

HP 97060A Graphics Processor Service Manual

HP 97060A Graphics Processor Service Manual

Part No. 97060-90030

© Copyright 1984, Hewlett-Packard Company. All rights reserved.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company 3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update packages may be issued between editions and contain replacement and additional pages to be merged into the manual by the user. Each updated page will be indicated by a revision date at the bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do not cause the date to change.) The manual part number changes when extensive technical changes are incorporated.

November 1983...First Edition August 1984...First Edition with update

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard computer system products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of shipment.* Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

Table of Contents

Chapter 1. General Information
Introduction
Description
Environmental Specifications 1-2
Electrical Characteristics
Functional Specifications
33/60 Hz Display Mode Selection 1-4
Parallel Interface Pc Assembly Jumpers
GPIO Interface Card Switch Settings 1-6
Warnings, Cautions, and Notes
Repair Philosophy
Ac Components/Power Cord 1-7
Voltage Options
Grounding Requirements 1-9
Safety

Chapter 2. Theory of Operation

Introduction	
System	2
97060A Graphics Processor	3
I/O	3
Processor	3
Microcode PROM	3
Processor Address Counters	3
Screen Address Counters 2	4
Pixel Memory	4
Pan/Zoom	
Color Map	4
Digital to Analog Converters	4
Microcode Word Definition	
Op Codes	6

Chapter 3. Testing and Troubleshooting

Introduction	1
Required Equipment	1
Self Test	1
Diagnostic LED Failure Indications	2
Not Sequencing	2
2901 Processor	.3
Data Bus	3
Loop Counter	.3
I/O	3
Scratch Pad	.3
Write/Read Back	
Signature	.3
RAM	.4
Troubleshooting Hints	-5

Chapter 4. Assembly Access

Introduction
Electrostatic Discharge
Covers
Top Cover
Bottom Cover
Replaceable Assemblies
Parallel Interface Pc Assembly 4-8
GPIB Tablet Interface Pc Assembly 4-9
Controller Pc Assembly
Power Supply, $-5V$, $10A$ 4-12
Power Supply, +5V, 20A
Fan

Chapter 5. Replaceable Parts

Introduction	5-1
Exchange Part.	5-1
Non-Exchange Parts	5-2

Figures

1-1	Controller Pc Assembly Jumpers 1-4
1-2	Parallel Interface Pc Asembly Jumpers 1-5
1-3	Power Cords
1-4	Power Supply Voltage Jumpers
2-1	System Block Diagram
2-2	97060A Block Diagram
4-1	Top Cover
4-2	Bottom Cover
4-3	Parallel Interface Pc Assembly
4-4	GPIB Tablet Interface Pc Assembly 4-9
4-5	Controller Pc Assembly
4-6	-5V, 10A Power Supply 4-12
4-7	+ 5V, 20A Power Supply 4-13
5-1	Replaceable Parts, Top View
5-2	Replaceable Parts, Bottom View 5-4
Tables	
1-1	Voltage Configuration Part Numbers 1-8
3-1	Diagnostic LED Failure Indications
3-2	Failed RAM Locater
5-1	Exchange Part
5-2	Non-Exchange Parts

Chapter 1 General Information

Introduction

Note Hewlett-Packard assumes no responsibility for customer repairs or modifications.

This manual contains servicing information for the Hewlett-Packard (HP) 97060A Graphics Processor (hereinafter referred to as the 97060A). HP supports repairing the 97060A to the assembly level, that is, isolating the problem to the replaceable assembly. Then the defective assembly is exchanged for a new or rebuilt assembly.

This chapter contains general information about the 97060A and its servicing.

Additional information in this manual includes:

- Theory of Operation
- Testing and Troubleshooting Procedures
- Assembly Access Procedures
- Replaceable Parts

Complete installation instructions are provided in the HP 97060A Graphics Processor Installation Note, part number 97060-90001.

Description

The HP 97060A is a high-performance graphics processor. The 97060A has eight planes of 1024 X 1024 pixels.

Installation consists of unpacking, connecting power, connecting the RGB coax cables to the monitor, and connecting the interface cable to the GPIO card in the HP 9000 Series 500 computer.

The 97060A has refresh rate and voltage options which are preset at the factory. Refer to 33/60 Hz Display Mode Selection and Voltage Options which follow in this chapter for additional information.

Extensive self-test capability is built into the 97060A, and the **READY** light on the front panel gives a highly reliable indication that the self-tests have passed. Normally, the **READY** light turns on about 8 seconds after the **ON** light turns on at powerup. However, if a fault occurs, the **READY** light does not turn on.

Environmental Specifications

Temperature:	 - 40°C to + 75°C non-operating 0°C to + 55°C operating 	
Humidity:	$+40^{\circ}C @ 95\%$ non-condensing operating	
Vibration: (operating)	Cycle range: Amplitude (p-p): Sweeptime: Dwell: Amplitude:	5-55-5 Hz 0.015 inch 1 minute per octave, 15 minutes total 10 minutes each resonance 0.125 inch @ 5-10 Hz 0.060 inch @ 10-25 Hz 0.015 inch @ 25-55 Hz
Shock: (non-operating)	Magnitude: Duration: No. of shocks: Waveform: Bench drop:	30 G 11 msec 18 (3 each on 6 surfaces) Half sine 4-inch tilt
Altitude:	50,000 feet, 0-55°C, non-operating 15,000 feet, 0-55°C, operating	
Drop Test: (non-operating, packaged)	30 inches each face	and corner
EMI:	VDE Class A FCC Class A	
Safety:	UL114 (Office Mac UL478 (EDP) CSA154 (EDP) IEC380 (Office Mac IEC435 (EDP 1982	chines with Amendment 1)

I

Electrical Characteristics

Rated Line Voltage:	Low Range: High Range:	90 to 132V ac 180 to 264V ac
Frequency Range:	47 to 66 Hz	
Power Dissipated:	<100W; 85W typic	al
Supply Ratings:	+ 5V @ 20A - 5V @ 12A	
Fuse:	4A Low Voltage Range, fast blow 6.3A High Voltage Range, fast blow	
Video:	RS-343 compatible. $1V$ p-p with sync on Green. $0.7V$ video, $0.3V$ sync within 5%	

Functional Specifications

Resolution:	1024 X 768 @ 33 Hz interlaced 736 X 552 @ 60 Hz non-interlaced Other options are soft programmable, such as 640 X 480, 30 Hz, RS-170
Host Interface:	Compatible with HP 27112A General Purpose I/O (GPIO) Interface Card with Option 001 interface cable
Tablet Interface:	Compatible with HP 9111A Data Tablet
Self Test:	>90% of IC failures detected Data bus counter check Bit slice register increment check Loop counter check I/O loopback check Scratchpad RAM check, load with address Memory test: write all 1s, 0s, 1s, 0s; read back Write Mask, Write Data, check with read back Vector drawing test followed by signature read
Reset:	Power up causes full self-test Host reset causes full self-test

33/60 Hz Display Mode Selection

The 97060A may be set for either 33 or 60 Hz frame refresh rate (display mode), as follows:

Access the controller pc assembly according to procedures in Chapter 4. Two jumpers near U291 on the controller pc assembly determine display mode selection. Ensure that both jumpers are in either the 33 Hz or the 60 Hz positions, depending on the monitor used. See Figure 1-1 for 33/60 Hz jumper positions. The other four jumpers are set at the factory and should not be changed. Ensure that they are in the positions shown in Figure 1-1.

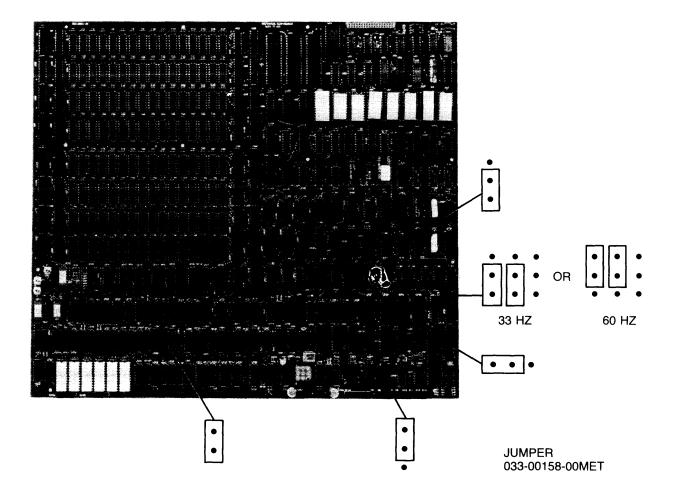


Figure 1-1. Controller Pc Assembly Jumpers

Parallel Interface Pc Assembly Jumpers

Four jumpers are contained on the parallel interface pc assembly (Figure 1-2). Three concern handshaking, the fourth concerns the INIT signal. The jumpers are set at the factory and should not be changed. Ensure that they are in the positions shown in Figure 1-2.

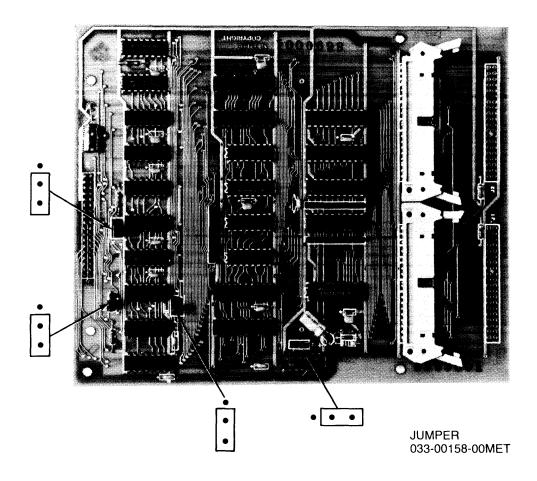


Figure 1-2. Parallel Interface Pc Assembly Jumpers

GPIO Interface Card Switch Settings

The HP 27112A General Purpose I/O (GPIO) Interface Card interfaces the HP 9000 Series 500 computer to the 97060A. The GPIO card switches should be set as follows. Note that a switch that is up is in the open position and represents a logic one; a switch that is down is in the closed position and represents a logic zero.

SW1: S1 through S8 - Down

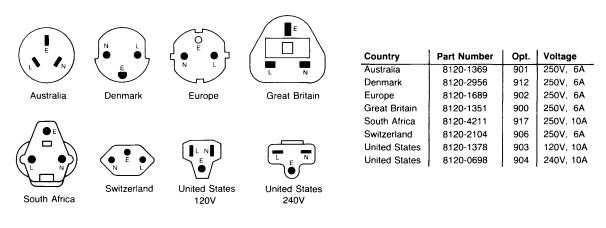
SW2: S1, S2, and S5 - Up S3 and S4 - Down

Warnings, Cautions, and Notes

Warnings, cautions, and notes are used in this manual. Warnings call attention to potential hazards for personnel. Cautions call attention to potential hazards for equipment. Notes emphasize important information or instructions.

Repair Philosophy

The 97060A is repaired at an assembly replacement level. Parts that are most commonly replaced are exchange parts and are on the Computer Support Division (CSD) exchange program. When an exchange part fails, it should be returned to CSD for repair, and a rebuilt part should be obtained. If a new part is purchased instead, it is unnecessary to return the failed part. Chapter 5 contains a list of all replaceable parts. Tables in Chapter 5 also list exchange parts with new and rebuilt part numbers and module-level non-exchange parts.


Ac Components/Power Cord

A detachable ac power cord plugs into an ac outlet to provide primary power to the 97060A. Other ac components are an on/off **POWER** switch, line fuse, line filter, fan, and wiring.

WARNING

IF IT IS NECESSARY TO REPLACE THE POWER CORD, THE RE-PLACEMENT CORD MUST HAVE THE SAME POLARITY AS THE ORIGINAL CORD. OTHERWISE, A SHOCK HAZARD MIGHT EXIST WHICH COULD RESULT IN INJURY OR DEATH. ALSO, THE EQUIPMENT COULD BE SEVERELY DAMAGED IF EVEN A RE-LATIVELY MINOR INTERNAL FAILURE OCCURRED.

Power cords with different plugs are available for the 97060A; plug configurations are shown in Figure 1-3. Each plug has a ground connector. The cord packaged with the 97060A depends upon where the equipment is to be delivered. If your equipment has the wrong power cord for your area, please contact your local HP Sales and Support Office.

NOTE: Plugs are viewed from connector end. Shape of molded plug may vary within country.

Power cords supplied by HP have polarities matched to the power-input socket on the computer:

- L = Line or Active Conductor (also called "live" or "hot")
- N = Neutral or Identified Conductor
- E = Earth or Safety Ground

Figure 1-3. Power Cords

Voltage Options

The 97060A is configured at the factory for either 110V or 220V input line voltage. Table 1-1 lists the parts which are unique to the 110V and 220V options. Figure 1-4 shows power supply jumper configurations for the voltage options.

Table 1-1. Voltage Configuration Part Numbers

Description	110V	220V
Power cord	8120-1378	Country dependent
Fan	050-00342-00MET	050-00694-00MET
Line fuse	2110-0055	2110-0715

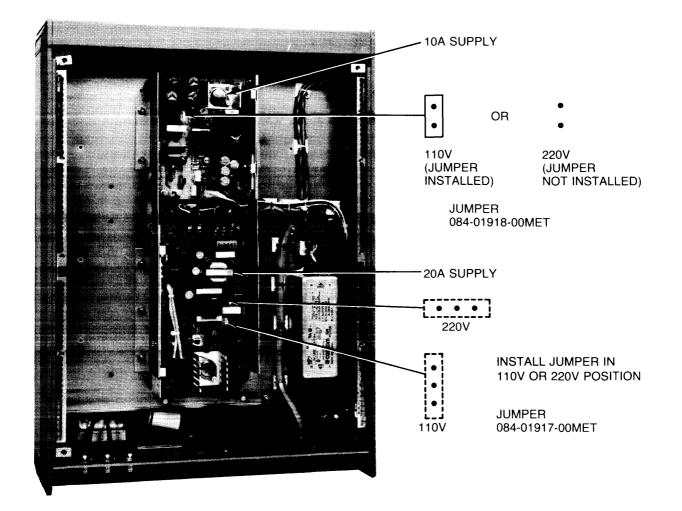


Figure 1-4. Power Supply Voltage Jumpers

Grounding Requirements

To protect operating personnel, the National Electrical Manufacturers' Association (NEMA) recommends that the 97060A chassis be grounded. The 97060A is equipped with a three-conductor power cable which, when connected to an appropriate power receptacle, grounds the computer chassis.

Safety

WARNING LETHAL VOLTAGES ARE PRESENT INSIDE THE 97060A. OBSERVE ALL WARNINGS IN THIS MANUAL, AND OBSERVE THE FOLLOWING SAFETY PROCEDURES.

- Do all possible operations with the 97060A unplugged from the power source.
- If installation, maintenance, or repair must be done with the 97060A energized, take the following precautions:
 - a. Never work alone in high-voltage areas. In case of accidental shock, a life may depend on rapid removal from the energized source and appropriate first-aid action.
 - b. Personnel working in high-voltage areas should know where to obtain respiratory resuscitation and/or cardiopulmonary resuscitation (CPR), in case a fellow worker needs assistance.
 - c. In case of burns, treat only after the person is breathing and has a normal heartbeat.
- If primary wiring change is made, perform continuity test between power cord ground and metal chassis. Record results on Repair Order.

1-10 General Information

Chapter **2** Theory of Operation

Introduction

The HP 97060A is a high-performance raster graphics processor constructed from a mixture of MOS and bipolar ECL technology. The architectural components include:

- Bit-slice processor with 64-bit microword
- Megabyte of dynamic RAM (DRAM), organized as eight megabit planes of 1024 X 1024
- Integrated signature analyzer
- Hardware pan and zoom
- Line and area pattern generators
- EPROM-based character generator
- 36 MHz pixel clock

System

Communications with the HP 9000 computer is via the 16-bit parallel interface with the HP 27112A GPIO interface card and its Option 001 2.5-metre cable.

An HPIB graphics tablet interface option is supported, allowing a local cursor to track the tablet stylus. The HP 9111A Data Tablet is the supported device.

Figure 2-1 shows a fully configured system.

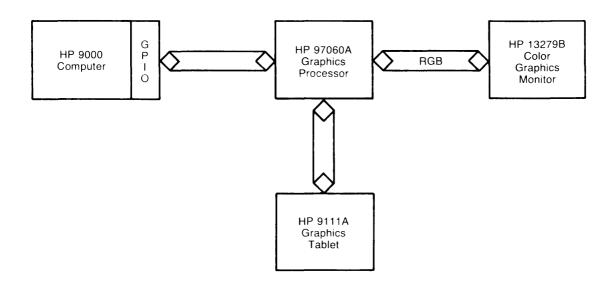


Figure 2-1. System Block Diagram

The link between the computer and 97060A is bidirectional. The computer sends op codes and arguments in the 97060A syntax, and thus builds a picture in display memory. The computer may also read display memory or 97060A status.

The link to the graphics tablet is also bidirectional, although the tablet functions primarily as a sender. The tablet is software configurable and can be set under host control.

The link between the 97060A and monitor is three coaxial cables carrying composite video conforming to the RS-343 standard for RGB transmission.

97060A Graphics Processor

Figure 2-2 is a block diagram of the 97060A hardware. Access to the dynamic RAM bit-map is shared by the processor and screen refresh circuitry.

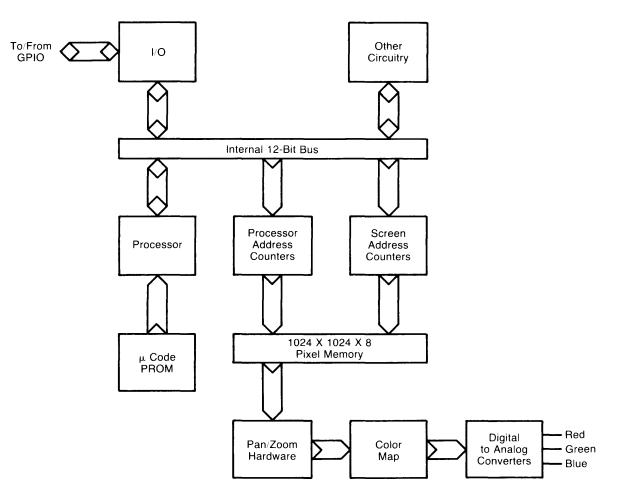


Figure 2-2. 97060A Block Diagram

The functions of the 97060A blocks are as follows:

I/O

This is the interface port to the HP 9000. The 97060A communicates with a "2-wire" handshake, PCTL and PFLG.

Processor

Composed of three 2901B bit slices, the 12-bit processor runs at a 220 ns cycle time.

Microcode PROM

This is a 64-bit-wide PROM array controlling processor ALU, source and destination for data transfers, load of the processor counters, and other important 97060A functions. Only the high speed functions such as memory cycle timing are performed independently, in state machines or random logic.

Processor Address Counters

These two 12-bit counters, one for X and one for Y, respond to the commands Load, Up/Down, and Count.

Screen Address Counters

These two counters, a 6-bit counter for X and a 10-bit counter for Y, only count up. However, they can be loaded with a start count other than zero to achieve the Pan function. They are automatically loaded on each vertical retrace. Counting can be prescaled by a modulo Zoom value.

Pixel Memory

Pixel memory consists of 128 DRAMs, 16 chips of 64K bits per plane. Memory is organized such that blocks of 16 adjacent pixels on a raster line are each contributed by a different DRAM output. Memory operates at a 220 ns write cycle and a 440 ns read cycle. The eight planes are individually addressable through the Write Mask, Write Data, and Read Mask. These are each 8-bit registers with a flip-flop for each of the eight planes. Only when the Write Mask is set for a particular plane is its write enable line allowed to pulse. When written, the value of the particular Write Data flip-flop determines whether a 1 or a 0 is written. The Read Mask affects the planes read out and has no effect on data read by the processor.

In the following example, plane 0 is neither read nor written. Plane 1 is written with a 1, and is viewed. Plane 2 is not written, but is viewed. Plane 3 is written with a 0, and viewed. Plane 4 is written with a 1, and not viewed, and so forth.

Example:

Plane	Write Mask	Write Data	Read Mask
0	0	1	0
1	1	1	1
2	0	1	1
3	1	0	1
4	1	1	0
5	0	0	1
6	1	0	1
7	1	1	0

Pan/Zoom

This circuitry contains modulo counters which essentially mirror the function of the screen address counters. Zoom is achieved by slowing down the entire pipeline from DRAM to the output digital-to-analog converters, causing pixel replication. Pan is achieved primarily by the screen address counters, but these only address 16 contiguous pixel blocks. To obtain a finer offset, a circular buffer is used as a programmable delay line.

Color Map

The 8-bit path through Pan/Zoom continues to the Color Map, a 256 X 24 RAM that allows the user to work with 256 colors simultaneously from a palette of 16.7 million colors.

Digital to Analog Converters

The 24 bits from the Look Up Table are broken into three groups and routed to three 8-bit Digital to Analog Converters: Red, Green, and Blue. Composite sync is added to the Green output to create a 1V p-p signal.

Microcode Word Definition

The 64-bit microcode word resides in eight 16K PROMs, allowing 2048 steps of control memory. These PROMs are addressed by a 12-bit sequencer comprising two 2911As and a 2909A. The sequencer in turn is driven by microcode control bits and branching conditions from various sections of the hardware. The next section will explain these conditions in more detail.

The microcode word is subdivided into five major groups called fields:

- Control Field. These 13 bits of control lines regulate the processor address counters, the write enable generator for pixel memory, and other functions described below.
- Data Bus Source and Destination Control. Every instruction must specify a driver and a receiver for the internal data bus. This occurs even if no actual data transfer is required, in which case the destination is a dummy location. The sub-fields are:

Data Source	3 bits
Data Destination	5 bits

• Conditional Branch Control. These 11 bits directly control the activity of the microcode sequencer, which in turn selects the next microcode word decoded. There are three sub-fields:

Branch Type	3 bits
Condition Code	8 bits

• Bit Slice ALU Controls. These 20 bits specify internal action of the three 2901B bit slice parts. There are five sub-fields:

External Carry/Borrow	3 bits
ALU Destination	3 bits
ALU Function	3 bits
ALU Source	3 bits
Register Address	8 bits

• Data Field. The microcode often must drive the data bus, either to load the ALU with a constant operand, preset data bus destinations to some value, specify a branch location to the sequencer, or other operation. This is a single 12-bit field.

Op Codes

Unless otherwise specified, all writes to pixel memory observe the Write Data, Write Mask, and present Area Pattern. That is, a write in plane k occurs only if bit k of the Write Data Register and Write Mask Register are = 1 and the present Area Pattern function A(x,y) = 1.

Byte arguments are indicated by lower case, word arguments by upper case. Word arguments are read in the order: low byte, high byte.

The following are state variables:

P1 (pointer 1) P2 (pointer 2) WRITE DATA (also called "current color") WRITE MASK (determines planes written) PATTERN REGISTER (including line and area patterns) READ MASK (planes viewed) BLANK BLINK CMAP (contents of 256 locations) CONFIGURATION (33 Hz, 8 planes, tablet) SETCORN, SETCSZ, FSIZE, CSPACE (character information) SZCUR (cursor size) CURRENT POLYGON STRUCTURE (vertex list)

Mnemonic	Hex	Description
AFILL1	68	Read pixel at P1 Do while neighbor color = P1 pixel color Write neighbor with Write Data End P1 and P2 unmodified.
AFILL2 <f></f>	69	Read pixel at P1 Do until neighbor color = f Write neighbor with Write Data End P1 and P2 unmodified
ARC <1>	62	Draw arc of length 1 using Write Data and center of curvature P1. Begin at P2. P2 left at end of arc upon completion. 0<1<2047.
BLANK 	4B	b is LSB of argument byte. If $b = 1$ then blank screen and give processor access. If $b = 0$ then return to screen-priority mode.
BLINK 	4D	b is LSB of argument byte. If $b = 1$ then toggle plane 7 at 2 Hz, using Read Mask. If $b = 0$ then restore steady plane 7.
CHAR <c1,c2cn></c1,c2cn>	6B	Draw text starting with P1 pointing to the lower left corner of the 16 X 8 character cell. c1, c2, etc., are ASCII codes 0-127. cn is the ESC character (#27) and terminates text mode. See also SETCSZ, FSIZE, and CSPACE.
		Control characters decoded:
		CR Return to left margin LF Move pointer down one line BS Move pointer back one space ESC Exit text mode
CLEAR	60	Fill screen with Write Data.
CMAP <a,r,g,b></a,r,g,b>	51	Load color map location a with values r, g, and b.
COMPDR	72	Draw a vector between P1 and P2 complementing present pixel values. Leave P1 at P2. WRMASK and SETCOL not used.
CRTWR <r,d></r,d>	46	Write the 6845-1 CRT Controller Register r with d.
CSPACE <Δx,Δy>	48	Auto increment between successive characters. Apply increment $\Delta x, \Delta y$ from lower left corner of cell, then apply transformation specified by SETORN.
CURS	71	Draw cursor at P1. Drawn in complement mode, with crosshair width and height as set by SZCUR. Automatically removed upon receipt of next op code. Write Mask and Area Pattern ignored.
DRAW	61	Draw vector from P1 to P2. Leave P1 at P2.
FFILL	65	Fill rectangle defined by diagonal P1,P2. Approximately 16 times fast- er than RECT2; no patterns allowed.
FSIZE $<\Delta x, \Delta y>$	49	Font size. $0 < \Delta x \le 8$, $0 < \Delta y \le 16$. These define a window on the 16 X 8 character cell.

Mnemonic	Hex	Description											
GRAFIN <f></f>	4A	FIN :	Set Graphic Input (from tablet). The argument (f), which is the GRA- FIN mode select byte, selects the current GRAFIN mode. It is one of the following:										
		0 Software INIT Mode. This mode resets all GRAFIN attributes to their default values and clears the coordinate queue. The offset and scale factors are also reset to their default values.											
			GPIB t hics tab		interf	ace pc	assem	bly ser	nds the	follow	ring to	the	
		The	DEVIC	E CLE	EAR si	gnal.							
			IN mes et to run	-				-	-			hics	
			DF mes edeterm					essage	sets the	e graphi	ics table	et to	
] -					Note						
			Refer to the Hewlett-Packard 9111A Graphics Tablet Us- er's Manual for information about messages sent to the graphics tablet.										
		1 Local Cursor Control Mode. When in this mode, the continuous stream of x,y coordinates in the tablet's us format. The coordinates are buffered on the GPIB ta assembly, and the stylus position is indicated by the attached monitor. The cursor appears in the color existing pixels.								usual 8-bit, 6-byte tablet interface pc the cursor on the			
		is de 1 ar depr	pressed nd 2 of ressed, t	l. The byte the bit	messa 1 inc	age forn licate tl	mat is s he styli	hown i us posi	n the fo tion. W	ollowing Vhen th	on the tablet ng table. Bits the stylus is n is transmit-		
			o the ho									1	
			-			<u> </u>		Bit				4	
			Byte	7	6	5	4	3	2	1	0	4	
			1 2	0 0	$\begin{array}{c} 1\\ 0\end{array}$	0 x5	0 x4	0 x3	sp x2	sp x1	0 x0		
			3	0	0	0*	0*	x9	x8	x7	x6		
			4 5	0	0 0	у5 0*	у4 0*	y3	y2	y1	y0		
					, ,			y9	y8	y7	<u>y6</u>]	
		* Coordinates are those of the screen cursor, after applying offset and scaling. Transparent should be used if full tablet precision is required.							ansparent	mod			
		sp (stylus position): $1 =$ stylus depressed											

Mnemonic	Hex	Description
GRAFIN <f> (continued)</f>	4A	2 Transparent Mode. Transparent mode allows the host to interact directly with the graphics tablet, without converting the graphics tablet data to the 97060A's 5-byte format. Full-duplex communications continues until a delimiter (default: hex 80) is received to terminate Transparent mode. This mode is useful primarily in two cases:
		Transparent mode may be used to run programs that were not specifi- cally written for use with the 97060A/9111A Graphics Tablet con- figuration. These programs may require graphics tablet data that has not been converted to the 97060A's 5-byte format.
		Transparent mode may also be used to issue any of the commands described in the 9111A Graphics Tablet User's Manual, e.g., "RC;" or "RC" <lf>.</lf>
		Note
		When in Transparent mode, do not issue the Input Masks instruction using the Status Mask (S-mask) parameter. The S-mask parameter causes the graphics tablet to respond by activating SRQ (request service message) on the data line. The SRQ function on the data line is not supported on the GPIB tablet interface.
		In Transparent mode, the graphics tablet sends one 6-byte message in response to each semicolon (;) it receives from the host.
		In Transparent mode, all responses from the 9111A are padded to an even number of bytes. Responses that would normally have an odd byte count have a null character (00H) appended to the end.
		Commands sent to the tablet may be padded with as many ASCII space characters (20H) as desired. These are filtered from the character stream and not sent to the 9111A.
		3 Set Offset and Scale Factors Mode. The device coordinates are subjected to an offset and scale operation in the 97060A for cursor position control. The next eight bytes specify the following in two's complement format:
		 x offset low byte x offset high byte x multiplier fraction x multiplier integer y offset low byte y offset high byte y offset high byte y multiplier fraction y multiplier integer
		4 Set Delimiter Mode. The next byte specifies the delimiter, replacing the default delimiter. Transmitting the delimiter during Transparent mode causes exit from Transparent mode. The delimiter can range from 0 to FE (hex); the default delimiter is 80 (hex).

Mnemonic	Hex	Description								
GRAFIN <f> (continued)</f>	4A	 5 Sample Position - Screen Coordinates. This instruction cause full device status message to be sent to the host regardless or device's status message value. (No stylus switch closure is necess See the preceding table under mode 1 for the full device status sage format. The x,y values are returned in 97060A (5-byte) contacts. 6 Sample Position - Tablet Coordinates. The full tablet coordinates. 								
		-	le Position - Tablet Coordina s relayed upon receipt of this							
		7 Set Mo tions:	ode Register. The mode regis	ter has the following bit defini-						
		Bit	IF = 0(default)	IF = 1						
		1 I 2 H 3 H	Wrap around Level Buttons Button Xmit Report Button Depression During GRAFIN 1	Clip to screen Boundary Edge Buttons Button not Xmit No Output During GRAFIN 1						
			ts may be written as a group, e with bits 0, 1, and 2 appropriate the second	by sending GRAFIN 7 followed iately set and bit $7 = 1$.						
		the other respective	s by setting bit 7 to a zero, bit .	individual bit without modifying 3 to zero or one (for clear or set, pointer value (i.e., 000 for bit 0,						
INIT	5E	Soft Init.	Receipt of this code causes th	ne following:						
		Write Set so Set No Load Clear Clear Set de For For Aut Initiali	Mask set to FF Data set to 0 Jid pattern to Zoom and Pan on Read Mask for all planes Character Generator with ESC line pattern counter Scratchpad RAM efault parameters in Scratchpa to Width = 8 to Increment $\Delta x = 8$ to Increment $\Delta y = 0$ ze tablet, delimiter, etc. Color Map with default values	ıd:						
			ault Color Map values are m ue (address) for a given ratio o	ost easily specified in terms of of red, green, and blue:						
			value = 224*R + 28*G + 3*B v t (0,1/7,2/7,,7/7) and B is c	where R and G are chosen from hosen from (0,1/3,2/3,3/3)						
MOVP1 <lox,hix,loy,hiy></lox,hix,loy,hiy>	52	Move P1	from lo x to hi x and from lo	y to hi y.						
MOVP2 <lox,hix,loy,hiy></lox,hix,loy,hiy>	53	Move P2	? from lo x to hi x and from lo	y to hi y.						

Mnemonic	Hex	Description									
PATERN	50	Set pattern as specified in p. Area patterns remain in effect through all drawing operations except cursor and flash fill; in these instances drawing is in solid mode, i.e., line pattern 0.									
			Bit								
		7	6	5		4	3	2	1	0	
		n	node			inver	t line		pattern		
		Bit 3 selects 0, or swaps								al mode if	
		Mode: The pattern) or s as Foregrou (BG). These argument by	x,y (are ind (FC e defini	ea pa G). S	attern imilar). If the rly, a va	e function alue of C	n = 1, t) is defin	hen this : ed as Ba	is defined ckground	
		Abbreviate register byte values are:									
		Opt	ion			Bit Va	alue		Meaning	3	
		FG←WD FG←WD* BG←BG* BG←0 BG←BG			Bit $6 = 0$ Bit $6 = 1$ Bit $7 = 1$ Bit $7 = 0$; Bit $5 = 0$ Bit $7 = 0$; Bit $5 = 1$			write zero zero	write all write selected zero selected zero all no change		
PIXBLT <Δx,Δy,d>	70	Copy a recta rectangle of prevent pro pixel before	identio blems	cal si with	ize rel	lative to	o P2. Th	e directi	ion byte i	is used to	
		Direction Bit		11	F – O			T	F – 1		
		Bit $IF = 0$ $IF = 1$ 0normalswap x,y axes on destination y1increment destination ydecrement destination y2increment destination xdecrement destination decrement destination y3increment source ydecrement source y4increment source xdecrement source x					s on desti estination estination urce y	У			
POLYC	44	Sub polygon delimiter command; used for concatenated polygons, holes, etc. Inserted after POLYS, POLYV <x0,y0>, POLYV<x1,y1>, POLYV<xk,yk> to define a k + 1 vertex figure. The following POLYV<xk+1,yk+1>, POLYV<xk+2,yk+2>, POLYV<xn,yn>, POLYC will define another sub polygon of n-k vertices. This process may continue up to the stack limit (900 vertices).</xn,yn></xk+2,yk+2></xk+1,yk+1></xk,yk></x1,y1></x0,y0>							X0,Y0>, tex figure. Yk+2>, on of n-k		
		A subseque polygons, w on the sub p	vithout	drav	ving a	ny ties	A POL				

Mnemonic	Hex	Description							
POLYF	67	Polygon Fill. The current list of sub polygons in the stack will be scan converted and filled inclusive of edges. A parity fill occurs, meaning that only those regions are filled which are reached from the screen boundary via an odd number of edge crossings.							
POLYM <x,y></x,y>	45	Polygon Move. The polygon edge from the previous point to x,y is flagged so as not to be drawn during POLYO. It is in other respects treated as a normal polygon edge.							
POLYO	66	Polygon Outline. Outline the individual sub polygons, except where POLYM occurs.							
POLYS	56	Polygon Start. Clears polygon working area.							
POLYV <x,y></x,y>	57	Polygon Vertex. Adds vertex x,y to the present sub polygon.							
PPAN	5B	Set origin of display to P1. Confined to 16 pixel increments in X when no zoom.							
RDCONF	5D	Read Configuration. Upon receipt, the 97060A returns two bytes. The first is an 18 hex, signifying 33 Hz and Grafin installed. The second byte specifies the microcode release level as two hex numbers. For example, the byte 33 hex means version 3.3 microcode is installed.							
RDMASK <m></m>	4C	Read Mask. The byte m specifies which planes are to be viewed, and has no effect on readback functions such as RDR, RPIXEL, AFILL, COMPDR, or XDRAW. Overridden by blink function.							
RDR	6E	Read Rectangle. The 97060A returns a stream of pixel values from the rectangle defined by P1,P2 beginning at the upper left corner and progressing left to right within top to bottom. Read is exclusive of right and bottom edges, so that the total number of pixels transferred is:							
		ABS(P1X - P2X)*ABS(P1Y - P2Y)							
		P1 and P2 are not modified.							
RECT1	63	Outline the rectangle defined by P1,P2 diagonal. P1 and P2 are left unmodified.							
RECT2	64	Fill rectangle defined by P1,P2 diagonal, inclusive of edge. P1 and P2 are left unmodified.							
RLFILL $<\Delta x>$	6A	Run Length Fill. Write Δx successive pixels from P1, including P1, and leave P1 one pixel past the sequence. $0 \le \Delta x \le 1023$.							
RMOVP1 $<\Delta x, \Delta y>$	54	Relative move of P1. Argument is 2s complement. $-2048 \le \Delta x, \Delta y \le 2047$.							
$RMOVP2 < \Delta x, \Delta y >$	55	Relative move of P2. Argument is 2s complement. $-2048 \leq \Delta x, \Delta y \leq 2047$.							
RPIXEL	6C	Read pixel at P1. A single byte is returned.							
SETCOL <c></c>	4E	Set Color, or Write Data Register.							

Mnemonic	Hex	Description							
SETORN <d></d>	59	Set Character Orientation. The direction byte assigns meaning to th lower three bits; these indicate character rotation and mirror inversior Assume a relative 360-degree axis with ccw angle:							
		d	Rotation	Inversion					
		0 1 2	0 -90 180	no yes yes					
		3 4 5 6 7	-90 0 90 180 90	no yes no no yes					
		Transformations applied	l d by CSPACE	happen after this one.					
SETCSZ <x,y></x,y>	58	constraints of FSIZE, effect is to zoom charac	CSPACE,SE ters via pixel r	haracters are drawn within the TORN, and this parameter. Its eplication, and the bytes x and y x and y directions prior to rota-					
SIGRD	5C		two bytes are	returned as two sorted bytes. In identical; in interlace mode they					
SYNCH <f></f>	5F	Wait until f fields have Useful for animation.	occurred befo	re accepting further commands.					
SZCUR <Δx,Δy>	47	CURS command, or c complementing crossha	luring GRAFI air with dimer	layed either in response to the N cursor tracking mode. It is a asions set by Δx and Δy of this s will be twice these values.					
WPIXEL	6D	Write pixel at P1 using	current color.						
WRMASK <m></m>	4F	-	ng operations.	determines the particular planes It is ignored in cursor drawing					
WRR <b1,b2bn></b1,b2bn>	6F	proceeding left to right	within top to s, and the nu	2, beginning in the upper left and bottom. Fill is exclusive of the umber of pixels expected is the					
XDRAW	73			to P2. The pixel written is the Write Data register. P1 is left at					
ZOOM <z></z>	5A	Zoom screen via pixel r origin remains unchang		a count of z. The position of the modified. $0 \le z \le 15$.					

.

2-14 Theory of Operation

$\begin{array}{c} \text{Chapter } \mathbf{3} \\ \text{Testing and Troubleshooting} \end{array}$

Introduction

This chapter contains a list of the equipment required to test and troubleshoot the 97060A. It describes the self test and all LED error indications.

Required Equipment

- Multimeter
- Monitor, color graphics, HP 13279B

Self Test

The built-in self test starts on powerup. Nine LEDs on the controller board indicate the results of self test. They are labeled D5 through D13. D12 indicates Hardware Clock (HWCLK) and D13, Processor Clock (PROCCLK). If these LEDs are off, the clock circuit is faulty or -5 volts is not present. If the self test terminates without error, all nine LEDs are on and the **READY** LED on the front panel is lit.

The self test compares the signature on a displayed star pattern with the signature stored in the PROMs. If they match, the **READY** LED is lit; if not, the **READY** LED is not lit and the diagnostic LEDs indicate a Signature failure (Table 3-1). Note that some programs can still be executed after a Signature failure has occurred.

Diagnostic LED Failure Indications

Table 3-1 defines the various failures indicated by the LEDs. A lit LED is indicated by an "X". Failures are more thoroughly described in text following the tables.

LEDs D5 and D6 are not used to interpret an error. They are normally on but go off when an error occurs.

D5	D6	D7	D8	D9	D10	D11	D12	D13	Error
						Х	Х	Х	Not Sequencing
					Х		X	Х	2901 Processor
					Х	Х	X	Х	Data Bus
				Х			Х	Х	Loop Counter
				Х		Х	Х	Х	I/O
				X	Х		Х	Х	Scratch Pad
				Х	Х	Х	X	Х	(Undefined)
			X				X	Х	Write/Read Back
			X			Х	X	Х	Signature
		Х					Х	Х	RAM Row 0
		Х				Х	X	Х	RAM Row 1
		X			Х		X	Х	RAM Row 2
		Х			Х	Х	Х	Х	RAM Row 3
		Х		Х			X	Х	RAM Row 4
		Х		Х		Х	X	Х	RAM Row 5
		Х		Х	Х		Х	Х	RAM Row 6
		Х		Х	Х	Х	Х	Х	RAM Row 7
		Х	Х				X	Х	RAM Row 8
		Х	Х			Х	X	Х	RAM Row 9
		Х	X		Х		Х	Х	RAM Row A
		Х	X		Х	Х	Х	Х	RAM Row B
		Х	X	Х			X	Х	RAM Row C
		Х	Х	Х		Х	Х	Х	RAM Row D
		Х	X	Х	Х		Х	Х	RAM Row E
		X	X	X	Х	Х	Х	Х	RAM Row F

Table 3-1. Diagnostic LED Failure Indications

Not Sequencing

The sequencer (U24, U55, U56) is faulty.

2901 Processor

The 2901 processor (U21, U22, U23) is faulty.

Data Bus

The self test counts up the data bus. This error is indicated if two data lines are shorted together or shorted to ground or +5 volts, or if two devices are driving the data bus at the same time.

Loop Counter

The self test counts down the loop counter.

I/O

The microcode loops, sending 0s and 1s to the parallel interface pc assembly and reading them back.

Scratch Pad

Scratch pad test loops passing address to data and then writes. Then, address 1 contains data 1, address 2 contains data 2, etc. It then reads back. If an error occurs, the test stops. If there is no error, the data is complemented, written, and checked.

Write/Read Back

The test writes to memory and reads it back through the read back shift registers. If they don't match, an error is indicated. Possible causes of this error are outputs of two RAMs shorted together, RAS or CAS bad, or shift register bad.

Signature

This part of the self test displays the star pattern and checks it against the signature in PROM. If there's not a match, an error is indicated. Possible problems are bad RAM or bank of RAMs, signature hardware bad, color map bad, or pan and zoom bad. The error is usually evident on the display.

RAM

If LED D7 is lit, there is a RAM error. The combination of LEDs D8 through D11 indicate the row in which the error occurred. The address lines on a scratch pad RAM indicate which bank of RAMs is failing.

Table 3-2 is a matrix which indicates the specific failing RAM. To find the failing RAM, determine the row according to LEDs D7 through D11 and determine the bank according to the high scratch pad address line as indicated by the U341 pins. For example, if LEDs D7, D9, and D11 are lit, and U341 pin 4 is high, U103 is the failing RAM. If more than one scratch pad address line is high, the problem is probably with the control lines, such as the address lines, write, enable, RAS, or CAS.

			S	CRA	ГСН Р/	AD AD	DRES	S*					
D7	D8	D9	D10	D11	ROW	A0	A1	A2	A3	A4	A5	A6	A7
X					0	U18,	49,	77	108	140	172	192	224
X				Х	1	U17,	48,	76	107	139	171	191	223
X			X		2	U16,	47,	75	106	138	170	190	222
X			X	Х	3	U15,	46,	74	105	137	169	189	221
X		X			4	U14,	45,	73	104	136	168	188	220
X		X		X	5	U13,	44,	72	103	135	167	187	219
X		X	Х		6	U12,	43,	71	102	134	166	186	218
X		X	Х	X	7	U11,	42,	70	101	133	165	185	217
X	X				8	U10,	41,	69	100	132	164	184	216
X	X			X	9	U9,	40,	68,	99	131	163	183	215
X	X		X		А	U8,	39,	67,	98	130	162	182	214
X	X		X	X	В	U7,	38,	66,	97	129	161	181	213
X	X	X			С	U6,	37,	65,	96	128	160	180	212
X	X	X		X	D	U5,	36,	64,	95	127	159	179	211
X	X	X	X		Е	U4,	35,	63,	94	126	158	178	210
Х	X	X	X	Х	F	U3,	34,	62,	93	125	157	177	209

Table 3-2. Failed RAM Locater

* High scratch pad address line is determined as follows:

A0 - U341 pin 5 high

A1 - U341 pin 6 high

A2 - U341 pin 7 high A3 - U341 pin 4 high

A4 - U341 pin 3 high

A5 - U341 pin 2 high

A6 - U341 pin 1 high

A7 - U341 pin 17 high

Troubleshooting Hints

The parallel interface pc assembly must be connected to the GPIO interconnect assembly for the 97060A to execute self test. If the GPIO host interface cables are not properly connected, the controller pc assembly hangs at an I/O error.

J3 is the 16-bit DMA into the 97060A, and J4 is the 16-bit DMA to the GPIO.

If LEDs D9 and D11 are on, indicating an I/O problem, and all others except clock LEDs D12 and D13 are off, check the following in the order indicated:

- Parallel interface pc assembly not plugged in
- GPIO host interface cables not connected
- Parallel interface pc assembly bad
- Controller pc assembly bad

During self test the 2901 processor writes a byte of 0s and then a byte of 1s to the parallel interface pc assembly, and then reads them back. If the handshake or data readback is bad, the 97060A hangs at I/O error.

If self test passes, but the op codes don't function correctly, the input section from the parallel interface pc assembly is suspect.

3-6 Testing and Troubleshooting

Chapter **4** Assembly Access

Introduction

This chapter describes how to access all the replaceable 97060A assemblies. The table of contents of this manual lists the replaceable assemblies and the corresponding page numbers in this chapter where the access procedures are located. Read this introduction carefully before performing assembly access.

The procedures help you to disassemble the 97060A in order to access the assemblies. Reassembly procedures are the reverse of disassembly procedures. Special instructions required for reassembly are clearly noted.

This chapter is organized in several sections, as follows:

- General Safety Procedure
- Electrostatic Discharge
- Covers
- Replaceable Assemblies

The Covers subsection describes how to remove the top and bottom covers. The Replaceable Assemblies subsection describes how to access and replace assemblies.

The following tools are required to disassemble the 97060A:

- #1 Pozidriv screwdriver
- Flat-blade screwdriver
- 1/4-inch nutdriver
- 3/8-inch nutdriver or wrench
- 5/16-inch wrench
- Portable conductive antistatic kit, PN 9300-0933

CAUTION

THE 97060A HAS ASSEMBLIES AND COMPONENTS SENSITIVE TO ELECTROSTATIC DISCHARGE. READ THE FOLLOWING SEC-TION AND OBSERVE THE PROCEDURES TO AVOID DAMAGING THE 97060A AND ITS PARTS.

Electrostatic Discharge

Electrostatic discharge (ESD) causes failure in many PC assemblies, other assemblies, and components. Static electricity doesn't appear to be dangerous because much of the ESD that can cause component or assembly failure is too small to be felt. Humans can sense ESD of 3500-5000V. However, a discharge of 300V is enough to destroy some components.

Assemblies and equipment containing ESD-sensitive parts are often as sensitive as the most sensitive part they contain. Protective circuitry in these assemblies and equipment provides varying degrees of protection from ESD applied to their terminals. Such assemblies and equipment, however, are still vulnerable to induced ESD caused by strong electrostatic fields or by contact of electrical connections or paths with a charged object.

Static damage is not always catastrophic. Sometimes a part slowly degrades, resulting in deteriorating performance. For example, internal resistance changes cause speed or voltage changes. Results include intermittent or latchup problems (for example, a line printer prints bad data).

When disassembling the 97060A, a portable conductive field service antistatic kit should be used to eliminate ESD when handling or temporarily setting aside ESD-sensitive parts. The kit contains a wrist strap, antistatic mat, and ground cable.

Carefully observe the following procedures when disassembling the 97060A:

- Components, PC assemblies, and other assemblies and equipment should always be stored, transported, and shipped in antistatic or conductive containers.
- ESD-sensitive items must never be handled by ungrounded personnel, nor should they ever be stored on nonconductive surfaces or near nonconductive materials.
- Field support should keep all replacement PC assemblies and components in antistatic or conductive bags. The failed board should be placed in a static-free bag for return to manufacturing site.
- Removal of ESD-sensitive devices from an assembly must be done at a static-safe work station using all precautions. Suspect or rejected components, PC boards, and subassemblies are to be treated with the same care as good devices. Otherwise, further damage may result which prevents tracing the cause of the original failure.

Before removing devices from protective container:

- a. Clear work area of static hazards such as plastic cups, bags, envelopes, and papers.
- b. Connect wrist strap.
- c. Neutralize charges of ESD protective packaging containing an ESD-sensitive item and of tools by placing the packaged item on an ESD-grounded work bench surface to remove any charge prior to opening the packaging material. Alternately, charges can be removed by grounded personnel touching the package.
- d. Ensure that the 97060A is properly grounded before inserting ESD-sensitive items.
- e. Remove ESD-sensitive item from ESD protective packaging using finger or metal grasping tool only after grounding, and then place on the ESD-grounded work bench surface.

- Place PC boards and components on table mat when not in static-shielding bags or other protective containers.
- Clothing must never contact ESD-sensitive parts. Wrist strap does not bleed off charges from clothing.
- Personnel handling ESD-sensitive items should avoid physical activities which are static producing in the vicinity of those items. Such activities include wiping feet and removing or putting on jackets or sweaters.
- Where ground straps cannot be used, personnel should ground themselves prior to removing ESD-sensitive items from their protective packaging.
- Tools and test equipment used in ESD-protective areas should be properly grounded; hand tools should not contain insulation on the handles or, if used, tools with insulated handles should be treated with a topical antistat.
- Ensure that all containers, tools, test equipment, and fixtures used in ESD-protective areas are grounded before and during use either directly or by contacting with a grounded surface. Grounding of electrical test equipment should be via a grounded plug, not through the conductive surface of the ESD-grounded work station.
- Do not assume that insulators are fully discharged when placed on a conductive work surface. Once the insulator is lifted off the surface, it retains its charge.
- All PC boards are to be handled only by grounded personnel. If possible, they should be held only by the ejectors. If necessary, they can be handled by the side edges.

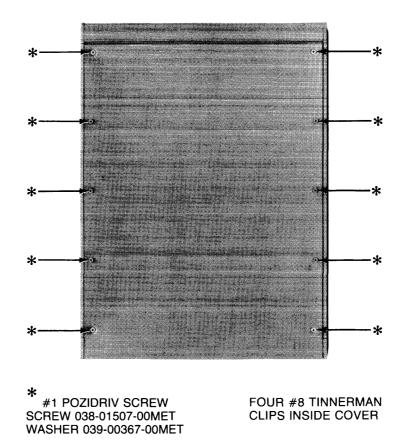
Covers

WARNING

TURN POWER SWITCH OFF AND UNPLUG POWER CORD FROM AC OUTLET BEFORE REMOVING ANY ASSEMBLY.

The top and/or bottom covers must be removed to provide access to replacable assemblies. Follow the procedures and CAUTIONS carefully to avoid damaging covers.

CAUTION THE COVERS AND CHASSIS HAVE METAL GASKETING WHICH CAN BE DAMAGED BY MISHANDLING. PERFORM THE FOLLOW-ING PROCEDURES CAREFULLY.

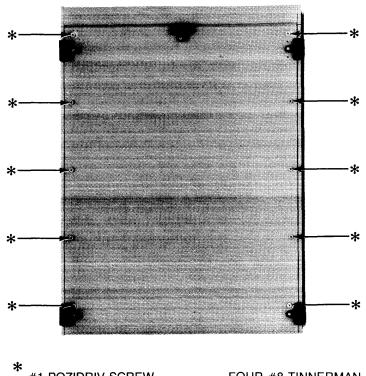

Top Cover

- 1. Turn off the **POWER** switch and unplug power cable from ac outlet.
- 2. Remove the 10 #1 Pozidriv screws and washers that attach top cover to chassis (Figure 4-1).
- 3. Lift cover slightly at the back and slowly pull cover away from the chassis, ensuring that the RFI gasketing does not bind.

REASSEMBLY CAUTION

WHEN REPLACING TOP COVER, HOLD COVER AT A SLIGHT ANGLE AND INSERT COVER FLANGE INTO CHASSIS SLOT. THEN LOWER COVER INTO PLACE. THIS PREVENTS DAMAGE TO RFI GASKETING FROM SIDEWAYS MOTION OF COVER AND CHASSIS.

FROM OUTSIDE OF FRONT PANEL, VISUALLY CHECK RFI GASKETING FOR PROPER SEATING BEFORE TIGHTENING COV-ER SCREWS.


Bottom Cover

- 1. Turn off the **POWER** switch and unplug power cable from ac outlet. Disconnect power cable and interface cables from 97060A.
- 2. Place 97060A on its top. Be careful to avoid damaging the top.
- 3. Remove the 10 #1 Pozidriv screws and washers that attach bottom cover to chassis (Figure 4-2).
- 4. Lift cover slightly at the back and slowly pull cover away from the chassis, ensuring that the RFI gasketing does not bind.

REASSEMBLY CAUTION

WHEN REPLACING BOTTOM COVER, HOLD COVER AT A SLIGHT ANGLE AND INSERT COVER FLANGE INTO CHASSIS SLOT. THEN LOWER COVER INTO PLACE. THIS PREVENTS DAMAGE TO RFI GASKETING FROM SIDEWAYS MOTION OF COVER AND CHASSIS.

FROM OUTSIDE OF FRONT PANEL, VISUALLY CHECK RFI GASKETING FOR PROPER SEATING BEFORE TIGHTENING COV-ER SCREWS.

#1 POZIDRIV SCREW SCREW 038-01507-00MET WASHER 039-00367-00MET FOUR #8 TINNERMAN CLIPS INSIDE COVER

Replaceable Assemblies

The following procedures describe the removal of replaceable assemblies. The reassembly procedures are the reverse of the removal procedures. If specific procedures are required for reassembly they are provided.

A list of the assemblies that have replacement procedures in this chapter follows:

- Parallel Interface Pc Assembly
- GPIB Tablet Interface Pc Assembly
- Controller Pc Assembly
- Power Supply, -5V, 10A
- Power Supply, +5V, 20A
- Fan

Chapter 5 lists all replaceable parts and part numbers. Photographs identify replaceable parts.

Parallel Interface Pc Assembly

- 1. Prerequisite removal:
 - Top Cover
- 2. Disconnect both GPIO host interface cables from the parallel interface pc assembly (Figure 4-3).
- 3. Remove the four slotted screws and washers from the parallel interface pc assembly (Figure 4-3).

CAUTION USE CARE WHEN REMOVING THE PARALLEL INTERFACE PC ASSEMBLY TO AVOID DAMAGING THE CONNECTORS WHICH INTERCONNECT IT WITH THE GPIB TABLET INTERFACE PC ASSEMBLY.

4. Lift the parallel interface pc assembly from the GPIB tablet interface pc assembly.

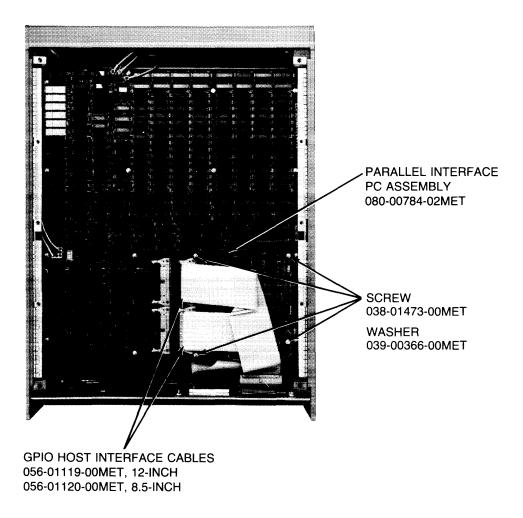


Figure 4-3. Parallel Interface Pc Assembly

GPIB Tablet Interface Pc Assembly

- 1. Prerequisite removals:
 - Top Cover
 - Parallel Interface Pc Assembly
- 2. Disconnect the GPIB cable from the GPIB tablet interface pc assembly (Figure 4-4).
- 3. Remove the four slotted screws and washers from the GPIB tablet interface pc assembly (Figure 4-4).

4. Lift the GPIB tablet interface pc assembly from the controller pc assembly.

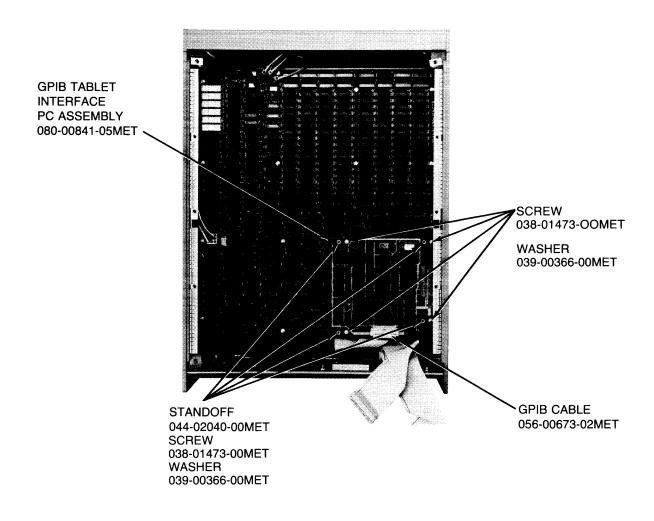
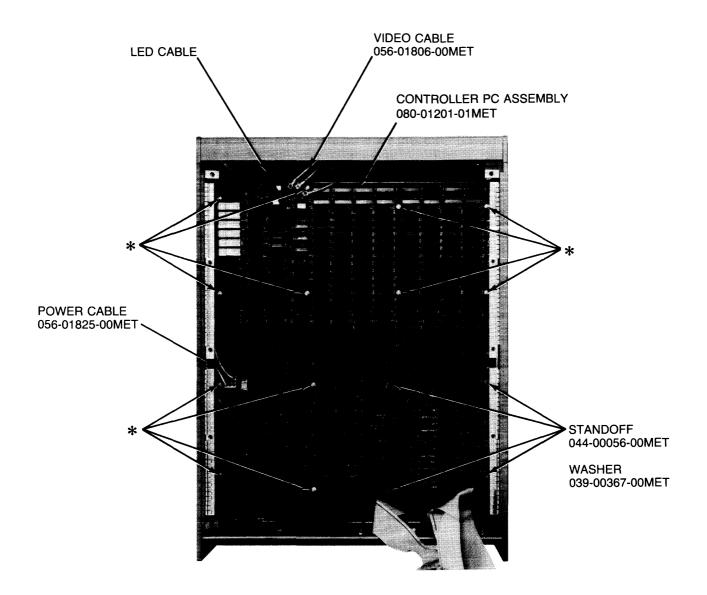


Figure 4-4. GPIB Tablet Interface Pc Assembly

Controller Pc Assembly


- 1. Prerequisite removals:
 - Top Cover
 - Parallel Interface Pc Assembly
 - GPIB Tablet Interface Pc Assembly

CAUTION RECORD ALL CABLE POSITIONS BEFORE DISCONNECTING CABLES FROM ASSEMBLY. NOTE ESPECIALLY THE R, G, AND B VIDEO CABLES AND THE POSITION OF THE LED CABLE CON-NECTOR.

- 2. Remove the power cable, LED cable, and the three video cables from the controller pc assembly (Figure 4-5).
- 3. Remove the four hex standoffs and washers from the controller pc assembly (Figure 4-5).
- 4. Remove the 12 slotted screws and washers from the controller pc assembly (Figure 4-5).
- 5. Bend cables out of the way and remove controller pc assembly from chassis.

REASSEMBLY CAUTION

WHEN REPLACING CONTROLLER PC ASSEMBLY, ENSURE THAT ALL 16 STANDOFF SLEEVES ARE IN PLACE OVER THE STANDOFFS. A MISSING SLEEVE COULD RESULT IN DAMAGE TO THE PC ASSEMBLY.

* SCREW 038-01473-00MET SLEEVE OVER STANDOFFS UNDER CONTROLLER PC ASSEMBLY 044-01745-00MET

WASHER 039-00366-00MET

Figure 4-5. Controller Pc Assembly

Power Supply, -5V, 10A

- 1. Prerequisite removal:
 - Bottom Cover
- 2. Disconnect connectors P1 and P2 and ground wire from supply (Figure 4-6).
- 3. Remove the two slotted screws from the side bracket (Figure 4-6).
- 4. Loosen the two 5/16-inch hex nuts opposite the removed screws to enable easy removal and replacement of the power supply (Figure 4-6).
- 5. Lift power supply by tabs and remove from chassis (Figure 4-6).

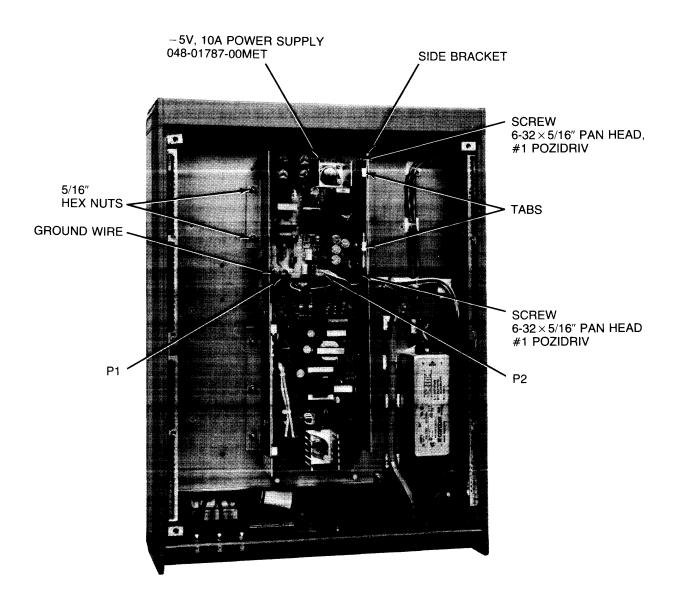


Figure 4-6. - 5V, 10A Power Supply

Power Supply, +5V, 20A

- 1. Prerequisite removal:
 - Bottom Cover

CAUTION TAG ALL WIRES AS YOU DISCONNECT THEM SO YOU CAN RECONNECT WIRES TO THE CORRECT TERMINALS.

- 2. Disconnect + OUT and -OUT wires and six wires from TB1 (Figure 4-7).
- 3. Remove the two slotted screws, washers, and 5/16-inch hex nuts from the side bracket (Figure 4-7).
- 4. Loosen the two 5/16-inch hex nuts opposite the removed screws to enable easy removal and replacement of the power supply (Figure 4-7).
- 5. Lift power supply by tabs and remove from chassis (Figure 4-7).

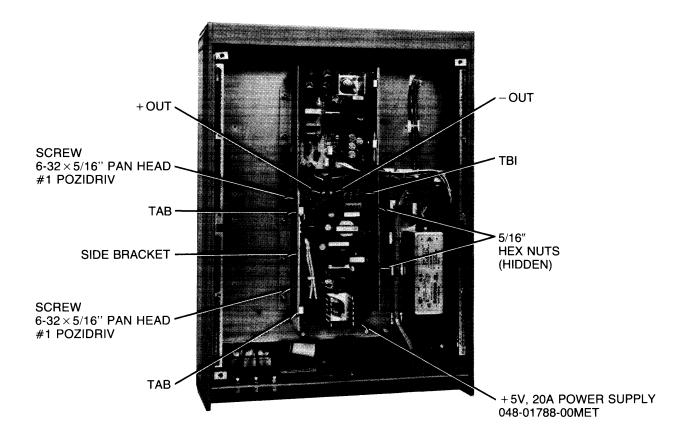


Figure 4-7. + 5V, 20A Power Supply

Fan

- 1. Prerequisite removals:
 - Top Cover
 - Bottom Cover
- 2. Disconnect the power cable from the fan.
- 3. Remove the three 5/16-inch nuts that connect the fan to the chassis and remove the fan.

Chapter **5** Replaceable Parts

Introduction

This chapter lists and locates all of the replaceable parts in the 97060A and provides information required to order replacement parts. All parts listed can be ordered from the Corporate Parts Centers except for the Controller Pc Assembly, an exchange assembly which is ordered from the Computer Support Division.

Figures 5-1 and 5-2 identify most replaceable parts.

Exchange Part

The Controller Pc Assembly is the only part on the Computer Support Division (CSD) exchange program. When it fails, it should be returned to CSD for repair, and a rebuilt part should be obtained. Table 5-1 provides the part number.

Part Number	Description	
97060-69500	Controller Pc Assembly	

Table 5-1. Exchange Part

1

I

Non-Exchange Parts

Table 5-2 lists the non-exchange parts.

Table	5-2 .	Non-Exchange	Parts
-------	--------------	--------------	-------

Part Number	Description
038-01507-00MET	Screw, 6-32 X 3/4'' flat head, #1 Pozidriv
039-00367-00MET	Washer, #6 nylon, 0.03''
038-01473-00MET	Screw, 6-32 X 5/16'' pan head, slotted
039-00366-00MET	Washer, #6 nylon, 0.06''
044-02040-00MET	Standoff, 6-32 X 1/2'', female/female
044-00056-00MET	Standoff, 6-32 X 1/2'', male/female
044-01745-00MET	Sleeve, standoff
033-00158-00MET	Jumper, 2-pin
084-01918-00MET	Jumper, 10A power supply configuration
084-01917-00MET	Jumper, 20A power supply configuration
048-01787-00MET	Power supply, $-5V$, 10A
048-01788-00MET	Power supply, $+5V$, 20A
045-00347-00MET	Switch, ac power, DPST, with cable
056-01825-00MET	Power cable
056-01806-00MET	Video cable, 26''
056-00512-00MET	Coax cable
026-00417-00MET	LED, red, ON
026-00418-00MET	LED, green, READY
085-01189-00MET	Front panel
085-01190-00MET	Rear panel, 110V
085-01824-00MET	Rear panel, 220V
080-00841-05MET	GPIB tablet interface pc assembly
056-00673-02MET	GPIB cable
080-00784-02MET	Parallel interface pc assembly
056-01119-00MET	GPIO host interface cable, 12-inch
056-01120-00MET	GPIO host interface cable, 8.5-inch
080-01129-01MET	GPIO interconnect assembly
042-01198-00MET	Line filter
050-00342-00MET	Fan, 110V
050-00694-00MET	Fan, 220V
023-01387-00MET	Area pattern PROM, U148
023-00916-01MET	Line pattern PROM, U149
023-00914-00MET	Character set PROM, U150
078-01200-00MET	Microcode kit PROM, U83-U90
0363-0170	RFI gasketing, strip fingers, 16 inches
2110-0715	Fuse, line, 6.3A, 220V
2110-0055	Fuse, line, 4A, 110V
2110-0003	Fuse, power supply, 3A
2110-0010	Fuse, power supply, 5A
8120-1351	Power cord, Great Britain
8120-1369	Power cord, Australia
8120-1689	Power cord, Europe
8120-1378	Power cord, U.S.A., 110V
8120-0698	Power cord, U.S.A., 220V
8120-2104	Power cord, Switzerland
8120-2956	Power cord, Denmark
8120-4211	Power cord, South Africa

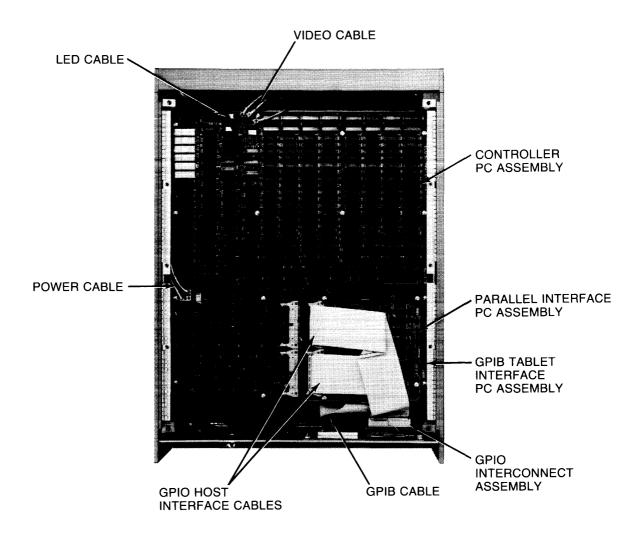


Figure 5-1. Replaceable Parts, Top View

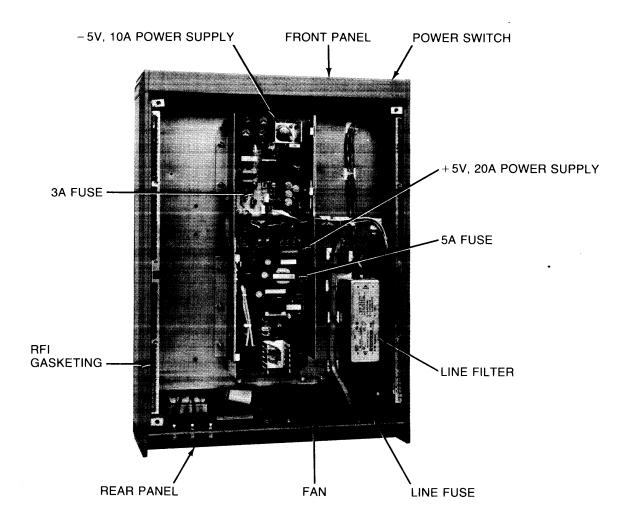


Figure 5-2. Replaceable Parts, Bottom View

Part No. 97060-90030 E 0884 Microfiche No. 97060-99030

.

.

Printed in U.S.A. First Edition with update August 1984

.