004 longabs global base 
uar leu= Odl addr=OOOOOOOO longabs globalbase 
proc leu= Odl entrY: 00000000 

test proc lev= OdO entrY: 00000012 

TEST dump complete 

11 : C 1 en d • 

-7-

test 
test 



Pascal will always push a four-byte quantity on the stack for pointers and integers. For a 
user-defined function, any parameter greater than four bytes will be passed as an address. 

The manual pages for these compilers should be consulted for further information. Assembly 
listings can be generated by C and Fortran. These can be consulted to get valuable information. 
The only current means for looking at the code generated by Pascal is through the debugger 
adb. 

·8· 



Conversion from the 
Pascal Language System (PLS) 

A translator (atrans) is provided to assist in converting from PLS assembly language to HP-UX 
assembly language syntax. All code to be ported should be run through the translator first. 
Lines that will require human intervention will be noted by the translator. To see exactly what 
the tasks are that it performs, check the manual page. 

atrans will not detect or alter parameter passing conventions which are pushed in the opposite 
order on PLS. 

as assumes r 0 r 9 0 for all assemblies. as does not generate relative references to external 
symbols; all external references are absolute. As such, code size can increase when being 
ported from the PLS to HP-UX. 

as does not have support for Pascal modules. 

as will accept the same syntax as the PLS assembler for all machine instructions with these 
exceptions: 

Additions: 
• as will accept j c c where c c is a condition code accepted by b c c. In this case, as will 

decide the length of the instruction required. 

• as will accept a greater number of operators for expressions. Parentheses are permitted 
within expressions. 

• as will accept an immediate operand for the register list in a rllO \) e rll instruction. Needed for 
compiler. 

• as will allow numeric value for displacement as in 12 ( pc, d G). Needed for compiler. 

• as will accept <digit> $ to specify a local label. 

Differences: 
• as is a case-sensitive assembler. All opcodes and register names must be listed in lower 

case. 

• as accepts (p c) to specify pc-relative references. This is the only way to specify pc­
relative. 

• The PLS assembler will assume pc with index in some cases for a parameter of the form 
8 ( aO). as will not. 

The greatest differences occur in the pseudo-ops that are supported. The only PLS pseudo-ops 
that are supported are dc, d s, e"l u, and i 1"1 C 1 U de. The translator will handle some of the other 
pseudo-ops, but others will have to be handled by hand. 

·9· 



-10-



The ADB Debugger 

Introduction 
ADB is a debugging program that is available on HP-UX. It provides capabilities to look at 
"core" files resulting from aborted programs, print output in a variety of formats, patch files, 
and run programs with embedded breakpoints. This document provides examples of the more 
useful features of ADB. 

Invocation 
ADB is invoked as: 

adb obJfile corefile 

where 0 b J f i 1 e is an executable HP-UX file and cor e f i 1 e is a core image file. Many times 
this will look like: 

adb a.out core 

or more simply: 

adb 

where the defaults are a. 0 u t and cor e respectively. The filename minus (-) means' 'ignore 
this argument," as in: 

adb - core 

The 0 b J f i 1 e can be written to if adb is invoked with the -IAI flag as in: 

adb -IAi a.out-

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $9 or $0 

(or ( CTRL )-0=] ) must be used to exit from ADB. 

-11-



Command Format 
The general form of a request is: 

[address] [,count] [command] [modifier] 

ADB maintains a current address, called dot, similar in function to the current pointer in the 
HP-UX editor. When address is entered, dot is set to that location. The command is then 
executed count times. 

Address and count are represented by expressions. Expressions are made up from decimal, 
octal, and hexadecimal integers, and symbols from the program under test. These may be 
combined with the operators +, -, *, I., (integer division), &: (bitwise and), : (bitwise inclusive 
or), "* (round up to the next multiple), and ~ (not). (All arithmetic within ADB is 32 bits.) When 
typing a symbolic address for a C program, the user can type n a iTI e or _ n a iTI e; ADB will 
recognize both forms. The default base for integer input is initialized to hexadecimal, but can be 
changed. 

The folloWing table illustrates some general ADB commands and meanings: 

? Print contents from a • 0 u t file 
I Print contents from cor e file 
= Print value of "dot" 

Breakpoint control 
$ Miscellaneous requests 

Request separator 
Escape to shell 

A ( CTRL) -CD will terminate the execution of any command in ADB. 

·12· 



Displaying Information 
ADB has requests for examining locations in either objfile or corefile. The? request examines 
the contents of objfile, the / request examines the corefile. 

Following the? or / command the user specifies a format. 

The following are some commonly used format letters: 

c one byte as a character 
x two bytes in hexadecimal 
)( four bytes in hexadecimal 
d two bytes in decimal 
F eight bytes in double floating point 
i MC68000 instruction 
s a null terminated character string 
a print in symbolic form 
1"1 print a newline 
r print a blank space 

backup dot 

A command to print the first hexadecimal element of an array of long integers named i 1"1 t s in C 
would look like: 

i1"lts/){ 

This instruction would set the value of dot to the symbol table value of _ i 1"1 t s. It would also set 
the value of the dot increment to four. The dot increment is the number of bytes printed by the 
format. 

Let us say that we wanted to print the first four bytes as a hexadecimal number and the next 
four as a decimal one. We could do this by: 

i1"lts/){D 

In this case, dot would still be set to _ i 1"1 t s and the dot increment would be eight bytes. The dot 
increment is the value which is used by the 1"1 e IAII i 1"1 e command. N e IAII i 1"1 e is a special com­
mand which repeats the previous command. It does not always have meaning. In this context, it 
means to repeat the previous command using a count of one and an address of dot plus dot 
increment. In this case, 1"1 e IAII i 1"1 e would set dot to i 1"1 t s + (> x 8 and type the two long integers it 
found there, the first in hex and the second in decimal. The 1"1 e IAI I i 1"1 e command can be 
repeated as often as desired and this can be used to scroll through sections of memory. 

Using the above example to illustrate another pOint, let us say that we wanted to print the first 
four bytes in long hex format and the next four bytes in byte hex format. We could do this by: 

intsl>(4b 

Any format character can be preceded by a decimal repeat character. 

-13-



The count field can be used to repeat the entire format as many times as desired. In order to 
print three lines using the above format we would type: 

ints ,3f}(Llbn 

The n on the end of the format is used to output a carriage return and make the output much 
easier to read. 

In this case the value of dot will not be _ i 1"1 t s. It will rather be _ i n t s + 0 x 1 o. Each time the 
format was re-executed dot would have been set to dot plus dot increment. Thus the value of 
dot would be the value that dot had at the beginning of the last execution of the format. Dot 
increment would be the size of the format: eight bytes. A 1"1 e IAII in e command at this time would 
set dot to in t s + 0 x 18 and print only one repetition of the format, since the count would have 
been reset to one. 

In order to see what the value of dot is at this point the command: 

.:: a 

could be typed. = is a command which can be used to print the value of address in any format. 
It is also possible to use this command to convert from one base to another: 

Ox32::oxd 

This will print the value 0 x 32 in octal, hexadecimal and decimal. 

Complicated formats are remembered by ADB. One format is remembered for each of the? , I 

and:: commands. This means that it is possible to type: 

OxGLI:: 

and have the value 0 x G LI printed out in octal, hex and decimal. And after that, type: 

intsl 

and have ADB print out four bytes in long hex format and four bytes in byte hex format. 

To an observant individual it might seem that the two commands: 

and 

irlain?10i 

would be the same. 

There are two differences. The first is that the numbers are in a different base. The repeat factor 
can only be a decimal constant, while the count can be an expression and is therefore, by 
default, in a hex base. 

The second difference is that a n e IAII in e after the first command would print one line, while a 
n e IAII in e after the second command would print another ten lines. 

-14-



Debugging C Programs 
Debugging A Core Image 
Consider the C program in Figure 1. The program is used to illustrate some of the useful 
information that can be gotten from a core file. The object of the program is to calculate the 
square of the variable i \.I a 1 by calling the function S"I r with the address of the integer. The 
error is that the value of the integer is being passed rather than the address of the integer. 
Executing the program produces a core file because of a bus error. 

Figure 1: C program with pointer bug 

int ints[]= 

int ivaI; 
ma i n ( ) 
{ 

{1.2.3.Lj.5.6.7.8.9.0. 
1.2.3.Lj.5.6.7.8.9.0. 
1.2.3.Lj.5.6.7.8.9.0. 
1.2.3.Lj.5.6.7.8.9.0}; 

re9'ister int ii 
for(i=Oii<10ji++) 
{ i'Jal = ints[iJi 

printf("s9r of 'X,d is /.,d\n".ints[i].i'Jal); 

} 

S9 r (x) 

int *x; 
{ 

} 

} 

ADB is invoked by: 

adb 

The first debugging request: 

$c 

is used to give a C backtrace through the subroutines called. This request can be used to check 
the validity of the parameters passed. As shown in Figure 2 we can see that the value passed on 
the stack to the routine S"I r is a 1, which is not what we are expecting. 

-15-



Figure 2: ADS output for program of Figure 1 

(Ox 1 ) 
$c 
_hlain+Ox30: 
__ start+Ox38: (Oxi. OxFFFDDO) 
$r 

PS Oxll 
PC Ox20CA 

dO OxliSOO 
dl Ox800 
d2 OxO 
d3 OxO 
dll OxO 
dS OxO 
dS OxO 
d7 OxO 

"s"Ir+e .S?ia" 
_s"Ir+OxE: 
_s"Ir+Ox12: 
_s"lr+Oxll1: 
_s"lr+Ox18: 
_s"Ir+OxlE: 
_s"Ir+Ox20: 

$e 

_errno: OxO 
_environ: 
_a rg')_val ue: 
_ints: Oxl 
_ivaI: Oxl 
__ pfile: 
__ iob: OxO 
__ ctype: 
__ sobuf: 
__ Iastbuf: 
__ sibuf: 
tb_pwtll: 
tb_pwt8: 
tb_bcd: Oxl0203 

_s"Ir+Oxll1: 

OxFFFDD8 
OxFFFDDO 

OxO 

Ox202020 
OxO 
OxllE08 

Move. 1 
hlove .1 
Move. 1 
J S r 
add"l.w 

OxO 
Ox3iDl111iE 
Ox30FClISOl 

tb_pwt: Ox2FS2F8AC 
tb_auxpt: OxAC80S28 
tb_pwtt: Ox32ASOFFD 
tb_bin: Oxi0203 
_end: OxO 
_edata: Ox 

The next request: 

$r 

I~ove .1 Ox8(aS) .-(a7) 

aO Oxl 
al OxFFFDDO 
a2 OxO 
a3 OxO 
all OxO 
as OxO 
as OxFFFDAC 
SP OxFFFDAC 

Ox8(aS).aO 
(aO).-(a7) 
Ox8(aS) .-(a7) 
_aIMui 
#Ox8.a7 

prints out the registers including the program counter and an interpretation of the instruction at 
that location. The instruction printed for the pc does not always make sense. This is because the 
pc has been advanced and is either pointing at the next instruction, or is left at a point part way 
through the instruction that failed. In this case the pc points to the next instruction. In order to 
find the instruction that failed we could list the instructions and their offsets by the following 
command. 

s9r+e,5?ia 

This would show us that the instruction that failed was: 

_s9r+Ox12:fTlDI}e.l(aO) t-(a7) 

-16-



This is the first instruction before the value of the pc. The value printed out for register aO also 
indicates that a dereference of its value would fail. 

The request: 

$e 

prints out the values of all external variables at the time the program crashed. 

Setting Breakpoints 
Consider the C program in Figure 3. This program, which changes tabs into blanks, is adapted 
from Software Tools by Kernighan and Plauger, pp. 18-27. 

Figure 3: C program to decode tabs 

#include <stdio.h> 
#define MAXLINE 80 
#define YES 
#define NO o 

8 #define TABSP 

char 
FILE 
int 
char 

fIla i n ( ) 
{ 

} 

inpIJt[] IIdata ll ; 

*st reafll; 
tabs[MA)-(LINEJ; 
ib'Jf[BUFSIZJ; 

int col, *ptab; 
char c; 

setbuf(stdollt tibuf); 
ptab = tabs; 
settatd ptab); 
col = 1; 

I*Set initial tab stops *1 

if«streafll = fopen(input,"r")) == NULL) { 
printf("'X,s : not found\\n",inpIJt); 
exit(8); 

} 

while«c = getc(stream)) != EOF) { 
sl"itch(c) { 

} 

} 

case '\t': 1* TAB *1 
while(tabpos(col) 1= YES) { 

putchar(' '); 1* PI.lt BLANK *1 
col++ ; 

} 

b re af( ; 
case '\n': 

default: 

putchar( '\n'); 
col = 1; 
breaK; 

putchar(c) ; 
col++ ; 

-17-



1* Tabpos return YES if col is a tab stop *1 
tabpos(col) 
int col; 
{ 

If(col > MAXLINE) 
return(YES) ; 

e 1 s e 
return(tabs[coIJ) ; 

} 

1* Settab - Set initial tab stops *1 
settab(tabp) 
int *tabp; 
{ 

} 

in t i; 

for(i = 0; i<= MAXLINE; i++) 
(i%TABSP) ? (tabs[iJ NO) (tabs[iJ YES) j 

We will run this program under the control of ADB (see Figure 4) by: 

adb a.ol1t -

Breakpoints are set in the program as: 

add res 5 : b [request] 

The requests: 

settab+e:b 
fopen+e:b 
tabpos+e:b 

set breakpoints at the starts of these functions. The above addresses are entered as 5 y tTl b 0 1 + e 

so that they will appear in any C backtrace since the first three instructions of each function is a 
standard sequence that links in the new function. Note that one of the functions is from the C 
library. 

Figure 4: ADB output for C program of Figure 3 

adb a.out -
executable file 
ready 
settab+e:b 
fopen+e:b 
tabpos+e:b 
$b 

breaKpoints 
count bllpt 

a.out 

Ox1 _tabpos+OxE 
Ox1 _fopen+OxE 
Ox1 _settab+OxE 

: r 
process 11840 created 
a.out: running 

cOMMand 

breaKpoint _settab+OxE: 
settab+e:d 
: c 

c I r.l -Ox4(a8) 

-18-



a,OlJt: running 
breakpoint _fopen+OxE: Jsr __ findiop 

$c 
_Ilia in+OxLlB: _fopen (OxLlE3B. OxLlE3E) 
__ start+Ox2C: _Ilia i n (Ox 1 • !)xFFFDEO) 

tabs/211}{ 
_tabs: Ox1 

Ox!) 
Ox1 
OxO 
Ox1 
OxO 

: C 

a taU t : rlJnnins 
breakpoint _tabpos+OxE: 

: s 
a. 0 u t : running 
stopped at _tabpos+Ox1G: 

<ne,,,,line> 
a. 0 U t : runn i ng 
stopped at _tabpos+Ox1C: 

<nel ... lline> 
a.out: runn in 9 
stopped at _tabpos+Ox20: 

<nel ... lline> 
a. 0 u t : r unn i n 9 
stopped at _tabpos+Ox22: 

<nel ... lline> 
a.out: running 
stopped at _tabpos+Ox2B: 

<nel ... lline> 
a • 0 IJ t : running 
stopped at _tabpos+Ox2A: 

: d* 
: c 

a.out: running 
process terminated 
settab+e:b settab .5?ia 
t abpos+e .3: b i buf 120c 
: r 

process 3255 created 
a.o'.lt: funning' 
settab .5?ia 
_settab: 
_settab+OxLl: 
_settab+OxB: 
_settab+OxE: 
_settab+Ox12: 
_settab+Ox1A: 

link 
tst.b 
l~o'.Iem.l 

c 1 r. 1 
ClllP.l 

breakpoint _settab+OxE: 
: C 

a.out: running 
ib'.lf/20c 
_ibuf: This 
ibuf/20c 
_ibuf: 
ibuf/20c 
_ibuf: 
breakpoint 

$9 

This 

This 
_tabpos+OxE: 

Pfocess 3255 Killed 

Ox!) OxO 
OxO OxO 
OxO OxO 
OxO OxO 
OxO OxO 
OxO OxO 

c III P • 1 1I0x50.0xB(aG) 

b 1 e • s _tabpos+OxlC 

I~ 0 '.I e • 1 OxB(aG) • dO 

as 1 • 1 1I0x2.dO 

add .1 1I0x5BAll,dO 

move.l dO.aO 

fno~.Jefl (aO) ,dO 

aG.1I0xFFFFFFFC 
-Ox10(a7) 
11< > .-OxLl (as) 
-OxLl(aS) 
IIOx50.-0xLl(aS) 

C 1 r. 1 -OxLl(aG) 

C~lP. 1 IIOx50.0xB(aG) 

-19-

OxO 
OxO 
OxO 
OxO 
OxO 
OxO 



To print the location of breakpoints one types: 

$b 

The display indicates a count field. A breakpoint is bypassed count-l times before causing a 
stop. The command field indicates the ADB requests to be executed each time the breakpoint is 
encountered. In our example no command fields are present. 

By displaying the original instructions at the function set tab we see that the breakpoint is set 
after the instruction to save the registers on the stack. We can display the instructions using the 
ADB request: 

settab ,5?ia 

This request displays five instructions starting at set tab with the addresses of each location 
displayed. 

To run the program one simply types: 

: r 

To delete a breakpoint, for instance the entry to the function set tab, one types: 

settab+e:d 

To continue execution of the program from the breakpoint type: 

: c 

Once the program has stopped (in this case at the breakpoint for fop e 1"1), ADB requests can be 
used to display the contents of memory. For example: 

$c 

to display a stack trace, or: 

tabs ,3/8)-< 

to print three lines of 8 locations each from the array called tab s. The format )( is used since 
integers are four bytes on the MC68000. By this time (at location fop e 1"1) in the C program, 
set tab has been called and should have set a one in every eighth location of tab s. 

-20-



Advanced Breakpoint Usage 
When we continue the program with: 

: c 

we hit our first breakpoint at tab p 0 5 since there is a tab following the' 'This" word of the data. 
We can execute one instruction by: 

: 5 

and can single step again by hitting "carriage return". Doing this we can qUickly single step 
through tab p os and get some confidence that it is working. We can look at twenty characters 
of the buffer of characters by typing: 

>buf/20c 

Several breakpoints of tab po 5 will occur until the program has changed the tab into equivalent 
blanks. Since we feel that tab P os is working, we can remove all the breakpoints by: 

If the program is continued with: 

: c 

it resumes normal execution and continues to completion after ADB prints the message: 

a.out: funning' 

It is possible to add a list of commands we wish to execute as part of a breakpoint. By way of 
example let us reset the breakpoint at 5 e t tab and display the instructions located there when 
we reach the breakpoint. This is accomplished by: 

settab+e:b settab,5?ia 

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only 
stop after the third occurrence by typing: 

tabpos+e ,3:b ibuf/20c 

This request will print twenty character from the buffer of characters at each occurrence of the 
breakpoint. 

If we wished to print the buffer every time we passed the breakpoint without actually stopping 
there we could type: 

tabpos+et-l:b ibuf/20c 

A breakpoint can be overwritten without first deleting the old breakpoint. For example: 

settab+e:b settab,5?ia;ptab/o 

could be entered after typing the above requests. The semicolon is used to separate multiple 
ADB requests on a single line. 

-21-



Now the display of breakpoints: 

$b 

shows the above request for the set tab breakpoint. When the breakpoint at set tab is 
encountered the ADB requests are executed. 

Note 
Setting a breakpoint causes the value of dot to be changed; execut­
ing the program under ADB does not change dot. Therefore: 

settab+e:b + ,5?ia 
fopen+e:b 

will print the last thing dot was set to (in the example fop en) not the 
current location (s e t tab) at which the program is executing. 

The HP-UX quit and interrupt signals act on ADB itself rather than on the program being 
debugged. If such a signal occurs then the program being debugged is stopped and control is 
returned to ADB. The signal is saved by ADB and is passed on to the test program if: 

: c 

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on 
to the test program if: 

: c 0 

is typed. 

·22-



Other Breakpoint Facilities 
Arguments and change of standard input and output are passed to a program as: 

: r a r 91 a r 92 ... <infile> Q u t f i 1 e 

This request kills any existing program under test and starts the a • Q U t afresh. The process will 
run until a breakpoint is reached or until the program completes or crashes. 

If it is desired to start the program without running it the command: 

: ear 91 a r 92 ... <infile> Q u t f i 1 e 

can be executed. This will start the process, and leave it stopped without executing the first 
instruction. 

If the program is stopped at a subroutine call it is possible to step around the subroutine by: 

: S 

This sets a temporary breakpoint at the next instruction and continues. This may cause unex­
pected results if : S is executed at a branch instruction. 

ADB allows a program to be entered at a specific address by typing: 

address:r 

The count field can be used to skip the first n breakpoints as: 

,n: r 

The request: 

,n : c 

may also be used for skipping the first n breakpoints when continuing a program. 

A program can be continued at an address different from the breakpoint by: 

address:c 

The program being debugged runs as a separate process and can be killed by: 

: K 

All of the breakpoints set so far can be deleted by: 

A subroutine may be called by: 

: x add res s [parameters] 

-23-



Maps 
HP-UX supports several executable file formats. These are used to tell the loader how to load 
the program file. A nonshared text program file is the most common and is generated by a C 
compiler invocation such as c c p 9 iTl • c. A shared text file is produced by a C compiler com­
mand of the form c c - n p 9 iTl • c, ADB interprets these different file formats and provides 
access to the different segments through the maps. To print the maps type: 

$m 

In nonshared files, both text (instructions) and data are intermixed. In shared files the instruc­
tions are separated from data and 7* accesses the data part of the a. 0 u t file. The 7* request 
tells ADB to use the second part of the map in the a. 0 u t file. Accessing data in the cor e file 
shows the data after it was modified by the execution of the program. Notice also that the data 
segment may have grown during program execution. Figure 5 shows the display of two maps 
for the same program linked as a nonshared and shared respectively. The b, e, and f fields are 
used by ADB to map addresses into file addresses. The f 1 field is the length of the header at the 
beginning of the file (Ox40 bytes for an a. 0 u t file and Ox800 bytes for a cor e file). The f 2 
field is the displacement from the beginning of the file to the data. For a nonshared file with 
mixed text and data this is the same as the length of the header; for shared files this is the length 
of the header plus the size of the text portion. 

Figure 5: ADB output for maps 

adb a.out.unshared core.unshared 
$ITI 

executable file = a.out.unshared 
core file = core.unshared 
re ad}' 
? Map 'a.out.unshared' 
bl = Ox2000 el = Ox20FC 
b2 = Ox2000 e2 = Ox20FC 
I Map 'core.unshared' 
bl = Ox2000 el Ox2400 

f I 
f2 

f I 
b2 = OxFFF400 e2 = Oxl000000 f2 

$!} 

l.lariables 
b Ox2000 
d Ox400 
e = Ox2000 
ITI = Oxl07 
s = OxCOO 

$9 

adb a.out.shared core.shared 
$Itl 

executable file = a.out.shared 
core file = core.shared 
read}' 
? Map \s.Dut.shared' 
bl = Ox2000 el = Ox20FC 
b2 = Ox80000 e2 = Ox80000 
I Map 'core.shared' 
bl = Ox2400 el Ox2800 
b2 = OxFFF400 e2 = OxlOOOOOO 

$l.l 

f I 
f2 

f I 
f2 

Ox40 
Ox40 

Ox800 
OxCOO 

Ox40 
Oxl3C 

Ox800 
OxCOO 

-24-



variables 
b Ox2400 
d Ox400 
e Ox2000 
III Oxl08 
s OxCOO 
t Ox400 

$9 

The band e fields are the starting and ending locations for a segment. Given an address, A, the 
location in the file (either a tOll t or cor e) is calculated as: 

b1:o::;;A:o::;;e1 ~ file address = (A-b1)+f1 
b2:o::;;A:o::;;e2 ~ file address = (A - b2) + f2 

Variables and Registers 
ADS provides a set of variables which are available to the user. A variable is composed of a 
single letter or digit. It can be set by a command such as: 

Ox32>5 

which sets the variable 5 to hex 32. It can be used by a command such as: 

<5=X 

which will print the value of the variable 5 in hex format. 

Some of these variables are set by ADS itself. These variables are: 

o last value printed 
b base address of data segment 
oj length of the data segment 
e The entry point 
m execution type (Ox107 (nonshared),Ox108 (shared)) 
s length of the stack 
t length of the text 

These variables are useful to know if the file under examination is an executable or cor e image 
file. ADS reads the header of the core image file to find the values for these variables. If the 
second file specified does not seem to be a core file, or if it is missing, then the header of the 
executable file is used instead. 

Variables can be used for such purposes as counting the number of times a routine is called. 
Using the example of Figure 3, if we wished to count the number of times the routine tab PO S is 
called we could do that by typing the sequence: 

0>5 tabpos+et-l:b {5+1:>5:r {5=oj 

The first command will set the variable 5 to zero. The second command will set a breakpoint at 
tab p 0 s + e. Since the count is -1 the process will never stop there but ADS will execute the 
breakpoint command every time the breakpoint is reached. This command will increment the 
value of the variable 5 by 1. The: r command will cause the process to run to termination. And 
the final command will print the value of the variable. 

-25-



$1) can be used to print the values of all non-zero variables. 

The values of individual registers can be set and used in the same way as variables. The 
command: 

Ox32)dO 

will set the value of the register dO to hex 32. The command: 

<dO=X 

will print the value of the register dO in hex format. The command $ r will print the value of all 
the registers. 

Formatted dumps 
It is possible with ADB to combine formatting requests to provide elaborate displays. Below are 
some examples. 

The line: 

<b ,-1I404"'8Cn 

prints 4 octal words followed by their ASCII interpretation from the data space of the core 
image file. Broken down, the various request pieces mean: 

<b 

< b ,-1 

The base address of the data segment. 

Print from the base address to the end of file. A negative count is used here and 
elsewhere to loop indefinitely or until some error condition (like end of file) is 
detected. 

The format 404 ,', 8 C n is broken down as follows: 

40 Print 4 octal locations. 

4'" Backup the current address 4 locations (to the original start of the field), 

8 C Print 8 consecutive characters using an escape convention; each character in 
the range 0 to 037 is printed as @ followed by the corresponding character in the 
range 0140 to 0177. An @ is printed as @@. 

n Print a new line. 

The request: 

<to ,<d/404"8Cn 

could have been used instead to allow the printing to stop at the end of the data segment « d 
provides the data segment size in bytes), 

-26-



The formatting requests can be combined with ADB's ability to read in a script to produce a 
core image dump script. ADB is invoked as: 

adb a.out core ( dUMP 

to read in a script file, d U III P, of requests. An example of such a script is: 

120$1,1 

4085$s 
$1) 

=3n 
$ITl 

= 31"1 "C S t act, B act, t r ace" 
$C 
=3n"C External t,.lariables" 

$e 

=3n"Re9isters" 
$r 

O$s 

=3n"Data Se9lYlent" 
(b t-1/Bona 

The request 120hl sets the width of the output to 120 characters (normally, the width is 80 
characters). ADB attempts to print addresses as: 

SYIllbol + offset 

The request 4085 $ s increases the maximum permissible offset to the nearest symbolic address 
from 255 (default) to 4095. The request = can be used to print literal strings. Thus, headings are 
provided in this d UIYl P program with requests of the form: 

=3n"C Stact, Bacf,trace" 

that spaces three lines and prints the literal string. The request $ I) prints all non-zero ADB 
variables. The request 0 $ s sets the maximum offset for symbol matches to zero thus suppres­
sing the printing of symbolic labels in favor of octal values. Note that this is only done for the 
printing of the data segment. The request: 

(b I-l!Bona 

prints a dump from the base of the data segment to the end of file with an octal address field 
and eight octal numbers per line. 

Figure 7 shows the results of some formatting requests on the C program of Figure 6. 

-27-



Figure 6: Simple C program for Illustrating 
Formatting and Patching 

char strl[] "This is a character string"; 
int one 1 ; 
int nurnbe r 456; 
Ion 9 InlJrn 1234; 
fl oa t fpt 1.25 ; 
char s t r2 [ ] "This is the second character string"; 
rna i n ( ) 
{ 

one ? • -, 
} 

Figure 7: ADS output illustrating fancy formats 

adb a.out.shared -
executable file a.out.shared 
read}' 
<b,-I?Sona 

_strl: 052150 064563 020151 071440 060440 061550 060562 060543 

_strl+0xl0: 072145 071040 071564 071151 067147 0 0 01 

_nufTIber: 
_nurnber: o 0710 0 02322 037640 0 052150 064563 

_str2+0x4: 020151 071440 072150 062440 071545 081557 067144 020143 

_str2+0xI4: 064141 071141 061564 062582 020183 072182 084558 083400 
<b ,20?404"'SCn 

_strl: 

_nuhlber: 

052150 
080440 
072145 
087147 

0 

037640 
020151 
071545 
084141 
020183 

084583 
081550 
071040 
0 

0710 

0 
071440 
061557 
071141 
072162 

address not found in a.out file 
<b ,20?404'''StSCna 
_strl: 052150 084563 
_strl+0xS: 080440 081550 
_strl+0xl0: 072145 071040 
_strl+0xlS: 087147 0 
_nurnbe r: 
_number: 
_fpt: 

o 

037840 
020151 
071545 
084141 
020183 

COlO 

0 
071440 
081557 
071141 
072182 

_str2+0x4: 
_str2+0xC: 
_str2+0xI4: 
_str2+0xlC: 
address not found in a. 0 u t f i Ie 

<b ,a?2bSt"'2cn 
_strl: Ox54 

Ox69 
Ox20 
Ox73 
Ox61 
Ox63 
Ox61 
Ox61 
Ox74 
Ox72 

Ox6S 
Ox73 
Ox89 
Ox20 
Ox20 
Ox8S 
Ox72 
Ox63 
Ox85 
Ox20 

020151 
060582 
071584 
0 

0 

052150 
072150 
087144 
061564 
084556 

020151 
080582 
071584 
o 

o 

052150 
072150 
087144 
061584 
084558 

071440 
080543 
071151 
01 

02322 

084583 
082440 
020143 
062582 
083400 

071440 
080543 
071151 
01 

02322 

084583 
062440 
020143 
062582 
063400 

Th 
i s 

s 
a 
ch 
ar 
ac 
te 

-28-

This is 
a charac 
ter s t r i 
n9'@'@'@'@'@'@a 

@'@'@aH@'@'@dR 

? @'@'This 
is the 

second c 
haracter 

This is 
a charac 
ter stri 
n9'@'@'@'@'@'@a 

@'@'@aH@'@'@dR 

? @'@'This 
is the 

second c 
haracter 



Patching 
Patching files with ADB is accomplished with the write, w or W, request (which is not like the ed 
editor write command). This is often used in conjunction with the locate, I or L request. In 
general, the request syntax for 1 and IAI are similar as follows: 

The request I is used to match on two bytes, L is used for four bytes. The request IAI is used to 
write two bytes, whereas W writes four bytes. The value field in either 1 0 cat e or IAI r i t e 

requests is an expression. Therefore, decimal and octal numbers, or character strings are 
supported. 

In order to modify a file, ADB must be called as: 

adb -w file1 file2 

When called with this option, f i 1 e 1 is created if necessary and opened for both reading and 
writing. f i 1 e 2 can be opened for reading but not for writing. 

For example, consider the C program shown in Figure 6. We can change the word "This" to 
"The " in the executable file for this program, ex 7, by using the following requests: 

adb -IAI ex7 -
? 1 J Th I 

?W 'The J 

The request ';. 1 starts at dot and stops at the first match of "Th" having set dot to the address of 
the location found. Note the use of ? to write to the a. 0 u t file. The form ?* would have been 
used for a shared text file. 

More frequently the request will be typed as: 

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB 
request will set dot to the address of the "Th" characters. 

As another example of the utility of the patching facility, consider a C program that has an 
internal logic flag. The flag could be set by the user through ADB and the program run. For 
example: 

adb a.out -

:e ars1 aI's2 

flas/IAl1 

: C 

The: e request is used to start a. 0 u t as a subprocess with arguments a I' s1 and a r s2. If there 
is a subprocess running ADB writes to it rather than to the file so the IAI request causes f 1 a s to 
be changed in the memory of the subprocess. 

-29-



Anomalies 
Below is a list of some strange things that users should be aware of. 

1. Function calls and arguments are put on the stack by the 1 in f, instruction. Putting 
breakpoints at the entry point to routines means that the function appears not to have 
been called when the breakpoint occurs. 

2. If a : S command is executed at a branch instruction, and the branch is taken, the 
command will act as a : c command. This is because a breakpoint is set at the next 
instruction and if is not reached, the process will not stop. 

Command Summary 
Formatted Printing 
? format 
Iformat 
= format 

print from a + 0 u t file according to format 
print from cor e file according to format 
print the value of dot 

?w expression 
Iw expression 
?l expression 

write expression into a. 0 u t file 
write expression into cor e file 
locate expression in a. 0 u t file 

Breakpoint and Program Control 
:b set breakpoint at dot 
:c continue running program 
:d delete breakpoint 
:k kill the program being debugged 
:r run a. 0 u t file under ADB control 
:s single step 

Miscellaneous Printing 
$b print current breakpoints 
$c C stack trace 
$e external variables 
$f floating registers 
$m print ADB segment maps 
$q exit from ADB 
$r general registers 
$s set offset for symbol match 
$v print ADB variables 
$w set output line width 

Calling the Shell 
call shell to read rest of line 

Assignment to Variables 
>name assign dot to variable or register name 

-30-



Format Summary 
a 
b 
c 
d 
f 
i 
o 
n 
r 
s 
nt 
u 
x 
y 

" " 

the value of dot 
one byte in hexadecimal 
one byte as a character 
two bytes in decimal 
four bytes in floating point 
MC68000 instruction 
two bytes in octal 
print a newline 
print a blank space 
a null terminated character string 
move to next n space tab 
two bytes as unsigned integer 
hexadecimal 
date 
backup dot 

print string 

Expression Summary 
Expression Components 
decimal integer e. g. Od256 
octal integer e.g. 0277 
hexadecimal e.g. Oxff 
symbols e.g. flag _main 
variables e.g. <b 
registers e.g. <pc <dO 
(expression) expression grouping 

Dyadic Operators 
+ add 

* 
% 
& 
I 
# 

subtract 
multiply 
integer division 
bitwise and 
bitwise or 
round up to the next multiple 

Monadic Operators 
not 

* contents of location 
integer negate 

-31-



-32-



Manual Comment Sheet Instruction 
If you have any comments or questions regarding this manual, write them on the enclosed comment 
sheets and place them in the mail. Include page numbers with your comments wherever possible. 

If there is a revision number, (found on the Printing History page), include it on the comment sheet. 
Also include a return address so that we can respond as soon as possible. 

The sheets are designed to be folded into thirds along the dotted lines and taped closed. Do not use 
staples. 

Thank you for your time and interest. 




