
I
/

;-"7
/ /
/-

HELILETT

PAC K A R D

HP-CIO I/O EIGHT CHANNEL TERMINAL MULTIPLEXER

FIRMWARE INTERNAL MAINTENANCE SPECIFICATION (IMS)

HEWLETT-PACKARD COMPANY
Roso:>v i lle Networks Division
8()OO Foothills Boulevard
Roseville, California 95678

HEWLETT-PACKARD PRIVATE

PROJECf YUBA

July 14, 1983

Terry Gong
Greg Dolkas

/
/

/
1-;

I /

/
I

/-1
/ I
/-

HEWLETT

PAC K A R 0

HP-CIO I/O EIGHT CHANNEL TERMINAL MULTIPLEXER

FIRMWARE INTERNAL MAINTENANCE SPECIFICATION (IMS)

HEWLETT-PACKARD COMPANY
Roseville Networks Division
8000 Foothills Boulevard
Roseville, California 95678

HEULETT-PACKARD PRIVATE

PROJECT YUBA

July 14, 1983

Terry Gong
Greg Dolkas

History

date description

821111 Original document

830510 Complete document

830714 Added debug monitor to the product firmware for trouble
shooting.

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

+--+------------------+

INTRODUCTION CHAPTER 1

+--+------------------+

1.1 Scope

This document describes the internal structure of the firmware that
as implemented for the HP-CIO RS-232-C/RS-422/3 8 channel terminal
multiplexer card. Specially, this document describes:

o all symbols used by the firmware except for
symbols used as labels in the instruction
sequence,

o the firmware data structure,

o the function of each firmware modules, and

o any other information pertinent to the
understanding of the firmware.

The reader is referred to the following related documents.

o zilog Z80 CPU Technical Manual.

o Zilog Z80-SIO Technical Manual.

o zilog Z80~CTC Technical Manual.

o CSG I/O EIGHT CHANNEL TERMINAL MULTIPLEXER,
FIRMWARE EXTERNAL REFERENCE SPECIFICATION (ERS)
by Greg Dolkas (RVD).

o BACKPLANE INTERFACE CIRCUIT (BIC) ERS by Bill Martin,
Roseville Division (RVD).

o CSG STANDARD I/O BACKPLANE by R. B. Haagens, Computer
Systems Division (CSY).

o STANDARD DATACOM DRIVER by Greg Dolkas, Roseville
Division (RVD).

o CSG I/O STANDARD BACKPLANE PROTOCOL FOR SMART DATACOM

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

CARDS by Greg Dolkas, Roseville Division (RVD).

o GUIDEBOOK TO DATA COMMUNICATIONS, Part No. 5955-1715,
Hewlett-Packard, 1977.

o HP-1000 SERIES; Z80 REAL TIME SCHEDULER, TECHNICAL
SPECIFICATION by Tom Szolyga, June, 1979.

This document assumes the reader has the full understanding of all
the information given in the NUX ERS.

Note that this document does not contain complete documentation of
the self-test. Much of the code was leverage from the HP-CIO ASI
and PSI self-test and from the MEF/L/A PSI self-test. The listing
of the self-test subprogram contains most of the required
documentation.

HEWLETT-PACKARD PRIVATE
2

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

+--+------------------+
EQUATE & VARIABLE SYMBOLS DICTIONARY CHA~ER 2

+--+------------------+

This chapter defines all the symbols which are not used as a label
or subprogram name. However, all the symbols used in the self-test
is not defined here because it is a self-contained module (that is,
leverage from the ASI and PSI self-test). See the listing for
docu~entation infor~ation.

Each global and local equate and variable symbols are defined in
this chapter. Each symbol will have 3 or 4 attribute descriptions
follow by the usage description.

The attribute descriptions are as follow:

o The first attribute is whether the symbol is globally
defined. The symbol is globally defined if it is used in an
COPY file or if it is given the PUBLIC attribute.
Otherwise, the symbol is locally defined within the module.

o The second attribute is the type of the symbol which
includes:

- code if the symbol is defined in the CSEG area by
using either DEFW or DEFB,

define label if the symbol is defined by using the
DEFL pseudo op,

- equate if the symbol is defined by using the EQU
pseudo oP,

- FBIT if the symbol is defined by using the FBIT
macro,

variable if the symbol is defined by using the DEFS
pseudo op,

- macro if the symbol is used to define offset to
access the content .

o The third attribute or information parameter is the name of
the source file where the symbol is defined.

o The fourth attribute is included only if the second
attribute is defined as being a variable. This defined the

HEWLETT-PACKARD PRIVATE
3

HP-CIO 8-CHANNEL MUX FIRMhlARE IMS

size of the variable.

ABO - global, equate, [MUX; BIC register 2 status code, abort done

ABORT - global, equate, [MUX; YTC order request code to abort a
given transaction

ABRT TBL - local, code, &BCYTC, 12 bytes; ju~p table to abort
processing routines

ACTPRIO - global, variable, &MUXVR, 1 byte; contains the priority
of the active transaction

ACTREQ - global, variable, &MUXVR, 2 bytes; contains the address to
the active request block

ACTSTAT - global, variable, &MUXVR, 1 byte; contains the RTS code
for the active transaction

ACTTID - global, variable, &MUXVR, 2 bytes; contains the
transaction 10 (TID) of the active transaction

AES - global, equate, [MUX; BIC registr 2 status code, asynchronous
event

ALERT! - global, equate, [MUX; bit assig~ent for alert 1 option in
ALRT OPT

ALoe - global, ~acro, [MUX; macro to assign offset value to a given
symbol

ALOC CNT - global, define label, [MUX; offset assig~ent to be used
with the ~acro ALOe

ALRT OPT - global, ALOe, [MUK, 1 byte; alert 1 option

ARQ BUF - local, variable, &BPISR, 16 bytes, the FIFO buffer to
queue ARQ status code for the host

ARQ_PTRA - local, variable, &BPISR, 2 bytes, the buffer pointer to
ARQ_BUF for the writing the next ARQ status code

ARQ_PTRB - local, variable, &BPISR, 2 bytes, the buffer pointer to
ARQ_BUF for the reading the next ARQ status code

BACK SP - global, ALOe, [MUX, 1 byte; contains the character fa
backspacing when edit mode is enabled

BAUD_RAT - global, ALOC, [MUX, 1 byte; contains the baud rate value

HEWLETT-PACKARD PRIVATE
4

HP-CIO 8-CHANNEL MUX FIRMhlARE INS

BAUD TAB local, code, &SPDSN, 17 bytes; the baud rate table to
match the first zero's count which is the start bit,
used in speed sensing

BEGSTACK - global, equate, [MUX; beginning address of the stack

BICEND - local, equate, &BPISR; bit assig~ent for BIC registers
and 6, the BIC END bit .

BIC 0 - local, equate, &BPISR; I/O port address for BIC register

BIC_1 - local, equate, &BPISR; I/O port address for BIC register

BIC_2 - local, equate, &BPISRi I/O port address for BIC register

BIC 3 - local, equate, &BPISR; I/O port address for BIC register

5

0

1

2

3

BIC 4 - local, equate, &BPISR and &MUXMN; I/O port address for BIC
register 4

BIC 5 - local, equate, &BPISR and &MUXMN; I/O port address for BIC
register 5

BIC 6 - local, equate, &BPISR and &MUXMN; I/O port address for BIC
register 6

BIC ENI - local, equate, &BPISR; bit assig~ent for MIC register 0,
set to enable the BIC interrupt

BLK_BIT - global, equate, [MUX; bit assignment for block mode in
the WIC order request code

BLK MASK - global, equate, [MUX; mask to get the block ~ode bit
fro~ the WIC order request code

BP CMD - local, variable, &BPISR, 1 byte; contains the current
command fro~ the BIC register 1

BP INT - local, variable, &BPISR, 1 byte; contains the current
. interrupt status fro~ BIC register 5

BP ORDER - global, variable, &BPISR, 1 byte; contains the current
BIC order being processed

BPTK PTR - global, ALOC, [MUK, 2 bytes; backplane trans~it buffer
pointer

BRK ON - global, equate, [MUX; bit assignment for PORTSTAT+l set
when break detection is actively in progress

BRK RX - global, equate, [MUX; bit assignment for INT STAT set when

HEWLETT-PACKARD PRIVATE
5

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

break event occurred

BS - global, equate, [NUX; ASCII backspace character

BSLASH - global, equate, [NUX; ASCII back slash character

BP_PTR - global, ALOC, [NUX, 1 byte; RX buffer location of the last
backspace action

BUF ADDR - local, variable, &BPISR, 2 bytes; the buffer address for
continuing the data transfer when the buffer wrap around
in the circular buffer

BUF ADRM - local, variable, &BPISR, 2 bytes; contains the beginning
address of the host write request for the bad BIC fix

BUF_LEN - local, variable, &BPISR, 2 bytes; the length of the data
transfer for the wrap around buffer of the circular
buffer data transfer

BUF_LENM - local, variable, &BPISR, 2 bytes; contains the data
transfer length for the host write request for the bad
BIC fix

BYTE - local, equate, &aPISR; bit assignment for BIC register 2,
set when want byte wide data transfer

CAR MREG - global, variable, &MUXVR, 1 byte; contains pseudo card
write register content which defines the control for the
card LED, self-test Node, hood LED, single-ended driver,
and differential driver

CDC - local, equate, &BPISRj bit assignment for BIC register 3, the
clear device clear bit

CHAR~LEN - global, ALOC, [NUX, 1 byte; contains the character
length for the SID

CH ALl - global, equate, [NUX; bit assignment for RX_FLAGS+l set
when alert 1 Node is enabled and no alert 1 has been sent
yet

CH ECHO - global, equate, [NUX; bit assignment for RX FLAGS set
when echoing is enabled

CH_EDIT - global, equate, [NUX; bit assignment for RX_FLAGS set
when edit Node is enabled

CH HAND - global, equate, [NUX; bit assignment for RX_FLAGS set
when handshaking is enabled

HEWLETT-PACKARD PRIVATE
6

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

CH_QUOT - global, equate, [NUX; bit assignment for RX_FLAGS set
when quoting mode is enabled

CH SIGN - global, equate, [NUX; bit assignment for RX FLAGS set
when signal character detection is enabled

CH STT - global, equate, [NUX; bit assignment for RX_FLAGS set when
single text terNination is enabled

CMD - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the CONN and bit

CMD TBL - local, code, &BPISR, 32 bytes; jump table containing
processing routine address which correspond to the
command to be processed

CN_CARD - global, equate, [NUX; MIC order request code for control
card request

CN DEV - global, equate, [NUX; WIC order request code for control
device request

CONF BUF - global, ALOC, [NUX, CONF_SIZ bytes; the write card
configuration staging buffer

CONF_SIZ - global, equate, [NUX; size of the write card
configuration table which is currently 60 bytes

COUNT - global, equate, [NUX; bit assignment for RD_OPT set when
the end-on-count option is enabled

COUNT - local, variable, &DMAA, 2 bytes; counter in the MIC channel
A ISR to measure how many time the MIC failed by generating
an interrupt for channel A DMA, the NUX card never uses the
MIC channel A DMA

CR - global, equate, [NUX; ASCII carriage-return character

eTCO_TAB - local, code, &MXMCC, 34 bytes; eTC baud rate generator
programming values, each entry consists of 2 bytes, the
first byte is the control byte for the eTC, the second
byte is the time constant

erCIVECO - global, code, &MUXrV, 16 bytes; contains the interrupt
service routine addresses for erc to

erCVEC - global, equate, [NUX; low byte of the starting address for
the erc interrupt table

erc ° CO - global, equate, [NUX; erc to channel 0 I/O port address,
the DMA pacer for the MIC DNA card or the firmware real

HEWLETT-PACKARD PRIVATE
7

HP-CIO 8-CHANNEL NUX FIRMWARE INS

ti~e clock for the 280 DMA card

erc_o_c1 - global, equate, [NUX; erc iO channel 1 I/O port address,
port #1 baud rate generator

erc 0 C2 - global, equate, [NUX; erc #0 channel 2 I/O port address,
port #0 baud rate generator

erc 0 C3 - global, equate, [NUX; erc iO channel 3 I/O port address,
the fir~ware real ti~e clock for the NIC DMA card or the
BIC interrupt generator for the Z80 DNA card

erc 1 CO - global, equate, [NUX; etc i1 channel 0 I/O port address,
port #2 baud rate generator

erc 1 C1 - global, equate, [NUX; etC #1 channel 1 I/O port address,
port #3 baud rate generator

CTC 1 C2 - global, equate, [NUX; CTC ttl channel 2 I/O port address,
port #4 baud rate generator

erc 1 C3 - global, equate, [NUX; etC #1 channel 3 I/O port address,
unused

erc 2 CO - global, equate, [NUX; etc #2 channel 0 I/O port address,
port #5 baud rate generator

erc 2 C1 - global, equate, [NUX; etc #2 channel 1 I/O port address,
port #6 baud rate generator

etc 2 C2 - global, equate, [NUX; etC #2 channel 2 I/O port address,
port #7 baud rate generator

erc 2 C3 - global, equate, [NUX; etc #2 channel 3 I/O port address,
unused

etc BAUD - global, ALOC, [NUX, 1 byte; contains the etC I/O port
address for the baud rate generator

erc TBL - local, code, &MUXMN, 8 bytes; table of erc I/O port
address for the baud rate generator corresponding to the
port, index by the port nu~ber

C OUTSP - global, equate, [NUX; bit assigment for UNIX_OPT set
when the conditional output separator appendage option is
enabled

DATALEN - global, ALOC, [NUX, 2 bytes; the data transfer length
from the transaction request block of the WIC order

DATA AVA - global, equate, [NUX; bit assigment for I NT_STAT , set

HEIJLITr-PACKARO PRIVATE
8

HP-CIO 8-CHANNEL NUX FIRMWARE INS

when data is available in the receive buffer, i.e., a
receive record is avaiable for the host

DATA NSK - global, ALOC, [NUX, 2 bytes; the data and parity mask

DCL - local, eqaute, &BPISR; bit assigment for BIC register 3, the
device clear bit

DEL - global, equate, [NUX; ASCII DEL character

DEVEND - local, equate, &BPISR; bit assigment for BIC register 4,
the device end bit

DEV_HAND - global, ALOC, [NUX, 1 byte; the handshake options

DIFFDVR - global, equate, [NUX; bit assignment for CAR_WREG, set to
disabled the front end differential driver

OIFFX - local, variable, &SPDSN, 1 byte; the tolerance band width
to determine if the speed sensed value is within the
potential baud rate

DLE - global, equate, [NUX; BIC register 2 status code, download
failed

DMAB SW - local, equate, &BPISR; bit assigment for NIC register 0,
the DNA B switch bit, clear for backplane DNA, set for
frontplane DNA

DNAer - local, equate, &MUXMN; the size of DNAI

DNAHRD - global, FBIT, [MUX; set when doing host read DNA with the
Z80 DMA card

DMAHRDA - local, variable, &BPISR, 14 bytes; contains the Z80 DMA
programming instructions·for doing a host read

DMAHRDAR - local, variable, &BPISR, 2 bytes; this is part of array
DNAHRDA, contains the buffer address for the data
transfer from the card to the host

DMAHRDBL - local, variable, &BPISR, 2 bytes; this is part of array
DMAHRDA, contains the buffer length for the dta transfer
from the card to the host

DMAHRDCT - local, equate, &BPISR; the length of array DMAHRDA

DNAHWD - local, variable, &BPISR, 12 bytes; contains the Z80 DNA
programming instructions for data transfer from the host
to the card

HEWLITr-PACKARD PRIVATE
9

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

DMAHWDAR - local, variable, &BPISR, 2 bytes; this is part of array
DMAHWD, contains the buffer address for the data
transfer fro~ the host to the card

DMAHWDBL - local, variable, &BPISR, 2 bytes; this is part of array
DMAHWD, contains the buffer length for the data transfer
fro~ the host to the card

DMAHWDCT - local, equate, &BPISR; the length of array DMAHWD

DMAI - local, code, &MUXMN, 7 bytes; program~ing instructions to
initialize the Z80 DMA

DMAINIT - local, code, &BPISR, 26 bytes; program~ing instructions
to initialize the Z80 DMA

DMAIJRAP - global, FBIT, [NUX; set when have wrap around on the
circular buffer when using the Z80 DNA card

DMA DIR - local, equate, &BPISR; bit assignment for MIC registers 3
and 8, data transfer direction bit, clear for fro~
memory, set for to memory

DNA END - local, equate, &BPISR; bit assignment for MIC register 0,
clear to assert END on the last byte in the host read
data transfer

DNA_EN I - local, equate, &BPISR; bit assignment for MIC registers 3
and 8, set when the MIC is to generate an interrupt after
the data transfer co~pletes

DNA ENO - local, equate, &BPISRj bit assignment for MIC registers 3
and 8, set to enable the DNA operation

DNA_MEM - local, equate, &BPISR; bit assignment for MIe registers 3
and 8, clear to incre~ent for the ~e~ory address, set to
decre~ent for the ~e~ory address

DOD - global, equate, [MUX; BIC register 2 status code to host,
dead or dying

EAK - global, equate, [NUX; WIC order request code, event
acknowledge

EBLEN - global, equate, [NUX; length of the echo buffer

ECHO - global, equate, [NUX; bit assignment for RD_OPT, set when
for echoing the receive character

ECHOBUF - global, variable, &MUXVR, 1024 bytes; the starting
address for the echo buffers for all 8 ports

HEWLETT-PACKARD PRIVATE
10

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

ECHOPTRI - global, ALOe, [~JX, 2 bytes; contains the address for
the next echo character to be inserted into the echo
buffer

ECHOPTRO - global, ALOC, [NUX, 2 bytes; contains the address for
the next echo character to be transmitted from the echo
buffer

ECHO SIN - global, equate, [NUX; bit assignment for DEV_HAND, set
when the single text ter~inator is to be echoed

ECHO TBL - local, code, &MUXMN, 16 bytes; table of echo buffer
address for each port, index by the port number

ECH_CRLF - global, equate, [NUX; bit assignment for DEV_HAND, set
when the single text ter~inator defined in SIN TEXT is
to cause the echoing of the CR-LF characters in place of
it

EDIT - global, equate, [NUX; bit assignment for RD_OPT, set when
the edit ~ode option is enabled

EDITCHAR - global, equate, [NUX; bit assignment for the special
character tables POSCHTBL, P1SCHTBL, ... , P7SCHTBL, set
when the corresponding character is an edit character
for editing

EHCTR - local, equate, &MUXMNj the host ENQ/ACK pacing counter
defaul t value

END - global, equate, [NUX; WIe order request code for the
end-of-data

END CT - global, ALOe, [MUX, 2 bytes; contains the end-on-count
value from the host for the end-on-count option

ENQ TIMR - global, ALOC, [MUX, 1 byte; the host ENQ/ACK or
- handshake timer value

EONCT - local, equate, &MUXMN; the default end-on-count value

EQ_DCNTR - global, ALOC, [NUX, 1 bytej the host ENQ/ACK character
down counter

EVBITMSK - local, code, &MXWCC, 9 bytes; the bit ~ask corresponding
the bit position in INT_STAT for the corresponding event

EVB_LEN - global, equate, [MUX; length of the event block

EVENTQ - global, variable, &MUXVR, 2 bytes; contains the link list
adress of the pending event queue

HEWLETT-PACKARD PRIVATE
11

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

EVNTABLE - local, code, &BCRTS, 32 bytes; a table of masks to
remove the appropriate event which was sent to the host,
each entry consists of 2 bytes

EVNT BRK - global, equate, [NUX; event code for break received

EVNT MSG - global, equate, [NUX; event code for data lIlessage
available

EVNT_SCl - global, equate, [NUX; event code for signal character 1
detected

EVNT SC2 - global, equate, [MUX; event code for signal character 2
detected

EVNT SC3 - global, equate, [NUX; event code for signal character 3
detected

EVNT SC4 - global, equate, [NUX; event code for signal character 4
detected

EVNT SSM - global, equate, [NUX; event code for speed sense 1Il0de
cOlllpleted

EVNT_TIM - global, equate, [NUXj event code for handshake tillled out

EVNT !X - global, equate, [MUXj event code for translllit buffer is
empty

EVNUM - global, equate, [NUX; the maximuJll nUJllber of pending events
per card

EVPRITBL - local, code, &MXWCC, 9 bytes; the event priority value
corresponding to each event

EVQFREE - global, variable, &MUXVR, 2 bytes; contains the link list
address to the free event blocks

EV BLKS - global, variable, &MUXVR, EVNUM*EVB_LEN bytes (640
bytes); the event blocks storage area

EV CODE - global, ALOC, [MUX, 1 byte; index into the event block
for the event code if an event was sensed

EV_DISB - global, equate, [MUX; bit assignlllent for PORTSTAT+1, set
lJlhen an event is sent to the host, it is cleared when an
event acknowledge is received frol1l the host with no l1lore
event on the queue

EV LEN - global, ALOC, [NUX, 2 bytes; index into the event block
containing the length of the lIlessage received buffer

HEIJLETr-PACKARD PRIVATE
12

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

EV NEXT - global, ALOC, [NUX, 2 bytes; link address to the next
event block

EV PIO - global, ALOC, [MUX, 1 byte; index into the event block
containing the port 10 nUlllber

EV PRIO - global, ALOC, [MUX, 1 byte; index into the event block
containing the event block priority

EV_QUED - global, equate, [MUX; bit assignment for PORTSTAT+l, set
when an event is queued on the RTS queue for this port

EV_RTS_S - global, ALOC, [MUX, 1 byte; index into the event block
containing the RTS status code

EV TERM - global, ALOC, [MUX, 1 byte; index into the event block
containing the text terJllinator character for the l1lessage
received event

EV TID - global, ALOC, [NUX, 2 bytes; index into the event block
containing the transaction ID nUJllber, if any

EV_TYPE - global, ALOC, [NUX, 1 byte; index into the event block
containing the terl1linating code for the l1lessage received
event

FBIT - global, lIlacro, [MUX; lIlacro used to define the flag to be
used with l1lacros FCLR, FSET, and FIST

FCL - local, equate, &BPISRj bit assignment for BIC register 3, the
fifo clear bit

FCLR - global, lIlacro, [MUX; lIlacro to clear the flag defined by
using lIlacro FBIT

FF - global, equate, [MUX; the character OFFH

FFR - local, equate, &BPISRj bit assignlllent for BIC registers 5 and
6, the FIFO ready bit

FIFORBPI - local, equate, &BPISRj control word for BIC register
for read byte, pre-end, srq-il1llllediate

FIFORWPI - local, equate, &BPISR; control word for BIC register
for read word, pre-end, srq-illllllediate

FIFOWBI - local, equate, &BPISRj control word for BIC register 4
for write byte, srq-iJllmediate

FIFOYYI - local, equate, &BPISRj control word for BIC register 4
for write word, srq-illllllediate

HEWLETT-PACKARD PRIVATE
13

4

4

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

FIFO SRQ - local, equate, &BPISR; controi word for BIC register 4
for SRQ for the next order

FILLER1 - global, ALOe, [NUX, 1 byte; filler in the port
conf iguration infomation

FILLERlO - global, ALOC, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLERll - global, ALOC, [NUX, 1 byte; filler in the port
configuraion infor~ation

FILLER12 - global, ALOe, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLERl3 - global, ALOC, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLER14 - global, ALOC, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLER15 - global, ALOe, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLERl6 - global, ALOC, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLER2 - global, ALOC, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLER3 - global, ALOC, [NUX, 2 bytes; filler in the port
configuration information

FILLER4 - global, ALOC, [NUX, 1 byte; filler in the port
configuration information

FILLER5 - global, ALOC, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLER6 - global, ALOe, [NUX, 1 byte; filler in the port
configuration infor~ation

FILLER7 - global, ALOC, [NUX, 1 byte; filler in the port
configuration information

FLAGS - local, variable, &MUXVR, (FLBIT+7)/8 bytes (2 bytes); th,"
first byte is the interrupt counter for the ~acros INTS OFF
and INTS_RES; the second byte contains the flags defined by
using the macro FBIT

FLBIT - global, define label, [NUX; flag bit position assignment

HEWLETT-PACKARD PRIVATE
14

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

counter for used with [Ilacro FBIT to define flags

FSET - global, macro, [ffiJX; [Ilacro to set the flag defined by using
macro FBIT

FIST - global, ~acro, [NUX; macro to test the flag defined by using
macro FBIT

FULL l,iIR - global, equate, [NUX; transmission JTIode code for full
duplex hardwired link

F BIT - global, equate, [ffiJX; bit assignment for the WIC order
request code specifying that the received buffer is to be
flushed

GEN NULL - global, equate, [NUX; bit assignment for UNIX OPT, set
to generate a null character instead of an event for the
received break event

HANDSHAK - global, equate, [NUX; bit assignment for the special
character tables POSCHTBL, P1SCHTBL, """' P7SCHTBL, set
when the corresponding character is an handshake
character

HAND_EN - global, equate, [NUX; bit assignment for RD_OPT, set when
the handshake option is enabled

HEN TCT - global, ALOC, [NUX, 2 bytes; the host ENQfACK or
handshake timer counter, the first byte is [Ilillisecond
down counter, and the second byte is the second down
counter

HLED ON - global, equate, [NUX; bit assignment for CAR_WREG, set
when the hood LED is on

HOST X X - global, equate, [NUX; mask for the host X-ON/X-OFF bit
in DEV_HAND

HOIJIOSRQ - global, FBIT, [NUX; flag set lJJhen a data transfer
occurred which tells subprogr~ SRQ HOST to send a lOH
to BIC register 5 to generate an SRQ; otherwise, send a
lOH to BIC register 4 to generate an SRQ

HST MASK - global, ALOC, [NUX, 1 byte; the first byte of the host
interrupt maSk, if the corresponding bit is set, the
card will generate an event to the host if the card
encountered the event

HST MASL - global, ALOC, [NUX, 1 byte; the second byte of the host
interrupt [Ilask, sa[Ile cOJTI[llent as for HST MASK

HEWLETT-PACKARD PRIVATE
15

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

HTIMEOUT - global, equate, [MUX; bit assignment for INT_STAT+l, set
when the handshake ti~er timed out

HWDONE - global, FBIT, [MUX; flag set for the Z80 DMA MUX when the
host write is doing a 1 byte transfer

HJ,JD _ XFER - global, FBIT, [MUX; flag set when the card is doing a
host write data transfer

HACK - global, ALOC, [NUX, 1 byte; the host ENQ/ACK ACK character

H D1 D3 - global, equate, [NUX; bit assignment for DEV_HAND, set
when the host X-ON/X-OFF handshake is enabled

H ENQ - global, ALOC, [MUX, 1 byte; the host ENQ/ACK ENQ character

H EN CTR - global, ALOC, [MUX, 1 byte; the host ENQ/ACK pacing
counter value

H EO AK - global, equate, [MUX; bit assignment for DEV_HAND, set
when the host ENQ/ACK handshake is enabled

H XOFr - global, ALOC, [MUX, 1 byte; contains the host X-ON/X-OFF
X-OFF character

H XON - global, ALOC, [MUX, 1 byte; contains the host X-ON/X-OFF
X-ON character

IDY BUF - local, code, &BCIDY, 9 bytes; contains the IDY
information for the MUX card

IDY LEN - local, equate, &BCIOY; the length of the MUX lOY block

IDY RAM - local, variable, &BCIDY, 9 bytes; the RAM area for the
IDY block, the MIC is unable to transfer data to the host
from the ROM area, therefore the ROM data must first be
moved to the RAM area

IFC - local, equate, &BPISR; bit assignment for BIC register 5, the
interface clear bit

1M XON - global, equate, [MUX; bit assignment for UNIX_OPT, set
when the receiver is to restart the transmitter when any
character is received while the transmitter is stopped due
to an device X-OFF

INTS CNT - global, equate, [MUX; equivalent to the first byte of
FLAGS which is used as the interrupt counter, see also
FLAGS

INT STAT - global, ALOC, [MUX, 2 bytes; contains the interrupt

HEIJLE'IT-PACKARO PRIVATE
16

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

status

IOBUFLN - global, equate, [MUX; length of each I/O buffer

IOBUFRS - global, variable, &MUXVR, NPORTS*2*IOBUFLN bytes (8192
bytes); the I/O buffer for each port

10 TABLE - local, code, &BCRYO, 12 bytes; jump' table of the data
transfer routines

IVECTOR - global, code, &MUXIV, 144 bytes; contains the interrupt
service routine addresses, the receive interrupt cell
addresses, the receive interrupt service routine
addresses, and the speed sense interrupt service routine
addresses

IV RAM - global, equate, [MUX; the beginning RAM address for the
interrupt table

IV SIZE - global, equate, [MUX; the size of the interrupt table

LED OFF - global, equate, [MUX; bit assignment for CAR_WREG, set
when the card LED is off

LEN - local, code, &MXWCC, 4 bytes; the data mask for the number of
significant data bits, index by the character length code

LF - global, equate, [NUX; the ASCII linefeed character

LINE_DEL - global, ALOC, [NUX, 1 byte; contains the character to be
used as the line delete character for edit mode

MAXEV - global, equate, [MUX; maximum number of events per port

MAX RX - global, equate, [MUX; maximum block size for the receive
buffer

MAX TX - global, equate, [MUX; maximum block size for the transmit
buffer

MICVEC - global, equate, [MUX; the low byte of the interrupt vector
address for the MIC

MIC 0 - local, equate, &BPISRj I/O port address for MIC register 0

MIC 1 - local, equate, &BPISR; I/O port address for MIC register

MIC 2 - local, equate, &BPISR; I/O port address for MIC register 2

MIC_3 - local, equate, &BPISR; I/O port address for MIC register 3

HEWLETT-PACKARD PRIVATE
17

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

MIC 4 - local, equate, &BPISR; I/O port address for MIC register

MIC 5 - local, eq1late, &BPISRj I/O port address for MIC register

MIC 6 - local, equate, &BPISR; I/O port address for MIC register

MIC 7 - local, equate, &BPISR; I/O port address for MIC register

MIC 8 - local, equate, &BPISRj I/O port address for MIC register

MIC 9 - local, equate, &BPISR; I/O port address for MIC register

MIC A - local, equate, &BPISR; I/O port address for MIC register
OAH

MIC B - local, equate, &BPISRj I/O port address for MIC register
OBH

4

5

6

7

8

9

MIC FLAG - global, define label, [MUXA; flag set to 0 when using
Z80 DNA or to 1 when using MIC DNA. This flag is used
in the conditional assembly statements in the following
sources: &MUXMN, &BPISR, &MUXST, and &BCIDY.

MIC IVEC - global, code, &MUXIV, 16 bytes; contains the MIC
interrupt service routine addresses

MTERM - global, equate, [NUX; the offset within the RSR status
block for the message termination character

MTYPE - global, equate, [MUX; the offset within the RSR status
block for the message termination type code

NUX BERR - global, equate, [NUX; the RSR error code for block mode
is not allowed for the given request

MUX CNEX - global, equate, [NUX; the RSR error code for cannot
execute control request because no more space exist in
the receive buffer

NUX DAOV - global, equate, [NUX; the RSR error code for data
overrun in the write data transfer

~JX IREQ - global, equate, [NUX; the RSR error code for illegal
request or request not implemented

NUX_IVSU - global, equate, [NUX; the RSR error code for illegal
subfunction

NUX NORX - global, equate, [NUX; the RSR error code for receive not
allowed in simplex transmit mode

HEIJLETT-PACKARD PRIVATE
18

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

MUX NOSP - global, equate, [~JXj the RSR error code for data
transfer length too long

NUXNOTX- global, equate, [NUX; the RSR error code for transmit
not allowed in simplex receive mode

NUX PARA - global, equate, [NUX; the RSR error code for illegal
configuration parameter values

MUX PLEN - global, equate, [MUX; the RSR error code for illegal
configuration parameter length

NUX_PORT - global, equate, [NUX; the RSR error code for illegal
port 10

NEEDTXSP - global, equate, [NUX; bit assignment for PORTSTAT+1, set
when no more space exist in the transmit buffer to
continue the host write request

NMK - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the NMI acknowledge bit

NO PAR - global, equate, [NUX; bit assignment for UNIX_OPT, set
when the "do not terminate receive record on errors"
option is desired, the character in error will be replace
by the replacement character found in RP_BAD

NPORTS - global, equate, [NUX; the number of ports on the card

OLDNASKI - local, variable, &MXWCC, 1 byte; temporary storage to
save the old content of HST_NASK while reconfiguring

OLONASK2 - local, variable, &MXWCC, 1 byte; temproary storage to
save the old content of HST_NASL while reconfiguring

ONE ADDR - local, variable, &BPISR, 2 bytes; the buffer address for
the last data byte in the host write request, used in
the Z80 DNA NUX to process 1 data byte transfer and for
fixing a BIC bug when both FFR and END condition are set
at the same time

ORO - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the order bit

ORO_TBL - local, code, &BPISR, 32 bytes; jump table containing
processing routine addresses corresponding each of the
order being processed

aSEP 1 - global, ALOC, [NUX, 1 byte; contains the first output
separator character

HEWLETT-PACKARD PRIVATE
19

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

OSEP 2 - global, ALOC, [NUX, 1 byte; contains the second output
separator character

OSEP CT - global, ALOC, [NUX, 1 byte; specify the number character
for the output separator

OTHER RQ - global, ALOC, [NUX, 2 bytes; contains the address
pointer to the other request block

POECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 0
echo buffer

POSCHTBL - global, variable, &MUXVR, 256 bytes; port 0 special
character table

POSTUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 0 port stuff information including port
configuration, buffer pointers, counters, and so on

P1ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 1
echo buffer

P1SCHTBL - global, variable, &MUXVR, 256 bytes; port 1 special
character table

P1STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 1 port stuff information including port
configuration, buffer pointers, counters, and so on

P2ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 2
echo buffer

P2SCHTBL - global, variable, &MUXVR, 256 bytes; port 2 special
character table

P2STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 2 port stuff information including port
configuration, buffer pointers, counters, and so on

P3ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 3
echo buffer

P3SCHTBL - global, variable, &MUXVR, 256 bytes; port 3 special
character table

P3STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 3 port stuff information including port
configuration, buffer pointers, counters, and so on

P4ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 4
echo buffer

HEWLETT-PACKARD PRIVATE
20

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

P4SCHTBL - global, variable, &MUXVR, 256 bytes; port 4 special
character table

P4STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 4 port stuff information including port
configuration, buffer pointers, counters, and so on

P5ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 5
echo buffer

P5SCHTBL - global, variable, &MUXVR, 256 bytes; port 5 special
character table

P5STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 5 port stuff information including port
configuration, buffer pointers, counters, and so on

P6ECHO - global, variable, &MUXVR, EBLEN bytes (128 bytes); port 6
echo buffer

P6SCHTBL - global, variable, &MUXVR, 256 bytes; port 6 special
character, table

P6STUFF - global, variable, &MUXVR, P MAPLEN bytes (185 bytes);
port 6 port stuff information including port
configuration, buffer pointers, counters, and so on

P7ECHO - global, variable, &MUXVR, EBLEN bytes (128 byt~s); port 7
echo buffer

P7SCHTBL - global, variable, &MUXVR, 256 bytes; port 7 special
character table

P7STUFF - global, variable, &MUXVR, P_MAPLEN bytes (185 bytes);
port 7 port stuff information including port
configuration, buffer pointers, counters, and so on

PAR - local, equate, &BPISR; bit assignment for BIC register 3, the
perpherial address ready bit

PARITY - global, ALOC, [NUX, 1 byte; contains the parity option, 0
for no parity, 1 for odd, 2 for even, 3 for force '0', and
4 for force '1'

PER - global, equate, [MUX; BIC register 2 status code for protocol
error

PID - global, ALOC, [NUX, 1 byte; use to get the port ID number
from the WIC request block

PIDTABLE - global, variable, &MUXVR, NPORTS bytes (8 bytes); the

HEWLETT-PACKARD PRIVATE
21

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

port ID table to Nap the logical port ID given in the
WIe request to the physical port 10, the table is
indexed by the physical port nUNber

PORTABLE - local, code, &MUXMN, 16 bytes; table of addresses to the
port stuff array, index by port number

PORTSTAT - global, ALOC, [MUX, 2 bytes; contains various flag for
the port

PORT DEF - local, code, &MUXMN, 60 bytes; the default port
conf igura t ion

PORT DFE - local, equate, &MUXMN; the ending address of PORI_DEF

PRIO ABT - global, equate, (NUX; RTS op code priority for abort
status

PRIO BRK - global, equate, [NUX; RIS op code priority for break
event

PRIO eON - global, equate, [NUX; RTS op code priority for continue
status

PRIO END - global, equate, [NUX; RTS op code priority for
end-of-data transfer

PRIO_ERR global, equate, [MUX; RIS op code priority for error
trap status

PRIO_IDL - global, equate, [NUX; RIS op code priority for nothing
to do

PRIO REC - global, equate, [NUX; RTS op code priority for data
message received event

PRIO_SIG - global, equate, [NUX; RIS op code ~riority for signal
character detected event

PRIO SSM - global, equate, [NUX; RTS op code priority for speed
sense status

PRIO TIM - global, equate, [NUX; RTS op code priority for handshake
timeout

PRIO_TX - global, equate, (MUX; RIS op code priority for transmit
buffer is empty

P MAPLEN global, equate, [NUX; the length of port information
block for each port

HEWLETT-PACKARD PRIVATE
22

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

QS - local, equate, &MUXMNi the default quotable single text
terl1linator

QUOTABLE - global, equate, [NUX; bit assignl1lent for the special
character table POSCHTBL, P1SCHTBL, "" P7SCHTBL, set
for the corresponding character when it is quotable

QUOTE - global, ALOC, [MUX, 1 byte; the quotable character
specified by the user

QUOT MOD - global, equate, [NUX; bit assignment for UNIX_OPT, set
when the quoting mode is enabled

Q_TEMP - global, variable, &MUXVR, 2 bytes; temporary storage for
subprogra!1l EDIT_Q para!1leters

RAM_END - global, equate, [NUX; the RAM ending address

RAM_STRI - global, equate, [NUX; the RAM starting address

RD BUFR - global, ALOC, [NUX, 2 bytes; contains the buffer pointer
to the next receive record for the backplane for the next
read request; if no receive buffer is available, the
pointer value will be zero

RD_BUF_N - global, ALOC, (NUX, 1 byte; the offset into the current
backplane receive buffer for the next character

RD_CARD global, equate, [NUX; the MIC request code for read card
information '

RD DEV - global, equate, [NUX; the WIC request code for read device
data

RD_OPT - global, ALOC, [NUX, 1 byte; contains the frontplane
control options for processing the received data

RD_SUSP - global, equate, [NUX; bit assignment for PORISTAT+1, set
when the host read request is suspended

READ DEC - local, equate, &BPISR; control word for MIC registers 3
and 8, read decrement configuration (ENO = stop, DIR =
from, MEM = decr, ENI = off)

READ INC - local, equate, &BPISR; control word for MIC registers 3
and 8, read increment configuration (ENO = stop, DIR =
from, MEM = incr, ENI = off)

REAO_RQ - global, ALOC, [NUX, 2 bytes; contains the address
pointing the the read request block

HEYLETT-PACKARD PRIVATE
23

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

HEe_SEP - global, ALOC, [NUX, 1 byte; contains the record separator
character to be used for searching for the conditional
output separator option

REQ - global, ALOe, [NUX, 1 byte; index into the request block for
the request code

RESUME - global, equate, [NUX; UTC op code to resu~e a transaction

RET ADDR - local, variable, &BPISR, 2 bytes; contains the return
address to the calling subprogram which requested a data
transfer by calling H_CIR, H_HEAD, or H_WRITE

RFC - global, equate, [NUX; BIC register status code for ready for
co~~and

RITE DEC - local, equate, &BPISR; control word for MIC registers 3
and 8, write decre~ent configuration (ENO = stop, DIR
to, MEM = deer, EN! = off)

RITE INC - local, equate, &BPISR; control word for MIC registers 3
and 8, write increment configuration (ENO = stop, DIH
to, MEM = incr, ENI = off)

RLOG - global, equate, [NUX; offset into the status block for the
residual count

RP BAD - global, ALOC, [NUX, 1 byte; contains the replacement
character to replace the receive character which contains
an error. This option must be enabled by setting the
NO PAR bit in UNIX OPT - -

RQA - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the request attention bit

RQB_LEN - global, equate, [NUX; request block length

RQ FLIST - global, variable, &MUXVR, 2 bytes; link list of free
request blocks

RQ PSTUF - global, ALOC, [NUX, 2 bytes; index into the request
block which contains the pointer to the port stuff for
the request

RQ_IBLES - global, variable, [NUX, NPORTS*3*RQB_LEN bytes (480
bytes); allocate space for the request blocks

RSR CODE - global, ALOC, [NUX, 1 byte; to contain the RSR status
code

RSR LEN - local, equate, &BCRSR; the length of the RSR block

HEWLETT-PACKARD PRIVATE
24

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

RSR RESD - global, ALOC, [NUX, 2 bytes; to contain the transmission
residual count for the host read request

RSR SIT - global, ALOe, [NUX, 1 byte; to contain the single text
terminator character for the host read request if the
receive buffer is terminated by a single text terminator

RSR_TERM - global, ALOC, [NUX, 1 byte; to contain the text
termination code for the host read request

RSR ILOG - global, ALOC, [NUX, 2 bytes; to contain the transooission
log for any data transfer between the host and the card

RSUB STA - local, code, &MXRCI, 14 bytes; the jump table to the
appropriate processing routine for the get status
request (read card information)

RISQ - global, variable, &MUXVR, 2 bytes; link list of the RIS
response queue

RIS_ABT - global, equate, [NUX; the RIS status op code to abort the
given transaction

RIS CaNT - global, equate, [NUX; the RIS status op code to continue
the given transaction

RIS END - global, equ~te, [NUX; the RIS status op code to terminate
the data transfer phase of the given transaction

RIS_EROR - global,equate, [NUX; the RIS status op code to notify
the host that the given transaction caused an error
condition

RTS EVNI - global, equate, [ffiJX; the RTS status op code to notify
the host of an event (asynchronous interrupt)

RIS IDLE - global, variable, &MUXVR, 1 byte; the RIS status op code
to notify the host that the card has nothing to do, this
value is not in ROM because the MIe will not DNA data
fro~ ROM to the host

RIS LEN - global, equate, [NUX; the RTS block length portion of the
event block

RIS NONE - global, equate, [NUX; the RTS status op code for nothing
to do (not used)

RIS TEMP - global, variable, &MUXVR, 2 bytes; temporary storage
area for subprogram BC_RIS

RWD IABL - local, code, &BCRWD, 10 bytes; jump table to the

HEWLETT-PACKARD PRIVATE
25

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

continuation processing routines after the data transfer

RXD CTR - global, ALOC, [NUX, 1 byte; frontplane receive record
down counter

RXD CTRI - global, ALOC, [NUX, 1 byte; frontplane receive record
down counter initial value

RXTX - local, equate, &BPISR; bit assignment for the I/O buffer
address, clear for the receive buffer, set for the trans~it
buffer

RX BFULL - global, equate, [NUX; bit assignment for RX_FLAGS, set
when the receive buffer is full

RX_BUF_H - global, ALOC, [NUX, 2 bytes; frontplane active receive
buffer header pointer

RX DCTR - global, ALOC, [NUX, 2 bytes; end-an-count down counter

RX_FLAGS - global, ALOC, [NUX, 1 byte; receive configuration flags

RX LCTR - global, ALOC, [NUX, 2 bytes; host read request down
counter

RX_LOC - global, code, &MUXIV, 16 bytes; table of receive interrupt
cell for each'receive port

RX_NXT_C - global, ALOC, [NUX, 2 bytes; frontplane active receive
buffer next character pointer

RX SXOFF global, equate, [NUX; bit assignment for PORTSIAT+l, set
when the receiver have sent an X-OFF and is waiting for
buffer space

RX TABLE - local, code, &MUXMN, 8 bytes; table of high byte receive
buffer address for each port, index by the port nu~ber

RX TEMP - global, variable, &MUXVR, 2 bytes; te~porary storage area
for the receive interrupt service routine

RX TXOFF - global, equate, [NUX; bit assignment for PORTSTAT, set
when a device X-OFF is received and waiting for an X-ON

RX VEC - global, code, &MUXIV, 16 bytes; a table of receive
interrupt service routine address for each port

RESENT - global, equate, [NUX; bit assignment for PORTSTAT+l, set
when a ~essage receive event was sent

SBIT_MSK - global, equate, [NUX; mask to get the S-bit from the WIC

HEWLETT-PACKARD PRIVATE
26

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

request code

SCHARPTR - global, ALOC, [NUX, 1 byte; the high byte address of the
special character table for the given port

SCHR TBL - local, code, &MUXMN, 8 bytes; table containing the high
byte address corresponding to each port special
character table, index by the port nu~ber, this is used
to initialize the port stuff array

SCR - global, equate, [NUX; BIC register 2 status code for
subchannel connect request

SELF TST - global, equate, [NUX; bit assignment for CAR_WREG, set
when the card internal loopback mode is enabled for
self-test

SEND_MES - global, equate, [NUX; bit assignment for DEV_HAND, set
when the option to continue trans~itting the message
after the ENQ/ACK timer times out

SGENDDVR - global, equate, [NUX; bit assignment for CAR_WREG, set
when the single-ended driver is enabled

SIGNAL - global, equate, [NUX; bit assignment in the special
character table, set when the corresponding character is a
signal character

SIGNALA - global, equate, [NUX; bit assignment for UNIX OPT, set
when the signal character detection option is-enabled

SIGNAL 1 - global, ALOC, [NUX, 1 byte; contains the signal
character 1

SIGNAL 2 - global, ALOC, [NUX, 1 byte; contains the signal
character 2

SIGNAL 3 - global, ALOC, [NUX, 1 byte; contains the signal
character 3

SIGNAL 4 global, ALOC, [NUX, 1 byte; contains the signal
character 4

SIG_1 - global, equate, [NUX; bit assignment for I NT_STAT , set when
the signal character 1 is detected

SIG_l_X - global, equate, [NUX; mask to get the signal character 1
value

SIG 2 - global, equate, [NUX; bit assignment for I NT_STAT , set when
the signal character 2 is detected

HEWLETT-PACKARD PRIVATE
27

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

SIG 3 - global, equate, [NUX; bit assignment for I NT_STAT , set when
the signal character 3 is detected

SIG 4 - global, equate, [NUX; bit assignment for I NT_STAT , set when
the signal character 4 is detected

SIM RX - global, equate, [NUX; the transmission code for simplex
receive

SIM TX - global, equate, [NUX; the transmission code for simplex
transmi t

SINGLE - global, equate, [NUX; bit assignment for RD_OPT, set when
the frontplane control is to terminate the receive record
when a single text terminator is encountered

SINGTEXT - global, equate, [NUX; bit assignment for the special
character table, set when the corresponding character is
to be used as a single text terminator

SIN_TEXT - global, ALOC, [NUX, 1 byte; the single text terminator
character to cause the echoing of the CR-LF characters

SIOCMD - local, code, &MXCCD, 8 bytes; programming instructions to
put the SIO in synchronous mode for speed sensing

SIOIVECO - global, code, &MUXIV, 16 bytes; the table of interrupt
service routine addresses to service SIO #0

SIOIVSCl - global, code, &MUXIV, 16 bytes; the table of interrupt
service routine addresses to service SID #1

SIOIVEC2 - global, code, &MUXIV, 16 bytes; the table of interrupt
service routine addresses to service SIO #2

SIOIVEC3 - global, code, &MUXIV, 16 bytes; the table of interrupt
service routine addresses to service SID #3

SIOLEN - local, equate, &MXCCD; the size of SIOCMD

SIOVEC - global, equate, [NUX; the starting low byte address for
the SIO interrupt vector table

SIO_O_AC - global, equate, [NUX; the I/O port address for the
control channel of the SIO #0 channel A

SIO 0 AD - global, equate, [NUX; the I/O port address for the data
channel of the SIO #0 channel A

SIO 0 BC - global, equate, [NUX; the I/O port address for the
control channel of the SID #0 channel B

HEWLETT-PACKARD PRIVATE
28

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

sra 0 BD - global, equate, [NUX; the I/O port address for the data
channel of the sra #0 channel B

sra 1 AC - global, equate, [NUX; the I/O port address for the
control channel of the SID #1 channel A

sra 1 AD - global, equate, [NUX; the I/O port address for the data
channel of the SIO #1 channel A

SID_1_BC - global, equate, [NUX; the I/O port address for the
control channel of the SID #1 channel B

SID 1 BD - global, equate, [NUX; the I/o port address for the data
channel of the SID #1 channel B

SID 2 AC - global, equate, [NUX; the I/O port address for the
control channel of the SIO #2 channel A

SIO 2 AD - global, equate, [NUX; the r/o port address for the data
channel of the SIO #2 channel A

sra 2 BC - global, equate, [NUX; the I/O port address for the
control channel of the SID #2 channel B

SID 2 BD - global, equate, [NUX; the I/O port address for the data
channel of the SIO #2 channel B

SID 3 AC - global, equate, [NUX; the I/O port address for the
control channel of the SID #3 channel A

SID 3 AD - global, equate, [NUX; the I/O port address for the data
channel of the SIO #3 channel A

SID_3_BC - global, equate, [NUX; the I/O port address for the
control channel of the SIO #3 channel B

SIO 3 BD - global, equate, [NUX; the I/O port address for the data
channel of the SID #3 channel B

SID BRK - 'global, equate, [NUX; bit assignment for SID channel B
read register 0 indicating the break receive condition

SIO_CS - global, equate, [NUX; bit assignment for SID read register
o indicating the state of the clear-to-send modem signal

SIO CTRL - global, ALOC, [NUX, 1 byte; contains the SIO I/O port
address of the control channel for the port

SIO DEF - local, code, &MUXMN, 8 bytes; contains the programming
instructions for initializing the SIO

HEWLETT-PACKARD PRIVATE
29

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

SIO EXEN - global, equate, [NUX; bit assignment for SIO write
register 1 to enable the SIO external status interrupt

SIO FRER - global, equate, [NUX; bit assignment for SIO read
register 1 for the framing error bit

SIO LEN - global, equate, &MUXVR; the length of the SIO programming
instructions

SIO PAR - global, equate, [NUX; bit assignment for SIO read
register 1 for the parity error bit

SIO_RR - global, equate, [NUX; bit assignment for SIO read register
o indicating the state of the receiver ready modem signal

SIO RS - global, equate, [NUX; bit assignment for SIO write
register 5 to set the request-to-send modem signal state

SIO RXAV - global, equate, [NUX; bit assignment for SIO read
register 0 indicating whether a receive character is
available

SIO RXEN - global, equate, [NUX; bit assignment for SIO write
register 3 to enable or disalbe the receive interrupt

SIO RXIN - global, equate, [NUX; bit assignment for SIO write
register 3 to set the receive interrupt mode to
interrupt on all receive characters

SIO RXOV - global, equate, [NUX; bit assignment for SIO read
register 1 for the data overrun error bit

SIO SNBK - global, equate, [NUX; bit assignment for SIO write
register 5 to enable and disable the break generator

SIO TBL - local, code, &MUXMN, 8 bytes; table of SIO I/O port
address for the control channel for each port, index by
the port number

SIa TR - global, equate, [NUX; bit assignment for sio write
register 5 to set or clear the terminal ready modem signal

SIO TXEM - global, equate, [NUX; bit assignment for SIO read
register 0 indicating whether the transmit buffer is
empty

SIO TXEN - global, equate, [NUX; bit assignment for SIO write
register 1 to enable the transmitter

SIO TXIN - global, equate, [NUX; bit assignment for SIO write
register 1 to enable the transmit interrupt

HEIJLETT-PACKARD PRIVATE
30

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

SIO W - global, variable, &MUXVR, 8 bytes; array of SIO programming
instructions

SIO W3 - global, variable, &MUXVR,
register 3 content

byte; contains the SIa write

SIO W4 - global, variable, &MUXVR, 1 byte; contains the SIO write
register 4 content

SIO W5 - global, variable, &MOXVR, 1 byte; contains the SIO write
register 5 content

SPACE - global, equate, [NUX; the ASCII space character

SQUOTE - global, ALOC, [NUX, 1 byte; the single text terminator to
be used as a quoting character when quoting mode is
enabled in UNIX

SRE - local, equate, &BPISR; bit assignment for BIC registers 5 and
6, the status register is empty bit

SS CHAR - global, ALOC, [NUX, 1 byte; contains the previous
character processing in speed sense mode

SS_CTR - global, ALOC, [NUX, 10 bytes; 5 16-bit counter for speed
sensing

SS_DCTR - global, ALOC, [MUX, 1 byte; the down counter for the
number of remaining speed sense counter for counting

SS_PTR - global, ALOC, [NUX, 2 bytes; the address pointer to the
current counter in SS CTR

SS VEC - global, code, &MOXIV, 16 bytes; the table of speed sense
interrupt service routine addresses for each port

STl - local, equate, &MUXMN; the default single text terminator

STATUS - global, equate, &MUXVR; equivalent to FLAGS since no
status bits were defined

STERM - global, ALOC, [NUX, 8 bytes; an array of single text
terminators

STERM_CT - global, ALOC, [NUX, 1 byte; the number of valid single
text terminators in array STERN

STOP BIT - global, ALOC, [NUX, 1 byte; specify the stop bit option,
o for 1, 1 for 1.5, and 2 for 2

STP - local, equate, &BPISR; bit assignment for BIC register 3, the

HEWLETT-PACKARD PRIVATE
31

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

self-test pass bit

STRP MSK - global, ALOe, [NUX, 1 byte; contains the stripping
option inforfflation

STRP TRM - global, equate, [NUX; bit assignment for STRP_MSK, set
the teKt terminators are to be stripped froffl the receive
buffer

ST CT - local, equate, &MUXMN; the default nu~ber of single text
terminator

ST TEMP -

SUBFCN -

SUB CON -

SUB PSE -

global, ALOC, [NUX, 9 bytes; contains the new single teKt
terfflinator inforfflation which will be enabled after the
current frontplane record is terfflinated. If the first
byte is zero, no new single teKt terminator configuration
is available.

global, ALOC, [NUX, 1 byte; the subfucntion code of the
UIC request

global, FBIT, [NUX; flag set when the subchannel is
connected

global, FBIT, [NUX; flag set when the subchannel is
paused

SBIT global, equate, [NUX; bit assignfflent for the MIC request
code for the S-bit which specify whether to keep the
partial buffer (if any) for the next read

TEMP - global, variable, &MUXVR, 2 bytes; te~porary storage

TEMP BUF - local, variable, &MXYDD, 2 bytes; buffer address for the
next data transfer

TEMP LEN - local, variable, &MXWDD, 2 bytes; buffer length for the
neKt data transfer

TERM ALI - global, equate, [NUX; ter~ination code in the receive
buffer header for alert 1

TERM BOF - global, equate, [NUX; termination code in the receive
buffer header for receive buffer overflow

TERM BUF - global, equate, [NUX; ter~ination code in the receive
buffer header for ter~inated by card, user buffer full

TERM CNT - global, equate, [NUX; termination code in the receive
buffer header for ter~ination on count

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

TERM FER - global, equate, [NUX; ter~ination code in the receive
buffer header for framing error

TERM HOS - global, equate, [NUX; termination code in the receive
buffer header for termination initiated by the host

TERM OVF - global, equate, [NUX; termination code in the receive
buffer header for SIO data overrun error

TERM PER - global, equate, [NUX; ter~ination code in the receive
buffer header for parity error

TERM PRT - global, equate, [NUX; ter~ination code in the receive
buffer header for termination by card, partial record

TERM SIT - global, equate, [NUX; terfflination code in the receive
buffer header for single text ter~ination

TID - global, ALOC, [NUX, 2 bytes; the transaction 10 nu~ber fro~
the WIC request block

TIMR TYP - global, equate, [NUX; bit assignment for STRP_MSK, set
to specify an event to be generated when the handshake
timer timed out

TLOG - global, equate, [NUX; offset into the RSR status block for
the transmission log

TOGL MSK - global, ALOC, [NUX, 1 byte; contains the frontplane
features toggle ~ask

TR_ADDR - global, ALOC, [NUX, 2 bytes; contains the data transfer
address for the transaction

TR LEN - global, ALOC, [NUX, 2 bytes; contains the data transfer
length for the transaction

TX BUSY - global, equate, [MUX; bit assignment for PORTSTAT, set
when the trans~itter is busy trans~itting data

TX CTR - global, ALOC, [NUX, 1 byte; the frontplane trans~itter
down counter

TX DATA - global, equate, [MUX; bit assignment for PORTSTAT, set
when the transmitter is busy transmitting user data and
not echo data

TX ECHO - global, equate, [NUX; bit assignfflent for PORTSTAT+l, set
when the echo buffer is not empty

TX EMPTY - global, equate, [MUX; bit assignfflent for TNT_STAT, set

HE1JLETT-PACKARD PRIVATE
33

HP-CIO 8-CHANNEL NUX FIRMYARE 1MS

when the trans~it buffer is e~pty

TX ENO - global, equate, [NUX; bit assignment for PORTSTAT, set
when an ENQ character is to be transmitted on the next
transmit interrupt for the port

TX_HXOFF - global, equate, [NUX; bit assignment for PORTSTAT, set
when the trans~itter needs to tra~it the host X-OFF
character on the next transmit interrupt -

TX HXON - global, equate, [NUX; bit assignment for PORTSTAT; set
when the trans~itter needs to transmit the host X-ON
character on the next transmit interrupt

TX MODE - global, ALOC, [NUX, 1 byte; contains the transmission
mode option, 2 for full duplex hardwired, 3 for s~plex
transmit, and 4 for si~plex receive

TX OUT2 - global, equate, [NUX; bit assignment for PORTSTAT, set·
when the second character of the output separator needs
to be trans~itted for the conditional output separator
option

TX PTR - global, ALOC, [NUX, 2 bytes; contains the address pointing
to the next character for data transmission

TX TABLE - local, code, &MUXMN, 8 bytes; table of the high byte
trans~it buffer address for each port, index by the port
nu~ber

T D1 D3 - global, equate, [NUX; bit assignment for DEV_HAND, set
when the device X-ON/X-OFF handshake is enabled

T EO AK - global, equate, [NUX; bit assignment for o EV_HAN 0 , set
when the device ENQ/ACK handshake is enabled

T XOFF - global, ALOC, [MUX, 1 byte; device X~OFF character

T_XON ~ global, ALOC, [MUX, 1 byte; device X-ON character

UNIX OPT - global, ALOC, [NUX, 1 byte; contains the ~iscellaneous
flags to i~ple~ent so~e of the UNIX features

WAIT_ACK - global, equate, [NUX; bit assignment for PORTSTAT, set
when the fir~ware is waiting for the ACK character for
the ENQ character sent

WAPPEND - global, equate, [MUX; bit assignment for the subfunction
code in the WIC write device data request, set to append
the output separators to the ~essage being written

HEWLETT-PACKARD PRIVATE
34

HP-CIO 8-CHANNEL NUX F1RMYARE IMS

WHAND - global, equate, [NUX; bit assignment for the sUbfunction
code in the Wle write device data request, set to toggle
the handshake option

wce LEN - global, code, &MXWCC, 35 bytes; a table containing the
length for each corresponding subfunction parameters. If
the entry contains a zero, then the length is variable
and is checked in the code. If the entry contains a OFFH
value, the corresponding subfunction is not used by this
fir~ware. Otherwise, the nonzero value is the length of
the parameters that ~ust be given by the user.

wce TAB - global, code, &MXWeC, 105 bytes; a table containing the
offset fro~ the start of the port stuff array for the
subfunction parameter and the processing routine address
to validate the parameters

WIe TEMP - global, variable, &MUXVR, 2 bytes; te~porary storage
area for subprogram Be_UIC

WRITE RQ - global, ALOC, [MUX, 2 bytes; contains the address
pointing to the write request block

WR CARD - global, equate, [NUX; WIC request code for write card
configuration

WR DEV - global, equate, [NUX; WIC request code for write device
data

WSUB MX - local, equate, &MXWCC; the nu~ber of valid sUbfunction
code for WCC request and the size of WCC_LEN

WTC BUFR - global, variable, &MUKVR, 3 bytes; buffer area for the
WTC order request block

WTC_LEN - global, equate, [NUX; WTC request block length

WTC_OPCD - global, ALOC, [MUX, 1 byte; contains the WTC op code

WTC PID - global, ALOe, [NUX, 1 byte; contains the port ID in the
WTC request block

WTC TID - global, ALOC, [NUX, 2 bytes; contains the transaction 10
in the WTC request block

Z80DMA - global, equate, [MUX; the Z80 DMA I/O port address

HEWLETT-PACKARD PRIVATE
35

HP-C10 8-CHANNEL NUX F1RMhlARE 1MS

+--+------------------+
SUBPROGRAM & JUMP ENTRY SYMBOLS CHAPTER 3

+--+------------------+

The following is description for each subprogram and ju~p entry
symbols used in the NUX fir~ware. There are ~any ~ultiple entries
in each ~odule to reduce the ~e~ory space required. This ~ay cause
a little difficulty in understanding and ~odifying the fir~ware,
but the primary objective of fitting the fir~ware into an 16K EPROM
was ~et.

The symbol is listed first followed by the source file where it is
defined. The linkage and the subprogram called are given next,
respectively, if the symbol represent a subprogram which can be
CALL. Following this is the list of all subprograms calling or
jumping to this symbol. Finally a short functional description is
given.

ABRT REQ - source: &BCRSR

linkage: CALL ABRI_REQ

Register IY contains the address of the request
block.

calls: FREE_RQB, NOTHIN

jump to: none

called by: BIC_RSR, BIC WTC

used by: none

Subprogram to kill off a request and deallocate its
resource.

ADD_Q - source: &MUXEV

linkage: CALL ADD_Q, register DE contains the address of
the queue header, register HL contains the address
of the block

calls: SRQ HOST

jump to: none

HE1JLETT-PACKARD PRIVATE
36

HP-CIO 8-CHANNEL NUX FIRMhlARE IMS

used by: none

Routine to add an event block to the RIS or event queues.
Blocks are queued in priority order (0 = highest).

ALl EVNT - source: &RXISR

linkage: CALL ALl EVNT

On entry register IY address of port's stuff.

calls: EVNT _ MGR, GET EVB

ju~p to: none

called by: ROO_CONT, RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISR5, RX_ISR6, RX_ISR7, WCC CONT

used by: none

Subprogram to generate an alert-l event to the host.

ARQ_HOST - source: &BPISR

linkage: CALL ARQ HOST

On entry register C contains the ARQ status
code.

calls: none

jump to: none

used by: none

The subprogram to send the ARQ status code to the host
through the BIC register 2. If the BIC register is
busy, queue the status until the host is ready for it.

BIC ABT - source: &BPISR

linkage: JP BIC_ABT

calls: ARQ_HOST

HEWLETT-PACKARD PRIVATE
37

HP-CIO 8-CHANNEL NUX FIRMWARE INS

jUJlIP to: none

called by: none

used by: BIC_ISR

The BIC abort cOJllJlland processor.

BIC DIS - source: &BPISR

linkage: JP BIC DIS

calls: none

called by: none

used by: BIC_ISR

BIC disconnect order processor.

BIC ERR - source: &BIC_ERR

linkage: JP BIC_ERR

calls: ARQ_HOST

jUJlIP to: BIC_EXIT

called by: none

Send the protocol error status to the host.

BIC EXIT - source: &BPISR

linkage: JP BIC EXIT

calls: none

jUJlIP to: none

called by: none

used by: BIC_DIS, BIC_END, BIC_ERR, BIC_PSE, BIC_SC,
DMAB_ISR, HCIR_IO, HRD_IO, HWD_IO, ORO_EXIT

HEWLETT-PACKARD PRIVATE
38

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

SRE RTN

Restore the registers and return froJll BIC or MIC
interrupt.

BIC_IDY - source: &BCIDY

linkage: CALL BIC_IDY

calls: HRD_IO, SRQ_HOST

JUMP to: BIC_EXIT

called by: BIC_ISR

used by: none

The NUX lOY order handler. Move the lOY inforJllation to
RAM, and then send it to the host. The inforJllation is
JlIoved to RAM first, because the MIC cannot DMA out of the
ROM area.

BIC_INIT - source: &BPISR

linkage: CALL BIC INIT

calls: none

JUMP to: none

called by: NUX_MAIN

used by: none

The subprograJll to initialize the BIC ISH, the BIC, and
the MIC.

BIC ISR - source: &BPISR

linkage: CALL BIC_ISR

calls: A RQ_HOST, BIC_IDY, BIC_RD, BIC_RSR, BIC_RTS,
BIC_WD, BIC_WIC, BIC_WTC

jUJlIP to: BIC_EXIT

called by: BIC interrupt

HEWLETT-PACKARD PRIVATE
39

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

used by: MIC_IVEC

BIC and MIC interrupt service routine.

BIC PSE - source: &BPISR

linkage: JP BIC_PSE

calls: SRQ_ HOST

jump to: BIC_EXIT

called by: none

used by: BIC_ISR

BIC PAUSE order handler.

BIC RES - source: &BPISR

linkage: JP BIC_RES

calls: SRQ_ HOST

jump to: none

called by: none

used by: BIC_ISR

BIC RESUME command processor.

BIC RD - source: &BCRWD

linkage: CALL BIC_RD

calls: BIC_ERR, HCIR_IO HRD_IO, HWD_IO

jump to: ORD_EXIT, RCI_CONT, RDD_CONT, WCC_CONT, WDD_CONT

called by: BIC_ISR

used by: none

RD and YO order handler.

BIC RSR - source: &BCRSR

HEWLETT-PACKARD PRIVATE
40

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

linkage: CALL BIC_RSR

calls: ABRT_REQ, HRD_IO

jump to: ORO_EXIT

called by: BIC_ISR

used by: none

This subprogram returns the read request status block for
the current transaction to the host.

BIC RTS - source; &BCRTS

linkage: CALL BIC_RTS

calls: ADO_Q, FREE_EVB, GET_EVB, HRD_IO, NOTHIN,
SRQ_HOST, UPDTI D

jump to: BIC_EXIT

called by: BIC_ISR

used by: none

This subprogram handles all RTS order processing.

BIC SC - source: &BPISR

linkage: JP BIC_SC

calls: ARQ_HOST, SRQ_HOST

jump to: BIC_EXIT

called by: none

used by: BIC_ISR

BIC subchannel connect command handler.

BIC WD - same as BIC RD

BIC WIC - source: &BCWIC

linkage: CALL BIC WIC

HEWLETT-PACKARD PRIVATE
41

•

I

--~--~I,

HP-CIO 8-CHANNEL NUX FIRMYARE IMS

calls: CCO_BEG, COY_BEG, EVNT_MGR, GET_EVB, GET_RQB,
HWO_IO, ReI_BEG, ROO_BEG, SRQ_HOST, Wee_BEG,
WOO BEG

ju~p to: BIC_EXIT, DIE

called by: BIC_ISR

used by: none

WIC order handler.

BIC WTC - source: &BCWTC

linkage: CALL BIC_lJIC

calls: ABRT_REQ, ADD_Q, CCD_ABT, COV_ABT, FREE_EVB,
HMD_lO, RCl_ABT ROD_ABT, SET_EVNT, WCC_ABT,
WDD_ABT, WOO_END

ju~p to: BIC_ERR, ORO_EXIT

called by: BIC_ISR

used by: none

WTC order handler.

CCD ABT - source: &MXCCD

linkage: CALL CCO_ABT

calls: none

JUIllP to: none

called by: BIC_WTC

used by: none

Abort the control card transaction.

CCD_BEG - source: &MXCCO

linkage: CALL CCO_BEG

On entry register BC contains the port stuff
address, register IY contains the request block

HEWLETT-PACKARD PRIVATE
42

HP-CIO 8-CHANNEL NUX FlRMYARE IMS

address.

On exit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction (not used).

calls: CHUCK_RX, DATA_TX, ECHO_CK, MSG_EVNT, PACKlTUP,
PRG_CTC, RESYNC, RX_COMPL, SENO_XON, SET_CNTR,
SET_EVNT, SET_SIO

JUIllP to: none

called by: BIC_WIC

used by: none

Control card request processor.

CDV ABT - source: &MXCDV

linkage: CALL CDV ABT

calls: none

JUIllP to: none

called by: BIC_lJIC

used by: none

Abort the control device request processor.

COY_BEG - source: &MXCDV

linkage: CALL COV BEG

calls: none

JUIllP to: none

called by: BIC_WIC

used by: none

Control device request processor.

CHEK_XOF - source: &RXISR

HEWLETT-PACKARD PRIVATE
43

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

linkage: CALL CHEK_XOF

On entry register IY = address of port's stuff.

jump to: none

called by: RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3, RX_ISR4,
RX_ISR5, RX_ISR6, RX_ISR7, SPC_ISRO,
SPC_ISRl, SPC_ISR2, SPC_ISR3, SPC_ISR4,
SPC_ISR5, SPC_ISR6, SPC_ISR7

used by: none

The frontplane down counter has hit zero; check to see
if it is time to send an X-OFF to the device. If so
(and it is enabled) send the character. Unless called
from RX COUNT subprogram, the frontplane down counter is
updated-:-

CHUCK RX - source: &MXCCD

linkage: CALL CHUCK RX

Register IY contains the port stuff address.

calls: EDIT IT

jump to: none

called by: CCD_BEG

used by: none

Clean up the receive event.

erCIVECo - source: &MUXIV

linkage: none

calls: none

jump to: none

called by: none

used by: none

HEWLETT-PACKARD PRIVATE
44

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

The erc #0 interrupt vector table.

DATA CK - source: &TXISR

linkage: CALL DATA CK

On entry register C = SIO data channel I/O port
address, register D = parity mask, register E
data mask, register IY = port stuff address.

calls: none

jump to: DATA_TXe

called by: none

Subprogram to set up pointers & counters to start data
transmission.

DATA_CKA - source: &TXISR

linkage: JP DATA CKA

On entry registers C, 0, E, and IY must be set
up the same as for DATA CK. In addition the
buffer address must be set in register HL.

calls: none

jump to: none

called by: none

used by: PUT_DATA

Same function as for DATA CK except register HL is
already set and it bypass-some of the checking which is
unnecessary.

DATA TX - source: &TXISR

linkage: CALL DATA TX

On entry register C = SIO data channel I/O port
address, register D = parity mask, register E
data mask, register IY = port stuff address.

HEWLETT-PACKARD PRIVATE
45

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

calls: SET_EVNT, TX SP CK

jUIllP to: none

called by: DATA_TX, TX_ISRO, TX ISRI, TX_ISR2, TX_ISR3,
TX_ISR4, TX_ISR5, TX=ISR6, TX_ISR7

used by: none

Subprogra!1l to send the next character, update the buffer
pointer and counter.

DATA TXC - source: &TXISR

linkage: JP DATA_TXC

On entry the content of registers C, 0, E, and
IY are the Sa!1le as for entry into DATA TX
except register HL IllUSt contain the buffer
pointer for the next output character.

calls: see DATA TX

jUIllP to: none

called by: none

SaIlle function as DATA TX except register HL has the
buffer pointer already and need not be set up again.

DIE - source: &BPISR

linkage: JP DIE

jUIllP to: none

called by: none

used by: GET_EVB, RX_ISRO, RX_ISRI, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISR5, RX_ISR6, RX_ISR7

Subprogra!1l to send the dead-or-dying status error to the host
and then jUIllP to ° to reinitialize the card.

HEWLETT-PACKARD PRIVATE
46

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

DMAA ISR - source: &DMAA

linkage: CALL DMAA ISR

calls: none

jUIllP to: none

called by: MIC channel A DMA interrupt

used by: MIC_IVEC

This subprograIll keep track of DMA channel A interrupts
which should never occur, except under bad condition.

DMAB_ISR - source: &BPISR

linkage: CALL DMAB_ISR

calls: none

jUIllP to: BIC_EXIT, return to the subprograIll which calls
HCIR_IO, HRD_IO, or HWD_IO

called by: MIC interrupt

used by: MIC_IVEC

MIC channel B DMA interrupt service routine.

EAK_IT - source: &BCWIC

linkage: CALL EAK IT

jUIllP to: none

called by: BIC_WIC, EDIT IT

used by: none

Subprogra!1l to process the EAK request of the WTC order.

ECHO CK - source: &TXISR

linkage: CALL ECHO CK

HEWLETT-PACKARD PRIVATE
47

HP-CIO 8-CHANNEL NUX FIRMWARE INS

On entry register C = SIO data channel I/O port
address, register D = parity mask, register E
data mask, register IY = port stuff address.

calls: HENQ_CK, PUT_CHAR

jUIllP to: DAIA_CK

called by: ECHO_CK, IX_ISRO, IX_ISH1, IX_ISR2, IX_ISR3,
IX_ISR4, IX_ISR5, IX_ISR6, IX_ISH7

used by: none

Subprogram to check echo buffer and transmit next echo
character. If echo buffer is empty, go check the user
buffer.

EDIT IT - source: &MUXEV

linkage: CALL EDII_II, (Q_IEMP)

calls: EAK_II, EDII_Q

jump to: none

used by: none

the event to be edited

Routine to do all the editing, busy work, etc. to remove
an event from the system.

EDII_Q - source: &MUXEV

linkage: CALL EDIT_Q, (Q_TEMP) = event code, (Q_TEMP+l)
port ID, register DE = address of the queue
header, interrupt systelll Illust be off

calls: FREE_EVB

jump to: none

called by: EDIT_IT

used by: none

Routine to remove events from either the RIS queue or the
event queue.

HEIJLETI-PACKARD PRIVATE
48

HP-CIO 8-CHANNEL NUX FIRMWARE INS

EVNT_NGH - source: &MUXEV

linkage: CALL EVNT_MGR, register HL contains the address
of the RTS or event queue

All registers will be destroyed except for
register IY.

jump to: none

called by: AL1_EVNT, BIC_WIC, GENSEVEN, MSG_EVNT,
SET_EVNT

used by: none

Routine to manage the queue of events and RIS responses.

EXT_ISRO source: &EXISR

linkage: CALL EXT_ISRO

calls: SET_EVNT

jump to: none

called by: external status interrupt on SIO #0 channel A
(port 0)

used by: SIOIVECO

Process the external status interrupt generated by the
SID #0 channel A. The ISR only process the break
condition. All other conditions are ignored.

EXT_ISRl - source: &EXISR

linkage: CALL EXT_ISRl

calls: SET _ EVNT

jUlllP to: none

called by: external status interrupt on SIO #0 channel B
(port 1)

used by: SIOIVECO

HEWLETI-PACKARD PRIVATE
49

HP-CIO 8-CHANNEL MUX FIRMWARE INS

Process the eKternal status interrupt generated by the
SIO ~O channel B. The ISR only process the break
condition. All other conditions are ignored.

EXT_ISR2 - source: &EXISR

linkage: CALL EKT_ISR2

calls: SET_EVNT

jump to: none

called by: external status interrupt on SIO #1 channel A
(port 2)

used by: SIOIVECl

Process the eKternal status interrupt generated by the
SID #1 channel A. The ISR only process the break
condition. All other conditions are ignored.

EXT_ISR3 - source: &EXISR

linkage: CALL EKT_1SR3

calls: SET_EVNT

jump to: none

called by: external status interrupt on SID #1 channel B
(port 3)

used by: SI01VEC1

Process the external status interrupt generated by the
SID #1 channel B. The ISR only process the break
condition. All other conditions are ignored.

EXT ISR4 - source: &EXISR

linkage: CALL EXT_ISR4

calls: SET_EVNT

jump to: none

called by: external status interrupt on S10 #2 channel A
(port 4)

HEWLETT-PACKARD PRIVATE
50

HP-CIO 8-CHANNEL NUX FIRMWARE INS

used by: SIOIVEC2

Process the external status interrupt generated by the
SID #2 channel A. The ISR only process the break
condition. All other conditions are ignored.

EXT_ISR5 - source: &EXISR

linkage: CALL EXT_ISR5

jump to: none

called by: external status interrupt on S10 #2 channel B
(port 5)

used by: SIOIVEC2

Process the external status interrupt generated by the
SID #2 channel B. The ISR only process the break
condition. All other conditions are ignored.

EXT_1SR6 - source: &EXISR

linkage: CALL EKT_1SR6

calls: SET_EVNT

jump to: none

called by: external status interrupt on SIO #3 channel A

used by: SIOIVEC3

Process the external status interrupt generated by the
S10 #3 channel A. The 1SR only process the break
condition. All other conditions are ignored.

EXT ISR7 - source: &EXISR

linkage: CALL EXT_ISR7

calls: SET_EVNT

jump to: none

called by: external status interrupt on SID #3 channel B

HEWLETT-PACKARD PRIVATE
51

HP-CIO 8-CHANNEL NUX FIRMWARE INS

used by: SIOIVEC3

Process the external status interrupt generated by the
SIO #3 channel B. The ISR only process the break
condition. All other conditions are ignored.

FIND TID - source: &BChlTC

linkage: CALL FIND_TID

On exit the Z flag is set if the subprogram
cannot find the request block containing the
TID. Otherwise, register DE contains the
request block address.

calls: none

JUIllP to: none

called by: BIC_MIC

used by: none

Subprogram to find the location of the request block
containing the TID specified in the UTC request block.

FP WlOOO - source: &MXWCC

linkage: JP FP W1000

calls: none

JUIllP to: none

called by: none

Entry in MCC_BEG to return the request cannot be block
error.

FP IJI060 - source: &MXWCC

linkage: JP FP Wl060

calls: none

jump to: none

HElJLETT-PACKARD PRIVATE
52

HP-CIO 8-CHANNEL NUX FIRMWARE INS

called by: none

used by: RCI_BEG

Entry in WCC_BEG to return the invalid subfunction code
error.

FP Wl200 - source: &MXWCC

linkage: JP FP W1200

calls: none

jump to: none

called by: none

used by: RCI_BEG

Entry in WCC_BEG to return the illegal request length
error.

FREE_EVB - source: &MUXEV

linkage: CALL FREE EVB, register HL contains the block
address -

calls: none

jump to: none

used by: none

Routine to return an event block to the free space
storage area.

FREE_HQB - source: &BCWIC

linkage: CALL FREE RQB

On entry register Hl contains the address of
the block to be returned to free storage.

calls: none

jump to: none

HEWLETT-PACKARD PRIVATE
53

HP-CIO 8-CHANNEL NUX FIRMYARE IMS

called by: BIC_RSR, NUX MAIN

used by: none

Routine to return a request block to free storage.

GENSEVEN - source: &SSISR

linkage: CALL GENSEVEN

Register B contains the baud rate indeR sensed,
register C contains the 8th bit value of
character sensed, register IY contains the port
stuff address.

jul'lP to: none

called by: SS_ISRO, SS_ISRI, SS_ISR2, SS_ISR3, SS_ISR4,
SS_ISR5, SS_ISR6, SS_ISR7

used by: none

Generate the solicited speed sensed event.

GET EVB source: &MUXEV

linkage: CALL GET EVB

Returns the address to the block in register HL.
Register A is trashed.

calls: none

jul'lP to: DIE

called by: AL1_EVNT, BIC_RTS, BIC_MIC, GENSEVEN,
MSG _ EVNT, SET EVNT

used by: none

Allocate an event block frol'l free storage.

GET_RQB - source: &BChlIC

linkage; CALL GET_RQB

HEWLETT-PACKARD PRIVATE
54

HP-CIO 8-CHANNEL NUX FIRMYARE INS

On eRit the Z flag bit is set if there is no
space. Otherwise register HL will contain the
address of the block

calls; none

jul'lP to: none

called by; BIC_MIC

used by: none

Subprogr~ to get a request block from the free list.

GET STUF - source: &BChlTC

linkage: CALL GET STUF

On entry, register A contains the port 10.

On eRit, register HL contains the address of
PORTSTAT+l for the port being processed.

calls: none

jUl1lP to: none

called by; EAK_IT

used by: none

A subprogr~ to find the address for PORTSTAT+l for the
port specified in the MTC request block.

HCIR_IO - source: &BPISR

linkage: CALL HCIR 10

Register DE contains the data transfer length
and register HL contains the buffer address.

calls: none

jul'lP to: none

called by: BIC_RD, BIC hlD

used by: none

HEMLETT-PACKARO PRIVATE
55

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

this subprogr~ is to transfer data fro~ or to the host
to the card trans~it buffer or fro~ the card receive
buffer which are structured as circular buffers.

HENQ CK - source: &TXISR

linkage: CALL HENQ_CK

calls: none

ju~p to: none

called by: ECHO_CK, PUT_ECHO, TX_ISRO, TX_ISR1, TX_ISR2,
TX_ISR3, TX_ISR4, TX_ISR5, TX_ISR6, TX_ISR7

used by: none

Check and process the host ENQ/ACK handshake option.

HRD 10 - source: &BPISR

linkage: CALL HRD_IO

Register DE contains the data transfer length and
register HL contains the buffer address.

calls: none

ju~p to: none

used by: none

Subprogr~ to transfer data fro~ the card to the host.
The subprogr~ will auto~atically assert the end on the
last byte.

HWD 10 source: &BPISR

linkage: CALL HWD_IO

calls: none

ju~p to: none

HEIJLETI-PACKARD PRIVATE
56

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

used by: none

Subprogr~ to transfer data from the host to the card.

IVECTOR - source: &NUX IV

linkage: none

calls: none

jump to: none

called by: none

used by: none

The NUX interrupt table.

MIC_IVEC - source: &MUXIV

linkage: none

calls: none

jump to: none

called by: none

used by: none

The MIC interrupt vector table.

MIN - source: &RXISR

linkage: CALL MIN

On entry register HL one value, register DE = the
other value.

On exit register HL contains the smaller value.

calls: none

jump to: none

called by: RDD_BEG, RX_COMPL, SET_CNTR

HEWLETT-PACKARD PRIVATE
57

HP-CIO 8-CHANNEL NUX FIRMUARE INS

used by: none

Subprogram to return the ~ini~u~ of the two 16-bit values.

NSG EVNT - source: &MXRDD

linkage: CALL NSG_EVNT

Register DE = address of the buffer, register
IY = address of port's stuff.

calls: EVNT_NGR, GET EVB

JUJllP to: none

used by: none

Subprogram to generate a message received event block
from the current backplane receive buffer.

NUX DDN - source: &MXODN

linkage: JP NUX_DDN

calls: none

ju~p to: none

called by: none

used by: NUX_MAIN

The debug ~onitor for trouble shooting the NUX product
fir~ware. The only way to enter is by forcing an NNI on
the Z80 by touch pin 17 to ground.

The debug ~onitor is programmed to transmit and receive
data only on port O. The baud rate is 9600. Additional
docuJllentation JIlay be found in the source listing.

NUX_MAIN - source: &t1UXMN

linkage: ~ain fir~ware entry always start at address
zero

HEIJLETT-PACKARD PRIVATE
58

HP-CIO 8-CHANNEL NUX FIRMUARE INS

ju~p to: NX STEST

called by: main entry

used by: none

Nain firmware entry to initialize system.

NX STEST - source: &t1UXST

Register IY contains the return address.

calls: none

jump to: the caller

called by: none

The NUX card self-test.

NOTHIN - source: &BCRSR

linkage: CALL NOTHIN

calls: none

JUJllP to: none

used by: none

Subprogram to make the active request idle.

ORO EXIT - source: &BCRTS

linkage: JP ORO_EXIT

calls: SRQ_HOST

ju~p to: BIC_EXIT

used by: BIC_RD, BIC_RSR, BIC_RTS, BIC_YD, BIC YTC

H~LETT-PACKARD PRIVATE
59

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

Subprogram to do the SRQ for the next order and to ju~p
to the BIC exit point.

OTSP CLR - source: &MXWCC

linkage: CALL arsp CLR

Register IY contains the port stuff address.

calls: none

jump to: none

called by: WCC_CONT

used by: none

Subprogram to clear all the special condition in the
special character table except for the single text
temination.

OTSP SET - source: &MXWCC

linkage: CALL arSP_SET

Register IY contains the port stuff address.

calls: none

jUlllP to: none

used by: none

Subprogram to set all the special condition in the
special character table except for the single text
temination.

PACKlTUP - source: &RXISR

linkage: CALL PACKlTUP

On entry register A = ter~inating reason,
register E = terminating character, and
register IY = address of port's stuff.

On exit register HL = address of buffer's

HEWLETT-PACKARD PRIVATE
60

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

header.

calls: none

jump to: none

called by: CCO_BEG, RDD_BEG, RX_ISRO, RX ISRl, RX ISR2,
RX_ISR3, RX_ISR4, RX_ISR5, RX=ISR6, RX=ISR7,
WCC CONT

used by: none

Subprogram to pack up the current receive buffer, sets
the length and the terminating reason in the buffer
header, and sets the pointers for the next buffer.

PRG erc - source: &MXWCC

linkage: CALL PRG_CTC

On entry register IY contains the address to the
port stuff.

calls: none

jump to: none

called by: CCD_BEG, SS_ISRO, SS_ISRl, SS ISR2, SS_ISR3,
SS_ISR4, SS_ISR5, SS_ISR6, SS=ISR7, WCC CaNT

used by: none

Program the baud rate generator for the specified port.

PUT CHAR - source: &TXISR

linkage: CALL PUT CHAR

On entry register A contains the character for
output, registr C contains the SIO data channel
I/O port address, register IY contains the port
stuff address.

calls: none

jump to: none

called by: CHEK XOF, ECHO_CK, PUT_ECHO, ROD_BEG,
REAL=CLK, SEND_XON, TX_ISRO, TX_ISRl,

HEWLETT-PACKARD PRIVATE
61

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

TX_ISR2, TX_ISR3, TX_ISR4, TX_ISR5, TX_ISR6,
TX ISR7

used by: none

Check for force parity and then output the next
character.

PUT CHR - source: &RXISR

linkage: CALL PUT CHR

On entry register IY = address of port's stuff,
register E = character to store.

On exit, the Z flag is set on buffer full.

calls: none

ju~p to: none

called by: RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3, RX_ISR4,
RX_ISR5, RX_ISR6, RX_ISR7, SPC_ISRO, SPC_ISR1,
SPC_ISR2, SPC_ISR3, SPC_ISR4, SPC_ISR5,
SPC_ISR6, SPC_ISR7

used by: none

Subprogr~ to place a character into the active receive
buffer and update all the pointers.

PUT DATA - source: &TXISR

linkage: CALL PUT_DATA

On entry register IY contains the port stuff
address.

calls: none

ju~p to: DATA_CKA

called by: WOO_BEG, WDD_CONT

used by: none

Subprogr~ to start the data transmission, if necessary.

HEWLETT-PACKARD PRIVATE
62

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

PUT ECHO - source: &TXISR

linkage: CALL PUT ECHO

On entry register A contains the character to
be echo, register IY contains the port stuff
address.

ju~p to: none

called by: RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3, RX_ISR4,
RX_ISR5, RX_ISR6, RX_ISR7, SPC_ISRO,
SPC_ISR1, SPC_ISR2, SPC_ISR3, SPC_ISR4,
SPC_ISR5, SPC_ISR6, SPC_ISR7

used by: none

Subprogr~ to output an echo character if the
transmitter is not busy. Otherwise, add the character
to the echo buffer.

RCI ABT - source: &MXRCI

linkage: CALL RCI ABT

calls: none

ju~p to: none

called by: BIC_WIC

used by: none

Abort the read card infor~ation transaction.

RCI BEG - source: &MXRCI

linkage: CALL RCI_BEG

On entry register BC = port stuff address,
register IY = request block address.

On exit the C flag is set to continue, the S
flag is set for an error, the Z flag is set to
do nothing.

calls: EDIT IT

HEWLETT-PACKARD PRIVATE
63

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

called by: BIC_MIC

Ilsed by: none

Begin read card infor~ation processing. Set up the
buffer address and the buffer length for the transaction.

ReI CaNT - source: &MXRCI

linkage: CALL RCI CaNT

calls: none

ju~p to: none

called by: BIC_RD

used by: none

Continue the read card infor~ation transaction.

RDD ABT - source: &MXRDD

linkage: CALL RDD_ABT

On entry register Be contains the port stuff
address, register IY contains the request block
address.

calls: RX TOGGL

ju~p to: none

called by: BIC_WIC

used by: none

Abort the read device data transaction.

ROD BEG - source: &MXRDO

linkage: CALL RDO BEG

On entry register BC contains the port stuff
address, register IY contains the request block
address.

HEWLETT-PACKARD PRIVATE
64

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

On eHit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction.

calls: EDIT_IT, MIN, PACKITUP, PUT_CHAR, RD_SWAP,
RX_TOGGL, SET_CNTR, UPO_EOC

ju~p to: none

called by: BIC_WIC

used by: none

Begin read device data transaction processing.

ROD CaNT - source: &MKROD

linkage: CALL ROD CaNT

On entry register BC contains the port stuff
address, register IY contains the request block
address.

calls: ALl_EVNT, MSG_EVNT, NOTHIN, SEND_KON, SET_CNTR,
UPD EOC

ju~p to: none

called by: BIC_RO

used by: none

Continue the read device data transaction.

RO SWAP - source: &MXWCC

'linkage: CALL RD SWAP

Register IY = port stuff address.

calls: SING_CLR, SING SET

jUfllP to: none

called by: RDD_BEG, RX_ISRO, RX ISRl, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISR5, RX=ISR6, RX_ISR7, WCC CaNT

used by: none

HEWLETT-PACKARD PRIVATE
65

HP-CIO 8-CHANNEL NUX FIRMWARE INS

Make the pending read configuration active.

REAL 812 - source: &MXCLK

linkage: JP REAL_812

Register IY contains the port stuff address.

calls: none

ju~p to: TX_90, TX_280

called by: none

used by:

An entry into REAL CLK to set up the enviro~ent to ju~p
to the trans~it ISR.

REAL CLK - source: &MXCLK

linkage: CALL REAL_CLK

calls: PUT_CHAR, SET_EVNT

ju~p to: TX_90, TX_280

called by: CTC #0 channel 3 interrupt

used by: erCIVECO

Real time clock interrupt service routine. The clock
resolution is 10 milliseconds.

RESYNC - source: &MXCCD

linkage: CALL RESYNC

Register IY contains the port stuff address.

calls: none

jump to: none

called by: CCD_BEG, SS_ISRO, SS_ISR1, SS_ISR2, SS_ISR3,
SS_ISR4, SS_ISR5, SS_ISR6, SS ISR7

used by: none

HEWLETT-PACKARD PRIVATE
66

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

Subprogram to put the SIO into synchronous ~ode and the
corresponding erc to 19.2 KHz to start speed sensing.

RX COMPL - source: &MXRDD

linkage: CALL RX_COMPL

Register HL : address of co~pleted buffer,
register IY : address of port stuff, the
interrupt syste~ ~ust be off before calling.

ju~p to: none

called by: CCD_BEG, RX_ISRO, RX ISR1, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISR5, RX=ISR6, RK_ISR7, WCC_CONT

used by: none

Subprogram to co~plete a read request to the host. The
current buffer is ~ade available to the backplane, and
either an event is generated if no request is pending,
or a continue status is generated if there is a request.

RX ISOA - source: &RXISR

linkage: JP RX_ISOA

calls: see RX ISRO

ju~p to: see RX_ISRO

called by: none

used by: SPC_ISRO

Entry in RX ISRO to continue the receive character
processing.-

RK_IS1A - source: &RXISR

linkage: JP RX_IS1A

calls: see RX_ISRl

ju~p to: see RX_ISR1

HEWLETT-PACKARD PRIVATE
67

HP-C10 8-CHANNEL NUX FIRMYARE 1MS

called by: none

used by: SPC_ISRl

Entry in RX ISRl to continue the receive character
processing.

RX IS2A - source: &RXISR

linkage: JP RX_IS2A

calls: see RX ISR2

ju~p to: see RX_1SR2

called by: none

used by: SPC_ISR2

Entry in RX ISR2 to continue the receive character
processing.-

RX IS3A - source: &RXISR

linkage: JP RX_IS3A

calls: see RX_ISR3

ju~p to: see RX_ISR3

called by: none

used by: SPC_ISR3

Entry in RX ISR3 to continue the receive character
processing.-

RX_1S4A - source: &RXISR

linkage: JP RX_IS4A

calls: see RX_ISR4

jlJmP to: see RX_ISR4

called by: none

used by: SPC_ISR4

HEWLETT-PACKARD PRIVATE
58

HP-CIO 8-CHANNEL NUX FIRMYARE IMS

Entry in RX ISR4 to continue the receive character
processing.-

RX_IS5A - source: &RXISR

linkage: JP RX_IS5A

calls: see RX ISR5

ju~p to: see RX_ISR5

called by: none

used by: SPC_ISR5

Entry in RX ISR5 to continue the receive character
processing.-

RX IS6A - source: &RXISR

linkage: JP RX_IS6A

calls: see RX_ISR6

ju~p to: see RX_ISR5

called by: none

used by: SPC_ISR6

Entry in RX ISR5 to continue the receive character
processing.-

RX IS7A - source: &RXISR

linkage: JP RX_IS7A

calls: see RX ISR7

ju~p to: see RX_ISR7

called by: none

used by: SPC_ISR7

Entry in RX_ISR7 to continue the receive character
processing.

HEWLETT-PACKARD PRIVATE
59

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

RX LOC - source: &MUXIV

linkage: none

calls: none

jUJ1lP to: none

called by: none

used by: none

Contains the location of the receive interrupt cell for
the RX interrupt service routine address.

RX ISRO - source: &RXISR

linkage: CALL RX_ISRO

calls: ALl_EVNT, CHEK_XOF, PACKlTUP, PUT_CHR, PUT ECHO,
RX_COMPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

jUJ1lP to: DIE

called by: SIO #0 channel A receive interrupt

used by: RX_VEC, SIOIVECO

Process the character received from the SIO.

RX ISRl - source: &RXISR

linkage: CALL RX_ISR1

calls: ALl_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX_COMPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

jUJ1lP to: DIE

called by: SIO #0 channel B receive interrupt

used by: RX_VEC, SIOIVECO

Process the character received from the SIO.

RX ISR2 - source: &RXISR

linkage: CALL RX ISR2

HEWLETT-PACKARD PRIVATE
70

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

calls: ALl_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX_COMPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

jUJ1lP to: DIE

called by: SID #1 channel A receive interrupt

used by: RX_VEC, SIOIVEC1

Process the character received from the SIO.

RX ISR3 - source: &RXISR

linkage: CALL RX_ISR3

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX_COMPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

jUJ1lP to: DIE

called by: SID #1 channel B receive interrupt

used by: RX_VEC, SIOIVECO

Process the character received from the SIO.

RX ISR4 - source: &RXISR

linkage: CALL RX_ISR4

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT ECHO,
RX_COMPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

jump to: DIE

called by: SIO #2 channel A receive interrupt

used by: RX_VEC, SIOIVEC2

Process the character received froJ1l the SIO.

RX ISR5 - source: &RXISR

linkage: CALL RX_ISR5

calls: AL1_EVNT, CHEK_XOF, PACKITUP, PUT_CHR, PUT_ECHO,
RX_COMPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

HEWLETT-PACKARD PRIVATE
71

HP-CIO 8-CHANNEL NUX FIRMWARE INS

juJ'llP to: DIE

called by: SIO *2 channel B receive interrupt

used by: RX_VEC, SI0lVEC2

Process the character received froJ'll the SIO.

RX ISR6 - source: &RXISR

linkage: CALL RX_ISR6

calls: AL1_EVNT, CHEK_XOF, PACKlTUP, PUT_CHR, PUT_ECHO,
RX_CONPL, RD_SWAP, SET_CNTR, SET_EVNT, SP LEFT

juJ'llP to: DIE

called by: SIO #3 channel A receive interrupt

used by: RX_VEC, SIOIVEC3

Process the character received froJ'll the SIO.

RX ISR7 - source: &RXISR

linkage: CALL RX_ISR7

calls: AL1_EVNT, CHEK_XOF, PACKlTUP, PUT_CHR, PUT ECHO,
RX_CONPL, RO_SWAP, SET_CNTR, SET_EVNT, SP LEFT

jump to: DIE

called by: SIO #3 channel B receive interrupt

used by: RX_VEC, SIOIVEC3

Process the character received froJ'll the SIO.

RX_SPAC - source: &MXWCC

linkage: CALL RX_SPAC

On entry register IY contains the port stuff
address.

On exit register HL contains the result,
register A contains the content in register L.

HEIJLETI-PACKARD PRIVATE
72

HP-CIO 8-CHANNEL NUX FIRMWARE INS

calls: none

jump to: none

called by: RCI_BEG, WCC CONI

used by: none

Find the current frontplane receive record size which
also includes th header.

RX TOGGL - source: &MXRDD

linkage: CALL RX TOGGL

Register BC contains the address of the request
block, register IY contains the address of port
stuff.

calls: none

jump to: none

called by: ROD_BEG

used by: none

Routine to set up the special character function J'IIask
for the frontplane. Each bit in the read request
subfunction is used to toggle the enabled/disabled state
of certain frontplane functions: handshake, signal,
quotable, edit, and single text terJllination. This
routine also toggles the echo mode flag in RK_FLAGS.

RX VEC - source: &MOXrV

linkage: none

calls: none

jUJllP to: none

called by: none

used by: none

Contains the norJllal receive interrupt service routine
addresses.

HEWLETI-PACKARD PRIVATE
73

HP-CIO 8-CHANNEL NUX FIRMhlARE IMS

SEND XON - source: &MXCCD

linkage: CALL SENO_XON

calls: PUT_CHAR, SP LEFT

jUAP to: none

called by: CCO_BEG, ROD CaNT

used by: none

Subp~ogram to test if an X-OFF have been sent by the
receIver. If so, and there is now enough space (due to
flush) send an X-ON and clear the X-OFF sent flag.

SET CNTR - source: &RXISR

linkage: CALL SET_CNTR

On entry register IY contains the address to
pott's stuff.

calls: MIN

jUAP to: none

called by: CCO BEG, ROD_BEG, ROD_CaNT, RX_COMPL,
RX ISRO, RX_ISRI, RX_ISR2, RX_ISR3, RX_ISR4,
RX=ISR5, RX_ISR6, RX_ISR7, hlCC_CONT

used by: none

SUbprogram to set the frontplane down counter.

SET OMSK - source: &MXhlCC

linkage: CALL SET OMSK

Register IY contains the port stuff address.

calls: none

jUAP to: none

called by: YCC_CONT

used by: none

HEWLETT-PACKARD PRIVATE
74

HP-CIO 8-CHANNEL NUX FIRMhlARE IMS

Set the data and parity Aask.

SET_EOC - source: &MXhlCC

linkage: CALL SET EOC

Register IY contains the port stuff address.

calls: none

jUAP to: none

called by: YCC_CONT

used by: none

Routine to copy the Aaster value of the end-an-count
counter to the active (running) frontplane counter.

SET EVNT - source: &NUXEV

linkage: CALL SET EVNT

Register C contains the event priority,
register B contains the RTS status code
(CONTINUE, END, EVENT SENSED). If B = CONTINUE
or END, register DE contains the address of the
request block. If B = EVENT SENSED, then
register 0 = event code (e.g., TX buffer
available) and register E = port nUAber.

calls: EVNT_MGR, GET EVB

jUAP to: none

called by: BIC_UTC, CCD_BEG, DATA_TX, EXT_ISRO,
EXT_ISRI, EXT_ISR2, EXT_ISR3, EXT_ISR4,
EXT_ISR5, EXT_ISR6, EXT_ISR7, REAL_CLK,
RX_COMPL, RX_ISRO, RX_ISRl, RX_ISR2, RX_ISR3,
RX_ISR4, RX_ISR5, RX_ISR6, RX_ISR7, WCC_CONT

used by: none

Subprogram to interface the frontplane to the backplane
event Aanager.

SET SIO - source: &MXYCC

HEWLETT-PACKARD PRIVATE
75

HP-CIO 8-CHANNELNUX FIRMWARE IMS

linkage: CALL SET_SIO

Register IY = address of port stuff.

calls: none

JUI1lP to: none

called by: CCD_BEG, SS_I8RO, 88_ISR1, S8_ISR2, SS_I8R3,
SS_ISR4, SS_ISR5, SS_ISR6, SS_ISR7, WCC_CONT

used by: none

Configure the SIO for the specified port.

SING CLR - source: &MXWCC

linkage: CALL SING CLR

Register IV contains the address to port stuff,
the character to be cleared is in array STERM.

calls: none

JUI1lP to: none

called by: WCC_CONT

used by: none

Clear the single text terl1lination condition in the
special character table.

SING SET - source: &MXhlCC

linkage: CALL SING SET

Register IV contains the address to port stuff,
the single text terl1linator to be set is in
array STERM.

calls: none

juPiP to: none

called by: NUX_MAIN, WCC CaNT

used by: none

HEWLETT-PACKARD PRIVATE
76

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

Set the single text termination condition bit in the
special character table for the given character.

SIOIVECO - source: &MUXIV

linkage: none

calls: none

JUI1lP to: none

called by: none

used by: none

SIO #0 interrupt vector table.

SIOIVEC1 - source: &MOKIV

linkage: none

calls: none

JUI1lP to: none

called by: none

used by: none

S10 #1 interrupt vector table.

SIOIVEC2 - source: &MOKIV

linkage: none

calls: none

JUI1IP to: none

called by: none

used by: none

SIO #2 interrupt vector table.

SIOIVEC3 - source: &MOKIV

HEYL~TT-PACKARD PRIVATE
77

HP-CIO 8-CHANNEL NUX FIRMWARE INS

linkage: none

calls: none

jump to: none

called by: none

used by: none

SIO #3 interrupt vector table.

SPC ISRO - source: &SPISR

linkage: CALL SPC_ISRO

calls: CHEK_OF, PUT_CHR, PUT ECHO

jump to: RX_ISOA

called by: receive special condition SIO #0 channel A
interrupt

used by: RX_VEC, SIOIVECO

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC ISRl - source: &SPISR

linkage: CALL SPC_ISR1

calls: CHEK_OF, PUT_CHR, PUT_ECHO

jump to: RX_IS1A

called by: receive special condition SIO #0 channel B
interrupt

used by: RX_VEC, SIOIVECO

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC ISR2 - source: &SPISR

HEWLETT-PACKARD PRIVATE
78

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

linkage: CALL SPC_ISR2

calls: CHEK_OF, PUT_CHR, PUT ECHO

jump to: RX_IS2A

called by: receive special condition SIO #1 channel 8
interrupt

used by: RX_VEC, SIOIVECI

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC_ISR3 - source: &SPISR

linkage: CALL SPC_ISR3

calls: CHEK_OF, PUT_CHR, PUT ECHO

jump to: RX_IS3A

called by: receive special condition SIO #1 channel B
interrupt

used by: RX_VEC, SIOIVECI

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC_ISR4 - source: &SPISR

linkage: CALL SPC_ISR4

calls: CHEK_OF, PUT_CHH, PUT ECHO

jump to: RX_IS4A

called by: receive special condition SIO #2 channel A
interrupt

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

HEWLETT-PACKARD PRIVATE
79

HP-CIO 8-CHANNEL MOX FIRMWARE IMS

SPC ISR5 - source: &SPISR

linkage: CALL SPC_ISR5

calls: CHEK_OF, PUT_CHR, PUT ECHO

juPiP to: RX_IS5A

called by: receive special condition SIO #2 channel B
interrupt

used by: RX_VEC, SIOIVEC2

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC ISR6 - source: &SPISR

linkage: CALL SPC_ISR6

calls: CHEK_OF, PUT_CHR, PUT_ECHO

jump to: RX_IS6A

called by: receive special condition SIO #3 channel A
interrupt

used by: RK_VEC, SIOIVEC3

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the
framing error generated by the SIO.

SPC ISR7 - source: &SPISR

linkage: CALL SPC_ISR?

calls: CHEK_OF, PUT_CHR, PUT_ECHO

jUPlP to: RX_IS7A

called by: receive special condition SIO #3 channel B
interrupt

used by: RK_VEC, SIOIVEC3

Receive special condition interrupt service routine.
This ISR handles the parity, data overrun, and the

HEIJLETT-PACKARD PRIVATE
80

HP-CIO 8-CHANNEL MOX FIRMWARE 1MS

framing error generated by the SIO.

SPD SEN - source: &SPDSN

linkage: CALL SPD SEN

On entry register A contains the new character
received, register B contains the previous
character, register C contains the down counter,
register DE is used as a scratch, register HL
contains the address to the current counter for
the port. The first counter in RAM Plust be
initialize at the time the SIO is put into hunt
mode.

On exit the C flag is set to continue speed
sensing, the S flag is set if speed sense
failed, the Z flag is set if the speed sense
routine found the correct baud rate. In the
latter case registers A and B will contains the
index into the baud rate table given in
subprogram PRG_CTC.

calls: none

jump to: none

called by: SS_ISRO, SS_ISR1, SS_ISR2, SS_ISR3, SS_ISR4,
SS_ISR5, SS_1SR6, SS_ISR?

used by: none

Speed Sense subprogram to detect the baud rate of the
selected port.

SP LEFT - source: &MXRDD

linkage: CALL SP LEFT

On entry register IY = port stuff address.

On exit register HL contains the space
remaining.

calls: none

JUI1IP to: none

called by: CHEK_XOF, RX_ISRO, RX_ISR1, RX_ISR2, RX_ISR3,

HEWLETT-PACKARD PRIVATE
81

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

used by: none

Subprogram to figure out how Auch space is left in the
receive buffer.

SRE RTN - source: &BPISR

linkage: JP SRE_RTN

calls: none

jUAP to: BIC_EXIT

called by: none

used by: BIC_ISR

Subprogram to send the next ARQ status code when the BIC
is ready for it.

SRQ HOST - source: &BPISR

linkage: CALL SRQ_HOST

calls: none

jUAP to: none

called by: ADD_Q, BIC_IDY, BIC_PSE, BIC_RSE, BIC_RIS,
BIC_SC, BIC_IJIC

used by: none

Send the SRQ to the host for the next order.

SSB ISRO - source: &SSBIR

linkage: CALL SSB ISRO

calls: RESYNC

jUAP to: none

called by: none

used by: SS_VEC

HEWLETT-PACKARD PRIVATE
82

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

Reinitialize speed sensing due to a data overrun error.

SSB_ISRl - source: &SS8IR

linkage: CALL SSB_ISRl

calls: RESYNC

jump to: none

called by: none

Reinitialize speed sensing due to a data overrun error.

SSB_ISR2 - source: &SSBIR

linkage: CALL SSB_ISR2

calls: RESYNC

jUAP to: none

called by: none

Reinitialize speed sensing due to a data overrun error.

SSB_ISR3 - source: &SSBIR

linkage: CALL SSB_ISR3

calls: RESYNC

jUIllP to: none

called by: none

Reinitialize speed sensing due to a data overrun error.

SSB ISR4 - source: &SSBIR

linkage: CALL SSB ISR4

HEWLETT-PACKARD PRIVATE
83

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

calls: RESYNC

jump to: none

called by: none

Reinitialize speed sensing due to a data overrun error.

8SB ISR5 - source: &SSBIR

linkage: CALL SSB_ISR5

calls: RESYNC"-

jUllIP to: none

called by: none

Reinitialize speed sensing due to a data overrun error.

SSB ISR6 - source: &SSBIR

linkage: CALL SSB_ISR6

calls: RESYNC

jump to: none

called by: none

Reinitialize speed sensing due to a data overrun error.

SSB ISR7 - source: &SSBIR

linkage: CALL SSB_ISR7

calls: RESYNC

jUllIP to: none

called by: none

HBJLETT-PACKARD PRIVATE
84

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

used by: SS_VEC

Reinitialize speed sensing due to a data overrun error.

SS ISRO - source: &SSISR

linkage: CALL SS_ISRO

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD SEN

jUllIP to: none

called by: receive SIO #0 channel A interrupt when in
speed sensing mode

used by: SS VEC

Speed sensing interrupt service routine.

SS_ISRl - source: &SSISR

linkage: CALL SS_ISR1

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPO SEN

jump to: none

called by: receive SIO #0 channel B interrupt when in
speed sensing llIode

used by: SS VEe

Speed sensing interrupt service routine.

SS ISR2 - source: &SSISR

linkage: CALL SS_ISR2

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD_SEN

jump to: none

called by: receive SIO #1 channel A interrupt when in
speed sensing llIode

used by: SS VEC

HBJLETT-PACKARD PRIVATE
85

HP-CIO 8-CHANNEL MUX FIRMIJARE 1MB

Speed sensing interrupt service routine.

SS_ISR3 - source: &SSISR

linkage: CALL S8_I8R3

calls: GENS EV EN , PRG_CTC, RESYNC, SET_SIO, SPO SEN

jump to: none

called by: receive SIO #1 channel B interrupt when in
speed sensing Aode

Speed sensing interrupt service routine.

SS ISR4 - source: &sSISR

linkage: CALL SS_ISR4

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD SEN

jump to: none

called by: receive SIO #2 channel A interrupt when in
speed sensing Aode

used by: SS VEC

Speed sensing interrupt service routine.

SS ISR5 - source: &sSISR

linkage: CALL SS_ISR5

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD SEN

jump to: none

called by: receive SIO #2 channel B interrupt when in
speed sensing Aode

used by: S8 VEC

Speed sensing interrupt service routine.

HEWLETT-PACKARD PRIVATE
86

HP-CIO 8-CHANNEL MUX FIRMIJARE IMS

SS ISR6 - source: &SSISR

linkage: CALL S8_ISR6

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD SEN

jUJllP to: none

called by: receive SIO #3 channel A interrupt when in
speed sensing mode

used by: S8 VEC

Speed sensing interrupt service routine.

SS_ISR? - source: &SSISR

linkage: CALL SS_ISR?

calls: GENSEVEN, PRG_CTC, RESYNC, SET_SIO, SPD SEN

jump to: none

called by: receive SIO #3 channel B interrupt when in
speed sensing JIlode

used by: SS VEC

Speed sensing interrupt service routine.

SS VEC - source: &MUXIV

linkage: none

calls: none

jump to: none

called by: none

used by: none

Speed sense interrupt service routine address table.

TOGGLE - source: &MXWOO

linkage: CALL TOGGLE

HEWLETT-PACKARD PRIVATE
87

HP-CIO 8-CHANNEL NUX FIRMWARE INS

On entry register BC contains the port stuff
address, register IY contains the request block
address.

calls: none

jUJ1lp to: none

used by: none

Toggle the handshake bit in the toggle J1lask.

TOGGLEA - source: &MXWCC

linkage: CALL TOGGLEA

Register IY contains the address to port stuff,
the interrupt systeJ1l J1lust be off before calling.

calls: none

jUJ1lP to: none

called by: WeC_CONT

used by: none

Update the toggle J1lask due to subfunction 0, 1, or 31
changes.

TX 280 - source: &TXISR

linkage: JP TX_280

calls: see TX_ISHx

jUJ1lP to: none

called by: none

used by: REAL_812, REAL CLK

Continuation in the tranSJ1litter ISR to decide whether to
continue transmission of user data or echo data.

TX_90 - source: &TXISR

HEWLETT-PACKARD PRIVATE
88

HP-CIO 8-CHANNEL NUX FIRMWARE INS

linkage: JP.TX_90

calls: see TX_ISRx

jUJ1lP to: none

called by: none

used by: REAL_812, REAL CLK

Entry into the TX ISR to check for tranSJ1litter options and
to continue data transJ1lission.

TX_EQAK - source: &TXISR

linkage: CALL TX_EQAK

calls: none

jUJ1lP to: none

called by: TX_ISRO, TX_ISH1, TX_ISR2, TX_ISR3, TX_ISR4,
TX_ISR5, TX_ISR6, TX_ISR1

used by: none

SubprograJ1l to do the ENQ/ACK counter processing when the
counter goes to zero.

TX ISRO - source: &TXISR

linkage: CALL TX_ISRO

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jUJ1lP to: none

called by: TX SIO #0 channel A interrupt

used by: SIOIVECO

SIO tranSJ1lit interrupt service routine.

TX ISR1 - source: &TXISR

linkage: CALL TX_ISR1

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,

HEWLETT-PACKARD PRIVATE
89

HP-CIO 8-CHANNEL MUX FIRMWARE INS

jump to: none

called by: TX SIO #0 channel B interrupt

used by: SIOIVECO

SIO transmit interrupt service routine.

TX ISR2 - source: &TXISR

linkage: CALL TX_ISR2

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none

called by: TX SIO #1 channel A interrupt

used by: SIOIVEC1

SIO transmit interrupt service routine.

TX_ISR3 - source: &TXISR

linkage: CALL TX_ISRO

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none

called by: TX SIO #1 channel B interrupt

used by: SIOIVEC1

SIO transmit interrupt service routine.

TX ISR4 - source: &TXISR

linkage: CALL TX_ISR4

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX PACK

jump to: none

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL MUX FIRMWARE INS

called by: TX SIO #2 channel A interrupt

used by: SIOIVEC2

SIO transmit interrupt service routine.

TX ISH5 - source: &TXISR

linkage: CALL TX_ISR5

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none

called by: TX SIO #2 channel B interrupt

used by: SIOIVEC2

SIO transmit interrupt service routine.

TX ISR6 - source: &TXISR

linkage: CALL TX_ISR6

calls: DATA_TX, ECHO_CK, HEN~CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none

called by: TX SIO #3 channel A interrupt

used by: SIOIVEC3

SIO transmit interrupt service routine.

TX ISR7 - source: &TXISR

linkage: CALL TX_ISR7

calls: DATA_TX, ECHO_CK, HENQ_CK, PUT_CHAR, TX_EQAK,
TX_OUTSP, TX_PACK

jump to: none

called by: TX SIO #3 channel B interrupt

used by: SIOIVEC3

HEWLETT-PACKARD PRIVATE
91

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

SIO transmit interrupt service routine.

TXOUTSP - source: &TXISR

linkage: CALL TX_OUTSP

calls: see DATA_TX

jump to: none

called by: TX ISRO, TX_ISRi, TX_ISR2, TX_ISR3, TX_ISR4,
TX=ISR5, TX_ISR6, TX_ISR7

used by: none

An entry into DATA TX at the point where it start to
check for conditional output separators.

TX PACK - source: &TXISR

calls: see DATA_TX

jump to: none

called by: TX_ISRO, TX_ISRi, TX_ISR2, TX_ISR3, TX_ISR4,
TX_ISR5, TX_ISR6, TX_ISR7

used by: none

An entry into DATA TX to do the transmit buffer
termination after all the data has been transmitted.

TX SP CK - source: &MXWDD

linkage: CALL TX SP CK

On entry register DE contains the required
length for the data transfer, register IY
contains the port stuff address.

On exit the S flag is set if there is no space.

calls: none

jUillP to: none

HEWLETT-PACKARD PRIVATE
92

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

used by: none

Check to see if have enough space for the write device
data request.

UPD EOC - source: &MXRDD

linkage: CALL UPD EOC

On entry register IY contains the port stuff
address.

On exit register HL contains the new counter
value.

calls: none

jump to: none

used by: none

Routine to update the end-on-count running counter in
preparation for calling SET_CNTR in the middle of a
receive record.

WCC_ABT - source: &MXWCC

linkage: CALL YCC_ABT

On entry register BC = port stuff pointer,
register IY = request block pointer.

calls: none

jump to: none

called by: BIC_YTC

used by: none

Abort the write card configuration transaction.

WCC_BEG - source: &MXWCC

HEWLETT-PACKARD PRIVATE
93

HP-CIO 8-CHANNEL NUX FIRMWARE INS

linkage: CALL WCC BEG

On entry register BC contains the address of
port stuff) register IY contains the address of
the request block.

On exit the C flag is set to continue the
transaction, the S flag is set if the
transaction contains an error, the Z flag is set
to suspend the transaction.

calls: none

JUJllP to: none

used by: none

Begin the write card configuration transaction.

WCC CaNT - source: &MXWCC

linkage: CALL WCC_CONT

On entry register BC contains the port stuff
address, register IY contains the request block
address, ACTSTAT contains the RTS_CONT code.

On exit set ACTSTAT to its new RTS status code,
if necessary.

calls: ALl_EVNT, EDIT_IT, MSG_EVNT, OTSP_CLR, OTSP_SET,
PACKITUP) PRG_CTC) RO_SWAP) RX_COMPL) RX_SPAC)
SET _ CNTR) SET_OMSK) SET _ EGC) SET _ EVNT, SET _ SIO,
SING_CLR) SING_SET) TOGGLEA) UPD_EOC

juPlP to: none

used by: none

Mtite card configuration transaction
continuation/coPlpletion processor.

WOO ABT - source: &MXWDD

linkage: CALL WOO ABT

HEWLETT-PACKARD PRIVATE
94

HP-CIO 8-CHANNEL NUX FIRMWARE INS

On entry register BC contains the port stuff
address) register IY contains the request block
address.

calls: TOGGLE

JUJIIP to: none

called by: BIC_WIC

used by: none

Abort the write device data transaction.

WOO_BEG - source: &MXWOO

linkage: CALL WOO_BEG

On entry register BC contains the port stuff
address) register IY contains the request block
address.

On exit the C flag is set to continue the
transaction) the S flag is set if the
transaction contains an error) the Z flag is set
to suspend the transaction.

JUJllP to:none

called by: BIC_WIC

used by: none

Begin the write device data transaction.

WOO_CONT - 'source: &MXMOD

linkage: CALL WOO CONT

On entry register BC contains the port stuff
address) register IY contains the request block
address) ACTSTAT contains the HIS_CaNT status
code.

On exit set ACTSTAT to its new RTS status code,
if necessary

HEMLETT-PACKARO PRIVATE
95

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

jUIllP to: none

called by: BIC_WD

used by: none

Continue or cOlllplete the write device data transaction.

WDD_END - source: &MXWOD

linkage: CALL WOO END

On entry register BC contains the port stuff
address, register IV contains the request block
address.

calls: TOGGLE

jUIllP to: none

called by: BIC_WIC

used by: none

Terlllinate the write device data transaction.

HEWLETT-PACKARD PRIVATE
96

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+------------------+
RECEIVE BUFFER MANAGEMENT CHAPTER 4

+--+------------------+

The receive buffer Illanagelllent is perforllled by the receive ISR
(RXISR) and the receive midplane processor MXRDD. Some
Illanipulations are done by control card (MXCCD) for buffer flush.

Receive buffers originate on the frontplane, set up as the last
step of PACKITUP when terlllinating the previous record. There are
two frontplane pointers, RX_BUF_H which points to the active
buffer's header, and RX NXT C which points to where the next
character will be stored. The backplane has a pointer to the
active backplane receive buffer, and an offset to where the next
character to be read into the host will be fetched frolll. The
pointers are 16 bit values, the offset 8 bits.

The buffer's header consists of three bytes, one for length
(incltlding the header itself), one for terlllinating conditions and
errors, and one for the terlllinating character. The header is
initially cleared, and is filled in when the buffer is terlllinated
(except for errors which or-in to the second byte).

Receive buffers are Illanaged in a circular fashion within the 512
byte receive buffer space per port. The space used is that which
is between the backplane buffer header address and the. next
character pointer for the frontplane. There is always space at the
end for a zero header, which is guaranteed by SET_CNTR's algorithlll
for setting the frontplane down counter, and RX_COUNT's setting of
the RX_BFULL flag.

When a record is terlllinated by PACKITUP the current frontplane
header is filled in, and the frontplane pointers are Illoved to point
to the next buffer. The old pointer to the header is given to the
backplane if it currently does not know about one (pointer is
zero). If the backplane already knows about a record there is
nothing to do to give this new one to it. When the records ahead
of the newly terlllinated one are read up to the host by MXRDD the
backplane's pointers are autolllatically Illoved until a zero header is
detected. The zero header is, of course, the current frontplane
record.

HEWLETT-PACKARD PRIVATE
97

HP-CIO 8-CHANNEL NUX FIRMMARE IMS

+--+------------------+
TRANSMIT BUFFER MANAGEMENT CHAPTER 5

+--+------------------+

The transmit buffer is organized as a circular buffer consisting of
512 bytes. This allows the card to buffered many data blocks from
the host before suspending the read request due to no buffer space.

Each data block in the transmit buffer consists of a 1-byte header
followed by the transmit data. The data block size can vary from 2
to 253 bytes.

A Transmit Data Block in the Circular Buffer

+------------------+\
Idata record lengthl >---
+------------------+/
I 1\
I I \
/ data / \

the header for
each transmit
record (1 byte)

/ / >-- the transmit
I I / record (up to
I I / 2~~~s)
+------------------+/

o The data block length is equal to the sum of the header length
and the data record length.

o The data record length is the number of data bytes in the
transmit data record.

o The header is always preallocated for the next host write
device data request before the current record is ~ade
available for the frontplane.

o The data record length is set by the backplane subprogram
WOO CONT when the buffer is ready for transmission. The
backplane also calls the frontplane subprogram PUT DATA to
start the transmitter if necessary. -

a If there is not enough space in the transmit buffer to hold
the write device data request plus the space for the next
header plus the space for the two output separators plus the
space for the next header of the next record, the write
request will be suspended. The frontplane subprogram DATA_TX

HEWLETT-PACKARD PRIVATE

HP-CIO 8-CHANNEL NUX FIRMMARE IMS

will restart the transaction when space becomes available.

o The backplane buffer pointer IY+BPTX PTR points to the
beginning of the current block to contain the next transmit
data record. This pointer is updated after each write order
in the transaction.

o The frontplane buffer pointer IY+TX PTR points to the next
character in the transmit buffer for transmission.

o The frontplane transmit down counter, IY+TK~CTR, specify the
amount of data remaining in the current record for
transmission. When this counter reaches zero, the buffer
pointer IY+TK PTR will be pointing to the header of the next
data block. -

a IY is the base register containing the address to port stuff
for the port being processed. IY is set before entering its
respective processing subprograms.

o The amount of remaining space in the transmit buffer is
computed as follow:

(IY+TX_PTR) - (IY+BPTX_PTR) + 1

If the result is less than 0, add 512.

o The transmit buffer is defined in RAM as follow:

port ° - C200 to C3FF

port 1 C600 to C7FF

port 2 - CAOO to CBFF

port 3 CEOO to CFFF

port 4 - D200 to D3FF

port 5 - 0600 to D7FF

port 6 - DAOO to DBFF

port 7 - DEOO to DFFF

This information is used in managing the buffers. For
example, to update the buffer pointer, bit 1 is clear, the
pointer is incremented, and then the bit 1 is set again. This
will take care of the wraparound of the circular buffer.

HEWLETT-PACKARD PRIVATE
99

HP-CIO 8-CHANNEL NUX FIRMWARE INS

high byte portion of address to TX buffer

7 6 5 4 3 2 o
+---+---+---+---+---+---+---+---+--/
I 1 I 1 I I I I I 1 I X I
+---+---+---+---+---+---+---+---+--/

HEWLETT-PACKARD PRIVATE

this bit
alway set
for trarlSJllit

+-- port nUPlber

100

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+------------------+
ECHO BUFFER MANAGEMENT CHAPTER 6

+--+------------------+

a The echo buffer is Planaged as a 128 bytes circular buffer.

o The buffer is managed by using two pointers, IY+ECHOPTRI and
IY+ECHOPTRO, where IY is the base register containing the
address to the "port stuff" array corresponding to the port
being accessed.

o The pointer ECHOPTRI points to the next location in the echo
buffer for the neKt character to be stored.

o The pointer ECHOPTRO points to the neKt character in the
buffer for data transPlission.

o If the pointers ECHOPTRI and ECHOPTRO points to the SaPle
location in the buffer, then the echo buffer is ePlpty. This
is true even if the buffer overflow. There is no check for
buffer overflow.

o The echo buffer address will be from XXOO to XX7F or from XX80
to XXFF depending upon whether the port is even or odd,
respectively.

For even ports (0, 2, 4, and 6), the firPlware checks the low
byte of the address to see if it is 7F for a wraparound. If
it is true, the low byte of the address is reset to O.

Likewise for ports 1, 3, 5, and 7, the firmware checks the low
byte of the address to see if it is FF for a wraparound. If
it is true, the low byte of the address is reset to 80.

a This buffer is managed by subprograPls ECHO_CK and PUT_ECHO.

HEWLETT-PACKARD PRIVATE
101

HP-CIO 8-CHANNEL MUX FIRMUARE INS

+--+------------------+
ARQ BUFFER MANAGEMENT CHAPTER 7

+--+------------------+

o The ARQ buffer is ~anaged as a first-in first-out (FIFO)
queue.

o There is no check for buffer overflow. This should never
happen.

o The buffer is managed by using two pointers, ARQ_PTRA and
ARQ_PTRB. ARQ_PTRA is the write pointer, and ARQ_PTRB is the
read pointer. When a status is to be added to the queue, put
the status into the ARQ buffer by using the address in
ARQ PTRA. Then increment the content to the next address. If
the-address goes beyond the buffer, reset the pointer to the
beginning of the ARQ buffer.

When the status register is e~pty on the BIC, read the status
code found in the pointer ARQ PTRB. Then incre~ent the
content to the next address. -If the address goes beyond the
buffer, reset the pointer to the beginning of the ARQ buffer.

When the two pointers are equal, then the ARQ buffer is e~pty.

o This bufter is managed by subprograms ARQ_HOST and SRE_RTN.

HEWLETT-PACKARD PRIVATE
102

HP-CIO 8-CHANNEL MUX FIRMUARE INS

+--+------------------+
SOFTWARE HANDSHAKE ALGORITHMS CHAPTER 8

+--+------------------+

The following are the algorit~s implemented for the software
handshake

8.1 Host ENQ/ACK Handshake

This option is used to pace the data transfer fro~ the card to the
device to prevent the device from losing any data due to its slow
internal processing speed.

The fir~ware will send the ENQ character in H ENQ after its pacing
counter ENQ DCTR counts down to zero. In addition the flag TX HENQ
in PxSTUFF will be set, the counter will be reset to the value-from
H_EN_CTR which is program~able by the user, and finally the host
ENQ/ACK ti~er HEN_TCT will be set with the value fro~ ENQ_TIMR, if
it is active.

The firmware will not tra~it any data until an host ACK is
received from the device, or when the host ENQ/ACK timer times out
and the tran~it on ENQ ti~er time out option is enabled. However,
the transmitter will send an host ENQ again if the timer times out
and the transmit on ENQ timer time out option is disabled.

Subprogram HENQ CK will decrement the count and set the flag TX ENQ
in PORTSTAT or- subprogram TX ISRx will decre~ent the count -and
subprogram TX EQAK will set- the flag. On the next tran~it
interrupt the flag TX ENQ will be checked. If it is set, the ENQ
character from H ENQ will be sent. The ti~er ENQ/ACK or handshake
ti~er HEN TCT will be set with the value fro~ ENQ TIMR. The flag
TX ENQ wIll be cleared at this time and the flag WAIT ACK in
PORTSTAT will be set to wait for the ACK. -

Subprogram REAL CLK perform the timer time out operation; and
subprogram RX ISRx checks for the incoming ACK.

Note that the ENQ/ACK counter is always be decremented in the
tran~itter whenever a character is tran~itted. When the counter
goes to zero, the firmware then check to see whether to process the
handshake. This is faster then checking for handshake enable first
and then decrementing the counter.

HEWLETT-PACKARD PRIVATE
103

HP-CIO 8-CHANNEL NUX FIRMWARE INS

8.2 Host X-ON/X-OFF Handshake

This handshake protocol allows the card to pace the data transfer
from the device to the card. The card will send the X-OFF
character in H OFF to the device to stop data transmission when
there is not enough space in the receive buffer. This character is
sent by calling PUT ECHO when the transmitter is not busy. If the
tranS'fTlitter is busy, the character is sent by setting the flag
TX_HXOFF for subprogram TX_ISRx to send it on the next interrupt.

The receive ISR is told when to send an XOFF by the value set in
the frontplane down counter by SET CNTR. When this decrements to
zero, the space remaining in the port's receive buffer is checked.
If it is less than 72 bytes, an XOFF condition is indicated, and
the character is sent.

Receive space and XOFF condition set is checked in NXCCD
subfunctions1 and 2 (buffer flush), and MXRDD when a record is
read into the host. If there is sufficient space created, an XON
is sent to the terminal. Due to the length of the buffer header (3
bytes) plus the data in the buffer (at least 1 byte), there is a
minimum of 4 bytes of histerisis in the XON / XOFF handshake.

8.3 Device X-ON/X-OFF Handshake

This handshake protocol allows the device to pace the data transfer
from the card to the device. The device will signal the card to
stop transmitting data by sending an X-OFF character. The firmware
will set the flag RX TXOFF to tell the transmitter to stop
tranSJllitting. -

Data transmission may be resumed by the device sending an X-ON
character or by typing any characters if the implicit X-ON option
is enabled. The user also have the option of restarting the
tranS'fTlitter by using the control card request with subfunction 5.

This device handshake is also invoked using control card request
subfunction 8 to suspend the transmitter. Note that the handshake
option does not have to be enabled to use this control request.
The tranS'fTlitter may be restarted by the same methods as described
above, except that the control card request must be used if the
handshake is disabled.

HEWLETT-PACKARD PRIVATE
104

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+------------------+
TIMER ALGORITHMS CHAPTER 9

+--+------------------+

The card uses erc #0 channel 3 as the firmware real time clock.
The clock resolution is set to 10 millisecond.

The second timer is implemented by using 2 bytes to perform 2 count
down. The first counter is used to count the 10's millisecond time
down to the "second" resolution. lJhenever the first counter counts
down to zero, the second counter is decremented by 1 to count down
the seconds.

The handshake timers uses this algorithm for the host ENQ/ACK and
device X-ON/X-OFF handshakes. The host ENQ/ACK timer is used to
determine when to send another host ENQ character or to restart the
transmitter. If the timer times out and if the restart the
transmitter option on time-out is disabled, another host ENQ
character will be sent to the device and the counter will be set to
time out again. If the restart the transmitter option is enabled,
the host ENQ character will not be sent but the transmitter will be
restarted.

The timer can be started by subprogram TX ISRx and restarted by
subprogram REAL CLK. The timer is cleared-by subprogram RX ISRx
when an host ACK is received or by subprogram REAL CLK when the
time out occurred with the restart transmitter oPtion-enabled.

In additon an event is sent to the host whenever the ti~er ti~es
out if the corresponding interrupt ~ask is enabled.

The handshake ti~er is also used to ti~e the device X-ON/X-OFF
event. If enabled and if the timer ti~es out before the X-ON is
received, an event will be sent to the host.

9.1 16-bit Second Timer

The 16-bit second timer is very similar to the 8-bit second timer.
The timer is implemented by using 3 bytes, one for the 10
millisecond count down and 2 for the second count down. The major
difference is that a 16-bit quantity is used to count down the
second. This allow for a large time out for the no activity timer.

The no actlvlty timer is used to disconnect the modem when no
transmit or receive activity occurred. The timer is started by

HEWLETT-PACKARD PRIVATE
105

HP-CIO 8-CHANNEL NUX FIRMWARE INS

subprogram REAL_CLK when the link is finally connected. The timer
is reset by subprogram RSET ACT whenever a receive or transmit
interrupt occurred. The timer interrupt is processed by subprogram
REAL_CLK.

HEWLETT-PACKARD PRIVATE
106

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

+--+------------------+
EVENT PROCESSING & REQUEST MANAGEMENT CHAPTER 10

+--+------------------+

The Aanagement of host requests and asynchronous card events is
centered around the Event Manager, the RTS Queue, and the HP-CIO
backplane protocol. Each RTS order froA the host causes a decision
by BCRTS to be Aade regarding what is the highest priority "thing"
to be done. If the top of the RTS Queue is of higher priority than
the current process, the current process is placed in the RTS
Queue, and the top of the Queue is popped and passed to the host.
Otherwise, the current process is reported to the host.

New requests, via the CLC order may be initiated at any tiAe the
card is SRQing for an order. Once initiated, the progress of the
request is controlled by puting SWItch events on the RTS Queue. A
request which is suspended is eventually made active by this
process. Once the active request, a request ~ay suspend itself by
clearing the active task block (calling the routine "NOTHIN"
(&BCRSR)) .

Unsolicited events are passed to the host via the same RTS Queue
mechanisA, with the liAitation that only one event per port can be
on the RTS Queue at a time. Additional events are held on the
Event Queue pending an Event Acknowlege to move them to the RTS
Queue.

The Event Manager is called directly by anyone wishing to add any
kind of event to a Queue to the host. It figures out what type of
event it is, whether unsolicited events are disabled pending an
AEK, and adds the event to the appropriate Queue. Passed to the
Event Manager is the event, packaged in the forA of an Event Block.
This contains the event code, event priority, the port number
(converted to a port ID by the Event Manager), and any additional
information to be passed to the host. This block is pointed to by
HL.

An interface routine is available to aid in the packaging of AOSt
events to the Event Manager. This routine, SET_EVNT, is passed the
above parameters in registers B, C, D, and E, allocates a blank
Event Block, fills it in, and calls the Event Manager. All events,
with the exception of Message Received, Alert-1, etc. which have
addtional information, use SET_EVNT.

This Queued sche~e is used to reduce the ti~e it takes to decide
what to do next when an RTS comes along. The Queues are Aaintained
in sorted order by priority. It is a siAple Aatter to COApare the

HEWLETT-PACKARD PRIVATE
107

HP-CIO 8-CHANNEL NUX FIRMWARE INS

top of the Queue with the active priority and ship the host
whichever is higher.

The scheme is complicated when an abnormal condition occurs.
Whenever an event is cancelled (an abort is received for a task
which has a SWItch in the RTS Queue, an unsolicited event in either
Queue is cancelled when a read of the status register is made,
etc.) the Queues ~ust be searched and the event deleted before the
host has a chance to read the event. (Hosts are easily confused.)
For this purpose, a routine (EDIT_IT) is available to clean up the
Event Queue and the RTS Queue for unsolicited events; status events
are deleted directly in WTCABT (&BCWTC).

HEWLETT-PACKARD PRIVATE
108

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+------------------+

SPEED SENSING CHAPTER 11

+--+------------------+

The speed sensing on the NUX is done by using firmware with some of
the hardware features of the SID. The SID is progr~~ed in the
synchronous mode with a Xl clock running at 19200 bits per second
and with 8 data bits for a character length. The SIO will start to
generate interrupts to the firmware for processing as soon as it is
synchronized with the incoming data. The firmware will start
counting the number of bits for each level and the number of
transition to determine the baud rate.

To really understand the speed sensing mode, the reader must
understand how the serial data is sent to the SIO. In the diagram
below, a data element always start with a start bit, follow by the
data bits, and end by a stop bit. There mayor may not be any
parity bit.

mark
condition
---+--+--+ +--+ +--+--+ +--+--+--+--

+--+ +--+--+--+--+
1 0 110 0 0 0

+--start bit +--stop bit

<--------------message flow

A CR character in 8 data bit Node with no parity.

The SIO is programmed to synchronize on the character 111111108.
By looking at the above diagram, one's are being generated until
the start bit is received.

The NUX firmware uses the CR character for speed sensing. You will
note from the above diagram there are five transitions in the
level. The firmware will count the number of zero's in the first
transition which is the start bit. The number of one's in the
second transition, the nu~ber of zero's in the third transition,
the number of one's in the fourth transition, and finally the
nu~ber of zero's in the fifth transition.

For a CR coming in at 9600 baud the SIO will see the following
characters after synchronization.

HElJLETT-PACKARD PRIVATE
109

HP-CIO 8-CHANNEL NUX FIRMWARE INS

--+--+--+--+ +--+--+--+--+--

+--+ +--+--+--+--+
1 11 11 11 00 11 00 11 11 00 00 00 00 11 11 11 1

+------------+-----------+--characters
froJII the SIO
after sync

+--the sync character to start speed sensing

<--------------JIIessage flow at 9600 baud

char# char

1 0110 0111

2 1000 0000

3 0111 1111 (the firJllware will stop counting
bits here after the last zero)

SiJllilarly for a CR cOJlling in at 4800 baud the SIO will receive the
following characters after synchronization.

chari char

0001 1110

2 0001 1111

3 1110 0000

4 0000 0000

5 0001 1111

The procedure can be continue for the other baud rates. The odd
baud rate like 7200 baud does not have nice transition break and
may not be detected on the first try. There is not guarantee.

HEWLETT-PACKARD PRIVATE
110

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+--+--

+--+ +--+--+--+--+

I
+--fifth count the number

zero bits

+--fourth count the nUJllber of one
bits

I +--third count = the number of zero bits
I
I +--second count = the number of one bits
I
+--first count = the nUJllber of zero bits

<-----------message flow of the character CR

HEWLETT-PACKARD PRIVATE
111

HP-CIO 8-CHANNEL NUX FIRMWARE IM8

incoming
baud rate

19200

9600

*7200

4800

*3600

2400

*1800

1200

*900

600

300

150

*134.5

*110

75

50

first
ct(O)

o

1

2

3

4

7

10

15

20

31

63

127

142

174

255

383

second
ct (1)

1

2

3
(2.67)

4

5
(5.33)

8

11
(10.67)

16

21
(21.33)

32

64

128

143
(142.75)

175
(174.55)

256

384

third
ct(O)

1

2

3

4

5

8

11

16

21

32

64

128

143

175

256

384

fourth
ct (1)

2

4

6

8

10

16

22

32

42

64

128

256

286

350

512

768

fifth
ct(O)

3 or 4

6 or 8

9 or 12

12 or 16

15 or 20

24 or 32

33 or 44

48 or 64

63 or 84

96 or 108

192 or 256

384 or 512

429 or 572

525 or 700

768 or 1024

1152 or 1538

Note that the baud rates tagged with an "*" are the odd baud rate
which does not have nice sampling rate at 19200 bits per second.
The sample rate will give the bit count specified in the
parentheses under the second count. The count given is the one
used by the firmware. The fir~ware is able to detect the baud rate
some of the ti~e depending on the source.

The 110 baud rate is another odd baud rate but the firmware is able
to detect its present most of the time. It is able to do this

HEWLETT-PACKARD PRIVATE
112

HP-CIO 8-CHANNEL NUX FIRMWARE IM8

because the firmware does not check for an exact match on the
counts.

To further insure a better detection rate a tolerance band is used
to see if the incoming count matches a entry given in the table.
For baud rates from 50 to 600 the tolerance is plus or minus 5.
For baud rates from 900 to 1800 the tolerance is plus or minus 2.
For baud rate 2400 to 9600 the tolerance is plus or minus 1. For
19200 the count must match exactly.

By experimention with a real ter~inal and with a real user, the
firmware was able to detect the right baud rate. Also there is no
false detection when any other characters are pressed beside the
CR. However, the odd baud with the exception of 110 baud was not
tested or received only limited attention.

The fifth count can have two different values as shown in the
table. The first number is for a data byte which is 7 bit long
with no parity or 7 bit long with even parity. The second number
is for a data byte which is 8 bit long with no parity or 7 bit long
with odd parity. The firmware will return the 8th bit as being an
one if the fifth count matches the first number and as being a zero
if the fifth count matches the second number.

An acid test was performed to determine how many ports can speed
sense at the same time. The test is done by using one terminal
sending input into all 8 ports. We found that at least 2 ports can
successfully complete the speed sensing. The remaining ports will
need the CR input again.

The speed sensing is enabled by using the control card request with
subfunction 6. When this request is received by the firmware, the
interrupt vector for the receive character and the special
condition interrupt will be changed from its normal interrupt
service routine (ISR) (RX ISRx and SPC ISRx, respectively) to the
speed sensing ISR's (SS=ISRx and SSB_ISRx, respectively). In
addition, the tra~itter is disabled, and the capability to
generate external/status interrupt is disabled.

The normal ISR's addresses are restored in the interrupt table
after the speed sensing is done or when the user disable speed
sensing by issuing the control card request with subfunction 7.
The SIO and the erc associated with the port in question are
reprogrammed to its previous values.

The 8IO is put into the synchronous "hunt mode" when the control
card request to enable speed sensing is issued. The SIO is also
put into the "hunt lIIode" again when a receive character does not
match any of the baud rate or if the SIO encountered an error
condition like data overrun. The data overrun condition usually
occurs whenever the firmware is not fast enough to process every

HEWLETT-PACKARD PRIVATE
113

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

receive character for every port.

The following subprograms are used in speed sensing, directly and
indirectly.

subprogr~ source description

RX_LOC

RX_VEC

S8_VEC

CCD BEG

RESYNC

SET S10

SPD SEN

&MOKIV A table containing the addresses to
the interrupt trap cell for the
receive ISR address. Index by the
port nUJllber.

&MUXIV A table containing the norJllal
receive and special condition ISR
addresses for each port.

&MOXIV A table containing the speed sensing
receive and special condition ISR
addresses for each port.

&MXCCD Subprogram to enable and disable
speed sensing by using the control
card request.

&MXCCD Subprogr~ to program the CTC and
SIO for the synchronous "hunt JIIode"
used for speed sensing.

&MXYCC Subprogram to program the CTC when
the baud rate is changed or detected.

&MXYCC Subprogram to progr~ the SIO when
the character length, the nUJllber of
stop bits, the parity, the card LED
state, the hood LED state, the
front-end drivers, and the internal
loop back state are changed.

&SPDSN Subprogram which have the speed
sense algorithJII.

SSB_ISRK &SSBIR Subprogram to reprograJII the SIO
into synchronous "hunt lIIode" after
an error condition (usually data
overrun) .

SS_ISRx &SSISR Subprogram to set up the environl'lent
to call the speed sense subprogram
after a character is received on the
SID.

HEIJLETT-PACKARD PRIVATE
114

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

The speed sense algorithm uses 16-bit counters to count the nUlIIber
of bits. If the character is not a CR, the SIO lIIay or JIIay not
continue to receive all one's for each character continuously. The
algorithJII handle this probleJII by noting that the 16-bit counter
should never be negative. If the number turns negative, then the
algorithm treat this as a tillie-out and will cause the SID to be
reprogramllled into the synchronous "hunt 1II0de" to search for the

next sync character to start speed sensing again.

HEWLETT-PACKARD PRIVATE
115

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+------------------+
ROM & RAM MEMORY MAP CHAPTER 12

+--+------------------+

The Mux card uses two 8K x 8 bit EPROMs and eight 16K x 1 bit
dynamic RAM chips for ~e~ory. The Z80's ~e~ory address space is
layed out as follows:

FFFF +------------------------+
I interrupt vectors I

FFAO 1------------------------1
I I Z80 cpu stack I I
I V V I

F69E 1------------------------1
I I
I per-port and 1
I per-request variables I
I 1

ECOO 1------------------------1
1 echo buffers 1
I 128 x 8 I

E800 1------------------------1
1 special character I
I tables I
I 256 * 8 I

EOOO 1------------------------1
I I
1 receive and tran~it 1

1 data buffers 1
I I
1 512 * 8 * 2 I

COOO 1------------------------1
I I
I this I
I space 1

I not I
I used 1

1 with 1

I 16K I
1 RAMs 1

4000 1------------------------1
1 1
1 fir~ware EPROM * 1 I
1 1

2000 1------------------------1
1 1

HEWLETT-PACKARD PRIVATE
116

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

fir~ware EPROM * 0

0000 +------------------------+

The entire Mux fir~ware resides in the two EPROMs. No code is
downloaded to the card, nor does the resident fir~ware incorperate
a downloader.

The character buffers begin at the first location of RAM, COOOH.
This is fixed so that the address of any character, buffer, etc can
be co~puted as:

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+--+
I 11 11 01 port * IT/RI buffer relative chr index I
+--+

where: port * is the physical port * (0-7)
TIR is Tran~it or Receive (1=T, O=R)
index is the offset to the character in the buffer

Record headers are placed within the buffers to define record
boundaries. For receive records there is a 3 byte header:

I previous
1 record 1

1--------------1
1 total length I

1--------------1
1 I El t~ codel
1--------------1
I tem char I
1--------------1
1 this I
1 record 1
I data I
I I

where: total length = the length of data + header; Aax 255.
E = this record ter~inated with error (parity, overrun)
tm code = termination code (ended on count, SIT, etc)
term char = if SIT termination, the character detected char

A non-terAinated record has a zero length in the header. The one
byte total length field, plus the three byte header length, gives a
maKi~u~ data field size of 255-3 252 characters. This determines
the card's data blocking factor.

The traosAitter has a 1 byte header. This indicates the length of
the DATA portion of the record (does not include the header). A

HEWLETT-PACKARD PRIVATE
117

HP-CIO 8-CHANNEL NUX FIRMMARE 1MB

zero header indicates no record present.

The special character tables (one table of 256 bytes for each port)
contain an attribute code for each of the possible character codes.
When a character is received, it is ANOed with a ~ask to re~ove the
parity bit, and used as an index into that port's special character
table. The contents of that entry indicates what type of character
it is. This entry is then ANOed with the toggle ~ask (TOGLMSK) to
isolate those functions which are currently enabled (via WCC 1 or
ROD subfunction). A zero result indicates that the character is
si~ply a character (i.e. not anything which would require extra
processing) and the character is placed in the user's data buffer.
This speeds the receive ISR.

If the special character table entry is non-zero, and one or ~ore
of the same bits are set in the toggle ~ask, the further processing
is needed. Note the bits defined align with the corresponding bits
in the read configuration (WCC 1) and the ROD toggle subfunction.

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bi t 1:
Bit 0:

This is a Handshake character (ENQ/ACK/XON/XOFF)
This is a Signal character (control-y, UNIX 'quit')
This is an Edit character (BS, DEL)
not used
This character is Quotable (8S, DEL, control-d)
not used
This is a Single Text Terminator
not used

HEULETT-PACKARD PRIVATE
118

HP-CIO 8-CHANNEL NUX FIRMMARE IMS

+--+------------------+
Fir~ware Structure CHAPTER 13

+--+------------------+

13.1 OVerview

The firmware is divided into three ~ajor blocks. This was done to
organize the operation of the Mux and to provide future products
with a solid set of services to leverage from. (The most important
is the Backplane to Midplane interface, described later.) The three
layers are:

o Backplane
o Midplane
o Frontplane

Each layer has a defined set of services which it provides, and
defined interfaces to these services.

13.1.1 Backplane

This layer processes the orders and co~~ands received via the BIC
routines. It ~anages the card's Request and Event resources, and
maintains the backplane protocol with the host. The Backplane
layer makes any conversions necessary to interface host for~ats
with those used on the rest of the card, for example, converting
record lengths fro~ high byte first to low byte first for~at. The
PID (port 10) iS,converted to/from a port number also.

Major blocks within this layer are the order processors for WIC,
RTS, WIC, BIC/MIC support, lOY, RD and UD, RSR, and the Event
Manager.

13.1.1.1 BIC/MIC support

This layer contains the Interrupt Service Routines (ISRs) to which
are vectored all interrupts from the BIC/MIC chip pair. This
includes Order and Command interrupts from the BIC, and DNA
termination interrupts from the MIC.

HEWLETT-PACKARD PRIVATE
119

HP-CIO 8-CHANNEL NUX FIRMYARE IMS

This is contained in module BPISR.

13.1.1.2 WIC (CLC) processor

Briefly, WIC (called via the Connect Logical Channel order)
initiates the processing of new requests by reading in the Request
Block, setting up the appropriate data structures, and calling the
midplane. The status returned by the midplane tells WIC what state
to leave the request in, which is comJllunicated to the Event
Manager.

This is contained in the module BCWIC.

13.1.1. 3 Event Manager

The Event Manager is the module through which the midplane sends
all events and request status changes to the host. Status changes
go directly to the RTS Queue, while Asynchronous events go to the
Event Queue pending an Asynchronous Event acKnowlege (AEK, via
WTC) .

This is contained in the module MUXEV.

13.1.1. 4 RIS processor

The RIS order processor is the "back end" to the Event Manager.
Whenever an event or status change of higher priority than the
current task is at the top of the RIS Queue, the RIS processor
de-links that event from the RTS Queue and passes it up to the
host. Otherwise the current process is reported. The appropriate
status tables are updated to reflect any changes to the current
process.

This is contained in the module BCRTS.

13.1.1. 5 RD and WD processor

The RD and WO order processors, actually one processor which serves
both orders, initiates the actual data transfer from or to the
port's frontplane data buffer. It then calls the midplane to
direct what happens next within that transaction.

This is contained in the JIlodule BCRWD.

13.1.1. 6 RSR processor

The RSR order processor transfers up to the host the current
contents of the request's status block and terminates the request.
The request's request block is de-allocated, and the state
information regarding the current process is cleared.

HEWLETT-PACKARD PRIVATE
120

HP-CIO 8-CHANNEL NUX FIRMYARE IMS

This is contained in the module BCRSR.

13.1.1.7 WTC processor

The WTC order processor handles request aborts, event acknowleges,
end of data status, and the Resume after an Error Trap. Aborts
remove the indicated transaction, if it still exists. An
Asynchronous Event acKnowlege moves an event from the Event Queue,
if one exists there, or enables that port to place an event
directly on the RTS Queue. End of Data calls the midplane to
perform its end-of-record processing. This MUST be used while the
indicated TID is the active transaction. Lastly, Resume is used
after an ERror Trap to activate a paused transaction.

This is contained in the module BCYTC.

13.1.1. 8 lOY processor

The lOY order processor returns the card's Identity block to the
host. There is no effect on any other card process or function, so
lOY can be requested at any time.

This is contained in the module BCIDY.

13.1.2 Midplane

The midplane processes the requests handed it by the backplane
interface. Each type of request has a separate midplane processor,
each with separate initiate, continue, abort, and end entry points.

All midplane modules maintain the RSR status block with the count
of data transferred, record type, errors, etc.

13.1.2.1 Read Device Data

The Read Device Data midplane routine handles the reading of
information received from the device via the frontplane. When
given an initiate entry is processes any flushing of buffers or
events, then sees if there is any data available to complete the
request. If so it sets up the pointers in the request block for
the RD processor, otherwise it signals a suspend to wait for data
to arrive.

A continuation entry, caused by each part of a record being
transferred to the host by the RD processor, sets up the pointers
for the next transfer, suspends waiting for still more data, or
signals the termination of the request by setting "end" status.

HEWLETT-PACKARD PRIVATE
121

HP-CIO 8-CHANNEL NUX FIRMUARE IMS

13.1.2.2 Write Device Data

The Write Device Data ~idplane routine handles the writing of
infor~ation to the device via the frontplane. It is responsible
for appending CR/LF to buffers, if so directed. On return to the
backplane it indicates whether the transaction can continue or not
depending on how ~uch space is available in that port's transmit
buffer.

Before indicating "continue" to the backplane, the pointers in the
request block are set to the appropriate position in the port's
trans~it buffer so that the WD processor will operate correctly.

13.1.2.3 Control Device

The MUH does not support any Control Device requests. Any access
to this ~odule returns Error Trap status, with the RSR status block
indicating an illegal request.

13.1.2.4 Read Card Infor~ation

The Read Card Infor~ation midplane routine handles the reading of
configuration infor~ation contained within the card. If the
infor~ation read was the interrupt status, then the status gets
cleared, and a routine in the backplane is called to re~ove the
status blocks from the Event and RTS Queues.

13.1.2.5 Write Card Configuration

The write Card configuration ~idplane routine handles the writing
of configuration data to .the card. The routine also performs the
configuration of the card, including supplying default values for
some requests. All configuration is subject to so~e level of
verfication check (length of data, range checking, etc.).

13.1.2.6 Control Card

The Control Card ~idplane routine i~ple~ents those requests which
are modes or one ti~e actions, for example, enter speed sense mode,
or flush receive buffers. The action is specified in the request
subfunction field, as there is no data block on control requests.
The action is executed immediately upon the initiate entry to the
routine.

HEWLETT-PACKARD PRIVATE
122

HP-CIO 8-CHANNEL NUX FIRMUARE IMS

13.1.3 Frontplane

The Frontplane consists of the interrupt handlers for the various
interrupts generated by the SIO chips. These are the External
Status, Special Condition, Character Received, and Character
Transmitted. Further interrupt service routines are included for
the speed sense ~ode.

13.1. 3.1 External Status

The External Status interrupt service routine handles the BREAK
interrupt from the SIO. Since there are no modem line connections
to this card, none of the other interrupts can (should) occur. If
enabled, the occurrence of the BREAK interrupt causes the event
manager to be called to send a BREAK message to the host.

This is contained in the module EKISR.

13.1. 3.2 Character Received

The received character interrupt service routine gets entered for
each character received by the card. The character is read, parity
is ~asked, and the character is acted on according to its value.
Non-special characters are placed in the port's receive buffer.
Special characters (edit, termination, quote) trigger whatever
action is indicated.

If a ter~ination condition is detected, either by special character
or by count (end on count, or buffer full) the current record is
packed up (its header is filled in) and the record is ~ade known to
the backplane.

For speed, part of the Receive Character ISR is duplicated for each
port.

This is contained in the ~odule RXISR.

13.1.3.3 Special Condition

The Special Condition interrupt service routine gets entered
whenever a character is received which is so~ehow in error. This
may be because of bad parity, a framing error, or from SIO fifo
overrun. Depending on the options set, either the character is
ignored, placed in the buffer, or replaced by another character and
placed in the buffer, and the buffer is either left open, or packed
up and sent to the backplane. The function of placing the
character in the buffer as is is performed by jumping into the

HEWLETT-PACKARD PRIVATE
123

HP-CIO 8-CHANNEL MOX FIRMWARE IMS

nor~al received character ISR for that port.

This is contained in the ~odule SPISR.

13.1.3.4 Speed Sensing

The speed sensing function of the frontplane is divided into three
~odules, SPDSN and SSISR, and SSBIR. SSISR is an interrupt service
routine which is entered whenever a character is received while
that port is in speed sense ~ode.

This is acco~plished by ~oving the interrupt vector for that port
to point here instead of the Received character ISR. The ISR then
calls the ~ain routine which processes the character. Briefly, the
speed sense function works by progr~~ing the SIO for that port to
synchronous mode and thus s~pling the line 8 ti~es per byte
received. The length of each sequence of ones and zeros is ti~ed
(i.e. counted) and co~pared to the known sequences for the
carriage Return character at different BAUD rates.

SSBIR contains the re-synchronization code for handling SIO
overruns during the speed sense ~ode.

13.1.3.5 TranSAit Character

The TranSAit character interrupt service routine sends a port's
data to the SIO on an interrupt basis. Each ti~e an interrupt is
received, the next character is tranSAitted, either from the port's
main data buffer, or fro~ the Echo Buffer. The ENQ/ACK counter is
~aintained, and when it rolls over a handshake is performed, if
enabled.

IJhen all data in a data buffer has been tranSAitted, an event is
generated (if enabled) to the host, or a suspended write is
awakened, by calling the Event Manager.

13.2 The Backplane

The following are detailed descriptions of the code within each
backplane ~odule. They are intended to be read together with the
source listing, and to be used as a supplement to the comments
contained within the source.

HEWLETT-PACKARD PRIVATE
124

HP-CIO 8-CHANNEL MOX FIRMWARE IMS

13.2.1 Identify: BCIDY

The purpose of the lOY routine is to return the lOY block to the
host.

o The MIC DMA can only do transfers to/fro~ RAM. Therefore the IDY
block must be moved to RAM before being transferred.

13.2.2 Event Manager: MOXEV

The Event Manager module contains several routines, as follows:

13.2.2.1 FREE EVB

This routine puts an event block (pointed to by HL) back on the
list of free event blocks. While playing with the pointers to the
freelist, the interrupt system is turned off to prevent trouble.
When done, the interrupt system is restored to its former state, on
or off.

13.2.2.2 GET EVB

This routine allocates an event block from the list of free event
blocks. If there are none available a hard jump is taken to DIE,
since there is nothing we can do about it. This should never
happen since there are lots of event blocks lying around.

The address of the allocated block is returned in HL.

13.2.2.3 EVNT MGR

This is the core of the event manager. EVNT MGR takes an event
block (pointed to by HL) which has been filled out by someone else,
and places it on the appropriate queue. If the event is a status
change, it is placed on the RTS Queue. If it is an event, and
events are enabled on that port, then it is placed on the RTS Queue
and events are set disabled. Otherwise, events are placed on the
Event Queue, pending a friendly AEK (via WTC) to ~ove one of them
to the RTS Queue.

o Events to the host are given to EVNT MGR with the port number in
the PID field. Since the host expects a port ID, not number,
EVNT_2 changes the port# to a PID.

HEWLETT-PACKARD PRIVATE
125

HP-CIO 8-CHANNEL NUX FIRMYARE 1MB

o ADD Q puts an event block on either the RTS Queue or the Event
Queue~ in sorted order by priority. Both queues must be sorted to
allolll events to have priority over status changes, and to emulate
the AS! card's priority relationships between different card events
(Break is higher than signal, for example).

13.2.2.4 SET EVNT

This routine is a convenient way to call EVNT MGR. It allocates an
event block and fills it in with the passed -parameters. The only
restriction is that events with ~ore than just an event code and
port# cannot use this routine (no ~ore registers to pass
parameters) .

o On a status call, DE points to the request block, the first two
bytes of. which contain the TID of that request. This is LOIR'd to
the event block.

13.2.2.5 EDIT_Q

One of the proble~s with a queued backplane is that when so~ething
happens which changes the state of the world (e.g. a ROD happens
just after a ~essage received interrupt was posted), there ~ay be
infor~ationwhich is on its way, via one of the queues, to the host
which is no longer valid. This infor~ation ~ust be re~oved fro~
the queues to avoid confusing the host. EDIT a searches the queue
pointed to by DE to find an event (not a status) which ~atches that
which was passed to it. If it finds one, the links to it are moved
around it, and the block is returned to the freelist.

EDIT Q is hot external since it is only to be called fro~ EDIT_IT.

13.2.2.6 EDIT_IT

EDIT IT is an interface to EDIT Q to delete events fro~ the Event
and HIS Queues. First it sets the port id {not port number since
EVNT MGR changed that to PID before sticking it on the queuel, then
it tries to edit the RTS Queue.

o If so~ething was deleted fro~ the RTS Queue we have to see if
there is anything in the Event queue which should be ~oved to the
RTS Queue. The way this is done is to si~ulate an AEK. This isn't
done if there are no ~ore events waiting on that port, to save
time. The event queued flag is reset so that WTC EAK doesn't get
confused. -

o If nothing was deleted, the Event Queue is tried.

HEWLETT-PACKARD PRIVATE
126

HP-CIO 8-CHANNEL NUX FIRMYARE IMS

13.2.3 Read Transparent Status: BIC RTS

13.2.3.1 BIC_RTS

This ~odule processes the RTS order. Here the host is asking "what
do you want to do next?". There are several possiblilities. If no
task is active, and there are no events pending, then the Idle
response is given. If the current process has a higher priority
than the event block at the top of the HIS Queue, then the current
status is reported. Otherwise, the current process is ~oved to the
HIS queue, and the top of the queue is re~oved and sent to the
host. If the top of the queue implies a switch to that process
(either a switch or an end of data), then that process is made the
active process. Note currently all processes (requests) have equal
priority, and all events have priority over all processes. This
need not be the case; if there is some reason to change the current
values, any process or event can have any priority.

o BIC RTS Checks to see if there is an active transaction. If so,
the active priority is co~pared to the priority of the event at the
top of the RTSQ. If the Queue priority is higher (lower number)
then an the current transaction is ~oved to the RTSQ by allocating
an event block and copying the current transaction's status block
to the event block. This ~eans that the active status block ~ust
be in the form of an event block.

13.2.3.2 UPDTID

This routine sets the state of the active transaction to match the
RTS block being sent to the host. If the RTS block is a SWItch,
then the TID to which the switch is being taken beco~es the active
transaction. Si~ilarlY, if the HIS block is an end of data, a
switch is i~plied, and the TID beco~es the active TID. The end of
data i~plies a switch because of the imple~entation of the
backplane protocol on the HP-9000 machines.

If the RTS block contains an asynchronous event, then the bit in
that port's event status corresponding to that event must be
cleared. This is done by indexing into a table of ~asks based on
the event code. Since, by our conventions, an event code has a one
to one correspondence to the bit in the interrupt ~ask which
enabled it, the indexing can be used. Otherwise we'd have a mess.
Note that the event block contains a port 10, not port number, so a
conversion must be made in order to find the correct port's status.

If the HIS block does not result in a switch to a transaction (i.e.
is not a SWItch or End Of Data), then the active transaction is set

HEWLETT-PACKARD PRIVATE
127

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

to nil. This is because the act of asking for transparent status
by the host (the RTS order) takes the card out of whatever
transaction it was in, and back to "subchannel" !1lode. Another RTS
will follow any RTS reporting an event, and on Vision !1lachines you

will get an RTS following End of Data, also.

13.2.3.3 ORO_EXIT

This is a place where all (or
routines exit. It initiates an
returns frol1l the BIC interrupt.

at least
SRQ for

most) order processing
the next order and then

13.2.4 Write Transparent Control: BIC UTC

The IJr i te Transparent Control module processes the lJIC order, and
its subfunctions AEK, RES, EOO, and OLe.

13.2.4.1

This is the entry point from the BIC interrupt processor. The lJIC
block is read into a dedicated buffer in RAM (there can be only one
IJTC in process at any time, so this doesn't have to be per port).
From there the subfunction is fetched and decoded. The appropriate
routine is then executed.

13.2.4.2 lJIC_RES

This routine implements the transaction resume function. The TID
is searched for, and if not found the entire UTe operation is
considered a NOP. It is assumed that the transaction is not
currently active (that an Error Trap had previously occurred), so
when a continue event is generated and placed on the RTS Queue that
it is the ONLY status event for that transaction.

13.2.4.3 MTC_END

This routine implements the End of Data function of UTC. Since the
only l1lidplane process to use End of Data is MOD, we assume that
that is the midplane process intended. After finding the indicated
TI 0' s request block (and therefore his port's stuff) we can call
the midplane. The HP-9000 does not use this feature of the card,
but the Vision folks might.

HEIJLETI-PACKARD PRIVATE
128

HP-CIO 8-CHANNEL NUX FIRMWARE INS

13.2.4.4 WTC EAK

This il1lplel1lents the Asynchronous Event acKnowlege function of lJIC.
When an AEK is received it means that an event had previously been
sent up to the host via RTS, and that the host is signifying that
it is able to receive another event. What we do then is to search
the Event Queue for an event posted on the port which has just been
acknowleged. If one is found it is moved to the RTS Queue.
Otherwise the Events Enabled flag is set signifying that if an
event occurs it may be placed directly on the RTS Queue.

o The exception to the above is if the EV_QUED flag is set, then we
already have an event on the RTS Queue. This can happen if the
host gives us any extra AEK's (which according to the protocol
standard should be ignored).

13.2.4.5 WTC ABRT

This is used to abort a pending request. The major task here is to
search the RTS Queue and delete any (the one) reference to this
request, if it exists.

An status event is generated to the host informing it that the
request is gone. Note that the standard defines an abort situation
as a request, not a demand. We could choose to ignore the abort,
if we wanted to. However, the .HP-9000 implementation of the
protocol can't handle a delayed abort, so we force generate the
event here.

The midplane is then called to clean up anything it may have going.
Note that it cannot make references to its request block, since
that is now gone.

Lastly, the request block is de-allocated, and if the request
happened to be the active request, the active status block is set
to idle.

13.2.4.6 FIND_TID

This subroutine searches for the TID specified in bytes 1,2
(counting from 0) in the lJIC buffer. The address of that request's
request block is returned in DE. The Z flag is set if no block is
found, so a JP Z will branch if the request doesn't exist.

HEWLETT-PACKARD PRIVATE
129

HP-CIO 8-CHANNEL NUX FIRMYARE INS

13.2.4.7 GET STUF

This subroutine takes a port's 10 (not port nu~ber) in A and
co~putes the address of the "PORTsrAT+l" entry in his port's stuff.
This is returned in HL.

13.2.5 Connect Logical Channel: BaJIC

This module processes the Connect Logical Channel order (which used
to be called Write In-channel Control, WIC).

13.2.5.1 BIC_WIC

Here the CLC data block is read in to an allocated request block.
The port 10 is converted to a port nu~ber so that the midplane
knows who to talk to.

There are three pointers in each port's stuff which point to the
request block for read device data, write device data, and all
other requests. This allows one of each type of request to be
pending at the same time. Each port's stuff points to the request
block(s), and each request block has a pointer to that port's
stuff. This makes it easier to find one, given the other.

13.2.5.2 WIC3

Here the request's data length parameter is converted to midplane
format (low byte first). A check is ~ade for illegal requests, and
if ok, the midplane is called.

13.2.5.3 NIDP_RET

Here the midplane has returned with a condition code indicating
what to do with this request. If the Carry bit is set the midplane
is indicating that the transaction can continue whenever the host
gets around to doing an HIS, and when all higher priority
housekeeping is done. The Z flag is set if the request is blocked
for some reason, for eK~ple, no buffer space for a write request.
Otherwise it is assumed that the midplane is indicating that an
error eKists in one of the parameters of the request, and that an
ERT should be generated. The order of checks used here is assumed
by some of the midplane routines, in that they may not clear all
unused flags. (For eKample, both the C and Z flags could be set.
The midplane's assumption results in a "continue" interpretation.)

HEWLETT-PACKARD PRIVATE
130

HP-CIO 8-CHANNEL NUX FIRMYARE INS

In the case of Continue (now called SWItch) a "SW1" status event is
generated, and the event ~anager is called. ERr results in an
Error Trap status event being sent to the event ~anager. A SWI
status is not generated for ERT or Idle (the Z flag) thus pausing
the request.

13.2.5.4

The check here is for WCC 34, which sets the port 10. Since the
port 10 is probably not valid for this request, we can end up here.
Putting the check for WCC 34 here makes the straight line path
earlier a bit faster (the usual request is not a WCC 34). Since
the Midplane doesn't access the port's stuff for this request we
can allow a WCC 34 which happens to use an already assigned port 10
to use the straight line code without trouble.

13.2.5.5 FREE_RQB

This sUbroutine is used to return a request block (pointed to by
HL) to the free list. Make sure that the request has been aborted
or otherwise removed from the card before calling this routine.

13.2.5.6 GET_RQB

This routine fetches a request block from the freelist. The entire
block is zero'd out, so the default RSR status gets cleared. The
block's address is returned in HL.

13.2.6 Read Request Status: BCRSR

This routine processes the RS order.

o It is assumed that the host has set the "disconnect" bit in the
RS order to re~ove the transaction.

13.2.6.1 ABRT_REQ

This subroutine is called by RSR and WTC ABT to remove a pending
transaction. The pointer to the request block in the port's stuff
is cleared (so YIC won't think it's busy), and the pointer in the
request block to the port's stuff is cleared (so FIND_TID won't
think its in use).

The request block is then returned to the freelist.

HEYLETT-PACKARD PRIVATE
131

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

If the request being aborted happens to be the active transaction
(this will always be the case for RSR) the active status is also
cleared.

13.2.6.2 NOTHIN

This subroutine cleares the active status block.

If you are the active transaction and want to suspend, just call
this routine.

13.2.7 Read Data and Write Data: BCRWD

This routine handles both the RD and WD orders.

Based on the request code, the appropriate I/O routine is called.

o A zero length transfer cannot be handled by the BIC/MIC I/O
routines. This routine fakes zero length transfers as 1 byte; the
RSR block will have the correct length of zero.

The midplane is then called at its Continue entry point.

13.2.8 BIC & MIC Interrupt Service Routines: BPISR

The BIC interrupt service routine services all the interrupt
generated by the BIC. The interrupt from the BIC is actually
generated by the MIC directly. The BIC in this case will be the
device with the lowest priority in the interrupt chain. This will
ensure that the SIO receivers and transmitters interrupt will be
processed in a timely manner where possible.

The BIC and MIC ISR will run with the interrupt enabled at all time
when possible. The registers are saved by pushing the contents
onto the stack.

The host must perform a subchannel connection before performing any
transaction. The MUX firmware will not verify that the subchannel
is already connected. If the subchannel is not connected, the BIC
will not be able to generate any SRQ to the host even if the
firmware tells the BIC to do so. The reason for this is that the
SRQ address present bit in the BIC register 1 is not set.

Only one interrupt condition per interrupt is processed. The other
interrupt conditions will cause another interrupt to the ISR after
a return from interrupt instruction is executed.

HEWLETT-PACKARD PRIVATE
132

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

The IFC or DCL signals will immediately reset the card and causes
the firmware to began execution at address O. The NUX firmware
does not look at these signals. However, the self-test firmware
will check these signals to determine whether self-test should be
perform.

Upon receiving a BIC interrupt, the service routine will read the
interrupt latch from the BIC register 5 and the interrupt mask from
the BIC register 6. The two values are masked together to
determine which interrupt should be process.

The status register empty (SRE) interrupt has the highest priority
in the processing order. This interrupt is enabled if a status
code is put into the ARQ_BUF queue when the host has not read the
last one.

The NUX card will never generate a nonmaskable interrupt to the
host. Therefore, the card should never receive the no nmakabIe
interupt acknowledge (NMK) interrupt from the host.

The request attention (RQA) interrupt is sent to the host when the
card is unabled to process the command fast enough. The card will
send the ready for command (RFC) status to the host to request the
next command. This interrupt is always enabled right after reading
a command. A race condition could exist where the host sends a
command right after the RQA bit in BIC register 5 is checked.

The end condition (END) should only occurred during the data
transfer mode and will be process by the MIC DMA ISR.

The FIFO read condition (FFR) occurs only if the data overrun on
the host write. If this case the BIC/MIC ISR will read and discard
the data byte until the end condition.

The order and command interrupt conditions are processed by using a
jump table to go directly to the correct processing subprogram.
The MUX firmware processes the order interrupt condition first
before the command. The reason for this is to save some processing
time because orders will be received more frequently then commands.

Each order and com~and have a separate processing routines. So~e
of the subprograms are external to the BIC ISR and some of the
shorter subprograms are part of the ISH. The external subprograms
are described above.

If undefined orders or commands are received or if a illegal
request for starting a transaction is received, the protocol error
status code will be return to the host by the subprogram BIC ERR.
At this point the host should reset the card before continuing,
although in ~ost cases this may not be necessary. No atte~pt was
made to find out when this is not necessary.

HEWLETT-PACKARD PRIVATE
133

HP-CIO a-CHANNEL NUX FIRMMARE 1MB

The protocol error and the dead-or-dying error status code will
cause the card not to do a SRQ for the next order. The ISR will
only do a return from interrupt. This is done to allow the idle
loop to run to get information from the RAM to see why the card
failed.

The NUX firmware will only process the abort (ABT) , the subchannel
connect (SCl, and the resume (RES) co~~ands.

The NUX fir~ware will only process the identity (lOY), the pause
)PSE), the sUbchannel disconnect (DIS), the read request status
(RSR), the read (RD), the write (WD), the read transparent status
(RTS) , the write transparent control (WTC) , and the write inchannel
control (WIC) orders.

13.2.8.1 BIC ISR

This routine controls the interface to the HP-CIO BIC gate array.
The exchange over the HP-CIO backplane is defined in the BACKPLANE
INTERFACE CIRCUIT (BIC) by Bill Martin, the BIC PROGRAMMERS
REFERENCE MANUAL by Bill Martin, and the HP-CIO STANDARD BACKPLANE
PROTOCOL FOR SMART CARDS by Greg Dolkas.

13.2.8.2 BIC EXIT

This is the ~ain exit point
are restored to its original
interrupt is performed.

from the BIC/MIC ISR. The registers
content on entry and a return from

The Dr and EI instructions were necessary due to a MIC bug of not
recognizing the second RETI if the previous instruction was an
RETI.

13.2.8.3 ARQ_HOST

This subprogram sends the ARQ status code to the host through BIC
register 2. If the BIC register is busy, queue the status until
the host is ready for it. Subprogram SRE_RTN will send the next
status code when the register is ready.

13.2.8.4 BIC ABT

This subprogram process the abort com~and by acknowledging it,
clearing the necessary flags, and clearing the SRQ address register
in the BIC (register 1).

13.2.8.5 BIC ERR

Send the protocol error status code to the host and just do a
return from interrupt. This is only sent when a backplane protocol
error is encountered.

HEWLETT-PACKARD PRIVATE
134

HP-CIO 8-CHANNEL NUX FIRMMARE 1MB

13.2.8.6 DIE

Send the dead-or-dying status code to the host when the NUX
firmware encounter a unrecoverable internal error. This should
never happen, if it does we got big problem.

13.2.S.7 BIC_DIS

This subprogram process the disconnect order by clearing the SRQ
address register in the BIC.

13.2.8.8 BIC IN IT

This subprogram initialize the BIC and MIC on initial start up.
The subprogram will also spin in a loop until the perpherial
address bit is set indicating that the card has been sense by the
host. The ARQ buffer pointers are also set before returning.

13.2.8.9 BIC PSE

This is the PAUSE order processor. The normal condition is to set
the pause bit and exit the ISR. But due to a race condition, it
will first test if there is anything on the RTS queue. This can
happen if the pause order is received while interrupts are disabled
in the event manager (ADD_RTS, to be specific). If so, the test
for "are we paused" will fail, and the card will get stuck with a
"continue" event on the RTS queue, and nor SRQ (card paused). By
testing the RTS queue here we prevent this situation.

13.2.8.10

The resume command processor. If the card is in the pause state,
an SRQ for the next order will be sent to the host.

13.2.8.11 BIC_SC

The subchannel connect co~mand processor. If the subchannel is
already connected, return a protocol error status code. Otherwise,
get the SRQ address from the command and write it to the BIC SRQ
address register (1). Then send the SRQ to the host for the next
order.

Next enable the RQA interrupt in the interrupt mask. The reason
for this is that a com~and can come in right after reading the
interrupt status register. If the RQA bit is set, send the ready
for command (RFC) status code to the host.

HEWLETT-PACKARD PRIVATE
135

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

13.2.8.12 BIC_END

This routine is part of the data transfer subprogram. It will
first send the NIC co~~and to disable the DNA in case it is still
active. At this point an active DMA will not transfer anymore data
since the host has sent an END condition to the card. Next
determine mhether a host read or a host write is being perform.

If this is a host read and if the DNA was still active when the end
condition is received, then a host read data underrun occurred.
The host has terminated the transfer early. Set the S flag, clear
the Z and C flag, and set up the condition to return to the order
service routine requesting the data transfer.

Similarly, if the host read is active and if the FIFO ready bit in
the BIC interrupt status is set, then a host read dataunderrun
occurred. The processing is the same as described above.

For the host read if neither of the above condition exist then a
normal completion is performed by setting the Z flag and clearing
the C and S flags before returning to the calling programs.

The host write can have 3 conditions if a END condition is
received. They are data underrun, data overrun, and bad BIC.
There is a bad BIC condition if the FIFO ready bit in the interrupt
status is also set. The condition requires the firmware to read
the last byte from the BIC before continuing the processing.

The host mrite underrun occurs if the DNA is still enabled. In
this case perform the same function as for the host read underrun.

If it is not bad BIC or underrun, then a data overrun condition
occurred. Set the C flag and clear the Z and S flags, then set up
the condition to return to the caUer.

The normal completion of host write DNA is ·done through the DNA
ISR.

13.2.8.13 BIC FFR

The FIFO ready condtion without the END condition can only occur
for a host write. This is a data overrun. Read the byte and
discard until the END condi don occur.

13.2.8.14 DNAB ISR

This subprogram handles all the MIC channel B DMA interrupts. The
sUbpr~gram save all the registers by pushing them onto the stack.
The Interrupt system is reenabled to allow the frontplane to
continue processing interrupts when they occurred.

HEWLETT-PACKARD PRIVATE
136

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

The exit point from this ISR is through BIC_EXIT.

The DNA ISR uses the NIC
whether a break occurred
buffers. If the bit is
bufferring have occurred.
remaining data.

register 0 auto enable bit to determine
in transferring data from the circular
cleared, then a break in the circular

Set up the MIC DNA to transfer the

If the BIC end condition is not set and if the auto end enable bit
is set in the MIC, then a host write data overrun condition
occurred. Clear the BIC FIFO and enable the BIC for FFR interrupts
to throw data away until,an END condition is encountered.

If the BIC END conditon is set then a normal DNA completed on the
host write. Normally, the firmware will reinitialize the
environment for the next DNA data transfer. But due to a bad BIC
problem, code was added to check the BIC FIFO bit. If it is ready,
then there is one more byte in the FIFO that has to be read.

13.2.8.15 HCIR_IO

All circular buffer data is transfer to or from the
this subprogram. This subprogram determines if the
will wraparound on the circular buffer. If it does,
auto enable bit in Nrc register number 0 and compute
address and the data transfer length.

host by using
data transfer

turn off the
the beginning

This subprogram will call either HRD 10 or HYD 10 to start the data
transfer. HRD 10 is called if bit 9 of the buffer address is
cleared, and HMD_IO is called if bit 9 of the buffer address is
set.

13.2.8.16 HRD 10

Set up the BIC and flags for the host read data transfer. Program
the NIC and start the data transfer.

13.2.8.17 HYD 10

Set up the BIC and flags for the host write data transfer. Then
program the MIC and start the data tranfer.

13.2.8.18 SRE_RTN

When this program is called, send the next AHQ status code to the
host through BIC register 2. The update the buffer pointer and
disable the SHE interrupt if there are no more AHQ status in the
queue.

HEYLETT-PACKARD PRIVATE
137

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

13.2.8.19 SRQ HOST

This subprogram sends the SRQ to the host for the next order.
There are two types of SRQ's. The first is sent by writing 10H to
BIC register 4. This one is used when no data transfer occur. The
second Aethod of sending SRQ is by writing a 10H to BIC register 5
to clear the END conditon which was set because of a data transfer.

13.3 The Midplane

The following are descriptions of the modules comprising the
Midplane.

13.3.1 ffiJX~CCD (&M~CCD)

This subprogram handles all the control card request to the card.
The request is never suspended.

CCD BEG is the main entry to start processing of the control card
request.

The subfunction code to enable speed sensing will cause the card to
generate a solicited interrupt or event when the baud rate is
detected.

The transmitter will be restarted when the transmitter is stopped
due to an device X-OFF or to the host waiting for ah host ACK.

CCD ABT entry does nothing special.

13.3.2 MUXCDV (&MXCDV)

This subprogram doeS no special processing. It is included to
satisfY the external entries for BIC_YIC.

13.3.3 MUX_RCI (&MXRCI)

This subprogram process all the read card information request.
This subprogram consists of 4 entries -- RCI_BEG, RCI_CONT, and
RCIABI.

ReI BEG sets up the buffer address, the buffer length, and the read
status for the requested information.

RCI_CONT does nothing except to set the active status to RTS END to

HEWLETT-PACKARD PRIVATE
138

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

terminate the transaction.

Note that all read card information request should not have the
block bit set in the request block. The information transfer to
the host cannot be blocked. The reason for not doing this is to
save code space. The only request which will exceed the block size
is the read card RAM request (subfunction 250).

RCI_ABT does nothing except to set the active sttus to RTS_ABT.

13.3.4 Read Device Data: MXRDD

This module implements the Read Device Data request.

13.3.4.1 RDD_BEG

This is the initiate entry point for RDD, which is called by BChlIC
because of a CLC order with the request field set to 1.

On entry, BC points to the port's stUff, and IY points to the
request block. Since this isn't convenient for some processing
here, the addressing is switched; IY points to the port's stUff,
and BC points to the request block.

o The first thing checked is whether or not a read is legal under
the current receive configuration. This prevents someone from
hanging a read on the port when the receiver is disabled.

o The next thing to check is whether a receive interrupt is pending
on the host. This can happen if a read request is initiated on the
card at the same time a termination condition is seen on the port's
frontplane. The host's request, if it gets to the card before the
event is reported to the host, will read the data, thus clearing
the condition which caused the interrupt. Since ,the interrupt is
queued in either the Event Queue or RTS Queue, these queues must be
searched to remove the event. Note that this can "impact"
performance if it is done too often.

o The request block is checked to see if the F bit is set. This
directs the card to flush any data the port may have accuAulated
prior to the request. This is used by systems (e.g. the 3000)
which don't listen to data comming in if a read request is not
pending (except for signal characters). If a separate flush
buffers request were performed there would be a window between the
flush and the read where data could be entered under different
configuration. (Remember the read subfunction can toggle some
frontplane configurations.) If a flush is performed, then there is
now lots of space left in the receive buffer, so we have to send an

HEWLETT-PACKARD PRIVATE
139

HP-CIO 8-CHANNEL NUX FIRMWARE INS

XON if we had previously sent an KOFF.

o RDD_BGJ Now that all the housekeeping is done, on to serious
business ... The receive baCkPlane pointer is checked (only need to
check the high byte since it can't be zero if there is a buffer)
for a buffer which has at least one byte in it. A previous read
~ay have re~oved part of the data, but we don't care since the data
offset pointer (RDBUFN) will have been left updated. If there is
so~e data, then it, or part of it, will be used to satisfy at least
the first block of this request. The read will not be suspended on
this block.

o If there is no data, there are still two possible ways to not
have to suspend this read. First is to check for alert-1 ~ode. If
enabled, the read will not be suspended, even if we have to
generate a zero length record to satisfy it.

o If there is no ter~inated data, and we're not in Alert-1 ~ode,
then we see if there is enough data to satisfy the request sitting
on the frontplane. If so, we ter~inate it now. The equivalent is
if the read happened first, the data would have been ter~inated by
Host Buffer Full. Since we shouldn't care which happens first, we
have to ~ake this check. Fro~ here there are two paths; either
there is enough data or not. In both cases we will be changing the
frontplane counters, and so have to call SET_CNTR. Since the
frontplane downcounter has not expired, the counters which SET_CNTR
uses have not been updated, we have to call UPD EOC to update the
end on count and host buffer full counters before calling SET CNTR.
Otherwise all sorts of nasty things will happen. So to save-code,
first we call UPD_EOe, then see if there is enough data.

o Note that we only need to do 8 bit arithmetic since the length of
the buffer can't be ~ore than 252 bytes long. If ~ore data were
entered, the internal counter would have popped, and the frontplane
'Jlould have had a record already ready to go, and we wouldn't be
here.

o If there is not enough data, the down counter for the host buffer
size is updated to reflect how much more we need to satisfy the
request.

o Now, if we ended up deciding that what was on the frontplane, if
any, was enough to satisfy the request, we call the frontplane
routine PACKlTUP to terminate the current frontplane record. If,
since the iast read, the frontplane parameters were changed, the
new values can now be installed on the frontplane. The initial
values of the end on count down counter is set, and the host buffer
size down counter is set large enough not to get in the way. NOW,
finally, we can call SET_CNTR and let the frontplane go.

o If we have to suspend the read, the host buffer size down counter

HEIJLE'IT-PACKARD PRIVATE
140

HP-CIO 8-CHANNEL NUX FIRMWARE INS

is set and SET_CNTR is called. Note the call is made AFTER the
suspend flag is set, since SET_CNTR checks the suspend flag to see
if it has to worry about the host down counter.

o The last thing we do before leaving in a suspended state is to
toggle the frontplane functions based on the subfunction code.
This is done by changing the toggle mask to enable or disable the
functions which are allowed to be "special" in the receiver ISR.

We suspend by setting the Z flag back to WIC.

o RDD_9 If a buffer was ready when the read was posted, or was ~ade
ready by the horseing around we just did, we end up here. Since we
will be dealing with the request block for a while now, the
addressing is switched back; IY points to the request block and BC
points to the port's stuff. The interrupt syste~ can co~e on since
we are done ~essing aroung with the frontplane.

o ROO 14 First we set up the beginning address for the RD and WO
processor (BCRWD). This is computed from the backplane receive
buffer pointer plus the offset counter. The counter is initialized
to 3 to account for the header bytes in the receive buffer. Note
that we have to ~ake sure that the ~ath accounts for the 512 byte
circular nature of the buffer by resetting bit 9, just incase it
got set by a wrap.

o The length is computed fro~ the total length of the buffer, ~inus
what has already been transferred. "What has been transferred"
includes the three header bytes. The actual length of transfer is
the ~ini~u~ of this value and the length of the user's buffer,
which may be less.

The carry flag is set to tell the backplane that the request is
ready to go.

13.3.4.2 RDD CaNT

This is the contination entry point for RDD, called by BCRWD after
completing a transfer to the host.

o On entry, BC points to the port's stuff, IY points to the request
block.

o The first order of business is to update the RSR block to reflect
what has just taken place. The length parameter in the request
block which RWO used for the transfer is used to update the
transfer length field of the RSR block, which is at the end of the
request block. The terminating code and characters are also copied
to the RSR block. This leaves the type of the last block as the
type of the entire transfer, which assumes that all blocks up to
the last one were "partial records".

HEWLETT-PACKARD PRIVATE
141

HP-CIO 8-CHANNEL MUR FlRMlJARE IMS

o The residual count is set based on what is left in the current
backplane record. Again, after the last block this ~ill reflect
the correct overall value.

o There are now two possibilities. Either the last block sent to
the host cOfflpletely efflptied the current backplane record, or there
is still SOffle data left in it. If there is no data left, this
phase of the transfer is cOfflplete If so, then the host wants the
rest of the data saved. We fflove the backplane offset pointer to
account for what was transferred, then we're done.

o If there is no data left, or if the S bit is not set, ~e
de-allocate the data buffer. Again ~e have t~o possibilities;
either there is another buffer after this one, or there isn't.

o If there is another buffer, we check if the read is a blocked
read. If so, and if the record is not a partial buffer (signifying
that the read has completed) then we go set up to transfer the next
block. A check is also made in case the data buffer was not a full
252 bytes. This can happen if a previous record was partially
read, then another request, with a large buffer and the Block bit
set, COffles along. The first block ~ould be short, so to agree ~ith
the Backplane Protocol Standard, we S ifflu late a terfflination
condition to force the request to cOfflplete after that short block.

o If the block just sent terfflinated the read, we have to generate
an event to the host to inforffl him of the "new" record. This also
sets data available in the status word, and other good things.

o ROD 5 If there isn't another completed buffer we zero out the
backplane pointer to indicate no data available. Alert-1 mode is
re-enabled on the frontplane if it should be (the frontplane's flag
gets reset after the first character so that it does not get bogged
down). If there is any data on the frontplane an alert-1 event is
generated instead.

An XON character is also sent if we now have enough space and had
previously sent an ROFF.

13.3.5 MUX_WCC (&MRWCC)

There are 3 major entries into this subprogram. They are WCC_BEG,
WCC_CONT, and WCC_ABT.

All write card configuration requests are started by calling
wec BEG. This subprogram will verify the subfunction code and the
data transfer length. If the information are valid, the subprogram
will set up the staging buffer address and the data transfer
length. Note that the block mode bit in the request block should

HEWLETT-PACKARD PRIVATE
142

HP-CIO 8-CHANNEL MUR FIRMIJARE IMS

not be set. None of the subfunction has parameter length close to
the block size.

After the data is transferred from the host to the card, wee eONT
data content- are

from the staging
If the data is
the read status

is called to complete the transaction. The
verified whereever possible before being move
buffer to the port stuff area for the port.
invalid, then an error is returned to the host in
block.

The wee ABT entry does nothing except to set the active status to
RTS 'ABT-:

13.3.6 NUX_WOO (&MRWOO)

This subprogram has 4 major entries. They are WOO_BEG, WOD_CONT,
WOO_ABT, and WOO_END.

All write device data requests are started by calling WDO BEG.
YDO BEG ~ill check to see if there is enough buffer space for the
transaction. If there is enough space, set up the buffer address
and the data transfer length to continue the transaction.

If there is not enough space, suspend the transaction. The
transmitter interrupt service routine will restart the transaction
when enough space becomes available.

After the data transfer has completed, WOO CONT is called to
continue or complete the transaction. The subprogram will first
update the transmission log. If the remaining data transfer length
is not zero, go set up the buffer address and the data transfer
length for the next write if there is enough space. Otherwise,
suspend the transaction.

If the remaining count becomes zero, check to see if the output
separator appendage option is enabled. If enabled add the output
separators to the trans~it buffer at this time. Now go clear the
header of the next record and then set the byte count in the
current record to ~ake the record available for the frontplane for
processing. Turn off the interrupt system and then call the
frontplane subprogram to start the transmitter if it is not busy.

The abort write device data transaction request will cause the
clean up of any suspended write device data transaction. Entry
WDD_ABT will be called to do this processing.

YDO END is called to terminate the write device data transaction
early. The firmware will check to see if the output separator
appendage option is enabled to append the output separators before

HEWLETT-PACKARD PRIVATE
143

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

ter~inating the transaction.

The write device data subfunction contains only 2 options. The
first is to decide whether to append the output separators to the
final transmit record for the request. The second is to toggle the
handshake bit.

13.4 The Frontplane

The frontplane handles all interactions from the card to the
devices. This include transmitting and receiving data, speed
sensing, and other special conditions generated by the SIO.

13.4.1 EXT_ISR (&EXISR)

The external status interrupt service routine only processes break
detection. The break detection occur in two stages. The first
stage is the start of break, and the last stage is the end of
break. The firmware will set the flag for the port at the start of
break. On the next interrupt the firmware will know if this is the
end of break by checking the flag.

The user have the option allowing the null character to be inserted
into the receive buffer. The break event is not generated if the
interrupt enable mask is not set for the break event. However, the
break event in the status vector CARD_ST will be set.

13.4.2 RX_ISR (&RXISR)

The receiver interrupt service routine uses macro expansion per
port to gain fast execution. The major draw back of doing this is
the ROM space usage and the difficulty of debug the code.

13.4.2.1 RXISR (Macro)

This is the macro which is expanded per port ~o process the
"normal" characters received from the S1O. Data Interrupts from
each SIO channel are vectored directly to the expanded macro for
the port which interrupted. The machine state is saved (exchange
with the alternate register set), and the character is read from
the SIO. Note that errors (parity, framing, overrun, etc) are
handled by a different ISR which is vectored to directly when the
error happens. The character read is ANDed with the current parity
mask which strips off un-used bits for the 5, 6, and 7 bit modes.
The mask is "FF" in 8 bit mode "7F" in 7 bit "3F" in 6 bit and
"1F" in 5 bit. ' , ,

HEWLETT-PACKARD PRIVATE
144

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

The entry point at RX ISnA is entered by the error handling ISR
(SPISR) in the event-of a parity error with the ignore parity
errors option set.

In order to maintain the highest speed, each character is not
checked for all of the various options (backspace, delete, echo,
etc, etc, etc) on every interrupt. That would take too long.
Instead, there is a table of 256 entrys (the Special Character
Table) which is indexed into by the character value. Each entry
contains bits which represent the attributes of that character.
The attributes are: handshake, signal, quotable, edit, and single
text terminator. A generic character has all bits zero.

To implement the attribute toggle feature of ROD, a mask is kept
which allows certain of these bits to be masked (turned off). A
masked-out bit is equivalent to a bit which is not set, i.e. the
special nature of that character

is limited. Each received character is used as an index into this
table, the entry in the table is masked with the TOGL_MSK, ~nd the
result tested for zero. If it is zero, the character IS not
considered special, and it is placed in the buffer with no further
checking. If the result was not zero, there is something special
about the character, and a jump is taken to common code (outside
the macro) to test which attribute(s) are indicated.

Putting the character in the buffer decrements the Frontplane Down
Counter, which was set by SET_CNTR to the shortest buffer length
whichdid not need additional processing (END-ON-something, XOFF
handshake, etc). If the counter rolls over, an exit (jmp) is taken
out of the macro to find out what it was that the counter was set
to trigger on.

After the character is placed in the buffer the word "RX FLAGS" is
tested for zero. Any non-zero bit indicates that some further
special processing is needed before the ISR can end. One of these
is echo, another is alert-I.

The RX BFULL bit in RX FLAGS is checked
special~ness via the specIal character table
characters to be processed even when full.

13.4.2.2 RX_SPECL

after checking for
to allow handshake

This is where control transfers out of the macro if a character is
received which has some non-zero bits in its entry in the special
character table. In order of priority, the bits are checked for
being handshake, signal, quotable, edit, or terminator characters.
Once the class of character is determined, the appropriate routine
is invoked to find out which character it is (there are several

HEWLETT-PACKARD PRIVATE
145

HP-CIO 8-CHANNEL NUX FIRMhlARE IMS

different handshake and edit characters) and perfor~ the
appropriate function. Before leaving the ~acro, the IV register is
loaded with the address of that port's stuff.

13.4.2.3 RX EXIT

This is where all exits fro~ the ISR go through, except those
within the ~acro itself. Note that IY is popped froJII the stack.

13.4.2.4 RX OTHER

This is where control is passed out of the ~acro in the event that
there are so~e bits set in RX FLAGS. The A register is assu~ed to
have the RX FLAGS contents for the first test of this routine. The
rest (RX OTHR2,3) use IV+RX FLAGS since they are entered fro~ the
co~~on code after a specIal character or frontplane counter
rollover.

13.4.2.5 RX ECHO

This routine echos the character in the E register.

13.4.2.6 RX ALI

This routine generates the ALERT-l event to the host, if it is
enabled. The frontplane alert-1 bit in RX FLAGS is reset so that
this routine will only be called once per record (MX ROD turns the
flag back on) so the host will get one interrupt per record, and to
speed processing.

Me get here if the character received is identified as a handshake
character. The character is co~pared to the current values of the
device XON and XOFF, and the host ACK characters. If a ~atch is
found, and the indicated action is enabled, then the action is
~erfor~ed. The check for having the action enabled prevents
Incorrect operation if two characters are progr~~ed to the s~e
value with one of the~ turned off.

13.4.2.8 RX QUOTE

This routine is entered whenever a character is received which is
quotable, i.e. a character which ~ay be preceeded by a "\" to turn
off i ts "char~". These characters are the backspace, line delete,
and quotable single text ter~inator. The previous character is
checked for the "\" charcter, and if it is, the received character
is layed over the "\". This is only done if the BS PTR indicates
that we did not backspace to this position. If we did, then the
quotable character would be ~is-interpreted as having followed the
quote character.

HEMLETT-PACKARD PRIVATE
146

HP-CIO 8-CHANNEL NUX FIRMhlARE IMS

13.4.2.9 RK STT

This is where control is passed if the received character is one of
the single text ter~ination characters. If enabled, the sequ~nce
"CR", "LF" is echoed back to the teminal, and the receIved
character is placed in the buffer (unless the strip SIT option is
set) .

RX STT5 is where the inforJllation is set to call PACKITUP and
RX-COMPL to teminate the record and tell the host about it.
RX-ENOIT is called fro~ RX COUNT and the error handling routine in
SPISR.

The check for space prevents a record ter~ination, which takes
atleast 3 bytes for the header, fro~ wrapping around the receive
buffer. The check is ~ade faster by checking for a backplane
buffer, which usually isn't there. If it's not, then there can't
be less than 8 bytes left since there is 512 bytes of space and the
longest record is 252 bytes + 3 bytes for its header.

The swap of text ter~ination par~eters is then ~ade, if there are
any to swap.

13.4.2.10 RX_COUNT

This routine processes the characters which decre~ented the
frontplane down counter to zero. First, the character is echoed,
if enabled, since this wasn't done before the ~acro was exited. A
check is ~ade (via routine CHEK XOF) to see if it is ti~e to send
an KOFF. Since this can happen-at the s~e ti~e one of the other
counters hits zero, further checks are ~ade.

The end-on-count down counter is updated, and tested for zero. The
host buffer full counter is decre~ented next, followed by a check
for the internal buffer size of 252. If any of these counters are
exhausted the buffer is ter~inated with the appropriate ter~ination
code. The first condition to cause ter~ination is used, and the
rest of the checks are skipped.

The space re~aining in the receive buffer is then calculated. If
it is less than 8 bytes the receive buffer full flag is set to
prevent any further chanracters fro~ being received, and the
current record is ter~inated with the buffer overflow code.

A new value of the frontplane down counter is calculated and
installed, and one last check is ~ade, this one for alert-1 ~ode.

HEhlLETT-PACKARD PRIVATE
147

HP-CIO 8-CHANNEL NUX FIRMWARE INS

13.4.2.11 RX_EDIT

This is where backspace and line delete characters COffle. If the
received character gets here and it is neither of the edit
characters, an internal bug has appeared, so we ju~p to die to
alert so~eone's attention.

RK DEL processes the line delete character. The pointers to the
active receive buffer are re-set to point to just the header (an
e~pty buffer), and the backspace pointer is re-set to the address
of the header (an i~possible place to backspace to). The header is
cleared of any error flags, and the frontplane down counter is
re-calculated. If echo is on, a "\ cr If" sequence is echoed to
the ter~inal.

RX BACK processes the backspace character. If there is nothing in
the receive buffer, a backspace has no effect. The active receive
buffer's next character pointer is decreAented, and the character
deleted saved incase the echo ~ode is set to echo a "\" and the
character. The echo Aode is checked, and if echo is enabled, the
appropriate sequence of characters is echoed to the terAinal.

The position of this backspace is saved in BS PTR so that the quote
routine knows whether a quote character was backspaced to or not.

13.4.2.12 RK SIGNL

This processes characters which are signal characters. Signal
characters are like the BREAK condition; they cause an interrupt to
the host and are tossed away. The appropriate interrupt code is
found by looking for which of the 4 possible signal characters was
received. The interrupt bit is then set and an event generated, if
there wasn't one already set.

13.4.2.13 PACKlTUP

This routine packs up the current receive buffer. The header is
set to reflect the length of the buffer, and the terAinating
condition and character. The receive buffer is then set up for the
next record.

This routine puts a character in the active receive buffer. The
condition code is left set as appropriate for a check for buffer
full. The character to be stored co~es fro~ the E register.

HEWLETT-PACKARD PRIVATE
148

HP-CIO 8-CHANNEL NUX FIRMWARE INS

13.4.2.15 SET CNTR

This routine sets the frontplane down counter. The value of the
down counter is the smallest buffer which does not have any special
processing to be done because of count. For eK~ple, if the host
read was posted for 500 bytes, and the internal buffer size is 252,
and the end on count is 50, but there are only 30 bytes reAaining
in the port's receive buffer, then the down counter would be set to
30.

The code is designed to be as fast as possible based on "usual"
conditions. Usually, there is not a backplane record, so there's
lots of space left (hence no KOFF possible), and end on count is
not enabled.

13.4.2.16 NIN

This routine returns in HL the smaller of the two 16 bit unsigned
numbers in DE and HL.

13.4.2.17 ALl EVNT

This routine generates an alert-l event if events are enabled. The
event block is filled in and the event fflanager is called.

13.4.2.18 CHEK KOF

This routine checks to see if it is ti~e to send an KOFF, and if
so, sends it. An XOFF is sent if there is less than 72 or so bytes
of space re~aining. This gives at least roo~ for 16 or so
characters in the worst case where end on count is set to 1.

RX HXOF3 (this stuff used to be in the RXISR) checks the return
address for the RX COUNT routine. If it was called fro~ there the
frontplane down counter is not updated since that would wipe out
all traces of the information which RX COUNT needs. RX COUNT
therefore calls SET_CNTR itself. -

13.4.3 SPC_ISR (&SPISR)

The special condition interrupt service routine handles all the
error conditions produce by the SIO. These error conditions
include the data overrun, framing, and parity error. The ISR has
several options for processing the error condition.

If no options are specified, an error condition will cause the
ter~ination of the current receive frontplane record. If the
ignore all errors option is set, then the error condition will be

HEWLETT-PACKARD PRIVATE
149

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

ignored; that is, the character will be thrown away with no
processing. If the ignore parity option is set, the parity error
condition will be ignored and the received character will be
processed as if there was no error. There is one additional option
not to ter~inate the record but to replace the bad character was a
user specified replace~ent character. For additional details and
the logic flow, see the ERS.

13.4.4 SPD_SEN (&SPDSN)

This subprogr~ along with the speed sensing interrupt service
routine, which will replace the norAal receiver ISR when speed
sensing is enabled, will handle all the speed sensing detection.
See the chapter on speed sensing for additional details.

13.4.5 SS_ISR (&SSBIR)

This is the speed sensing interrupt service routine to replace the
nor~al receive interrupt service routine when the speed sensing is
enabled. See the chapter on speed sensing for additional details.

13.4.6 SSB_ISR (&SSBIR)

This is the service routine to replace the normal special condition
interrupt service routine when speed sensing is enabled. When
speed sensing is enabled the SIO can data overrun in synchronous
~ode when the ISR cannot read the characters out of the SIO buffer
fast enough. Under this condition speed sensing information has
been lost, and the SIO should be resynchronize.

The data overrun condition can occurred when all ports are doing
speed sensing at the s~e ti~e or when ~any ports are ter~inating a
record at the s~e time. Hopefully this should not occur too often
to cause user complaint.

13.4.7 TX_ISR (&TXISR)

The trarisAitter is like the receiver ISR in the sense macro
expansion is used to speed up the processing. The normal path
where the character is read fro~ the SIO and put into the buffer is
given the fastest execution speed by using straight line coding.

The ENQ/ACK counter is decreAent after each character is
transmitted. If the counter should count down to zero, a flag is
set to transmit the ENQ on the next transmitter interrupt.

SOl'le character or option checking are alway done even though the

HEWLETT-PACKARD PRIVATE
150

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

option is not enabled. This is done to save processing time. For
eH~ple, the transmitted character is always checked to see if it
is a record separator. For majority of the case it is not. This
save til'le because the byte COApare is faster then the bit COApare
to see if the option is enabled.

13.5 The Self-test (MXSTEST)

Most of the documentation for the NUX self-test is contained in the
listing. The self-test wa leverage frol'l the ASI firl'lware which was
originally frol'l the MEF PSI.

The changes frol'l the ASI include the following:

a The hood sensing is different. The SIa modem control lines are
used instead of a separate register on the card.

o The ROM test will check 16 Kbytes.

o A short RAM test is perfor~ed first before doing the BIC test.
The test only checks the locations that are going to be used by
the BIC test. The BIC test is done first because the RAM test
takes so much time, and the host can set the SIC PA bit to
cause the BIC self-test to fail.

o The RAM test has been changed to test the 48Kbytes of the 64K
RAM chip. The other 16K cannot be tested because of the MIC
limitation. (The untested portion will never be access because
it is overlay by the ROM address space.)

o The RAM test is ~ore extensive then the ASI. The short test is
the s~e as the ASI; but the long RAM test uses a different
test pattern and actually execute instructions out of the RAM
space.

o The number of etc tested has been increased. No interrupt test
is performed on the last 2 etC because it is not connected to
the interrupt chain.

o The number of SIa tested has been increased. In addition 3
passes through the SID test is performed for each port. The
first pass is the internal loopback. The next 2 passes are
performed if the loopback hood is installed. They will check
the single-ended drivers and the differential drivers.

o The MIC test checks both channel A and channel BONA.

o Code has been added to the self-test to determine whether aSIa
has been d~aged because of incorrect installation of the

HEWLETT-PACKARD PRIVATE
151

HP-CIO 8-CHANNEL MUX FIRMWARE INS

cable. Yhen the cable is installed incorrectly, it will
probably kill one of the SID. The damaged SID will generate
interrupt infinitely thus preventing the fir~ware fro~
executing any code except the ISR servicing the interrupt.

The added code will enable the interrupt systeN. If it is able
to reach the point of diabling the interrupt syste~, then there
are no devices on the card generating infinite interrupt.

13.6 Miscellaneous

The following subprograms are essential for the proper operation of
the firmware but does not fall into the above catogeries.

13.6.1 DNAA_ISR (&DNAA)

The only purpose of this subprogram is to process NIC channel A DNA
interrupt which should never occur. A bug in the BIC would cause
the MIC to generate this interrupt unnecessarily. A counter was
included to note how often this occur.

13.6.2 MUXIVEC (&MUXIV)

This subprogr~ contains all the interrupt vectors for the SID,
eTC, and NIC devices. The tables are loaded into RAM during the
initialization process.

The reason RAM is used instead of ROM is that the SID interrupt
vectors can be changed depending on whether speed sensing is
enabled or not for a particular port.

The reason why all of the interrupt vectors are in RAM even those
that does not change is because the I register can only be set to
one value.

13.6.3 MUXMAIN (&MUXMN)

This is the ~ain program of the MUX fir~ware. Upon any reset
condition, the CPU will start instruction execution fro~ address O.

This subprogram will initialize the fir~ware syste~ such as the
SIO, eTC, RAM, BIC, NIC, etc before dropping into the idle loop.

HEWLETT-PACKARD PRIVATE
152

HP-CIO 8-CHANNEL MUX FIRMWARE INS

13.6.4 MUXVAR (&MUXVR)

This subprogram contains all the global variable definitions.

13.6.5 REALCLK (&MXCLK)

This subprogram processes all the eTC #0 channel 3 interrupts which
occur every 10 ~illiseconds. The subprogram will scan through the
timers to see if anything needs to be done. For more details, see
chapter 9 on the Timer Algorit~s.

HEWLETT-PACKARD PRIVATE
153

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

+-----------~----------------------------------+------------------+

ZILOG SIO NOTES CHAPTER 14

+--+------------------+

The following are notes concerning the Zilog SIO.

o SIO interrupt priority

high 1. channel A receive or
I special condition
I 2. channel A transmit
I 3. channel A external/status
I 4. channel B receive or
I special condition
v 5. channel B transmit

low 6. channel B external/status

o S10 interrupt vector

XXKX YYYO channel B transAit
XXXX YYY2 channel B external/status
XXXX YYY4 channel B receive
XXXX YYY6 channel B special receive condition

XXXX YYV8 channel A transAit
XXXX YYVA channel A external/status
XXXX YYYC channel A receive
XXXX YYYE channel A special receive condition

o The SIO is programmed by the firmware on power up and whenever
any parameters related to the SIO is changed.

o Yhen a framing error occurred, the SIO will interrupt to the
special receive condition vector even when the "parity does
not affect vector" is programllled into write register 1. The
manual is miss leading in specifying "or on special
condi tion."

o Once a break condition is detected, the firmware must reset
the external status and wait for the termination of the break
condition. After the break is terminated, the SIO will
generate another external status interrupt. Heset the
external status again so that it can detect the next break.

o A null character is always generated after the break condition
is terminated. In theory the receive interrupt should be
generated first before the external status interrupt since the

HEYLETT-PACKARD PRIVATE
154

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

forlller has a higher priority. In practice this is not always
true because of a bug in the SID. The NUX firmware will turn
off the receive interrupt when a break is received. After the
break is terminated, the null character will be read and
discarded before the receive interrupt is turned back on.
However, if "general nUll" option is enabled, the null
character will not be read and discraded.

o If the SIO is programllled for odd parity, the null character
generated by the SIO for the break detection will generate a
parity error. This lIlust be cleared before reading the null
character.

o The SIO is programllled by subprogram SET_SIO.

o Yhenever the SIO is reporgramllled for whatever reasons, the SIO
is not reset again after the power-up initialization sequence.
If the SIO is reset, the interrupt vector will be lost. This
will require lIlore firlllware to program the SIO instead of using
one comlllon routine for every port.

o A SIO can gen:rate infinite interrupts continuously if the
1Il0delll signal lnput is damaged. This will prevent normal
execution of the firmware.

o The SIO translllitter lIlust be disabled first before the SIO is
reprogramllled for synchonous "hunt 1Il0de" for speed sensing. If
this is not done a garbage character will be sent to a
terminal.

o The SIO external/status and the special condition channel must
be reset after speed sensing is cOlllpletes successfully and the
SIO is reprogrammed for the asynchronous 1Il0de. In addition
the receiver buffer lIlust be elllptied by reading the characters
frolll the SIO.

o The speed sense receive ISH lIlust check the external/status
hunt 1Il0de bit to see if the incollling character is valid.
There lIlay be characters relllaining in the SIO receive buffer
after the S10 is reprogrammed for the synchronous hunt mode
after a failure. The invalid characters are frolll the previous
speed sense.

HEWLETT-PACKARD PRIVATE
155

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--+------------------+

ZI LOG CTC NOTES CHAPTER 15

+--+------------------+

o The following is the block diagram of the hardware for
generating the baud rate to erc channel O.

(External Clock 1.8432
14.746 LS161A MHz to erC's)
MHz +-------+ +-----------+ baud

---------->1 * 1/8 1--------->1* l/M * l/NI->rate
(from 1 * 1/4 1--------- > 1 1 for
backplane) +-------+3.6864 MHZ+-----------+ SIO

(Internal
Clock)

where M=Prescaler Of The erc and
N=Time Constant Register of the erc

HEWLETT-PACKARD PRIVATE
156

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

a The following is the M and N settings for generating the
supported baud rates.

+---------+-----+-----+------ +-------+
I Count
1 Source M N

I BAUD
1 Rate

1 1
1 Error*1

+---------+-----+-----+------ +-------+
I X 3 I 38400
1 +-----+-----+------ +-------+
I X 6 I 19200 I
I From +-----+-----+-------+-------+
I external X I 12 I 9600 I
1 clock +-----+-----+-------+-------+
1 (1.8432 X I 16 I 7200 I
IMHz) to +-----+-----+-------+-------+
ICLK/TRGO 1 X 1 24 1 4800 1
lof the +-----+-----+-------+-------+
ICTC X 32 1 3600 I
I +-----+-----+-------+-------+

I X 48 1 2400 I
I +-----+-----+-------+-------+
I X 64 I 1800 I
I +-----+-----+-------+-------+
I X 96 I 1200 I
1 +-----+-----+-------+-------+
I X I 128 I 900 I
I +-----+-----+- -----+-------+
I X I 192 1 600 I
+---------+-----+-----+-------+-------+
I I 16 I 48 1 300 I 1
IFrom the +-----+-----+-------+-------+
I internal I 16 I 96 I 150 I I
I clock +-----+-----+-------+-------+
1 (3.6864 16 1 107 1 134.5 1 0.06% 1
IMHz) of +-----+-----+-------+-------+
1 the CTC 16 I 131 1 110 1 O.OT/. I
1 +-----+-----+-------+-------+
1 16 1 192 1 75 I
I +-----+-----+-------+-------+
I I 256 1 18 1 50 I
+---------+-----+-----+-------+-------+

* No Error Unless Otherwise Noted

Where M=Prescaler Of CTC,
N=Time Constant Register of erc,
X=Don't Care.

o There are 3 erc's on the 8-channel NUX card. They are
used as follow:

HEhlLETT-PACKARD PRIVATE
157

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

CTC *0 Ch 0 - DMA pacer
Ch 1 - port 1 baud rate generator
Ch 2 - port 0 baud rate generator
Ch 3 - fir~ware real ti~e clock

CTC #1 Ch 0 - port 2 baud rate generator
Ch 1 - port 3 baud rate generator
Ch 2 - port 4 baud rate generator
Ch 3 - not used

CTC #2 Ch 0 - port 5 baud rate generator
Ch 1 - port 6 baud rate generator
Ch 2 - port 7 baud rate generator
Ch 3 - not used

a All the erc's progr~~ed as baud rate generator should
never generate an interrupt.

o All the baud rate generators are progr~~ed by subprogr~
PRG_CTC.

o The real ti~e clock is progr~~ed to generate an interrupt
every 10 ~illiseconds. This is done in subprogr~
MUX_MAIN when the fir~ware enviro~ent is initialized.

o The DMA pacer is progr~~ed to generate a pulse to the MIC
for pacing. This is done in subprogr~ MUX MAIN when the
fir~ware enviro~ent is initialized. -

HEWLETT-PACKARD PRIVATE
158

HP-CIO 8-CHANNEL MUX FIRMWARE IMS

+--+------------------+
ADDITIONAL NOTES CHAPTER 16

+--+------------------+

o Due to the hardware nature of the Z80 on fetching data, the
16-bit quantity fro~ the host must have the high and low byte
swapped before being used by the Z80 as a 16-bit quantity.
This co~es about as follow: the host will transfer the high
byte of a 16-bit quantity first to the card. The card Z80
will store the byte in low RAM address and the neHt byte of
the 16-bit quantity in the neHt higher RAM address. When the
Z80 fetch the 16-bit quantity, the host high byte will be the
Z80 low byte. Thus, the bytes must be swap.

o The frontplane interface subprogr~s must swap the high and
low bytes of all 16-bit quantity being returned to the host.

o When an interrupt occurred, the interrupt syste~ is not
reenabled until the processing for the interrupt is co~pleted.
The only eHception to this is the BIC/MIC interrupt.

o The alternate register set is used by all the interrupt
service routines eHcept for the BIC/MIC interrupt. The
BIC/MIC interrupt service routine will use the current
register set after pushing its contents onto the stack.

o Register IX contains the address to the status vector byte
STATUS. This register is used eHtensively by the macros SBIT,
POST, TEST, CLEAR, FBIT, FSET, FTST, and FCLR to define, to
set, to test, and to clear a status vector bit or a flag bit.

o Register IY contains the address to the transaction table for
the current transaction being processed by the backplane.

a Note that the I/O port address does not offer full address
decoding. Therefore, ~ore then one different address ~ay be
used to access the device. This may be a problem in debugging
strange behavior of the card. Like writing to I/O port
address 0 ~ay cause the SIO or CTC to do so~ething because the
decoding uses only one line of the address to select the
device.

HEWLETT-PACKARD PRIVATE
159

HP-CIO 8-CHANNEL NUX FIRMWARE INS

+--------------------------------~-------------+------------------+

ASCII CHARACTERS & BINARY CODES APPENDIX A

+--+------------------+

o 1 234 567
+-----+-----+----+---+---+---+---+---+

o I NUL , OLE , sp , 0 , @ , P , ' , p ,
+-----+-----+----+---+---+---+---+---+

1 I SOH I DC1 I ! I 1 I A I Q I a I q I

+-----+-----+----+---+---+---+---+---+
2 I SIX I DC2 I .. I 2 I B I Rib I r I

+-----+-----+----+---+---+---+---+---+
3 I ETX I DC3 I # I 3 I cis I cis I

+-----+-----+----+---+---+---+---+---+
4 I EOT , DC4' $ I 4 I 0 , T , d It'

+-----+-----+----+---+---+---+---+---+
5 I ENQ I NAK I % I 5 I E I U I el u I

+-----+-----+----+---+---+---+---+---+
6 I ACK I SYN' & I 6 I F I V I f I v I

+-----+-----+----+---+---+---+---+---+
7 I BEL , ETB' "7' G , W , g ! w ,

+-----+-----+----+---+---+---+---+---+
8 ! BS 'CAN' (' 8 , H , X I h ! K ,

+-----+-----+----+---+---+---+---+---+
91HT 'EM l!9lIIY,ily'

+-----+-----+----+---+---+---+---+---+
A I LF 'SUB' * I : I J 1 Z I j I z 1

+-----+-----+----+---+---+---+---+---+
B I VI I ESC I + I ; I K I [I k I { I

+-----+-----+----+---+---+---+---+---+
C I FF I FS , I < I L I \ I 1 I I I

+-----+-----+----+---+---+---+--~+---+

D I CR I GS -I=IMIJIJIII}I
+-----+-----+----+---+---+---+---+---+

E I SO I RS
+-----+-----+----+---+---+---+---+---+

F I SI I US I / I ? I 0 I I a IDELI -+-----+-----+----+---+---+---+---+---+

HEWLETT-PACKARD PRIVATE
A-1

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

+--+------------------+
EIA RS-232-C CONNECTOR PIN ASSIGNMENT APPENDIX B

+--+------------------+

+---+----------------------------------+------------+-----------+
Ipinl
Ina.' description

I CCITT V.24 lElA RS-4491
I Equivalent I Equivalent I

+---+----------------------------------+------------+-----------+
I 11 AA Protective Ground 101
+---+----------------------------------+------------+-----------+
I 21 BA TransJllitted Data 103
I 1 Send Data SO
+---+----------------------------------+------------+-----------+

3' BB Received Data 104 RD
+---+----------------------------------+------------+-----------+

4' CA Request to Send 105 RS
+---+----------------------------------+------------+-----------+

51 CB Clear to Send CS
I Ready for Sending 106

+---+----------------------------------+------------+-----------+
61 CC Data Set Ready 107
I Data Mode DM

+---+----------------------------------+------------+-----------+
71 AB Signal Ground (CoJllJllon Return) I 102 SG

+---+----------------------------~-----+------------+-----------+
81 CF Received Line Signal Detector

1 Data Channel Received Line 109
I Signal Detector
I Receiver Ready RR

+---+----------------------------------+------------+-----------+
91 (Data Set Testing)

+---+----------------------------------+------------+-----------+
I 101 (Data Set Testing)
+---+----------------------------------+------------+-----------+
I 111 Unassigned
+---+----------------------------------+------------+-----------+

121 SCF Secondary Received Line
I Signal Detector
I Backward Channel Received 122
I Line Signal Detector
1 Secondary Receiver Ready SRR

+---+----------------------------------+------------+-----------+
I 131 SCB Secondary Clear to Send SCS
I I Backward Channel Ready 121
+---+----------------------------------+------------+-----------+
I 141 SBA Secondary TransJllitted Data

HEWLETT-PACKARD PRIVATE
B-1

HP-CIO 8-CHANNEL MUX FIRMYARE INS

Transmitted Backward Channel
Data

Secondary Send Data

Not supported by firAware

118

SSD

+---+----------------------------------+------------+-----------+
151 DB TrafiSAission Signal EleAent 114

I Ti~ing (DeE Source)
I Send TiAing ST
1
1 Not available on this card

+---+----------------------------------+------------+-----------+
161 SBB Secondary Received Data SRD

1 Received Backward Channel 119
1 Data
I
I Not supported by firmware

+---+----------------------------------+------------+-----------+
171 DO Receiver Signal Element 115

1 Timing (DCE Source)
I Receive Timing RT
1
1 Not available on this card

+---+----------------------------------+------------+-----------+
1 181 Unassigned I
+---+----------------------------------+------------+-----------+
1 191 SCA Secondary Request to Send I SRS
I I Transroi t Backward Channel 120 I
1 I Line Signal I
+---+----------------------------------+------------+-----------+
I 201 CD Data TerAinal Ready 108.2 I
1 1 Teminal Ready I TR
+---+----------------------------------+------------+-----------+

211 CG Signal Quality Detector I
1 Data Signal Quality Detector 110 1
1 Signal Quality 1 SQ
I I
1 Not available on this card I

+---+----------~-----------------------+------------+-----------+
221 CE Ring Indicator

I Calling Indicator 125
I IncoAing Call IC

+---+------_._-------------------------+------------+-----------+
231 CH/CI Data Signal Rate Selector

1 (OTE/DCE Source)
I Signaling Rate Selector
1 Signaling Rate Indicator

111/112

SR
SI

+---+----------------------------------+------------+-----------+
241 DA Transroit Signal EleAent 113

1 TiAing (OTE Source)
1 TerAinal Timing TT

HEYLETT-PACKARD PRIVATE
B-2

HP-CIO 8-CHANNEL MUX FIRMYARE IMS

Not available on this card
+---+----------------------------------+------------+-----------+
1 251 Not defined
+---+----------------------------------+------------+-----------+
The following is a historical note on the EIA RS-232-C symbol name.
The original pin definition was defined by the pin assignment which
consists of a Aatrix of 3 rows and 6 coluAns giving a total of 18
pins', see below.

A
B
C

ABC 0 E F

Pin AA was used for protective ground, pin AB was for signal
ground, and so on. The pin assignment was carried over to the
current EIA RS-232-C symbol definition.

HEYLETT-PACKARD PRIVATE
B-3

HP-CIO 8-CHANNEL MUK FIRMWARE IMS

Table of Contents

1 INTRODUCTION............
1.1 Scope

2 EQUATE & VARIABLE SYMBOLS DICTIONARY •

3 SUBPROGRAM & JUMP ENTRY SYMBOLS

4 RECEIVE BUFFER MANAGEMENT

5 TRANSMIT BUFFER MANAGEMENT

6 ECHO BUFFER MANAGEMENT

7 ARQ BUFFER MANAGEMENT

8 SOFTWARE HANDSHAKE ALGORITHMS
8.1 Host ENQ/ACK Handshake.
8.2 Host X-ON/X-OFF Handshake
8.3 Device X-ON/X-OFF Handshake

9 TIMER ALGORITHMS • . .
9.1 16-bit Second Ti~er

10 EVENT PROCESSING & REQUEST MANAGEMENT

11 SPEED SENSING

12 ROM & RAM MEMORY MAP

13 Firroware Structure
13.1 Overview

13.1.1 Backplane
13.1.1.1 BIC/MIC support ..
13.1.1.2 WIC (CLC) processor
13.1.1.3 Event Manager .. .
13.1.1.4 RIS processor .. .
13.1.1.5 RD and WD processor
13.1.1.6 RSR processor
13.1.1.7 WIC processor ..
13.1.1.8 lOY processor ..

13.1.2 Midplane
13.1.2.1 Read Device Data
13.1.2.2 Write Device Data
13.1.2.3 Control Device ...
13.1.2.4 Read Card Infor~ation .
13.1.2.5 Write Card Configuration
13.1.2.6 Control Card

HEWLETT-PACKARD PRIVATE
ii

1
1

3

36

97

98

101

102

103
103
104
104

105
105

107

109

116

119
119
119
119
120
120
120
120
120
121
121
121
121
122
122
122
122
122

HP-CIO 8-CHANNEL MUK FIRMWARE IMS

13.1.3 Frontplane 123
13.1. 3.1 External Status . . 123
13.1. 3.2 Character Received 123
13.1. 3. 3 Special Condition. 123
13.1.3.4 Speed Sensing . 124
13.1. 3. 5 Trans~it Character 124

13.2 The Backplane . 124
13.2.1 Identify: BCIDY . 125
13.2.2 Event Manager: MUXEV 125

13.2.2.1 FREE EVB 125
13.2.2.2 GET EvB . 125
13.2.2.3 EVNT MGR 125
13.2.2.4 SET EvNT 126
13.2.2.5 EDIT Q • 126
13.2.2.6 EDIT-IT. 126

13.2.3 Read TransParent Status: BIC_RIS 127
13.2.3.1 BIC RIS . 127
13.2.3.2 UPDTID 127
13.2.3.3 ORD EXIT . 128

13.2.4 Write Transparent Control: BIC_WIC 128
13.2.4.1 BIC WIC . 128
13.2.4.2 WIC-RES. 128
13.2.4.3 WIC-END. 128
13.2.4.4 WTC-EAK. 129
13.2.4.5 WTC-ABRI 129
13.2.4.6 FIND TID 129
13.2.4.7 GET STUF .•.. 130

13.2.5 Connect Logical Channel: BCmC 130
13.2.5.1 BIC mc . 130
13.2.5.2 mC) 130
13.2.5.3 MIDP RET 130
13.2.5.4 ERR 005 . 131
13.2.5.5 FREE RQB 131
13.2.5.6 GET RQB . 131

13.2.6 Read Request Status: BCRSR 131
13.2.6.1 ABRI REQ 131
13.2.6.2 NOTHIN 132

13.2.7 Read Data and Write Data: BCRWD 132
13.2.8 BIC & MIC Interrupt Service Routines: BPISR 132

13.2.8.1 BIC ISR . 134
13.2.8.2 BIC-EXIT 134
13.2.8.3 ARQ-HOST 134
13.2.8.4 BIC-ABT 134
13.2.8.5 BIC-ERR . 134
13.2.8.6 DIE-. 135
13.2.8.7 BIC DIS . 135
13.2.8.8 BIC-INIT 135
13.2.8.9 BIC-PSE . 135
13.2.8.10 BIC RES 135
13.2.8.11 BIC-SC . 135
13.2.8.12 BIC-END 136

HEWLETT-PACKARD PRIVATE
iii

HP-CIO 8-CHANNEL NUK FIRMWARE INS

13.2.8.13 BIC FER
13.2.8.14 DMAB ISR
13.2.8.15 HCIR-rO
13.2.8.16 HRD 10 .
13.2.8.17 HWD-IO ..
13.2.8.18 SRE-RTN
13.2.8.19 SRQ-HOST

13.3 The Midplane . ~ ..
13.3.1 NUX CCD (&MXCCD)
13.3.2 NUXCOV (&MXCOV) .
13.3.3 NUX RCI (&MXRCI)
13.3.4 Read Device Data: MXRDD

13.3.4.1 ROD BEG ..
13.3.4.2 ROO-CONT .

13.3.5 NUX wcc (&MXWCC)
13.3.6 NUX-WOO (&MXhlOO)

13.4 The Frontplane
13.4.1 EXT ISR (&EXISR)
13.4.2 RX ISR (&RXISR) ..

13.4.2.1 RXISR (Macro)
13.4.2.2 RX SPECL
13.4.2.3 RX-EXIT.
13.4.2.4 RX-OTHER
13.4.2.5 RX-ECHO.
13.4.2.6 RX-ALl .
13.4.2.7 RX-HSHK.
13.4.2.8 RX-QUOTE
13.4.2.9 RX-STT .
13.4.2.10 RX COUNT
13.4.2.11 RX-EOIT
13.4.2.12 RX-SIGNL
13.4.2.13 PACKITUP
13.4.2.14 PUT CHR
13.4.2.15 SET-CNTR
13.4.2.16 MIN- ..
13.4.2.17 ALl EVNT
13.4.2.18 CHEK XOF

13.4.3 SPC ISR (&SPISR)
13.4.4 SPD-SEN (&SPDSN)
13.4.5 SS ISR (&SSBIR) .
13.4.6 SSB ISR (&SSBIR)
13.4.7 TX ISR (&TXISR) .

13.5 The Self=test (MXSTEST)
13.6 Miscellaneous

13.6.1 DMAA ISR (&DMAA)
13.6.2 NUXIVEC (&MUXIV)
13.6.3 NUXMAIN (&MUXMN)
13.6.4 NUXVAR (&MUXVR) .
13.6.5 REALCLK (&MXCLK)

14 ZILOG SIO NOTES ..

HEWLETT-PACKARD PRIVATE
iv

136
136
137
137
137
137
138
138
138
138
138
139
139
141
142
143
144
144
144
144
145
146
146
146
146
146
146
147
147
148
148
148
148
149
149
149
149
149
150
150
150
150
151
152
152
152
152
153
153

154

HP-CIO 8-CHANNEL NUX FIRMWARE IMS

15 ZILOG eTC NOTES . 156

16 ADDITIONAL NOTES 159

A ASCII CHARACTERS & BINARY CODES

B EIA RS-232-C CONNECTOR PIN ASSIGNMENT

HEWLETT-PACKARD PRIVATE
v

HP-CIO 8-CHANNEL NUX FIRMWARE INS

