
HP-UX I/O

HP9000/S800 CIO Gpio Monolith

Version 0.1

Printed: August 28t 1989

Susan Dedo

General Systems Division '
HP -UX Software Operation

HP-UX Kernel Lab

Preface

The purpose of this specification is to define the outward appearance and the internal
workings of the gpio monolith (gpioO) for the Series 800 CIO based machines. This driver
controls the 27114B CIO AFI card as well as the 27114A CIO AFI card.

I assume that the reader understands both the I/O system and the AFI card. To acquire
this background, the following is recommended reading:

• HP-UX I/O Services Dermition (HPIOSD), General Systems Division

• 27114B External Reference Specification, Roseville Networks Division

The HPIOSD explains the basic concepts of the 1/0 system. It must be understood before
attempting this specification. The 27114B ERS explains how the AFI card works and can
be used as a reference whenever card-level questions come up.

Other useful documents are:

• HP-UX I/O CIO Channel Adapter Manager ES, General Systems Division

• HP-CIO Standard Document, Roseville Networks Division

• CIO Driver Writer's Manual

• GPIO(DEV) Manpage

This document is organized into three major sections, an external explanation of the driver,
a theory of operations and an internal explanation of the driver.

The sections dealing with the external explanation of the driver discuss how the driver
communicates with the HP-UX I/O system, and how the driver is configured into the I/O
system.

The theory of operations section discusses each feature of the 27114B product as a whole;
without regard to specific routines or driver organization. It is in this section that history
(and reasons for why the features function as they do) is discussed.

The sections dealing with the internal explanation of the driver discuss each driver routine
in detail.

CONTENTS

1. History of the API product • • • •

2. Overview of GpioO

2.1 External interface - kernel level • •

2.2 External interface - low level •

2.2.1 Configuration messages •

2.2.1.1 Creation message

2.2.1.2 Do bind request message. • •

2.2.1.3 Bind request message •

2.2.1.4 Bind reply message

2.2.1.5 Do Bind reply message

2.2.2 CAM Messages •••••

2.2.2.1 CAM I/O Request/Reply Message

2.2.2.2 CAM Control Request/Reply Message

2.2.2.3 CAM I/O Event Message • • • .

2.2.3 Generic Messages • • • • • • • •

2.2.3.1 Power on Request/Reply Message .

2.2.3.2 Abort event message •

3. Major Features Of The 27114B Product • • • • •

3.1 64 word FIFO • • • • • •

3.2 16 or 8 bit, user configurable mode of data transfer

3.3 6 control lines

3.4 6 status lines (device dermed/ controlled) • • •

3:5 ~ernal Interrupt Line • • • • •

3.6 Early termination to data transfers

3.7 Host END (HEND) • • • • •

3.8 Optional Transfer Counter • • • • • • • •

3.9 Read and write blocking • •

3.10 Master and slave handshake modes

3.11 27114B to 27114B communication • •

3.12 Multiple opens

3.13 Locking

4. Data Structures •

5. Outline Of Driver

5.1 LDM Routines

1

3

3

3

4

4

4

5

5

. . . . 5

5

5

6

6

6

6

7

8

8

8

9

9

10

11

12

12

14

15

15

15

17

18

24

24

5.1.1 Useful Macros •

5.1.2 Direct I/O •

5.1.3 gpio(LopenO

5.1.4 gpio(LcloseO

5.1.5 gpio_busyO and gpio_freeO. •

5.1.6 gpio(LseLtimeoutO and gpioO_service_timeoutO •

5.1.7 gpioO_writeO and gpioO_readO

5.1.8 gpioO_strategyO

5.1.9 gpio(LioctlO

5.1.9.1 GPIO_LOCK

5.1.9.2 GPIO_TIMEOUT

5.1.9.3 GPIO_ WIDTH •

5.1.9.4 GPIO_SIGNAL_MASK

5.1.9.5 GPIO_SET_CONFIG. •

5.1.9.7 GPIO_RESET • • •

5.1.9.8 GPIO_STS_LlNES ••••

5.1.9.9 GPIO_GET _CONFIG

5.1.9.10 GPIO_INTERFACE_TYPE

5.1.9.11 GPIO_REG7

5.1.9.12 10_ENVIRONMENT

5.1.10 gpioO_map_errorO ••••

5.1.11 gpioO_waiLon_lockO •

5.2 Port Server

5.2.1 gpioO_reply_from_camO •

5.2.2 gpioO_evenLfrom_camO.

5.2.3 afLctrLreply_msgO • • • •

5.2.4 afi_arqJinishO. • •

5.3 ConfIgUration •••••

5.3.1 afLdo_bindJDsgO. • • • •

5.3.2 afi_hind_reply_msgO •

5.3.3 afi..geLPtr_replyO. •

5.3.4 gpioO_attachO • • •

5.4 Powerfail Processing • • •

5.4.1 afi_power_on_reQ-msg().

5.4.2 afi_pf..geLptr_replyO. •

. ."

24

24

25

25

25

25

26

26

27

27

27

27

28

28

28

29

29

29

29

29

29

30

30

31

31

32

32

32

33

33

33

34

34

35

35

35

6. Testing 36

HP-UX CIO GPIO Monolith

1. History of the AFI product

The release 7.0 AFI product is a parallel interface product designed as a replacement for the 27114A
product. As such~ the 27114B hardware is designed for backwards compatibility with the 27114A
hardware and the release 7.0 driver is designed for backwards compatibility \\ith the Release 3.0
driver. Ideally every customer will be on the 27114B product when 7.0 releases. Realistically, there
Vtill be a period of time where new hardware is running with pre-7.0 software and where old
hardware is running with 7.0 software.

The 27114B is intended to fIX a few weakness of the 27114A. Those weaknesses are:

• The driver can not know, in a reasonable manner, how much data exists on the 27114A's FIFO.
Because of this, the driver can not successfully block 'Write transactions or report accurate
residues.

• The 27114A can not work in a true GPIO environment. Because of this, data can be lost. (More
on what a 'GPIO environment' means later. See the section on the transfer counter.)

• The 27114A does not allow for early termination of data transfers. Because of this the product is
inflexible for many emironments and at times, data is lost.

• The 27114A must be master/controller of the handshake. Because of this, 27114A to 27114A
communication can not be done reliably. The inability to be a slave also makes the product
inflexible.

It is worthwhile to note what CIO GPIO customers wanted most from the new product,

1st requirement:
2nd requirement:
3rd requirement:
4th requirement:
5th requirement:
6th requirement:

hardware compatibility
software compatibility
early termination to data transfers
master and slave handshake modes
more control and status lines
the ability to work in a true GPIO environment

The 27114B and release 7.0 of the AFI driver attempt to resolve the above weaknesses within the
prioritized constraints given.

As of today, personnel of interest to the AFI product are,

Bill Hooper RND development engineer
Responsible for the AFI diagnostics

Bob Kentwortz GSY Tech MarketingJEscalations Management
Handles API software hotsiles.

Michele Mansfield GSY Learning Products
Responsible for the Programmers Guide to the AFI

Bobbie Martinez NMC on-line support
Handles AFl hardware hotsites.

Pery Pearson RND development engineer
Helped design and now supports the 27114B.

Le Sellers RND technical 'Writer
Responsible for the 27114B Technical Reference Manual

Bill Wang RND Product Marketing
Product manager for AFI, among other things.

HP Confidential 1

HP-UX CIO GPIO Monolith

Anders Wernblom XITC
A real trooper who has patiently tested the product.

I will, of course, be happy to help in any manner. Please do not hesitate to ask.

., HP Confidential

HP-UX CIO GPIO Monolith

2. Overview of GpioO
The driver for the 2711B product is c:a1led gpioO. It is a monolithic manager with two distinct
interfaces: the interface with the kernel and the interface with the low-level i/o system. A monolithic
manager was chosen for performance reasons.

2.1 External interface • kemellevel

The manager is entered from the kernel via system c:alls to open (OS), close(OS), read (OS),
write(OS), IOOI(OS) and select(OS). This is the same interface that all HP-UX LDM-leveJ
managers. use. The interface with the low-level io system follows the message-based interface of the
HP I/O Services Defmition.

The Channel Adapter Manager (CAM) is the lowest level of the I/O software. The CAM's
responsibility is to transmit messages from its higher managers over the CIO channel adapter. The
CAM and gpioO communicate via the message system.

Users access gpioO through special fllescalled device flles that reside in the Ide\' directory. The
mknod command can be used to create a device fue for gpioO:

/etc/mknod gpioO c 22 minor_number

Minor_number specifies the logical unit associated 'With this device file. The minor number format
for gpioO is

The D bit, if set, means that this device me supports diagnostic requests. The pseudo bits, only
usable by the driver, are described later. Their use is necessary to support mUltiple opens of the
same device rue.

Diagnostics are supported by gpioO via ioctl requests, providing the gpioO device file opened has the
D bit set. This forces exclusive access to the device and allows the usage of various special joct!
calls. \Vhile in diagnostic mode, the user has complete control of the card. GpioO will not touch any
register on the card unless the user requests it. The ioctls which are available only in diagnostic
mode are explained in Appendix I.

2.2 Extemalinterface· low level

This section describes how gpioO interfaces with the CAM and the ConflgUrator. The messages
conveyed from gpioO to the Configurator and from gpioO to the CAM are covered, as well as the
means whereby the CAM and gpioO are "bound" together.

This section examines each message recognized by gpioO and its use.

HP Confidential 3

HP-UX CIO GPIO Monolith

messasze h'De direction descriDtion

Configuration
creation in Specify the manager's operating environment
do bind req in Request manager to bind with a lower manager
do bind reply out I/O configuration is complete
bind request out Request manager to bind with a higher manager
bind reply in binding sequence is complete

CAM
cam request out start a CIO dma transaction
cam reply in complete a CIO dma transaction
cam event in informs manager of asynchronous CIO events

Generic
poweron req in Inform manager of system power recovery
poweron reply out Manager completed power recovery sequence
abort event out Prematurely stop a request from completing

2.2.1 ConJlguration messages

Configuration messages are used to establish the lines of communication between gpioO and the
CM1. Each instance of gpioO (corresponding to each AFI device adapter configured into the
system) will receive these messages, in the sequence below.

22.1.1 Creation message

The CREATION_MSG is the rust message gpioO will receive; it is used by I/O Services to determine
some of gpioO's port requirements. GpioO will place certain configuration information in the
creation_info fields, such as the size of its port data area, pda, the size of its largest message, and the
number of subqueues it needs to operate.

221.2 Do bind request message

The next message gpioO should receive is a DO_BIND_REQ..MSG. This message, from the I/O
Configurator, tells gpioO the port number of the lower manager that controls gpioO's hardware; this
will always be the CAM. The information in the request that gpioO will use is the following:

4

reply..,rubque
mgr ..pon-num
mgr ..Jaw JUldr 1
Im..port.Jlum

what subqueue to send the do bind reply to
gpioO's port number
the CIO slot of the AFI device adapter
the CAM's port number

HP Confidential

HP-UX CIO GPIO Monolith

2.2.1.3 Bind request message

Receipt of a DO_BIND_REQ_MSG will cause gpioO to send a BIND_REQ_~fSG to the CAM, v.;th
the following fields set:

reply...,rubq
hm_event...,rubq
hm..metaJang
hm_config_addr_l

2.2.1.4 Bind reply message

REPLY_SUB QUEUE
EVENT_SUB QUEUE
CIO_META_TAG
the CIO slot of the DA (from mgr_bw_addrl)

Tbe CAM should reply immediately to gpioO with a BIND_REPLY_MSG; this message tells gpioO if
the bind was successfult and dermes message-passing protocols. Fields examined by gpioO are:

rep/YJtatus
Im_lowJeqJubq

2.2.1.5 Do Bind reply message

status of the binding
low-priority request subqueue

No matter what tbe reply_status, gpioO will send a DO_BIND_REPLy_ftfSG with good status to the
I/O Configurator, on the subqueue saved from the do bind request.

If the binding succeeded (the status of the bind reply is CIO_L VLl_CARD) , gpioO will attempt to
get its direct i/o pointer. If this attempt is successful, this instance of gpioO is now usable.
Otherwise, this AFI card cannnot be used.

2.2.2 CAM Messages

This section covers the messages gpioO uses to communicate with the CAM. The syntax of the CM1
metalanguage can be found in Appendixn; the semantics are covered in the HP-UX CIO Channel
Adapter External Specification.

A single transaction with the CAM consists of a request' and reply pair. GpioO sends a
CIO_DMA_IO_REQ_MSG or a CIO_crRL_REQ_MSG to the CAM to initiate some type of I/O
or control transaction.

When the request completes, the CAM completes gpioO's transaction by sending a
CIOJ>MA_IO_REPLY_MSG or ClO_CTRL_REPLY-MSG to gpioO. The reply status in the
message will indicate how the CAM perceived the transaction.

At various times, the CA may deted an asynchronous condition on the API DA. GpioO will be
notified via a CIO_IO-EVENT..MSG. The I/O event will contain sufficient information to let gpioO
know what event occurred.

2221 CAM 1/0 Request/Reply Message

GpioO will use the ClO_IO_DMA_REQ_MSG to initiate I/O on the AFI DA card. It will set the
following fields:

HP Coclidential 5

HP-UX CIO GPIO Monolith

replyJUbq
do_number
vquod_choin

REPLY _SUBQUEUE
the CIO slot of the AFI card
pointer to the virtual quad chain

The virtual quad chain generated by gpioO will contain only one quad. The quad will be either a
read or a write.

2222 CAM Control Request/Reply Message

GpioO uses the CIO_CTRL_REQ_MSG with the ctrl.Junc set to either of the following CAM control
requests:

CIO_OA_SELFTEST Reset the OA and performance self-test; the CIO sense byte
from the card will be returned in the ctr'-info
field of the control reply.

CIO_GET_OIRECT_IO_PTR Get a pointer to the OA's I/O space; it is return
ed in the ctrl_info field of the control reply.

2.2.2.3 CAJ.1 I/O Event Message

A CIO_IO_EVEl'.~_MSG is sent to gpioO to inform it of an asynchronous event that occurred on
the DA. The AFI card is only capable of producing the AES ARQ. Therefore, alI events which are
sent to gpioO are of this type.

If the user was trying to catcb ARQs, the user process will be signaled via psignol. Olben-vise the
event is dropped.

2.2.3 Generic Messages

Generic requests are used for powerfail and abort processing.

22.3.1 Power on Request/Reply Message

The POWER_ON_REO_MSG informs gpioO of system recovery from a power failure. On receipt
of the power on request. gpioO will immediately send a matching POWER_ON_REPLY_MSG to the
CAM; this message will be sent on the lm_lowJeqJubq specified dwing configuration, in the
CAM's bind reply.

The next step is to request a direct i/o pointer. The CIO_CfRL_REQ..MSG is used with the
etr/june field set to CIO_GET_DIRECT_IO_P1'R. Once the direct i/o pointer has been received,
gpioO explicitly reset the 27114B and resets the software values associated with the hardware to
powerup configuration. '

If the direct i/o pointer is not received, this instance of the driver can no longer be used.

The user process will be notified of power failure by receipt of the signal SIGPWR, which is
generated by the kernel. It is the user's responsibility to catch this signal and act upon it; by default,
the signal is ignored.

HP Confidential

HP-UX CIO GPIO Monolith

22.3.2 Abort event message

The ABORT_EVENT_MSG is used to abort an I/O request. GpioO will send an abort event to the
CAM when a timed dma transaction does not complete before the timer pops. The CMf
guarantees that eventually the original request will be returned.

HP Confidential 7

HP-UX CIO GPIO Monolith

3. Major Features or The 27114B Product

64 word FIFO
16 or 8 bit, user configurable mode of data transfer

• 6 control lines (device defmed/controlled)
• 6 status lines (device defmed/controlled)

External interrupt line (allows the device to signal for attention)
$ Early termination to data transfers
• Host end (allows the S800 to signal the device on the last transfer)
• Optional GPIO-like mode of data transfer

Locking of the interface (gives exclusive access to the device)
• 27114B to 27114B communication
• Master and slave handshake modes
• Read and write blocking (control returned to the user only after the

last data word has been received by the device or channel)
Multiple opens
Locking of the interface for exclusive access

Note: '.' denotes features that are new or extended to the AFl product as of Release 7.0.

3.1 64 word FIFO

What makes the AFl card differe.nt from previous GPIO cards is the presence of an on-board FIFO
coupled with the fact that the front and back planes of tbe 27114B operate independent of one
another. It is because of the FIFO and the independently operating front and backplanes that the
product can minimize the difference in the speeds between the S800 and the device. Although the
FIFO is responsible for increasing the performance of the 27114B product, it is also responsible for
increasing the complexity of what would otherwise be trivial read and write routines.

3.2 16 or 8 bit, user conngurable mode of data transfer '

The user can choose to send his data 16 bits at a time, a "word" in AFI terminology (hence the term
"word mode'), or 8 bits at a time, a "byte" in AFI terminology (hence "byte mode"). The user's
choice is dependent upon what the device can do.

The 27114B always asserts 16 bits on the frontplane. If all 16 bits contain valid data, then the AFl
product is functioning in word mode. If only the the lower 8 bits contain valid data, then the AFl
product is fundioning in byte mode.

The 27114B does not perform the byte packing or unpacking. Nor does the AFI driver. Any byte
packing/unpacking is done at the channel adapter level. Hence, word and byte mode is really a
function of the channel adapter, and therefore subject to the channel adapter's hardware limitations.
Such limitations are:

If the total number of bytes to be transferred is odd, or if the address given to the
channel adapter is odd, the entire transfer takes place in byte mode • regardless of the
driver setting.

HP Confidential

HP-UX CIO GPIO Monolith

This means any D:MA transaction requested in byte mode is guaranteed to occur in byte mode.
DMA transactions requested in word mode will occur in word mode as long as the total number of
bytes to transfer and the address given is even. If either the number of bytes or the address is odd
the channel adapter switchs to byte mode, resulting in onJy 8 bits of the 16 data bits being valid on
the frontplane.

Since the channel adapter bas the ultimate say on word versus byte mode, it is important that the
channel stay in agreement with the· user and device expectations. One way to do this is for the AFI
driver to protect the user from the channel adapter's limitations by failing word mode DMA requests
in which the address or the Dumber of bytes be odd. (Currently the driver only checks the total
Dumber of bytes)

The driver relays the requested path width to the CAM via the cio_emd field of the elma vquad.

3.3 6 control lines

There are up to 6 control lines available to the user. The user may assert any value on these lines.
The value asserted has no meaning to the 27114B. The meaning is device dependent.

The driver changes the control lines by writing to 6 bits (CfL[S] • CfL[O]) in one of the 27114B's
memory mapped registers, register 7. Once set, they continue to assert that value until the next
control line request (or the 27114B is reset).

A1though there are 6 physical lines (CTLS • CTl..O) on the frontplane that are used for the control
lines, only four of these lines CTL3, CTL2, CTLl, and CTLO have dedicated outputs (CTL[3],
CTL[2], CTL[l] andCTL[O] respectively). The other two lines, CTL5 and efU, are each
mUltiplexed between two outputs. CTLS is driven with output from either the CfL[5] bit or the DIR
bit. eftA is driver with output from either the CfL[4] bit or the HEND bit. (More on DIR and
HEND later)

\\llether the CfLS/CfU lines are driven with bits CfL[S]/CfL[4] or driven with the DIR/HEl'c"D
circuitry, is user dermed. See the GPIO (DEV) manpage.

3.4 6 status lines (device dermed/controlled)

There are up to 6 status lines available to the user. The device may assert any value on these lines.
Like the control lines, the status lines have no meaning to the 27ll4B; only to the user and the
device.

The driver reads the status lines by reading 6 bits (STS[5] • STS[O)) in one of the 27114B's memory
mapped registers, register 7.

Although there are 6 physical lines (STSS • STSO) on the frontplane that are used for status lines,
onJy four of these lines STS3, STS2, STSl, and STSO have dedicated inputs (STS[3), STS[2], STS[l]
and STS[O] respectively). The other two lines, STS5 and STS4, are each multiplexed between two
inputs. STSS inputs to either the STS[S) bit or the ATTN bit. STS4 inputs to either the STS[4] bit
or the PEND bit. (More on AITN and PEND later)

Whether the STSS/STS4lines input to the STS[5]/STSI4] bits or input to the ATTN/PEND circuitry
is user dermed. If the user moses to see use the external interrupt feature, STSS will input to the
interrupt circuitry.

Independent of the external interrupt feature, the user may choose to terminate data transfers early.
In doing so, the STS4 line will no longer input to the STS[4] bit but to the circuitry that controls
early termination of data transfers.

HP Confidential 9

HP-UX CIO GPIO Monolith

3.5 External Interrupt Line

The external interrupt line (A TIN) provides a means by which the device can signal the user for
attention. When this option is enabled and the external interrupt line is asserted by the device, the
driver sends a signal, SIGEMT, to the process id that enabled the external interrupt option. To
receive multiple signals, the user must enable this option after each signal is sent.

To understand the external interrupt feature, the interrupt circuitry must be understood. When the
device asserts the external interrupt line (A TIN) on the frontplane and the external interrupt feature
is enabled, the 27114B'~ A TIN flipflop is set. In addition, the 27114B's ARO flipflop is set. It is the
setting of its ARO flipflop that causes the 27114B to assert ARQ on the backplane. The setling of
the A TIN flipflop is so the driver can know why ARO was asserted (being that the 27114B has 3
reasons for asserting ARO: A TIN was asserted on the frontplane, PEND was asserted on the
frontplane, or the transfer counter reached zero. More on PEND and the transfer counter later).
This results in the AFI driver receiving a CIO_IO_EVENT _MSG from the CAM where upon gpioO
sends a SIGEMT to the process id.

Once the ATIN flipflop is set, it will remain set until the driver resets it. However, the ARO
flipflop will be reset by the CAM after the 27114B responds to the ARO poll.

The CAM also disables the 27114B from further assertions of AROl why the user must enable the
external interrupt after each signal is received.

The 27114B Hardware ERS makes the statement that "A TIN is enabled when the card powers up".
This can be misleading since is does not mean that the device can assert A TIN and the user receives
a signal. It means that the ATIN flipflop is enabled (can be set). 2 But although ATIN flipflop can
be set, the A TIN line does not input to the interrupt circuitry because at powerup time the ARO
flipflop is held reset.

A more detailed description of what the driver needs to do for the external interrupt function is as
follows:

1. user makes ioctl request

a) user wants external interrupts enabled.

- save the process id of the current process

- save the process' interrupt handler.

- enable the ATTN flipflop to register when ATTN is pulled.

- enable the card to assert ARO when the ARO flipflop is set

b) user disables external. interrupts.

- disable the card from pulling ARQ (bold the ARO flipflop reset)

- throw out the process id

- throw out the interrupt handler

- clear the A TIN ffipOop

1. At one point in the Af1 product c:ycle, the CAM n:-cnabled the 27114 to assert ARQ after each ARQ ot'Curred.
However, it was found that the 27114 could pn:vent system boot if the device asscns AlTN multiple times during
configuration. Also, it is possible that system performance can degrade due to spurious einterrupt messages. To prevent
either of these side affects, it was decided that the CAM would no longer re-cnable AROs on the 27114.

2. This is nueaary for backwards compatibility with the 27114A.

10 HP Confidential

HP-UX CIO GPIO Monolith

2. A TIN was asserted on the front plane - when the feature is enabled; The port server receives a
CIO_IO_EVENT_MSG and calls gpio(Levencfrom_camO

a) if the card is a 27114A

- send a SIGEMT providing the pid saved and inLhandler are valid

- set the interrupt mask to reDect the cause of the interrupt

b) if the card is a 27114B

- send a SIGEMT providing the pid saved and int_handler are valid and providing the
A TIN flipflop recorded A TIN was asserted

- set the interrupt mask to reDect the cause of the interrupt

- dear the A TIN flipflop

Note; the driver must verify that the process id to which the SIGEMT is being sent saved is
indeed still alive. Otherwise there is possibility that some other process may now occupy that
slot in the process table and receive the signal.

3. A GPIO_SIGNAL_MASK (1O_STATUS) call is made

- return the interrupt mask (for AFI, always ST-ARQ2) in arglO]

- clear the interrupt mask

3.6 Early termination to data transfers

This feature allows the device to signal the S800 that it (the device) has just received (or sent) the
last data word. Hence, the device may chose to terminate any data transfer early by asserting PE!'.U
(Peripheral END) on the Crontplane. This is useful when a user does not know how much data his
device is sendmg or how much data his device is willing to receive.

In the past, such applications found the AFI product inflexible or unusable since the driver, waiting
for the channel adapter to fulfill its transfer size, would eventually timeout. Since timing out is
destructive to the 27114B and to the channel adapter (an abort message is sent to the CAM, which
then resets the 27114B and the channel adapter), the result of the transfer is often incomplete data.
With the addition of the PEND feature, the device DOW has a way to signal the ch8.!Ulel adapter that
it (the device) has just received or sent its last data word.

The mechanics of PEND vary depending upon the direction of data transfer. For inbound
transactions (data moving from device to channel adapter), the device asserts PEND when it asserts
the last data word. At the assertion of PEND, the frontplane is disabled. The 27114B tracks the last
word through the FIFO and asserts DEND (Device END) 3 on the backplane when that word
crosses the backplane. For outbound transactions (data moving from channel adapter to device)t the
device asserts PEND as it performs its last handshake. The frontplane is disabled when PEND is
asserted but this time the 27114B immediately asserts DEND .. on the backplane.

3.

4.

The assertion of PEND can also cause the 27114B to assen ARO. This is an option that is available to the driver only.
The mechanics of PE~'D causing an ARO is best described in the write blocking context; be sure to read the section on
write blocking.

DEND need be assened only if thc channel is still involved in the transaction.

HP Confidential 11

HP-UX CIO GPIO Monolith

The assertion of DEND causes the channel adapter to stop receiving or sending data on the CIO bus
- regardless of its count. The channel is therefore free to non-destructively fmish the transaction and
the CAM is able to send a DMA reply message to the waiting driver.

The use of PEND has some interesting effects on the 27114B's FIFO. The effects vary depending
upon the direction of data transfer. To understand the effects, the movement of data through the
FIFO must be understood.

For inbound transactions, the data is moving from the device, across the front plane, into the front of
the FIFO, through the FIFO and across the backplane into the channel. When a device signals that
it has sent its last data word, that word must travel the entire length of the data path before reaching
its destination. When it reaches the backplane DEND asserts. The transaction completes only after
the channel receives the word. The result is an empty FIFO.

For outbound transactions, the data is moving from the channe~ across the backplane, into the back
of the FIFO, through the FIFO and across the frontplane. At some arbitrary time, as data continues
to spill into the back of the FIFO, the device asserts PEND and stops handshaking. The last data
word has already reached its end destination; no other data movement occurs. The FIFO mayor
may not contain data (any remaining data is considered garbage).

Because data may be left over, the driver should clear the FIFO after write transactions that end
with a PEND.

Note: If the transfer counter is not enabled, the driver will be unable to figure the residue value at
the end of the transaction. Instead the driver relies upon the CAM to figure the residue. Since the
channel's responsibility ends at the backplane, the CAM's residue value may be off (too small) by as
much as 64 for outbound transactions.

3.7 Host E~1> (HEND)

The Host End feature allows the S800 to signal the device on the last transfer. This is similar in
concept to the PEND feature. It consists of the 27114B forwarding the backplane signal CE~TI
(Channel END) onto the frontplane as HEND.

Once HEND asserts, the driver must fQrce the deassertion of HEND. The method of deassertion
depends on the direction of data transfer. If the HEND occurs on an outbound transaction, the
driver must clear the FIFO and load the counter with a non-logical zero value before HEND will
deassert on the frontplane. If the HEND occurs on a inbound transaction, the driver must load the
counter with a value other than logical zero (greater than 0xFFf'F) before HEND will deassert on
the frontplane.

3.8 Optional Transfer Counter

The transfer counter was added to the AFI product to resolve two problems:

• The 27114A can not work in a true GPIO environment. Because of this, data can be lost.

• The driver can not know, in a reasonable manner, bow much data exists on the 27114A's FIFO.
Because of this, the driver can Dot successfully block write transactions or report accurate
residues.

The fust problem is better understood with a bit of history,

One of the features of the 27114A card, referred to as read pre-fetch, means the 27114A,
when configured to read, will continue to ask for data as long as its FIFO is empty.

12 HP Confidential

HP-UX CIO GPIO Monolith

Once the FIFO fills, the 27114A breaks the handshake.

This implies that after the channel bas received the requested amount of data, there is
room· on the card for a FIFO ful] of "extra" data. Should the device continues to make
data available, the 27114A will continue to handshake up to a FIFO full of data
independent of the channel and the driver. The handshake is stopped by either the
27114A (when the FIFO fills) or tbe device (when it has no more data).

This pre-fetching on read transactions, when followed by another read is valuable; most
of the time. Unfortunately, HP failed to anticipate the various environments that the
AFI product would be sold into. Some applications are time sensitive to the degree that
the leftover data is no longer v.alid and can not be used. Some applications do more than
read from the AFI product. Specifically, should the next transaction be a 'Mite, the extra
data must be removed from the FlFO. Otherwise it is 'Mitten back to the device. But
can that data be thrown away, and if not, what should be done with that data?

Two points should be gleaned from this history.

1. The driver is incapable of making those decisions. Even if it were capable, the decision could
not be made in a timely manner.

2. The 27114A product only works in environments where the AFI product is only asked to read
or land where the device knows exactly how much data it should send (thereby avoiding the
pre-fetching). In all other environments, the product could not be successful.

In an effort to resolve customer problems and expand the number of environments in which the AFI
product can function, a physical counter was put on the card. At the user's request, the driver
enables the counter and initializes it to clock the appropriate number ef transfers. The counter
clocks the . number of transfers across the MJilIltplane. Once the correct amount of data is
transferred, the frontplane is disabled. So by dhoosing to use the counter, the user can prevent the
read pre-fetch (and all of the "problems" associllted with read pre-fetch).

The mechanics of the counter are simple. The driver enables or disables the counter based upon
user request. This is done by touching a bit in register B. If enabled, the driver loads the counter
before sending the CIO_D:MA_REQ_MSG to the CAM. Loading the counter is a two step process
since the counter has two parts. The correct value must rust be written to the counter's \\Tite
register (via the direct io pointer) and then the part of the counter that does the actual counting
must be loaded with that value (toggle the counter's load bit via the direct io pointer). The counting
portion of the counter will then decrement toward zer", 'fI1ith each word that crosses the frontplane.

The counter, for hardware reasons, is a bit strange.. 1t, in effect, considers zero to be OxOOFFFF.
Hence the value loaded into the counter must have an offset of OxOOFFFF. This is explained in the
27114B Hardware ERS.

Since the transfer counter decrements with each front plane transfer, and the Dumber of valid bytes
crossing the front plane with each transfer depends upon the width of the data path, the value loaded
into the counter is a function of the data path width. When in word mode each transfer crossing the
frontplane consists of two data bytes. Hence the coUDter must be loaded with a value that is half the
users requested Dumber of bytes.

The second of the two problems that the transfer counter resolves is:

The driver can Dot know, in.a reasonable manner, how much data exists on the
27114A's mo. Because of this, the driver can not report accurate residues.

There are actually three fadors contributing to this problem.

1. The 27114A has no reasonable way of knowing how much data is in its FIFO.

HP Confidential 13

HP·UX CIO GPIO Monolith

2. The channel adapter's responsibility to a write transaction ends once the last data word moves
from the bus onto the 27114A/B.

3. Outbound transactions are Dot complete until the last data word has been received by the
device.

Because the driver and the 27114A could Dot figure out bow much data was in the FIFO, the CAM's
residue value bad to be used. There is a slight problem with using the CAM's residue value:
Although the channel will report that all data bas been successfully sent, in reality, up to 64 words of
data may still exist in the FIFO. Hence the CAM's residue value may be off (too small) by as much
as 64 words (or outbound transactions.

With the addition of the transfer counter to the AFI product, the driver can DOW report an accurate
residue by reading the counter.5

For read transactions, tbe amount of data received by tbe channel will be accurate; tbe counter need
not be looked at.

Yet another benefit of the transfer counter is that the driver has the option of configuring the
27114B to assert ARQ when the counter reaches logical zero. Why the driver would want to do this
is best described within the context of write blocking; be sure to read the section on write blocking.

3.9 Read and write blocking

In the context of this discussion, read blocking refers to the driver not completing the transaction
until it is sure the last data word has been received by tbe channel; write blocking refers to the driver
not completing the transaction until it is sure the last data word has been received by the device.

\Vithout read/write blocking, the user might make a request of the driver that is destructive to the
data path while data is still enroute. This was a problem (or the 27114A product (with write
transactions) since the driver, Dot knowing how much data existed in the 27114A's FIFO, did Dot
know when to declare the transaction complete.

Read blocking is trivial, from the driver's point of view because the data must travel to the channel
before the channel can fmish, return the CAM and the driver receive a DMA reply message. In this
case, the receipt of the DMA reply message guarantees the requested amount of data has left the
device and arrived on the channel.

Write blocjcing is Dot so trivial, because the last data word only has to leave the channel (not the
card) before the channe~ being satisfied, returns to the CAM arid the driver receives the DMA reply
message. The DMA reply message does DOt guarantee the data has traveled from the channel to the
device. It only guarantees that the data has traveled from the channel to the 27114B.

Write blocking relies upon the transfer counter. If the transfer counter is DOt enabled, then the
driver can Dot 'Mite block (it behaves like the 27114A product). It was decided that having the
27114B pull ARQ every time the last data word aossed the frontplane to the device, was too
expensive.' It was also decided that having the driver poll the counter until it registered a zero value

5.

6.

14

Note: beciu.se of the way the counter deeu data, it is possible that the COYDter will read uro (0x00FFFF) when in fact the
last data word has not yet transferred. The driver can c:ircumvent this problem by lOOking to see if Pen.. is high
(indicating the device has not yet acknowtedged the mO'o'ement of the last data word) and adding one to the transrer
counter if it is.

The expectation exists that the vast majority of the time the device will be faster than the time required for the channel to
return to the CAM, for the CAM to build and send a DMA reply message, and for the driYt-r to be inyoked.

h HP Confidential

HP-UX CIO GPIO Monolith

was too expensive. The decision was made to have the driver read the counter once. If the counter
was zero, great. Otherwise the driver should enable the 27114B to pull ARQ, when the counter did
arrive at logical zero, and wait for a CIO_IO_EVENT_MSG. When the event message did arrive,
the driver should check the interrupt flipflops to determine the cause of the ARQ (A TIN or the
transfer counter going to logical zero).

To throw a wrench in an already sticky situation, imagine the case where the counter is enabled, and
the PEND option (ability to terminate data transfers early) is enabled. Now imagine a write taking
place with a device that is slow (the driver receives its DMA reply message before the last data word
is gone). The counter, when checked, is Don zero. The driver correctly enables the 27114B to ARQ
when the counter reaches zero. But, before the last data word crosses the frontplane, PEND is
asserted on the frontplane. The counter will never reach· zero, the driver will continue to wait for an
ARQ until the transaction times out; the driver will incorrectly abort the transaction and return an
error to the user.

To prevent this situation, the driver has the option of enabling the 27114B to assert ARQ when
PEND is asserted on the frontplane. So in the above situation, the CIO_IO_EVENT_MSG alerts
the driver to check the three interrupt flipflops to determine the cause of the ARQ· (A TIN, the
transfer counter going to zero, or the assertion of PEND). Upon seeing the cause is PEND, the
DMA transaction· can be completed.

Once the PEND flipflop is set, it will remain set until the driver resets it. However, the ARO
flipflop will be reset by the CAM after its ARO poll.

Once the transfer counter-has-reached-zero flipflop' is set, it will remain set until the counter is
non-zero. This means the driver must either load the counter \\lith a non-zero value, or it must reset
the counter.

3.10 l.1aster and slave handshake modes

There are three handshakes possible, full master, full slave and firo master. Fifo master is the same
handshake used by the 27114A (the 27114A has only one handshake).

The only thing the driver needs do for the handshake modes is correctly set the bits in register B to
indicate the handshake requested by the user.

3.11 27114B to 27114B communication

The driver need do nothing for B to B communication, which is' all a function of hardware.8 The user
is responsible for making the driver requests to set one card as master of the handshake and one
card as slave of the handshake. . "

3.12 Multiple opens

As of Release 3.0, an API driver can have more than one open me descriptor, up to 16, at any given
time.' With multiple accesses to the driver came the concept of per-interface driver attributes and

7. It is really I bit; not a flipflop.

8. The 27114A does not luppon 27114A-to-27114A links.

9. There is nothing significant about the number 16; it was grabbed out or the air.

HP Confidential 15

HP-UX CIO GPIO Monolith

per-open driver attributes. Per-interface attributes are those attributes that effect all me descriptors
for a given card. Typically this means options that are conftgUJ'ed in hardware, such as data width.
Per-open attributes are those attributes that effect only one me descriptor. Typically this means
attributes that are configured solely within software, such as timeout value.

There are three per-open attn'butes: timeout, signal mask and lock count. The remaining options are
are considered per-interface attributes.

If each timeout is associated with an open, the driver needs to know which open's timeout to
reference. But the me descriptor alone is not sufficient in distinguishing one open from anotber, as
the same file descriptor may be opened many times,

What the driver does, is to create a pseudo minor number, based upon the actual minor number,
that is unique to that open. The pseudo minor number is then passed back to the high level open
routine. Recall that the minor number format (or gpioO is

By altering one of the four pseudo bits of the minor number, the driver can uniquely identify up to
160pens.10

The kernel maintains the mapping between that open and the pseudo minor number. Every request
made to the driver from that open, results in the kernel passing the driver the appropriate pseudo
minor number.

The driver maintains the per-open attributes in its pda, in the following structure:

struct per_open_entry {
unsigned timeout; /- device timeout in u-aeconds -/
atruct proc ~int_handler; /* interrupt handler process */
ahort int_handler_pid; /. pid owning the interrupt handler */
int po_lock_ct; /- lock count for an open -/
struct per_open_entry -link; /- ptr to next available per_open_entry -/

};

struct per_open_entry pot(MAX_OPENS); /- Per-Open Table */
struct per_open_entry .pot_head; /- pointer to next available entry -/
struct per_open_entry .pot_end; /- pointer to last available entry -/

The pointer, pothead (per Open Table Head), marks the fast unused entry and the other, pocend
(per Open Table End), marks the last unused entry. All unused/available entries are linked
together, via link .

As opens occur, the driver takes the first available entry in the array (as indicated by potJaead),
initializes the values, advances potJaead, destroys link and creates a pseudo minor number. The
challenge in creating the pseudo minor number is that the driver must relate the minor number to
one o(the appropriate index of the pot array. The driver does this by assigning the pot array index
of the just initialized entry to bits 19 through 16 of the minor number.

10.

The pseudo minor Dumber i& not represented as an actual device file; it i& known only to the kemel.

16 HP Confidenti11

HP-UX CIO GPIO Monolith

As closes occur, the driver links the now-defunct entry to the end of the free list (as indicated by
pocend).

3.13 Locking

By locking the API interface, a process gains exclusive access to the device. Other processes'
requests will wait until either the locking process unlocks tbe interface or the time for their requests
expire. (However, tbe request will immediately return with an appropriate error, if the O_NDELA Y
fue status flag is set.)

Note that the locking gives exclusive access to the device; not to the interface. Since some attributes
(per .. open) have DO relation to the hardware/device, they have no effect on another process.
Therefore the driver allows requests that deal with per .. open attributes, regardless of locks.

The driver maintains two types of lock counts,

• the number of locks per a given interface

• the number of locks requested per a given open.

Each time the locking process requests a LOCK.JNTERFACE, the interface lock count (and the
appropriate per-open lock count) increments by one. Each time the locking process requests an
UNLOCK_INTERFACE, the interface lock count (and the appropriate per-open lock count)
decrements by one. When the locking process requests a CLEAR_ALL_LOCKS, the interface lock
count (and all per-open lock counts) resets to zero.

When a process locks the interface, the driver saves that process' pid and marks the interface locked.
Any request to change the per-interface attributes (GPIO_ WIDTH, GPIO_crL_LlNES,
GPIO_SIGNAL_MASK, GPIO_RESET, GPIO_LOCK, GPIO_SET _CONFIG) must then come
from a process with a pid that matches the saved pid.

The locking process should remove all locks before exiting. The driver attempts to remove locks for
the process that exits before it removes its locks. The driver's only indication that a process has
exited is when the driver close routine is called. So cleaning up of Jocks is done in the close routine.
However the driver dose routine is called by the kernel only when the last dose on a me descriptor
is made. This means a process which locks the interface, forks, and exits without removing its lock
will continue to prevent access to the interface until the child process exits (causing the last close on
the shared me descriptor).

HP Confidential 17

HP-UX CIO GPIO Monolith

4. Data Structures

The data structures for gpioO can be divided into three main groups: locals, external, and the port
data area. Interesting locals are explained in the sections for the various routines.

Externals are those variables which are global to the entire kernel. All externals for gpioO are
declared in the me machine/space.h. External variables are dangerous to use because all instances
of gpioO use the same copy of these variables. Therefore, exclusive access to externals must be
enforced.

Fortunately, gpioO does Dot require may externals. The first extemal~ num..gpioO, indicates how
many instances of gpioO exist in the system; that is how many times gpioO was included in the
configuration me. This variable is used only on opens. The open routine uses the variable to ensure
that non-existent lu's are not used.

The second external, gpioO..pda.ftJap, is an array of pointers to port data areas. This array is
initialized by gpioO during configuration. One element of gpioO_pda_map is used for each instance
of gpioO; that is, the size of gpioO_pda_map is num..gpioO. The array is used by the LDM routines
to match lu's with port data areas. The macro PDA_MAP takes an lu number and returns a pointer
to the corresponding port data area.

The port data area (pda) is the other large data structure which gpioO uses. Each instance of gpioO
has its 0\\'0 pda. As explained above, the LDM routines can get access to the appropriate pda via
the macro PDA_MAP. The port server is invoked with the pda as one of its arguments.

Elements of the pda also need to be protected from simultaneous access. In this case, access can
occur from the LDM routines and the port server at the same time. Therefore, if a variable of the
pda is used from both sides, it may need to be protected via semaphoring.

state

lu

eliag...port

msg...id

ctrLmsg...id

18

'* pda: Port Data Area *'
State of the manager: configuration (GET_DIO_PTR), powerfail
(PF_GET_DIO_PTR), or normal (IO_REO_READY)

State of manager (specific to DMA). There are 3 logical states:
ready for io (read or write), doing io (read or write), and waiting.
for data to leave the card (write). But only 2 that the driver cares
about; waiting for data to leave the card (W AlTNG_ON_INTR,
and not waiting for data to leave the card (IO_REQREADY). If
the io_state is WAITING_ON_INTR, the driver has received the
DMA reply msg. So it is important to know that when the
transaction times out, sending an abort msg to the CAM (the usual
action for a timeout) does nothing. Instead the driver should clean
up and return to the user.

27114A or 27114B ?

Logical unit number

Flag to tag a diagnostic port

Message id of last request

Message id of last arl req

HP Confidential

HP-UX CIO GPIO Monolith

msg,..id_from_above Used in configuration. Is the msg id of the do_bind_req received
from the Configurator. The same msg id needs be used in my
do~bind_reply.

petrans_num Transaction number from the most current powerfail message

shadow7 A 'shadow register' is a software copy of a write-only register.
They are important method in knowing which bits are se~.

shadowB For register B (API Control n Reg)

Reg,..H 27114B reg that holds the upper byte of the transfer counter.

nexcmsg,..id Message id for next request

trans_num Transaction number of current req. Get this from 10 Services,
during configuration. Since can only do one transaction at a time,
use this same number each time

timer_id A timer is needed to clock each transaction. The same timer is
used over and over. io..get_timer call is made during
configuration.

req_state Need to know which direction the previous DMA transaction went,
so the driver knows how to treat the FIFO.

waicstatus Used in gpioCLwait_on_lock. The value returned indicates whether
the the current user request can continue or must fail because the
interface is still locked.

flags Reflects various user options that need to be tracked:

localmsg

bur

vquad

resetbuf

HP Confidential

OLD_CARD, erR_EN, PEND_EN,
WORD_MODE,INTERUPT_EN, BUSI, WANTED, RST_BUSI,
RST_WANTED, HDWR_DEAD.

The msg used to send requests to the CAM. Note that once
configuration is complete, it is used for only 3 types of msg
requests: dma, control and abort events. ,Therefore only the msg
descriptor field and the vquad pointer (or control function) need
be changed on each request

Buffer structure (bur.b) used by read and write to do dma

The single virtual quad which gpioO uses to initiate ·dma. Only the
command, count, and address fields change on each request. The
link, residue and address class fields are always zero.

The pointer to the direct ito space for the card which this gpioO
controls. Used to poke and read registers on the API card

Used for mUltiple resets

19

HP-UX CIO GPIO Monolith

Process making dma request; need to periodically check whether it
has been killed.

ioctl returns */

int_mask Hold the reason the card pulled ARQ

interface_type Interface id (rom cards id register

usecs_Ieft Microseconds left in timeout

term_reason Reason (or last termination (not used)

ctl User defmed mask to write to the control lines

hndshk Handshake mode

edg Which edge of PFLAG latches data?

config...mask Used for io_env calls. Reflects the configuration of the card's hw

Buffer space

/* config data */

hw_addcl Address of our hardware

config...port Configurator port number

my_port Port number (or AFI manager

c:am_port Port number for the CAM

c:am_subq Subqueue of c:am to send msgs to

buffer_16 A 16-bit buffer for ctrl replies

/* lor wlock/unlock */

pot [MAX_OPENSl Table of per-open variables

*pochead Pointer to next available entry

·pot_end Pointer to last available entry

locker Process that has the interface locked

20 HP Confidential

HP-UX CIO GPIO Monolith

pClock_ct Lock count for the interface

/. Table of per-open values ./

timeout Device timeout in u-seconds

·inChandler Interrupt handler process

inchandler_pid Process id owning the interrupt handler

po_Iock_ct Lock count for an open

• link Pointer to next available per_open_entry

Below are the remainder of dermes and types declared in gpio(tspc.h:

typedef struet {
llio_std_header_type
union {

creation_info_type
do_bind_reQ-type
do_bind_reply_type
bind_req_type
bind_reply_type
cio_dma_req_type
cio_dma_reply _type
ciojo_evenctype
cio_ctrCreq_type
cio_ctrl_reply_type

} u;
} gpio(tmsg..type;

The message types gpioO understands

msg..header;

creation_info;
do_bind_req;
do_bind_reply;
bind_req;
bind_reply;
cio_dma_req;
cio_dm2-,reply;
ciojo_event;
cio_ctrtreq;
cio_ctrtreply;

Drivers breakdown or its major/minor Dumber • ror multiple open support

typedef union {
struct {

unsigned gp_major :8;
unsigned gp_diag :1;
unsigned gp_UDusedl :3;
unsigned gp_pseudo :4;
unsigned gp_lu :8;
unsigned gp_UDused2 :8;

} GP;
int all;

} gpioCtdev;

HP Confidential

/* Defines for ease of use *'
21

HP-UX CIO GPIO Monolith

/* ... related to device number (for multiple opens) */
:#define g..major
:# defme g..diag
:# defme g..unusedl
#defme g..pseudo
defme g..Ju
:#defme g..unused2

GP.gp_major
GP.gp_diag
GP .gp_unusedl
GP.gp_pseudo
GP.gp_lu
GP .gp_unused2

#derme Reg..l
#defme Reg..3
defme Reg.. 7
#defme Reg..9
:# define Reg..A
#defme Reg..B

/* ... related 10 the direct i/o pointer (from the pda) */
ciodio_ptr-> ctlsens.normal
clodio_ptr-> ctlsens.cend
ciodio_ptr-> ctlsens.cendbyte
ciodio_ptr-> statcmd.normal
clodio_ptr-> order .cend
dodio_ptr- > statcmd.cend

/* Definition of the bits in pda->Oag */
:#deflne HD\\,R_DEAD
:#defme BUSI
:# define W Al'."TED
#defme WORD_MODE
:#defme OLD_CARD
:# define CTR_EN
:#defme PEND_EN
:#detme RST_BUSI
:#define RST_WANTED
#defme Il'."TERUPT_EN

/*
C :#deflDe MAX_OPENS

:#defme END_OF _TABLE
:# deflDe REVO
:# defme REVl
#deflne LOGICAL_ZERO

22

ELEMENT_OF _32(0)
ELEMENT_OF _32(1)
ELEMENT_OF _32(2)
ELEMENT_OF _32(3)
ELEMEl\"T _OF _32(5)
ELEMENT_OF_32(6)
ELEMENT_OF _32(7)
ELEMENT_OF _32(8)
ELEMENT_OF _32(9)
ELEMENT_OF _32(10)

True if hdwr off-line, etc.
Someone's using the card
Someone wants the card
Word/byte mode flag
Can the user do 27114B features?
Easier to keep a flag than read the
Hw each time gpioO needs to know
A reset is in progress
Someone wants to do a reset
ATIN-arqs are enabled

Miscellaneous definitions */
16
-1
0x0
0x0100
0xFFFF

The maximum times the device me can be opened

The 27114A can only have a revision number equal to 0 or 1

HP Confidential

#derme D_INT_D
#derme C_INT_D
#derme LDCTR
#derme CLS
#derme CIA
#derme CL3
#derme PRN
#derme DIR
#derme EDGE
#derme CLF
#derme PEN
#define CL2
#derme CLI
#derme CLO

#define PEND_FF
#derme A TIN_FF
define CTR_FF
#derme ST5
#derme ST4
#define ST3
#define peL
#derme PFG
#define OR
#define IR
#define TES
#derme ST2
#define STI
#derme STO

#defme ATIN_EN
#derme PDIR_EN
#defme CTR_RST
#derme PEND_RST
#derme FIFOM
#derme FULLM
#derme FULLS

HP Confidential

HP-UX CIO GPIO Monolith

/* Register layouts or the 271148 • /

/*
Ox4000
0x2000
0x0800
0x0400
0x0200
OxOlOO
0x0080
0x0040
0x0020
0x0010
0x0008
0x0004
0x0002
0x0001

/*
0x2000
Oxl000
0x0800
0x0400
0x0200
OxOlOO
Ox80
Ox40
0x20
OxlO
0x08
0x04
0x02
0x01

•.. 27114 Control Register Layout */
DEND interrupt disable bit, 27114B
Hdshk_ctr=O intrpt disable bit, 27114B
Load elr bit, 27114B only
Control bit #6, 27114B only
Control bit #5, 27114B only
Control bit #4, 27114B only
Poll Response Enable
direction for data transfer
Edge determination for data movement
Clear FIFO
Enable frontplane's response to handshake
These three bits are
used to write information
to the control lines .

... 27114 Status Register Layout ./
Flip-flop indicating PEND was pulled
Flip-flop indicating A TIN was pulled
Flip-flop indicating the hndshk etr = 0
Status line #6, 27114B only
Status line #5, 27114B only
Status line #4, 27114B only
Peripheral Control
Peripheral Flag
Output Ready
Input Ready
Test Hood Present
These bits return the state of the
status lines being driven by the
peripheral.

/. • •• 27114B Control II register layout */
OxOOSO Enable ATIN to cause ARQs
0x0040 cn..s line driven by CrL5 bit or PDIR?
0x0020 Enable/disable(reset) the ctr ARQ flipflop
OxOOlO Enable/disable(reset) the DEND ARQ flipflop
0x0007 Reserved (or handshake mode definition
0x0006 Used for handshake mode definition
0x0004 Used for handshake mode dermition

23

HP-UX CIO GPIO Monolith

5. Outline Of Driver

GpioO is organized as a monolith; that is, gpioO includes both an LDM and a DAM. This
organization is very advantageous for both speed and code size. As a monolith, gpioO can be divided
into two broad areas: the LDM routines and the port server routines.

The LDM routines include all of the standard HP-UX entry points. These routines are explained in
the LDM chapter.

The port server consists of the port server itself and each of the routines it c:alls to process a
particular type of message. The port server itself is just a switch statement with a separate case for
each message type. Each message type which gpioO can receive is processed by a separate routine.
In general, these routines are invoked with a pointer to the incoming message and a pointer to the
pda.

5.1 LDl\f Routines

5.1.1 Useful Macros

A few macros are used by the LDM routines. Every routine uses the macro PDA..)J.AP which takes
a dev_t and returns the pda which corresponds to that device. It does so by examining the
gpioO_pda_map array which is built during configuration.

Two other macros, LV and GPIO_DIAG, are only used by the gpioO_open routine. LU returns the
logical unit number of the device when given tbe dev_t. GPIO_DlAG returns true if the dev_t
passed in is for a diagnostic open.

5.1.2 Direct i/O

All device 8eapters connected to the channel have 8 set of memory mapped registers called the
direct i/o space. The Driver Writer's Manual explains direct i/o in the chapter on the CAM
interface.

GpioO uses direct i/o to read status from tbe card and to initiate dma and do control requests to the
card (via ioed calls). The direct i/o pointer (aodio_plr) is grabbed via a CAM control request
during configuration. Thereafter t to examine or poke a re~ster on the AFI card, gpioO just
references the appropriate offset from ciodio_ptr. A list of registers used follows:

Register
o
1
3
7
9
A
B

o
1
7
A
B

24

R/W
Read
Read
Read
Read
Read
Read
Read

Write
Write
Write
Write
Write

StnJcture Element
dodio_ptr-> data.normal
dodio_ptr->c:tIsens.normal
dodio_ptr-> c:tIsens.cend
dodio_ptr-> c:tIsens.cendbyte
dodio_ptr-> statcmd.normal
dodio_ptr-> order .tend
dodio_ptr-> statcmd.tend

ciodio_ptr-> data.normal
dodio_ptr-> dIsens.normal
dodio_ptr-> c:tIsens.cendbyte
dodio_ptr-> order .cend
dodio_ptr. > statemd.cend

Usage
data register
CIO sense register
m register
27114 status register
CIO status register
transfer counter
transfer counter

data register
CIO control register
27114 control register
transfer counter
transfer counter and 27114 control II register

HP Confidential

HP-UX CIO GPIO Monolith

Gpio(topen is the routine by which a user process gains access to the driver. If an error is returned
from this routine, the user can Dot proceed with other requests to the driver.

Several types o(checking must be done. If the driver is Dot confIgUred (pda is NULL) or the
hardware is bad/missing (pdo->fJags contain HDWR_DEAD), then the open should fail. Also, if
the lu of the device file being opened is bogus (or one reason or another (tbe lu was not configured,
or has improper format) the open should fail. .

Beyond the error checking, the goals of the open routine are to, create a pseudo minor Dumber for
the open in progress (multiple open feature), and initialize those options that are unique to that
open (the timeout, the interrupt bandler, the pid of the interrupt bandler, and tbe per_open lock
count).

If the open is a diagnostic open, lock the interface (don't forget to increment the interface and per
open lock counts) and drop other locks (don't forget to grab the process id). Only one diagnostic
open at a time is allowed.

5.1.4 gpioO_closeO

The routine closeO is called by the user process to relinquish access to the device. However,
gpioO_close is called by HP-UX only on the last close made to the device fIle.

The goals of the close routine are to, remove any locks that belong to this instance of open, add the
now-free per-open entry to the end of the pot table, and clear the interrupt bandler associated with
the close so that the process won't be signaled on an interrupt after it (the process) has terminated.

Note: the driver has no responsibility for the device.

These routines are used to guarantee exclusive access to the device. Before a request is started,
gpio_busy is called. After the request has fmished, gpio_free is called.

Gpio_busy is simply the exclusive access portion of physioO. It sleeps on buf until buf is available.
Once it becomes available, gpio_busy sets the B_BUSY flag. or course, all of the above is done at
sp15 since it is a aitical section.

Gpio_free simply marks buf as Dot B..BUSY and does a biodone to release the semaphore.

Note that only gpioCLioct1 must use these routines. Semaphoring, in this manner, of the read and
write requests is done for free by physioO.

These two routines are used to provide a watchdog timer for elma requests which are sent to the
CAM. Gpio(tseLtimeout is called right before the iOJendO to the CAM for the dma request.
When the dma reply is received from the CAM, the timer is released. GpioCLservice_timeout will be
called from softclock if the dma request has not fmisbed in the allotted time.

The allotted time for adma request is initially set at one hour and can be changed by the user via
the ioetl GPIO_TIMEOUT. The full timeout value is further broken down into smaller chunks
taIled GPIOTAs (2 seconds each). This is done so that a process with outstanding i/o can be killed

HP Confidential 25

HP-UX CIO GPIO Monolith

fairly quickly by the user instead of waiting for the full timeout.

GpioCLsectimeout calls the timeout routine with a time limit of GPIOTA (or whatever is left in the
full timer, if less). It sets up gpio(L.service_timeout as the routine to call if the timer pops.

Gpio(Lservice_timeout is called whenever the timer pops. If time still remains, the time limit is
decremented and timeout is called again. If no time remains in tbe full timer or if tbe user bas
killed the process, an abort message is sent to the CAM, providing tbe request is still active at the
channel level. This guarantees that the request will complete in the near future. If the request is no
longer active at the channel level (indicated by a re<J-state set to WAITING_ON_INTR), tbe driver
is waiting for data to leave the card; an abort message is not necessary as the reply message to tbe
request bas already been received. The driver needs only clean up after the dma.

These routines are used to write (or read) to (or from) the device. Tbey are identical to each other
except for the direction of data transfer.

pbysioO is called to lock down buffers and do the rest of it's voodoo. Included in this voodoo is the
call to gpioO_strategy and the sleep on buf. Finally, when the associated biodone is done after a dma
reply is received, control is passed back to gpioO_write (or gpioO_read). Note that physioO provides
a semaphoring mechanism for access to the card. No other write (or read) can go through until this
one finishes since physioO bas grabbed buf. The ioctl routine makes use of this fact and uses
gpioO_busy to sleep on buf.

These routines are intentionally structured so that all of the real work is done either in physioO or
in gpioO_strategy.

So, the goals of the \\Tite routine are to,

- Block writes (reads) from processes that do not own the lock [if one exists],

- Refuse word mode writes (reads) that are transferring an odd number of bytes"

- Block other writes (reads) if one is currently in progress,

- CalI physioO,

- Free tbe driver and wake up any processes waiting to write (read), -- Return' appropriate write (read) errors

5.1.8 gpioO_strategyO

Gpio(Lstrategy does all the real work for i/o requests. It pokes registers on the AFI card to
configure the transfer (direction of the dml, transfer counter. PEND) and sends the dma request to
the CAM. The routine consists of three basic cases.

rlrst, if this is a diagnostic request, DO register poking will be done. The diagnostic program is
required to do this itself. Gpio(Lstrategy only marks REQ_STA TE as UNKNOWN and sets up the
VQUAD command for either Ii read Of Ii write.

Second, if this request is a write, a few register pokes are done and tbe VQUAD command is set up
for a write. Note that registers must be poked in different ways depending on whether the last
request done was a write or a read, and depending on whether the transfer counter or PEND are
used. See the 27114B Hardware ERS for details on which registers to touch and how to touch
them.

HP Cnnfidf".nti::.l

HP-UX CIO GPIO Monolith

Third, if this request is a read, some other register pokes are done and the VQUAD command is set
up for a read.

Finally, the common parts of the vquad are set up (count and buffer). A watchdog timer is started
via gpio(tseCtimeout. The dma request message is sent to the CAM via io_sendO.

Note the precautions for powerfail, io_block_serverO and iO_UDblock_serverQ.

Gpio(Lioctl is the grab bag for all other types of requests to the device. There are three basic types
of requests: IO_CONTROL, IO_STA TUS, and IO_ENVIRONMENT. Most of these requests are
simple writes or reads to one or more of the CIO direct i/o registers. The exception is
GPIO_RESET which does a CIO_DA_SELFTEST control request to the CAM.

The body of gpicxLioctl() is bracketed by gpio(tbusy and gpio(Lfree to semaphore access to the
card; and access to the interface is refused if the interface is locked by another process. If the
interface is not locked or is locked by the current process the request is handled as follows,

5.1.9.1 GPIO-LOCK

IO_CONTROL Handle LOCK_INTERFACE, UNLOCK_INTERFACE and
CLEAR,..ALL_LOCKS commands. After each successful Jock or unlock
request, the number of locks for that open is returned in arg{1] and the
number of locks for that interface is returned in arg[2].

IO_STA TUS Return the process id of the locking process in arg[O] and the interface lock
count in arg[1]. If the interface is not locked, return -1 in arg[O].

5.1.9.2 GPIO_TIMEOUT

I O_CO'NTROL Handle requests to change the timeout value from the default value, one
hour. The request is made in microseconds.

When a request times out, an error of ETIMEDOUT is returned to the
user.

History: The pre-7.0 GPIO(dev) manpage stated that a timeout value of 0
was equivalent to infmity (no transaction would timeout). This is incorrect.
A timeout value of 0 is equivalent to the default, one hour. The manpage
has been changed.

Return the timeout value, specific to this open, in arg[O].

5.1.9.3 GPJO_WIDTH

I O_CONTROL Handle requests to set the data path width. The only valid arguments are 8
or 16.

HP Confidential 27

HP-UX CIO GPIO Monolith

Return the width of the data path (either 8 or 16) in Mg[O].

5.1.9.4 GPIO-SIGNAL..MASK

10_CONTROL Save the process id and the process interrupt handler. Also, enable the
27114B to assert ARQ when ATTN is asserted by the device. If signals are
not wante~ the interrupt handler is nulled and the card is disabled from
asserting ARQ.

10_STATUS Return the cause of the interrupt, recorded in int_mask, in arg[O). For
27114 users, the only reason for an interrupt can be because ATTN was
asserted by the device. See gpio(Levent_from_camO.

IO_COl\TTROL This request allows the user to configure the 27114B as best suits the
device. The user creates a mask by OR'ing the following flags (dermed in
gpio.h) as desired,

PFLG_EDGE_LOGIC • When asserted, data will move on the busy-to
ready (or "falling") edge of the handshake signal PFLG. Otherwise data
will move on the ready-to-busy (or "rising') edge of PFLG.

PDIR_OPT_EN· If asserted, the control lines CfL5 and CTU \\11) be
driven with output from the PDIR bit and the HEND bit (both in register
7). If the flag is not asserted, CTL5 and CfL4 will be driver with whatever
the user· writes to the control lines. See section tn' for more details.

PEND_OPT_EN • If asserted, the device can pull the PEND line of the
front plane which will result in the immediate termination of a data
transfer. See section "" for more details.

TRNSFR-CTR_EN • If asserted, the driver will enable the transfer counter
that exists on the 27114B. See section "" for more details.

Handshake mode .• The choice of handshake is device dependent. There
are three choices, FULL_MASTER, FULL_SLA VE, or FIFO_MASTER.
If neither of the three flags is asserted, FIFO_MASTER is used.

5.1.9.6 GPIO_CTL.LINES

10_CONTROL Handles requests to change the control lines. Since the 27114A has only 3
control lines the maximum value of those lines is less than the maximum
value for the 27114B, which has 6 control lines.

28 HP Confidential

HP-UX CIO GPIO Monolith

5.1.9.7 GPIO.fiESET

IO_CO~"TROL Wait if another reset is in progress. Otherwise, build and send a
CIO_CfRL_REQ_MSG to the CAM. Then wait for the
CIO_CfRL_REPL Y _MSG. Once the reply comes, wake any waiting reset
requests

Since the hardware has just been reset, any software options associated to
hardware should also be reset (e.g. shadow registers). For historical
reasons, purely software options remain unchanged (e.g. timeout).

IO_STATUS Return the value of the status lines in arg[O].

IO_STATUS Return a configuration mask, of several hardware options, in arg[O]:
EDGE_LOGIC_SENSE, PDIR_OPT_EN, PEl'."D_OPT_EN,
TRNSFR_CTR_EN and the handshake mode. The mask definitions are
the same as in IO_CO~"TROL GPIO_SET _CO~1f1G.

5.1.9.10 GPIOJNTERFACE_1YPE

IO_ST ATUS Return the value of the id register in arg[O].

5.1.9.11 GPIO.fiEG7

10_STATUS Return the value of the API-status register in arg[O).

5.1.9.12 IO..ENVIRONMENT

This command is a way to perform multiple 10_STATUS commands via one request. When an
IO_ENVIRONMENT call is made the following information is returned in the env structure: the
status lines, the interface id for the card, the signal mask, the width of the data path, the locking pid,
the timeout value and the conflgUIation mask for the card.

There are other values returned, termftllSOn, Tead..pQttem, speed, and delay, which have no meaning
for the 27114B. The values are there for histerical reasons.

HP Confidential 29

HP-UX CIO GPIO Monolith

Hardly used. Should be cleaned up; even tossed.

Used to time a transaction that is waiting for a lock to clear before it can access the interface. If the
interface is not locked, immediately return zero. U the interface is locked and O_NDELA Y was set
at the time of open, immediately return EACCES. Otherwise, start timing the transaction is
interrupted by the user (return EINTR).

30 HP Confidential

HP·UX CIO GPIO Monolith

5.2 Port Server

The port server, gpioOO, is the routine to which all messages are delivered. Messages delivered fall
into three broad classes:

• Configuration messages from either the conflgurator or the CAM

• Dma replies and control replies from the CAM

• Powerfail and other event notifications from the CAM.

The port server is simply a switch statement with a separate case for every type of message which
gpioO will receive. Each case is a procedure call to the appropriate message handler. Some of the
cases also set retumJrame to FALSE if the incoming message will be reused by the message handler.
Unsupported message types are simply dropped.

The three configuration message handlers - afLdo_bind_msgO, afi_bind_reply_msgO,
afi-8ecptr_replyQ and gpioO_attachO - are explained in the ~nfiguration section. The powerfail
recovery process - afi_power_on_req_msgO and afi_pf...geCptr_rep)yO - are explained in the
powerfail recovery section. The other message handlers - gpioO_reply_from_cam,
gpioCLevent_from_caIn and afi_ctrCreply_msg - are explained in the following section.

A dma reply message, CIO_DMA_REPL Y _MSG, is sent by the CAM to gpioO when a dma request
which gpioO initiated earlier has completed. The processing of the reply depends upon the
configuration of the 27114B and whether the transaction was a read or a write.

The basic processing for write transactions (that do not use the counter) and for all read transactions
is simple. First the untimeout routine is called to release the watchdog timer for this request.
Second, the buf structure associated with this request is filled in. The b_en'or field is set to the status
of the dma reply. If there was an error, pda->buf.bJlags has the B~RROR bit set. Finally,
biodone() is caUed to awake the sleeping physioO and return to the user process.

Some specific handling must be done if PEND was asserted of if the read used the transfer counter.
For instance,

• If PEND was pulled, the PEND flipflop must be cleared so the next assertion of PEND will
register. Also, if PEND was pulled on the write transaction, the FIFO should be cleared.

• If the counter was used for a read, clear the counter.

The onlY.other dma transaction to be discussed is the case where the counter is enabled during a
write tra.nraction. This is a special case from the other transactions because the channel may declare
the transaction complete before it actually is (see the section on write blocking). Because of this
gpioO can only declare the transaction finished if all the data is off of the card, if PEND was pulled
or if the dma reply message was received with bad status.

If PEND was not pulled but data still exists on the card. gpioO must wait for some indication that the
transfer is indeed complete. To do this, the card" is enabled to assert ARQ (when PEND is asserted
of the transfer counter reaches logical zero) and the state of the driver is set to
WAJTING_ON_INTR. This way gpioO need Dot poll the card Dar busy-wait for activity. So if ARQ
is asserted before the timer pops, gpioO receives an event message and can resume completing the
transaction there. Otherwise, the state WAlTJNG_ONJNTR wiD incticate that the transaction
should be terminated immediately with an error (that is, an abort message is not necessary here
since the dma reply has already beeD received).

Note that DO error recovery is done by this routine. If an error is returned in the dma reply
message, it is simply passed up to the user (via the buf structure). The user is responsible for

HP Confidential 31

HP-UX CIO GPIO Monolith

retrying the request, if need be.

This routines handles CIO_IO_EVENT messages sent by the CAM to gpioO. The only type of event
which gpioO will ever receive is an AES ARQ (this is the only type the AFI card can produce). The
27114B asserts ARQ for 3 reasons,

• The device asserted ATTN on the frontplane,

• The device asserted PEND on the frontplane,

• The transfer counter reached logical zero.

If the ARO is due to the device asserting ATTN on the frontplane, the driver notifies all interrested
processes of the event via a psignal call; providing interrupt handlers have previously been set up for
this driver. A search through the per-open table (pot) reveals alI interrested processes. If no
process is interrested in receiving a signal, the event is dropped. Note that when an ARO occurs,
the CAM disables the device adapter from ARQing (for historical reasons). Hence the ARO must
be re-enabled by the user process after an event occurs. This is accomplished via the ioctl
GPIO_SI GNAL_MASK.

If the ARQ is due to PEND asserting on the frontplane or due to the transfer counter reaching
logical zero, a DMA transaction just completed. In such case afi_arq_fmishO is called to clean up
after the DMA (stop the watchdog timer, disable PEND and the transfer counter from causing
AROs, figure the dma residue based on the counter, clear the PEND flipflop, the counter and the
FIFO) and returns to the user. Note that when an ARQ occurs, the CAM disables the de\ice
adapter from AROing (for historical reasons). So if the user previously enabled the card for A TIN
AROs, gpioO should re-enable the card to ARO. Likewise if the card pulled ARQ because of A TIN
yet the driver is waiting on either a PEND or word counter ARQ to terminate a dma transaction, it
behooves gpioO to re-enable the card to ARO.

The driver deciphers the reason for the ARQ by reading register 7 where there are 3 bits reflecting
the state of the A TIN flipflop, PEND flipflop and the transfer flipflop. The 3 bits may indicate that
more than one flipflop is set.

Handles CIO_crRL_REPL Y -MSGs that were caused by CIO_crRL_REQ_MSGs intending to self
test (reset) the 27114B. The driver must match any shadow registers to the now default hardware
configuration.

5.2.4 arLar'l-rmish{)

Handles the clean up of DMA transactions that ended via an ARQ on the backplane. This can only
happen when the driver enables the card to assert ARQ when PEND is asserted by the device or
when the transfer counter reaches Jogical zero.

The driver must figure the residue from the counter, if appropriate, clear the counter, clear the
PEND flipflop, and clear the FIFO.

32 HP Confidential

HP-UX CIO GPIO Monolith

5.3 Configuration

Configuration follows tbe standard sequence as defined by the HPIOSD. The sequence is a seven
part process,

• gpioO receives a creation message from the Configurator and returns it

• gpioO receives a do_bind request from the ComlgUrator

• gpioO sends a bind request to the CAM

• gpioO receives a bind reply from the CAM

• gpioO sends a do_bind reply to the ComIgW'ator

• gpioO sends a control request tot he CAM to get the direct i/o pointer

• gpioO receives a control request, with the direct i/o pointer t from the CAM

The creation message is sent to gpioO by tbe Configurator as the frrst step in the process. This
message is used to communicate resource needs and usage options to the system as a whole. GpioO
fills tbe message in the standard way and returns.

The do_bind request message tells gpioO to bind with a particular lower manager (in this case t the
CAM). GpioO must do four tasks as a result of a do_bind request. First, save its port number,
device adapter number f and CAM port number from the do_bind message. Second, set up tbe
gpioO_pda_map entry for this instance of gpioO. Third, initialize everything in the pda that needs to
be set up. Fourth, send a bind request message to tbe CAM.

The bind request message to the CAM is used to establisb a connection between gpioO and the
CAM. GpioO tells tbe CAM what device adapter it will control and what subqueue the CAM should
send event messages to.

The CAM sends a bind reply message to gpioO as a result of the bind request message. GpioO saves
away the subqueue number which the CAM wants it to use for requests. Then gpioO sends a
do_bind reply to the Configurator. If the bind reply message has status CIO_LVLl_CARD, the bind
was successful and the AFI card is in the correct slot. Successful binds are followed by the sending
of a control request to the CAM for grabbing the direct i/o pointer.

If the bind was unsuccessful (no card was in tbe slot or the card in the slot was not the AFI card),
the control request to get the direct i/o pointer is not done. This instance of the driver \\ill be
unusable. Note that an attempt is made to get the direct i/o pointer again on a powerfail. This
implies that an AFI card can be added to the system on the fly ~uring a power failure.

If the bind was successful, eventllally a control reply is received from the CAM. If the status of tbe
control reply is LLtO_NORMAL, the direct i/o pointer is saved in the pda and the HDWR_DEAD
bit of pdiz->f/ags is turned off. This instance of gpioO can now be used.

Handles the DO_BIND_REQMSG received from the ConflgUrator. First, gpioO saves the
information about its lower manger. Then gpioO initializes its pda values. Finally, gpioO builds and
sends a BIND_REQMSG to the CAM.

Handles BIND_REPLY_MSG from the CAM. Once this message is received witb good status,
binding between tbe CAM and the GPIO monolith is complete. GpioO then builds and sends a
cio_ctrLreq message to the CAM. This is to request its direct i/o pointer. Because there are

HP Confidential 33

HP·UX CIO GPIO Monolith

multiple functions for a cio_ctrCreq message, change the state to indicate how the cio_ctrCreply
message should be handled.

Should the BIND_REPLY _MSG be received from the CAM with bad status, binding has failed. A
do_bind_reply message is built and sent to the Configurator and confJ.guration is complete. Set the
state to indicate this instance of gpioO can Dot be used if opened.

Handles the CIO_CTRL_REPL Y _MSG that was caused by the CIO_CfRL_REQ_MSG sent during
configuration. If the cio_ctrCreply message is received with good status AND the message indicates
the device adapter in the slot is a level 1 type card, the message contains a valid direct i/o pointer
for gpioO. Save the pointer, use tbe pointer to enable the card to function, complete configuration by
sending a do_bind_reply message to the Configurator and dec:1are the driver usable by clearing the
HD\VR_DEAD bit from the pdaflags.

This routines finds a mapping between the device adapters lu number and a pda. A routine from
the old days, it should be replaced by a call to po7tJo_index().

34 HP Confidential

HP-UX CIO GPIO Monolith

5.4 Powerfail Processing

The driver must do special processing whenever powerfail occurs. The driver is notified of a
power fail by the receipt of a POWER_ON_REQ_MSG from the CAM. The CAM sends the power
on request message to gpioO after power is restored.

No special processing of outstanding. requests to the CAM is needed. The CAM guarantees closure
on all requests that are sent to it. If a request was active at the time of the power failure, a dma
reply (with powerfail aborted status) will eventually be sent to gpioO. This rely can be handled in the
Dormal course of handling dma replies. An error will be returned to the user process.

Note that gpioO does not do any real recovery from a powerfail. For the most part, the user process
is responsible for setting up the card again (if it needs something other than power-on state). In
addition, the user process must set up the device attached to the AFI card.

GpioO must send a POWER_ON_REPLY_MSG to the CAM as soon as the power-on request
message is received. In addition, gpioO attempts to re-establish a valid direct i/o pointer via a CIO
control request message to the CAM. This is also important if the system was initially brought up
with either no card in the AFI slot or the wrong card in the slot. It is, therefore, possible to add the
AFI card to the system during powerfail and have it work.

Once the control reply is received with good status and the status indicates the card is a 27114B, the
direct i/o pointer is considered valid. The card is then reset and enabled.

The reset is an important part of the handling of emulated Fatal Error mode:

HPPB drivers own a page of i/o space and are responsible for checking to see when their page is in
FE mode; eventually clearing the FE bit.

However, CIO drivers do not own an entire page of I/O space. Each page is shared by multiple
drivers. Therefore CIO drivers, not knowing the progress of other drivers, can not clear the page FE
bit; the CAM does.

This brings us to the interesting AFI case of why an explicit reset (one done by touching i/o space
rather than by sending a control request to the CAM) is necessary in AFI powerfail.

Suppose gpioO is in the middle of a transaction at the time pow~r fails. Once power is restored, the
transaction resumes where it left off;gpioO's power on request message will be queued. If the'CAM
has already taken the page which the AFI belongs to out of FE mode, the transaction can now touch
the i/o space; the page that gpioO's address space belongs in will no longer be marked FE mode.
Since we rely on the card being in default configuration after a power failure, it should be reset to
guarantee that default state.

After resetting the card, gpioO must restore the states of software values relating to hardware
confpation.

HP Confidential 35

HP-UX CIO GPIO Monolith

6. Testing
GpioO should be tested in (our different ways:

• Instruction Coverage Analysis (ICA)

• ConflgUration Testing

• Stress Testing

• Powerfail Testing

lCA is done to verify that all the code actually gets executed at least once. This approach has
defInite limitations. For instance, ICA may indicate the code was hit, but you will not know that it
was hit while the driver/card was in different states. The goal is 100% measured coverage.

Configuration testing means building several systems with different properties. For example,

• Build a system with DO gpioO configured. Make sure that it boots normally.

• Build a system with several gpioO's. Make sure that they are all usable.

• Build a system with gpioO's on a second channel. Make sure they are usable.

• Build a system with one gpioO. Try booting without a card in the slot, with different cards in the
slot and with an AFI card in the slot.

Stress testing involves lots of activity simultaneously on one or more cards. For example, try lots of
i/o to one card with two different processes.

Powerfail testing can be done by power cycling the processor while the card is idle, busy with
different requests, and not present. Make sure multiple powerfails work.

A test suite does exist for gpioO. All tests in the suite should pass after any change is made. New
tests should be added as features are added or changed. Currently the suite is in
Wayback:/mnt/azure/suzyz/tests/scaffold.

36 HP Confidential

HP-UX CIO GPIO Monolith

Appendix I: Diagnostic loctls

Certain ioctl calls are only allowed if gpioO has been opened in diagnostic mode. If a non-diagnostic
attempts to invoke any of these calls, EINV AL is returned. These calls involve direct register reads
and Mites. Therefore, the diagnostic program has complete control of the afi card. It is the
diagnostic program's responsibility to put the AFl card back into a good state before it exits. This
can be done by resetting the AFJ card.

10_CONTROL requests Mite to the specified register with the value passed in arg[O]. 10_STATUS
requests read the specified register in arg[O].

Type

la_CONTROL
IO_CO~'TROL
10_CONTROL
10_CONTROL
10_CONTROL
10_CONTROL

10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS
10_STATUS

HP Confidential

Command

GPIO_REGO
GPIO_REGl
GPIO_REG7
GPIO_CLEAR
GPIO_REGA
GPIO_REGB

GPIO_REGO
GPIO_REGl
GPIO_REG3
GPIO_REG7
GPIO_REG9
GPIO_REGA
GPIO_REGB
GPIO_POLL
GPIO_PORTNUM

Description

write register 0 data register
Mite register 1 •• CIO control register
Mite register 7 _. 27114 control I register
clear data path ... clear flfo, re-enable ftfo
Mite register A .- transfer ctr
Mite register B ... transfer ctr /27114 control 11

read register 0 -- data register
read register 1 .. - CIO sense register
read register 3 ... ID register
read register 7 ... 27114 status register
read register 9 .- CIO status register
read register A .- low and mid bytes of counter
read register B -- high byte of counter
return whether the card is ready for bus requests
return the port number for this interface

37

HP-UX CIO GPIO Monolith

Appendix II: Message Formats , ...
••• All of the messages and constants explained here
... are located in one of the two following fales,
•••
•••
•••
•••

sio/llio.h
sio/iocam.h

•••
•••
•••

These flles are the rmal authority for message
layout and constants .

/** Standard header for all messages" /

typedef struct {
shortint
shortint
int
porCnum_type

} llio_std_header_type;

msg...descriptor;
message_id;
transaction_num;
from_port;

/** Message descriptors used by gpioO ** /

#deflne CREATION_MSG 2
#deflne DO_BIl'.1J)_REQ_MSG 3
#defme DO_BIND_REPLY_MSG 4
#denne BIND_REQ_MSG 5
#defme BIND_REPLY _MSG 6

#define CIO_DMA_IO_REQ_MSG 100
#derme CIO_DMA_IO..REPLY_MSG 101

""!"

"derme CIO_crRL_REQ_MSG 102
#derme CIO_CTRL_REPLY_MSG 103

"derme CIO_IO_EVENT_MSG 104

"derme POWER_ON..REQ_MSG 17
#derme POWER_ON_REPLY~SG 18

#derme TIMER_EVENT_MSG 19

38

•••
•••
•••
•••
• ••
•••
• ••
•••
• •• . .. ,

- HP Confidential

HP-UX CIO GPIO Monolith

/U Configuration messages •• /

typedef struct {
creation_options
int
int
int
bitS
porCnum_type

} creation_info_type;

typedef struct {
io_subQ-type
porcnum_type
int
int
int
porCnum_type
int

} do_bind_Teq_type;

typedef struct {
I llio_status_type

} do_bind_TepJy_type;

typedef struct {
io_subq_type
io_subq..type
sbortim
sbortint
int
int
int
int

} bind_reQ-type;

typedef struct {
llio_status_type
int
shortint
io_suhQ-type
io_suhQ-type
unsigned char
unsigned char

} bind_reply_type;

HP Confidential

create_options;
server_dat~len;
max..msg..,size;
num_msgs;
num_subqueues;
port_num;

reply_subq;
mgr_port_num;
config..,addr_3;
config..,addr_2;
config..,addr_l;
Im_port_num;
load_info;

reply_status;

reply_subq;
hm_evencsubq;
hm_sUbsys_Dum;
hm_meta_lang;
hm_rev_code;
hm_config...addr_3;
hm_config...addr_2;
hm_config...addr_1;

reply_status;
Im_rev_code;
Im_queue_depth;
Im_Iow_reQ-,subq;
ImJ1CreQ-subq;
Im_freeze_data: 1;
Im..aJignment:1;

39

HP·UX CIO GPIO Monolith

In DMA request and reply messages ··1

typedef struct {
io_subq..type
bitS
cio_ vquad_ptr

} cio_dma..reQ-type;

typedef struct {
llio_status_type
cio_ vquad_ptr

} cio_dma_reply_type;

reply_subq;
da..number;
vquad_chain;

llioJtatus;
vquad_chain;

In Quads and DMA commands ··1

typedef struct cio_vquad_type {
cio_cmd_type
int
int
struct cio_vquad_type
data_ptr _type
addr_class_type

} cio_vquad_type;

typedef union {
int
struct {

bitS
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

I·· CIO orders •• /

command;
count;
residue;
·link;
buffer;
addr_class;

order;
suppression:2;
logch_break:1;
bJocked:1;
reserved: 17;
read_ write:1;
conUnue_dma:1;
exact: 1;

#defme CIO_RD_WORD_ORDER 0x60
#defme ClO_WD_WORD_ORDER Ox70

40 HP Confidential

/U 10 Event Message •• /

typedef struct {
int
union {

} u;

int
bitS

} cio_io_event_type;

#defme CIO..ARQ_STATUS

HP-UX CIO GPIO Monolith

event;

inCinfo[(3) + 1);
byte_info[(15) + 1);

1

/ •• CIO control request and reply messages •• /

typedef struct{
io_subq_type
bitS
bit8
int

} cio_ctrLreq_type;

typedef struct {
llio_status_type
int
int

} cio_ctrLreply_t")'Pe;

#defme CIO_DA_SELFTEST
#defme CIO_GET_DIRECT_IO_PTR

typedef struct cio_quadrant {
volatile int
volatile int
volatile int
volatile int
volatile int
volatile int
volatile int
volatile int

};

typedeC strud ciodio {
strud cio_quadrant
strud cio_quadrant
struet cio_quadrant
strud cio_quadrant

} ciodio;

HP Confidential

2
10

reply_subq;
da_number;
ctrLfunc;
ctrLparm;

Ilio_status;
ctrLinfo;
extra_info;

rsvdl[3];
normal;
rsvd2[3];
cend;
rsvd3(3);
chyte;
rsvd4(3);
cendbyte;

data;
dlseus;
order;
statcmd;

41

