
CIO Asynchronous FIFO
Interface Programmer's
Guide

Flin- HEWLETT
a:~ PACKARD

HP Part No. 27114·90003
Printed in USA September 1989

First Edition

Copyright © 1989 by HEWLETT-PACKARD

Contents

1. Introduction
U sing This Manual . .
References
Hardware Features
Product Overview

Frontplane. .
The Midplane .
The Backplane .

2. AFI Theory of Operation
Overview
Configuring the Device Adapter for an External Device

Handshake Signals
PCTL Signal
PFLG Signal .
PDIR Signal . . .
HEND Signal
PEND Signal

Handshaking Modes
FIFO-MASTER Handshake
FULL.MASTER Handshake .
FULL_SLAVE Handshake

Interrupt Propagation.
Exclusive Access
Transferring Data

Register Configuration
Read Configuration of Registers
Write Configuration of Registers

3. Using the AFI Device Adapter
Device 110 Library Interface .

DIL Capabilities and Limitations .
Direct Device Driver Interface . . .

Creating the Device File. . .
Accessing the Device Adapter
Releasing the Device Adapter
Configuring the Device Adapter

Recommended Configuration Procedure .
Locking the Device Adapter •
Resetting the Device Adapter . . .
Setting the Timeout Value
Setting the Data Path Width Value

1-1
1-2
1-2
1-3
1-4
1-6
1-6

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-6
2-9

2-12
2-15
2-16
2-17
2-18
2-19
2-22

3-1
3-2
3-3
3-3
3-4
3-5
3-5
3-7
3-9

3-10
3-11
3-11

Contents-1

Setting Additional Configuration Values . . 3-12
Setting the Logic Sense of PFLG 3-12
Setting the Handshake Mode. 3-13
Enabling the Data Transfer Counter 3-13
Enabling the PDIR and HEND Signals for the

External Device 3-13
Enabling PEND Signal in Status Line. . .. 3-13
GPIOJ3ET_CONFIG Example. 3-13

Enabling and Disabling External Device Interrupts 3-14
Setting the Control Line Values 3-15

Transferring Data 3-16
Requesting Device Adapter Status Information .. 3-16

Returning the Process Id and Per-Device Adapter
Counter of a Locked Device Adapter . . 3-17

Returning the Timeout Value 3-17
Returning the Data Path Width Value 3-17
Returning Reason for Last Interrupt 3-18
Returning the Status Line Values. 3-18
Returning Device Adapter Specific Information . 3-19
Returning Multiple Status Values. . 3-20
Returning the Configuration Mask 3-21

Programmatic Example 3-22

A. Error Code Values

Glossary

Index

Contents-2

Figures

Tables

1-1. AFI Device Adapter in a HP 9000 Series 800 CIO
Computer System 1-3

1-2. The AFI Device Adapter Planes . . 1-4
2-1. Frontplane Signals 2-3
2-2. Input FIFO-MASTER Handshake 2-7
2-3. Output FIFO.MASTER Handshake 2-8
2-4. Input FULL-MASTER Handshake . 2-10
2-5. Output FULL-MASTER Handshake 2-11
2-6. Input FULLJ)LAVE Handshake . . . 2-13
2-7. Output FULL_SLAVE Handshake 2-14
2-8. External Device Interrupt Propagation Process .. 2-15
2-9. Registers on the Data Bus 2-18

2-10. Read Register 0: Input Data. 2-20
2-11. Read Register 1: CIO Sense. 2-20
2-12. Read Register 3: CIO ID 2-20
2-13. Read Register 7: Device Adapter Status. . 2-21
2-14. Read Register 9: CIO Status. . . 2-21
2-15. Read Register A: Transfer Counter . 2-21
2-16. Read Register B: Transfer Counter 2-22
2-17. Write Register 0: Output Data. . . 2-23
2-18. Write Register 1: CIO Control . . . 2-23
2-19. Write Register 7: Device Adapter Control . 2-23
2-20. Write Register A: Transfer Counter. . . . 2-24
2-21. Write Register B: Transfer Counter and Device

Adapter Control. 2-24
3-1. User Program Access Path Through DIL to Driver 3-1
3-2. User Program Access Path Direct to Driver . . . 3-3

1-1. Logic Sense of Frontplane Elements . .
2-1. External Device Requirement Table. .
2-2. Lock Counters Example
2-3. Register Configuration
3-1. Power Up and Reset Configuration Values .

1-5
2-2

2-17
2-18
3-10

Contents-3

Introduction

Using This Manual

1

This manual will guide you in writing detailed code needed to match
features of the HP 27114B CIO Asynchronous FIFO Interface (AFI)
Device Adapter to needs of your external device. CIO stands for
Channel Input/Output.

Chapter 1, "Introduction," presents a list of primary features and a
product overview that includes discussions and diagrams for the:

• Frontplane

• Midplane

• Backplane

Chapter 2, "AFI Theory of Opemtion," discusses configuring the
AFI device adapter to an external device for transferring data. The
following AFI device adapter features are discussed:

• Five configurable device dependent features

• Handshake signals

• Handshake modes

• Exclusive access

• Transferring data

• Read register configuration

• Write register configuration

Chapter 3, "Using the AFI Device Adapter," discusses accessing the
AFI device driver, provides an ordered set of tasks for configuring
and controlling the AFI device adapter, and provides a partial
programmatic example for each task and a full programming example
at the end of the chapter.

A glossary at the end of the manual clarifies technical terms.

Introduction 1·1

References

Hardware Features

1·2 Introduction

Additional information is contained in the following Hewlett-Packard
manuals:

Asynchronous FIFO Interface Reference Manual
(HP part number 27114-90004)

HP -UX System Administration Concepts Manual
(HP part number 92594-90062)

HP -UX System Administration Tasks Manual
(HP part number 92453-90038)

Concepts and Tutorials: Device I/O and User Interfacing
(HP part number 97089-90054)

The AFI device adapter hardware features are:

• 16 bit parallel interface

Cl 16 bit frontplane data input lines

Cl 16 bit frontplane data output lines

• Differential or single-ended (with ground) signal drivers/receivers

• 64 words of FIFO. buffering

• Data transfer counter

• Midplane state machine to control handshaking

• Three handshaking modes

• Up to six frontplane control lines

• Up to six frontplane status lines

Figure 1-1 illustrates the Hewlett-Packard CIO bus structure (CIB)
with an AFI device adapter attached.

Product Overview

00
Channel
Adapter

Mid Bus

Device
Adapter

Figure 1·1.
AFI Device Adapter In a HP 9000 Series 800 CIO Computer System

The HP 27114B CIO Asynchronous FIFO Interface (AFI) Device
Adapter provides buffered communications between external devices
and HP 9000 Series 800 CIO systems using a single 64 word FIFO
buffer. This device adapter is excellent for applications where high
speed, 16 bit parallel transfers are required.

Figure 1-2 divides the design of the AFI device adapter into three
planes of circuitry. They are:

• The frontplane (interacts with the external device and midplane)

• The midplane (interacts with the frontplane and backplane)

• The backplane (interacts with the channel adapter and midplane)

Introduction 1·3

Backplane Midplane Frontplane

ReceMn

~ ~-""'ReceIYe""""""-=-Sue---'
FIFO Buff., ~---:':::===--....I
Buffer (Mput Tf8IIIImlt Sue

~-,~~I~=~~I ~==~~~

L...--------I ~~II

Figure 1·2. The AFI Device Adapter Planes

Each plane accepts data and control signals and converts them to the
requirements of the CIO bus, the next plane, or the external device.
To explain the operation of the planes, it is convenient to view the
planes as working on logically independent tasks.

Frontplane The frontplane controls or reacts to the external device and
translates control signals to and from the midplane. The control
signals combine in a handshake protocol with the external device to
prevent data loss.

1-4 Introduction

The following list contains the frontplane elements with the register
representation and bit positions where 0 represents the least
significant bit.

• 16-bit Data Input Bus, RD[15:0] (RD[7:0] for 8-bit data)

• 16-bit Data Output Bus, SD[15:0] (SD[7:0] for 8-bit data)

• 6-bit Control Register, CTL[5:0]

• 6-bit Status Register, STS[5:0]

• 1 interrupt signal, ATTN

• 5 handshaking signals

1. Peripheral Control (PCTL)

2. Peripheral Flag (PFLG)

3. Transfer Direction (PDIR)

4. Host (handshake) End (HEND) - optional

5. Peripheral (handshake) End (PEND) - optional

Note The PDIR, HEND, and ATTN signals are reflected by default in
CTL[5:4] and STS[5] respectively.

This limits the number of control lines to 4 and status lines to 5. To
enable all six lines for control or status you can programmatically
override the default for each signal.

Frontplane handshaking signals control and monitor the sending and
receiving of data to and from the external device.

Low true logic means that assertion of the signal re:8.ects a low (0 V)
state. High true logic means that assertion of the signal reflects a
high (5 V) state.

To avoid confusion when discussing the assertion and deassertion of
signals, Table l-llists frontplane elements and their default logic
sense.

Table 1·1. Logic Sense of Frontplane Elements

Frontplane Element Logic Sense

Data Input Bus Low True

Data Output Bus Low True

Control Signals Low True

Status Signals Low True

HEND /PEND signals Low True

PDIR High True

PCTL/PFLG signals High True

The Asynchronous FIFO Interface Reference Manual explains
the logic sense and signal propagation between the hardware and
software domains. The reference manual also discusses how to
physically change the default logic sense of frontplane elements by
crossing differential lines to external device (if the external device is
differential) or by grounding one line and connecting the other to the
external device (if the external device is single-ended).

Determining the logic sense of front plane elements for your AFI
device adapter is critical for configuring external device dependent
features, data transfers, and interpreting status lines.

Introduction 1·5

The Midplane The midplane circuitry includes:

• the FIFO buffer and associated control circuitry

• the data, status, and control registers

• the handshake control state machine

Logically there are two state machines on the AFI device adapter.
One handles data transfers between the FIFO and the front plane
and the other handles data transfers between the backplane and the
FIFO.

The Backplane The backplane contains the I/O channel interface control circuitry
that controls communications between the AFI device adapter and
the channel I/O bus.

1-6 Introduction

2
AFI Theory of Operation

Overview

Configuring the
Device Adapter for
an External Device

Note

Interfacing with the AFI device adapter is divided into three
categories:

1. Configuring the device adapter for an external device

2. Obtaining exclusive access to the device adapter

3. Transferring data

The following sections describe the device adapter operation with
respect to the numbered categories listed above.

There are nine configurable AFI device adapter attributes that are
configurable for external device compatibility:

1. data path width

2. logic sense of PFLG

3. handshaking mode

4. enable or disable interrupts from external device

5. number of control lines *
6. enable PDIR and HEND signals for external device

7. control lines value

8. number of status lines *
9. enable PEND signal from external device

By default, the attributes marked by an appended "*,, are limited to
4 or 5 lines but are programmatically configurable to 6 lines.

The Asynchronous FIFO Interface Reference Manual presents
an explanation of how to connect AFI device adapters to several
external devices. There is a table in the AFI hardware reference
manual to fill in that defines the necessary AFI device adapter
configurations to consider for proper operation and use of the
intended external device. Values from this table should be applied to
setting the appropriate values and flags through the gpioO device
driver. The gpioO device driver interface is described in section 7 of
the HP-UX Reference Manual indexed by gpio.

AFI Theory of Operation 2·1

Table 2-1 is a copy of the table found in the AFI hardware reference
manual. You may find it more convenient to copy or fill in the values
in the following table and work from this table.

Table 2-1. External Device Requirement Table

External Device

Attribute Requirement

1 Data Path Width

2 PFLG Logic Sense

3 Handshake Mode

4 Number of Control Lines

5 Enable PDIR/PEND in CTL[5:4]

6 Control Lines VaIue

7 Number of Status Lines

To configure the AFI device adapter for an external device you must
understand the three following AFI device adapter features and their
operation:

• Handshake signals

• Handshaking overview with timing diagrams

• Interrupt propagation

In addition to the above listed device adapter features, the sections
that follow discuss obtaining exclusive access to the device adapter
and the transferring of data.

Handshake Signals The following five signals are used for handshakes during a data
transfer.

1. PCTL (Peripheral Control)

2. PFLG (Peripheral Flag)

3. PDIR (Peripheral Direction)

4. HEND (Host End)

5. PEND (Peripheral End)

Figure 2-1 shows the source and destination of these five signals.

2-2 AFI Theory of Operation

Note

AFI Device Adapter External Device
16

Data Out 5D[15:0]
, - Data In / -

16
Data In RD[15:0] - ,

Data Out -- I

PCTl Signal -r
PFlG Signal ---

HEND Signal .. -
PEND Signal ---
ATTN Signal ----

6
Control Lines I -I -
Status Lines - ,6

--- I

Figure 2·1. Frontplane Signals

peTl Signal

The assertion of PCTL (peripheral control) means that the outgoing
data are· valid or that new incoming data can be accepted. For the
FIFO ..MASTER and FULL..MASTER handshaking modes, the
device adapter asserts PCTL to signal readiness to start a data
transfer. For FULL..8LAVE handshake mode, the device adapter
asserts PCTL after the PFLG (Peripheral Flag) signal is received
from the external device.

PFlG Signal

The external device asserts PFLG (peripheral flag) signal to inform
the AFI device adapter that the external device has accepted the
data transferred or that there are valid incoming data from the
device. For incoming data there is at least one CIO bus clock pulse
before data transfer is complete.

The EDGE.LOGIC_SENSE flag selects the logic sense of the PFLG
signal as high true or low true. It is the handshake mode selection
that interprets the edge or level state to be the PFLG signal.

The default, EDGE.LOGIC_SENSE flag deasserted, defines the rising
edge or level state (5 V) of PFLG to signal the device adapter. The
assertion of EDGE.LOGIC_SENSE flag defines the falling edge or low
level state (0 V) of PFLG to signal the device adapter.

The handshake timing diagrams assume theEDGE.LOGIC_SENSE
flag is deasserted. .

AFI Theory of Operation 2·3

Note

Note

Note

2·4 AFI Theory of Operation

PDIR Signal

The PDIR (peripheral direction) signal informs the external device
which direction to perform the data transfer, incoming or outgoing.
PDIR is set by the read and write system calls used for requesting
a data transfer. Assertion of PDIR indicates the data transfer is an
outgoing write request and the deassertion of PDIR indicated the
data transfer is an incoming read request.

To enable the device adapter to send the PDIR signal to the external
device the PDIR_OPT-EN flag must be asserted. By default the
PDIR_OPT-EN flag is asserted. The PDIR signal is sent in CTL[5].

Assertion of PDIR_OPT-EN Hag limits the number of control lines
to 4, CTL[3:0]. CTL[5:4] contain the PDIR and REND signals
respectively.

The HP 27114A "DIR" signal is renamed "PDIR". Although the
operation is identical, the "PDIR" name better describes the signal.

HEND Signal

The AFI device adapter can be enabled to assert the REND (host
end) signal when the last word of data is being transferred. To
enable the device adapter to send the REND signal to the external
device during a read or a write data transfer, the PDIR_OPT-EN flag
must be asserted. By default the PDIR_OPT-EN flag is asserted.
The REND signal is sent in CTL[4].

Assertion of PDIR_OPT-EN Hag limits the number of control lines
to 4, CTL[3:0]. CTL[5:4] contain the PDIR and REND signals
respectively.

See the handshake timing diagrams for specific timing of the REND
signal.

PEND Signal

The external device asserts the PEND (peripheral end) signal
to inform the device adapter that the last word of data is being
transferred. To enable the device adapter to recognize the
PEND signal from the external device during a data transfer the
PEND_OPT-EN flag must be asserted.

For example, a read request is submitted from the device adapter for
30 words of data. If the external device only has 20 words, at the
end of the 20th word PEND is asserted to inform the device adapter
that the last . word of data is being sent. If PEND_OPT -EN is not
·asserted, the device adapter will not recognize the PEND signal
and the device adapter will wait until the external device sends the
remaining 10 words to complete the request or a timeout occurs.

Note

Handshaking Modes

Note

By default the PEND_OPT..EN flag is deasserted enabling status
information in STS[4]. When PEND_OPT..EN flag is asserted the
PEND signal is acknowledged in STS[4].

Assertion of PEND_OPT..EN limits the number of status lines to 4 or
5. If PEND_OPT..EN is asserted, STS[4] reflects the PEND signal. If
interrupts are enabled STS[5] contains the ATTN signal which limits
the number of status lines to 4, STS[3:0] respectively. If interrupts
are disabled, STS[5] is available for reflecting status information
and the number of status line are limited to 5, STS[5] and STS[3:0]
respecti vely.

AFI device adapter handshake modes provide any of three handshake
protocols, illustrated in Figures 2-2 through 2-7:

• FIFO-MASTER Mode

• FULL-MASTER Mode

• FULL-SLAVE Mode

The handshaking modes are device dependent.

The HP 27114A PULSE-HANDSHAKE-MODE has been renamed
FIFO-MASTER. Although the operation is identical, the "FIFO"
name better describes the handshake.

The following sections describe each of the handshake modes in
detail. Timing diagrams and a detailed sequence of events are
presented for the input and output data transfer direction for each
handshake mode.

AFI Theory of Operation 2·5

2·6 AFI Theory of Operation

FIFO..MASTER Handshake

For the FIFO-MASTER handshake, when data is valid, the data
transfer occurs on the edge transition of PFLG. The PFLG edge
transition is configured with the GPIO-SET _CONFIG function,
EDGE-LOGIC-SENSE flag. When the EDGE-LOGIC-SENSE
flag is asserted, data transfer occurs on the asserted-to-deasserted
transition trailing edge of PFLG. When the EDGE-LOGIC-SENSE
flag is deasserted (default), data transfer occurs on the
deasserted-to-asserted transition leading edge of PFLG.

For the FIFO-MASTER handshake, the initial PCTL signal operates
independently of the PFLG signal. The AFI device adapter will
assert PCTL when it is ready to transfer data, without checking the
state of PFLG. After recognizing the proper edge of PFLG signal
from the external device (the proper edge being determined by
the setting of the EDGE-LOGIC-SENSE flag), the device adapter
transfers the data then deasserts PCTL. The duration of PCTL being
asserted is dependent on the time it takes for the external device to
assert PFLG.

Note

® ® @ ®
! ! ! I

I I I I I
I I I I
I I I I
I I I I

I
I I I ,

PD1RI
peTl: ;------;::==========::::;---;:::=========

I I

I PFlG _+i ____ --+----1'----1
I
I
I

I

k Data -I!--------ii------f'
I

I
I
I
I

HEND .-J!
I

I PEND -i-! ------;-.----,
I
I

I

:

I

j
I
I

> I

:
I
I
I ,
I

:
I

:

Figure 2·2. Input FIFO..MASTER Handshake

The FIFO..MASTER input handshake has the following signal
sequence:

1. Device adapter deasserts PDIR (read request)

2. Device adapter asserts PCTL regardless of PFLG state

3. External device asserts PFLG (data valid and stable)

4. External device deasserts PFLG after minimum duration as
configured in the hardware or PFLG may remain asserted

5. Device adapter deasserts PCTL after recognizing PFLG assertion
and receiving data

Steps 2 through 5 above are repeated until last word is to be read.
The last word transfer sequence is as follows:

1. PDIR remains deasserted

2. Device adapter asserts PCTL / asserts HEND (low)

3. External device asserts PFLG / asserts PEND (low)

4. External device deasserts PFLG or PFLG may remain asserted

5. Device adapter deasserts PCTL

Steps 4 above are not required to happen before step 5 for input
FIFO..MASTER handshake.

AFI Theory of Operation 2·7

Note

Note

2·8 AFI Theory of Operation

CD @ ® 00 ®
f f , t f ,
I I I I I I

PDIR .-J I I I
I : I
I I

I I I I
I I I I peTl I I
I I
I I I I

PFlG : : I :
I I I I I

Data --K=:=>k ! ! >Ie><
I I : I : I I

I

HEND~ I I I I
I I I I
I I I I I
I I I I I

PEND I I I
I I I
I I I I I
I I I I I

: : : : :

Figure 2·3. Output FIFO..MASTER Handshake

The FIFO..MASTER output handshake has the following signal
sequence:

1. Device adapter asserts PDIR (write request)

2. Device adapter asserts PCTL reguardless of PFLG state
(data is valid when PDIR and PCTL are asserted)

3. External device deasserts PFLG edge (data may be transferred)

4. External device asserts PFLG edge (data may be transferred)

5. Device adapter deasserts PCTL (data is invalid)

Steps 2 through 5 above are repeated until last word is to be written.
The last word transfer sequence is as follows:

1. PDIR remains asserted

1.5. Device adapter asserts REND (low)

2. Device adapter asserts PCTL / asserts REND (low)

3. External device deasserts PFLG

4. External device asserts PFLG

5. Device adapter deasserts PCTL

Steps 3 above can occur before steps 1 or 2 above, but must occur
before steps 4 above for output FIFO..MASTER handshake.

PEND may be asserted by the external device if it has received the
required data. If PEND is asserted low prior to the device adapter
asserting PCTL, the transfer does not take place.

The PEND_OPT..EN flag must be asserted for the device adapter to
recognize the PEND signal from the external device.

If the PEND_OPT..EN flag is deasserted and the device adapter has
more data to send after PEND has been asserted by the external

Note

device, the device adapter will wait until the external device accepts
all the data or a timeout occurs.

FULL~ASTER Handshake

For the FULL..MASTER handshake, when data is valid, the data
transfer occurs when the external device signal PFLG is in a stable
state. The PFLG state that triggers data to be transferred is
configured with the GPIO..8ET _CONFIG, EDGE.LOGIC..8ENSE
flag. When the EDGE.LOGIC..8ENSE flag is asserted, data transfer
occurs upon the PFLG signal stabilizing in a low (0 V) state. When
the EDGE.LOGIC..8ENSE :flag is deasserted, the default, data
transfer occurs upon the PFLG signal stabilizing in a high (5 V)
state.

The difference between FIFO..MASTER and FULL..MASTER
handshakes are the PFLG requirements. For the FULL..MASTER
handshake, the level state of PFLG is checked where the
FIFO..MASTER handshake checks for the edge transition.

For the FULL..MASTER handshake the device adapter checks
for deasserted state of PFLG before asserting PCTL to start the
handshake. After PCTL is asserted, the external device asserts
PFLG. The device adapter deasserts PCTL in response to the PFLG
assertion. The external device then deasserts PFLG in response to
the PCTL deassertion. Tlie duration of the PCTL and PFLG signals
are dependent on each other.

AFI Theory of Operation 2-9

2·10 AFI Theory of Operation

I I I I I

PDIR -,1-----..... :--...... :----__ : ___ : ____ _ I I I I I
I I
I I r---

peTl _-'--___ ---': l..-.-_ ; ___J1

PFlG _~ ______ -II I
I I

Data -+--------i---i<!C------)>--+----+!-----
I I

HEND~ I--_~:~---~--+:-----
PEND i !

I I
I I

Figure 2·4. Input FULL-MASTER Handshake

The FULL-MASTER input handshake has the following signal
sequence:

1. Device adapter deasserts PDIR (read request)
(device adapter waits for PFLG to be in a deasserted state)

2. Device adapter asserts PCTL

3. External device asserts PFLG to acknowledge PCTL

4. Device adapter deasserts PCTL to acknowledge PFLG

5. External device deasserts PFLG to end handshake and enable
next transfer

Steps 2 through 5 above are repeated until last word is to be read.
The last word transfer sequence is as follows:

1. PDIR remains asserted
(device adapter waits for PFLG to be in a deasserted state)

2. Device adapter asserts PCTL / asserts HEND (low)

3. External device asserts PFLG / asserts PEND (low)

4. Device adapter deasserts PCTL

5. External device deasserts PFLG to terminate transfer

Note

CD @ ® @ 8) ®
~ L , , , ,
I I I I I I I:: I

PDIR ~t---i__--+:---i-: --...... : --i---------
I I I I

peTl -....;...: __ +--_--11 : I
: I I I

PFLG _ : __ -:--_-+-~ ---Ii
I : I

I--_____ --Jr

~~~ __ ~!i---~!--~--+~x~-------
HEND --.J ! !-i _--+: __ +! __ +-_-+-______ _ 

PEND: 1-1 ----L-4i---i-! ---i----i--------
I ! I 

Figure 2·5. Output FULL..MASTER Handshake 

The FULL MASTER output handshake has the following signal 
sequence: 

1. Device adapter asserts PDIR (write request) 
(device adapter waits for PFLG to be in a deasserted state) 

2. Device adapter asserts PCTL 

3. External device asserts PFLG to acknowledge PCTL 

4. Device adapter deasserts PCTL to acknowledge PFLG 

5. External device deasserts PFLG to end handshake and enable 
next transfer 

Steps 2 through 5 above are repeated until last word is to be written. 
The last word transfer sequence is as follows: 

1. PD IR remains asserted 
(device adapter waits for PFLG to be in a deasserted state) 

1.1. Device adapter asserts HEND (low) 

2. Device adapter asserts PCTL 

3. External device asserts PFLG 

4. Device adapter deasserts PCTL 

5. External device deasserts PFLG 

PEND may be asserted by the external device if it has received the 
required data. If PEND is asserted low prior to the device adapter 
asserting PCTL, the transfer does not take place. 

The PEND_OPT-EN flag must be asserted for the device adapter to 
recognize the PEND signal from the external device. 

If the PEND_OPT-EN flag is.deaSserted and the device adapter has 
more data to· send.· after PEND has been asserted by the external 
device, the device adapter will wait until the external device accepts 
all the data or a timeout occurs. 

AFI Theory of Operation 2·11 



2·12 AFI Theory of Operation 

FULL_SLAVE Handshake 

For the FULL-SLAVE handshake, when data is valid, the data 
transfer occurs when device adapter has recognized the PFLG by 
asserting the PCTL signal. The GPIO-SET_CONFIG function, 
EDGE..LOGIC-SENSE flag configures the PFLG state that triggers 
the data transfer. 

For the FULL-SLAVE handshake, the device adapter PCTL signal 
is dependent upon receiving the external device PFLG signal. When 
the external device PFLG signal is received stating that the external 
device is ready to transfer data, the device adapter acknowledges the 
PFLG signal by asserting PCTL and the data transfer occurs. The 
external device deasserts PFLG to invalidate the data on the bus 
and the device adapter acknowledges the PFLG deassertion with the 
deassertion of PCTL which terminates the handshake. 

The default, EDGE..LOGIC-SENSE flag deasserted, configures the 
data transfer to occur when PFLG stabilizes in a low (0 V) state. 
EDGE..LOGIC_SENSE flag asserted configures the data transfer to 
occur when PFLG stabilizes in a high (5 V) state. 



CD® ® 0 ® ® 
~ ~ ~ ~ ~ ~ 
: I I I : I I I 
I I : I I 

PDIRI 
I I I 
I I I I 
I I I I 

I I I I I 

PCTL 
I I i I I r I I I I 
I I I I 
I I I I I 

PFLG 
I I I I I I I 

: I 
I I I I 

I k >l t !( >--Data I 
I I I 

HEND~ ! I I I 
I I I 
I I I 

I I I 

PEND i I I r== 
I 

I ! I 

Figure 2·6. Input FULL_SLAVE Handshake 

The FULLJ)LAVE input handshake has the following signal 
sequence: 

1. Device adapter deasserts PDIR (read request) 

2. External device asserts PFLG 

3. Device adapter asserts PCTL 

4. External device deasserts PFLG 

5. Device adapter deasserts PCTL 

Steps 2 through 5 above are repeated until last word is to be read . 
The last word transfer sequence is as follows: 

1. PDIR remains deasserted 

2. External device asserts PFLG / deasserts PEND (high) 

3. Device adapter asserts PCTL / asserts HEND (low) 

4. External device deasserts PFLG / deasserts PEND (high) 

5. Device adapter deasserts PCTL 

6. External device asserts PEND (low) 

AFI Theory of Operation 2·13 



Note 

Note 

2·14 AFI Theory of Operation 

Q)(g) ~ ~ C9 ~ 
~ ~ ~ t t t 

I I 
PDIR I I I 

PCTL 
! i 

I PFLG 
I 

i 
i I I ! 

Data ! 1< * ! I ><1 HEND ..-I ! ! i PEND I I I ! ! 
Figure 2·7. Output FULL_SLAVE Handshake 

The FULL..8LAVE output handshake has the following signal 
sequence: 

1. External device asserts PFLG 
2. Device adapter asserts PDIR (write request) 
3. Device adapter asserts PCTL 
4. External device deasserts PFLG 
5. Device adapter deasserts PCTL 

Steps 1 through 5 above are repeated until last word is to be 
transferred. The last word transfer sequence is as follows: 

1. External device asserts PFLG 
2. PDIR remains asserted 

2.1. Device adapter asserts REND (low) 

3. Device adapter asserts PCTL 
4. External device deasserts PFLG 
5. Device adapter deasserts PCTL 

r-

Steps 1 above could occur after steps 2 above, but before steps 3 
above, for output FULL_SLAVE handshake. 

PEND may be asserted by the external device if it has received the 
required data. If PEND is asserted low prior to the device adapter 
asserting PCTL, the transfer does not take place. 

The PEND_OPT-EN flag must be asserted for the device adapter to 
recognize the PEND signal from the external device. 

If the PEND_OPT-EN flag is deasserted and the device adapter has 
more data to send after PEND has been asserted by the external 
device, the device adapter will wait until the external device accepts 
all the data or a timeout occurs. 



Interrupt Propagation 

Note 

Note 

The ATTN (attention) signal is an asynchronous interrupt from 
the external device. Enabling and disabling interrupts enable 
or disable the device adapter to acknowledge the ATTN signal 
on the frontplane. Interrupts are enabled and disabled with the 
GPIO..8IGNAL..MASK function. While interrupts are enabled, the 
ATTN signal is reflected in STS[5]. 

Enabling interrupts limits the number of status lines available. If 
the PEND_OPT-EN flag is asserted, reflecting the PEND signal in 
STS[4], and interrupts are enabled, the number of status lines are 
limited to 4, STS[3:0] respectively. If the PEND_OPT-EN flag is 
deasserted and interrupts are enabled, the number of status lines are 
limited to 5, STS[4:0] respectively. 

For the AFI device adapter, the only front plane interrupt possible 
is the assertion of ATTN by the external device that propagates 
through the AFI device adapter, backplane, gpioO device driver, and 
finally sent to the process as a SIGEMT signal. Figure 2-8 illustrates 
the propagation of the interrupt from the external device to the 
process. The interrupt signal propagation occurs independently of 
the handshaking and data transfer operations on the AFI device 
adapter. 

HP 9000 --- ----HP:.-UX------ Series 800 

API DevIoe Ad.pter 

____________________ J 

backp...... mlclplane. frontpl .... 

• • 

• 
• 
• 
• 
• 
• 
• 

- - - -:-..; - - - - -i4-----t 

: ATTN 

External 
Device 

Figure 2·8. External Device Interrupt Propagation Process 

If interrupts are enabled you should use the signal system call to 
trap the SIGEMT signal sent by the gpioO device driver. The signal 
system call is described.in section 2 of the HP-UX Reference Manual. 

AFI Theory of Operation 2·15 



Exclusive Access 

2·16 AFI Theory of Operation 

To guarantee exclusive access to the device adapter it must be 
locked. When a process locks the device adapter, all subsequent 
requests are denied and the requesting processes are suspended until 
the device adapter is unlocked or until the timeout value of the 
requesting process is reached. When a device adapter is unlocked and 
there are suspended processes waiting on the device adapter, these 
processes simultaneously wake up to resubmit their lock request. 
Only one process is given permission to lock the device adapter and 
subsequent requests to lock the device adapter are suspended again. 
There is no method for determining which process, of many awakened 
from a suspended state, is permitted to lock the device adapter next. 

A process may open the device adapter several times, thus creating 
several file descriptors. A process may also lock a device adapter 
several times without unlocking it between lock requests. Multiple 
open and lock sequences affect the lock counters value returned upon 
a successful lock request. 

The device driver increments two types of lock counters upon a 
successful lock: 

• a per-device adapter counter 

The per-device adapter lock counter increments each 
time a particular process locks the device adapter. 

• a per-open counter 

A per-open lock counter is kept for each file descriptor 
created by the open system call. The per-open counter associated 
with a particular file descriptor increments in addition 
to the per-device adapter counter. 

For processes that use system calls, a per-open counter is 
uniquely identified for each pid and file descriptor combination. 



Transferring Data 

Note 

For example, Table 2-2 displays the counter values as a particular 
sequence of open and lock requests are initiated. 

Table 2·2. Lock Counters Example 

Sequence Per-Device Adapter Per-Open Counter Per-Open Counter 
of Calls Counter £d(A) fd(B) 

open (fd A) 0 0 0 

lock (fd A) 1 1 0 

lock (fd A) 2 2 0 

open (fd B) 2 2 0 

lock (fd B) 3 2 1 

Upon completion of a successful lock the per-open counter associated 
with the particular file descriptor is returned in arg[l] and the 
current per-device adapter counter is returned in arg[2]. 

Both counters decrement on an GPIO..LOCK, 
UNLOCK-INTERFACE request. The GPIO..LOCK, 
CLEAR..ALL..LOCKS request resets the per-device adapter counter 
and the associated per-open counter( s) to zero. 

Transfer data with the read and write HP-UX system calls. The 
read and write system calls are described in section 2 of the HP-UX 
Reference Manual. 

Before you attempt to read or write to any device adapter, you 
should lock the device adapter to ensure exclusive access. 

The gpioO device driver logically changes on-board register 
configuration depending on the direction of data transfer. The second 
part of this section discusses two register configurations for a device 
adapter read and write data transfers. 

AFI Theory of Operation 2·17 



Register Configuration The on-board logical register configuration changes upon a read 
or write request. Table 2-3 lists the register number and the 
associated functionality upon a read or write data transfer. Figure 
2-9 illustrates the AFI device adapter registers on the bus. 

Table 2·3. Register Configuration 

Register 
Number Read Write 

0 input data output data 

1 CIO sense reg CIO control reg 

3 CIO ID reg (not used) 

7 device adapter status reg device adapter control 

9 CIO status reg (not used) 

A transfer counter transfer counter 

B transfer counter transfer counter and device adapter control 

r----------------------------------------------------------l 

~ 0246 Q ~ ~ b;J i 

I-'----~___I~~~-~~~~l[ I 
L ______________________________________________________ ---l 

Figure 2·9. Registers on the Data Bus 

2·18 AFI Theory of Operation 



Read Configuration of The read resisters contain the following information: 

Registers Register 

Note 

0: input data register. The CIO bus reads a data 
word from this register. 

1: CIO SENSE register. This register contains the 
interrupt pending signal bit, ARQ, and the 
interrupt enable signal bit ARE. 

3: CIO ID register. This register contains the 
interface ID and revision number. 

7: device adapter status register. This register 
contains the six status bits, the handshaking 
signal bits, and FIFO status. FIFO status 
indicates: if data exists in the FIFO and 
if there is room for more data, count of 
remaining space for data, PEND, HEND, ATTN, 
and ZERO signals. 

9: CIO status register. This register contains a 
set value to be read to clear the ARQ bit. 

A: transfer counter register. This register contains 
the low and middle bytes of the transfer counter. 

B: transfer counter register. This register contains 
the high byte of the transfer counter. 

The transfer counter is 3 bytes long. Register A contains the middle 
and lower bytes of the transfer counter while Register B contains the 
upper byte of the transfer counter. The lower byte of the B Register 
is not used for a read request. 

The following diagrams show the bit values of each of the read 
registers. 

AFI Theory of Operation 2·19 



ffi M 0 ~ n ro 9 8 
:---------r---------r---------r--------l---------r--------l---------i---------~ 

1 DATA : DATA : DATA : DATA : DATA : DATA : DATA : DATA ! 
: I I I 1 I 1 : . _________________________________________________________________ 1 _________ 1 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------T---------r--------T---------l---------: 

l~:~:~:~:~:~:~:~! 
l _________ L ________ J _________ J _________ l _________ L ________ 1 _________ 1 _________ : 

Figure 2-10. Read Register 0: Input Data 

15 14 13 12 11 10 9 8 
:---------r---------r---------r--------l---------r--------l---------i---------~ 

: I I I I I I I l 
: 0 I 0 I 0 I 0 I 0 1 0 1 0 I 0 : 
: I I I 1 I 1 : . _________________________________________________________________ 1 _________ 1 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------T---------r--------T---------I---------: 

1 1 : 1 : 0 : 0 : 1 : ARE: 0 : ARQ ! 
l _________ L ________ J _________ J _________ l _________ L ________ 1 _________ 1 _________ : 

Figure 2-11. Read Register 1: CIO Sense 

15 14 13 12 11 10 9 8 
~--------r----~----r---------r--------l---------r--------l---------l---------~ 

l I I I I I I I l 
: 0 I 0 I 0 I 0 I 0 I RV2 I RV1 I RVO : 
: I I I I I I : . ___________________________________________________________________ 1 _________ 1 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------T---------r--------T---------I---------: 
l 0 10 11 I 0 I 0 10 1 0 10 l 
: I I I I I I I : 
• L I I L • : _____________________________________ 1 _________________ 1 _________ 1 _________ : 

Figure 2-12. Read Register 3: CIO ID 

2-20 AFI Theory of Operation 



15 14 13 12 11 10 9 a 
:---------r---------r---------r--------,---------r--------,---------1---------1 
1 I I I I I STS5 I STS4 I 1 
: HF I AEF I PEND I ATTN I ZERO I (ATTN) I (PEND) I STS3 : l _________ L ________ J _________ J _________ l _________ L ________ l _________ l _________ ! 

7 6 5 4 3 2 1 0 
:---------r--------1---------1---------1---------r--------1---------1---------: 

i PCTL : PFLG: OR : IR : HEND : STS2 : STS1 : STSO i 
L ________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2-13. Read Register 7: Device Adapter Status 

~ M 0 ~ fl m 9 8 
:---------r---------r---------r--------,---------r--------,---------1---------1 
: I I I I I I I 1 

: 0 I 0 I 0 I 0 I 0 1 0 1 0 I 0 : 
: _________ L ________ J _________ J _________ 1 _________ L ________ l _________ l _________ ! 

7 6 5 4 3 2 1 0 
:---------r--------1---------1---------1---------r--------1---------1---------: 
1 0 10 10 11 10 10 1 0 10 : 
: I I I I I I I : : _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2-14. Read Register 9: CIO Status 

15 14 13 12 11 10 9 a 
r--------r---------r---------r--------,---------r--------,---------1---------1 
: I I I I I I I : 
: TC15 I TC14 I TC13 I TC12 I TC11 I TC10 I TC9 I Tca : 
: _________ L ________ J _________ J _________ 1 _________ L ________ l _________ l _________ ! 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------T---------r--------1---------1---------: 

1~1~1~1~1~1~1 wl~l 
: _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2-15. Read Register A: Transfer Counter 

AFI Theory of Operation 2-21 



ffi M a ~ n ID 9 8 
:---------r---------r---------r--------l---------r--------l---------i---------~ 

: I I I I I I I : 
: TC23 I TC22 I TC21 I TC20 I TC19 I TC18 I TC17 I TC16 : 
: _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------T---------r--------1---------T---------: 
: 0 I 0 I 0 I 0 I 0 10 1 0 I 0 l 
: I I I I I I I : 
: _________ L _________ '- ________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2·16. Read Register B: Transfer Counter 

Write Configuration of The write resisters contain the following information: 

Registers Register 

Note 

2·22 AFI Theory of Operation 

0: output data register. This register contains a 
data word to be put into the FIFO and ultimately 
put on the device adapter frontplane data lines 
for the external device. 

1: CIO control register. This register contains the 
DeL, DEN, ARE, and ARD bit values. 

7: Device Adapter control register. This register 
contains the six control bits and other 
internal values. 

A: transfer counter register. This register contains 
the low and middle bytes of the transfer counter. 

B: transfer counter register. This register contains 
the high byte of the transfer counter, bits to 
define the handshake mode, PDIR_OPT-EN bit, the 
interrupt enable bit, counter reset bit, and the 
PEND reset bits. 

The transfer counter is 3 bytes long. Register A contains the middle 
and lower bytes of the transfer counter while Register B contains 
the upper byte of the transfer counter and device adapter control 
information. 

The following diagr~ms show the bit values of each of the write 
registers. 



ffi M 0 ~ ~ ro 9 8 
:---------r---------r---------r--------,---------r--------,---------i---------~ 

: I I I I I I I : 
!~I~I~I~I~I~I~I~: 
! _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

7 6 5 4 3 2 1 0 
:---------r--------1---------1---------r---------r--------T---------j---------: 
: I I I I I I I : 
!~I~I~I~I~I~I~I~: l _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2·17. Write Register 0: Output Data 

15 14 13 12 11 10 9 8 
:---------r---------r---------r--------,---------r--------'---------i---------~ 

! I I I I I I I ! 
: x I x I x I x I x I x I x I x : ! _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

7 6 5 4 3 2 1 0 
:---------r--------1---------1---------T---------r--------T-------~-j---------: 

j x : x : DCl : DEN : x : x : ARE : ARD j 
: _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2·18. Write Register 1: CIO Control 

ffi M 0 ~ ~ ro 9 8 
I---------r---------r---------r--------,---------r--------,-------------------: : cr~ cru I I 

: x I PNDD I ZROD I X I lCNT I or I or I CTl3 ! 
: I I I I I (PDIR) I (HEND) I : : _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

7 6 5 4 3 2 1 0 
:---------r--------1---------1---------T---------r--------T---------j---------: 
: PREN I PDIR I EDGE I ClF I PEN I CTl2 I CTl1 I CTlO : 
: I I I I I I I : : _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2·19. Write Register 7: Device Adapter Control 

AFI Theory of Operation 2·23 



2·24 AFI Theory of Operation 

~ M a ~ fl ID 9 8 
:---------r---------r---------r--------l---------r--------l---------l---------~ 

: I I I I I I I : 
:~I~I~I~I~I~I~I~: ! _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------r---------r--------1---------1---------: 

1 TC7 : TC6 : TC5 : TC4 : TC3 : TC2: TC1 : TCO 1 
: _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2·20. Write Register A: Transfer Counter 

15 14 13 12 11 10 9 8 
:---------r---------r---------r--------,---------r--------l---------l---------~ 

: I I I I I I I : 
: TC23 I TC22 I TC21 I TC20 I TC19 I TC18 I TC17 I TC16 : 
: I I J I I I : 1 __________________________________________________________________ 1 _________ 1 

7 6 5 4 3 2 1 0 
:---------r--------l---------l---------r---------r---~----1---------1---------: 

1 ATEN : OREN : CNTR : PENR: x : MODE2: MODE1: MODEO 1 

: _________ L ________ J _________ J _________ 1 _________ L ________ 1 _________ 1 _________ : 

Figure 2·21. 
Write Register B: Transfer Counter and Device Adapter Control 



3 
Using the AFI Device Adapter 

Device I/O Library 
Interface 

There are two methods for accessing the AFI device driver, gpioO: 

1. Calling Device I/O Library (DIL) subroutines to interface with 
the driver. 

2. Interacting with the driver directly. 

The Device I/O Library (DIL) is a set of user accessible subroutines 
that simplify the interface between user written code and a device 
adapter. You must programmatically include the header file gpio.h 
to define the structures needed to talk to the AFI device adapter. 
The header file links are created with the C language #include 
statement. The DIL is locat'ed in the /usr/lib/libdvio. a library. 
Once written, compile the program and interactively link it to the 
DIL by entering: 

cc filename. c -ldvio 

Figure 3-1 shows the user access path to the AFI driver through the 
DIL. 

HP-UX Operating System 

Include 
Files 

1-----1 
I I 

I=--=--i 
i=--=~ 
:gp~~~ -=--_r .... 

Library 
Programs \ 1----- C?>.~\ 
,D.I.L.,~ ~ I=--i Unk~ 
j==--=--l 
'=--=--1 
'=--=--1 
j==--=--l 
I I 1 ___ ----1 

B 

User Applications 

i-Prog~~~ 
L ___ ----! 

Driver Driver Driver 
;--- - r--

Other Other Other 
Card Card Card 

'---- '---- '----

Figure 3-1. User Program Access Path Through OIL to Driver 

Using the AFI Device Adapter 3-1 



DIL Capabilities and 
Limitations 

For further information on using the DIL to access the AFI device 
driver, see the Concepts and Tutorials: Device I/O and User 
Interfacing. 

While the DIL provides a common interface to communicate with 
device adapters, it does not allow configuration of all the AFI device 
adapter features. 

You can use the DIL subroutines to: 

• Lock and unlock the device adapter 

• Reset the device adapter 

• Set a timeout for transactions 

• Set data path width 

• Enable or disable interrupts 

• Set the control lines 

• Return the status lines value 

You cannot use the DIL subroutines to: 

• Set the edge logic sense of PFLG 

• Select handshake mode. 

• Enable transfer counter 

• Enable PDIR and HEND flags for the external device 

• Enable PEND flag value in status line 

• Return process id and per-device adapter counter of a locked 
process 

• Return the timeout value 

• Return the data path width value 

• Return the reason for the last interrupt 

• Return device adapter specific information 

• Return multiple status values in one call 

• Return the configuration mask containing: 

o logic sense of PFLG 

o current handshake mode 

o transfer counter configuration 

o PDIR and HEND signals configuration 

o PEND signal configuration 

3·2 Using the AFI Device Adapter 



Direct Device Driver 
Interface 

There are several steps to using the AFI device adapter: 

1. Creating the device file 

2. Accessing and releasing the device adapter 

3. Configuring the device adapter operation 

4. Transferring data 

5. Requesting device adapter status information 

Figure 3-2 shows the user access path to the AFI driver directly. 

HP-UX Operating System 

Include 
Files ,-----, 

1=--=--, 
j=-~-~ #include 
,gplo.h: 
~;;ry~ 
Programs r----' ,D.I.L. I 

i=--=--i 
1=--=--, 
1=--=--, 
1=--=--, 
1=--=--, 
I I ,----! 

User Applications 

Driver Driver 
r---

§ Other 
Card Card 

-

i-prog~~~ 
!...-----! 

Driver 

§ Card 

Figure 3·2. User Program Access Path Direct to Driver 

Creating the Device File The first step in accessing the AFI device adapter is to create a 
device file. This file modifies the original configuration file created 
when the computer system was installed. Create a file named gpioO 
in the I dev directory with the mknod, make node, command. The 
mknod command description is found in section 1M of the the 
HP- UX Reference Manual. For example, the following command 
specifies the filename to be created, character type device, the major 
number of 22, and the minor number of O~ 

1. mknod I dev I gpioO c 22 OxO 

USing the AFI Device Adapter 3·3 



Accessing the Device 
Adapter 

Note 

For multiple AFI device adapters and AFI device adapter-to-AFI 
device adapter communication, the minor number must be changed 
for each device file. All the examples in this manual assume you have 
created a device file named / dev / gpioO. Refer to the HP 9000 Series 
800: System Administration Tasks Manual for specifics on creating 
device files. 

The second step in accessing the AFI device adapter is to 
communicate with'the device adapter via the logically associated 
device file. The HP -UX operating system treats devices as files using 
the open system call on the device files to gain and release access 
respectively. The open call returns the file descriptor (fd) as an 
integer that uniquely identifies the device adapter to the process. 
All operations on a particular device adapter must specify the fd 
value. The open system call is described in section 2 of the HP- UX 
Reference Manual. The open system call syntax is as follows: 

int fd, oflag; 
char *path; 
fd = open(path,oflag); 

where: 
fd 
path 
oflag 

file descriptor 
specifies the device file to be opened 
specifies the access mode 
OJtDONLY for reading only 
O_WRONLY for writing only 
OJtDWR for reading and writing 

For example, the following open call opens the device file for reading 
and writing to the device adapter. 

int fd, of lag; 
char *path; 
fd = open(lI/dev/gpio ll ,O_RDWR); 

If you do not want the process to suspend upon a lock request to a 
currently locked device adapter, the 0 ~D ELAY flag must be set in 
the open call. The O~DELAY file status flag is set in the open call 
by Oiling this flag with the access mode. For example, the following 
open call sets the O~DELAY flag: 

oflag = O_NDELAY I O_RDWR; 
fd = open(path,oflag); 

Executing an open call does not guarantee exclusive access to the 
device adapter. The device adapter must be locked if you require 
exclusive access; see the "Locking the Device Adapter" section of this 
chapter. 

3·4 Using the AFI Device Adapter 



Releasing the Device 
Adapter 

Configuring the Device 
Adapter 

After you have finished your I/O operations, use the close system 
call to release access to the device adapter. The close system call is 
described in section 2 of the HP- UX Reference Manual. The close 
system call syntax is as follows: 

int fd; 
close(fd); 

where: 
fd identifies the device adapter 

file descriptor you wish to release. 

Use the ioctZ system call to configure device adapter attributes. The 
ioctl system call is described in section 2 of the HP- UX Reference 
M anuaZ. The ioctZ system call syntax is as follows: 

int ret_val, fd, OP_CATGRY; 
struct io_ctl_status *OP_STRUCT; 
ret_val = ioctl(fd, OP_CATGRY, OP_STRUCT); 

where: 
ret_val 

fd 

the status value returned after 
the operation request. 
o = successful operation 

-1 = failure 

integer value that uniquely identifies 
the device adapter you wish to operate. 

OP _CATGRY specifies operation category (status or control). 

OP ..8TRUCT is the data structure associated with 
the specified OP _CATGRY. 

If the ioctl fails, indicated by a -1 value in ret_val, you can use the 
errno system call function to return a code indicating the reason for 
the failure. Refer to Appendix A for a list of possible errno return 
values. The errno system call is described in' section 2 of the HP- UX 
Reference ManuaZ. 

Using the AFI Device Adapter 3-5 



AFI device adapter ioctl operations are specified in the OP _CATGRY 
parameter and separated into three categories: 

• IO_CONTROL. These operations pass various configuration 
parameters to the device adapter. The 10_CONTROL structure 
includes the following fields: 

struct io_ctl_status 
{ 

int type; 1 * control request command* 1 
int arg[3];I*parameters to be passed*1 
} gpio_control; 

.• IO_STATUS. These operations request status information on a single 
device adapter parameter. See the "Requesting Device Adapter 
Status Information" section of this chapter. The 10-STATUS 
structure includes the following fields: 

struct io_ctl_status 
{ 

int type; I*status request command*1 
int arg[3];I*parameter to be received*1 
} gpio_status; 

• IO_ENVIRONMENT. This operation requests information on 
several device adapter parameters and returns their values in 
one structure. See the "Requesting Device Adapter Status 
Information" section of this chapter. The 10 ..ENVIRO NMENT 
structure includes the following fields: 

struct io_environment 
{ 

int interface_type 
int timeout; 

1* status of lines STS[5:0]*1 
int status; 

1* reason for last interrupt *1 
int signal_mask; 

1* data path width *1 
int width; 

1* locking process id *1 
int locking_pid; 

I*from GPIO_SET_CONFIG *1 
unsigned int config_mask; 
} gpio_env; 

The type field of the control and status structures tell the driver the 
particular configuration request or status request to perform. The 
. arg field of the control and status structures. contains a set of three 
integer parameters. 

Each ioctl system call passes.the configuration or status request and 
the associated structure containing parameters to the gpioO device 
driver. 

3·6 Using the AFI Device Adapter 



Note 

The header file gpio.h defines the io.£tLstatus and the 
io..environment structures in addition to the IO_CONTROL, 
IO_STATUS, and IO..ENVIRONMENT variables. 

Recommended Configuration Procedure 

The IO_CONTROL configurations should be performed in the 
following sequence after successfully opening the appropriate device 
file: 

It is recommended that you request the current configuration values 
with GPIO_GET_CONFIG and preserve them before reconfiguring 
new values. 

1. Lock the device adapter (GPIO..LOCK) 

2. Reset the device adapter (GPIO..RESET) 

3. Set the timeout value for transactions (GPIO_TIMEOUT) * (Jel( opeN 

4. Set the data path width value (GPIO_WIDTH) 

5. Set additional configuration values (GPIO-SET_CONFIG) 

set logic sense of PFLG 
set handshake mode 
enable data transfer counter 
enable PDIR and HEND flags for external device 
enable PEND flag in a status line, STS[4] 

6. Enable or disable interrupts (GPIO-SIGNAL..MASK) 

7. Set the control lines value (GPIO_CTL..LINES) 

Using the AFI Device Adapter 3· 7 



Note 

Note 

AFI configurable attributes are classified into two groups: 

1. Per-device adapter 

The per-devIce adapter configurations affect all file descriptors 
associated with a particular device adapter. 

2. Per-open 

The per-open configurations affect only the file descriptor 
initiating the request. 

The per-open configurations are noted in the above recommended 
configuration procedure by an appended asterisk '*'. The remaining 
configurations are per-device adapter requests. 

The IOJ)TATUS requests have no specific order to be performed 
except before GPIO..8ET_CONFIG if prior configuration values are 
to be preserved. 

For all of the programmatic examples that follow, the parameters 
IO_CONTROL, IOJ)TATUS, and IO_ENVIRONMENT are defined 
in the gpio.h header file that you should include in your program. 

3·8 Using the AFI Device Adapter 



Locking the Device Adapter 

The GPIQ..LOCK function locks or unlocks the device adapter. Once 
locked, only the locking process can write to or read from the device 
adapter. Any other process may open the device adapter, but trying 
to write to or read from the locked device adapter will suspend the 
process until the lock is removed or until a timeout occurs. However, 
if the O~DELAY file flag is set, a process will not suspend if the 
device adapter is currently locked. Instead, the "device adapter 
currently locked" value, EACCESS, is returned in ret_val and the 
process resumes execution. 

The O~DELAY file flag is set during the open system call, see 
the "Accessing and Releasing the Device Adapter" section of this 
chapter. 

A per-device adapter counter and a per-open counter increment upon 
a successful lock. For clarification of these counters see Chapter 
2 of this manual. Both counters decrement on an GPIO..LOCK, 
UNLOCK.1NTERFACE function request. The GPIO..LOCK, 
CLEAR-ALL..LOCKS function resets the counters to zero. When the 
count is zero, any process can access the device adapter. Parameters 
passed to lock and unlock the device adapter: 

type 
arg[O] 

arg[2:1] 

GPIO..LOCK 
LOCK.1NTERFACE or 
UNLOCK.1NTERFACEor 
CLEAR-ALL..LOCKS 
not used 

Parameters returned from a successful GPIO..LOCK function: 

arg[O] 
arg[l] 
arg[2] 

not used 
value of the per-open counter 
value of the per-device adapter counter 

For example, to lock a device adapter: 

int fd; 
struct io_ctl_status gpio_control; 
gpio_control.type = GPIO_LOCK; 

1* lock device adapter *1 
gpio_control.arg[O] = LOCK_INTERFACE; 
ret_val = ioctl(fd, IO_CONTROL, tgpio_control); 

Using the AFI Device Adapter 3·9 



ReseHing the Device Adapter 

The GPIO..RESET function resets all hardware and hardware related 
software device adapter settings to their default values. Table 3-1 
lists the power up and reset default values. 

Table 3·1. Power Up and Reset Configuration values 

Attribute Power Up Value 

Timeout 1 hour 

Interrupt Deasserted 

Locking locks clear 

Control lines 000000 

Data path width 16 bits 

EDGE-LOGIC-SENSE Deasserted 

Handshake mode FIFO-MASTER 

TRNSFR-CTR..EN Deasserted 

PDIR_OPT _EN Asserted 

PEND_OPT..EN Deasserted 

Data path value unknown 

PDIR (direction) Deasserted -read 

Parameters passed to reset the device adapter: 

arg[O] 
arg[2:1] 

HW_CLR 
not used 

Reset Value 

unaltered 

Deasserted 

unaltered 

000000 

unaltered 

Deasserted 

FIFO-MASTER 

Deasserted 

Asserted 

Deasserted 

value unknown 

Deasserted -read 

GPIO..RESET does not return parameters to the calling process. 

For example, to reset the device adapter: 

3·10 Using the AFI Device Adapter 

int fd; 
struct io~ctl_status gpio_control; 
gpio_control.type = GPIO_RESET; 
gpio_control.arg[O] = HW_CLR; 
ret_val = ioctl(fd, IO_CONTROL, &gpio_control); 



Setting the nmeout value 

The GPIO_TIMEOUT function sets the software timeout value for a 
transaction. Any DMA activity lasting longer than the time defined 
in arg[O] microseconds (p,) seconds will abort and return a status of 
ETIMEDOUT in ret_val. Parameters passed to set the timeout 
value: 

type 
arg[O] 

GPIO_TIMEOUT 
number of microseconds before a timeout occurs. 
(default 1 hour) 

[2:1] not used 

The arg[O] value is rounded up to the next 10 p, seconds. 
GPIO_TIMEOUT does not return parameters to the calling process. 

For example, to set the timeout to 1 second: 

int fd; 
struct io_ctl_status gpio_control; 
gpio_control.type = GPIO_TlMEOUT; 

1* one second *1 
gpio_control.arg[O] = 1000000; 
ret_val = ioctl(fd, IO_CONTROL, &gpio_control); 

Setting the Data Path Width value 

The GPIO_WIDTH function sets the width of the device adapter 
data path. The value of arg[O] must be either 8 or 16. H the width 
is 16, the transfer length and the buffer address specified in the read 
or write must be even because each transaction involves two bytes, 
otherwise, the error code EFAULT is returned in ret_val. These 
restrictions are based on hardware limitations of the channel adapter. 
Parameters passed to set the data path width: 

type 
arg[O] 

arg[2:1] 

GPIO_WIDTH 
data path width (8 or 16) 
(default 16) 
not used 

GPIO_WIDTH does not return parameters to the calling process. 

For example, to set the data path width: 

int fd; 
struct io_ctl_status gpio_control; 
gpio_control.type = GPIO_WIDTH; 

1* data path is 16 bits vide *1 
gpio_control.arg[O] = 16; 
ret_val = ioctl(fd, IO_CONTROL, &gpio_control); 

Using the AFI Device Adapter 3·11 



Note 

Setting Additional Configuration values 

The GPIOJ)ET_CONFIG function is used to: 

• set the logic sense of PFLG 

• set the handshaking modes 

• enable and disable the transfer counter 

• enable control lines CTL[5:4] for PDIR and REND signals 

• enable status line STS[4] to reflect the PEND signal 

The configuration of these attributes is accomplished by bitwise 
ORing a list of flags to pass' in the arg[O] parameter. 

Each GPIO_SET _CONFIG function overwrites the previous 
configuration. To retrieve the old configuration use the IO_STATUS, 
GPIO_GET_CONFIG request combination. 

Parameters passed to set the flag values of GPIO_SET_CONFIG: 

type GPIO-SET _CONFIG 
arg[O] flag mask - result of ~Ring the flag values together 
arg[2:1] not used 

GPIO-SET_CONFIG does not return parameters to the calling 
process. 

Setting the Logic Sense of PFLG. The GPIO_SET_CONFIG function 
configures the edge logic sense of the PFLG signal from the external 
device by asserting or deasserting the EDGE..LOGIC-SENSE flag. 

The deassertion of EDGE..LOGIC_SENSE flag, the default, has the 
following affects on the handshaking modes: 

• FIFO ..MASTER. The rising edge of PFLG triggers the data 
transfer. 

• FULL..MASTER. The stabilization of the transitioning PFLG to a 
high (5 V) state triggers the data transfer. 

• FULL_SLAVE. The stabilization of the transitioning PFLG to a 
high (5 V) state initiates the handshake sequence. 

The assertion of EDGE.LOGIC_SENSE has the following affects on 
the handshaking modes: 

• FIFO..MASTER. The falling edge of PFLG triggers the data 
transfer. 

• FULL..MASTER. The stabilization of the transitioning PFLG to a 
low (0 V) state triggers the data transfer. 

• FULL_SLAVE. The stabilization of the transitioning .PFLG to a 
low (0 V) state initiates the handshake sequence. 

3·12 Using the AFI Device Adapter 



Note 

Note 

SeUlng the Handshake Mode. The GPIO..sET _CONFIG function sets 
the handshake mode. The handshake mode is device dependent. The 
possible handshake mode flags are: 

• FIFO..MASTER (default) 

• FULL..MASTER 

• SLAVE..MASTER 

The HP 27114A PULSE.JIANDSHAKE..MODE has been renamed 
FIFO..MASTER. Although the operation is identical, the "FIFO" 
name better describes the handshake. 

See Chapter 2 for timing diagrams and clarification of the three 
handshake modes. 

Enabling the Data Transfer Counter. The GPIO..sET _CONFIG 
function enables the data transfer counter by asserting the 
TRNSFR_CTR-EN flag. The transfer counter monitors the number 
of words put in the 66 word FIFO buffer. This ensures the device 
adapter only accepts the requested amount of data into the FIFO 
and transferred. Default is TRNSFR_CTR-EN deasserted. 

Enabling the transfer counter is recommended. 

Enabling the PDIR and HEND Signals for the External Device. The 
GPIO_SET _CONFIG function enables control lines 5 and 6, 
CTL[5:4], to reflect the current values of the PDIR and REND 
signals respectively by asserting the PDIR_OPT -EN flag. Default is 
PDIR_OPT-EN flag asserted. 

Enabling PEND Signal in Status Line. The GPIO..sET_CONFIG 
function enables the PEND signal to be reflected in status 
line 5, STS[4], by asserting the PEND_OPT-EN flag. Default 
is PEND_OPT -EN flag deasserted and STS[4] reflects status 
information. 

GPIO_SET _CONFIG Example. Suppose the following configurations: 

• set the falling edge of PFLG to trigger data transfer 

• set the handshake mode to FULL..MASTER 

• enable the transfer counter 

• enable PDIR and HEND values on the control lines, CTL[5:4] 

• enable device adapter to recognize the PEND signal in STS[4] 

The following example performs the above configurations: 

Using the AFI Device Adapter 3·13 



Note 

int fd; 
struct io_ctl_status gpio_control; 
gpio_control.type = GPIO_SET_CONFIG; 
gpio_control.arg[O] = (EDGE_LOGIC_SENSE I FULL_MASTER I 

TRNSFR_CTR_EN I PDIR_OPT_EN 
PEND_OPT_EN) 

ret_val = ioctl(fd, 10_CONTROL, agpio_control); 

Enabling and Disabling External Device Interrupts 

The GPIO..8IGNAL-MASK function enables and disables the ability 
of the device adapter to assert the backplane ARQ signal ARQ after 
the external device signal, ATTN, is detected. The ATTN signal is 
the only external interrupt that can cause the AFI device adapter 
to request the gpioO device adapter to send the SIGEMT signal to 
your executing process. You should write your code to trap the 
SIGEMT signal with the signal system call to diagnose the source of 
the interrupt. Parameters passed to enable the interrupt: 

type 
arg[O] 

arg[2:1] 

GPIO..8IGNAL-MASK 
ST-ARQ2 (ATTN) 

(default interrupts disabled) 
not used 

GPIO_SIGNAL-MASK does not return parameters to the calling 
process. 

For example, to enable the interrupt: 

int fd; 
struct io_ctl_status gpio_control; 
gpio_control.type = GPIO_SIGNAL_MASK; 
gpio_control.arg[O] = ST_ARQ2; 
ret_val = ioctl(fd, 10_CONTROL, agpio_control); 

After a SIGEMT signal is received, you must re-enable the interrupt 
with the GPIO_SIGNAL..MASK function to receive more interrupt 
signals. 

3-14 Using the AFI Device Adapter 



Note 

SeDlng the Control Line Yalues 

The GPIO_CTL-LINES function sets or clears the six control line 
outputs on the AFI device adapter frontplane. You accomplish this 
by using the complement of a number whose binary representation 
yields the bit pattern that reflects the control line states required. 
For instance, the bit pattern 010110 equals 16 hexidecimal (Ox016) 
and would drive the frontplane lines: CTL[O] high (5 V), CTL[1:2] 
low (0 V), CTL[3] high, CTL[4] low, and CTL[5] high. There is an 
inversion between the software and the hardware domains. 

Parameters passed to configure the control lines: 

type 
arg[O] 

arg[2:1] 

GPIO_CTL-LINES 
value of control lines in decimal, 
binary, octal, or hexidecimal (default value 0) 
not used 

GPIO..8IGNAL-MASK does not return parameters to the calling 
process. 

For example, to set the six control lines to 110011: 

int fd; 
struct io_ctl_status gpio_control; 
gpio_control.type = GPIO_CTL_LINES; 
1* set software flag 001100 to reflect *1 
1* 110011 on the frontplane control lines *1 

gpio_control.arg[O] = Ox016; 
ret_val = ioctl(fd, IO_CONTROL, igpio_control); 

Control lines 5 and 6, CTL[5:4], are not user configurable if 
PDIR_OPT-EN flag is asserted. Instead, CTL[5:4] will contain the 
PDIR and REND signals respectively. 

Using the AFI Device Adapter 3·15 



Transferring Data After the device file is open and the device adapter configurations are 
set, the read and write system calls transfer the data to or from the 
device adapter. In the following example, the program has previously 
declared fd, length, NUDl_Bytes_ Trans as integers and the character 
arrays inbuf and outbuf. The variable length holds the number of 
bytes to transfer. 

Note 

if «Num_Bytes_Trans = write(fd,outbuf,length» == -1) 
printf("Error Y.d in data write to device adapter. \n" ,errno); 

if «Num_Bytes_Trans = read(fd,inbuf,length» == -1) 
printf("Error Y.d in data read from file.\n" ,errno); 

The value returned in Num_Bytes_Trans may not equal 
parameter value length when PEND_OPT-EN is asserted and 
TRNSFR_CTR-EN is deasserted. 

If PEND_OPT-EN is asserted and TRNSFR_CTR-EN is 
deasserted then not only could NUDl_Bytes_ Trans not equal 
length but NUDl_Bytes_Trans may be incorrect for a write request. 
Therefore, we recommend to assert the TRNSFR_CTR..EN if the 
PEND_OPT-EN is asserted when requesting to write to the external 
device. 

Requesting Device 
Adapter Status 

Information 

Request device adapter status information by specifying IO_STATUS 
in the OP _CATGRY parameter of the ioctl call. Additionally, the 
status structure passes a parameter in the type field containing the 
particular status request. The returned status values are found in 
one or more of the arg integer array fields. 

The 10_STATUS requests available are: 

• Return the process id and the per-device adapter count of a locked 
device adapter 

• Return the timeout value 

• Return the data width value 

• Return the reason for the last interrupt 

• Return the status lines value 

• . Return device adapter specific information 

• Return multiple status values 

• Return the configuration mask containing: 

o logic sense of PFLG 
o current handshake mode 
o transfer counter configuration 
o PDIR and REND signals configuration 
o PEND signal configuration 

The following sections describe the 10_STATUS requests available. 

3·16 Using the AFI Device Adapter 



Returning the Process Id and Per-Device Adapter Counter of a 
Locked Device Adapter 

The GPIO..LOCK status request returns the pid of the process 
currently locking the specified device adapter and the per-device 
adapter lock count. The type field should contain the value 
GPIO..LOCK to request this status information. H it is not locked, 
the value returned will be -1. For example, to submit a status 
request for a locked device adapter: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_LOCK; 
ret_val = ioctl(fd, IO_STATUS, tgpio_status); 

Parameters returned are: 

arg[O] 

arg[l] 
arg[2] 

process id of the locked AFI 
device adapter or -l. 
per-device adapter lock count. 

not used 

Returning the Timeout Value 

The GPIO_TIMEOUT status request returns the current timeout 
value in microseconds (I') seconds. The type field should contain 
the value GPIO_TIMEOUT to request this status information. For 
example: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_TIMEOUT; 
ret_val = ioctl(fd, IO_STATUS, tgpio_status); 

Parameters returned are: 

arg[O] 
arg[2:1] 

current timeout value in microseconds. 
not used 

A return value of zero means that the timeout will be 1 hour. 

Returning the Data Path Width Value 

The GPIO_WIDTH status request returns the current device 
adapter path width value. The type field should contain the value 
GPIO_WIDTH to request this status information. For example: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_WIDTH; 
ret_val = ioctl(fd, IO_STATUS, tgpio_status); 

Parameters returned are: 

arg[O] 
arg[2:1] 

current data path width, either 8 or 16. 
not used 

Using the AFI Device Adapter 3-17 



Returning Reason for Last Interrupt 

Use the type field value GPIO_SIGRAL_MASK to return the source of 
the last interrupt. For the AFI device adapter, the returned value 
will always be the external interrupt, ST ..ARQ2 Hag or the value 
o (indicating that this AFI did not generate the interrupt). This 
request is useful when multiple AFI device adapters are being used. 
If ST .ARQ2 is returned in the structure, this particular AFI device 
adapter associated with the specified file descriptor generated the 
interrupt. For example: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_SIGNAL_MASK; 
ret_val = ioctl(fd, IO_STATUS, agpio_status); 
if (gpio_status.arg[O] != ST_ARQ) 

printf("no ARQ sent by this device adapter\n"); 

Parameters returned are: 

arg[O] 
arg[2:1] 

ST..ARQ2 or 0 (zero). 
not used 

Returning the Status Line values 

The GPIO..8TS...LINES status request returns the value of the 
six status lines set by the external device. The type field value 
should contain the value GPIO..8TS...LINES to request this status 
information. For example: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_STS_LINES; 
ret_val = ioctl(fd, IO_STATUS, agpio_status); 

Parameters returned are: 

arg[O] is an integer whose binary representation yields 
the current state of each of the six status lines, 
STS[5:0]. The least significant bit is STS[O]. 
Thus, Ox03 (OOOllBIN) would indicate that STS[1:0] 
are both low (0 V), while STS[4:2] are high (5 V) 
due to the hardware inversion that takes place at the 
frontplane. 

arg[2:1] are unused. 

3·18 Using the AFI Device Adapter 



Note 

Returning Device Adapter Specific Information 

The GPIO.1NTERFACE_TYPE status request returns device 
adapter specific identification data: The device adapter id and 
the revision number of the device adapter. The type field should 
contain the value GPIO...INTERFACE_TYPE to request this status 
information. For example: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_INTERFACE_TYPE; 
ret_val = ioctl(fd, IO_STATUS, tgpio_status); 

Parameters returned are: 

arg[O] device adapter identification 
where: 
bits[7:0] = device a.dapter id 

bits[15:8] = device adapter revision number 
bits[31:16] = 0 

arg[2:1] not used 

In the bit descriptions above bit[O] represents the least significant bit. 

Using the AFI Device Adapter 3-19 



Returning MulUple Status Yalues 

This section presents the IO..ENVIRONMENT category request that 
retrieves several of the status variables in one operation. The include 
file <gpio.h> holds the definition of the io-.environment structure. 
The io-.environment structure has the following fields: 

• interface_type 

• timeout 

• status 

• signal..mask 

• width 

• locking_pid 

• config..mask 

Since there is only one function request for this category, there is no 
need to specify the type field value. For example: 

int ret_val,fdj 
struct io_environment gpio_env; 
ret_val = ioctl(fd, IO_ENVIRONMENT, &gpio_env); 

Parameter fields returned in the gpio-.env structure are: 

interface_type is the device adapter revision and id number. 

timeout is the number of microseconds the host will 
wait for device adapter transaction to 
complete. 

status is an integer whose binary representation 
gives the status of each of the six 
status lines STS[5:0]. 

signalJll.ask is the reason for the last interrupt. For 
the AFI device adapter, this will always 
be ST -ARQ2, the external device interrupt 
signal ATTN, or o. 

width is the data path width, always 8 or 16 bits. 

locking_pid is the process id of the process that locked 
the AFI device adapter, or -1 if the device 

adapter is unlocked. 

configJll.ask is the ORed flags bit pattern set by the 
GPIO_SET _CONFIG function. 

3-20 Using the AFI Device Adapter 



Returning the ConfiguraUon Mask 

The GPIO_GET_CONFIG status request returns the current 
configuration mask. This mask is an integer value that is a result of 
the following device adapter configuration flags ORed together: 

• EDGE-LOGIC-SENSE 

• FIFO-MASTER, FULL..MASTER, or FULL-SLAVE 

• TRNSFR_CTR..EN 

• PDIR_OPT..EN 

• PEND_OPT..EN 

These flags represent the following attributes respectively: 

• edge logic sense of PFLG 

• handshaking modes 

• transfer counter enable 

• control lines [5:4] as PDIR and HEND signal values 

• status line [4] as the PEND signal value 

The type field should contain the value GPIO_GET_CONFIG to 
request this status information. 

To extract the current configuration flags from the mask, a series of 
logical AND operations must be performed. The returned mask must 
be ANDed with the flag value you are testing for. If the result of a 
particular AND operation re:O.ects the value of the flag being tested 
for, then the current configuration reflects the assertion of that flag. 
For example, to request the current configuration and test for the 
PDIR_OPT..EN flag asserted: 

int fd; 
struct io_ctl_status gpio_status; 
gpio_status.type = GPIO_GET_CONFlG; 
ret_val = ioctl(fd, lO_STATUS, igpio_status); 

1* test for occurrence of PDlR_OPT_EN flag *1 

if (gpio_status.arg[O] i PDIR_OPT_EN) 
1* then PDlR_OPT_EN flag is asserted *1 

printf("PDlR/HEND signals enable flag set\n"); 

Parameters returned are: 

arg[O] is an integer whose value equals a logical ORing 
of the individual binary codes used for each of 
the configuration flags 

arg[2:1] are not used. 

Using the AFI Device Adapter 3·21 



Programmatic Example The following sample program uses the direct driver interface method 
to request status information and configure a device adapter. The 
program scenario is as follows: 

1. open device adapter 

2. lock device adapter 

3. reset device adapter 

4. set timeout value to 1 second 

5. get revision number 

6. if device adapter is a B product enable the transfer counter, set 
handshaking mode to FULL-SLAVE, and set the PDm_OPT-EN 
flag. 

7. if device adapter is an A product set handshaking mode to 
FULL_SLAVE and set the PDIR_OPT -EN flag 

8. enable interrupts 

9. set control line value 

10. get multiple status (IO-ENVIRONMENT) 

11. check for TRNSFR_CTR-EN flag 

12. check for PDIR_OPT-EN flag 

13. check for specific status line value 

3·22 Using the AFI Device Adapter 



'include </usr/include/sys/gpio.h> 
'include <signal.h> 
'include <ermo.h> 
'include </usr/include/sys/ioctl.h> 
'include <fcntl.h> 
'include <stdio.h> 
'define revB Ox0200 

int ret_val,fd, omode; 
struct io_ctl_status gpio_status, gpio_control; 
struct io_environment gpio_env; 

fd = open("/dev/gpio",omode); 

/* lock the device adapter */ 

gpio_control.type = GPIO_LOCK; 
gpio_control.arg[O] = LOCK_INTERFACE; 
if«ret_val = ioctl(fd, IO_CONTROL, &gpio_control» -- -1; 

printf("Error Y.d in ioctl \n",ermo); 

/* reset the device adapter */ 

gpio_control.type = GPIO_RESET; 
gpio_control.arg[O] = HW_CLR; 
if «ret_val = ioctl(fd, IO_CONTROL, &gpio_control» -- -1; 

printf("Error Y.d in ioctl \n",errno); 

/* set the timeout value to 1 second */ 

gpio_control.type = GPIO_TlMEOUT; 
gpio_control.arg[O] = 1000000; 
if«ret_val = ioctl(fd, IO_CONTROL, &gpio_control» -- -1); 

printf("Error Y.d in ioctl \n",errno); 

/* set the data path width to 8 bits */ 

gpio_control.type = GPIO_WIDTH; 
gpio_control.arg[O] = 8; 
if«ret_val = ioctl(fd, IO_CONTROL, &gpio_control» -- -1); 

printf("Error Y.d in ioctl \n",errno); 

/* get device adapter revision number */ 

gpio_status.type = GPIO_INTERFACE_TYPE; 
if«ret_val = ioctl(fd, IO_STATUS, &gpio_status» -- -1); 

printf("Error Y.d in ioctl \n",errno); 

Using the AFI Device Adapter 3·23 



/* revision number bits are arg[15:8] */ 
/* The 271141 device adapter has 2 revision */ 
/* numbers: 00000000 or 00000001. */ 
/* The 271148 device adapter has revision */ 
/* numbers greater than or equal to 00000010. */ 

/* test for occurrence of the 271148 product */ 

if «gpio_status.arg[O] t Ox0700) >= revB) 

/* You have a 271148 device adapter */ 
/* enable transfer counter feature, */ 
/* set handshake mode to FULL_SLAVE, */ 
/* and enable PDIR and HEND in CTL[6:4]. */ 
gpio_control.arg[O] = (FULL_SLAVE I TRNSFR_CTR_EN I 

PDIR_OPT_EN); 
else 

/* You have an 27114A device adapter */ 
/* do not enable transfer counter feature, */ 
/* set handshake mode to FULL_SLAVE, */ 
/* and enable PDIR and HEND in CTL [6 :4] . */ 

/* set configuration with mask created by */ 
/* ORed flags contained in gpio_control.arg[O].*/ 

if«ret_val = ioctl(fd, IO_CONTROL, agpio_control)) == -1); 
printf("Error Y.d in ioctl \n",ermo); 

/* enable interrupts */ 

gpio_control.type = GPIO_SIGNAL_MASK; 
gpio_control.arg[O] = ST_ARQ2; 
if«ret_val = ioctl(fd, IO_CONTROL, agpio_control)) -- -1); 

printf("Error Y.d in ioctl \n",ermo); 

3·24 Using the AFI Device Adapter 



1* set control lines to reflect 1010, CTL[3:0], *1 
1* on the frontplane by specifying 0101 in the *1 
1* parameters passed to ioctl. *1 

gpio_control.type = GPIO_CTL_LINES; 
gpio_control.arg[O] = Ox0005; 
if«ret_val = ioctl(fd, IO_CONTROL, tgpio_control» -- -1); 

printf("Error Y.d in ioctl \n",errno); 

1* Now you are ready to read or write to the *1 
1* AFI device adapter. Insert read or write *1 
1* statements here. *1 

1* Checking device adapter status. *1 

if«ret_val = ioctl(fd, IO_ENVIRONMENT, tgpio_env» == -1); 
printf("Error Y.d in ioctl \n",errno); 

1* check for occurrence of transfer counter flag *1 
1* THIS CHECK IS ONLY VALID FOR THE 27114B CARD. *1 

if (gpio_env.config_mask t TRNSFR_CTR_EN) 
printf("the transfer counter is enabled\n"); 

else 
printf("the transfer counter is not enabled\n"); 

1* check for occurrence of PDIR/HEND flag *1 

if (gpio_env.config_mask t PDIR_OPT_EN) 
printf("the PDIR and HERD signals are enabled\n"); 

else 
printf("the PDIR and HERD signals are not enabled\n"); 

1* You may check for all possible flag combinations. *1 

1* check the value of the status lines, STS[5:0] , *1 
1* Assume that you are checking for a status value *1 
1* of 100111 from your external device. *1 

if (gpio_env.status == Ox0018) 

1* status line reflects 100111 on the frontplane.*1 
1* Note that the complement of 100111 is *1 
1* is 011000 which is 18 hexidecimal. *1 

printf("status lines reflect 100111\n"); 

Using the AFI Device Adapter 3·25 





Error Code Values 

A 

This appendix contains error codes that may occur when making 
ioctl(2) calls to the gpio driver. The error code value may be found 
by calling the errno(2) function. The error code values possible when 
making ioctl(2) calls to the gpio driver are: 

[EACCES] the access to the specific device file cannot 
be granted without the proper minor number 
or the interface is currently locked via 
GPIO-LOCK. 

[EFAULT] 1/0 request specified odd byte count or odd 
address on i6-bit AFI data path width. 

[EINTR] an interface power failure occurred during the 
processing of this request; the device might have 
lost state. 

[EINVAL] an attempt was made to unlock an interface 
that was not locked or invalid command or 
invalid parameter. 

[EIO] some unclassified error occured. 

[EMFILE] the maximum number of simultaneous opens on 
this interface exceeded. 

[ENXIO] there is no bus interface associeated with 
the device file. 

[EPERM] an attempt is made to unlock when lock is not 
owned by this user. 

[ERANGE] the interface lock count limit exceeded. 

[ETINEDOUT] the transaction did not complete within 
the timeout specified. 

Error Code Values A-1 





Glossary 

cm 
Channel I/O Bus. 

CIO 
Channel I/O. 

DIL 
Device I/O Library. 

FIFO 
First In First Out. The 64 word buffer that resides on the AFI 
device adapter midplane which is referred to in this manual as the 
FIFO. 

assert 
Forces a logical true condition to occur. The signal value upon 
assertion is dependent upon the logic sense of the signal. Assert is 
the opposite of deassert. See logic sense. 

backplane 
Sub-system of the AFI device adapter that interfaces with the 
host computer CIB. 

deassert 
Forces a logical false condition to occur. The signal value upon 
deassertion is dependent upon the logic sense of the signal. 
Deassert is the opposite of assert. See logic sense. 

device adapter 
A hardware interface between the host computer CIB and an 
external device. The device adapter handles the protocol for 
communication and data transfers with the external device. A 
device adapter occupies at least one I/O slot in the host computer 
card cage. 

device driver 
A kernel module that controls the operation of external devices or 
device adapters. The gpioO device driver controls the operation of 
the AFI device adapter. 

device file 
Resides in the / dev directory and .represents a particular device. 
I/O requests are submitted to the device file. The device file 

Glossary-1 



Glossary-2 

contains the entry points within the device driver and the 
physical address of the particular device on the 110 bus. 

differential driver 
Sends data to a receiver over two lines, both of which are isolated 
from ground. The voltage difference between the two lines 
determines the logic sense. 

differential receiver 
Receives data from a driver over two lines, both of which are 
isolated from ground. The voltage difference between the two 
lines determines the logic sense. 

exclusive access 
Exclusive access is a condition that requires that one and only 
one process can access a particular resource at a given time. 

file descriptor 
An integer returned by the open system call which a process uses 
for subsequent references to the file. A file descriptor is unique for 
every process id/ open system call combination. 

front plane 
Sub-system of the AFI device adapter which directly interfaces 
with the external device. 

handshake 
A protocol for transferring data from one physical location to 
another. The handshake is a series of signals from both the source 

. and destination to prevent data loss and coordinate data transfer 
over the frontplane data buses. 

high true logic 
Assertion of a signal forces the signal to a high (5 V) state and 
the deassertion of a signal forces the signal to a low (0 V) state. 

interrupt signal 
Informs the HP-UX operating system that a particular condition 
has occurred. The HP -UX operating system can chose to forward 
this signal (message) to the appropriate process for handling or 
the operating system can ignore the signal. 

kernel 
The executable modules for the HP-UX operating system. 

lock 
Ensures exclusive access to the device adapter. 

logic sense 
The signal value upon assertion and deassertion. Logic sense can 
be classified as high true logic or low true logic. 



low true logie 
Assertion of a signal forces the signal to a low (0 V) state and the 
deassertion of a signal forces the signal to a high (5 V) state. 

major number 
Identifies the entry point within the device driver. The device file 
contains the major number and can be specified when creating 
the device file. 

midplane 
Sub-system of the AFI device adapter which interfaces between 
the device adapter's frontplane and backplane. 

minor number 
Identifies the address of the external device on the CIB. The 
device file contains the minor number and can be specified when 
creating the device file. 

proeess 
A program that is recognized as an executable module. A process 
can be executing or temporarily suspended. 

reset 
Sets all hardware and software values to their default state or 
value. 

single-ended driver 
Sends data over one line. Single-ended configuration for the AFI 
device adapter is one line carrying data and the other connected 
to ground. 

single-ended reeeiver 
Receives data over one line. Single-ended configuration for the 
AFI device adapter is one line carrying data and the other 
connected to ground. 

suspend 
Temporarily stops the process from executing. A process can 
be suspended when denied access to a resource. The process 
will continue executing when it receives an awake signal from 
the HP-UX operating system. A suspended process waiting on 
a resource will receive an awake signal when the resource is 
released. 

system eall 
Instructs the HP -UX operating system to perform a particular 
task. 

Glossary-3 





Index 

A accessing the device adapter, 3-4 
accessing the locked device adapter, 2-16 
additional information, 1-2 
AFI device adapter features, 1-2 

16 bit parallel interface, 1-2 
input/output lines, 1-2 

ARQ signal, 3-14 
ATTN signal, 1-4, 2-5, 2-15, 3-14 

B backplane, 1-3, 1-6 

C changing logic sense of frontplane, 1-5 
channel I/O bus, 1-6 
CIB, 1-2 
CIO, 1-"2 
CLEAR-ALL-LOCKS flag, 2-17, 3-9 
close man page reference, 3-5 
close system call, 3-5 
configurable attributes 

control lines value, 2-1 
data path width, 2-1 
enable and disable interrupts, 2-1 
enable PDIR and BEND signals, 2-1 
enable PEND signal, 2-1 
handshaking mode, 2-1, 2-5 
logic sense of PFLG, 2-1 
number of control lines, 2-1 
number of status lines, 2-1 

configuration mask, 3-12, 3-16, 3-21 
configuring the device adapter, 2-1, 3-5 
control lines limitation, 1-4, 2-4, 3-13, 3-15 
creating multiple file descriptors, 2-16 
creating the device file, 3-3 

D device file, 3-3 
Device I/O Library (DIL), 3-1 

location within BP-UX, 3-1 
differential signal, 1-5 
DIL capabilities, 3-2 
DIL, Device I/O Library, 3-1 
DIL interface to device driver, 3-1 
DIL limitations, 3-2 
direct interface to device driver, 3-3 
DIR signal name change, 2-4 

Index-1 



Index-2 

E EACCESS return value, 3-9 
EDGE..LOGIC..8ENSE flag, 2-3, 2-6, 2-12, 3-12, 3-21 
EFAULT return value, 3-11 
enable and disable interrupts, 2-1, 3-14 
enable or disable interrupts, 3-7 
enable PDIR and BEND signals, 2-1, 3-12 
enable PEND signal, 2-1, 3-12 
enable the data transfer counter, 3-12 
enable the PDIR and BEND signals, 3-13 
errno man page, 3-5 
errno system call, 3-5 
ETIMEDOUT return value, 3-11 
exclusive access, 2-16 
external device interrupt signal, 1-4, 2-15, 3-14 

F FIFO, 1-6 
FIFO_MASTER flag, 3-13, 3-21 
FIFO_MASTER handshake, 2-6 
file descriptor, 2-16, 3-4 
frontplane, 1-3 
frontplane elements 

control register, 1-4 
data input bus, 1-4 
data output bus, 1-4 
handshake signals, 2-2 
handshaking signals, 1-4 
interrupt signal, 1-4, 2-15 
status register, 1-4 

frontplane signal inversion, 3-15 
FULL-MASTER flag, 3-13, 3-21 
FULL-MASTER handshake, 2-9 
full programmatic example, 3-22 
FULL..8LAVE flag, 3-21 
FULL..8LAVE handshake, 2-12 

G gpioO device driver, 2-1, 2-15, 2-17, 3-14 
GPIO_CTL..LINES function, 3-7, 3-15 
gpio device file, 3-3 
GPIO_GET_CONFIG request, 3-12 
GPIO_GET_CONFIG status request, 3-21 
gpio.h header file, 3-1, 3-6, 3-20 
GPIO-INTERFACE_TYPE status request, 3-19 
GPIO..LOCK function, 2-17,3-7,3-9 

CLEAR-ALL..LOCKS flag, 3-9 
LOCK-INTERFACE flag, 3-9 
UNLOCK-INTERFACE flag, 3-9 

GPIO..LOCK status request, 3-17 
gpio man page, 2-1 
GPIO-RESET lunction, 3-7, 3-10 
GPIO..8ET_CONFIG function, 2-3, 2-6, 2-12, 3-7, 3-12 
GPIO..8IGNAL-MASK function, 2-15, 3-7, 3-14 
GPIO..8IGNAL..MASK status request, 3-18 
GPIO..8TS..LINES status request, 3-18 
GPIO_TIMEOUT function, 3-7, 3-11 



GPIO_TIMEOUT status request, 3-17 
GPIO_WIDTH function, 3-7, 3-11 
GPIO_WIDTH status request, 3-17 

H handshake signals 
HEND, 2-2, 2-4 
PCTL, 2-2 
PDIR, 2-2, 2-4 
PEND, 2-2, 2-4 
PFLG, 2-2 

handshaking modes, 3-21 
FIFO-MASTER handshake, 2-6 
FULL-MASTER handshake, 2-9 
FULL-SLAVE handshake, 2-12 

hardware features, 1-2 
BEND signal, 1-4, 2-4, 3-13, 3-15, 3-21 
high state, 1-5 
high true logic, 1-5 
BW_CLR flag, 3-10 

interrupt propagation, 2-15 
interrupt signal, 1-4, 2-15, 3-14 
10_CONTROL functions, 3-7 
10_CONTROL operation, 3-6 
10_CONTROL structure definition, 3-6 
ioctl man page, 3-5 
ioctl operation categories 

10_CONTROL, 3-6 
IO-ENVIRONMENT, 3-6 
IO-STATUS, 3-6 

ioctl system call, 3-5 
10_ENVIRONMENT operation, 3-6, 3-20 
10_ENVIRONMENT status request, 3-20 
10_ENVIRONMENT structure definition, 3-6 
IO-STATUS operation, 3-6,3-12, 3-16 
IO-STATUS requests, 3-8 
10_STATUS structure definition, 3-6 

L least significant bit representation, 3-19 
linking the DIL, 3-1 
lock counters, 2-16 

per-device adapter counter, 2-16 
per-open counter,. 2-16 

locking the device adapter, 2-16,3-7, 3-9 
LOCKJNTERFACE flag, 3-9 
logic sense of frontplane, 1-5 
logic sense of PFLG, 3-21 
low state, 1-5 
low true logic, 1-5 

Index-3 



Index-4 

M major number, 3-3 
midplane, 1-3, 1-6 
minor number, 3-3 
mknod command, 3-3 
mknod man page reference, 3-3 
multiple AFI device adapters, 3-4, 3-18 

o open man page, 3-4 
open system call, 3-4 

OJiDELAY flag, 3-4, 3-9 
O..RDONLY flag, 3-4 
O..RDWR flag, 3-4 
O_WRONLY flag, 3-4 

P PCTL signal, 1-4, 2-3 
PDIR_OPT-EN flag, 2-4, 3-13, 3-15, 3-21 
PDIR signal, 1-4, 2-4, 3-13, 3-15, 3-21 
PEND_OPT-EN flag, 2-4-5, 2-8, 2-11, 2-14-15, 3-13, 3-21 
PEND signal, 1-4, 2-4, 3-13, 3-21 
per-device adapter attributes, 3-8 
per-device adapter counter, 2-16, 3-9 
per-device adapter lock counter, 3-17 
per-open attributes, 3-8 
per-open counter, 2-16, 3-9 
PFLG signal, 1-4, 2-3 
power up configuration values, 3-10 
product overview, 1-3 
PULSE_HANDSHAKE_MODE handshake name change, 2-5, 3-13 

R read and write return value, 3-16 
read configuration of registers, 2-19 
read man page, 2-17 
read register 0, input data, 2-20 
read register 1, CIO sense, 2-20 
read register 3, CIO id, 2-21 
read register 7, status, 2-21 
read register 9, CIO status, 2-21 
read register A, transfer counter, 2-22 
read register B, transfer counter, 2-22 
read system call, 2-17, 3-16 
recommended configuration procedure, 3-7 
register configuration, 2-18 
releasing the device adapter, 3-5 
requesting device adapter status information, 3-16 
resetting the device adapter, 3-7, 3-10 
reset values, 3-10 
returning device adapter id, 3-19 
returning device adapter revision number, 3-19 
returning multiple status values, 3-16, 3-20 
returning reason for last interrupt, 3-:-16,. ~-18 
returning the configuration mask, 3-16, 3':21 
returning the data path width value, 3-16 
returning the device adapter id, 3-16 



returning the device adapter revision number, 3-16 
returning the per-device adapter counter, 3-16 
returning the per-device count, 3-17 
returning the process id, 3-16 
returning the status lines value, 3-16, 3-18 
returning the timeout value, 3-16 

S set control lines value, 2-1 
set data path width, 2-1 
set handshaking mode, 2-1 
set logic sense of PFLG, 2-1 
setting additional configuration values, 3-7, 3-12 
setting logic sense of PFLG, 3-12 
setting the control lines value, 3-7, 3-15 
setting the data path width value, 3-7, 3-11 
setting the handshake mode, 3-12 
setting the timeout value, 3-7, 3-11 
SIGEMT signal, 2-15, 3-14 
signal man page, 2-15 
signal system call, 2-15 
single-ended signal, 1-5 
SLAVE-MASTER flag, 3-13 
ST..ARQ2 flag, 3-14, 3-18, 3-20 
status lines limitation, 1-4, 2-5, 2-15, 3-13 
suspended processes, 2-16 
suspend state, 2-16 

T transfer counter, 2-22, 2-24, 3-13, 3-21 
transferring data, 2-1, 2-17, 3-16 
TRNSFR_CTR-EN flag, 3-13, 3-21 

U unlocking the device adapter, 2-16 
UNLOCK-INTERFACE flag, 2-17, 3-9 

W write configuration of registers, 2-22 
write man page, 2-17 
write register 0, output data, 2-23 
write register 1, CIO control, 2-23 
write register 7, control, 2-24 
write register A, transfer counter, 2-24 
write register B, transfer counter, 2-24 
write system call, 2-17, 3-16 

Index-5 







rlin- HEWLETT 
a!aI PACKARD 

HP Part No. 27114-90003 
Printed in USA September 1989 

First Edition 


