
BASIC Language Reference

Volume 1: A-N

HP 9000 Series 200/300 Computers

HP Part Number 98613-90052

Flin- HEWLETT
~~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local

Sales and Service Office.

Copyright © Hewlett-Packard Company 1987. 1988. 1989

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth In paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980,1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the Univers'ty

of California.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987 ... Edition 1

November 1987 ... Edition 2. This edition reflects the 5.0 corrections and 5.1 additions.

May 1988 ... Update. This edition contains new information regarding' the 5.11 revision.
(See SYSTEM$, and STATUS/CONTROL register for cache memory at select code
32.)

August 1988 ... Edition 3. This edition contains new information regarding the BASIC/UX
5.5. There are no changes to the BASIC Workstation pages, and the previous
update has been merged.

January 1989 ... Update. This update covers secondary keywords for the keyword
SCRATCH that are not supported by the BASIC/WS (BASIC Workstation),but
are supported by BASIC/UX (HP-UX version of the BASIC Workstation). All of
the keywords in this manual apply to both BASIC/WS and BASIC/UX, unless
otherwise stated.

Printing History iii

iv Printing History

Table of Contents

Volume 1

Using the Keyword Dictionary
Legal Usage Table .. 1
Syntax Drawings Explained .. 3
Keywords and Spaces. .. 4

Space Between Keywords and Names .. 4
No Spaces in Keywords or Reserved Groupings " 4
U sing Keyword Letters for a Name. .. 4

Keyboards ... 5

Keyword Dictionary A-N .. 7

Volume 2
KeywOl:d Dictionary O-Z. 417

Appendix A: Language History. .. A-I

Appendix B: Glossary ... B-1

Appendix C: Interface Registers
I/O Path Registers .. C-l

Registers for All I/O Paths ... C-l
I/O Path Names Assigned to a Device C-l
I/O Path Names Assigned to an ASCII File C-2
I/O Path Names Assigned to a BDAT File C-2
I/O Path Names Assigned to an HP-UX File C-3
I/O Path Names Assigned to a Buffer C-3

Summary of CRT STATUS and CONTROL Registers C-5
Summary of Keyboard Status and Control Registers C-ll
Summary of HP -IB Status and Control Registers C-17
Summary of RS-232C Serial STATUS and CONTROL Registers C-23
Overview of Datacomm Status and Control Registers. C-32
Summary of Datacomm Interface Status and Control Registers C-34
Summary of Powerfail Status and Control Registers .. C-48
Summary of GPIO STATUS and CONTROL Registers C-51

Table of Contents v

GPIO Registers .. C-52
Summary of BCD Status and Control Registers. C-54
Summary of EPROM Programmer STATUS and CONTROL Registers C-58
Parity, Cache, Float, and Clock STATUS and CONTROL Register

(Pseudo Select Code 32) .. C-60
SRM Interface STATUS Registers C-62
EXT Signal Registers ... C-63

Appendix D: Useful Tables
Option Numbers. .. D-1
Interface Select Codes. .. D-2
Display-Enhancement Characters. .. D-3

Monochrome Enhancements .. D-3
Color Enhancements ... D-3

U.S. ASCII Character Codes. .. D-4
U.S./European Display Characters. .. D-6
Katakana Display Characters. .. D-12
Master Reset Table ... D-16
Graphic Reset Table .. D-19
Interface Reset Table. .. D-20
Second Byte of Non-ASCII Key Sequences (String) .. D-22
Selected High-Precision Metric Conversion Factors. .. D-27

Appendix E: Error Messages ... E-1

Appendix F: Keyword Summary
Booting the System ... " F-1
Program Entry/Editing .. " F-1
Program Debugging and Error Handling F-2
Memory Allocation and Management " F-3
Comparison Operators ... " F-3
(;pnf'ral Math .. F-4
Complex Math ... F-5
Binary Functions ... F-5
Trigonometric Operations .. F-6
Hyperbolic Operations ... " F-6
String Operations ... " F-6
Logical Operators ... " F-7
Mass Storage ... " F-7
Program Control .. " F-9
Event-Initiated Branching ... F-10
HP-HIL Device Support .. F-13

vi Table of Contents

Graphics Control .. F-13
Graphics Plotting .. F-15
Graphic Axes and Labeling ... F-15
HP-IB Control ... F-16
Clock and Calendar .. F-16
General Device Input/Output ... F-17
Display and Keyboard Control. .. F-18
Array Operations .. F-20
Vocabulary .. F-21

Table of Contents vii

viii Table of Contents

Table of Contents

Using the Keyword Dictionary
Legal Usage Table .. 1
Syntax Drawings Explained 3
Keywords and Spaces. .. 4

Space Between Keywords and Names .. 4
No Spaces in Keywords or Reserved Groupings 4
Using Keyword Letters for a Name 4

Keyboards ... 5

Using the Keyword Dictionary
This section contains an alphabetical reference to all the keywords currently available
with the BASIC language system of the Series 200/300 computers and BASIC/UX system
on Series 300 computers. Each entrj defines the keyword, shows the proper syntax
for its use, gives some example statements, and explains relevant semantic details. A
cross reference is provided in the back that groups the keywords into several functional
categories.

Legal Usage Table
Above each drawing is a small table indicating the legal uses of the keyword.

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

Supported On

Option Required

Keyboard Executable

WS,UX
PDEV

Yes
No
No

indicates which operating system the keyword is supported on .
• WS means the keyword is supported on BASIC

Workstation
.UX means the keyword is supported on BASIC/UX

if only WS or UX is present, it means the keyword is only
supported on that system.

indicates which binaries must be resident in the computer (other
than BASIC Main) in order to use the keyword. Specific head
ings under Semantics may list a requirement for the specific fea
ture being discussed if the keyword has expanded semantics with
binary extensions. Shaded areas of the syntax diagram flag syn
tactic changes which depend upon the binary extensions to the
language. Note that BASIC/UX has all binaries permanently
loaded.

means that a properly constructed statement containing that
keyword can be typed into the keyboard input line and executed
by a press of the I EXECUTE I, I ENTER I, or I Return 1 key.

U sing the Keyword Dictionary 1

Programmable

In an IF ... THEN ...

means that a properly constructed statement containing that
keyword can be placed after a line number and stored in a
program. Certain non-programmable keywords can be "forced"
into a program by sending them to the keyboard buffer for
execution with an OUTPUT KBD statement. This is not what
is meant by "Programmable".

means that a properly constructed statement containing that
keyword can be placed after "THEN" in a single-line IF ... THEN
statement. Keywords that are prohibited in a single-line
IF ... THEN are not necessarily prohibited in a multiple-line
IF ... THEN structure. Constructs such as IF ... THEN,
REPEAT ... UNTIL, and FOR ... NEXT statements are executed
conditionally when they are included in a multiple-line
IF ... THEN structure. All other prohibited statements (see
IF ... THEN) are used only during pre-run. Therefore, the ac-
tion of those statements will not be conditional, even though the
IF ... THEN wording may make them appear to be conditional.

2 Using the Keyword Dictionary

Syntax Drawings Explained
Statement syntax is represented pictorially.

All characters enclosed by a rounded envelope must be entered
exactly as shown.

I image I
specifier

\Vords enclosed by a rectangular box are l1ame~ of items used
in the statement.

A description of each item is given either in the table following the drawing, another
drawing, or the Glossary.

Statement elements are connected by lines. Each line can be followed in only one
direction, as indicated by the arrow at the end of the line. Any combination of
statement elements that can be generated by following the lines in the proper direction
is syntactically correct. An element is optional if there is a path around it. Optional
items usually have default values. The table or text following the drawing specifies the
default value that is used when an optional item is not included in a statement.

Comments may be added to any valid line. A comment is created by placing an
exclamation point after a statement, or after a line number or line label.

100 PRINT "Hello" ! This is a comment.
110 ! This is also a comment.

The text following the exclamation point may contain any characters in any order.

The drawings do not necessarily deal with the proper use of spaces (ASCII blanks). In
general, whenever you are traversing a line, any number of spaces may be entered. If two
envelopes are touching, it indicates that no spaces are allowed between the two items.
However, this convention is not always possible in drawings with optional paths, so it is
important to understand the following rules for spacing.

U sing the Keyword Dictionary 3

Keywords and Spaces
The computer uses spaces, as well as required punctuation, to distinguish the boundaries
between various keywords, names, and other items. In general, at least one space is
required between a keyword and a name if they are not separated by other punctuation.
Spaces cannot be placed in the middle of keywords or other reserved groupings of
symbols. Also, keywords are recognized whether they are typed in uppercase or lowercase.
Therefore, to use the letters of a keyword as a name, the name entered must contain some
mixture of uppercase and lowercase letters. The following are some examples of these
guidelines.

Space Between Keywords and Names
The keyword NEXT and the variable Count are properly entered with a space between
them, as in NEXT Count. Without the space, the entire group of characters is interpreted
as the name Nextcount.

No Spaces in Keywords or Reserved Groupings
The keyword DELSUB cannot be entered as DEL SUB. The array specifier (*) cannot be
entered as (*). A function call to "A$" must be entered as FNA$, not as FN A $. The
I/O path name "@Meter" must be entered as C2Meter, not as (Q Meter. The "exceptions"
are keywords that contain spaces, such as END IF and OPTION BASE.

Using Keyword Letters for a Name
Attempting to store the line IF X=l THEN END will generate an error because END is a
keyword not allowed in an IF ... THEN. To create a line label called "End", type IF X=l

THEN ENd. This or any other mixture of uppercase and lowercase will prevent the name
from being recognized as a keyword.

Also note that names may begin with the letters of an infix operator (such as MOD,
DIV, and EXOR). In such cases, you should type the name with a case switch in the
infix op~rator portion of thp narnp (p,g,: MOrllTLE: DiVISOR).

4 U sing the Keyword Dictionary

Keyboards
The Series 200/300 Computers support three keyboard styles:

I 0 ~ cixTI """"'" ~ I - -

,..~m I--!III
HP 98203B and 98203C

o

HP 98203A

~~~D~uu~O~~OOO~~ 
~~~~~D~~~DODO~~~ 

l [;] EJ~DDDDD~OD[]EJ El~~ I!;J Ell IE) ~[!]~

ITF (such as the HP 46021A)

Throughout the manuals which document the BASIC Language System, specific keys
are mentioned. Because many key labels are different on each keyboard, you will not
have all the keys mentioned. For example, I ENTER I and I Return I normally have the same
meaning, but only one of them appears on anyone keyboard. The manual entitled Using
the BASIC System or Using the BASIC/UX System discusses the keyboards.
Within this manual, the keys for each keyboard are listed the first time they are used in
a statement description. Thereafter, only one keyboard's keys are used.

U sing the Keyword Dictionary 5

Notes

6 U sing the Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement ceases activity on the specified interface.

ABORT

Item Description Range

interface select
code

numeric expression, rounded to an integer 5, 7 thru 31

I/O path name name assigned to an HP-IB interface

Example Statements
ABORT 7
IF Stop_code THEN ABORT ~Source

Semantics
Executing this statement ceases activity on the specified HP-IB interface; other interfaces
may not be specified. If the computer is the system controller but not currently the active
controller, executing ABORT causes the computer to assume active control.

Keyword Dictionary 7

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

IFC (duration ATN
Active ;"100~sec) MTA

Controller REN UNL
ATN ATN

Error Error
IFC (duration

Not Active ;,,100 ~sec)* No
Controller REN Action

ATN

* The IFC message allows a non-active controller (which is the system controller) to become the active controller.

Data Communications Interfaces
Directing this statement to a Data Communications interface clears the buffers and
disconnects the interface.

8 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
TRANS

Yes
Yes
Yes

ABORTIO

This statement terminates a TRANSFER which is currently taking place through an
I/O path assigned to a device, group of devices, mass storage file, or pipe (BASIC/UX).

Item Description Range

I/O path name name assigned to a device, a group of de- any valid name
vices, mass storage file, or pipe

Example Statements
ABORTIO ~Interface
IF Stop_flag THEN ABORTIO ~Device

Semantics
This statement terminates a TRANSFER (in either direction) currently taking place
through the specified I/O path name. The I/O path name must be assigned to an
interface select code, device selector, mass storage file, or pipe; if the I/O path name is
assigned to a buffer, error 170 is reported.

An end-of-transfer (EOT) branch is initiated if an ON EOT branch is currently defined
for the I/O path name; however, no currently defined EOR branch will be initiated.

ABORTIO has no effect if no TRANSFER is taking place through the I/O path name.

If a TRANSFER to or from an I/O path name was terminated by an error, executing
ABORTIO on that I/O path name causes the error to be reported.

Keyword Dictionary 9

ABS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the absolute value of its argument.

Item Description /Defa ult

argument numeric expression

Examples Statements
Magnitude=ABS(Vector)
PRINT "Value = ";ABS(CMPLX(2.45,-4))

Semantics

Range
Restrictions

within valid ranges of INTE
G ER and REAL data types
for INTEGER and REAL
arguments; see "Range
Restriction Specifics" for
COMPLEX arguments

To compute the absolute value of a COwiPLEX value, the COwiPLEX binary must be
loaded.

10 Keyword Dictionary

Range Restriction Specifics
The formula for computing ABS for COMPLEX arguments is:

where Real_part is the real part of the COMPLEX argument and Imag_part is the
imaginary part of the COMPLEX argument in the ABS function. Some values of a
COMPLEX argument may cause errors in this computation. For example:

ABS(CMPLX(MAXREAL.MAXREAL»

will cause error 22 due to the computation ReaLpart*ReaLpart.

The result returned when executing the ABS function for COMPLEX numbers is always
a positive REAL value.

Taking the ABS of the INTEGER -32768 will cause an error.

Keyword Dictionary 11

ACS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the principle value of the angle which has a cosine equal to the
argument. This is the arccosine function.

Item Description/Default

argument numeric expression

Examples Statements
Angle=ACS(Cosine)
PRINT "Angle = ";ACS(CMPLX(2.67,-6»

Semantics

Range
Restrictions

-1 thru + 1 for INTEGER
and REAL arguments; see
"Range Restriction
Specifics" below for
COMPLEX arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

The angle mode (RAD or DEG) for REAL and INTEGER arguments indicates whether you
should interpret the value returned in degrees or radians. If the current angle mode is
DEG, the range of the result is 0° to 180°. If the current angle mode is RAD, the range
of the result is 0 to 7r radians. The angle mode is radians unless you specify degrees with
the DEG statement.

To compute the ACS of a COMPLEX value, the COMPLEX binary must be loaded.

12 Keyword Dictionary

Range Restriction Specifics
The formula used for computing the ACS of a COMPLEX value is:

-i * LOG(Argument+SQRT(Argument*Argument-l»

where i is the COMPLEX value CMPLX(O,l) and Argument is a COMPLEX argument
to the ACS function. Some values of a COMPLEX argument may cause errors in this
computation. For example,

ACS (CMPLX (MAXREAL ,0»

will cause error 22 due to the Argument*Argument computation.

The principle value, which has a real part between 0 and 71", is returned for COMPLEX
arguments.

Keyword Dictionary 13

ACSH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the hyperbolic arccosine of a numeric expression.

Item Description/Default

argument numeric expression

Example Statements
Result=ACSH(5.7089)
PRINT "Hyperbolic Arccosine ";ACSH(Expression)

Semantics

Range
Restrictions

INTEGER and REAL argu
ments must be > = 1 and
< 1.34078079299 E 154;
see "Range Restriction
Specifics" for COMPLEX
arguments

If an INTEGER or REAL argnment iR givf'n: thiR function returnR a REAL value. If a
COMPLEX argument is given, this function returns a COMPLEX value.

Range Restriction Specifics
The formula for computing ACSH is as follows:

LOG(Argument+SQRT(Argument*Argument-l»

where Argument is the argument to the ACSH function. Some values of an argument may
cause errors in this computation. For example,

ACSH(MAXREAL)

will cause error 22 due to the computation Argument*Argument.

Note that the hyperbolic arccosine of a COMPLEX number returns a principle value
which has an imaginary part which falls in the range of 0 to +7r.

14 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ALLOCATE

This statement dynamically allocates memory for arrays and string variables during
program execution.

Item Description

array name name of a numeric array

lower bound numeric expression, rounded to an integer;
Default = OPTION BASE value (0 or 1)

upper bound numeric expression, rounded to an integer

string name name of a string variable

string length numeric expression, rounded to an integer

Example Statements
ALLOCATE Temp(Low:High)
ALLOCATE R$[LEN(A$)+l]

Range

any valid name

-32768 thru +32 767 (see
"array" in Glossary)

-32 768 thru +32 767 (see
"array" in Glossary)

any valid name

1 thru 32767

Keyword Dictionary 15

Semantics
Memory reserved by the ALLOCATE statement can be freed by the DEALLOCATE
statement. However, because of the stack discipline used when allocating, the freed
memory space does not become available unless all subsequently allocated items are also
deallocated. For example, assume that A$ is allocated first, then B$, and finally C$. If a
DEALLOCATE A$ statement is executed, the memory space for A$ is not available until
B$ and C$ are deallocated. This same stack is used for setting up ON-event branches, so
subsequent ON-event statements can also block the availability of deallocated memory.

The total number of elements that can be allocated for variables within anyone context
or COM area (Le., any "value area") is limited to 224-1, or 16777215, bytes.

The variables in an ALLOCATE statement cannot have appeared in COM, COMPLEX,
DIM, INTEGER, or REAL declaration statements. If variable(s) are to be allocated
in a subprogram, the variable(s) cannot have been included in the subprogram's formal
parameter list. Implicitly declared variables cannot be allocated. Numeric variables
which are not specified as INTEGER or COMPLEX are assumed to be REAL. A variable
can be re-allocated in its program context only if it has been deallocated and its type
and number of dimensions remain the same.

Exiting a subprogram automatically deallocates any memory space allocated within that
program context.

ALLOCATE can be executed from the keyboard while a program is running or paused.
However, the variable must have been declared in an ALLOCATE statement in the
current program context.

16 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement turns the alphanumeric raster on or off.

Example Statements
ALPHA ON
IF Graph THEN ALPHA OFF

Semantics

ALPHA ON/OFF

Items sent to the printout area while the alphanumeric raster is disabled are placed in
the display memory even though they are not visible. Items sent to the keyboard input
line, the DISP line, or the system message line will turn on the alphanumeric raster. The
alphanumeric and graphic rasters can both be on at the same time.

The alphanumeric area is enabled after power-on, RESET, and SCRATCH A. Pressing
the I ALPHA I key on the keyboard also enables the alphanumeric raster.

Blt"Mapped Alpha Displays
This statement has no effect on a bit-mapped alpha display when the alpha write-enable
mask specifies all planes. This is the default state on those displays.

If ALPHA MASK <> 2
A

n-l, then planes enabled for alpha can be turned on and off.
See SET ALPHA MASK in this reference for more information.

BASIC/UX Specifics
ALPHA ON and ALPHA OFF have no effect in a windowing environment or on single
bit-plane terminals. It functions the same, however, on a bit-mapped console.

Keyword Dictionary 17

ALPHA HEIGHT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

This statement is used to vary the number of lines in the alpha area of the CRT.

number 0 f lInes

Item Description/Default

number of lines numeric expression

Example Statements
ALPHA HEIGHT Num_of_lines
ALPHA HEIGHT 18
IF Total_lines = 10 THEN ALPHA HEIGHT 18
ALPHA HEIGHT

Semantics

Range Restrictions

(see Semantics)

ALPHA HEIGHT is used to restrict the alpha screen to the bottom n lines of the display,
leaving the upper part of the display for graphics. This can be used to prevent alpha
from interfering with graphics.

The number of lines available for alpha on the CRT depends on which display is being
used. The following are the upper limits for the ALPHA HEIGHT statement: 25, 26,
and 48. The lower limit is 9 in all cases (can be others in a windowing environment).

ALPHA HEIGHT without any parameters restores the default height (one of the upper
limits mentioned above). The minimum argument to this statement is always 9; however,
when you are in Edit mode the minimum alpha height is 14. Note that upon entering the
Edit mode if the ALPHA HEIGHT is a value in the range of 9 to 13 it will be changed
to 14.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 13; however, you cannot execute the CONTROL statement without a parameter
in order to get the default alpha height.

18 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

This statement selects the alpha display color for the CRT.

(ALPHA PEN ~pen value~

Item Description/Default

pen value numeric expression

Example Statements
ALPHA PEN Pen_value
ALPHA PEN 142
IF Cyan THEN ALPHA PEN 140

ALPHA PEN

Range Restrictions

(see Semantics)

Keyword Dictionary 19

Semantics
This statement has no effect on monochrome displays.

The set of alpha colors for the Model 236C is given in the table below:

Value

< 16

16 to 135

136

137

138

139

140

141

142

143

144 to 255

Result

The number is evaluated MOD
8 and resulting values produce
the following:

o . black
1 - white
2 - red
3 -- yellow
4 green
5 - cyan
6 - blue
7 magenta

Ignored

White

Red

Yellow

Green

Cyan

Blue

Magenta

Black

Ignored

For bit-mapped alpha displays, ALPHA PEN specifies the graphics pen to be used for
subsequent alpha output. The range of values allowed with this statement are 0 through
255: these values are treated as rvIOD 2A n, where n it-> the number of display planes.

ALPHA PEN n or CONTROL CRT. 5; n set the values of the CRT registers 15, 16, and 17 (or
PRINT PEN, KEY LABELS PEN and KBD LINE PEN, respectively), but the converse is not true.
That is, STATUS CRT. 5 may not accurately reflect the CRT state if control registers 15,
16, and/or 17 have been set.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 5.

20 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

AND

This operator returns a 1 or a 0 based upon the logical AND of the arguments.

Example Statements
IF Flag AND Test2 THEN Process
Final=Initial AND Valid

Semantics
A non-zero value (positive or negative) is treated as a logical 1; only zero is treated as a
logical O.

The logical AND is shown in this table:

A B AANDB

0 0 0

0 1 0

1 0 0

1 1 1

Keyword Dictionary 21

AREA
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

This statement defines or selects an area fill color. The fill color is used in all subsequent
graphics operations requiring area fill.

Item

hue

saturation

luminosity

red

green

blue

pen selector

Description Range

numeric expression a thru 1

numeric expression a thru 1

numeric expression a thru 1

numeric expression a thru 1

numeric expression a thru 1

numeric expression a thru 1

numeric expression. rounded to an integer -32 768 thru +32767

Example Statements
AREA COLOR Hue,Saturation,Luminosity
AREA COLOR X*.3,RND,A-2
AREA INTENSITY Red(I),Green(I) ,Blue(I)
AREA INTENSITY X*.3,RND,A-2
AREA PEN 1
AREA PEN -Pen

22 Keyword Dictionary

Semantics
The default fill color is the color specified by Pen 1. This color is solid white after power
up, SCRATCH A, GINIT, or LOAD BIN "GRAPH" (when this binary is not already
resident in memory).

A fill color remains in effect until the execution of an AREA, GINIT, or SCRATCH A.
Other statements which may alter the current fill color (depending on the data passed
to them) are SYMBOL, PLOT, RPLOT, or IPLOT when used with an array. SET
PEN affects pen colors, and therefore can also affect fill colors specified with AREA
statements.

Specifying color with the SET PEN and AREA PEN statements (resulting in non
dithered color) results in a much more accurate representation of the desired color than
the same color requested with an AREA COLOR or AREA INTENSITY statement. To
see the difference, compare the five color plates shown in this entry with the corresponding
plates in the SET PEN statement.

Note

The following color plates do not exactly represent what your eye
would see on the CRT. The reason for this is that photographic film
cannot capture all the colors a CRT can produce, and the printing
process cannot reproduce all the colors that film can capture.

AREA PEN
A fill color specified with AREA PEN is guaranteed to be non-dithered, and the AREA
PEN statement executes much faster than AREA COLOR or AREA INTENSITY.

The pen numbers have the same effect as described in the PEN statement for line color
except that in the alternate pen mode, negative pens erase as in the normal pen mode;
they do not complement. Pen 0 in normal pen mode erases; it does not complement.

Keyword Dictionary 23

AREA COLOR
When AREA COLOR is executed on a machine with a color display, the HSL parameters
are converted to RGB values. Then, if the color requested is not available in the color
map, the computer creates the closest possible color in RGB color space to the one
requested by filling the 4x4 dither cell with the best combination of colors from the
color map.

In non-color map mode, there are eight colors total, and they cannot be redefined. This
simulates the operation of the HP98627 A.

In color map mode, there are 2A n total colors (where n is the number of planes in the
graphics display), and they can be redefined with SET PEN.

The first photo of the screen on the next page shows the changes brought about by
varying one of HSL parameters at a time. The bottom bar shows that when saturation
(the amount of color) is zero, hue makes no difference, and varying luminosity results in
a gray scale.

The second photo on the next page is a color wheel which shows the colors selected as
the hue value goes from 0 through 1. Any value between zero and one, inclusive, can be
chosen to select color. The resolution (the amount the value can change before the color
on the screen changes) depends on what the value of the hue is as well as the values of
the other two parameters.

24 Keyword Dictionary

HSL Color Wheel

Keyword Dictionary 25

The next plate shows the effect that varying saturation and luminosity have on the color
produced. Each of the small color wheels is a miniature version of the large one above,
except it has fewer segments.

Effects of Saturation and Luminosity on Color

AREA INTENSITY
The first photo on the next page demonstrates the effect of varying the intensity of one
color component when the other two remain constant.

The second photo (on next page) shows comhinations of red: green and hhw. The vahles
are given in fifteenths: 0 fifteenths, 5 fifteenths, 10 fifteenths, and 15 fifteenths- -every
fifth value. The values for each color compon('nt ar(' repres('nted in that color.

26 Keyword Dictionary

RG B Addition: One Color at a Time

Keyword Dictionary 27

The HP98627 A
When an HP98627 A is used, the HSL values specified in an AREA COLOR statement
are converted to RGB. The parameters of an AREA INTENSITY statement are already
in RGB. The RGB values specify the fraction of dots per 4x4-pixel area to be turned on
in each memory plane. The red value corresponds to memory plane 1, the green value
to memory plane 2, and the blue value to memory plane 3.

The AREA PEN selects one of the eight non-dithered colors available with no intensity
control on the color guns. See the PEN entry for the order of these colors.

The HP98627 A dithers in a very similar way to the Model 236 with color monitor when
the color map is not enabled (see PLOTTER IS), using only eight colors when calculating
the closest combination.

Monochromatic Displays
When doing shading on a monochromatic display, dithering is always used. Dithering
takes place in a 4x4 cell, which allows zero through sixteen of the dots to be turned on,
for a total of seventeen shades of gray.

Since AREA PEN does not use dithering, only black and white are available. If the pen
selector is positive, the resulting fill color is white; if zero or negative, the resulting fill
color is black.

When an AREA COLOR is executed, the hue and saturation parameters are ignored.
Only the luminosity value is used to determine the fraction of pixels to be turned on.

When an AREA INTENSITY is executed, the largest of the three values is used, and it
specifies the fraction of pixels to be turned on.

Alternate Pen Mode Fills
If the alternate drawing mode is in effect when the fill is performed, the area will be filled
with non-rlominant ('olor. See GESCAPE operation selectors 4 and 5.

In the alternate pen mode, negative pens erase as in the normal pen mode; they do not
complement.

28 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

ARG

This function returns the argument (or the angle in polar coordinates) of a COMPLEX
number.

Item Description/Default

argument numeric expression

Example Statements
X=ARG(Complex_expr)
Y=ARG(Real_expr)
Z=ARG(Integer_expr)
Result=ARG(CMPLX(2.1,-8))

Semantics

Range
Restrictions

any valid INTEGER,
REAL, or COMPLEX
value

This is eqivalent to ATN2 (CMPLX (Imag_part, Real_part)) in FORTRAN. The value returned
is REAL. If the current angle mode is DEG, the range of the result is -180° thru +180°.
If the current angle mode is RAD, the range of the result is -7r thru +7r radians. The
default mode is radians.

This function returns 0 when given an INTEGER or REAL argument.

ASCII
See the CREATE ASCII and LEXICAL ORDER IS statements.

Keyword Dictionary 29

ASN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the principle value of the angle which has a sine equal to the
argument. This is the arcsine function.

Item Description/Default

argument numeric expression

Examples Statements
Angle=ASN(Sine)
PRINT "Angle = ";ASN(CMPLX(-2.98.3»

Semantics

Range
Restrictions

-1 thru +1 for INTEGER
and REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

The angle mode (RAD or DEG) for REAL and INTEGER arguments indicates whether
yuu tilwulu illterpret the value returlleu ill uegreeti ur raUiallti. If the currellt allgle muue
is DEG, the range of the result is -90° to 90°. If the current angle mode is RAD, the
range of the result is -7r /2 to +7r /2 radians. The angle mode is radians unless you specify
degrees with the DEG statement.

To compute the ASN of a COMPLEX value, the COMPLEX binary must be loaded.

30 Keyword Dictionary

Range Restriction Specifics
The formula for computing the ASN of a COMPLEX value is:

-i*LOG(i*Argument+SQRT(l-Argument*Argument»

where i is the COMPLEX value CMPLX(O, 1) and Argument is a COMPLEX argument
to the ASN function. Some values of a COMPLEX argument may cause errors in this
computation. For example:

ASN (CMPLX (MAXREAL ,0»

will cause error 22 due to the Argument*Argument computation.

The principle value, which has a real part between -7r /2 and +7r /2, is returned for
COMPLEX arguments.

Keyword Dictionary 31

ASNH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the hyperbolic arcsine of a numeric expression.

Item Description /Default

argument numeric expression

Example Statements
Result=ASNH(-.2475)
PRINT "Hyperbolic Arcsine ";ASNH(Expression)

Semantics

Range
Restrictions

absolute value
< 1.340 780 79299 E+ 154

and
> 1.49166814624 E -154
for INTEGER and REAL
arguments; see "Range
Restriction Specifics" for
additional restrictions.

If an INTEGER or REAL argument is given, this function returns a REAL value. If a
• COMPLEX argument is given, this function returns a COMPLEX value.

32 Keyword Dictionary

Range Restriction Specifics
The formula use for computing the ASNH is as follows:

LOG(Argument+SQRT(Argument*Argument+l»

where Argument is the argument to the ASNH function. Some values of a COMPLEX
argument may cause errors in this computation. For example:

ASNH(CMPLX(MAXREAL.O»

will cause error 22 (REAL overflow) due to the Argument*Argument computation.

Note that the ASNH of a COMPLEX number returns a principle value which has an
imaginary part that falls in the range of -7r /2 to +7r /2.

Keyword Dictionary 33

ASSIGN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement is used to perform one of the following actions:

• assign an I/O path name and attributes to:

a device,
a group of devices,
a mass storage file,
a pipe (BASIC/UX),
or a buffer;

• change attributes;

• or close an I/O path name.

literal form of fIle specIfIer:

34 Keyword Dictionary

WS,UX
None

Yes
Yes
Yes

attributes:

Keyword Dictionary 35

Item

I/O path name

device selector

file specifier

string variable
name

numeric array
name

buffer size
(in bytes)

attribute

directory path

file name

Description

name identifying an I/O path

numeric expression

string expression

name of a string variable

name of a numeric array

numeric expression, rounded to an integer

Range

any valid name

(see Glossary)

(see drawing)

any valid name
(see Glossary)

any valid name

1 thru available memory mi
nus 690

attribute to be assigned to the I/O path (see drawing)
name

literal

literal

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

conversion string name of a string variable

end-of-line
characters

string expression;
Default=CR and LF

(see MASS STORAGE IS)

up to 256 characters
(with INDEX);

even number
of characters
(with PAIRS)

up to 8 characters

time period numeric expression, rounded to the nearest 0.001 thru 32.767
0.001 seconds;

return variable
name

Default=O

name of a numeric variable

36 Keyword Dictionary

any valid name

Example Statements
ASSIGN ~Source TO Isc;FORMAT OFF
ASSIGN ~Source;FORMAT ON
ASSIGN ~Device TO 724
ASSIGN ~Listeners TO 711,712,715
ASSIGN ~Dest TO *

ASSIGN ~File TO File_name$
ASSIGN ~File TO Dir_path$kFile_name$kVol_spec$
ASSIGN ~File TO "WorkDir/File"
ASSIGN ~File TO "/RootDir/MyDir/MyFile: ,700"
ASSIGN ~File TO "DIR_JOHN/dir_proj/file1"
ASSIGN ~Srm_file TO "P1/FredsData<pass>:REMOTE"

ASSIGN ~Buf_1 TO BUFFER String_variableS
ASSIGN ~Buf_2 TO BUFFER Numeric_array(*)
ASSIGN ~Buf_3 TO BUFFER [128]

ASSIGN ~Resource TO Gpio;WORD,CONVERT IN BY INDEX In$
ASSIGN ~Resource;CONVERT OUT BY INDEX OutS
ASSIGN ~Resource TO Hpib;EOL Eol$ END DELAY .05
ASSIGN ~Resource TO Rs_232;PARITY ODD

ASSIGN ~Pipe TO "I cat >file"
ASSIGN ~Pipe TO "ps -ef I"

Semantics

(outbound unnamed pipe)
(inbound unnamed pipe)

The ASSIGN statement has three primary purposes. Its main purpose is to create an
I/O path name and assign that name to an I/O resource and attributes that describe the
use of that resource. The statement is also used to change the attributes of an existing
I/O path and to close an I/O path.

Associated with an I/O path name is a unique data type that uses 148 bytes of memory.
I/O path names can be placed in COM statements and can be passed by reference as
parameters to subprograms. They cannot be evaluated in a numeric or string expression
and cannot be passed by value.

Once an I/O path name has been assigned to a resource, OUTPUT, ENTER, TRANS
FER, STATUS, and CONTROL operations can be directed to that I/O path name. This
provides the convenience of re-directing I/O operations in a program by simply changing
the appropriate ASSIGN statement. The resource assigned to the I/O path name may
be an interface, a device, a group of devices on HP-IB, a mass storage file, pipe, or a
buffer. Note: The STATUS and CONTROL registers of an I/O path are different from
the STATUS and CONTROL registers of an interface. All STATUS and CONTROL
registers are summarized in the "Interface Registers" section at the back of this book.

Keyword Dictionary 37

The FORMAT Attributes
Assigning the FORMAT ON attribute to an I/O path name directs the computer to use
its ASCII data representation while sending and receiving data through the I/O path.
Assigning the FORMAT OFF attribute to an I/O path name directs the computer to
use its internal data representation when using the I/O path.

LIF ASCII format (similar to ASCII representation) is always used with ASCII files;
thus, if either FORMAT ON or FORMAT OFF is specified for the I/O path name of an
ASCII file, it will be ignored.

If a FORMAT attribute is not explicitly given to an I/O path, a default is assigned. The
following table shows the default FORMAT attribute assigned to computer resources.

Resource Default Attribute

interface/ device FORMAT ON

ASCII file (always ASCII format)

BDAT file FORMAT OFF

HP-UX file FORMAT OFF

buffer FORMAT ON

pipe FORMAT ON

The FORMAT OFF attribute cannot be assigned to an I/O path which currently
possesses any non-default CONVERT or PARITY attribute(s), and vice versa.

Using Devices
I/O path names are assigned to devices by placing the device selector after the keyword
TO. For example, ASSIGN CDDisplay TO 1 (Teates the I/O path name "@Display" and
assigns it to the internal CRT display. The statement ASSIGN CDMeters TO 710,711,712

creates the I/O path name "@Meters" and assigns it to a group of three devices on HP-IB.
When multiple devices are specified, they must be connected to the same interface.

When an I/O path name which specifies multiple devices is used in an OUTPUT
statement, all devices referred to by the I/O path name receive the data. When an I/O
path name which specifies multiple devices is used in an ENTER statement, the first
device specified sends the data to the computer and to the rest of the devices. When an
I/O path name which specifies multiple HP-IB devices is used in either CLEAR, LOCAL,
PPOLL CONFIGURE, PPOLL UNCONFIGURE, REMOTE, or TRIGGER statement,
all devices associated with the I/O path name receive the HP-IB message.

38 Keyword Dictionary

A device can have more than one I/O path name associated with it. Each I/O path
name can have different attributes, depending upon how the device is used. The specific
I/O path name used for an I/O operation determines which set of attributes is used for
that operation.

Using Files
Assigning an I/O path name to a file name associates the I/O path with a file on the
mass storage media (that is, it "opens" the file"). The mass storage file must be a data
file (a file of type ASCII, BDAT, or HP-UX). The file must already exist on the media,
as ASSIGN does not do an implied CREATE.

Data files have a position pointer which is associated with each I/O path name. The
position pointer identifies the next byte to be written or read. The position pointer is
reset to the beginning of the file when the file is opened, and updated with each ENTER
or OUTPUT that uses that I/O path name. (It is best if a file is open with only one I/O
path name at a time.)

BDAT and HP-UX files have an additional physical end-of-file pointer. This end-of-file
pointer (which resides on the media) is read when the file is opened. This end-of-file
pointer is updated on the media at the following times:

• When the current end-of-file changes.

• When END is specified in an OUTPUT statement directed to the file.

• When a CONTROL statement directed to the I/O path name changes the position
of the end-of-file pointer.

HFS Permissions
ASSIGN opens any existing ASCII, BDAT, or HP-UX file if you currently have R (read)
access permission on the file as well as X (search) permission on the parent and all
superior directories. Otherwise, error 183 will be reported.

SRM Access Capabilities
ASSIGN opens any existing ASCII, BDAT, or HP-UX file, regardless of protection on the
file except when all access capabilities (MANAGER, READ and WRITE) are taken from
the public. Attempts to use ASSIGN with a file whose capabilities are fully protected
(without supplying the necessary passwords) will result in error 62.

Keyword Dictionary 39

The file's specific access capabilities are not checked at ASSIGN time. A subsequent
operation on the file associated with the I/O path name is not performed, however, unless
you have the proper access capability for that operation. For example, you may ASSIGN
an I/O path name to a file that has only the READ capability public; but attempting to
perform an OUTPUT operation generates error 62, since the WRITE access capability
is not public (this operation would be successful if you specify the WRITE password in
the ASSIGN statement).

Locked SRM Files
With SRM volumes, existing ASCII, BDAT, and HP-UX files opened via ASSIGN are
opened in shared mode, which means that several users can open a file at the same time.
If you lock a file (refer to LOCK) and subsequently open that file via ASSIGN using
the same @<name> (for example, to reset the file pointer), the ASSIGN automatically
unlocks the file (refer to UNLOCK). To maintain sole access to the file, you must LOCK
it again.

Closing an I/O path via ASSIGN (ASSIGN @Io_path TO *) unlocks as well as closes
the file (regardless of the number of LOCKs in effect for the file at the time).

Using Buffers (Requires TRANS)
The ASSIGN statement is also used to create a buffer (called an "unnamed" buffer)
and assign an I/O path name to it or to assign an I/O path name to a buffer (called
a "named" buffer) which has been previously declared in a COM, COMPLEX, DIM,
INTEGER, or REAL declaration statement. Once assigned an I/O path name, a buffer
may be the source or destination of a TRANSFER, the destination of an OUTPUT, or
the source of an ENTER statement.

I/O path names assigned to buffers contain information describing the buffer, such as
buffer capacity, current number of bytes, and empty and fill pointers. This information
can be read from STATUS registers of the I/O path name; some of this information may
be modified by writing to CONTROL registers. See the "Interface Registers" section
at the back of this manual for I/O path register definitions; the BASIC Interfacing
Techniques manual provides tutorial information about these interface registers.

The ASSIGN statement that assigns the I/O path name to a named buffer (or creates
an unnamed buffer) sets these registers to their initial values: the buffer type is set to
either 1 (named buffer) or 2 (unnamed buffer); the empty and fill pointers are set to 1;
the current-number-of-bytes register and all other registers are set to O.

40 Keyword Dictionary

Named buffers can also be accessed through their variable names in the same manner
that other variables of that data type can be accessed. However, with this type of access,
the buffer registers are not updated; only the data in the buffer changes. For example,
using LET to place characters in a named string-variable buffer does not change the
empty and fill pointers or the current-number-of-bytes register; only the buffer contents
and string's current length can be changed. It is highly recommended that the string's
current length (set to the string's dimensioned length by ASSIGN) not be changed in
this manner. Unnamed buffers can be accessed only through their I/O path names.

Using ENTER, OUTPUT, or TRANSFER to access a named buffer through its I/O path
name updates the appropriate buffer registers automatically; this is unlike accessing a
named buffer through its declared variable name (as above).

An I/O path name cannot be assigned to a buffer which will not exist for as long as the
I/O path name; this "lifetime" requirement has several implications. Buffers cannot be
declared in ALLOCATE statements. If a buffer's I/O path name is to appear in a COM
block, the buffer must appear in the same COM block; thus, I/O path names assigned
to unnamed buffers cannot appear in COM. If a buffer's I/O path name is to be used
as a formal parameter of a subprogram, the buffer to which it will be assigned must
appear in the same formal parameter list or appear in a COM which is accessible to that
subprogram context. An I/O path name which is a formal parameter to a subprogram
cannot be assigned to an unnamed buffer in the subprogram.

Additional Attributes (Requires 10)
The BYTE attribute specifies that all data is to be sent and received as bytes when the
I/O path name is used in an ENTER, OUTPUT, PRINT, or TRANSFER statement
that accesses a device, file, or buffer, and when the I/O path name is specified as the
PRINTER IS or PRINTALL IS device. In a TRANSFER, the attribute of BYTE or
WORD associated with the non-buffer I/O path name determines how the data is sent.

When neither BYTE nor WORD is specified in any ASSIGN statement for an I/O path,
BYTE is the default attribute. Once the BYTE attribute is assigned (either explicitly
or by default) to an I/O path name, it cannot be changed to the WORD attribute by
using the normal method of changing attributes (see Changing Attributes below); the
converse is also true for the WORD attribute.

The WORD attribute specifies that all data is to be sent and received as words (in the
same situations as with BYTE above). If the interface to which the I/O path is assigned
cannot handle 16-bit data, an error will be reported when the ASSIGN is executed;
similarly, if the buffer has a capacity which is an odd number of bytes, an error will be
reported. If the FORMAT ON attribute is in effect, the data will be buffered to allow
sending words. The first byte is placed in a two-character buffer; when the second byte is

Keyword Dictionary 41

placed in this buffer, the two bytes are sent as one word. A Null character1 CHR$(O)l may
be sent to this buffer by BASIC to force alignment on word boundaries at the following
times: before the first byte is sent, before a numeric item is sent with a W image, after
an EOL sequence, or after the last byte is sent to the destination. These Nulls may be
converted to another character by using the CONVERT attribute (see below). If WORD
has been set explicitly, it remains in effect even when the other defaults are restored (see
Changing Attributes). The only way to change the WORD attribute is to explicitly close
the path name.

The CONVERT attribute is used to specify a character-conversion table to be used during
OUTPUT and ENTER operations; OUT specifies conversions are to be made during all
OUTPUTs through the I/O path, and IN specifies conversions with all ENTERs. The
default attributes are CONVERT IN OFF and CONVERT OUT OFF 1 which specify
that no conversions are to be made in either direction. No non-default CONVERT
attribute can be assigned to an I/O path name that currently possesses the FORMAT
OFF attribute, and vice versa.

CONVERT ... BY INDEX specifies that each original character 1s code is used to index
the replacement character in the specified conversion string, with the only exception
that CHR$(O) is replaced by the 256th character in the string. For instance, CHR$(10)
is replaced by the 10th character, and CHR$(O) is replaced by the 256th character in the
conversion string. If the string contains less than 256 characters, characters with codes
t hat do not index a conversion-string character will not be converted.

CONVERT ... BY PAIRS specifies that the conversion string contains pairs of characters,
each pair consisting of an original character followed by its replacement character. Before
each character is moved through the interface, the original characters in the conversion
string (the odd characters) are searched for the character 1S occurrence. If the character is
found, it will be replaced by the succeeding character in the conversion string; if it is not
found, no conversion takes place. If duplicate original characters exist in the conversion
string, only the first occurrence is used.

The conversion-string variable must exist for as long as the I/O path name (see
explanation of the "lifetime" requirement in the preceding section on Using Buffers).
Changes Illade to the value of this variable immediately affect all subsequent conversions
which use the variable.

When CONVERT OUT is in effect, the specified conversions are made after any end
of-line (EOL) characters have been inserted into the data but before parity generation
is performed (if in effect). When CONVERT IN is in effect, conversions are made after
parity is checked but before the data is checked for any item-terminator or statement
terminator characters.

42 Keyword Dictionary

The EOL attribute specifies the end-of-line (EOL) sequence sent after all data during
normal OUTPUT operations and when the "L" image specifier is used. Up to eight
characters may be specified as the EOL characters; an error is reported if the string
contains more than eight characters. The characters are put into the output data before
any conversion is performed (if CONVERT is in effect). If END is included in the
EOL attribute, an interface-dependent END indication is sent with the last character
of the EOL sequence (such as the EOI signal on HP-IB interfaces); however, if no EOL
sequence is sent, the END indication is also suppressed. If DELAY is included, the
computer delays the specified number of seconds (after sending the last character) before
continuing. END and DELAY apply only to devices; both are ignored when a file or
buffer is the destination. The default EOL sequence consists of sending a carriage-return
and a line-feed character with no END indication and no delay period. This default is
restored when EOL is OFF.

The PARITY attribute specifies that parity is to be generated for each byte of data sent
by OUTPUT and checked for each byte of data received by ENTER. The parity bit is
the most significant bit of each byte (bit 7). The default mode is PARITY OFF. No
non-default PARITY attribute can be assigned to an I/O path name which currently
possesses the FORMAT OFF attribute, and vice versa.

The following PARITY options are available:

Effect on Effect on
Option Incoming Data Outbound Data

OFF No check is performed No parity is generated

EVEN Check for even parity Generate even parity

ODD Check for odd parity Generate odd parity

ONE Check for parity bit set (1) Set parity bit (1)

ZERO Check for parity bit clear Clear parity bit (0)
(0)

Parity is generated after conversions have been made on outbound data and is checked
before conversions on inbound data. After parity is checked on incoming data, the parity
bit is cleared; however, when PARITY OFF is in effect, bit 7 is not affected.

If a PARITY attribute is in effect with the WORD attribute, the most-significant bit of
each byte of the word is affected.

Keyword Dictionary 43

Determining the Outcome of an ASSIGN (Requires 10)
Although RETURN is not an attribute, including it in the list of attributes directs the
system to place a code in a numeric variable to indicate the ASSIGN operation's outcome.
If the operation is successful, a 0 is returned. If a non-zero value is returned, it is the
error number which otherwise would have been reported. When the latter occurs, the
previous status of the I/O path name is retained; the default attributes are not restored.
If more than one error occurs during the ASSIGN, the outcome code returned may not
be either the first or the last error number.

If RETURN is the only item in an ASSIGN statement, the default attributes are not re
stored to the I/O path (see Changing Attributes below). For example, executing a state
ment such as ASSIGN ~Io_path; RETURN Outcome does not restore the default attributes.

Changing Attributes
The attributes of a currently valid I/O path may be changed, without otherwise
disturbing the state of that I/O path or the resource(s) to which it is assigned, by
omitting the "TO resource" clause of the ASSIGN statement. For example, ASSIGN

<OFile; FORMAT OFF assigns the FORMAT OFF attribute to the I/O path name "@File"
without changing the file pointers (if assigned to a mass storage file). The only exception
is that once either the BYTE or WORD attribute is assigned to the I/O path name, the
attribute cannot be changed in this manner; the I/O path name must either be closed
and then assigned to the resource or be re-assigned to change either of these attributes.

A statement such as ASSIGN <ODevice restores the default attributes to the I/O path name,
if it is currently assigned. As stated in the preceding paragraph, the only exception is
that once the WORD attribute is explicitly assigned to an I/O path name, the default
BYTE attribute cannot be restored in this manner.

Closing I/O Paths
There are a number of ways that I/O paths are closed and the I/O path names rendered
invalid. Closing an I/O path cancels any ON-event actions for that I/O path. I/O path
names that arc not included in a CO~1 statement arc closed at the following times:

• When they are explicitly closed; for example. ASSIGN <OFile TO *

• When a currently assigned I/O path name is re-assigned to a resource, the original
I/O path is closed before the new one is opened. The re-assignment can be to
the same resource or a different resource. No closing occurs when the ASSIGN
statement only changes attributes and does not include the "TO ... " clause.

44 Keyword Dictionary

• When an I/O path name is a local variable within a subprogram, it is closed
when the subprogram is exited by SUBEND, SUBEXIT, ERROR SUBEXIT,
RETURN .. expression, or ON-event .. RECOVER.

• When SCRATCH, SCRATCH A, or SCRATCH C is executed; any form of STOP
occurs; or an END, LOAD, or GET is executed.

I/O path names that are included in a COM statement remain open and valid during
a LOAD, GET, STOP, END, or simple SCRATCH. I/O path names in COM are only
closed at the following times:

• When they are explicitly closed; for example, ASSIGN ClFile TO *
• When SCRATCH A or SCRATCH C is executed

• When a LOAD, GET, or EDIT operation brings in a program that has a COM
statement that does not exactly match the COM statement containing the open
I/O path names.

Additionally, when I Reset 1 (I RESET I) is pressed, all I/O path names are rendered invalid
without going through some of the updating steps that are normally taken to close an
I/O path. This is usually not a problem, but there are rare situations which might leave
file pointers in the wrong state if their I/O path is closed by a I Reset I. Explicit closing is
preferred and recommended.

When ASSIGN is used to close either the source or destination I/O path name of a
currently active TRANSFER, the I/O path is not actually closed until the TRANSFER
is completed. When I/O path names are closed in this manner, any pending (logged
but not serviced) EOR or EOT events are lost (they do not initiate their respective
branches). With buffers' I/O path names, the I/O path name might not be closed until
two TRANSFERs (one in each direction) are completed.

Keyword Dictionary 45

BASIC/UX Specifics
ASSIGN has been extended to allow HP-UX piping commands. For example "lIp".

Assigning an I/O path name to a pipe associates the I/O path with an HP-UX pipe.
Outbound pipes allow direction of BASIC/UX output to an HP-UX filter or utility, and
inbound pipes allow BASIC/UX to read input from an HP-UX filter of utility.

The pipe symbol "I" is used to specify a pipe. If this symbol appears at the beginning
of the string (as in "lp") an outbound pipe is opened. If this symbol appears at the end
of the string (as in "ps -ef ") an inbound pipe is opened.

BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing
of pip<'s can be achievf'd with a subsequent ASSIGN ~Pipe TO *, QUIT, or SCRATCH command.

46 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
Tn an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ATN

This function returns the principal value which has a tangent equal to the argument.
This is the arctangent function.

Item Description /Defa ult

argument numeric expression

Examples Statements
Angle=ATN(Tangent)
PRINT IIAngle = II ;ATN(CMPLX(-1.5,3.5))

Semantics

Range
Restrictions

within valid ranges of
INTEGER or REAL
data types for INTEGER
and REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

The angle mode (RAD or DEG) for REAL and INTEGER arguments indicates whether
you should interpret the value returned in degrees or radians. If the current angle mode
is DEG, the range of the result is -90° to 90°. If the current angle mode is RAD, the
range of the result is -7r /2 to +7r /2 radians. The angle mode is radians unless you specify
degrees with the DEG statement.

To compute the ATN of a COMPLEX value, the COMPLEX binary must be loaded.

Keyword Dictionary 47

Range Restriction Specifics
The formula for computing the ATN of a COMPLEX value is as follows:

(i/2)*LOG«i+Argument)/(i-Argument»

where i is the COMPLEX value CMPLX(O.l) and Argument is a COMPLEX argument
to the ATN function. Some values of a COMPLEX argument may cause errors in this
computation. For example,

ATN(CMPLX(MAXREAL.MAXREAL»

will cause error 22 due to the computation of

(i+Argument)/(i-Argument)

ATN is not defined at i and -i and will generate error 623 given those arguments.

The principle value, which has a real part between -7r/2 and +7r/2 , is returned for
COMPLEX arguments.

48 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

ATNH

This function returns the hyperbolic arctangent of a numeric expression.

Item Description/Default

argument numeric expression

Example Statements
Result=ATNH(-.4571)
PRINT "Hyperbolic Arctangent ";ATNH(Xl)

Semantics

Range
Restrictions

-1 through + 1 for INTEGER
and REAL arguments; see
"Range Restriction Specifics"
for COMPLEX arguments.

If an INTEGER or REAL argument is given, this function returns a REAL value. If a
COMPLEX argument is given, this function returns a COMPLEX value.

Range Restriction Specifics
The formula for computing ATNH is as follows:

LOG«1+Argument)/(1-Argument»/2

where Argument is the argument to the ATNH function. Some values of the argument
may cause errors in this computation. For example:

ATNH(CMPLX(MAXREAL,MINREAL»

will cause error 22 (REAL overflow) due to the divide operation in the formula.

Note that the hyperbolic arctangent of a COMPLEX number returns a principle value,
that has an imaginary part which falls in the range of -7r /2 to +7r /2.

Keyword Dictionary 49

AXES
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement draws a pair ofaxes 1 with optional, equally-spaced tick marks.

50 Keyword Dictionary

WS,UX
GRAPH

Yes
Yes
Yes

Item

x tick spacing

y tick spacing

y axis location

x axis location

x major count

y major count

major tick size

Description Range

numeric expression in current units; Default (see text)
= 0, no ticks

numeric expression in current units; Default (see text)
= 0, no ticks

numeric expression specifying the location of
the y axis in x-axis units; Default = °
numeric expression specifying the location of
the x axis in y-axis units; Default = °
numeric expression, rounded to an integer, 1 thru 32 767
specifying the number of tick intervals be-
tween major tickmarks; Default = 1 (every
tick is major)

numeric expression, rounded to an integer, 1 thru 32 767
specifying the number of tick intervals be-
tween major tick marks; Default = 1 (every
tick is major)

numeric expression in graphic display units;
Default = 2

Example Statements
AXES 10,10
AXES X,Y,Midx,Midy,Maxx/10,Maxy/10

Semantics
The axes are drawn so they extend across the soft clip area. The tick marks are symmetric
about the axes, but are clipped by the soft clip area. Tick marks are positioned so that
a major tick mark coincides with the axis origin, whether or not that intersection is
visible. Both axes and tick marks are drawn with the current line type and pen. Minor
tick marks are drawn half the size of major tick marks.

The X and Y tick spacing must not generate more than 32 768 tick marks in the clip
area (including the axis), or error 20 will be generated.

If either axis lies outside the current clip area, that portion of the tick mark which extends
into the non-clipped area is drawn.

Keyword Dictionary 51

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES and GRID) X

Location of labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LDIR.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by PDIR.

52 Keyword Dictionary

LDIR PDIR

Note 4
X

X

Note 2

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

BASE

This function returns the lower subscript bound of a dimension of an array. This value
is always an INTEGER. (See also OPTION BASE.)

Item

array name

dimension

Description Range

name of an array any valid name

numeric expression, rounded to an integer 1 thru 6;
~ the RANK of the array

Example Statements
Lowerbound=BASE(ArrayS, 1)
Upperbound(2)=BASE(A,2)+SIZE(A,2)-1

See the CREATE BDAT statements.

BOAT

Keyword Dictionary 53

BEEP
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement produces one of 64 audible tones.

Item Description Range

frequency numeric expression, rounded to the nearest 81 thru 5208

seconds

tone; (see table)
Default = 1220.7

numeric expression, rounded to the nearest
hundredth;
Default = 0.2

Example Statements
BEEP 81.38*Tone .. 5
BEEP

Semantics

WS,UX
None

Yes
Yes
Yes

The frequency and duration of the tone are subject to the resolution of the built in tone
generator. The frequency specified is rounded to the nearest frequency shown in the
table on the following page. For example, any specified frequency from 40.7 to 122.08
produce~ a beep of 81.38 Hz;. If the frequellcy :::ipecifieJ i:::i larger than 51G7.G3, a tone
of 5208.32 is produced. If it is less than 40.69, it is considered to be a 0 and no tone is
produced.

Rounding is performed by the system to produce the number in the first column of the
following table. With an HP-HIL interface, the frequency produced is the corresponding
number in the second column. (Note that the frequencies generated by a computer with
a 98203A/B style keyboard are slightly different than those generated by an HP-HIL
keyboard/interface combination.)

54 Keyword Dictionary

Rounding of BEEP Frequency Parameters

Series 200 HP-HIL Series 200 HP-HIL
81.38 81.45 2685.54 2688.16

162.76 162.12 2766.92 2777.77

244.14 244.37 2848.30 2873.55

325.52 324.25 2929.68 2976.18

406.90 408.49 3011.06 2976.18

488.28 496.03 3092.44 3086.41

569.66 578.70 3173.82 3205.12

651.04 651.03 3255.20 3205.12

732.42 744.04 3336.58 3333.32

813.80 833.33 3417.96 3472.21

895.18 905.79 3499.34 3472.21

976.56 992.06 3580.72 3623.17

1057.94 1096.49 3662.10 3623.17

1139.32 1157.40 3743.48 3787.86

1220.70 1225.49 3824.86 3787.86

1302.08 1302.08 3906.24 3968.24

1383.46 1388.88 3987.62 3968.24

1464.84 1461.98 4069.00 4166.65

1546.22 1543.20 4150.38 4166.65

1627.60 1633.98 4231.76 4166.65

1708.98 1700.67 4313.14 4385.95

1790.36 1773.04 4394.52 4385.95

1871.74 1851.84 4475.90 4385.95

1953.12 1937.98 4557.28 4629.61

2034.50 2032.51 4638.66 4629.61

2115.88 2136.74 4720.04 4629.61

2197.26 2192.97 4801.42 4901.94

2278.64 2252.24 4882.80 4901.94

2360.02 2380.94 4964.18 4901.94

2441.40 2450.97 5045.56 4901.94

2522.78 2525.24 5126.94 5208.31

2604.16 2604.16 5208.32 5208.31

The resolution of the seconds parameter is 0.01 seconds. Any duration shorter than 0.005
seconds is treated as o. Any duration longer than 2.55 seconds is treated as 2.55 seconds.

Keyword Dictionary 55

In a few cases with an HIL interface, the frequency produced will not be the closest table
entry. For example, BEEP 203.4 •. 5 will BEEP at 162.12 on an HIL interface even though
the specified frequency is closer to 244.37 (in the HP-HIL column) because the closest
Series 200 entry is 162.76.

Series 200 HP-HIL

162.76 162.12

244.14 244.37

BIN

See the LOAD, LIST, and SCRATCH statements.

56 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

BINAND

This function returns the value of a bit-by-bit, logical AND of its arguments.

---< BINAND ~ argument ~ argument ~

Item Description Range

argument numeric expression, rounded to an integer -32768 thru +32767

Example Statements
Low_4_bits=BINAND(Byte.15)
IF BINAND(Stat.8) THEN Bit_3_set

Semantics
The arguments for this function are represented as 16-bit two's-complement integers.
Each bit in an argument is AND'ed with the corresponding bit in the other argument.
The results of all the AND's are used to construct the integer which is returned.

For example, the statement Ctrl_word=BINAND (Ctrl_word. -9) clears bit 3 of CtrL word
without changing any other bits.

bit 15
1

12 = 00000000
-9 = 11111111

4 = 00000000

bit 0
1

00001100 old CtrL word
11110111 mask to clear bit 3
00000100 new CtrLword

Keyword Dictionary 57

BINCMP
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

This function returns the value of the bit-by-bit complement of its argument.

--< BINCMP >--<D--1 argument ~

Item Description Range

WS,UX
None

Yes
Yes
Yes

argument numeric expression, rounded to an integer -32 768 thru +32 767

Example Statements
True=BINCMP(Inverse)
PRINT X,BINCMP(X)

Semantics
The argument for this function is represented as a 16-bit, two's-complement integer. Each
bit in the representation of the argument is complemented, and the resulting integer is
returned.

For example, the complement of -9 equals +8:

bit 15 bit 0
1 1

-9 = 11111111 11110111

+8 = 00000000 00001000

58 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

BINEOR

This function returns the value of a bit-by-bit, exclusive OR of its arguments.

---..(BINEOR)--.(I)--1 argument ~ argument ~

Item Description Range

argument numeric expression, rounded to an integer -32768 thru +32767

Example Statements
Toggle=BINEOR{Toggle.1}
True_byte=BINEOR{Inverse_byte.255}

Semantics
The arguments for this function are represented as 16-bit, two's-complement integers.
Each bit in an argument is exclusively OR'ed with the corresponding bit in the other
argument. The results of all the exclusive OR's are used to construct the integer which
is returned.

For example, the statement Ctrl_word=BINEOR{Ctrl_word.4} inverts bit 2 of CtrLword
without changing any other bits.

bit 15 bit 0
1 1

12 = 00000000 00001100 old Ctrl_word
4 = 00000000 00000100 mask to invert bit 2

8 = 00000000 00001000 new CtrLword

Keyword Dictionary 59

BINIOR
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This function returns the value of a bit-by-bit, inclusive OR of its arguments.

-.(BINIOR ~ argument ~ argument ~

Item Description Range

WS,UX
None

Yes
Yes
Yes

argument numeric expression, rounded to an integer -32768 thru +32767

Example Statements
Bits_set=BINIOR(Valuel,Value2)
Top_on=BINIOR(All_bits,2-15)

Semantics
The arguments for this function are represented as 16-bit, two's-complement integers.
Each bit in an argument is inclusively OR'ed with the corresponding bit in the other
argument. The results of all the inclusive OR's are used to construct the integer which
is returned.

For example~ the statement Ctrl_word=BINIOR(Ctrl_word,6) sets hits 1 & 2 of CtrLword
without changing any other bits.

bit 15 bit 0
! !

19 = 00000000 00010011 old Ctrl_word
6 = 00000000 00000110 mask to set bits 1 & 2

23 = 00000000 00010111 new Ctrl_word

60 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

BIT

This function returns a 1 or 0 representing the value of the specified bit of its argument.

~ argument ~bit Position~

Item Description Range

argument

bit position

numeric expression, rounded to an integer -32 768 thru +32 767

numeric expression, rounded to an integer 0 thru 15

Example Statements
Flag=BIT(Info,O)
IF BIT(Word,Test) THEN PRINT "Bit #";Test;"is set"

Semantics
The argument for this function is represented as a 16-bit, two's-complement integer. Bit
o is the least-significant bit, and bit 15 is the most-significant bit.

The following example reads the controller status register of the internal HP-IB and takes
a branch to "Active" if the interface is currently the active controller.

100 STATUS 7,3;S Reg 3 = control status
110 IF BIT(S,6) THEN Active ! Bit 6 = active control

Keyword Dictionary 61

BREAK
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement directs a serial or datacomm interface to send a Break sequence.

Item

I/O path name

interfac,e select
code

Description Range

name assigned to an interface select code any valid name

numeric expression, rounded to an integer 8 thru 31

Example Statements
BREAK 9
BREAK ~Data_comm

Semantics
A Break sequence is a signal sent on the Data Out signal line.

WS,UX
10

Yes
Yes
Yes

• On an HP 98626, 98644 Serial Interface, 98628 Datacomm Interface, or 98642 MUX
Interface, a logic High of 400-ms duration followed by a logic Low of 60-ms duration
is sent. If an outbound TRANSFER is taking place through this interface, the
Break is sent after the TRANSFER is finished; the Break is sent immediately if an
inbound TRANSFER is taking place.

If the interface is not a serial-type interface, error 170 is reported. If an I/O path name
assigned to a device selector with addressing information, error 170 is reported. If the
specified interface is not present, error 163 is reported.

62 Keyword Dictionary

BUFFER
See the DIM, REAL, INTEGER, COMPLEX, COM, ASSIGN, SUB, and DEF FN
statements.

BYTF
See the ASSIGN statement.

Keyword Dictionary 63

Notes

64 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

CALL

This statement transfers program execution to the specified SUB or CSUB subprogram
and may pass parameters to the subprogram. SUB programs are created with the SUB
statement. (Also see the ON ... statements.)

pass parameters:

--~~~------------~@

Passed by Reference

Passed by Value

string expressions containing monadic
operators. dyadic operators. or functions

string expressions containing monadic
operators. dyadic operators. or functions

Keyword Dictionary 65

Item Description Range

subprogram
name

name of the SUB or CSUB subprograms to any valid name
be called

I/O path name name assigned to a device, devices, or mass any valid name
storage file (see ASSIGN)

variable name name of a string or numeric variable any valid name

substring string expression containing substring nota- (see Glossary)
tion

literal string constant composed of characters from
the keyboard, including those generated us
ing the I ANY CHAR I key

numeric constant numeric quantity expressed using numerals,
and optionally a sign. a decimal point. and/
or exponent notation

Example Statements
CALL Process(Ref.(Value) .~Path)
Process(Ref.(Value).~Path)

CALL Transform(Array(*))
IF Flag THEN CALL Special

Semantics
A subprogram may be invoked by a stored program line, or by a statement executed
from the keyboard. Invoking a subprogram changes the program context. Subprograms
may be invoked recursively. The keyword CALL may be omitted if it would be the first
woro in a program line. HoweveL the keyworo (;ALL is reqnireo in all other instances
(such as a CALL from the keyboard and a CALL in an IF ... THEN ... statement).

The pass parameters must be of the same type (numeric, string, or I/O path name) as
the corresponding parameters in the SUB or CSUB statement. Numeric values passed
by value are converted to the numeric type (REAL, INTEGER, or COMPLEX) of
t he corresponding formal parameteL Variables passed by reference must match the
corresponding parameter in the SUB statement exactly. An entire array may be passed
by reference by using the asterisk specifier.

If there is more than one subprogram with the same name, the lowest-numbered
subprogram is invoked by a CALL.

66 Keyword Dictionary

Program execution generally resumes at the line following the subprogram CALL.
However, if the subprogram is invoked by an event-initiated branch (such as ON END,
ON ERROR, ON KEY, etc.), program execution resumes at the point at which the
event-initiated branch was permitted.

When CALL is executed from the keyboard, the subprogram is executed in its own
separate context. Furthermore, the current state of the system determines the system's
state when the subprogram executes a STOP. If the computer was paused or stopped
when CALL was executed, its state does not change. If the computer was running
when the CALL was executed, the program pauses at the program line which was
interrupted by the CALL for the subprogram, and resumes execution at that point after
the subprogram is exited.

CASE

See the SELECT ... CASE construct.

Keyword Dictionary 67

CAT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement lists all or specified portions of the contents of a mass storage directory,
or lists information regarding a specified PROG-type file.

literal form of file specifier:

HrS or SRM files only

68 Keyword Dictionary

Item

directory
specifier

volume specifier

file specifier

directory path

file name

Description Range

string expression; (see MASS STORAGE IS)
Default=MASS STORAGE IS directory

string expression; (see MASS STORAGE IS)
Default=MASS STORAGE IS volume

string expression specifying a PROG-type (see drawing)
file

literal

literal

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

catalog device
selector

numeric expression, rounded to an integer; (see Glossary)
Default=PRINTER IS device

string array name name of a string array (see text) any valid name

beginning
character(s)

number of files

return variable
name

string expression

numeric expression, rounded to an integer

name of a numeric variable

1 to 10 characters (LIF);
1 to 14 characters (HFS:
short file names);
1 to 255 characters (HFS:
long file names);
1 to 16 characters (SRM)

1 thru 32767

any valid name

Keyword Dictionary 69

Example Statements
CAT
CAT TO #701
CAT 11:,700,1 11
CAT II:REMOTEII
CAT II:REMOTE; LABEL Mastervol ll

CAT IIA/B/C:REMOTEII
CAT II .. / .. / .. II
CAT IIDirl/Dir211

CAT IIHFS_Dirll;NAMES

CAT;SELECT IIDII,SKIP Ten_files,NO HEADER

CAT TO String_array$(*)
CAT TO Hfs_dir$(*);EXTEND

CAT IIMy_File ll ;PROTECT

Semantics
A directory entry is listed for each file in the specified directory. The catalog shows
information such as the name of each file, whether or not it is protected, the file's type
and length, and the number of bytes per logical record.

The file types recognized in BASIC are: ASCII, BDAT (BASIC data), BIN (binary
program), HP-UX, PROG (BASIC program), and SYSTM (operating system). An ID
number is listed for any unrecognized file types.

LlF Catalogs
The LIF catalog format is shown below. This catalog format requires that the PRINTER
IS device have the capability of displaying 65 or more characters. If the printer width is
less than 65, the DATE and TIME columns are omitted.

:CS80,700
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS DATE TIME

MyProg PROG 14 256 16 23-May-87 7:58
VisiComp ASCII 29 256 30 8-Apr-87 6:00
GRAPH BIN 171 256 59 l-May-87 1:00
GRAPHX BIN 108 256 230 10-Aug-87 9:00

70 Keyword Dictionary

The first line of the catalog shows the volume specifier (: CS80 • 700 in this example).

The second line shows the volume label-a name, containing up to 6 characters, stored
on the media (B9836 in this example).

The third line labels the columns of the remainder of the catalog. Here is what each
column means:

FILE NAME lists the names of the files in the directory (up to 10 characters).

PRO indicates whether the file has a protect code (* is listed in this column if
the file has a protect code).

FILE TYPE lists the type of each file.

REC/FILE indicates the number of records in the file.

BYTE/REC indicates the record size.

ADDRESS indicates the number of the beginning sector in the file.

DATE indicates when the date the file was last modified.

TIME indicates the time the file was last modified.

Keyword Dictionary 71

HFS Catalogs
In order to perform a CAT of an HFS directory, you need to have R (read) and X (search)
permissions on the directory to be cataloged, as well as X (search) permissions on all
superior directories.

In order to perform a CAT of an HFS file, you need to have R (read) permission on the
file to be cataloged, as well as X (search) permissions on all superior directories.

Here is a typical catalog listing of an HFS directory. Note that a 50 column display
truncates this catalog listing after the column with TIME in it. Therefore, the
PERMISSION, OWNER, and GROUP columns will be not be listed.

:CS80. 700
LABEL: MyVol
FORMAT: HFS
AVAILABLE SPACE: 60168

FILE NUM REC MODIFIED
FILE NAME TYPE RECS LEN DATE TIME PERMISSION OWNER GROUP

lost+found
FILEIOD
RBDAT
CATTOSTR

DIR
PROG
BDAT
PROG

o
191

2
2

32 19-Nov-86 10:47 RWXRWXRWX
256 21-Nov-86 9:03 RW-RW-RW-
25621-Nov-86 9:10 RW-RW-RW-
256 1-Dec-86 8:02 RW-RW-RW-

18
18
18
18

9
9
9
9

The first line of the catalog shows the directory specifier, including the volume specifier.
The full path to the specified directory is displayed.

If the directory path specifier contains more characters than the display width, the last
49 or 79 characters (depending on the display width) are shown. An asterisk (*) as the
left-most character in the path specifier indicates that leading characters were truncated
for the display. In BASIC/UX, the device type is always HFS. and no device selector is
shown.

The second line shows the volume label-a name, containing up to 6 characters, stored
on the media (Myvol in this example). In BASIC/UX, the label is not shown.

The third line shows the format of the disc (HFS in this example).

The fourth line lists the number of available 256-byte sectors on the disc (60168 in this
example). If the sector size is 1024 bytes, then each 1024-byte sector would count as 4
256-byte sectors.

72 Keyword Dictionary

The fifth line labels the columns of the remainder of the catalog. Here is what each
column means:

FILE NAME

FILE
TYPE

Lists the name of the file. BASIC/UX truncates file names longer than
14 characters and places an * at the end of the name.

Lists the file's type (for instance, DIR specifies that the file is a
directory; PROG specifies a BASIC program file; BDAT specifies a
BASIC DATA file; etc.) if you have read permission. If you do not
have read permission, the file type shows up as HP-UX. BASIC/UX
also shows SYSTM files as type HP-UX.

BASIC/UX also has these file types in addition:
CD EV, character device file
BDEV, block device file
SLINK, symbolic link without a valid target
PIPE, named pipe
NET, RFA network special file
CDF, context dependent file (used in discless clusters)
LOCKD, the file was locked by another user and its true type could
not be determined.

NUM number of logical records (the number of records allocated to the file
RECS when it was created). For a DIR file, this indicates the number of

directory entries.

REC the logical record size (default is 256 bytes; BDAT files can have user-
LEN selected record lengths). For a DIR file, this indicates the size of the

directory entry. You cannot specify record length for ASCII or HP -UX
files. The record length for HP-UX files is 1.

MODIFIED the day and time when the file was last modified.
DATE TIME

Keyword Dictionary 73

PERMISSION

OWNER

GROUP

specifies who has access rights to the file:

R indicates that the file can be read;
W indicates that the file can be written;
X indicates that the file can be searched

(meaningful for directories only).
S (BASIC/UX only) set-id bit is on, and the

search bit is off.
s (BASIC/UX only) set-id bit is on, and the

search bit is on.

There are 3 classes of user permissions for each file:

OWNER (left-most 3 characters);
GROUP (center 3 characters);
OTHER (right-most 3 characters).

See PERMIT for further information.

specifies the owner identifier for the file (for BASIC Workstation files,
the default owner identifier is always 18). BASIC/UX shows the user
id of the user that owns the file.

specifies the group identifier of the file or directory (for BASIC Work
station, the default group identifier is always 9, which is used for "work
stations" such as Series 200/300 BASIC and Pascal). BASIC/UX shows
the group-id of the group that the file belongs to.

74 Keyword Dictionary

CAT of an SRM Directory
In order to perform a CAT of an SRM directory or file, you need to have R (read)
access capability on the directory to be cataloged, as well as R capability on all superior
directories.

The catalog listing format used by the SRM system depends upon the line-width capacity
of the device used for display.

When cataloging a remote directory on a 50-column display, the SRM system uses the
following catalog format:

USERS/STEVE/PROJECTS/DIR1:REMOTE 21,0
LABEL: Disc1
FORMAT: SDF
AVAILABLE SPACE: 54096

PUB FILE NUMBER RECORD OPEN
FILE NAME ACC TYPE RECORDS LENGTH STAT
================ === =======

Common_data MRW ASCII 48 256 OPEN
Personal_data BDAT 33 256 LOCK
Program_alpha RW PROG 44 256
HP9845_DATA R DATA? 22 256
HP9845_STORE MRW PROG? 9 256
Pascal_file.TEXT MRW TEXT 37 256
Program_500 MRW PROG? 12 256

Keyword Dictionary 75

When cataloging an SRM directory on an 80-column display, the system uses the
following catalog format:

USERS/STEVE/PROJECTS/DIR1:REMOTE 21,0
LABEL: Disci
FORMAT: SDF
AVAILABLE SPACE: 54096

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT

Common_data 1 ASCII 48 256 2-Dec-83 13:20 MRW OPEN
256 2-Dec-83 13:20 LOCK
256 3-Dec-83 15:06 RW

Personal_data 1 98X6 BOAT 33
Program_alpha 1 98X6 PROG 44
HP9845_DATA 1 9845 DATA 22 256 10-0ct-83 8:45 R
HP9845_STORE 1 9845 PROG 9 256 10-0ct-83 8:47 MRW
Pascal_file. TEXT 1 PSCL TEXT 37 256 11-Nov-83 12:25 MRW
Program_500 1 9000 PROG 12 256 13-Dec-83 9:54 MRW

The header gives you the following information:

line 1

line 2

line .9

line 4

lines 5
and 6

Directory specifier, including volume specifier. The full path to the specified
directory is displayed. Passwords used in the path are not displayed.

If the directory path specifier contains more characters than the display width,
the last 49 or 79 characters (depending on catalog format) in the path specifier
are shown. An asterisk (*) as the left-most character in the path specifier
indicates that leading characters were truncated for the display.

The system remembers a maximum of 160 characters for any directory path
specifier at a single time. If a path specifier contains more than 160 characters,
the excess characters are removed from the beginning of the specifier and are
not retained. This restriction does not affect movement within the directory
structure.

Volume label of the volume containing the directory being cataloged.

Directory format, such as SDF (Structured Directory Format).

Number of bytes available on the volume (given in increments of 256 bytes).

Labels for columns of information given for each file. The information
provided is summarized below.

76 Keyword Dictionary

Each column of the remaining catalog gives you the following information:

FILE NAME

LEV

PUB ACC

SYS TYPE

FILE TYPE

lists the names of the files and directories in the directory being
cataloged.

(80-column format only) shows the level of the file relative to the
current working directory or specified directory. (The level is always
shown as 1 in directory listings for Series 200/300 workstations.)

lists the access capabilities available to all SRM system users. The
three capabilities are READ, (R) WRITE (w) and MANAGER (M).

• Public MANAGER capability on a file or directory allows any user on
the SRM system to PURGE that file or directory and to modify or add
to its passwords (with PROTECT). Password-protected MANAGER
capability gives users who supply the required password both READ
and WRITE capabilities as well as MANAGER capability.

• READ capability on a directory allows you to access any file or
directory in the directory. The READ capability on a file allows you
to read the contents of the file.

• WRITE capability on a directory allows you to create or delete a file
or directory in that directory. The WRITE capability on a file allows
you to write information into that file.

(80-column format only) shows the type of system used to create the
file. The system type is not shown for ASCII files and directories. 98X6

denotes a Series 200/300 computer. (If the system does not recognize
the system type, a coded identifier, obtained from the system being
identified, appears in this column.)

indicates the file's type. Directories are indicated as type DIR. In the
50-column format, a question mark is appended to the file type if the
file was not created on a Series 200/300 computer and was a type other
than ASCII or DIR. For example, in the display illustrated earlier,
DATA and PROG files created on an HP 9845 are listed as such, but
shown with the question mark.

File types recognized by the BASIC system on SRM are: ASCII,
BDAT, BIN, DIR, HP-UX, PROG, and SYSTM, as well as Series
200/300 Pascal and Series 500 file types.

If the system does not recognize a file's type, a coded file type identifier
(obtained from the system originating the file) appears in the FILE
TYPE column.

Keyword Dictionary 77

NUMBER

RECORDS

indicates the number of records in the file.

RECORD LENGTH indicates the number of bytes constituting each of the file's records.

MODIFIED (80-column format only) show the date and time the file's contents
were last changed.

OPEN STAT shows whether the file is currently open (OPEN), locked (LOCK) or corrupt
(CORR). OPEN indicates that the file has been opened, via ASSIGN, by a
user. An open file is available for access from other workstations. LOCK

means the file is accessible only from the workstation at which the file
was locked. CORR indicates that the disc lost power while accessing the
file, possibly altering the file's contents. If the entry is blank, the file
is closed and available to any user.

Note

If a file's status is shown as corrupt (CORR), you should run the
DSCK Utility program to check the directory structure and its
integrity on the SRM system disc. Refer to the SRM System
Administrator's Guide (or SRM Operating System Manual) for
details.

CAT to a Device
When the symbol # is included in a CAT statement, the numeric expression following
this symbol must be a device selector. The catalog listing is sent to the device specified
by this expression.

CAT to a String Array (Requires MS)
The catalog can be sent to a string array. The array must be one-dimensional, and
each element of the array lllu~t contain at lea~t 80 character~ for a directory li~tillg or 45
characters for a PROG file listing. If the directory information does not fill the array, the
remaining elements are set to null strings. If the directory information "overflows" the
array, the overflow is not reported as an error. When a CAT of a mass storage directory
is sent to a string array, the catalog's format is different than when sent to a device. This
format (the SRM directory format) is shown below. Protect status is shown by letters,
instead of an asterisk. An unprotected file has the entry MRW in the PUB ACC (public
access) column. A protected BDAT file has no entry in that column. Other types of
protected files show R (read access). In addition to the standard information, this format
also shows OPEN in the OPEN STAT column when a file is currently assigned.

78 Keyword Dictionary

:CS80,702,O
VOLUME LABEL: B9836
FORMAT: LIF
AVAILABLE SPACE:

FILE NAME

11
SYS FILE NUMBER

TYPE TYPE RECORDS
RECORD MODIFIED PUB OPEN
LENGTH DATE TIME ACC STAT

================ === ==== ===== ======== ======== ================== === ====
SYSTEM_BA5
AUTOST

1 98X6 SYSTM
1 98X6 PROG

1024
38

256 29 Nov 86 15:24:55 MRW
256 29 Nov 86 09:25:07 MRW

To aid in accessing the catalog information in a string, the following table gives the
location of some important fields in the string.

Field Position (in String)

File Name 1 thru 21

File Type 32 thru 36

N umber of Records 37 thru 45

Record Length 46 thru 54

Time Stamp 56 thru 71

Public Access Capabilities 73 thru 75

Open Status 77 thru 80

The EXTEND Option (Requires MS)
If EXTEND is specified in a CAT TO String_array$(*) operation, the directory catalog
will be in HFS format for an HFS disc or in LIF format for a LIF disc. Otherwise, this
option has no effect on the CAT operation.

With an HFS disc, each element of the array must contain at least 49 characters. If
each element has less than 72 characters, the PERMISSION, OWNER, and GROUP are
omitted. With a LIF disc, each element of the array must contain at least 47 characters.
If each element has less than 65 characters, the DATE and TIME will be omitted.

N AMES takes precedence over EXTEND if both are given.

Keyword Dictionary 79

Catalogs of PROG Files (Requires MS)
If the file specifier is for a PROG file, the following information is included:

• a list of binary programs in the file,

• a list of all contexts in the program,

• and each context's type and size.

SAMPLE
NAME

MAIN
Esc
FNDumrny

AVAILABLE ENTRIES = 0

SIZE TYPE

692 BASIC
924 COMPILED UTILITY
166 BASIC

If any binary programs have a version code different from the BASIC version code, both
a warning and the version codes of the binary program and BASIC system are included
with the listing. CAT of a PROG file uses the same format, whether the destination is
a device or a string.

Partial Catalogs (Requires MS)
Including the SELECT option directs the computer to list only the files that begin with
or match the value of the specified string expression.

CAT; SELECT "B21"

If the string expression contains more characters than are allowed in a file name (10 for
LIF, 14 for HFS, 255 for HFS long file name systems, and 16 for SRM), then only the
first 10 characters if LIF, 14 characters if HFS, or 16 characters if SRM are used. If
SELECT is not included, all files are sent to the destination (if possible).

Including the SKIP option directs the computer to skip the specified number of (selected)
file entries before sending entries to the destination.

CAT; SKIP 12

If SKIP is not included, no files are skipped.

If an option is given more than once, only the last instance is used.

80 Keyword Dictionary

How Many Entries? (Requires MS)
Including COUNT provides a means of determining the number of lines sent to the
destination.

CAT; COUNT N_files

The variable that follows COUNT receives the sum of the number of selected files plus
the number of lines in the catalog header (and trailer for PROG files); keep in mind that
the number of selected files includes the number of files sent to the destination plus the
number of files skipped, if any. Catalogs sent to external devices in the LIF format have
a five-line header; in SRM and HFS formats they have seven-line headers. Catalogs to
string arrays are SRM format unless EXTEND is added. Catalogs of individual PROG
files have a three-line header and a one-line trailer. If an "overflow" of a string array
occurs, the count is set to the number of string-array elements plus the number of files
skipped. If no entries are sent to the destination (because the directory is empty, or
because no entries were selected, or because all selected entries were skipped), the value
returned depends on whether there is a header. If there is no header, then zero (0) is
returned. If there is a header, then the value returned is the size of the header plus the
number following the skip option (the number requested to be skipped).

If an option is given more than once, only the last instance is used.

Using the NAMES Option (Requires MS)
Using the NAMES option, as shown in the following statement, will produce a multi
column listing of only the names of the files.

CAT ; NAMES I Return I

lost+found WORKSTATIONS MY_PROG

PROJECTS

Executing the following statement:

CAT TO A$(*);NAMES

will put one file name in each array element.

CAT TO string; NAMES in BASIC lUX may cause a string overflow if a file name is longer
than 14 characters (since longer names are allowed in BASIC/UX), and the string array
is not large enough to hold the entire name.

Keyword Dictionary 81

Suppressing the Heading (Requires MS)
Including the NO HEADER option directs the computer to omit the directory header
(and trailer) that would otherwise be included.

CAT ; NO HEADER

When NO HEADER is specified, the lines of the header (and trailer) are then omitted
from the COUNT variable.

When NAMES is specified, there is NO HEADER whether or not NO HEADER is
specified.

The PROTECT Option (SRM Only)
PROTECT is a CAT option available only on SRM volumes. This option requires the
SRM, DCOMM, and MS binaries. The PROTECT option displays the password(s) and
associated access capabilities for the specified file or directory.

For example, the statement:

CAT "Test_file<MPASS>:REMOTE";PROTECT

might produce the display:

PASSWORD

MPASS
WPASS
RPASS
PASSWORD

CAPABILITY

MANAGER ,READ ,WRITE
WRITE
READ
MANAGER

Use of this option requires MANAGER access capability on the file or directory. If the
MANAGER capability is public, the PROTECT option may be used by any SRM user.

PROTECT must be specified separately from other CAT options, and is allowed only
with SRN! file~ aud directorie~. u~iug PROTECT with media olher lhall SRN! le~ulLb
in ERROR 1 Configuration error.

82 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF, , , THEN

WS,UX
None

Yes
Yes
Yes

CAUSE ERROR

This statement simulates the occurrence of an error of the specified number.

(CAUSE ERROR ~

Item Description Range

error number numeric expression, rounded to an integer 1 thru 999; 1001 thru 1080

Example Statements
CAUSE ERROR Err_num
IF Testing THEN CAUSE ERROR 80

Semantics
When this statement is executed, it initiates the normal error-reporting action taken by
the system when an error is encountered in a program line.

If ON ERROR is in effect and CAUSE ERROR is executed in a program line, the
appropriate branch is initiated-just as if an actual error occurred on that line. When
executed from a running program, CAUSE ERROR affects the error indications ERRN,
ERRM$, ERRL, and ERRLN; each is set to the value appropriate for the specified error
number and line number. However, ERRDS is not affected.

If CAUSE ERROR is executed at the keyboard, or if executed in a running program
(while ON ERROR is not in effect), BASIC shows the error number (and error message,
if the ERR binary is present) in the system message line of the display. (Note that errors
caused by executing statements at the keyboard do not affect the error indications listed
in the preceding paragraph.)

Keyword Dictionary 83

CDIAL

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This function returns information about "control dial" devices.

Item Description Range

dial selector numeric expression, rounded to an integer 0 thru 15

Example Statements
CDIAL (1)
IF BIT(CDIAL(O) ,3) THEN GOSUB Dia13_touched
Pulses_dial_9=CDIAL(9)

Semantics
Two different types of results can be returned by this function:

WS,UX
KBD

Yes
Yes
Yes

• If a value of 0 is passed to the CDIAL function, it returns a 16-bit status word
specifying which knobs have been rotated. Bit 1 set indicates that dial 1 has been
rotated; bit 2 set indicates that dial 2 has been rotated; and so forth through bit
15. (Bit 0 is not used.)

• If a value of 1 through 15 is passed, the function returns the number of pulses
accumulated for that particular dial (and clears the corresponding pulse counter).

84 Keyword Dictionary

Mapping of Dials
Here is the mapping of control dial numbers to physical dial locations (this example
shows two HP 46085 Control Dial Boxes in use on one HP -HIL interface).

1 st Control Dial Box
(in HP-HIL link)

2nd Control Dial Box
(in HP-HIL link)

device
(if any)

Last row maps into

1 st row of 1 st device

Once CDIAL is used to read information about a particular dial (registers 1 thru 15),
that register is automatically cleared as is the corresponding bit in register o. Reading
register 0 does not change register O.

All registers are automatically cleared when ON CDIAL is executed.

If ON CDIAL is used to set up control dial interrupts and then disabled (with OFF
CDIAL), the CDIAL function can still be used to determine valid information about
control dials: however, note that subsequent pulses will not be accumulated into the
CDIAL registers, and when a register is read with CDIAL, that register is automatically
cleared by the system.

Keyword Dictionary 85

CHANGE
Supported on
Option R('quired
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
EDIT and PDEV

Yes
No
No

This command allows you to search for and replace one character sequence with another
while editing a program.

Item

old text literal

literal

Description Range

new text

beginning line
number

integer constant identifying a program line 1 to 32 766

beginning line la- name of a program line any valid name
bel

ending line nUlll- integer constant identifying a program line 1 to 32 766
ber

ending line label name of a program line

Example Statements
CHANGE "Row" TO "Column"
CHANGE "Row" TO "Column" IN 2560,3310
CHANGE "November" TO "December";ALL
CHANGE "TREE" TO ""
CHANGE "his car" TO "his ""car"""

86 Keyword Dictionary

any valid name

(A "delete" function)
(Quotes allowed)

Semantics
The CHANGE command allows you to find all occurrences of a specified character
sequence and replace it with another. This occurs whether they are variable names,
keywords, literals, or line numbers. Note that if line numbers are changed, unexpected
results may occur.

If ALL is specified, all legal changes are made automatically, without additional keyboard
intervention. If ALL is not specified, the computer finds each occurrence, tentatively
changes old text to new text, and asks you to confirm the change.

• You confirm a particular change by pressing I Return I or I ENTER I .

• You may bypass a particular change by pressing I CONTINUE I (@] on an ITF
key board), or I Shift H Clear line I followed by I Return I (I CLR LN I followed by I ENTER I on
a 98203 keyboard).

[!J and OJ exit CHANGE mode. I EXECUTE I confirms a change, and exits CHANGE
mode.

When the specified range is exhausted or the end of the program is reached, the CHANGE
command is terminated and the message II old text" not found is displayed.

During the course of a CHANGE, if a syntax error is caused by the altered text, the
appropriate error message is displayed. When the line is corrected and entered, the
CHANGE command continues.

If a change causes a line to become longer than the maximum length of a line of code,
a syntax error is generated, the erroneous change will not take place, and the CHANGE
command is aborted. The CHANGE command will also be aborted if a replacement
results in the alteration of a line number, although the line whose number was changed
now exists in two locations.

If the starting line number does not exist, the next line is used. If the ending line number
does not exist, the previous line is used. If a line label doesn't exist, an error occurs and
the CHANGE is canceled.

If there were no occurrences found, the cursor is left at the end of the first line searched.
If one or more occurrences were found, the cursor is left at the end of the line containing
the last occurrence.

Keyword Dictionary 87

CHANGE is not allowed while a program is running: however, it may be executed while
a program is paused. The program is continuable if it has not been altered by pressing
I Return I or I Delete line I (I ENTER I or I DEL LN I).

While in the CHANGE mode, keyboard execution of commands is only possible with the
I EXECUTE I key on a 98203 keyboard. Using I ENTER I causes an error.

88 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MS
Yes
Yes
Yes

CHECKREAD

This statement enables or disables optional read-after-write verification of data sent to
mass storage media.

(CHECKAEAD ~
OFF

Example Statements
IF Important_data THEN CHECKREAD ON
CHECKREAD OFF

Semantics
Executing CHECKREAD ON directs the computer to perform a read-after-write verifi
cation of every sector of data sent to mass storage files by any of the following statements
(executed in any program context):

COPY
CREATE
CREATE ASCII
CREATE BOAT
OUTPUT

PRINT LABEL
PROTECT
PURGE
RENAME
RE-SAVE

RE-STORE
SAVE
STORE
TRANSFER

If the bit-by-bit comparison does not detect an exact match, an error is reported.

Executing CHECKREAD OFF cancels this optional verification.

Keep in mind that using this feature may increase data reliability, but at the expense of
reduced disc-access speed and increased disc wear.

CHECKREAD does not affect PRINTER IS file or PLOTTER IS file.

Keyword Dictionary 89

CHECKREAD of SRM and HFS Volumes
For SRM, CHECKREAD is implemented as a no-op, because the CHECKREAD function
is already performed (by the SRM system) for every BASIC operation that reads or writes
an SRM file. For HFS, CHECKREAD is also implemented as a no-op.

CHECKREAD of HFS Volumes with BASIC/UX
Because BASIC/UX uses the HP-UX operating system file system, buffer cache for all
HFS file I/O. it is not possible to verify the data on the physical media. Therefore,
CHECKREAD is not appropriate for HFS with BASIC/UX.

90 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
HFS
Yes
Yes
Yes

CHGRP

This statement modifies the group identifier of an HFS file or directory.

HFS file or
directory specifier

literal form of HFS file or directory specifier:

Item

HFS file or
directory name

Description Range

group identifier numeric expression, rounded to an integer 0 thru 32 767

HFS file or direc- string expression specifying a file on an HFS (see drawing)
tory specifier volume

directory path literal

HFS directory or literal
file name

volume specifier literal

Example Statements
CHGRP New_group_id. I /DirPath/HFSfile"
CHGRP 10. ITheirFile"

(see MASS STORAGE IS)

1 to 14 characters (see Glos
sary)

(see MASS STORAGE IS)

Keyword Dictionary 91

Semantics
In order to execute CHGRP, you must currently own the file or directory; that is, the
owner identifier must be 18, which is always the owner identifier for BASIC. If you change
the ownership with CHOWN, then you cannot subsequently use CHGRP to change the
group identifier of the file.

If no directory path is specified, the current working directory is assumed. If no volume
is specified, the current default volume is assumed.

Major Objective: HP-UX Compatibility
This keyword is implemented primarily for compatibility with the HP-UX operating
system. Group identifiers allow files and directories to be accessed by all users in the
same group, while restricting access to users in all other groups. Therefore, you can use
CHGRP to give group permissions to a specific HP-UX group. BASIC will no longer
have group permissions on the file, but it will retain owner permissions (unless ownership
is changed-such as with CHOWN).

For a list of the group identifiers used on an HP-UX system, see your HP-UX system
administrator or look at the identifiers listed in the jete/group file on the HP-UX system.
This file could contain the following entry, which defines the relationship between the
group named workstation and the group identifier 9:

workstation: :9:basie.pws

If this group identifier is currently being used on an HP-UX system that is to share a disc
with BASIC, then thf' HP-UX system administrator may need to change the jete/group
file so that BASIC is assigned this group identifi('f. Otherwise, all other HP-UX users
with this group identifier will have the current group access permissions to all BASIC
files and directories.

Note that the Series 200/300 BASIC and Pascal operating systems have the same group
identifier of 9; however, Pascal has an owner identifier of 17.

92 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
HFS
Yes
Yes
Yes

CHOWN

This statement modifies the owner identifier of an HFS file or directory.

HFS file or
directory specifier

literal form of HFS file or directory specifier:

Item

owner identifier

HFS file or
directory name

Description

numeric expression, rounded to an integer

Range

o thru 32767

HFS file or direc- string expression specifying a file on an HFS (see drawing)
tory specifier volume

directory path literal

HFS directory or literal
file name

volume specifier literal

Example Statements
CHOWN Other_owner_id."/DirPath/HFSfile"
CHOWN 23. "HerFile"

(see MASS STORAGE IS)

1 to 14 characters (see Glos
sary)

(see MASS STORAGE IS)

Keyword Dictionary 93

Semantics
In order to execute CHOWN, you must currently own the file or directory. That is, the
owner id of the file must match your user-id (BASICjUX only; user-ids can be found in
the file /etc/passwd). For BASIC Workstation, the user-id is always 18. If you change
the ownership with CHOWN, then you cannot subsequently use CHOWN to change the
owner identifier of the file or directory.

If no directory path is specified, the current working directory is assumed. If no volume
is specified, the current default volume is assumed.

Major Objective: HP-UX Compatibility
This keyword is implemented primarily for compatibility with the HP-UX operating
system. Owner identifiers allow files and directories to have certain access permissions
only available to the owner, while restricting access to all other users. Therefore,
CHOWN can be used to give an HP-UX user the owner permissions of files and
directories. The user, however, will still have group permissions of the file (unless the
group identifier is changed~such as with CHGRP).

For a list of the owner identifiers used on an HP-UX system, see your HP-UX system
administrator or look at the identifiers listed in the /etc/passwd file on the HP-UX
system. It could contain the following entry, which defines the relationship between the
owner named basic and the owner identifier 18:

basic:*:18:9:#BASIC workstation user:/WORKSTATIONS:/bin/false

If this owner identifier is currently being used on an HP-UX system that is to share a disc
with BASIC, then the HP-UX system administrator will need to change the /etc/passwd
file so that BASIC is assigned this owner identifier. Otherwise, any HP-UX user with
this owner identifier will have the current owner access permissions to all BASIC files
and directories.

Note that the Series 200/300 Pascal system has an owner identifier of 17: however, BASIC
and Pascal operating systems have the same group identifier of 9.

94 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

CHR$

This function converts a numeric value into an ASCII character. The low order byte of
the 16-bit integer representation of the argument is used; the high order byte is ignored.
A table of ASCII characters and their decimal equivalent values may be found in the
back of this book.

Item Description Range

argument numeric expression, rounded to an integer 0 thru 255

Example Statements
A$[Marker;1]=CHR$(Digit+128)
Esc$=CHR$(27)

Keyword Dictionary 95

CHRX
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

This function returns the number of columns (width) of a character cell (on bit-mapped
alpha/ graphics displays) or 0 (on non-bit-mapped alpha displays).

Example Statements
CHRX
ALLOCATE INTEGER Char_cell(l:CHRY.l:CHRX)

Semantics
Character cells are 16 (rows) by 8 (columns) for high-resolution bit-mapped alpha
displays-, and 15 (rows) by 12 (columns) for medium-resolution bit-mapped alpha
displays.

If the alpha display is not bit-mapped (that is, if the alpha is separate from the graphics
raster, and is generated by character-generator-ROM hardware), then this function
returns O.

96 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

CHRY

This function returns the number of rows (height) of a character cell (on bit-mapped
alpha/graphics displays) or 0 (on non-bit-mapped alpha displays).

Example Statements
CHRY
ALLOCATE INTEGER Char_cell(l:CHRY.l:CHRX)

Semantics
Character cells are 16 (rows) by 8 (columns) for high-resolution bit-mapped alpha
displays, and 15 (rows) by 12 (columns) for medium-resolution bit-mapped alpha
displays.

If the alpha display is not bit-mapped (that is, if the alpha is separate from the graphics
raster, and is generated by a character-generator-ROM hardware), then this fu~ction
returns O.

Keyword Dictionary 97

CLEAR
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement clears HP-IB devices or Data Communications interfaces.

Item Description Range

I/O path name name assigned to a device or devices any valid name
(see ASSIGN)

device selector numeric expression, rounded to an integer (see Glossary)

Example Statements
CLEAR 7
CLEAR Isc*100+Address
CLEAR COSource

Semantics
HP-IB Interfaces

WS,UX
10

Yes
Yes
Yes

This statem£'nt allows th(' comput£'r to put all or only s('l£'ctpd HP-ID devic£'s into apr£'
defined, device-dependent state. The computer must be the active controller to execute
this statement. When primary addresses are specified, the bus is reconfigured and the
SDC (Selected Device Clear) message is sent to all devices which are addressed by the
LAG messagp.

98 Keyword Dictionary

Active
Controller

Not Active
Controller

Summary of Bus Actions

System Controller

Interface Select Primary Addressing
Code Only Specified

ATN
MTA

ATN UNl
DCl LAG

SDC

Error

Data Communications Interfaces

Not System Controller

Interface Select Primary Addressing
Code Only Specified

ATN
MTA

ATN UNl
DCl LAG

SDC

CLEAR may also be directed to a Data Communications interface. The result is to clear
the interface buffers; if the interface is suspended, a disconnect is also executed.

Keyword Dictionary 99

CLEAR ERROR
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement resets most error indicators (ERRN, ERRM$, etc.) to their power-up
values.

(CLEAR ERROR~

Example Statements
CLEAR ERROR
IF Done THEN CLEAR ERROR

Semantics
CLEAR ERROR affects error indications as shown below:

ERRN ---subsequently returns o.

ERRM$-subsequently returns the null string (a string with length of 0).

ERRL subsequently returns o.

ERRLN-sllhseqllently retllrns o.

ERRDS-not affected.

100 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

CLEAR LINE

This statement clears the keyboard input line. Executing this statement is equivalent to
pressing I Shift H Clear line I (I CLR LN I on a 98203 keyboard).

(CLEAR LINE H
Example Statements
CLEAR LINE
IF Flag THEN CLEAR LINE

Keyword Dictionary 101

CLEAR SCREEN

This statement clears the contents of the alpha display.

Example Statements
CLS
CLEAR SCREEN
IF Loop_count=1 THEN CLEAR SCREEN

Semantics

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

When this statement is executed it clears alpha memory. It has the same effect as
executing OUTPUT KBD; CHR$ (255)&IK" ; or pressing the I Clear display I (I CLR SCR I) key.

102 Keyword Dictionary

Supported on UX
Option Required nj a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement clears the contents of the specified window.

(CLEAR WINDOW)--1windOw number~

Item Description

window number numeric expression, rounded to integer

Example Statements
CLEAR WINDOW Fred
CLEAR WINDOW 604

Semantics

CLEAR WINDOW

Range

600 thru 699

This statement is only valid when running BASICjUX under X Windows. The window
number must correspond to a window created with the CREATE WINDOW statement,
or root BASIC window (number 600). This statement then to clears the specified window.

When not in a window system, this statement will cause an error.

Note there are three ways to clear the root BASIC window:

CLS
CLEAR SCREEN
CLEAR WINDOW 600

Keyword Dictionary 103

CLIP
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement redefines the soft clip area and enables or disables the soft clip limits.

Item

left edge

right edge

bottom edge

top edge

Description

numeric expression in current units

numeric expression in current units

numeric expression in current units

num.eric expression in current units

Example Statements
CLIP Left.Right.O.100
CLIP OFF

Semantics

Range

Executing CLIP with parameters allows the soft clip area to be changed from the
boundary set by PLOTTER IS and VIEWPORT to the soft clip limits. If CLIP is
not executed~ the area most recently detined by either VIEWPURT or the PLUTTER
IS statement is the clipping area. All plotted points, lines, or labels are clipped at this
boundary.

Th(' hard clip area is specified by the PLOTTER IS statement. The soft clip area
is specified by the VIEWPORT and CLIP statements. CLIP ON sets the soft clip
boundaries to the last specified CLIP or VIEWPORT boundaries, or to the hard clip
honnoari('s if no CLIP or VIEWPORT has h('('n ('x('cut('o. CLIP OFF s('ts t h(' soft clip
boundaries to the hard clip limits.

104 Keyword Dictionary

CMD
See the SEND statement.

Keyword Dictionary 105

CMPLX
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function creates a complex number with the first argument representing the real
part and the second argument representing the imaginary part. The arguments may be
REAL, INTEGER, or COMPLEX expressions.

~ argument ~ argument ~

Item Description/Default

argument numeric expression

Example Statements
C=CMPLX(-2, 1)
Result=CMPLX(-2.356, .0012)
Complex_value=CMPLX(Real_part , Imaginary_part)

Semantics

Range
Restrictions

any valid INTEGER,
REAL, or COMPLEX ex
pression

Arguments used by this function are converted to two 8-byte (64-bit) floating-point values
and handled accordingly. If arguments are COMPLEX, then only the real part of that
COMPLEX argument is used.

COLOR

See the AREA and SET PEN statements. See the PLOTTER IS statement for "COLOR
MAP".

106 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

COM

This statement dimensions and reserves memory for variables in a special "common"
memory area so more than one program context can access the variables.

Expanded diagram:

Keyword Dictionary 107

Item

block name

numeric name

string name

lower bound

upper bound

Description

name identifying a labeled COM area

name of a numeric variable

name of a string variable

integer constant;
Default = OPTION BASE value (0 or 1)

integer constant

integer constant

Range

any valid name

any valid name

any valid name

-32767 thru +32767 (see
"array" in Glossary)

-32767 thru +32767 (see
"array" in Glossary)

1 thru 32767 string length

I/O path name name assigned to a device, devices, mass any valid name
storage file, or buffer (see ASSIGN)

Example Statements
COM X,Y,Z
COM COMPLEX Result
COM /Graph/ Title$,~Device,INTEGER Points(*)
COM INTEGER I,J,REAL Array(-128:127)
COM INTEGER Buf(127) BUFFER,C$[256] BUFFER

108 Keyword Dictionary

Semantics
Storage for COM is allocated at prerun time in an area of memory which is separate from
the data storage used for program contexts. This reserved portion of memory remains
allocated until SCRATCH A, SCRATCH BIN, or SCRATCH C is executed. Changing
the definition of the COM space is accomplished by a full program prerun. This can be
done by:

• Pressing the I RUN I or I STEP I key when no program is running.

• Executing a RUN command when no program is running.

• Executing any GET or LOAD from a program.

• Executing a GET or LOAD command that tells program execution to begin (such
as LOAD "File" ,1).

When COM allocation is performed at prerun, the new program's COM area is compared
to the COM area currently in memory. When comparing the old and new areas, BASIC
looks first at the types and structures declared in the COM statements. If the "text"
indicates that there is no way the areas could match, then those areas are considered
mismatched. If the declarations are consistent, but the shape of an array in memory does
not match the shape in a new COM declaration, BASIC takes the effect of REDIM into
account. If the COM areas could be matched by a REDIM, they are considered to be in
agreement. When this happens, the treatment of the arrays in memory depends upon the
program state. If the COM matching occurred because of a programmed LOADSUB, the
arrays in memory keep their current shape. If the COM matching occurred for any other
reason (such as RUN or programmed LOAD), the arrays in memory are redimensioned
to match the declarations. Any variable values are left intact. All other COM areas
are rendered undefined, and their storage area is not recovered by BASIC. New COM
variables are initialized at prerun: numeric variables to 0, string variables to the null
string.

Each context may have as many COM statements as needed (within the limits stated
below), and COM statements may be interspersed between other statements. If there is
an OPTION BASE statement in the context, it must appear before COM statement.
COM variables do not have to have the same names in different contexts. Formal
parameters of subprograms are not allowed in COM statements. A COM mismatch
between contexts causes an error.

The total number of COM elements is limited to a maximum memory usage of 224-1,
or 16777215, bytes (or limited by the amount of available memory, whichever is less).

Keyword Dictionary 109

If a COM area requires more than one statement to describe its contents, COM
statements defining that block may not be intermixed with COM statements defining
other COM areas.

Numeric variables in a COM list can have their type specified as either REAL, INTEGER,
or COMPLEX. Specifying a variable type implies that all variables which follow in the
list are of the same type. The type remains in effect until another type is specified.
String variables and I/O path names are considered a type of variable and change the
specified type. Numeric variables are assumed to be REAL unless their type has been
changed to INTEGER or COMPLEX.

COM statements (blank or labeled) in different contexts which refer to an array or string
must specify it to be of the same size and shape. The lowest-numbered COM statement
containing an array or string name must explicitly specify the subscript bounds and/or
string length. Subsequent COM statements can reference a string by name only or an
array only by using an asterisk specifier (*).

No array can have more than six dimensions. The lower bound value must be less than
or equal to the upper bound value. The default lower bound is specified by the OPTION
BASE statement.

Any LOADSUB which attempts to define or change COM areas while a program is
running generates ERROR 145.

Unlabeled or Blank COM
Blank COM does not contain a block name in its declaration. Blank COM (if it is used)
must be created in a main context. The main program can contain any number of blank
COM statements (limited only by available memory). Blank COM areas can be accessed
by subprograms, if the COM statements in the subprograms agree in type and shape
with the main program COM statements.

Labeled COM
Labeled COM contains a name for the COM area in its declaration. Memory is allocated
for labeled COM at prerun time according to the lowest-numbered occurrence of the
labeled COM statement. Each context which contains a labeled COM statement with
the same label refers to the same labeled COM block.

Declaring Buffers
To declare COM variables to be buffers, each variable's name must be followed by the
keyword BUFFER; the designation BUFFER applies only to the variable which it follows.
String arrays cannot be declared to be buffers.

110 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF .. , THEN

WS,UX
COMPLEX

No
Yes
No

COMPLEX

This statement declares COMPLEX variables and arrays and reserves storage for them.
(For information about COMPLEX as a secondary keyword, see the ALLOCATE, COM,
DEF FN, or SUB statements.)

Item

numeric name

lower bound

upper bound

Description/Default

name of a numeric variable

integer constant;
Default = OPTION BASE value (0 or 1)

integer constant

Example Statement
COMPLEX X,Y,Z
COMPLEX Array(-23:2,26)
COMPLEX A(512) BUFFER

Range
Restrictions

any valid name

-32767 thru +32767
(see "array" in Glossary)

-32 767 thru +32767
(see "array" in Glossary)

Keyword Dictionary 111

Semantics
Each COMPLEX variable or array element consists of two floating-point values, one for
the real part and one for the imaginary part of the COMPLEX number. Each complex
value requires sixteen bytes of storage. The maximum number of subscripts in an array
is six, and no dimension may have more than 32 767 elements.

The total number of COMPLEX elements is limited by the fact that the maximum
memory usage for all variables---COMPLEX, INTEGER, REAL, and string--within any
context is 224-1, or 16777215, bytes (or limited by the amount of available memory,
whichever is less).

Declaring Buffers
To declare COMPLEX variables to be buffers, each variable's name must be followed by
the keyword BUFFER; the designation BUFFER applies only to the variable which it
follows.

112 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

CONJG

This function returns the complex conjugate of a COMPLEX number.

Item Description/Default

argument numeric expression

Example Statements
X=CONJG(Complex_expr)
Y=CONJG(Real_expr)
Z=CONJG(Integer_expr)
Result=CONJG(CMPLX(2.1,-8»

Semantics

Range
Restrictions

any valid INTEGER,
REAL, or COMPLEX
value

The complex conjugate of a COMPLEX number CMPLX(X,Y) is CMPLX(X,-Y). That
is, the imaginary part of the argument is negated. An INTEGER or REAL argument is
returned unchanged.

Keyword Dictionary 113

CONT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
No
No

This command resumes execution of a paused program at the specified line. (For
information about CONT as a secondary keyword, see the TRANSFER statement.)

Item

line number

line label

Description Range

integer constant identifying a program line; 1 thru 32 766
Default = next program line

name identifying a program line any valid name

Example Statements
CO NT 550
CONT Sort

Semantics
Continue can be executed by pressing the I CONTINUE I key ([][] in the System menu of
an ITF keyboard), or by executing a CaNT command. Variahles retain their current
';alucs V;hCIlCYCr CO~T is executed. CONT causes the program to resume execution at
the next statement which would havE' occurrE'd unlE'ss a line is specified.

When a line label is specified, progrg,m execution resumes at the specified line, provided
that the line is in either the main program or the current subprogram. If a line number is
specified, program execution resumes at the specified line, provided that the line is in the
current program context. If there is no line in the current context with the specified line
number. program execution resumes at the next higher-numbered line. If the specified
line label does not exist in the proper context. an error results.

114 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
None

Yes
Yes
Yes

CONTROL

This statement sends control information to an interface or to the internal table
associated with an I/O path name. (This keyword is also used in PASS CONTROL.)

Item

interface select
code

Description

numeric expression, rounded to an integer

Range

1 thru 32
(interface-dependent)

I/O path name name assigned to a device, devices, mass any valid name
storage file, or buffer (see ASSIGN)

register number numeric expression, rounded to an integer; interface-dependent
Default = 0

control word numeric expression, rounded to an integer - 231 thru 231 _1
(interface dependent)

Example Statements
CONTROL ~Rand_file,7;File_length
CONTROL l;Row,Column
CONTROL 7,3;29

Keyword Dictionary 115

Semantics
When the Destination is an I/O Path Name
The only time CONTROL is allowed to an I/O path name is when the I/O path name is
assigned to a BDAT or HPUX file or a buffer. I/O path names have an association table
that can be accessed as a set of registers. Control words are written to the association
table, starting with the specified "register" and continuing in turn through the remaining
"registers" until all control words are used. The number of control words must not exceed
the number of "registers" available. Register assignments can be found in the "Interface
Registers" section at the back of this book.

When the Destination is an Interface
Control words are written to the interface registers, starting with the specified register
number, and continuing in turn through the remaining registers until all the control
words are used. The number of control words must not exceed the number of registers
available. Register assignments can be found in the Interface Registers section at the
back of the book.

CONVERT

See the ASSIGN statement

116 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF, .. THEN

WS,UX
None

Yes
Yes
Yes

COpy

This statement allows copying of an individual files or an entire disc.

literal form of file specifier:

Item Description

file specifier string expression

volume specifier string expression

directory path literal

file name literal

Range

(see drawing)

(see MASS STORAGE IS)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier string expression (see MASS STORAGE IS)

Keyword Dictionary 117

Example Statements
COPY "OLD_FILE" TO "New_file"
COPY File$ TO File$&Other_volume$

COPY "/Dir_1/File_1" TO "Dir_3/File_1"
COPY "File:INTERNAL" TO "File:REMOTE 21,0"
COpy Dir_path$&File$&Vol$& TO "File: ,700"

COpy Left_disc$ TO Right_disc$
COpy": ,700" TO ": ,700,1"
COPY": ,4,1" TO ": ,4,0"

Semantics
Copying a File
The contents of the old file is copied into the new file, and a directory entry is created.
A protect code (LIF directories) may be specified for the new file, to prevent accidental
erasure, etc. The old file and the new file can exist in the same directory, but the new
file name must be unique.

An error is returned if there is not enough room on the destination device or if the new
file name already exists in the destination directory.

If the mass storage volume specifier (msvs) is omitted from a file specifier, the MASS
STORAGE IS device is assumed.

If the directory path is also omitted, the MASS STORAGE IS directory is assumed.

Copying an Entire LlF or HFS Volume
LIF auu HFS volumes can be duplicated if the destination volume is as large as, or larger
than, the source volume. COpy from a larger capacity volume to a smaller capacity
volume is only possible when the amount of data on the larger will fit on the smaller.
The directory and any files on the destination volume are destroyed. The directory size
on the destination volumE' bE'comE's thE' samE' sizE' as that on thE' sourcE' mE'dia.

vVhE'n copying an entire volume, thE' volume specifiers must be unique. File names are
not allowed. Disc-to-disc copy time is dependent on media type and interleave factors.

118 Keyword Dictionary

HFS Permissions
With HFS, COPY allows copying of individual files and volumes. HFS directories cannot
be copied.

In order to COpy a file on an HFS volume, you need to have R (read) permission on
the source file, as well as X (search) permission on the parent directory and all other
superior directories. In addition, you will need W (write) and X (search) permission
on the destination file's parent directory, as well as X (search) permission on all other
superior directories.

HFS File Headers
When copying a file from LIF or SRM to HFS, a special header is added to the beginning
of that file. This action is taken because that is the only way to "type" files (which would
otherwise be "typeless"). When copying a file from HFS to LIF or SRM volumes, this
file header is removed (since these volumes have typed files). Note that BASIC handles
the file headers automatically and requires no special treatment in programs that use
these files.

When copying a SYSTM file from LIF or SRM volumes to HFS volumes, it will be given
a header and will remain a SYSTM file. However, it will not be bootable. Conversely,
copying a boot able HP-UX file from HFS to LIF or SRM will result in an HP-UX file that
is not bootable. (STORE SYSTEM will copy the current BASIC system from memory
onto an HFS volume only in the root directory. STORE SYSTEM will error if the HFS
directory is not the root directory (/). If the destination file is in the HFS volume's root
directory, it will be a bootable system.)

SRM Passwords
With SRM, COpy allows copying of individual files. SRM directories and volumes
cannot be copied.

In order to COpy an SRM file, you need to have R (read) access capability on the file,
on the parent directory, and on all other superior directories. You must also have W
(write) access capability on the destination directory, as well as R access capability on
all superior directories.

Although you may include a password in the new file specifier, the system ignores the
password. If you wish to protect access to the new file, you must assign the password
with PROTECT.

Keyword Dictionary 119

COPYLINES
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
EDIT and PDEV

Yes
No
No

This command allows you to copy one or more contiguous program lines to another
location while editing a program.

Item Description Range

beginning line integer constant identifying program line 1 to 32766
number

beginning line la- name of a program line any valid name
bel

ending line num- integer constant identifying program line 1 to 32766
ber

ending line laLel llame uf a prugram line any valid name

target line integer constant identifying program line 1 to 32766
number

target line label name of a program line any valid name

120 Keyword Dictionary

Example Statements
COPYLINES 1200 TO 2350
COPYLINES 100,230 TO Labell
COPYLINES Util_start,Util_end TO 16340

Semantics
If the beginning line identifier is not specified, only one line is copied.

The target line identifier will be the line number of the first line of the copied program
segment. Copied lines are renumbered if necessary. The code (if any) which is "pushed
down" to make room for the copied code is renumbered if necessary.

Line number references to the copied code are updated as they would be for a REN
command, with these exceptions: line number references in lines not being copied remain
linked to the source lines rather than being renumbered; references to non-existent lines
are renumbered as if the lines existed.

If there are any DEF FN or SUB statements in the copied code, the target line number
must be greater than any existing line number.

If you try to copy a program segment to a line number contained in the segment, an error
will be reported and no copying will occur.

If the starting line number does not exist, the next line is used. If the ending line number
does not exist, the previous line is used. If a line label doesn't exist, an error occurs and
no copying occurs.

If an error occurs during a COPYLINES (for example, a memory overflow), the copy is
terminated and the program is left partially modified.

Keyword Dictionary 121

cos
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the cosine of the angle represented by the argument. The range of
the returned real value is -1 through + 1.

Item Description/Default
Range

Restrictions

argument numeric expression in current units of angle absolute values less than
when INTEGER or REAL argument 1.708312772 2 E+lO deg.

or
numeric expression in radians when COM - 2.981 568 244 292 04 E+8
PLEX argument

Examples Statements
Cosine=COS(Angle)
PRINT COS(X+45)

122 Keyword Dictionary

rad. for INTEGER
and REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

Semantics
If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the COS of a COMPLEX value, the COMPLEX binary must be loaded.

Range Restriction Specifics
The formula used for computing the COS of a COMPLEX argument is:

CMPLX(COS(Real)*COSH(Imag),-SIN(Real)*SINH(Imag»

where Real is the real part the COMPLEX argument and Imag is the imaginary part of
the COMPLEX argument. Some values of a COMPLEX argument may cause errors in
this computation. For example,

COS(CMPLX(O,MAXREAL»

will cause error 22 due to the COSH(Imag) calculation.

Note that any COMPLEX function whose definition includes a sine or cosine function
will be evaluated in the radian mode regardless of the current angle mode (i.e.' RAD or
DEG).

Keyword Dictionary 123

COSH
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the hyperbolic cosine of a numeric expression.

Item Description/Default

argument numeric expression

Example Statements
Result=COSH(10.3499)
PRINT "Hyperbolic Cosine = ";COSH(Expression)

Semantics

Range
Restrictions

-710 through 710 for INTE
GER or REAL arguments;
see "Range Restriction
Specifics" for COMPLEX
arguments

If an INTEGER or REAL argument is given, this function returns a REAL value. If a
COMPLEX argument is given, this function returns a COMPLEX value.

Range Restriction Specifics
The formula used for computing COSH is as follows:

(EXP(Argument)+EXP(-Argument»/2

where Argument is the argument of the COSH function. Some arguments may cause errors
in intermediate values computed during this computation. For example,

COSH (MAXREAL)

will cause error 22 due to the EXP (MAXREAL) computation.

124 Keyword Dictionary

COUNT

See the CAT and TRANSFER statements.

Keyword Dictionary 125

CREATE

This statement creates an HP-UX file.

literal form of fIle spec,f,er:

Item

file specifier

directory path

file name

Description

string expression

literal

literal

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

Range

(see drawing)

WS,UX
HFS
Yes
Yes
Yes

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LIF protect code literal; first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

number of numeric expression, rounded to an integer
records

126 Keyword Dictionary

(see MASS STORAGE IS)

1 thru 231 - 1

Example Statements
CREATE File_spec$.N_records
CREATE IHPUX_file".12
CREATE IOnLIF<pc>".50*N

Semantics
CREATE creates a new file of type HP-UX on the default or specified volume or
hierarchical directory. A corresponding directory entry is also made. The name of the
newly created file must be unique within its directory. CREATE does not open the file;
that is performed by ASSIGN. In the event of an error, no directory entry is made and
the file is not created.

The number of records parameter specifies how many logical records are to be initially
allocated to the file. The logical record size is always 1 for HP-UX files. On LIF volumes,
the number of records allocated for the file is fixed; however, with HFS and SRM volumes,
files are extensible (see the following explanation of extensible files).

The data representation used in the file depends on the FORMAT option used in the
ASSIGN statement used to open the file. See ASSIGN for details.

Extensible Files (HFS and SRM Volumes Only)
If the file is created on an HFS or SRM volume, the file is "extensible". With HFS
volumes, the initial size of the file is 0, but the file will automatically be extended as
many bytes as necessary whenever an OUTPUT operation would otherwise overflow the
file. On SRM volumes, the "number of records" parameter determines the "extent size"
of the file (that is, the amount of space automatically appended to the file whenever it is
extended). "Preallocating" the file on SRM and HFS volumes (initially creating a file of
sufficient size) will improve the data transfer rate with extensible files, because the file
system will not have to extend the file during data transfer operations.

LlF Protect Codes
A protect code is not allowed on an HP-UX file.

HFS Permissions
In order to create a file on an HFS volume, you need to have W (write) and X (search)
permission of the immediately superior directory, as well as X (search) permission on all
other superior directories.

When a file is created on an HFS volume, access permission bits are set to RW-RW-RW-.
(You can modify them with PERMIT, if desired.) BASIC/UX permissions may be altered
by the user's umask. See the HP-UX Reference, umask(l) entry, for more information.

Keyword Dictionary 127

SRM Access Capabilities
In order to CREATE an HP-UX file in an SRM directory, you need to have READ and
WRITE capabilities on the immediately superior directory, as well as READ capabilities
on all other superior directories.

When a file is created on an SRM volume, all access capabilities are public. Including an
SRM password in the file specifier does not protect the file. You must use PROTECT to
assign a password. You will not receive an error message for including a password, but
a password in the CREATE statement is ignored.

128 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement creates an ASCII file.

literal form of file specif,er:

'----y--------J
HFS or SRM files only

Item Description

file specifier

number of
records

string expression

directory path

file name

numeric expression, rounded to an integer

literal

literal

CREATE ASCII

Range

(see drawing)

1 thru 231 - 1

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal (see MASS STORAGE IS)

Keyword Dictionary 129

Example Statements
CREATE ASCII "TEXT" ,100
CREATE ASCII Name$&":, 700 ,1" ,Length
CREATE ASCII "/Dirl/Dir2/AsciiFile",25

Semantics
CREATE ASCII creates a new ASCII file and directory entry on the mass storage media.
The name of the newly created ASCII file must be unique within its containing directory.
CREATE ASCII does not open the new file; that is performed by the ASSIGN statement.
In the event of an error, no directory entry is made and the file is not created.

The physical records of an ASCII file have a fixed length of 256 bytes; logical records
have variable lengths, which are automatically determined when the OUTPUT, SAVE,
or RE-SAVE statements are used.

Extensible Files (HFS and SRM Volumes Only)
If the file is created on an HFS or SRM volume, the file is "extensible". With HFS
volumes, the initial size of the file is the size specified in the CREATE ASCII statement,
but the file will automatically be extended as many bytes as necessary whenever an
OUTPUT operation would otherwise overflow the file. On SRM volumes, the ~~number
of records" parameter multiplied by the record size (256 for ASCII files) determines the
"extent size" of the file (that is, the amount of space automatically appended to the file
whenever it is extended). "Preallocating" the file on an SRM or HFS volume (initially
creating a file of sufficient size) will improve the data transfer rate with extensible files,
because the file system will not have to extend the file during data transfer operations.

LlF Protect Codes
au a LIF disc, a protect code is not allowed on an ASCII file. Including a protect code
in the CREATE ASCII statement will give an error.

HFS Permissions and File Headers
In order to en'ate a file on an HFS volume, yon neeo to have W (write) ann X (~ear('h)
permissions on the immediately superior directory, as well as X (search) permissions on
all other superior directories.

On HFS volumes, access permission bits are set to RW-RW-RW- when an ASCII file is
created. (You can modify them with PERMIT, if desired.) In BASICjUX, permissions
may be altered by the users umask. See the HP- UX Reference, umask(1) entry, for more
information.

130 Keyword Dictionary

On an HFS volume, the first 512 bytes of an ASCII file are used by the BASIC file system
to describe the file's type (this is the only way for BASIC to create a "typed" file on
an HFS volume, since HFS files are otherwise "typeless"). This file header is handled
automatically by BASIC, but it should be skipped when reading and writing the file
with other HP-UX languages. See the "Porting and Sharing Files" chapter of BASIC
Programming Techniques for details.

SRM Access Capabilities
In order to create an ASCII file in an SRM directory, you need to have R (read) and W
(write) capabilities on the immediately superior directory, as well as R capability on all
other superior directories.

When an ASCII file is created on an SRM volume, all access capabilities are public.
Including a password in the file specifier does not protect the file. You must use
PROTECT to assign passwords. You will not receive an error message for including
a password, but SRM passwords in the CREATE ASCII statement are ignored.

Keyword Dictionary 131

CREATE BOAT

This statement creates a BDAT file.

literal form of flle speclfler:

Item Description

string expression

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

Range

(see drawing) file specifier

number of
records

numeric expression, rounded to an integer 1 thru 231 - 1

record size numeric expression, rounded to next even 1 thru 65534
integer (except 1), which specifies bytes /
record;
Default = 256

WS,UX
None

Yes

Yes

Yes

directory path literal (see MASS STORAGE IS)

file name literal depends on volume's format
(::;ee Glo::;::;ary)

LIF protect code literal~ first two non-blank characters are > not allowed
significant

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier string expression (see MASS STORAGE IS)

132 Keyword Dictionary

Example Statements
CREATE BOAT IFile".Records.Rec_size
CREATE BOAT IGeorge".48
CREATE BOAT IProtected<PC>".Length.128
CREATE BOAT Name$&Volume$.Bytes.1
CREATE BOAT I/Dir1/Dir2/BDATfile".25.128
CREATE BOAT IDir/File:REMOTE".10

Semantics
CREATE BDAT creates a new BDAT file and directory entry on the mass storage media.
The name of the newly created BDAT file must be unique within its containing directory.
CREATE BDAT does not open the file; that is performed by the ASSIGN statement. In
the event of an error, no directory entry is made and the file is not created.

A sector at the beginning of the file is reserved for system use. This sector cannot be
directly accessed by BASIC programs.

Extensible Files (HFS and SRM Volumes Only)
If the file is created on an HFS or SRM volume, the file is "extensible". With HFS
volumes, the initial size of the file is the size specified in the CREATE BDAT statement,
but the file will automatically be extended as many bytes as necessary whenever an
OUTPUT operation would otherwise overflow the file. On SRM volumes, the "number
of records" parameter multiplied by the record size determines the "extent size" of the file
(that is, the amount of space automatically appended to the file whenever it is extended).
"Preallocating" the file on an SRM volume (initially creating a file of sufficient size) will
improve the data transfer rate with extensible files, because the file system will not have
to extend the file during data transfer operations.

LlF Protect Codes
On LIF volumes, an optional protect code may be specified; the first two characters
become the protect code of the file. (You can modify the protect code with PROTECT,
if desired.)

Keyword Dictionary 133

HFS Permissions and File Headers
In order to create a file on an HFS volume, you need to have W (write) and X (search)
permission of the immediately superior directory, as well as X (search) permission on all
other superior directories.

When a file is created on an HFS volume, access permission bits are set to RW-RW-RW-.

(You can modify them with PERMIT, if desired.)

On HFS volumes, the first 512 bytes of a BDAT file are used by the BASIC file system
to describe the file's type (this is the only way for BASIC to create a "typed" file on
an HFS volume, since HFS files are otherwise "typeless"). This file header is handled
automatically by BASIC, but it should be skipped when reading and writing the file
with other HP-UX languages. See the "Porting and Sharing Files" chapter of BASIC
Programming Techniques for details.

SRM Access Capabilities
In order to create a file in an SRM directory, you need to have R (read) and W (write)
capabilities on the immediately superior directory, as well as R capability on all other
superior directories.

When a file is created on an SRM volume, all access capabilities are public. Including an
SRM password in the file specifier does not protect the file. You must use PROTECT to
assign a password. You will not receive an error message for including a password, but
a password in the CREATE BDAT statement is ignored.

134 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
SRM & DCOMM, or HFS

Yes

Yes

Yes

CREATE DIR

This statement creates a directory in either the current working directory or III the
specified directory of an SRM or HFS volume.

(CREATE DIR H directory ~
speclfler

literal form of dlrectory speclfier:

directory path:

Item Description

directory string expression
specifier

directory path literal

directory name literal

SRM password literal; first 16 non-blank characters are sig-
nificant

volume specifier literal

Range

(see drawing)

(see drawing)

depends on volume's format
(14 characters for HFS;
255 characters for long file
name systems;
16 characters for SRM;
see Glossary for details)

> not allowed

(see MASS STORAGE IS)

Keyword Dictionary 135

Example Statements
CREATE OIR "Under_work_dir"
CREATE OIR "Level1/Leve12/New_dir:REMOTE 21.3"
CREATE OIR "/Level1/Leve12/New_dir"
CREATE OIR "Level1<SRM_RW_pass>/New_dir"
CREATE OIR "Oir3/0ir4: .700"

Semantics
This statement creates a directory and a corresponding directory entry in the current
working directory or specified directory. The DIR file, or directory, keeps information on
files and directories immediately subordinate to itself. The name of the newly created
directory must be unique within its containing directory.

If no directory path is included in the directory specifier, the directory is created within
the current working directory (the directory specified in the latest MASS STORAGE
IS statement). To specify a target directory other than the current working directory,
specify the directory path to the desired directory.

HFS Permissions
In order to create a directory on an HFS volume, you need to have W (write) and
X (search) permission of the immediately superior directory, as well as X (search)
permission on all other superior directories.

When a directory is created on an HFS volume, access permission bits are set to
RWXRWXRWX. (You can modify them with PERMIT, if desired.) In BASIC/UX, permissions
may be altered by the users umask. See the HP-UX Reference, umask(l) entry, for more
information.

As each directory or data file is created within an HFS directory, a 32-byte record
identifying the addition is added to the DIR file. The length of this entry is variable
for HFS long file name file systems.

SRM Access Capabilities
In order to create a directory in an SRM directory, you need to have R (read) and W
(write) capabilities on the immediately superior directory, as well as R (read) capabilities
on all other superior directories.

When a directory is created on an SRM volume, all access capabilities are public.
Including an SRM password in the directory specifier does not protect the file. You
must use PROTECT to assign a password. You will not receive an error message for
including a password, but a password in the CREATE DIR statement is ignored.

As each directory or data file is created within an SRM directory, a 24-byte record
identifying the addition is added to the DIR file.

136 Keyword Dictionary

CREATE WINDOW
Supported on UX
Option Required nj a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement creates or recreates a window for alpha and graphics displays. A window
is a portion of the CRT which is accessible independently of other windows.

CREATE WINDOW

Item Description Range

window number numeric expression, rounded to integer 601 thru 699

xpos numeric expression, rounded to integer in integer
pixel units

ypos numeric expression, rounded to integer in integer
pixel units

width numeric expression, rounded to integer in integer
pixel units

height numeric expression, rounded to integer in integer
pixel units

scroll size numeric expression, rounded to integer range of integer, >=0 lim-
specifies scroll buffer size DEFAULT=O ited by available memory
(units=lines)

name string expression

Keyword Dictionary 137

Example Statements
CREATE WINDOW 602,20,50,80*CHRX,24*CHRY,Scrollsize
CREATE WINDOW Plot,Xval,Yval,400,400
CREATE WINDOW 609,100,100,Xsize,Ysize,Scrollbuf; LABEL "Fred"
CREATE WINDOW Graph,400,300,100,100; RETAIN, LABEL "Quarterly Report 4Q87"

Semantics
This statement is only valid when running under X Windows. When not in X Windows,
this statement will cause an error.It creates the window specified by the window number
with the given attributes.

The xpos and ypos parameters specify the location of the upper-left corner in pixel
coordinates. The upper-left corner of the CRT is 0,0. If the xpos and ypos specified are
greater than the size of the CRT, then the window is created off the screen and is not be
visible until moved onto the screen.

The height parameter specifies the window height in pixels. To create a window with
a specified number of alphanumeric rows, multiply the desired number of rows by the
function CHRY (the pixel height of a character). The width parameter specifies the
width of the window in pixels. Again, to convert alphanumeric columns to pixels simply
multiply by the function CHRX.

The scroll size defines how many additional lines (rows) of text can be saved and scrolled
within the specified window.

The window name attribute is not used for identifying the window within BASIC
programs. but is simply the name entered into the title bar of the new window. If a
LABEL <name> is not specified. then the default name of RMBxx will be used where
xx is the last two digits of the window number. The attribute LABEL OFF causes the
title bar to not be shown.

The RETAIN attribute specifies whether the raster image of the graphics in a window
is saved in memory. The default is not to retain the image, and thus when the window
is covered and uncovered. graphics can be lost. BASIC ensures that alpha information
is always redrawn. The RETAIN attribute can only be specified at window create time.
This attribute does have a significant penalty in terms of memory usage. For most
monitors with 8 or less planes it requires one byte per pixel to save the image. Monitors
with more planes will require more storage. Some new monochrome monitors can store
8 pixels per byte. Note also that windows may not be resized bigger than the original
size if they are RETAINed.

138 Keyword Dictionary

Control statements allow overlapping windows to move to the top of the stack, or be
pushed to the bottom.

The CRT may be divided into several rectangular windows, each of which behaves like
an independent CRT.

When a window is created, its contents are defined to be blank. If a window exists with
J 1_ _ _." 1 • 1 1 • ~ 1
LUe SpeCIneU WIIlUOW IluIIloer, an error me~~age I~ rel;urneu.

Windows may be used for alpha, graphics, or both. When working within a window
system the alpha and graphics planes are ALWAYS merged. The following statements
work with window numbers:

ASSIGN ~prt to 614
DUMP ALPHA 604
DUMP DEVICE IS 613
DUMP GRAPHICS 605
OUTPUT 603
PLOTTER IS 607
PRINTER IS 611
PRINTALL IS 612

DESTROY WINDOW, MOVE WINDOW, and CLEAR WINDOW statements affect
the definitions of the windows.

Keyword Dictionary 139

CRT
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
None

Yes
Yes
Yes

This INTEGER function returns 1, the device selector of the alpha CRT display.

-@)-

Example Statements
PRINTER IS CRT
ENTER CRT;Array(*)

140 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

CSIZE

This statement sets the size and aspect (width/height) ratio of the character cell used
by the LABEL and SYMBOL statements.

Item

height

width/height
ratio

Description

numeric expression; Default = 5

numeric expression; Default = 0.6

Example Statements

CSIZE 10
CSIZE Size.Width

Range

Keyword Dictionary 141

Semantics
At power-on, RESET, and GINIT, the height is 5 graphic-display-units (GDUs), and the
aspect ratio is 0.6 (width = 3 GDUs, or 0.6x5 GDUs). A negative number for either
parameter inverts the character along the associated dimension. The drawing below
shows the relation between the character cell and a character.

Ch ar· acte r· 1 n a Ch ar· acte r· Ce 1 1

142 Keyword Dictionary

CSUB
This keyword stands for "Compiled SUBprogram". CSUB statements are compiled
Pascal programs, linked to BASIC by using a special CSUB preparation utility. They are
loaded using the LOADSUB statement and can be deleted using the DELSUB statement.
When viewed in BASIC's edit mode, these subprograms look like SUB statements, except
for the keyword CSUB (instead of SUB). They are invoked with CALL, just like normal
SUB subprograms.

Because of their special nature, certain rules must be followed when editing a program
containing CSUB statments. These lines will not be recognized if entered in BASIC
(they must be created in Pascal). Therefore, any operation which requires the line to be
checked for proper syntax will fail. This includes such operations as GET, MOVELINES,
or re-storing the line by pressing the I Return I or I ENTER I keys. Operations which do not
check syntax are allowed. This includes things like scrolling and renumbering.

Sometimes a CSUB will appear as multiple CSUB statements because of multiple entry
points. In these cases, the group of statements cannot be broken; you cannot insert a
comment line between the statements, delete a single statement in the group, or interfere
with the order in any way. The only statements which can be entered directly after a
CSUB are SUB and DEF FN. As always, these must be entered at the end of the program.

CSUM
See the MAT statement.

CYCLE
See the OFF CYCLE and the ON CYCLE statements.

Keyword Dictionary 143

Notes

144 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

DATA

This statement contains data which can be read by READ statements. (For information
about DATA as a secondary keyword, see the SEND statement.)

Item Description

numeric constant numeric quantity expressed using numerals,
and optionally a sign, decimal point, or ex
ponent notation

literal string constant composed of characters from
the keyboard, including those generated us
ing the I ANY CHAR I key ([]I] in the system
menu of an ITF key board)

Example Statements
DATA 1,1.414,1.732,2
DATA word1,word2,word3
DATA "ex-point (!) " , "quot e (" ") " , "comma (,) "

Range

Keyword Dictionary 145

Semantics
A program or subprogram may contain any number of DATA statements at any locations.
When a program is run, the first item in the lowest numbered DATA statement is read
by the first READ statement encountered. When a subprogram is called, the location of
the next item to be read in the calling context is remembered in anticipation of returning
from the subprogram. Within the subprogram, the first item read is the first item in
the lowest numbered DATA statement within the subprogram. When program execution
returns to the calling context, the READ operations pick up where they left off in the
DATA items.

A numeric constant must be read into a variable which can store the value it represents.
The computer cannot determine the intent of the programmer; although attempting to
read a string value into a numeric variable will generate an error, numeric constants
will be read into string variables with no complaint. In fact, the computer considers
the contents of all DATA statements to be literals, and proce:::;ses items to be read into
numeric variables with a VAL function, which can result in error 32 if the numeric data
is not of the proper form (see VAL).

Unquoted literals may not contain quote marks (which delimit strings), commas (which
delimit data items), or exclamation marks (which indicate the start of a comment).
Leading and trailing blanks are deleted from unquoted literals. Enclosing a literal in
quote marks enables you to include any punctuation you wish, including quote marks,
which are represented by a set of two quote marks.

146 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CLOCK

Yes
Yes
Yes

DATE

This function converts the formatted date (DD MMM YYYY) into a numeric value used
to set the clock.

~ formatted date ~

literal form of formatted date

Item

formatted date

day

month

year

Description

string expression

integer constant

literal (lettercase ignored)

integer constant

Example Statements
PRINT DATE(1I26 MAR 1982")
SET TIMEDATE DATE("1 Jan 1983")
Days=(DATE("1 JAN 1983")-DATE(111 NOV 1982"» DIV 86400

Range

(see drawing and text)

1 thru end-of-month

JAN, FEB,
MAR, APR,
MAY, JUN,
JUL, AUG,
SEP, OCT,
NOV,DEC

1900 thru 2079

Keyword Dictionary 147

Semantics
Using a value from the DATE function as the argument for SET TIMEDATE will set
the clock to midnight on the date specified. Results from the DATE and TIME functions
must be combined to set the date and time of day.

If the DATE function is used as an argument for SET TIMEDATE to set the clock, the
date must be in the range: 1 Mar 1900 thru 4 Aug 2079.

Specifying an invalid date, such as the thirty-first of February, will result in an error.

Leading blanks or non-numeric characters are ignored. ASCII spaces are recommended as
delimiters between the day, month and year. However, any non-alphanumeric character,
except the negative sign (-), may be used as the delimiter.

148 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF, , , THEN

WS,UX
CLOCK

Yes
Yes
YeR

DATE$

This function formats a number of seconds as a date (DD MMM YYYY).

Item Description

seconds numeric expression

Example Statements
PRINT DATE$(TIMEDATE)
DISP DATE$(2.112520608E+ll)

Semantics

Range

-4.623683 256 E+ 13 thru
4.653426335 0399 E+ 13

The date returned is in the form: DD MMM YYYY, where DD is the day of the month,
MMM is the month mnemonic, and YYYY is the year.

The day is blank filled to two character positions. Single ASCII spaces delimit the day,
month, and year.

The first letter of the month is capitalized and the rest are lowercase characters.

Years less than the year 0 are expressed as negative years.

Keyword Dictionary 149

DEALLOCATE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement deallocates memory space reserved by the ALLOCATE statement.

Item Description

variable name name of an array or string variable any

Example Statements
DEALLOCATE A$.B$.C$
DEALLOCATE Array(*)

Semantics

Range

valid name

Memory space reserved by ALLOCATE exists in the same section of memory as that used
by ON-event statements. Since entries in this area are "stacked" as they come in, space
for variables which have been DEALLOCATED may not be available immediately. It will
not be available until all the space "above it" is freed. This includes variables allocated
after it, as well as ON-event entries. Exiting a subprogram automatically deallocates
space for variables which were allocated in that subprogram.

Strings and arrays must be deallocated completely. Deallocation of an array is requested
by the (*) specifier.

Attempting to DEALLOCATE a variable which is not currently allocated in the current
context results in an error. When DEALLOCATE is executed from the keyboard,
deallocation occurs within the current context.

150 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

DEF FN

This statement indicates the beginning of a function subprogram. It also indicates
whether the function is string or numeric and defines the formal parameter list.

Note: A user-defined function
may contain any number of
RETURN statements.

Keyword Dictionary 151

parameter 1 ist:

Item

function name

numeric name

string name

I/O path name

Description

name of the user-defined function

name of a numeric variable

name of a string variable

name assigned to a device, devices, or mass
storage file

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram

152 Keyword Dictionary

Range

any valid name

any valid name

any valid name

any valid name
(see ASSIGN)

Example Statements
DEF FNTrim$(String$)
DEF FNComplex(COMPLEX Real_part)
DEF FNTransform(~Printer,INTEGER Array(*) ,OPTIONAL Text$)

Semantics
User-defined functions must appear after the main program. The first line of the function
must be a DEF FN statement. The last line must be an FNEND statement. Comments
after the FNEND are considered to be part of the function.

Parameters to the left of the keyword OPTIONAL are required and must be supplied
whenever the user-defined function is invoked (see FN). Parameters to the right of
OPTIONAL are optional, and only need to be supplied if they are needed for a specific
operation. Optional parameters are associated from left to right with any remaining
pass parameters until the pass parameter list is exhausted. An error is generated if the
function tries to use an optional parameter which did not have a value passed to it. The
function NPAR can be used to determine the number of parameters supplied by the
function call.

Variables in a subprogram's formal parameter list may not be declared in COM or
other declaratory statements within the subprogram. A user-defined function may not
contain any SUB statements or DEF FN statements. User-defined functions can be
called recursively and may contain local variables. A unique labeled COM must be used
if the local variables are to preserve their values between invocations of the user-defined
function.

The RETURN <expression> statement is important in a user-defined function. If the
program actually encounters an FNEND during execution (which can only happen if
the RETURN is missing or misplaced), error 5 is generated. The <expression> in
the RETURN statement must be numeric for numeric functions, and string for string
functions. A string function is indicated by the dollar sign suffix on the function name.
RETURN <integer expression> yields a real function result. RETURN <complex
expression> yields a complex function result.

The purpose of a user-defined function is to compute a single value. While it is possible
to alter variables passed by reference and variables in COM, this can produce undesirable
side effects, and should be avoided. If more than one value needs to be passed back to
the program, SUB subprograms should be used.

If you want to use a formal parameter as a BUFFER, it must be declared as a BUFFER
in both the formal parameter list and the calling context.

Keyword Dictionary 153

DEG
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

This statement selects degrees as the unit of measure for expressing angles.

®--i
Semantics

WS,UX
None

Yes
Yes
Yes

All functions which return an angle will return an angle in degrees. All operations with
parameters representing angles will interpret the angle in degrees.

A subprogram "inherits" the angle mode of the calling context. If the angle mode is
changed in a subprogram, the mode of the calling context is restored when execution
returns to the calling context. If no angle mode is specified in a program, the default is
radians (see RAD).

154 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
No
No

This command deletes program line (s) .

Item Description Range

beginning line
number

integer constant identifying a program line 1 thru 32 766

beginning line la- name of a program line any valid name
bel

ending line num- integer constant identifying a program line 1 thru 32 766
ber

ending line label name of a program line

Example Statements
DEL 15
DEL Sort,9999

any valid name

DEL

Keyword Dictionary 155

Semantics
DEL cannot be ('xecuted while a program is running. If DEL is executed while a program
is paused, the computer changes to the stopped state.

When a line is specified by a line label, the computer uses the lowest numbered line
which has the label. If the label does not exist, error 3 is generated. An attempt to
delete a non-existent program line is ignored when the line is specified by a line number.
An error results if the ending line number is less then the beginning line number. If only
one line is specified, only that line is deleted.

When deleting SUB and FN subprograms, the range of lines specified must include the
statements delimiting the beginning and ending of the subprogram (DEF FN and FNEND
for user-defined function subprograms; SUB and SUBEND for SUB subprograms), as
well as all comments following the delimiting statement for the end of the subprogram.
Contiguous subprograms may be deleted in Olle operation.

DELAY

See the ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS, and PRINTER IS state
ments.

DELIM

See the TRANSFER statement.

156 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

DELSUB

This statement deletes one or more SUB subprograms or user-defined function subpro
grams from memory.

Item Description

subprogram
name

name of a SUB or CSUB subprogram

function name name of a user-defined function

Example Statements
DELSUB FNTrim$
DELSUB Speciall,Specia13

Range

any valid name

any valid name

Keyword Dictionary 157

Semantics
Subprograms being deleted do not need to be contiguous in memory. The order of the
names in the deletion list does not have to agree with the order of the subprograms in
memory. If there are subprograms with the same name, the one occurring first (lowest
line number) is deleted.

The lines deleted begin with the line delimiting the beginning of the subprogram (SUB
or DEF FN) and include the comments following the line delimiting the end of the
subprogram (SUBEND or FNEND). If TO END is included, all subprograms following
the specified subprogram are also deleted, from the last subprogram to the specified
subprogram.

You cannot delete:

• Busy subprograms (ones being executed) .

• Subprograms which are referenced by active ON-event CALL statements.

If an error occurs while attempting to delete a subprogram with a DEL SUB statement,
the subprogram is not deleted, and neither are subprograms listed to the right of the
subprogram which could not be deleted.

158 Keyword Dictionary

DESTROY WINDOW
Supported on UX
Option Required n/ a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement deletes a window and removes its contents from the display.

(DESTROY WINDOW)-.jWindOW number~

Item Description

window number numeric expression, rounded to integer

Example Statements
DESTROY WINDOW 604
DESTROY WINDOW Fred

Semantics

Range

601 thru 699

This statement is only valid when running under X Windows. When not in X Windows,
this statement will cause an error. It deletes the window specified by the window number.
The specified window can only be a window created with the CREATE WINDOW
statement. Thus the root BASIC window (number 600) can not be deleted.

When a window is deleted, the contents of any windows it overlays are exposed.

Keyword Dictionary 159

DET

This function returns the determinant of a matrix.

--®.
~matrix)

name

Item Description

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

Range

matrix name name of a square, two-dimensional numeric any valid name
array; Default = (see text)

Example Statements
Determinant=DET
PRINT DET(A)

Semantics

WS,UX
MAT

Yes
Yes
Yes

If you do not specify a matrix, DET returns the determinant of the most recently inverted
matrix. This value is not affected by context switching. If no matrix has been inverted
since power-on, pre-run, SCRATCH or SCRATCH A, 0 is returned.

The determinant is significant as an indication of whether an inverse is valid. If the
determinant of a matrix equals 0, then the matrix has no inverse. If the determinant
is very small compared with the elements of its matrix, then the inverse may be invalid
and should be checked.

If the matrix is COMPLEX, the value returned is COMPLEX. Otherwise, the value
returned is REAL.

160 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

DIGITIZE

This statement inputs the X and Y coordinates of a digitized point from the locator
specified by GRAPHICS INPUT IS.

Item Description

x coordinate name name of a numeric variable

y coordinate name name of a numeric variable

string name name of a string variable

Example Statements
DIGITIZE X.Y
IF Flag THEN DIGITIZE Xpos.Ypos.Status$

Range

any valid name

any valid name string

any valid name string

Keyword Dictionary 161

Semantics
The returned coordinates are in the unit-of-measure currently defined for the PLOTTER
IS and GRAPHICS INPUT IS devices. The unit-of-measure may be default units or those
defined by either the WINDOW or SHOW statement. If an INTEGER numeric variable
is specified and the value entered is out of range, error 20 is reported.

If graphics input is from the keyboard, DIGITIZE is satisfied by pressing any of the
following keys:

I Return I. I Enter I, ~, I ENTER I, I EXECUTE I, I STOP I, I PAUSE I, I STEP I, I CONTI NUE I, I ENTER I,
I EXEC I, I STOP I, I PSE I, : STEP I, and I CO NT I.

Note that if ON KBD is in effect while executing DIGITIZE when the keyboard or mouse
or knob is the GRAPHICS INPUT IS device, the keys listed above will not be placed
into KBD$. Once the DIGITIZE is complete, these keys will be placed into KBD$.

The optional string variable is used to input the device status of the GRAPHICS INPUT
IS device. This status string contains eight bytes, defined as follows.

Byte

Meaning

2 4 5 6 7 8

Byte 1: Digitize status; If the locator device supports only single point digitizing, this
byte is always a "1". If the locator device supports continuous digitizing, this byte is a
"I" for all points in a stream of continuous points except the last point, which will be
returned with a "0". The method of indicating the beginning and ending of a continuous
point stream is device dependent. If the numeric value represented by this byte is used
as the pen control value for a PLOT statement, continuous digitizing will be copied to
the display device.

Bytes 2, 4, and 6: commas; used as delimiters.

Bytes 3: Significance of digitized point; "0" indicates that the point is outside the PI,
P2 limits; "I" indicates that the point is outside the viewport, but inside the PI, P2
limits: "2" indicates that the point is inside the current viewport limits.

Byte 5: Tracking status; "0" indicates off, "I" indicates on.

162 Keyword Dictionary

Byte 7 and 8: The number of the buttons which are currently down. To interpret the
ASCII number returned, change the number to its binary form and look at each bit. If
the bit is "1", the corresponding button is down. If the bit is "0", the corresponding
button is not down.

If the locator device (e.g., stylus or puck) goes out of proximity, a "button 7" is indicated
in the "button number" bytes. Bytes 7 and 8 will be exactly "64" regardless of whether
any actual buttons are being held down at the time. Proximity is reported oniy from
HP-HIL locators; the HP 9111A always returns ''~O'' in bytes 7 and 8. On a 35723A
TouchScreen, going out of proximity (i.e., removing your finger from the screen) will
trigger a digitize. Coming into proximity on a tablet with a button pressed will also
trigger a digitize, even if the button was originally pressed while in proximity.

BASIC/UX Specifics
When running in X Windows:

• Only the HP-HIL devices recognized by the window system (i.e. those which control
the window pointer can be used for graphics input.

• All HP-HIL devices (including tablets) can be accessed only through the KBD or
ARROW KEYS digitizer specifier. TABLET is not a valid specifier in X Windows.

• Any HP-GL devices specified in a GRAPHICS· INPUT IS will be locked to that
window while DIGITIZE is being executed.

When running on a terminal:

• Only arrow keys can be used to provide input through the KBD select code.

Keyword Dictionary 163

DIM
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This statement dimensions and reserves memory for REAL numeric arrays, strings and
string arrays.

Item Description Range

numeric array name of a numeric array any valid name
name

string name name of a string variable any valid name

lower bound integer constant; -32767 thru + 32 767
Default = OPTION BASE value (0 or 1) (see "array" in Glossary)

upper bound integer constant -32 767 thru +32767
(see "array" in Glossary)

string length integer constant 1 thru 32767

164 Keyword Dictionary

Example Statements
DIM String$[100] .Name$(12) [32]
DIM Array(-128:127.16)
DIM String_scalar[256] BUFFER. Real_array(127) BUFFER

Semantics
A program can have any number of DIM statements. The same variable cannot be
declared twice within a program (variables declared in a subprogram are distinct from
those declared in a main program, except those declared in COM). The DIM statements
can appear anywhere within a program, as long as they do not precede an OPTION
BASE statement. Dimensioning occurs at pre-run or subprogram entry time. Dynamic
run time allocation of memory is provided by the ALLOCATE statement.

No array can have more than six dimensions. Each dime:o.sion can have a maximum of
32 767 elements.

The total number of variables is limited by the fact that the maximum memory usage for
all variables-COMPLEX, INTEGER, REAL, and string-within any context is 224-1,
or 16777215, bytes (or limited by the amount of available memory, whichever is less).

All numeric arrays declared in a DIM statement are REAL, and each element of type
REAL requires 8 bytes of storage. A string requires one byte of storage per character,
plus two bytes of overhead.

An undeclared array is given as many dimensions as it has subscripts in its lowest
numbered occurrence. Each dimension of an undeclared array has an upper bound of
ten. Space for these elements is reserved whether you use them or not. Any time a lower
bound is not specified, it defaults to the OPTION BASE value.

Declaring Buffers
To declare variables to be buffers, each variable's name must be followed by a keyword
BUFFER; the designation BUFFER applies only to the variable which it follows.

String arrays cannot be declared to be buffers.

Keyword Dictionary 165

DISABLE
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement disables all event-initiated branches currently defined, except ON END,
ON ERROR, and ON TIMEOUT.

(D I SABLE)--l

Sematics
If an event occurs while the event-initiated branches are disabled, only the first occurrence
of each event is logged; there is no record of how many of each type of event has occurred.

If event-initiated branches are enabled after being disabled, all logged events will initiate
their respective branches if and when system priority permits. ON ERROR, ON END,
and ON TIMEOUT branches are not disabled by DISABLE.

166 Keyword Dictionary

DISABLE EXT SIGNAL
Supported on UX
Option Required nl a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement disables system generated signals by causing them to be ignored by
BASIC.

(DISABLE EXT SIGNAL >-1 signal number r
Item Description

signal number numeric expression, rounded to integer

Example Statements
DISABLE SIGNAL 4
DISABLE SIGNAL Sigsys

Semantics

Range

1 thru 32
(see ON EXT SIGNAL)

This statement causes the specified EXT SIGNAL to be ignored by BASIC. This does
not allow an ON EXT SIGNAL to trigger, nor does it allow the default action to take
place. Also, it does not cause the EXT SIGNAL action (default or user specified) to
change.

Only supported system signals may be specified. See ON EXT SIGNAL for a list of valid
signal numbers.

Keyword Dictionary 167

DISABLE INTR
Supported on
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
10

Yes
Yes
Yes

This statement disables interrupts from an interface by turning off the interrupt gener
ating mechanism on thp interface.

o ~ interface ~ DISABLE INTR select code

Example Statements
DISABLE INTR 7
DISABLE INTR Isc

168 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

DISP

This statement causes the display items to be sent to the display line on the CRT.

Keyword Dictionary 169

Ul
E
QJ ...,

QJ

en
ro
E

Ul
E
QJ ...,

>
ro

0.
Ul

D

r

literal form of image specifIer

Image
specIfIer lIst

170 Keyword Dictionary

image
specIfIer list

traIling punctuatIon
not allowed with USING

tab functIon not allowed wIth USING

Radix speclfier cannot
be used without a
dlgit specifier

Keyword Dictionary 171

Item Description Range

image line label

image line
number

name identifying an IMAGE statement any valid name

integer constant identifying an IMAGE 1 thru 32766
statement

image specifier

string array
name

numeric array
name

column

image specifier
list

string expression

name of a string array

name of a numeric array

numeric expression, rounded to an integer

literal

integer constant

(see drawing)

any valid name

any valid name

1 thru screenwidth

(see diagram)

1 thru 32767 repeat factor

literal string constant composed of characters quote mark not allowed
entered from the keyboard, including those
generated using the I ANY CHAR I key

Example Statements
DISP PromptS;
DISP TAB(5) ,First,TAB(20) ,Second
DISP USING 15Z.DD";Money

Semantics
Standard Numeric Format
The standard numeric format depends on the value of the number being displayed. If
the absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it
is rounded to 12 digits and displayed in floating point notation. If it is not within these
limits, it is displayed in scientific notation. The standard numeric format is used unless
USING is selected, and may be specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a semicolon.

Automatic End-Of-Line Sequence
After the display list is exhausted, an End Of Line (EOL) sequence is sent to the display
line, unless it is suppressed by trailing punctuation or a pound-sign image specifier.

172 Keyword Dictionary

Control Codes
Some ASCII control codes have a special effect in DISP statements:

Character Keystroke Name Action

CHR$(7) CTRL-G bell Sound the beeper

CHR$(8) CTRL-H backspace Move the cursor back one
character.

CHR$(12) CTRL-L form-feed Clear the display line.

CHR$(13) CTRL-M carriage-return Move the cursor to column
1. The next character sent
to the display clears the
display line, unless it is a
carriage-return.

CRT Enhancements
There are several character enhancements (such as inverse and underlining) available on
some CRTs. They are accessed through characters with decimal values above 127. For a
list of the characters and their effects, see the "Display Enhancement Characters" table
in "Useful Tables" at the back of this book.

Arrays
Entire arrays may be displayed using the asterisk specifier. Each element in an array is
treated as a separate item by the DISP statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the
array specifier, a comma is assumed. COMPLEX array elements are treated as if the
real and imaginary parts are separated by a semicolon. The array is output in row major
order (rightmost subscript varies fastest).

Display Without USING
If DISP is used without USING, the punctuation following an item determines the width
of the item's display field; a semicolon selects the compact field, and a comma selects the
default display field. When the display item is an array with the asterisk array specifier,
each array element is considered a separate display item. Any trailing punctation will
suppress the automatic EOL sequence, in addition to selecting the display field to be
used for the display item preceding it.

Keyword Dictionary 173

The compact field is slightly different for numeric and string items. Numeric items are
displayed with one trailing blank. String items are displayed with no leading or trailing
blanks.

The default display field displays items with trailing blanks to fill to the beginning of the
next lO-character field.

Numeric data is displayed with one leading blank if the number is positive, or with a
minus sign if the number is negative, whether in compact or default field.

In the TAB function, a column parameter less than one is treated as one. A column
parameter greater than the screen width (in characters) is treated as equal to the screen
width.

Display With USING
When the computer executes a DISP USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas)
as it is encountered. If nothing is required from the display items, the field specifier is
acted upon without accessing the display list. When the field specifer requires characters,
it accesses the next item in the display list, using the entire item. Each element in an
array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no
matching display item (and the specifier requires a display specifier). If the image
specifiers are exhausted before the display items, they are reused, starting at the
beginning.

COMPLEX valuf'~ require 2 REAL image ~pf'dfier~ (i.f'. f'arh COMPLEX vahI{' i~ trf'atf'd
like 2 REAL values).

If a numeric item requires more decimal places to the left of the decimal point than are
provided by the field specifier, an error is generated. A minus sign takes a digit place if M
or S is not used, and can generate unexpected overflows of the image field. If the number
contains more digits to the right of the decimal point than specified, it is rounded to fit
the specifier.

If a string is longer than the field specifier, it is truncated, and the rightmost characters
are lost. If it is shorter than the specifer, trailing blanks are used to fill out the field.

174 Keyword Dictionary

Effects of the image specifiers on the DISP statement are shown in the following table:

Image
Specifier Meaning

K Compact field. Displays a number or string in standard form with no leading or
trailing blanks.

T.T Same as K. -.n.

R Similar to K, except the number is displayed using the European number format
(comma radix). (Requires 10)

-R Same as R. (Requires 10)

S Displays the number's sign (+ or -).

M Displays the number's sign if negative, a blank if positive.

D Displays one digit character. A leading zero is replaced by a blank. If the number
is negative and no sign image is specified, the minus sign will occupy a leading digit
position. If a sign is displayed, it will "float" to the left of the left-most digit.

Z Same as D, except that leading zeros are displayed.

* Same as Z, except that asterisks are displayed instead of leading zeros. (Requires
10)

Displays a decimal-point radix indicator.

R Displays a comma radix indicator (European radix). (Requires 10)

E Displays an E, a sign, and a two-digit exponent.

ESZ Displays an E, a sign, and a one-digit exponent.

ESZZ Same as E.

ESZZZ Displays an E, a sign, and a three-digit exponent.

A Displays a string character. Trailing blanks are output if the number of characters
specified is greater than the number available in the corresponding string. If
the image specifier is exhausted before the corresponding string, the remaining
characters are ignored.

X Displays a blank.

literal Displays the characters contained in the literal.

Keyword Dictionary 175

Image
Specifier Meaning

B Displays the character represented by one byte of data. This is similar to the CHR$
function. The number is rounded to an INTEGER, and the least-significant byte
is sent. If the number is greater than 32767, then 255 is used; if the number is less
than -32768, then 0 is used.

W Displays two characters represented by the two bytes of a 16-bit, two's-complement
integer. The corresponding numeric item is rounded to an INTEGER. If it is greater
than 32767, then 32767 is used; if it is less than -32768, then -32768 is used.
The most-significant byte is sent first.

y Same as W. (Requires 10)

Suppresses the automatic output of an EOL (End-Of-Line) sequence following the
last display item.

% Ignored in DISP images.

+ Changes the automatic EOL sequence that normally follows the last display item
to a single carriage-return. (Requires 10)

- Changes the EOL automatic sequence that normally follows the last display item
to a single line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the display line.

L Same as /.

@ Sends a form-feed to the display line.

176 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

DISPLAY FUNCTIONS

This statement enables and disables the display functions mode. This mode causes
control characters sent to the CRT to be displayed.

DISPLAY FUNCTIONS

Example Statements
DISPLAY FUNCTIONS ON
DISPLAY FUNCTIONS OFF
IF No_ctrl_char THEN DISPLAY FUNCTIONS OFF

Semantics
Except for the carriage-return character, all subsequent control characters sent to the
display (while in the display functions mode) do not invoke their defined function, but
are only displayed. The carriage-return is both displayed and causes the print position
to move to the beginning of the next line (both CR and LF functions invoked).

Also available as CRT CONTROL register 4.

Keyword Dictionary 177

DIV
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This operator returns the integer portion of the quotient of the dividend and the divisor.

--.J dividend ~ divlsor ~

Item Description

dividend

divisor

numeric expression

numeric expression

Example Statements
Quotient=Dividend DIV Divisor
PRINT "Hours =";Minutes DIV 60

Semantics

Range

not equal to 0

DIV returns a REAL value unless both arguments are INTEGER. In the latter case the
returned value is INTEGER. A DIV B is identical to SGN(A/B) x INT(ABS(A/B)).

This operator is not defined for COMPLEX arguments.

178 Keyword Dictionary

Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

DOT

This function returns the inner (dot) product of two numeric vectors.

Item Description

vector name name of a one-dimensional numeric array

Example Statements
PRINT DOT(A,B)
B=DOT(A,A)

Semantics

Range

any valid name

The dot product is calculated by multiplying corresponding elements of the two vectors
and then summing the products. The two vectors must be the same current size. If both
vectors are INTEGER, the product will be an INTEGER. If either vector is COMPLEX,
the product will be COMPLEX. Otherwise, the product will be of type REAL.

Keyword Dictionary 179

DRAW
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement draws a line from the pen's current position to the specified X and Y
coordinate position using the current line type and pen number.

@---1 x coordInate ~ y coordinate ~

Item Description

x coordinate

y coordinate

numeric expression, in current units

numeric expression, in current units

Example Statements
DRAW 10,90
DRAW Next_x,Next_y

Semantics

Range

The X and Y coordinate information is interpreted according to the current unit-of
measure. DRAW is affected by the PIVOT statement.

A DRAW to the current position generates a point. DRAW updates the logical pen
position at the completion of the DRAW statement. and leaves the pen down on an
external plotter. The line is clipped at the current clipping boundary.

If none of the line is inside the current clipping limits, the pen is not moved, but the
logical pen position is updated.

180 Keyword Dictionary

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES and GRID) X

Location of labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOlA.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIA.

LDIR PDIR

Note 4
X

X

Note 2

Keyword Dictionary 181

DROUND
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function rounds a numeric expression to the specified number of digits. If the
specified number of digits is greater than 15. no rounding takes place. If the number of
digits specified is less than 1, 0 is returned.

Item Description

argument numeric expression

number of digits numeric expression, rounded to an integer

Example Statements
Test_real=DROUND(True_real.12)
PRINT "Approx. Volts =";DROUND(Volts.3)

Semantics
COMPLEX numbers are not allowed as arguments to this function.

182 Keyword Dictionary

Range

Supported on
Option Required
Keyboard Executable
Programmable
Tn an IF _ _ THEN

WS,UX
None

Yes
Yes
Yes

DUMP

This statement copies the contents of the alphanumeric or graphics display to the specified
printing device.

Item Description Range

source device
selector

numeric expression, rounded to an integer; (see Glossary)
Default = last CRT plotting device

destination
device selector

numeric expression, rounded to an integer;
Default = DUMP DEVICE IS device

external interfaces and
windows only (see Glossary)

Example Statements
DUMP ALPHA
DUMP ALPHA #701
DUMP ALPHA 602
DUMP ALPHA 602 TO #604
DUMP GRAPHICS 602 !BASIC/UX in X Windows OnlY]

BASIC/UX in X Windows only
BASIC/UX in X Windows only

Keyword Dictionary 183

Semantics
DUMP ALPHA copies the contents of the alphanumeric display to an output device.
With a bit-mapped alpha display, the alpha buffer is sent to the printer as alphanumeric
characters.

DUMP GRAPHICS copies the entire contents of the CRT or window, which may
contain bit-mapped alpha, to the current DUMP DEVICE IS device (usually a printer).
Performing DUMP GRAPHICS to a device which does not support the HP Raster
Interface Standard will produce unpredictable r~sults. The HP 2631G, HP 9876, and
the ThinkJet printers are among devices that support this standard. Windows do not
support this standard. (See the Configuration Reference for a complete list of supported
HP devices.)

If the destination device is not explicitly specified, it is assumed to be the current DUMP
DEVICE IS device.

If EXPANDED is specified in the DUMP DEVICE IS statement, the source graphics
image is doubled in both X and Y directions before being sent to the destination device.
However, if both source and destination devices are explicitly specified, the image is sent
without being expanded.

If a DUMP GRAPHICS operation is stopped by pressing the I Break 1 (I CLR 1/0 I) key, the
printer mayor may not terminate its graphics mode. Sending the printer up to 192 null
characters [CHR$ (0) 1 can be used to terminate the graphics mode on a printer such as
the HP 9876.

If the source has multiple planes of graphics mcmory associated with a pixel, an inciusivc
OR is performed on all the bits corresponding to the pLxei. This determines whether to
print it as black or white.

If a currently active CRT or window is explicitly specified as the source, the CRT's
contents are dumped to the printer. However, if the specified CRT has not been
~'activated" (see following description), error 708 is reported.

Plotters are de-activated by power-up, GINIT, SCRATCH A, or I Reset I. A plotting device
is activated when it is specified in a PLOTTER IS statement. In addition, the internal
CRT or window is also (implicitly) activated by any of the following operations after de
activation: any pen movement; GCLEAR; GLOAD (to the current default destination);
GSTORE (from the current default source); and DUMP GRAPHICS (from the current
defaul t source).

184 Keyword Dictionary

If a non-CRT source which is the current PLOTTER IS device is explicitly specified, the
DUMP GRAPHICS is not performed; however, if an non-CRT source which is not the
current PLOTTER IS device is explicitly specified, error 708 is reported.

On multi-plane bit-mapped display devices, which use a graphics write-enable mask, only
the bits indicated by 1 's will be OR'ed together and dumped.

BASIC/UX Specifics
DUMP GRAPHICS from a window dumps the raster image, which includes the displayed
alpha text. DUMP ALPHA from a window dumps only the ASCII text contained in the
window. There is no special case for non-square pixels (Le. DUMP GRAPHICS with
alpha on the display matches the image on the CRT). DUMP GRAPHICS on a terminal
is not performed. DUMP GRAPHICS to a window is not permitted.

Both DUMP ALPHA and DUMP GRAPHICS are extended to support output to
windows or unnamed pipes.

Displays with Non-Square Pixels (BASIC Workstation Only)
For machines which have a display with non-square pixels (such as the HP 98542A and the
HP 98543A), a non-expanded DUMP GRAPHICS will produce an image that matches
the CRT or window only if no alpha appears in the graphics planes. Since most printers
print square pixels, this routine treats graphics pixel pairs as single elements and prints
one square for each pixel pair in the frame buffer. Because alpha works with individual
pixels, and not with pixel pairs, mixed alpha and graphics will appear blurred on a
DUMP GRAPHICS non-expanded output. Using the EXPANDED option causes the
vertical length (the height on the CRT or window) to be doubled as before, but dumps
each separate pixel. In this mode, mixed alpha and graphics will appear the same on the
dump as on the CRT or window.

Note

Some printers are not capable of printing 1024 graphics dots per
line, so images dumped will be truncated to fit the printer.

Keyword Dictionary 185

DUMP DEVICE IS
Supported on WS 1 UX
Option Required GRAPH
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement specifies which device, file, or pipe receives the data when either DUMP
ALPHA or DCMP GRAPHICS is ex('cuted without a devin' selector.

DUMP DEVICE IS

Item

file specifier

device selector

Description

string expression

numeric expression, rounded to an integer;
Default = 701

Example Statements
DUMP DEVICE IS 701

Range

external interfaces or
windows only (see Glossary)

DUMP DEVICE IS 614 [BASIC/U. x in X Windows only)
DUMP DEVICE IS "plot. out II BASIC/UX only)
DUMP DEVICE IS II I conv I lp", EXPANDED BASI(;/FX only)
DUMP DEVICE IS Printer,EXPANDED

186 Keyword Dictionary

Semantics
Doing a DUMP GRAPHICS to a printer which does not support the HP Raster Interface
Standard will produce unpredictable results. The HP 9876 and the HP 2631G are among
the devices or files which support the standard. (See the Configuration Reference for a
complete list of supported HP devices or files .)

Specifying EXPANDED results in graphics dumps that are twice as hig on each axis
(except for displays with non-square pixels - see DUMP GRAPHICS for details) and
turned sideways. This gives four dots on the printer for each dot on the display. The
resulting picture does not fit on one page of an HP 9876 or HP 2631G printer.

BASIC/UX Specifics
DUMP DEVICE IS is extended to support output to windows or unnamed pipes.

BASIC/UX treats output to a pipe as it would output to a file. The pipe must be
explicitly closed before any output becomes permanent (or takes place). Output to a
spooled device will not be sent to the spooler until the pipe has been closed. The closing
of pipes can be achieved with a subsequent DUMP DEVICE IS, QUIT, or SCRATCH
command.

For example:

DUMP DEVICE IS "Iexpandlfoldlsortlprllp -s"

No output takes place until another DUMP DEVICE IS statement is specified, a
SCRATCH A command is executed, or BASIC is exited.

GRAPHICS data is in raw mode, therefore be sure to specify the "raw" mode option
when piping to the printer spooler (e.g. "DUMP DEVICE IS "lp -oraw"") otherwise
the printer hangs. Also, it is advisable to use the "-s" option of "lp" to suppress any
messages to "stdout" (standard output).

Keyword Dictionary 187

OVAL
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function converts a binary, octal, decimal, or hexadecimal character string into a
REAL whole number.

Item Description Range

string argument string expression, containing digits valid for (Sf'C tables)
the specified base

radix numeric expression, rounded to an integer 2, 8, 10, or 16

Example Statements
Address=DVAL("FF590004" ,16)
Real=DVAL("01010101010101010101010101010101" ,2)
Number=DVAL(Octal$,8)

Semantics
The radix is a numeric expression that will be rounded to an integer and must evaluate
to 2, 8, 10, or 16.

The string expression must contain only the characters allowed for the particular number
base indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two's-complement form. If all 32 digits are specified
and the leading digit is a 1. the returned value is negative.

Octal strings are presumed to be in the octal representation of two's-complement form.
If all 11 digits are specified, and the leading digit is a 2 or a 3, the returned value is
negative.

Decimal strings containing a leading minus sign will return a negative value.

188 Keyword Dictionary

Hex strings are presumed to be in the hex representation of the two's-complement binary
form. The letters A through F may be specified in either uppercase or lowercase letters.
If all 8 digits are specified and the leading digit is 8 through F, the returned value is
negative.

Radix Base String Range String Length

2 binary o thru 1 to 32 characters
11111111111111111111111111111111

8 octal ° thru 37777777777 1 to 11 characters

10 decimal -2147483648 thru 2147483647 1 to 11 characters

16 hexadecimal ° thru FFFFFFFF 1 to 8 characters

Radix Legal Characters Comments

2 +,0,1 ~

8 +,0,1,2,3,4,5,6,7 Range restricts the leading charac-
ter. Sign, if used, must be a leading
character.

10 +,-,0,1,2,3,4,5,6,7,8,9 Sign, if used, must be a leading char-
acter.

16 +,0,1,2,3,4,5,6,7,8,9, A/a = 10, B/b = 11, C/c = 12,
A,B,G,D,E,F ,a,b,c,d,e,f D/d= 13, E/e= 14, F/f= 15

Keyword Dictionary 189

OVALS
Supported on
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function converts a whole number into a binary, octal, decimal, or hexadecimal
string.

Item Description Range

"32-bit" argument numeric expression, rounded to an integer _231 thru 231 -1

radix numeric expression, rounded to an integer 2, 8, 10, or 16

Example Statements
F$=DVAL$(1-1,16)
Binary$=DVAL$(Count DIV 256,2)

Semantics
The rounded argument must be a value that can be expressed (in binary) using 32 bits
or less.

The radix must evaluate to be 2, 8, 10, or 16-representing binary, octal, decimal, or
hexadecimal notation, respectively.

If the radix is 2, the returned string is in two's-complement form and contains 32
characters. If the numeric expression is negative, the leading digit will be 1. If the
value is zero or positive, there will be leading zeros.

If the radix is 8, the returned string is the octal representation of the two's-complement
binary form and contains 11 digits. Negative values return a leading digit of 2 or 3.

If the radix is 10, the returned string contains 11 characters. Leading zeros are added to
the string if necessary. Negative values have a leading minus sign.

190 Keyword Dictionary

If the radix is 16, the returned string is the hexadecimal representation of the two's
complement binary form and contains 8 characters. Negative values return with the
leading digit in the range 8 thru F.

Radix Base Range of Returned String String Length

2 binary 00000000000000000000000000000000 32 characters
thru

11111111111111111111111111111111

8 octal 00000000000 thru 37777777777 11 characters

10 decimal -2147483648 thru 2147483647 11 characters

16 hexadecimal 00000000 thru FFFFFFFF 8 characters

Keyword Dictionary 191

ECHO

See the SET ECHO statement.

EDGE

See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL statements.

192 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
EDIT

Yes
No
No

EDIT

This command allows you to enter or edit either a program or typing-aid key definitions.

Item Description

line number integer constant identifying program line;
Default (see Semantics)

line label name of a program line

increment integer constant; Default = 10

key number integer constant

Example Statements
EDIT
EDIT 1000,5
EDIT KEY 4

Range

1 thru 32766

any valid name

1 thru 32766

o thru 23

Keyword Dictionary 193

Semantics
The EDIT command allows you to scroll through a program in the computer by using
the arrow keys, I Prey I, I Next I, or the knob. Lines may be added to the end of a program by
going to the bottom of the program. A new line number will be provided automatically.
Lines may be added between existing program lines by using the insert line key, and lines
may be deleted by using the delete line key. Lines may be modified by typing the desired
characters over the existing line, using the insert character and delete character keys as
necessary. I ENTER I, I EXECUTE lor I Return I are used to store the newly created or modified
lines.

Edit mode is exited by pressing I CONTINUE I, I CLR SCR I, I Clear display I, I PAUSE I, ~,
I RESET I, I RUN I, or I STEP I or by executing CAT, LIST (if PRINTER IS CRT), GET,
or LOAD. In general any PRINT to the CRT (e.g., executing DISP) will exit you from
the EDIT mode. If the program was changed while paused. pressing I CONTINUE I will
generate an error, since modifying a program moves it to the stopped state.

EDIT Without Parameters
If no program is currently in the computer, the edit mode is entered at line 10, and
the line numbers are incremented by 10 as each new line is stored. If a program is in
the computer, the line at which the editor enters the program is dependent upon recent
history. If an error has paused program execution, the editor enters the program at the
line flagged by the error message. Otherwise, the editor enters the program at the line
most recently edited (or the beginning of the program after a LOAD operation).

EDIT With Parameters
If no program is in the computer, a line number (not a label) must be used to specify
the beginning line for the program. The increment will determine the interval between
line numbers. If a program is in the computer, any increment provided is not used until
lines are added to the program. If the line specified is between two existing lines, the
lowest-numbered line greater than the specified line is used. If a line label is used to
specify a line, the lowest-numbered line with that label is used. If the label cannot be
found, an error is generated.

194 Keyword Dictionary

EDIT KEY (Requires KBD, but does not require EDIT)
To enter the EDIT KEY mode, type EDIT KEY, followed by the key number, and press
I EXECUTE I, I ENTER I, or I Return I. Also, the desired soft key can be pressed after typing or
pressing EDIT. When EDIT KEY mode is entered, the current key definition (if any) is
displayed. You then edit the contents as if it were any other keyboard line. Non-ASCII
keys may be included in the key definition by holding I CTRL 1 while pressing the desired
key. N on-ASCII keystrokes are represented by an inverse-video ~ followed by another
character associated with the key. The table Second Byte of Non-ASCII Key Sequences
in the "Useful Tables" section of this manual has a list of the characters associated with
the special keys.

Note

On the HP 98203A keyboard, many non-ASCII keys cannot be
accessed by the method of holding I CTRL 1 while pressing the desired
key. However, any of the non-ASCII keys can be entered into
a softkey definition by pressing I ANY CHAR 1 255, followed by the
character associated with that non-ASCII key.

To accept the modified key definition, press I ENTER 1 or ~; to abort without changing
the current definition, press I PAUSE I, I CLR SCR 1 or I Clear display I.

When a program is waiting for a response to an INPUT, LIN PUT or ENTER, the typing
aid definitions (defined with EDIT KEY) are in effect. When a program is running but
not waiting for user input, the active ON KEY definitions supercede the typing aid
definitions. Softkeys without ON KEY definitions retain their typing-aid function.

ELSE

See the IF ... THEN statement.

Keyword Dictionary 195

ENABLE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement re-enables all event-initiated branches which were suspended by DIS
ABLE. ON END. ON ERROR, and ON TIMEOUT are not affected by ENABLE and
DISABLE.

(ENABLE)-f

196 Keyword Dictionary

ENABLE EXT SIGNAL
Supported On UX
Option Required nl a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement enables the specified system generated signal which can cause end-of
statement branches or default actions.

(ENABLE EXT SIGNAL>-1 signal number f+i

Item Description

signal number numeric expression, rounded to integer

Example Statements
ENABLE SIGNAL 4
ENABLE SIGNAL Sigsys

Semantics

Range

1 thru 32
(see ON EXT SIGNAL)

EXT SIGNALS default to enabled, and thus this statement is only needed if a DISABLE
EXT SIGNAL statement has been executed. Note that the default action will take place
unless an ON EXT SIGNAL statement is executed (see ON EXT SIGNAL).

Only supported system signals may be specified. See ON EXT SIGNAL for a list of valid
signal numbers.

Keyword Dictionary 197

ENABLEINTR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

This statement enables the specified interface to generate an interrupt which can cause
end-of-statement branches.

Item Description Range

interface select
code

numeric expression, rounded to an integer 5, and 7 thru 31

bit mask numeric expression, rounded to an integer -32 768 thru +32 767

Example Statements
ENABLE INTR 7
ENABLE INTR Isc;Mask

Semantics
If a bit mask is specified, its value is stored in the interface's interrupt-enable register.
Consult the documentation provided with each interface for the correct interpretation of
its bit mask values.

If no bit mask is specified, the previous bit mask for the select code is restored. A bit
mask of all zeros is used when there is no previous bit mask.

198 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
Tn an IF ... THEN

WS,UX
None

No
Yes
No

END

This statement marks the end of the main program. (For information about END as a
secondary keyword, see the OUTPUT and SEND statements.)

~
Semantics
END must be the last statement (other than comments) of a main program. Only one
END statement is allowed in a program. (Program execution may also be terminated
with a STOP statement, and multiple STOP statements are allowed.) END terminates
program execution, stops any event-initiated branches, and clears any unserviced event
initiated branches. CONTINUE is not allowed after an END statement.

Subroutines used by the main program must occur prior to the END statement.
Subprograms and user-defined functions must occur after the END statement.

Keyword Dictionary 199

END IF

See the IF ... THEN statement.

END LOOP

See the LOOP statement.

END SELECT

See the SELECT ... CASE construct.

END WHILE

See the WHILE statement.

200 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ENTER

This statement is used to input data from a device, file, string, buffer, window or pipe,
(

and assign the values entered to variables.

Keyword Dictionary 201

enter
items

Expanded diagram:

202 Keyword Dictionary

source
A

image
A

items

literal form of image specifier

Item

image
specifier list

image
specifier list

Description Range

I/O path name name assigned to a device, devices, mass any valid name
storage file, or buffer (see ASSIGN)

record number

device selector

source string
name

subscript

numeric expression, rounded to an integer

numeric expression, rounded to an integer

name of a string variable

numeric expression, rounded to an integer

image line integer constant identifying an IMAGE
number statement

image line label name identifying an IMAGE statement

image specifier string expression

numeric name name of a numeric variable

string name name of a string variable

beginning numeric expression, rounded to an integer
position

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

image specifier
list

literal

integer constant

1 thru 231 _1

(see Glossary)

any valid name

-32767 thru +32767 (see
"array" in Glossary)

1 thru 32766

any valid name

(see drawing)

any valid name

any valid name

1 thru 32767
(see "substring"
in Glossary)

o thru 32767
(see "substring"
in Glossary)

o thru 32767
(see "substring"
in Glossary)

(see next drawing)

1 thru 32767 repeat factor

literal string constant composed of characters from quote mark not allowed
the keyboard, including those generated us-
ing the ANY CHAR key

Keyword Dictionary 203

204 Keyword Dictionary

Rad!x speclf ler cannot
be used wltnout a
dlglt speclfler

Example Statements
ENTER 705;Number,String$
ENTER OFile;Array(*)
ENTER OSource USING Fmt5;Item(1) ,Item(2) ,Item(3)
ENTER 12 USING "#,6A";A$[2;6]

Semantics
The Number Builder
If the data being received is ASCII and the associated variable is numeric, a number
builder is used to create a numeric quantity from the ASCII representation. The number
builder ignores all leading non-numeric characters, ignores all blanks, and terminates on
the first non-numeric character, or the first character received with EOI true. (Numeric
characters are 0 thru 9, +, -, decimal point, e, and E, in a meaningful numeric order.)
If the number cannot be converted to the type of the associated variable, an error is
generated. If more digits are received than can be stored in a variable of type REAL
or COMPLEX, the rightmost digits are lost, but any exponent will be built correctly.
Overflow occurs only if the exponent overflows. COMPLEX numbers are treated like
two real numbers, the first representing the real part and the second representing the
imaginary part. When an ENTER statement contains a COMPLEX variable, that
variable is satisfied with two REAL values.

Arrays
Entire arrays may be entered by using the asterisk specifier. Each element in an array is
treated as an item by the ENTER statement, as if the elements were listed separately.
The array is filled in row major order (rightmost subscript varies fastest). COMPLEX
arrays are treated as if they were REAL arrays with twice as many elements (Le. instead
of an n element array you have a 2 x n element array).

Files as Source
If an I/O path has been assigned to a file, the file may be read with ENTER statements.
The file must be an ASCII, BDAT, or HP-UX file. The attributes specified in the ASSIGN
statement are used only if the file is a BDAT or HP-UX file. Data read from an ASCII file
is always in ASCII format (i.e., you cannot use ENTER .. USING); however, you can enter
the data into a string variable, and then use ENTER .. USING from the string variable.
Data read from a BDAT or HP-UX file is considered to be in internal representation
with FORMAT OFF, and is read as ASCII characters with FORMAT ON.

Serial access is available for ASCII, BDAT, and HP-UX files. Random access is available
for BDAT and HP-UX files. The file pointer is important to both serial and random
access. The file pointer is set to the beginning of the file when the file is opened by an
ASSIGN. The file pointer always points to the next byte available for ENTER operations.

Keyword Dictionary 205

Random access uses the record number parameter to read items from a specific location
in a file. The record specified must be before the end-of-file pointer. The ENTER begins
at the beginning of the specified record.

It is recommended that random and serial access to the same file not be mixed. Also,
data should be entered into variables of the same type as those used to output it (e.g.
string for string, REAL for REAL, etc.).

In order to ENTER from a file on an HFS volume, you need to have R (read) permission
on the file, as well as X (search) permission on the immediately superior directory and
all other superior directories.

In order to read a file in an SRM directory, you need to have READ capability on
the immediately superior directory, as well as READ capabilities on all other superior
directories. If this capability is not public or if a password protecting this capability was
not used at the time the file was assigned an I/O path name (with ASSIGN), an error is
reported.

Devices as Source
An I/O path name or a device selector may be used to ENTER from a device. If a device
selector is used, the default system attributes are used (see ASSIGN). If an I/O path
name is used, the ASSIGN statement determines the attributes used. If multiple devices
were specified in the ASSIGN, the ENTER sets the first device to be talker, and the rest
to be listeners.

If FORMAT ON is the current attribute, the items are read as ASCII. If FORMAT OFF
is the current attribute, items are read from the device in the computer's internal format.
Two hytes are rearl for each INTEGER: eight bytes for each REAL, and sixteen bytes for
each COMPLEX value. Each string entered consists of a four byte header containing the
length of the string, followed by the actual string characters. The string must contain an
even number of characters; if the length is odd, an extra byte is entered to give alignment
on the word boundary.

CRT as Source
If the device selector is 1, the ENTER is from the CRT. The ENTER reads characters
from the CRT, beginning at the current print position (print position may be modified
by using TABXY in a PRINT statement.) The print position is updated as the ENTER
progresses. After the last non-blank character in each line, a line-feed is sent with a
simulated "EOI". After the last line is read, the print position is off the screen. If the
print position is off screen when an ENTER is started, the off-screen text is first scrolled
into the last line of the display.

206 Keyword Dictionary

Keyboard as Source
ENTER from device selector 2 may be used to read the keyboard. An entry can be
terminated by pressing I ENTER I, I EXECUTE I, I Return I, I CONTINUE I, or I STEP I. Using I ENTER I,
I EXECUTE I, I Return lor I STEP 1 causes a CR/LF to be appended to the entry. The I CONTINUE 1
key adds no characters to the entry and does not terminate the ENTER statement. If
an ENTER is stepped into, it is stepped out of, even if the I CONTINUE 1 key is pressed. An
HP-IB EOI may be simulated by pressing I CTRL ~[TI before the character to be sent, if
this feature has been enabled by an appropriate CONTROL statement to the keyboard
(see the Control and Status Registers in the back of this book).

Strings as Source
If a string name is used as the source, the string is treated similarly to a file. However,
there is no file pointer; each ENTER begins at the beginning of the string, and reads
serially within the string.

Buffers as Source (Requires TRANS)
When entering from an I/O path assigned to a buffer, data is removed from the buffer
beginning at the location indicated by the buffer's empty pointer. As data is received,
the current number-of-bytes register and empty pointer are adjusted accordingly. En
countering the fill pointer (buffer empty) produces an errQr unless a continuous inbound
TRANSFER is filling the buffer. In this case, the ENTER will wait until more data is
placed in the buffer.

Since devices are logically bound to buffers, an ENTER statement cannot intercept data
while it is traveling between the device and the buffer. If an I/O path is currently
being used in an outbound TRANSFER, and an ENTER statement uses it as a source,
execution of the ENTER is deferred until the completion of the TRANSFER. An ENTER
can be concurrent with an inbound TRANSFER only if the source is the I/O path
assigned to the buffer.

An ENTER from a string variable that is also a buffer will not update the buffer's
pointers and may return meaningless data.

Pipes as Source (BASIC/UX only)
If an I/O path has been assigned to a pipe, the pipe may be read with ENTER statements.
The attributes specified in the ASSIGN statement are used. Data is considered to be
in internal representation with FORMAT OFF, and is read as ASCII characters with
FORMAT ON. (See "Devices as Source" for a description of these formats.) The pipe
must be read serially.

Keyword Dictionary 207

ENTER With USING
When the computer executes an ENTER USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas)
as it is encountered. If no variable is required for the field specifier, the field specifier
is acted upon without referencing the enter items. When the field specifier references a
variable, bytes are entered and used to create a value for the next item in the enter list.
Each element in an array is considered a separate item.

The processing of image specifiers stops when a specifier is encountered that has no
matching enter item. If the image specifiers are exhausted before the enter items, the
specifiers are reused, starting at the beginning of the specifier list.

Entry into a string variable always terminates when the dimensioned length of the string
is reached. If more variables remain in the enter list when this happens, the next character
received is associated with the next item in the list.

When USING is specified, all data is interpreted as ASCII characters. FORMAT ON is
always assumed with USING, regardless of any attempt to specify FORMAT OFF.

ENTER with USING cannot be used to enter data from an ASCII file. Instead, enter
the item(s) into a string variable, and then use ENTER with

USING to enter the item(s) from the string variable. For instance, use
ENTER <OFile; StringS then ENTER StringS USING "5A. X. 5DD"; Str2$. Number.

208 Keyword Dictionary

Effects of the image specifiers on the ENTER statement are shown in the following table:

Image
Specifier

K

Meaning

Freefield Entry. Numeric: Entered characters are sent to the number builder.
Leading non-numeric characters are ignored. All blanks are ignored. Trailing
non-numerIC characters ~1}d characters sent \Jllith EOI true are delimiters.
Numeric characters include digits, decimal point, +, -, e, and E when their
order is meaningful.

String: Entered characters are placed in the string. Carriage-return not
immediately followed by line-feed is entered into the string. Entry to a string
terminates on CR/LF, LF, a character received with EOI true, or when the
dimensioned length of the string is reached.

- K Like K except that LF is entered into a string, and thus CR/LF and LF do not
terminate the entry.

H Like K, except that the European number format is used. Thus, a comma is the
radix indicator and a period is a terminator for a numeric item. (Requires 10)

-H Same as -K for strings; same as H for numbers. (Requires 10)

S Same action as D.

M Same action as D.

D Demands a character. Non-numerics are accepted to fill the character count.
Blanks are ignored, other non-numerics are delimiters.

Z Same action as D.

* Same action as D. (Requires 10)

Same action as D.

R

E

ESZ

ESZZ

Like D, R demands a character. When R is used in a numeric image, it directs
the number builder to use the European number format. Thus, a comma is the
radix indicator and a period is a terminator for the numeric item. (Requires 10)

Same action as 4D.

Same action as 3D.

Same action as 4D.

Keyword Dictionary 209

Image
Specifier

ESZZZ

A

X

literal

B

W

Meaning

Same action as 5D.

Demands a string character. Any character received is placed in the string.

Skips a character.

Skips one character for each character in the literal.

Demands one byte. The byte becomes a numeric quantity.

Demands one 16-bit word, which is interpreted as a 16-bit, two's-complement

integer. If either an I/O path name with the BYTE attribute or a device selector
is used to access an 8-bit interface, two bytes will be entered; the most-significant
byte is entered first. If an I/O path name with the BYTE attribute is used to
access a 16-bit interface, the BYTE attribute is overridden and one word is
entered in a single operation. If an I/O path name with the WORD attribute is
used to access a 16-bit interface, one byte is entered and ignored when necessary
to achieve alignment on a word boundary. If the source is a file, string variable, or
buffer, the WORD attribute is ignored and all data are entered as bytes; however,
one byte will be entered and ignored when necessary to achieve alignment on a
word boundary.

Y Like W, except that pad bytes are never entered to achieve word alignment. If
an I/O path name with the BYTE is used to access a 16-bit interface, the BYTE
attribute is not overridden (as with W specifier above). (Requires 10)

Statement is terminated when the last ENTER item is terminated. EOI and
line-feed are item terminators, and early termination is not allowed.

% Like #, except that an END indication (such as EOI or end-of-file) is an im
mediate statement terminator. Otherwise, no statement terminator is required.
Early termination is allowed if the current item is satisfied.

+ Specifies that an END indication is required with the last character of the
last item to terminate the ENTER statement. Line-feeds are not statement
terminators. Line-feed is an item terminator unless that function is suppressed
by -K or -H. (Requires 10)

/
L

(OJ

Specifies that a line-feed terminator is required as the last character of the last
item to terminate the statement. EOI is ignored, and other END indications,
such as EOF or end-of-data, cause an error if encountered before the line-feed.
(Requires 10)

Demands a new field; skips all characters to the next line-feed. EOI is ignored.

Ignored for ENTER.

Ignored for ENTER.

210 Keyword Dictionary

ENTER Statement Termination
A simple ENTER statement (one without USING) expects to give values to all the
variables in the enter list and then receive a statement terminator. A statement
terminator is an EOI, a line-feed received at the end of the last variable (or within
256 characters after the end of the last variable), an end-of-data indication, or an end
of-file. If a statement terminator is received before all the variables are satisfied, or no
terminator is received within 256 bytes after the last variable is satisfied, an error occurs.
The terminator requirements can be altered by using images.

An ENTER statement with USING, but without a % or # image specifier, is different
from a simple ENTER in one respect. EOI is not treated as a statement terminator
unless it occurs on or after the last variable. Thus, EOI is treated like a line-feed and
can be used to terminate entry into each variable.

An ENTER statement with USING that specifies a # image requires no statement
terminator other than a satisfied enter list. EOI and line feed end the entry into individual
variables. The ENTER statement terminates when the variable list has been satisfied.

An ENTER statement with USING that specifies a % image allows EOI as a statement
terminator. Like the # specifier, no special terminator is required. Unlike the # specifier,
if an EOI is received, it is treated as an immediate statement terminator. If the EOI
occurs at a normal boundary between items, the ENTER statement terminates without
error and leaves the value of any remaining variables unchanged.

When entering FORMAT ON text into string variables, care should be taken to
avoid unexpected interactions between terminating on dimensioned string length and
termination on line feeds in the text. It is recommended that the string variable
be dimensioned at least two characters longer than the text if it will be terminated
by a carriage return/line feed. See Interfacing Techniques, "Entering Data" for more
information.

Keyword Dictionary 211

EOl
See the ASSIGN, PRINTALL IS, and PRINTER IS statements.

EOR
See the OFF EOR, ON EOR, and TRANSFER statements.

EOT
See the OFF EOT and ON EOT statements.

212 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ERRDS

This function returns an INTEGER representing the device selector of the I/O resource
involved in the most recent I/O error.

Example Statements
IF ERRDS=701 THEN GOSUB Printer_fault
IF ERRN=163 THEN Missing=ERRDS

Semantics
The device selector will include a primary address if the interface addressed allows it
(Le. HP-IB). If the resource is a file, the device selector of the drive containing the file
is returned. If the resource is not a device, 0 is returned. If no I/O error has occured in
a running program since power-up, SCRATCH A, or pre-run, 0 is returned.

If an error occurs in a TRANSFER statement without WAIT, the error number is
recorded in the assignment table associated with the I/O path name assigned to the
non-buffer end of the transfer instead of being reported immediately. It is not reported
until the next reference to the I/O path name, and ERRDS will not be updated until
this time.

Keyword Dictionary 213

ERRL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This function returns a value of 1 if the most recent error occurred in the specified line;
otherwise, a value of 0 is returned.

Item Description Range

line number integer constant 1 thru 32766

line label name of a program line any valid name

Example Statements
IF ERRL(220) THEN Parse_error
IF NOT ERRL(Parameters) THEN Other

Semantics
The specified line must be in the same context as the ERRL function, or an error will
occur.

If an error occurs in a TRANSFER statement without WAIT, the error number is
recorded in the assignment table associated with the non-buffer end of the transfer
instead of being reported immediately. I t is not reported until the next reference to
the I/O path name, and ERRL will not be updated until this time. Therefore, ERRL
will actually refer to the line containing the new reference to the I/O path name, not the
line containing the TRANSFER statement that caused the error.

CLEAR ERROR resets ERRL to O.

Data Communications
This function returns 0 for all Data Communications errors.

214 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ERRLN

This function returns the number of the program line on which the most recent error
occurred.

Example Statements
ERRLN
IF ERRLN=240 THEN GOSUB Fix_240

Semantics
If no error has occurred since power-on, pre-run, SCRATCH, SCRATCH A, CLEAR
ERROR, LOAD, or GET, this function will return a value of O.

If an error occurs in a TRANSFER without WAIT, the error number is recorded in the
assignment table associated with the non-buffer end of the TRANSFER instead of being
reported immediately. It is not reported until the next reference to the I/O path name,
and ERRLN will not be updated until this time. Therefore, ERRLN will actually refer
to the line containing the new reference to the I/O path name, not the line containing
the TRANSFER statement that caused the error.

Data Communications
This function returns 0 for all Data Communications errors (which occur while using the
HP 98628 Datacomm Interface).

Keyword Dictionary 215

ERRM$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the text of the error message associated with the most recent
program execution error.

Example Statements
PRINT ERRM$
Em$=ERRM$
ENTER Em$;Error_number.Error_line

Semantics
If no error has occurred since power on, prerun, SCRATCH, SCRATCH A, CLEAR
ERROR, LOAD, or GET, the null string will be returned. The line number and error
number returned in the ERRM$ string are the same as those used by ERRN and ERRL,
which may be surprising when a TRANSFER is in effect. For details on the interaction,
see ERRL and ERRN.

BASIC/UX Specifics
Additional error messages specific to BASIC/UX are returned.

216 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

ERRN

This function returns the number of the most recent program execution error. If no error
has occurred, a value of 0 is returned.

Example Statements
IF ERRN=80 THEN Disc_out
DISP "Error Number";ERRN

Semantics
If an error occurs in a TRANSFER statement without WAIT, the error number is
recorded in the assignment table associated with the non-buffer end of the transfer
instead of being reported immediately. It is not reported until the next reference to
the I/O path name, and ERRN will not be updated until this time.

CLEAR ERROR resets ERRN to O.

BASIC/UX Specifics
ERRN returns additional error values specific to BASIC/UX.

ERROR
See the CLEAR ERROR, CAUSE ERROR, OFF ERROR and ON ERROR statements.

Keyword Dictionary 217

ERROR RETURN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement returns program control to the line following the line which caused the
corresponding GOSUB.

(ERROR RETURN~

Example Statements
ERROR RETURN
IF Dont_retry THEN ERROR RETURN

Semantics
When this statement is executed, it causes program execution to resume at the line
following the line that caused the most recent GOSUB (usually the line whose error
initiated the most recent ON ERROR GOSUB branch). If you want to return to the line
that caused the error, use RETURN.

If the error occurred in an END, SUBEND, or FN END statement, then execution returns
to that statement since there is no following executable line. If the statement is used to
return from a GOSUB then it will behave as a RETURN.

218 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

ERROR SUBEXIT

This statement returns program control to the line following the line which invoked the
subprogram.

(ERROR SUBEXIT ~

Example Statements
ERROR SUBEXIT
IF Dont_retry THEN ERROR SUBEXIT

Semantics
When this statement is executed, it causes program execution to resume at the line
following the line that caused the subprogram to be called (usually the line whose error
initiated the most recent ON ERROR CALL branch). If you want to return to the line
that caused the error, use SUBEXIT.

If the error occurred in an END, SUBEND, or FN END statement, then execution returns
to that statement since there is no following executable line. If this statement is used
from a CALL then it will behave as a SUBEXIT.

EXIT IF

See the LOOP statement.

Keyword Dictionary 219

EXECUTE
Supported On UX
Option Required n/ a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement allows access to the underlying operating system for executing commands
and programs.

SAVE ALPHA OFF J-----..t

Item Description

command

return variable
name

string expression

name of a numeric variable

Example Statements
EXECUTE
EXECUTE; SAVE ALPHA OFF, RETURN Success

Range

any valid name

EXECUTE "cat mydata I sed -e 's/real/Iongreal/' I myfilter >foo"; WAIT OFF
EXECUTE "cat 'Is data*' I sort >sdata" ; SAVE ALPHA OFF, RETURN Stat

220 Keyword Dictionary

Semantics
This statement suspends the operation of BASIC and transfers control to the operating
system. If a command string is specified, then the operating system executes that
command string. If the command string is omitted, then control is passed to the
command specified in the user's SHELL environment variable (this is usually a shell). If
the user has no SHELL environment variable, then control is passed to a Bourne shell
(lbin/sh).

If the RETURN attribute is specified, then the return status from the command is
returned in the associated variable. The RETURN attrubute is not specified and the
return status is non-zero, then an error is generated. The return status consists of 16
bits of information defined as:

15 14 13 12 11 10 9 876 5 4 321

I return code terminating signal

where:

terminating signal is the signal causing process termination

indicates whether a core dump resulted cd

o

return code is the process exit code if the terminating signal field is o.

Note that when a command is specified, a /bin/sh is used to control the execution of the
command. This shell translates certain return codes from the command. Specifically,
return codes indicating a signal has killed the process returns as Ox8000+0xl00*signal
number, rather than the expected signal number. Thus a distinction cannot be made
between a process terminated by SIGTERM and one which exited with return code
Ox8f, since both would be received as ox8fOO.

If a simple command is executed (i.e., a single command and no pipes), then there is
a workaround to this problem. The SHELL command exec can be inserted before the
actual command to indicate that the shell should exec the command rather than forking
a new process for it. The result of this is that without the shell around to translate
the return code, the expected return code is received. For example, consider a "ps -ef"
command. The statement:

EXECUTE "ps -ef"; WAIT OFF.RETURN A

Keyword Dictionary 221

would set A to Ox8fOO if terminated by SIGKILL. IF we wanted the return code to be
the same as the process actually returned (without shell translation)l we would use:

EXECUTE "exec ps -ef"; WAIT OFF,RETURN A

which sets A to OxOf when terminated by SIGTERM. Note also that the most significant
bit of the return status is weighted as -327681 thus the status is negative when this bit
is set.

When running within a window system1 the command is executed in the window
which started BASIC. Note that this is not the standard BASIC window, as BASIC
automatically spawns a new window for itself. All input and output from the process
takes place in this original window. BASIC spawns a new process from which to execute
the command. During this time1 the BASIC process waits for the command to complete.
A new runlight state "Execute11 indicates when BASIC is waiting for a system command
to complete. BASIC continues to accept keys and echo them 1 but no keyboard commands
are executed until the system call completes. The "Reset" key aborts the system call and
returns BASIC to the idle state. Note that this kills the partially completed command1
and all of its subprocesses.

When this command is executed outside of a window system1 BASIC first clears the
screen and then spawns a new process to execute the command. At this point BASIC
waits for the command to complete. BASIC relinquishes control of the keyboard so the
user1s command may access it. To return to BASIC the user must either wait for the
process to complete1 or kill it. To kill the process the user must use either SIGTERM or
SIGKILL, or possibly "exit11 for a shell. When the user process completes, BASIC first
prompts the user before resuming. The prompt "PRESS ANY KEY TO CONTINUE:
" appears at the bottom of the screen. This allows the user time to read any output
from the command before BASIC clears the screen. Any transmitted key may be used
to respond to the prompt. The cursor and paging keys are not transmitted1 and may be
used to view text that has scrolled off the screen. After receiving the response1 BASIC
continues. It first clears the screen of the output from the command 1 and then repaints
the alpha screen.

The WAIT OFF attribute disables the prompting after completion of the command. In
this case BASIC immediately resumes operation. This attribute only affects operation
outside a window system. If a command is not specified in the EXECUTE statement 1

then BASIC does not prompt you before resumming control. It will continue as soon as
the shell is exited.

222 Keyword Dictionary

The SAVE ALPHA OFF attribute only affects operation outside a window system. In
this case, the screen is not cleared before executing the command, and it is not cleared
and the alpha not repainted upon returning to BASIC. This option thus allows any
graphics information to be saved. It should generally be used only when the command
does not produce output to the CRT. Otherwise the commands output can cause scrolling
of the alpha and graphics in an undesirable way. If the command does produce output,
it should be redirected to a file, or discarded in /dev /null as follows:

EXECUTE IIrmbclean >/dev/null 2>&111; SAVE ALPHA OFF

The string "2>&1" causes the standard error output to also be discarded. Note that the
WAIT prompting also writes text to the screen (and possibly cause scrolling). Thus this
attribute should in general be used with the WAIT OFF attribute.

Keyword Dictionary 223

EXOR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This operator returns a 1 or a 0 based on the logical exclusive-or of its arguments.

Example Statements
Ok=First_pass EXOR Old_data
IF A EXOR Flag THEN Exit

Semantics
A non-zero value (positive or negative) is treated as a logical 1; only a zero is treated as
a logical o.

The EXOR function is summarized in this table.

A B A EXOR B

a a a
a 1 1

1 a 1

1 1 a

224 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

EXP

This function raises e to the power of the argument. With this system,
Napierian e ~ 2.71828182845905.

Item Description/Default

argument numeric expression

Examples Statements
Y=EXP(-X-2/2)
PRINT lie to the ";Z;"=";EXP(Z)

Semantics

Range
Restrictions

-708.396 418532264
thru

+709.7827128933838
for INTEGER and REAL
arguments; see "Range
Restriction Specifics"
for COMPLEX arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the EXP of a COMPLEX value, the COMPLEX binary must be loaded.

Keyword Dictionary 225

Range Restriction Specifics
The formula used to compute the EXP of a COMPLEX argument is:

where Real_part is the real part of the COMPLEX argument and Imag_part is the
imaginary part of the COMPLEX argument. Some values of a COMPLEX argument
may cause errors in this computation. For example,

EXP(CMPLX(710.0»

will cause error 22 due to the EXP (Real_part) computation.

Note that any COMPLEX function whose definition includes a sine or cosine function
will be evaluated in the radian mode regardless of the current angle mode (i.e. RAD or
DEG).

EXPANDED
See the DUMP DEVICE IS statement.

FILL

See the IPLOT, PLOT, POLYGON, RECTANGLE, RPLOT, and SYMBOL statements.

226 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
Edit and PDEV

Yes
No
No

FIND

This command allows you to find a character sequence while editing a program.

Item

text

beginning line
number

beginning line
label

Description

literal

integer constant identifying program line

name of a program line

ending line num- integer constant identifying program line
ber

ending line label name of a program line

Example Statements
FIND"SUB Print"
FIND"Cost=" IN 250.Labe11
FIND"Interval" IN 1550

Range

1 to 32766

any valid name

1 to 32766

any valid name

Keyword Dictionary 227

Semantics
This command causes a search to be made through the program currently in memory.
It compares the specified text to an internal "listing" of the program. Therefore, line
numbers, keywords, variables, and constants can be found.

If an occurrence of the specified text is found, the line containing it is displayed with the
cursor under the first character of that occurrence. The line can be modified or deleted
if desired. If I ENTER I, I Return I or the delete line key is pressed, the search resumes with
the next character. Alternately, the search is resumed without modifying the program
when I CONTINUE I is pressed. Note that overlapping occurrences will not be detected; e.g.,
if you were looking for "issi", only one occurrence would be found in "Mississippi".

If the Beginning Line Number is given, the search commences at that line number. If the
specified line number doesn't exist, the next line that does exist is used. If the Beginning
Line Number is not specified, then the search begins at the line currently being edited;
or, (if you're not in edit mode), with the first line of the program. If a specified label
doesn't exist, an error occurs.

The search continues through the last character of the Ending Line; or (if that was not
specified) the end of the program. If you specify an Ending Line Number that does not
exist, the highest numbered line which occurs before that line number is used.

If there were no occurrences found, the cursor is left at the end of the first line searched.
If one or more occurrences were found, the cursor is left at the end of the line containing
the last occurrence.

A FIND command is cancelled by entering a line after having changed its line number.
Other keys which will cancel a FIND are I EXECUTE I, I CLR I/O I, I Break I, W, [!], or II NS LN I.
Any of the keys which cancel EDIT mode will also cancel a FIND.

FIND is not allowed while a program is running; however, it may be executed while a
program is paused. The program is continuable if it has not been altered by pressing
I ENTER I, I Return I, I EXECUTE I or I DEL LN I.

While in the FIND mode, keyboard execution is only possible with the I EXECUTE I key.
Using I ENTER I or I Return I causes an error.

228 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

FN

This keyword transfers program execution to the specified user-defined function and may
pass items to the function. The value returned by the function is used in place of the
function call when evaluating the statement containing the function call.

pass parameters:

Passed by Reference

Passed by Value

string expressions containing monadic
operators. dyadic operators, or funct ions

string expressions containing monadic
operators, dyadic operators, or funct ions

Keyword Dictionary 229

Item Description Range

function name

I/O path name

name of a user-defined function any valid name

name assigned to a device, devices, or mass any valid name
storage file (see ASSIGN)

variable name name of a numeric or string variable any valid name

substring string expression containing substring nota- (see Glossary)
tion

literal string constant composed of characters from
the keyboard, including those generated us
ing the ANY CHAR key

numeric constant numeric quantity expressed using numerals,
and optionally a sign, decimal point, or ex
ponent notation

Example Statements
PRINT X;FNChange(X)
Final$=FNTrim$(First$)
Result=FNPround(Item,Power)

Semantics
A user-defined function may be invoked as part of a stored program line or as part of a
statement executed from the keyboard. If the function name is typed and then I EXECUTE I,
I ENTER 1 or I Return 1 is pressed, the value returned by the function is displayed. The dollar
sign suffix indicates that the returned value will be a string. User-defined functions are
created with the DEF FN statement.

The pass parameters must be of the same type (numeric or string) as the corresponding
parameters in the DEF FN statement. Numeric values passed by value are converted
to the numeric type (REAL, INTEGER, or COMPLEX) of the corresponding formal
parameter. Variables passed by reference must match the type of the corresponding
parameter in the DEF FN statement exactly. An entire array may be passed by reference
by using the asterisk specifier.

Invoking a user-defined function changes the program context. The functions may be
invoked recursively.

If there is more than one user-defined function with the same name, the lowest numbered
one is invoked by FN.

230 Keyword Dictionary

FNEND

See the DEF FN statement.

Keyword Dictionary 231

FOR ... NEXT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This construct defines a loop which is repeated until the loop counter passes a specific
value. The step size may be positive or negative.

loop
counter

Item

loop counter

Description

name of a numeric variable

initial value numeric expression

final value numeric expression

step size numeric expression; Default = 1

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con
tain properly nested construct (s).

Example Program Segments
100 FOR 1=4 TO 0 STEP -.1
110 PRINT I;SQR(I)
120 NEXT I

1220 INTEGER Point
1230 FOR Point=l TO LEN(A$)
1240 CALL Convert(A$[Point;l])
1250 NEXT Point

232 Keyword Dictionary

Range

any valid name

Semantics
The loop counter is set equal to the initial value when the loop is entered. Each time
the corresponding NEXT statement is encountered, the step size (which defaults to 1)
is added to the loop counter, and the new value is tested against the final value. If
the final value has not been passed, the loop is executed again, beginning with the line
immediately following the FOR statement. If the final value has been passed, program
execution continues at the line following the NEXT statement. Note that the loop counter
is not equal to the specified final value when the loop is exited.

The loop counter is also tested against the final value as soon as the values are assigned
when the loop is first entered. If the loop counter has already passed the final value in
the direction the step would be going, the loop is not executed at all. The loop may be
exited arbitrarily (such as with a GOTO), in which case the loop counter has whatever
value it had obtained at the time the loop was exited.

The initial, final and step size values are calculated when the loop is entered and are used
while the loop is repeating. If a variable or expression is used for any of these values, its
value may be changed after entering the loop without affecting how many times the loop
is repeated. However, changing the value of the loop counter itself can affect how many
times the loop is repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or
step size values. The previous value of the loop counter is not changed until after the
initial, final, and step size values are calculated.

If the step value evaluates to 0, the loop repeats infinitely and no error is given.

Nesting Constructs Properly
Each FOR statement is allowed one and only one matching NEXT statement. The NEXT
statement must be in the same context as the FOR statement. FOR ... NEXT loops may
be nested, and may be contained in other constructs, as long as the loops and constructs
are properly nested and do not improperly overlap.

FORMAT

See the ASSIGN statement.

Keyword Dictionary 233

FRACT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS1UX
None

Yes
Yes
Yes

This function returns a number greater than or equal to zero and less than 11 representing
the "fractional parel of the value of its argument. For all Xl X=lNT(X)+FRACT(X).

Example Statements
PRINT FRACT(X)
Right_digits=FRACT(All_digits)

Semantics
This function does not allow COMPLEX arguments.

234 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

FRAME

This statement draws a frame around the current clipping area using the current pen
number and line type. After drawing the frame, the current pen position coincides with
the lower left corner of the frame, and the pen is up.

FRENCH

See the LEXICAL ORDER IS statement.

Keyword Dictionary 235

Notes

236 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

GCLEAR

This statement clears the graphics display or sends a command to an external plotter to
advance the paper. With bit-mapped displays, the memory is cleared and the alpha is
restored.

(GCLEAR)-.i

Multi-Plane Bit-Mapped Displays
The GCLEAR statement clears all planes designated as graphics planes with the current
graphics write-mask. This includes any planes which are both alpha and graphics planes.
See the "Multi-Plane Bit-Mapped Displays" section in the Graphics Techniques manual
for information on enabling and displaying specific frame buffer planes.

Note

If any planes in the frame buffer are enabled by both the alpha mask
and the graphics mask, the common planes, as well as the graphics
planes, will be cleared. Then, the alpha data will be redisplayed
in the common planes. This may cause text which was previously
hidden or over-written by graphics to reappear.

GERMAN
See the LEXICAL ORDER IS statement.

Keyword Dictionary 237

GESCAPE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement is used for communicating device-dependent information.

Item Description Range

WS,UX
GRAPHX

Yes
Yes
Yes

device selector numeric expression, rounded to an integer

operation selector numeric expression, rounded to an integer

(see Glossary)

(device dependent,
see Semantics)

parameter array name of array which has a specific rank any valid name
name and size, containing parameters necessary for

executing request

return array name of array which has a specific rank and any valid name
name size into which the returned parameters are

placed

Example Statements
GESCAPE 28,5
GESCAPE 3,2;Color_map(*)
GESCAPE 604,10
GESCAPE 28,6;Masks(*)

238 Keyword Dictionary

(Selects alternate drawing mode)

~
Get the values in the color map)
BASIC/UX under X Windows only)
Get graphics write-mask and display-mask values)

Semantics
The parameter array and return array are for sending data to the device and getting
data from the device.

Color Map Information
The number of entries in the color map can be determined with a GESCAPE operation
seledor 1. The return array must be one-dimensional with at least one element. If this
operation selector is used on a system with a monochrome display (or an HP 98627 A),
error 733 will be reported.

The RGB values of the pens in the the color map can be obtained through GESCAPE
operation selector 2. The return array must be a two-dimensional three-column array
with at least one row. The values returned are in the range of 0 to 1 and are multiples
of 1/15 (one fifteenth) for the Model 236C and multiples of 1/255 (one two-hundred fifty
fifth) for other color displays. The first row in the array always contains the values for
PEN 0; if you want PEN 12, you must have at least thirteen rows in the array. Array
filling occurs until either the array or the color map is exhausted.

The color map affects the entire display. Thus in a windowing environment, the color
map is the same for all windows.

Determining Hard Clip Limits and GSTORE Array Size
The hard clip limits of the current plotting device can be obtained through executing
a GESCAPE with operation selector 3. The return array must be a one-dimensional
INTEGER array with at least four elements. Values will be returned in the smallest
resolvable units for that device. For a CRT, units are pixels.

Operation selector 3 also returns information useful for GSTORE and GLOAD files. The
fifth and sixth elements returned give the two array dimensions to use (in conjunction
with the ALLOCATE statement) to GSTORE the contents of the specified display. For
example, on a HP 98544A display with all planes enabled for graphics, the dimensions
returned would be 256 and 400-256 words for each of the 400 lines. That is, 1024 pixels
wide, and four pixels' worth of information in each 16-bit word. This allows the user to
programmatically determine the size of the integer array to allocate for storing an image
and thus avoid machine-dependent code.

In BASIC/UX, all displays are stored as 2 pixels/16-bit word (except for monochrome,
which are 16 pixels/16-bit word).

Keyword Dictionary 239

Drawing Mode Dominance
The normal drawing mode and the alternate drawing mode can be entered by using
GESCAPE operation selectors 4 and 5, respectively. Drawing in normal mode "covers
up" any previously drawn image. Drawing in alternate mode with positive pen numbers
causes the color-map entry number at each pixel to be inclusively-ORed with the pen
value currently being drawn with. Drawing in alternate mode with negative pen numbers
causes the color-map entry number at each pixel to be exclusively-ORed with the pen
value currently being drawn with.

Drawing mode dominance affects the entire display. Thus in a windowing environment,
all windows have the same drawing mode.

Multi-Plane Bit-Mapped Displays
The Write Enable and Display-Enable Masks
If you have a multi-plane frame buffer and display, there are two user-definable masks
which control certain aspects of graphical operations. They are:

• The write-enable mask. This mask is an integer whose bits, from the least-significant
bit end, designate those frame buffer planes which will be affected by graphics
operations. Bit values of 1 denote enabled planes (planes to be written to), and
bit values of 0 denote disabled planes (planes which will not be written to). For
example, if you have a four-plane frame buffer, and you set the write-enable mask
to 3 (binary 0011), only values in frame buffer planes 1 and 2 will be modified by
graphical operations .

• The display-enable mask. This mask is an integer whose bits, from the least
significant bit end, designate those frame buffer planes which are to be displayed.
These bits mayor may not indicate the same planes as the write-enable mask
indicates. That is, you can write to some planes, and display others. Bit values of
1 denote planes which are to be displayed, and bit values of 0 denote planes which
are not to be displayed. For example, if you have a four-plane frame buffer, and you
set the display-enable mask to 5 (binary 0101), only values in frame buffer planes
1 and 3 will be displayed.

NOTE

Both the write-enable mask and the display-enable mask are
initialized to all planes that exist in the machine at power up and
SCRATCH A time.

240 Keyword Dictionary

Operation selector 6, which works with all CRTs, allows the user to obtain the current
graphics write-enable and display-enable values. The first element of the return array
contains the write-enable mask; the second represents the display-enable mask. The
return array must be a one-dimensional integer array with at least one element. Array
filling occurs until either the array or the masks are exhausted.

Operation selector 7, which works only with multi-plane Series 300 CRTs, allows the
user to set the graphics \vrite-enable and display-enable values. The first element of the
parameter array contains the write-enable mask; the second represents the display-enable
mask. Again, the parameter array must be a one-dimensional integer array with one or
more elements. If only one element exists, the write-enable mask is set as specified and
the display-enable mask remains unchanged.

Legal values for both masks are:

• 0 through 15 for 4-plane systems,

• 0 through 63 for 6-plane systems,

• 0 through 255 for 8-plane systems.

The write- and display-enable masks affect the entire display. In a windowing environ
ment, all windows are affected and have the same display mask values. The write-mask
cannot be changed in X Windows, so all planes are always turned on.

Graphics Buffering (BASIC/UX Only)
In order to improve graphics performance, graphics buffering may be turned on with
operation selector 10. Operation selector 11 will turn buffering off. This has the affect
of storing graphics commands in a buffer until it is full, and then sending all of the
commands in one output sequence. Because the buffer must fill up before it is sent
to the display, it is possible that the output of the last few graphics commands which
were executed do not appear on the display. It is advisable to flush the buffer (with
operation selcector 13) after each "picture" has been drawn to ensure that all the graphics
commands have been sent to the display. It is NOT advisable to flush the buffer after
every command, since this is the same as turning off buffering. It is also not advisable to
turn buffering on while in interactive mode, since the output from any graphics commands
will not appear on the display until the graphics buffer is full, or the graphics buffer is
explicitly flushed. Operation selector 12 allows you to obtain the current buffering mode.
The return array must be a one-dimensional integer array with at least one element.

The default graphics buffering mode may be specified in the configuration file (rmbrc).
BASIC/UX does not support graphics buffering for HPGL plotters.

Keyword Dictionary 241

Absolute Locator Hard Clip Limits
Operation selector 20 sets the hardclip limits for absolute HP-HIL locators. That is, it
simulates, in software, the changing of the hardclip limits. These limits must be inside
the largest X and largest Y, taken individually, for all absolute locators on the HP-HIL
bus.

Operation selector 21 returns the current hardclip limits for absolute HP-HIL locators.
These are the values used in GRAPHICS INPUT IS scaling. Operation selector 21 is
different than operation selector 22 in that 22 always returns the values "hardwired" into
the device(s) on the HP-HIL bus, whereas the values returned by operation selector 21
may have come from operation selector 20 or from the device on the bus.

Operation selector 22 returns the hardware-defined hardclip limits of all absolute locators
on the HP-HIL link.

For the three GESCAPE selectors above-20, 21, and 22-the parameter or return array
must be a one dimensional integer array. Only the first two entries will be used for 20
and 21: X2 and Y2. No space is taken for the Xl and Y1 values, since the coordinates
of PI (the lower, left-hand corner) cannot be changed on HP-HIL absolute locators; Xl
and Y1 will always be zeroes. For operation selector 22, entries will be made until the
array is full or all devices on the bus have been covered. If more array entries exist after
the devices are all represented, a -1 will be put in what would be the X coordinate entry
of the next device to indicate the end of valid data. (Hardclip limits for these devices
are limited to the range 0 through 32767.)

Unlike other GESCAPES, selectors 20 through 22 do not require the device at the
specified select code to be currently active. Indeed. to be effective. GESCAPE 2.20, which
sets hard clip limits, must be done before doing the GRAPHICS INPUT IS KBD. "TABLET"

statement. Operations 20 and 21 will give "DEVICE NOT PRESENT" errors if no
tablet (or HP-HIL interface) exists, but 22 will return -1 for its first entry in that case.
All will give a configuration error if the KBD binary is not present.

242 Keyword Dictionary

Functions Available Through GESCAPE

Operation
Selector Return or Parameter Array

1 (R) A{O): Number of entries in the color map

2 (R) A{O,O): Pen 0 red color map value

3

4

5

6

7

10

11

12

13

20

21

22

A{0,1): Pen 0 green color map value
A(0,2): Pen 0 blue color map value Coior-Mapped

Graphics Device
A{15,0): Pen 15 red color map value
A{15,1): Pen 15 green color map value
A{15,2): Pen 15 blue color map value

A (1): Y minimum hard clip value All Graphics Devices
(R) A (O): X minimum hard clip value I

A (2): X maximum hard clip value
A (3): Y maximum hard clip value
A(4): Rows required for GSTORE integer array }

All CRTs
A(5): Columns required for GSTORE integer array

Set normal drawing mode }
. All Color CRTs Set alternate drawmg mode

(R) A{O): Current graphics write-tmable mask value } All CRTs
A(1): Current graphics display-enable mask value

(P) A{O): Graphics write-enable mask value to be set } Series 300
A{ 1): Graphics display-enable mask value to be set Multi-Plane

Devices
Turn graphics buffering on.

Turn graphics buffering off.

(R) A{O): Current buffering mode (O = OFF; 1 = ON)

Flush graphics buffer.

(P) A{O): X maximum hard clip value to be set
A(1): Y maximum hard clip value to be set

(R) A{O): Current X maximum hard clip value
A(1): Current Y maximum hard clip value

(R) A{O): X maximum hard clip value for first absolute locator
A(1): Y maximum hard clip value for first absolute locator
A(2): X maximum hard clip value for second absolute locator
A(3): Y maximum hard clip value for second absolute locator

A{n): A value of -1 indicates that there are LO more absolute
locators

HP-HIL
Locators

Keyword Dictionary 243

GET
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement reads the specified ASCII or HP-UX file and attempts to store the strings
into memory as program lines.

literal form of file specifier:

HFS or SRM files only

Item Description

file specifier string expression

append line num- integer constant identifying a program line
ber

append line label name of a program line

Range

(see drawing)

1 thru 32766

any valid name

run line number integer constant identifying a program line 1 thru 32 766

run line label name of a program line any valid name

directory path literal (see MASS STORAGE IS)

file name literal depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal (see MASS STORAGE IS)

244 Keyword Dictionary

Example Statements
GET II George II
GET Next_prog$.180.10
GET IFileName:REMOTE"
GET "/Dirl/Dir2/Dir3/File<SRM_READ_pass)1

Semantics
The file must be either an ASCII or an HP-UX file (HP-UX files must contain text
written in FORMAT ON representation).

When GET is executed, the first line in the specified file is read and checked for a valid
line number. If no valid line number is found, the current program stays in memory and
error 68 is reported. If the GET was attempted from a running program, the program
remains active and the error 68 can be trapped with ON ERROR. If there is no ON
ERROR in effect, the program pauses.

If there is a valid line number at the start of the first line in the file, the GET operation
proceeds. Values for all variables except those in COM are lost and the current program
is deleted from the append line to the end. If no append line is specified, the entire
current program is deleted.

As the file is brought in, each line is checked for proper syntax. The syntax checking
during GET is the same as if the lines were being typed from the keyboard, and any
errors that would occur during keyboard entry will also occur during GET. Any lines
which contain syntax errors are listed on the PRINTER IS device. Those erroneous lines
which have valid line numbers are converted into comments and syntax is checked again.
If the GET encounters a line longer than 256 characters, the operation is terminated and
error 128 is reported. If any line caused any other syntax error, an error 68 is reported
at the completion of the GET operation. This error is not trappable because the old
program was deleted and the new one is not running yet.

Any line in the main program or any subprogram may be used for the append location.
If an append line number is specified, the lines from the file are renumbered by adding an
offset to their line numbers. This offset is the difference between the append line number
and the first line number in the file. This operation preserves the line-number intervals
that exist in the file. When a line containing an error (or an invalid line number caused
by renumbering) is printed on the PRINTER IS device, the line number shown is the
one the line had in the file. Any programmed references to line numbers that would be
renumbered by REN are also renumbered by GET. If no append line is specified, the
lines from the file are entered without renumbering.

Keyword Dictionary 245

If a successful GET is executed from a program, execution resumes automatically after
a pre run initialization (see RUN). If no run line is specified, execution resumes at the
lowest-numbered line in the program. If a run line is specified, execution resumes at the
specified line. The specified run line must be a line in the main program segment.

If a successful GET is executed from the keyboard and a run line is specified, a prerun is
performed and program execution begins automatically at the specified line. If GET is
executed from the keyboard with no run line specified, RUN must be executed to start
the program. GET is not allowed from the keyboard while a program is running.

HFS Permissions
In order to GET a file on an HFS volume, you need to have R (read) permission on the
file, as well as X (search) permission on the immediately superior directory and all other
superior directories.

GET with SRM Files
In order to GET a file on an SRM volume, you need to have READ capability on the file
and its immediately superior directory, as well as READ capabilities on all other superior
di.rectories. If this capability is not public or if a password protecting this capability is
not given, an error is reported.

You may use GET with any ASCII or HP-UX file whose data is in the format of a
BASIC program (that is, having numbered lines). Although you may also use GET
with ASCII files created on non-Series 200/300 SRM workstations (HP 9835, HP 9845,
or Model 520), any line that is not valid BASIC syntax for Series 200/300 computers is
stored as a commented (!) program line.

When used on SRM. GET is executed in shared mode. which means that several users
can get one file at the same time. Attempts to get a locked file (see LOCK) result in Error
453. Additionally, you cannot get a file while it is being saved. The SAVE and RE-SAVE
operations open the file in exclusive mode (shown as LOCK in a CAT listing) and enforce
that status until the SAVE or RE-SAVE is complete. While in exclusive mode, the file
is accessible only to the SRM workstation executing the SAVE or RE-SAVE.

246 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

GINIT

This statement establishes a set of default values for variables affecting graphics opera
tions.

Semantics
The following operations are performed when GINIT is executed:

AREA PEN 1
CLIP OFF
CSIZE 5,0.6

LDIR °
LINE TYPE 1,5
LORG 1
MOVE 0,0

PDIR °
PEN 1

PIVOT °
GESCAPE CRT,4 (PEN MODE NORMAL)
VIEWPORT 0,RATIO*100,0,100
WINDOW 0,RATIO*100,0,100

In addition, an active plotter or graphics input device is terminated. If the plotter is a
file, the file is closed.

Keyword Dictionary 247

After a GINIT and before a PLOTTER IS statement is executed, the following statements
select a default plotter.

AXES IDRAW RECTANGLE

DRAW IMOVE RPLOT

DUMP GRAPHICS IPLOT SET ECHO

FRAME LABEL SET PEN

GCLEAR MOVE SYMBOL

GLOAD PLOT

GRID POLYGON

GSTORE POLYLINE

248 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

GLOAD

This statement loads the contents of an INTEGER array into a frame buffer (the converse
of GSTORE).

Item

destination
device selector

Description

destination
device selector

numeric expression, rounded to an integer;
Default = last CRT plotter

integer array
name

name of an INTEGER array.

Example Statements
GLOAD Picture(*)
IF Flag THEN GLOAD Array(*)
GLOAD CRT,Screen(*)
GLOAD 28,Screen(*)

Semantics

Range

(see Glossary)

any valid name

A frame buffer is an area of memory which contains the digital representation of a raster
image. A monochromatic image has a frame buffer one bit deep. The Model 236 color
display has a four-bit frame buffer which allows sixteen colors. The HP 98627 A external
color interface has a three-bit frame buffer which allows eight colors. The HP 98543A
and HP 98545A display boards have 4 planes, allowing 16 colors, and the HP 98700 has
4 or 8 planes, allowing 16 or 256 colors, respectively. The HP 98547 A and HP 98549A
display boards have 6 planes, allowing 64 colors. The HP 98550A and HP 98720 display
boards have 8 planes, allowing 256 colors.

If a destination device is not explicitly specified, the array's contents are loaded into the
current PLOTTER IS device (if it is a frame buffer) or into the last frame buffer device
specified by a PLOTTER IS statement.

Keyword Dictionary 249

GLOAD operates on active plotting devices. A plotting device is active when it is
specified in a PLOTTER IS statement. In addition, the internal CRT is also activated by
any of the following operations: any pen movement; GCLEAR; GLOAD to the current
default destination; GSTORE from the current default source; DUMP GRAPHICS from
the current default source; and SET PEN. Plotters are de-activated by power-up, GINIT,
SCRATCH A or I RESET I.

The array's contents are loaded into the specified frame buffer if a currently active frame
buffer (CRT) is explicitly specified as the destination. However, if the specified frame
buffer is not activated, error 708 occurs.

The GLOAD is not performed if a non-frame buffer destination which is the current
PLOTTER IS device is explicitly specified. However, if a non-frame buffer destination
which is not the current PLOTTER IS device is specified, error 708 occurs.

Pixel Representation
A pixel is a picture element. Each pixel on a monochromatic display is represented by one
bit in memory; a binary 1 represents a pixel that is on, while a binary 0 represents a pixel
which is off. Each INTEGER array element represents 16 pixels on a monochromatic
display.

Pixels on color displays have different representation. The Model 236 color display
requires four bits to represent each pixel. The optional color monitor (HP 98627) requires
three bits to represent each pixel.

The number of pixels on the horizontal and vertical axes and the number of INTEGER
array elements necessary to represent the entire display is shown in the following table
for each model and display.

250 Keyword Dictionary

BASIC/WS BASIC/UX
Horizontal Vertical INTEGER INTEGER

Model Size Size Elements Elements

l-plane systems:

216 (HP 9816) 400 300 7500 n/a
(monochromatic)

220 (HP 9920)
(monochromatic)

(HP 98204A) 400 300 7500 n/a

(HP 98204B) 512 390 12480 n/a

226 (HP 9826) 400 300 7500 n/a
(monochromatic)

236 (HP 9836) 512 390 12480 n/a
(monochromatic)

98546 512 390 12480 12480
(monochromatic)

237 (HP 9837) 1024 768 49152 49152
(bit-mapped,
monochromatic)

98542 1024 400 25600 12800
(medium-resolution
bit-mapped,
monochromatic)

98544 1024 768 49152 49152
(high-resolu tion,
bit-mapped,
monochromatic)

98548 1280 1024 163840 81920
(high-resolution,
bit-mapped,
monochromatic)

3-plane systems:

98627A 512 512 49152 n/a
(external color)

Keyword Dictionary 251

BASIC/WS BASIC/UX
Horizontal Vertical INTEGER INTEGER

Model Size Size Elements Elements

4-plane systems:

236 (HP 9836C) 512 390 49920 nla
(color)

98543 1024 400 102400 102400
(medium-resolution,
bit-mapped,
color)

98545 1024 768 196608 393216
(high-resolution,
bit-mapped,
color)

6-plane systems:

98547 1024 768 393216 393216
(high-resolution,
bit-mapped,
color)

98549 1024 768 393216 393216
(high-resolution,
bit-mapped,
color)

8-plane systems:

98700 1024 768 393216 393216
(high-resolution,
bit-mapped,
color)

98550A 1280 1024 655360 655360
(high-resolution,
bit-mapped,
color)

98720A 1280 1024 nla 655360

The declared array size can be larger or smaller than the graphics memory size; the
operation stops when either graphics memory or the array is exhausted.

252 Keyword Dictionary

Since anyone dimension of an array cannot be more than 32767 elements, for an array
to be large enough to hold the entire graphics representation, the array may have to be
multi-dimensional. For example,

INTEGER Screen(1:390.1:64.1:2) for Model 236 Color
INTEGER Screen(1:512.1:32.1:3) for HP 98627A Color

Storage Format
The pixel representation on a monochromatic display is stored sequentially in the array
using GSTORE.

The pixel representation for color displays is stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of I6-bit words are used, regardless of the
array structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2
P5 I P1 I P6 I P2 P7 I P3 I P8 I P4

HP 98627 A color display: Each word contains the blue, green or red representation for
16 pixels. P in the diagram is the I-bit color representation of the pixel.

Word 1 P1 P2 P3 P4 I P161 BLUE

Word 2 P1 P2 P3 P4 I P161 GREEN

Word 3 P1 P2 P3 P4 I P161 RED

Word 4 I P17 I P18 I P19 I P20 I I P321 BLUE

Keyword Dictionary 253

Storage Format on Multi-Plane Bit-Mapped Displays
GLOAD loads information from an array into the graphics planes in the frame buffer.
"Graphics planes" means those planes which have been write-enabled for graphics
operations via power up, SCRATCH A, or GESCAPE. You can change the graphics
write mask with GESCAPE.

In the following paragraphs, reference is made to the "highest graphics plane." The
"highest graphics plane" is that plane in the frame buffer whose corresponding bit in the
graphics write-enable mask has the highest number. For example, the highest graphics
plane with a write mask of binary 1000 is 4. Also note that although bits in a byte are
numbered from 0 through 7 (right to left), planes in the frame buffer are numbered 1
through 8.

If the highest graphics plane currently enabled is 1 (or none), act like there is 1. The
storage format is:

Word 1 PO P1 P2 P3 I P15\

Word 2 I P16 I P17 I P18 I P19 I I P31 I

If the highest graphics plane currently enabled is between 2 and 4, inclusive, act like
there are 4. The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8, inclusive, act like
there are 8. The storage format is:

Word 1 I PO I PO I PO I PO I PO I PO I PO I PO I P1 I P1 I P1 I P1 I P1 I P1 I P1 I P1 I

~~21~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1

Images should be GLOADed on the same display and with the same write-enable mask
that was used when the image was GSTOREd. If these guidelines are not observed, the
GLOADed image may bear no resemblance to the GSTOREd image.

To determine the number of elements needed in an integer array to hold an image, use
the GESCAPE operation selector 3.

254 Keyword Dictionary

When using graphics and alpha write masks, you may prefer not to overlap the masks;
that is, have any planes which are simultaneously indicated by both masks. If planes
enabled for alpha overlap those enabled for graphics, some alpha information will be
stored along with the graphics information.

You can conserve space if you are using fewer than the maximum number of planes. For
example, on a 98700 with eight planes, if pens 0 through 15 only are being used, the
graphics write mask could be set to i5 (binary 00001111) rather than the default of 255
(binary 11111111). In this way, only half the memory would be required to GLOAD the
image. You can change the graphics write mask with GESCAPE.

Non-Square Pixel Displays (BASIC Workstation Only)
With non-square pixel displays, GSTORE stores all pixels (e.g., all 1024x400 pixels),
thus requiring over twice the amount of memory as with a Model 236C. This is to insure
that any image GSTOREd appears exactly the same when GLOADed back into the
frame buffer. Since alpha uses the non-square pixels as separate elements-not as pairs
as in graphics-it is possible to have pixel pairs with different values in each pixel. If
pixel pairs were stored, images with mixed alpha and graphics could appear blurred when
reloaded.

BASIC/UX Specifics
Storage format for all multi-plane bit-mapped displays is byte/pixel, regardless of the
number of planes or value of the graphics write mask. For example:

Storage format for monochrome (I-plane) bit-mapped displays is the same for BA
SIC/WS and BASIC/UX. For example:

Keyword Dictionary 255

GOSUB
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement transfers program execution to the subroutine at the specified line. The
specified line must be in the current context. The current program line is remembered
in anticipation of returning (see RETURN). (Also see the ON ... statements.)

Item Description Range

line label name of a program line any valid name

line number integer constant identifying a program line 1 thru 32 766

Example Statements
GOSUB 120
IF Numbers THEN GOSUB Process

256 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

GOTO

This statement transfers program execution to the specified line. The specified line must
be in the current context. (Also see the ON ... statements.)

Item Description Range

line label

line number

name of a program line any valid name

integer constant identifying a program line 1 thru 32 766

Example Statements
GOTO 550
GOTO Loop_start
IF Full THEN Exit (implied GOTO)

Keyword Dictionary 257

GRAPHICS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement turns the graphics display on or off. This statement has no effect on
thE"' contE"'nts of thE"' graphics memory, it just controls whether it is displayed or not. At
power-on or after SCRATCH A, the graphics display is off. (Also see DUMP.)

Example Statements
GRAPHICS ON
IF Flag THEN GRAPHICS OFF

Semantics
Multi-Plane Bit-Mapped Displays
If you do not understand the concept of write-enable masks or display-enable masks, see
GCLEAR before reading the following paragraphs.

GRAPHICS ON jOFF applies only to the graphics display which also is the alpha display.
For example, suppose your configuration consists of a display which has both alpha and
graphics, and another display which has only graphics. In this case, there would be no
way, with the GRAPHICS statement, to turn graphics on or off on the display which has
graphics exclusively.

258 Keyword Dictionary

With default alpha and graphics write-masks, the GRAPHICS ON and GRAPHICS OFF state
ments have no effect on bit-mapped displays. If designated alpha and graphics write
masks do not overlap, then the statements will enable/disable graphics planes for dis
playing as with non-bit-mapped systems. When the write masks overlap, planes that
are used only for graphics (not alpha) are enabled/disabled. For example, if the alpha
write-enable mask is binary 1110 and the graphics write-enable mask is binary 0011,
GRAPHICS ON and GRAPHICS OFF would only affect plane 1. Plane 2 is not affected because
it is indicated by both the alpha and graphics write-enable masks, and planes 3 and 4 are
not affected because they are not indicated by the graphics write-enable mask.

Note

Mixing ALPHA/GRAPHICS ON/OFF with explicit definition of
the display-enable mask may cause the I ALPHA I and/or I GRAPHICS I
keys to have unexpected results. The reason for this is that explicit
setting of the display mask is, in a manner of speaking, working
"behind the back" of the operating system. Thus, you could turn
off graphics by modifying the display-enable mask, and the internal
variables which keep track of I ALPHA I and I GRAPHICS I key presses
would not-indeed, could not-have been updated. The reason
these variables cannot be updated is that you can set the display
mask to a state in which "alpha on" is only partially true; some
alpha planes are on, and some aren't. The same goes for graphics.

BASIC/UX Specifics
GRAPHICS ON/OFF has no effect in a windowing environment, since the write-masks
are always set to enable all planes.

Keyword Dictionary 259

GRAPHICS INPUT IS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPHX

Yes
Yes
Yes

This statement defines which device is to be used for graphics input III subsequent
DIGITIZE~ SET LOCATOR~ TRACK IS ... ON/OFF, and READ LOCATOR statements.

GRAPHICS INPUT IS

Item Description Range

device selector numeric expression, rounded to an integer (see Glossary)

digitizer specifier string expression (see semantics)

Example Statements
GRAPHICS INPUT IS 706,"HPGL"
GRAPHICS INPUT IS Ds,Hp$
GRAPHICS INPUT IS KBD,"KBD"
GRAPHICS INPUT IS KBD,"TABLET"

Semantics
The specified device is defined to be the graphics input device for subsequent graphics
input statements (DIGITIZE, READ LOCATOR, SET LOCATOR, and TRACK .. .IS
ON). This input device becomes undefined when a power-up, I RESET I, GINIT, or
SCRATCH A is executed. The default input device is KBD, "KBD".

The operating system attempts to use the current VIEWPORT and WINDOW (or
SHOW) parameters for both the current PLOTTER IS device and the specified GRAPH
ICS INPUT IS device, so that the usable areas of the input and output devices correspond
in a I-to-l mapping. If the aspect ratios of the input and output devices are different,
the input device limits are truncated to match the output device's aspect ratio.

260 Keyword Dictionary

If the VIEWPORT statement specifies an area that does not exist on the input device,
error 705 will be reported.

If you specify the keyboard device selector, there are two possibilities for the digitizer
specifier. To specify relative pointing devices (e.g., the cursor keys, knob, or mouse), use
"KBD" or "ARROW KEYS" . For a port path to the Series 500, use the string "ARROW
KEYS". To specify absolute pointing devices (e.g., HP-HIL tablets or the Touchscreen),
use the string "TABLET". "HPGL" must be specified if the device selector is anything
other than the keyboard select code.

When doing a DIGITIZE, the relative pointing devices move the graphics cursor.
Otherwise, in addition to moving the graphics cursor, they perform their normal "alpha"
functions: scrolling text on the screen, and moving the alpha cursor within the keyboard
entry line.

HP-HIL Absolute Locators
This statement can specify HP-HIL absolute locators, which include graphics tablets as
well as the Touchscreen. As with relative locators, all devices of this type are lumped
together and processed as if they were a single device. This could lead to interference
if two or more of these devices were connected to the HP-HIL bus. The intent is to
support one active absolute locator on the HP-HIL bus, although careful use will allow
more than one. In particular, the GESCAPE values of 20, 21, and 22 allow use of the HP
HIL Touchscreen on the same bus as a Tablet, provided the stylus is removed from the
Tablet when the Touchscreen is in use.

Absolute Locator Hard Clip Limits
You can set the position of P2-the upper right corner of the digitizing area-on HP-HIL
tablets by using GESCAPE with operation selectors 20 through 22. This is conceptually
similar to setting the P2 point with HPGL commands on HPGL tablets. See GESCAPE for
further information.

Keyword Dictionary 261

BASIC/UX Specifics
When running in X Windows:

• Only the HP-HIL devices recognized by the window system (ie., those which control
the window pointer) can be used for graphics input.

• All HP-HIL devices (including tablets) can be accessed only through the KBD or
ARROW KEYS digitizer specifier. TABLET is not a valid specifier in X Windows.

• Any HP-GL devices specified in a GRAPHICS INPUT IS will be locked to that
window while a statement which accesses the device (e.g., DIGITIZE) is being
executed.

When running on a terminal:

• Only arrow keys can be used to provide input through the KBD select code.

262 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

GRID

This statement draws a full grid pattern. The pen is left at the intersection of the X and
Yaxes.

Keyword Dictionary 263

Item

x tick spacing

Y tick spacing

y axis location

x axis location

x major count

y major count

major tick size

Description

numeric expression in current units;
Default = 0, no ticks

numeric expression in current units:
Default = 0, no ticks

numeric expression specifying the location of
the y axis in x-axis units;
Default =0

numeric expression specifying the location of
the x axis in y-axis units;
Default = 0

Range

(see text)

(see text)

numeric expression, rounded to an integer, 1 thru 32767
specifying the number of tick intervals be-
tween major tick marks;
Default = 1 (every tick is major)

numeric expression, rounded to an integer, 1 thru 32767
specifying the number of tick intervals be-
tween major tick marks;
Default = 1 (every tick is major)

numeric expression in graphic display units;
Default = 2

Example Statements
GRID 10,10,0,0
GRID Xmin,Ymin,Xintercept,Yintercept,5,5

264 Keyword Dictionary

Semantics
Grids are drawn with the current line type and pen number. Major tick marks are drawn
as lines across the entire soft clipping area. A cross tick is drawn at the intersection of
minor tick marks.

The X and Y tick spacing must not generate more than 32 768 grid marks in the clip
area, or error 20 will be generated. Only the grid marks within the current clip area are
drawn.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOlA.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POI A.

LDIR PDIR

Note 4

X

X

Note 2

Keyword Dictionary 265

GSEND
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement is used to send HPGL commands to the current PLOTTER IS device.

~ HPGL command ~
strlng

Item Description

HPGL command string expression
string

Example Statements
IF Hpgl_device THEN GSEND "IP;"

GSEND String$

Semantics

Range

device-dependent

This statement sends a string of characters to the current PLOTTER IS device, which
may be a file or a plotter. The string is to contain Hewlett-Packard Graphics Language
(HPGL) command(s). Note that BASIC does not check the syntax of these HPGL
rommanos.

GSEND is most useful when the PLOTTER IS device is a file (it is not possible to
OUTPUT an HPGL command to the file while it is the PLOTTER IS device).

An error is reported if the current PLOTTER IS device is not an HPGL device or a file.

After GSEND sends the specified string, it will send a carriage return/line feed (as
an EOL sequence). If your device does not recognize a carriage return/line feed as a
terminator for an HPGL command, you must include the correct terminating sequence
(normally a semicolon) as part of the HPGL command string you are sending.

266 Keyword Dictionary

Note that you cannot split HPGL commands over more than one GSEND statement,
because of the carriage return/line feed sequence sent after each GSEND statement.
The following example will not work because it splits the HPGL command over more
than one GSEND statement. (Also, the command is not properly terminated.)

GSEND IIplI

GSEND "F"

The proper way to send this HPGL command is:

GSEND "PF;"

Keyword Dictionary 267

GSTORE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement stores the contents of the frame buffer into an INTEGER array (the
converse of GLOAD).

source
device selector

Item Description Range

source device
selector

numeric expression, rounded to an integer; (see Glossary)
Default = last CRT plotter

integer array
name

name of an INTEGER array

Example Statements
GSTORE Screen(*)
IF Done THEN GSTORE 28.Picture(*)

Semantics

any valid name

A frame buffer is an area of memory which contains the digital representation of a raster
image. A monochromatic image has a frame buffer of one bit deep. The Model 236 color
display has a four-bit frame buffer which allows sixteen colors. The HP 98627 A external
color interface has a three-bit frame buffer which allows eight colors. The HP 98543A
and HP 98545A display boards have 4 planes, allowing 16 colors, and the HP 98700 has
4 or 8 planes, allowing 16 or 256 colors, respectively. The HP 98547 A and HP 98549A
display boards have 6 planes, allowing 64 colors. The HP 98550A and HP 98720 displays
have 8 planes, allowing 256 colors.

If a source device is not explicitly specified, the array's contents are loaded from the
current PLOTTER IS device (if it is a frame buffer) or from the last frame buffer device
specified by a PLOTTER IS statement.

268 Keyword Dictionary

GSTORE operates on active plotting devices. A plotting device is active when it is
specified in a PLOTTER IS statement. In addition, the internal CRT is also activated
by any of the following operations: any pen movement; GCLEAR; GLOAD to the current
default destination; GSTORE from the current default source; DUMP GRAPHICS from
the current default source; and SET PEN. Plotters are de-activated by power-up, GINIT,
SCRATCH A or I RESET I.

The frame buffer's contents are loaded into the specified array if a currently active frame
buffer (CRT) is explicitly specified as the source. However, if the specified frame buffer
is not activated, error 708 occurs.

The GSTORE is not performed if a non-frame buffer source which is the current
PLOTTER IS device is explicitly specified. However, if a non-frame buffer source which
is not the current PLOTTER IS device is specified, error 708 occurs.

Pixel Representation
A pixel is a picture element. Each pixel on a monochromatic display is represented by one
bit in memory; a binary 1 represents a pixel that is on, while a binary 0 represents a pixel
which is off. Each INTEGER array element represents 16 pixels on a monochromatic
display.

Pixels on color displays have different representation. The Model 236 color display
requires four bits to represent each pixel. The optional color monitor (HP 98627) requires
three bits to represent each pixel.

Keyword Dictionary 269

The number of pixels on the horizontal and vertical axes and the number of INTEG ER
array elements necessary to represent the entire display is shown in the following table
for each model and display.

BASIC/WS BASIC/UX
Horizontal Vertical INTEGER INTEGER

Model Size Size Elements Elements

l-plane systems:

216 (HP 9816) 400 300 7500 nla
(monochromatic)

220 (HP 9920)
(monochromatic)

(HP 98204A) 400 300 7500 nla
(HP 98204B) 512 390 12480 nla

226 (HP 9826) 400 300 7500 nla
(monochromatic)

236 (HP 9836) 512 390 12480 nla
(monochromatic)

98546 512 390 12480 12480
(monochromatic)

237 (HP 9837) 1024 768 49152 49152
(bit-mapped,
monochromatic)

98542 1024 400 25600 12800
(medium-resolution
bit-mapped,
monochromatic)

98544 1024 768 49152 49152
(high-resolution,
bit-mapped,
monochromatic)

98548 1280 1024 163840 81920
(high-resolution,
bit-mapped,
monochromatic)

3-plane systems:

98627A 512 512 49152 nla
(external color)

270 Keyword Dictionary

BASIC/WS BASIC/UX
Horizontal Vertical INTEGER INTEGER

Model Size Size Elements Elements

4-plane systems:

236 (HP 9836C) 512 390 49920 nla
(color)

98543 1024 400 102400 102400
(medium-resolution,
bit-mapped,
color)

98545 1024 768 196608 393216
(high-resolution,
bit-mapped,
color)

6-plane systems:

98547 1024 768 393216 393216
(high-resolution,
bit-mapped,
color)

98549 1024 768 393216 393216
(high-resolution,
bit-mapped,
color)

8-plane systems:

98700 1024 768 393216 393216
(high-resolution,
bit-mapped,
color)

98550A 1280 1024 655360 655360
(high-resolution,
bit-mapped,
color)

98720A 1280 1024 nla 655360

The declared array size can be larger or smaller than the graphics memory size; the
operation stops when either graphics memory or the array is exhaused.

Keyword Dictionary 271

Since anyone dimension of an array cannot be more than 32 767 elements, for an array
to be large enough to hold the entire graphics representation, the array may have to be
multi-dimensional. For example,

INTEGER Screen(1:340,1:64,1:2) !for Model 236 Color
INTEGER Screen(1:512,1:32,1:3) !for HP 98627A Color

Storage Format
The pixel representation on a monochromatic display is stored sequentially in the array
using GSTORE.

The pixel representation for color displays is stored in different formats using GSTORE.

Model 236 color display: Consecutive pairs of 16-bit words are used, regardless of the
array structure. P in the diagram is the 4-bit representation of the pixel.

Word 1 Word 2
P5 I P1 I P6 I P2 P7 I P3 I P8 I P4

HP 98627 A color display: Each word contains the blue, green or red representation for
16 pixels. P in the diagram is the I-bit color representation of the pixel.

Word 1 P1 P2 P3 P4 I P161 BLUE

Word 2 P1 P2 P3 P4 I P161 GREEN

Word 3 P1 P2 P3 P4 I P161 RED

Word 4 I P17 I P18 I P19 I P20 I I P321 BLUE

272 Keyword Dictionary

Multi-Plane Bit-Mapped Displays
GSTORE stores information from the graphics planes in the frame buffer into an array.
"Graphics planes" means those planes which have been write-enabled for graphics via
power-up, SCRATCH A, or GESCAPE.

In the following paragraphs, reference is made to the "highest graphics plane." The
"highest graphics plane" is that plane in the frame buffer vlhose corresponding bit in the
graphics write-enable mask has the highest number. For example, the highest graphics
plane with a write mask of binary 1000 is 4. Also note that although bits in a byte are
numbered from 0 through 7 (right to left), planes in the frame buffer are numbered 1
through 8.

If the highest graphics plane currently enabled is 1 (or none), act like there is 1. The
storage format is:

Word 1 PO P1 P2 P3 I P151
Word 2 I P16 I P17 I P18 I P19 I I P31 I

If the highest graphics plane currently enabled is between 2 and 4, inclusive, act like
there are 4. The storage format is the same as the Model 236C format, described above.

If the highest graphics plane currently enabled is between 5 and 8, inclusive, act like
there are 8. The storage format is:

Word 1 I PO I PO I PO I PO I PO I PO I PO I PO I P1 I P1 I P1 I P1 I P1 I P1 I P1 I P1 I
~~21~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1~1

Images should be GLOADed on the same display and with the same write-enable mask
that was used when the image was GSTOREd. If these guidelines are not observed, the
GLOADed image may bear no resemblance to the GSTOREd image.

To determine the number of elements needed in an integer array to hold an image, use
the GESCAPE operation selector 3.

Keyword Dictionary 273

When using graphics and alpha write masks, you may prefer not to overlap the masks:
that is, have any planes which are simultaneously indicated by both masks. If planes
enabled for alpha overlap those enabled for graphics, some alpha information will be
stored along with the graphics information.

You can conserve space if you are using fewer than the maximum number of planes. For
example, on a 98700 with eight planes, if pens 0 through 15 only are being used, the
graphics write mask could be set to 15 (binary 00001111) rather than the default of 255
(binary 11111111). In this way, only half the memory would be required to GSTORE the
image. You can change the graphics write mask with GESCAPE.

Non-Square Pixel Displays (BASIC Workstation Only)
With non-square pixel displays, GSTORE will store all pixels (e.g., alll024x400 pixels),
thus requiring over twice the amount of memory as with a Model 236C. This is to insure
that any image GSTOREd will appear exactly the same when GLOADed back into the
frame buffer. Since alpha uses the non-square pixels as separate elements-not as pairs
as in graphics-it is possible to have pixel pairs with different values in each pixel. If
pixel pairs were stored, images with mixed alpha and graphics could appear blurred when
reloaded.

BASIC/UX Specifics
Storage format for all multi-plane bit-mapped displays is byte/pixel, regardless of the
number of planes or value of the graphics write mask. For example:

Storage format for monochrome (I-plane) bit-mapped displays is the same for
BASIC/WS and BASIC/UX. For example:

274 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

HILBUF$

This function receives data sent by an HP-HIL device (e.g Describe Records, Poll Records,
etc.).

--C HILBUF$ }-

Example Statement
HILBUF$
Temp_buf$=HILBUF$
IF Read_buf THEN Buffer$=HILBUF$

Semantics
This function receives data from HP-HIL devices which have had polling enabled by
the ON HIL EXT statement or which have been sent a command by the HIL SEND
statement. This data takes the form of 8-bit numbers (bytes) packed into a string.
When HILBUF$ is read, the internal buffer where it accumulates this data is cleared,
ready to receive more data.

The format of the string returned by the HILBUF$ function is as follows: lost packet
count, followed by zero or more data packets. The lost packet count will normally be
zero (the null character). If the internal buffer overflows (because it is not read), the lost
packet count is the total number of packets lost (to a maximum count of 255 packets).
Only whole packets are put into the buffer. The format of a packet is: packet length,
device address, data list. For example, sending an HIL SEND 4; RSC statement to an ID
Module would create a packet of data similar to the following:

11 4 16 4 180 65 I 151 I 176 3 15 65

~~'~------------------------~-------------------------
packet

length

device

address

data list

Keyword Dictionary 275

where 11 is the packet length and 4 is the device address. The remaining characters
make up the data list (which in this example is a product/exchange number and serial
number). The first character of the packet is the packet length. The packet length tells
you how many string characters are left in the packet (including this character). Packet
lengths range from 3 to 19 characters. The second character in the string is the device
address. This tells you the position of the device within the HP-HIL link. There can only
be a total of 7 addresses in the HP -HIL link. The remaining characters in the packet
make up the data list. This list contains information which is dependent on the HP-HIL
device polled (ON HIL EXT) or on the HP-HIL device and the command sent (HIL
SEND). For more information on packets read the chapter "HP-HIL Interface" found in
the BASIC Interfacing Techniques manual.

If the HIL SEND statement results in data being returned from the device, the data is
put into HILBUF$ even if HP-HIL interrupts are not enabled (i.e. ON HIL EXT is not
currently active). Note that no interrupt is generated. even if HP-HIL interrupts are
enabled (i.e. ON HIL EXT is currently active), for data placed in HILBUF$ as a result
of HIL SEND. However, care should be taken in this case, since executing ON HIL EXT
clears HILBUF$.

276 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

HIL SEND

This statement allows a selected subset of the HP-HIL Command Set to be transmitted
to specific devices in the HP-HIL link.

ASCII space
(space bar)

Keyword Dictionary 277

Item

device address

rate

indicator

device specific
command

Description/Default
Range

Restrictions

numeric expression representing the HP-HIL 1 thru 7
device's position in the HP-HIL link

numeric expression indicating a keyswitch 1 or 2
au to-repeat rate of 20 or 40 milliseconds

numeric expression representing which of sev- 1 thru 7
eral prompts/acknowledges on the device to
use

numeric expression whose meaning is device 128 thru 239
dependent

register number numeric expression o thru 127 (RRG);

register data numeric expression

Example Statement
H1L SEND Dev_address;DKA PRM Led
H1L SEND 3;1DD
H1L SEND 7;ACK 6

Semantics

o thru 255 (WRG)

o thru 255

HP-HIL commands must be sent to a specific HP-HIL device, they may not be sent to
several devices at once.

The IDD (Identify and Describe) command can be sent to all HP-HIL devices. For all
other commRnrl~, HP-HIL devices which can use the HIL SEND statement arc those
whose poll records are not being processed for another purpose by the BASIC system.
These devices are grouped into three categories:

• Absolute positioning devices which are not the current GRAPHICS INPUT device.
Examples of these devices are as follows: Touchscreen (HP 35723A), A-size Digitizer
(HP 46087 A), B-size Digitizer (HP 46088A).

• HP-HIL devices with Device ID's less than hexadecimal 60. Examples of these
devices are as follows: Bar-code Reader (HP 92916A), ID Module (HP 46084A),
Function Box (HP 46086A), Vectra Keyboard (HP 46030A).

• True keyboards which are not relative pointing devices, such as the HP 46020A
and HP 46021A. (Poll records from these devices are processed by the Keyboard
controller, rather than by BASIC.)

278 Keyword Dictionary

The main HP-HIL devices which cannot use this function are:

• Relative pointing devices, such as the HP Mouse (HP 46060A) and Control Dial
Box (HP 46085A). Since the HP 98203C keyboard has a knob on it, it is considered
a relative pointing device and cannot be used with the HP-HIL Command Set .

• Current GRAPHICS INPUT devices.

If the HIL SEND statement resuits in data being returned from the device, the data is
put into HILBUF$ even if HP-HIL interrupts are not enabled (i.e. ON HIL EXT is not
currently active). Note that no interrupt is generated, even if HP-HIL interrupts are
enabled, for data placed in HILBUF$ as a result of HIL SEND. However, care should be
taken in this case, since executing ON HIL EXT clears HILBUF$.

The system will report an error if an attempt is made to send an HP-HIL command
to an HP-HIL device at an address which was not present at the last SCRATCH A or
power-up, even if a device is now present at that address. The system will not report
an error if a command is sent to an address which had a device present at power-up or
SCRATCH A but is now empty.

The sections which follow cover the HP-HIL commands supported by BASIC. For a
detailed description of these commands, read the "HP-HIL Command Reference" located
in the "HP-HIL Appendix" of the BASIC Interfacing Techniques manual.

IDD
Identify and Describe is used by the system to determine the type of HP-HIL devices in
the HP-HIL link, as well as some general characteristics of these devices.

Sending an IDD to a relative pointing device, or to an absolute pointing device
which is currently the GRAPHICS INPUT device, will result in an IDD record being
reconstructed from the system's internal configuration record. This pseudo-IDD record
will be the actual IDD record stored by the system at power-up or SCRATCH A time,
but no HP-HIL bus access is made (i.e. if the device has been removed, it will still show
up here).

RRG
Read Register provides a means for interaction with more complex devices via HP-HIL,
allowing for data transfers not generally supported by the HP-HIL devices. Device
support for this command is indicated in the Extended Describe Record.

The numeric value listed after this HP-HIL command is the number of the register that
is to be accessed. The range of valid register numbers is 0 to 127.

Keyword Dictionary 279

WRG
Write Register provides a means of setting the contents of individual registers in HP-HIL
devices supporting this feature. Device support for this command is indicated in the
Extended Describe Record.

There are two types of Write Register Records: Write Register Type 1 and Write Register
Type 2. BASIC looks at both of these Types as functionally the same (i.e. they both
wri te a single byte to a single register).

The numeric value listed after this HP-HIL command is the number of the register that
is to be accessed. The range of valid register numbers is 0 to 255. Range 0 to 127 selects
Write Register Type 1 and range 128 to 255 selects Write Register Type 2. In either
case, only one data item may be transmitted per command (i.e. this implementation
limits the Type 2 data list to one item).

RNM
Report Name is used to request a string of up to 15 characters (8-bit ASCII) which
aid in describing the device to the user. Devices indicate support of the Report Name
command in the Extended Describe Record.

RST
Report Status is used to extract device-specific status information from devices configured
on the HP-HIL link. Devices indicate support of the Report Status command in the
Extended Describe Record.

EXD
This command provides additional information concerning more advanced device features
which may not be required for basic operation. Support of the Extended Describe
command is indicated in the Describe Record Header.

RSC
The Report Security Code command is used to extract a unique product/exchange
number and serial number from the HP-HIL device. Support of the command is indicated
in the Describe Record Header.

Information returned when executing this command can also be obtained using the
SYSTEM$ ("SERIAL NUMBER") function. It should be noted that this function will
only return the product/exchange number and serial number for the last HP 46084A ID
Module in the HP-HIL link. If there are other devices in the HP-HIL link with security
code information. they are ignored by the SYSTEM$("SERIAL NUMBER") function.
This is not the case with the RSC command when it is executed with the HIL SEND
statement. as it will allow you to select the device you want to report a security code.

280 Keyword Dictionary

DKA
This command is used to disable the "repeating keys" feature for the addressed HP
HIL device, reducing returned data to one report per keyswitch transition. Support of
this command is not indicated in the Describe Record or Extended Describe Record.
Examples of devices which support it are the: Function Box, Vectra Keyboard, ITF
Keyboard. The default state for HP-HIL devices supporting this command is AutoRepeat
disabled.

EKA 1

NOTE

The auto-repeat for DKA, EKA 1, and EKA 2 is different and
independent of the keyboard auto-repeat which is controlled by
keyboard CONTROL registers 3 and 4. The repeated arrow keys
return a code which is not recognized by the keyboard driver; hence
they have no effect.

EKA 1 is used to enable the "repeating key" feature in the addressed device (if the
feature is supported). Support of this command is not indicated in the Describe Record
or Extended Describe Record. Examples of devices which support it are the: Function
Box, Vectra Keyboard, ITF Keyboard. This command will cause the HP-HIL device's
keys to repeat about every 40 milliseconds. Modifier keys (I Shift I, I CTRL I, I Extend char I,
etc.) will not repeat. The cursor keys (8], G, ~ and [!]) on an ITF Keyboard will
send repeated 02 codes after the initial Keycode.

EKA2
EKA 2 is used to enable the "repeating key" feature in the addressed device (if the
feature is supported). Support of this command is not indicated in the Describe Record
or Extended Describe Record. Examples of devices which support it are the: Function
Box, Vectra Keyboard, ITF Keyboard. This command will cause the HP-HIL device's
keys to repeat about every 40 milliseconds. Modifier keys (I Shift I, I CTRL I, I Extend char I,
etc.) will not repeat. The Cursor Keys (8], G, ~ and [!]) on an ITF Keyboard will
send repeated 02 codes at a faster rate than EKA 1.

Keyword Dictionary 281

PRM 1 .. 7
These Prompt commands are used to provide an audible or visual stimulus to the user.
perhaps indicating that the System is ready for a particular type of input. Usually
Prompts 1 through 7 are paired with Acknowledge 1 through Acknowledge 7.

The Prompts supported by a device are indicated in the Describe Record.

PRM
Prompt is intended to be a general-purpose stimulus to the user. This command is
usually paired with Acknowledge. An HP-HIL device indicates support of Prompt in the
Describe Record.

ACK 1 .. 7
These Acknowledge commands are used to provide an audible or visual stimulus to the
llser. perhaps indicating that the System is ready for a particular process to be performed.
Usually Acknowledges 1 through 7 are paired with Prompt 1 through Prompt 7.

The Acknowledges supported by a device are indicated in the Describe Record.

ACK
Acknowledge is intended to be a general-purpose stimulus to the user. This command
is usually paired with Prompt. An HP-HIL device indicates support of Acknowledge in
the Describe Record.

DDC 128 .. 239
This is a range of 112 commands which have been reserved for use as "device-specific"
commands. These commands are intended for use by devices with special requirements
which the remainder of the HP-HIL protocol does not readily support.

BASIC/UX Specifics
Bad register read/write errors are no longer reported. IDDl RNMl EXD 1 RST 1 and RSC
may return a variable number of bytes in HILBUF$. This number is determined by
truncating all trailing null characters from the packet obtained by the device.

ION

See the MAT statement.

282 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

IDRAW

This statement draws a line from the current pen position to a position calculated by
adding the X and Y displacements to the current pen position.

~ x displacement ~ y displacement ~

Item Description

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements
IDRAW X+50,O
IDRAW Delta_x,Delta_y

Semantics

Range

The X and Y displacement information is interpreted according to the current unit-of
measure.

The line is clipped at the current clipping boundary.

An IDRAW 0,0 generates a point. IDRAW updates the logical pen position at the
completion of the IDRAW statement, and leaves the pen down on an external plotter.
IDRAW is affected by the PIVOT transformations.

If none of the line is inside the current clipping limits, the pen is not moved, but the
logical pen position is updated.

Keyword Dictionary 283

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LDIR.

Note 3: The starting paint for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by PDIR.

284 Keyword Dictionary

LDIR PDIR

Note 4

X

X

Note 2

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This statement provides conditional branching.

boolean
expresslon

(END IF)-i

boolean
expression

(END IF)-i

Cannot be a statement
used during prerun

IF ... THEN

Keyword Dictionary 285

Item

boolean
expression

Description

numeric expression; evaluated as true if non
zero and false if zero

Range

line label name of a program line any valid name

line number integer constant identifying a program line 1 thru 32 766

statement a programmable statement (see following list)

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram.

Example Program Segments
150 IF Flag THEN Next_file
160 IF Pointer<1 THEN Pointer=1

580 IF First_pass THEN
590 Flag=O
600 INPUT "Command?",Cmd$
610 IF LEN(Cmd$) THEN GOSUB Parse
620 END IF

1000 IF X<O THEN
1010 BEEP
1020 DISP "Improper Argument"
1030 ELSE
1040 Root=SQR(X)
1050 END IF

Semantics
If the boolean expression evaluates to 0, it is considered false; if the evaluation is non-zero,
it is considered true. Note that-a boolean expression can be constructed with numeric or
string expressions separated by relational operators, as well as with a numeric expression.

Single Line IF ... THEN
If thf' conditional stat('m('nt is a GOTO. execution is transferred to the specified line.
The specified line must exist in the current context. A line number or line label by itself
is considered an implied GOTO. For any other statement, the statement is executed,
then program execution resumes at the line following the IF ... THEN statement. If the
tested condition is false, program execution resumes at the line following the IF ... THEN
statement, and the conditional statement is not executed.

286 Keyword Dictionary

Prohibited Statements
The following statements must be identified at prerun time or are not executed during
normal program flow. Therefore, they are not allowed as the statement in a single line
IF ... THEN construct.

CASE END IF REM

CASE ELSE END IF IMAGE REPEAT

COM END LOOP INTEGER SELECT

COMPLEX END SELECT LOOP SUB

DATA END WHILE NEXT SUBEND

DEF FN EXIT IF OPTION BASE UNTIL

DIM FNEND REAL WHILE

ELSE FOR

When ELSE is specified, only one of the program segments will be executed. When the
condition is true, the segment between IF ... THEN and ELSE is executed. When the
condition is false, the segment between ELSE and END IF is executed. In either case,
when the construct is exited, program execution continues with the statement after the
END IF.

Branching into an IF ... THEN construct (such as with a GOTO) results in a branch to
the program line following the END IF when the ELSE statement is executed.

The prohibited statements listed above are allowed in multiple-line IF ... THEN constructs.
However, these statements are not executed conditionally. The exceptions are other
IF ... THEN statements or constructs such as FOR ... NEXT, REPEAT ... UNTIL, etc.
These are executed conditionally, but need to be properly nested. To be properly nested,
the entire construct must be contained in one program segment (see drawing).

Keyword Dictionary 287

IMAG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
COMPLEX

Yes
Yes
Yes

This function returns the imaginary part of a COMPLEX number.

Item Description/Default

argument numeric expression

Example Statements
X=IMAG(Complex_expr)
Y=IMAG(Real_expr)
Z=IMAG(Integer_expr)
Result=IMAG(CMPLX(2.1,-8))

Semantics
If the argument is not a COMPLEX value, the result is O.

288 Keyword Dictionary

Range
Restrictions

any valid INTEGER,
REAL, or COMPLEX
value

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

IMAGE

This statement provides image specifiers for the ENTER, OUTPUT, DISP, LABEL, and
PRINT statements. Refer to the appropriate statement for details on the effect of the
various image specifiers.

Item

IMAGE
statement items

IMAGE
statement items

literal

IMAGE
statement items

Description

integer constant

Range

(see drawing)

1 thru 32767 repeat factor

literal string composed of characters from the key- quote mark not allowed
board, including those generated using the
ANY CHAR key.

Example Statements
IMAGE 4Z.DD.3X.K./
IMAGE "Result = ".SDDDE.3(XX.ZZ)
IMAGE #.B

Keyword Dictionary 289

290 Keyword Dictionary

~ad 1)(SDeC 1 f le'-' ca~not

be usee W1t~OUt a
dlglt soec1fl.er

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

IMOVE

This statement lifts the pen and moves it from the current pen position to a position
calculated by adding the specified X and Y displacements to the current pen position.

~ x displacement ~ y displacement ~

Item Description

x displacement

y displacement

numeric expression in current units

numeric expression in current units

Example Statements
IMOVE X+50,O
IMOVE Delta_x,Delta_y

Semantics

Range

The X and Y displacements are interpreted according to the current unit-of-measure.
IMOVE is affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip
limits, no physical pen movement is made; however, the logical pen is moved the specified
displacement.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting paint for labels drawn after lines or axes is affected by scaling.

Note 2: The starting paint for labels drawn after other labels is affected by LDIA.

Note 3: The starting paint for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by PDIA.

LDIR PDIR

Note 4

X

X

Note 2

Keyword Dictionary 291

INDENT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
PDEV

Yes
No
No

This commands indents your program to reflect the structure that results from its
constructs.

Item Description

starting column integer constant; Default = 6

increment integer constant; Default = 2

Example Statements
INDENT
INDENT 8,4

Semantics

Range

o thru Screen Width-8

o thru Screen Width-8

The starting column specifies the column in which the first character of the first statement
of each context appears. The increment specifies the number of spaces that the beginning
of the lines move to the left or right when the nesting level of the program changes.
Note that a line label may override the indentation computed for a particular line. The
INDENT command does not move comments which start with an exclamation point, but
it does move comments starting with REM. However, if a BASIC program line is moved
to the right a comment after it may have to be moved to make room for it. In both of
these cases (line labels and comments), the text moves only as far as is necessary; no
extra blanks are generated.

292 Keyword Dictionary

Indenting a program may cause the length of some of its lines to become longer than the
machine can list. This condition is indicated by the presence of an asterisk after the line
numbers of the lines which are overlength. If this occurs, the program will run properly,
STORE properly and LOAD properly. However, you cannot do a SAVE, then a GET.
Doing an INDENT with smaller values will alleviate this problem.

Indentation occurs after the following statements:

FOR

LOOP

SUB

IF ... THENI

REPEAT

WHILE

SELECT

DEF FN

The following statements cause a one-line indentation reversal; that is, indentation is
reversed for these statements but re-indented immediately after them:

CASE

CASE ELSE

ELSE

EXIT IF

FNEND

SUBEND

Indentation is reversed before the following statements:

END IF

END LOOP

END SELECT

END WHILE

NEXT

UNTIL

Indentation remains the same from line to line for all other statements.

Improperly matched nesting will cause improper indentation. Deeply nested constructs
may cause indentation to exceed Screen Width-8. However, visible indentation is
bounded by Starting Column and Screen Width -8. If a large Increment is used,
indentation may attempt to go beyond Screen Width -8. This will not be allowed to
occur, but an internal indentation counter is maintained, so construct-forming statements
will have matching indentation.

This is only true for IF .. THEN statements where the THEN is followed by an end-of-line or an
exclamation point.

Keyword Dictionary 293

INITIALIZE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This statement prepares ("formats") mass storage media for use by BASIC, and places
a LIF (Logical Interchange Format) directory on the media. (To format an HFS volume.
use the DISC_UTIL program.) When INITIALIZE is executed, any existing files on the
media are destroyed.

literal form of RAM volume specifier

Item Description

volume specifier string expression

interleave factor numeric expression, rounded to an integer;
Default = device dependent (see table)

format option numeric expression
Default = a

RAM volume string expression
specifier

Range

(see MASS STORAGE IS)

a thru 15

device
dependent

(see drawing)

RAM unit size numeric expression, rounded to an integer; 4 thru 32767
specifies number of 256-byte sectors; memory-dependent
Default = 1056 (size of a 51/4-inch or single-
sided 31h-inch disc)

294 Keyword Dictionary

Example Statements
INITIALIZE ":INTERNAL"
INITIALIZE Disc$,2
INITIALIZE ": ,700",0,4
INITIALIZE ":MEMORY,O",Sectors

Semantics
Any media used by the computer must be initialized before its first use. Initialization
creates a new LIF directory, eliminating any access to old data. The media is partitioned
into physical records. The quality of the media is checked during initialization. Defective
tracks are "spared" (marked so that they will not be used subsequently).

Interleave Factor
The interleave factor establishes the distance (in physical sectors) between consecutively
numbered sectors. The interleave factor is ignored if the mass storage device is not a
disc. If you specify 0 for the interleave factor, the default for the device is used.

Default
Device Type Interleave

INTERNAL 1

CS80 see Note

HP 9121 2

HP 913X (floppy) 4

HP 913X (hard) 9

HP 9895 3

HP 8290X 4

Note

CS80 discs use the current interleave as the default. If the disc
is uninitialized, the interleave recommended for that disc is used.
Factory-shipped interleave is 1 for the HP 7908, HP 7911, HP 7912
and HP 7914 discs. An uninitialized HP 9122 disc has a default
interleave of 2.

Keyword Dic tionary 295

Format Option
Some mass storage devices allow you to select the sector or volume size with which the
disc is initialized. Omitting this parameter or specifying 0 initializes the disc to the
default sizes. Refer to the disc drive manual for options available with your disc drive.
For example, when initializing a single-sided flexible disc on the HP 9122 double-sided
flexible disc drive, use a value of 4 (256-byte sectors, and 270K bytes total volume size).

Initializing EPROM (Requires EPROM)
In order to initialize an EPROM unit, it must be completely erased. The select
code specified in the INITIALIZE statement must be the select code of the EPROM
Programmer card currently connected to the EPROM memory card; if not, error 72 is
reported.

The unit number must be one greater than the greatest unit number of any initialized
EPROM unit currently in the system. For example, if the greatest unit number of an
EPROM unit in the system is 3, then the unit to be initialized must be unit number 4.

INITIALIZE and HFS Volumes
Since INITIALIZE creates a LIF directory, it cannot alone be used to format an HFS
disc; it will still, however, scan the volume for bad sectors. To format an HFS volume
on the BASIC Workstation, use the System Disc Utility (DISC_UTIL, which calls the
"Mkhfs" compiled subprogram to place an HFS-format directory on the disc volume).
See the "BASIC Utilities Library" chapter of Installing, and Maintaining the BASIC
System for instructions on using this utility.

On BASIC/UX, use the HP-UX command newfs command. See the HP-UX Reference,
newfs(1m) entry.

INITIALIZE and SRM Volumes
Since INITIALIZE creates a LIF directory, it cannot be used with SRM (which uses the
Structured Directory Format, SDF). An error will be reported if you attempt to initialize
a REMOTE volume from a workstation.

Recovering MEMORY Volume Space
BASIC RAM disc memory can be reclaimed if no binaries have been loaded after
initializing the memory volume. To recover this memory, you would execute a line
similar to the following:

INITIALIZE 11:.0. unit number II .0

296 Keyword Dictionary

Initializing the volume to 0 sectors removes it from memory.

Memory volumes are allocated in a mark and release stack. What this means is, you
get the memory back only when other subsequently created memory volumes have
been reclaimed. You can re-initialize a removed memory volume in its original space
provided the newly allocated space is no larger than the original space that was allocated.
Otherwise, new space will be allocated for it.

BASIC/UX Specifics
Only an unmounted disk may be initialized, in LIF format.

Keyword Dictionary 297

INPUT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This statement is used to assign keyboard input to program variables.

Expanded diagram:

298 Keyword Dictionary

WS1UX
None

No
Yes
Yes

Item

prompt

Description /Default

a literal composed of characters from the
keyboard, including those generated using
the ANY CHAR key;
Default = question mark

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning numeric expression, rounded to an integer
position

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

numeric name name of a numeric variable

Example Statements
INPUT "Name?",N$,"ID Number?",Id
INPUT Array(*)

Semantics

Range
Restrictions

any valid name

-32 768 thru +32767
(see "array" in Glossary)

1 thru 32 767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

o thru 32 767 (see
"substring" in Glossary)

any valid name

Values can be assigned through the keyboard for any numeric or string variable, substring,
array, or array element.

A prompt, which is allowed for each item in the input list, appears on the CRT display
line. If the last DISP or DISP USING statement suppressed its EOL sequence, the
prompt is appended to the current display line contents. If the last DISP or DISP
USING did not suppress the EOL sequence, the prompt replaces the current display line
contents.

Not specifying a prompt results in a question mark being used as the prompt. Specifying
the null string ("") for the prompt suppresses the question mark.

Keyword Dictionary 299

To respond to the prompt. the operator enters a number or a string. Leading and trailing
blank characters are deleted. U nquoted strings may not contain commas or quotation
marks. Placing quotes around an input string allows any character(s) to be used as
input. If II is intended to be a character in a quoted string, use 1111. Note that when
you are prompted to input a COMPLEX value, you must input two REAL values (one
representing the real part and another representing the imaginary part) separated by a
comma or a I Return 1 or I ENTER I.

Multiple values can be entered individually or separated by commas. Press the I Return I,
I CONTINUE I, I EXECUTE I, I ENTER 1 or I STEP 1 after the final input response. Two consecutive
commas cause the corresponding variable to retain its original value. Terminating an
input line with a comma retains the old values for all remaining variables in the list.

The assignment of a value to a variable in the INPUT list is done as soon as the terminator
(comma or key) is encountered. Not entering data and pressing I CONTINUE I, I ENTER I,
I EXECUTE I, I Return I, or I STEP 1 retains the old values for all remaining variables in the list.

If I CONTI NUE I, I ENTER I, I EXECUTE I, or I Return 1 is pressed to end the data input, program
execution continues at the next program line. If I STEP 1 is pressed, the program execution
continues at the next program line in single step mode. (If the INPUT was stepped into,
it is stepped out of, even if I CONTINUE I, I ENTER I, I EXECUTE I, or I Return 1 is pressed.)

If too many values are supplied for an INPUT list, the extra values are ignored.

An entire array may be specified by the asterisk specifier. Inputs for the array are
accepted in row major order (right most subscript varies most rapidly).

Live keyboard operations are not allmved while an INPUT is awaiting data entry. I PAUSE 1

or I STOP 1 on an HP 46020 keyboard can be pressed so live keyboard operations can be
performed. The INPUT statement is re-executed, beginning with the first item, when
I CONTINUE 1 or I STEP 1 is pressed. All values for that particular INPUT statement must be
re-entered.

ON KBD~ ON KEY and ON KNOB ('vents are deactivated during an INPUT statement.
Errors do not cause an ON ERROR branch. If an input response results in an error,
re-entry begins with the variable which would have received the erroneous response.

300 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

INT

This function returns the greatest integer which is less than or equal to the expression.
The result will be of the same type (REAL or INTEGER) as the argument.

Example Statements
Whole=INT(Number)
IF X/2=INT(X/2) THEN Even

Semantics
COMPLEX arguments are not allowed with this function.

Keyword Dictionary 301

INTEGER
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This statement declares INTEGER variables, dimensions INTEGER arrays, and reserves
memory for them. (For information about INTEGER as a secondary keyword, see the
ALLOCATE, COM, DEF FN, or SUB statements.)

Item Description

numeric name name of a numeric variable

lower bound integer constant;
Default = OPTION BASE value (0 or 1)

upper bound integer constant

Example Statements
INTEGER I,J,K
INTEGER Array(-128:255)
INTEGER A(4096) BUFFER

302 Keyword Dictionary

Range

any valid name

-32767 thru +32767
(see "array" in Glossary)

-32767 thru +32767
(see "array" in Glossary)

Semantics
An INTEGER variable (or an element of an INTEGER array) uses two bytes of storage
space. An INTEGER array can have a maximum of six dimensions. No single dimension
can have more than 32767 total elements.

The total number of INTEGER elements is limited by the fact that the maximum memory
usage for all variables-COMPLEX, INTEGER, REAL, and string-within any context
is 224 -1, or 16777215, bytes (or limited by the amount of available memory, whichever
is less).

Declaring Buffers
To declare INTEGER variables to be buffers, each variable's name must be followed by
the keyword BUFFER; the designation BUFFER applies only to the variable which it
follows.

INTENSITY

See the AREA and SET PEN statements.

INTERACTIVE

See the RESUME INTERACTIVE and SUSPEND INTERACTIVE statements.

INTR

See the OFF INTR and ON INTR statements.

INV

See the MAT statement.

Keyword Dictionary 303

IPLOT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement moves the pen from the current pen position to the point specified by
adding the specified X and Y displacements to the current pen position. It can be used to
move without drawing a line, or to draw a line, depending on the pen control parameter.

Item Description

numeric expression, in current units

numeric expression, in current units

Range

x displacement

y displacement

pen control numeric expression, rounded to an integer; -32768 thru +32767
Default=l (down after move)

array name name of two-dimensional, two-column or any valid name
three-column numeric array. Requires
GRAPHX.

Example Statements
IPLOT X,Y,Pen
IPLOT -5,12
IPLOT Shape(*) ,FILL ,EDGE

304 Keyword Dictionary

Semantics
Non-Array Parameters
The specified X and Y displacement information is interpreted according to the current
unit-of-measure. Lines are drawn using the current pen color and line type.

The line is clipped at the current clipping boundary. IPLOT is affected by PIVOT and
PDIR transformations.

If none of the line is inside the current clip limits, the pen is not moved, but the logical
pen position is updated.

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOIR:

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIR.

LDIR PDIR

Note 4

X

X

Note 2

The optional pen control parameter specifies the following plotting actions; the default
value is + 1 (down after move).

Pen Control Parameter

Pen Control Resultant Action

-Even Pen up before move
-Odd Pen down before move
+Even Pen up after move
+Odd Pen down after move

That is, even is up, odd is down, positive is after pen motion, negative is before pen
motion. Zero is considered positive.

Keyword Dictionary 305

Array Parameters
FILL and EDGE
When FILL or EDGE is specified, each sequence of two or more lines forms a polygon.
The polygon begins at the first point on the sequence, includes each successive point,
and the final point is connected or closed back to the first point. A polygon is closed
when the end of the array is reached, or when the value in the third column is an even
number less than three, or in the range 5 to 8 or 10 to 15.

If FILL and/or EDGE are specified on the IPLOT statement itself, it causes the polygons
defined within it to be filled with the current fill color and/or edged with the current
pen color. If polygon mode is entered from within the array, and the FILL/EDGE
directive for that series of polygons differs from the FILL /EDG E directive on the IPLOT
statement itself, the directive in the array replaces the directive on the statement. In
other words, if a "start polygon mode" operation selector (a 6, 10, or 11) is encountered,
any current FILL/EDGE directive (whether specified by a keyword or an operation
selector) is replaced by the new FILL/EDGE directive.

If FILL and EDGE are both declared on the IPLOT statement, FILL must occur first.
If neither one is specified, simple line drawing mode is assumed; that is, polygon closure
does not take place.

If you attempt to fill a figure on an HPGL plotter, the figure will not be filled, but will
be edged, regardless of the directives on the statement.

When using an IPLOT statement with an array, the following table of operation selectors
applies. An operation selector is the value in the third column of a row of the array to
be plotted. The array must be a two-dimensional, two-column or three-column array. If
the third column exists, it will contain operation selectors which instruct the computer
to carry out certain operations. Polygons may be defined, edged (using the current pen),
filled (using the current fill color), pen and line type may be selected, and so forth. See
the following list.

306 Keyword Dictionary

IPLOT Array Parameter Effects

Operation
Column 1 Column 2 Selector Meaning

X y -2 Pen up before moving

X y -1 Pen down before moving

X y 0 Pen up after moving (Same as +2)

X Y 1 Pen down after moving

X y 2 Pen up after moving

pen number ignored 3 Select pen

line type repeat value 4 Select line type

color ignored 5 Color value

ignored ignored 6 Start polygon mode with FILL

ignored ignored 7 End polygon mode

ignored ignored 8 End of data for array

ignored ignored 9 NOP (no operation)

ignored ignored 10 Start polygon mode with EDGE

ignored ignored 11 Start polygon mode with FILL and EDGE

ignored ignored 12 Draw a FRAME

pen number ignored 13 Area pen value

red value green value 14 } Color
blue value ignored 15 Value

ignored ignored >15 Ignored

Moving and Drawing
If the operation selector is less than or equal to two, it is interpreted in exactly the same
manner as the third parameter in a non-array IPLOT statement. As mentioned above,
even means lift the pen up, odd means put the pen down, positive means act after pen
motion, negative means act before pen motion. Zero is considered positive.

Selecting Pens
The operation selector of 3 is used to select pens. The value in column one is the pen
number desired. The value in column two is ignored.

Keyword Dictionary 307

Selecting Line Types
The operation selector of 4 is used to select line types. The line type (column one)
selects the pattern, and the repeat value (column two) is the length in GDUs that the
line extends before a single occurrence of the pattern is finished and it starts over. On
the CRT, the repeat value is evaluated and rounded down to the next multiple of 5, with
5 as the minimum.

Selecting a Fill Color
Operation selector 13 selects a pen from the color map with which to do area fills. This
works identically to the AREA PEN statement. Column one contains the pen number.

Defining a Fill Color
Operation Selector 14 is used in conjunction with Operation Selector 15. Red and green
are specified in columns one and two, respectively, and column three has the value 14.
Following this row in the array (not necessarily immediately). is a row whose operation
selector in column three has the value of 15. The first column in that row contains the
blue value. These numbers range from 0 to 32767, where 0 is no color and 32767 is full
intensity. Operation selectors 14 and 15 together comprise the equivalent of an AREA
INTENSITY statement, which means it can be used on both a monochromatic and a
color CRT.

Operation Selector 15 actually puts the area intensity into effect, but only if an operation
selector 14 has already been received.

Operation selector 5 is another way to select a fill color. The color selection is through
a Red-Green-Blue (RGB) color model. The first column is encoded in the following
manner. There are three groups of five bits right-justified in the word; that is, the
most significant bit in the word is ignored. Each group of five bits contains a number
which determines the intensity of the corresponding color component, which ranges from
zero to sixteen. The value in each field will be sixteen minus the intensity of the color
component. For example, if the value in the first column of the array is zero, all three
five-bit values would thus be zero. Sixteen minus zero in all three cases would turn on all
three color components to full intensity, and the resultant color would be a bright white.

Assuming you have the desired intensities for red, green, and blue ranging from zero to
one in the variables R, G, and B, respectively, the value for the first column in the array
could be defined thus:

Array(Row,1)=SHIFT(16*(1-B),-10)+SHIFT(16*(1-G) ,-5)+16*(1-R)

If there is a pen color in the color map identical to that which you request here, that
non-dithered color will be used. If there is not a similar color, you will get a dithered
pattern.

308 Keyword Dictionary

Polygons
A six, ten, or eleven in the third column of the array begins a "polygon mode". If
the operation selector is 6, the polygon will be filled with the current fill color. If the
operation selector is 10, the polygon will be edged with the current pen number and
line type. If the operation selector is 11, the polygon will be both filled and edged.
Many individual polygons (series of draws separated by moves) can be filled without
terminating the mode with an operation selector 7. The first and second columns are
ignored; therefore they should not contain the X and Y values of the first point of a
polygon.

Operation selector 7 in the third column of a plotted array terminates definition of a
polygon to be edged and/or filled and also terminates the polygon mode (entered by
operation selectors 6, 10, or 11). The values in the first and second columns are ignored,
and the X and Y values of the last data point should not be in them. Edging and/or
filling will begin immediately upon encountering this operation selector.

Doing a FRAME
Operation selector 12 does a FRAME around the current soft-clip limits. Soft clip limits
cannot be changed from within the IPLOT statement, so one probably would not have
more than one operation selector 12 in an array to IPLOT, since the last FRAME will
overwrite all the previous ones.

Premature Termination
Operation selector 8 causes the IPLOT statement to be terminated. The IPLOT
statement will successfully terminate if the actual end of the array has been reached,
so the use of operation selector 8 is optional.

Ignoring Selected Rows in the Array
Operation selector 9 causes the row of the array it is in to be ignored. Any operation
selector greater that fifteen is also ignored, but operation selector 9 is retained for
compatibility reasons. Operation selectors less than - 2 are not ignored. If the value
in the third column is less than zero, only evenness/oddness is considered.

Keyword Dictionary 309

IVAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function converts a binary, octal, decimal, or hexadecimal string expression into an
INTEGER.

Item Description Range

string argument string expression, containing digits valid for (see table)
the specified base

radix numeric expression, rounded to an integer. 2, 8, 10 or 16

Example Statements
Number=IVAL("FDFO".16)
I=IVAL("1111111111111110".2)
DISP IVAL(Octal$.8)

Semantics
The radix is a numeric expression that will be rounded to an integer and must evaluate
to 2, 8, 10, or 16.

The string expression must contain only the characters allowed for the particular number
base indicated by the radix. ASCII spaces are not allowed.

Binary strings are presumed to be in two's-complement form. If all 16 digits are specified
and the leading digit is a 1, the returned value is negative.

Octal strings are presumed to be in the octal representation of two's-complement form.
If all 6 digits are specified, and the leading digit is a 1, the returned value is negative.

Decimal strings containing a leading minus sign will return a negative value.

310 Keyword Dictionary

Hex strings are presumed to be in the hex representation of the two's-complement binary
form. The letters A through F may be specified in either upper or lower case. If all 4
digits are specified and the leading digit is 8 through F, the returned value is negative.

Radix Base String Range String Length

2 binary ° thru 1111111111111111 1 to 16 characters

8 octal o thru 177777 1 to 6 characters

10 decimal -32 768 thru +32 768 1 to 6 characters

16 hexadecimal ° thru FFFF 1 to 4 characters

Radix Legal Characters Comments

2 +,0,1 -

8 + ,0, 1 ,2,3,4,5,6,7 Range restricts the leading character.
Sign must be a leading character.

10 +,-,0,1,2,3,4,5,6,7,8,9 Sign must be a leading character.

16 + ,0, 1 ,2,3,4,5,6,7,8,9, A/a=10, B/b=l1, C/c=12, D/d=13
A,B,C,D,E,F ,a,b,c,d,e,f E/e=14, F /f=15

Keyword Dictionary 311

IVAL$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function converts an INTEGER into a binary, octal, decimal, or hexadecimal string.

Item

"16-bit"
argument

Description

numeric expression, rounded to an integer

Range

(see table)

radix numeric expression, rounded to an integer 2, 8, 10, or 16

Example Statements
F$=IVAL$(-1,16)
Binary$=IVAL$(Count DIV 256,2)

Semantics
The rounded argument must be a value that can be expressed (in binary) using 16 bits
or less.

The radix must evaluate to be 2, 8, 10, or 16; representing binary, octal, decimal, or
hexadf'rimal notation.

If the radix is 2, the returned string is in two's-complement form and contains 16
characters. If the numeric expression is negative, the leading digit will be 1. If the
value is zero or positive, there will be leading zeros.

If the radix is 8, the returned string is the octal representation of the two's-complement
binary form and contains 6 digits. Negative values return a leading digit of 1.

If the radix is 10, the returned string contains 6 characters. Leading zeros are added to
the string if necessary. Negative values have a leading minus sign.

312 Keyword Dictionary

If the radix is 16, the returned string is the hexadecimal representation of the two's
complement binary form and contains 4 characters. Negative values return a leading
digit in the range 8 thru F.

Radix Base Range of Returned String String Length

2 binary 0000000000000000 16 characters
thru
1111111111111111

8 octal 000000 thru 177777 6 characters

10 decimal -32 768 thru +32 768 6 characters

16 hexadecimal 0000 thru FFFF 4 characters

Keyword Dictionary 313

Notes

314 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

KBD

This INTEGER function returns a 2, the select code of the keyboard.

~
Example Statements
STATUS KBD; Kbd_status
OUTPUT KBD;Clear$;

Keyword Dictionary 315

KBD$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This function returns the contents of the buffer established by ON KBD.

Example Statements
Keys$=KBD$
IF Active THEN Command$=Command$kKBD$

Semantics

WS,UX
None

Yes
Yes
Yes

When an ON KBD branch is in effect, all subsequent keystrokes are trapped and held in
a special "keyboard" buffer. The KBD$ function returns the contents of this buffer and
then clears it. A null string is returned if the buffer is empty or no ON KED branch is
active.

Non-ASCII keys are stored in the buffer as two bytes; the first has a decimal value of 255,
and the second specifies the key. Pressing I CTRL I and a non-ASCII key simultaneously
generates three bytes; the first two have a decimal value of 255, and the third specifies
the key. See the Second Byte of Non-ASCII Key Sequences table in the "Useful Tables"
section for a list of these keycodes.

The buffer can hold 256 characters. Further keystrokes are not saved and produce beeps.
An overflow flag is set after the buffer is full. This flag can be checked by reading
keyboard status register 5 and is cleared by reading the status register, SCRATCH A,
and a I RESET I operation.

The buffer is cleared by KBD$, OFF KBD, SCRATCH, SCRATCH A, INPUT, LINPUT,
ENTER 2, and a I RESET I operation.

316 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
KBD

Yes
Yes
Yes

KBD CMODE

This statement enables/disables the HP 98203A/B/C keyboard compatibility mode on
an ITF keyboard (not supported on terminals).

(KSO ,,"OOE W
OFF

Example Statements
KBD CMODE ON
KBD CMODE OFF
IF Change_mode THEN KBD CMODE ON

Semantics
Executing the KBD CMODE ON statement re-defines the softkeys of the ITF keyboard
so they are compatible with the HP 98203A/B/C keyooard softkeys. This means that
the eight function keys located at the top of the ITF keyboard, as well as the I Menu I and
I System I keys, emulate function keys CEQ] thru [ill of the HP 98203A/B/C Keyboard and
their BASIC system definitions.

The following are the ITF softkey definitions before executing KBD CMODE ON:

Keyword Dictionary 317

The following are the ITF soft key definitions after executing KBD CMODE ON:

Executing the KBD CMODE OFF statement returns you back to the soft key key
definitions of the ITF Keyboard.

The KBD CMODE statement does not affect KEY LABELS ON or OFF. What this
means is the definitions of the soft keys change, but the soft key labels at the bottom of
the display will not be turned on or off.

While in the Keyboard Compatibility mode, the System Function keys are accessed by
using the I Extend char I key with the softkeys []] through [][]. Note that using I Extend char I
along with the I Menu I key turns the keylabels on and off in this mode. I Extend char I when
pressed with the I User I or I System I keys exits the Keyboard Compatibility mode. Also,
in the Keyboard Compatibility mode, I Shift I can be used with the eight softkeys and the
I Menu I and I System I keys (as on an HP 98203A/B/C) to access keys I SHIFT ~[EQJ through
I SH I FT ~IT[].

Note that the functionality of this statement can be achieved through KBD CONTROL
register 15.

For further information on HP 98203A/B/C keyboard compatibility mode, read the
chapter called "Porting to Series 300" in the BASIC Programming Techniques manual.

318 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

KBD LINE PEN

This statement sets the pen color to be used for the keyboard line and other associated
areas of the CRT (see "Semantics" below).

~BO LINE PENHpen value ~

Item Description/Default Range Restrictions

pen value numeric expression see semantics

Example Statements
KBD LINE PEN Pen_value
KBD LINE PEN 143
IF Color_blue THEN KBD LINE PEN 141

Semantics
This statement has no effect on monochrome displays.

Pen color areas of the CRT which are associated with the keyboard line are:

• the run indicator

• all of the edit screen except the key labels

• the following annunciators:

• soft key menu (e.g System, User 1, User 2, and User 3)

• CAPS indicator

• system-activity indicator (e.g. Idle, Running, etc.)

• the system message area

Keyword Dictionary 319

The set of alpha colors for the Model 236C is given in the table below:

Value

< 16

16 to 135
136
137
138
139
140
141
142
143
144 to 255

Result

The number is evaluated MOD
8 and resulting values produce
the following:

o - black
1 - white
2 - red
3 - yellow
4 green
5 - cyan
6 ~ blue
7 - magenta

Ignored

White

Red

Yellow

Green

Cyan

Blue

Magenta

Black

Ignored

For displays with bit-mapped alpha, KBD LINE PEN specifies the graphics pen to be
used for subsequent alpha output. The range of values allowed with this statement are
o through 255; these values are treated as "value MOD (2

A

n)" where n is the number of
display planes.

KBD LINE PEN n and CONTROL CRT ,17; n set the value of CRT control register 17. These
statements have no effect on control registers 15 and 16 which are set using PRINT PEN

and KEY LABELS PEN, respectively.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 17.

KEY
See the OFF KEY and ON KEY statements.

320 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
CRTX

Yes
Yes
Yes

This statement turns the softkey labels on and off.

Example Statements
KEY LABELS ON
KEY LABELS OFF
IF Key_labels_on THEN KEY LABELS OFF

Semantics

KEY LABELS

With ITF keyboards, the default is KEY LABELS ON. (You can also turn the key labels
on and off by using the I Menu I key.) The default softkey menu that appears with an ITF
keyboard is the:

• System menu if the KBD binary has not been loaded.

• User 1 menu if the KBD binary has been loaded.

Keyword Dictionary 321

The times when key labels are displayed depends on the current value of CRT STATUS
register 12:

Value of CRT
Register 12 Effect on Key Labels

a Typing-aid key labels are displayed
until the program is run, at which
time they are turned off (until at
least one ON KEY is executed). For
more details on this mode, see the
next table.

1 Typing-aid and soft key labels are not
displayed at any time.

2 Typing-aid and soft key labels are dis-
played at all times.

The default value of this register is 0 for systems using 98203 keyboards, and 2 for systems
using an ITF keyboard. The default is restored at power-on and when SCRATCH A is
executed.

When the value of CRT register 12 is 0, softkey labels are ON or OFF as given in the
following table:

KBD Binary Not
Condition Loaded KBD Binary Loaded

No program running Key labels off Key labels on

Program running and Key labels off Key labels off
ON KEY is not
active

Program running and Key labels on Key labels on
ON KEY is active

Executing a KEY LABELS ON or KEY LABELS OFF ~tateIllent does not change the
current soft key definitions.

322 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... TF.EN

WS,UX
CRTX

Yes
Yes
Yes

KEY LABELS PEN

This statement sets the pen color to be used for the softkey labels of the CRT.

(KEY LABELS PENHpen value~

Item Description/Default

pen value numeric expression

Example Statements
KEY LABELS PEN Pen_value
KEY LABELS PEN 143
IF Color_blue THEN KEY LABELS PEN 141

Range Restrictions

(see Semantics)

Keyword Dictionary 323

Semantics
This statement has no effect on monochrome displays.

The set of alpha colors for the Model 236C is given in the table below:

Value
< 16

16 to 135
136
137
138
139
140
141
142
143
144 to 255

Result
The number is evaluated MOD
8 and resulting values produce
the following:

o - black
1 -- white
2 - red
3 - yellow
4 - green
5 - cyan
6 - blue
7 - magenta
Ignored
White
Red
Yellow
Green
Cyan
Blue
Magenta
Black
Ignored

For displays with bit-mapped alpha, KEY LABELS PEN specifies the graphics pen to
be used for subsequent alpha output. The range of values allowed with this statement
are 0 through 255; these values are treated as "value MOD (2' n)" where n is the number
of display planes.

KEY LABELS PEN n and CONTROL CRT. 16; n set the value of CRT control register 16. These
statements have no effect on control registers 15 and 17 which are set using PRINT PEN

and KBD LINE PEN. respectively.

Note that the functionality of this statement can be achieved through CRT CONTROL
register 16.

KNOB

See the OFF KNOB and the ON KNOB statements.

324 Keyword Dictionary

KNOBX
Supported On WS,UX
Option Required None
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This function returns the net number of horizontal knob pulses counted since the last
time the KNOBX counter was zeroed.

Example Statements
Position=KNOBX
IF KNOBX<O THEN Backwards

Semantics
Sampling occurs during the time interval established by the ON KNOB statement. The
counter is zeroed when the KNOBX function is called and at the times specified in the
Reset Table at the back of this manual. Clockwise rotation gives positive counts; counter
clockwise rotation gives negative counts. There are 120 counts for one revolution of the
knob on an HP 98203A/B keyboard. HIL Knobs return a greater number of counts for
one revolution of the Knob. If there is no active ON KNOB definition, KNOBX returns
zero.

Counts are accumulated by the KNOBX function at the end of each ON KNOB sampling
interval. The pulse count during each sampling interval is limited to - 127 thru + 128
on an HP 98203A/B keyboard. HIL pulse counts are limited to -32 768 through +32 767
per sampling period. The limits of the KNOBX function are -32768 thru +32767.

Keyword Dictionary 325

You can use a relative pointing device, such as the HP 46060A with an HP-HIL interface,
if the KBD BIN is loaded.

Note

KNOBY functions differently if BIN file KNB2_0 is loaded. Refer
to the Knob section of the "Porting to 3.0" chapter of the BASIC
Programming Techniques manual for more information.

BASIC/UX Specifics
Knob support uses the HP BASIC version 3.0 definition. KNB2_0 binary functionality
is not supported.

326 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

KNOBY

This function returns the net number of vertical knob pulses counted since the last time
the KNOBY counter was zeroed.

Example Statements
Position=KNOBY
IF KNOBY<O THEN Backwards

Semantics
Sampling occurs during the time interval established by the ON KNOB statement. The
counter is zeroed when the KNOBY function is called and at the times specified in the
Reset Table at the back of this manual. Clockwise rotation gives positive counts; counter
clockwise rotation gives negative counts. There are 120 counts for one revolution of the
knob on an HP 98203A/B keyboard. HIL Knobs return a greater number of counts for
one revolution of the Knob. If there is no active ON KNOB definition, KNOBY returns
zero.

Counts are accumulated by the KNOBY function at the end of each ON KNOB sampling
interval. The pulse count during each sampling interval is limited to -127 thru + 128 on
an HP 98203A/B keyboard. HIL pulse counts are limited to -32768 through +32767
per sampling period. The limits of the KNOBY function are -32768 thru +32767.

Keyword Dictionary 327

You can use a relative pointing device, such as the HP 46060A with an HP-HIL interface,
if the KBD BIN is loaded.

Note

KNOBY functions differently if BIN file KNB2_0 is loaded. Refer
to the Knob section of the "Porting to 3.0" chapter of the BASIC
Programming Techniques manual for more information.

BASIC/UX Specifics
Knob support uses the HP BASIC 3.0 definition. KNB2_0 binary functionality is not
supported.

328 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

LABEL

This statement produces alphanumeric labels on graphic devices. (For information about
LABEL as a secondary keyword, see the ON KEY statement.)

Expanded diagram:

Ul
E
III
+'

III
.0
III

literal form of image specifier

image
specifier list

tab functIon not allowed with USING

image
specifier list

Keyword Dictionary 329

330 Keyword Dictionary

RadiX SpeCifier canr'lot

be used Wlt~out a
dlglt spec,f,er

Item Description Range

image line
number

integer constant identifying an IMAGE 1 thru 32766
statement

image line label name identifying an IMAGE statement

image specifier string expression

string array name name of a 8tring array

numeric array
name

image specifier
list

name of a numeric array

literal

integer constant

any valid name

(see drawing)

any valid name

any valid name

(see diagram)

1 thru 32767 repeat factor

literal string constant composed of characters from quote mark not allowed
the keyboard, including those generated us-
ing the I ANY CHAR I key

Example Statements
LABEL Number,String$
LABEL USING "5Z.DD";Money

Semantics
The label begins at the current logical pen position, with the current pen. Labels are
clipped at the current clip boundary. Other statements which affect label generation
are PEN, LINE TYPE, PIVOT, CSIZE, LORG, and LDIR. The current pen position is
updated at the end of the label operation.

Standard Numeric Format
The standard numeric format depends on the value of the number being output. If the
absolute value of the number is greater than or equal to 1E-4 and less than 1E+6, it
is rounded to 12 digits and displayed in floating-point notation. If it is not within these
limits, it is displayed in scientific notation. The standard numeric format is used unless
USING is selected, and may be specified by using K in an image specifier.

COMPLEX numbers are treated like two REAL numbers separated by a semicolon.

Keyword Dictionary 331

Automatic End-Of-Line Sequence
After the label list is exhausted, an End-of-Line (EOL) sequence is sent to the logical
pen, unless it is suppressed by trailing punctuation or a pound-sign image specifier. The
EOL sequence is also sent after every 256 characters. This "plotter buffer exceeded" EOL
is not suppressed by trailing punctuation, but is suppressed by the pound-sign specifier.

Control Codes

Character Keystroke Name Action

CHR$(8) I CTRL ~[8J backspace Back up the width of one character
cell.

CHR$(10) I CTRL ~QJ line-feed Move down the height of one charac-
ter cell.

CHR$(13) I CTRL ~[}[] carriage-return Move back the length of the label just
completed.

Any control character that the LABEL statement does not recognize is treated as an
ASCII blank [CHR$(32)].

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and draws) X X

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOlA.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIA.

332 Keyword Dictionary

LDIR PDIR

Note 4

X

X

Note 2

Arrays
Entire arrays may be output by using the asterisk specifier. Each element in an array
is treated as an item by the LABEL statement, as if the items were listed separately,
separated by the punctuation following the array specifier. If no punctation follows the
array specifier, a comma is assumed. COMPLEX array elements are treated as if the
real and imaginary parts are separated by a semicolon. The array is output in row major
order (rightmost subscript varies fastest).

LABEL Without Using
If LABEL is used without USING, the punctuation following an item determines the
width of the item's label field; a semicolon selects the compact field, and a comma selects
the default label field. When the label item is an array with the asterisk array specifier,
each array element is considered a separate label item. Any trailing punctation will
suppress the automatic EOL sequence, in addition to selecting the label field to be used
for the label item preceding it.

The compact field is slightly different for numeric and string items. Numeric items are
output with one trailing blank. String items are output with no leading or trailing blanks.

The default label field labels items with trailing blanks to fill to the beginning of the
next IO-character field.

Numeric data is output with one leading blank if the number is positive, or with a minus
sign if the number is negative, whether in compact or default field.

LABEL With Using
When the computer executes a LABEL USING statement, it reads the image specifier,
acting on each field specifier (field specifiers are separated from each other by commas)
as it is encountered. If nothing is required from the label items, the field specifier is
acted upon without accessing the label list. When the field specifer requires characters,
it accesses the next item in the label list, using the entire item. Each element in an array
is considered a separate item.

The processing of image specifiers stops when there is no matching display item (and the
specifier requires a display item). If the image specifiers are exhausted before the display
items, they are reused, starting at the beginning.

COMPLEX values require two REAL image specifiers (i e. each COMPLEX value is
treated like two REAL values.)

Keyword Dictionary 333

If a numeric item requires more decimal places to the left of the decimal point than
provided by the field specifier, an error is generated. A minus sign takes a digit place
if M or S is not used, and can generate unexpected overflows of the image field. If the
number contains more digits to the right of the decimal point than are specified, it is
rounded to fit the specifier.

If a string is longer than the field specifier, it is truncated, and the right-most characters
are lost. If it is shorter than the specifer, trailing blanks are used to fill out the field.

Effects of the image specifiers on the LABEL statement are shown in the following table:

Image
Specifier Meaning

K Compact field. Outputs a number or string as a label in standard form with no
leading or trailing blanks.

-K Same as K.

H Similar to K, except the number is output using the European number format
(comma radix). (Requires 10)

-H Same as H. (Requires 10)

S Outputs the number's sign (+ or -) as a label.

M Outputs the number's sign as a label if negative, a blank if positive.

D Outputs one-digit character as a label. A leading zero is replaced by a blank. If
the number is negative and no sign image is specified, the minus sign will occupy a
leading digit position. If a sign is output, it will "float" to the left of the left-most
digit.

Z Same as D, except that leading zeros are output.

* Same as Z, except that asterisks are output instead of leading zeros. (Requires 10)

Outputs a decimal-point radix indicator as a label.

R Outputs a comma radix indicator as a label (European radix). (Requires 10)

E Outputs as a label: an E. a sign, and a two-digit exponent.

ESZ Outputs as a label: an E, a sign, and a one-digit exponent.

ESZZ Same as E.

ESZZZ Outputs as a label: an E, a sign, and a three-digit exponent.

334 Keyword Dictionary

Image
Specifier Meaning

A

x
literal

B

Outputs a string character as a label. Trailing blanks are output if the number
of characters specified is greater than the number available in the corresponding
string. If the image specifier is exhausted before the corresponding string, the
remaining characters are ignored.

Outputs a blank as a label.

Outputs as a label the characters contained in the literal.

Outputs as a label the character represented by one byte of data. This is similar
to the CHR$ function. The number is rounded to an INTEGER and the least-
significant byte is sent. If the number is greater than 32767, then 255 is used; if
the number is less than -32768, then 0 is used.

W Outputs as a label two characters represented by the two bytes of a 16-bit, two's
complement integer. The corresponding numeric item is rounded to an INTEGER.
If it is greater than 32767, then 32767 is used; if it is less than -32768, then
-32768 is used. The most-significant byte is sent first.

Y Same as W. (Requires 10)

Suppresses the automatic output of the EOL (End-Of-Line) sequence following the
last label item.

% Ignored in LABEL images.

+ Changes the automatic EOL sequence that normally follows the last label item to
a single carriage-return. (Requires 10.)

- Changes the automatic EOL sequence that normally follows follows the last label
item to a single line-feed. (Requires 10)

/ Sends a carriage-return and a line-feed to the PLOTTER IS device.

L Same as /.

@ Sends a form-feed to the PLOTTER IS device; produces a blank.

Keyword Dictionary 335

LDIR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement defines the angle at which a label or symbol is drawn. The angle is
interpreted as counterclockwise, from horizontal. The current angle mode is used.

Item Description Range

angle numeric expression in current units of angle; (same as COS)
Default = 0

Example Statements
LDIR 90
LDIR ACS(Side)

336 Keyword Dictionary

Semantics
LDIR affects the appearance of LABEL, LABEL USING and SYMBOL output.

The angle is interpreted as shown below.

LDIR EXRMPLES (in Dearees),

Keyword Dictionary 337

LEN
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the current number of characters in the argument. The length of
the null string (" ") is O.

Example Statements
Last=LEN(String$)
IF NOT LEN(A$) THEN Empty

338 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

LET

This is the assignment statement, which is used to assign values to variables.

Item Description

numeric name name of a numeric variable

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning numeric expression, rounded to an integer
position

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

Range

any valid name

any valid name

-32 767 thru +32 767
(see "array" in Glossary)

1 thru 32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

Keyword Dictionary 339

Example Statements
LET Number=33
Array(I+1)=Array(I)/2
String$="Hello Scott"
A$(7) [1;2]=CHR$(27)ct"Z"

Semantics
The assignment is done to the variable which is to the left of the equals sign. Only
one assignment may be performed in a LET statement; any other equal signs are
considered relational operators, and must be enclosed in a parenthetical expression (Le.,
A=A+ (B=l) +5). A variable can occur on both sides of the assignment operator (i.e., 1=1+1
or Sourc e$=Sourc e$ctTemp$) .

A real expression will be rounded when assigned to an INTEGER variable, if it is within
the INTEGER range. Out-of-range assignments to an INTEGER give an error. If
a REAL or INTEGER value is assigned to a COMPLEX variable, the imaginary part
receives the value O. If a COMPLEX value is assigned to a REAL or INTEGER variable,
the imaginary part is dropped.

The length of the string expression must be less than or equal to the dimensioned length
of the string it is being assigned to. Assignments may be made into substrings, using the
normal rules for substring definition. The string expression will be truncated or blank
filled on the right (if necessary) to fit the destination substring when the substring has an
explicitly stated length. If only the beginning position of the substring is specified, the
substring will be replaced by the string expression and the length of the recipient string
variable will be adjusted accordingly; however, error 18 is reported if the expression
overflows the recipient string variable.

If the name of the variable to the left of the equal sign begins with AND, DIV, EXOR,
MOD or OR (the name of an operator) and the keyword LET is omitted, the prefix
must have at least one uppercase letter and one lowercase letter in it. Otherwise, a live
keyboard execution is attempted and fails, even though the line number is present.

340 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
LEX

Yes
Yes
Yes

LEXICAL ORDER IS

This statement defines the collating sequence for all string relational operators and
operations.

LEXICAL ORDER IS

Item

array name

Examples

Description Range

the name of a one-dimensional INTEGER any valid name
array, with at least 257 elements

LEXICAL ORDER IS FRENCH
LEXICAL ORDER IS Lex_table(*)

Keyword Dictionary 341

Semantics
The STANDARD lexical order is determined by the internal keyboard jumper preset to
match the language on the keyboard. For example, with an English language or Katakana
keyboard, the STANDARD lexical order is the same as the ASCII lexical order.

The default lexical order is STANDARD. This is also true after a SCRATCH A. The most
recent LEXICAL ORDER IS statement overrides any previous definition and affects all
contexts.

Lexical order allows languages to be properly collated. This includes such treatments
as ignoring characters, dealing with accents, and character replacements. See BASIC
Programming Techniques manual for the details of pre-defined and user-defined lexical
order tables.

342 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

LGT

This function returns the logarithm (base 10) of its argument.

Item Description/Default

argument numeric expression

Examples Statements
Decibel=20*LGT(Volts)
PRINT "Log base 10 of ";X;"=";LGT(X)

Semantics

Range
Restrictions

> 0 for INTEGER and
REAL arguments; see
"Range Restriction
Specifics" for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the LGT of a COMPLEX value, the COMPLEX binary must be loaded.

Range Restriction Specifics
The formula used for computing the LGT of a COMPLEX value is:

LOG(Argument)/LOG(10)

where Argument is a COMPLEX argument to the LGT function. Some values of a
COMPLEX argument may cause errors in this computation. For example,

LGT(CMPLX(MAXREAL,MAXREAL»

will cause error 22 due to the LOG (Argument) calculation.

Keyword Dictionary 343

LINE TYPE
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement selects a line type and repeat length for lines, labels, frames, axes and
grids.

Item

type selector

repeat length

Description Range

numeric expression, rounded to an integer; 1 thru 10
Default = 1

numeric expression, rounded to an integer; greater than 0
Default = 5

Example Statements
LINE TYPE 1
LINE TYPE Select.20

Semantics
At power-up the default line type is a solid line (type 1), and the default repeat length
is 5 GDUs.

The repeat length establishes the number of GDUs required to contain an arbitrary
segment of the line pattern. When the plotter is the internal CRT, the repeat length is
evaluated and taken as the next lower multiple of 5, with a minimum value of 5.

When the plotter is an external plotter, the line produced by the line identifier is device
dependent. Refer to your plotter's documentation for further information.

344 Keyword Dictionary

The available CRT line types are shown here.

LINE TYPE 10

LINE TYPE 9
------.

-----. L I I'·JE TYPE 8 ----------
--------,

1 _____ - LINE TYPE ? ---------_.
-------,

----- LINE TV·PE 6 ----------
- --,

- - LINE T'{PE c
._1 - - -

-----_ __ .. ----.
1_ LIt'·JE T\{PE 4 -------------------------

LINE TV·PE :3

LINE T\{PE .~
I-

LINE T\{PE 1

Keyword Dictionary 345

LINK

Option Required HFS

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

This statement links a destination file on an HFS volume to a source file on the same
volume.

literal form of file specifier:

Item Description

file specifier string expression

volume specifier string expression

directory path literal

file name literal

Example Statements
LINK "Sor_file" TO "Des_file"
LINK "Letterl:CS80.700" TO "Letter2"

Range

(see diagram)

(see MASS STORAGE IS)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

LINK "/Home_dir/Filel:CS80.700" TO "/Home_dir/Sub_dir/File2"

346 Keyword Dictionary

Semantics
The LINK statement works only with HFS.

Executing a LINK between files that are on different volumes is not possible. Since the
files that are linked must be on the same volume, you need to give the volume specifier
only with the first file used by the link statement. For example,

LINK IFilel:INTERNAL,4" TO IFile2"

is a legal statement because the second file specifier's default msvs is the first file
specifier's msvs. However, the following statement:

LINK INewsl:CS80,700,l" TO INews2:9133,702,O"

will give an error because the files are on different volumes.

If you RE-STORE or RE-SAVE to a file that has links to it, the links will be broken.

If you OUTPUT to a file that has links to it, the linked files will all have the same
contents.

Keyword Dictionary 347

LINPUT
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
Yes

This statement accepts alphanumeric input from the keyboard for assignment to a string
variable. The LINPUT statement allows commas or quotation marks to be included in
the value of the string, and leading or trailing blanks are not deleted.

348 Keyword Dictionary

Item

prompt

Description

a literal composed of characters from the
keyboard, including those generated using
the ANY CHAR key;
Default = question mark

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning numeric expression, rounded to an integer
position

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

Example Statements
LINPUT "Next Command?".Response$
LINPUT Array$(I) [3]

Semantics

Range

any valid name

-32767 thru +32767
(see "array" in Glossary)

1 thru 32 767 (see
"substring" in Glossary)

o thru32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

A prompt, which remains until the LINPUT item is satisfied, appears on the CRT display
line. If the last DISP statement suppressed its CR/LF, the prompt is appended onto
the current display line contents. If the last DISP did not suppress the CR/LF, the
prompt replaces the current display line contents. Not specifying a prompt results in the
question mark being used as the prompt. Specifying the null string ("") for the prompt
suppresses the question mark.

I CONTINUE I, I ENTER I, I EXECUTE I, I Return I, or I STEP 1 must be pressed to indicate that the
entry is complete. If no value is provided from the keyboard, the null string is used.
If I CONTINUE I, I ENTER I, I EXECUTE I, or I Return 1 is pressed to end the data input, program
execution continues at the next program line. If I STEP 1 is pressed, the program execution
continues at the next program line in single step mode. (If the LINPUT was stepped
into, it is stepped out of, even if I CONTINUE I, I ENTER I, I EXECUTE I, or I Return 1 is pressed.)

Live keyboard operations are not allowed while a LINPUT is waiting for data entry.
I PAUSE 1 (or ~ on an ITF keyboard) can be pressed so live keyboard operations can be
performed. The LINPUT statement is re-executed from the beginning when I CONTINUE 1

or I STEP 1 is pressed.

ON KBD, ON KEY and ON KNOB events are deactivated during an LINPUT statement.
Errors do not cause an ON ERROR branch. If an input response results in an error, the
LIN PUT statement is re-executed.

Keyword Dictionary 349

LIST
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
EDIT

Yes
Yes
Yes

This statement allows you to list the program or the key definitions currently in memory.

Item Description

device selector numeric expression; is rounded to an integer.
Default is PRINTER IS device.

beginning line integer constant identifying program line
number

beginning line name of a program line
label

ending line integer constant identifying program line
number

ending line label name of a program line

Example Statements
LIST
LIST #701
LIST 100,Label1
LIST KEY

350 Keyword Dictionary

Range

(see Glossary)

1 thru 32766

any valid name

1 thru 32766

any valid name

Semantics
LIST
When a label is used as a line identifier, the lowest-numbered line in memory having
that label is used. When a number is used as a line identifier, the lowest-numbered
line in memory having a number equal to or greater than the specified line is used. An
error occurs if the ending line identifier occurs before the beginning line identifier or if a
specified line label does not exist in the program.

Executing a LIST from the keyboard while a program is running causes the program
to pause at the end of the current line. The listing is sent to the selected device, and
program execution resumes.

After the listing is finished, the amount of available memory, in bytes, is displayed on
the CRT.

Note that the default width of the PRINTER IS device is 80 characters, which means
that a carriage-return (CR) and line-feed (LF) character will be sent after 80 characters
are printed on anyone line. You can change this, however, with the WIDTH attribute
of the PRINTER IS statement.

LIST #device selector is always done as if the WIDTH OFF printer attribute was in
effect.

LIST KEY (Requires KBD and Does Not Require EDIT)
The LIST KEY statement lists the current typing-aid key definitions (not the labels of
ON KEY definitions) to the specified device. If a key does not currently have a definition,
it will not be listed.

LIST BIN (Does Not Require EDIT)
The LIST BIN statement lists the BINs currently loaded in memory. The name, version
and brief description of the BIN is listed. For example:

NAME

GRAPH

MAT

BASIC/UX Specifics

VERSION

5.0

5.0

DESCRIPTION

Graphics

Matrix Statements

The "available memory" displayed at the end of a LIST, shows the available BASIC lUX
workspace (not the system memory available).

LISTEN

See the SEND statement.

Keyword Dictionary 351

LIST WINDOW
Supported On UX
Option Required nj a
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

This statement lists the currently defined windows and their attributes.

(LIST WINDOW) ·1

lcu-B
Item

device_selector

Description

numeric expression, rounded to integer.
Default is PRINTER IS device

Example Statements
LIST WINDOW

Semantics

Range

601 thru 699

This statement is only valid when running under X Windows. It then outputs a table of
all currently defined windows and their attributes to the specified device, or if absent to
the PRINTER IS device.

When not in a window system, this statement causes an error.

352 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF 0 0 0 THEN

WS,UX
None

Yes
Yes
Yes

LOAD

This statement allows you to load programs, BIN files, or typing-aid softkey definitions.

literal form of file specifier:

Item

file specifier

directory path

file name

Description

string expression

literal

literal

Range

(see drawing)

(see MASS STORAGE IS)

depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

run line number integer constant identifying program line

run line label name of a program line

(see MASS STORAGE IS)

1 thru 32765

any valid name

Keyword Dictionary 353

Example Statements
LOAD File_name$&Volume$
LOAD "UTIL",120
LOAD BIN "MAT"
LOAD KEY "KEYS:INTERNAL,4,l"

LOAD BIN Dir$&File$&Volume$
LOAD "/Dirl/Dir2/Prog2",500
LOAD "Dir3/Prog_l:REMOTE"

LOAD BIN "dir1/dir2/bin_file<SRM_READ_pass>:REMOTE 21,5;LABEL Disc"

LOAD KEY "KEYS:REMOTE"
LOAD KEY "/Dirl/Dir2/Keyfile"

Semantics
LOAD
The BASIC program and all variables not in COM are lost when a LOAD is executed.
Every COM block in the newly-loaded program is compared with the COM blocks of
the program in memory. If a COM area of the newly-loaded program does not match
an existent COM area, the values in the old COM area are lost. Thus, some COM areas
may be retained while others are lost. If a PROG file contains a binary program that is
not compatible with the current version of BASIC, the binary is skipped, a warning is
printed, and the program is loaded. If it contains a binary that is compatible with the
current version of BASIC, the binary is loaded.

LOAD is allowed from the keyboard if a program is not running. If no run line is specified,
I RUN I must be pressed to initiate program execution, and execution will begin on the first
line in the program. If a run line is specified, pre run initialization (see RUN) is performed,
and program execution begins at the line specified. The line on which execution begins
must exist in the main program context of the newly-loaded program. If you specify a
line number and it doesn't exist, execution begins with the next higher-numbered line,
provided that line is in the main program context.

Executing LOAD from a program causes the new program file to be loaded, prerun,
and program execution to resume. Execution begins at the line specified, or the lowest
numbered program line if a run line is not specified.

354 Keyword Dictionary

Autostart Program Files
BASIC automatically loads and runs a file called AUTOST if the file exists on the boot
mass storage device (and if it is of type PROG). If the system is loaded from an HFS
volume, the autostart file is /WORKSTATIONS/ AUTOST. If the system is loaded from
SRM, the autostart file is /SYSTEMS/AUTOSTnn, where nn is the node number of
the SRM interface installed in the computer you are booting; if this file does not exist,
BASI C looks for / A UTOST.

BASIC/UX first checks if an autostart file (PROG, ASCII, or HP-UX) was specified in
the rmb command line. If not, it checks the rmbrc environment file(s). If one is not found,
it checks the current directory, and then the home directory, for a file called AUTOST.

HFS Permissions
In order to LOAD a file from an HFS volume, you need to have R (read) permission on
the file, and X (search) permission on the immediately superior directory as well as all
other superior directories.

LOAD with SRM Volumes
In order to LOAD a file from an SRM volume, you need to have READ access capability
on the file, on the immediately superior directory, and on all other superior directories.

LOAD from an SRM volume is executed in shared mode, which means that several users
can LOAD a file at the same time. Files being stored with the STORE or RE-STORE
statements are locked during that operation and cannot be accessed for loading.

LOAD Requirements for Device Drivers
With HFS volumes, you must have all drivers for the disc from which you are loading
the program. For instance, if you are loading from a CS80-type disc, you must have
HPIB, CS80, and HFS binaries currently in memory. (This is not like other volumes. It
is required because the Boot ROM does not contain drivers for HFS volumes, but it does
contain drivers for LIF and SRM volumes.)

BASIC/UX has binaries permanently loaded, but it is necessary to have the correct
drivers configured into the HP-UX kernel. For example, if you are loading from a CS80-
type disk, you must have the CS80 driver in the kernel. Check by using the rmbconfig
program with the -8 option.

Keyword Dictionary 355

LOAD BIN (BASIC Workstation only)
LOAD BIN is used to load BIN files. (A BIN file contains either language extensions, such
as MAT or GRAPH, or drivers, such as DISC and HPIB.) A BIN file may contain more
than one of the extensions or drivers; if so only the entensions or drivers not already
present in memory are loaded. Executing a LOAD BIN does not affect the currently
loaded BASIC program or any variables.

BASICjUX has permanently loaded binaries, so this statement is not appropriate for
BASICjUX. It generates an error message.

LOAD BIN Requirements for Device Drivers (BASIC Workstation only)
BIN files can usually be loaded from a mass storage device even though the BIN (s) to
access that device are absent (as long as the Boot ROM has the required drivers). Most
Boot ROMs have drivers for LIF and SRM volumes and HPIB interfaces, but not for
HFS volumes. If the Boot ROM does not have the drivers for the device from which you
want to load a BIN file, then you will need to first install all required drivers for that
device (such as HFS, CS80, and HPIB).

LOAD BIN with SRM Volumes (BASIC Workstation only)
LOAD BIN is executed in shared mode, which means that several users can load a BIN
file at the same time. BIN files can be loaded into a workstation from the SRM without
the SRM and DCOMM binaries present in the workstation (as described in the preceding
paragraph). However, you cannot perform operations like STORE without these binaries.

LOAD KEY (Requires KBD)
LOAD KEY sets the typing-aid definitions of the softkeys according to the contents of
the specified BDAT file. If the file is not in the proper format, an error occurs. The file
containing the key definitions may be created by a user program. See the STORE KEY
statement for file format.

All existing key definitions are cleared before the file's key definitions are loaded.

If LOAD KEY is executed without a file specifier, the keys are reset to their power-on
values.

ON KEY definitions are not affected by LOAD KEY.

356 Keyword Dictionary

LOAD KEY with SRM Volumes
In order to LOAD KEY a file on an SRM volume, you need to have READ access
capability on the immediately superior directory, as well as READ capability on all
other superior directories.

LOAD KEY is executed in shared mode, which means that several users can perform a
LOAD KEY from a BDAT file at the same time. Files being stored with the STORE
KEY or RE-STORE KEY statements are locked during that operation and cannot be
accessed for loading.

BASIC/UX Specifics
LOAD BIN generates an error message as it is not appropriate for BASIC/UX (binaries
are permanently loaded).

Keyword Dictionary 357

LOADSUB
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes (See Semantics)
Yes (See Semantics)

This statement allows you to load subprograms from a PROG file into memory.

literal form of file specif,er:

358 Keyword Dictionary

Item

subprogram
name

function name

file specifier

directory path

file name

Description

name of a SUB or CSUB subprogram

name of a user-defined function

string expression

literal

literal

Range

any valid name

any valid name

(see drawing)

(see :MASS STORAGE IS)

depends on volume's format
(see Glossary)

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

volume specifier literal

Example Statements
LOADSUB FROM "Subs_File" (Not Programmable)
LOADSUB FNReplace$ FROM "Subs_File"
LOADSUB ALL FROM Subfile$
LOADSUB ALL FROM "Dir3/Progfile<SRM_READ_pass>"
LOADSUB ALL FROM "/Dirl/Dir2/Prog23"

(see MASS STORAGE IS)

Keyword Dictionary 359

Semantics
LOADSUB FROM (Requires PDEV)
The command LOADSUB FROM (without a subprogram name) is not programmable;
it is used before a program is run. It looks through the program and notices all the
subprogram references which are unsatisfied. Unsatisfied references are statements which
reference subprograms that don't yet exist in memory. It then accesses the specified file
(which must be a PROG file), and loads all the needed subprograms, appending them
to the end of the current program, renumbering as necessary. It also looks through the
subprograms it just loaded to see if they call anything which is not yet in memory. If
so, those references will be satisfied. This process repeats for each set of subprograms
loaded until all the routines that are referenced are loaded or until it is determined they
are not in the specified file. At the end of the LOADSUB FROM command, if there are
still unsatisfied references, an error message and a list of the subprograms names still
needed is displayed.

LOADSUB ALL FROM
LOADSUB <subprogram name> FROM
LOADSUB, when a subprogram name or ALL is included, loads the specified subpro
gram(s) from the specified file. This form is programmable. If either the file name or the
subprogram name specified is not found, or the file name is not a PROG file, an error
will occur. As the subprogram is loaded, it will be renumbered to fit at the end of the
program. LOAD SUB does not cause the program or any data currently in memory to
be lost.

HFS Permissions
In order to LOADSUB from a file on an HFS volume, you need to have R (read) access
permission on the file, and X (search) permission on the immediately superior directory
and on all other superior directories.

LOADSUB with SRM Volumes
In order to LOADSUB from a file on an SRM volume, you need to have READ access
capability on the immediately superior directory, as well as READ capability on all other
superior directories.

With SRM, LOADSUB is executed in shared mode, which means that several worksta
tions can perform a LOADSUB of a file at the same time. PROG files being stored with
the STORE or RE-STORE statement are locked during that operation and cannot be
accessed for loading.

360 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF, __ THEN

WS,UX
10

Yes
Yes
Yes

This statement returns all specified devices to their local state.

LOCAL

Item Description Range

I/O path name

device selector

name assigned to a device or devices any valid name
(see ASSIGN)

numeric expression, rounded to an integer (see GLOSSARY)

Example Statements
LOCAL IDDvm
LOCAL 7

Keyword Dictionary 36~

Semantics
If only an interface select code is specified by the I/O path name or device selector, all
devices on the bus are returned to their local state by setting REN false. Any existing
LOCAL LOCKOUT is cancelled.

If a primary address is included, the GTL message (Go To Local) is sent to all listeners.
LOCAL LOCKOUT is not cancelled.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

ATN ATN
MTA MTA

Active REN UNL ATN UNL
Controller LAG GTL LAG

GTL GTL

Not Active
REN Error

Controller

362 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
10

Yes
Yes
Yes

LOCAL LOCKOUT

This HP-IB statement sends the LLO (local lockout) message, preventing an operator
from returning the specified device to local (front panel) control.

LOCAL LOCKOUT

Item

I/O path name

interface select
code

Description Range

name assigned to an interface select code any valid name
(see ASSIGN)

numeric expression, rounded to an integer 7 thru 31

Example Statement~
LOCAL LOCKOUT 7
LOCAL LOCKOUT ~Hpib

Keyword Dictionary 363

Semantics
The computer must be the active controller to execute LOCAL LOCKOUT.

If a device is in the LOCAL state when this message is sent, it does not take effect on that
device until the device receives a REMOTE message and becomes addressed to listen.

LOCAL LOCKOUT does not cause bus reconfiguration, but issues a universal bus
command received by all devices on the interface whether addressed or not. The
command sequence is ATN and LLO.

Summary of Bus Actions

System Controller Not System Controller

Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified

Active ATN
Error

ATN
Error

Controller LLO LLO

Not Active
Error

Controller

LOCATOR
See the READ LOCATOR and SET LOCATOR statements.

364 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF, , . THEN

WS,UX
SRM & DCOMM

Yes
Yes
Yes

LOCK

This statement prevents other SRM workstations from accessing the SRM file to which
the I/O path name is currently assigned (see ASSIGN).

Item Description

I/O path name name identifying an I/O path

return variable name of a numeric variable

Example Statements
LOCK ~File;CONDITIONAL Result
LOCK ~Ascii_l;CONDITIONAL Error_number

Semantics

Range

any valid name (See Glos
sary)

any valid name (See Glos
sary.)

This statement establishes sole access to an SRM file that has been opened with an
ASSIGN statement. This exclusive access remains assigned to the workstation (or SRM,
or BASIC/UX process) executing the LOCK statement until an UNLOCK statement is
executed by that workstation. The UNLOCK function is also a result of SCRATCH A,
I RESET I and ASSIGN ... TO * (explicitly closing an I/O path).

A file may be locked several times. The system counts the number of LOCKs on a file,
and an equal number of UNLOCKs must be executed to unlock the file. When an I/O
path name is closed (for example, by ASSIGN ... TO *), all LOCKs of that I/O path name
are cleared.

If the LOCK is successful, the value of the return variable will be zero. Otherwise, the
return variable's value will be the error number corresponding to the cause of the LOCK's
failure.

Keyword Dictionary 365

BASIC/UX Specifics
BASIC/UX supports LOCK for HFS files: establish exclusive access to a file by the
BASIC/UX process. In order to LOCK the file exclusively, you must have write
permission on the file. In addition, you must either own the file, or the file must have
the set group-id bit on and the group search bit off. If this is not the case, an attempt
is made to set up an advisory lock.

BASIC/UX does not support locking of RFA, NFS or LIF files, although no error is
generated when the LOCK statement is executed. Locking of pipes is not allowed; an
attempt to LOCK a pipe generates a run-time error.

Also note that if two or more BASIC/UX processes are running on the same workstation,
commands such as ENTER and OUTPUT will not block waiting for the file to be
unlocked. Instead, they generate an error.

366 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the logarithm (base e) of its argument.

Item Description/Default

argument numeric expression

Examples Statements
Time=-l*Rc*LOG(Volts/Emf)
PRINT "Natural log of ";Y;"=";LOG(Y)

Semantics

Range
Restrictions

LOG

> 0 for INTEGER and
REAL arguments; see
"Range Restriction
Specifics" for COMPLEX
arguments

If the argument is REAL or INTEGER, the value returned is REAL. If the argument is
COMPLEX, the value returned is COMPLEX.

To compute the LOG of a COMPLEX value, the COMPLEX binary must be loaded.

Range Restriction Specifics
The formula used for computing the LOG of a COMPLEX value is:

CMPLX(LOG(ABS(Argument»,ARG(Argument»

where Argument is a COMPLEX argument to the LOG function. The imaginary part of
the result (ARG(Argument») is always given in radians and is between -7r and +7r. Some
values of a COMPLEX argument may cause errors in this computation. For example:

LOG(CMPLX(MAXREAL,MAXREAL»

will cause error 22 due to the ABS (Argument) computation.

Keyword Dictionary 367

LOOP
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

No
Yes
No

This construct defines a loop which is repeated until the boolean expression in an EXIT
IF statement evaluates to be logically true (evaluates to a non-zero value).

(EXIT IFH

(END LOOP}----l

Item

boolean
expresslon

Description

boolean
expression

numeric expression; evaluated as true if non
zero and false if 0

program segment any number of contiguous program lines not
containing the beginning or end of a main
program or subprogram, but which may con
tain properly nested construct(s).

Example Program Segments
460 LOOP
470 EXIT IF LEN(A$)<2
480 P=POS(A$,Delim$)
490 EXIT IF NOT P
500 A$=A$[l,P-1]&A$[P+2]
510 END LOOP

1200 LOOP ! Until an EOF branch
1210 ENTER ~File;Text$
1220 PRINT Text$
1230 END LOOP

368 Keyword Dictionary

Range

Semantics
The LOOP ... END LOOP construct allows continuous looping with conditional exits
which depend on the outcome of relational tests placed within the program segments.
The program segments to be repeated start with the LOOP statement and end with END
LOOP. Reaching the END LOOP statement will result in a branch to the first program
line after the LOOP statement.

Any number of EXIT IF statements may be placed within the construct to escape from
the loop. The only restriction upon the placement of the EXIT IF statements is that
they must not be part of any other construct which is nested within the LOOP ... END
LOOP construct.

If the specified conditional test is true, a branch to the first program line following the
END LOOP statement is performed. If the test is false, execution continues with the
next program line within the construct.

Branching into a LOOP ... END LOOP construct (via a GOTO) results in normal
execution from the point of entry. Any EXIT IF statement encountered will be executed.
If execution reaches END LOOP, a branch is made back to the LOOP statement, and
execution continues as if the construct had been entered normally.

Nesting Constructs Properly
LOOP ... END LOOP may be placed within other constructs, provided it begins and ends
before the outer construct can end.

Keyword Dictionary 369

LORG
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

This statement specifies the relative origin of a label or symbol with respect to the current
pen position.

§--...J label. origin ~
posltlon

Item Description

label origin posi- numeric expression, rounded to an integer; 1 thru 9
tion Default = 1

Example Statements
LORG 4
IF Y>Limit THEN LORG 3

Semantics

Range

The following drawings show the relationship between a label and the logical pen position.
The pen position before the label is drawn is represented by a cross marked with the
appropriate LORG number.

370 Keyword Dictionary

3 6 9

+ + +
8 ~I \) ~I 1\

L V-tL \j+
1 4 7

+ + +
Label Origins for Labels with an Even Number of Characters

3 6 9

+ + +
5 8

+ +
1 4 7

+ + +
Label Origins for Labels with an Odd Number of Characters

Keyword Dictionary 371

LWC$
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function replaces any uppercase characters with their corresponding lowercase
characters.

string
expresslon

Example Statements
Lower$=LWC$ ("UPPER")
IF LWC$(Yes$)="y" THEN True test

Semantics
The LWC$ function converts only uppercase alphabetic characters to their corresponding
lowercase characters and will not alter numerals or special characters.

The corresponding characters for the Roman Extension alphabetic characters are deter
mined by the current lexical order. When the lexical order is a user-defined table, the
correspondence is determined by the STANDARD lexical order.

372 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

MASS STORAGE IS

This statement specifies the system mass storage device.

SRM and DCOMM
or HFS

Keyword Dictionary 373

literal form of volume specifier:

374 Keyword Dictionary

Item

directory
specifier

volume specifier

directory path

directory name

Description

string expression

string expression

literal

literal

Range

(see drawing)

(see drawing)

(see drawing)

depends on volume's format
(14 characters for HFS;
255 characters for HFS long
file name systems;
16 characters for SRM;
see Glossary for details)

SRM password literal; first 16 non-blank characters are sig- > not allowed
nificant

device type literal (see Semantics)

device selector integer constant (see Glossary)

unit number integer constant; 0 thru 255
Default = 0 (device-dependent)

volume number integer constant; (device-dependent)
Default = 0

SRM interface se- integer constant identifying the SRM inter- 8 through 31
lect code face in the workstation

SRM server's literal
node address

SRM volume
name

SRM volume
password

literal

literal

Example Statements
MASS STORAGE IS Vol_specifierS
MSI ":,700"
MSI I:INTERNAL,4,l"
MSII:X,12"
MSI ":REMOTE"
MSI II :HFS" (BASIC/UX only)
MASS STORAGE IS Dir_path$&Vol_specifier$
MSI "/Dir1/Dir2/MyDirl
MSI " .. / .. "
MSI 1.<SRM_READ_pass>"

o through 63

any valid SRM volume name
(see Glossary)

any valid SRM volume pass
word (see Glossary)

Keyword Dictionary 375

Semantics
All mass storage operations which do not specify a source or destination by either an I/O
path name or volume specifier in the file specifier use the current system mass storage
device.

MASS STORAGE IS can be abbreviated as MSI when entering a program line, but a
program listing always shows the unabbreviated keywords.

Device Type
The following table shows the valid device types. Most device types require an option
BIN for the statement to execute.

Binary
Device Type Required

INTERNAL none
(Models 226 and 236 only)

MEMORY

HP 9121 DISC &
HP 9133 HPIB or FHPIB
HP 9134
HP 9135 (51f4-inch disc requires

HPIB not FHPIB)
HP 913X
HP 9895

HP 82901 DISC & HPIB
HP 82902
HP 8290X

All "CS/80" and "SS/80" drives; CS80 &
for instance: HPIB or FHPIB
HP 7908
HP 7914
HP 9122
HP 9153
HP 7946
etc.

REMOTE (SRM) SRM & DCOMM

BUBBLE BUBBLE

EPROM EPROM

376 Keyword Dictionary

Note

The 98625 Card (which requires the FHPIB binary) cannot be used
with external 51/4-inch discs.

If the device type specified is not valid, the system tests the device to determine its type.
There are two exceptions to this.

1. If the device selector is 0 and the device type is invalid, the device type is assumed
to be MEMORY.

2. If the device type is valid and the driver BIN for the device is not loaded, the
system considers the device an invalid device type.

If a valid device type is specified and the system finds a different device at the device
selector, error 72 occurs.

Non-Disc Mass Storage
Memory volumes are created by the INITIALIZE statement. They are removed by
SCRATCH A or by turning off the power. The unit number for a MEMORY volume
may be 0 thru 31.

The following is for BASIC Workstation only:

A bubble memory card may have an select code of 8 thru 31. (Use of this card requires
the BUBBLE BIN.) A bubble memory card is always unit number O. It is recommended
that these cards be given a high hardware-interrupt level to avoid error 314 in overlapped
applications.

When writing data into EPROM (requires the EPROM BIN), specify the select code of
the EPROM Programmer card that is connected to the desired EPROM memory card.
When reading data from EPROM, specify a select code of 0 or use the select code of the
currently connected EPROM Programmer card. If the programmer card at the specified
select code is not connected to the specified EPROM memory card, an error is reported.
If the select code of 0 is used, you must specify "EPROM" in the mass storage unit
specifier; otherwise, the system assumes MEMORY.

The unit numbers are given to the EPROM memory cards at power-up according to
relative memory addresses. The card with the lowest address is given unit number 0, the
card with the next greater address is given unit number 1, and so forth.

Keyword Dictionary 377

MSI with SRM and HFS Volumes
With hierarchical volumes (such as SRM and HFS), MASS STORAGE IS can also be
used to specify the current working directory.

In order to specify an HFS directory as the current working directory, you need to have X
(search) permission of the immediately superior directory as well as on all other superior
directories.

In order to specify an SRM directory as the current working directory, you need to have
READ access capability on all superior directories.

If you specify an SRM volume password in an MSI statement, that password is
automatically applied to all accesses that use the default volume (that is, when no volume
specifier is included in the file specifier) until a mass storage volume specifier is included
in a subsequent MSI.

MSI and Driver Binaries
With BASIC 5.0, executing MASS STORAGE IS requires accessing the volume (since the
system cannot determine whether a volume is a LIF or an HFS format). This operation
requires that all drivers for the interface, disc, and directory format be present; for
instance, you must have HPIB, CS80, and HFS binaries currently loaded in order to MSI
to an HFS directory. If media is not present (hence cannot be accessed), BASIC assumes
the volume is LIF format.

BASIC/UX Specifics
BASIC/UX provides an abbreviated form of the msvs to refer to the current directory
for HFS. ": HFS" refers to the most recent HFS directory used in an MSI command.

HFS is a valid logical device type, and if HFS is specified with a non-HFS device selector,
an error occurs (unless that device selector has been mapped to an HFS directory in the
rmbrc environment file; see Installing and Mainting the BASICjUX System.).

378 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

MAT

MAT can be used to initialize string and numeric arrays to constant values and copy
string and numeric arrays. It can also be used to perform arithmetic operations on
numeric arrays and, through the use of secondary keywords, can be used to perform
special functions on numeric arrays.

Keyword Dictionary 379

380 Keyword Dictionary

Item Description

string array name name of a string array

array name

operator

vector name

matrix name

name of a numeric array

Any of the following:
+ - . / < <~ ~ <> >= > *
name of a one-dimensional numeric array

name of a two dimensional numeric array

Example Statements
MAT A= A*(Ref+l/3)
MAT A= A+B
MAT A= B<(1)
MAT A= B<>C
MAT V= CSUM(A)
MAT I= ION
MAT B= INV(A)
MAT Oes_array(-1:0.2:4)= Sor_array
MAT Array_l= Array_2(-4:1)
MAT Oestination(3.*.*)= Source(*.2.*)
MAT Result= REAL(Complex_array)
MAT New_array= IMAG(Complex_array)
MAT Return_ary= CMPLX(Arrayl.Array2)
MAT Oes_ary= CONJG(Complex_array)
MAT Array= ARG(Complex_array)
MAT Matrix_l= (CMPLX(34.56.-23.78»
MAT Magnitudes= ABS(Complex_array)

Range

any valid name

any valid name

. can only appear between
two arrays

any valid name

any valid name

Keyword Dictionary 381

Semantics
The MAT statement allows you to:

• Copy a string expression into a string array or copy the contents of one string array
into another string array.

• Copy a numeric expression into an array.

• Copy two REAL arrays into a COMPLEX array with the first REAL array
representing the real part of the COMPLEX elements and the second REAL array
representing the imaginary parts.

• Copy the contents of one array or subarray into another array or subarray.

• Add an array and a numeric expression, or two arrays.

• Subtract a numeric expression from an array, an array from a numeric expression,
or an array from an array.

• Multiply an array by a numeric expression or another array.

• Divide a numeric expression by an array, an array by a numeric expression, or an
array by an array.

• Compare an array to a numeric expression or to another array.

• Calculate the Identity, Inverse, Transpose, Sum of rows, and Sum of columns of a
matrix.

• Extract the real part or imaginary parts of a COMPLEX array.

• Compute the COMPLEX conjugate, argument or absolute value (magnitude) of
COMPLEX array elements.

• Calculate the absolute value of an INTEGER, REAL, or COMPLEX array.

Note

If an error occurs during the calculations involved in a MAT
assignment the result array will contain only a partial result. Since
you will have no idea which entries are valid, the contents of the
array should be considered invalid.

382 Keyword Dictionary

Numeric Operations
In the case of operators, the specified operation is generally performed on every array
element, and the results are placed in corresponding locations of the result array (the
exception is the * operator, which is discussed under Matrix Multiplication, below.)
This means that the result array must have the same "size" and "shape" (though not
necessarily the same subscript ranges) as the operand array(s). Note that "size" refers to
the number of elements in the array and "shape" refers to the same number of dimensions
and elements in each dimension, respectively (e.g. both of these subscript specifiers have
the same shape: (-2:1,-1:10) and (1:4,9:20»). If necessary, the system will redimension
the result array to make it the proper size. The redimensioning can only take place,
however, if the dimensioned size of the result array has at least as many elements as the
current size of the operand array(s).

When two arrays are operated on, they must be exactly the same size and shape. If not,
the computer returns an error. The specified operation is performed on corresponding
elements in each operand array and the result is placed in the corresponding location of
the result array. Multiplication of the elements of two arrays is performed with a period
rather than an asterisk. The asterisk is reserved for matrix multiplication described
below.

Relational Operators
Relational operations are performed on each element of the operand array(s). If the
relation is TRUE, a 1 is placed in the corresponding location of the result array. If the
relation is FALSE, a 0 is recorded. The result array, therefore, consists of all O's and
1 'so Note that the only comparison operators allowed between COMPLEX expressions
or arrays are: = and <>.

Complex Operations
Complex functions can be used by the MAT statement to:

• extract the real and/or imaginary parts of a COMPLEX array and assign them to
a resultant array,

• create a COMPLEX array from two REAL or INTEGER arrays,

• compute the COMPLEX conjugate, argument or absolute value (magnitude) of
COMPLEX array elements and assign them to a resultant array.

Keyword Dictionary 383

The complex functions available with the MAT statement are given below. The
arguments used with these functions can be INTEGER, REAL or COMPLEX arrays.

REAL (Array)

IMAG(Array)

CMPLX(Array1.Array2)

CONJG(Array)

ARG(Array)

ABS(Array)

Matrix Multiplication

assigns the real parts of each array element to the corre
sponding element in the resultant array.

assigns the imaginary parts of each array element to the
corresponding element in the result array.

creates COMPLEX values from two numeric arrays by as
signing each element of the first array (Array1) to the cor
responding real part of the result array element, and each
element of the second array (Array2) to the corresponding
imaginary part of the result array element (if it is COM
PLEX). If either of the array arguments are COMPLEX
arrays, only the real part of that array is used in the cre
ation of the values.

computes the conjugate of each COMPLEX array element
and assigns this result to the corresponding element in the
result array.

computes the argument of each COMPLEX array element
and assigns this result to the corresponding element in the
result array.

computes the absolute value of each COMPLEX array
element and assigns this result to the corresponding element
in the result array.

The asterisk is used for two operations. If it is between an array and a numeric expression,
each element in the array is multiplied by the numeric expression. If it is between two
matrixes, it results in matrix multiplication. If A and B are the two operand matrices,
and C is the result matrix, the matrix multiplication is defined by:

where n is the number of elements in a column in the matrix A. (This formula assumes
that the array subscripts run from 1 through N; in actuality, the computer only requires
that the two arrays be the correct size and shape, the actual values of the subscripts are
unimportant.)

384 Keyword Dictionary

Note that the subscript values of the result array correspond to the rows of the first
operand matrix and the columns of the second operand matrix. Note also that the
column subscript of the first operand array is equal to the row subscript of the second
operand array. We can summarize these observations in two general rules:

• The result matrix will have the same number of rows as the first operand matrix
and the same number of columns as the second operand matrix.

• Matrix multiplication is legal if, and only if, the column size of the first operand
matrix is equal to the row size of the second operand matrix.

A third rule of matrix multiplication is:

• The result matrix cannot be the same as either operand matrix.

If either array is COMPLEX, the operation is done in COMPLEX math. Otherwise, the
calculation is done in REAL math unless both operands are INTEGER, in which case
the computation is also INTEGER. If the result matrix and the operand matrixes are
different types (Le., one is REAL and the others are INTEGER), the computer makes
the conversion necessary for the assignment. However, the conversion is made after
the multiplication is calculated, so even if the matrix receiving the result is REAL, the
multiplication can generate an INTEGER' overflow when the operands are INTEGER
matrixes.

The computer allows you to do matrix multiplication on vectors by treating the vectors
as if they were matrices. If the first operand is a vector, it is treated as a I-by-N matrix.
If the second operand is a vector, it is treated as an N-by-l matrix.

Copying Subarrays
A subarray is a subset of an array (an array within an array). A subarray is indicated
by a specifier after the array name as follows:

Array_name (subarray_specifier)
Array_name$(subarray_specifier)

For example if you wanted to specify the entire second column of a 3 x 3 two-dimensional
array, you would use the following subarray:

Array_name(*.2)

Keyword Dictionary 385

Copying subarrays is useful when you need to:

• Copy a Subarray into an Array

• Copy an Array into a Subarray

• Copy a Subarray into a Subarray

• Copy a Portion of an Array into Itself

For a complete discussion of this subject, read the section entitled "Copying Subarrays"
found in the "Numeric Arrays" chapter of the BASIC Programming Techniques manual.
(Note that you can also copy subarrays of string arrays.)

Before discussing the rules for subarrays the concept of range needs to be understood
as it appears in this text. There are two types of ranges to be considered when using
subarrays they are the: subscript range and default range. Th(' subscript range is used
to specify a set of elements starting with a beginning element position and ending with
a final element position. For example, 5: 8 represents a range of four elements starting
with element 5 and ending at element 8. The default range is denoted by an asterisk (*)
and represents all of the elements in a dimension from the dimension's lower bound to
its upper bound. For example, suppose you wanted to copy the entire first column of
a two dimensional array, you would use the following subarray specifier: (* ,1), where *
represents all the rows in the array and 1 represents only the first column.

Some rules to follow when copying subarrays are as follow:

• Subarray specifiers must not contain all subscript expressions (i.e. (1,2,3) is not
allowed, it will produce a syntax error). This rule applies to all subarray specifiers.

• Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*, *, *)

is not allowed, it will produce a syntax error). This rule applies to all subarray
specifiers.

• If two subarrays are given in a MAT statement, there must be the same number of
ranges in each subarray specifier. For example,

MAT Des_array1(1:10.2:3)= Sor_array(5:14,*.3)

is the correct way of copying a subarray into another subarray provided the default
range given in the source array (Sor_array) has only two elements in it. Note that
the source array is a three-dimensional array. However, it still meets the criteria
of having the same number of ranges as the destination array because two of its
entries are ranges and one is an expression.

386 Keyword Dictionary

• If two subarrays are given in a MAT statement, the subscript ranges in the source
sub array must be the same shape as the subscript ranges in the destination subarray.
For example, the following is legal:

MAT Des_array(1:5,O:1)= Sor_array(3,1:5,6:7)

however, the one below is not legal:

MAT Des_array(O:1,1:5)= Sor_array(1:5,O:1)

because both of its subarray specifiers do not have the same shape (i.e. the rows
and columns in the destination sub array do not match the rows and columns in the
source sub array).

CSUM
This secondary keyword computes the sum of each column in a matrix and places the
results in a vector. The result vector must have at least as many elements as the matrix
has columns. If the vector is too large or its current size is too small (and there are enough
elements in its original declaration to allow redimensioning), the computer redimensions
it. If the result vector and the argument array are different types (Le., one is REAL and
the other is INTEGER), the computer makes the necessary conversion. However, the
conversion is made after the column sums are calculated, so even if the vector receiving
the result is REAL, CSUM can generate an INTEGER overflow when the argument is
an INTEGER array.

ION
This secondary keyword turns a square matrix into an identity matrix. An identity
matrix has Is along the main diagonal and Os everywhere else. The matrix must be
square.

INV
This secondary keyword finds the inverse of a square matrix. A matrix multiplied by
its inverse produces an identity matrix. The inverse is found by using the pivot-point
method. If the value of the determinant (see DET) is 0 after an INV, then the matrix
has no inverse-whatever inverse the computer came up with is invalid. If the value of
the determinant is very small compared with the elements in the argument matrix, then
the inverse may be invalid and should be checked.

If the result matrix is not the same size and shape as the argument matrix, the computer
will attempt to redimension it. If it is too large, or its current size is too small (and there
are enough elements in its original declaration to allow redimensioning) the computer
redimensions it. An error is returned if the computer cannot redimension the result
array.

Keyword Dictionary 387

RSUM
This secondary keyword computes the sum of each row in a matrix and places the values
in a vector. The result vector must be large enough to hold the sums of each row. If
it is too large, or its current size is too small (and there are enough elements in its
original declaration to allow redimensioning) the computer redimensions it. If the result
vector and the argument array are different types (i.e., one is REAL and the other is
INTEGER), the computer makes the necessary conversion. However, the conversion is
made after the row sums are calculated, so even if the vector receiving the result is
REAL, RSUM can generate an INTEGER overflow when the argument is an INTEGER
array.

TRN
This secondary keyword produces the transpose of a matrix. The transpose is produced
by exchanging rows for columns and columns for rows. The result matrix must be
dimensioned to be at least as large as the current size of the argument matrix. If it's the
wrong shape, the computer redimensions it. The result and argument matrices cannot
be the same.

The transpose of an N-by-M matrix is an M-by-N matrix, and each element is defined by
switching the subscripts. That is, A(m,n) in the argument matrix equals B(n,m) in the
result matrix. (This description assumes that the array subscripts run from 1 through M
and 1 through N; in actuality, the computer only requires that the array be the correct
size and shape, the actual values of the subscripts are unimportant.)

388 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

MAT REORDER

This statement reorders elements in an array according to the subscript list in a vector.

Item

array name

vector name

dimension

Description

name of an array

name of a one-dimensional numeric array

numeric expression, rounded to an integer;
Default = 1

Example Statements
MAT REORDER A BY B
MAT REORDER A BY B,2

Semantics

Range

any valid name

any valid name

1 thru 6;
~ the RANK of the array

The dimension parameter is used to specify which dimension in a multidimensional array
is to be reordered. If no dimension is specified, the computer defaults to dimension
1. The vector must be the same size as the specified dimension and it should contain
integers corresponding to the subscript range of that dimension (no duplicate numbers, or
numbers out of range). The vector used cannot be a COMPLEX vector, but COMPLEX
arrays can be re-ordered.

Vectors generated by a MAT SORT TO statement are of the proper form for reordering
(see MAT SORT).

Keyword Dictionary 389

MAT SEARCH
Supported On
Option Required
Keyboard Executable
Programmable
In an IF . .. THEN

WS,UX
MAT

Yes
Yes
Yes

This statement searches for user-defined conditions within a numeric or string array and
places information returned into a variable for recall and examination.

string key specifier:

you must one,
and only one, asterisk

numeric key specIfier:

you must include one,
and only one, asterisk

390 Keyword Dictionary

condition specifier:

Item

numeric array
name

Description/Default

name of a numeric array

string array name name of a string array

subscript

beginning
position

ending position

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

return variable name of a numeric or string variable
(as appropriate)

starting subscript starting location within the vector being
searched

Example Statements
MAT SEARCH Number_array,LOC MAX;Loc_max
MAT SEARCH Source,LOC«3);Location,4
MAT SEARCH Array(l,*) DES,LOC MIN;Loc_min,6
MAT SEARCH Vector,#LOC«>2);Non_two_values
MAT SEARCH String$(*,2,3) DES,MAX;Max_value$
MAT SEARCH Word$(*,2),MIN;Min_plus$[2;10] ,Start_pos

Range
Restrictions

any valid name

any valid name

-32 768 thru +32 767
(see "array" in Glossary)

1 thru 32767
(see "string" in Glossary)

o thru 32767
(see "string" in Glossary)

o thru 32767
(see "string" in Glossary)

see "Semantics"

-32768 thru +32767
(see "array" in Glossary)

Keyword Dictionary 391

Semantics
Numeric searching comparisons are performed in the INTEGER mode for integer
precision arrays, in the REAL mode for real-precision arrays, and in the COMPLEX
mode for complex arrays (which use real-precision for their real and imaginary parts).
Note that the only numeric comparisons allowed in the COMPLEX mode are = and <>
relational operators.

String arrays can be searched using all of the condition specifiers mentioned above. (If
you want to search a substring within each element, see the subsequent discussion of
searching substrings.)

The default search order for arrays is from the lower bound to the upper bound. This
is considered to be an ascending search order. You can search an array in a descending
search order (upper bound to lower bound) by using the secondary keyword DES in the
key specifier. The following table clarifies the two types of search orders:

Starting Subscript No Starting Subscript
Search Order Given Given

ascending starting subscript -t upper bound lower bound -t upper bound
(default)

descending starting subscript -t lower bound upper bound -t lower bound

The remaining sections mainly talk about numeric arrays; however, these sections also
apply to searching string arrays.

DES
To search an array by descending subscript values, use the secondary keyword DES in the
arrais key specifier:

MAT SEARCH Array(1.*) DES.MAX;Max_value.6

This secondary keyword causes a search to begin at the upper subscript bound and
proceed toward the lower bound of that same dimension. If a starting subscript is specified
ill the MAT SEARCH statement, then the search will begin at that specified location in the
dimension being searched and proceed toward the lower bound.

392 Keyword Dictionary

LOC(relational comparison)
LOC is used in the MAT SEARCH process for numeric and string arrays to scan the specified
locations until it finds the first value which makes the comparison true. The relational
comparison it uses is made up of two parts: an operator and a string or numeric expression
(e.g. (>10) or «>"CAT"»). Operators determine the type of comparisons made. The
following operators may be used: >. <. =. >=. <=. <>. The default relational operator
is =.

When LOC is executed the value returned to the return variable is the subscript of the
first location found that satisfied the LOC condition.

#LOC(relational comparison)
The condition #LOC is used in the MAT SEARCH process for numeric and string arrays to
scan the specified locations and return a count of the number of locations whose contents
satisfy the condition. The explanation for the relational comparison for this condition is
the same as that given in the previous section.

MAX
MAX is used in the MAT SEARCH process for numeric and string arrays to scan all specified
locations to find and return the maximum value found in the search. If the array is a
string array, a string value is returned.

LOC MAX
LOC MAX is used in the MAT SEARCH process for numeric and string arrays to scan all specified
locations to find and return the subscript of the first location in which the maximum
value was found.

MIN
MIN is used in the MAT SEARCH process for numeric and string arrays to scan all specified
locations to find and return the minimum value found in the search. If the array is a
string array, a string value is returned.

Keyword Dictionary 393

LOC MIN
LaC MIN is used in the MAT SEARCH process for numeric and string arrays to scan all specified
locations to find and return the subscript of the first location in which the minimum value
was found.

Searching Substrings
To search a substring of each string array element, specify that substring (in square
brackets) as part of the key specifier. For example:

MAT SEARCH A$(*,l)[3,5] ,LOC("CAT");B$

searches the 3rd thru 5th characters of each string for the string value CAT. Note that a
MAT SEARCH of string arrays allows you not only to define the elements to be searched,
but also to define substrings within each element. Substrings may lie anywhere within
the dimensioned size of the string. If a substring lies outside the current string length,
the null string is used as the searching key.

394 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THE~J

WS,UX
MAT

Yes
Yes
Yes

MAT SORT

This statement sorts an array along one dimension according to lexical or numeric
order. In a string array, the current LEXICAL ORDER IS table is used for the sorting
comparisons.

numeric key specifier:

you must include one,
and only one, asterisk

string key specifier:

Keyword Dictionary 395

Item

numeric array
name

Description

name of a numeric array

string array name name of a string array

vector name

subscript

name of a one-dimensional numeric array

numeric expression, rounded to an integer

beginning numeric expression, rounded to an integer
position

ending position numeric expression, rounded to an integer

substring length numeric expression, rounded to an integer

Example Statements
MAT SORT A(l,*,3)
MAT SORT A(l,*,3),(2,*,5) DES
MAT SORT B(*) TO v
MAT SORT A$(3,*) [1;2] TO V
MAT SORT A$(*,2) OES,(*,3)[4,7]

396 Keyword Dictionary

Range

any valid name

any valid name

any valid name

-32 768 thru +32767
(see "array" in Glossary)

1 thru 32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

o thru 32767 (see
"substring" in Glossary)

Semantics
The elements to be compared are defined by a key specifier. The dimension to be sorted
is marked with an asterisk, and the subscript values in the key specifier define which
elements in that dimension should be used as the sorting values. Once (*), (*) DES,
DES, or a blank specifier appears in the list following the array name, no other items can
be added. Note that COMPLEX arrays cannot be MAT SORTed, because this statement's
sorting routine uses < and > relational comparisons and these comparisons are not
allowed with COMPLEX data types.

In the case of ties, the computer leaves the elements in their current order. However,
you can define additional key specifiers to be used for ties. Whenever the computer
encounters a tie, it will look to the next (moving from left to right) key specifier to
break the tie. It will look at as many key specifiers as necessary to resolve the tie. In
theory, there is no limit to the number of key specifiers you can have in one MAT SORT
statement. In practice, it is limited by the length of a stored line on the computer you
are dealing with. Each key must have an asterisk marking the same dimension.

Normally, the system sorts in ascending order. You can sort in descending order by using
the secondary keyword DES. DES applies only to the key specifier which it follows. All
others use the default ascending order.

MAT SORT of string arrays allows you not only to define the elements to be sorted,
but also to define substrings within each element. Substring specifiers refer only to the
key specifier that immediately precedes them. Substrings may lie anywhere within the
dimensioned size of the string. If a substring lies outside the current string length, the
null string is used as the sorting key.

In addition to actually sorting an array, you can use MAT SORT ... TO to store the new
order in a vector and leave the original array intact. If the vector is too large, or its
current size is too small (and there are enough elements in its original declaration to
allow redimensioning) the computer redimensions it. After a MAT SORT TO statement,
the array will be unchanged. The vector will contain the subscript values of the sorted
dimension in their new order. You can then order the array or other parallel arrays
using the REORDER statement. You can also use the contents of the vector to access
the original array indirectly.

Keyword Dictionary 397

MAX
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

This function returns a value equal to the largest value in the list of arguments provided.
If an array is specified as part of the list of arguments, it is equivalent to listing all the
values in the array. An INTEGER is returned if and only if all arguments in the list are
INTEGER.

Item Description

array name name of a numeric array

Example Statements
X=MAX(A(*»
X=MAX(A,3,B)
X=MAX(Floor,MIN(Ceiling,Argument»

Semantics
COMPLEX arguments are not allowed with this function.

Note

Range

any valid name

It is possible for the space needed for MAX to exceed the temporary
storage allocated for expression evaluation. If the machine is close
to overflowing memory this can be a fatal error and can crash the
machine. It is recommended that statements including MAX not
contain more than 20 variables and constants. An array is counted
as one variable.

398 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF - , , THEN

WS,UX
None

Yes
Yes
Yes

MAXLEN

This function returns the maximum (declared) length of a string variable (that is, the
length specified in the DIM, COM, or ALLOCATE statement that declared the variable,
or an implicitly declared of length 18).

Item

string variable

Description

any simple string variable or subscripted
string array element

Example Statements
MAXLEN(String$)
N_columns=MAXLEN(String_array$(O»

Semantics

Range

(see the "Semantics" section
given below)

If the length of a string variable is not explicitly declared (such as by COM or DIM)
before it appears in a program, it will automatically have a length of 18 characters.

This function does not return the current length of the variable; use the LEN function
for that purpose.

Keyword Dictionary 399

MAXREAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the largest positive REAL number available in the range of the
machine.

~MAXREAL~

Example Statements
A=MAXREAL
IF A*B<MAXREAL/(10-N) THEN GOTO 100

Semantics
The value of MAXREAL is approximately 1. 797693 134862 32 E+308.

400 Keyword Dictionary

MERGE ALPHA WITH GRAPHICS
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... TII-EN

WS,UX
GRAPH

Yes
Yes
Yes

This statement is used to merge the "simulated" separate alpha and graphics rasters set
up by the SEPARATE ALPHA FROM GRAPHICS statement. This statement is not
valid in a windowing environment, such as X Windows.

(MERGE ALPHA) L:(}J · I
WITH GRAPHICS

Example Statements
MERGE ALPHA

IF Done THEN MERGE ALPHA WITH GRAPHICS

Semantics
This statement is used to return the simulated separate alpha and graphics rasters on
multi-plane bit-mapped alpha displays to their "overlapped" (default) mode. If the
display is not a bit-mapped alpha display, an error will be reported.

The statement performs the following actions:

1. PLOTTER IS CRT,"INTERNAL" is executed.

2. If the display is a multi-plane, bit-mapped alpha display, then the following actions
are also taken:

a. The alpha mask is set to its maximum value (2An-l, where n is the number
of display planes).

b. The alpha pen is set to its default color (green).

c. The display is cleared (CLEAR SCREEN).

d. The graphics mask is set to its maximum value (2A n-l, where n is the number
of display planes).

e. The color map is re-initialized (to the default entries)

Keyword Dictionary 401

Here is a BASIC program that performs similar configuration of a 4-plane, bit-mapped
alpha display:

100 PLOTTER IS CRT,"INTERNAL"
110 ALPHA MASK 15
120 CLEAR SCREEN
130 ALPHA ON
140 GRAPHICS ON
150 INTEGER Gm(O)
160 Gm(0)=15
170 GESCAPE CRT,7,Gm(*)
180 PLOTTER IS CRT,"INTERNAL"
190 ALPHA PEN 4
200 END

402 Keyword Dictionary

To enable GESCAPE.
Restore default.

Display alpha plane.
Display graphics planes.
Set up array for GESCAPE.

Restore default.
To reset color map.
Restore default.

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
MAT

Yes
Yes
Yes

MIN

This function returns a value equal to the smallest value in the list of arguments provided.
If an array is specified as part of the list of arguments, it is equivalent to listing all the
values in the array. An INTEGER is returned if and only if all arguments in the list are
INTEGER.

Item Description

array name name of a numeric array

Example Statements
X=MIN(A(*»
X=MIN(A,3,B)
X=MIN(Ceiling,MAX(Floor,Argument»

Semantics
COMPLEX arguments are not allowed with this function.

Note

Range

any valid name

It is possible for the space needed for MIN to exceed the temporary
storage allocated for expression evaluation. If the machine is close
to overflowing memory this can be a fatal error and can crash the
machine. It is recommended that statements including MIN not
contain more than 20 variables and constants. An array is counted
as one variable.

Keyword Dictionary 403

MINREAL
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the smallest positive REAL number available in the range of the
computer.

--c .4INREAL }--

Example Statements
A=MINREAL
IF A-B>MINREAL*(10 A N) THEN GOTO 100

Semantics
The value of MINREAL is approximately 2.2250738585072 4E-308.

404 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This operator returns the remainder of a division.

--l dividend ~ divisor ~

Item Description

dividend

divisor

numeric expression

numeric expression

Example Statements
Remainder=Dividend MOD Divisor
PRINT "Seconds =";Time MOD 60

Semantics

MOD

Range

not equal to 0

MOD returns an INTEGER value if both arguments are INTEGER. Otherwise the
returned value is REAL.

For INTEGERs, MOD is equivalent to X - Y x (X DIV Y). This may return a different
result from the modulus function on other computers when negative numbers are
involved.

COMPLEX arguments are not allowed with this function.

Keyword Dictionary 405

MODULO
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

This operator returns the integer remainder resulting from a division.

---I dividend K MODULO H modulus ~

Item

dividend

modulus

Description

numeric expression

numeric expression

Example Statements
Remainder=Dividend MODULO Modulus
A=B MODULO C

Semantics
x MODULO Y is equivalent to X-YxINT(XjY).

The result satisfies:

o <= (X MODULO Y) < Y if Y>O
Y < (X MODULO Y) <= 0 if Y <0

Range

range of REAL

range of REAL, =1= 0

WS,UX
None

Yes
Yes
Yes

The type of the result is the higher of the types of the two operands. If the modulus is
zero error 31 occurs.

MODULO returns the remainder of a division.

COMPLEX arguments are not allowed with this function.

406 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
GRAPH

Yes
Yes
Yes

MOVE

This statement moves both the logical and physical pens from the current pen position
to the specified X and Y coordinates.

~x coordinate~y coordinate~

Item Description

x coordinate

y coordinate

numeric expression in cur:cent units

numeric expression in current units

Example Statements
MOVE 10,75
MOVE Next_x,Next_y

Semantics

Range

The X and Y coordinates are interpreted according to the current unit-of-measure.
MOVE is affected by the PIVOT transformation.

If both current physical pen position and specified pen position are outside current clip
limits, no physical pen movement is made; however, the logical pen position is moved to
the specified coordinates.

Keyword Dictionary 407

Applicable Graphics Transformations

Scaling PIVOT CSIZE

Lines (generated by moves and X X
draws)

Polygons and rectangles X X

Characters (generated by LABEL) X

Axes (generated by AXES & GRID) X

Location of Labels Note 1 Note 3

Note 1: The starting point for labels drawn after lines or axes is affected by scaling.

Note 2: The starting point for labels drawn after other labels is affected by LOIR.

Note 3: The starting point for labels drawn after lines or axes is affected by PIVOT.

Note 4: RPLOT and IPLOT are affected by POIR.

408 Keyword Dictionary

LDIR PDIR

Note 4

X

X

Note 2

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
PDEV

Yes
No
No

MOVELINES

This command allows you to move one or more program lines to another place while
editing a program.

Item

beginning line
number

Description

integer constant identifying program line

beginning line la- name of a program line
bel

ending line num- integer constant identifying program line
ber

ending line label

target line
number

target line label

name of a program line

integer constant identifying program line

name of a program line

Example Statements
MOVELINES 1200 TO 2350
MOVELINES 100,230 TO Label1
MOVELINES Util_start,Util_end TO 16340

Range

1 to 32766

any valid name

1 to 32766

any valid name

1 to 32766

any valid name

Keyword Dictionary 409

Semantics
If the ending line identifier is not specified, only one line is moved.

The target line identifier will be the line number of the first line of the moved program
segment. Moved lines are renumbered if necessary. The code (if any) which is "pushed
down" to make room for the moved code is renumbered if necessary.

Line number references to the moved code are updated as they would be by a REN
command (except external references to non-existent lines are renumbered).

If there are any DEF FN or SUB statements in the moved code, the target line number
must be greater than any existing line number.

If you try to move a program segment to a line number contained in the segment, an
error will result and no moving will occur.

If the starting line number does not exist, the next line is used. If the ending line number
does not exist, the previous line is used. If a line label doesn't exist, an error occurs and
no moving takes place.

If an error occurs during a MOVELINES (for example, a memory overflow), the move is
terminated and the program is left partially modified.

410 Keyword Dictionary

MOVE WINDOW
Supported On UX
Option Required n/ a
Keyboard Executable Yes
Programmable Yes
In an IF . .. THEN Yes
This statement moves windows from one location on the CRT to another.

MOVE WINDOW

Item Description

window number numeric expression, rounded to integer

new xpos numeric expression,
pixel units

new ypos numeric expression,
pixel units

Example Statements
MOVE WINDOW 603,120,10
MOVE WINDOW Fred.newy.20

Semantics

rounded to integer

rounded to integer

Range

600 thru 699

in integer

in integer

This statement is only valid when running under X Windows. It then moves the window
specified by the window number to a new location on the CRT. When not in a window
system, this statement will cause an error. The specified window must be one created
with the CREATE WINDOW statement, or be the root BASIC window (number 600).

The new xpos and new ypos parameters specify the new upper left corner position in
pixel coordinates. The coordinates 0,0 specifies the upper left corner of the CRT. If the
xpos and ypos parameters are greater than the size of the CRT then the window is moved
of the screen and no longer visible.

The position of the window within the stack of windows remains the same. The contents
of the window are moved with the window. The window is not altered.

Keyword Dictionary 411

MSI

See the MASS STORAGE IS statement.

MTA
See the SEND statement.

NEXT

See the FOR ... NEXT construct.

412 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

NOT

This operator returns 1 if its argument equals o. Otherwise, 0 is returned.

~ numeric ~ NOT expression

Example Statements
Invert_flag=NOT Std_device
IF NOT Pointer THEN Next_op

Semantics
When evaluating the argument, a non-zero value (positive or negative) is treated as a
logical 1; only zero is treated as a logical O.

The logical complement is shown below:

A NOTA

0 1

1 0

Keyword Dictionary 413

NPAR
Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

This function returns the number of parameters passed to the current subprogram. If
execution is currently in the main program, NPAR returns O.

Example Statements
IF NPAR>3 THEN Extra
Factors=NPAR-2

414 Keyword Dictionary

Supported On
Option Required
Keyboard Executable
Programmable
In an IF ... THEN

WS,UX
None

Yes
Yes
Yes

NUM

This function returns the decimal value of the ASCII code of the first character in the
argument. The range of returned values is 0 thru 255.

Item Description

argument string expression

Example Statements
Letter=NUM(String$)
A$[I;1]=CHR$(NUM(A$[I])+32)

Range

not a null string

Keyword Dictionary 415

Notes

416 Keyword Dictionary

HP Part Number
98613-90052
Microfiche No. 98613-99052
Printed in U.S.A. E0888

Flio- HEWLETT
~~ PACKARD

t
98613-90642
For Internal Use Only

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	xBack

