HP 9000 Series 200/500 Computers () et

PACKARD

HP-UX Selected Articles

\\

HP-UX Selected Articles
for the HP 9000 Series 200/500

Manual Part No. 97089-90003

© Copyright 1983, Hewlett-Packard Company.

©

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Copyright 1980, Bell Telephone Laboratories, Inc.

Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

November 1983...First Edition

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of delivery.”
Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not
provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

Preface

The articles contained in this manual are provided to help you use the commands and utilities provi-
ded with HP-UX. The articles have several sources. Some were written at Hewlett-Packard specifi-
cally for the HP 9000 family of computers. Others were written at Bell Laboratories or the Universi-
ty of California at Berkeley (UCB), and remain in their original state. Thus, it is possible that some
options and/or descriptions of command behavior may not apply to your system.

The articles included are:

V0NN LN

System Overview

Edit: A Tutorial

Ex Reference Manual

The Vi Editor

The Ed Editor

Sed — A Non-Interactive Text Editor

Awk — A Pattern Scanning and Processing Language
Shell Programming

UNIX* Programming

Make — A Program for Maintaining Computer Programs
Source Code Control System User’s Guide

Using C on the HP 9000 Series 500 Computers

Lint — C Program Checker

Nroff/Troff User’s Manual

Memorandum Macros

Lex — A Lexical Analyzer Generator

Yacc: Yet Another Compiler-Compiler

Uucp Implementation Description

Using the System Console with HP 9000 Series 200 Computers
HP-UX and the HP 9000 Model 520 as System Console
MC68000 Assembler on HP-UX

*UNIX is a trademark of Bell Laboratories, Inc.

Table of Contents

Introduction and System Overview for Series 500 Computers

TE PIOCES ..o e e e e e 1
Where are the Pieces Located?.oueeioiiiee e e e e 3
HOW Do the PIeces Fit? . oo e e 4

Where Can [Learn MOre? e 5

Introduction and System Overview
for the Series 500 Computers

HP-UX is a powerful and flexible operating system, providing many tools for developing and
running application programs. Supplied with HP-UX is, seemingly, a mountain of material. Where
do you start? How do you learn to use the system?

This section provides an overview of the system by describing its parts, their functions, and the
methods in which they interact. It also provides a guide through the documents supplied with
HP-UX, explaining where you may find detailed information about its various components.

The Pieces

HP-UX is composed of several functional ‘“‘pieces”’, each of which is described in the following
paragraphs.

® The kernel - the heart of the operating system. It is a program that controls the allocation of
system resources. For example, it allocates memory to run programs, schedules programs for
execution, allocates computer (CPU) time among running programs, and takes care of the
technical intricacies of communicating with peripheral devices.

The kernel is automatically loaded and run when the computer is powered-up (generally the
responsibility of the system administrator). Unless you are the system administrator, this should
already be done for you by the time you are ready to use the system.

e Commands - executable programs performing specific tasks. This includes the programs
supplied with HP-UX as well as the ones that you create.

Some commands are simple, performing a specific function with little or no user interaction.
For example, the who command, when executed, prints the user name of each user currently
logged in (accessing the system). Other commands are more complex, continually interacting
with you to perform their tasks. For example, the ed command, when executed, allows you to
create a text file from the characters entered from the keyboard. It has several subprograms
(such as append, replace, insert, etc.) that are accessed by supplying certain ‘*key characters”
to the main program.

@ Shell - a program (command) that acts as your interface to HP-UX. It is automatically run
when you successfully log in (gain access to the system). The shell’s main purpose is to wait for
information to be typed on the keyboard. Once the information is entered, it passes the
information on to the kernel as the name of a program to be executed. It also transfers any
optional data and parameters entered with the program name.

Beyond its job as a simple command interpreter, the shell also provides its own programming
language. This language includes control-flow contructs (such as for - next, while, and if - then
- else). The shell’'s programming language is used primarily for writing shell scripts (described
next).

@ Script or shell script - text file containing a series of program names and shell programming
language constructs. When executed, a shell script can replace typing from the keyboard (and
thus free your time for other activities) by providing command names and parameters to the
shell for execution. Since its language provides control-flow statements, it can examine the
output of one command and decide which command(s) to execute next.

For example, suppose that you want to see both a list of everyone using the system and a list
identifying the tasks that each user is performing. You could execute the individual commands
who (prints a list of everyone using the system) and ps (prints a list identifying each task being

-1-

performed on the system). However, if this operation is to be performed often, you would
spend more time typing than necessary. By creating a shell script (described in the Shell
Programming section later in this manual) that contains both commands, you would only have
to execute the script to obtain the desired information. The whodo command is a script
performing exactly this function. It also includes many commands to format and present the
data in @ more concise form.

e Subroutine - a sequence of computer instructions for performing a specific task. A subroutine
can only be used by a program (that is, it cannot act as a free-standing program). A subroutine
can be used repeatedly in one or more programs, thus allowing you to use the same sub-
routine each time the function is needed. There is no need to write or even enter the program
code to perform the task; you need only use the name of the existing subroutine to obtain its
function.

Subroutines are provided with your system to keep you from having to re-invent the code that
performs a function. For example, suppose that while writing a program, you found that you
needed an arctangent function. You could write your own arctangent function using the math
functions available in your programming language. Alternately, you could simply call the atan
subroutine (provided with HP-UX) from your program.

e Library - a collection of related subroutines. For example, a math library might include trigo-
nometric functions, logarithmic functions, and numeric base conversion functions. A math
library and an [/O library are included with the standard libraries supplied with HP-UX. Other
libraries may be supplied with the various programming languages and application packages
you purchase.

e System call - a “link” or “hook’” into the capabilities provided by the HP-UX kernel. Many of
the base level capabilities used in the kernel are available for use in your programs. Functional-
ly, the system call is similar to the subroutine. Both are previously written routines which you
may use in your application programs. Subroutines are stored in disc files while system calls
reside in the kernel.

e Language - a programming language, such as C, FORTRAN, and Pascal. Each language
actually consists of at least one command (a compiler for the language) and usually one or
more libraries. The compiler translates a text file (assuming it has the expected form and
syntax) into binary code which the computer can understand and execute.

® Ordinary file - a file containing a program or data (binary code or ASCII text) such as a
command or shell script.

® Special file - a file defining the attributes of a peripheral device, such as the communication
protocol and the location of a disc drive or a printer. When output is directed to or input is
directed from a special file, the kernel uses the information in the special file to communicate
with the peripheral device. The complexities of actual device to device communication are left
to the kernel. The program operates independently of the device(s) with which it communi-
cates.

® Directory (file) - an ordinary file containing a list of ordinary files, special files, and other
directories. Directories are used to organize the files that form the HP-UX hierarchical file
system.

Where are the Pieces Located?

The pieces that form HP-UX (previously described) are located at various places in the system. The
other documents supplied with your system describe the organization of the HP-UX file system and

teach its use and methods of access. This section simply identifies the location of the major pieces
that form HP-UX.

The kernel is stored in a special part (called the boot area) of a mass storage medium. At computer
power-up, it is automatically loaded by the loader - a program that permanently resides in the
computer.

The commands and libraries are stored in ordinary files on the disc. Their location is specified by the
directory in which they are located (as described by the text and diagram that follow).

Commands are distributed between three directories. The most commonly used commands (such
as Is, who, and ed) are stored in the /bin directory. Less frequently used commands (such as get,
delta, and lint) are stored in the /usr/bin directory.

Commands located in the /etc directory are typically used for system management or system
maintenance. Often, these commands can only be accessed by the system manager or super-user.
(The super-user is a system user with special capabilities; he is identified by a special user ID.)

The libraries supplied with HP-UX are located in the directories /lib and /usr/lib.

Special files are located in the directory /dev.

The files and directories that you and other users create are usually stored in the directory /users.
Typically, each user has his own directory in /users. That directory, in turn, contains the directories

and ordinary files that he has created.

Location of Features in the HP-UX File System

/\

dev lib bin usr etc tmp users
special commonly used users
files commands files
libraries lib bin temporary files

(subroutines)

created by HP-UX

/

libraries infrequently system manager
(subroutines) used commands commands

How Do the Pieces Fit?

Now that you are familiar with the various pieces of HP-UX, you are probably saying to yourself
“That’s nice. But how do all of the pieces fit together?”’. The easiest way to show this is through an
example. Let’s follow Joe Programmer through his task of creating and running a program:

1. If the system is not loaded and running, Joe (or his system administrator) switches on power
to the computer. The computer’s system loader program finds and loads the HP-UX kernel.

2. Once the kernel is loaded, some initial set-up is performed and then the login program is run.
When the program is ready, it displays the prompt:

lodin:

Joe types in his user name, which he obtained from the system administrator. He is then
prompted for his password (assuming Joe has been wise enough to assign himself a
password). Once his user name and password have been correctly entered, Joe is logged
in.

3. The system displays some information (such as the message of the day) and then auto-
matically runs the shell program. This allows Joe to execute any program he wishes. He
executes the mail command to send his boss a message informing him that he is three
days ahead of schedule ‘‘because of the incredible power of HP-UX"'. He knows that the
message will be received when his boss logs in.

Next, Joe executes the Is command to see what files are present in his directory. He
executes the rm command to remove a file containing an early version of his project
report that he no longer needs.

4. Now Joe starts to write a Pascal program to plot test data (for quality assurance) from last
month’s Widget production. He executes his favorite text editing program (such as vi or
ed) to create the new program. He enters the text which forms the program from his
terminal:

PROGRAM PLOT.DATA (INPUTOUTPUT) 3
(#PLOTS Q/A TEST DATA FROM WIDGET PRODUCTION*)

VAR
NUM_.PRODUCED» NUM_FAILED : INTEGER:

LR 2

END.

His program probably includes calls to HP-UX libraries and to the libraries supplied with the
Pascal Programming Language (possibly to provide math functions). Additionally, it may
include HP-UX system calls (calls to the intrinsics).

5. Once he is satisfied with the program, he instructs the text editing program to save (write) his
program in a file named ‘‘plot_data.p’”’. He then terminates the text editing program.

6. Next, Joe converts the text file into executable code by executing the pc command (the
Pascal compiler). The compiler checks the file for correct syntax and, catching an error,
informs Joe that his program contains an error. Joe again executes the text editing progam,
instructing it that he wishes to edit the text contained in the file “‘plot_data.p’’. Once the error
is corrected, he re-saves the file and terminates the editing program.

7. Once more Joe executes the compiler and this time finds that no syntax errors are found.
Executing the mv command, he moves the compiled code to a file named “‘plot_it”.

4-

8. Finally, Joe executes his program, directing its output to the special file /dev/plt9872 (a
special file created by the system manager for accessing the HP 9872 Plotter). He enters:

plot.it > /deu/p1t8872 (RETURN

Assuming Joe is a good programmer, he finds his data plotted on the HP 9872. Pleased
with himself, he logs off (terminates his login session) by pressing (_D_) while holding the
key depressed.

The following prompt verifies that he is no longer accessing the system and that the terminal
is ready for the next user (possibly you?) to login:

lodin:

Running More Than One Task

Although HP-UX provides virtual memory support for both code and data, this support does not
allow a task to be completely swapped from main memory. A minimum of 16 Kbytes of main
memory is consumed by each task until it terminates. Therefore, it is possible when multiple tasks
are competing for main memory to get an out-of-memory message (usually: ‘‘not enough mem-
ory” or “MEMORY FAULT”). The task that failed to get the needed memory is killed, while other
tasks proceed normally. A task that was killed by the system can be restarted at any future time, but
preferably when the system is less loaded.

If You Get an Error

The err command has been included to help you obtain more information about why an error is
occurring. If you encounter an error that you believe is a bug, execute /bin/errimmediately after the
error occurs. This will list three numbers that you should record and use in describing the problem
to your support engineer. Note that the numbers are updated as each occurs. Be sure to record
them before another error happens.

Where Can I Learn More?

Now that you are aquainted with the pieces that form HP-UX and have seen how the pieces are
used in a typical application, you are probably wondering where you can learn more about HP-UX.
The best way to learn HP-UX is to attend an HP-UX training class. Contact your HP sales
representative for more information about the courses.

Whether or not you attend a training course, you should read the documents supplied with HP-UX.
Where do you start? The following list describes the documents shipped with HP-UX and indicates
the order in which they should be read.

1. If your computer has not yet been installed or if you want to verify that the computer is
operating propetrly, read the Installation and Test manual supplied with your computer. A
list of the materials supplied with your computer is supplied in the Unpacking Instructions
for the HP 9000 Series 500 Computers (HP part number 97080-90092), as well as a
“roadmap’’ briefly describing the documents supplied with the system.

2. If you are responsible for installing HP-UX, read the System Administrator Manual (HP
part number 97089-90047). This manual provides instructions for installing HP-UX.

3.

For a basic understanding of HP-UX, read the article entitled “‘Introduction and System
Overview” in the HP-UX Selected Articles manual (HP part number 97089-90003). It
introduces you to some fundamental terms and provides an overview of the system. Addi-
tionally, it includes a detailed description of the documents provided with HP-UX and
indicates the order in which they should be read.

To start learning how to use HP-UX, read the softcover text Introducing the UNIX' System
(HP part number 98680-90025). You will need to obtain a user name (and optionally, a
password) from your system administrator so that you can try the interactive examples in the
text. Working with the system is the easiest way to learn its use.

If you are the system administrator and are the first user on the system, use the user name
guest when logging in (when you are so directed by the text). Otherwise, obtain a user
name and password from your system administrator before working the examples in the
text.

Once you know how to use the system, the order in which the remaining manuals are read depends
on the task(s) you need to accomplish and the options (such as programming languages) purchased
with HP-UX. Select and read only the documents that apply.

5.

10.

If you are responsible for installing, managing and maintaining HP-UX (for example, adding
users to the system, backing-up the file system, and adding peripherals to the system) read
the System Administrator Manual (HP part number 97089-90047). It describes the system
administrator’s job and his responsibilies. It also explains the concepts of HP-UX that are
needed to manage and maintain the system. Additionally, it provides instructions for per-
forming the specific tasks that are the system administrator’s responsiblity (in the chapter
entitled ““‘System Administrator’s Toolbox™).

To learn how to use a specific application program (such as the vi or ed text editor programs),
read the appropriate articles in the manual, HP-UX Selected Articles (HP part number
97089-90003).

The HP-UX Reference (HP part number 09000-90006) provides syntax and semantic
information about the HP-UX commands, system calls, subroutines, and data files. It also
provides some limited tutorial information about device access and complex procedures. Be
sure to read the section entitled “Introduction”. It describes in detail the contents of the
manual and provides tutorial information about accessing HP-UX from your terminal or
computer keyboard.

To learn how to write shell scripts with the shell’s programming language, read the article
entitled ““‘Shell Programming’”’ in the manual, HP-UX Selected Articles (HP part number
97089-90003).

To learn how to write programs in the C Programming Language, read the softcover text, C
Programming Language (HP part number 97089-90000).

a. Once you know how to program in C, you may want to access the power of HP-UX
directly from C. The article entitled “UNIX Programming” in the HP-UX Selected
Articles manual (HP part number 97089-90003) shows you how to access the HP-UX
system calls and subroutines from a C-Language program.

For a description of the features provided with the FORTRAN Programming Language, read
the FORTRAN Reference Manual (HP part number 97081-90001).

1 UNIX is a Trademark of Bell Telephone Laboratories, Inc.

11.

12.

13.

For a description of the features provided with the Pascal Programming Language, read the
Pascal Reference Manual (HP part number 97082-90001).

To learn how to access the Device-independent Graphics Library from a program, you
should read:

® DGL Device Handlers Manual (HP part number 97085-90005)

e GRAPHICS/9000 DGL Programmer’s Reference Manual (HP part number 97084-
90000)

e GRAPHICS/9000 DGL Supplement for HP-UX Systems (HP part number 97084-
90002).

To learn how to configure or use the data communications utilities, read HP-UX Asynchro-
nous Communications Guide (HP part number 97076-90001).

Table of Contents

Edit: A Tutorial

AADSITACEt e e e 1
Session 1: Creatinga File of TexXt........coovviiiiiiii e 4
ASKING FOr Edit....oiiiiiiiiiccce e 4
The "Command not found " MeSSage...............cccomviiiiiiiiiiiiiiieee e 5
AV SUITIMAIY . ..ottt ettt e et e et ae e 5
ENtering TeXt......oooiiiiiiiii e 5
Messages from Edit...........ccooiiiiiiiiiiii e 5
TextINPUEMOAE.........oviiiiiie e 6
Writing Text t0 DISKooiiiiiiiiii e 6
Logging Off ... o e 7
SCSSION 2 .. e s 8
Adding More Text to YOUr Fileoooiiiiiiiii e 8
INE@ITUDL ... 8
MaKing COITECHONScvvviiiiiiie ettt e e e et e e e e 8
Listing What's in the Buffercccoiiiiii e 9
Finding Thingsinthe Bufferooooiiii e 9
The CUITeNnt LINE.....cc.oiiiiiii et 10
Numbering Lines (NU)ooiiiiiii e 10
Substitute CommMEANA (S)o 10
Another Way to List What's in the Buffer................cooocci 12
Saving the Modified TeXtcooiiiiiiiiiiii e 12
SESSION 3.ttt e et e e aeaeane 13
Moving Textin the Buffer..............cccccoiiiiiiii e 13
CopYING LINES (COPY) ittt 14
Deleting Lines ()oooiiiiiiiiieeeecii e 14
A Word or Two of Caution............cooiiiiiiiiiiiii e 15
Undo (W) 10 the ReSCUE ... 15
More About the Dot () and Buffer ENd ($)....oooeirmmoe 16
Moving Around in the Buffer (+ and —)...........ccooiiiiiiiiiii e 16
Changing LINes (C)cooiiuiiiiiiieii e 17
SESSION 4 ...t 18
Making Commands Global ()uviiiiiiiiiiiiiiiiie e 18
More About Searching and SUbsHtUtNGcocoieiiiiiiiiiee e, 19
Special Characters..................cccccoeeeeein. e 19
Issuing UNIX Commands From the Edltor .. 20
Filenames and File Manipulationc.cccoiiiiiiiiieee 20
The File (f) CommMandoooeoiimeee e e 20
Reading Additional Files ()cccouviiiiiiiiii e 21
Writing Parts of the Buffer.............cccoooiiiiii e 21
Recovering FIlesooooiiiiiiiiii e 21
Other Recovery Techniques..............oooiiiiiiiiiiii e 21
Further Reading and Other Information................. ettt 22

USING EX oo 22

Edit: A Tutorial

Ricki Blau
James Joyce
Computing Services

University of California
Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edir assumes no
prior familiarity with computers or with text editing. Its aim is to lead the
beginning UNIXt user through the fundamental steps of writing and revising a
file of text. Edit, a version of the text editor ex, was designed to provide an
informative environment for new and casual users.

This edition documents Version 2 of edit and ex.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

August 31, 1980

tUNIX is a trademark of Bell Laboratories.

Edit: A Tutorial

Ricki Blau
James Joyce

Computing Services
University of California
Berkeley, California 94720

Text editing using a terminal connected to a computer allows one to create, modify, and
print text easily. A specialized computer program, known as a fext editor, assists in creating and
revising text. Creating text is very much like typing on an electric typewriter. Modifying text
involves telling the text editor what to add, change, or delete. Text is printed by giving a com-
mand to print the file contents, with or without special instructions as to the format of the
desired output.

These lessons assume no prior familiarity with computers or with text editing. They con-
sist of a series of text editing sessions which will lead you through the fundamental steps of
creating and revising a file of text. After scanning each lesson and before beginning the next,
you should follow the examples at a terminal to get a feeling for the actual process of text edit-
ing. Set aside some time for experimentation, and you will soon become familiar with using
the computer to write and modify text. In addition to the actual use of the text editor, other
features of UNIX will be very important to your work. You can begin to learn about these other
features by reading ‘‘Communicating with UNIX’’ or one of the other tutorials which provide a
general introduction to the system. You will be ready to proceed with this lesson as soon as
you are familiar with your terminal and its special keys, the login procedure, and the ways of
correcting typing errors. Let’s first define some terms:

program A set of instructions given to the computer, describing the sequence of steps
which the computer performs in order to accomplish a specific task. As an exam-
ple, a series of steps to balance your checkbook is a program.

UNIX UNIX is a special type of program, called an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit edit is the name of the UNIX text editor which you will be learning to use, a pro-
gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

file Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, log out, and return to use it at a later
time. Files contain anything you choose to write and store in them. The sizes of
files vary to suit your needs; one file might hold only a single number, and
another might contain a very long document or program. The only way to save
information from one session to the next is to write it to a file, storing it for later
use.

filename Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor-
mation in a file, you use the name of that file in a UNIX command, and the system
will automatically locate the file.

-3.

disk Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, on which information is recorded.

buffer A temporary work space, made available to the user for the duration of a session
of text editing and used for building and modifying the text file. We can imagine
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

Session 1: Creating a File of Text

To use the editor you must first make contact with the computer by logging in to UNIX.
We’ll quickly review the standard UNIX login procedure.

If the terminal you are using is directly linked to the computer, turn it on and press car-
riage return, usually labelled ““RETURN’’. If your terminal connects with the computer over a
telephone line, turn on the terminal, dial the system access number, and, when you hear a
high-pitched tone, place the receiver of the telephone in the acoustic coupler. Press carriage
return once and await the login message:

:login:

Type your login name, which identifies you to UNIX, on the same line as the login mes-
sage, and press carriage return. If the terminal you are using has both upper and lower case. be
sure you enter your login name in lower case; otherwise UNIX assumes your terminal has only
upper case and will not recognize lower case letters you may type. UNIX types ‘‘:login:"" and
you reply with your login name, for example ‘‘susan’’:

:login: susan (and press carriage return)

(In the examples, input typed by the user appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it to prevent others from seeing it. The message is:

Password: (type your password and press carriage return)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
will respond with

Login incorrect.
:login:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a % at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells vou that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con-
venient time to choose a name for the file of text which you are about to create. To begin vour
editing session type edit followed by a space and then the filename which you have selected. for
example ‘‘text’’. When you have completed the command, press carriage return and wait for
edit’s response:

% edit text (followed by a carriage return)
"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set
aside a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, ‘“‘text’’, already existed. As we expected, it was unable to
find such a file since ‘‘text’” is the name of the new file that we will create. Edit confirms this
with the line:

"text" No such file or directory

On the next line appears edit’s prompt *‘:”’, announcing that edit expects a command from you.
You may now begin to create the new file.

The ““Command not found’’ message
If you misspelled edit by typing, say, ‘‘editor’’, your request would be handled as follows:

% editor
editor: Command not found.
%

Your mistake in calling edit ‘‘editor’” was treated by UNIX as a request for a program named
““editor’’. Since there is no program named ‘‘editor’’, UNIX reported that the program was ‘‘not
found.”” A new % indicates that UNIX is ready for another command, so you may enter the
correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some-
thing like this:

:login: susan
Password:

... A Message of General Interest ...

% edit text
"text" No such file or directory

Entering text

You may now begin to enter text into the buffer. This is done by appending text to what-
ever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, you are creating text. Most edit commands have two
forms: a word which describes what the command does and a shorter abbreviation of that word.
Either form may be used. Many beginners find the full command names easier to remember,
but once you are familiar with editing you may prefer to type the shorter abbreviations. The
command to input text is ‘‘append’ which may be abbreviated ‘‘a’’. Type append and press
carriage return.

% edit text
:append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, ‘‘add” instead of

.5-

‘‘append”’ or ‘‘a’’, you will receive this message:

radd
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new **:"” appeared to let
you know that edit is again ready to receive a command.

Text input mode

By giving the command ‘“‘append’’ (or using the abbreviation *‘a’), you entered text input
mode, also known as append mode. When you enter text input mode, edit responds by doing
nothing. You will not receive any prompts while in text input mode. This is your signal that
you are to begin entering lines of text. You can enter pretty much anything you want on the
lines. The lines are transmitted one by one to the buffer and held there during the editing ses-
sion. You may append as much text as you want, and when you wish to stop entering iext lines
you should type a period as the only character on the line and press carriage return. When you give
this signal that you want to stop appending text, you will exit from text input mode and reenter
command mode. Edit will again prompt you for a command by printing “*:”".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any®other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus-
trating, be sure to type only the period and carriage return.

~This is as good a place as any to learn an important lesson about computers and text: a
blank space is a character as far as a computer is concerned. If you so much as type a period
followed by a blank (that is, type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Let’s say that the lines of text you enter are (try to type exactly what you see. including
*‘thiss’’"):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a carriage return that gets you out of append mode. If
while typing the line you hit an incorrect key, recall that you may delete the incorrect character
or cancel the entire line of input by erasing in the usual way. Refer to ‘*‘Communicating with
UNIX”" if you need to review the procedures for making a correction. Erasing a character or
cancelling a line must be done before the line has been completed by a carriage return. We will
discuss changes in lines already typed in session 2.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor’s buffer is temporary and will last only until the end of the
editing session. Thus, learning how to write a file to disk is second in importance only to enter-
ing the text. To write the contents of the buffer to a disk file, use the command *“write™" (or its
abbreviation “‘w”’

:write

Edit will copy the buffer to a disk file. If the file does not yet exist, a new file will be created
automatically and the presence of a ‘‘New file”” will be noted. The newly-created file will be
given the name specified when you entered the editor, in this case ‘‘text’”. To confirm that the
disk file has been successfully written, edit will repeat the filename and give the number of
lines and the total number of characters in the file. The buffer remains unchanged by the
“write’’ command. All of the lines which were written to disk will still be in the buffer, should
you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

in response to your write command. If this happens, you can specify the filename in a new
write command:

»write text

After the “*write’” (or ‘““w”’) type a space and then the name of the file.

Logging off

We have done enough for this first lesson on using the UNIX text editor, and are ready to
quit the session with edit. To do this we type ‘‘quit’’ (or ‘‘q’’) and press carriage return:

Twrite

"text" [New file] 3 lines, 90 characters

: quit

%
The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal we also need to exit from
UNIX. In response to the UNIX prompt of ““% ' type the command logout or a ‘‘control 4.
This is done by holding down the control key (usually labelled ““CTRL"™) and simultaneously
pressing the d key. This will end your session with UNIX and will ready the terminal for the
next user. It is always important to logout at the end of a session to make absolutely sure no
one could accidentally stumble into your abandoned session and thus gain access to your files,
tempting even the most honest of souls.

This is the end of the first session on UNIX text editing.

Session 2
Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give password and carriage return)

%

This time when you say that you want to edit, you can specify the name of the file vou worked
on last time. This will start edit working and it will fetch the contents of the file into the
buffer, so that you can resume editing the same file. When edit has copied the file into the
buffer, it will repeat its name and tell you the number of lines and characters it contains. Thus.

% edit text
"text” 3 lines, 90 characters

means you asked edit to fetch the file named ‘‘text’” for editing, causing it to copy the 90 char-
acters of text into the buffer. Edit awaits your further instructions. In this session, we will
append more text to our file, print the contents of the buffer, and learn to change the text of a
line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com-
mand to enter text input mode. When append is the first command of your editing session, the
lines you enter are placed at the end of the buffer. We’ll soon discuss why this happens. Here
we’'ll use the abbreviation for the append command, **a’":

a
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

°

Interrupt

Should you press the RUBOUT key (sometimes labelled BELETE) while working with edit, it
will send this message to you:

Interrupt

Any command that edit might be executing is terminated by rubout or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text that you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

If you have read a general introduction to UNIX, such as ‘‘Communicating with UNIX’".
you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.
Accounts normally start out using the number sign (#) as the erase character. but it's possible
for a different erase character to be selectedt. We'll show “‘#’’ as the erase character in our

tuNIX accounts may be ‘‘personalized’” in other ways. too. If you're using an established account. check with
someone who is familiar with your account to find out if it has any other non-standard characteristics which
may affect your work. Accounts for students in classes are often given class commands and other special
features; the teaching assistant or instructor is the best source of information about these changes.

examples, but if you've changed your erase character to backspace (control-H) or something
else, be sure to use your own erase character.

If you make a bad start in a line and would like to begin again, erasing individual charac-
ters with a *‘#’’ is cumbersome — what if you had 15 characters in your line and wanted to get
rid of them? To do so either requires:

This is yukky tex#####HHH BB HBHEH
with no room for the great text you’d like to type, or,
This is yukky tex@ This is great text.

When you type the at-sign (@), you erase the entire line typed so far. (An account may select
a different line erase character to use in place of @. If your line erase character has been
changed, use it where the examples show ““@’".) You may immediately begin to retype the
line. This, unfortunately, does not help after you type the line and press carriage return. To
make corrections in lines which have been completed, it is necessary to use the editing com-
mands covered in this session and those that follow.

Listing what’s in the buffer

Having appended text to what you wrote in Lesson 1, you might be curious to see what is
in the buffer. To print the contents of the buffer, type the command:

:1,5p

The ““1” stands for line 1 of the buffer, the *‘$™ is a special symbol designating the last line of
the buffer, and “‘p” (or print) is the command to print from line 1 to the end of the buffer.
Thus, *“1,8p’" gives you:

This is some sample text..

And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character which can’t be printed, which is done by
striking a key while the CTRL key is depressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character ‘‘control-A”" into the word ‘‘illustrate’” by accidently holding down the CTRL key
while typing ‘“‘a’”. Edit would display

it does illustr”Ate the editor.

if you asked to have the line printed. To represent the control-A, edit shows ‘“*A”. The
sequence ‘"’ followed by a capital letter stands for the one character entered by holding down
the CTRL key and typing the letter which appears after the ‘“*>’. We’ll soon discuss the com-
mands which can be used to correct this typing error.

In looking over the text we see that ‘‘this™ is typed as ‘‘thiss’’ in the second line, as sug-
gested. Let’s correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find ‘‘thiss”
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for ‘‘thiss’’ and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

. /thiss/

By typing /thiss/ and pressing carriage return edit is instructed to search for ‘‘thiss™. If we
asked edit to look for a pattern of characters which it could not find in the buffer. it would
respond ‘‘Pattern not found’’. When edit finds the characters *‘thiss”™, it will print the line of
text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line which it just printed, ready to make a change in
the line.

The current line

At all times during an editing session, edit keeps track of the line in the buffer where it is
positioned. In general, the line which has been most recently printed. entered, or changed is
considered to be the current position in the buffer. The editor is prepared to make changes at
the current position in the buffer, unless you direct it to act in another location. When you
bring a file into the editor, you will be positioned at the last line in the file. If vour initial edit-
ing command is ‘‘append’’, the lines you enter are added to the end of the file. that is, they are
placed after the current position. You can refer to your current position in the buffer by the
symbol period (.) usually known by the name ‘‘dot’. If you type ‘“.”” and carriage return you
will be instructing edit to print the current line:

°

And thiss is some more text.

If you want to know the number of the current line, you can type .= and carriage return,
and edit will respond with the line number:

2

If you type the number of any line and a carriage return, edit will position you at that line and
print its contents:

22
And thiss is some more text.

You should experiment with these commands to assure yourself that you understand what they
do.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

‘nu
2 And thiss is some more text.

Notice that the shortest abbreviation for the number command is ‘‘nu’” (and not *‘n’* which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example. **1.Snu’" lists all
lines in the buffer with the corresponding line numbers.

Substitute command (s)

Now that we have found our misspelled word it is time to change it from “‘thiss™ to
“this’’. As far as edit is concerned, changing things is a matter of substituting one thing for
another. As a stood for append, so s stands for substiture. We will use the abbreviation **s’" 10
reduce the chance of mistyping the substitute command. This command will instruct edit to

make the change:

-10-

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an ‘‘s” to indicate we want sub-
stitution. Inside the first set of slashes are the characters that we want to change, followed by
the characters to replace them and then a closing slash mark. To summarize:

2s/ what is to be changed / what to change to /

If edit finds an exact match of the characters to be changed it will make the change only in the
first occurrence of the characters. If it does not find the characters to be changed it will
respond:

Substitute pattern match failed

indicating your instructions could not be carried out. When edit does find the characters which
you want to change, it will make the substitution and automatically print the changed line, so
that you can check that the correct substitution was made. In the example,

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters ‘‘thiss’’, and when the first exact
match is found, ‘‘thiss’” will be changed to ‘‘this’’. Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

:s/thiss/this/

edit will assume that we mean to change the line where we are currently positioned (**.”’). In
this case, the command without a line number would have produced the same result because
we were already positioned at the line we wished to change.

For another illustration of substitution we may choose the line:
Text editing is strange, but nice.

We might like to be a bit more positive. Thus, we could take out the characters ‘‘strange,
but '’ so the line would read:

Text editing is nice.
A-command which will first position edit at that line and then make the substitution is:

. /strange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations
are perfectly legal. This illustrates that we do not necessarily have to use line numbers to iden-
tify a line to edit. Instead, we may identify the line we want to change by asking edit to search
for a specified pattern of letters which occurs in that line. The parts of the above command are:

/strange/ tells edit to find the characters ‘‘strange’” in the text
S tells edit we want to make a substitution
/strange, but // substitutes nothing at all for the characters ‘‘strange; but ”

You should note the space after ‘‘but’ in *‘/strange, but /. If you do not indicate the
space is to be taken out, your line will be:

Text editing is nice.

which looks a little funny because of the extra space between ‘is’” and ‘‘nice’’. Again, we real-
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an ‘“‘a’” or a “‘4”.

-11-

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer. other
commands can be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

1z

edit will start with line 1 and continue printing lines, stopping either when the screen of vour
terminal is full or when the last line in the buffer has been printed. If vou want to read the
next segment of text, give the command

'z
If no starting line number is given for the z command, printing will start at the ‘‘current’ line,

in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second ses-
sion. If you (in haste) type ‘“q>’ to quit the session your dialogue with edit will be:
°q
o write since last change (q! quits)

This is edit’s warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you have done during the editing session since the latest
write command. Since in this lesson we have not written to disk at all, everything we have
done would be lost. If we did not want to save the work done during this editing session. we
would have to type ‘‘q!”* to confirm that we indeed wanted to end the session immediately. los-
ing the contents of the buffer. However, since we want to preserve what we have edited. we
need to say:
W
"text" 6 lines, 171 characters

and then,
q
% logout

and hang up the phone or turn off the terminal when UNIX asks for a login name. This is the
end of the second session on UNIX text editing.

-12-

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. You should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you say
% edit text
or simply
% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
“text’” into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buffer by saying:

s e text
"text” 6 lines, 171 characters

The command edit, which may be abbreviated ‘‘e’’ when you're in the editor, tells edit that
you want to erase anything that might already be in the buffer and bring a copy of the file
‘“text’’ into the buffer for editing. You may also use the edit (¢) command to change files in
the middle of an editing session or to give edit the name of a new file that you want to create.
Because the edit command clears the buffer, you will receive a warning if you try to edit a new
file without having saved a copy of the old file. This gives you a chance to write the contents
of the buffer to disk before editing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command:

:2,4m$

This command directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format
for the move command is that you specify the first line to be moved, the last line to be moved,
the move command ““m’’, and the line after which the moved text is to be placed. Thus,

:1,6m20

would instruct edit to move lines 1 through 6 (inclusive) to a position after line 20 in the
buffer. To move only one line, say, line 4, to a position in the buffer after line 6, the com-
mand would be ‘““4mé6™.

Let’s move some text using the command:
:5,8ml

2 lines moved
it does illustrate the editor.

After executing a command which changes more than one line of the buffer, edit tells how
many lines were affected by the change. The last moved line is printed for your inspection. If
you want to see more than just the last line, use the print (p), z, or number (nu) command to
view more text. The buffer should now contain:

-13-

This is some sample text.

It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.

This is text added in Session 2.

We can restore the original order by typing:
:4,8ml
or, combining context searching and the move command:
:/And this is some/,/This is text/m/This is some sample/

The problem with combining context searching with the move command is that the chance of
making a typing error in such a long command is greater than if one types line numbers.

Copying lines (copy)
The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:
:12,15copy $

makes a copy of lines 12 through 15, placing the added lines after the buffer's end (S). Experi-
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is ‘‘co’ (and net the letter ‘°c’” which has another meaning).

Deleting lines (d)
Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by ‘‘delete’” or ‘‘d”’. This example deletes line 4:

:4d

It doesn’t mean much here, but

Here ‘4 is the number of the line to be deleted and ‘‘delete’” or **d”" is the command to
delete the line. After executing the delete command, edit prints the line which has become the
current line (**.”).

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

:/added in Session 2./

This is text added in Session 2.

.d

It doesn’t mean much here, but
The ““/added in Session 2./’" asks edit to locate and print the next line which contains the indi-
cated text. Once you are sure that you have correctly specified the line that you want to delete.
you can enter the delete (d) command. In this case it is not necessary to specify a line number

before the ‘“d””. If no line number is given, edit deletes the current line (**.”"), that is. the line
found by our search. After the deletion, your buffer should contain:

-14-

This is some sample text.

And this is some more text.
Text editing is nice.

[t doesn’t mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

And this is some more text.
Text editing is nice.

you type
:2,3d

which specifies the range of lines from 2 to 3, and the operation on those lines — ‘‘d”’ for
delete.

Again, this presumes that you know the line numbers for the lines to be deleted. If you
do not you might combine the search command with the delete command as so:

:/And this is some/,/Text editing is nice./d

This tells the editor to start deleting with the next line that contains the characters ‘‘And this is
some’’ and continue until it has deleted the line containing “‘Text editing is nice.”

A word or two of caution:

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited —
that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing carriage return to send the command
on its way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command. To
undo the previous command, type ‘“‘u’’ or ‘‘undo’’. Undo can rescue the contents of the buffer
from many an unfortunate mistake. However, its powers are not unlimited, so it is still wise to
be reasonably careful about the commands you give. It is possible to undo only commands
which have the power to change the buffer, for example delete, append, move, copy, substi-
tute, and even undo itself. The commands write (w) and edit (e) which interact with disk files
cannot be undone, nor can commands such as print which do not change the buffer. Most
importantly, the only command which can be reversed by undo is the last ‘‘undo-able’” com-
mand which you gave.

To illustrate, let’s issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines which were formerly numbered 2 and 3. Executing undo at this
moment will reverse the effects of the deletion, causing those two lines to be replaced in the
buffer.

]
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now ‘‘dot’" (the current line).

-15-

More about the dot (.) and buffer end ()
The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode we type dot (and only a dot) on a line and press carriage
return;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

Thus if we type **.="" we are asking for the number of the line and if we type *‘.”” we are ask-
ing for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit 1o
print the last line in the buffer. If the dollar sign is combined with the equal sign (S=) edit
will print the line number corresponding to the last line in the buffer.

«.”" and “‘$”" therefore represent line numbers. Whenever appropriate, these symbols can
be used in place of line numbers in commands. For example

., 8d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and —)

It is frequently convenient during an editing session to go back and re-read a previous
line. We could specify a context search for a line we want to read if we remember some of its
text, but if we simply want to see what was written a few, say 3, lines ago. we can type

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
We can move forward in the buffer similarly:

+2p

instructs edit to print the line which’is 2 ahead of our current position.

9y

You may use “+’ and ‘““—"" in any command where edit accepis line numbers. Line
numbers specified with ‘““+’’ or ““—"" can be combined to print a range of lines. The command

:=1,+2copy$
makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer ($).

Try typing only “—'"; you will move back one line just as if you had typed ““—1p’". Typ-
ing the command ‘‘+ '’ works similarly. You might also try typing a few plus or minus signs in
a row (such as ““+ ++"") to see edit’s response. Typing a carriage return alone on a line is the
equivalent of typing *‘+1p’"; it will move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead. perhaps by typing a
““4 or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer:

At end-of-file

Similarly, if you try to move to a position before the first line, edit will print one of these mes-
sages:

-16-

Nonzero address required on this command
Negative address — first buffer line is 1

The number associated with a buffer line is the line’s ‘‘address’’, in that it can be used to locate
the line.

Changing lines (c)

There may be occasions when you want to delete certain lines and insert new text in their
place. This can be accomplished easily with the change (¢) command. The change command
instructs edit to delete specified lines and then switch to text input mode in order to accept the
text which will replace them. Let’s say we want to change the first two lines in the buffer:

This is some sample text.
And this is some more text.

to read
This text was created with the UNIX text editor.
To do so, you can type:

:1,2¢
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2¢ we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After a carriage return enters the change command, edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

-17-

Session 4

This lesson covers several topics, starting with commands which apply throughout the
buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com-
mand repeatedly, once for each time the change needs to be made. Edit, however. provides a
way to make commands apply to the entire contents of the buffer — the global (g) command.

To print all lines containing a certain sequence of characters (say, ‘‘text’’) the command
is:

:g/text/p

The ‘g™ instructs edit to make a global search for all lines in the buffer containing the charac-
ters ‘‘text’’. The *‘p” prints the lines found.

To issue a global command, start by typing a ‘‘g’’ and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed on the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word ‘‘text’ to the word ‘‘material”” the command would be a combination of
the global search and the substitute command:

: g/text/s/text/material/g

Note the ‘g’ at the end of the global command which instructs edit to change each and every
instance of ‘“‘text’” to ‘‘material”. If you do not type the “‘g” at the end of the command only
the first instance of ‘“‘text” in each line will be changed (the normal result of the substitute
command). The *‘g” at the end of the command is independent of the ‘‘g™ at the beginning.
You may give a command such as:

: 14s/text/material/g

to change every instance of ‘‘text’” in line 14 alone. Further, neither command will change
*“Text’ to ‘‘material’’ because ‘‘Text’’ begins with a capital rather than a lower-case .

Edit does not automatically print the lines modified by a global command. If you want

€6 %9

the lines to be printed, type a “‘p”’ at the end of the global command:
:g/text/s/text/material/gp

The usual qualification should be made about using the global command in combination with
any other — in essence, be sure of what you are telling edit to do to the entire buffer. For
example,

g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu-
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small buffer of text to see what it can do for
you.

-18-

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same string
of characters. To change ‘‘noun’’ to ‘‘nouns’’ we may type either

: /noun/s/noun/nouns/
as we have done in the past, or a somewhat abbreviated command:
- /noun/s//nouns/

In this example, the characters to be changed are not specified — there are no characters, not
even a space, between the two slash marks which indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean ‘‘use the characters we last
searched for as the characters to be changed.”

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

: /does/

It doesn’t mean much here, but

</

it does illustrate the editor.
Because no characters are specified for the second search, the editor scans the buffer for the
next occurrence of the characters ‘‘does’’.

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the character
string.

It’s also possible to repeat the last substitution without having to retype the entire com-

mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and replacement patterns. After altering the current line by typing

:s/noun/nouns/
we could use the command
:/nouns/&
or simply
/&

to make the same change on the next line in the buffer containing the characters ‘‘nouns’’.

Special characters

Two characters have special meanings when used in specifying searches: “‘$’" and *‘*"’.
“§"" is taken by the editor to mean ‘“‘end of the line”” and is used to identify strings which
occur at the end of a line.

g/ing$/s//ed/p

tells the editor to search for all lines ending in “‘ing’’ (and nothing else, not even a blank
space), to change each final “‘ing”’ to ‘‘ed”” and print the changed lines.

indicates the beginning of a line. Thus,

l [X3ahAl

The symbo
:s/7/1./

instructs the editor to insert “‘1.”" and a space at the beginning of the current line.
The characters ‘S’ and ****" have special meanings only in the context of searching. At

-19-

other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to temporarily lose its special
significance by typing another special character, the backslash (\). before it.

:s/\$/dollar/

looks for the character ““$’" in the current line and replaces it by the word ‘‘dollar’”. Were it
not for the backslash, the *‘$’’ would have represented “‘the end of the line’" in your search.
rather than the character *‘$’’. The backslash retains its special significance unless it is pre-
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as ‘‘shell’” commands.
as “‘shell’” is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named *‘junk’’ type:

2!'rm junk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a UNIX com-
mand. If the buffer contents have not been written since the last change, a warning will be
.printed before the command is executed. The editor prints a **!”’ when the command is com-
pleted. The tutorial ‘““Communicating with UNIX"" describes useful features of the system, of
which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. You can have the editor write onto a different file by
including its name in the write command:

:w chapter3
“chapter3” 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write com-
mand unless it is the first filename given in the editing session. Thus, in the next write command
which does not specify a name, edit will write onto the current file and not onto the file
“‘chapter3”’.

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position. and the number of
lines in the buffer:

- f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written. the editor
will tell you that the file has been ‘‘[Modified]’’. After you save the changes by writing onto a
disk file, the buffer will no longer be considered modified:

-20-

‘W
"text" 4 lines, 88 characters
o f

"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer without des-
troying the text already there. To use it, specify the line after which the new text will be
placed, the command r, and then the name of the file.

- $r bibliography
"bibliography” 18 lines, 473 characters

This command reads in the file bibliography and adds it to the buffer after the last line. The
current filename is not changed by the read command unless it is the first filename given in the
editing session.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

:45,8w ending

Here all lines from 45 through the end of the buffer are written onto the file named ending.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer.

Recovering files

Under most circumstances, edit’s crash recovery mechanism is able to save work to within
a few lines of changes after a crash or if the phone is hung up accidently. If you lose the con-
tents of an editing buffer in a system crash, you will normally receive mail when you login
which gives the name of the recovered file. To recover the file, enter the editor and type the
command recover (rec), followed by the name of the lost file.

:recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the con-
tents of the saved buffer carefully before writing it back onto the original file.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message ‘‘Quota exceeded’’, you have tried to
use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor’s buffer is now present in the file you tried to write. In this case
you should use the shell escape from the editor (!) to remove some files you don’t need and try
to write the file again. If this is not possible and you cannot find someone to help you, enter
the command

. preserve

and then seek help. Do not simply leave the editor. If you do, the buffer will be lost, and you
may not be able to save your file. After a preserve, you can use the recover command once the
problem has been corrected.

-21-

If you make an undesirable change to the buffer and issue a write command before dis-
covering your mistake, the modified version will replace any previous version of the file.
Should you ever lose a good version of a document in this way, do not panic and leave the edi-
tor. As long as you stay in the editor, the contents of the buffer remain accessible. Depending
on the nature of the problem, it may be possible to restore the buffer to a more complete state
with the undo command. After fixing the damaged buffer, you can again write the file to disk.

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to intreduce you to the editor and
its more commonly-used commands. We have not covered all of the editor’s commands, just a
selection of commands which should be sufficient to accomplish most of your editing tasks.
You can find out more about the editor in the Ex Reference Manual, which is applicable to both
ex and edit. The manual is available from the Computer Center Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know. ¢

Using ex
As you become more experienced with using the editor, you may still find that edit con-

tinues to meet your needs. However, should you become interested in using ex. it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters *“**°, *‘$’", and **\"* have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char-
acters have special meanings in ex, as described in the Ex Reference Manual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit-
ing, open and visual, in which the editor behaves quite differently than in normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing “0’’. Type the ESC key and then a ‘‘Q”’ to get out of open or visual mode
and back into the regular editor command mode. The document An Introduction to Display Edit-
ing with Vi provides a full discussion of visual mode.

This tutorial was produced at the Computer Center of the University of
California, Berkeley. We welcome comments and suggestions concern-
ing this item and the UNIX documentation in general,

.22.

Table of Contents

Ex Reference Manual

SHArTING EX ..o 1
File Manipulationcc.ooiiiiiiii e 2
Current File ... 2
Alternate Fileooiiiii e, 2
Filename EXPansionoooiiiiiiiiiiii e 2
Multiple Files and Named Buffers ... 2
Read ONly ... 2
Exceptional CoNAItiONSooiiiiiiiiii e 3
Errors and INterruptso..vviiiiiieiii e 3
Recovering from Hangups and Crashes.coooiiiiiiiiiiiiiccccieee e 3
EdINGMOAES...... e, 3
Command SITUCLUICoooiiiiiit e 3
Command Parameters..............cooviiiiiiiiiiiiiiiie et 4
Command VATIANESooiiiiiiiiieeeii et 4
Flags After COmMMAaNndSccooviiiiiiiiiiiiiii e 4
COMIMEINES ...ttt et e e ettt e e e e e ettt e e e e e e e e e e e e 4
Multiple Commands per Line..............ccccccvviieviiinnnnnn. ettt ettt e e e e —— it tate et e e e e e nenes 4
Reporting Large Changesoooiiiiiiiiiiiii e 4
Command AdAIeSSINGeeiuiiiiieiii ettt e 4
Addressing Primitives.c.uuiiiiiiiiiii e 4
Combining Addressing Primitives.................coooiiiiiiiiiiiccce e 5
Command DeSCHPHONS.ooiiiiiiiie e 5
Regular Expressions and Substitute Replacement Patternsccccccooooviiieiiii, 14
Regular EXPressions.oooiiiiiiiiiiii e 14
Magic and NOMAGICcuviiiiii et 14
Basic Regular Expression Summarycoooiiiiiiiiiiicece e 14
Combining Regular Expression Primitivesccoooeiiiiiiiiiii e 15
Substitute Replacement Patterns...................cccooiiiiiiiiiii e 15
Opton DeSCHPHONSvoeiiiiiiiiiiee e e 15
LIMIAtONS. ... e e 19
Update to Ex Reference Manualoooooiiiiiiiiii e 21
Command Line OPtonscoouviiiiiiiiiiiie et 21
COMIMANGS ...ttt e et e e et e e e et aaeeeee e 21
OPHONS ..ottt 21
Environment ENQUITIESc..cooiiviiiiiiii e 22
ViTutorial Update...........cooviiiiiiiioiiieeee e 22
Deleted FEaturesccooiiiiiiiiiiiiiiiiece e 22
Change in Default Option Setingsoooiiiiiieiiiie e 22
VI COMMANGS ...ttt ettt 22

ILBCTOS . .. e e e 23

Ex Reference Manual
Version 3.5/2.13 — September, 1980

William Joy

Revised for versions 3.5/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, Ca. 94720

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol-
lows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ-
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP
variable contains a pathname (beginning with a /) then the editor will seek the description of
the terminal in that file (rather than the default /etc/termcap.) If there is a variable EXINIT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source com-
mand. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t
ex[=][=v][=twgl[=r][=1][=wn][=x][=R]I[+command] name ...
The most common case edits a single file with no options, i.e.:
ex name

The — command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The —v option is equivalent to using vi rather ‘than
ex. The —t option is equivalent to an initial ‘ag command, editing the file containing the rag
and positioning the editor at its definition. The —r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The —1 option sets up for editing LISP, setting the showmaich and
lisp options. The —w option sets the default window size to n, and is useful on dialups to start
in small windows. The —x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, which should already be encrypted using the same key, see
crypt(1). The =R option sets the readonly option at the start. 3 Name arguments indicate files
to be edited. An argument of the form +command indicates that the editor should begin by

The financial support of an 1BM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

t Brackets ‘[’ ‘]’ surround optional parameters here.

$ Not available in all v2 editors due to memory constraints.

-1-

executing the specified command. If command is omitted, then it defaults to **S™, positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form ‘‘/pat’’ or line numbers, e.g. ‘4100 starting at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current
file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.
After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edired
then ex will not normally write on it if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the aiternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven-
tions. In addition, the character ‘%’ in filenames is replaced by the current file name and the
character ‘#’ by the alternate file name.t

2.4. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as
described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the argu-
ment list may be edited with the nexr command. The argument list may also be respecified by
specifying a list of names to the nexr command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file. ex
has a group of named buffers. These are similar to the normal buffer, except that only a lim-
ited number of operations are available on them. The buffers have names a through -.¢

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of
modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readonly option is set. It can be turned on with the —R command line option. by the
view command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really

* The file command will say ‘‘[Not edited]’’ if the current file is not considered edited.

t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a No write since last change diagnostic is received.

% It is also possible to refer to 4 through Z; the upper case buffers are the same as the lower but commands
append to named buflers rather than replacing if upper case names are used.

know what you are doing. You can write to a different file, or can use the ! form of write, even
while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints ‘‘Interrupt’ and returns to its command level. If the primary input
is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the —r option. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, giving the command

ex =r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex —r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ‘:” prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a ‘.’ alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

§. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.*

* As an example. the command substitute can be abbreviated ‘s’ while the shortest available abbreviation for
the ser command is ‘se’.

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com-
mands also may take a trailing count specifying the number of lines to be involved in the com-
mand.t Thus the command ‘“10p’’ will print the tenth line in the buffer while ‘‘delete 5™ will
delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.#

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an ‘!’ immediately after the command name. Some of the default variants
may be controlled by options; in this case, the ‘!’ serves to toggle the default.

5.3. Flags after commands

The characters ‘#’, ‘p’ and ‘I’ may be placed after many commands.** In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, ‘p’ is rarely necessary. Any number of
‘4’ or ‘=" characters may also be given with these flags. If they appear. the specified offset is
applied to the current line value before the printing command is executed.

§.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with " is ignored. Comments beginning with " may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by
a | character. However the global/ commands, comments, and the shell escape ‘!" must be the
last command on a line, as they are not terminated by a .

5.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope
of the change exceeds a threshold given by the report option. This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an wndo. After
commands with more global effect such as global or visual, you will be informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus °.’ is rarely used alone as an address.

t Counts are rounded down if necessary.

+ Examples would be option names in a ser command i.e. ‘‘set number’’, a file name in an edir command. a
regular expression in a substitute command. or a target address for a copy command, i.e. **1.5 copy 257

** A ‘p’ or ‘I' must be preceded by a blank or tab except in the single special case ‘dp’.

n The nth line in the editor’s buffer, lines being numbered sequentially

from 1.
H The last line in the buffer.
% An abbreviation for **1,$”’, the entire buffer.
+n —n An offset relative to the current buffer line.t
/pat/ ?pat? Scan forward and backward respectively for a line containing par, a regu-

lar expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
pat, then the trailing / or ? may be omitted. If paris omitted or expli-
citly empty, then the last regular expression specified is located.$

[

X Before each non-relative motion of the current line ‘., the previous
current line is marked with a tag, subsequently referred to as *"’. This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command, using single lower case
letters x and the marked lines referred to as *'x.

ve »

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by *,’ or *;".
Such address lists are evaluated left-to-right. When addresses are separated by ‘;’ the current
line “.’ is set to the value of the previous addressing expression before the next address is inter-
preted. If more addresses are given than the command requires, then all but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer.t

7. Command descriptions
The following form is a prototype for all ex commands:

address command !/ parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visua/ mode, ex ignores a ‘‘:’’ preceding any com-
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(.) append abbr: a
text

°

(3]

Reads the input text and places it after the specified line. After the command,
addresses the last line input or the specified line if no lines were input. If address ‘0’ is
given, text is placed at the beginning of the buffer.

t The forms *.+3’ ‘+3’ and ‘+++ are all equivalent; if the current line is line 100 they all address line
103.

+ The forms \/ and \? scan using the last regular expression used in a scan; after a substitute // and ??
would scan using the substitute’s regular expression.

t Null address specifications are permitted in a list of addresses, the default in this case is the current line *.";
thus *,100’ is equivalent to *.,100°. It is an error to give a prefix address to a command which expects none.

a!
text

The variant flag to append toggles the setting for the auroindent option during the input of
text.

args

The members of the argument list are printed, with the current argument delimited by *[°
and ‘]’.

(., .) change count abbr: ¢
text

Replaces the specified lines with the input rext. The current line becomes the last line
input; if no lines were input it is left as for a delete.

c!
text

The variant toggles qutoindent during the change.

(.,.)copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be ‘0°. The current line ‘.’
addresses the last line of the copy. The command ¢is a synonym for copy.

(.,.)delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file abbr: e
ex file

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-AScCli characters in the file they are stripped of their non-
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the trail-
ing newline character, it will be supplied and a complaint will be issued. This command
leaves the current line ‘.’ at the last line read.

+ lL.e., that it is not a binary file such as a directory, a block or character special file other than /dev/iny, a ter-
minal, or a binary or executable file (as indicated by the first word).
t If executed from within open or visual. the current line is initially the first line of the file.

e! file
The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +nfile

Causes the editor to begin at line n rather than at the last line; » may also be an editor
command containing no spaces, e.g.: ‘‘+/pat’’.

file abbr: f

Prints the current file name, whether it has been ‘[Modified]’ since the last write com-
mand, whether it is read only, the current line, the number of lines in the buffer, and the
percentage of the way through the buffer of the current line.*

file file
The current file name is changed to file which is considered ‘[Not edited]’.

(1,89) global /pat/ cmds- abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with ‘.’ initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a *\’. If c¢mds (and pos-
sibly the trailing / delimiter) is omitted, each line matching par is printed. Append, insert,
and change commands and associated input are permitted; the ‘.’ terminating input may
be omitted if it would be on the last line of the command list. Open and visua/ commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in ¢mds. The undo command is also not per-
mitted there, as undo instead can be used to reverse the entire globa/ command. The
options autoprint and autoindent are inhibited during a global, (and possibly the trailing /
delimiter) and the value of the report option is temporarily infinite, in deference to a
report for the entire global. Finally, the context mark ‘"’ is set to the value of ‘.’ before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.
(.)insert abbr: i
text

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com-
mand differs from append only in the placement of text.

* In the rare case that the current file is ‘[Not edited]’ this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer.

The variant toggles autoindent during the insert.

(.,.+1) join count flags abbr: j

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a ‘.’ at
the end of the line, or none if the first following character is a ¢)’. If there is already
white space at the end of the line, then the white space at the start of the next line will be

discarded.

j!
The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.)kx

The k command is a synonym for mark. It does not require a blank or tab before the fol-
lowing letter. :

(., .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ‘"I’ and the end
of each line is marked with a trailing *$’. The current line is left at the last line printed.

map lhs rhs

The map command is used to define macros for use in visua/ mode. Lhs should be a sin-
gle character, or the sequence “‘#n’’, for n a digit, referring to function key n. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type “‘#n"’. See section
6.9 of the *‘Introduction to Display Editing with Vi’ for more details.

(.) mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form “x’ then addresses this line. The current line is not
affected by this command.

(.,.) move addr abbr: m

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

next abbr: n
The next file from the command line argument list is edited.

n! .
The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n filelist

n +command filelist

.8-

The specified filelist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command. is given (it must contain no
spaces), then it is executed after editing the first such file.

(...) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open flags abbr: o

(.) open /pat/ flags
Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction to Display Editing with Vifor more details.
4

preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don’t know how to save your work. After a preserve you should seek help.

(.,.)print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters ‘“x’;
delete (octal 177) is represented as **?’. The current line is left at the last line printed.

(.) put buffer abbr: pu

Puts back previously deleted or yanked lines. Normally used with delete to effect move-
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored.® By using a named buffer, text may be restored that
was saved there at any previous time.

quit abbr: q
Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write command
was issued, and does not quit.} Normally, you will wish to save your changes, and you
should give a write command; if you wish to discard them, use the q! command variant.

q!
Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

$ Not available in all v2 editors due to memory constraints.

* But no modifying commands may intervene between the delete or yank and the put, nor may lines be
moved between files without using a named buffer.

t Ex will also issue a diagnostic if there are more files in the argument list.

Address ‘0’ is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter-
minates. After a read the current line is the last line read.$

(.) read !command

Reads the output of the command command into the buffer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone**
or a system crash®* or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their
defaults; with parameter a/l it prints all of the option values.

Giving an option name followed by a ‘?’ causes the current value of that option to be
printed. The ‘?’ is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form ‘set optrion’ to turn them on or ‘set nooprion’ to turn them
off; string and numeric options are assigned via the form ‘set option==value’.

More than one parameter may be given to ser; they are interpreted left-to-right.

shell abbr: sh
A new shell is created. When it terminates, editing resumes.

source file abbr: se
Reads and executes commands from the specified file. Source commands may be nested.

(., .) substitute /pat/repl/ options count flags abbr: s

On each specified line, the first instance of pattern par is replaced by replacement pattern
repl. If the global indicator option character ‘g’ appears, then all instances are substituted:
if the confirm indication character ‘c’ appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with ‘1’ characters. By typing
an ‘y’ one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in rep/
must be escaped by preceding it with a ¢\’. Other metacharacters available in par and rep/
are described below.

t Within open and visual the current line is set to the first line read rather than the last.
** The system saves a copy of the file you were editing only if you have made changes to the file.

-10-

stop
Suspends the editor, returning control to the top level shell. If autowrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supported by the teletype driver and operating system.

(.,.) substitute options count flags abbr: s

If par and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(.,.) taddr flags
The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of rag, switching to a different line in the
current file where it is defined, or if necessary to another file.t

The tags file is normaily created by a program such as crags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address-
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using ‘/pat/’ to be immune to minor changes in the file. Such scans are always per-
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. #

unabbreviate word abbr: una
Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line ‘.’ as After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it’s pre-command value after an undo.

4}

unmap /hs
The macro expansion associated by map for /hs is removed.

(1,8) v /pat/ cmds

A synonym for the global/ command variant g!, running the specified ¢mds on each line
which does not match pat.

version abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

t If you have modified the current file before giving a rag command, you must write it out; giving another
tag command, specifying no rag will reuse the previous tag.
+ Not available in all v2 editors due to memory constraints.

-11-

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be ‘=", ‘1’ or *." as in
the z command to specify the placement of the specified line on the screen. By default. if
type is omitted, the specified line is placed as the first on the screen. A count specifies an
initial window size; the default is the value of the option window. See the document An
Introduction to Display Editing with Vifor more details. To exit this mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1,83) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came.from. If a file is specified.
then text will be written to that file.® If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been ‘‘No write since last change’ even if -the buffer had not previously been
modified.

(1,3) write>> file abbr: w>>
Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1,8)w !'command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name
Like a write and then a quit command.

wq! name
The variant overrides checking on the sensibility of the write command, as w! does.

xit name
If any changes have been made and not written, writes the buffer out. Then, in any case.
quits.

(.,.)yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via pur. If no buffer name
is specified, the lines go to a more volatile place; see the pur command description.

* The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is
actually a teletype, /dev/tty, /devinull. Otherwise, you must give the variant form w! to force the write.

-12-

(.+1) z count

Print the next count lines, default window.

(.) z type count

Prints a window of text with the specified line at the top. If type is ‘—' the line is placed
at the bottom; a ‘.’ causes the line to be placed in the center.® A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the ‘!” character is sent to a shell to be executed. Within
the text of command the characters ‘%’ and ‘#’ are expanded as in filenames and the char-
acter ‘!’ is replaced with the text of the previous command. Thus, in particular, ‘!"’
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been ‘‘[No write]” of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a_warning. A
single ‘!" is printed when the command completes.

(addr , addr) ! command

($)

Takes the specified address range and supplies it as standard input to command; the result-
ing output then replaces the input lines.

Prints the line number of the addressed line. The current line is unchanged.

(.,.) > count flags
(.,.) < count flags

Ry

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white char-
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.4+1)
(.+1,.+1)]

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

* Forms ‘z=" and ‘z{’ also exist; ‘z=" places the current line in the center, surrounds it with lines of ‘="
characters and leaves the current line at this line. The form ‘z|’ prints the window before ‘z—"' would. The
characters ‘+°, ‘1* and ‘=’ may be repeated for cumulative effect. On some v2 editors, no npe may be

given.

-13-

(.,.) & options count flags
Repeats the previous substitute command.

(.,.) " options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous reg-
ular expression used elsewhere (referred to as the previous scanning regular expression.) The
previous regular expression can always be referred to by a null re, e.g. *//" or *??".

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character *\’ to
use them as ‘‘ordinary” characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a *\'. Note that ‘\' is thus always
a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic.

8.3. Basic regular expression summary
The following basic constructs are used to construct magic mode regular expressions.
char An ordinary character matches itself. The characters ‘1’ at the beginning of a
line, ‘8’ at the end of line, **’ as any character other than the first, *.", *\". *[".

and ‘7 are not ordinary characters and must be escaped (preceded) by \ to be
treated as such.

1 At the beginning of a pattern forces the match to succeed only at the begin-
ning of a line.

b At the end of a regular expression forces the match to succeed only at the end
of the line.

. Matches any single character except the new-line character.

\< Forces the match to occur only at the beginning of a ‘‘variable™ or ‘‘word"’;

that is, either at the beginning of a line, or just before a letter, digit, or under-
line and after a character not one of these.

\> Similar to ‘\<’, but matching the end of a ‘‘variable’” or “word’. i.e. either
the end of the line or before character which is neither a letter, nor a digit. nor
the underline character.

t To discern what is true with nomagic it suffices to remember that the only special characters in this case will
be ‘1" at the beginning of a regular expression, ‘S’ at the end of a regular expression. and *\'. With nomagic
the characters ‘' and ‘&’ also lose their special meanings related to the replacement pattern of a substitute.

-14-

[string] Matches any (single) character in the class defined by string. Most characters
in siring define themselves. A pair of characters separated by ‘=’ in string
defines the set of characters collating between the specified lower and upper
bounds, thus ‘[a—z]’ as a regular expression matches any (single) lower-case
letter. If the first character of swring is an ‘1’ then the construct matches those
characters which it otherwise would not; thus ‘{fa—z]’ matches anything but a
lower-case letter (and of course a newline). To place any of the characters ‘1’,
‘[, or ‘=" in string you must escape them with a preceding ‘\’.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men-
tioned above may be followed by the character **’ to form a regular expression which matches
any number of adjacent occurrences (including 0) of characters matched by the regular expres-
sion it follows.

The character ‘™’ may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences ‘\(’ and ‘\)’ with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are ‘&’ and ‘”’; these are given as
‘&’ and ‘\™* when nomagic is set. Each instance of ‘&’ is replaced by the characters which the
regular expression matched. The metacharacter ‘™’ stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character *\’. The sequence ‘\r’ is replaced by the text matched by the n-th regular
subexpression enclosed between ‘\(’ and ‘\)’.t+ The sequences ‘\u’ and ‘\I’ cause the immedi-
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences ‘\U’ and ‘\L’ turn such conversion on, either until
‘\E’ or ‘\e’ is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cur-
sor up to the preceding tab stop one can hit “D. The tab stops going backwards are
defined at multiples of the shiftwidth option. You cannot backspace over the indent,
except by sending an end-of-file with a “D.

t When nested, parenthesized subexpressions are present, » is determined by counting occurrences of ‘\(’
starting from the left.

-15-

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe-
cially processed in this mode are lines beginning with an ‘1’ and immediately followed by
a "D. This causes the input to be repositioned at the beginning of the line, but retaining
the previous indent for the next line. Similarly, a ‘0’ followed by a "D repositions at the
beginning but without retaining the previous indent.

Autoindent doesn’t happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, join, move, substitute, 1, undo
or shift command. This has the same effect as supplying a trailing ‘p’ to each such com-
mand. Autoprint is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rewind, stop, tag, or ! command, or a "1 (switch files) or °| (tag goto)
command in visual. Note, that the edir and ex commands do net autowrite. In each case.
there is an equivalent way of switching when autowrite is set to avoid the autowrite (edit
for next, rewind! for .I rewind , stop! for stop, tag! for tag, sheli for !, and :e # and a :ta!
command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beauiifi
does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable.
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of g and ¢ suffixes on substitute commands to be femem-
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be
as in the ~ command, instead of like & #31

errorbells, eb default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error mes-
sage in a standout mode of the terminal (such as inverse video) instead of ringing the

bell.

hardtabs, ht default: ht=8§
Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

$% Version 3 only.
* Bell ringing in open and visual on errors is not suppressed by setting noeb.

-16-

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the () { } [l and 1l commands in open
and visual are modified to have meaning for lisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the /ist command.

magic default: magic for ex and vit

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only ‘1’ and ‘$’ having special effects. In addition the metacharacters ‘” and ‘&’ of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a ‘\’.

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set. %

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edirt to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para==IPLPPPQPP Llbp
Specifies the paragraphs for the { and } operations in open and visual. The pairs of charac-
ters in the option’s value are the names of the macros which start paragraphs.

prompt default: prompt
Command mode input is prompted for with a *:".

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t Nomagic for edit.
$$ Version 3 only.

-17-

remap default: remap

If on, macros are repeatedly tried until they are unchanged. % For example. if o is
mapped to O, and O is mapped to I, then if remap is set, o will map to I, but if noremap is
set, it will map to O.

report default: report=5¢t

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

scroll default: scroll=!; window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode, and the number of lines printed by a command mode -
command (double the value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [l and]l operations in open and visual. The pairs of
characters in the options’s value are the names of the macros which start paragraphs.

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command *!°, and by the shel/
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with “D when using auroin-
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with /sp.

slowopen, slow terminal dependent

Affects the display algorithm used in visua/ mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin-
telligent. See An Introduction to Display Editing with Vifor more details.

tabstop, ts default: ts=§
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, tl default: t1=0

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

tt Version 3 only.
t 2 for edit.

-18-

tags default: tags=tags /usr/lib/tags

A path of files to be used as tag files for the tag command. i A requested tag is searched
for in the specified files, sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

term from environment TERM
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user.

warn default: warn
Warn if there has been ‘[No write since last change]’ before a ‘!’ command escape.

window default: window =speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, ws default: ws
Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm=0

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the pre-
vious inserted and deleted text in open or visual, 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals and
Unix systems.

$% Version 3 only.

-19-

-20-

Ex changes — Version 3.1 to 3.5

This update describes the new features and changes which have been made in converting

from version 3.1 to 3.5 of ex. Each change is marked with the first version where it appeared.

Update to Ex Reference Manual

Command line options

34
34

A new command called view has been created. View is just like vi but it sets readonly.

The encryption code from the v7 editor is now part of ex. You can invoke ex with the
—x option and it will ask for a key, as ed. The ed x command (to enter encryption mode
from within the editor) is not available. This feature may not be available in all instances
of ex due to memory limitations.

Commands

34

34

3

Provisions to handle the new process siopping features of the Berkeley TTY driver have
been added. A new command, stop, takes you out of the editor cleanly and efficiently,
returning you to the shell. Resuming the editor puts you back in command or visual
mode, as appropriate. If autowrite is set and there are outstanding changes, a write is done
first unless you say ‘‘stop!”.

A
i <file>

command from visual mode is now treated the same as a
edit <file> or ex <file>

command. The meaning of the v command from ex command mode is not affected.

A new command mode command xit (abbreviated x) has been added. This is the same as
wg but will not bother to write if there have been no changes to the file.

Options

3.4

34

33

33

A read only mode now lets you guarantee you won’t clobber your file by accident. You
can set the on/off option readonly (ro), and writes will fail unless you use an ! after the
write. Commands such as x, ZZ, the autowrite option, and in general anything that writes
is affected. This option is turned on if you invoke ex with the —R flag.

The wrapmargin option is now usable. The way it works has been completely revamped.
Now if you go past the margin (even in the middle of a word) the entire word is erased
and rewritten on the next line. This changes the semantics of the number given to wrap-
margin. O still means off. Any other number is still a distance from the right edge of the
screen, but this location is now the right edge of the area where wraps can take place,
instead of the left edge. Wrapmargin now behaves much like fill/nojustify mode in nroff.

The options w300, w1200, and w9600 can be set. They are synonyms for window, but only
apply at 300, 1200, or 9600 baud, respectively. Thus you can specify you want a 12 line
window at 300 baud and a 23 line window at 1200 baud in your EXINIT with

:set w300=12 w1200=23
The new option timeour (default on) causes macros to time out after one second. Turn it
off and they will wait forever. This is useful if you want multi character macros, but if

your terminal sends escape sequences for arrow keys, it will be necessary to hit escape
twice to get a beep.

21-

3.3 The new option remap (default on) causes the editor to attempt to map the result of a
macro mapping again until the mapping fails. This makes it possible, say, 10 map q to #
and #1 to something eise and get ql mapped to something else. Turning it off makes it
possible to map "L to | and map "R to "L without having "R map to 1.

3.3 The new (string) valued option fags allows you to specify a list of tag files, similar to the
‘‘path’’ variable of csh. The files are separated by spaces (which are entered preceded by
a backslash) and are searched left to right. The default value is ‘‘tags /usr/lib/tags™".
which has the same effect as before. It is recommended that ‘‘tags’ always be the first
entry. On Ernie CoVax, /usr/lib/tags contains entries for the system defined library pro-
cedures from section 3 of the manual.

.Environment enquiries

3.4 The editor now adopts the convention that a null string in the environment is the same as
not being set. This applies to TERM, TERMCAP, and EXINIT.

Vi Tutorial Update

Deleted features

3.3 The **q”” command from visual no longer works at all. You must use ““Q’’ to get to ex
command mode. The “‘q”’ command was deleted because of user complaints about hitting
it by accident too often.

3.5 The provisions for changing the window size with a numeric prefix argument to certain
visual commands have been deleted. The correct way to change the window size is to use
the z command, for example z5<cr> to change the window to 5 lines.

3.3 The option "mapinput" is dead. It has been replaced by a much more powerful mechan-
ism: *“:map!”’.

Change in default option settings

3.3 The default window sizes have been changed. At 300 baud the window is now 8 lines (it
was 1/2 the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen
size, which was usually also 16 for a typical 24 line CRT). At 9600 baud the window is
still the full screen size. Any baud rate less than 1200 behaves like 300, any over 1200
like 9600. This change makes vi more usable on a large screen at slow speeds.

Vi commands

3.3 The command “ZZ’ from vi is the same as ‘“:x<.cr>". This is the recommended way to
leave the editor. Z must be typed twice 10 avoid hitting it accidently.

3.4 The command “Z is the same as ‘“:stop<cr>". Note that if you have an arrow key that
sends “Z the stop function will take priority over the arrow function. If you have your
“‘susp”” character set to something besides “Z, that key will be honored as well.

3.3 It is now possible from visual to string several search expressions together separated by
semicolons the same as command mode. For example, you can say
/foo/;/bar
from visual and it will move to the first ‘‘bar’ after the next ‘‘foo’”. This also works
within one line.

3.3 R is now the same as "L on terminals where the right arrow key sends "L (This includes
the Televideo 912/920 and the ADM 31 terminals.)

-22.

34

The visual page motion commands “F and "B now treat any preceding counts as number
of pages to move, instead of changes to the window size. That is, 2°F moves forward 2
pages.

Macros

3.3

3.4

The ‘“‘mapinput’ mechanism of version 3.1 has been replaced by a more powerful
mechanism. An ‘!"’ can follow the word ‘““map’’ in the map command. Map!’ed macros
only apply during input mode, while map’ed macros only apply during command mode.
Using ‘“map’’ or ‘‘map!”’ by itself produces a listing of macros in the corresponding
mode.

A word abbreviation mode is now available. You can define abbreviations with the abbre-
viate command

:abbr foo find outer otter

which maps “foo’’ to ‘‘find outer otter’’. Abbreviations can be turned off with the wnab-
breviate command. The syntax of these commands is identical to the map and wunmap
commands, except that the ! forms do not exist. Abbreviations are considered when in
visual input mode only, and only affect whole words typed in, using the conservative
definition. (Thus ‘“‘foobar’’ will not be mapped as it would using ‘‘map!’’) Abbreviate
and unabbreviate can be abbreviated to ‘‘ab’’ and ‘‘una’’, respectively.

.23-

.24.-

Table of Contents

The Vi Editor
Preliminary INOESoiiiiii i 1
Creatingan Ordinary File ... 1
INVOKING V... e 2
Moving Around inthe File ... 3
Cursor-Positioning Keys.cc.ooiiiiiiiii e 5
Scrolling and Pagingcoooiiiiiiiii e)
Moving From Line to Line...........ccooooiiiiii 5
Skipping Over Sentences, Paragraphs, and Sections.......................ccoc.ccooiii i 6
Searching for @ Patterncccciiiiiiiiii e 7
Moving Within @ Line.........cooooiiiiiiiiiiiiee e 10
Returning to Your Previous Position.................ccoooii oo 11
Adding, Deleting, and Correcting TexXt..............ccoviiiieiiiiiiiiieec e 11
Inserting and Appending Textoooiiiiiiiiiiiiii e 12
Character CorreCHONS.uviiiiiiiiii e 13
LiNe COITeCtiONS ...t 14
Copying and Moving TexXt..........cooiiiiiiiiiii e 15
Shifting LINeS......coviiiiiii i 17
Continuous Text INPUL..........oooiiiiiiii e 17
Undoinga Commandcc..oooiiiiiiiiii e 17
Special Vi COmMMANGS.........c.oviiiiii e .18
Setting Vi OPtONS.oiiiiii e 18
Defining MACTOSooiiiiiii e 22
Defining Abbreviationsoooiiiiiiiieii e 23
Reading Data Into Your Current File ... 24
Writing Edited Text Ontoa Fileooooiiiiiiii e 24
Editing Other Files ... 25
Editing the Next File in the Argument Listcccociiiiiiii 26
Filtering Buffer Text Through HP-UX Commandsccooocoiviiiiiiiii 27
VEANA EX. oot 28
The Shell INterface..........cccoooiiiiii e 28
Getting INto Vi ..o 28
Getting Back tothe Shell..............oocoiiii e 29
Miscellaneous TOPICSuviiiiiiiiiii e 30
Vi INHAlZAtON ... 30
Recovering Lost LINeScc..voiiiiiiii e 31
Entering Control Characters in Your TeXtc..cccooiioiiiiiiiiiiiiiic e 31
Adjusting the SCIEEN.........cviiiiiiiieii e 31
Printing Your File Status ..o 32
Appendix A: Character FUNCHONSc.ooiiiiiiiiiii e 33

Appendix B: Example .exrc File............coo.ccoiiiiiii 39

The Vi Editor

Viis a display-oriented, interactive text editor. The contents of your file are displayed on your
screen, so you can see the result of each vi command as soon as the command is executed. There
is rarely any doubt about the current state of your file.

Preliminary Notes

V1 has two peculiar traits that might prove somewhat confusing to the beginning user. The first is
that many of your commands do not print on your terminal when you type them in. Be assured that
1 is still listening to you, however. If you watch the screen when you type in a command, vi usually
gives some indication that your command has been received and interpreted. More specifically, the
only commands that will print on your terminal are those that begin with /, :, ?, and !. If these
characters are embedded in a long string of commands, only those characters after and including
one of those above will be printed.

The second trait is that 27 always uses the bottom line of the screen for command output, error
messages, and echoed command lines. This is where you should look for information and

command verification.

Creating an Ordinary File

The remainder of this article discusses the various commands and features of the o1 editor.
Because many 21 commands do not print on the screen when they are executed, it is difficult to
represent the results that appear on your screen before and after a command has executed. Thus,
this article is designed to be read while you have access to a computer so you can try each
command as it is discussed.

To be able to try each command, you need a file with some textinit. To create a file, type

$ vi filename

where filename is the name of the file you are creating. This file name is completely up to you.
Viresponds by printing

"filename " [new file]

at the bottom of your screen, and prints a tilde (7) at the beginning of each line on the screen. The
tilde is a special character that vi uses to mark the end of the text in a file that already exists, or, in
the case of a new file, to show that there is currently no text in the file. The tildes are simply
markers that are used for your convenience; they do not become part of the text in your file.

You are now ready to put text in your file. To do this, type a (for append). Even though the
command does not print on your screen, 21 is now waiting for your text. As you type in your text,
note that everything you type appears on your screen, and that the tilde on each line disappears as
you begin typing on that line.

It does not really matter what you type in for your text, but you need at least two paragraphs of
material (paragraphs must be separated by at least one blank line). That amount of text ensures that
most of the commands can be illustrated on your file. When you are done entering text, press
[ESC], and exit the editor by typing ZZ. You should now have a shell prompt on your screen.

Invoking Vi

Material Covered:

vifile ... command; invokes 21 with one or more file arguments;
[ESC], [ALT], ctrl-[commands; end text insertion or modification;
[DEL], [RUB], ctrl-? commands; generate an interrupt.

You invoke vi the same way you invoke any shell command. Vi accepts several options and a list
of file names, which are the names of the files you want to create or edit. For a list of the available
options, refer to the HP-UX Reference manual. For example,

$ vi filel file2 file3

invokes v1 with filel, file2, and file3 as arguments. Filel is created or edited first. Vi remembers
fileZ and file3 so that you can create or edit them after you are finished with filel. Begin editing the
file you created previously by typing

$ vi filename

where filename is the name of the file you created. Note that vi prints out either a screenful of text
from filename, or the entire contents of filename followed by a tilde on each remaining empty
line. Vi does the latter if filename does not contain enough text to fill the screen. Your cursor is
positioned at the beginning of the first line of the file. Vi is now waiting for your commands.

Vi always copies the contents of the file you are editing into a special buffer. All additions,
deletions, and corrections are performed on the copy in the buffer. This way, the original file
remains unchanged until you are sure you want to change it. Then, when you are finished editing
the file, you can tell vi to overwrite the previous contents of the file with the revised text in the
buffer. Even if you are creating a file, the text you put in your file is actually put in the buffer.
The text remains there until you tell 21 to transfer it to the file you are creating.

Once you have invoked i, it enters a do-nothing state in which it waits for a command. This is
called a quiescent state. You can determine what state o1 is in by pressing [ESC] or [DEL]. [ESC] is
used to end text insertion and to cancel partially formed commands. If you press [ESC] and vi
responds by ringing the bell, then oi is in a quiescent state. If v7 does not ring the bell, then it is
busy executing a command. Ctrl-[generates the same sequence as the [ESC] or [ALT] key on
your keyboard. [DEL] generates an interrupt, which forces vi to stop whatever it is doing and
return to a quiescent state. The DEL signal can also be generated with ctrl-?.

Once viis in a quiescent state, there are several things you can do. They are shown in the following
diagram.

The Shell

Line-Oriented -
Mode (ex) —
Quiescent State >

Visual Mode (vi) — —»-1 Adding, Deleting,

Quiescent State < ar)d
- Correcting Text

\)
Y

Y

Special
vi
Commands

Moving Around
in the File

Moving Around in the File

Material Covered:

(1], k, ctrl-P
[—1, 1, [SPACE]
[l1,j, ctrl-d, ctrl-N

commands; move the cursor up one line in the same column;
commands; move the cursor one character to the right;
commands; move the cursor down one line in the same column;

[«<], h, [BACKSPACE], ctrl-H

ctrl-D
ctrl-U
ctrl-E
ctrl-Y
ctrl-F
ctrl-B
+, [RETURN], ctrl-M

nG

commands; move the cursor one character to the left;

command; scroll down;

command; scroll up;

command; scroll up one line;

command; scroll down one line;

command; move forward one page in the file;

command; move backward one page in the file;

commands; move the cursor to the first printable character on the
next line;

command; move cursor to the first printable character on the
previous line;

command; move cursor to first printable character on line number
n; default n = last line of the file;

command; move cursor to the first printable character of the first
line on the screen,;

command; move cursor to the first printable character of the middle
line on the screen;

command; move cursor to the first printable character of the last
line on the screen,;

command; mark a particular line with a label;

command; show matching left or right parenthesis or brace;
command; move cursor to the beginning of the most previous
sentence;

command; move cursor to the beginning of the next sentence;

> 2:00\:

&

fc
Fc
tc

Tc

", 0 (zero)

command; move cursor to the beginning of the most previous
paragraph;

command; move cursor to the beginning of the next paragraph;
command; move cursor to the beginning of the most previous
section;

command; move cursor to the beginning of the next section;
command,; initiates a forward pattern search;

command,; initiates a backward pattern search;

command; repeats the most previous pattern search;

command; repeats the most previous pattern search in the opposite
direction;

metacharacter; used in pattern searches to match a pattern at the
beginning of a line;

metacharacter; used in pattern searches to match a pattern at the
end of a line;

metacharacter; used in pattern searches to strip away the special
meaning of a metacharacter;

metacharacter; used in pattern searches to match any single
character;

metacharacter; used in pattern searches to match a pattern at the
beginning of a word;

metacharacter; used in pattern searches to match a pattern at the
end of a word;

metacharacters; used in pattern searches to match any one of the
enclosed characters;

metacharacter; used in pattern searches to match zero or more
instances of the preceding character;

command; move cursor forward to the beginning of the next word,
or to the next punctuation mark, whichever comes first;

command; move cursor forward to the beginning of the next word,
ignoring punctuation;

command; move cursor backwards to the beginning of the
previous word, or to the most previous punctuation mark,
whichever comes first;

command; move cursor backwards to the beginning of the
previous word, ignoring punctuation;

command; move cursor forward to the end of the next word, or to
the next punctuation mark, whichever comes first;

command; move cursor forward to the end of the next word,
ignoring punctuation;

command; move cursor forward to the next instance of the
specified character, c;

command; move cursor backwards to the next instance of the
specified character, ¢;

command; move cursor forward to the first character to the left of
the next instance of the specified character, c;

command; move cursor backwards to the first character to the right
of the next instance of the specified character, c;

command; repeats the most previous f, F, t, or T command;
command; repeats the most previous f, F, t, or T command, in the
opposite direction;

commands; move cursor to the first printable character on the

-

current line;
$ command; move cursor to the end of the current line;
| command; move cursor to specified column number in current line;

-

Tor commands; returns cursor to its most previous position.

This section describes several commands that enable you to move around in your file. You
should try each of these commands as they are discussed to familiarize yourself with them.

Cursor-Positioning Keys

If your terminal has cursor-positioning keys, these keys can be used in vi to position the cursor in
the file you are editing. The h, j, k, and | commands perform the same functions as the cursor-
positioning keys. The h command moves the cursor one space to the left ((BACKSPACE] and ctrl-H
also moves the cursor one space to the left). The j command moves the cursor down one line in
the same column (as do ctrl-J and ctrl-N), the k command moves the cursor up one line in the
same column (as does ctrl-P), and the | command moves the cursor one space to the right ([SPACE]
also moves the cursor one space to the right). These commands are summarized below:

[1]=k =ctrl-P
[—] = 1 = [SPACE]
[l1=j=ctrl-d = ctrl-N

[«] = h = [BACKSPACE] = ctrl-H
Scrolling and Paging

The ctrl-D command scrolls down in the file, leaving several lines of continuity between the
previous screenful of text and the new screenful of text (note that [CTRL] must be held down while
the next key is pressed). The ctrl-U command scrolls up in the file, also leaving several lines of
continuity on the screen. If either ctrl-D or ctrl-U is preceded by a number argument, then the
number of lines scrolled is equal to that specified number, and remains so until changed again.

If you want more control over the scrolling process, the ctrl-E command exposes one more line
at the bottom of the screen, and the ctrl-Y command exposes one more line at the top. Preceding
ctrl-E or ctrl-Y with a number causes the command to be executed that many times.

There are two paging commands, ctrl-F and ctrl-B, which move forward and backward one
page in the file, respectively. Both commands leave a few lines of continuity between screenfuls of
text. Giving a number argument to either of these paging commands executes the command that
many times.

Note that paging moves you more abruptly than scrolling does, and leaves you fewer lines of
continuity between screenfuls of text.

Moving From Line to Line
The + and — commands move the cursor to the first printable character on the next line or the

previous line, respectively. [RETURN] or ctrl-M have the same effect as +. A preceding number
argument executes these commands that many times.

-5-

The G command, when preceded by a line number, positions the cursor at the beginning of that
line in the file. For example, 3G positions the cursor at the beginning of the third line. If you do not
specify a number, the cursor is positioned at the beginning of the last line of the file.

The H command positions the cursor at the beginning of the first line on the screen. If you
precede H with a number, as in 4H, the cursor is positioned at the beginning of the fourth line on
the screen.

The M command positions the cursor at the beginning of the middle line on the screen. The M
command ignores any line number argument.

The L command positions the cursor at the beginning of the last line on the screen. You can
precede the L command by a number, as in 4L, which positions the cursor at the beginning of the
fourth line above the bottom of the screen.

Note that the H, M, and L commands reference the first, middle, and last lines of the current
screenful of text. They do not reference the first, middle, and last lines of the entire file.

The m command enables you to mark specific lines with a label so that you can return to them.
The label must be a single, lower-case letter in the range "a" through "z". To mark a line, first
move the cursor to the particular line (using any of the commands described in Moving Around in
the File), and type m?, where ? is the label you have selected. For example, + + 4+ me moves
the cursor ahead three lines and marks that line with the label "e*.

To reference a line you have marked, precede your label with a grave accent (7). For example, “e
moves the cursor to the line you marked with the label "e". Note also that the cursor is placed
in exactly the same spot within the line that it was when you marked the line. If you are not
particularly interested in a specific position within a marked line, use an apostrophe (") instead of
a grave accent. Thus, “e moves the cursor to the beginning of the line marked by the label "e",
regardless of where the cursor was in the line when you marked it. Try marking a few lines, using
both the apostrophe and grave accent, until you are familiar with their differences.

Marks are defined until you begin editing another file, or until you leave the editor. Marks cannot
be erased.

The % command shows you the matching left or right parenthesis or brace for the parenthesis or
brace currently marked by the cursor.

Skipping Over Sentences, Paragraphs, and Sections

The (and) (left and right parentheses) commands move the cursor to the beginning of the
previous and next sentences, respectively. A sentence is defined to end at a period, an
exclamation point, or a question mark, followed either by two spaces or the end of a line. Any
number of closing parentheses, brackets, double quotes, or single quotes may follow the period,
exclamation point, or question mark, as long as they occur before the two spaces or the end of the
line. The (and) commands can be preceded by a number to move the cursor over several
sentences at once.

The { and } (left and right braces) commands move the cursorto the beginning of the previous
and next paragraphs, respectively. A paragraph is defined as a block of text beginning and ending
with a blank line, or a block of text delimited by macro invocations. The default list of macros
(from the —ms and —mm macros packages) includes .IP, .LP, .PP, .QP, .P, .LI, and .bp. These
macros are used so that files containing nroff/troff text can be easily edited with 22. You may add
your own macro names to those already recognized by appropriately setting the paragraphs option
(see Setting Vi Options later in this article). The { and } commands can be preceded by a number to
move the cursor over several paragraphs at once.

The [[and]] (double left and right brackets) commands move the cursor to the beginning of the
previous and next sections, respectively. A section is defined as beginning and ending with a line
containing a ctrl-L (formfeed character) in the first column, or as a block of text delimited by macro
invocations. The default list of macros defining a section is .NH, .SH, .H, and .HU. You may add
your own macro names to those already understood by appropriately setting the sections option
(see Setting Vi Options later in this article). If [[or]] is preceded by a number argument, it is
interpreted to be the new window size (number of lines per screenful of text).

Searching for a Pattern

You can tell 21 to search for a particular pattern (string of characters) in your file. To do this, type a
slash (/), followed by the pattern you want to search for, followed by [RETURN]. Note that the
entire command is printed at the bottom of your screen. If vt finds the pattern, vi positions the
cursor at the beginning of the pattern. If the pattern cannot be found, vi prints an error message
and returns the cursor to its location prior to the search.

The slash initiates a forward search, with wraparound, starting from the current position of the
cursor. Replacing the slash with a question mark (?) initiates a backward search, with wraparound,
starting from the current position of the cursor. If a number argument is specified before / or ?, it is
interpreted to be the new window size (number of lines per screenful of text).

If you want your pattern to match only at the beginning of a line, begin your pattern with a caret
("). If you want your pattern to match only at the end of a line, end your pattern with a dollar sign

($).
Here are some examples:

/test{RETURN]
This is a forward search for the string "test". Note that this pattern matches "re-test", "testing",
"detestable”, or "test". To find only the word "test" standing alone (but not at the end of a
sentence, or just before a comma), type

/ test [RETURN]

The spaces require that "test" not be part of another word.

?"Today[RETURN]

This is a backward search for the string " Today " appearing only at the beginning of a line.
/regret$[RETURN]
This is a forward search for the string " regret" appearing only at the end of a line.

The n command enables you to repeat the most recently executed search. Each time nis
typed, the previous search is re-executed. The N command also repeats the most recently executed
search, but in the opposite direction. These commands are handy for finding a particular
occurrence of a pattern without having to re-type the search each time.

There are times when you want to position the cursor at the beginning of the line containing the
pattern. This can be done by typing your search command in a slightly different way. For
example,

/key/ + O[RETURN]

searches forward and positions the cursor at the beginning of the line containing the string
"key". You can also position the cursor at the beginning of a line relative to the line containing
the pattern. For example,

/FIFO/-3[RETURN]

searches forward and positions the cursor at the beginning of the third line before the line
containing the string "FIFO". Also,

?CRT? + 2[RETURN]

searches backward and positions the cursor at the beginning of the second line after the line
containing the string "CRT".

There are two options, magic and nomagic, which affect the way you can specify patterns (see
the section entitled Setting Vi Options). 1f the nomagic option is set, then only the characters ~ and
$ have special meaning in patterns. If you want to include either of these characters in the actual
pattern you search for, they must be preceded by a backslash (\). The backslash guotes the
character immediately following it, and strips away any special meaning that character might
have. For example,

/\"LIRETURN]

searches for the string ""L*". The backslash was necessary to keep the caret from being
interpreted to mean " match this pattern at the beginning of a line".

If the magic option is set, then you have several other special characters that you can use in
patterns, including “and $. The . (dot) matches any character, as in

/chap.[RETURN]

which matches any five-character string that begins with "chap". The character combinations
N\ < and \ > match the beginning of a word and the end of a word, respectively. For example,

2\ <how[RETURN]
matches any word beginning with "how", including "how" itself. Also,
/ed\.>[RETURN]
matches any word ending with "ed", including "ed" itself.
Brackets are also special, and match any one of the characters enclosed in them. For example,

/file[123][RETURN]

’

matches "filel", "file2", and "file3". If the characters inside the brackets are preceded by a "
then the brackets match any single character not enclosed in them, as in

/chap["1234][RETURN]

which matches any five-character string beginning with "chap", except "chapl", "chap2",
“chap3", and "chap4". If you want to specify large spans of letters or numbers, as in a through z,
or 0 through 9, they can be abbreviated inside the brackets, as in [a—z] or [0-9].

The asterisk (#) matches zero or more instances of the character immediately preceding it. For
example,

/o#[RETURN]

matches zero or more b’s. Note that this is a useless search, since zero b’s can be found much
quicker than one or more b’s. To find one or more b’s, you must type

/bb#[RETURN]
Also,
/[123][123]#[a-z][RETURN]

matches a one, two, or three, followed by any number of one’s, two’s, and three’s, followed by
a single lower-case letter. Experiment with the asterisk until you understand the implications of
matching zero or more occurrences of a pattern.

If the magic option is set, then the characters *, $, ., \<, \\>>, [,], and # have special meaning
and must be quoted with a backslash if you want them to be literally matched in a pattern (note
that the characters \ < and \ > must each be preceded by a backslash, as in \\'\\< and
NN\ \>). If the nomagic option is set, then only "~ and $ require a backslash to be literally
matched. Note that, to match a backslash literally, it also must be preceded with a backslash.

The characters *, $, ., \.<, \>, [,], ¥, and \ are commonly called metacharacters whenever
their special meanings are utilized. This helps to distinguish between their normal, literal use, and
their use as special characters.

Moving Within a Line

The w and W commands advance the cursor to the beginning of the next word in the sentence,
wrapping around to the next line if necessary. The difference between the two commands is that
the w command also stops at each punctuation mark it encounters; the W command does not stop
at punctuation.

The b and B commands move the cursor backwards to the beginning of the previous word,
wrapping around to the previous line if necessary. The b command stops at punctuation, while the
B command does not.

The e and E commands advance the cursor to the end of the next word in the sentence,
wrapping around to the next line if necessary. The e command stops at punctuation, while the
E command does not.

Note that the w, W, b, B, e, and E commands all wrap around to lines other than the current
line. These commands can be preceded by a number to move the cursor over several words at
once.

The f and F commands move the cursor forward or backward, respectively, to the next
occurrence of the specified character. The cursor is placed on the specified character. For example,
fc moves the cursor forward to the first occurrence of the character "c", and F: moves the cursor
backwards to the first occurrence of a colon. The f and F commands can be preceded by a
number, as in 3fr, which moves the cursor forward to the third occurrence of the character "r".
Both fand F work only on the current line, and do not wrap around to other lines.

The t and T commands are identical to the f and F commands, except that the cursor is placed
one character to the left or right of the specified character, respectively. For example, 2Tm moves
the cursor backwards to the second occurrence of the character "m", and places the cursor one
character to the right. 3t. moves the cursor forward to the third occurrence of a period, and places
the cursor one character to the left.

The ; command repeats the most previously executed f, F, t, or T command. Thus, fi;;; is identical
to 4fi, and Tj; is identical to 2Tj. The , command also repeats the most previously executed f, F, t,
or T command, but in the opposite direction. Thus, if you execute Tk, a subsequent , searches
forward in the current line for the letter k.

The " (caret) command moves the cursor to the first printable character on the current line. The 0
(zero) command is a synonym for *. Any number argument is ignored.

The $ command moves the cursor to the end of the current line. If a number argument # is

specified, $ moves the cursor to the nth end of line it finds. Thus, $ can wrap around to other lines,
but only if preceded by a number argument (note that several explicitly typed $’s will not do this).

-10-

The | (vertical bar) command moves the cursor to the character in the column specified by a
preceding number argument. If no number is given, | is a synonym for " and 0, in that it moves the
cursor to the first printable character in the line.

Note that the f, F, t, T, *, 0, and | commands work only on the current line. If you want to use
these commands on a line other than the current line, you must first move the cursor to the line of

interest.

Returning to Your Previous Position

The *~ (two grave accents) command and the “~ (two apostrophes) command both return you to
your previous position. These commands can be used after you have executed a search command
or one of the commands listed under Moving Around in the File, and you want to get back to where
you were. Viremembers only your last previous position.

Adding, Deleting, and Correcting Text

Material Covered:

6 O

@]

» Yy

=<

command; insert text before cursor;

command; insert text at the beginning of a line (same as “i);

command; append text after cursor;

command; append text at the end of a line (same as $a);

command; create new line below line containing cursor;

command; create new line above line containing cursor;

command; delete character marked by cursor;

command; delete character immediately before character marked by cursor;
command replace character marked by cursor with another character;

command; replace one or more characters with one or more characters;

command; delete; can be combined with several other commands specifying what is
to be deleted;

command; delete from current location through end of line (same as d$);

command; change; can be combined with several other commands specifying what is
to be changed,;

command; change from current location through end of line (same as c$);

command; re-execute last operation which changed text in buffer;

command; copy specified amount of text into a specified buffer;

commands; copy the specified number of complete lines into a specified buffer;
operator; introduces buffer name in which text is saved by previous y or Y
commands;

buffers; the buffer names in which text can be saved with y or Y commands; there is,
in addition, an unnamed buffer;

command; puts saved text back into the file, after or below the cursor;

command; puts saved text back into the file, before or above the cursor;

command; shifts the specified number of lines one shift-width to the left;

command; shifts the specified number of lines one shift-width to the right;

command; shifts the specified lines one shift-width to the left; can be combined with
other commands;

command; shifts the specified lines one shift-width to the right; can be combined with
other commands;

command; joins the specified number of lines together;

-11-

command; reverses the last change made to the file;
command; restores the current line back to its state before editing began;

cCe

Inserting and Appending Text

The i and a commands are used for inserting and appending text, respectively. The i command
places text to the left of the cursor, and the a command places text to the right of the cursor. Both
commands are cancelled by [ESC].

You may insert or append many lines of text, or just a few characters, with the i and a
commands. To type in more than one line of text, press [RETURN] at the place in your text where
you want the new line to appear. When you are inserting or appending text, [RETURN] causes vi to
create a new line, and to copy the remainder of the current line onto the new line.

If a number # is specified before the i or a command, then the text you add is duplicated n—1 times
when [ESC] is pressed. This works only if there is room on the current line for the duplications. For
example, if you type 5a at some particular point in a line, and your appended text is "hi", then,

If you want to start adding text on a new line that does not currently exist, you can create a new line
in your text with the o and O commands. The o command creates a new line after the line
containing the cursor, and the O command creates a new line before the line containing the cursor.
The o and O commands can create only one new line, but pressing [RETURN] while using the o
and O commands causes 2i to create an additional new line for you. The o and O commands are
cancelled by [ESC], and ignore any preceding number argument. Thus, the only difference
between the i, a, 0, and O commands is that the o and O commands automatically create a new
line on which text can be added, while the i and a commands do not. New lines can be created with
all four commands simply by pressing [RETURN].

During an insert or append operation, if a ctrl-(« is typed as the first character of the text to be
inserted/appended, the ctrl-(« is replaced by the most previous text that was inserted or appended.
A maximum of 128 characters are saved from the previous text addition. If more than 128
characters were inserted or appended in the last text addition, the ctrl-@ function is not available
during the current text addition.

If you are in insert or append mode, the autoindent option is set, and you are at the beginning of a
line, ctrl-T causes shiftwidth white space to be inserted at that point. White space inserted in this
manner can be back-tabbed over with ctrl-D in insert or append mode. Ctrl-D is necessary because
shiftwidth white space cannot be backspaced over.

The ctrl-W sequence enables you to back up over words (similar to b in command mode) while in
insert or append mode. All words backed over are deleted from the text addition, even though the
characters still appear on your screen.

The keys you use at the shell level to erase characters or entire lines can also be used in vi.
When you are inserting or appending text, single characters can be erased with [BACKSPACE], and
entire lines can be erased with ctrl-U. (Note that [BACKSPACE] and ctrl-U are the default keys
assigned to erase single characters and entire lines. Your keys may have been re-defined. Check
with your system administrator.) Note that you cannot erase characters which you did not insert
or append, and that you cannot backspace into a previous line.

-12-

Experiment with the i, a, 0o, and O commands until you are familiar with what each command
does. Be sure to note the effects of pressing [RETURN] with each of these commands.

Character Corrections

The x command deletes the character marked by the cursor. You can delete more than one
character by preceding x with a number. 3x, for example, deletes the next three characters,
including the one marked by the cursor.

The X command deletes the character immediately before the one marked by the cursor.
Preceding X with a number deletes that many characters before the current location of the cursor.

Both x and X work only on the current line; they cannot delete characters on any line other than the
current line.

The r command replaces one character with another. For example, rT replaces the character
marked by the cursor with the character "T". If a number n precedes the r command, then »
characters are replaced by the single character you type next. For example, 4rt replaces the next
four characters with the letter t.

The s command replaces one or more characters with the specified string of characters. When
not preceded by a number, the s command replaces a single character with the specified string.
For example,

sTTY[ESC]

replaces the character marked by the cursor with the string "TTY". When preceded by a number,
the s command replaces the specified number of characters, beginning with the character marked
by the cursor, with the specified string of characters. For example,

4sinteresting[ESC]

replaces the next four characters with the string "interesting”. Note that the s command prints a
dollar sign at the end of the text to be replaced so you can see the extent of the change. The
dollar sign is removed when you press [ESC].

The d command can be combined with several of the commands previously discussed to delete
characters and words. For example, dw deletes the next word, and db deletes the previous
word. d[SPACE] deletes the character marked by the cursor (this is equivalent to the the x
command). The d command can be preceded by a number to delete several words or
characters, as in 3db, which deletes the last three words. The d command can also be used with
the f, F, t, and T commands. For example, dtr deletes everything from the current position of the
cursor up to (but not including) the next "r" that appears in the current line. Experiment with these
combinations until you are familiar with their effects.

The ¢ command can also be combined with several other commands to change characters
and words. The ¢ command can be preceded by a number. Here are some examples:

-13-

cbwyesterday[ESC]

This changes the next five words to the string "yesterday”. Note that the "c" and the "5"
could be interchanged with the same result.

4cbvariable name[ESC]
This changes the previous four words to the string "variable name".
c[SPACE]in a buffer[ESC]
This changes the character marked by the cursor to the string "in a buffer".
cfqHP-UX operating system[ESC]
This changes everything from the current position of the cursor up to (and including) the first

occurrence of a "q" to the string "HP-UX operating system". The ¢ command can be used
similarly with the F, t, and T commands.

Note that the ¢ command marks the end of the text to be changed with a dollar sign so you
can see the extent of the change. The dollar sign is removed after you press [ESC].

Line Corrections

The d and ¢ commands can also delete or change lines or groups of lines. The d command
can be appended to itself to delete one complete line. For example, dd deletes the current line,
and 5dd deletes the current line and the next four lines.

- The d command can be combined with several other commands. For example, dL deletes
everything from the current position of the cursor through the last line on the screen. d3L deletes
everything from the current position of the cursor through the third line from the bottom of the
screen. The d command can also be used with a search, so that

d/market$[RETURN]

deletes everything from the current position of the cursor up to the beginning of the string
"market", which must occur at the end of a line. Try the d command with the (,), {, }, [[, and]]
commands to delete one or more sentences, paragraphs, or sections.

Note that any of the commands discussed under Moving Around in the File can be combined with
the d command to delete specific portions of text. Also note that, if you delete five or more lines, vi

informs you of the number of lines deleted with a message at the bottom of your screen.

The D command is shorthand for d$, causing all characters from the cursor to the end of the line to
be deleted. Any preceding number argument is ignored.

The ¢ command can also be appended to itself (thus creating the cc command) to change one
complete line. S isa synonym for cc. For example,

-14-

ccEnter the value for variable A.[ESC]
changes the current line to the sentence "Enter the value for variable A. ".
4SPlace illustration here.[ESC]

This changes the current line and the three lines following it to the sentence "Place illustration
here.". Note that the S command was used, and that the results are the same as if cc had been
used.

cMPlace output on TTY4.[RETURN]Call exit routine.[ESC]

This changes everything from the current position of the cursor to the middle line on the screen to
the two sentences "Place output on TTY4." and "Call exit routine.". Note that each sentence is
on a separate line.

)c([RETURN]Insert new paragraph here.[RETURN][ESC]

Here, the initial ") " moves the cursor to the beginning of the next paragraph, and then the entire
previous paragraph is changed to a blank line, followed by the sentence "Insert new paragraph
here. ", followed by another blank line.

+ c¢/while/~1[RETURN]continue;[ESC]

The initial "+ " advances the cursor to the first printable character on the next line. Then,
everything from the beginning of that line up to and including the line before the next "while"
statement is changed to the single statement " continue; ".

Like the d command, the ¢ command can be combined with any of the commands discussed
under Moving Around in the File, and vi informs you when five or more lines are being changed.
Also, as in previous ¢ examples, the end of the text to be changed is marked with a $. Try some of
the other combinations not covered above until you are familiar with how ¢ works.

The C is equivalent to ¢$, causing all the characters from the cursor to the end of the line to be
changed to the text that follows. Any preceding number argument is ignored.

The . (dot) command repeats the last command which made a change in the text. Thus, dw.....
is the same as 6dw, in that both commands delete the next six words. The dot command can be
used to re-execute any command which modified the buffer text, but is limited to that command
which was executed most recently.

Copying and Moving Text

The y command copies a specified portion of text into a buffer. There are 26 named buffers,
named "a" through "z", and one unnamed buffer. If you do not specify a buffer name, the
copied text is automatically placed in the unnamed buffer. For example, yw copies the next word
into the unnamed buffer, and y2B copies the previous two words into the unnamed buffer.

-15-

When specifying a buffer name, the name must be preceded by a double quote ("). This tells vi
that the character to follow is a buffer name. For example,)"ay2(copies the previous two
sentences into buffer-*a" (the initial) ensures that complete sentences are copied). Also,

“ty/"two[RETURN]

copies everything from the current position of the cursor up to the line beginning with the string
"two", and puts the text in buffer "t".

Note that the y command starts copying at the current position of the cursor. Thus, partial
words or sentences may be copied if the cursor is in the middle of a word or sentence when you
give the y command. Note also that, when copying forward in the file, the character marked by the
cursor is included in the copied text. When copying backwards, however, the copied text begins
with the character preceding the character marked by the cursor.

The Y command is used to copy complete lines of text, regardless of the position of the cursor
within the line. For example, 3Y copies three lines, including the current line, into the unnamed
buffer. "f6Y copies six lines, including the current line, into buffer "f". Also,

"gY/inventory[RETURN]

copies every line from the current line up to and including the line containing the string
“inventory ", and saves them in buffer "g". A synonym for Y is yy.

The p and P commands put the copied text back into the file relative to the location marked by the
cursor. The p command puts the text after or below the cursor, and the P command puts the text
before or above the cursor. Exactly where the text is placed in relation to the cursor is determined
by the amount of text being placed. If there is room on the current line for the text, then the text
is placed after (p) or before (P) the cursor. If there is too much text to fit on one line, then vi
creates one or more new lines below (p) or above (P) the cursor, and puts the text there. For
example, "rp puts the text contained in buffer "r" into the file after or below the cursor. If no
buffer name is specified, the text in the unnamed bufferis put back into the file.

Up to now, the copied text has been left in its original location and duplicated elsewhere in the
file. If you do not want the text left in its original location, you can use the d command. For
example, 5dd deletes the next five lines, and saves them in the unnamed buffer (that’s right - every
deletion you perform is saved in the unnamed buffer until it is overwritten by the next deletion).
"wd2} deletes the next two complete paragraphs (if the cursor is at the beginning of a
paragraph) and saves them in buffer "w". The p or P command can then be used to put the
deleted text elsewhere in the file.

You can copy text from one file into another. First, save the text in any of the named buffers.
Once the text is saved, stop editing the current file and begin editing the file in which the text is to
be inserted (the commands used to edit other files are described in the section entitled Editing Other
Files). Now use the p or P command to put the saved text into the file. Do not use the unnamed
buffer to transfer text from one file to another, because the contents of the unnamed buffer are
lost when you change files.

-16-

Shifting Lines

The << and >> commands move the specified number of lines one shift-width to the left or right,
respectively. One shift-width is equal to the number of columns specified by the shiftwidth
option (see the section entitled Setting Vi Options). For example, 4>> moves four lines one
shift-width to the right. The << and >> commands are limited to numerical arguments only.

The < and > commands can be used with numbers and other commands to shift large groups
of lines. For example, >3L moves every line from the current line to the third line from the bottom
of the screen one shift-width to the right. Also,

</RAM[RETURN]

moves every line from the current line to the first line containing the string "RAM" one shift-
width to the left. The < and > commands may be combined with any of the commands
discussed under Moving Around in the File.

Continuous Text Input

When you are typing in large amounts of text, it is convenient to have your lines automatically
broken and continued on the next line so that you do not have to press [RETURN]. The
wrapmargin option enables you to do this (see the section entitled Setting Vi Options). For
example, if the wrapmargin option is set equal to 10, vi breaks each line at least 10 columns from
the right-hand edge of the screen.

If you want to join broken lines together, use the J command. For example, 3J joins three lines
together, beginning with the current line. Vi supplies white space at the place or places where the
lines were joined, and moves the cursor to the first occurrence of the supplied white space.

Undoing a Command

The u command reverses the last change you made to your text. The u command is able to undo
only the last change you have made. Note that a u command also undoes itself. If you have
made several changes to a line, and you want to reverse all of the changes, use the U command.
The U command restores the current line back to the state it was in when you began editing it.

-17-

Material Covered:

Special Vi Commands

:set command; enables, disables, sets, or lists options;

autoindent option; enables/disables automatic indentation;

autowrite option; enables/disables automatic writing to the o1 buffer after an editing
session;

ignorecase option; disables/enables upper- and lower-case distinction;

list option; enables/disables tab and end-of-line markers;

magic option; enables/disables extended set of metacharacters;

number option; enables/disables line numbering;

shiftwidth option; defines number of columns per shift-width;

showmatch option; enables/disables parenthesis-, brace-, and bracket-matching;

slowopen option; enables/disables screen refresh only when [ESC] is pressed;

wrapmargin option; defines number of columns in right margin;

timeout option; enables/disables one second time limit for macro entry;

readonly option; enables/disables write protection for file;

paragraphs option; defines the macro names recognized by the { and } commands;

sections option; defines the macro names recognized by the [[and]] commands;

‘map command; defines macros;

:unmap command; deletes macros;

ctrl-V command; used to alter the meaning of special keys or characters;

:ab command; defines abbreviations;

‘una command; deletes abbreviations;

r command; read contents of file or output of shell command into current
file;

W command; write part or all of vi buffer to current file or to another file;

e command; edit same file over again, or begin editing another file;

:n command; edit next file in v argument list;

command; enables portions of the v buffer to be filtered through an HP-
UX command.

Setting Vi Options
V1 has several options that you can set for the duration of your editing session.
The autoindent option, when set, automatically indents each line of text so that it begins in the
same column as the previous line. While inserting text, you cannot backspace over this
indentation, but you can backtab over it with ctrl-D. This option is helpful when typing in
program text. To enable this option, type

:set ai[RETURN]
Disable this option by typing

:set noai[RETURN]

.18-

The default is noai.
The autowrite option, when set, automatically writes the contents of the i buffer to the current
file you are editing when you quit editing the current file. This is helpful when you change files or
leave the editor using commands that do not normally save the contents of the 1 buffer. To
enable this option, type
:set aw[RETURN]
Disable this option by typing
:set noaw|[RETURN]
The default is noaw.
The ignorecase option, when set, causes 1 to ignore case in searches. To enable this option, type
:set ic[RETURN]
Disable this option by typing
:set noic[RETURN]

The default is noic.

The list option, when set, causes a tab to be printed as ""I", and marks the end of each line with a
dollar sign. To enable this option, type

:set listt RETURN]
Disable this option by typing

:set nolistt RETURN]
The default is nolist.
The magic option, when set, causes the period, left and right brackets, the asterisk, and the
character combinations \ < and \\> to be treated in a special way when used in search patterns
(see the section entitled Searching for a Pattern). To enable this option, type

:set magic[RETURN]
Disable this option by typing

:set nomagic[RETURN]

The default is nomagic.

-19-

The number option, when set, causes line numbers to be prefixed to each text line on your
screen. To enable this option, type

:set nu[RETURN]
Disable this option by typing

:set nonu[RETURN]
The default is nonu.
The shiftwidth option enables you to specify the number of colu:ans to skip when using <, <<,
> >> ctrl-D; and ctrl-T (see the section entitled Shifting Lines). Ctrl-D backtabs over inserted
shift-widths (using <, <<, >, or >>>) or any indentation provided by the autoindent option.
Ctrl-T inserts one shift-width at the beginning of the current line during text insertion. To set this
option, type

:set sw=2al[RETURN]
where val is the number of columns to skip. The default is sw=8.
The showmatch option, when set, causes 21 to show you the opening parenthesis, brace, or
bracket when you type the corresponding closing parenthesis, brace, or bracket. This is helpful
in complex mathematical expressions. To enable this option, type

:set sm[RETURN]
Disable this option by typing

:set nosm{RETURN]
The default is nosm.
The slowopen option, when set, causes vi to wait until you press [ESC] to update the screen
after inserting or appending text. This is used on slow terminals to decrease the amount of time
spent waiting for the screen to be updated. To enable this option, type

:set slow[RETURN]
Disable this option by typing

:set noslow[RETURN]
The default is slow.
The wrapmargin option enables you to specify the number of columns you want in your right

margin. This is used when you are using continuous text input (see section entitled Continuous Text
Input). To set this option, type

-20-

:set wm = val[RETURN]
where val is the number of columns in your right margin. The defaultis wm=0.

The timeout option, when set, places a one second time limit on the amount of time it takes you
to type in a macro name (see the section entitled Defining Macros). To enable this option, type

:set to[RETURN]
Disable this option by typing

:set noto[RETURN]
The default is to.
The readonly option, when set, places write protection on the file you are editing. This is used
when you want simply to look at a file, and you want to ensure that you do not inadvertently
change or destroy the contents of the file. To enable this option, type

:set readonly[RETURN]
Disable this option by typing

:set noreadonly[RETURN]
The default is noreadonly.
The paragraphs option contains the list of macro names recognized by the { and } commands as
marking the beginning and end of a paragraph. Suppose you have three macros, .PG, .P, and .EP,
that you want 21 to recognize as paragraph delimiters. All you have to do is type

:set para=PGP EP[RETURN]

Note that, if a macro name is only one character long, you must type the single character macro
name, followed by a space. The default paragraph string is

para = IPLPPPQPbpP LI
You may add your macros to this string, or completely redefine it using different macro names.
The sections option contains the list of macro names recognized by the [[and]] commands as
marking the beginning and end of a section. Sections is defined in exactly the same way as
paragraphs above. The default list of macro names is

sect=NHSHH HU

There are several other options available, but they are less commonly used than these. You can
get a list of all possible options and their settings by typing

21-

:set all[RETURN]
Alist of all the options which you have changed is generated by typing
:set[RETURN]
If youwant to know the value of a particular option, type
:set opt?[RETURN]
where opt is the name of the option. Note that multiple options can be set on one line, as in

:set ai aw nu[RETURN]

If a number argument is specified before the :set command, it is interpreted to be the new window
size (number of lines per screenful of text).

Defining Macros

Vi has a macro facility which enables you to substitute a single keystroke for a longer sequence of
keystrokes. If you are repeatedly typing the same sequence of commands, then you can
probably save time and typing by defining a macro to perform the sequence of commands for you.

You use the :map command to define a macro. After the :map command, you type the key or
keys that invoke the macro, and then the sequence of keystrokes that you want to put in the macro.
For example,

:map d d4w[RETURN]
causes d to delete the next four words every time it is pressed. Also,
:map c /I ctrl-V[RETURN]dwiYou ctrl-V[ESC]{[RETURN]

causes c to find an occurrence of "I ", delete it, and replace it with "You ". The ctrl-V command
tells vi to simply enter the next keystroke into the text of the macro and to ignore any special
meaning that keystroke might have. The ctrl-V command is used above to flag [RETURN] and
[ESC], both of which would have terminated the :map command before it was completed.
Instead, [RETURN] and [ESC] are entered as keystrokes in the macro string. The final [RETURN]
terminates the :map command.

If the macro name specified consists of a pound sign (#) followed by a number in the range 0 — 9,
then a special function key on your terminal is mapped. For example,

:map #3 ccILLUSTRATION GOES HEREctrl-V[ESC][RETURN]
maps special function key number 3 such that, when pressed, it changes the current line to the line

"ILLUSTRATION GOES HERE". Of course, this feature is valid only on terminals which have
special function keys.

.292.

Vi normally allows only one second to enter a macro name, so you should use only one keystroke
to invoke the macro. However, if the notimeout option is set, 27 imposes no time limit. If this is the
case, you can use up to 10 keystrokes to invoke a macro. The sequence of keystrokes that define
the macro can contain up to 100 keystrokes.

The u (undo) command, when invoked after a macro has been executed, reverses the effects of the
entire macro.

Previously defined macros can be deleted with the :unmap command. For example, to delete
the ¢ macro defined above, type

:unmap ¢

If a number argument is specified before the :map or :unmap command, it is interpreted to be the
new window size (number of lines per screenful of text).

Defining Abbreviations
You can define an abbreviation with the :ab command. For example,
:ab CRT cathode ray tube[RETURN]

defines "CRT" as an abbreviation that is expanded to "cathode ray tube" everywhere you type
"CRT" in the text. Also,

:ab cs Department of Computer Sciences[RETURN]

defines "cs" as an abbreviation that is expanded to "Department of Computer Sciences"
everywhere you type "cs" in the text.

The abbreviation name must contain only letters, digits, or underscores. Vi only expands
abbreviations when they are delimited by white space on both sides, or by white space on the
left and punctuation on the right. Abbreviations are not expanded if they appear as part of another
word.
Abbreviations can be deleted with the :una command. For example,

:una cs

deletes the abbreviation associated with "cs".

If a number argument is specified before the :ab or :una command, it is interpreted to be the new
window size (number of lines per screenful of text).

.23-

Reading Data Into Your Current File

The :r command enables you to read the contents of a file or the standard output from a shell
command into the file you are currently editing. For example,

:r test_data[RETURN]
reads the contents of the file test_data into the current file after the cursor. Also,
:7r std_dev[RETURN]
reads the contents of the file std_dev into the current file after line seven.
You can also read the output from a shell command into your file by typing
:r lemd[RETURN]
where ch is the name of the shell command. For example,
:r IsfRETURN]

reads a list of the files in your working directory into the file you are editing, beginning at the current
cursor position.

If a number argument is specified before the :r command, it is interpreted to be the new window size
(number of lines per screenful of text).

Writing Edited Text Onto a File

The :w command is used to write the current contents of the vi buffer onto a file. The contents
of the v1 buffer remain unchanged. It is a good idea to write the contents of the i buffer onto a
file periodically, especially if you have been editing the file for a long time, and have made
significant changes. That way, should a system crash or a power failure occur, some or all of
your changes are saved.

If you specified a file name when you invoked vi, then you need not specify a file name if you
want to write to the current file. Vi remembers the name of the file you are editing or creating,
and writes to that file by default. For example, if you invoked v: as

$ vi test_data
then you need only type

:w[RETURN]
to write the contents of the vi buffer onto test_data. However, if you did not specify a file name

when you invoked vi, then you must supply a file name with the :w command. For example, if you
invoked vi as

.24-

$vi
then you must type
‘W filename[RETURN]

where filename is the name of the file on which you want the contents of the vi buffer to be
written.

You can write your changes to an existing file other than the one you are editing. For example,
:w! format[RETURN]

writes your changes to the file format. Note that the exclamation point tells vi to overwrite the
previous contents of format with the contents of the 21 buffer.

You can also write your changes to a file that does not yet exist. For example,
:w thesis[RETURN]
causes o1 to create a file called thesis, and writes all your changes on thesis.

You can specify that a portion of your text be written to another file that does not yet exist. For
example,

:2,35w prog[RETURN]

creates a file called prog and writes line 2 through line 35 of the current file on prog. The same
thing can be done with a file that already exists, as in

:3,10w! listf RETURN]

writes line 3 through line 10 of the current file on the file called list. The exclamation point

causes the previous contents of list to be destroyed and replaced by the specified portion of the vi
buffer.

If a number argument is specified before the :w command, it is interpreted to be the new window
size (number of lines per screenful of text).

Note that, while you may append other files to the file you are currently editing, vi provides no
facilities that enable you to append the current file to another file.

Editing Other Files

The :e command enables you to edit other files without leaving 2i. For example,

:e report(RETURN]

.25.

tells 1 to stop editing the current file and to start editing report. If report does not exist, 21 creates
it for you. Note that 21 requires a :w command to precede a :e command, so that the previous
contents of the vi buffer are saved (unless the autowrite option is set, in which case vi is silent).
You can also tell 21 to start editing a file beginning with a particular line. For example,

e + test{fRETURN]
tells v1 to start editing test, beginning with the last line of the file. Also,

:e + M letter[RETURN]

tells vi to start editing letter at the middle line of the screen. Any vi command discussed in the
section entitled Moving Around in the File and not containing any spaces can be inserted after the
" + " in the previous examples. For example,

;e +/CAE/+ Octrl-V[RETURN] cov_let{RETURN]
tells v1 to start editing cov_let, with the cursor positioned at the beginning of the first line containing
the string "CAE". Note that ctrl-V had to be used to flag [RETURN] so that the :e command is

not terminated before it is completed.

If you decide that you do not like the changes you have made to a file, you can discard the changes
and begin editing the same file over again by typing

:e![RETURN]
The exclamation point tells vi that you know what you are doing, and that you do not want to
save the current contents of the vi buffer. To discard the changes and begin editing a different
file, type

:e! name[RETURN]

where name is the name of the file you want to edit. Again, the exclamation point tells v1 that a :w
command is not necessary.

If a number argument is specified before the :e command, it is interpreted to be the new window
size (number of lines per screenful of text).

Editing the Next File in the Argument List

The :n command tells 2i to stop editing the current file and begin editing the next file in the
argument list. For example,

:n[RETURN]

tells 1 to start editing the next file in the argument list. Vi insists that you use a :w command
before you begin editing the next file, unless you type

-26-

:n![RETURN]

which tells 21 to discard any changes you have made to the current file, and begin editing the next
file.

If a number argument is specified before the :n command, it is interpreted to be the new window
size (number of lines per screenful of text).

Filtering Buffer Text Through HP-UX Commands

Portions of the i buffer text can be given as input to an HP-UX command, the output of which is
then re-inserted into the previous location of that text. The ! command is used to invoke filtering.

For example, suppose you have a list of items, one per line, that you want to sort alphabetically.
This is easily done in several ways. If a single ! is used, then you must supply modifiers which
specify the extent of the text to be sorted. Let’s assume that your file looks like this:

.PP
crackers
peas
roast

apples
oranges

tomatoes
grapes
.PP

PP is an nroff/troff paragraph macro, which is recognized by { and } as beginning and ending a
paragraph. Thus, if your cursor is positioned at the beginning of the first .PP macro, and you type

!}sort[RETURN]

then the list of grocery items is replaced by the output from the sort command. The } command is
used to select the next paragraph as input for sor.

A second way to sort the same text is by typing

7sort{RETURN]
If two !'s are typed, then whole lines are assumed, and the number argument specifies how many
whole lines to sort. For this example to work, your cursor must be somewhere on the "crackers"

line.

Note that, in both of the above examples, a single ! and the command name is all that is printed at
the bottom of your screen. No number arguments or modifiers are echoed.

Any HP-UX command with useful output can be used in place of sort, depending on what you want
to do. Since w1 has no right margin justification function, another useful command might be nroff,
which could be used to justify right margins or perform other formatting.

-27-

Note that filtering affects only the buffer contents, not the actual contents of your current file.

Vi and Ex

Material Covered:

Q command; escape from vi into ex;
vi command; escape from ex back to v1.

Vi is actually one mode of editing within the editor ex. In fact, all of the commands beginning with :
are also available in ex. You can escape to the ex line-oriented editor by giving the command Q.
When the Q command is given, vi responds with a line of information, and then ex takes over and
prints the ex prompt (:). To get from ex to 21, type vi after the ex prompt. Vi clears the screen and
prints a screenful of text, with your current line at the time you typed vi at the top of the screen.

There are several things which can be done more easily in ex, the most notable of which are global
searches and substitutions. Thus, you may find yourself, after a while, switching between the two
editing modes to access functions which are better handled by one or the other. For information
concerning the ex editor, refer to the Ex Reference Manual included in HP-UX Selected Articles.

The Shell Interface

Material Covered:

vi command; invokes the 21 editor;
view command; invokes the o1 editor in read-only mode;
! command; escape to the shell for the duration of one command,;

:sh command; escape to the shell indefinitely;
7 command; writes the contents of 1 buffer to current file and leaves editor;
:q! command; discards contents of vi buffer and leaves editor.

Getting Into Vi
There are two ways to invoke i from the shell, one of which is to type
$vi
optionally followed by the names of the files you want to edit. You can also invoke vi by typing
$ view
optionally followed by the names of the files you want to edit. View is the same editor as w1,
except that the readonly option is automatically set. This protects the contents of a file from being

accidentally overwritten or destroyed. View is used whenever you want to look at an important file,
but you do not want to change its contents.

.28

Note that the readonly option can be disabled or overridden while you are in view. Nothing
prevents you from typing

:set noreadonly[RETURN]

which simply changes view into vi. Also, you can still overwrite the contents of a file when the
readonly option is set by using a :w! command.

Getting Back to the Shell

You can get back to the shell temporarily in either of two ways. You can execute a shell
command while editing a file by typing

lemd[RETURN]
where cmd is the name of the shell command you want to execute. For example,
:lIs[RETURN]

prints a list of all the files in your working directory. Once the command has been executed,
you can either enter another command with :!, or you can continue editing where you left off by

pressing [RETURN]. If you press [RETURN], 21 responds by clearing the screen and displaying the
text you were working on before the shell command was executed.

You can escape to a shell temporarily by typing

:Sh[RETURN]

This puts you in a shell, where you can execute as many commands as you want. When you
want to continue editing, press ctrl-D. Vi clears the screen and displays the text you were working
on.

If a number argument is specified before the :! or :sh command, it is interpreted to be the new
window size (number of lines per screenful of text).

There are two ways to return to the shell permanently. If you want to save all your changes to the
current file and return to the shell, use the ZZ command. ZZ writes the contents of the vi buffer
onto the current file (if any changes have been made), and leaves the editor.

If you do not want to save the changes you have made to the current file, then use :q!. :q!
simply leaves the editor and discards the contents of the vi buffer. The file you were editing is left
unchanged. You should be very sure that this is what you want to do, since the contents of the 1
buffer are permanently lost.

If a number argument is specified before the :q! command, it is interpreted to be the new window
size (number of lines per screenful of text).

-29.

Miscellaneous Topics

Material Covered:

.profile file; automatically executed by the shell at login; can contain macros,
abbreviations, and option settings; must reside in your home directory;

EXINIT variable; placed in .profile file; contains macro, abbreviation, and option
information;

.exrc file; contains ex and o1 initialization constructs; this file is automatically
scanned by ex if EXINIT is not defined,;

buffers 1-9 buffers; contain the last nine text deletions performed during the current edit
session;

ctrl-V operator; enable control characters to be inserted in file;

z command, adjust and redefine window size;

ctrl-L command; refreshe the screen;

ctrl-G, :f command; provide information about your current edit session.

Vi Initialization

Option settings, macros, and abbreviations last only the length of your editing session, after
which they either return to default settings or become undefined. If you do not want to bother
with resetting these things each time you invoke 21, you can put your option settings, macros, and
abbreviations in a file called .profile. This file is automatically executed by the shell when you log
in. The .profile file must reside in your home directory.

If you include 27 information in your .profile, they must be placed in a string and set equal to the
variable EXINIT. EXINIT is a variable that is assumed by the system to contain information
pertinent to the i editor. For example, to set the autoindent, autowrite, and number options and
define two macros, put the following two statements in your .profile file in your home directory:

EXINIT="'set ai aw nulmap @ ddimap # x’
export EXINIT

This EXINIT string sets the autoindent, autowrite, and number options and defines the two
macros @ and #, which delete one line and one character, respectively. Note that each set and
map is separated from the next by a vertical bar (I), and that the entire string is enclosed in single
quotes and set equal to EXINIT. The export command makes the information in EXINIT available to
all processes you create.

If EXINIT is not defined when 21 is invoked, then vz looks for the file .exrc in your home directory. If
it is found, 21 scans its contents, assuming that the information contained therein consists of various
commands for setting up mapping, abbreviations, options, etc.

If the amount of initialization for i is extensive, it is usually more convenient to forget about EXINIT,
and use the .exrc file instead, since, to use EXINIT, the information must be specified in a string
enclosed in single quotes. This could prove to be a very long string if there is a lot of initialization to
do. Strings this size are normally hard to read and hard to input.

-30-

Appendix B at the end of this article contains a listing of the default .exrc file shipped with your
system. You are free to use this file as your own .exrc file if you wish. To do so, simply copy the file
Jetc/d.exrc into your home directory, and rename it .exrc. Your system administrator may have
already done this for you. To find out, list the files in your home directory usingls —a.

Recovering Lost Lines

V1 has nine buffers, numbered 1 through 9, in which the last nine text deletions are automatically
stored. Thus, you can specify one of these buffers with the p or P command to recover a deletion.
For example, " 3p puts the deleted text stored in buffer 3 into the i buffer after or below the cursor.

The . command, which repeats the last command that made a change in your text, automatically
increments the buffer number if the last command referenced a numbered buffer. Thus, "1p........
prints out all the text deleted in the last nine deletions. If you want to put a particular block of
deleted text back into your file, but you do not know which buffer to look in, you can perform a
sequence of commands like " 1pu.u.u. (and so on), which prints the contents of each buffer until
you find the text you want. The u command gets rid of the unwanted text you encounter as you
search.

Note that text stored in buffers 1 through 9 is preserved between files (as long as you do not exit the
editor itself), so you may insert deleted text from one file into another by using buffers 1-9 and the p
or P command.

Entering Control Characters in Your Text

If you need to put a control character in your text, you must precede the control character with a
ctrl-V. The ctrl-V causes a caret (") to be printed on your screen, showing that the next character
is to be interpreted as a control character. For example, to enter a ctrl-L in your text, type

ctrl-V ctrl-L

This causes two characters, ""L", to be printed on your screen. If you try to backspace over them,
however, you can see that they are actually one character.

You may enter any control character into your file except one: the null character (ctrl-@). There is
also a restriction that applies to the line-feed character (ctrl-d). A linefeed is not allowed to occur
anywhere except the beginning of a line, because vi uses the linefeed to separate lines in your file.

Adjusting the Screen

If a transmission error or the output from a program causes your screen to become cluttered, you
can refresh the screen by pressing ctrl-L. Vi clears the screen and reprints the text you were
working on.

The z command is used to position specific lines on the screen. z[RETURN] places the current
line at the top of the window, z. places the current line in the middle of the window, and z—
places the current line at the bottom of the window. If a number argument # is specified after z but
before the modifier, then the window size is changed to be n lines long after z has executed. If n is
specified before z, then z places line number #n (instead of the current line) at the top, middle, or
bottom of the new screen. For example, z10- places the current line at the bottom of a 10-line

31-

window. Also, 6z. places line number 6 at the middle of the screen, leaving the window size
unchanged.

Printing Your File Status

If you are editing a file and lose track of where you are in the file, or if you forget the name of the
file you are editing, the ctrl-G command can help you. In response to the ctrl-G command, i
prints the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and how much of the buffer you have already edited (expressed as a percentage). The
:f command is a synonym for ctrl-G.

-32-

Appendix A: Character Functions

This appendix gives the 1 meanings associated with each character in the ASCII character set. The
characters are presented in the following order: control characters, special characters, digits,
upper-case characters, and lower-case characters. For each character, its meaning is given as a
command and during an insert, as appropriate. (Note that the control key (CTRL) is represented by
" in the following list).

@

A
‘B

C
‘D

E
F

G

“H (BS)

[(TAB)

“J (LF)
K

"L (FF)

- "M (CR)

‘N
O
P
Q

‘R

S
T

Not a command character. If it is typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 characters are
saved from the last insert; if more characters were inserted, the mechanism is not
available. A "(« cannot be part of the file text due to the editor’s implementation.
Unused.

Moves backward one page. A preceding integer specifies the number of pages to move
over. Two lines of continuity are kept if possible.

Unused.

As a command, scrolls forward one half of a page. A preceding integer specifies the
number of logical lines to scroll for each command. This integer is remembered for all
future "D and "U commands. During an insert, "D backtabs over autoindent white
space inserted at the beginning of a line. This white space cannot be backspaced over.
Exposes one more line at the bottom of the screen, leaving the cursor at its present
position, if possible.

Moves forward one page. A preceding integer specifies the number of pages to move
over. Two lines of continuity are kept if possible.

Prints the name of the current file, whether it has been modified, the current line
number, the number of lines in the file, and how much of the buffer you have already
edited (expressed as a percentage).

Same as left arrow (see h). During an insert, eliminates the last input character,
backing over it but not erasing it. The character remains so you can see what you typed
if you wish to type something only slightly different.

Not a command character. When inserted, it prints as some number of spaces. When
the cursor is at a tab character, it rests at the last of the spaces which represent the tab.
The spacing of tabstops is controlled by the tabstop option.

Same as down arrow (see j).

Unused.

Causes the screen to be cleared and redrawn.

Advances to the next line, at the first printable character on the line. If preceded by an
integer, vi advances that many lines. During an insert, "M causes the insert to continue
onto another line.

Same as down arrow (see j).

Unused.

Same as up arrow (see k).

Not a command character. In input mode, “Q quote the next character, the same as "V,
except that some teletype drivers do not allow "Q to be seen by 1. Use "V instead.
Redraws the current screen, eliminating logical lines not corresponding to physical lines
(lines with only a single (@« character on them). On hardcopy terminals in open mode,
"R retypes the current line.

Unused.

Not a command character. During an insert, with autoindent set and at the beginning
of the line, inserts shiftwidth white space.

-33-

U

VvV

"W

X

Y

"Z
"[(ESC)

%

Scrolls up one page. A preceding integer specifies the number of lines to scroll. This
integer is remembered for all future "D and "U commands. On a dumb terminal, "U will
clear the screen and redraw it further back in the file.

Not a command character. In input mode, "V quotes the next character so that it is
possible to insert non-printing and special characters into the file, and include special
characters in macros, abbreviations, etc.

Not a command character. During an insert, "W mimics a b command, thus deleting all
inserted characters from the current cursor location to the beginning of the previous
word. The deleted characters remain on display. (See "H).

Unused.

Exposes one more line at the top of the screen, leaving the cursor in its present position,
if possible.

Unused.

Cancels a partially formed command, such as a z command when no following
character has yet been given. It also terminates inputs on the last line (read by
commands such as :, /, and ?), and ends insertions of new text into the buffer. If an
ESC is given when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus press ESC if you don’t know what is happening until the editor
rings the bell.

Unused.

Searches for the word which immediately follows the cursor. It is equivalent to typing
the ex command :ta, followed by that word, followed by RETURN.

(Control-"), equivalent to the ex command :e #, which returns you to the previous
position in the last edited file, or edits a file you specified if you got a "No write since
last change" diagnostic, and you don’t want to type the file name again. (In the latter
case, you will have to do a :w before ** will work. If you don’t want to write the file,
then do a:e! # instead).

Unused.

Same as right arrow (see l).

An operator which processes lines from the buffer with reformatting commands.
Follow ! with the object to be processed, and then the command name terminated by
RETURN. Doubling ! and preceding it by a count causes count lines to be filtered;
otherwise the count is passed on to the object after the !. Thus, 2!}sort, followed by
RETURN, sorts the next two paragraphs by running them through the sort command.
To read a file or the output of a command into the buffer use :r. To simply execute a
command use :!.

Precedes a named buffer specification. There are named buffers 1 — 9 used for saving
deleted text, and named buffers a — z into which text can be placed.

The macro character which, when followed by a number, will substitute for a function
key on terminals without function keys. In input mode, if this is your erase character, it
will delete the last character you typed in input mode, and must be preceded with a \
to insert it, since it normally backs over the last input character you gave.

Moves to the end of the current line. If you execute :set list, then the end of each line
will be shown by printing a $ after the end of the displayed text in the line. Given a
count, $ advances to the end of the line that many lines from the current line (i.e. 3$
advances to the end of the line two lines after the current line).

Moves to the parenthesis or brace which balances the parenthesis or brace at the
current cursor position.

A synonym for the ex command, :&.

When followed by another ', returns to the previous context at the beginning of a line.
The previous context is set whenever the current line is moved in a non-relative way.
When followed by a letter a — z, returns to the line which was marked with this letter

-34-

@

Mmoo o >

o

with the m command, at the first non-space character in the line. When used with an
operator, such as d, the operation takes place over complete lines.

Moves to the beginning of a sentence, or to the beginning of a LISP s-expression if the
lisp option is set. A sentence ends ata ., !, or ? which is followed by either the end of a
line or by two spaces. Any number of closing),], ', and ' characters may appear after
the ., !, or ?, and before the spaces or end of line. Sentences also begin at paragraph
and section boundaries. A count advances that many sentences.

Advances to the beginning of a sentence. A count repeats the effect. See the
description of (above for a description of a sentence.

Unused.

Same as carriage-return when used as a command.

Reverses the last f, F, t, or T command, looking the other way in the current line. A
count repeats the search.

Moves to the previous line at the first non-white-space character. This is the inverse of
+ and RETURN. If the line moved to is not on the screen, the screen is scrolled, or
cleared and redrawn if this is not possible. If a large amount of scrolling would be
required, the screen is also cleared and redrawn, with the current line at the center.
Repeats the last command which changed the v:i buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit . to delete more
words/lines. Given a count, it passes it on to the command being repeated.

Used to initiate a forward search for a pattern. If you press / accidentally, you can use
BACKSPACE to return to your previous position.

Moves to the first character on the current line. Also used to form numbers after an
initial 1 - 9.

Used to form numeric arguments to commands.

A prefix to a set of commands for file and option manipulation and escapes to the
system. Input is given on the bottom line and terminated with RETURN, and the
command is then executed. You can return to your previous position by pressing DEL
or RUB if you press : accidentally.

Repeats the last single character search using f, F, t, or T. A count iterates the basic
scan.

An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, < affects lines when repeated, as in <<. Counts cause < to act on more
than one line.

Re-indents a line for LISP, as though the line was typed in with the lisp and autoindent
options set. ‘

An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects lines
when repeated, as in >>. A count causes > to act on more than one line.

Initiates a backwards search for a pattern. If you press / accidentally, you can use
BACKSPACE to return to your previous position.

A macro character. If this is your kill character, you must escape it with a \ to type it in
during input mode, as it normally backs over the input you have given on the current
line.

Appends at the end of a line, a synonym for $a.

Backs up one word, where words are composed of non-blank sequences, placing the
cursor at the beginning of the word. A count repeats the command.

Changes the rest of the text on the current line; a synonym for c$.

Deletes the rest of the text on the current line; a synonym for d$.

Moves forward to the end of a word. A count repeats the command.

Finds a single following character, backwards in the current line. A count repeats the
search.

Moves to the line number given as a previous argument, or the end of the file if no

-35.

— /9] TOZX - X

s<cC

>

2z

preceding argument is given. The screen is redrawn with the new current line in the
center if necessary.

Homes the cursor to the top line of the screen. If a count is given, the cursor is moved
to the count-th line on the screen. In all cases, the cursor is moved to the first non-
white-space character on the line.

Inserts at the beginning of a line; a synonym for "i.

Joins lines together, supplying appropriate white space: one space between words, two
spaces after a ., and no spaces at all if the first character of the line to be appended is).
A count causes that many lines to be joined rather than the default two.

Unused.

Movies the cursor to the first non-white-space character of the last line on the screen. If
a count is given, the cursor is moved to the first non-white-space character of the
count-th line from the bottom.

Moves the cursor to the middle line on the screen, at tiie first non-space character.
Scans for the next match of the last pattern given to / or ?, but in the opposite direction.
Opens a new line above the current line and inputs text there, up to an ESC.

Puts the last deleted text back before or above the cursor. The text goes back as whole
lines above the cursor if it was deleted as whole lines. Otherwise, the text is inserted
before the current location of the cursor. May be preceded by a buffer name to retrieve
the contents of that buffer.

Quits from 21 and goes to ex mode. In this mode, whole lines form commands, ending
with RETURN. All: commands can be given; the editor supplies the : prompt.

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with ESC.

Changes whole lines; a synonym for cc. A count substitutes for that many lines. The
lines are saved in numeric buffers, and erased on the screen before the substitution
begins.

Takes a single following letter, locates the character before the cursor in the current line,
and places the cursor just after that character. A count repeats the command that many
times.

Restores the current line to its state before you started changing it.

Unused.

Moves forward to the beginning of a word in the current line, where words are defined
as sequences of non-space characters. A count repeats the command.

Deletes the character before the cursor. A count repeats the command, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed butffer, to be put back by a later p or
P. A count yanks that many lines. Can be preceded by a buffer name to put text into
that buffer.

Exits the editor (same as :x). If any changes have been made, the buffer is written out
to the current file, and the editor terminates.

Backs up to the previous section boundary, which is marked by a particular macro
invocation (the names of which are specified in the sections option), or by "L
(formfeed). Lines beginning with { also stop [[, making it useful for looking backwards
through C programs. If the lisp option is set, [[also stops at each (it finds at the
beginning of aline.

Unused.

Moves forward to a section boundary (see description of [[).

Moves to the first non-space character on the current line.

(Underscore) Unused.

When followed by a ~, returns to the previous context. The previous context is set
whenever the current line is moved in a non-relative way. When followed by a lower-

-36-

= .0 " O 3

x g <

case letter, returns to the position which was marked with this letter with an m
command. When used with an operator such as d, the operation takes place from the
exact marked place to the current position within the line; if you use ’, the operation
takes place over complete lines.

Appends arbitrary text after the current cursor position. The insert can continue onto
multiple lines by using RETURN within the insert. A count causes the inserted text to be
replicated, but only if the inserted text is all on one line. The insertion terminates with
ESC.

Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the command.

An operator which changes the following object, replacing it with the following input
text up to an ESC. If more than part of a single line is affected, the text which is being
changed is saved in the numeric named buffers. If only part of the current line is
affected, then the last character to be changed away is marked with a $. A count
causes that many objects to be changed.

An operator which deletes the following object. If more than part of a line is affected,
the text is saved in the numeric buffers. A count causes that many objects to be
affected.

Advances to the end of the next word. A count repeats the command.

Finds the first instance of the next character following the cursor on the current line. A
count repeats the command.

Unused.

Left arrow. Moves the cursor one character to the left. Like the other arrow keys,
either h, the left arrow key, or one of the synonyms ("H) has the same effect. A count
repeats the command.

Inserts text before the cursor. Otherwise, i is like a.

Down arrow. Moves the cursor down one line in the same column. If the position does
not exist, v1 comes as close as possible to the same column. Synonyms include J
(linefeed) and "N.

Up arrow. Moves the cursor up one line in the same column. Synonym is "P.

Right arrow. Moves the cursor one character to the right. SPACE is a synonym.

Marks the current position of the cursor in the mark register which is specified by the
next character (a — z). Return to this position or use with an operator by preceding the
mark letter with ~or .

Repeats the last search specified with / or ?.

Opens a new line below the current line. Otherwise, o is like O.

Puts text after/below the cursor. Otherwise, p is like P.

Unused.

Replaces the single character marked by the cursor with a single character you type.
The new character may be a RETURN (this is the easiest way to split lines). A count n
replaces the next n characters with the character you type.

Changes the single character marked by the cursor to the text which follows, up to an
ESC. Given a count, that many characters are replaced by the text. The last character
to be changed is marked with a $.

Advances the cursor up to the character before the next character typed on the current
line. A count repeats the command.

Undoes the last change made to the current buffer. If repeated, will alternate between
these two states. It is thus its own inverse. When used after an insert which inserted
text on more than one line, the lines are saved in the numeric buffers.

Unused. '

Advances to the beginning of the next word. A count repeats the command.

Deletes the single character marked by the cursor. A count causes that many

-37-

*? (DEL)

characters to be deleted. Works only on the current line.

An operator which yanks the following object into the unnamed temporary buffer. If
preceded by a buffer name, the text is placed in that buffer also. Text can be recovered
with a later p or P.

Redraws the screen with the current line placed as specified by the following character:
RETURN specifies the top of the screen, . specifies the center of the screen, and —
specifies the bottom of the screen. A count may be given after z and before the
following character to specify the new window size for the redraw. A count before z
gives the number of the line to place in the center of the screen instead of the current
line.

Moves to the beginning of the preceding paragraph. A paragraph begins at a macro
invocation defined in the paragraphs option, and at the beginning of a section. A
paragraph also starts at a blank line.

Places the cursor on the character in the column specified by the count.

Advances to the beginning of the next paragraph. See { for the definition of a
paragraph.

Unused.

Interrupts the editor, returning it to command mode.

-38-

Appendix B: Example .exrc File

The following is a reproduction of the default .exrc file shipped with your system. It is useful as an
example of how it can be used to set up certain 22 and ex parameters prior to your editing session.
These contents can be changed at any time should the need arise to customize the editors for a
particular application. Also, note that the line numbers in the following listing do not appear in the
file, but are included to clarify the explanatory material that follows.

1 set autoindent autowrite showmatch wrapmargin=0 report=1
2 map "W :set wrapmargin=8'M

3 map Z “lsort -b’M

4 map "X {!}sort -b"M

5 map ‘[h 1G

6 map ‘[H 1G

7 map [F G

8 map [V "B

9 map ‘[U °F

10 map [T °Yk
11 map [S CEj
12 map [Q i
13 map [P x
14 map [L O
15 map M dd
16 map [K D
17 map "[J DjdG$
18 map! [A "V
19 map! [D “H
20 map! [C "V
21 map! (B "M
22 map! [L "M
23 map! "[Q
24 map! [R [

In the above, the ~ character indicates that the CTRL (control) key is held down while the next
following key is pressed. The *[sequence is the escape sequence, and is equivalent to the ESC key
(if any) on your terminal. Here is a line-by-line description of the contents of the default .exrc file:

LINE ACTION

1 enables the autoindent, autowrite, and showmatch options, sets the wrapmargin option
to 0, and sets the report option to one line.

2 maps the control-W sequence to the ex command:

:set wrapmargin =8

The control-M at the end of the sequence is a carriage-return. This is entered into the .exrc
file by pressing control-V followed by a carriage-return.

3 maps the control-Z sequence to a shell escape sequence. This sequence pipes the data from
the beginning of the current line to the end of the current paragraph into the sorz(1)
command.

-39.-

~N O

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

maps the control-X sequence to a shell escape sequence. This sequence pipes the data
from the beginning of the current paragraph to the end of the current paragraph into the
sort(1) command.

maps escape-h, a sequence often transmitted by the HOME key, to the editor command 1G
(go to line one of the file). This enables you to use the HOME key while editing in 1.
performs the same function as line 5.

maps escape-F, the sequence transmitted by the HOME DOWN key, to the editor command
G (go to the last line of the file). This enables you to use the HOME DOWN key while editing
in v1.

maps escape-V, the sequence transmitted by the PREV PAGE key, to the editor command
"B (go back one page). This enables you to use the PREV PAGE key while editing.

maps escape-U, the sequence transmitted by the NEXT PAGE key, to the editor command
“F (go forward one page).

maps escape-T, the sequence transmitted by the ROLL DOWN key, to the editor commands
“Yk (scroll up one line; move cursor down one line).

maps escape-S, the sequence transmitted by the ROLL UP key, to the editor commands "Ej
(scroll up one line; move cursor down one line).

maps escape-Q, the sequence transmitted by the INSERT CHAR key, to the editor command
i (start insert mode).

maps escape-P, the sequence transmitted by the DELETE CHAR key, to the editor command
X (delete current character).

maps escape-L, the sequence transmitted by the INSERT LINE key, to the editor command
O (create a new line above the current line, and start insert mode).

maps escape-M, the sequence transmitted by the DELETE LINE key, to the editor command
dd (delete current line).

maps escape-K, the sequence transmitted by the CLR LINE key, to the editor command D
(delete to the end of the current line).

maps escape-d, the sequence transmitted by the CLR DISPLAY key, to the editor commands
DjdG$ (delete to end of line, go down one line, delete to end of file).

maps escape-A, the sequence transmitted by the UP ARROW key, to the sequence "V
(causes cursor to move one space to the right) when it is used in insert mode (map! causes a
key to be defined in insert mode only).

maps escape-D, the sequence transmitted by the LEFT ARROW key, to the sequence "H
(causes cursor to move one space to the left) when it is used in insert mode.

maps escape-C, the sequence transmitted by the RIGHT ARROW key, to the sequence "V
(causes cursor to move one space to the right) when it is used in insert mode.

maps escape-B, the sequence transmitted by the DOWN ARROW key, to the sequence "M
(carriage-return) when it is used in insert mode.

maps escape-L, the sequence transmitted by the INS LINE key, to the sequence "M
(carriage-return) when it is used in insert mode. This makes the INS LINE key have the same
definition in o1 as it has in REMOTE mode.

maps escape-Q, the sequence often transmitted by the INS CHAR key, to the escape key
during insert mode.

maps escape-R, the sequence often transmitted by the INS CHAR key, to the escape key
during insert mode.

-40-

Table of Contents

The Ed Editor

Creatingan Ordinary File ... 1
Getting Acquainted with Ed...........ccociiii 2
INVOKING Edooiii e 2
Prompting ...ooooiei e 3
EXTOr M@SSAGESo 3
Moving Around inthe Fileooiiiiiiiii e 3
LINe POINtOISooviiiiiiii i e 4
Pointer to the Current Lineccccoiiiiiiiiiieii e 4

Pointer to the Last Line.............ooooiiiiiiiiiie e 6

Setting Pointers to LINeSoooviiiiiiiiiiiiii e 7
Searching fOr StHNGS.cooi ittt 8
Forward Searchesccouviiiiiiiii e 8
Backward Searches.............c..ooiiiiiiiiiiiiiic e 9
Repeatinga Searchcooooiiiiiii e 9

Line Number Arithmetic with Searchescccccooviiiiiii 9

Using Metacharacters With Searches...............ccccoooiiiiiiiiiiiiie 10

Adding, Deleting, and Correcting TeXt..........ccccviiiiiiiiiiiiiiiii e 12
Printing LINESovviiiiiiiiio e 13
APPENAING TEXL.....oiiiiiiiieiiii ittt 14
INSEIHNG T@XL.....c.uiiiiiiiei et 15
Deleting TOXE......uiiiiiiiiiie e 15
Undoing COMMANGSuvviiiiiiiiiiii e e et e e e e e e e 16
ChanginG LINeSooiiiiiiiiioiie e 16
MOVING LLIN@S.....coiiiiiiiiii e 17
COPYING LINEGS ... e 18
Modifying Text Within @ Lineccccoooiiiiiiiiii e 19
Making Commands Effective Globally................cccccooviiiiiiiiiiii e, 22
Joining Lines TOGEthercooiiiiiiiiiiii e 25
SPltNG LINES APAITeiiiiiiiiieiiie ettt 25
Special EA Commands...............ooiiiiiiiiii i 26
Finding the Currently Remembered File Name...............ccccccoiiiiiiiiiiii, 26
Writing Buffer Text Ontoa File............coooiiiiiiiiii e 27
Reading Files Into the Buffer...............coooiiiiiiii e 28
Editing Other Flescoovviiiiiiiiioiicec e 29
Silencing the Character COUNLSccoiiiiiiiiiiiiiiiie et 30
Encrypting and Decrypting TeXt...........ccoviiiiiiiiiiiiiiiiie e 31

The Shell INterface.........coiuviiiiiiii e e 33
Escaping to the Shell Temporarilycoooiiiiiiiiiiiiii e 33
Exiting the EIOrooiii e 34
Miscellaneous TOPICScoooiuiiiiiiiiii e 35
Interrupting the EItOr.............cocvviiiiiiiic e 35

EQItiNG SCHPLS.eooiiiiiiiiei e 35

The EdEditor

Ed is an interactive, line-oriented text editor. Its purpose is to enable you to create ordinary files,
and to add to, delete, or modify the text in those files.

Creatingan OrdinaryFile

The remainder of this chapter contains several examples illustrating ed commands. These ex-
amples are more instructive if you try each of them on some text of your own. Thus, create an or-
dinary file by typing in the commands and text shown below in bold (portions of the example text
shown below are taken from A User Guide to the UNIX System, by Rebecca Thomas and Jean
Yates).

$ ed testfile

Ptestfile

a

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where

ed keeps a copy of the file you are editing. Itis\ \ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

to the file.

461

q
$

Be sure to type in the text exactly as it is shown above. The mistakes are corrected later in the ex-
amples.

Getting Acquainted with Ed

Material Covered:

ed command; invokes ed without a file name argument;

ed file command; invokes ed with a file name argument;

P command; enables/disables ed prompt (%);

h command, explains the last question mark given by ed;

H command; enables/disables verbose error messages; explains the last question

mark given by ed, and all future question marks.

Invoking Ed

Ed can be invoked in one of two ways. The first is to simply type ed, followed by [RETURN]. For
example,

$ed

invokes ed without a file name argument. When invoking ed this way, you must specify the file
you want to edit with a separate command. It is more common to invoke ed by typing

$ ed filename

where filename is the name of the file you want to edit. This combines the two separate com-
mands mentioned above into a single command.

Ed responds differently depending on whether or not the file already exists. Try creating a new file
called newfile:

$ ed newfile
?newfile

Ed responds with "?newfile", which means that ed cannot find that file in your working directory.
This is to be expected, since the file does not yet exist. Ed is now waiting for your commands to
create and edit newfile.

If the file already exists, ed reads its contents into a buffer named /tmp/e#, where # is the number
of the process running ed. Ed then displays a count of the characters contained in that file. You
have a file called testfile in your working directory. You are probably still in ed from the previous
example, so type q[RETURN] to exit ed, then edit testfile by typing

$ ed testfile
461

Ed tells you that testfile currently contains 461 characters. Do not exit ed this time, but leave it in
its current state. The examples that follow pick up where you left off above.

Prompting

One of the most noticeable features of ed is its lack of prompts. When you type in a command,
ed attempts to execute it, and, if successful, ed returns silently to you for another command. If
an error is encountered, or a command cannot be executed for some reason, ed prints a question
mark, and then silently waits for you to figure out the problem.

Many people find this silence desirable, but for those who do not, there are commands that make ed
more friendly. The P command causes ed to prompt you with an asterisk (#). Executing the P
command again turns off the prompt. By default, ed’s prompt is disabled.

Error Messages

As mentioned above, ed’s default error message is a single question mark (?). As you gain ex-
perience with ed, these question marks become easier to interpret, but for the beginning user, it can
be somewhat difficult to discover the problem. Fortunately, ed provides commands to eliminate this
vagueness. The h command explains the last question mark printed by ed. The H command also
explains the last question mark, but also causes a more descriptive explanation of the problem to
replace all future question marks. Executing the H command again disables the descriptive ex-
planation.

Moving AroundintheFile

Material Covered:

(dot) pointer to the current line;
= operator; yields line number;

P command; prints specific lines;

+n operator; increments dot by n; defaultn = 1;
—n operator; decrements dot by n; defaultn = 1;
$ pointer to the last line of the file;

R shorthand notation for the range "1,$";
; shorthand notation for the range "..$";

k command; creates a pointer to a specific line;

[command; initiates a forward search for the string of characters enclosed
between the slashes;

2.7 command; initiates a backward search for the string of characters enclosed

between the question marks;
metacharacter; matches any single character when used in a search string;

\\7 metacharacter; strips away the special meaning (if any) of the character n
when used in a search string;
$ metacharacter; when specified as the last character in a search string,

matches the string at the end of a line;
metacharacter; when specified as the first character in a search string,
matches the string at the beginning of a line;

n¥ metacharacter; matches zero or more adjacent occurrences of the character
n when used in a search string;
[...] metacharacters; match any one of the characters enclosed between them

when used in a search string;
metacharacter; stands for "any character except" when specified as the first
character inside [...], causing the braces to match any one character not en-

.3-

closed between them;
No... \\} metacharacters; match a specified number of occurrences of the single
character enclosed between them when used in a search string.

Your position in a file is always relative to a specific line. Ed does not provide commands that
move you from character to character. There are five commands that enable you to reference
specific lines in a file.

Line Pointers
Of the five commands mentioned above, three are pointers to specific lines in the file.

Pointer to the Current Line

Ed maintains a line pointer called dot (.), which always points to the current line in the file.
The current line is defined to be the last line affected by an ed command. The following table
lists some of the more common ed operations, and the value of dot after these operations have been
performed:

After this operation... Dot points to...

Invoking ed Last line of file.

Search for pattern Closest line containing pattern, relative to
your previous position.

Delete last line of file New last line of file.

Delete line(s) other than last line Line following last deleted.

Appending, inserting, or changing text Last line entered.

Read from a file Last line read in.

Wirite to a file Your previous position; dot is not changed.

Substitute new text for old text Last line affected by subsitution.

Execute a shell command Your previous position; dot is not changed.

Set a line pointer Your previous position; dot is not changed.

Any unsuccessful or erroneous command Your previous position; dot is not changed.

Dot can be used as a line number argument for ed commands. Assuming you are still editing test-
file, type

-p
to the file.

The p command prints specific lines from the ed buffer, thus .p prints the current line. Note that
dot is automatically set to the last line of the file when you first begin editing. You can also specify a
range of line numbers with dot. For example,

=3,.p

important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the last four lines of the file. Has the value of dotchanged? No, because the last line affec-
ted by the p command was still the last line of the file. Now try

~5,.-3p

your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. [tis\ "\ #.
important to note that ed always makes changes to the

which prints the fifth line before dot to the third line before dot. What is dot’s value now? Find out
by typing

-p
important to note that ed always makes changes to the

Dot is now set to the last line affected by the previous p command.

Note that dot need not be typed when specifying ranges. Whenever ed sees the + and —
operators, ed assumes that they refer to the current value of dot. For example,

-2,+2p

your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. Itis\ "\ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

prints the range of lines from two lines before dot to two lines after dot. Dot is set to the last line
printed.

The + and — operators can be used independently to increment or decrement dot by one,
respectively. For example, the command

-, + P

important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the range of lines from dot decremented by two to dot incremented by one. Also, you can
step forward through your text, one line at a time, with a series of plus signs, or step backward with
a series of minus signs. Note that [RETURN] is equivalent to +. [RETURN] increments dot by one
and prints the resulting current line.

The p command provides one other shortcut. Whenever a line number, or one or more operators
pointing to a line, appear on a line by themselves, the p command is assumed. Some examples are:

8
original file are not changed until you write the changes

ed keeps a copy of the file you are editing. Itis\\ ¥.
++
copy of yourrr file in the buffer. The contents of the

If a range appears on a line by itself, only the last line of the range is printed. For example,

- —+
original file are not changed until you write the changes

You can find out the current value of dot by typing

8
which tells you that dot is currently pointing to the eighth line of the file.

Note that you cannot manually set the value of dot. A command like

.=6
?

produces an error. Ed reserves to itself the right to change the value of dot, although you may
indirectly change dot’s value through ed commands.

Pointer to the Last Line
Ed also maintains a pointer, called $, which always points to the last line of the file. For example,

$
to the file.

prints the last line of the file. $ can also be used in ranges, as in

1’$_6p

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds

which prints the first three lines of testfile. Also,

+4,$p

copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the last three lines of the file. Note that the + and — operators can apply to $ only when $ is
explicitly typed. By themselves, + and — always apply to dot.

You can find out the value of $ by typing

$=
9

which tells you that the ninth line is the last line in the file. Note that = does not change the value of
dot.

The value of $ changes only when a command creates a new last line. $ is not user-settable.

Because the "1,$" and ".,$" ranges are so commonly used when editing with ed, ed provides a
shorthand notation for each range. The comma can be used in place of "1,$", so that ,p prints all
the lines in the file. Also, the semicolon means the same thing as ".,$", so ;p prints all the lines
from the current line to the end of the file.

Setting Pointers to Lines

The k command creates a pointer to a specific line, so you can reference that line without
knowing its line number. The pointer name must be a lower-case letter. Creating a pointer does
not change the value of dot. For example,

to the file.
—4ka
—2kb

to the file.

creates two pointers, a and b, which point to the fourth line before dot, and the second line be-
fore dot, respectively. Note that dot does not change.

To reference a line with a line pointer you have created, precede its letter name with a single
quote (7), asin

“a,”bp

ed keeps a copy of the file you are editing. Itis\ "\ #.
important to note that ed always makes changes to the
copy of yourrr file in the-buffer. The contents of the

which prints all lines from the line pointed to by a to the line pointed to by b.

A pointer set by the k command always points to the same line, even if that line’s line number
changes. Thus, the k command does not create pointers to specific line numbers, but to specific
lines.

Once a pointer has been created, the only way to delete it is to delete the line it points to. Oth-
erwise, that pointer continues to exist until your editing session is over. You can, however, re-
assign a pointer to another line, as in

ap
ed keeps a copy of the file you are editing. Itis\ "\ ¥.
2ka
~ap
texct entry mode. In command mode, the edytor interprets

which re-assigns a to the second line of the file.
You can find out the current line number of a pointer by typing

a=
2
b=
7

which tells you that a is currently pointing to line number 2, and b is currently pointing to line num-
ber 7.

Searching for Strings
Ed provides a facility which enables you to search for a particular string of characters in your file.
A string of characters searched for in this manner is called a pattern.

Forward Searches

To initiate a forward search, enclose the pattern between two slashes, and press [RETURN]. For
example,

/unput/
your unput as a command. In text entry mode, ed adds

searches for the pattern "unput"”. If the pattern is found, dot is set to the line containing the pattern,
and the line is printed on your screen. An unsuccessful search looks like this:

/bob/
?

The value of dot is unchanged.

Ed searches forward in your file, starting with the line following the current line. If your pattern
has not been found by the time ed gets to the end of the file, ed wraps around to the beginning of
your file and continues looking. Ed searches until the pattern is found, or until ed reaches the line
prior to the starting line of the search.

Backward Searches

You can search backwards in your file by enclosing the pattern between two question marks.
For example,

?file?
to the file.

searches backwards from the current line, looking for a line containing the string "file". Ed
found the pattern after wrapping around to the end of the file.

Repeating a Search

Ed remembers the last pattern that was matched. Thus, if you want to repeat a search, you simply
type two slashes or question marks. The pattern itself need not be re-typed. For example,

?file?

original file are not changed until you write the changes
??

copy of yourrr file in the buffer. The contents of the

??

ed keeps a copy of the file you are editing. Itis\ "\ ¥.

initiates a backward search for the pattern "file", then finds the next two instances of "file". Note
that a repeated search need not be in the same direction as the initial search. For example,

/buffer/

copy of yourrr file in the buffer. The contents of the
??

your input to the text located in a special buffer where

initiates a forward search for "buffer", then repeats the search backwards.

Line Number Arithmetic with Searches

The + and — operators can be used with searches to position yourself at specific lines. For ex-
ample,

/note/ +
copy of yourrr file in the buffer. The contents of the

searches forward for a line containing "note", and positions you on the following line. Also,

?text?

your input to the text located in a special buffer where
72—

The ed editor operates in two modes: command mode and
searches backwards for the second line containing “text", and positions you two lines before it.

Note that, although searches have wrap-around capabilities, the + and — operators do not. Thus,
an error results if a + or — operator attempts to increment or decrement dot to values greater than
$, or less than one.

The = operator can be used with forward and backward searches to find the line number refer-
red to by the search, as in

/unput/ =
3

Note that dot is not set to the line containing "unput” in the last example, because = does not
change the value of dot.

Using Metacharacters With Searches

There are several characters that have special meaning within the context of a search. These
characters, consistingof ., ¥, [,], ", $, \., \{, and \}, are called metacharacters.

The . metacharacter matches any single character except a new-line. Thus, the search

/.nput/

your unput as a command. In text entry mode, ed adds
1
your input to the text located in a special buffer where

first matches "unput" in line 3, and then, when repeated, matches "input" in line 4.

The * metacharacter matches zero or more occurrences of the character immediately preceding it.
For example,

/your */
ed keeps a copy of the file you are editing. [tis\ "\ *.

matches "you" in the line displayed. Ed stops searching when it finds the first string of charac-
ters that matches the given pattern. Thus, “your" or "yourrr" can also be matched with the
above search, depending on the current line when the search is initiated.

The last example shows that, even though an "r" is explicitly typed in /your#/, there need not
be an "r" in the string of characters that are actually matched. This is because zero occurrences
of the preceding character is considered a legal match when the asterisk is used. Keeping this in
mind, consider the search /r#/. Is it useful? No, because zero or more r’s can be found on every

-10-

line in the file. If you want to search for one or more r's, type /rr#/.

The \{ and \\} metacharacters enable you to control how many occurrences of a particular
character are matched. For example, the search /g\ {4\\}/ finds a string of four g’s. The integer
between the two metacharacters specifies how many instances of the preceding character are to be
matched. Note that this construct matches exactly four g’s, not four or more. Thus, "yourrr" can
be matched by

L ANERNT

copy of yourrr file in the buffer. The contents of the

If you put a comma after the integer, the \\{ ... \\} construct matches at least the specified num-
ber of occurrences. For example, /33.3\ {4,\\}/ matches "33.", followed by at least four 3’s.
Finally, two integers separated by a comma can be placed in the \{ ... \\} construct to define an in-
clusive range which specifies the number of occurrences to match. An example is

I-13\{2,5\ }1-/, which matches —~1331-, —13331—, —-133331-, or -1333331-.

The [and] metacharacters match any one of the characters enclosed between them. For ex-
ample, /h[iau]t/ matches "hit", "hat", or "hut". A range of characters can be specified by typing
the beginning and ending character of the range, separated by a minus sign. An example is
/[a—zA-Z][0-9][0-9]*/, which searches for a single upper- or lower-case letter, followed by one or
more digits (the * applies only to the [...] construct immediately preceding it). The minus sign
loses its special meaning within the [...] construct if it occurs at the beginning (after an initial *, if
any), or at the end of the character list.

If the first character after the left bracket is a circumflex (%), then the [...] construct matches any
single character not included between the brackets. For example, /["0-9]["0-9]%/ matches one or
more occurrences of any character except a digit. The " has special meaning in the [...] construct
only when it is the first character after the left bracket.

Note that the metacharacters ., ¥, [, \, $, \{, and \\} have no special meaning when listed within
the [...] construct. Also, the right bracket does not terminate the construct if it is the first character
listed after the left bracket (after an initial *, if any). For example, /[]la—r]/ searches for a single
right bracket, or a lower-case letter in the range a through r.

The " is also special when typed at the beginning of a string within a search, and requires that the
string be matched at the beginning of a line. For example,

/"ed/
ed keeps a copy of the file you are editing. Itis\ \ *.

searches for a line beginning with "ed". The " is special only when typed at the beginning of a
search string. If " is embedded in a pattern, or if it is the only character in the pattern, it is matched
literally.

The various ways to use " can be illustrated with /*"[*a-z]/. The first * means "match the following
pattern at the beginning of a line". The second " is literal; it has no special meaning. The third *, as
the first character inside the brackets, means "match any single character except®. Thus, this
search looks for a *, followed by any single character except alower-case letter, occurring at the
beginning of a line.

-11-

The $ metacharacter is special when typed at the end of a string within a search, and requires that
the string be matched at the end of a line. For example,

/and$/
The ed editor operates in two modes: command mode and

searches for a line ending with "and". Also, /"TEST$/ searches for a line consisting of the single
word "TEST".

The $ is special only when typed at the end of a search string. When embedded in the string,
the $ is matched literally.

The \\ (backslash) metacharacter is used to strip away the special meaning associated with a
metacharacter. This is useful when you need to match a metacharacter literally in a string. To strip
away the special meaning of a metacharacter, simply precede it with \\. For example,

INNNNN* NS/
ed keeps a copy of the file you are editing. Itis\ "\ *.

matches the string " \\\\ #." atthe end of a line. Note that \ itself must also be preceded with
\\ to be matched literally. If you attempt to match the string without using the \ (as in
N\ *.$/), ed interprets the search to mean "search for zero or more occurrences of a backslash

followed by any single character at the end of a line", which is obviously not what you want.
Also,

ffile\..$/
to the file.

matches "file." at the end of aline. If you are ever in doubt about whether or not a character has
special meaning, it is safe to precede it with \{ just to be sure. If the character has no special
meaning, then the \ is ignored.

Adding, Deleting, and Correcting Text

Material Covered:

command; list specific lines;

command; print lines with line numbers;

command; append lines of text after current line;

command; insert lines of text before current line;

command; delete lines of text;

command; change lines of text;

command; move lines of text;

command; copy lines of text;

command; join lines together;

command; substitute new text for old text;

command; global; perform command list on selected lines of entire file;
command; interactive global; on each line selected in the entire file, perform a
user-specified command;

command; global; perform command list on all lines not selected in the entire

ommu.ﬁaom—oms—

<

.12-

file;

Y command; interactive global; on each line not selected in the entire file, perform
one user-specified command;

u command; reverse the most recent modification to the buffer;

N\(... \) metacharacters; used in left-hand side of s command to break up pattern into
pieces that can be referenced individually;

% metacharacter; used in right-hand side of s command to duplicate right-hand
side of most recent s command;
& metacharacter; used in right-hand side of s command to duplicate left-hand side

of same s command.

Printing Lines

Besides p, there are two other commands that enable you to print specific lines in the ed buffer.
The 1 (list) command is similar to p, but gives you slightly more information. The 1 command
enables you to see characters that are normally invisible. Backspace and tab are represented by
overstrikes, and other invisible characters, such as bell, vertical tab, and formfeed, are
represented by \\nnn, where nnn is the octal equivalent of the character in the ASCII character set.

The 1 command also breaks long lines into smaller lines of 72 characters each. Thus, if you have
lines of text in a file that are longer than 72 characters, 1 breaks them down into 72-character
lines so they can fit on yourscreen. A \ is printed at the end of each line that is broken.

Print out the contents of testfile with the 1 command, and look for any invisible characters:

A

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where

ed keeps a copy of the file you are editing. Itis\ \ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

to the file.

If you did not make any typing errors that could produce invisible characters, the output looks as
shown above. Note that a carriage return and a line feed are not considered invisible, since the
placement of text on your screen indicates their presence.

Since some invisible characters can cause strange terminal behavior, you almost always want to
eliminate them from your text. This is where the I command can save you time and effort by mak-
ing these characters visible.

The n (number) command also enables you to print specific lines, but differs from p and | in that

each line is preceded by its line number and a tab character. Try printing out the contents of
testfile with n:

13-

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entty mode, ed adds
your input to the text located in a special buffer where

ed keeps a copy of the file you are editing. Itis\ \ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

to the file.

OO WN -y

Note that the line numbers and tab characters are display enhancements only, and do not
become part of the text in the ed buffer.

The p command is the most common command used to print lines in the ed buffer. Keep in
mind, however, that wherever it is legal to use the p command, the | and n commands may also be
used. Theland n commands leave dot pointing to the last line printed.

Appending Text

The a (append) command appends one or more lines of text after the specified line. By default,
the lines of text are added after line dot. Dot is left pointing to the last line appended. After the a
command is typed, everything you enter is appended to the specified line. To stop appending text,
type a period at the beginning of a line, all by itself. This terminates the a command, and re-
turns you to command mode. For example,

Oa

The ed editor is a simple, easy-to-use text editor.

1,3p

The ed editor is a simple, easy-to-use text editor.

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

The a command is one of the few ed commands that accepts O as a line number, enabling you to
add text to the beginning of the file, as above. Note that the period at the beginning of an empty
line terminates the appended text. The following example can easily occur by forgetting to type
the terminating period (do not try this example!):

$a

It is always comforting to know that your original
file remains intact until you are sure you want to
change it.

1,$p

$-4,%p

H |

$_7’$p

original file are not changed until you write the changes
to the file.

It is always comforting to know that your original

-14-

file remains intact until you are sure you want to
change it.

1,%p

$-4.%p

i1

This poor user typed in the three lines of text that he wanted to append to the end of his file, and
then attempted to print out the results. Ed, however, was still appending text, and calmly added
the user’s commands to the file. The user finally realized his mistake, typed the solitary period,
and printed out the last eight lines of his file, three of which were the three commands he attemp-
ted to execute. The moral of the story is: REMEMBER THE PERIOD!

If you type the a command and then change your mind, simply type a solitary period on the next
line. This terminates the a command and adds no lines to the file. Dot is left pointing to the line
you specified when you typed the a command.

Inserting Text

The i (insert) command is similar to the a command, except that the added text is inserted be-
fore the specified line. By default, the added text is inserted before line dot. Dot is left pointing to
the last line inserted. Like the a command, the inserted text is terminated by a solitary period at
the beginning of a line. For example,

2i
Also, it takes very little time to learn.

1,3p

The ed editor is a simple, easy-to-use text editor.

Also, it takes very little time to learn.

The ed editor operates in two modes: command mode and

If you type the i command and then change your mind, simply type a solitary period on the next
line. This terminates the i command and adds no lines to the file. Dot is left pointing to the line
you specified when you typed the i command.

Deleting Text

The d (delete) command deletes one or more lines of text from the file. If no lines are specified, line
dot is deleted. After a deletion, dot is left pointing to the line following the last line deleted. If the
last line of the file is deleted, dot points to the new last line. For example,

$d
a
on top of the original contents of your file.

$_1’$p
original file are not changed until you write the changes
on top of the original contents of your file.

-15-

The current last line is deleted, and a new one is typed in its place using the a command. The a
command is used because dot is left pointing at the new last line after the deletion. Thus, itis con-
venient to append after dot to create the desired last line.

The d command can delete several lines at once by specifying a range of lines, as follows:

3,6d

P

The ed editor is a simple, easy-to-use text editor.

Also, it takes very little time to learn.

ed keeps a copy of the file you are editing. It is\\\ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

This shows that testfile currently contains 7 lines of text, since lines 3 through 6 have been deleted.

Undoing Commands

The u (undo) command reverses the effect of the most recent command that made a change to
any of the text in the buffer. Use it now to restore the four lines you just deleted:

u
P

The ed editor is a simple, easy-to-use text editor.

Also, it takes very little time to learn.

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where

ed keeps a copy of the file you are editing. Itis\ "\ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

on top of the original contents of your file.

Note that the u command reverses only the most recent command that modified text. Commands
that have been succeeded with one or more other commands cannot be reversed with u. Besides
d, ualso reverses the a, i, ¢, g, G, v, V, j, m, r, s, and t commands. Dot is left pointing to the last line
affected by the reversal.

Changing Lines

The ¢ (change) command replaces one or more lines with the text you specify. The ¢ command
is a combination of the d and i commands, in that the specified lines are deleted, and the text you
type in is inserted in their place. Like the a and i commands, the replacement text is termina-
ted with a solitary period at the beginning of a line. Dot is left pointing to the last line of repla-
cement text typed in. For example,

-16-

1,2c
The ed editor is easy to learn and easy to use.

1,3p

The ed editor is easy to learn and easy to use.

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

In this example, the first two lines are deleted and replaced with a single line. Of course, you can
also replace a single line with several lines, as in

2c

It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt exrror messages.

The ed editor operates in two modes: command mode and
1,/texct/p

The ed editor is easy to learn and easy to use.

It was designed to enable the user to get his work done

with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the

curt error messages.

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

which replaces the second line of the file with five lines.

If you type the ¢ command and then change your mind, simply type a solitary period at the be-
ginning of the next line. This terminates the ¢ command with no changes made, and leaves dot
pointing to the first line you specified when you typed the ¢ command.

MovingLines
The m (move) command moves one or more lines to a new position in the file. By default, m
moves line dot. Dot is left pointing to the last line moved. For example,

2,5m$

P

The ed editor is easy to learn and easy to use.

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where

ed keeps a copy of the file you are editing. Itis\ "\ ¥.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes

on top of the original contents of your file.

It was designed to enable the user to get his work done

-17-

with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

which moves lines two through five to the end of the file. Note that m appends the moved lines
after the specified line. Thus, line number zero is legal as a destination line number, enabling you
to move lines to the beginning of the file. The destination line cannot be one of the lines being
moved.

Note that the m command, as well as any command that accepts line number arguments, accepts
pattern searches and line pointers (set by the k command) to reference specific lines. For example,
2,/user/+ + +m$ has the same effect as 2,5m$ in the previous example. Using pattern
searches and line pointers becomes more valuable when you edit large files.

Copying Lines
The t command copies one or more lines and places the copy at a specified location in the file. By
default, t copies line dot. Dot is left pointing to the last line copied, in its new location. For example,

1t$

—4,$-1t1

P

The ed editor is easy to learn and easy to use.

It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. [tis™\ "\ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

The ed editor is easy to learn and easy to use.

This example copied the first line and moved it to the end of the file. Then, the four lines before
the new last line were copied and moved after the first line of the file, producing the text shown
above.

The only difference between the m and t commands is that t copies the indicated lines and
moves them to a new position, leaving the original lines intact. The m command moves the
specified lines from their original position to a new position. No new text is created.

-18-

Modifying Text Within a Line

The s (substitute) command is the only ed command that enables you to change one or more
characters within a line, without having to type the line over again. By default, s modifies text
on line dot. Dot is left pointing to the last line in which a modification has occurred.

The s command enables you to correct the mistakes in your file. Of course, you could use the d
and i commands and re-type each line containing an error, but that is more work than is neces-
sary. For example,

/texct/

texct entry mode. In command mode, the edytor interprets
s/texct/text/p

text entry mode. In command mode, the edytor interprets

All s command lines are of the form
s/replace this/with this/

Thus, the above example first searches for the line containing the string "texct", and then replaces
"texct" with "text" on thatline. Note that the p command is appended to the s command to
verify that the intended substitution took place.

Note that the pattern search in the previous example can be included on the s command line.
The s command accepts one line number, to perform a specific replacement on a single line, or two
line numbers separated by a comma, to perform a replacement on a range of lines. For example,

/unput/s//input/p
your input as a command. In text entry mode, ed adds

which searches for the pattern "unput" and replaces it with "input". Another feature is illus-
trated in the above example. Note that the replace this portion of the s command is empty. This is
because the replace this portion of the s command is a pattern search, just like those discussed un-
der Searching for Patterns. You recall from that discussion that ed remembers the last pattern you
searched for. Thus, since "unput" is the last pattern you searched for, it need not be re-typed
in the s command. Ed remembers the pattern and supplies it for you.

Metacharacters can be used in the s command. The replace this portion recognizes all the meta-
characters discussed under Searching for Patterns, plus two additional metacharacters, \ (and \).
These two metacharacters are used to break up the replace this portion into pieces that can be
referenced individually. For example, in line 1 of the file, suppose you want to interchange the
phrases "easy to learn" and "easy to use". The obvious way to do that is to re-type the entire
line, but there is an easier way:

1s/\ (ea.*rn\) and \ (ea.*se\)/\ 2 and \ 1/p
The ed editor is easy to use and easy to learn.

Although it is hard to read, it is handy to be able to define pieces of patterns and rearrange them
in the with this portion. In the above example, the entire replace this portion matches "easy to
learn and easy to use". The first \\(... \\) matches "easy to learn", and the second \(... \)
matches "easy to use". These pieces are referred to in the with this portion with \ n, where n re-
fers to the n-th occurrence of a \ (... \\) pair in the replace this portion, counting from the left.

-19-

Thus, the with this portion interchanges the two pieces defined in the replace this portion.
Here is another example. Suppose you have a file containing information like

Alderson, Mike
Anderson, David
Belford, John

Donally, Kyle

and you want to rearrange each name so that the first name is first, followed by the last name.
Re-typing each line could take forever, but the task is easy using the \ (and \|) metacharacters.
The command

SIN(CT*N), NC*N)/N2 NV

does the job. The first \(... \\) pair matches any number of characters except a comma —
the last name. The comma-space between each last and first name is explicitly matched. Finally,
the second \((... \\) pair matches any number of any characters — the first name. These pieces
are rearranged in the with this portion.

Note that the two portions of an s command do not have to be delimited by slashes. You can use
any character except a space or a new-line, as long as you use the same character throughout the
command line. For example, the previous example can be made a bit more clear by using a capital
o as the delimiter:

SON(1#N), N(*N\)ON\2 \10
You must be careful to choose a delimiter that is not already used in the s command line.

The with this portion of the s command recognizes only the \ metacharacter, plus two new meta-
characters, & and %. All other metacharacters previously discussed are interpreted literally in this
portion.

The & metacharacter is recognized only in the with this portion, and stands for whatever is
matched by the pattern in the replace this portion. For example,

2s/done/& quickly/p
It was designed to enable the user to get his work done quickly

The & stands for whatever pattern is matched in the replace this portion, so it stands for "done*

in this example. Thus, this example replaces "done" with "done quickly". As another example,
first add the line "ed is great" to the end of the file:

$a

ed is great

-20-

Now use & to create two sentences out of one:

$s/.%/&? &!/p
ed is great? ed is great!

The & must be preceded by \ to be interpreted literally.

The % is also recognized only in the with this portion, and stands for whatever was specified in the
with this portion of the last s command that was executed. For example,

1s/ed editor/ed text editor/p

The ed text editor is easy to use and easy to learn.

/ed editor/s//%/p

The ed text editor operates in two modes: command mode and
11811 %/p

The ed text editor is easy to learn and easy to use.

In the first s command, the with this portion has to be explicitly typed out. Thereafter, a % is
the only character appearing in the with this portion, and stands for "ed text editor". Since the
replacement text is the same for the remaining s commands, it does not need to be re-typed. Note
also how ed’s pattern memory is utilized, especially in the last s command above.

The % is special only when it is the only character in the with this portion. If % is included in a
string of one or more characters, it is no longer special. You can also precede the % with a \\ to
cause literal interpretation.

Now that you know all about the s command, you can go through and fix the remaining errors in
your file. Here are some suggestions:

/edy/s//edi/p
text entry mode. In command mode, the editor interprets

+3s/NNN NN\ #\.//p
ed keeps a copy of the file you are editing. Itis

/yourrr/s//your/p
copy of your file in the buffer. The contents of the

Note that, in the second s command above, the with this portion is empty. This is legal, and is
often used when you want to replace erroneous text with nothing at all.

Finally, note that the s command operates only on the first occurrence of a pattern on a specified
line. Thus, if there are two or more patterns on a line that are identical to the pattern specified in
the replace this portion, only the first occurrence is actually replaced. The s command must be re-
executed once for each additional pattern that is to be replaced on the same line.

The s command must replace text on at least one of the addressed lines, or ed prints a question
mark.

-21-

Making Commands Effective Globally

The g (global) command is used to execute one or more commands on several lines. The lines
on which the commands are to be executed are usually specified by pattern searches. The form of
a g command is

x,yg/pattern/command list

where x and y are optional line number arguments, pattern is the pattern to be searched for, and
command list is the list of one or more commands to be executed on each line containing pattern. If x
and y are missing, "1,$" is assumed.

The g command first marks every line containing the specified pattern. Then, dot is successively
set to each marked line, and the list of commands is executed. If only one command is speci-
fied, it is placed on the same line as the g command. If several commands are specified, the first
command is placed on the same line as the g command, and all other commands are placed on the
following lines. Every line of a multi-ine command list is terminated by \ except the last.
Ending a line with \ in this way quotes the following new-line, and hides it from the g command,
thus preventing the new-line from terminating the g command prematurely. If no commands are
specified, the p command is assumed. Any command except g, G, v, and V can be used in the
command list.

The g command can be used as a modifier for the s command, enabling the s command to re-
place all the occurrences of a particular pattern on a line, instead of just the first. For example,

$s/ed/The & editor/gp
The ed editor is great? The ed editor is great!

which replaces both instances of "ed" on the last line with "The ed editor". The g command is
often used with the s command in this way to avoid having to repeat the s command once for
every additional pattern you want to change on a line. Note that, if the p command is omitted, the
line is not printed after the substitution is done.

The g command becomes more powerful when you specify more than one command to be ex-
ecuted. For example, suppose that you want to change every instance of the string "ed" to “ED",
and then mark every line on which the substitution occurs by preceding the line with a series of as-
terisks. This can be done by typing

g/ed/s//ED/g\\
iN

** ¥

P

** ¥

The ED text EDitor is easy to use and easy to learn.
* %K

It was designED to enable the user to get his work done quickly

with the least possible amount of interference from the
* %%

EDitor. This is evident in the lack of prompts and the
curt error messages.
* %%

The ED text EDitor operates in two modes: command mode and

-22.

*E %
text entry mode. In command mode, the EDitor interprets
*E %

your input as a command. In text entry mode, ED adds

* % ¥

your input to the text locatED in a special buffer where

* % %

ED keeps a copy of the file you are EDiting. ltis

* %%

important to note that ED always makes changes to the

copy of your file in the buffer. The contents of the
* % ¥

original file are not changED until you write the changes
on top of the original contents of your file.

* %%

It was designED to enable the user to get his work done
with the least possible amount of interference from the
* % %

EDitor. This is evident in the lack of prompts and the
curt error messages.

* % %

The ED text EDitor is easy to learn and easy to use.

* % ¥*

The ED EDitor is great? The ED EDitor is great!

This example, though not very useful, illustrates how the g command can be used to perform a
script of ed commands on specific lines. Note that the g command accepts as input all lines up to
and including the first line that does not end in \\. Thus, the first line that is not part of the g com-
mand above is the line containing ,p. Note also that the period that usually must be typed to
end the i command is not necessary if the line containing the period is also the last line of the g
command. Thus, the period, along with the line on which it is typed, can be omitted.

A g command can be included in a g command list only when itis part of another command, as il-
lustrated in the last example. It is illegal to try to nest command lists by specifying g command lists
within other command lists.

The v command is identical to the g command, except that the command list is executed on all
lines that do not contain the specified pattern.

If the results of a g command are not exactly what you had in mind, you can use the u command
to restore your text to its previous state.

u
P

The ed text editor is easy to use and easy to learn.

It was designed to enable the user to get his work done quickly
with the least possible amount of interference from the

editor. This is evident in the lack of prompts and the

curt error messages.

The ed text editor operates in two modes: command mode and
text entry mode. In command mode, the editor interprets

.23-

your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. Itis
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

The ed text editor is easy to learn and easy to use.

The ed editor is great? The ed editor is great!

Note that the u command also reverses itself, so you can follow one u command with another to
get back text that you have already reversed.

The G (interactive global) command is used when you have one command to execute on each line
containing a specific pattern, but this command varies depending on the line. The g or vcommand
is not appropriate in this case, since the command list for these commands is constant.

The G command is invoked in the form
x,yG/pattern/

where x and y are line number arguments (if not specified, "1,$" is assumed), and pattern is the
particular pattern you want to match in a line. G first marks every line containing a string that
matches pattern. Then, dot is successively set to each marked line, and the resulting current line is
printed on your screen. After the current line is printed, G waits for you to enter any single com-
mand, and the command you enter is executed. You may specify any command except the a, i,
¢, g, G, v, or Vcommands. Note that your command can address and affect lines other than the
current line. A new-line is interpreted to be a null command. The G command can be terminated
prematurely by pressing [DEL] or [BREAK]; otherwise it terminates normally when all lines in the
file have been scanned for a string matching pattern.

Here is an example:

G/editor/

The ed text editor is easy to use and easy to learn.
s/easy/simple/

editor. This is evident in the lack of prompts and the

The ed text editor operates in two modes: command mode and
s/The ed text editor/ed/

text entry mode. In command mode, the editor interprets

s/the editor/ed/

editor. This is evident in the lack of prompts and the

The ed text editor is easy to learn and easy to use.
s/easy to use/simple to use/

The ed editor is great? The ed editor is great!
s/["?]%? //

-24.

In this example, G looks for all the lines containing "editor", and executes the commands you
specify. Note that a new-line was typed on each of the two blank lines above, causing no command
to be executed.

The & character can be typed in place of a command. This causes the most recent command
executed within the current invocation of G to be re-executed.

The V command is identical to the G command, except that the lines that are marked and printed
are those that do not contain a string that matches pattern.

The u command can be used to reverse all the effects of a G command.

Joining Lines Together

The j (join) command joins two or more lines together. By default, j appends line dot+ 1 to line
dot, but you can specify a range of lines to be joined. Note that j does not add any white space
between the joined lines. Dot is left pointing to the line created after the specified lines have been
joined.

As an example, try joining the last two lines of the file together. First, however, you need to
shorten line $-1 so the joined line fits on one line of the screen. Do this by typing

$—1s/easy to learn and //p
The ed text editor is simple to use.

Now join the last two lines together with

ip
The ed text editor is simple to use.The ed editor is great!
s/\\.T/. T/p

The ed text editor is simple to use. The ed editor is great!

The last s command in this example is used to insert two spaces between the two joined lines.
Note that the p command can be appended to the j command to verify that the two lines have
been joined.

Splitting Lines Apart

The s command can be used to split a single line into two separate lines. This is done by inserting
a new-line between the characters where the split is desired. To do this, the new-line must be pre-
ceded by \ to avoid terminating the s command prematurely. Thus, you can split the two lines
that were joined in the previous example into two separate lines with the s command (you cannot
use the u command to split the last line into two lines now — why?). Do this by typing the fol-
lowing:

s/\.. T.T/p
The ed text editor is simple to use.The ed editor is great!

s/\..T/. X
T/

$_19$p

.25-

The ed text editor is simple to use.
The ed editor is great!

The first s command gets rid of the extra white space in the sentence (note that the u command
could have been used here). The second s command inserts a new-line between the period and
the capital T, thus creating two separate lines. Note that, although the second s command takes up
two lines, it is actually one command.

Special Ed Commands

Material Covered:

f command, set/print currently remembered file name;

; delimiter; set dot’s value;

w command; writer characters in buffer to file, or read standard output from a shell
command;

r command; read contents of file into buffer, or read standard output from shell com-
mand,;

e E commands; begin editing another file, or read standard output from shell com-
mand;

- option; silences character counts generated by w, r, e, E, or an invocation of ed,

X command,; initiates text encryption mode;

—X option; initiates text encryption mode.

Finding the Currently Remembered File Name
If you invoke ed with a file name argument, ed remembers that file name until your editing session
is over, or until the file name is changed as a result of commands that are discussed later in this sec-

tion. The f (file name) command enables you to find out at any time what file name ed is remem-
bering. For example,

f
testfile

which tells you that ed is remembering testfile as the current file name.

The f command also enables you to change the current file name. For example, to change the
current file name to file2, type

f file2
file2

Ed echoes "file2" so you can verify that the current file is set correctly. Now change the file name
back to the current file, or errors could result in later operations:

f testfile
testfile

-26-

If no file name is specified when ed is invoked, then ed initially remembers no current file name.
Thus, this file name must be supplied when using the w, r, e, or E commands (discussed later), or it
can be set with the f command.

Writing Buffer Text Onto a File

The w (write) command writes the text contained in the ed buffer onto the specified file, or onto
the currently remembered file if no file name is specified. If the write is successful, a count of the
number of characters written is printed. Dot is left unchanged.

The w command accepts zero, one, or two line number arguments specifying the line or lines to
be written. If no line number arguments are given, "1,$" is assumed.

Try the w command by typing

w

986

The previous contents of testfile have now been overwritten by the contents of the ed bulffer.
The number 986 tells you that the write was successful, and that 986 characters were written.

Note that the ed buffer is not affected by the w command. Its contents are still the same. In
fact, all of the line pointers (dot, $, and any that you have set) are still pointing to the same lines as
they were prior to the w command. Thus, you may write out the contents of the ed buffer several
times during an edit session without disturbing the current state of the editor. It is a good idea to
write often, especially if you have been editing a long time and have made many changes.
Depending on how often you write, you can be sure that a current version of your file resides in

the relative safety of the file system, should a system crash or a power failure eat up whatever data is
in the ed buffer.

You can tell ed to write to a file other than the currently remembered file by typing

"ed/;/"on/w filel
561

This command writes the range of lines from the line beginning with "ed" to the line beginning
with “on" onto the file filel. If filel exists, its previous contents are completely overwritten by the
specified lines of text. If filel does not exist, it is created with a file mode of 666 (modified by the
current value of the file creation mask, umask) and the specified text is written on it. Again, the
number returned indicates that ed was successful in writing 561 characters on the file.

The semicolon that appears in the last example is new. If a comma had been used to separate the
two searches, ed would have started the search for a line beginning with "ed" from the current line.
After finding that line, however, ed would return to the current line to search for the line beginning
with "on". The value of dot would be reset only after finding the line beginning with "on", with
the result that a single line address is passed to the w command, causing a single line to be written.
The semicolon causes the value of dot to be set to the line beginning with "ed", so that the
second search is carried out with respect to this line, instead of the previous current line. Thus, two
addresses are processed, and the correct lines are written. The semicolon can always be used in
place of a comma to force dot to be set at that point in the construct.

.27-

You can also run shell commands with the w command. The shell command is introduced with !.
For example,

w lls
filel
testfile
986

runs s and also writes the current contents of the buffer to the currently remembered file. Note
that the output from Is appears on your screen, but is not added to the actual contents of the buf-
fer (the listing that appears on your screen may be longer than that shown above). After the listing is
produced, ed writes the contents of your buffer to the currently remembered file, and reports the
number of characters written. Note that there is no way to run a shell command and write to a
file other than the currently remembered file with the w command. Note also that ! is illegal if the
editor was invoked from a restricted shell (see rsh(1) in the HP-UX Reference manual).

The currently remembered file name is set to the file name you specify with the w command, if the
specified file name is the first file name mentioned since ed was invoked. Otherwise, the currently
remembered file name is not affected. A shell command introduced with ! is never remembered
as the current file name.

Reading Files Into the Buffer

The r (read) command reads the contents of a specified file, or the currently remembered file, if
no file is specified, into the ed buffer after the specified line. If no line is specified, the contents are
read in after line $. Dot is set to the last line read in.

To illustrate the r command, first create a new file called readfile:

w

986

e readfile

?readfile

a .
Here is some text that is to be read in.
It is used to illustrate the r command.

w
81

You now have a file in your working directory called readfile, containing the text shown above.
Now begin editing testfile again, and read in the contents of readfile:

e testfile

986

Or readfile

81

1,5p

Here is some text that is to be read in.

It is used to illustrate the r command.

The ed text editor is simple to use and easy to learn.

-28-

[t was designed to enable the user to get his work done quickly
with the least possible amount of interference from the

This example reads the contents of readfile into testfile after line O, or at the beginning of the file.
Ed responds by printing the number of characters that were read in. The first five lines of the buf-
fer are printed to verify that the text is placed correctly.

You can also run shell commands with the r command. The shell command is introduced with !.
For example,

/curt/r !date

29

6,9p

editor. This is evident in the lack of prompts and the
curt error messages.

Thudul 22 10:59:13 MDT 1982

ed operates in two modes: command mode and

which reads the output from date into testfile after the line containing the pattern "curt". The
lines surrounding the insertion are printed to verify that the read executed correctly. Note that,
unlike the w command, the output from the command becomes part of the text in the buffer.
Also, the number of characters read from the command is printed on your screen, but the actual
output appears only in the buffer. Note that the ! isillegal if the editor was invoked from a res-
tricted shell.

The currently remembered file name is reset to the file name you specify with the r command, if
the specified file name is the first file name mentioned since ed was invoked. Otherwise, the
currently remembered file name is not affected. A shell command introduced by ! is never
remembered as the current file name.

An r command can be reversed with the u command. Try this now:

u

6,8p

editor. This is evident in the lack of prompts and the
curt error messages.

ed operates in two modes: command mode and

Note that the date and time are no longer present in the buffer.

Editing Other Files

The e (edit) command discards the entire contents of the ed buffer and reads in the specified file. If
no file is specified, then the currently remembered file is read. Dot is set to the last line of the buf-
fer.

If you have made any changes to the buffer since the last w command, ed requires that you pre-
cede the e command with a w command to save the contents of the buffer. If you are sure that you
want to discard the contents of the buffer, you can invoke the e command a second time. This
forces ed to discard the buffer contents and read in the new file. For example,

-29.

e filel
?

e filel
561

The question mark after the first invocation of e is to warn you that you have made changes to the
current contents of the buffer, and that these changes will be lost if you do not write them on test-
file. The second invocation of e tells ed "1 don’t care! Do it anyway!". Ed complies by discarding
the current buffer and reading in the contents of filel. Ed reports to you the number of characters
read.

If you are sure that you want to discard the current contents of the buffer without saving them,
you can use the E (Edit) command. E is similar to e, except that ed does not check to see if any
changes have been made to the current buffer. Thus, you do not have to type the e command
twice.

If you have made several changes to the buffer, and then decide that you do not like what you
have done, you can start editing the same file all over again by typing e or E with no specified file
name. This causes the contents of the currently remembered file to be read into the buffer, des-
troying the previous contents. Of course, if you have written some of the changes you have
made to the current file already, there is no quick and easy way to reverse them.

If you specify a file name with the e or E command, that file name becomes the new current file,
and is remembered for future use with w, r, e, or E.

You can also execute shell commands with the e or E command. The shell command is introduced
with !. For example,

E lls
23

P

filel
readfile
testfile

This example runs the shell command Is, and places its output in the ed buffer, destroying
whatever was in the buffer previously. The number of characters placed in the buffer is printed for
you. The actual list of files and the number of characters read into the buffer may be different than
those shown above. Note that ! is illegal if the editor was invoked from a restricted shell A shell
command is never remembered as the current file name.

Silencing the Character Counts

If the character counts that ed produces (when ed is invoked, or with the w, r, e, or E commands)
are annoying or are not helpful, they can be silenced with the — option. Itis specified when ed is in-
voked, as in

$ ed — filename

-30-

The — option also suppresses the question mark generated by the e and q commands whenever
they are not preceded by a w command (the q command is discussed in the next section).

Encrypting and Decrypting Text

Ed provides a feature that enables you to encrypt and decrypt the text in a file so that other users
are not able to read your files. The text is encrypted and decrypted by means of the DES encryp-
tion algorithm (see crypi(1) in the HP-UX Reference manual). To encrypt your text, you must sup-
ply a key, which is simply a string of one or more characters. The key determines the manner in
which the DES algorithm encrypts your text. You must remember this key.

The X (encrypt) command enables you to encrypt the text inthe ed buffer. The X command ac-
cepts no arguments, but prompts you to enter a key. The echoing on your screen is disabled while
you enter the key, so there is no visible record of it. For example,

E filel

561

P

editor. Thisis evident in the lack of prompts and the
curt error messages.

The ed text editor operates in two modes: command mode and
text entry mode. In command mode, ed interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. Itis
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents.of your file.

X

Enter file encryption key:

w

561

q
$

This example edits filel, and prints out its contents. After the X command is invoked, you are
prompted to enter a key. This key can be any string of characters, but whatever it is, do not forget
your key! When the w command is invoked, the text in the buffer is encrypted according to the key
you entered and written on filel. The q command, which is discussed later, exits the editor and
leaves you at the shell level. Now execute the cat command to try to print out the contents of filel:

$ cat filel
(garbage)

-31-

You probably got a screenful of garbage. If your bell beeped a couple of times, this is because
the text is encrypted into invisible characters as well as visible characters. There is no practical
way for another user to tell what is actually contained in your file.

To edit a file containing encrypted text, use the —x option when ed is invoked:

$ ed —x filel

Enter file encryption key:
561

Y

editor. This is evident in the lack of prompts and the
curt error messages.

The ed text editor operates in two modes: command mode and
text entry mode. In command mode, ed interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. Itis
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

The —x option is the same as the X command, except that it is used when you invoke ed. When
prompted for the key, you must enter the same key that you entered when the text was encrypted.
Otherwise, the text in that file is inaccessible. This is why it is so important that you remember
your key. After the key is entered, the text in filel is decrypted and read into the ed buffer. You
may now edit the text normally.

When you are done editing, if you invoke the w command to write your changes to the file, the
text is encrypted according to your key. If you want to change your key or disable encryption alto-
gether, you must use the X command. When you are prompted for your key, either type in your
new key to change the encryption key, or simply type a new-line. If you type a new-line, a null
key is entered, and encryption is disabled. Disable encryption now by typing

X
Enter file encryption key: (new-line)
w

561
The contents of filel are now in a readable form.

Note that, when encryption is enabled, all subsequent e, r, and w commands encrypt the text in the
ed buffer.

As a general rule, text encryption is seldom needed by the typical user except when extreme secu-
rity is required. The HP-UX file system has its own security system which is sufficient for most
security needs. Using text encryption often and/or on several files at once is a dangerous prac-
tice, since you must remember your key to successfully edit these files. You should therefore ex-
ercise caution when using the text encryption feature.

.32-

The Shell Interface

Material Covered:

! command; execute shell command;
q command; exit editor after checking for changes to the buffer;
Q command; exit editor without checking buffer for changes.

Escapingto the Shell Temporarily

The ! command enables you to execute a shell command from within the ed editor. To do this,
type a !, followed by the shell command. For example,

(date;who) >whofile
!

executes the date and who commands, and redirects their output into the file whofile. Note that ed
returns a ! to tell you when the command has completed execution.

If the character % appears anywhere in the shell command, it is replaced with the currently remem-
bered file name. Thus,

Isort % >sortedfile

sort filel >sortedfile
!

sorts (in reverse alphabetical order) the current contents of filel. Note that the current con-
tents of filel, not the ed buffer, are sorted. The sorted version of filel is redirected to the file sor-
tedfile. The /O redirection in the last two examples is used so that the output from these shell
commands does not clutter up your screen while you are editing. Note that, if the output from a
shell command is printed on your screen, the output does not become part of the ed buffer unless !
is used with the r, e, or E commands.

A final feature of the ! command is the ability to re-execute the last shell command you exe-
cuted with !, without having to re-type the entire command. This is done by typing two exclama-
tion points, as in

"
!

which re-executes the last shell command executed within the ed editor. Thus, sort % >sorted-
file is re-executed.

If a shell command contains any metacharacters, ed echoes the command line back to you with all
metacharacters expanded (this is what ed did in the first sort example above). For example,

Icat * >bigfile

cat filel readfile sortedfile testfile whofile >bigfile
!

.33-

which echoes the expanded command line, then executes the command.

Exiting the Editor

The q (quit) command exits the editor. The contents of the buffer are not automatically written on
the current file. If you have made any changes to the buffer since the last time you invoked the
w command, ed requires that you issue the w command before exiting with q. Invoking the q
command a second time forces ed to let you exit without writing the contents of the buffer on
the current file. To illustrate this command, first add some text to the buffer, then try to exit without
writing:

$a

Here is some extra text.

“¥.a v.a

A change is made to the buffer by adding a single line of text to the end of the buffer. When the first
q command is typed, ed sees that there have been changes to the buffer since the last write, so ed
issues a question mark. This warns you that there are changes to the text in the buffer that will not
be saved if you exit without writing. The second q command forces ed to discard the contents of
the buffer and exit. Be very sure that this is what you want to do, since you cannot recover the
buffer contents once you have exited. The $ is the default shell prompt, indicating that you
are once more at the shell level (your shell prompt may be different).

If you know that you want to discard the contents of the buffer and exit, but you do not want to
type the q command twice, use the Q command. The Q command is similar to q, but ed does not
check to see if changes have been made to the contents of the buffer.

The — option previously discussed disables the question mark that ed issues when you do not write
before executing an e or q command. You are living dangerously when it is disabled, however.
That question mark has kept many users from accidentally throwing away hours of work. Besides,
the E and Q commands are implemented for those special cases when you want to discard the
contents of the bulffer.

-34-

Miscellaneous Topics

Material Covered:
[DEL],[RUB],[BREAK] keys; any of these keys generates an interrupt signal to ed;

Editing Scripts

Interrupting the Editor

[DEL], [RUB], or [BREAK] causes ed to stop whatever command it is executing and return to
you for a command. Ed tries to restore the state of your file to whatever it was before the com-
mand was issued. This is easily done if ed is interrupted while printing, since dot is not set until
printingis done. Ifed is reading or writing files, or performing substitutions or deletions, however,
the state of the buffer (and the current file) is unpredictable; dot may or may not be changed.
Thus, it is usually safer to let ed finish whatever it is doing, rather than risk finding the buffer or the
current file in some garbled state.

Editing Scripts

An editing script is simply a file containing a list of ed commands. If you have several files on
which a specific list of commands must be executed, it is easier to use an editing script than it is to
invoke ed once for every file, and perform the tasks in each.

Suppose you have several files named filel, file2, ..., and you want to perform some specific
substitutions, additions, and deletions on each. First, create a file (called script, for example),
and put all the ed commands that you want to execute, in the order that they must be executed, in
the file:

$ ed script

?script

a

Or !date

1s/.#$/& DATE OF LAST UPDATE/
$-3,$d

g/Karl Harrison/s//Georgia Mitchell/
w

q

w

87

q

$

The file script now contains ed commands to put the current date and time at the beginning of
each file, append "DATE OF LAST UPDATE" to the date and time, delete the last four lines of
each file, and replace every instance of "Karl Harrison" in each file with "Georgia Mitchell ".
Note that the w and q commands are included so that the script writes the buffer on each file
and exits the editor automatically.

-35.-

To use script, invoke ed as follows:
$ ed — filel <script
$ ed — file2 <script

etc.

The /O redirection character < causes ed, when invoked, to take its input from script. Thus, as
ed is invoked with each file name, that file is edited according to the commands contained in script.

-36-

Table of Contents

Sed - A Non-interactive Text Editor

AADSITACT . ..o 1
INEEOAUCHON ...t et e e e e 2
OVeIall OP@IAtIONoieiiiiiiiiie et e ettt e e e e e ettt e e e e et raeeee e e e e annaaaneaes 2
Command-lne FIagsoooiiiiiiii e 3
Order of Application of Editing Commandsccoociiiiiiiniiiiceec e 3
PatterN-SPACE iiiiiiiiiiieie ittt e et e asreasanaae 3
EXAMIPIES ...t e e e e e 3
ADDRESSES: Selecting Lines for EQitingcooiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 3
Line-number AdAIeSSeS.........coovuuiieiiie e 4
CONLEXE AAAIESSES. ... e et 4
INUMDBET Of AQAIESSES.......cciiiiii et 4
EXAMPIES ..o 5
FUN C T IO S .. e 5
Whole-line Oriented FUNCHONS. ..o 5
EXQMIPLE ..o e 6
SUbStitUte FUNCHON.ooee e 6
EXAMPIES ...t 8
Input-output FUNCHONSooiiiiii e 8
EXAMIPIES ... 9

Multiple Input-line FUNCHONSoiiiiiie e 9
Hold and Get FUNCHONScooooiiiii e 10
EXAMPIE ..o e e e e e 10
Flow-of-Control FUNCHONSoooviii e 10
Miscellaneous FUNCHONSoooiiiiiiiiiiiieee e e 11

ROICIONCE ... e e e e 11

SED — A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXT operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too
complicated to be comfortably typed in interactive mode.

3) To perform multiple ‘global’ editing functions efficiently in one pass
through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

tUNIX is a Trademark of Bell Laboratories.

Introduction
Sed is a non-interactive context editor designed to be especially wseful in three cases:

1) To edit files too large for comfortable interactive editing;

2) To edit any size file when the sequence of editing commands is too complicated to
be comfortably typed in interactive mode;

3) To perform multiple ‘global’ editing functions efficiently in one pass through the
input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
tive and non-interactive operation, considerable changes have been made between ed and sed:;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (‘regular expressions’) they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer’s Manual[l]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:
[address1,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after
s functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command,;
-f: tells sed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com-
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of-
control commands, ¢and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:
The command
2q
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (‘{ }’)(Sec. 3.6.).

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (‘regular expression’) enclosed in slashes (‘/°). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

[San)

2) A circumflex at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ‘$’ at the end of a regular expression matches the null character at the
end of a line.

4) The characters “\n” match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period ‘.” matches any character except the terminal newline of the pattern space.

6) A regular expression followed by an asterisk “*’ matches any number (including 0)
of adjacent occurrences of the regular expression it follows.

7) A string of characters in square brackets ‘[]’ matches any character in the string,
and no others. If, however, the first character of the string is circumflex <™,
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences ‘\(’ and ‘\)’ is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression ‘\d’ means the same string of characters matched by an expression
enclosed in ‘\(" and ‘\)’ earlier in the same pattern. Here dis a single digit; the
string specified is that beginning with the dth occurrence of ‘\(’ counting from
the left. For example, the expression *"\(.*\)\1’ matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., ‘//’) is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (" $.* [1\ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash ‘\’.

For a context address to ‘match’ the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

and the process is repeated.

Two addresses are separated by a comma.

Examples:
/an/ matches lines 1, 3, 4 in our sample text
/an.*an/ matches line 1
/"an/ matches no lines
/./ matches all lines
N./ matches line §
/r*an/ matches lines 1,3, 4 (number = zero!)

/A\(an\).*\1/ matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then- the single character func-
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are nor part of the argument, and should not be typed in actual editing

commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write to the nutput) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

(Da\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

<text> -- append lines

(Di\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character (‘\’) immediately preceding the new-
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out-
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out-
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

(2)c\

The i function behaves identically to the a function, except that <text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

<text> -- change lines

The ¢ function deletes the lines selected by its address(es), and replaces them.
with the lines in <text>. Like a and i/, ¢ must be followed by a newline hid-
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The ¢ command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output, nor one copy per line deleted. As with g and i, <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a ¢ function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the ¢ function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n

a\
XXXX
d

applied to our standard input, produces:
In Xanadu did Kubhla Khan

XXXX

Where Alph, the sacred river, ran

XXXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com-

mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function
One very important function changes parts of lines selected by a context search within the line.

(2)s< pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by <pattern>) with <replace-
ment>. It can best be read:

Substitute for <pattern>, <replacement>

-6-

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con-
text address is that the context address must be delimited by slash (‘/’) charac-
ters; <pattern> may be delimited by any character other than space or new-
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly rhree instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-
acters are special:

& is replaced by the string matched by <pattern>

\d (where dis a single digit) is replaced by the ath substring matched
by parts of <pattern> enclosed in ‘\(and ‘\)’. If nested sub-
strings occur in <pattern>, the dth is determined by counting
opening delimiters (\ ().

As in patterns, special characters may be made literal by
preceding them with backslash (‘\").

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

Examples:

The following command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and,.on the file ‘changes’:

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:
s/[..;2:1/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:
/X/s/an/AN/p

produces (assuming nocopy mode):
In XANadu did Kubhla Khan

and the command:
/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on < filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the w and <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a

8-

functions and the r functions is written to the output in the order that the func-
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples
Assume that the file ‘notel’ has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:
/Kubla/r notel
produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P -- Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

3.5. Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des-
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange
The exchange command interchanges the contents of the pattern space and the
hold area.

Example
The commands

1h

1s/ did.*//
Ix

G

s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don’t
The Don’t command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2){ -- Grouping

The grouping command (> causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the ‘{” or on the next line.

-10-

The group of commands is terminated by a matching ‘}’ standing on a line by
itself.

Groups can be nested.

(0):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and ¢ functions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The ¢ function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a tfunction.

3.7. Miscellaneous Functions

(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(1q -- quit

Reference

The ¢ function causes the current line to be written to the output (f it should
be), any appended or read text to be written, and execution to be terminated.

[11 Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’s Manual. Bell Labora-
tories, 1978.

-11-

-12-

Table of Contents

Awk - A Pattern Scanning And Processing Language
BADSETACT ...

Program SHIUCIUIEoooiiiiiiii e
Records and Fieldscoouiiiiiiiiiiii e
PrINtING ..o
PattOINS ...t
BEGIN @Nd ENDooiiiiiiiiii e
Regular EXPressions.oooiiiiiiiiii oo
Relational EXPressionscoc.uuviiiiiiiiiiiiiiiee e
Pattern RanGesc..oiiiiiiiiii e
ALCHONS ...ttt e e e ettt e e e e e e e e e e e eanaane
Built-in FUNCHONSooiiiii e
Variables, Expressions, and AsSIGNMents...............cc.oovvviiieiieeiiiiic e
Field Variables.............oooiiiiiiiie e
String ConCateNAtioNcuiiiiiiiiii et
AATTAYS .ot e e e e a e e e e e e e e e ettt taneaeas

Awk — A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho
Brian W. Kernighan
Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those patterns. Awk makes certain data selec-
tion and transformation operations easy lo express; for example, the awk pro-
gram

length > 72
prints all input lines whose length exceeds 72 characters; the program
NF % 2 ==
prints all lines with an even number of fields; and the program
{ 81 = log($1); print |

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc-
tions as in patterns, as well as arithmetic and string expressions and assign-
ments, if-else, while, for statements, and multiple output streams.

This report contains a user’s guide, a discussion of the design and imple-
mentation of awk, and some timing statistics.

September 1, 1978

1. Introduction

Awk is a programming language designed
to make many common information retrieval and
text manipulation tasks easy to state and to per-
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the UNIXT program
grep! will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

{print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 ~ /AIBIC/

prints all input lines with an A, B, or C in the
second field. The program

$1

prints all lines in which the first field is different
from the previous first field.

I= prev { print; prev = $1 }

1.1. Usage

The command
[files]

executes the awk commands in the string pro-
gram on the set of named files, or on the stan-
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

awk program

TUNIX is a Trademark of Bell Laboratories.

awk —f pfile [files]

1.2. Program Structure

An awk program is a sequence of state-
ments of the form:

{ action }
{ action }

pattern
pattern

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat-
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat-
terns can be printed several times.) If there is no
pattern for an action, then the action is per-

formed for every input line. A line which
matches no pattern is ignored.
Since patterns and actions are both

optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records’’ ter-
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into “‘‘fields.” Fields are normally
separated by white space — blanks or tabs — but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument —Fc may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains
name of the current input file.

the

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record

number and the number of fields.

Output may be diverted to multiple files;
the program

{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and
the second field on file foo2. The > > notation
can also be used:

print $1 > >"foo"

appends the output to” the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only); for instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits
wide, with two after the decimal point, and $2 as
a 10-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con-
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN {FS = ""}
. rest of program ...

Or the input lines may be counted by
END { print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name ‘‘smith’’. If a line contains ‘‘smith”’
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu-
lar expression forms found in the UNIX text edi-
tor ed! and grep (without back-referencing). In
addition, awk allows parentheses for grouping, |
for alternatives, + for “‘one or more’’, and ? for
‘‘zero or one’’, all as in /lex. Character classes
may be abbreviated: [a—zA—Z0—9] is the set
of all letters and digits. As an example, the awk
program

/[Aalho I[Ww]einberger [Kklernighan/

will print all lines which contain any of the
names ‘‘Aho,” ‘‘Weinberger’’ or ‘‘Kernighan,”
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

VAVEAVZi

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari-
able matches a regular expression (or does not
match it) with the operators ~ and !~. The
program

$1 ~ /[jJlohn/

prints all lines where the first field matches
“john’” or “‘John.”” Notice that this will also
match ‘‘Johnson’’, *‘St. Johnsbury’’, and so on.
To restrict it to exactly [jJlohn, use

$1 ~ /’[jJlohn$/

The caret " refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres-
sion involving the usual relational operators <,
<=, == I|l= >= and >. An example is

$2 > %1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 ==
prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 > = usn

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2
will perform a string comparison.

2.4. Combinations of Patterns
A pattern can be any boolean combination

of patterns, using the operators |l (or), &&
(and), and ! (not). For example,
$1 >= "s" && $1 < "t" && $1 != "smith"

[XPEL)

selects lines where the first field begins with *‘s”’,
but is not ‘‘smith’”. && and || guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The ‘‘pattern’ that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 { ..

In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/
prints all lines between start and stop, while
NR == 100, NR == 200 { .. }

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi-
colons. These action statements can be used to
do a variety of bookkeeping and string manipu-
lating tasks.

3.1. Built-in Functions

Awk provides a ‘‘length’ function to com-
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{print length, $0)

length by itself is a ‘‘pseudo-variable’’ which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

lprint length($0), $0)

The argument may be any expression.

Awk also provides the arithmetic functions
sqgrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func-
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 Il length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. If n is omit-
ted, the substring goes to the end of s. The
function index(s1, s2) returns the position
where the string s2 occurs in s1, or zero if it
does not.

The function sprintf(f, e1, e2, ...) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

sprintf("%8.2f %10Id", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

X =

3.2.
ments

Variables, Expressions, and Assign-

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

X =1
x is clearly a number, while in
x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

X = "3" + "4"

assigns 7 to Xx. Strings which cannot be inter-

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

{s1 += $1; s2 += $2 }
END { print s1, s2 |}

Arithmetic is done internally in floating
point. The arithmetic operators are +, —, *, /,
and % (mod). The C increment + + and decre-

ment — — operators are also available, and so
are the assignment operators +=, —=,6 *=,
/=, and %=. These operators may all be used

in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables — they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:
{ 1 = $2 + $3; print $0 }

or assign a string to a field:

{if (33 > 1000)
$3 = "too big"
print
}

which replaces the third field by ‘‘too big’ when
it is, and in any case prints the record.

Field references may be numerical expres-
sions, as in

{ print $i, $(i+1), $(i+n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if (1 == $2) ..

fields are treated as strings.

Each input line is split into fields automati-
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ..., array[n].
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS is used as the
separator.

3.4. String Concatenation

Strings may be concatenated. For example
length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

L)

prints the two fields separated by ‘* is Vari-
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub-
scripts may have any non-null value, including
non-numeric strings. As an example of a con-
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele-
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro-
gram
{ xINR] = $0 }

END{ ... program ... }
The first action merely records each input line in
the array x.

Array elements may be named by non-
numeric values, which gives awk a capability
rather like the associative memory of Snobol

tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro-
gram

/apple/ | x["apple"]l+ + }

/orange/ | x['orange"]++ |

END { print x["apple"], x["orange"] }

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i =1

while (i <= NF) {
print $i
+ +i

The for statement is also exactly that of C:

for i = 1;i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state-
ment which is suited for accessing the elements
of an associative array:

for (i in array)
statement

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur-
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators

like <, <=, >, >=, == ("‘is equal 10”"), and
!= (“‘not equal 10"); regular expression matches
with the match operators — and !~ the logical
operators |, &&, and ! and of course

parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con-
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan-
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro-
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim-
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general-
ity, fgrep searches for a set of keywords with a
particularly fast algorithm. Sed! provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

Lex? provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of /ex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli-
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con-
venient numeric processing, variables, more gen-
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn’t do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ-
ing or debugging the code. We -have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa-
tions, while probably a bad idea for a general-
purpose programming language, is desirable in a
language that is meant to be used for tiny pro-
grams that may even be composed on the com-
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called ‘‘report generation’ — processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim-
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of wuse is as a data
transformer, converting data from the form pro-
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc;? the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-11/70 of the UNIX
programs wc, grep, egrep, fgrep, sed, lex, and
awk on the following simple tasks:

1. count the number of lines.
2. print all lines containing *‘doug’".

3. print all lines containing ‘‘doug™, ‘‘ken”
or “‘dmr’".

4. print the third field of each line.

print the third and second fields of each
line, in that order.

6. append all lines containing ‘‘doug’,
“ken’’, and “‘dmr’” to files ‘‘jdoug’,
“jken”’, and “‘jdmr’’, respectively.

7. print each line prefixed by “‘line-
number : "’

8. sum the fourth column of a table.

The program wc¢ merely counts words, lines and
characters in its input; we have already men-
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command /s —/; each line has the form

—rw—rw—rw— 1 ava 123 Oct 15 17:05

The total length of this input is 452,960 charac-
ters. Times for lex do not include compile or
load.

As might be expected, awhk is not as fast
as the specialized tools wc, sed, or the programs
in the grep family, but is faster than the more
general tool /ex. In all cases, the tasks were
about as easy to express as awk programs as pro-
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

XXX

References

1.

K. Thompson and D. M. Ritchie, Unix
Programmer’s Manual, Bell Laboratories
(May 1975). Sixth Edition

B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

M. E. Lesk, ‘‘Lex — A Lexical Analyzer
Generator,”” Comp. Sci. Tech. Rep. No.
3<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>