/ HEULETT
/
/7 7
/ ///_/ PACKARD
/
/

HP-CIO 1/0 EIGHT CHANNEL TERMINAL MULTIPLEXER
FIRMUARE INTERNAL MAINTENANCE SPECIFICATION (IMS)

PROJECT YUBA

/,// 271 3 ot

(_ﬂﬂﬂ,ﬂ_«#ﬂ“,—ﬂ~f¢"“‘“"’Mf/

e i

Roseville Networks Division

HEWLETT-PACKARD COMPANY July 14, 1983
8000 Foothills Boulevard Terry Gong
Roseville, California 95678 Greg Dolkas

HEULETT-PACKARD PRIVATE

D

-

-~

/
// HEULETT
e B
/ ///__/ PACKABRD
/
/

HP-CIO I/0 EIGHT CHANNEL TERMINAL MULTIPLEXER
FIRMUARE INTERNAL MAINTENANCE SPECIFICATION (IMS)

PROJECT YUBA

HEULETT-PACKARD COMPANY July 14, 1983
Roseville Networks Division

8000 Foothills Boulevard Terry Gong
Roseville, California 95678 Greg Dolkas

HEWLETT-PACKARD PRIVATE

History

date description

821111 Original document
830510 Complete document

830714 Added debug monitor to the product firmware for trouble
shooting.

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

o ————

|
| INTRODUCTION
|

 —_—
«Q
=X
%
=
rm
=
[

b o e e e e

1.1 Scope

This document describes the internal structure of the firmware that
as implemented for the HP-CIO RS-232-C/RS-422/3 8 channel terminal
multiplexer card. Specially, this document describes:

o all symbols used by the firmware except for
symbols used as labels in the instruction
sequence,

=]

the firmware data structure,

o

the function of each firmware modules, and

o

any other information pertinent to the
understanding of the firmware.

The reader is referred to the following related documents.
o Zilog Z80 CPU Technical Manual.
o Zilog Z80-SI0 Technical Manual.

0 Zilog Z80-CTIC Technical Manual,

=)

C5G I/0 EIGHT CHANNEL TERMINAL MULTIPLEXER,
FIRMUARE EXTERNAL REFERENCE SPECIFICATION (ERS)
by Greg Dolkas (RVD).

o BACKPLANE INTERFACE CIRCUIT (BIC) ERS by Bill Martin,
Roseville Division (RVD).

o

CSG STANDARD 1/0 BACKPLANE by R. B. Haagens, Computer
Systems Division (CSY).

o STANDARD DATACOM DRIVER by Greg Dolkas, Roseville
Division (RVD).

o CSG I/0 STANDARD BACKPLANE PROTOCOL FOR SMART DATACOM

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

CARDS by Greg Dolkas, Roseville Division (RVD).

o GUIDEBOOK TO DATA COMMUNICATIONS, Part No. 5955-1715,
Hewlett-Packard, 1977.

o HP-1000 SERIES, Z80 REAL TIME SCHEDULER, TECHNICAL
SPECIFICATION by Tom Szolyga, June, 1979.

This document assumes the reader has the full understanding of all
the information given in the MUX ERS.

Note that this document does not contain complete documentation of
the self-test. Much of the code was leverage from the HP-CIO ASI
and PSI self-test and from the MEF/L/A PSI self-test. The listing
of the self-test subprogram contains most of the required
documentation.

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

o e e e e
|

| EQUATE & VARIABLE SYMBOLS DICTIONARY

|

__________________ +

CHAPTER 2 |

F o 4

A e +

This chapter defines all the symbols which are not used as a label
or subprogram name. However, all the symbols used in the self-test
is not defined here because it is a self-contained module (that is,
leverage from the ASI and PSI self-test). See the listing for
documentation information.

Each global and local equate and variable symbols are defined in
this chapter. Each symbol will have 3 or 4 attribute descriptions
follow by the usage description.

The attribute descriptions are as follow:
o The first attribute is whether the symbol is globally
defined. The symbol is globally defined if it is used in an
COPY file or if it is given the PUBLIC attribute.
Otherwise, the symbol is locally defined within the module.

o The second attribute is the type of the symbol which
includes:

- code if the symbol'is defined in the CSEG area by
using either DEFW or DEFB,

- define label if the symbol is defined by using the
DEFL pseudo op,

- equate if the symbol is defined by using the EQU
pseudo op,

- FBIT if the symbol is defined by using the FBIT
macro,

- variable if the symbol is defined by using the DEFS
pseudo op,

- macro if the symbol is used to define offset to
access the content .

o The third attribute or information parameter is the name of
the source file where the symbol is defined.

o The fourth attribute is included only if the second
attribute is defined as being a variable. This defined the

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

size of the variable.

ABD - global, equate, [MUX; BIC register 2 status code, abort done

ABORT - global, equate, [MUX; WIC order request code to abort a
given transaction

ABRT_TBL - local, code, &BCWIC, 12 bytes; jump table to abort
processing routines

ACTPRIO - global, variable, &MUXVR, 1 byte; contains the priority
of the active transaction

ACTREQ - global, variable, &MUXVR, 2 bytes; contains the address to
the active request block

ACTSTAT - global, variable, &MUXVR, 1 byte; contains the RIS code
for the active transaction

ACTTID - global, variable, &MUXVR, 2 bytes; contains the
transaction ID (TID) of the active transaction

AES - global, equate, [MUX; BIC registr 2 status code, asynchronous
event

ALERT1 - global, equate, [MUX; bit assignment for alert 1 option in
ALRT_OPT

ALOC - global, macro, [MUX; macro to assign offset value to a given
symbol

ALOC_CNT - global, define label, [MUX; offset assigmnment to be used
with the macro ALOC

ALRT_OPT —‘global, ALOC, [MUX, 1 byte; alert 1 option

ARQ BUF - local, variable, &BPISR, 16 bytes, the FIFO buffer to
queue ARQ status code for the host

ARQ_PTRA - local, variable, &BPISR, 2 bytes, the buffer pointer to
ARQ_BUF for the writing the next ARQ status code

ARQ_PTRB - local, variable, &BPISR, 2 bytes, the buffer pointer to
ARQ_BUF for the reading the next ARQ status code

BACK_SP - global, ALOC, [MUX, 1 byte; contains the character fo
backspacing wvhen edit mode is enabled

BAUD_RAT - global, ALOC, [MUX, 1 byte; contains the baud rate value

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

BAUD TAB - local, code, &SPDSN, 17 bytes; the baud rate table to
match the first zero’s count which is the start bit,
used in speed sensing

BEGSTACK - global, equate, [MUX; beginning address of the stack

BICEND - local, equate, &BPISR; bit assignment for BIC registers 5
and 6, the BIC END bit '

BIC_0 - local, equate, &BPISR; I/0 port address for BIC register 0
BIC_1 - local, equate, &BPISR; 1/0 port address for BIC register 1
BIC_2 - local, equate, &BPISR; I/0 port address for BIC register 2
BIC 3 - local, equate, &BPISR; 1/0 port address for BIC register 3

BIC_4 - local, equate, &BPISR and &MUXMN; I/0 port address for BIC
register 4

BIC_5 - local, equate, &BPISR and &MUXMN; I/0 port address for BIC
register 5 '

BIC_6 - local, equate, &BPISR and &MUXMN; I/0 port address for BIC
register 6

BIC_ENI - local, equate, &BPISR; bit assignment for MIC register 0,
set to enable the BIC interrupt

BLK_BIT - global, equate, [MUX; bit assignment for block mode in
the WIC order request code

BLK MASK - global, equate, [MUX; mask to get the block mode bit
from the WIC order request code

BP_CMD - local, variable, &BPISR, 1 byte; contains the current
command from the BIC register 1

BP_INT - local, variable, &BPISR, 1 byte; contains the current
~interrupt status from BIC register 5

BP_ORDER - global, variable, &BPISR, 1 byte; contains the current
BIC order being processed

BPTX_PTR - global, ALOC, [MUX, 2 bytes; backplane transmit buffer
pointer

BRK_ON - global, equate, [MUX; bit assignment for PORTSTAT+1 set
when break detection is actively in progress

BRK_RX - global, equate, [MUX; bit assignment for INT_STAT set when

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

break event occurred
BS - global, equate, [MUX; ASCII backspace character
BSLASH - global, equate, [MUX; ASCII back slash character

BP_PTR - global, ALOC, [MUX, 1 byte; RX buffer location of the last
backspace action

BUF_ADDR - local, variable, &BPISR, 2 bytes; the buffer address for
continuing the data transfer when the buffer wrap around
in the circular buffer

BUF_ADRY - local, variable, &BPISR, 2 bytes; contains the beginning
address of the host uwrite request for the bad BIC fix

BUF_LEN - local, variable, &BPISR, 2 bytes; the length of the data
transfer for the wrap around buffer of the circular
buffer data transfer

BUF_LENY - local, variable, &BPISR, 2 bytes; contains the data
transfer length for the host write request for the bad
BIC fix

BYTE - local, equate, &BPISR; bit assignment for BIC register 2,
set when want byte wide data transfer

CAR_UREG - global, variable, &UXVR, 1 byte; contains pseudo card
write reglster content whlch deflnes the control for the
card LED, self-test mode, hood LED, single-ended driver,
and dlfferentlal driver

CDC - local, equate, &BPISR bit assignment for BIC register 3, the
clear device clear bxt

CHAR_LEN - global, ALOC, [MUX, 1 byte; contains the character
length for the SIO

CH_AL1 - global, equate, [MUX bit assignment for RX_FLAGS+1 set
when alert 1 mode is enabled and no alert 1 has been sent
yet

CH_ECHO - global, equate, [MUX; bit assignment for RX_FLAGS set
when echoing is enabled

CH_EDIT - global, equate, [MUX; bit assigmnment for RX_FLAGS set
when edlt mode is enabled

CH_HAND - global, equate, [MUX bit assignment for RX_FLAGS set
when handshaklng is enabled

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

CH_QUOT - global, equate, [MUX; bit assignment for RX_FLAGS set
when quoting mode is enabled

CH_SIGN - global, equate, [MUX; bit ass1gnment for RX_FLAGS set
when 91gna1 character detection is enabled

CH_SIT - global, equate, [MUX; bit assignment for RX_FLAGS set when
single text termlnatlon is enabled

CMD - local, equate, &BPISR; bit assxgnment for BIC registers 5 and
6, the command bit

CMD_TBL - local, code, &BPISR, 32 bytes; jump table containing
processing routine address which correspond to the
command to be processed

CN_CARD - global, equate, [MUX; WIC order request code for control
card request

CN_DEV - global, equate, [MUX; WIC order request code for control
device request

CONF_BUF - global, ALOC, [MUX, CONF_SIZ bytes; the write card
configuration staging buffer

CONF_SIZ - global, equate, [MUX; size of the write card
conflguratlon table mhlch is currently 60 bytes

COUNT - global, equate, [MUX; b1t assignment for RD_OPT set when
the end ~-on-count optlon is enabled

COUNT - local, variable, &DMAA, 2 bytes; counter in the MIC channel
A ISR to measure how many time the MIC failed by generating
an interrupt for channel A DMA, the MUX card never uses the
MIC channel A DMA

CR - global, equate, [MUX; ASCII carriage-return character

CICO_TAB - local, code, &MXWCC, 34 bytes; CTC baud rate generator
programming values, each entry consists of 2 bytes, the
first byte is the control byte for the CIC, the second
byte is the time constant

CTCIVECO - global, code, &MUXIV, 16 bytes; contains the interrupt
service routine addresses for CIC #0

CICVEC - global, equate, [MUX; low byte of the starting address for
the CIC interrupt table

CIC_0_CO - global, equate, [MUX; CTC #0 channel 0 I/0 port address,
the DMA pacer for the MIC DMA card or the firmware real

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

time clock for the Z80 DMA card

CTC_O_Cl - global, equate, [MUX; CIC #0 channel 1 I/0 port address,
port #1 baud rate generator

CIC_0_C2 - global, equate, [MUX; CTC #0 channel 2 I/0 port address,
port #0 baud rate generator

CIC_0 C3 - global, equate, [MUX; CIC #0 channel 3 I/0 port address,
the firmware real time clock for the MIC DMA card or the
BIC interrupt generator for the Z80 DMA card

CIC_1 CO - global, equate, [MUX; CTC #1 channel 0 I/0 port address,
port #2 baud rate generator

CIC_1 C1 - global, equate, [MUX; CIC #1 channel 1 I/0 port address,
port #3 baud rate generator

CIC_1 C2 - global, equate, [MUX; CIC #1 channel 2 1/0 port address,
port #4 baud rate generator

CIC_1 €3 - global, equate, [MUX; CIC #1 channel 3 I/0 port address,
unused

CIC_2 CO - global, equate, [MUX; CIC #2 channel 0 I/0 port address,
port #5 baud rate generator

CIC_2 C1 - global, equate, [MUX; CIC #2 channel 1 I/0 port address,
port #6 baud rate generator

CIC_2 C2 - global, equate, [MUX; CIC #2 channel 2 I/0 port address,
port #7 baud rate generator

CIC_2_C3 - global, equate, [MUX; CIC #2 channel 3 1/0 port address,
unused

CIC_BAUD - global, ALOC, [MUX, 1 byte; contains the CIC I/0 port
address for the baud rate generator

CIC TBL - local, code, &MUXMN, 8 bytes; table of CIC I/0 port
address for the baud rate generator corresponding to the
port, index by the port number

C_OUTSP - global, equate, [MUX; bit assignment for UNIX OPT set
when the conditional output separator appendage option is
enabled

DATALEN - global, ALOC, [MUX, 2 bytes; the data transfer length
from the transaction request block of the WIC order

DATA_AVA - global, equate, [MUX; bit assignment for INT_STAT, set

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

when data is available in the receive buffer, i.e., a
receive record is avaiable for the host

DATA_MSK - global, ALOC, [MUX, 2 bytes; the data and parity mask

DCL - local, eqaute, &BPISR; bit assignment for BIC register 3, the
device clear bit

DEL - global, equate, [MUX; ASCII DEL character

DEVEND - local, equate, &BPISR; bit assignment for BIC register 4,
the device end bit

DEV_HAND - global, ALOC, [MUX, 1 byte; the handshake options

DIFFDVR - global, equate, [MUX; bit assignment for CAR_WREG, set to
disabled the front end differential driver

DIFFX - local, variable, &SPDSN, 1 byte; the tolerance band width
to determine if the speed sensed value is within the
potential baud rate

DLF - global, equate, [MUX; BIC register 2 status code, download
failed

DMAB_SW - local, equate, &BPISR; bit assignment for MIC register 0,
the DMA B switch bit, clear for backplane DMA, set for
frontplane DMA

DMACT - local, equate, &MUXMN; the size of DMAI

DMAHRD - global, FBIT, [MUX; set when doing host read DMA with the
Z80 DMA card

DMAHRDA - local, variable, &BPISR, 14 bytes; contains the Z80 DA
programming instructionsfor doing a host read

DMAHRDAR - local, variable, &BPISR, 2 bytes; this is part of array
DMAHRDA, contains the buffer address for the data
transfer from the card to the host

DMAHRDBL - local, variable, &BPISR, 2 bytes; this is part of array
DMAHRDA, contains the buffer length for the dta transfer
from the card to the host

DMAHRDCT - local, equate, &BPISR; the length of array DMAHRDA

DMAHWD - local, variable, &BPISR, 12 bytes; contains the Z80 DMA

programming instructions for data transfer from the host
to the card

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

DMAHUDAR - local, variable, &BPISR, 2 bytes; this is part of array
DMAHWD, contains the buffer address for the data
transfer from the host to the card

DMAHUDBL - local, variable, &BPISR, 2 bytes; this is part of array
DMAHUD, contains the buffer length for the data transfer
from the host to the card

DMAHUDCT - local, equate, &BPISR; the length of array DMAHWD

DMAT - local, code, &MUXMN, 7 bytes; programming instructions to
initialize the Z80 DMA

DMAINIT - local, code, &BPISR, 26 bytes; programming instructions
to initialize the Z80 DMA

DMAWRAP - global, FBIT, [MUX; set when have wrap around on the
circular buffer when using the Z80 DMA card

DMA_DIR - local, equate, &BPISR; bit assignment for MIC registers 3
and 8, data transfer direction bit, clear for from
nemory, set for to memory

DMA_END - local, equate, &BPISR; bit assignment for MIC register 0,
clear to assert END on the last byte in the host read
data transfer

DMA _ENI - local, equate, &BPISR; bit assignment for MIC registers 3
and 8, set when the MIC is to generate an interrupt after
the data transfer completes

DMA_ENO - local, equate, &BPISR; bit assignment for MIC registers 3
and 8, set to enable the DMA operation

DMA_MEM - local, equate, &BPISR; bit assignment for MIC registers 3
and 8, clear to increment for the memory address, set to
decrement for the memory address

DOD - global, equate, [MUX; BIC register 2 status code to host,
dead or dying

EAK - global, equate, [MUX; WIC order request code, event
acknouwledge

EBLEN - global, equate, [MUX; length of the echo buffer

ECHO - global, equate, [MUX; bit assigrment for RD_OPT, set when
for echoing the receive character

ECHOBUF - global, variable, &MUXVR, 1024 bytes; the starting
address for the echo buffers for all 8 ports

HEWLETT-PACKARD PRIVATE
10

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

ECHOPTRI - global, ALOC, [MUX, 2 bytes; contains the address for
the next echo character to be inserted into the echo
buffer

ECHOPTRO - global, ALOC, [MUX, 2 bytes; contains the address for
the next echo character to be transmitted from the echo
buffer

ECHO_SIN - global, equate, [MUX; bit assignment for DEV_HAND, set
when the single text terminator is to be echoed

ECHO TBL - local, code, &MUXMN, 16 bytes; table of echo buffer
address for each port, index by the port number

ECH_CRLF - global, equate, [MUX; bit assignment for DEV_HAND, set
when the single text terminator defined in SIN TEXT is
to cause the echoing of the CR-LF characters in place of
it

EDIT - global, equate, [MUX; bit assignment for RD OPT, set when

the edit mode option is enabled

EDITCHAR - global, equate, [MUX; bit assignment for the special
character tables POSCHTBL, P1SCHIBL, ., P7SCHTBL, set
when the corresponding character is an edit character
for editing

EHCIR - local, equate, &UXMN; the host ENQ/ACK pacing counter
default value

END - global, equate, [MUX; UTC order request code for the
end-of-data .

END_CT - global, ALOC, [MUX, 2 bytes; contains the end-on-count
value from the host for the end-on-count option

ENQ_TIMR - global, ALOC, [MUX, 1 byte; the host ENQ/ACK or
handshake timer value

EONCT - local, equate, &MUXMN; the default end-on-count value

EQ_DCNTR - global, ALOC, [MUX, 1 byte; the host ENQ/ACK character
down counter

EVBITMSK - local, code, &MXUCC, 9 bytes; the bit mask corresponding
the bit position in INT_STAT for the corresponding event

EVB_LEN - global, equate, [MUX; length of the event block

EVENTQ - global, variable, &UXVR, 2 bytes; contains the link list
adress of the pending event queue

HEWLETT-PACKARD PRIVATE
11

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

EVNTABLE - local, code, &BCRTS, 32 bytes; a table of masks to
remove the appropriate event which was sent to the host,
each entry consists of 2 bytes

EVNT_BRK - global, equate, [MUX; event code for break received

EVNT MSG - global, equate, [MUX; event code for data message
available

EVNT_SC1 - global, equate, [MUX; event code for signal character 1
detected

EVNT_SC2 - global, equate, [MUX; event code for signal character 2
detected

EVNT_SC3 - global, equate, [MUX; event code for signal character 3
detected

EVNT_SC4 - global, equate, [MUX; event code for signal character 4
detected

EVNT_SSM - global, equate, [MUX; event code for speed sense mode
completed

EVNT_TIM - global, equate, [MUX; event code for handshake timed out

EVNT_TX - global, equate, [MUX; event code for transmit buffer is
empty

EVNUM - global, equate, [MUX; the maximum number of pending events
per card

EVPRITBL - local, code, &MXUCC, 9 bytes; the event priority value
corresponding to each event

EVQFREE - global, variable, &MUXVR, 2 bytes; contains the link list
address to the free event blocks

EV_BLKS - global, variable, 8MUXVR, EVNUMXEVB_LEN bytes (640
bytes); the event blocks storage area

EV_CODE - global, ALOC, [MUX, 1 byte; index into the event block
for the event code if an event was sensed

EV_DISB - global, equate, [MUX; bit assignment for PORTSTAT+1, set
when an event is sent to the host, it is cleared when an
event acknowledge is received from the host with no more
event on the queue

EV_LEN - global, ALOC, [MUX, 2 bytes; index into the event block
containing the length of the message received buffer

HEWLETT-PACKARD PRIVATE
12

HP-CIO 8-CHANNEL MUX FIRMWARE IMMS

EV_NEXT - global, ALOC, [MUX, 2 bytes; link address to the next
event block

EV_PID - global, ALOC, [MUX, 1 byte; index into the event block
containing the port ID number

EV_PRIO - global, ALOC, [MUX, 1 byte; index into the event block
containing the event block priority

EV_QUED - global, equate, {MUX; bit assignment for PORTSTAT+1, set
when an event is queued on the RTS queue for this port

EV_RIS S - global, ALOC, [MUX, 1 byte; index into the event block
containing the RIS status code

EV_TERM - global, ALOC, [MUX, 1 byte; index into the event block
containing the text terminator character for the message
received event

EV_TID ~ global, ALOC, [MUX, 2 bytes; index into the event block
containing the transaction ID number, if any

EV_TYPE - global, ALOC, [MUX, 1 byte; index into the event block
containing the terminating code for the message received
event

FBIT - global, macro, [MUX; macro used to define the flag to be
used with macros FCLR, FSET, and FTST

FCL - local, equate, &BPISR; bit assignment for BIC register 3, the
fifo clear bit

FCLR - global, macro, [MUX; macro to clear the flag defined by
using macro FBIT

FF - global, equate, [MUX; the character OFFH

FER - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the FIFO ready bit

'FIFORBPI - local, equate, &BPISR; control word for BIC register 4

for read byte, pre-end, srq-inmediate

FIFORWPI - local, equate, &BPISR; control word for BIC register 4
for read word, pre-end, srq-immediate

FIFOUBI - local, equate, &BPISR; control word for BIC register 4
for write byte, srq-immediate

FIFOWWI - local, equate, &BPISR; control word for BIC register 4
for write word, srq-immediate

HEWLETT-PACKARD PRIVATE
13

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

FIFO SRQ - local, equate, &BPISR; controi word for BIC register 4

for SRQ for the next order

FILLER1 - global, ALOC, [MUX, 1 byte; filler in the port

configuration information

FILLER1O - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER11 - global, ALOC, {MUX, 1 byte; filler in the port
configuraion information

FILLER12 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER13 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER14 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER1S - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER16 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER2 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER3 - global, ALOC, [MUX, 2 bytes; filler in the port
configuration information

FILLER4 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLERS - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER6 - global, ALOC, [MUX, 1 byte; filler in the port
configuration information

FILLER7 - global, ALOC, [MUX, 1 byte; filler in the port

configuration

information

FLAGS - local, variable, 8MUXVR, (FLBIT+7)/8 bytes (2 bytes); the
first byte is the interrupt counter for the macros INTS_OFF
and INTS_RES; the second byte contains the flags defined by
using the macro EBIT

FLBIT - global, define label, [MUX; flag bit position assignment

HEWLETT-PACKARD PRIVATE
14

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

counter for used with macro FBIT to define flags

FSET - global, macro, [MUX; macro to set the flag defined by using
macro FBIT

FTST - global, macro, [MUX; macro to test the flag defined by using
macro FBIT

FULL WiR - global, equate, [MUX; transmission mode code for full
duplex hardwired link

F BIT - global, equate, [MUX; bit assignment for the WIC order
request code specifying that the received buffer is to be
flushed

GEN_NULL - global, equate, [MUX; bit assignment for UNIX_OPT, set
to generate a null character instead of an event for the
received break event

HANDSHAK - global, equate, [MUX; bit assignment for the special
character tables POSCHIBL, P1SCHTBL, , P7SCHIBL, set
when the corresponding character is an handshake
character

HAND_EN - global, equate, [MUX; bit assignment for RD_OPT, set when
the handshake option is enabled

HEN_TCT - global, ALOC, [MUX, 2 bytes; the host ENQ/ACK or
handshake timer counter, the first byte is millisecond
down counter, and the second byte is the second douwn
counter

HLED_ON - global, equate, [MUX; bit assignment for CAR_UREG, set
when the hood LED is on

HOST X_X - global, equate, [MUX; mask for the host X-ON/X-OFF bit
in DEV_HAND

HOWTOSRG - global, FBIT, [MUX; flag set when a data transfer
occurred which tells subprogram SRQ_HOST to send a 10H
to BIC register 5 to generate an SRQ; otherwise, send a
10H to BIC register 4 to generate an SRQ

HST MASK - global, ALOC, [MUX, 1 byte; the first byte of the host
interrupt mask, if the corresponding bit is set, the
card will generate an event to the host if the card
encountered the event

HST_MASL - global, ALOC, [MUX, 1 byte; the second byte of the host
interrupt mask, same comment as for HST_MASK

HEWLETT-PACKARD PRIVATE
15

HP-CIO 8~CHANNEL MUX FIRMWARE IMS

HTIMEOUT - global, equate, [MUX; bit assignment for INT_STAT+1, set
when the handshake timer timed out

HUDONE - global, FBIT, [MUX; flag set for the Z80 DMA MUX when the
host write is doing a 1 byte transfer

HWD XFER - global, FBIT, [MUX; flag set when the card is doing a
host write data transfer

H_ACK - global, ALOC, [MUX, 1 byte; the host ENG/ACK ACK character

H D1 D3 - global, equate, [MUX; bit assignment for DEV_HAND, set
when the host X-ON/X-OFF handshake is enabled

H_ENQ - global, ALOC, [MUX, 1 byte; the host ENQ/ACK ENQ character

H_EN CTR - global, ALOC, [MUX, 1 byte; the host ENQ/ACK pacing
counter value

H_EQ_AK - global, equate, [MUX; bit assignment for DEV_HAND, set
when the host ENQ/ACK handshake is enabled

H_XOFF - global, ALOC, [MUX, 1 byte; contains the host X-ON/X-OFF
X-OFF character

'H_XON - global, ALOC, [MUX, 1 byte; contains the host X-ON/X-OFF
X-ON character

IDY BUF - local, code, &BCIDY, 9 bytes; contains the IDY
information for the MUX card

IDY_LEN - local, equate, &BCIDY; the length of the MUX IDY block

IDY_RAM - local, variable, &BCIDY, 9 bytes; the RAM area for the
1DY block, the MIC is unable to transfer data to the host
from the ROM area, therefore the ROM data must first be
moved to the RAlM area

IFC - local, equate, &BPISR; bit assignment for BIC register 5, the
interface clear bit

IM_XON - global, equate, [MUX; bit assignment for UNIX_OPT, set
when the receiver is to restart the transmitter when any
character is received while the transmitter is stopped due
to an device X-OFF

INTS_CNT - global, equate, [MUX; equivalent to the first byte of
FLAGS which is used as the interrupt counter, see also
FLAGS

INT_STAT - global, ALOC, [MUKX, 2 bytes; contains the interrupt

HEWLETT-PACKARD PRIVATE
16

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

status
IOBUFIN - global, equate, [MUX; length of each I/0 buffer

I0BUFRS - global, variable, &MUXVR, NPORTS*2*IOBUFLN bytes (8192
bytes); the I/0 buffer for each port

I0_TABLE - local, code, &BCRWD, 12 bytes; jump' table of the data
transfer routines

IVECTOR - global, code, &MUXIV, 144 bytes; contains the interrupt
service routine addresses, the receive interrupt cell
addresses, the receive interrupt service routine
addresses, and the speed sense interrupt service routine
addresses

IV_RAM - global, equate, [MUX; the beginning RAM address for the
interrupt table

IV_SIZE - global, equate, [MUX; the size of the interrupt table

LED_OFF - global, equate, [MUX; bit assignment for CAR_WREG, set
when the card LED is off

LEN - local, code, &MMXWCC, 4 bytes; the data mask for the number of
significant data bits, index by the character length code

LF - global, equate, [MUX; the ASCII linefeed character

LINE DEL - global, ALOC, [MUX, 1 byte; contains the character to be
used as the line delete character for edit mode

MAXEV - global, equate, [MUX; maximum number of events per port

MAX_RX - global, equate, [MUX; maximum block size for the receive
buffer

MAX_TX - global, equate, [MUX; maximum block size for the transmit
buffer

MICVEC - global, equate, [MUX; the low byte of the interrupt vector
address for the MIC

MIC_0 - local, equate, &BPISR; I/0 port address for MIC register 0
MIC_1 - local, equate, &BPISR; 1/0 port address for MIC register 1
MIC_2 - local, equate, &BPISR; I/0 port address for MIC register 2
MIC_3 - local, equate, &BPISR; I/0 port address for MIC register 3

HEWLETT-PACKARD PRIVATE
17

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

MIC_4 - local, equate, &BPISR; I/0 port address for MIC register 4
MIC_5 - local, equate, 8BPISR; I/0 port address for MIC register 5
MIC_6 - local, equate, &BPISR; I/0 port address for MIC register 6
MIC_7 - local, equate, &BPISR; I/0 port address for MIC register 7
MIC_8 - local, equate, &BPISR; I/0 port address for MIC register 8
MIC_9 - local, equate, &BPISR; I/0 port address for MIC register 9

MIC_A - local, equate, &BPISR; I/0 port address for MIC register
OAH

MIC_B - local, equate, &BPISR; 1/0 port address for MIC register
OBH

MIC_FLAG - global, define label, [MUXA; flag set to 0 when using
Z80 DMA or to 1 when using MIC DMA. This flag is used
in the conditional assembly statements in the following
sources: 3MUXMN, &BPISR, 3MUXST, and &BCIDY.

MIC_IVEC - global, code, &MUXIV, 16 bytes; contains the MIC
interrupt service routine addresses

MTERM - glbbal, equate, [MUX; the offset within the RSR status
block for the message termination character

MIYPE - global, equate, [MUX; the offset within the RSR status
block for the message termination type code

MUX_BERR - global, equate, [MUX; the RSR error code for block mode
is not allowed for the given request

MUX_CNEX - global, equate, [MUX; the RSR error code for cannot
execute control request because no more space exist in
the receive buffer

MUX_DAOV- - global, equate, [MUX; the RSR error code for data
overrun in the write data transfer

MUX_IREQ - global, equate, [MUX; the RSR error code for illegal
request or request not implemented

MUX_IVSU - global, equate, [MUX; the RSR error code for illegal
subfunction

MUX_NORX - global, equate, [MUX; the RSR error code for receive not
allowed in simplex transmit mode

HEWLETT-PACKARD PRIVATE
18

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

MUX NOSP ~ global, equate, [MUX; the RSR error code for data
transfer length too long

MUX_NOTX - global, equate, [MUX; the RSR error code for transmit
not allowed in simplex receive mode

MUX_PARA - global, equate, [MUX; the RSR error code for illegal
configuration parameter values

MUK PLEN - global, equate, [MUX; the RSR error code for illegal
configuration parameter length

MUX_PORT - global, equate; [MUX; the RSR error code for illegal
port ID

NEEDTXSP - global, equate, [MUX; bit assignment for PORTSTAT+1, set
when no more space exist in the transmit buffer to
continue the host write request

NMK - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the NMI acknowledge bit

NO_PAR - global, equate, {MUX; bit assignment for UNIX_OPT, set
when the "do not terminate receive record on errors"
option is desired, the character in error will be replace
by the replacement character found in RP_BAD

NPORTS - global, equate, {MUX; the number of ports on the card

OLDMASK1 - local, variable, &MXWCC, 1 byte; temporary storage to
save the old content of HST MASK while reconfiguring

OLDMASK2 - local, variable, &MXWCC, 1 byte; temproary storage to
save the old content of HST_MASL while reconfiguring

ONE_ADDR - local, variable, &BPISR, 2 bytes; the buffer address for
the last data byte in the host urite request, used in
the Z80 DMA MUX to process 1 data byte transfer and for
fixing a BIC bug when both FFR and END condition are set
at the same time

ORD - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the order bit

ORD_TBL - local, code, &BPISR, 32 bytes; jump table containing
processing routine addresses corresponding each of the
order being processed

OSEP_1 - global, ALOC, [MUX, 1 byte; contains the first output
separator character

HEWLETT-PACKARD PRIVATE
19

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

OSEP_2 - global, ALOC, [MUX, 1 byte; contains the second output
separator character

OSEP CT - global, ALOC, [MUX, 1 byte; specify the number character
for the output separator

OTHER RQ - global, ALOC, [MUX, 2 bytes; contains the address
pointer to the other request block

POECHO - global, variable, 8MUXVR, EBLEN bytes (128 bytes); port 0
echo buffer

POSCHTBL - global, variable, &fUXVR, 256 bytes; port 0 special
character table

POSTUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 0 port stuff information including port
configuration, buffer pointers, counters, and so onh

P1ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 1
echo buffer

P1SCHTBL - global, variable, &MUXVR, 256 bytes; port 1 special
character table

P1STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 1 port stuff information including port
configuration, buffer pointers, counters, and so on

P2ECHO - global, variable, 8MUXVR, EBLEN bytes (128 bytes); port 2
echo buffer

P2SCHTBL - global, variable, MUXVR, 256 bytes; port 2 special
character table

P2STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 2 port stuff information including port
configuration, buffer pointers, counters, and so on

P3ECHO - global, variable, 8MUXVR, EBLEN bytes (128 bytes); port 3
echo buffer

P3SCHIBL - global, variable, &MUXVR, 256 bytes; port 3 special
character table

P3STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 3 port stuff information including port
configuration, buffer pointers, counters, and so on

P4ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 4
echo buffer

HEWLETT-PACKARD PRIVATE
20

HP-CIO 8—CHANNEL MUX FIRMUARE IMS

P4SCHIBL - global, variable, &MUXVR, 256 bytes; port 4 special
character table

PASTUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 4 port stuff information including port
configuration, buffer pointers, counters, and so on

P5ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 5
echo buffer .

PSSCHIBL - global, variable, 8MUXVR, 256 bytes; port 5 special
character table

PSSTUFF - global, variable, 8&MUXVR, P MAPLEN bytes (185 bytes);
port 5 port stuff information including port
configuration, buffer pointers, counters, and so on

P6ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 6
echo buffer

P6SCHIBL - global, variable, &MUXVR, 256 bytes; port 6 special
character, table

P6STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 6 port stuff information including port
configuration, buffer pointers, counters, and so on

P7ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 7
echo buffer

P7SCHTBL - global, variable, &MUXVR, 256 bytes; port 7 special
character table

P7STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes]);
port 7 port stuff information including port
configuration, buffer pointers, counters, and so on

PAR - local, equate, &BPISR; bit assignment for BIC register 3, the
perpherial address ready bit

PARITY - global, ALOC, [MUX, 1 byte; contains the parity option, 0
for no parity, 1 for odd, 2 for even, 3 for force ’0’, and
4 for force ’1’

PER - global, equate, [MUX; BIC register 2 status code for protocol
error

PID - global, ALOC, [MUX, 1 byte; use to get the port ID number
from the WIC request block

PIDTABLE - global, variable, &MUXVR, NPORTS bytes (8 bytes); the

HEWLETT-PACKARD PRIVATE
21

e

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

port ID table to map the logical port ID given in the
UIC request to the physical port ID, the table is
indexed by the physical port number

PORTABLE - local, code, &MUXMN, 16 bytes; table of addresses to the
port stuff array, index by port number

PORTSTAT - global, ALOC, [MUX, 2 bytes; contains various flag for
the port

PORT_DEF - local, code, &WUXMN, 60 bytes; the default port
configuration

PORT_DFE - local, equate, S8MUXMN; the ending address of PORT_DEF

PRIO_ABT - global, equate, [MUX; RTS op code priority for abort
status

PRIC BRK - global, equate, [MUX; RTS op code priority for break
event

PRIO CON - global, equate, [MUX; RTS op code priority for continue
status

PRIO_END - global, equate, [MUX; RTS op code priority for
end-of-data transfer

PRIC_ERR - global, equate, [MUX; RTS op code priority for error
trap status

PRIO_IDL - global, equate, [MUX; RTS op code priority for nothing
to do

PRIO_REC - global, equate, [MUX; RTS op code priority for data
message received event

PRIO_SIG - global, equate, [MUX; RTS op code priority for signal
character detected event

PRIO_S5SM - global, equate, [MUX; RTS op code priority for speed
sense status

PRIO_TIM - global, equate, [MUX; RTS op code priority for handshake
timeout

PRIO_TX - global, equate, [MUX; RIS op code priority for transmit
buffer is empty

P MAPLEN - global, equate, [MUX; the length of port information
block for each port

HEWLETT-PACKARD PRIVATE
22

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

QS - local, equate, 8MUXMN; the default quotable single text
terminator

QUOTABLE - global, equate, [MUX; bit assigrment for the special
character table POSCHTBL, P1SCHTBL, ..., P7SCHIBL, set
for the corresponding character when it is quotable

QUOTE - global, ALOC, [MUX, 1 byte; the quotable character
specified by the user

QUOT_MOD - global, equate, [MUX; bit assignment for UNIX OPT, set
when the quoting mode is enabled

Q_TEMP - global, variable, &MUXVR, 2 bytes; temporary storage for
subprogram EDIT_Q parameters

RAM _END - global, equate, [MUX; the RAM ending address
RAM_STRT - global, equate, [MUX; the RAM starting address

RD_BUFR - global, ALOC, [MUX, 2 bytes; contains the buffer pointer
to the next receive record for the backplane for the next
read request; if no receive buffer is available, the
pointer value will be zero

RD_BUF_N - global, ALOC, [MUX, 1 byte; the offset into the current
backplane receive buffer for the next character

RD_CARD - global, equate, [MUX; the WIC request code for read card
information ‘

RD_DEV - global, equate, [MUX; the WIC request code for read device
data

RD_OPT - global, ALOC, [MUX, 1 byte; contains the frontplane
control options for processing the received data

RD_SUSP - global, equate, [MUX; bit assignment for PORTSTAT+1, set
when the host read request is suspended

READ DEC - local, equate, &BPISR; control word for MIC registers 3
and 8, read decrement configuration (ENO = stop, DIR =
from, MEM = decr, ENI = off)

READ_INC - local, equate, &BPISR; control word for MIC registers 3
and 8, read increment configuration (ENO = stop, DIR =
from, MEM = incr, ENI = off)

READ RQ - global, ALOC, [MUX, 2 bytes; contains the address
pointing the the read request block

HEWLETT-PACKARD PRIVATE
23

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

REC_SEP - global, ALOC, [MUX, 1 byte; contains the record separator
character to be used for searching for the conditional
output separator option

REQ - global, ALOC, [MUX, 1 byte; index into the request block for
the request code

RESUME - global, equate, [MUX; UTC op code to resume a transaction

RET_ADDR - local, variable, &BPISR, 2 bytes; contains the return
address to the calling subprogram which requested a data
transfer by calling H_CIR, H_READ, or H_URITE

REC - global, equate, [MUX; BIC register status code for ready for
command

RITE_DEC - local, equate, &BPISR; control word for MIC registers 3
and 8, write decrement configuration (ENO = stop, DIR =
to, MEM = decr, ENI = off)

RITE_INC - local, equate, &BPISR; control word for MIC registers 3
and 8, write increment configuration (ENO = stop, DIR
to, MEM = incr, ENI = off)

RLOG - global, equate, [MUX; offset into the status block for the
residual count

RP_BAD - global, ALOC, [MUX, 1 byte; contains the replacement
character to replace the receive character which contains
an error. This option must be enabled by setting the
NO_PAR bit in UNIX_OPT

RGA - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the request attention bit

RAB_LEN - global, equate, [MUX; request block length

RQ_FLIST - global, variable, &MUXVR, 2 bytes; link list of free
request blocks

RQ_PSTUF - global, ALOC, [MUX, 2 bytes; index into the request
block which contains the pointer to the port stuff for
the request

RQ_TBLES - global, variable, [MUX, NPORTS*3*RQB_LEN bytes (480
bytes); allocate space for the request blocks

RSR_CODE - global, ALOC, [MUX, 1 byte; to contain the RSR status
code

RSR_LEN - local, equate, &BCRSR; the length of the RSR block

HEWLETT-PACKARD PRIVATE
24

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

RSR_RESD - global, ALOC, [MUX, 2 bytes; to contain the transmission
residual count for the host read request

RSR_STIT - global, ALOC, [MUX, 1 byte; to contain the single text
terminator character for the host read request if the
receive buffer is terminated by a single text terminator

RSR_TERM - global, ALOC, [MUX, 1 byte; to contain the text
termination code for the host read request

RSR_TLOG - global, ALOC, [MUX, 2 bytes; to contain the transmission
log for any data transfer between the host and the card

RSUB_STA - local, code, &MXRCI, 14 bytes; the jump table to the
appropriate processing routine for the get status
request (read card information)

RTSQ - global, variable, &MUXVR, 2 bytes; link list of the RTS
response queue

RTS_ABT - global, equate, [MUX; the RTS status op code to abort the
given transaction

RIS _CONT - global, equate, [MUX; the RTS status op code to continue
the given transaction

RTS_END - global, equate, [MUX; the RTS status op code to terminate
the data transfer phase of the given transaction

RTS_EROR - global, equate, [MUX; the RTS status op code to notify
the host that the gilven transactlon caused an error
condition

RTS_EVNT - global, equate, [MUX; the RIS status op code to notify
the host of an event (asynchronous interrupt)

RTS_IDLE - global, variable, &MUXVR, 1 byte; the RIS status op code
to notify the host that the card has nothing to do, this
value is not in ROM because the MIC will not DMA data
from ROM to the host

RTS_LEN - global, equate, [MUX; the RTS block length portion of the
event block

RTS_NONE - global, equate, [MUX; the RTS status op code for nothing
to do (not used)

RTS TEMP - global, variable, &MUXVR, 2 bytes; temporary storage
area for subprogram BC_RIS

RUD_TABL - local, code, &BCRUD, 10 bytes; jump table to the

HEWLETT-PACKARD PRIVATE
25

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

continuation processing routines after the data transfer

RXD_CTR - global, ALOC, [MUX, 1 byte; frontplane receive record
down counter

RXD_CTRI - global, ALOC, [MUX, 1 byte; frontplane receive record
down counter initial value

RXTX - local, equate, &BPISR; bit assignment for the I/0 buffer
address, clear for the receive buffer, set for the transmit
buffer

RX_BFULL - global, equate, [MUX; bit assignment for RX_FLAGS, set
when the receive buffer is full

RX_BUF H - global, ALOC, [MUX, 2 bytes; frontplane active receive
buffer header pointer

RX_DCTR - global, ALOC, [MUX, 2 bytes; end-on-count down counter
RX_FLAGS - global, ALOC, [MUX, 1 byte; receive configuration flags

R¥_LCTR - global, ALOC, [MUX, 2 bytes; host read request down
counter

RX_LOC - global, code, &MUXIV, 16 bytes; table of receive interrupt
‘cell for each receive port

RX_NXT_C - global, ALOC, [MUX, 2 bytes; frontplane active receive
buffer next character pointer

RX_SXOFF - global, equate, [MUX; bit assignment for PORTSTAT+1, set
when the receiver have sent an X-OFF and is waiting for
buffer space

RX_TABLE - local, code, &MUXMN, 8 bytes; table of high byte receive
buffer address for each port, index by the port number

RX_TEMP - global, variable, &MUXVR, 2 bytes; temporary storage area
for the receive interrupt service routine

RX_TXOFF - global, equate, [MUX; bit assignment for PORTSTAT, set
when a device X-OFF is received and waiting for an X-ON

RX_VEC - global, code, &UXIV, 16 bytes; a table of receive
interrupt service routine address for each port

R_E_SENT - global, equate, [MUX; bit assignment for PORTSTAT+1, set
when a messdge receive event was sent

SBIT MSK - global, equate, [MUX; mask to get the S-bit from the WIC

HEWLETT-PACKARD PRIVATE
26

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

request code

SCHARPTR - global, ALOC, [MUX, 1 byte; the high byte address of the
special character table for the given port

SCHR_TBL - local, code, &MUXMN, 8 bytes; table containing the high
byte address corresponding to each port special
character table, index by the port number, this is used
to initialize the port stuff array

SCR - global, equate, [MUX; BIC register 2 status code for
subchannel connect request

SELF TST - global, equate, [MUX; bit assignment for CAR_WREG, set
when the card internal loopback mode is enabled for
self-test

SEND_MES - global, equate, [MUX; bit assignment for DEV_HAND, set
when the option to continue transmitting the message
after the ENQ/ACK timer times out

SGENDDVR - global, equate, [MUX; bit assignment for CAR_UREG, set
when the single-ended driver is enabled

SIGNAL - global, equate, [MUX; bit assigmment in the special
character table, set when the corresponding character is a
signal character

SIGNALA - global, equate, [MUX; bit assigmment for UNIX_OPT, set
when the signal character detection option is enabled

SIGNAL_1 - global, ALOC, [MUX, 1 byte; contains the signal
character 1

SIGNAL_2 - global, ALOC, [MUX, 1 byte; contains the signal
character 2

SIGNAL_3 - global, ALOC, [MUX, 1 byte; contains the signal
character 3

SIGNAL 4 - global, ALOC, [MUX, 1 byte; contains the signal
character 4

SIG_ 1 - global, equate, [MUX; bit assignment for INT_STAT, set when
the signal character 1 is detected

SIG_1 X - global, equate, [MUX; mask to get the signal character 1
value

SIG 2 - global, equate, [MUX; bit assignment for INT STAT, set when
the signal character 2 is detected

HEWLETT-PACKARD PRIVATE
27

HP-CI0 8-CHANNEL MUX FIRMWARE IMS

SIG_3 - global, equate, [MUX; bit assignment for INT_STAT, set when
the signal character 3 is detected

SIG_4 - global, equate, [MUX; bit assignment for INT_STAT, set when
the signal character 4 is detected

SIM RX - global, equate, [MUX; the transmission code for simplex
receive

SIM_TX - global, equate, [MUX; the transmission code for simplex
transmit

SINGLE - global, equate, [MUX; bit assignment for RD OPT, set when
the frontplane control is to terminate the recelve record
when a single text terminator is encountered

SINGTEKT - global, equate, [MUX; bit assignment for the special
character table, set when the corresponding character is
to be used as a single tert terminator

SIN_TEXT - global, ALOC, [MUX, 1 byte; the single text terminator
character to cause the echoing of the CR-LF characters

SI0CMD - local, code, &MKXCCD, 8 bytes; programming instructions to
put the SIO in synchronous mode for speed sensing

SIOIVECO - global, code, &WUXIV, 16 bytes; the table of interrupt
service routine addresses to service SIO #0

SIOIVECL - global, code, 8MUXIV, 16 bytes; the table of interrupt
service routlne addresses to service SIO #1

SIOIVEC2 - global, code, &UXIV, 16 bytes; the table of interrupt
service routine addresses to service SI0 #2

SIOIVEC3 - global, code, &MUXIV, 16 bytes; the table of interrupt
service routine addresses to service SIO #3

SIOLEN - local, equate, &MXCCD; the size of SIOCMD

SIOVEC - global, equate, [MUX; the starting low byte address for
the SIO interrupt vector table

SI0_0_AC - global, equate, [MUX; the 1/0 port address for the
control channel of the SI0 #0 channel A

S10_0_AD - global, equate, [MUX; the I/0 port address for the data
channel of the SIO #0 channel A

SI0_0_BC ~ global, equate, [MUX; the I/O0 port address for the
control channel of the SIO #0 channel B

HEWLETT-PACKARD PRIVATE
28

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

SI0_0 BD

SI0_1 AC

SI0_1_AD

SI10_1 BC

SI0_1_BD

SI0 2 AC

SI0 2 AD

S10 2 BC

S10 2 BD

S10_3_AC

SI0_3_AD

SI0_3 BC

SI0_3 BD

SI10_BRK -

§10_CS -

- global,
channel

- global,
control

- global,
channel

- global,
control

- global,
channel

- global,
control

- global,
channel

~ global,
control

- global,
channel

- global,
control

- global,
channel

- global,
control

- global,
channel

equate, [MUX; the 1/0
of the SI0O #0 channel

equate, [MUX; the I/0
channel of the SI0O #1

equate, [MUX; the 1/0
of the SIO #1 channel

equate, [MUX; the 1/0
channel of the SI0 #1

equate, [MUX; the 1/0
of the SI0 #1 channel

equate, [MUX; the 1/0
channel of the SIO #2

equate, [MUX; the I/0
of the SIO #2 channel

equate, [MUX; the 1/0
channel of the SIO #2

equate, [MUX; the I/0
of the SIO #2 channel

equate, [MUX; the I/0
channel of the SIO #3

equate, [MUX; the 1/0
of the SIO #3 channel

equate, [MUX; the I/0
channel of the SIO #3

equate, [MUX; the 1/0
of the SI0 #3 channel

port address
B

port address
channel A

port address
A .

port address
channel B

port address
B

port address
channel A

port address
A

port address
channel B

port address
B

port address
channel A

port address
A

port address
channel B

port address
B

for the
for the
for»the
for the
for the
for the
for the
for the
for the
for the
for the
for the

for the

data

data

data

data

data

data

data

global, equate, [MUX; bit assignment for SIO channel B
read register 0 indicating the break receive condition

-global, equate, [MUX; bit assignment for SIO read register

0 indicating the state of the clear-to-send modem signal

SIO_CTRL ~ global, ALOC, [MUX, 1 byte; contains the SIO I/0 port

address of the control channel for the port

SIO_DEF - local, code, &MUXMN, 8 bytes; contains the programming
instructions for initializing the SIO

HEWLETT-PACKARD PRIVATE

29

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

SI0_EKEN - global, equate, [MUX; bit assignment for SIO write
register 1 to enable the SIO external status interrupt

SIO_FRER - global, equate, [MUX; bit assignment for SIO read
register 1 for the framing error bit

SIO_LEN - global, equate, &MUXVR; the length of the SIO programming
instructions

5I0_PAR - global, equate, [MUX; bit assignment for SIC read
register 1 for the parity error bit

SIO_RR - global, equate, [MUX; bit assigmnment for SIO read register
0 indicating the state of the receiver ready modem signal

SIO_RS - global, equate, [MUX; bit assignment for SIO write
register 5 to set the request-to-send modem signal state

5I0_RXAV - global, equate, [MUX; bit assignment for SIO read
register 0 indicating whether a receive character is
available

SI0_RXEN - global, equate, [MUX; bit assignment for SIC urite
register 3 to enable or disalbe the receive interrupt

SIO_RXIN - global, equate, [MUX; bit assignment for SIO urite
register 3 to set the receive interrupt mode to
interrupt on all receive characters

SIO_RXOV - global, equate, [MUX; bit assignment for SIO read
register 1 for the data overrun error bit

SI0 SNBK - global, equate, [MUX; bit assignment for SIO urite
register 5 to enable and disable the break generator

810 _TBL - local, code, 8MUXMN, 8 bytes; table of SI0O I/0 port
address for the control channel for each port, index by
the port number

SI0_TR - global, equate, [MUX; bit assignment for SiO write
register 5 to set or clear the terminal ready modem signal

SIO_TXEM - global, equate, [MUX; bit assignment for SIO read
register 0 indicating whether the transmit buffer is
enpty

SIO_TXEN - global, equate, [MUX; bit assignment for SIO write
register 1 to enable the transmitter

SIO TXIN - global, equate, [MUX; bit assigrment for SIO urite
register 1 to enable the transmit interrupt

HEWLETT-PACKARD PRIVATE
30

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

S10_W - global, variable, &MUXVR, 8 bytes; array of SI0 programming
instructions

SIO W3 - global, variable, 8MUXVR, 1 byte; contains the SIO urite
register 3 content

SIO_W4 - global, variable, &MUXVR, 1 byte; contains the SIO write
register 4 content

SI0O_UW5 - global, variable, &MUXVR, 1 byte; contains the SIO write
register 5 content

SPACE - global, equate, [MUX; the ASCII space character

SQUOTE - global, ALOC, [MUX, 1 byte; the single text terminator to
be used as a quoting character when quoting mode is
enabled in UNIX

SRE - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the status register is empty bit

SS_CHAR - global, ALOC, [MUX, 1 byte; contains the previous
character processing in speed sense mode

SS_CTR - global, ALOC, [MUX, 10 bytes; 5 16-bit counter for speed
sensing

SS_DCTR - global, ALOC, [MUX, 1 byte; the doun counter for the
number of remaining speed sense counter for counting

SS_PTR - global, ALOC, [MUX, 2 bytes; the address pointer to the
current counter in S5 _CIR

SS_VEC - global, code, &MUXIV, 16 bytes; the table of speed sense
interrupt service routine addresses for each port

ST1 - local, equate, &MUXMN; the default single text terminator

STATUS - global, equate, &MUXVR; equivalent to FLAGS since no
status bits were defined

STERM - global, ALOC, [MUX, 8 bytes; an array of single text
terminators

STERM_CT - global, ALOC, [MUX, 1 byte; the number of valid single
text terminators in array STERM

STOP_BIT - global, ALOC, [MUX, 1 byte; specify the stop bit option,
0 for 1, 1 for 1.5, and 2 for 2

STP - local, equate, &BPISR; bit assignment for BIC register 3, the

HEWLETT-PACKARD PRIVATE
31

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

self-test pass bit

STRP MSK - global, ALOC, [MUX, 1 byte; contains the stripping
option information

STRP_TRM - global, equate, [MUX; bit a551gnment for STRP_MSK, set
the text terminators are to be stripped from the rece1ve
buffer

ST CT - local, equate, &MUXMN; the default number of single text
terminator

ST TEMP - global, ALOC, [MUX, 9 bytes; contains the new single text
terminator information which will be enabled after the
current frontplane record is terminated. If the first
byte is zero, no new single text terminator configuration
is available.

SUBFCN - global, ALOC, [MUX, 1 byte; the subfucntion code of the
WIC request

SUB_CON - global, FBIT, [MUX; flag set when the subchannel is
connected

SUB_PSE - global, FBIT, [MUX; flag set when the subchannel is
paused

S BIT - global, equate, [MUX; bit assignment for the WIC request
code for the S-bit which specify whether to keep the
partial buffer {if any) for the next read

TEMP - global, variable, &MUXVR, 2 bytes; temporary storage

TEMP_BUF - local, variable, &MXUDD, 2 bytes; buffer address for the
next data transfer

TEMP_LEN - local, variable, &MXWDD, 2 bytes; buffer length for the
next data transfer

TERM ALl - global, equate, [MUX; termination code in the receive
buffer header for alert 1

TERM BOF - global, equate, [MUX; termination code in the receive
buffer header for receive buffer overflow

TERM BUF - global, equate, [MUX; termination code in the receive
buffer header for terminated by card, user buffer full

TERM CNT - global, equate, [MUX; termination code in the receive

buffer header for termination on count

HEWLETT-PACKARD PRIVATE
32.

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

TERM FER - global, equate, [MUX; termination code in the receive
buffer header for framing error

TERM HOS - global, equate, [MUX; termination code in the receive
buffer header for termination initiated by the host

TERM OVF - global, equate, [MUX; termination code in the receive
buffer header for SI0 data overrun error

TERM PER - global, equate, [MUX; termination code in the receive
buffer header for parity error

TERM_PRT - global, equate, [MUX; termination code in the receive
buffer header for termination by card, partial record

TERM STT - global, equate, [MUX; termination code in the receive
buffer header for single text termination

TID - global, ALOC, [MUX, 2 bytes; the transaction ID number from
the WIC request block

TIMR TYP - global, equate, [MUX; bit assignment for STRP_MSK, set
to specify an event to be generated when the handshake
timer timed out

TLOG - global, equate, [MUX; offset into the RSR status block for
the transmission log

TOGL_MSK - global, ALOC, [MUX,‘1 byte; contains the frontplane
features toggle mask

TR_ADDR - global, ALOC, [MUX, 2 bytes; contains the data transfer
address for the transaction

TR_LEN - global, ALOC, [MUX, 2 bytes; contains the data transfer
length for the transaction

TX_BUSY - global, equate, [MUX; bit assignment for PORTSTAT, set
when the transmitter is busy transmitting data

TX CIR - global, ALOC, [MUX, 1 byte; the frontplane transmitter
down counter

TX_DATA - global, equate, [MUX; bit assignment for PORTSTIAT, set
when the transmitter is busy transmitting user data and
not echo data

TX_ECHO - global, equate, [MUX; bit assignment for PORTSTAT+1, set
when the echo buffer is not empty

TX_EMPTY - global, equate, [MUX; bit assignment for INT_STAT, set

HEWLETT-PACKARD PRIVATE
33

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

when the transmit buffer is empty

TX_ENQ - global, equate, [MUX; bit assignment for PORTSTAT, set
when an ENQ character is to be transmitted on the next
transmit interrupt for the port

TX_HXOFF - global, equate, [MUX; bit assignment for PORTSTAT, set
when the transmitter needs to transmit the host X-OFF
character on the next transmit interrupt

TX_HXON - global, equate, [MUX; bit assignment for PORTSTAT; set
when the transmitter needs to transmit the host X-ON
character on the next transmit interrupt

TX_MODE - global, ALOC, [MUX, 1 byte; contains the transmission
mode option, 2 for full duplex hardwired, 3 for simplex
transmit, and 4 for simplex receive

TX_OUT2 - global, equate, [MUX; bit assignment for PORTSTAT, set’
when the second character of the output separator needs
to be transmitted for the conditional output separator
option

TX_PTR - global, ALOC, [MUX, 2 bytes; contains the address pointing
to the next character for data transmission

TX_TABLE - local, code, &MUXMN, 8 bytes; table of the high byte
transmit buffer address for each port, index by the port
number

T D1 D3 - global, equate, [MUX; bit assignment for DEV_HAND, set
when the device X-ON/X-OFF handshake is enabled

T_EQ &K - global, equate, [MUX; bit assignment for DEV_HAND, set
when the device ENQ/ACK handshake is enabled

T_XOFF - global, ALOC, [MUX, 1 byte; device X~OFF character
T_XON ~ global, ALOC, [MUX, 1 byte; device X-ON character

UNIX OPT - global, ALOC, [MUX, 1 byte; contains the miscellaneous
flags to implement some of the UNIX features

WAIT ACK - global, equate, [MUX; bit assignment for PORTSTAT, set
when the firmware is waiting for the ACK character for
the ENQ character sent

WAPPEND - global, equate, [MUX; bit assignment for the subfunction
code in the WIC write device data request, set to append
the output separators to the message being written

HEWLETT-PACKARD PRIVATE
34

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

WHAND - global, equate, [MUX; bit assignment for the subfunction
code in the WIC write device data request, set to toggle
the handshake option

WCC_LEN - global, code, &MXWCC, 35 bytes; a table containing the
length for each corresponding subfunction parameters. If
the entry contains a zero, then the length is variable
and is checked in the code. If the entry contains a OFFH
value, the corresponding subfunction. is not used by this
firmware, Otherwise, the nonzero value is the length of
the parameters that must be given by the user.

WUCC_TAB - global, code, &MKWCC, 105 bytes; a table containing the
offset from the start of the port stuff array for the
subfunction parameter and the processing routine address
to validate the parameters

WIC TEMP - global, variable, &MUXVR, 2 bytes; temporary storage
area for subprogram BC_UIC

URITE_RQ - global, ALOC, [MUX, 2 bytes; contains the address
pointing to the write request block

UR_CARD - global, equate, [MUX; WIC request code for uwrite card
configuration

WR_DEV - global, equate, [MUX; WIC request code for write device
data

WUSUB MX - local, equate, &MXWCC; the number of valid subfunction
code for UCC request and the size of WCC_LEN

WTC_BUFR - global, variable, &MUKVR, 3 bytes; buffer area for the
WIC order request block

UTC_LEN - global, equate, [MUX; WTC request block length
WTC_OPCD - global, ALOC, [MUX, 1 byte; contains the UTC op code

WUTC_PID - global, ALOC, [MUX, 1 byte; contains the port ID in the
UTC request block

UTC_TID - global, ALOC, [MUX, 2 bytes; contains the transaction ID
in the UTC request block

Z80DMA - global, equate, [MUX; the Z80 DMA I/0 port address

HEWLETT-PACKARD PRIVATE
35

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

B e o 2 et 2 e 7 2 o e o e e +

| ' .
| SUBPROGRAM & JUMP ENTRY SYMBOLS CHAPTER 3 |
I |

b o———

o e e e e +

The following is description for each subprogram and jump entry
symbols used in the MUX firmware. There are many multiple entries
in each module to reduce the memory space required. This may cause
a little difficulty in understanding and modifying the firmware,
but the primary objective of fitting the firmware into an 16K EPROM
was met.

The synbol is listed first followed by the source file where it is
defined. The linkage and the subprogram called are given next,
respectively, if the symbol represent a subprogram which can be
CALL. Following this is the list of all subprograms calling or
jumping to this symbol. Finally a short functional description is
given,

ABRT_REQ - source: &BCRSR

linkage: CALL ABRT_REQ

Register IY contains the address of the request
block.

calls: FREE_RQB, NOTHIN
jump to: none
called by: BIC_RSR, BIC_WTC
used by: none
Subprogram to kill off a request and deallocate its
resource,
ADD_Q - source: 3MUXEV
linkage: CALL ADD_Q, register DE contains the address of
the queue header, register HL contains the address
of the block
calls: SRQ_HOST
jump to: none

HEWLETT-PACKARD PRIVATE
36

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

called by: BIC_RTS, EAK_IT
used by: none
Routine to add an event block to the RTS or event queues,
Blocks are queued in priority order (0 = highest).
AL1_EVNT - source: &RKISR
linkage: CALL AL1_EVNT
On entry register 1Y = address of port’s stuff.
calls: EVNT MGR, GET_EVB
jump to: none

called by: RDD CONT, RX_ISRO, RX_ISRi, RX_ISR2, RK_ISR3,
RX_TSR4, RX_TSR5, RX_ISR6, RX_ISR7, UCC_CONT

used by: none

Subprogram to generate an alert-1 event to the host.

ARQ_HOST - source: &BPISR
linkage: CALL ARQ_HOST

On entry register C contains the ARQ status
code.

calls: none

jump to: none

called by: BIC_ABT, BIC_ERR, BIC_SC, DIE

used by: none

The subprogram to sgnd the ARQ status code go the.host
through the BIC regilster 2: If the BIQ reglster is
busy, queue the status until the host is ready for it.

BIC_ABT - source: &BPISR

linkage: JP BIC_ABT
calls: ARQ_HOST

HEULETT-PACKARD PRIVATE
37

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

jump to: none
called by: none
used by: BIC_ISR

The BIC abort command processor.

BIC_DIS - source: 8BPISR
linkage: JP BIC_DIS
calls: none
jump to: BIC_EKIT
called by: none
used by: BIC_ISR

BIC disconnect order processor.

BIC_ERR - source: &BIC_ERR
linkage: JP BIC_ERR
calls: ARQ HOST
jump to: BIC_EXIT
called by: none
used by: BIC_ISR, BIC_RD, BIC_UD, BIC_WIC, BIC_UTC

Send the protocol error status to the host.

BIC_EXIT - source: &BPISR
linkage: JP BIC_EXIT
calls: none
jump to: none
called by: none

used by: BIC_DIS, BIC_END, BIC ERR, BIC_PSE, BIC_SC,
DMAB ISR, HCTR IO, HRD_IO, HUD_I0, ORD_EXIT

HEWLETT-PACKARD PRIVATE
38

HP-CI0 8-CHANNEL MUX FIRMWARE IMS

SRE_RIN
Bestore the registers and return from BIC or MIC
interrupt.
BIC_IDY - source: &BCIDY
linkage: CALL BIC_IDY
calls: HRD_ IO, SRQ_HOST
jump to: BIC_EXIT
called by: BIC_ISR
used by: none
The MUX IDY order handler. Move the IDY information to
RAM, and then send it to the host. The information is
moved to RAM first, because the MIC cannot DMA out of the
ROM area.
BIC_INIT - source: &BPISR
linkage: CALL BIC_INIT
calls: none ‘
jump to: none
called by: MUX_MAIN
used by: none
The subprogram to initialize the BIC ISR, the BIC, and
the MIC.
BIC_ISR - source: &BPISR
linkage: CALL BIC_ISR

calls: ARQ_HOST, BIC_IDY, BIC_RD, BIC_RSR, BIC_RTS,
BIC_WD, BIC_YTC, BIC_UTC

jump to: BIC_EXIT

called by: BIC interrupt

HEWLETT-PACKARD PRIVATE
39

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

used by: MIC_IVEC

BIC and MIC interrupt service routine.

BIC_PSE - source:; &BPISR
linkage: JP BIC_PSE
calls: SRQ_HOST
jump to: BIC_EXIT
called by: none
used by: BIC_ISR

BIC PAUSE order handler.

BIC_RES - source: &BPISR
linkage: JP BIC_RES
calls: SRQ_HOST
jump to: none
called by: none
used by: BIC ISR

BIC RESUME command processor.

BIC_RD - source: &BCRUD
linkage: CALL BIC_RD
calls: BIC_ERR, HCIR_IO HRD_IO, HUD IO
- jump to: ORD_EXIT, RCI_CONT, RDD_CONT, WCC_CONT, WDD_CONT
ﬁalled by: BIC_ISR
used by: none

RD and WD order handler.

BIC_RSR - source: &BCRSR

HEWLETT-PACKARD PRIVATE
40

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: CALL BIC_RSR
calls: ABRT_REQ, HRD_IO
jump to: ORD_EXIT
called by: BIC_ISR
used by: none
This subprogram retugns the read request status block for
the current transaction to the host.
BIC_RTS - source: &BCRTS
linkage: CALL BIC_RTS

calls: ADD_Q, FREE_EVB, GET EVB, HRD_IO, NOTHIN,
SRQ_HOST, UPDTID

jump to: BIC_EXIT
called by: BIC_ISR
used by: none

This subprogram handles all RTS order processing.

BIC_SC - source: &BPISR
linkage: JP BIC_SC
calls: ARQ_HOST, SRQ _HOST
jump to: BIC_EXIT
c;lled by: none
used by: BIC_ISR

BIC subchannel connect command handler.
BIC WD - same as BIC RD

BIC WIC - source: &BCWIC
linkage: CALL BIC_WIC

HEWLETT-PACKARD PRIVATE
41

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

calls: CCD_BEG, CDV_BEG, EVNT _MGR, GET_EVB, GET_RQB,
HYD ™ 10, RCI BEG RDD BEG SRQ HOST UCC BEG
WbD BEG

jump to: BIC_EXIT, DIE

called by: BIC_ISR

i used by: none

WIC order handler.

BIC_UIC - source: &BCWIC
linkage: CALL BIC_WTC
calls: ABRT_REQ, ADD_Q, CCD_ABT, CDV_ABT, FREE _EVB,
HUD_TO, RCI ABI RDD ABT SET EVNT wce ABI
uDD_, ABT WDD_END
\ jump to: BIC_ERR, ORD_EXIT
called by: BIC_ISR

used by: none

WIC order handler.

CCD_ABT - source: &MXCCD
linkage: CALL CCD_ABT
calls: none
jump to: none
called by: BIC_WTC
used by: none

Abort the control card transaction.

CCD_BEG - source: 8&MXCCD
linkage: CALL CCD_BEG

On entry register BC contains the port stuff
address, register IY contains the request block

HEWLETT-PACKARD PRIVATE
42

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

address,
On exit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction (not used).
calls: CHUCK_RX, DATA_TX, ECHO_CK, MSG_EVNT, PACKITUP,
PRG_ CTC RESYNC RX COMPL SEND XON, SET_CNIR,
SET EVNT SET SIO
jump to: none
called by: BIC WIC
used by: none

Control card request processor.

CDV_ABT - source: &MXCDV
linkage: CALL CDV_ABT
calls: none
jump to: none
called by: BIC_WTC
used by: none

Abort the control device request processor.

CDV_BEG ~ source: &MXCDV
linkage: CALL CDV_BEG
calls: none
jump to: none
called by: BIC WIC
used by: none

Control device request processor.

CHEK_XOF - source: &RKISR

HEWLETT-PACKARD PRIVATE
43

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: CALL CHEK_XOF
On entry register 1Y = address of port’s stuff.
calls: PUT_CHAR, SET CNTR, SP_LEFT
jump to: none
called by: RX _ISRO, RX_ISR1, RX_ISR2, RX_ISR3, RK_ISR4,
RX_ISR5, RX_ISR6, RX_ISR7, SPC_ISRO,
SpC_ISR1, SPC_ISR2, SPC_ISR3, SPC_ISR4,
SPC_ISRS, SPC_ISR6, SPC_ISR7
used by: none
The frontplane doun counter has hit zero; check to see
if it is time to send an X-OFF to the device. If so
(and it is enabled) send the character. Unless called
from RX_COUNT subprogram, the frontplane down counter is
updated.
CHUCK_RX - source: &MXCCD
linkage: CALL CHUCK_RX
Register 1Y contains the port stuff address.
calls: EDIT_IT
jump to: none
called by: CCD_BEG

used by: none

Clean up the receive event,

CTCIVECO ~ source: 3MUKIV
linkage: none
calls: none
jump to: none
called by: none

" used by: none

HEWLETT-PACKARD PRIVATE
44

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

The CTC #0 interrupt vector table.

DATA_CK - source: &TXISR
linkage: CALL DATA CK
On entry register C = SIO data channel I/0 port
address, register D = parity mask, register E =
data mask, register IY = port stuff address.
calls: none
jump to: DATA_TXC
called by: none
used by: ECHO CK
Subprogram to set up pointers & counters to start data
transmission.
DATA_CKA - source: &TXISR
linkage: JP DATA_CKA
On entry registers C, D, E, and 1Y must be set
up the same as for DATA_CK. In addition the
buffer address must be set in register HL.
calls: none
jump to: none
called by: none
used by: PUT_DATA
Same function as for DATA CK except register HL is
already set and it bypass some of the checking which is
unnecessary.
DATA_TX - source: 3TXISR
linkage: CALL DATA_TX
On entry register C = SIQ data channel 1/0 port
address, register D = parity mask, register E =
data mask, register IY = port stuff address.

HEWLETT-PACKARD PRIVATE
45

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

calls: SET_EVNT, TX_SP CK
jump to: none

called by: DATA TX, TX ISRO, TX ISR1, TX ISR2, TX ISR3,
TX_ISR4, TX_ISRS, TX_ISR6, TX_ISR7

used by: none
Subprogram to send the next character, update the buffer
pointer and counter.
DATA_TXC - source: &TXISR
linkage: JP DATA_TXC
On entry the content of registers C, D, E, and
1Y are the same as for entry into DATA_TX
except register HL must contain the buffer
pointer for the next output character.
calls: see DATA_TX
jump to: none
called by: none
used by: DATA_CK
Same function as DATA_TX except register HL has the
buffer pointer already and need not be set up again,
DIE - source: &BPISR
linkage: JP DIE
calls: ARQ_HOST
jump to: none
called by: none

used by: GET_EVB, RX_ISRO, BX_ISR1, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISR5, RX_ISR6, RX ISR7

Subprogram to send the dead-or-dying status error to the host
and then jump to 0 to reinitialize the card.

HEULETT-PACKARD PRIVATE
46

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

DMAA ISR - source: &DMAA

linkage: CALL DMAA ISR

calls: none

jump to: none

called by: MIC channel A DMA interrupt

used by: MIC_IVEC

Th@s subprogram keep track of DMA channel A intgrrupts

which should never occur, except under bad condition.
DMAB ISR - source: &BPISR

linkage: CALL DMAB_ISR

calls: none

jump to: BIC_EXIT, return to the subprogram which calls
HCIR_IO, HRD_IO, or HWD_IO

called by: MIC interrupt
used by: MIC_IVEC

MIC channel B DMA interrupt service routine,

EAK_IT - source: &BCWTC
linkage: CALL EAK_IT
calls: ADD_Q, GET SIUF
jump to: none
called by: BIC WIC, EDIT IT
used by: none

Subprogram to process the EAK request of the WIC order.

ECHO_CK - source: &TXISR

linkage: CALL ECHO CK

HEWLETT-PACKARD PRIVATE
47

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

On entry register C = SI0 data channel 1/0 port
address, register D = parity mask, register E =
data mask, register IY = port stuff address.
calls: HENQ_CK, PUT_CHAR
jump to: DATA_CK

called by: ECHO CK, TX_ISRO, TX ISR1, TX_ISR2, TX_ISR3,
TX_ISR4, TX_ISR5, TX ISR6, TX_ISR7

uged by: none

Subprogram to check echo buffer and transmit next echo
character. If echo buffer is empty, go check the user
buffer,

EDIT_IT - source: SMUXEV

linkage: CALL EDIT_IT, (Q_TEMP) = the event to be edited
calls: EAK_IT, EDIT Q

jump to: none

called by: CHUCK_RX, RCI_BEG, RDD_BEG, WCC_CONT, WDD_BEG
used by: none

Routine to do all the editing, busy work, etc. to remove
an event from the system,

EDIT_Q - source: 8MUXEV
linkage: CALL EDIT_Q,‘(Q_TEMP) = event code, (Q_TEMP+1} =
port ID,‘reglster DE = address of the queue
header, interrupt system must be off

calls: FREE_EVB

jump to: none
called by: EDIT_IT
used by: none

Routine to remove events from either the RIS queue or the

event queue.

HEWLETT-PACKARD PRIVATE
48

HP-CIC 8-CHANNEL MUX FIRMWARE IMS

EVNT_MGR - source: &WUXEV

linkage: CALL EVNT_MGR, register HL contains the address
of the RIS or event queue

All registers will be destroyed except for
register 1Y,

calls: ADD Q
jump to: none

called by: AL1 EVNT, BIC WIC, GENSEVEN, MSG_EVNT,
SET_EVNT

used by: none

Routine to manage the queue of events and RTS responses.

EXT_ISRO - source: &EXISR
linkage: CALL EXT_ISRO
calls: SET_EVNT
jump to: none

called by: external status interrupt on SIO #0 channel A
(port 0)

used by: SIOIVECO
Process the external status interrupt generated by the
SI0 #0 channel A, The ISR only process the break
condition. All other conditions are ignored.
EXT_ISR1 - source: &EXISR
linkage: CALL EXT_ISR1
calls: SET_EVNT
jump to: none

called by: external status interrupt on SIC #0 channel B
(port 1)

used by: SIOCIVECO

HEWLETT-PACKARD PRIVATE
49

HP-CIO 8-CHANNEL MUK FIRMWARE IMS

Process the external status interrupt generated by the
SI0 #0 channel B. The ISR only process the break
condition. All other conditions are ignored.

EXT_ISR2 - source: &EXISR
linkage: CALL EXT_ISR2
calls: SET_EVNT
jump to: none

called by: external status interrupt on SIO #1 channel A
(port 2)

used by: SIOIVEC1
Process the external status interrupt generated by the
SI0 #1 channel A. The ISR only process the break
condition. All other conditions are ignored.
EXT_ISR3 - source: &EXISR
linkage: CALL EXT_ISR3
calls: SET_EVNT
jump to: none

called by: external status interrupt on SIO #1 channel B
(port 3)

used by: SIOIVEC1
Process the external status interrupt generated by the
SIO . #1 channel B, The ISR only process the break
condition. All other conditions are ignored.
EXT_ISR4 - source: &EXISR
linkage: CALL EXT_ISR4
calls: SET_EVNT
jump to: none

called by: external status interrupt on SIO #2 channel A
(port 4)

HEWLETT-PACKARD PRIVATE
50

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

used by: SIOIVEC2
Process the external status interrupt generated by the
SI0 #2 channel A. The ISR only process the break
condition. All other conditions are ignored.
EXT_ISRS - source: &EXISR
linkage: CALL EXT ISR5
calls: SET EVNT
jump to: none

called by: external status interrupt on SIO #2 channel B
(port 5)

used by: SIOIVEC2
Process the erternal status interrupt generated by the
SI0 §2.channel B. The ISR.ogly process the break
condition. All other conditions are ignored.

EXT_ISR6 - source: &EXISR
linkage: CALL EXT_ISR6 .
calls: SET_EVNT
jump to: none
called by: external status interrupt on SIO #3 channel A
used by: SIOIVEC3
Process the external status interrupt generated by the
SIO #3 channel A. The ISR only process the break
condition. All other conditions are ignored.

EXT_ISR7 - source: &EXISR
linkage: CALL EXT_ISR7
calls: SET_EVNT
jump to: none
called by: external status interrupt on SIO #3 channel B

HEWLETT-PACKARD PRIVATE
51

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

used by: SIOIVEC3
Process the external status interrupt generated by the
SIO #3 channel B, The ISR only process the break
¢condition. All other conditions are ignored.
FIND_TID - source: &BCWTC
linkage: CALL FIND_TID
On exit the Z flag is set if the subprogram
cannot find the request block containing the
TID. Otheruise, register DE contains the
request block address.
calls: none
jump to: none
called by: BIC_UIC
used by: none
Subprogram to find the location of the request block
containing the TID specified in the WTC request block.
FP_W1000 - source: &MXUCC
linkage: JP FP_W1000
calls: none
jump to: none
called by: none
used by: RCI_BEG
Entry in WCC_BEG to return the request cannot be block
error.
FP_1060 - source: &MXWCC
linkage: JP FP_W1060
calls: none
jump to: none

HEWLETT-PACKARD PRIVATE
52

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

called by: none
used by: RCI_BEG
Entry in UCC_BEG to return the invalid subfunction code
error.
FP_W1200 - source: MXWCC
linkage: JP FP_U1200
calls: none
jump to: none
called by: none
used by: RCI_BEG
Entry in WCC_BEG to return the illegal request length
error.
FREE_EVB - source: &MUXEV

linkage: CALL FREE EVB, register HL contains the block
address

calls: none
jump to: none
called by: BIC_RTS, BIC_WTC, EDIT_Q, MUX_MAIN
used by: none
Routine to return an event block to the free space
~ storage area.
FREE_RQB - source: &BCWIC
linkage: CALL FREE_RGB

On entry register Hl contains the address of
the block to be returned to free storage.

calls: none
jump to: none

HEWLETT-PACKARD PRIVATE
53

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

called by: BIC RSR, MUX_MAIN
used by: none

Routine to return a request block to free storage.

GENSEVEN - source: &SSISR

linkage: CALL GENSEVEN
Register B contains the baud rate index sensed,
register C contains the 8th bit value of
character sensed, register IY contains the port
stuff address.

calls: EVNT_MGR, GET_EVB

jump to: none

called by: SS_ISRO, SS_ISR1, SS_ISR2, SS_ISR3, SS_ISR4,
SSTISR5, SS_ISR6, SS_ISR7

used by: none

Generate the solicited speed sensed event.

GET_EVB - source: &UXEV
linkage: CALL GET_EVB

Returns the address to the block in register HL.
Register A is trashed.

calls: none
jump to: DIE

called by: AL1_EVNT, BIC RTS, BIC_UIC, GENSEVEN,
MSG_EVNT, SET_EVNT

used by: none

Allocate an event block from free storage.

GET_RQB - source: &BCWIC

linkage: CALL GET_RQGB

HEWLETT-PACKARD PRIVATE
54

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

On exit the Z flag bit is set if there is no
space. Otherwise register HL will contain the
address of the block

calls: none

jump to: none

called by: BIC WIC

used by: none

Subprogram to get a request block from the free list.

GET_STUF - source: &BCUIC
linkage: CALL GET_STIUF
On entry, register A contains the port ID.

On exit, register HL contains the address of
PORTISTAT+1 for the port being processed.

calls: none
jump to: none
called by: EAK_IT
used by: none
A subprog{a@ to'find the address for PORTSTAT+1 for the
port specified in the WIC request block.
HCIR_IO - source: 8BPISR
linkage: CALL HCIR_IO

Register DE contains the data transfer length
and register HL contains the buffer address,

calls: none

jump to: none

called by: BIC_RD, BIC WD
used by: none

HEWLETT-PACKARD PRIVATE
55

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

This subprogram is to transfer data from or to the host

to the card transmit buffer or from the card receive

buffer which are structured as circular buffers.
HENQ_CK - source: &TXISR

linkage: CALL HENQ_CK

calls: none

jump to: none

called by: ECHO CK, PUT ECHO, TX_ISRO, TX_ISR1, THX_ISR2,
TX_I3R3, TX_ISR4, TX_ISR5, TX ISR6, TX_ISR7

used by: none

Check and process the host ENQ/ACK handshake option.

HRD_IO - source: &BPISR
linkage: CALL HRD_IO

Register DE contains the data transfer length and
register HL contains the buffer address.

calls: none
jump to: none
called by: BIC_IDY, BIC_RD, BIC_RSR, BIC_RTS, BIC_UD
used by: none
Subprogram to transfer data from the card to the host.
The subprogram will automatically assert the end on the
last byte.
HWD IO - source: &BPISR
linkage: CALL HWD_IO
calls: none
jump to: none
called by: BIC_RB, BIC WD, BIC WIC, BIC_UWTC

HEWLETT-PACKARD PRIVATE
56

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

used by:. none

Subprogram to transfer data from the host to the card.

IVECIOR - source: &MUXIV
linkage: none
calls: none
jump to: none
called by: none
used by: none

The MUX interrupt table.

MIC_IVEC - source: &MUXIV
linkage: none
calls: none
jump to: none
called by: none
used by: nhone

The MIC interrupt vector table.

MIN - source: &RXISR
linkage: CALL MIN

On entry register HL = one value, register DE = the
other value.

On exit register HL contains the smaller value.
calls: none
jump to: none
called by: RDD_BEG, RX_COMPL, SET CNTR

HEWLETT-PACKARD PRIVATE
57

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

used by: none

Subprogram to return the minimum of the two 16-bit values,

MSG_EVNT - source: &MXRDD
linkage: CALL MSG_EVNT

Register DE = address of the buffer, register
IY = address of port’s stuff.

calls: EVNT MGR, GET EVB
jump to: none

called by: CCD_BEG, RDD_COMPL, RDD_CONT, WCC_CONT

used by: none

Subprogram to generate a message received event block
from the current backplane receive buffer.

MUX_DDM - source: &MXDDM

linkage: JP MUX_DDM

calls: none

jump to: none

called by: none
used by: MUX_MAIN
The debug monitor for trouble shooting the MUX product
firmware. The only way to enter is by forcing an NMI on
the Z80 by touch pin 17 to ground.
The debug monitor is programmed to transmit and receive

data only on port 0, The baud rate is 9600, Additional
documentation may be found in the source listing.

.

MUX_MAIN - source: &MUXMN

linkage: main firmware entry always start at address
zZero

calls: BIC INIT, FREE_EVB, FREE RQB, OTSP_SET, SING SET

HEWLETT-PACKARD PRIVATE
58

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

jump to: MX STEST
called by: main entry
used by: none

Main firmware entry to initialize systenm.

MX_STEST - source: &MUXST
linkage: JP MX_STEST
Register IY contains the return address,
calls: none
jump to: the caller
called by: none
used by: MUX MAIN

The MUX card self-test.

NOTHIN - source: &BCRSR
linkage: CALL NOTHIN
calls: none
jump to: none
called by: ABRT REQ, BIC RTS, RDD_CONT
used by: none

Subprogram to make the active request idle.

ORD_EXIT - source: &BCRTS
linkage: JP ORD_EXIT
calls: SRQ_HOST
jump to: BIC_EXIT
used by: BIC_RD, BIC_RSR, BIC_RTS, BIC_WD, BIC_WIC

HEWULETT-PACKARD PRIVATE
59

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

OTSP CLR -

0TSP_SET -

PACKITUP -

Subprogram to do the SRQ for the next order and to jump
to the BIC exit point.
source: SMXUCC
linkage: CALL OTSP_CLR
Register IY contains the port stuff address,
calls: none
jump to: none
called by: WCC_CONT
ysed by: none
Subprogram to clear all the special condition in the
special character tatle except for the single text
termination.
source: &MXUCC'
linkage: CALL OTSP_SET
Register 1Y contains the port stuff address.
calls: none
jump to: none
called by: MUX_MAIN, WCC_CONT
used by: none
Subprogram to set all the special condition in the
special character table except for the single text
termination.
source: &RXISR
linkage: CALL PACKITUP
On entry register A = terminating reason,
register E = terminating character, and
register 1Y = address of port’s stuff,

On exit register HL = address of buffer’s

HEWLETT-PACKARD PRIVATE

60

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

header.
calls: none
jump to: none
called by: CCD_BEG, RDD BEG, RX_ISRO, RX_ISR1, RX_ISR2,
RX_ISR3, RX_ISR4, RX_ISR5, RX_ISR6, RX_ISR7,
WCC_CONT
used by: none
Subprogram to pack up the current receive buffer, sets
the length and the terminating reason in the buffer
header, and sets the pointers for the next buffer.
PRG_CIC - source: &MXWCC
linkage: CALL PRG_CIC

On entry register 1Y contains the address to the
port stuff,

calls: none
jump to: none

called by: CCD_BEG, SS_ISRO, SS_ISR1, SS ISR2, SS_ISR3,
SS_TSR4, SS_ISRS, SS_ISR6, SS_ISR7, WCC CONT

used by: none

Program the baud rate generator for the specified port.

PUT_CHAR - source: &TXISR
linkage: CALL PUT_CHAR
On entry register A contains the character for
output, registr C contains the SIO data channel
I/0 port address, register IY contains the port
stuff address.
calls: none

jump to: none

called by: CHEK XOF, ECHO CK, PUT_ECHO, RDD_BEG,
REAL_CLK, SEND_XON, TX_ISRO, TX_ISR1,

HEWLETT-PACKARD PRIVATE
61

HP-CIO 8-CHANNEL MUX FIRMWARE IMS HP-CIO 8-CHANNEL MUX FIRMWARE IMS

TX_ISR2, TX_ISR3, TX_ISR4, TX_ISR5, TX_ISR6, PUT ECHO - source: &TXISR
TX_ ISR7 -
linkage: CALL PUT_ECHO
used by: none
On entry register A contains the character to
Check for force parity and then output the next be echo, register IY contains the port stuff
character., address.

calls: HENQ_CK, PUT_CHAR
PUT_CHR - source: &RXISR
jump to: none
linkage: CALL PUT_CHR
called by: RX_ISRO, RX_ISR1, RX_ISR2, RK_ISR3, RX_ISR4,
On entry register 1Y = address of port’s stuff, RX ISRS RK ISR6, RX_ ISR7, SPC ISRO
register E = character to store. SPC ISRl SPC ISR2 SpC ISR3 SPC ISR4
SPC_ ISRS SPC ISR6 SPC” ISR7
On exit, the Z flag is set on buffer full.
used by: none
calls: none
Subprogram to output an echo character if the
jump to: none transmitter is not busy. Otherwise, add the character
to the echo buffer.
called by: RX_ISR0O, RX_ISR1, RX ISR2, RX_ISR3, RX_ ISR4,
RX_ ISRS RX_ ISRS RK_ ISR7 SPC ISRO SPC ISRl
SPC ISR2 SPC ISR3 SPC ISR4 SPC ISRS RCI_ABT - source: 3MXRCI
SpC_ ISRG SPC_ISR7
linkage: CALL RCI_ABT
used by: none
calls: none
Subprogram to place a character into the active receive
buffer and update all the pointers. jump to: none

called by: BIC_WIC
PUT_DATA - source: TXISR

used by: none
linkage: CALL PUT_DATA
Abort the read card information transaction.
On entry register IY contains the port stuff
address.

RCI_BEG - source: &MXRCI
calls: none
. linkage: CALL RCI_BEG
jump to: DATA_CKA
On entry register BC = port stuff address,

called by: WDD_BEG, WDD CONT register IY = request block address.
used by: none On exit the C flag is set to continue, the S

. flag is set for an error, the Z flag is set to
Subprogram to start the data transmission, if necessary. do nothing.

calls: EDIT_IT

HEWLETT-PACKARD PRIVATE HEWLETT-PACKARD PRIVATE
62 63

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

juﬁp to: FP_U1000, FP_W1060, FP_U1200
called by: BIC WIC
used by: none

Begin read card information processing. Set up the

buffer address and the buffer length for the transaction.

RCI_CONT - source: 8MXRCI
iinkage: CALL RCI_CONT
calls: none
jump to: none
called by: BIC_RD
used by: none

Continue the read card information transaction.

RDD_ABT - source: 8MKRDD

linkage: CALL RDD_ABT
On entry register BC contains the port stuff
address, register IY contains the request block
address.

calls: RX_TOGGL

jump to: none

called by: BIC WIC

used by: none

Abort the read device data transaction.

RDD_BEG - source: &MXRDD
linkage: CALL RDD_BEG
On entry register BC contains the port stuff
address, register IY contains the request block

address,

HEWLETT-PACKARD PRIVATE
64

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

On exit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction.

calls: EDIT IT, MIN, PACKITUP, PUT CHAR, RD_SUAP,
RX_TOGGL, SET_CNTR, UPD_EOC™

jump to: none
called by: BIC WIC
used by: none

Begin read device data transaction processing.

RDD_CONT - source: &MXRDD
linkage: CALL RDD_CONT
On entry register BC contains the port stuff
address, register IY contains the request block
address.

calls: AL1 EVNT, MSG_EVNT, NOTHIN, SEND XON, SET CNTR,
UPD_EOC

jump to: none
called by: BIC_RD
used by: none

Continue the read device data transaction.

RD_SWAP - source: &MXWCC
"linkage: CALL RD_SUAP
Register 1Y = port stuff address.
calls: SING_CLR, SING_SET
jump to: none

called by: RDD_BEG, RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISRS, RX_ISR6, RX_ISR7, UCE_CONT

used by: none

HEWULETT-PACKARD PRIVATE
65

i HP-CIO 8-CHANNEL MUX FIRMWARE IMS

Make the pending read configuration active.

REAL_812 - source: &MXCLK

REAL CLX -

linkage: JP REAL_812
Register 1Y contains the port stuff address.
calls: none
jump to: TX_90, TX 280
called by: none
used by:
An entry into_REAL_CLK to set up the environment to jump
to the transmit ISR.
source: &MXCLK
linkage: CALL REAL_CLK
calls: PUT_CHAR, SET_EVNT
jump to: TX 90, TX 280
called by: CTC #0 channel 3 interrupt
used by: CICIVECO

Real time clock interrupt service routine. The clock
resolution is 10 milliseconds.

RESYNC - source: SMXCCD

1

inkage: CALL RESYNC

Register 1Y contains the port stuff address.

calls: none

jump to: none

called by: CCD_BEG, SS_ISRO, SS_ISR1, SS_ISR2, SS_ISR3,

55_ISR4, SS_ISR5, SS_ISR6, SS_ISR7

used by: none

HEWLETT-PACKARD PRIVATE

66

HP-CIO 8-

RX_COMPL

CHANNEL MUX FIRMWARE IMS

Subprogran to put the SIO into synchronous mode and the
corresponding CIC to 19.2 KHz to start speed sensing.
- source: SMXRDD
linkage: CALL RX_COMPL
Register HL = address of completed buffer,
register 1Y = address of port stuff, the
interrupt system must be off before calling.
calls: MIN, MSG_EVNT, SET_CNTR, SET_EVNT
jump to: none

called by: CCD BEG, RX_ISRO, RX_ISR1, RK_ISR2, RX_ISR3,
RX_TSR4, RX_ISR5, RX_ISR6, RX_ISR7, UCC CONT

used by: none

Subprogram to complete a read request to the host. The
current buffer is made available to the backplane, and
either an event is generated if no request is pending,
or a continue status is generated if there is a request.

RX_IS0A - source: &RKISR

RX_IS1A -

linkage: JP RX_IS0A

calls: see RX_ISRO

jump to: see RX_ISRO

called by: none

used by: SPC_ISRO

Entry iq RX_ISRO to continue the receive character
processing.

source: 8RXISR

linkage: JP RX_IS1A

calls: see RX_ISR1

jump to: see RX ISR1

HEWLETT-PACKARD PRIVATE

67

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

called by: none
used by: SPC_ISR1
Entry in RX_ISR1 to continue the receive character
processing.
RX_IS2A - source: &RXISR
linkage: JP RX_152A
calls: see RX ISR2
jump to: see RX_ISR2
called by: none
used by: SPC_ISR2
Entry in RX_ISR2 to continue the receive character
processing.
RX_IS3A - source: &RXISR
linkage: JP R{_IS3A
calls: see RX_ISR3
jump to: see R{_ISR3
called by: none
used by: SPC_ISR3
Entry ip RX¥_ISR3 to continue the receive character
processing.
RX_IS4A - source: &RXISR
linkage: JP RX_IS4A
calls: see RX_ISR4
jump to: see RX_ISR4
called by: none
used by: SPC_ISR4

HEWLETT-PACKARD PRIVATE
68

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

Entry in RK_ISR4 to continue the receive character
processing.
RK_IS5A - source: &RXISR
linkage: JP RX_IS5A
calls: see RX_ISRS
jump to: see RX_ISR5
called by: none
used by: SPC_ISR5
Entry in RX_ISR5 to continue the receive character
processing.
RX_IS6A - source: &RXISR
linkage: JP RX_IS6A
calls: see RX_ISR6
jump to: see RX_ISR6
called by: none
used by: SPC_ISR6
Entry in RK_ISR6 to continue the receive character
processing.
RX_IS7A - source: &RXISR
linkage: JP RX_IS7A
calls: see RX_ISR7
jump to: see RX_ISR7
called by: none
used by: SPC_ISR7
Entry in RK_ISR7 to continue the receive character

processing.

HEWLETT-PACKARD PRIVATE
69

HP-CIO 8-

RX_LOC -

RX_ISRO -

RX_ISR1 -

RX_ISR2 -

CHANNEL MUX FIRMWARE IMS

source: &MWUXIV

linkage: none
calls: none

jump to: none
called by: none
used by: none
Contains the location of the receive interrupt cell for
the RX interrupt service routine address.

source: &RXISR

linkage: CALL RX_ISRO

calls: AL1 EVNT, CHEK XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX_| COMPL RD_SiaP, SET CNTR, SET_| EVNT SP LEFT

jump to: DIE
called by: SI0O #0 channel A receive interrupt
used by: RX_VEC, SIOIVECO

Process the character received from the SIO.

source: &RXISR
linkage: CALL RX_ISR1

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX COMPL RD_SWAP, SET_CNTR, SET_| EVNT SP_LEFT

jump to: DIE
called by: SIO #0 channel B receive interrupt
used by: RX_VEC, SIOIVECO

Process the character received from the SIO0.

source: &RXISR

linkage: CALL RX_ISR2

HEWLETT-PACKARD PRIVATE

70

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

RX_ISR3 -

RX_ISR4 -

RX_ISRS -

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX COMPL RD_SUAP, SET _CNTR, SET_ EVNT SP_LEFT

jump to: DIE
called by: SIO #1 channel A receive interrupt
used by: RX_VEC, SIOIVEC1

Process the character received from the SIO.

source: &RXISR
linkage: CALL RX_ISR3

calls: AL1_EVNT, CHEK XOF, PACKITUP, PUT_CHR, PUT ECHO,
RX COMPL RD_SUAP, SET _CNTR, SET EVNT SpP_LEFT

jump to: DIE
called by: SIO #1 channel B receive interrupt
used by: RX _VEC, SIOIVECO

Process the character received from the SIO.

source: &RXISR
linkage: CALL RX_ISR4

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX COMPL RD_: SUAP, SET CNTR, SET EVNT SP LEFT

jump to: DIE
called by: SIO #2 channel A receive interrupt
used by: RK_VEC, SIOIVEC2

Process the character received from the SIO.

source: &RXISR
linkage: CALL RX_ISR5

calls: AL1_EVNT, CHEK XOF, PACKITUP, PUT_CHR, PUT ECHO,
RX CONPL RD SUAP SET _CNTR, SET EVNT SP LEFT

HEWLETT-PACKARD PRIVATE

71

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

RX_ISR6 -

RX_ISR7 -

RX_SPAC -

jump to: DIE
called by: SIO #2 channel B receive interrupt
used by: RX_VEC, SIOIVEC2

Process the character received from the SIO.

source: &RKISR
linkage: CALL RX_ISR6

calls: AL1 EVNT, CHEK XOF, PACKITUP, PUT_CHR, PUT ECHO,
‘ RX_COMPL, RD SWAP, SET CNTR, SET_EVNT, SP_LEFT

jump to: DIE
called by: SIO #3 channel A receive interrupt
used by: RX_VEC, SIOIVEC3

Process the character received from the SIO.

source: &RXISR
linkage: CALL RX_ISR7

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX_COMPL, RD SUAP, SET CNIR, SET_EVNT, SP LEFT

jump to: DIE
called by: SIO #3 channel B receive interrupt
used by: RX_VEC, SIOIVEC3

Process the character received from the SIO.

source: &MXUWCC
linkage: CALL RX_SPAC

On entry register IY contains the port stuff
address.

On exit register HL contains the result,
register A contains the content in register L.

HEWLETT-PACKARD PRIVATE

72

HP-CI0 8-CHANNEL MUX FIRMWARE IMS

calls: none
jump to: none
called by: RCI_BEG, WCC_CONT
used by: none
Find the current frontplane receive record size which
also includes th header.
RX_TOGGL - source: &MXRDD
linkage: CALL RX TOGGL
Register BC contains the address of the request
block, register 1Y contains the address of port
stuff,
calls: none
jump to: none
called by: RDD_BEG
used by: none
Routine to set up the special character function mask
for the frontplane. Each bit in the read request
subfunction is used to toggle the enabled/disabled state
of certain frontplane functions: handshake, signal,
quotable, edit, and single text termination. This
routine also toggles the echo mode flag in RX_FLAGS.
RX_VEC - source: &MUXIV
linkage: none
calls: none
jump to: none
called by: none
used by: none
Contains the normal receive interrupt service routine

addresses.,

HEWLETT-PACKARD PRIVATE
73

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

SEND_XON -

SET_CNIR -

SET_DMSK -

source: &MXCCD

linkage: CALL SEND_XON

calls: PUT_CHAR, SP_LEFT

jump to: none

called by: CCD_BEG, RDD_CONT

used by: none

Subprogram to test if an X-OFF have been sent by the
receiver. If so, and there is now enough space (due to
flush) send an X-ON and clear the X-OFF sent flag.
source: &RXISR

linkage: CALL SET_CNIR

On entry register 1Y contains the address to
port’s stuff,

calls: MIN

jump to: none

called by: CCD_BEG, RDD_BEG, RDD_CONT, RX_COMPL,
RX_TSRO, RX ISRl RX ISRZ RX ISR3 RX ISR4,
RX ISR5 RX ISRG RX ISR7 UCC CONT

used by: none

Subprogram to set the frontplane down counter.

source: &MKWCC
linkage: CALL SET_DMSK
Register IY contains the port stuff address.
calls: none
jump to: none
called by: WCC_CONT

used by: none

HEWLETT-PACKARD PRIVATE

74

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

Set the data and parity mask.

SET_EOC - source: &MXUCC

linkage: CALL SET_EOC
Register IY contains the port stuff address.
calls: none
jump to: none
called by: WCC_CONT
used by: none

Routine to copy the master value of the end-on-count
counter to the active (running) frontplane counter.

SET_EVNT - source: &MUXEV

linkage: CALL SET_EVNT

Register C contains the event priority,
register B contains the RTS status code
(CONTINUE, END, EVENT SENSED). If B = CONTINUE
or END, register DE contains the address of the
request block. If B = EVENT SENSED, then
register D = event code (e.g., TX buffer
available) and register E = port number.

calls: EVNT_MGR, GET_EVB

jump to: none

called by: BIC _WTC, CCD_BEG, DATA_TX, EXT_ISRO,
EXT ISRl EXT ISRZ EXT ISR3 EXT ISR4
EXT ISR5 EXT ISRG EXT ISR7 REAL CLK

RX COHPL RX ISRO RX ISRl RX ISRZ RX ISR3,
RX 1SR4, RX TSRS, RX TSR6, RX TSR7, UCC CONT

used by: nhone

Subprogram to interface the frontplane to the backplane
event manager.

SET_SIO0 - source: &MXWCC

HEWLETT-PACKARD PRIVATE

75

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: CALL SET_SIO

Register IY = address of port stuff.
calls: none
jump to: none

called by: CCD BEG, SS_ISRO, SS_ISRL, SS_ISR2, SS_ISR3,
SS TSR4, SS_ISR5, SS_ISR6, SS_ISR7, UCC_CONT

used by: none

Configure the SIO for the specified port.

SING_CLR - source: &MXWCC
linkage: CALL SING_CLR

Register IY contains the address to port stuff,
the character to be cleared is in array STERM,

calls: none

jump to: none

called by: WCC_CONT

uged by: none

Clear the single text termination condition in the

speclal character table.

SING SET - source: &MXWCC

linkage: CALL SING_SET
Register IY contains the address to port stuff,
the single text terminator to be set is in
array STERM.

calls: none

jump to: none

called by: MUX _MAIN, WCC_CONT

used by: none

HEWLETT-PACKARD PRIVATE
76

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

Set the single text termination condition bit in the

speclial character table for the given character.
SIOIVECO - source: &UXIV

linkage: none

calls: none

jump to: none

called by: none

used by: none

SIO #0 interrupt vector table.

SIOIVEC1 - source: &MUXIV
linkage: none
calls: none
jump to: none
called by: none
used by: none

SI0 #1 interrupt vector table.

SIOIVEC2 - source: &MUXIV
linkage: none
calls: none
jump to: none
called by: none
used by: none

SI0 #2 interrupt vector table,
SIOIVEC3 - source: &MUXIV

HEWLETT-PACKARD PRIVATE
77

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: none
célls: none
jumb to: none
called by: none
uged by: none

SIO #3 interrupt vector table.

SPC_ISRO - source: &SPISR
linkage: CALL SPC_ISRO
calls: CHEK OF, PUT_CHR, PUT_ECHO
jump to: RX_ISOA

called by: receive special condition SIO #0 channel A
interrupt

used by: RX_VEC, SIOIVECO
Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.
SPC_ISR1 - source: &SPISR
linkage: CALL SPC_ISR1
calls: CHEK OF, PUT_CHR, PUT_ECHO
jump to: RX_ISI1A

called by: receive special condition SIO #0 channel B
interrupt

used by: RX _VEC, SIDIVECO
Receive special condition interrupt service routine.

This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC_ISR2 - source: &SPISR

HEWLETT-PACKARD PRIVATE
78

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: CALL SPC_ISR2
calls: CHEK_OF, PUT CHR, PUT_ECHO
jump to: RX_IS2A

called by: {eceive special condition SIO #1 channel B
interrupt

used by: RX_VEC, SIOIVEC1
Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.
SPC_ISR3 - source: &SPISR
linkage: CALL SPC_ISR3
calls: CHEK OF, PUT_CHR, PUT ECHO
jump to: RX_IS3A

called by: receive special condition SIO #1 channel B
interrupt

used by: RX_VEC, SIOIVEC1
Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.
SPC_ISR4 - source: &SPISR
linkage: CALL SPC_ISR4
calls: CHEK OF, PUT_CHR, PUT_ECHO
jump to: RK_IS4A

called by: receive special condition SIO #2 channel A
interrupt

used by: RK_VEC, SIOIVEC2
Receive special condition interrupt service routine.

This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

HEWLETT-PACKARD PRIVATE
79

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

SPC_ISR5 - source: &SPISR
linkage: CALL SPC_ISR5
calls: CHEK OF, PUT CHR, PUT ECHO
jump to: RX_IS5A

called by: receive special condition SIO #2 channel B
interrupt

used by: RX_VEC, SIOIVEC2
Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.
SPC_ISR6 - source: &SPISR
linkage: CALL SPC_ISR6
calls: CHEK_OF, PUT_CHR, PUT_ECHO
jump to: RX_IS6A

called by: receive special condition SIC #3 channel A
interrupt

used by: RX_VEC, SIOIVEC3
Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC_ISR7 - source: &SPISR
linkage: CALL SPC_ISR7
calls: CHEK_OF, PUT CHR, PUT ECHO
jump to: RX_IS7A

called by: receive special condition SI0 #3 channel B
interrupt

used by: RX_VEC, SIOIVEC3

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the

HEWLETT-PACKARD PRIVATE
80

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

framing error generated by the SIGC.

SPD_SEN - source: &SPDSN
linkage: CALL SPD_SEN

On entry register A contains the new character
received, register B contains the previous
character, register C contains the down counter,
register DE is used as a scratch, register HL
containg the address to the current counter for
the port. The first counter in RAM must be
initialize at the time the SIO is put into hunt
mode,

On exit the C flag is set to continue speed
sensing, the S flag is set if speed sense
failed, the Z flag is set if the speed sense
routine found the correct baud rate. In the
latter case registers A and B will contains the
index into the baud rate table given in
subprogram PRG _CIC.

calls: none

jump to: none

called by: SS_ISRO, SS_ISR1, SS_ISR2, SS_ISR3, SS_ISR4,
SS_ISR5, SS_ISR6, SS_ISR7

used by: none
Speed sense subprogram to detect the baud rate of the
selected port.
SP_LEFT - source: 8MXRDD
linkage: CALL SP_LEFT
On entry register 1Y = port stuff address.

On exrit register HL contains the space
remaining.

calls: none
jump to: none
called by: CHEK XOF, RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3,

HEWLETT-PACKARD PRIVATE
81

HP-CIO 8-CHANNEL MUK FIRMWARE IMS

RX_ISR4, RX_ISRS, RX_ISR6, RX ISR7, SEND_XON
used by: none
Subp;ogram to figure out how much space is left in the
receive buffer.
SRE_RIN - source: &BPISR
linkage: JP SRE_RIN
calls: none
jump to: BIC_EXIT
called by: none
used by: BIC_ISR
$ub§rogram to send the next ARQ status code when the BIC
is ready for it.
SRQ_HOST - source: &BPISR
linkage: CALL SRQ_HOST
calls: none
jump to: none

called by: ADD_Q, BIC_IDY, BIC_PSE, BIC RSE, BIC_RTS,
BIC_SC, BIC WIC

used by: none

Send the SRQ to the host for the next order.

SSB_ISRO - source: &SSBIR
linkage: CALL SSB_ISRO
calls: RESYNC
jump to: none
called by: none
used by: 55 _VEC

HEWLETT-PACKARD PRIVATE
82

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

Reinitialize speed sensing due to a data overrun error.

SSB_ISR1 - source: &SSBIR
linkage: CALL SSB_ISR1
calls: RESYNC
jump to: none
called by: none
used by. SS_VEC

Reinitialize speed sensing due to a data overrun error.

SSB_ISR2 - source: &SSBIR
linkage: CALL SSB_ISR2
calls: RESYNC
jump to: none
called by: none
used by: SS_VEC

Reinitialize speed sensing due to a data overrun error.

SSB_ISR3 - source: &SSBIR
linkage: CALL SSB_ISR3
calls: RESYNC
jump to: none
called by: none
used by: SS_VEC

Reinitialize speed sensing due to a data overrun error.

SSB_ISR4 - source: &SSBIR
linkage: CALL SSB_ISR4

HEWLETT-PACKARD PRIVATE
83

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

SSB_ISRS -

SSB_ISR6 -

S3B_ISR7 -

calls: RESYNC
jump to: none
called by: none

used by: SS_VEC

Reinitialize speed sensing due to a data overrun error.

source: &SSBIR
linkage: CALL SSB_ISR5
calls: RESYNC <

jump to: none

called by: none

used by: SS VEC

Reinitialize speed sensing due to a data overrun error.

source: &SSBIR
linkage: CALL SSB_ISR6
calls: RESYNC

jump to: none

called by: none

used by: SS_VEC

Reinitialize speed sensing due to a data overrun error.

source: &SSBIR
linkage: CALL SSB_ISR7
calls: RESYNC

jumb to: none

called by: none

HEWLETT-PACKARD PRIVATE

84

HP-CIO 8-CHANNEL MUX FIRMJARE IMS

used by: SS VEC

Reinitialize speed sensing due to a data overrun error.

SS_ISRO - source: &SSISR
linkage: CALL SS_ISR0O
calls: GENSEVEN, PRG_CIC, RESYNC, SET_S10, SPD SEN
jump to: none

called by: receive SI0O #0 channel A interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

SS_ISR1 - source: &SSISR
linkage: CALL SS_ISR1
calls: GENSEVEN, PRG_CTC, RESYNC, SET SIO, SPD SEN
jump to: none

called by: receive SI0O #0 channel B interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

SS_ISR2 - source: &SSISR
linkage: CALL SS_ISR2
calls: GENSEVEN, PRG_CIC, RESYNC, SET_SIO, SPD_SEN
jump to: none ‘

called by: receive SIO #1 channel A interrupt when in
speed sensing mode

used by: SS_VEC

HEWLETT~PACKARD PRIVATE
85

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

Speed sensing interrupt service routine.

S5_ISR3 - source: &SSISR
linkage: CALL SS_ISR3
calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD_SEN
jump to: none

called by: receive SIO #1 channel B interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

S5_ISR4 - source: &SSISR
linkage: CALL SS_ISR4
calls: GENSEVEN, PRG CIC, RESYNC, SET SIO, SPD SEN
jump to: none

called by: receive SIO #2 channel A interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

S§_ISR5 - source: &SSISR
linkage: CALL SS_ISR5
calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD_SEN
jump to: none

called by: receive SIO #2 channel B interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

HEWLETT-PACKARD PRIVATE
86

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

SS_ISR6 - source: &SSISR
linkage: CALL SS_ISR6
calls; GENSEVEN, PRG_CIC, RESYNC, SET SIO, SPD_SEN
jump to: none

called- by: receive SIO #3 channel A interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

SS_ISR7 - source: &SSISR
linkage: CALL SS_ISR7
calls: GENSEVEN, PRG CIC, RESYNC, SET SIO, SPD SEN
jump to: none

called by: receive SIO #3 channel B interrupt when in
speed sensing mode

used by: SS_VEC

Speed sensing interrupt service routine.

SS_VEC - source:. &MUXIV
linkage: none
calls: none
jump to: none
called by: none
used by: none

Speed sense interrupt service routine address table.

TOGGLE - source: 8MXWDD

linkage: CALL TOGGLE

HEWLETT-PACKARD PRIVATE
87

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

On entry register BC contains the port stuff
address, register 1Y contains the request block
address.

calls: none

jump to: none

called by: WDD_BEG, WDD_CONT

used by: none

Toggle the handshake bit in the toggle mask.

TOGGLEA - source: MXUCC
linkage: CALL TOGGLEA

Register IY contains the address to port stuff,

the interrupt system must be off before calling.

calls: none

jump to: none

called by: WCC_CONT

used by: none

Update the toggle mask due to subfunction 0, 1, or 31

changes.
TX_280 - source: &TXISR

linkage: JP TX_280

calls: see TX_ISRx

jump to: none

called by: none

used by: REAL 812, REAL CIK

Cont@nuation in.thg transmitter ISR to decide whether to

continue transmission of user data or echo data.
TX_90 - source: &TXISR

HEWLETT-PACKARD PRIVATE
88

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: JP TX_90

calls: see TX_ISRx

jump to: -none

called by: none

used by: REAL_812, REAL CLK

Entry into the TX ISR to check for transmitter options and
to continue data transmission,

TX_EQAK - source: &TXISR
linkage: CALL TX_EQAK
calls: none
jump to: none

called by: TX_ISRO, TX_ISR1, TX ISR2, TX_ISR3, TX_ISR4,
TX_ISR5, TX_ISR6, TX_ISR7

used by: none
Subprogram to do the ENQ/ACK counter processing when the
counter goes to zero. :
TX_ISR0O - source: &TXISR
linkage: CALL TX_ISRO

calls: DATA_TX, ECHO CK, HENQ_CK, PUT_CHAR, TX_EGAK,
TX_OUTSP, TX_PACK

jump to: none
called by: TX SIO #0 channel A intérrupt
used by: SIOIVECO

SI0 transmit interrupt service routine.

TX_ISR1 - source: &TKISR
linkage: CALL TX_ISR1
calls: DATA TX, ECHO CK, HENQ CK, PUT CHAR, TX EQAK,

HEWLETT-PACKARD PRIVATE
89

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

TX_OUTSP, TX_PACK
jump to: none
called by: TX SIO #0 channel B interrupt
used by: SIOIVECO

SIO transmit interrupt service routine,

TX_ISR2 - source: &TXISR
linkage: CALL TX_ISR2

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none
calléd by: TX SIO #1 channel A interrupt
used by: SIOIVEC1

SIO transmit interrupt service routine.

TX_ISR3 - source: &TXISR
linkage: CALL TX_ISRO

calls: DATA_TX, ECHO_CK, HENG_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none
called by: TX SIO #1 channel B interrupt
used by: SIOIVEC1

SI0 transmit interrupt service routine.

TX_ISR4 - source: &TXISR
linkage: CALL TX_ISR4

calls: DATA TX, ECHO CK, HENQ_CK, PUT_CHAR, TX EGAK,
TX_QUTSP, TX_PACK

jump to: none

HEWLETT-PACKARD PRIVATE
90

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

called by:; TX SIO #2 channel A interrupt
used by: SIOIVEC2

SIO transmit interrupt service routine.

TX_ISR5 - source: &TXISR
linkage: CALL TX_ISR5

calls: DATA_TX, ECHO CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none
called by: TX SIO #2 channel B interrupt
used by: SIOIVEC2

SIO transmit interrupt service routine.

TX_ISR6 - source: &TXISR
linkage: CALL TX_ISR6

calls: DATA TX, ECHO CK, HENQ_CK, PUT_CHAR, TX EQAK,
TX_OUTSP, TX_PACK

jump to: none
called by: TX SIO #3 channel A interrupt
used by: SICIVEC3

SIO transmit interrupt service routine.

TX_ISR7 - source: &TXISR
linkage: CALL TX_ISR7

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EGAK,
TX_OUTSP, TX_PACK

jump to: none
called by: TX SIO #3 channel B interrupt
used by: SIOIVEC3

HEWLETT-PACKARD PRIVATE
91

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

SI0 transmit interrupt service routine.

TX_OUTSP - source: &IXISR
linkage: CALL TX_OUTSP
calls: see DATA_TX
jump. to: none

called by: TX_ISRO, TX_ISR1, TX_ISR2, TX_ISR3, TX_ISR4,
TX_ISR5, TX_ISR6, TX_ISR7

used by: none
An entry into DATA_TX at the point where it start to
check for conditional output separators,
TX_PACK - source: &TXISR
linkage: CALL TX_PACK
calls: see DATA_TX
jump to: none

called by: TX_ISRO, TX_ISR1, TX ISR2, TX_ISR3, TX_ ISR4,
TX_ISR5, TX_ISR6, TX_ISR7

used by: none
An eqtry’into DATA_TX to do the transmit buffer
termination after all the data has been transmitted.
TX_SP_CK - source: &MXWDD
linkage: CALL TX_SP_CK
On entry register DE contains the required

length for the data transfer, register 1Y
contains the port stuff address,

On exit the S flag is set if there is no space,

calls: none

jump to: none

HEWLETT-PACKARD PRIVATE
92

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

called by: DATA TX, UDD_BEG, WDD_CONT
used by: none
Check to see if have enough space for the write device
data request.
UPD_EOC - source: &MXRDD
linkage: CALL UPD_EOC

On entry register 1Y contains the port stuff
address.

On exit register HL contains the new counter
value,

calls: none
jump to: none
called by: RDD_BEG, RDD_CONT, WCC_CONT
used by: none
Routine to update the end-on-count running counter in
prepgratlon for calling SET_CNTR in the middle of a
receive record,
WCC_ABT - source: &MKUCC
linkage: CALL WCC_ABT

On entry register BC = port stuff pointer,
register 1Y = request block pointer,

calls: none

jump to: none
called by: BIC_WTC
used by: none

Abort the write card configuration transaction.
WCC_BEG - source: &MXWCC

HEWLETT-PACKARD PRIVATE
93

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

linkage: CALL WCC_BEG
On entry register BC contains the address of
port stuff, register 1Y contains the address of
the request block.
On exit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction.

calls: none

jump to: none

called by: BIC_WIC

used by: none

Begin the write card configuration transaction.

WCC_CONT - source: &MXUWCC

linkage: CALL WCC_CONT
On entry register BC contains the port stuff
address, register IY contains the request block
address, ACISTAT contains the RIS_CONT code.

On exit set ACTSTAT to its new RTS status code,
if necessary.

calls: AL1 EVNT, EDIT_IT, MSG EVNT, OTSP_CLR, OTSP_SET,
PACKITUP, PRG_CTC, RD_SWAP, RX_COMPL, RX_SPAC,
SET_CNTR, SET_DMSK, SET_EOC, SET_EVNT, SET_SIO,
SING_CLR, SING_SET, TOGGLEA, UPD_EOC

jump to: none

called by: BIC WD

used by: none

Urite card configuration transaction
continuation/completion processor.

WDD_ABT - source: 8MXWDD

linkage: CALL WDD_ABT

HEWLETT-PACKARD PRIVATE

94

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

UDD_BEG -

On entry register BC contains the port stuff
address, register IY contains the request block
address.

calls: TOGGLE

jump to: none

called by: BIC WIC

used by: none

Abort the write device data transaction.

source: &MKWDD

linkage: CALL WDD_BEG
On entry register BC contains the port stuff
address, register 1Y contains the request block

© address.

On exit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction.

calls: EDIT IT, PUT_DATA, TOGGLE, TX_SP_CK

jump to:none

called by: BIC WIC

used by: none

Begin the write device data transaction.

WDD_CONT - 'source: &MXUDD

linkage: CALL WUDD_CONT

On entry register BC contains the port stuff
address, register IY contains the request block
address, ACTSTAT contains the RTS_CONT status
code.

On exit set ACTSTAT to its new RIS status code,
if necessary

HEWLETT-PACKARD PRIVATE

95

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

calls: PUT_DATA, TOGGLE, TX_SP_CK
jump to: none

called by: BIC WD

used by: none

Continue or complete the write device data transaction.

WDD_END - source: 8MXWDD

linkage: CALL UDD_END
On entry register BC contains the port stuff
address, register IY contains the request block
address.

calls; TOGGLE

jump to: none

called by: BIC WIC

used by: none

Terminate the write device data transaction.

HEWLETT-PACKARD PRIVATE
96

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

o e e e e e e e 7 20 e e o 7 e e e e +

| |
| RECEIVE BUFFER MANAGEMENT CHAPTER 4 [
| |

. ——

LT i T T T T T N R +

The receive buffer management is performed by the receive ISR
(RXISR} and the receive midplane processor MXRDD. Some
manipulations are done by control card (MXCCD) for buffer flush.

Receive buffers originate on the frontplane, set up as the last
step of PACKITUP when terminating the previous record. There are
two frontplane pointers, RX BUF H which points to the active
buffer’s header, and RX_NXT_C which points to where the next
character will be stored. The backplane has a pointer to the
active backplane receive buffer, and an offset to where the next
character to be read into the host will be fetched from, The
pointers are 16 bit values, the offset 8 bits,

The buffer’s header consists of three bytes, one for length
(including the header itself), one for terminating conditions and
errors, and one for the terminating character. The header is
initially cleared, and is filled in when the buffer is terminated
(except for errors which or-in to the second byte).

Receive buffers are managed in a circular fashion within the 512
byte receive buffer space per port. The space used is that which
is between the backplane buffer header address and the next
character pointer for the frontplane. There is aluays space at the
end for a zero header, which is guaranteed by SET_CNTR’s algorithm
for setting the frontplane down counter, and RX_COUNT’s setting of
the RX_BFULL flag.

When a record is terminated by PACKITUP the current frontplane
header is filled in, and the frontplane pointers are moved to point
to the next buffer. The old pointer to the header is given to the
backplane if it currently does not know about one (pointer |is
zero). If the backplane already knows about a record there is
nothing to do to give this new one to it. When the records ahead
of the newly terminated one are read up to the host by MXKRDD the
backplane’s pointers are automatically moved until a zero header is
detected. The =zero header is, of course, the current frontplane
record.

HEWLETT-PACKARD PRIVATE
97

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

e e o e e e

|
| TRANSMIT BUFFER MANAGEMENT
|

+ ———
e
P>
&
m
w
&)

B e e e 0t e T e 2 o e

The transmit buffer is organized as a circular buffer consisting of
512 bytes. This allous the card to buffered many data blocks from
the host before suspending the read request due to no buffer space.

Each data block in the transmit buffer consists of a 1-byte header
followed by the transmit data. The data block size can vary from 2
to 253 bytes,

A Transmit Data Block in the Circular Buffer

it e D +\ the header for
|data record length| >--- each transmit
A e +/ record (1 byte)
i I\

| I\

/ data / N\

/ / >-- the transmit

| | / record (up to
| I

/ 252 bytes)

o The data block length is equal to the sum of the header length
and the data record length.

o The data record length is the number of data bytes in the
transmit data record.

o The header is always preallocated for the next host urite
device data request before the current record is made
available for the frontplane.

o The data record length is set by the backplane subprogram
UDD_CONT when the buffer is ready for transmission. The
backplane also calls the frontplane subprogram PUT_DATA to
start the transmitter if necessary.

o If there is not enough space in the transmit buffer to hold
the yrite device data request plus the space for the next
header plus the space for the two output separators plus the

_space for the next header of the next record, the write
request will be suspended. The frontplane subprogram DATA_TX

HEWLETT-PACKARD PRIVATE
98

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

will restart the transaction when space becomes available.

o The backplane buffer pointer [Y+BPTX_PTR points to the
beginning of the current block to contain the next transmit
data record. This pointer is updated after each urite order
in the transaction.

o The frontplane buffer pointer I1Y+TX_PIR points to the next
character in the transmit buffer for transmission.

o The frontplane transmit down counter, IY+TK_CTR, specify the
amount of data remaining in the current record for
transmission. When this counter reaches zero, the buffer
pointer IY+TK PTR will be pointing to the header of the next
data block.

o 1Y is the base register containing the address to port stuff
for the port being processed. IY is set before entering its
respective processing subprograns.

o The amount of remaining space in the transmit buffer is
computed as follow:

(IY+TX_PTR) - (IY+BPTX_PTR} + 1
If the result is less than 0, add 512.
o The transmit buffer is defined in RAM as follow:
port 0 - C200 to C3FF
port 1 - C600 to C7FF
port 2 - CA0O to CBFF
port 3 - CE00 to CFFF
port 4 - D200 to D3FF
port 5 - D600 to D7FF
port 6 - DAOO to DBFF
port 7 - DEOO to DFFF
This information is used in managing the buffers. For
example, to update the buffer pointer, bit 1 is clear, the

pointer is incremented, and then the bit 1 is set again. This
will take care of the wraparound of the circular buffer.

HEWLETT-PACKARD PRIVATE
99

HP~CIO 8-CHANNEL MUX FIRMWARE IMS

high byte portion of address to TX buffer

7 6 5 4 3 2 1 0

B s e T S S S S S 4

(10 T A S Y I A A
B et e B e e e e Y 4

|

| +-- this bit

| aluay set

| for transmit
|

+

-- port number

HEULETT-PACKARD PRIVATE
100

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

e ——————

|
| ECHO BUFFER MANAGEMENT CHAPTER 6
I

b o———

o o o e e i O

o The echo buffer is managed as a 128 bytes circular buffer.

o The buffer is managed by using two pointers, IY+ECHOPTRI and

1Y+ECHOPTRO, where IY is the base register containing the

address to the "port stuff" array corresponding to the port

being accessed.

o The pointer ECHOPTRI points to the next location in the echo

buffer for the next character to be stored.

o The pointer ECHOPTRO points to the next character in the
buffer for data transmission.

o If the pointers ECHOPTRI and ECHOPTRO points to the same

location in the buffer, then the echo buffer is empty. This
is true even if the buffer overflow. There is no check for

buffer overflou.

__________________ +

|
l
|

__________________ +

o The echo buffer address will be from XX00 to XX7F or from XX80

to XXFF depending upon whether the port is even or odd,
respectively.

For even ports (0, 2, 4, and 6), the firmware checks the lou
byte of the address to see if it is 7F for a wraparound, If

it is true, the low byte of the address is reset to 0.

Likewise for ports 1, 3, 5, and 7, the firmware checks the low

byte of the address to see if it is FF for a wraparound. If

it is true, the low byte of the address is reset to 80.

o This buffer is managed by subprograms ECHO_CK and PUT_ECHO.

HEWLETT-PACKARD PRIVATE
101

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

D e e T B P +

|
| ARQ BUFFER MANAGEMENT CHAPTER 7 |
|

b ————

T L T e +

o The ARQ buffer is managed as a first-in first-out (FIFO)
queue,

o There is no check for buffer overflow. This should never
happen.

o The buffer is managed by using two pointers, ARQ_PTRA and
ARQ_PTRB. ARQ_PTRA is the write pointer, and ARQ_PIRB is the
read pointer. When a status is to be added to the queue, put
the status into the ARQ buffer by using the address in
ARQ PTRA. Then increment the content to the next address. If
the address goes beyond the buffer, reset the pointer to the
beginning of the ARQ buffer.

When the status register is empty on the BIC, read the status
code found in the pointer ARQ_PTRB. Then increment the
content to the next address. If the address goes beyond the
buffer, reset the pointer to the beginning of the ARQ buffer.
Uhen the two pointers are equal, then the ARQ buffer is empty.

o This buffer is managed by subprograms ARQ_HOST and SRE_RIN.

HEULETT-PACKARD PRIVATE
102

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

A e ————————— +

|-
| SOFTWARE HANDSHAKE ALGORITHMS
|

g G

CHAPTER 8 |
|

o ——

__________________ +

The following are the algorithms implemented for the software
handshake

8.1 Host ENQ/ACK Handshake

This option is used to pace the data transfer from the card to the
device to prevent the device from losing any data due to its slow
internal processing speed.

The firmware will send the ENQ character in H_ENQ after its pacing
counter ENQ_DCIR counts down to zero. In addition the flag TX_HENQ
in PxSTUFF will be set, the counter will be reset to the value from
H_EN_CIR which is programmable by the user, and finally the host
ENQ/ACK timer HEN_TCT will be set with the value from ENQ_TIMR, if
it is active.

The firmware will not transmit any data until an host ACK is
received from the device, or when the host ENQ/ACK timer times out
and the transmit on ENQ timer time out option is enabled. Houwever,
the transmitter will send an host ENQ again if the timer times out
and the transmit on ENQ timer time out option is disabled.

Subprogram HENQ CK will decrement the count and set the flag TX_ENQ
in PORTSTAT or subprogram TX_ISRx will decrement the count and
subprogram TX_EQAK will set the flag. On the next transmit
interrupt the flag TX_ENQ will be checked. If it is set, the ENQ
character from H_ENQ will be sent. The timer ENQ/ACK or handshake
timer HEN TCT will be set with the value from ENQ TIMR. The flag
TX_ENG will be cleared at this time and the flag WAIT ACK in
PORTSTAT will be set to wait for the ACK.

Subprogram REAL CLK perform the timer time out operation; and
subprogram RX_ISRx checks for the incoming ACK.

Note that the ENQ/ACK counter is always be decremented in the
transmitter whenever a character is transmitted. Uhen the counter
goes to zero, the firmware then check to see whether to process the
handshake. This is faster then checking for handshake enable first
and then decrementing the counter.

HEWLETT-~PACKARD PRIVATE
103

HP-CIO 8~CHANNEL MUX FIRMWARE IMS

8.2 Host X-ON/X-OFF Handshake

This handshake protocol allows the card to pace the data transfer
from the device to the card. The card will send the X-OFF
character in H _OFF to the device to stop data transmission when
there is not enough space in the receive buffer. This character is
sent by calling PUT_ECHO when the transmitter is not busy. If the
transmitter is busy, the character is sent by setting the flag
TX_HXOFF for subprogram TX_ISRx to send it on the next interrupt.

The receive ISR is told when to send an XOFF by the value set in
the frontplane down counter by SET CNTR. UWhen this decrements to
zero, the space remaining in the port’s receive buffer is checked.
If it is less than 72 bytes, an XOFF condition is indicated, and
the character is sent.

Receive space and XOFF condition set is checked in MXCCD
subfunctions 1 and 2 (buffer flush), and MXRDD when a record is
read into the host. If there is sufficient space created, an KON
is sent to the terminal, Due to the length of the buffer header (3
bytes) plus the data in the buffer (at least 1 byte), there is a
minimun of 4 bytes of histerisis in the XON / XOFF handshake.

8.3 Device X-ON/X-OFF Handshake

This handshake protocol allows the device to pace the data transfer
from the card to the device. The device will signal the card to
stop transmitting data by sending an X-OFF character. The firmware
will set the flag RX TXOFF to tell the transmitter to stop
transmitting.

Data transmission may be resumed by the device sending an X-ON
character or by typing any characters if the implicit X-ON option
is enabled. The user also have the option of restarting the
transmitter by using the control card request with subfunction 5.

This device handshake is also invoked using control card request
subfunction 8 to suspend the transmitter. Note that the handshake
option does mnot have to be enabled to use this control request.
The transmitter may be restarted by the same methods as described
above, except that the control card request must be used if the
handshake is disabled.

HEWLETT-PACKARD PRIVATE
104

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

e e e e e +

f !
| TIMER ALGORITHMS CHAPTER 9 |
I I

+ ——

et el e T +

The card uses CIC #0 channel 3 as the firmware real time clock.
The clock resolution is set to 10 millisecond,

The second timer is implemented by using 2 bytes to perform 2 count
down, The first counter is used to count the 10’s millisecond time
down to the "second" resolution. Uhenever the first counter counts
doun to zero, the second counter is decremented by 1 to count doun
the seconds,

The handshake timers uses this algorithm for the host ENQ/ACK and
device X-ON/X-OFF handshakes. The host ENQ/ACK timer is used to
determine when to send another host ENQ character or to restart the
transmitter. If the timer times out and if the restart the
transmitter option on time-out is disabled, another host ENQ
character will be sent to the device and the counter will be set to
time out again. If the restart the transmitter option is enabled,
the host ENQ character will not be sent but the transmitter will be
restarted,

The timer can be started by subprogram TX ISRx and restarted by
subprogram REAL CLK. The timer is cleared by subprogram RX ISRx
when an host ACK is received or by subprogram REAL_CLK when the
time out occurred with the restart transmitter option enabled.

In additon an event is sent to the host whenever the timer times
out if the corresponding interrupt mask is enabled.

The handshake timer is also used to time the device X-ON/X-OFF
event, If enabled and if the timer times out before the X-ON is
received, an event will be sent to the host.

9.1 16-bit Second Timer

The 16-bit second timer is very similar to the 8-bit second timer.
The timer is implemented by using 3 bytes, one for the 10
millisecond count down and 2 for the second count down. The major
difference is that a 16-bit quantity is used to count doun the
second. This allow for a large time out for the no activity timer.

The no activity timer is used to disconnect the modem when no
transmit or receive activity occurred. The timer is started by

HEWLETT-PACKARD PRIVATE
105

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

subprogram REAL_CLK when the link

is reset by subprogram RSEI ACT whenever a receive or

is finally connected,

The timer
transmit

interrupt occurred. The timer interrupt is processed by subprogram

REAL_CLK.

HEWLETT-PACKARD PRIVATE

106

HP-CIO 8-CHANNEL MUX FIRMWARE IMS
B i e P S +

|
| EVENT PROCESSING & REQUEST MANAGEMENT CHAPTER 10 |
! I

[

e e e e o e e +

The management of host requests and asynchronous card events is
centered around the Event Manager, the RIS Queue, and the HP-CIO
backplane protocol. Each RTS order from the host causes a decision
by BCRTS to be made regarding what is the highest priority "thing"
to be done. If the top of the RIS Queue is of higher priority than
the current process, the current process is placed in the RIS
Queue, and the top of the Queue is popped and passed to the host.
Othermise, the current process is reported to the host,

New requests, via the CLC order may be initiated at any time the
card is SRQing for an order. Once initiated, the progress of the
request is controlled by puting SWItch events on the RTS Queue. A
request which is suspended is eventually made active by this
process. Once the active request, a request may suspend itself by
clearing the active task block (calling the routine "NOTHIN®
(&BCRSR)).

Unsolicited events are passed to the host via the same RTS Queue
mechanism, with the limitation that only one event per port can be
on the RIS Queue at a time. Additional events are held on the
Event Queue pending an Event Acknowlege to move them to the RIS
Queue,

The Event Manager is called directly by anyone wishing to add any
kind of event to a Queue to the host. It figures out what type of
event it is, whether unsolicited events are disabled pending an
AEK, and adds the event to the appropriate Queue. Passed to the
Event Manager is the event, packaged in the form of an Event Block.
This contains the event code, event priority, the port number
(converted to a port ID by the Event Manager), and any additional
information to be passed to the host. This block is pointed to by
HL.

An interface routine is available to aid in the packaging of most
events to the Event Manager. This routine, SET_EVNT, is passed the
above parameters in registers B, C, D, and E, allocates a blank
Event Block, fills it in, and calls the Event Manager. All events,
with the exception of Message Received, Alert-1, etc. which have
addtional information, use SET_EVNT.

This Queued scheme is used to reduce the time it takes to decide
what to do next when an RTS comes along. The Queues are maintained
in sorted order by priority. It is a simple matter to compare the

HEWLETT-PACKARD PRIVATE
107

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

top of the Queue with the active priority and ship the host
whichever is higher,

The scheme is complicated when an abnormal condition occurs,
Whenever an event is cancelled (an abort is received for a task
which has a SUItch in the RTS Queue, an unsolicited event in either
Queue is cancelled when a read of the status register is made,
etc.} the Queues must be searched and the event deleted before the
host has a chance to read the event. (Hosts are easily confused.)
For this purpose, a routine (EDIT_IT) is available to clean up the
Event Queue and the RTS Queue for unsolicited events; status events
are deleted directly in WTCABT (&BCWTC).

HEWLETT-PACKARD PRIVATE
108

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

B o e o e 1 8 P e e 7 e v e e e +

| |
| SPEED SENSING CHAPTER 11 |
| |

$ o

o e o e e o 7 e e 7 e v B e e i e o e e +

The speed sensing on the MUX is done by using firmware with some of
the hardware features of the SI0O. The SIO is programmed in the
synchronous mode with a X1 clock running at 19200 bits per second
and with 8 data bits for a character length. The SIO will start to
generate interrupts to the firmware for processing as soon as it is
synchronized with the incoming data. The firmware will start
counting the number of bits for each level and the number of
transition to determine the baud rate.

To really understand the speed sensing mode, the reader nust
understand how the serial data is sent to the SIG. In the diagram
below, a data element always start with a start bit, follow by the
data bits, and end by a stop bit. There may or may not be any
parity bit,

mark
condition
R e R ek bt B bt St
[| |
L N P R TR
10110000 "
| |
+--start bit +--gtop bit
(mmmmmmmmm o message flow

A CR character in 8 data bit mode with no parity,

The SI0 is programmed to synchronize on the character 11111110B.
By looking at the above diagram, one’s are being generated until
the start bit is received,

The MUX firmware uses the CR character for speed sensing. You will
note from the above diagram there are five transitions in the
level, The firmware will count the number of zero’s in the first
trangition which is the start bit. The number of one’s in the
second transition, the number of zero’s in the third transition,
the number of one’s in the fourth transition, and finally the
number of zero’s in the fifth transition.

For a CR coming 1in at 9600 baud the SI0 will see the following
characters after synchronization.

HEWLETT-PACKARD PRIVATE
109

HP-CIO 8-~CHANNEL MUX FIRMWARE IMS

——tm—dm———

R e et T D ittt ST

b I !

- +——+ Dt e R
111 11 11 00 11 00 11.11 00 00 00 00 11 11 11 1
| " | -
| | | |
| Hommmmm oo #mmmmmmme o +--characters
| from the SIO
| after sync
| :
+--the sync character to start speed sensing
(e nessage flow at 9600 baud
char# char
1 0110 0111
2 1000 0000
3 0111 1111 (the firmware will stop counting

bits here after the last zero)

Similarly for a CR coming in at 4800 baud the SIO will receive the
following characters after synchronization.

char# char
1 0001 1110
2 0001 1111
3 1110 0000
4 0000 0000
5 0001 1111

The proceduré can be continue for the other baud rates.

The odd

baud rate 1like 7200 baud does not have nice transition break and
may not be detected on the first try. There is not guarantee.

HEWLETT-PACKARD PRIVATE
110

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

B e T e atat R R et

P T et B e etk e S

A A A ~ ~

|
+--fifth count = the number
zero bits

b+ o————

--fourth count = the number of one
bits

--third count = the number of zero bits

|
:
'
!
!
|
!
|

--gecond count = the number of one bits

--first count = the number of zero bits

(rmmmm message flow of the character CR

HEWLETT-PACKARD PRIVATE
111

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

incoming first second third - fourth fifth
baud rate ct(0}) ct (1) ct(0) ct (1) ct(0)

19200 0 1 1 2 3or 4
3600 1 2 2 4 6 or 8
*7200 2 3 3 6 g or 12
(2.67)
4800 3 4 4 8 12 or 16
*3600 4 5 5 10 15 or 20
(5.33)
2400 7 8 8 16 24 or 32
*1800 10 11 11 22 33 or 44
(10.67)
1200 15 16 16 32 48 or 64
*900 20 21 21 42 63 or 84
(21.33)
600 31 32 32 64 96 or 108
300 63 64 64 128 192 or 256
150 127 128 128 256 384 or 512
*134.5 142 143 143 286 429 or 572
(142.75)
*¥110 174 175 175 350 525 or 700
(174.55) .
75 255 256 256 512 768 or 1024
50 383 384 384 768 1152 or 1538

Note that the baud rates tagged with an "¥" are the odd baud rate
which does not have nice sampling rate at 19200 bits per second.
The sample rate will give the ©bit count specified in the
parentheses under the second count. The count given is the one
used by the firmware. The firmuare is able to detect the baud rate
some of the time depending on the source.

The 110 baud rate is another odd baud rate but the firmware is able
to detect 1its present most of the time. It is able to do this

HEWLETT-PACKARD PRIVATE
112

HP-CIC 8-CHANNEL MUX FIRMWARE IMS

because the firmware does not check for an exact match on the
counts.,

To further insure a better detection rate a tolerance band is used
to see if the incoming count matches a entry given in the table.
For baud rates from 50 to 600 the tolerance is plus or minus 5.
For baud rates from 900 to 1800 the tolerance is plus or minus 2.
For baud rate 2400 to 9600 the tolerance is plus or minus 1. For
19200 the count must match exractly.

By experimention with a real terminal and with a real user, the
firmware was able to detect the right baud rate. Also there is no
false detection uwhen any other characters are pressed beside the
CR. Houwever, the odd baud with the exception of 110 baud was not
tested or received only limited attention.

The fifth count can have two different values as shown in the
table, The first number is for a data byte which is 7 bit long
with no parity or 7 bit long with even parity. The second number
is for a data byte which is 8 bit long with no parity or 7 bit long
with odd parity. The firmware will return the 8th bit as being an
one if the fifth count matches the first number and as being a zero
if the fifth count matches the second number.

An acid test was performed to determine how many ports can speed
sense at the same time, The test is done by using one terminal
sending input into all 8 ports. Ue found that at least 2 ports can
successfully complete the speed sensing. The remaining ports will
need the CR input again.

The speed sensing is enabled by using the control card request with
subfunction 6. Uhen this request is received by the firmuare, the
interrupt vector for the receive character and the special
condition interrupt will be changed from its normal interrupt
service routine (ISR) (RX_ISRx and SPC_ISRx, respectively) to the
speed sensing ISR’s (SS_ISRk and SSB_ISRx, respectively). 1In
addition, the transmitter is disabled, and the capability to
generate external/status interrupt is disabled.

The normal ISR’s addresses are restored in the interrupt table
after the speed sensing 1is done or when the user disable speed
sensing by issuing the control card request with subfunction 7.
The SI0 and the CTC associated with the port in question are
reprogrammed to its previous values.

The SI0 is put into the synchronous "hunt mode” when the control
card request to enable speed sensing is issued. The SI0 is also
put into the "hunt mode" again when a receive character does not
match any of the baud rate or if the SI0 encountered an error
condition like data overrun, The data overrun condition usually
occurs whenever the firmware is not fast enough to process every

HEWLETT-PACKARD PRIVATE
113

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

receive character for every port,

The following subprograms are used in speed sensing, directly and
indirectly.

subprogram source description

R{_LOC 8MUXIV A table containing the addresses to
the interrupt trap cell for the
receive ISR address. Index by the
port number.

RX_VEC 8MUXIV A table containing the normal
receive and special condition ISR
addresses for each port.

35_VEC 3MUXIV A table containing the speed sensing
receive and special condition ISR
addresses for each port,

CCb_BEG 3MXCCD Subprogram to enable and disable
' speed sensing by using the control
card request.

RESYNC 8MXCCD Subprogram to program the CTC and
SIO for the synchronous "hunt mode"
used for speed sensing.

PRG_CTIC 8MKWCC Subprogram to program the CIC when
the baud rate is changed or detected.

SET_SIO 8MXWCC Subprogram to program the SIO when
the character length, the number of
stop bits, the parity, the card LED
state, the hood LED state, the
front-end drivers, and the internal
loop back state are changed.

SPD_SEN &SPDSN Subprogram which have the speed
sense algorithm.

SSB_ISRX &SSBIR Subprogram to reprogram the SIO
into synchronous "hunt mode" after
an error condition (usually data
overrunj.

SS_ISRx &SSISR Subprogram to set up the enviromment
to call the speed sense subprogram
after a character is received on the
Sio.

HEWLETT-PACKARD PRIVATE
114

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

The speed sense algorithm uses 16-bit counters to count the number
of bits, If the character is not a CR, the SIO may or may not
continue to receive all one’s for each character continuously. The
algorithm handle this problem by noting that the 16-bit counter
should never be negative, If the number turns negative, then the
algorithm treat this as a time-out and will cause the SI0 to be
reprogrammed into the synchronous "hunt mode" to search for the
next sync character to start speed sensing again.

HEULETT-PACKARD PRIVATE
115

HP-CIO 8-CHANNEL MUX FIRMWARE IMS HP-CIO 8-CHANNEL MUX FIRMWARE IMS
o T —————————————————— T : firmwuare EPROM # 0 :
|
| ROM & RAM MEMORY MAP ; CHAPTER 12 } 0000 #~-=-mommmm e +
|
B T T Fmm e —————————— +
The entire Mux firmware resides in the two EPROMs, No code is
downloaded to the card, nor does the resident firmware incorperate
a dounloader.
The Mux card uses two 8K x 8 bit EPROMs and eight 16K ® 1 bit The character buffers begin at the first location of RAM, COOOH.
dynamic RAM chips for memory. The Z80’s memory address space is This is fixed so that the address of any character, buffer, etc can
layed out as follows: be computed as:
bit 1514 13121110 9 8 7 6 5 4 3 2 1 0
FEFF +---=-mmmmmmm e + e e +
| interrupt vectors | | 1] 11 0] port # |T/R| buffer relative chr index|
FFAQ | -~m=mmmmmmmemmmmmmmm e l o e e +
| | 280 cpu stack | |
| v v o where: port # 1is the physical port # (0-7)
F69E |-----mmmmmmmmmmm e e | T/R is Transmit or Receive (1=T, 0=R)
| | index is the offset to the character in the buffer
| per-port and |
| per-request variables |
| | Record headers are placed within the buffers to define record
ECO0 |~--=-mmommmmm e meme e | boundaries. For receive records there is a 3 byte header:
| echo buffers |
128 x 8 | | previous |
o1 0] [———. | | record |
| special character | R e |
| tables | | total length |
{ 256 * 8 | fmmmm e |
E000 |--=-mmmmmmmmm oo | } |Eltm codel
| 1 N R et T
| receive and transmit | | term char |
| data buffers | : | REEEE R f
| | | this |
| 512 ¥ 8 ¥ 2 | | record |
CO00 f--—=mmmmmmmmsm e | | data |
| | | |
| this |
| space] where: total length = the length of data + header; max 255.
| not | E = this record terminated with error (parity, overrun)
| used | tm code = termination code (ended on count, SIT, etc)
I with } term char = if STT termination, the character detected char
16K
| RaMs | A non-terminated record has a zero length in the header. The one
4000 |-rmemmm e e e | ' byte total length field, plus the three byte header length, gives a
| | maximun data field size of 255-3 = 252 characters. This determines
| firmware EPROM # 1 | the card’s data blocking factor.
| |
2000 |~==mmmmmm e | The transmitter has a 1 byte header. This indicates the length of
| | the DATA portion of the record (does not include the header). A
HEWLETT-PACKARD PRIVATE HEULETT-PACKARD PRIVATE
116 : 117

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

zero header indicates no record present.

The special character tables (one table of 256 bytes for each port)
contain an attribute code for each of the possible character codes.
When a character is received, it is ANDed with a mask to remove the
parity bit, and used as an index into that port’s special character
table. The contents of that entry indicates what type of character
it is. This entry is then ANDed with the toggle mask (TOGLMSK) to
isolate those functions which are currently enabled (via WCC 1 or
RDD subfunction)., A zero result indicates that the character is
simply a character (i.e. not anything which would require extra
processing) and the character is placed in the user’s data buffer.
This speeds the receive ISR.

If the special character table entry is non-zero, and one or more
of the same bits are set in the toggle mask, the further processing
is needed. Note the bits defined align with the corresponding bits
in the read configuration (WCC 1) and the RDD toggle subfunction.

Bit 7: This is a Handshake character (ENQ/ACK/XON/XOFF)
Bit 6: This is a Signal character (control-y, UNIX ’quit’)
Bit 5: This is an Edit character (BS, DEL)

Bit 4: not used

Bit 3: This character is Quotable (BS, DEL, control-d}
Bit 2: not used

Bit 1: This is a Single Text Terminator

Bit 0: not used

HEWLETT-PACKARD PRIVATE
118

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

gy

] Firmware Structure

+———
g
>
3
m
<]
[
w

e e ——————————

13.1 Overview

The firmware is divided into three major blocks. This was done to
organize the operation of the Mux and to provide future products
with a solid set of services to leverage from. (The most important
is the Backplane to Midplane interface, described later.) The three
layers are:

o Backplane
o Midplane
o Frontplane

Each layer has a defined set of services which it provides, and
defined interfaces to these services.

13.1.1 Backplane

This layer processes the orders and commands received via the BIC
routines. It manages the card’s Request and Event resources, and
maintains the backplane protocol with the host. The Backplane
layer makes any conversions necessary to interface host formats
with those used on the rest of the card, for example, converting
record lengths from high byte first to low byte first format. The
PID (port ID) is.converted to/from a port number also.

Major blocks within this layer are the order processors for WIC,
RIS, UIC, BIC/MIC support, IDY, RD and UuD, RSR, and the Event
Manager.

13.1.1.1 BIC/MIC support

This layer contains the Interrupt Service Routines (ISRs) to which
are vectored all interrupts from the BIC/MIC chip pair. This
includes Order and Command interrupts from the BIC, and DMA
termination interrupts from the MIC.

HEWLETT-PACKARD PRIVATE
119

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

This is contained in module BPISR.
13.1.1.2 WIC (CLC) processor

Briefly, WIC (called via the Connect Logical Channel order)
initiates the processing of new requests by reading in the Request
Block, setting up the appropriate data structures, and calling the
midplane. The status returned by the midplane tells WIC what state
to leave the request in, which is communicated to the Event
Manager.

This is contained in the module BCUIC.
13.1.1.3 Event Manager

The Event Manager is the module through which the midplane sends
all events and request status changes to the host. Status changes
go directly to the RIS Queue, while Asynchronous events go to the
Event Queue pending an Asynchronous Event acKnowlege (AEK, via
WIC).

This is contained in the module MUXEV.

13.1.1.4 RTS processor

The RTS order processor is the "back end" to the Event Manager.
Whenever an event or status change of higher priority than the
current task is at the top of the RTS Queue, the RIS processor
de-links that event from the RTS Queue and passes it up to the
host. Otherwise the current process is reported. The appropriate
status tables are updated to reflect any changes to the current
process.

This is contained in the module BCRIS.

13.1.1.5 RD and WD processor

The RD and WD 6rder processors, actually one processor which serves
both orders, initiates the actual data transfer from or to the
port’s frontplane data buffer. It then calls the midplane to
direct what happens next within that transaction,

This is contained in the module BCRUWD,

13.1.1.6 RSR processor

The RSR order processor transfers up to the host the current
contents of the request’s status block and terminates the request.
The request’s request block is de-allocated, and the state
information regarding the current process is cleared.

HEWLETT-PACKARD PRIVATE
120

HP-CIC 8-CHANNEL MUX FIRMWARE IMS

This is contained in the module BCRSR.
13.1.1.7 VWIC processor

The WIC order processor handles request aborts, event acknouwleges,
end of data status, and the Resume after an Error Trap. Aborts
remove the indicated transaction, if it still exists. An
Asynchronous Event acKnowlege moves an event from the Event Queue,
if one exists there, or enables that port to place an event
directly on the RTS Queue. End of Data calls the midplane to
perform its end-of-record processing. This MUST be used while the
indicated TID is the active transaction. Lastly, Resume is used
after an ERror Trap to activate a paused transaction,

This is contained in the module BCWIC.
13.1.1.8 IDY processor

The IDY order processor returns the card’s Identity block to the
host. There is no effect on any other card process or function, SO
IDY can be requested at any time.

This is contained in the module BCIDY.

13.1.2 Midplane

The nidplane processes the requests handed it by the backplane
interface. Each type of request has a separate midplane processor,
each with separate initiate, continue, abort, and end entry points.

All midplane modules maintain the RSR status block with the count
of data transferred, record type, errors, etc,

13.1.2.1 Read Device Data

The Read Device Data midplane routine handles the reading of
information received from the device via the frontplane. UWhen
given an initiate entry is processes any flushing of buffers or
events, then sees if there is any data available to complete the
request, If so it sets up the pointers in the request block for
the RD processor, otheruise it signals a suspend to wait for data
to arrive.

A continuation entry, caused by each part of a record being
transferred to the host by the RD processor, sets up the pointers
for the next transfer, suspends waiting for still more data, or
signals the termination of the request by setting "end" status.

HEWLETT-PACKARD PRIVATE
121

HP-CI0 8-CHANNEL MUX FIRMWARE IMS

13.1.2.2 UWrite Device Data

The UWrite Device Data midplane routine handles the writing of
information to the device via the frontplane. It is responsible
for appending CR/LF * to buffers, if so directed. On return to the
backplane it indicates whether the transaction can continue or not
depending on how much space is available in that port’s transmit
buffer.

Before indicating "continue" to the backplane, the pointers in the
request block are set to the appropriate position in the port’s
transmit buffer so that the WD processor will operate correctly.

13.1,2.3 Control Device

The Mux does - not support any Control Device requests., Any access
to this module returns Error Trap status, with the RSR status block
indicating an illegal request.

13.1.2.4 Bead Card Information

The Read Card Information midplane routine handles the reading of
configuration information contained within the card. If the
information read was the interrupt status, then the status gets
cleared, and a routine in the backplane 1is called to remove the
status blocks from the Event and RIS Queues.

13.1,2.5 Urite Card Configuration

The Write Card Configuration midplane routine handles the writing
of configuration data to the card. The routine also performs the
configuration of the card, including supplying default values for
some requests. All configuration is subject to some léevel of
verfication check (length of data, range checking, etc.).

13.1.2.6 Control Card

The Control Card midplane routine implements those requests which
are modes or one time actions, for erample, enter speed sense mode,
or flush receive buffers. The action is specified in the request
subfunction field, as there is no data block on control requests.
The action is executed immediately upon the initiate entry to the
routine,.

HEULETT-PACKARD PRIVATE
122

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.1.3 Frontplane

The Frontplane consists of the interrupt handlers for the various
interrupts generated by the SI0 chips. These are the External
Status, Special Condition, Character Received, and Character
Transmitted, Further interrupt service routines are included for
the speed sense mode.

13.1.3.1 External Status

The External Status interrupt service routine handles the BREAK
interrupt from the SIO. Since there are no modem line connections
to this card, none of the other interrupts can (should) occur. If
enabled, the occurrence of the BREAK interrupt causes the event
manager to be called to send a BREAK megsage to the host.

This is contained in the module EXISR.
13.1.3.2 Character Received

The received character interrupt service routine gets entered for
each character received by the card. The character is read, parity
is masked, and the character is acted on according to its value,
Non-special characters are placed in the port’s receive buffer,
Special characters (edit, termination, quote) trigger whatever
action is indicated.

If a termination condition is detected, either by special character
or by count (end on count, or buffer full) the current record is
packed up (its header is filled in) and the record is made known to
the backplane.

For speed, part of the Receive Character ISR is duplicated for each
port.

This is contained in the module RXISR.

13.1.3.3 Special Condition

The . Special Condition interrupt service routine gets entered
whenever a character is received which is somehow in error. This
nmay be because of bad parity, a framing error, or from SIO fifo
overrun, Depending on the options set, either the character is
ignored, placed in the buffer, or replaced by another character and
placed in the buffer, and the buffer is either left open, or packed
up and sent to the backplane. The function of placing the
character in the buffer as is 1is performed by jumping into the

HEWLETT-PACKARD PRIVATE
123

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

normal received character ISR for that port.

This is contained in the module SPISR.

13.1.3.4 Speed Sensing

The speed sensing function of the frontplane is divided into three
modules, SPDSN and SSISR, and SSBIR. SSISR is an interrupt service
routine which is entered whenever a character is received while
that port is in speed sense mode,

This is accomplished by moving the interrupt vector for that port
to point here instead of the Received character ISR. The ISR then
calls the main routine which processes the character. Briefly, the
speed sense function works by programming the SIO for that port to
synchronous mode and thus sampling the 1line 8 times per byte
received. The length of each sequence of ones and =zeros is timed
(i.e. counted) and compared to the known sequences for the
Carriage Return character at different BAUD rates.

SSBIR contains the re-synchronization code for handling SIO
overruns during the speed sense mode,

13.1.3.5 Transmit Character

The Transmit character interrupt service routine sends a port’s
data to the SI0 on an interrupt basis. Each time an interrupt is
received, the next character is transmitted, either from the port’s
main data buffer, or from the Echo Buffer. The ENQ/ACK counter is
maintained, and when it rolls over a handshake is performed, if
enabled.

When all data in a data buffer has been transmitted, an event is
generated {1f enabled) to the host, or a suspended write is
awakened, by calling the Event Manager. .

13.2 The Backplane

The following are detailed descriptions of the code within each
backplane module. They are intended to be read together with the
source listing, and to be used as a supplement to the comments
contained within the source.

HEWLETT-PACKARD PRIVATE
124

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.2.1 Identify: BCIDY

The purpose of the IDY routine is to return the IDY block to the
host.

o The MIC DMA can only do transfers to/from RAM. Therefore the IDY
block must be moved to RAM before being transferred.

13.2.2 Event Manager: MUXEV

The Event Manager module contains several routines, as follous:

13.2.2.1 FREE_EVB

This routine puts an event block (pointed to by HL) back on the
list of free event blocks., While playing with the pointers to the
freelist, the interrupt system is turned off to prevent trouble,
Uhen done, the interrupt system is restored to its former state, on
or off.

13.2.2.2 GET_EVB

This routine allocates an event block from the list of free event
blocks. If there are none available a hard jump is taken to DIE,
since there is nothing we can do about it. This should never
happen since there are lots of event blocks lying around.

The address of the allocated block is returned in HL.

13.2.2.3 EVNT_MGR

This is the core of the event manager. EVNT_MGR takes an event
block (pointed to by HL) which has been filled out by someone else,
and places it on the appropriate queue, If the event is a status
change, it is placed on the RTS Queue, If it is an event, and
events are enabled on that port, then it is placed on the RIS Queue
and events are set disabled. Otherwise, events are placed on the
Event Queue, pending a friendly AEK (via WIC) to move one of them
to the RTS Queue.

o Events to the host are given to EVNIT_MGR with the port number in
the PID field. Since the host expects a port ID, not number,
EVNT_2 changes the port# to a PID.

HEWLETT-PACKARD PRIVATE
125

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

o ADD_Q puts an event block on either the RTS Queue or the Event
Queue, in sorted order by priority. Both queues must be sorted to
allow events to have priority over status changes, and to emulate
the ASI card’s priority relationships between different card events
(Break is higher than Signal, for example).

13.2.2.4 SET_EVNT

This routine is a convenient way to call EVNT_MGR. It allocates an
event block and fills it in with the passed parameters. The only
restriction is that events with more than just an event code and
port# cannot use this routine (no more registers to pass
parameters).

o On a status call, DE points to the request block, the first two
bytes of. which contain the TID of that request. This is LDIR’d to
the event block, '

13.2.2.5 EDIT_Q

One of the problems with a queued backplane is that when something
happens which changes the state of the world (e.g. a RDD happens
just after a message received interrupt was posted), there may be
information which is on its way, via one of the queues, to the host
which is no longer valid. This information must be removed from
the gqueues-to avoid confusing the host. EDIT_Q searches the queue
pointed to by DE to find an event (not a status) which matches that
which vas passed to it, If it finds one, the links to it are moved
around it, and the block is returned to the freelist.

EDIT_Q is not external since it is only to be called from EDIT_IT,

13.2.2.6 EDIT_IT

EDIT_IT is an interface to EDIT_Q to delete events from the Event
and RTS Queues. First it sets the port id (not port number, since
EVNT MGR changed that to PID before sticking it on the queues, then
it tries to edit the RTS Queue,

o If something was deleted from the RTS Queue we have to see if
there is anything in the Event queue which should be moved to the
RTS Queue. The way this is done is to simulate an AEK. This isn’t
done if there are no more events waiting on that port, to save
time. The event queued flag is reset so that UIC_EAK doesn’t get
confused.

o If nothing was deleted, the Event Queue is tried.

HEWLETT-PACKARD PRIVATE
126

HP-CIC 8-CHANNEL MUX FIRMWARE IMS

13.2.3 Read Transparent Status: BIC_RIS

13.2.3.1 BIC_RTS

This module processes the RTS order, Here the host is asking "what
do you want to do next?". There are several possiblilities. If no
task is active, and there are no events pending, then the Idle
response is given. If the current process has a higher priority
than the event block at the top of the RTS Queue, then the current
status is reported. Otherwise, the current process is moved to the
RTS queue, and the top of the queue is removed and sent to the
host. If the top of the queue implies a switch to that process
(either a switch or an end of data), then that process is made the
active process., Note currently all processes (requests) have equal
priority, and all events have priority over all processes. This
need not be the case; if there is some reason to change the current
values, any process or event can have any priority.

o BIC_RTS Checks to see if there 1is an active transaction. If so,
the active priority is compared to the priority of the event at the
top of the RTSQ. If the Queue priority is higher (lower number)
then an the current transaction is moved to the RTSQ by allocating
an event block and copying the current transaction’s status block
to the event block. This means that the active status block must
be in the.form of an event block.

13.2.3.2 UPDTID

This routine sets the state of the active transaction to match the
RTS block being sent to the host. If the RTS block is a SWItch,
then the TID to which the switch is being taken becomes the active
transaction. Similarly, if the RIS block is an end of data, a
switch is implied, and the TID becomes the active TID. The end of
data implies a switch because of the implementation of the
backplane protocol on the HP-9000 machines.

If the RTS block contains an asynchronous event, then the bit in
that port’s event status corresponding to that event mnust be
cleared. This is done by indexing into a table of masks based on
the event code. Since, by our conventions, an event code has a one
to one correspondence to the bit in the interrupt mask which
enabled it, the indexing can be used. Otherwise we’d have a mess.
Note that the event block contains a port ID, not port number, so a
conversion must be made in order to find the correct port’s status.

If the RTS block does not result in a switch to a transaction (i.e.
is not a SWItch or End Of Data), then the active transaction is set

HEWLETT-PACKARD PRIVATE
127

HP-CIO 8-CHANNEL MUX FIRMJARE IMS

to nil. This 1is because the act of asking for transparent status
by the host {the RIS order) takes the card out of whatever
transaction it was in, and back to “subchannel" mode. Another RTS
will follow any RIS reporting an event, and on Vision machines you
will get an RIS following End of Data, also.

13.2.3.3 ORD_EXIT

This 1is a place where all (or at least most) order processing
routines exit, It initiates an SRQ for the next order and then
returns from the BIC interrupt.

13.2.4 Urite Transparent Control: BIC WIC

The Write Transparent Control module processes the UIC order, and
its subfunctions AEK, RES, EOD, and DLC.

13.2.4.1 BIC_UIC

This is the entry point from the BIC interrupt processor. The WIC
block is read into a dedicated buffer in RAM (there can be only one
WIC in process at any time, so this doesn’t have to be per port).
From there the subfunction is fetched and decoded. The appropriate
routine is then executed.

13.2.4.2 UIC_RES

This routine implements the transaction resume function. The TID
is searched for, and if not found the entire UTC operation is
considered a NOP., It is assumed that the transaction is not
currently active (that an Error Trap had previously occurred), so
when a continue event is generated and placed on the RTS Queue that
it is the ONLY status event for that transaction.

13.2.4.3 WIC_END

This routine implements the End of Data function of UTC. Since the
only midplane process to use End of Data is WDD, we assume that
that is the midplane process intended. After finding the indicated
TID’s request block (and therefore his port’s stuff) we can call
the midplane, The HP-9000 does not use this feature of the card,
but the Vision folks might,

HEWLETT-PACKARD PRIVATE
128

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.2.4.4 UIC EAK

This implements the Asynchronous Event acKnowlege function of WIC.
Uhen an AEK is received it means that an event had previously been
sent up to the host via RTS, and that the host is signifying that
it is able to receive another event, What we do then is to search
the Event Queue for an event posted on the port which has just been
acknowleged. If one is found it is moved to the RTS Queue.
Otherwise the Events Enabled flag is set signifying that if an
event occurs it may be placed directly on the RTS Queue.

o The exception to the above is if the EV_QUED flag is set, then we
already have an event on the RIS Queue. This can happen if the
host gives us any extra AEK’s (which according to the protocol
standard should be ignored).

13.2.4.5 WTC_ABRT

This is used to abort a pending request. The major task here is to
search the RTS Queue and delete any (the one) reference to this
request, if it exists.

An status event is generated to the host informing it that the
request is gone, Note that the standard defines an abort situation
as a request, not a demand. UWe could choose to ignore the abort,
if we wanted to. However, the HP-9000 implementation of the
protocol can’t handle a delayed abort, so we force generate the
event here.

The midplane is then called to clean up anything it may have going.
Note that it cannot make references to its request block, since
that is now gone. :

lastly, the request block is de-allocated, and if the request
happened to be the active request, the active status block is set
to idle.

13.2.4.6 FIND_TID

This subroutine searches for the TID specified in bytes 1,2
(counting from 0) in the WTC buffer. The address of that request’s
request block is returned in DE. The Z flag is set if no block is
found, so a JP Z will branch if the request doesn’t exist.

HEWLETT-PACKARD PRIVATE
129

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.2.4.7 GET_STUF

This subroutine takes a port’s ID (not port number) in A and
computes the address of the "PORTSTAT+1" entry in his port’s stuff.
This is returned in HL.

13.2.5 Connect Logical Channel: BCWIC

This module processes the Connect Logical Channel order (which used
to be called Write In-channel Control, WIC).

13.2.5.1 BIC_WIC

Here the CLC data block is read in to an allocated request block.
The port ID is converted to a port number so that the midplane
knows who to talk to.

There are three pointers in each port’s stuff which point to the
request block for read device data, uwrite device data, and all
other requests. This allous one of each type of request to be
pending at the same time. Each port’s stuff points to the request
block(s), ‘and each request block has a pointer to that port’s
stuff. This makes it easier to find one, given the other,

13.2.5.2 WIC3

Here the request’s data length parameter is converted to midplane
format (low byte first). A check is made for illegal requests, and
if ok, the midplane is called.

13.2.5.3 MIDP_RET

Here the midplane has returned with a condition code indicating
what to do with this request, If the Carry bit is set the midplane
is indicating that the transaction can continue whenever the host
gets around to doing an RIS, and when all higher priority
housekeeping is done. The Z flag is set if the request is blocked
for some reason, for example, no buffer space for a write request.
Otherwise it 1is assumed that the midplane is indicating that an
error exists in one of the parameters of the request, and that an
ERT should be generated., The order of checks used here is assumed
by some of the midplane routines, in that they may not clear all
unused flags. (For example, both the C and Z flags could be set.
The midplane’s assumption results in a “continue" interpretation.)

HEWLETT-PACKARD PRIVATE
130

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

In the case of Continue (now called SWItch) a "SWI" status event is
generated, and the event manager is called. ERT results in an
Error Trap status event being sent to the event manager. A SWI
status is not generated for ERT or Idle (the Z flag) thus pausing
the request.

13.2.5.4 ERR_005

The check here is for WUCC 34, which sets the port ID, Since the
port ID is probably not valid for this request, we can end up here.
Putting the check for WCC 34 here makes the straight line path
earlier a bit faster (the usual request is not a WCC 34). Since
the Midplane doesn’t access the port’s stuff for this request we
can allow a WCC 34 which happens to use an already assigned port ID
to use the straight line code without trouble.

13.2.5.5 FREE_RQGB

This subroutine 1is used to return a request block (pointed to by
HL) to the free list. Make sure that the request has been aborted
or otherwise removed from the card before calling this routine.
13.2.5.6 GET_RQB

This routine fetches a request block from the freelist. The entire

block is zero’d out, so the default RSR status gets cleared. The
block’s address is returned in HL.

13.2.6 Read Request Status: BCRSR

This routine processes the RS order.

o It is assumed that the host has set the "disconnect" bit in the
RS order to remove the transaction.

13.2.6.1 ABRT_REQ

This subroutine is called by RSR and UTC ABT to remove a pending
transaction. The pointer to the request block in the port’s stuff
is cleared (so WIC won’t think it’s busy}, and the pointer in the
request block to the port’s stuff is cleared (so FIND TID won’t
think its in use).

The request block is then returned to the freelist.

HEWLETT-PACKARD PRIVATE
131

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

If the request being aborted happens to be the active transaction
(this will always be the case for RSR) the active status is also
cleared.

13.2.6.2 NOTHIN
This subroutine cleares the active status block,

If you are the active transaction and want to suspend, Jjust call
this routine.

13,2.7 Read Data and Urite Data: BCRUWD
This routine handles both the RD and WD orders.
Based on the request code, the appropriate 1/0 routine is called.

o A zero length transfer cannot be handled by the BIC/MIC 1/0
routines. This routine fakes zero length transfers as 1 byte; the
RSR block will have the correct length of zero.

The midplane is then called at its Continue entry point.

13.2.8 BIC & MIC Interrupt Service Routines: BPISR

The BIC interrupt service routine services all the interrupt
generated - by the BIC. The interrupt from the BIC is actually
generated by the MIC directly. The BIC in this case will be the
device with the lowest priority in the interrupt chain. This will
ensure that the SIO receivers and transmitters interrupt will be
processed in a timely manner where possible.

The BIC and MIC ISR will run with the interrupt enabled at all time
when possible. The registers are saved by pushing the contents
onto the stack.

The host must perform a subchannel connection before performing any
transaction, The MUX firmware will not verify that the subchannel
is already connected. If the subchannel is not connected, the BIC
will not be able to generate any SRQ to the host even if the
firmware tells the BIC to do so. The reason for this is that the
SRQ address present bit in the BIC register 1 is not set.

Only one inierrupt condition per interrupt is processed. The other
interrupt conditions will cause another interrupt to the ISR after
a return from interrupt instruction is executed.

HEWLETT-PACKARD PRIVATE
132

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

The IFC or DCL signals will immediately reset the card and causes
the firmuare to began execution at address 0. The MUX firmware
does not look at these signals. However, the self-test firmware
will check these signals to determine whether self-test should be
perform.

Upon receiving a BIC interrupt, the service routine will read the
interrupt latch from the BIC register 5 and the interrupt mask from
the BIC register 6. The two values are masked together to
determine which interrupt should be process.

The status register empty (SRE) interrupt has the highest priority
in the processing order. This interrupt is enabled if a status
code is put into the ARG _BUF queue when the host has not read the
last one. -

The MUX card will never generate a nonmaskable interrupt to the
host. Therefore, the card should never receive the nonmakable
interupt acknowledge (NMK) interrupt from the host.

The request attention (RQA)} interrupt is sent to the host when the
card is unabled to process the command fast enough. The card will
send the ready for command (RFC) status to the host to request the
next command, This interrupt is always enabled right after reading
a command. A race condition could exist where the host sends a
command right after the RGA bit in BIC register 5 is checked.

The end condition (END) should only occurred during the data
transfer mode and will be process by the MIC DMA ISR.

The FIFO read condition (FFR) occurs only if the data overrun on
the host write. If this case the BIC/MIC ISR will read and discard
the data byte until the end condition.

The order and command interrupt conditions are processed by using a
jump table to go directly to the correct processing subprogran,
The MUX firmware processes the order interrupt condition first
before the command, The reason for this is to save some processing
time because orders will be received more frequently then commands.

Each order and command have a separate processing routines. Some
of the subprograms are external to the BIC ISR and some of the
shorter subprograms are part of the ISR, The external subprograms
are described above.

If undefined orders or commands are received or if a illegal
request for starting a transaction is received, the protocol error
status code will be return to the host by the subprogram BIC_ERR.
At this point the host should reset the card before continuing,
although in most cases this may not be necessary. No attempt was
made to find out when this is not necessary.

HEWLETT-PACKARD PRIVATE
133

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

The protocol error and the dead-or-dying error status code will
cause the card not to do a SRQ for the next order. The ISR will
only do a return from interrupt. This is done to allow the idle
loop to run to get information from the RAM to see why the card
failed.

The MUX firmware will only process the abort (ABT), the subchannel
connect (8C), and the resume (RES) commands.

The MUX firmware will only process the identity (IDY), the pause
JPSE), the subchannel disconnect (DIS), the read request status
(RSR), the read (RD), the write (UD), the read transparent status
(RTS), the write transparent control (WIC), and the write inchannel
control (WIC) orders.

13.2.8.1 BIC_ISR

This routine controls the interface to the HP-CIO BIC gate array.
The exchange over the HP-CIO backplane is defined in the BACKPLANE
INTERFACE CIRCUIT (BIC) by Bill Martin, the BIC PROGRAMMERS
REFERENCE MANUAL by Bill Martin, and the HP-CIO STANDARD BACKPLANE
PROTOCOL FOR SMART CARDS by Greg Dolkas.

13.2.8.2 BIC_EXIT

This is the main exit point from the BIC/MIC ISR. The registers
are restored to its original content on entry and a return from
interrupt is performed.

The DI and EI instructions were necessary due to a MIC bug of not
recognizing the second RETI if the previous instruction was an
RETI.

13.2.8.3 ARQ_HOST

This subprogram sends the ARQ status code to the host through BIC
register 2, If the BIC register is busy, queue the status until
the host is ready for it. Subprogram SRE_RIN will send the next
status code when the register is ready.

13.2.8.4 BIC_ABT

This subprogram process the abort command by acknowledging it,
clearing the necessary flags, and clearing the SRQ address register
in the BIC (register 1)

13.2.8.5 BIC_ERR

Send the protocol error status code to the host and just do a
return from interrupt. This is only sent when a backplane protocol

error is encountered.

HEWLETT-PACKARD PRIVATE
134

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.2.8.6 DIE

Send the dead-or-dying statugs code to the host when the MUX
firmgare encounter a unrecoverable internal error. This should
never happen, if it does we got big problem,

13.2.8.7 BIC_DIS

This subprogram process the disconnect order by clearing the SRQ
address register in the BIC,

13.2.8.8 BIC_INIT

This subprogram initialize the BIC and MIC on initial start up.
The subprogram will also spin in a loop until the perpherial
address bit is set indicating that the card has been sense by the
host. The ARQ buffer pointers are also set before returning.

13.2.8.9 BIC_PSE

This is the PAUSE order processor. The normal condition is to set
the pause bit and exit the ISR. But due to a race condition, it
will first test if there is anything on the RTS queue. This can
happen if the pause order is received while interrupts are disabled
in the event manager (ADD_RTS, to be specific). If so, the test
for "are we paused” will fail, and the card will get stuck with a
"continue" event on the RTS queue, and nor SRQ (card paused). By
testing the RTS queue here we prevent this situation.

13.2.8,10 BIC_RES

The resume command processor, If the card is in the pause state,
an SRQ for the next order will be sent to the host.

13.2.8.11 BIC_SC

The subchannel connect command processor. If the subchannel is
already connected, return a protocol error status code. Otheruwise,
get the SRG address from the command and write it to the BIC SRQ
address register (1), Then send the SRQ to the host for the next
order,

Next enable the RQGA interrupt in the interrupt mask. The reason
for this 1is that a command can come in right after reading the
interrupt status register. If the RQA bit is set, send the ready
for command {RFC} status code to the host.

HEWLETT-PACKARD PRIVATE
135

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.2.8.12 BIC_END

This routine is part of the data transfer subprogram. It will
first send the MIC command to disable the DMA in case it is still
active, At this point an active DMA will not transfer anymore data
since the host has sent an END condition to the card. Next
determine whether a host read or a host write is being perform.

If this is a host read and if the DMA was still active when the end
condition is received, then a host read data underrun occurred.
The host has terminated the transfer early. Set the S flag, clear
the Z and C flag, and set up the condition to return to the order
service routine requesting the data transfer.

Similarly, if the host read is active and if the FIFO ready bit in
the BIC interrupt status is set, then a host read data underrun
occurred, The processing is the same as described above,

For the host read if neither of the above condition exist then a
normal completion is performed by setting the Z flag and clearing
the C and S flags before returning to the calling prograns.

The host write can have 3 conditions if a END condition is
received. They are data underrun, data overrun, and bad BIC.
There is a bad BIC condition if the FIFO ready bit in the interrupt
status is also set. The condition requires the firmware to read
the last byte from the BIC before continuing the processing.

The host write underrun occurs if the DMA is still enabled. In
this case perform the same function as for the host read underrun.

If it is not bad BIC or underrun, then a data overrun condition
occurred. Set the C flag and clear the Z and S flags, then set up
the condition to return to the caller.

The normal completion of host wuwrite DMA is done through the DMA
ISR,

13.2.8.13 BIC FFR

The FIFO ready condtion without the END condition can only occur
for a host‘mrite. This is a data overrun. Read the byte and
discard until the END condition occur.

13.2.8.14 DMAB_ISR

This subprogram handles all the MIC channel B DMA interrupts. The
subprogram save all the registers by pushing them onto the stack.
The interrupt system is reenabled to allow the frontplane to
continue processing interrupts when they occurred.

HEWLETT-PACKARD PRIVATE
136

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

The exrit point from this ISR is through BIC_EXIT.

The DMA ISR uses the MIC register 0 auto enable bit to determine
whether a break occurred in transferring data from the circular
buffers. If the bit is cleared, then a break in the circular
bufferring have occurred, Set up the MIC DMA to transfer the
remaining data.

If the BIC end condition is not set and if the auto end enable bit
is set in the MIC, then a host write data overrun condition
occurred. Clear the BIC FIFO and enable the BIC for FFR interrupts
to throw data away until an END condition is encountered.

If the BIC END conditon is set then a normal DMA completed on the
host write, Normally, the firmware will reinitialize the
environment for the next DMA data transfer. But due to a bad BIC
problem, code was added to check the BIC FIFO bit. If it is ready,
then there is one more byte in the FIFO that has to be read.

13.2.8.15 HCIR_IO

All circular buffer data is transfer to or from the host by using
this subprogram. This subprogram determines if the data transfer
will wraparound on the circular buffer. If it does, turn off the
auto enable bit in MIC register number 0 and compute the beginning
address and the data transfer length.

This subprogram will call either HRD_IO or HWD_IO to start the data
transfer. HRD_IO is called if bit 9 of the buffer address is
cleared, and HWD_IO is called if bit 9 of the buffer address is
set.

13.2.8.16 HRD_IO

Set up the BIC and flags for the host read data transfer. Program
the MIC and start the data transfer.

13.2.8.17 HWD_IO

Set up the BIC and flags for the host write data transfer. Then
progran the MIC and start the data tranfer.

13.2.8.18 SRE_RIN

Uhen this program is called, send the next ARQ status code to the
host through BIC register 2. The update the buffer pointer and
disable the SRE interrupt if there are no more ARQ status in the
queue.

HEULETT-PACKARD PRIVATE
137

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

13.2.8.19 SRQ_HOST

This subprogram sends the SRQ to the host for the next order.
There are two types of SRQ’s. The first is sent by writing 10H to
BIC register 4. This one is used when no data transfer occur. The

second method of sending SRQ is by writing a 10H to BIC register 5
to clear the END conditon which was set because of a data transfer.

13.3 The Midplane

The following are descriptions of the modules comprising the
Midplane.

13.3.1 MUX_CCD (8MXCCD)

This subprogram handles all the control card request to the card.
The request is never suspended.

CCD_BEG is the main entry to start processing of the control card
request.

The subfunction code to enable speed sensing will cause the card to
generate a solicited interrupt or event when the baud rate is
detected,

The transmitter will be restarted when the transmitter is stoppéed
due to an device X-OFF or to the host waiting for ah host ACK.

CCD_ABT entry does nothing special.

13.3.2 MUXCDV (8MXCDV)

Thi§ subprogram does no special processing., It is included to
satisfy the external entries for BIC WIC.

13.3.3 MUX_RCI (8MXRCI)

This subprogram process all the read card information request.
This subprogram consists of 4 entries -- RCI_BEG, RCI_CONTI, and
RCIAET.

RCI_BEG sets up the buffer address, the buffer length, and the read
status for the requested information.

RCI_CONT does nothing except to set the active status to RTS_END to

HEWLETT-PACKARD PRIVATE
138

HP-CI0 8-CHANNEL MUX FIRMWARE IMS

terminate the transaction,

Note that all read card information request should not have the
block bit set in the request block. The information transfer to
the host cannot be blocked. The reason for not doing this is to
save code space. The only request which will exceed the block size
is the read card RAM request (subfunction 250).

RCI_ABT does nothing except to set the active sttus to RIS_ABT.

13.3.4 Read Device Data: MXRDD

This module implements the Read Device Data request.

13.3.4.1 RDD_BEG

This is the initiate entry point for RDD, which is called by BCWIC
because of a CLC order with the request field set to 1.

On entry, BC points to the port’s stuff, and IY points to the
request block. Since this 1isn’t convenient for some processing
here, the addressing is switched; IY points to the port’s stuff,
and BC points to the request block.

o The first thing checked is whether or not a read is legal under
the current receive configuration. This prevents someone from
hanging a read on the port when the receiver is disabled.

o The next thing to check is whether a receive interrupt is pending
on the host. This can happen if a read request is initiated on the
card at the same time a termination condition is seen on the port’s
frontplane. The host’s request, if it gets to the card before the
event is reported to the host, will read the data, thus clearing
the condition which caused the interrupt. Since the interrupt is
queued in either the Event Queue or RTS Queue, these queues must be
searched to remove the event. Note that this can "impact"”
performance if it is done too often,

o The request block is checked to see if the F bit 1is set. This
directs the card to flush any data the port may have accumulated
prior to the request. This is used by systems (e.g. the 3000)
which don’t 1listen to data comming in if a read request is not
pending (except for signal characters). If a separate flush
buffers request were performed there would be a window between the
flush and the read uwhere data could be entered under different
configuration. (Remember the read subfunction can toggle some
frontplane configurations.,) If a flush is performed, then there is
now lots of space left in the receive buffer, so we have to send an

HEWLETT-PACKARD PRIVATE
139

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

XON if we had previously sent an XOFF.

o RDD_BG3 Now that all the housekeeping is done, on to serious
business.., The receive backplane pointer is checked (only need to
check the high byte since it can’t be zero if there 1is a buffer)
for a buffer which has at least one byte in it., A previous read
may have removed part of the data, but we don’t care since the data
offset poiriter (RDBUFN) will have been left updated, If there is
some data, then it, or part of it, will be used to satisfy at least
the first block of this request. The read will not be suspended on
this block.

o If there is no data, there are still two possible ways to not
have to suspend this read. First is to check for alert-1 mode. If
enabled, the read will not be suspended, even if we have to
generate a zero length record to satisfy it.

o If there is no terminated data, and we’re not in Alert-1 mode,
then we see if there is enough data to satisfy the request sitting
on the frontplane. If so, we terminate it now. The equivalent is
if the read happened first, the data would have been terminated by
Host Buffer Full. Since we shouldn’t care which happens first, we
have to make this check. From here there are two paths; either
there is enough data or not. In both cases we will be changing the
frontplane counters, and so have to call SET _CNTR. Since the
frontplane downcounter has not expired, the counters which SET_CNTR
uses have not been updated, we have to call UPD_EOC to update the
end on count and host buffer full counters before calling SET_CNTR.
Othervise all sorts of nasty things will happen. So to save code,
first we call UPD_EOC, then see if there is enough data.

o Note that we only need to do 8 bit arithmetic since the length of
the buffer can’t be more than 252 bytes long. If more data were
entered, the internal counter would have popped, and the frontplane
would have had a record already ready to go, and we wouldn’t be
here.

o If there is not enough data, the down counter for the host buffer
size is updated to reflect how much more we need to satisfy the
request,

o Now, if we ended up deciding that what was on the frontplane, if
any, was enough to satisfy the request, we call the frontplane
routine PACKITUP to terminate the current frontplane record. If,
since the last read, the frontplane parameters were changed, the
new values can now be installed on the frontplane. The initial
values of the end on count doun counter is set, and the host buffer
size down counter is set large enough not to get in the way. Now,
finally, we can call SET_CNTR and let the frontplane go.

o If we have to suspend the read, the host buffer size down counter

HEWLETT-PACKARD PRIVATE
140

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

is set and SET_CNIR is called. Note the call is made AFTER the
suspend flag is set, since SET_CNTR checks the suspend flag to see
if it has to worry about the host down counter.

o The last thing we do before leaving in a suspended state is to
toggle the frontplane functions based on the subfunction code,

This is done by changing the toggle mask to enable or disable the
functions which are allowed to be ‘'sgpecial" in the receiver ISR.
We suspend by setting the Z flag back to WIC.

o RDD_9 If a buffer was ready when the read was posted, or was made
ready by the horseing around we just did, we end up here. Since we
will be dealing with the request block for a while now, the
addressing is switched back; IY points to the request block and BC
points to the port’s stuff. The interrupt system can come on since
we are done messing aroung with the frontplane.

o RDD_14 First we set up the beginning address for the RD and WD
processor (BCRWD). This is computed from the backplane receive
buffer pointer plus the offset counter. The counter is initialized
to 3 to account for the header bytes in the receive buffer. Note
that uve have to make sure that the math accounts for the 512 byte
circular nature of the buffer by resetting bit 9, just incase it
got set by a wrap.

o The length is computed from the total length of the buffer, minus
what has already been transferred. "What has been transferred"
includes the three header bytes. The actual length of transfer is
the minimum of this value and the length of the user’s buffer,
which may be less.

The carry flag is set to tell the backplane that the request is
ready to go.

13.3.4.2 RDD_CONT

This is the contination entry point for RDD, called by BCRUD after
completing a transfer to the host.

o On entry, BC points to the port’s stuff, 1Y points to the request
block.

o The first order of business is to update the RSR block to reflect
what has just taken place, The length parameter in the request
block which RUD used for the transfer is used to update the
transfer length field of the RSR block, which is at the end of the
request block. The terminating code and characters are also copied
to the RSR block. This leaves the type of the last block as the
type of the entire transfer, which assumes that all blocks up to
the last one were "partial records".

HEWLETT-PACKARD PRIVATE
141

HP-CIO 8-~CHANNEL MUX FIRMWARE IMS

o The residual count is set based on what is left in the current
backplane record. Again, after the 1last block this will reflect
the correct overall value,

o There are now two possibilities. Either the last block sent to
the host completely emptied the current backplane record, or there
is still gome data 1left in it. If there is no data left, this
phase of the transfer is complete If so, then the host wants the
rest of the data saved. Ue move the backplane offset pointer to
account for what was transferred, then we’re done.

o If there is no data left, or if the § bit is not set, we
de-allocate the data buffer. Again we have tuo possibilities;
either there is another buffer after this one, or there isn’t.

o If there is another buffer, we check if the read is a blocked
read. If so, and if the record is not a partial buffer (signifying
that the read has completed) then we go set up to transfer the next
block. A check is also made in case the data buffer was not a full
252 bytes. This can happen if a previous record was partially
read, then another request, with a large buffer and the Block bit
set, comes along. The first block would be short, so to agree with
the Backplane Protocol Standard, uwe simulate a termination
condition to force the request to complete after that short block.

o If the block just sent terminated the read, we have to generate
an event to the host to inform him of the "new" record. This also
sets data available in the status word, and other good things,

o RDD_5 If there isn’t another completed buffer we zero out the
backplane pointer to indicate no data available. Alert-1 mode is
re-enabled on the frontplane if it should be (the frontplane’s flag
gets reset after the first character so that it does not get bogged
down). If there is any data on the frontplane an alert-1 event is
generated instead.

An XON character is also sent if we now have enough space and had
previously sent an XOFF.

13.3.5 MUX_UCC (&MXWCC)

There are 3 major entries into this subprogram. They are UCC_BEG,
WCC_CONT, and WCC_ABT.

All write card configuration requests are started by calling
BCC _BEG. This subprogram will verify the subfunction code and the
data transfer length. If the information are valid, the subprogram
will set up the staging buffer address and the data transfer
length. Note that the block mode bit in the request block should

HEWLETT-PACKARD PRIVATE
142

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

not be set. None of the subfunction has parameter length close to
the block size,

After the data 1is transferred from the host to the card, WCC_CONT
is called to complete the transaction. The data content are
verified whereever possible before being move from the staging
buffer to the port stuff area for the port. If the data is
invalid, then an error is returned to the host in the read status
block.

The UCC_ABT entry does nothing except to set the active status to
RTS ABT.

13.3.6 MUX_WDD (aMXWDD)

This subprogram has 4 major entries. They are WDD_BEG, WDD_CONT,
WDD_ABT, and WDD_END.

All write device data requests are started by calling WDD_BEG.
UDD_BEG will check to see if there is enough buffer space for the
transaction. If there is enough space, set up the buffer address
and the data transfer length to continue the transaction.

If there is not enough space, suspend the transaction. The
transmitter interrupt service routine will restart the transaction
when enough space becomes avallable.

After the data transfer has conmpleted, WDD_CONT is called to
continue or complete the transaction. The subprogram will first
update the transmission log, If the remaining data transfer length
is not zero, go set up the buffer address and the data transfer
length for the next uwrite if there is enough space. Otheruise,
suspend the transaction.

If the remaining count becomes zero, check to see if the output
separator appendage option 1is enabled. If enabled add the output
separators to the transmit buffer at this time, Now go clear the
header of the next record and then set the byte count in the
current record to make the record available for the frontplane for
processing, Turn off the interrupt system and then call the
frontplane subprogram to start the transmitter if it is not busy.

The abort write device data transaction request will cause the
clean up of any suspended write device data transaction. Entry
WDD_ABT will be called to do this processing.

UDD_END is called to terminate the write device data transaction
early, The firmware will check to see if the output separator
appendage option is enabled to append the output separators before

HEWLETT-PACKARD PRIVATE
143

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

terminating the transaction.

The write device data subfunction contains only 2 options. The
first is to decide whether to append the output separators to the
final transmit record for the request. The second is to toggle the
handshake bit.

13.4 The Frontplane

The frontplane handles all interactions from the card to the
devices. This include transmitting and receiving data, speed
sensing, and other special conditions generated by the SIO.

13.4.1 EXT_ISR (&EXISR)

The external status interrupt service routine only processes break
detection, The break detection occur in two stages, The first
stage is the start of break, and the last stage is the end of
break. The firmware will set the flag for the port at the start of
break. On the next interrupt the firmware will know if this is the
end of break by checking the flag.

The user have the option allowing the null character to be inserted
into the receive buffer. The break event is not generated if the
interrupt enable mask is not set for the break event. However, the
break event in the status vector CARD ST will be set.

13.4.2 RX_ISR (&RXISR)

The receiver interrupt service routine uses macro expansion per
port to gain fast execution., The major draw back of doing this is
the ROM space usage and the difficulty of debug the code.

13.4.2.1 RXISR (Macro)

This is the macro which is expanded per port to process the

"normal” characters received from the 810, . Data interrupts from
each SI0 channel are vectored directly to the expanded macro for

the port which interrupted. The machine state is saved (exchange’

with the alternate register set), and the character is read from
the SIOC. Note that errors (parity, framing, overrun, etc) are
handled by a different ISR which is vectored to directly when the
error happens. The character read is ANDed with the current parity
mask which strips off un-used bits for the 5, 6, and 7 bit modes.
The mask is "FF" in 8 bit mode, "7F" in 7 bit, "3F" in 6 bit, and
"1F" in 5 bit.

HEWLETT-PACKARD PRIVATE
144

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

The entry point at RX_ISnA is entered by the error handling ISR
(SPISR) in the event of a parity error with the ignore parity
errors option set.

In order to maintain the highest speed, each character is not
checked for all of the various options (backspace, delete, echo,
etc, etc, etc) on every interrupt. That would take too long.
Instead, there is a table of 256 entrys (the Special Character
Table) which is indexed into by the character value. Each entry
contains bits which represent the attributes of that character.
The attributes are: handshake, signal, quotable, edit, and single
text terminator. A generic character has all bits zero.

To implement the attribute toggle feature of RDD, a mask is kept
which allowus certain of these bits to be masked {turned off). A
masked-out bit is equivalent to a bit which is not set, i.e. the
special nature of that character

is limited. Each received character is used as an index into this
table, the entry in the table is masked with the TOGL MSK, and the
result tested for =zero. If it is zero, the character is not
considered special, and it is placed in the buffer with no further
checking. If the result was not zero, there is something special
about the character, and a jump is taken to common code (outside
the macro) to test which attribute{s) are indicated.

Putting the character in the buffer decrements the Frontplane Doun
Counter, which was set by SET_CNTR to the shortest buffer length
which did not need additional processing (END-ON-something, XOFF
handshake, etc). If the counter rolls over, an exit (jmp) is taken
out of the macro to find out what it was that the counter was set
to trigger on.

After the character is placed in the buffer the word "RX_FLAGS" is
tested for zero. Any non-zero bit indicates that some further
special processing is needed before the ISR can end. One of these
is echo, another is alert-1.

The RX_BFULL bit in RX_FLAGS is checked after checking for
special-ness via the special character table to allow handshake
characters to be processed even when full.

13.4.2.2 RX_SPECL

This is where control transfers out of the macro if a character is
received which has some non-zero bits in its entry in the special
character table. In order of priority, the bits are checked for
being handshake, signal, quotable, edit, or terminator characters.
Once the class of character is determined, the appropriate routine
is invoked to find out which character 1t is (there are several

HEWLETT-PACKARD PRIVATE
145

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

different handshake and edit characters) and perform the
appropriate function. Before leaving the macro, the IY register is
loaded with the address of that port’s stuff.

13.4.2.3 RX_EXIT

This is where all exits from the ISR go through, except those
within the macro itself. Note that IY is popped from the stack.

13.4.2.4 RX_OTHER

This is where tontrol is passed out of the macro in the event that
there are some bits set in RX_FLAGS. The A register is assumed to
have the RX_FLAGS contents for the first test of this routine. The
rest (RX_OTHR2,3) use IY+RX FLAGS since they are entered from the
common code after a special character or frontplane counter
rollover.

13.4.2.5 R¥_ECHO
This routine echos the character in the E register.
13.4.2.6 RX_AL1

. This routine generates the ALERT-1 event to the host, if it is
enabled. The frontplane alert-1 bit in RX_FLAGS is reset so that
this routine will only be called once per record (MX_RDD turns the
flag back on) so the host will get one interrupt per record, and to
speed processing.

13.4,2.7 RX_HSHK

We get here if the character received is identified as a handshake
character. The character is compared to the current values of the
device XON and XOFF, and the host ACK characters. If a match is
found, and the indicated action is enabled, then the action is
performed. The check for having the action enabled prevents
incorrect operation if two characters are programmed to the same
value with one of them turned off.

13.4.2.8 RX_QUOTE

This routine is entered whenever a character is received which is
quotable, i.e. a character which may be preceeded by a "\" to turn
off its “charm”, These characters are the backspace, line delete,
and quotable single text terminator. The previous character is
checked for the "\" charcter, and if it is, the received character
is layed over the “\". This is only done if the BS_PTIR indicates
that we did not backspace to this position. If we did, then the
quotable character would be mis-interpreted as having followed the
quote character.

HEWLETT-PACKARD PRIVATE
146

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.4.2.9 RX_SIT

This is where control is passed if the received character is one of
the single text termination characters. If enabled, the sequence
"CR", "LF" is echoed back to the terminal, and the received
cha;acter is placed in the buffer (unless the strip STT option is
set).

RX_STT5 is where the information is set to call PACKITUP and
RX_COMPL to terminate the record and tell the host about it.
RX_ENDIT is called from RX_COUNT and the error handling routine in
SPISR.

The check for space prevents a record termination, which takes
atleast 3 bytes for the header, from wrapping around the receive
buffer. The check is made faster by checking for a backplane
buffer, which usually isn’t there. If it’s not, then there can’t
be less than 8 bytes left since there is 512 bytes of space and the
longest record is 252 bytes + 3 bytes for its header.

The swap of text termination parameters is then made, if there are
any to swap.

13.4.2.10 RX_COUNT

This routine processes the characters which decremented the
frontplane down counter to zero. First, the character is echoed,
if enabled, since this wasn’t done before the macro was exited. A
check is made (via routine CHEK_XOF) to see if it is time to send
an XOFF. Since this can happen at the same time one of the other
counters hits zero, further checks are made.

The end-on-count down counter is updated, and tested for zero. The
host buffer full counter is decremented next, followed by a check
for the internal buffer size of 252. If any of these counters are
exhausted the buffer is terminated with the appropriate termination
code. The first condition to cause termination is used, and the
rest of the checks are skipped.

The space remaining in the receive buffer is then calculated. If
it is less than 8 bytes the receive buffer full flag is set to
prevent any further chanracters from being received, and the
current record is terminated with the buffer overflow code.

A new value of the frontplane down counter is calculated and
installed, and one last check is made, this one for alert-1 mode.

HEWLETT-PACKARD PRIVATE
147

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.4.2.11 RX_EDIT

This is where backspace and line delete characters come. If the
received character gets here and it is neither of the edit
characters, an -internal bug has appeared, so we jump to die to
alert someone’s attention.

RX DEL processes the line delete character. The pointers to the
active receive buffer are re-set to point to just the header (an
empty buffer), and the backspace pointer is re-set to the address
of the header (an impossible place to backspace to). The header is
cleared of any error flags, and the frontplane down counter is
re-calculated. If echo is on, a "\ cr 1f" sequence is echoed to
thé terminal.

RX_BACK processes the backspace character. If there is nothing in
the receive buffer, a backspace has' no effect, The active receive
buffer’s next character pointer is decremented, and the character
deleted saved incase the echo node is set to echo a “\" and the
character. The echo mode is checked, and if echo is enabled, the
appropriate sequence of characters is echoed to the terminal.

The position of this backspace is saved in BS_PTR so that the quote
routine knows whether a quote character was backspaced to or not,

13.4.2.12 RK_SIGNL

This processes characters which are signal characters. Signal
characters are like the BREAK condition; they cause an interrupt to
the host and are tossed away. The appropriate interrupt code is
found by looking for which of the 4 possible signal characters was
received, The interrupt bit is then set and an event generated, if
there wasn’t one already set,

13.4.2.13 PACKITUP

This routine packs up the current receive buffer. The header is
set to reflect the length of the buffer, and the terminating
condition and character. The receive buffer is then set up for the
next record.

13.4.2.14 PUT_CHR
This routine puts a character in the active receive buffer. The

condition code is left set as appropriate for a check for buffer
full. The character to be stored comes from the E register,

HEWLETT-PACKARD PRIVATE
148

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.4.2.15 SET_CNTR

This routine sets the frontplane down counter. The value of the
down counter is the smallest buffer which does not have any special
processing to be done because of count. For example, if the host
read was posted for 500 bytes, and the internal buffer size is 252,
and the end on count is 50, but there are only 30 bytes remaining
in the port’s receive buffer, then the down counter would be set to
30.

The code is designed to be as fast as possible based on "usual"
conditions. Usually, there is not a backplane record, so there’s
lots of space left (hence no XOFF possible), and end on count is
not enabled.

13.4.2.16 MIN

This routine returns in HL the smaller of the two 16 bit unsigned
numbers in DE and HL.

13.4.2.17 AL1_EVNT

This routine generates an alert-1 event if events are enabled. The
event block is filled in and the event manager is called.

13.4.2.18 CHEK XOF

This routine checks to see if it is time to send an XOFF, and if
so, sends it. An XOFF is sent if there is less than 72 or so bytes
of space remaining. This gives at least room for 16 or so
characters in the worst case where end on count is set to 1.

RX_HXOF3 (this stuff used to be in the RXISR) checks the return
address for the RX_COUNT routine. If it was called from there the
frontplane down counter is not updated since that would wipe out
all traces of the information which RX_COUNT needs. RX_COUNT
therefore calls SET_CNIR itself,

13.4.3 SPC_ISR (&SPISR)

The special condition interrupt service routine handles all the
error conditions produce by the SIO. These error conditions
include the data overrun, framing, and parity error. The ISR has
several options for processing the error condition.

If no options are specified, an error condition will cause the
termination of the current receive frontplane record. If the
ignore all errors option is set, then the error condition will be

HEWLETT-PACKARD PRIVATE
149

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

ignored; that 1is, the character will be thrown away with no
processing. If the ignore parity option is set, the parity error
condition will be ignored and the received character will be
processed as 'if there was no error. There is one additional option
not to terminate the record but to replace the bad character was a
user specified replacement character. For additional details and
the logic flow, see the ERS.

13.4.4 SPD_SEN (&SPDSN)

This subprogram along with the speed sensing interrupt service
routine, which will replace the normal receiver ISR when speed
sensing is enabled, will handle all the speed sensing detection.
See the chapter on speed sensing for additional details.

13.4.5 SS_ISR (&SSBIR)

This is the speed sensing interrupt service routine to replace the
normal receive interrupt service routine uwhen the speed sensing is
enabled. See the chapter on speed sensing for additional details.

13.4.6 .SSB_ISR (&SSBIR)

This is the service routine to replace the normal special condition
interrupt service routine when speed sensing is enabled. UWhen
speed sensing is enabled the SI0O can data overrun in synchronous
mode when the ISR cannot read the characters out of the SIO buffer
fast enough, Under this condition speed sensing information has
been lost, and the SIO should be resynchronize.

The data overrun condition can occurred when all ports are doing
speed sensing at the same time or whén many ports are terminating a
record at the same time. Hopefully this should not occur too often
to cause user complaint,

13.4.7 TK_ISR (&TXISR)

The transmitter is like the receiver ISR in the sense macro
expansion is used to speed up the procesgsing, The normal path
where the character is read from the SIO and put into the buffer is
given the fastest execution speed by using straight line coding.

The ENQ/ACK counter is decrement after each character is
transmitted. If the counter should count down to zero, a flag is
set to transmit the ENQ on the next transmitter interrupt.

Some character or option checking are alway done even though the

HEWLETT-PACKARD PRIVATE
: 150

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

option is not enabled. This is done to save processing time. For
example, the transmitted character is always checked to see if it
is a record separator. For majority of the case it is not., This
save time because the byte compare is faster then the bit compare
to see if the option is enabled.

13.5 The Self-test (MXSTEST)

Most of the documentation for the MUX self-test is contained in the
listing. The self-test wa leverage from the ASI firmware which was
originally from the MEF PSI.

The changes from the ASI include the following:

o The hood sensing is different. The SIO modem control lines are
used instead of a separate register on the card.

o The ROM test will check 16 Kbytes.

o A short RAM test is performed first before doing the BIC test,
The test only checks the locations that are going to be used by
the BIC test. The BIC test is done first because the RAM test
takes so much time, and the host can set the BIC PA bit to
cause the BIC self-test to fail.

o The RAM test has been changed to test the 48Kbytes of the 64K
RAM chip. The other 16K cannot be tested because of the MIC
limitation. (The untested portion will never be access because
it is overlay by the ROM address space.)

o The RAM test is more extensive then the ASI. The short test is
the same as the ASI; but the long RAM test uses a different
test pattern and actually execute instructions out of the RAM
space,

o The number of CIC tested has been increased. No interrupt test
is performed on the last 2 CIC because it is not connected to
the interrupt chain,

o The number of SIO tested has been increased. In addition 3
passes through the SIO test is performed for each port. The
first pass is the internal loopback. The next 2 passes are
performed if the loopback hood is installed. They will check
the single-ended drivers and the differential drivers.

o The MIC test checks both channel A and channel B DMA.

o Code has been added to the self-test to determine whether a SIO
has been damaged because of incorrect installation of the

HEWLEIT-PACKARD PRIVATE
151

HP-CIO 8~CHANNEL MUX FIRMWARE IMS

cable. Uhen the cable is installed incorrectly, it will
probably kill one of the SI0O. The damaged SIO will generate
interrupt infinitely thus preventing the firmware from
executing any code except the ISR servicing the interrupt.

The added code will enable the interrupt system. If it is able
to reach the point of diabling the interrupt system, then there
are no devices on the card generating infinite interrupt.

13.6 Miscellaneous

The following subprograms are essential for the proper operation of
the firmware but does not fall into the above catogeries.

13.6.1 DMAA_ISR (3DMAA)

The only purpose of this subprogram is to process MIC channel A DMA
interrupt which should never occur. A bug in the BIC would cause
the MIC to generate this interrupt unnecessarily. A counter was
included to note how often this occur.

13.6.2 MUXIVEC (&MUKIV)

" This subprogram contains all the interrupt vectors for the SIO ,
CIC, and MIC devices. The tables are loaded into RAM during the
initialization process.

The reason RAM is used instead of ROM is that the SIO interrupt
vectors can be changed depending on whether speed sensing 1is
enabled or not for a particular port.

The reason why all of the interrupt vectors are in RAM even those
that does not change is because the I register can only be set to
one value.

13.6.3 MUXMAIN (&MUXMN)

This is the main program of the MUX firmware. Upon any reset
condition, the CPU will start instruction execution from address 0.

This subprogram will initialize the firmware system such as the
S10, CIC, RAM, BIC, MIC, etc before dropping into the idle loop.

HEWLETT-PACKARD PRIVATE
152

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.6.4 MUXVAR (8MUXVR)

This subprogram contains all the global variable definitions.

13.6.5 REALCLK (&MXCLK)

This subprogram processes all the CIC #0 channel 3 interrupts which
occur every 10 milliseconds. The subprogram will scan through the
timers to see if anything needs to be done. For more details, see
chapter 9 on the Timer Algorithms.

HEWLETT-PACKARD PRIVATE
153

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

CHAPTER 14 |
|

N
P
=
Q
Q
N
ps
(o)
g
[
w0
$ o ——

__________________ +

The following are notes concerning the Zilog SIO.
o SI0 interrupt priority

high 1. channel A receive or
special condition

channel A transmit
channel A external/status
channel B receive or
special condition

5. channel B transmit

low 6. channel B external/status

& —— o —
A

o SI0 interrupt vector

XXXX YYYO channel B transmit

XXXX YYY2 channel B external/status

XXXX YYY4 channel B receive

XXXX YYY6 channel B special receive condition

XXXX YYY8 channel A transmit

XXXX YYYA channel A external/status

‘KXXX YYYC channel A receive

X¥¥XX YYYE channel A special receive condition

o The SI0 is programmed by the firmware on power up and whenever
any parameters related to the SIO is changed.

o Uhen a framing error occurred, the SIO will interrupt to the
special receive condition vector even when the "parity does
not affect vector" is programmed into write register 1. The
manual is miss leading in specifying "or on special
condition,”

o Once a break condition is detected, the firmware must reset
the external status and wait for the termination of the break
condition. After the break is terminated, the SIO will
generate another external status interrupt. Reset the
external status again so that it can detect the next break.

0 A null character is alvays generated after the break condition
is terminated. In theory the receive interrupt should be
generated first before the exrternal status interrupt since the

HEWLETT-PACKARD PRIVATE
154

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

o

former has a higher priority. In practice this is not always
true because of a bug in the SI0. The MUX firmware will turn
off the receive interrupt when a break is received. After the
break is terminated, the null character will be read and
discarded before the receive interrupt is turned back on.
However, if "general null" option is enabled, the null
character will not be read and discraded. .

If the SIO is programmed for odd parity, the null character
generated by the SIO for the break detection will generate a
parity error, This must be cleared before reading the null
character,

The SIO is programmed by subprogram SET_SIO.

Whenever the SIO is reporgrammed for whatever reasons, the SIO
is not reset again after the power-up initialization sequence.
If the SIO is reset, the interrupt vector will be lost. This
will require more firmware to program the SIO instead of using
one common routine for every port.

A SIO can generate infinite interrupts continuously if the
modem signal input is damaged. This will prevent normal
execution of the firmware,

The SIO transmitter must be disabled first before the SIO is
reprogrammed for synchonous "hunt mode" for speed sensing, If
this is not done a garbage character will be sent to a
terminal,

The SI0 external/status and the special condition channel must
be reset after speed sensing is completes successfully and the
SI0 is reprogrammed for the asynchronous mode. In addition
the receiver buffer must be emptied by reading the characters
from the SIO.

The speed sense receive ISR must check the external/status
hunt mode bit to see if the incoming character is valid.

There may be characters remaining in the SIO receive buffer
after the SIO is reprogrammed for the synchronous hunt mode
after a failure, The invalid characters are from the previous
speed sense,

HEWLETT-PACKARD PRIVATE

155

HP-CIO 8-CHANNEL MUX FIRMWARE IMS HP-CIO 8-CHANNEL MUX FIRMUARE IMS

it Hmmm oo mem e + o The following is the M and N settings for generating the
|] | supported baud rates.
| ZILOG CIC NOTES | CHAPTER 15 |
| | | b Hm———— Fmm———— B [P +
o e oo #ommmmmmmmmmooeeo + | Count | ! | BAUD | |
| Source | M | N | Rate | Error¥*|
e o o tmmmme e $mmmm +
| I X | 3 | 38400 | |
o The following is the block diagram of the hardware for | o R e m e R +
generating the baud rate to CIC channel 0. | x| 6 | 19200 | i
| From - R —— bmmm b m +
(External Clock 1.8432 lexternal | X | 12 | 9600 | |
14.746 LS161A MHz to CIC’s) |clock e 4o Hmmmmme Hmmmmmem +
MHz =~ 4-----—- + D + baud j(1.8432 | X | 16| 7200 | [
—————————— >| * 1/8 |--—-—-—=—>{* 1/M * 1/N|->rate [MHZ) tO #=---—#-mmeetm ooy
(from | * 1/4 |-—~—-——- > | for |CLK/TRGO | X | 24 | 4800 | |
backplane) +------- +3,6864 MHZ+~—-n--=m---= + SIOo lof the +----- oo Hmmmmm e 4mmm oo +
{Internal |CTC | X | 32| 3600 | |
Clock) | fm———— o —— P Fmmm———— +
| I X | 48| 2400 | f
wvhere M=Prescaler Of The CIC and | s Homm e 4o B +
N=Time Constant Register of the CIC] | X | 641 1800 |
] o [— Fommm—— P +
| | X | 96 [1200 | |
] [R— TR PR — o +
| | X | 128 | 900 | |
| D O 4 mm—e dmmmm +
| | X | 192 | 600 | |
e it D dmm——— R ettt B +
| | 161 481 300 | |
|From the +----- it Hommm—m Ao +
linternal | 16 | 96 { 150 | |
|clock Hm e 4o Hmmm e i +
|(3.6864 | 16 | 107 | 134.5 | 0.06% |
|MHZ) of +----- Fm———— dmm————— o +
Jthe CIC | 16 | 131 | 110 | 0.07% |
| m———— fmm——— b ———— Fmm———— +
| j 16 | 192 | 75 | |
[- ———— o —— o — +
| | 256 | 18 | 50 | |
o - - o o ——— +

* No Error Unless Otherwise Noted

Where M=Prescaler Of CIC,
N=Time Constant Register of CIC,
X=Don’ t Care.

o There are 3 CIC’s on the 8-channel MUX card. They are
used as follow:

HEWLETT-PACKARD PRIVATE HEWLETT-PACKARD PRIVATE
156 157

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

CTC #0 Ch 0 - DMA pacer
Ch 1 - port 1 baud rate generator
Ch 2 - port 0 baud rate generator
Ch 3 - firmware real time clock

CIC #1 Ch 0 - port 2 baud rate generator
Ch 1 - port 3 baud rate generator
Ch 2 - port 4 baud rate generator
Ch 3 - not used

CIC #2 Ch 0 - port 5 baud rate generator
Ch 1 - port 6 baud rate generator
Ch 2 - port 7 baud rate generator
€h 3 - not used

All the CIC’s programmed as baud rate generator should
never generate an interrupt,

All the baud rate generators are programmed by subprogram
PRG_CTIC.

The real time clock is programmed to generate an interrupt
every 10 milliseconds. This is done in subprogram
MUX_MAIN when the firmware enviromment is initialized.

The DMA pacer is programmed to generate a pulse to the MIC
for pacing., This is done in subprogram MUX_MAIN when the
firmware enviromment is initialized.

HEWLETT-PACKARD PRIVATE

158

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

e e e et e e

A e e e e

ADDITIONAL NOTES

+o———

2
>
5
m
-2

=
o

o Due to the hardware nature of the Z80 on fetching data, the
16-bit quantity from the host must have the high and low byte
suapped before being used by the Z80 as a 16-bit quantity.
This comes about as follow: the host will transfer the high
byte of a 16-bit quantity first to the card. The card Z80
will store the byte in low RAM address and the next byte of
the 16-bit quantity in the next higher RAM address. Uhen the
Z80 fetch the 16-bit quantity, the host high byte will be the
Z80 low byte. Thus, the bytes must be swap.

o The frontplane interface subprograms must swap the high and
low bytes of all 16-bit quantity being returned to the host.

o When an interrupt occurred, the interrupt system is not
reenabled until the processing for the interrupt is completed.
The only exception to this is the BIC/MIC interrupt.

o The alternate register set is used by all the interrupt
service routines except for the BIC/MIC interrupt. The
BIC/MIC interrupt service routine will use the current
register set after pushing its contents onto the stack.

o Register IX contains the address to the status vector byte
STATUS. This register is used extensively by the macros SBIT,
POST, TEST, CLEAR, FBIT, FSET, FIST, and FCLR to define, to
set, to test, and to clear a status vector bit or a flag bit.

o Register IY contains the address to the transaction table for
the current transaction being processed by the backplane.

o Note that the I/0 port address does not offer full address
decoding. Therefore, more then one different address may be
used to access the device. This may be a problem in debugging
strange behavior of the card. Like writing to I/0 port :
address 0 may cause the SIO or CIC to do something because the
decoding uses only one line of the address to select the
device.

HEWLETT-PACKARD PRIVATE

159

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

e e e}

!
!
[

e e

APPENDIX B

EIA RS-232-C CONNECTOR PIN ASSIGNMENT

o e e e e e e o e e e o

| CCITT V.24 | EIA RS-449|

Ipin|

Ino. |
L e T L T TP S R S Y

| Equivalent | Equivalent|

description

101

I

1| AA Protective Ground

e e ——————————

2| BA Transmitted Data

e e e e e e e e e e e —

SD

Send Data

3| BB Received Data | 104 RD
B i T e i et ke T Ny

I

| RS

! 105
A e e e e e e e e m e — ¢

4| CA Request to Send

| cs

I
!

5| CB Clear to Send

|
f

106

Ready for Sending

L i s it 4

DM

Data Mode

!

6] CC Data Set Ready

A o e o e o e e o o e e S e e o e e

!

SG

102

7| AB Signal Ground {(Common Return)

b m————
| 1
1]
i 1
i |
| [~}
| oo
1 |
i |
| !
1 |
] [}
+o————
1 i
1 1
1]
] 1
f i
| » i
1 < [}
! —]
t '
] 1
| 1
1 '
+ e ——— 4
] i
[i
['
[I
O Q 1
S QS 1
| H“M |
i |
1 a '
[} o !
= Q@ A [
g >0]
1SS e 4

1 B0 O |
lGge !
1 '
1 X >
[V (=Rl
[=) ol
e @ D
el S ®m
] [oa =] f
[R e
[R]
PS>0 wm >
[e
[D
|85 8|
1

(=] [-3]
1 t
[|
[]
| I
o —— ¢
1 !
1 1
i |
+ ————

(Data Set Testing)

9|
e e e e e e e e e e e e e

|

dr o et e e o e e e

(Data Set Testing)

| 10]

Unassigned

| 111

Signal Detector
Backward Channel Received

Line Signal Detector
Secondary Receiver Ready

L ittt Rt e e P

| SCS |
121 ! I

|
|

T gy SR SO SOy WU §

Backward Channel Ready
| 14] SBA Secondary Transmitted Data

!

| 13| SCB Secondary Clear to Send

!

HEWLETT-PACKARD PRIVATE

B-1

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

B ettt ettt ettt 4

D et i it e e 3

!
|
I

APPENDIX A

ASCII CHARACTERS & BINARY CODES

kit T R S

O}NUL|DLE |splol@lP]l*1ipl

B et B e Sy

tl1lalalalaql

B S e At s St

1| SOH | DC1 |

"l12IBIRIbIT]

gy PR AP S S

2| sTX | DC2 |

#13]Clsleclsl

O U AP Sy P (Y

3| ETX | DC3 |

$14lDiTialt

Dt et S S S e et 1

4 | EOT | DC4 |
5 | ENG | NAK |

Z151EfUlelul

L i e e e Y

&1 61 FIVIflvl]
F i et e e N a3

6 | ACK | SYN |
7 | BEL | ETB |

{716 lulglul

B et R et s

(I8iHIXInlxl

| CAN |
D e Attt e e e e e et]

8 | BS

Jlotlrtlylilyl
lstzlijilzl

B i L e e S T ¥
skl Dkl {1

B T B it ST S

*
B e st e e e e a5

| EM
| suB |
| ESC |

9 | HT
Al LF

B | VI

A R I A BN I O B B
B e e e e St TE L Tty

| FS

C | EF

==l lliml}

| Gs
B e e e ettt e e e

D | CR

I>INT "~ Int ™|

g S SIQ g S Sy P

| RS

E| so

| o |DEL]

/1210l

et e e et

| us

F | sl

HEWLETT-PACKARD PRIVATE

A-1

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

Data
Secondary Send Data

Not supported by firmwa
DB Transmission Signal Elem

Timing {DCE Source)
Send Timing

SBB Secondary Received Data
Received Backward Chann
Data

Not supported by firmwa
DD Receiver Signal Element
Timing (DCE Source)
Receive Timing

Not available on this ca

SCA Secondary Request to Se
Line Signal

CD Data Terminal Ready
Terminal Ready

Transmitted Backward Channel

re

ent

Not available on this card

el

re

rd

nd

Transmit Backward Channel

118

CG Signal Quality Detector
Signal Quality
Not available on this ca
CE Ring Indicator
Calling Indicator
Incoming Call
(DTE/DCE Source)
Signaling Rate Indica
DA Transmit Signal Element
Timing (DTE Source)

Terminal Timing

HEWLETT-PACKARD PRIVATE

Data Signal Quality Detector

rd

CH/CI Data Signal Rate Selector

Signaling Rate Selector

tor

B-2

i ———— ——

e e e e b e b e e e ——— ————— —

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

— ——

I
|
+
I
+

The following is a historical note on the EIA RS-232-C symbol name.
The original pin definition was defined by the pin assignment which
consists of a matrix of 3 rows and 6 columns giving a total of 18

pins, see below,
A B CDETF

A
B
C

Pin AA was used for protective ground, pin AB was for signal
ground, and so on. The pin assignment was carried over to the

current EIA RS-232-C symbol definition,

HEWLETT-PACKARD PRIVATE

B-3

HP-CIO 8-CHANNEL MUX FIRMUARE IMS

Table of Contents

1 INTRODUCTION

1.1 SCOPE v e e e e e e e
2 EQUATE & VARIABLE SYMBOLS DICTIONARY . .
3 SUBPROGRAM & JUMP ENTRY SYMBOLS

4 RECEIVE BUFFER MANAGEMENT

5 TRANSMIT BUFFER MANAGEMENT ce

6 ECHO BUFFER MANAGEMENT
7 ARQ BUFFER MANAGEMENT

8 SOFTWARE HANDSHAKE ALGORITHMS

8.1 Host ENQ/ACK Handshake

8.2 Host X-ON/X-OFF Handshake
8.3 Device X-ON/X-OFF Handshake . . .

9 TIMER ALGORITHMS . .
9.1 16-bit Second Tmer e e e e e

10 EVENT PROCESSING & REQUEST MANAGEMENT .
11 SPEED SENSING

12 ROM & RAM MEMORY MAP

13 Firmware Structure e
13.1 Overview

13.1.1 Backplane

D

13.1.1.1 BIC/MIC support . ..
13.1.1.2 WIC (CLC) processor .
13.1.1.3 Event Manager . .
13.1.1.4 RIS processor . ..
13.1.1.5 RD and WD processor . . .
13.1.1.6 RSR processor
13.1.1.7 UTC processor
13.1.1.8 IDY processor
13.1.2 Midplane . . . e
13.1.2.1 Read Devxce Data ..
13.1.2.2 Urite Device Data . .
13.1.2.3 Control Device
13.1.2.4 Read Card Informatlon .
13.1.2.5 Urite Card Configuration
13.1.2.6 Control Card

HEWLETT-PACKARD PRIVATE
11

102

103
103
104
104

105
105

107
109
116

119
119
119
119
120
120
120
120
120
121
121
121
121
122
122
122
122
122

HP-CIO 8-~CHANNEL MUX FIRMWARE IMS

13.1.3 rontplane . . -

1 External Status .
2 Character Received

3 Special Condition , .
4 Speed Sensing .

5 Transmit Character

WHHHI—\H

13.2 .
dentlfy BCIDY .. c .
vent Manager: MUXEV . . .
FREE_EVB R
GET_EVB . .

F
.3
.3
.3
.3
.3
ac
1
E

i
w W

. SET EWT
EBIT Q@ . .

EDIT_IT

d Transparent Status BI
BICRIS
UPDTIB
ORD EXIT

te Transparent Control:
BIC _WIC .

2
2
2
2
2

r\)l\);
Pl el e e el el e

wuwawwwwwwuwwwmwm WWwWww
[AMIACI AV SIS V)

.

13.2. e

P
NI\)N

13.2. T

. WIC END
FINDTID
GET STUF

nect Logical Channel:
BIC WIC
WIC3 .
MIDP_RET .
ERR_ 005
FREE_RQGB
GET_RGB . . .

S b b g B e

.

2,
R
3
3
3
1)
4
4
4
4
4
4
4
C

13.2.

NP3 ~NONAEWNRWONER mu‘\awr\)w

AV NN [ASE SIS IV IS V]

.

el el el el

[
w
n

e
. ABRT_REQ
NOTHIN

d Data and Write Data‘

.

e
1

R R IR R KGR RERERE AR EXERERER
BRumdonsw

P
[N

N

\VI\V]

e st sl

.5
.5
.5
.5
.5
.5
R
.6
.6
R
B
.8 BICISR
.8 BIC_EXIT
.8 BIC ABT

8 BICERR

BIC_DIS . . .

BIC INIT .
BICPSE
10 BIC RES . . .

11 BICSC . . .

12 BIC_END

CoONoOALWNLELOQ

WWWLWWwWLWWwWwww

NS I LIV ST VI IS\ R O V]

.2.8
.2.8,
.2.8

.2.8.
.2.8.
.2.8,
.2.8.
.2.8.

w W

HEWLETT-PACKARD PRIVATE .
111

d Request Status:' BCRSR .

ARQHOST

EVWI MGR

IC RIS . . .

o e e e e

BIC_UTC .

UTCRES . . + v v oo

UTCTEAK
UTCABRT

BCWIC

"BCRWD . .

& MIC Interrupt Service Routines:

DIE ., . . . v

123
123
123
123
124
124
124
125
125
1285
125
125
126
126
126
127
127
127
128
128
128
128
128
129
129
129
130
130
130
130
130
131
131
131
131
131
132
132
132
134
134
134
134
134
135
135
135
135
135
135
136

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.3
13.
13

13.
13.

13.
13.

13.4

13.
13.

13.
13.4.
13.4.
13.4.

13.5
13.6

P e e
wwuww

3.
.3,
3.
3.

SH LD

=5

G!OWO‘:G‘:O‘AK

h

AL WW

D e e e el e

13.2.
13.2.
13.2.
13.2.
13.2.
13.2.
13.2.
The Midplane

s o

NAUPWWWWWRWWWWWWWWWWOWWWN—O cnmwu-hum»—-

e

&&A-&b:ﬁ&h#&b&&&&bbb

.13 BIC_FFR
14 DMAB_ISR
A5 HCIRIO . . . v v v v e e
HRD.IO v v v v v e e . .
A7 HWD IO . .o

COQ)(DG)@COG)
-
(=)

MUX CCD (&MXCCD) e e e e e e e e e e e e
MUXCDV (&MKCDV) e e e e e e e
MUX RCI (&MXRCI) v v v v v v o o
Read Device Data: MKRDD
4.1 RDDBEG
4.2 RDDCONT . . v v v oo e e h .
MUX WCC (&MXWCC)
MUX WDD (&MXWDD)
Frontplane
EXT ISR (&EXISR)
RX TSR (BRKISR) v v v v v v v v v
RXISR (Macro) e
RK SPECL Ve e

Q)(J

Lo@xlo’)m&(.)r\)b——‘l
0
>
g
o

12 RXSIGNL e e e
13 PACKITUP
.14 PUTCHR« . v v v v v v w ..
.15 SETCNTR v v v v vt o ..
16 MIN
17 ALLEWT
2,18 CHEKXOF
SPC_ISR (&SPISR)
SPD SEN (&SPDSN) v . v . v
SS TSR (&SSBIR) e
SSB ISR (&SSBIR) v v v v v v v v v
TK TSR (&TKISR) v v v v v v v v
Self-test (MXSTEST) e e e e e

NNNNNMI\)NNNNNNNNNNN

iscellaneocus4 e e e e e e

.1
.2
.3
4
.5

DMAA ISR (&DMAA)
MUXIVEC (8MUXIV)
MUXMAIN (BMUXMN)
MURVAR (BMUXVR) v
REALCLK (8MXCLK)+ . v « . .

14 ZILOG SIO NOTES L

HEWLETT-PACKARD PRIVATE

iv

136
136
137
137
137
137
138
138
138
138
138
139
139
141
142
143
144
144
144
144
145
146
146
146
146
146
146
147
147
148
148
148
148
149
149
149
149
149
150
150
150
150
151
152
152
152
152
153
153

HP-CIO 8-~CHANNEL MUX FIRMWARE IMS

15 ZILOG CIC NOTES e e e e e e e e e e e e e 156
16 ADDITIONAL NOTES

A ASCII CHARACTERS & BINARY CODES

B EIA RS-232-C CONNECIOR PIN ASSIGNMENT

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

