

1 INTRODUCTION

1.1 OVERVIEW

The input/output channel for the FOCUS System is the IOP (Input/Output Processor). The IOP is a valid implementation of a subset of a CSG Channel Adapter. The IOP will support all CSG Device Adapters. The mechanisms of I / O include direct I/O by the CPU, CPU interrupts, MPB Command execution by IOP, and direct memory accesses (DMA) by the IOP. A FOCUS system may contain up to six IOP's, each having an addressing capability for eight interfaces.

The IOP is controlled by commands sent over the MPB (Memory-Processor Bus) from the main CPU or a CPU dedicated to I/O and/or other special tasks. Data transfers independent of the CPU are controlled by eight DMA resources in the IOP.

The IOP external I / O bus is a synchronous bus capable of 8 or 16 bit transfers with separate address and bidirectional data lines.

A periodic interface poll is used for detecting interface service and data requests. An affirmative response to the poll will be interpreted as a data request if the poll winning interface has its DMA mask bit set. Checking status will determine if the request was for a DMA transfer or an interrupt since a DMA transfer request will only occur if status is true.

By loading the IOP registers with the appropriate information and starting DMA, data can be transferred independent of the CPU. Data will be transferred by bytes or by half-words until a count has been exhausted, a status error is detected, Device End is asserted, or optionally a character (byte mode only) match is detected. An interrupt request will be recorded at the end of a DMA operation or at an error condition.

MPB Command chaining is possible by setting a bit in the Status register. A list of write or control MPB Commands will be executed by the IOP one per poll cycle if no DMA is requested. The fourth word of the DRT points to the list. If the Status register bit is not set, normal interrupts occur.

FIG 2.1

the timer, can be masked individually on the IOP or all I/O interrupts can be disabled at the CPU. In addition to this, each PA on each channel is assigned an interrupt priority level, $0-15$, which is determined by software and stored on the IOP. The CPU automatically masks interrupt requests whose levels are equal to or less than the level of the interrupt service routine that the $C P U$ is executing. This creates sixteen level interrupt structure with additional masking of individual devices and the option of operating with I/O interrupts disabled.

Interrupt requests serviced by the IOP are handled by executing one MPB command per poll when there is no valid DMA request and when a bit in the status register requests MPB command execution by IOP.

length of I / O strobe. Async is ignored when Burst Request is true. The extension is eight states. Async is also used during poll cycles as a request for an Attention Poll (See Attention Request).

The Request to Access Memory - Direct line is used to request a DMA transfer without responding to a poll. The line is tested for a valid response at the end of checking for a valid DMA poll response. Only one interface should be enabled to respond on this line and that interface's PA is stored in the DMAPA register. This line is also used as Device End (See CSG I/O Standards) in a time multiplexed way. During an Interface Poll, the line is used to detect RAMD requests. When Interface Poll is false, the line is used to detect Device End (except when RAMD burst transfers are taking place).

The POUT line controls the direction of the external buffers. It also enables the IOD lines from the IOP internally. This line is positive true.

The line DB5 is used to turn the self test LED on and off. It also controls the enable for the input buffers. If DB5 is high, the LED is on and the inputs to IOP are disabled.

?.6.2 Electrical Specifications

The I/O Bus lines have negative true logic. This means a low voltage is an active signal and a high voltage is an inactive signal. The one exception to this is the POUT control line which is positive true logic.

The recommended external buffers are the 8304B Bidirectional Transceivers. They are fast enough to allow a four state burst mode at 18 MHz and provide MOS logic levels (3.6 v. min.) required by the IOP. Figure 2.3 shows the IOP to external buffer interface.

3
 DIRECT MEMORY ACCESS

3.1 DMA TRANSFERS

There are eight logical DMA register sets, one for each peripheral address, and one active set which contains information for the DMA currently active. The logical sets hold information until an interface currently doing DMA wins a poll. At that point the information is transferred to the active register set for a single transfer or a burst transfer. When the transfer is complete, the logical registers are updated with the new values contained in the active registers. DMA cycles may be single transfers or bursts of up to 32 transfers. During halfword DMA transfers the interface control lines will be false ($I C=000$) except for the last transfer ($I C=0010$) if specified. Byte DMA transfers will be through FR4 (IC = 0100) except the last transfer ($I C=0110$) if specified. (NOTE: Two bits in the Status register control setting Channel End (IC2), one applies to multiplex DMA and one applies to burst DMA. Their sense is NOT the same.)

Each logical register set consists of a Current Address (CA*) register, a Current Count and Status (CCST*) register, a Termination Field (TF*) register, and a Data Buffer (DB*) register. The CA*, CCST*, and TF* registers are loaded by MPB command.

The starting address should point to the first memory location involved in the transfer and the count should be the exact number of transfers desired. Data packing by the IOP on half-word transfers means that the IOP has one or two halfwords in its data buffer once DMA is underway. Byte DMA does not use data packing and as a result it uses four MPB cycles per word transfer versus one for half-word DMA. At the successful completion of DMA, the count register will be negative and the address register will point to one or two locations beyond the last DMA location.

A DMA cycle may be ended in five ways. 1) When the count register reaches zero, $D M A$ is terminated and an interrupt request bit is set. 2) If the match bit in the status register is set and if a match occurs for byte DMA, DMA is terminated and an interrupt request bit is again set. Alternatively, a verify mismatch can end DMA (match and verify are mutually exclusive options). 3) If an interface requests

3.2.1 DMA Verify

Memory data can be verified with data from a peripheral such as a disk by using the DMA verify. The DMA functions as if it were a normal input from an interface, but data is fetched from memory and a half-word or byte compare is made. If a mismatch occurs DMA will be terminated and an interrupt request will be recorded. DMA Verify does not allow terminating the DMA on a match.

The failed memory location is the Start Address plus one or two times the Original Count (OC) minus Final Count (FC) minus three or four.
$F L=S A+N *(O C-F C-M)$ where $N=2$ for half-word, 1 for byte, $M=3$ for multiplex DMA, 4 for burst.

3.2.2 DMA Match

An input DMA can be terminated when a match occurs between a byte stored in the termination field of a PA and incoming data if the terminate-on-match bit is set. The matched byte will be put in memory. The count register will be checked and a DMA termination-count-zero may occur if the count is exhausted before a match. Termination can occur only on a byte match and it can not be used in burst mode. When a match is encountered, Channel End will be asserted regardless of any bits in the Status register. A simultaneous occurance of match termination and count termination will result in the setting of the DMA-Terminated-on-Match bit only. However, if Device End and a match occur together, both will be indicated in the Status register. The ending address points to the match word and the number of data transferred is SC-EC-2 where SC is the starting count, EC is the ending count.

HEWLETT-PACKARDCO.

4.1 CPU SERVICE

4.1.1 Interrupt Request Register

DMA termination or a non-DMA service request will cause a bit in the Interrupt Request register corresponding to the proper PA to be set. This register is used to initiate either an interrupt posting or command execution by IOP. Bits in the Interrupt Request register may also be set (and cleared) by software to request interrupts on behalf of devices.
If Interrupt request bits are set, the IOP will continuously attempt to service them when no other activity is present on the IOP. The IOP will start with the highest priority IRQ bit and test it for an interrupt or command execution. If the IOP can not do either or if a skip command was executed, a bit in the Skip Mask (in IMSG) will be cleared. The effect is that the IOP will temporarily ignore that IRQ bit until the Skip Mask is restored. Examining IRQ bits and servicing them or clearing skip bits is continued until all bits have been examined in a sequential fashion from highest PA to lowest. The Skip Mask is then reenabled for all PA's and the procedure is repeated. Note that if an Interrupt Mask is written to the IOP, interrupts will be posted from a given (random) PA to lowest PA then highest PA to lower PA until all have been serviced.

4.1.2 Interrupt Mask Register

The interrupt mask is used to prevent interrupt requests from devices not enabled to interrupt or from devices which have interrupt requests pending at the CPU already. A priority encoding by PA of this result provides the highest PA unmasked interrupt request, which the IOP records in memory before signalling the CPU. The interrupt mask bit corresponding to this PA is cleared by the IOP to disable further requests from the same device.
4.1.3 Mapping PA to Interrupt Level
The interrupt level of each device is stored in the CCST register for its PA. CCST[21:4] contains the level number, 015. From this number a 16 -bit request vector is constructed

HEWLETT-PACKARDCO.

3. If the value is not zero, store the address of the first word of the interrupting device's DRT entry in the device's DRT entry link field pointed by the list tail and, lastly, store the address in the list tail pointer.
4. If the value is zero, store in the list head and, lastly, the list tail the address of the first word of the interrupting device's DRT entry.

This sequence completes the IOP processing of an interrupt request. Operation of the IOP resumes as if the request had not occurred, except that the interrupt mask on the IOP now disables the device that requested from requesting again. Note that the interrupt request bit is cleared by IOP during the processing of an interrupt request.


```
H E WLETT - PACKAR D CO.
                                    IOERS

Message Register


Figure 4.2 CPU Interrupt Masking
2. Read the link field in the word pointed to by the list head.
3. Clear the message bit in the CPU message register for the level to be serviced if the link field was zero, indicating that no more requests are pending at that level.
4. If the link field was zero, store zero in the list tail. If the link was not zero, store zero in the link field, store the link field in the list head, and, lastly, restore the tail pointer.

This process results in the removal of one device from the list of requesting devices and gives the CPU the device number required to access the DRT.

\subsection*{4.2.3 Reaching the Service Routine}

The DRT entry contains pointers to the interrupt service routine and variable area (See Figure 4.3). Using this information, the microcode interrupt handler swaps out of the CPU the current program environment and sets up the
\begin{tabular}{|c|c|c|}
\hline 1 & \multicolumn{2}{|l|}{| MODEL |STK \#} \\
\hline 1 & ( I/O System ERS & \\
\hline 1 & | BY Fred Gross & | DATE 09/20/82 \\
\hline ILT P.C.\# | APPR & DATE |APPD & [SHEET \# 25 OF 80 \\
\hline REVISIONS & ; SUPERSEDES & | DWG \# A-1FE1-3030-9 \\
\hline
\end{tabular}





IOERS

\section*{5. MPB I/O COMMANDS}

Transfer of commands and data between the CPU and IOP is done with MPB channel-to-channel operations. These transactions consist of sending a channel address and a single data word in primary mode over the MPB for a WRITE operation. The return address for the requested data word is contained in the channel address for READ instructions. The write of data back to the CPU is done in secondary address mode. A third type of I/O command does not require a data word at all. These CONTROL operations are like WRITE's except a zero data word is sent and ignored by the IOP.

The IOP interprets the channel address as an I/O command and uses or returns a data word based on that command. The format of the channel address for an I/O command is given in Figure 5.1. Not all of the fields are used by the IOP for every operation but they exist for uniformity. Only the IOP whose channel number appears in the channel number field receives and executes the command.

NOTE: The bit positions in the commands refer to the MPB channel address and data words. The CPU shifts the IOP command bit fields and forms the MPB I/O Commands in microcode.

Figure 2.1 showed that the MPB commands are executed seriodically by the IOP. Until execution of a command is begun, the IOP will not accept another command.

The MPB commands are listed below with their operation codes in octal. In all cases the format of Figure 5.1 is used. After the name of each command is a \(R\), \(W\), or \(C\) to indicate whether the operation is a READ, WRITE, or CONTROL. Additional commands for IOP command execution are unlabeled. Figure 5.2 contains a summary of the commands. Undefined op codes will cause a message to be sent (bit 7) to the CPU and otherwise be ignored.

The MPB commands are addresses each pointing to 1 of 128 words of control store on IOP. The first 128 words form a jump table to the actual command routine to allow adjustments in IOP microcode without affecting MPB command code assignments.

\subsection*{5.1 DMA COMMANDS}

\section*{5. Write DMA Start Address (W) WDA}
The data word is loaded into the Address register corresponding to the PA in the channel address. It is interpreted as an absolute byte address and for halfword DMA must lie on a halfword boundary.
6. Write DMA Termination Field (W) WDTF
The data word is loaded into the \(T F\) register corresponding to the PA in the channel address. For byte input bits 24-31 specify the termination byte. Any bits in the data word 0-23 will disturb the adjacent termination field or other data in the TF register.
3. Write DMA Status (W) WDS
The data word is loaded into the CCST register bits 16-20, 2531 corresponding to the PA in the channel address. The interrupt field is assumed zero and the old level is unchanged. Since the DMA status bits control DMA operation, this command should only be used when DMA is disabled. Table 5.1 lists the status bits and their meanings.
4. Write DMA Count (W) WDC
The data word is loaded into the Count register corresponding to the PA in the channel address. Bits 16-31 are interpreted as the 16 bit integer length of the DMA block transfer in transfers.
23. Start DMA (C) SD
A bit in the DMA Mask register corresponding to the PA in the channel address is set to a one. If the DMA is an input, the First Input Pending bit is set. If the DMA is an output or a verify, a data word or byte prefetch is done.
17. Start DMA, Enable Interrupt, Clear IRQ (C) SDEC
Identical to Start DMA except a bit in the Interrupt Mask register corresponding to the PA in the channel address is set to a one and the corresponding Interrupt Request bit is



Table 5.1 DMA Status Bits
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0 & 3 & 6 & 9 & 13 & 19 & 22 & 25 & 31 \\
\hline 1 & Ch & & & | X & CP & X & | & \\
\hline
\end{tabular}

Figure 5.1 MPB Command Format
20. Start DMA, Clear IRQ (C) SDC

Identical to Start DMA except a bit in the Interrupt Request register corresponding to the PA in the channel address is cleared.
15. Enable DMA (C) EDMA

The bit in the DMA mask corresponding to the \(P A\) in the channel address is set to enable DMA for the PA.
16. Disable DMA (C) DDMA

The operations are the same as for ENABLE DMA except the bit is cleared to disable DMA for the PA. This termination of DMA does not cause an interrupt request bit to be set.

IOERS
- Read DMA Current Address (R) RDA

The contents of the Current Address register corresponding to the PA in the channel address are returned to the CPU. It should be interpreted as the byte address of the datum following the datum to be output next for output and as the byte address of the datum last input (or the starting address if no inputs have occurred) for input.
10. Read DMA Current Count/Status (R) RDCS

The contents of the CCST register corresponding to the PA in the channel address are written back to the CPU. Bits 0-15 should be intepreted as the 16-bit integer number of one less than the number of transfers remaining in the current DMA block transfer. Note that the data buffer will contain data after the first or second input transfer. Bits \(16-31\) are the DMA status bits shown in Table 5.1.
13. Read DMA Mask (R) RDMK

The contents of the DMA Mask register are returned to the CPU in bits 24-31 of a data word. A bit set indicates DMA enabled for the corresponding PA. Bits 0-23 of the returned data word are zero.
14. Clear DMA Mask (C) CDMK

The DMA mask is cleared to disable all DMA. DMA status bits are not affected.

\subsection*{5.2 INTERRUPT COMMANDS}
25. Write Interrupt Mask (W) WIMK

The data word bits 24-31 are loaded into the Interrupt Mask register (24:8). Bits 0 to 23 of the data word are ignored.
33. Write Interrupt Message (W) WIMG

The data word, which must be an MPB address message with bits 6-31 zero, is loaded into the Interrupt Message register and it should containt the channel number of the CPU which will service interrupts in bits 3-5.




HEWLETT-PACKARDCO.
27. Request Interrupt (C) RINT

The bit corresponding to the PA in the channel address is set in the Interrupt Request register.
30. Clear Interrupt Request (C) CIRQ

The bit corresponding to the \(P A\) in the channel address is cleared in the Interrupt Request register.
36. Enable Interrupt (C) EINT

The bit in the Interrupt Mask corresponding to the PA in the channel address is set.
37. Disable Interrupt (C) DINT

The bit in the Interrupt Mask corresponding to the PA in the channel address is cleared.
26. Read Interrupt Mask (R) RIMK

The Interrupt Mask is returned to the CPU as bits 24-31 of the data word. Bits 0-23 are zero.
34. Read Interrupt Request (R) RIRQ

The Interrupt Request register is returned to the CPU as bits 24-31 of the data word. Bits 0-23 are zero.
35. Set Interrupt Level (W) SIL

The data word bits 28-31 (other bits must be zero) are loaded into CCSTL21:4」 corresponding to the PA in the channel address as the interrupt level for that PA.

\subsection*{5.3 INTERVAL TIMER COMMANDS}
40. Write Timer Start (W) WTMS

All 32 bits of the data word are loaded into the Timer Start register to define the time interval at which timer interrupts will be generated. (Note: TC [24:8] will remain unchanged at the update time.)
43. Write Timer Count (W) WTMC



IOERS

The data word is loaded into the Timer Count register to define the time remaining before the next interval timer interrupt.
44. Read Timer Count (R) RTMC

The contents of the Timer Count register are returned to the CPU. Since this register decrements continuously, the value returned will not be current even when it appears on the MPB.
45. Enable Timer Interrupt (C) ETMI

Timer Disable is cleared to allow timer interrupts.
46. Disable Timer Interrupt (C) DTMI

Timer Disable is set to prevent timer interrupts.
5.4 DIRECT I/O COMMANDS

The IC field asserted on the I/O bus is the logical 'or' of bits 9-12 and bits 25-28 of the channel address word for the Read Interface and the Write Interface commands.

1, 11, 21, 31, 41, 51, 61, 71, 101, 111, 121, 131, 141, 151, 161, 171. Read Interface (R) RIF \(n\)

An I/O bus cycle is performed using the PA and IC fields in the channel address with DOUT false to indicate an input operation. The data, IOD \(15-0\), is returned to the CPU in bits 16-31 of the data word, IOD 15 in bit 16 . Bits \(0-15\) of the data word are zero. STATUS and FLAG are ignored.
\(2,12,22,32,42,52,62,72,102,112,122,132,142,152,162\), 172. Write Interface (W) WIF n

An I/O bus cycle is performed using the PA and IC fields in the channel address with DOUT true to indicate an output operation. Bits 16-31 of the data word are output on the IOD 15-0 lines with bit 16 on IOD 15. STATUS and FLAG are ignored.
47. Interface Poll (R) IFPL



H E W L E T T - PACKARDCO.

An interface poll is done on the I/O bus and the IOD response is returned to the CPU as in the READ INTERFACE instruction.
77. Read Interface Status \& Flag (R) RISF

The PA and IC fields of the channel address are used to address an interface with DOUT true. The response on the STATUS and FLAG lines is returned in bits 30 and 31 respectively of a data word written back to the CPU. Bits 029 are zero. IOSB is not issued on this bus cycle.
103. Read Interface Status (R) RIST

The PA and IC fields of the channel address are used to address an interface with DOUT true. The response on the STATUS line is returned in bit 31 of the data word. IOSB is not issued.

\section*{104. Read Interface Flag (R) RIFG}

The PA and IC fields of the channel address are used to address an interface with DOUT true. The response on the FLAG line is returned in bit 31 of the data word. IOSB is not issued.
50. Reset I/O Bus (C) RIOB

The RESET line on the \(I / 0\) bus is asserted to initialize all interfaces. WARNING: This instruction disables IOP for \(10^{\wedge} 6\) states.

\subsection*{5.5 OTHER COMMANDS}
54. Write DMAPA (W) WDPA

The PA in the data word, bits 5-8, are loaded into the DMAPA register. All other bits are ignored. Bit 5 is used as an enable bit, \(1=e n a b l e ~ 0=d i s a b l e\).
74. Disable IOP Command Execution and Enable Interrupt (C) DCEI A bit in the status register, bit 20 , corresponding to the PA in the channel address is cleared and a bit in the interrupt mask register is set. Command execution by the IOP for that PA is suspended and an interrupt will be sent to the CPU when

the \(I R Q\) bit is serviced or when the interface wins a poll.
j3. Reset IOP (C) RIOP
The IOP is forced into an initial state from which it begins normal operation by starting an interface poll. The initial state has interrupt request disabled, the Timer disabled, the DMA Mask cleared (all DMA disabled), the Interrupt Request register cleared, and the Interrupt Mask cleared (all interrupts disabled). All other registers remain unchanged and IOP operation resumes immediately.
60. Write MPB Channel Number (W) WMCN

The channel number in bits \(3-5\) of the data word is written into the IOP's MPB Identification Register. Other bits of the data word must be zero. A Master Channel reset is done when assigning the new channel number.
63. Clear Address Lockout Mode (C) CALM

This command enables the IOP to take more than its allocated share of MPB bandwidth. It can lock out any chip of lower priority.
64. Set Address Lockout Mode (C) SALM

This command prevents the IOP from taking more than its share of MPB bandwidth. The IOP powers on in this mode. It will also increment and replace the count if the count is still negative.
73. Disable IOP Command Execution (C) DCE

This command clears a bit in the Interrupt Request register and clears the Command Execution bit (bit 20 in the Status register) both corresponding to the PA in the channel address. This command is used when a CPU interrupt is not desired at the end of Command Execution by IOP.
70. Initiate Command Execution from Interrupt (C) ICEI

This command sets a bit in the Interrupt Mask register, clears a bit int the Interrupt Request register, and enables Command Execution (bit 20 in the Status register) all corresponding to the PA in the channel address. This command suspends

HEWLETT-PACKARDCO.
execution of commands until the interface responds to a poll.
j6. Read Data Buffer (R) RDB
This command reads the data buffer register corresponding to the PA in the channel address.
55. Read DMAPA (R) RDPA

This command reads the DMAPA register.
75. Turn LED On (C) LON

This command sets pad DB5 to a high state which turns on the self test LED.
Caution: This command disables I/O bus inputs. Normal I/O operations will not work when the self test LED is on.

\section*{76. Turn LED Off (C) LOFF}

This command sets pad DB5 to a low level which turns off the self test LED and enables the external buffers.
57. Read Revision (R) RIRV

The date the IOP microcode was released for the IOP currently in the system is returned to the CPU. The format of the data stored in memory is YYYYMMDD in hex where YYYY is year, MM is month, and DD is day.
24. Start RAMD, Clear IRQ (C) SRC

The RAMD enable bit (DMAPA(5:1)) is enabled and the bit in the interrupt request register corresponding to the \(P A\) in the DMAPA register is cleared. If the DMA is an input, the First Input Pending bit is set. If the DMA is and output, a data word prefetch is done.
105. Read DMA Termination Field (R) RDTF

This command reads the termination field register corresponding to the PA in the channel address.
106. Write Attention Poll Mask (W) WAMK



IOERS

This commands writes the data word (24:8) in TF0 (0:8). The remaining bits of the data word must be zero. TF0 (0:8) represents a mask that is used to allow any or all interfaces to participate in a CSG Attention Poll (See CSG I/O Standards). A one in a bit position allows the corresponding interface to participate in the poll. At power on, the mask is set to all ones (all interfaces allowed to participate in poll).
107. Clear Attention Acknowledge Bit (C) CAAK

This command clears a bit in TFO (16:8) corresponding to the PA in the channel address. If the IOP has issued an AAK to an interface a bit will be set in TFO (16:8). Message bit 14 will also be sent to the CPU. At power on, all bits are cleared.
110. Read IOP Registers and Suspend (R) RIRS

This command reads and clears the DMA Mask register, the Interrupt Request register, and the Interrupt Mask register. This has the effect of suspending the IOP such that all remaining registers could be read and saved knowing that the IOP will not change state while reading the registers. This command would be useful in a power-going-down situation where resuming operation is desired. The data word returned contains DMSK (8:8), IRQ (16:8), and IMSK (24:8).
113. Write IOP Registers and Resume (W) WIRR

This command loads the DMA Mask register, the Interrupt Request register, and the Interrupt Mask register and is the compliment command to Suspend and Save IOP command.
114. Write RIF Result to Memory (W) WRIF

Used during Command Execution by IOP, this command will do a Read Interface using the PA and IC lines from the command word read from the memory list and record the results in the absolute word address found in the first memory location following the command. If used as an IOW, the PA and IC data is taken from the channel address and the results are recorded in the absolute word address sent as data.
115. Write Count and Status to Memory (W) WCSM


ILTi P.C. \# APPR | DATE |APPD |SHEET \# 38 OF 80


Used during Command Execution by IOP, this command will record the contents of the Current Count and Status register in the absolute word address found in the first memory location following the command. If used as an IOW, the PA is taken from the channel address and the data is stored in the absolute word address sent as data.
116. Read Interface Device End \& Burst Request (R) RDEB

This command tests the state of Device End (RAMD) and Burst Request and returns the results. If Device End is asserted, bit 30 is a one, and if Burst Request is asserted, bit 31 is a one.
117. Write DMA Data Buffer (W) WDB

The data word is loaded into the Data Buffer corresponding to the PA in the channel address.
120. Write DMA Current Address (W) WDCA

The data word is loaded into the Current Address register corresponding to the \(P A\) in the channel Address.
123. Read Interrupt Message (R) RIMG

The contents of the Interrupt Message register are returned to the CPU.

\subsection*{5.6 INSTRUCTIONS FOR COMMAND EXECUTION ONLY}
65. Increment and Branch

This instruction will test the count, the contents of the second memory location following this command, and branch to the absolute address in the first memory location following this command if the value was not zero. It will also increment and replace the count if the count is still negative. If the count is zero, execution will continue at the third memory location following this command.

\section*{66. Skip on Status False}

This command will test the \(I / O\) Status line of the designated

HEWLETT-PACKARDCO.

PA and if true, no action is taken. The MPB command list pointer in the DRT points to the next instruction. If Status is false, the skip mask bit corresponding to the PA is cleared. Another command execution for the PA is not allowed until there is no activity on the bus and no interrupts are pending. The command list pointer remains pointing to the skip command.

\section*{67. Skip on Flag False}

Same as Skip on Status False except applies to the I/O Flag line.

```

HEWLETT-PACKARD CO.

```

IOP MPB COMMANDS
NAME MNEM HEX OCT

READ COMMANDS
Read DMA Current Address RDA 7 7
Read DMA Current Count \& Status RDCS 810
Read DMA Mask
Read Interrupt Mask
Read Interrupt Request
Read Timer Count
Interface Poll
Read DMAPA
Read Data Buffer
Read IOP Revision
Read Interface Status \& Flag
Read Interface Status
Read Interface Flag
Read DMA Termination Field
Read IOP Registers and Suspend
Read Interface Device End \& Burst Request
Read Interrupt Message
Read Interface FRn
MNEM HEX OCT

WRITE COMMANDS
\begin{tabular}{llrr} 
Write DMA Status & WDS & 3 & 3 \\
Write DMA Count & WDC & 4 & 4 \\
Write DMA Start Address & WDA & 5 & 5 \\
Write DMA Termination Field & WDTF & 6 & 6 \\
Write Interrupt Mask & WIMK & 15 & 25 \\
Write Interrupt Message & WIMG & 1 B & 33 \\
Set Interrupt Level & SIL & \(1 D\) & 35 \\
Write Timer Start & WTMS & 20 & 40 \\
Write Timer Count & WTMC & 23 & 43 \\
Write DMAPA & WDPA & \(2 C\) & 54 \\
Write MPB Channel Number & WMCN & 30 & 60 \\
Write Attention Poll Mask & WAMK & 46 & 106 \\
Write IOP Registers and Resume & WIRR & \(4 B\) & 113 \\
Write DMA Data Buffer & WDB & \(4 F\) & 117 \\
Write DMA Current Address & WDCA & 50 & 120 \\
Write Interface FRn & WIF & \((8 * n+2)\)
\end{tabular}

CONTROL COMMANDS




\section*{6. CPU INSTRUCTIONS FOR I/O}

All communication between the CPU and an IOP is via the MPB. The CPU instruction set provides the capability to perform these MPB operations as specific instances of generalized MPB operations. This section describes another group of instructions used specifically for efficient communication with the IOP. The remainder of the CPU instructions are fully described in the Machine Instruction set ERS.

Three 16-bit instructions whose mnemonics are IOW, IOR, and IOC are provided for communication with the IOP. They contain sub opcode fields to specify one of many MPB transactions with the IOP. Although the CPU instructions which allow general MPB operations may be used with the IOP, the I/O instructions shorten I/O routines by combining several CPU operations in a single machine instruction.

As explained in Section 5, MPB transactions with the IOP consist of sending a channel address and sending a data word to the IOP. The I/O instructions do these operations using parameters on the stack. The channel address is constructed by combining the I/O operation code, a field of the I/O instruction, with the IOP channel address and interface address from a word in the stack. This provides the efficiency of coding the I/O operation in the CPU instruction with the flexibility to specify the interface address in a data word which is a parameter to the I/O routine.

\subsection*{6.1 I/O INSTRUCTION FORMATS}

The format of the \(I / 0\) instructions are given in Figure 6.1. Bits 8-15 are loaded into bits 24-31 of the channel address as the I/O operation code. It will be possible, with the operation codes, to issue any of the MPB commands of Section 5 using the \(I / O\) machine instruction.

\subsection*{6.2 I/O INSTRUCTION PARAMETERS}

The I/O instructions use the top word of the stack as the data word for a WRITE operation. The second word on the stack (or the top word for a READ or CONTROL) must be the interface address. Bits 26-28 of this word become the channel number field of the clannel address, bits 29-31 the PA field, and bits 22-25 the IC field.

H E W L E T T - PACKAR D C O.
```

The parameter is popped from the stack on a WRITE and sent as the data word. On a READ operation, the data word returned by the IOP is pushed onto the stack (the address word sent by the CPU contains the channel address used by IOP in returning data). Zero is sent as the data word for a CONTROL operation and it is ignored by the IOP. The interface address is popped from the stack for all I/O instructions. The CPU condition codes are unchanged by I / O instructions.
0 78

15
 WRITE

READ

Figure 6.1 I/O Instruction Formats
An IOR instruction will wait up to 6000000 states for data from an IOP. If no data is received in that period of time, the CPU will get a System Error (STT\#14) type 3. If an instruction (IOR, IOW, or IOC) has been sent to the IOP, and the IOP has not removed it from the Slave Channel, the following commands will be refused by the IOP. The CPU will then re-try sending the command about 30 times with about 50 states delay between each re-try before causing a System Error.

i i	1 MODEL	[STK \#
i i	(I/O System ERS	
i	(By Fred Gross	\| DATE 09/20/82
	DATE APPD	ISHEET \# 44 OF 80
REVISIONS	; SUPERSEDES	\| DWG \# A-1FE1-3030-9

7. INTERVAL TIMER

The interval timer function is implemented in the IOP with two registers, the second of which decrements and can be loaded from the first. The first register, Timer Start, contains an integer that specifies the length of the time interval. The second register, Timer Count, decrements every two FOCUS system clock states until it goes negative. When it goes negative, an interrupt is requested and the Timer Count register is loaded with the contents of Timer Start to begin counting the next interval.

7.1 TIMER UNDERFLOW

When Timer Count goes negative, the Timer sign bit becomes true indicating an underflow condition. This condition is tested by the IOP microcode periodically if Timer Disable is false (see Figure 2.1). The Timer Disable is stored in a memory cell on the IOP and may be used to disable the timer. If an underflow has occured, bits $0-23$ of Timer Start are loaded into the corresponding bits of Timer Count. Bits 24-31 of Timer Start are ignored.

Caution: A negative value in Timer Start can cause IOP to ignore all commands from the CPU.

A second action taken by the microcode on timer underflow is the setting of the Timer Interrupt Request message bit 13 and sending a message to the CPU or sending a broadcast message.

7.2 TIMER ACCURACY AND PRECISION

Because the timer uses the system clock as a frequency reference, high accuracy is not guaranteed. The intended uses of the interval timer are in CPU allocation by the operating system and timing of system execution of programs for accounting or performance measurement.

The interval at which the timer interrupts can be set is from 1 to $2^{\wedge} 24$ times 28.4 microseconds, set by loading the Timer Start register from the CPU. The length of the interval is exactly (Timer Start $(0: 24)+1) * 512^{*}$ (one clock period). A loss of one or two states in the timing occurs when the Timer Count register is loaded from the Timer Start. If the interval is set very short and two underflows occur before the

first is serviced by the CPU, the second underflow cannot be detected.
8. INITIALIZATION

The product hardware supplies two lines to the FOCUS system to force the hardware to a power-on (or user self-test) or reset state. They are System POP (SYP) and POP In (PI). Each chip will also generate a POP Out (PO) signal to be connected to the next chip in a daisy-chain fashion. At the completion of a power-on or reset, the IOP starts executing according to its flowchart (see Fig. 2.1).
8. 1 POWER ON

When SYP goes to a true state, the $1 / 0$ microcode is forced to a special trap routine. When PI goes true, PO is immediately set true by the hardware. When SYP goes false, the IOP will run self-test and set its MPB channel number to 0 . At the beginning of self test, the IOP will prepare an identification word indicating an IOP chip and that it is bad for the Master CPU and place it in its slave data register. If the IOP passes self test, the bad indication will be changed to good.

When PI goes false, the IOP will set its address mode from secondary (SYP forces address mode to secondary) to primary. Sometime later the master CPU does a read from slave channel 0 . The IOP with its primary address mode enabled will send its status word to the master CPU. The master CPU will then write to the IOP's slave a word which contains the channel number it is to be assigned. The IOP sets this channel number into its channel number register, exercises its MPB interface by doing channel-to-channel communication with itself, and propagates the PI signal by pulling its PO pad low.

When the master CPU is done initializing memory it will write to each IOP a message that it should or should not now execute a channel-to-memory test (memory may not be available). After all chips complete their channel-to-memory test, the master CPU will write to all channels an indication that power on is complete and it may begin executing.

8.2 RESET

If PI goes true and SYP stays false for the entire time, a

2) Loads, IODS, and Compare Tests

This module tests the functionality of LOAD, IODS, CMP8, CMP16, and CMP32. Also timing of CMP8, CMP16, and CMP32 is tested.
3) Counter Module

This module tests all non-sequencing stack incrementers.
4) Sequencing Module

This module tests special microinstruction sequencing and sequencing stack registers.
5) Register Read/Write Module

This module tests bit-wise read/write ability of most registers, through 0 and 1 pattern walks. The A Bus and Op-code Bus tested for bit independence as a side effect.
6) Bit-Set-Clear Module

This Module tests the functionality of GP1 shifts and the BSC logical functions AND, OR, and XNOR.
7) Formats Module

This module tests all microinstruction formats (See 8.5 \#6). Also, output control lines (except RESET) are tested for R / W and refresh ability.
8) Tests and Specials Module

This module tests the following:
A) Functionality of TRIG, CBCRM, LL, NMA30, BYTE, IN, FIP, SETTD, CLRTD, PADMS, ITCU, CSTS, IODS, GPOS, and GPOTF.
B) Independence of TRIG, LL, BYTE, IN, and FIP.
9) Individual Tests

This module tests the ORCS and EWB microorders, the

priority encoder, and the dump constant hardware.
10) I/O Bus Hardware

This module tests the data paths to the I / O bus pads, input control lines and PAIC output pads for stuck at faults. Reset line tested for refresh.
11) Control Store Check

ROM checksum words are computed and compared to ROM constants (See 8.4 \#8).
12) MPB Internal

This module tests bit-wise read/write ability of the MAR register. No MPB transactions occur.
13) MPB Channel to Channel Tests

This module tests MPB registers for refresh ability and stuck at faults, and tests non-memory access MPB functions.
14) MPB Memory

This module tests all microorders associated with accessing memory for functionality.

9. HARDWARE DESCRIPTION

The hardware pieces of IOP can be broken into eight parts as shown in Figure 9.1. These parts are: Registers and Special Functions, DMA Registers, Micro-Sequencer, PLA Microinstruction Decoder, ROM Control Store, MPB Control and Interface, and I/O Bus Interface section. Each will be described in the following sections.
9.1 REGISTERS AND SPECIAL FUNCTIONS

This section describes the registers involved in Interrupt, Micro-Instruction, I/O Bus, Interval Timer, and other general purpose registers. The Special Functions include all data manipulation and data comparing.

9.1.1 Interrupt

The registers used in connection with interrupt functions are the Interrupt Request register (IRQ), the Interrupt Message register (IMSG), and the Interrupt Mask register (IMSK). (See Figure 9.2).

The Interrupt Request register is an eight bit register which can be set from or dump to the least significant eight bits of the A Bus. A one in a bit position corresponding to an interface indicates an interrupt is requested for that interface.

The Interrupt Message register is a 32 bit register which can be set from or dump to the A Bus. IMSG(3:3) contains the channel number of the CPU that services the interrupts from the IOP. If it is zero, a broadcast message is issued instead of a channel message. The lower 8 bits are used by IOP as a mask.

The Interrupt Mask register is an 8 bit register which contains the mask bits to enable interrupt for each PA. The IMSK can be set from or dump to the A Bus (24:8).

H E W L E T T - PACKARDCO.

A Constant (CON) function will set any of the least significant sixteen bits of the A Bus (16:16). The DMS register points to the bit set. One microcode state must be allowed between loading DMS and dumping the constant.

9.2 DMA REGISTERS

The DMA Registers consist of a group of active registers involved with the DMA currently active on the I/O Bus and eight sets of logical registers which hold information until the interface to which they correspond becomes the active DMA. (See Figure 9.3)

9.2.1 DMA Active Registers

The DMA Mask (DMSK) register is an eight bit register which can be set from or dump to the A-Bus (24:8). A one enables a PA for DMA.

The Count (C) register is a sixteen bit register which can be set from or dump to the A-Bus (0:16). It can be decremented and it sets a qualifier true when the count goes negative.

The Burst Count ($B C$) register is an eight bit register which can be preset to thirty-one or be decremented and it sets a qualifier true when the count goes negative.

The Memory Address (MA) register is a thirty-two bit register which can be set from or dump to the A-Bus and it can be incremented. A bit, MA (30:1), is used as a halfword or word address qualifier.

The Status (STS) register is a sixteen bit register which can be set from or dump to the $A-B u s(16: 16)$. In addition, five bits are used as qualifiers.

The DMA Select (DMS) register is a four bit register which can be set from or dump to the A-Bus (5:4). The DMS register points to the register accessed when transferring between the A Bus and any DMA logical register. The most significant bit is ignored when addressing the registers.

The DMAPA register is a four bit register which can be set from or dump to the A-Bus (5:4). The DMAPA register (6:3) points to the PA enabled to use the RAMD line, with bit (5:1) used to enable RAMD.

9.2.2 DMA Logical Registers

There are eight of each of the following registers numbered zero to seven with the number designation following the mnemonic when the register is referenced. The number corresponds to a peripheral address.

The Current Address (CA*) register, the Termination Field (TF*) register, the Current Count/Status (CCST*), and the Data Buffer (DB^{*}) register are all thirty-two bit registers which can be set from or dump to the A-Bus. There are only four TF* registers which are shared by two numerically adjacent PA's, the even in bits $0-15$, odd in bits 16-31.

Since only byte match DMA is allowed, there are eight bytes in the TF* registers that are not used. Currently, bits 0-7 of TFO are used as the Attention Poll mask and bits 16-23 are used as an Attention Acknowledge indicator (see CSG I/O Standards).

MICROPROGRAM SEQUENCING AND SUPPORT HARDWARE

The flow of microcode from the control store to the microinstruction decoders is controlled by the microsequencing hardware. Several 14 bit registers and associated incrementers contain or compute the microcode addresses. Branch conditions combine with the current microinstruction to determine which register or incrementer will provide the address of the next microinstruction. See Figure 9.5 for a diagram of the sequencing hardware.

9.3.1 Addressing Control Store

Control Store addresses are composed of two parts, page address and word address, sent on separate buses. The Page Bus is a 14 bit bus and the Word Bus is a 6 bit bus with both positive and negative true data. Another bus called the Opcode Bus ties the sequencing hardware to the IOD register.
9.3.2 Microaddress Registers and Incrementers

The microcode program counter, uPC, normally contains the address of the next microinstruction to be fetched from control store. Tied to the uPC is a three deep subroutine return stack where microcode return addresses are stored and an incrementer to provide the next microinstruction address.

The target address of a microcode jump is held in the microjump register, uJR. This register is loaded on the state preceeding the execution of the microinstruction containing the jump.

Traps cause the control store address to come from one of the 2 locations in the trap address ROM. Traps also cause the uPC to be pushed onto the microsubroutine stack.

The 14 bit microtrace register, uTR, provides a simple breakpoint capability to aid in debugging IOP hardware and microcode. This register causes the execution of microinstructions to be halted when the control store page bus matches its contents.

9.3.3 Special Sequencing

If a microinstruction causes an off-page branch which empties the microinstruction pipeline, then the microsequencing state machine provides a NOP state while the pipe is refilled. Some operations causing NOP states are: long jumps, long subroutine jumps, and traps.
9.3.4 Microcoding IOP with Pipelined Microcode

IOP microcode is pipelined. Different instructions are fetched, decoded and executed at the same time. Microinstructions can be effectively executed at the rate of one every state time, but a microinstruction may be in the pipeline for several states. The longest pipeline sequence occurs for I/O operations.

For $I / 0$ operations (Set/Clr IOSB, DOUT, POUT, INT, RST) if the instruction is fetched during a certain clock phase one, the signal will be true at the pad by the end of the second clock phase two following the instruction fetch. It will be true at the interface 25 ns later.

HEWLETT-PACKARDCO.

Another place where the pipeline sequence of microcode has to be taken into account is when the "status register" is loaded and a jump taken on the condition of a bit in the "status register".

9.4 PLA MICROINSTRUCTION DECODER

Microinstructions on the Microinstruction Bus are sent to PLA drivers and the PLA's. Control line outputs from the PLA set, dump, and perform other functions throughout IOP, according to the microinstruction definition (see I/O Microcode ERS). During clock phase two, all control line outputs are pulled low (false).
9.5 ROM CONTROL STORE

ROM Control Store consists of 4608 words by 38 bits of read-only-memory. The address of fourteen bits (one is unused) comes in two fields, a ROM page address of nine bits and a ROM word address of five bits. The ROM outputs drive the Microinstruction Bus.


```
    O & ! E J - P A C K A R D C D., /,
```


AEMi,ETTT-PA CKAKDCB.
/, np,/,---------

```
;




POLL CYCLES - NO RCTIVITY


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{5}{*}{1111111}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}






ASYNC



 !n.








OUTPLTT HALFWORD EURST
 NSTS
 NIOSB

 NDEND
 \(\because\) OUTPLIT HALFWORD ELIRST - DEVICE END






```

 JuEMS
 C:LETH-PACKARDCO.
    ```
                    OUTPLIT HALFWORD EURST - CHANNEL END

                    NP


                    NSTS


                    NCBYT

                    NDEND

                    NED




                    NSTS

NDEND


IMODEL ISTK \(\#\)
1 1/0 System ERS
IBy fred Gross
IDATE 09/20/82
ISHEET \# 70 OF 81
IDNG \# A-1FE1-3030-9

IUFRS

```

 |@ENS
    ```

    INPUT RAMD

        POUT


        NIC2




\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline  & แ，1， \\
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|l|}{NIC2} \\
\hline &  \\
\hline & \\
\hline
\end{tabular}
 いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい


```

 INFRS
    ```


INPIT HALFWORD MULTIFLEX

 NCBYT \(, \ldots, 1, \ldots, 1,1,1,1,1,1, \ldots, 1, \ldots, 1, \ldots, 1,1, \ldots, 1\)


INPUT HALFWORD MULTIPLEX - DEVICE END

 NCEND



```

 / / IGFRS
 / no /
    ```



            \(\begin{array}{llllllllllll}00 & 05 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55\end{array}\)
                INPUT EYTE MULTIPLEX - CHANNEL END



NDEND


E. \(A\) if THEHACKAKOCO.

—年 --....

\(\because\) INPut halfword blirst - device end


 NCEND \(\qquad\)



INFUT BYTE MRTCH (NO MATCH)




 NDEND


INFUT BYTE MATCH (MATCH)


```

 /
 JUEKG;
 / ho /
 H \& U F. T T - R \& C k A R D C O. /

```

 POUT \(\lim\)

 NDEND





```

 /
 /
 Turars
 np /
    ```

- - - - -

\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 1 & 1 & Imodel & ISTK \# \\
\hline 1 & 1 & 1 & \(11 / 0\) System ERS & \\
\hline 1 & 1 & 1 & 13Y Fred Gross & IDATE 09/20/82 \\
\hline T 1 & 1 APPK &  & 1 AFPD & ISHEET \# 80 OF 81 \\
\hline & 1510\% & & IsUPF.kSEDES & 10.AG A-1FE1-3030-9 \\
\hline
\end{tabular}```

