
User’s Guide

HP B3641 68000 Family
Cross Assembler/Linker/
Librarian

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1988, 1990, 1991, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

IBM is a registered trademark of International Business Machines
Corporation.

MS and MS-DOS are registered trademarks of Microsoft Corporation.

Windows is a trademark of Microsoft Corporation.

Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company
P.O . Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

iii

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1
Edition 2
Edition 3
Edition 1
Edition 4
Edition 2
Edition 5
Edition 6
Edition 3
Edition 1
Edition 2

64870-90902, March 1987 E0387
64870-90902, August 1987 E0887
64870-90902, April 1988 E00488
64874-97000, June 1989
64870-97001, December 1989
64874-97002, September 1990
64870-97002, October 1990
64870-97004, October 1991
64874-97004, October 1991
B3641-97000, -97001, -92000, May 1993
B3641-97002, September 1993

Certification and Warranty

Certification and warranty information can be found on the pages before the
back cover.

iv

In this Book

If you will be using the assembler with the cc68k compiler, you may not need
to use this manual, because cc68k calls the assembler with the appropriate
options.

This book is divided into two parts:

Quick Start

This part contains:

• installation instructions

• a brief tutorial

• printed copies of the on-line manual pages

Reference

This part contains detailed reference information about the software,
including:

• descriptions of listing formats

• details about assembler, linker, and librarian operation

• descriptions of assembler error messages

This book does not discuss how to use assembly language.

v

Contents

Part 1 Quick Start Guide

1 Getting Started

Installing on an HP Workstation 2
Installing on a Sun Workstation 2
Installing on a PC (MS-DOS) 2
Installing on a PC (Windows) 3

Description of the Example Program 4
The "mov_mesg.s" Program Module 4
The "transfer.s" Program Module 7
The "delay.s" Program Module 8

Assembling the Program Module Source Files 9

Creating an Example Library File 15

Linking the Program Module Relocatable Object Files 17
Linking the Object Modules 18

2 Command Syntax

File Extensions 25
as68k(1) 26
ld68k(1) 32
ar68k(1) 44

vi

Part 2 Reference

3 Assembler Introduction

as68k Features 52

Assembler Statements 53
Label Field 54
Operation Field 54
Operand Field 54
Comment Field 54

Statement Examples 55
Instruction Statement 55
Directive Statement 56
Macro Statement 56
Comment Statement 56

Return Codes 57

Assembler Syntax 57

Assembler Character Set 58

Symbols 59
Reserved Symbols 60
Location Counter Symbol (*) 61
Symbol Types 61

Constants 62
Integer Constants 62
Floating-Point Constants 63
Character Constants 64

Expressions 66

Assembler Listing Description 68
Assembler Listing 68
Cross Reference Table Format 70

vii

4 Instructions and Address Modes

Instructions 73

Qualifiers 74
Scope Qualifiers 74
Floating Point Qualifiers 75

Mnemonics 75

Floating Point Mnemonics 80

Variants of Instruction Types 83

Instruction Operands 84

Registers 84

Address Modes 88
The 68000 Model 90
The 68020 Model 91
The 68332 Model 92
Explanations of Address Modes 93
68881 Floating-Point Coprocessor and Address Modes 98
68040 Floating-Point Unit and Address Modes 99

Assembler Syntax for Effective Address Fields 100
Rules of Assembler Syntax 100
Operand Syntax and Addressing Modes 102
How Code is Generated for Forward Defined Symbols 111

User Control of Address Modes 112

A2-A5 Relative Addressing 114
Address Register Indirect with Displacement Modes 114
Advantages of A2-A5 Relative Addressing 115

viii

5 Relocation

Program Sections 125
Common vs. Noncommon Attributes 125
Short vs. Long Attributes 126
Section Alignment Attribute 126
Section Contents Attributes 127
Other Things to Know About Sections 129
How the Assembler Assigns Section Attributes 130

Linking 131

Relocatable vs. Absolute Symbols 132

Relocatable Expressions 133

Label Alignment 135

6 Assembler Directives

Notation 141
ALIGN 142
CHIP 143
COMLINE 145
COMMON 146
DC 148
DCB 151
DS 153
ELSEC 155
END 156
ENDC 157
ENDR 158
EQU 159
FAIL 161
FEQU 162
FILE 164
FOPT 165
FORMAT, NOFORMAT 166
IDNT 167
IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE 168
IFC, IFNC 169

ix

IFDEF, IFNDEF 171
INCLUDE 172
[NO]INTFILE 173
IRP 174
IRPC 175
LIST 176
LLEN 177
MASK2 178
NAME 179
NOLIST 180
NOOBJ 181
NOPAGE 182
OFFSET 183
OPT 185
ORG 191
PAGE 193
PLEN 194
REG 195
REPT 196
RESTORE 197
SAVE 198
SECT, SECTION 199
SET 201
SPC 202
TTL 203
XCOM 204
XDEF 205
XREF 206

7 Macros

Macro Heading 211
Macro Body 212
Macro Terminator 213
Macro Call 214
LOCAL - Define Local Symbol 217
MEXIT - Alternate Macro Exit 219
Macro Parameter Count 220

8 Structured Control Statements

Structured Control Expressions 223

x

FOR...ENDF Loop 225
IF ... THEN ... ELSE ... ENDI Conditional Execution 227
REPEAT ... UNTIL Loop 229
WHILE ... ENDW Loop 230
BREAK - Premature Loop Exit 231
NEXT - Proceed to Next Loop Iteration 232
Structured Directive Nesting 233
Structured Directive Listings 234

9 Linker/Loader Introduction

Linker/Loader Features 237

Linker/Loader Operation 237

Program Sections 238
Absolute Section 238
Relocatable Section 238
Noncommon Section 239
Common Section 239
Short Section 239
Long Section 240
Section Alignment 240
Section Contents 240

xi

HP Section Type 241

Memory Space Assignment 241

Incremental Linking 243

Relocation Types 243

Generating HP Format Absolute Files 244

Return Codes 245

Loader Listing Description 245

Loader Listings 245

10 Linker/Loader Commands

Summary of Commands 250
Command Format 253
Processing Order 253
; (Comment) 255
(Continuation) 256
ABSOLUTE 257
ALIAS 259
ALIGN{MOD} 260
BASE 261
[UPPER]CASE, [LOWER]CASE 262
CHIP 264
COMMON 266
CPAGE 267
[NO]DEBUG_SYMBOLS 268
END 269
ERROR, WARN, NOERROR 270
EXIT 271
EXTERN 272
FORMAT 273
INCLUDE 274
INDEX 276
Purpose of the INDEX Command 277
INITDATA 278
[NO]INTFILE 281

xii

LIST 282
LISTABS 285
LISTMAP 286
LOAD 287
LOAD_SYMBOLS 289
MERGE 290
NAME 292
NLIST 293
NOPAGE 295
ORDER/SORDER 296
PAGE 299
PUBLIC 300
RESADD/RESMEM 302
SECT 304
SECTSIZE 305
START 306

11 Librarian Introduction

Librarian Features 309

Librarian Operation 310

Librarian Function -- Overview 310

Command Syntax 316
Use of Special Characters 316
Blanks 317
Command File Comments 317
Module Names 317
Return Codes 318

Library Listing Format 318

Sample Test Program Description 318

Example Librarian Listing 319
Description of Example 320

xiii

Brief Format Example Library Listing 320
Brief Format Listing Description 320

12 Librarian Commands

Command Summary 322
ADDLIB 323
ADDMOD 324
CLEAR 325
CREATE 326
DELETE 327
DIRECTORY 328
END, EXIT, QUIT 330
EXTRACT 331
FULLDIR, LIST 332
HELP 333
OPEN 335
REPLACE 336
SAVE 337

A Assembler Error Messages

B Loader Error Messages

C Librarian Error Messages

D Error Message Formats

Error Classes 366
Warnings 366
Errors 366
Fatal Errors 367

xiv

Interactive and Non-Interactive Conditions 368

E Converting to HP B3641 Assembly Language

Converting HP 64845 Assembly Language Programs 370

Converting HP 64845 Pseudo-Ops 373

Converting HP 64845 Operands 377
Converting Character Constants 378
Converting Logical Operators 378

Converting HP 64845 Macros 379
Macro Headings 379
Unique Label Generation 379
Conditional Assembly Within Macros 380
Indexing Parameters 381

Converting HP 64845— Miscellaneous 382
White Space 382

Compatibility with older HP 64870 and HP 64874 Files 383
Relocatable and Library Files 383
Assembly Source Files 384

F About this Version

Version 2.01 386
PC Platform Support 386
Re-organized manual 386
Version 2.00 386
Combined products 386
New features: as68k 386
New features: ld68k 388

xv

Part 1

Quick Start Guide

Part 1

1

Getting Started

Installing and using the assembler, linker, and librarian.

Getting Started

1

Installing on an HP Workstation

This software uses standard HP-UX installation procedures. Look for
installation instructions in your HP-UX System Administration manual.

Installing on a Sun Workstation

Look for installation instructions in the Software Installation Guide, which is
packaged with the tape.

Installing on a PC (MS-DOS)

To install from MS-DOS:

1 Insert the assembler disk into the floppy disk drive.

2 Enter (if the floppy drive is drive A:)

a:\install

Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\hpas68k. The default installation path is shown wherever files are
discussed in this manual.

Getting Started

2

Installing on a PC (Windows)

To install from Microsoft Windows:

1 Start MS Windows in the 386 enhanced mode.

2 Insert the assembler disk into floppy disk drive A or B.

3 Choose the File→Run... (ALT, F, R) command in the Windows Program
Manager. Enter "a:\setup" (or "b:\setup" if you installed the floppy disk into
drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\hpas68k. The default installation path is shown wherever files are
discussed in this manual.

Setup.exe may not be included with some versions of the assembler. In that
case, open a DOS window and use install.bat.

Getting Started

3

Description of the Example Program

The example programs in this chapter have been included with your 68000
Family Assembler/Linker/Librarian software and can be found in directory:

/usr/hp64000/demo/languages/B3641 (UNIX)

or

\hpas68k\examples (DOS)

The examples in this manual assume you are using a UNIX system. If you are
using DOS, you may need to adjust some of the path names and file
extensions.

The example program moves data from three different memory locations to a
fourth memory location. The program uses three modules to show how
several program modules are linked together.

The mov_mesg.s program module is made up of a data table which contains
the messages to be transferred, the main program which will define a macro
and call "transfer" and "delay" subroutines, and a RAM location where the
messages will be transferred.

The transfer.s program module contains the "transfer" subroutine which is
called by the main program. The transfer.s subroutine will transfer a message
from the data table to the destination memory location. The address of the
message to be transferred will be passed in register A0, and the length of the
message will be passed in register D0.

The delay.s program module contains the "delay" subroutine which is called by
the main program. The delay.s subroutine will delay for the number of
seconds which are passed in register D0.

The delay.o (delay.obj) and the transfer.o (transfer.obj) relocatable object
files will be placed into an example library file called exlib.a (exlib.lib).

The "mov_mesg.s" Program Module

The example program of this chapter will move three messages which are
contained in a data table to another memory location. The three messages are
labeled MESSAGE_1, MESSAGE_2, and MESSAGE_3. The ends of the
messages are also labeled so that the program will know how many words of
data to transfer. The destination memory location is labeled VIDEO_RAM.

Getting Started
Description of the Example Program

4

 XDEF START,VIDEO_RAM ;External definitions.
 XREF TRANSFER,DELAY ;External references.

 SECT TABLE ;Section name.

MESSAGE_1 DC.B ’The example program moves ’
 DC.B ’this and two additional ’
 DC.B ’messages to a RAM location. ’
MESSAGE_1_END
MESG_1_LENGTH EQU MESSAGE_1_END-MESSAGE_1-2

MESSAGE_2 DC.B ’The first message is ’
 DC.B ’displayed for a medium ’
 DC.B ’length of time. ’
MESSAGE_2_END
MESG_2_LENGTH EQU MESSAGE_2_END-MESSAGE_2-2
 PAGE

MESSAGE_3 DC.B ’The second message is ’
 DC.B ’displayed for a shorter ’
 DC.B ’length of time. ’
MESSAGE_3_END
MESG_3_LENGTH EQU MESSAGE_3_END-MESSAGE_3-2

 SECT M_CODE ;Section name.
START MOVE #STACK,A7 ;Initialize user stack.

SET_UP MACRO ADDRESS,LENGTH,COUNT ;Macro definition.
 BSR CLEAR ;Clears the message destination.
 MOVE #ADDRESS,A0 ;Address parameter passed in A0.
 MOVE #LENGTH/2,D0 ;Length parameter passed in D0.
 BSR TRANSFER
 MOVE COUNT,D0 ;Count parameter passed in D0.
 BSR DELAY
 ENDM ;Macro terminator.
 PAGE

 SET_UP MESSAGE_1,MESG_1_LENGTH,#10 ;
REPEAT SET_UP MESSAGE_2,MESG_2_LENGTH,#7 ; Macro calls.
 SET_UP MESSAGE_3,MESG_3_LENGTH,#4 ;
 BRA REPEAT

CLEAR MOVE #VIDEO_RAM,A0
 MOVE #30H,D0 ;Clear 30H words.
AGAIN MOVE #2020H,(A0)+ ;ASCII spaces are moved.
 DBEQ D0,AGAIN
 RTS

 COMMON DATA ;Common section name.
VIDEO_RAM DS.W 0FFH ;Message destination.
STACK DS.W 1
 END START ;Execution to begin at START (load address).

Figure 1. The "mov_mesg.s" Source File

Getting Started
Description of the Example Program

5

The example program will (1) move the first message to VIDEO_RAM, where
it will be displayed for about 10 seconds, (2) move the second message to
VIDEO_RAM, where it is displayed for about 7 seconds, and (3) move the
third message to VIDEO_RAM, where it is displayed for about 4 seconds. At
this point the program will l oop back and display the second and third
messages, one after the other, repeatedly. The mov_mesg.s source file is
shown in figure 1.

External Definitions.

The first thing the mov_mesg.s program module does is define the symbols
which can be referenced by other program modules. These definitions are
made with the XDEF assembler directive. The label VIDEO_RAM is defined
as an external because the transfer.s program module will reference the
destination memory locations. The label START is defined as an external for
program debugging convenience.

External References.

The external reference (XREF) assembler directive allows you to use labels
which are defined in other program modules. In the mov_mesg.s program
module, the BSR TRANSFER and the BSR DELAY instructions use labels
which are defined in the transfer.s and delay.s program modules, respectively.
Therefore, TRANSFER and DELAY must be declared as external references.

The TABLE Program Section.

The TABLE program section contains the ASCII (by default) bytes of the
three messages which are written to the destination memory location. The
DC.B assembler directive is used to define the ASCII data. The lengths of the
three messages are assigned to labels with the EQU assembler directive.

The M_CODE Program Section.

The executable code of the mov_mesg.s program module is found in the
M_CODE section. After the user stack pointer is loaded, the SET_UP macro
is defined. The three parameters in the macro definition (ADDRESS,
LENGTH, and COUNT) are assigned actual values in the macro calls. Each
time the macro is called, assembly code is generated which branches to the
CLEAR, TRANSFER, and DELAY subroutines. (Parameters are moved into
registers before the TRANSFER and DELAY branches.) After the macro is
defined, it is called three times. The CLEAR subroutine, which moves ASCII

Getting Started
Description of the Example Program

6

spaces to the destination memory locations, appears at the end of the
M_CODE program section.

The DATA Program Section.

Storage locations are defined in the DATA program section with the DS.W
assembler directive. The low part of this storage location is the destination of
the three messages and is labeled VIDEO_RAM. The upper addresses of this
storage location is for the user stack and is labeled STACK.

The "transfer.s" Program Module

The main program branches to the subroutine contained in the transfer.s
program module. The "transfer" subroutine will move the data from the
address passed in A0 to the destination memory location VIDEO_RAM.
Notice that the executable code in this module appears in a program section
named T_CODE. Also, notice the external definition of the label
TRANSFER (which allows the main program to branch to this label) and the
external reference of the label VIDEO_RAM which was defined in the main
program module. The transfer.s source file is shown in figure 2.

 XDEF TRANSFER ;External definition.
 XREF VIDEO_RAM ;External reference.

 SECT T_CODE ;Section name.
TRANSFER MOVE #VIDEO_RAM,A1
AGAIN MOVE (A0)+,(A1)+ ;Address of message passed in A0.
 DBEQ D0,AGAIN ;Message length passed in D0.
 RTS

Figure 2. The "transfe r.s" Source File

Getting Started
Description of the Example Program

7

The "delay.s" Program Module

The main program branches to the "delay" subroutine contained in the delay.s
program module. The "delay" subroutine is used to display the various
messages for the number of seconds passed in register D0. This program
module’s executable code is placed in a program section named D_CODE.
Notice the external definition of the DELAY label so that other program
modules can refer to this subroutine. The delay.s source file is shown in figure
3.

 XDEF DELAY ;External definition.

 SECT D_CODE ;Section name.
DELAY MOVE #553,D1
 MULU D1,D0 ;Calculate delay count, result in D0.
 MULU D1,D0
 REPEAT ;Structured control statement.
 SUBQ.L #1,D0
 UNTIL.L D0 <EQ> #0
 RTS

Figure 3. The "delay.s" Source File

Getting Started
Description of the Example Program

8

Assembling the Program Module Source Files

Assembling program module source files will create object files. The
commands to assemble the source files are shown below:

$ as68k -l mov_mesg.s > mov_mesg.lis
$ as68k -l transfer.s > transfer.lis
$ as68k -l delay.s > delay.lis

The -L in the commands above causes an assembler listing on the standard
output. The default output format will be HP-MRI IEEE 695 relocatable
format (.o or .obj extension). The "> " in the commands above redirects the
standard output to a file.

Assembler listings for each of the program modules are shown in figures 4
through 6.

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:19:19
1993

Command line: as68k -L mov_mesg.s
Line Address
1 ; @(SUBID) MAIN: /lsd/nls/proc/680xx/asmlnklib
0.09 19Apr93 15:03:41
2 ; MKT:@(#) B3641-19300 A.02.00 68K FAMILY CROSS
ASSEMBLER/LINKER 19Apr93
 $
3 XDEF START,VIDEO_RAM
;External definitions.
4 XREF TRANSFER,DELAY
;External references.
5
6 SECT TABLE
;Section name.
7
8 00000000 5468 6520 6578 MESSAGE_1 DC.B ’The example program
moves ’
 616D 706C 6520
 7072 6F67 7261
 6D20 6D6F 7665
 7320

Figure 4. The "mov_mesg.lis" Listing

Getting Started
Assembling the Program Module Source Files

9

9 0000001A 7468 6973 2061 DC.B ’this and two
additional ’
 6E64 2074 776F
 2061 6464 6974
 696F 6E61 6C20
10 00000032 6D65 7373 6167 DC.B ’messages to a RAM
location. ’
 6573 2074 6F20
 6120 5241 4D20
 6C6F 6361 7469
 6F6E 2E20
11 MESSAGE_1_END
12 0000004C MESG_1_LENGTH EQU
MESSAGE_1_END-MESSAGE_1-2
13
14 0000004E 5468 6520 6669 MESSAGE_2 DC.B ’The first message is ’
 7273 7420 6D65
 7373 6167 6520
 6973 20
15 00000063 6469 7370 6C61 DC.B ’displayed for a medium
’
 7965 6420 666F
 7220 6120 6D65
 6469 756D 20
16 0000007A 6C65 6E67 7468 DC.B ’length of time. ’
 206F 6620 7469
 6D65 2E20
17 MESSAGE_2_END
18 0000003A MESG_2_LENGTH EQU
MESSAGE_2_END-MESSAGE_2-2

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:19:19 1993

Line Address
20
21 0000008A 5468 6520 7365 MESSAGE_3 DC.B ’The second message is ’
 636F 6E64 206D
 6573 7361 6765
 2069 7320
22 000000A0 6469 7370 6C61 DC.B ’displayed for a
shorter ’
 7965 6420 666F
 7220 6120 7368
 6F72 7465 7220
23 000000B8 6C65 6E67 7468 DC.B ’length of time. ’
 206F 6620 7469
 6D65 2E20
24 MESSAGE_3_END
25 0000003C MESG_3_LENGTH EQU
MESSAGE_3_END-MESSAGE_3-2
26
27 SECT M_CODE
;Section name.
28 00000000 3E7C 01FE R START MOVE #STACK,A7

Figure 4. The "mov_mesg.lis" Listing (Cont’d)

Getting Started
Assembling the Program Module Source Files

10

;Initialize user stack.
29
30 SET_UP MACRO ADDRESS,LENGTH,COUNT
;Macro definition.
31 BSR CLEAR ;Clears
the message destination.
32 MOVE #ADDRESS,A0
;Address parameter passed in A0.
33 MOVE #LENGTH/2,D0 ;Length
parameter passed in D0.
34 BSR TRANSFER
35 MOVE COUNT,D0 ;Count
parameter passed in D0.
36 BSR DELAY
37 ENDM
;Macro terminator.

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 3 Wed Apr 28 15:19:19 1993

Line Address
39
40 SET_UP
MESSAGE_1,MESG_1_LENGTH,#10 ;
40.1 00000004 6100 0048 BSR CLEAR ;Clears
the message destination.
40.2 00000008 307C 0000 R MOVE #MESSAGE_1,A0
;Address parameter passed in A0.
40.3 0000000C 303C 0026 MOVE #MESG_1_LENGTH/2,D0
;Length parameter passed in D0.
40.4 00000010 6100 FFEE E BSR TRANSFER
40.5 00000014 303C 000A MOVE #10,D0 ;Count
parameter passed in D0.
40.6 00000018 6100 FFE6 E BSR DELAY
41 REPEAT SET_UP
MESSAGE_2,MESG_2_LENGTH,#7 ; Macro calls.
41.1 0000001C 6100 0030 BSR CLEAR ;Clears
the message destination.
41.2 00000020 307C 004E R MOVE #MESSAGE_2,A0
;Address parameter passed in A0.
41.3 00000024 303C 001D MOVE #MESG_2_LENGTH/2,D0
;Length parameter passed in D0.
41.4 00000028 6100 FFD6 E BSR TRANSFER
41.5 0000002C 303C 0007 MOVE #7,D0 ;Count
parameter passed in D0.
41.6 00000030 6100 FFCE E BSR DELAY
42 SET_UP
MESSAGE_3,MESG_3_LENGTH,#4 ;
42.1 00000034 6100 0018 BSR CLEAR ;Clears
the message destination.
42.2 00000038 307C 008A R MOVE #MESSAGE_3,A0

Figure 4. The "mov_mesg.lis" Listing (Cont’d)

Getting Started
Assembling the Program Module Source Files

11

;Address parameter passed in A0.
42.3 0000003C 303C 001E MOVE #MESG_3_LENGTH/2,D0
;Length parameter passed in D0.
42.4 00000040 6100 FFBE E BSR TRANSFER
42.5 00000044 303C 0004 MOVE #4,D0 ;Count
parameter passed in D0.
42.6 00000048 6100 FFB6 E BSR DELAY
43 0000004C 60CE BRA REPEAT
44
45 0000004E 307C 0000 R CLEAR MOVE #VIDEO_RAM,A0
46 00000052 303C 0030 MOVE #30H,D0
;Clear 30H words.
47 00000056 30FC 2020 AGAIN MOVE #2020H,(A0)+
;ASCII spaces are moved.
48 0000005A 57C8 FFFA DBEQ D0,AGAIN
49 0000005E 4E75 RTS
50
51 COMMON DATA ;Common
section name.
52 00000000 VIDEO_RAM DS.W 0FFH ;Message
destination.
53 000001FE STACK DS.W 1
54 END START ;Execution to
begin at START (load address).

HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 4 Wed Apr 28 15:19:19 1993

 Symbol Table

Label Value

AGAIN M_CODE:00000056
CLEAR M_CODE:0000004E
DELAY External
MESG_1_LENGTH 0000004C
MESG_2_LENGTH 0000003A
MESG_3_LENGTH 0000003C
MESSAGE_1 TABLE :00000000
MESSAGE_1_END TABLE :0000004E
MESSAGE_2 TABLE :0000004E
MESSAGE_2_END TABLE :0000008A
MESSAGE_3 TABLE :0000008A
MESSAGE_3_END TABLE :000000C8
REPEAT M_CODE:0000001C
SET_UP Macro
STACK DATA :000001FE
START M_CODE:00000000
TRANSFER External
VIDEO_RAM DATA :00000000

Figure 4. The "mov_mesg.lis" Listing (Cont’d)

Getting Started
Assembling the Program Module Source Files

12

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:19:30
1993

Command line: as68k -L transfer.s
Line Address
1 ; @(SUBID) MAIN: /lsd/nls/proc/680xx/asmlnklib 0.09
19Apr93 15:03:41
2 ; MKT:@(#) B3641-19300 A.02.00 68K FAMILY CROSS
ASSEMBLER/LINKER 19Apr93
 $
3 XDEF TRANSFER ;External
definition.
4 XREF VIDEO_RAM ;External
reference.
5
6 SECT T_CODE ;Section name.
7 00000000 327C 0000 E TRANSFER MOVE #VIDEO_RAM,A1
8 00000004 32D8 AGAIN MOVE (A0)+,(A1)+ ;Address of
message passed in A0.
9 00000006 57C8 FFFC DBEQ D0,AGAIN ;Message length
passed in D0.
10 0000000A 4E75 RTS
11 END
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:19:30
1993

 Symbol Table

Label Value

AGAIN T_CODE:00000004
TRANSFER T_CODE:00000000
VIDEO_RAM External

Figure 5. The "transfer.lis" Assembly Listing

Getting Started
Assembling the Program Module Source Files

13

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:18:34
1993

Command line: as68k -L delay.s
Line Address
1 ; @(SUBID) MAIN: /lsd/nls/proc/680xx/asmlnklib
0.09 19Apr93 15:03:41
2 ; MKT:@(#) B3641-19300 A.02.00 68K FAMILY CROSS
ASSEMBLER/LINKER 19Apr93
 $
3 XDEF DELAY
;External definition.
4
5 SECT D_CODE
;Section name.
6 00000000 323C 0229 DELAY MOVE #553,D1
7 00000004 C0C1 MULU D1,D0
;Calculate delay count, result in D0.
8 00000006 C0C1 MULU D1,D0
9 REPEAT
;Structured control statement.
9.1 ??0001 ;> REPEAT <
10 00000008 5380 SUBQ.L #1,D0
11 UNTIL.L D0 Q #0
11.1 0000000A 0C80 0000 0000 ??0002 CMP.L #0,D0 ;> UNTIL <
11.2 00000010 66F6 BNE ??0001 ;> UNTIL <
11.3 ??0003 ;> UNTIL <
12 00000012 4E75 RTS
13 END
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:18:34
1993

 Symbol Table

Label Value

DELAY D_CODE:00000000

Figure 6. The "delay.lis" Assembly Listing

Getting Started
Assembling the Program Module Source Files

14

Creating an Example Library File

One of the objectives of this chapter was to show how object modules can be
linked from libraries. Before we can link from a library file, one must first be
created. To create an example library file consisting of the "transfer.o" and
"delay.o" relocatable object modules, enter the following command:

$ ar68k -a transfer.o,delay.o -L exlib >
 exlib.lis

Use ".obj" instead of ".o" if you are using MS-DOS.

The -a option in the command above specifies that the files which follow are
to be added to the library. The -L option in the command above specifies that
a library listing file be sent to the standard output (which is redirected to the
"exlib.lis" file). The library listing file is shown in figure 7.

Getting Started
Creating an Example Library File

15

HPB3641-19300 Wed Apr 28 15:19:56 1993

 Version A.02.00

Library being built exlib.a

 Module Size Processor
transfer ... 352 68000

 ****** PUBLIC DEFINITIONS ******
TRANSFER

 ****** EXTERNAL REFERENCES ******
VIDEO_RAM

Public Count = 1
External Count = 1

 Module Size Processor
delay ... 307 68000

 ****** PUBLIC DEFINITIONS ******
DELAY

Public Count = 1
External Count = 0
Module Count = 2

Figure 7. The "exlib.lis" Library Listing

Getting Started
Creating an Example Library File

16

Linking the Program Module Relocatable Object
Files

Linking is the process in which program modules are joined together to form a
single absolute file which can then be executed or debugged. Because you can
link several object modules to form an executable file, the linking loader is
sometimes called the "linker". Also, because you can specify the load
addresses of various program sections, the linking loader will sometimes be
referred to as the "loader". Either name is correct; the ld68k tool does both.

There are two ways that you can specify object files to be linked: (1) you can
enter the names of the files on the command line, or (2) you can specify the
names of the object files in a linker command file. The linker command file
shown in figure 8 will be used to link the three object modules in the example
program.

NAME demo ; Specifies output module name.
LIST C,D,O,P,S,T,X

; List the cross reference (C), place PUBLIC symbols in the output
; object module (D), produce an object module (O - Not necessary,
; this is the default), place input module (local) symbols into the
; Loader symbol table (P - Not necessary, this is the default),
; write local symbol table to the output module (S), list the local
; symbol table (T), and list the PUBLIC symbol table (X).

ORDER M_CODE,T_CODE,D_CODE ; The T_CODE and D_CODE program sections
 ; should follow the M_CODE program section.

SECT TABLE=1000H ; Put the table of messages at 1000H.
SECT M_CODE=1400H ; Put the M_CODE section at 1400H.
COMMON DATA=1800H ; Put VIDEO_RAM memory at 1800H.

; Load from these object modules and libraries:

LOAD transfer.o,mov_mesg.o,exlib.a

END ; End of linker command file.

Figure 8. The "demo.k" Linker Command File

Getting Started
Linking the Program Module Relocatable Object Files

17

Linking the Object Modules

The command to link the example program object modules is shown below.
The -c option specifies that a linker command file will be supplying
information to the linking loader.

$ ld68k -L -c demo.k > demo.lis

The -L option in the command above specifies that an output load map listing
file be sent to the standard output (which is redirected to the "demo.lis" file).
The output format will be the default HP-MRI IEEE 695 absolute format (.x
or .abs extension). The load map listing file is shown in figure 9.

Getting Started
Linking the Program Module Relocatable Object Files

18

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:20:41 1993
 Page 1

Command line: ld68k -L -c demo.k

NAME demo ; Specifies output module name.
LIST C,D,O,P,S,T,X

; List the cross reference (C), place PUBLIC symbols in the output
; object module (D), produce an object module (O - Not necessary,
; this is the default), place input module (local) symbols into the
; Loader symbol table (P - Not necessary, this is the default),
; write local symbol table to the output module (S), list the local
; symbol table (T), and list the PUBLIC symbol table (X).

ORDER M_CODE,T_CODE,D_CODE ; The T_CODE and D_CODE program sections
 ; should follow the M_CODE program section.

SECT TABLE=1000H ; Put the table of messages at 1000H.
SECT M_CODE=1400H ; Put the M_CODE section at 1400H.
COMMON DATA=1800H ; Put VIDEO_RAM memory at 1800H.

; Load from these object modules and libraries:

LOAD transfer.o,mov_mesg.o,exlib.a

END ; End of linker command file.
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:20:42 1993
 Page 2

OUTPUT MODULE NAME: demo
OUTPUT MODULE FORMAT: IEEE

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN

TABLE NORMAL DATA 00001000 000010C7 000000C8 2 (WORD)
M_CODE NORMAL CODE 00001400 0000145F 00000060 2 (WORD)
T_CODE NORMAL CODE 00001460 0000146B 0000000C 2 (WORD)
D_CODE NORMAL CODE 0000146C 0000147F 00000014 2 (WORD)
DATA COMMON 00001800 000019FF 00000200 2 (WORD)

Figure 9. The "demo.lis" Load Map Listing

Getting Started
Linking the Program Module Relocatable Object Files

19

MODULE SUMMARY

MODULE SECTION:START SECTION:END FILE

transfer T_CODE:00001460 T_CODE:0000146B /users/merff/asm68k/transfer.o
mov_mesg TABLE:00001000 TABLE:000010C7 /users/merff/asm68k/mov_mesg.o
 M_CODE:00001400 M_CODE:0000145F
 DATA:00001800 DATA:000019FF
delay D_CODE:0000146C D_CODE:0000147F /users/merff/asm68k/exlib.a L

LOCAL SYMBOL TABLE

SYMBOL ATTRIB SECTION OFFS/ADDR MODULE:FUNCTION

AGAIN ASMVAR T_CODE 00001464 transfer:
MESG_2_LENGTH ASMVAR ABSCONST 0000003A mov_mesg:
STACK ASMVAR DATA 000019FE mov_mesg:
CLEAR ASMVAR M_CODE 0000144E mov_mesg:
MESG_3_LENGTH ASMVAR ABSCONST 0000003C mov_mesg:
REPEAT ASMVAR M_CODE 0000141C mov_mesg:
MESG_1_LENGTH ASMVAR ABSCONST 0000004C mov_mesg:
MESSAGE_1 ASMVAR TABLE 00001000 mov_mesg:
MESSAGE_1_END ASMVAR TABLE 0000104E mov_mesg:
MESSAGE_2 ASMVAR TABLE 0000104E mov_mesg:
MESSAGE_2_END ASMVAR TABLE 0000108A mov_mesg:
MESSAGE_3 ASMVAR TABLE 0000108A mov_mesg:
MESSAGE_3_END ASMVAR TABLE 000010C8 mov_mesg:
AGAIN ASMVAR M_CODE 00001456 mov_mesg:

PUBLIC SYMBOL TABLE

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:20:42 1993
 Page 3

SYMBOL SECTION ADDRESS MODULE

DATA DATA 00001800 $$
DELAY D_CODE 0000146C delay
START M_CODE 00001400 mov_mesg
TRANSFER T_CODE 00001460 transfer
VIDEO_RAM DATA 00001800 mov_mesg

Figure 9. The "demo.lis" Load Map Listing (Cont’d)

Getting Started
Linking the Program Module Relocatable Object Files

20

This completes the "Getting Started" example. For a brief description of the
as68k, ld68k, and ar68k syntax and options, refer to the "Command Syntax"
chapter which follows.

CROSS REFERENCE TABLE

SYMBOL SECTION ADDRESS MODULE

DATA DATA 00001800 -$$
DELAY D_CODE 0000146C -delay
 mov_mesg
START M_CODE 00001400 -mov_mesg
TRANSFER T_CODE 00001460 -transfer
 mov_mesg
VIDEO_RAM DATA 00001800 -mov_mesg
 transfer

START ADDRESS: 00001400

Link Completed

Figure 9. The "demo.lis" Load Map Listing (Cont’d)

Getting Started
Linking the Program Module Relocatable Object Files

21

Getting Started
Linking the Program Module Relocatable Object Files

22

2

Command Syntax

This chapter contains the on-line manual pages, which briefly describe the
syntax for using the assembler, linker, and librarian.

Command Syntax

23

 Options may be entered on the command line to control generation of the
output listing and object module, and to turn internal assembler flags on and
off.

The command syntax information in this chapter may also be found in the
on-line manual pages:

• If you are using a PC, look for the .txt files in the assembler directory.

• If you are using a UNIX system, use the man command. For example, to
view the as68k on-line manual page, just type in the following command
from your operating system prompt:

$ man as68k RETURN

Information on the as68k assembler syntax and options will be scrolled
onto your display.

Command Syntax

24

File Extensions

UNIX
Extension

DOS
Extension

Meaning Where generated

.a .lib Archive (library) file ar68k

.A .a HP 64000 format assembler symbol file as68k

.k .k Linker command file (default extension used by
cc68k)

editor

.L .l HP 64000 format linker symbol file ld68k -h

.1 .txt On-line manual page Provided

.o .obj HP-MRI IEEE-695 format relocatable object
file

as68k

.O .lst Listing file cc68k -L

.s .s Assembly language source file cc68k or editor

.x .abs HP-MRI IEEE-695 format or Motorola
S-Record absolute object file (executable)

ld68k

.X .x HP 64000 format absolute file (executable) ld68k -h

Command Syntax
File Extensions

25

as68k(1)

NAME as68k - cross assembler for Motorola family microprocessors

SYNOPSIS /usr/hp64000/bin/as68k [options] [file]
/usr/hp64000/bin/as68030 [options] [file]
/usr/hp64000/bin/as68040 [options] [file]

Under DOS on a PC:
\hpas68k\as68k [options] [file]

DESCRIPTION The as68k command assembles the named file, or the standard input if no file
name is specified. If no file name is specified, the names of output files must
be specified explicitly using options.

If as68030 or as68040 is used to invoke the assembler, the default chip is set to
68030 or 68040.

The as68k program first attempts to open file for reading. If that fails, the
assembler appends .s and attempts to open file.s. Under DOS on a PC the
string .src is appended rather than .s.

If no input file is specified and standard input is a tty, as68k displays a usage
diagnostic and terminates.

The output is a relocatable file containing Motorola microprocessor
instructions and symbolic data. The format of the output file is HP-MRI
IEEE-695 (HP’s implementation of the IEEE 695 MUFOM format). If no
output file is specified (using -o), the pathname and the ending suffix are
stripped from the input file name and .o is appended to it. Under DOS, .obj
will be appended rather than .o. This becomes the name of the output file.

The following options are recognized by as68k:

-b

Big. This option allows very large source files to be assembled. Normally, for
the sake of speed, intermediate data (whose size is proportional to the size of
the source file) is kept in virtual memory. The -b option causes intermediate
data to be stored in temporary files on the host file system. Use this option if
ERROR (604): Out of virtual memory occurs.

Command Syntax
as68k(1)

26

-D name
-D name= def

Define name as if by a \# define \C language directive. If no \= def is given,
name is defined as 1.

-f flaglist

The flags in flaglist are used to select and change the internal assembler
control switches. The flags recognized and their meanings are defined below.
A more complete explanation may be found in the HP 68000 Family
Assembler/L inker/L ibrarian User’s Guide. Each flag may be set (or unset) in
either of two ways. A flag may be set on the command line using -f option as
described here. A flag may also be set by using the OPT pseudo-operator in
the assembler source program. Groups of flags following the -f option must be
separated by commas or separated by white space and quoted. For example,
the following sets the flags brs, d, p= 68000, and x.

 -f brs,d -f "p=68000 x"

A flag may be unset (turned off) by preceding the flag value with - or no. For
example, the following turns off the abspcadd and o flags.

 -f noabspcadd,-o

-H asmb_sym_file

This option overrides the default file name for the HP 64000 format assembler
symbol file. (See the -h option below.) If asmb_sym_file has a suffix, then the
name is used as is. Otherwise, .A is appended to form asmb_sym_file.A.

-h

This option indicates that the assembler should produce an HP 64000 format
assembler symbol file for debugging purposes. The default name for the
assembler symbol file is file.A. File is the source file name with any preceding
directories and trailing suffix stripped off. The default assembler symbol file
name may be overridden with the -H option. When writing the asmb_sym file,
all identifiers in the source program are converted to legal HP64000
identifiers. That is, Motorola assembly language identifiers may contain the
characters . (period), ? (question mark), and $ (dollar sign) and have a
maximum of 31 significant characters. To produce legal HP64000 identifiers;
all periods, question marks, and dollar signs are converted to _ (underbar) and
identifiers are truncated to 15 characters maximum.

Command Syntax
as68k(1)

27

-I directory

The assembler searches directory for INCLUDE files. The assembler first
looks in the present working directory and then in up to four additional
directories specified by the -I options.

-l

specifies that an assembler listing file be written to standard output. This
listing contains offsets, instruction codes, symbol table information, symbol
table cross reference, and other useful information.

-o objfile

specifies the name of the output file. This overrides the default file name for
the HP-MRI IEEE-695 relocatable file produced. If obj_file has a suffix, then
the name is used as is. Otherwise, .o is appended to form obj_file.o. On a PC
running DOS, the default extension is .obj.

FLAGS The following flags may be specified using the -f flaglist option. In some cases
there are several spellings for the same flag.

abspcadd Causes the operand 6(PC) to be interpreted as a reference to the
absolute address 6. Unsetting the flag (noabspcadd) causes the above operand
to be interpreted as a displacement of 6 from the PC. (default: abspcadd)

b, brb, brs Forces 8-bit displacements in branch instructions (Bcc, BRA, BSR)
to forward locations. Explicit qualifiers (e.g. BRA.L) override this flag.
(default: brw)

brw Forces 16-bit displacements in branch instructions (Bcc, BRA, BSR) to
forward locations. Explicit qualifiers (e.g. BRA.L) override this flag. (default:
brw)

brl Forces 32-bit displacements in branch instructions (Bcc, BRA, BSR) to
forward locations when supported by the processor and when noold is in
effect. When old is in effect, then brl forces 16-bit displacements. For all other
processors, this forces 16-bit displacements. Explicit qualifiers (e.g. BRA.L)
override this flag. (default: brw)

c, cex List all lines of object code (after the first) generated by the DC
pseudo-op. (default: c)

case User defined symbols are case sensitive. Nocase means that upper and
lower case letters in identifiers are equivalent. (default: case)

Command Syntax
as68k(1)

28

d Place the symbol table in the object module. (default: d)

e List lines with errors and warnings to standard error. (default: e)

f, frs Causes assembler to allocate 16 bits for operand extensions for operands
of the form expression where expression contains a forward reference. During
pass 2, the assembler may decide to access the operand using absolute-short or
PC-plus-displacement modes. (default: frl)

frl Causes assembler to allocate 32 bits for operand extensions for operands of
the form expression where expression contains a forward reference. During
pass 2, the assembler may decide to access the operand using absolute-short,
absolute-long, or PC-plus-displacement modes. (default: frl)

g List assembler-generated symbols in the symbol or cross reference listing. If
d is also set, these symbols are placed in the object module as well. (default:
nog)

hlasym Affects the symbolic information in the IEEE relocatable file for
compiler-generated modules. Hlasym causes assembly-level local symbols to
be put into the output file. Nohlasym omits assembly-level local symbols from
compiler-generated modules resulting in smaller output files.
Compiler-generated symbols are not affected by this flag. (default: nohlasym)

i, cl List instructions not assembled due to conditional assembly statements.
(default: i)

m, mex List macro and structured control directive expansions in program
listing. (default: mex)

mc List macro calls in program listing. (default: mc)

md List macro definitions in program listing. (default: md)

o Produce an output relocatable module. (default: o)

old Specifies that the interpretation of the brl flag and explicit .L qualifiers on
Bcc instructions will be 16-bit displacements (as appropriate for the 68010 and
earlier processors), even though the processor mode has been set to indicate a
processor with an address bus width greater the 16 bits. This flag is useful
when migrating 68000 programs. (default: noold)

opnop Remove NOP instructions generated by the assembler. When the
assembler encounters a forward reference during pass 1, it will allocate space
for an instruction based on worst case assumptions. During pass 2, it will

Command Syntax
as68k(1)

29

sometimes generate a shorter form of the instruction and fill the remaining
space with NOPs. This flag removes those NOPs but at the cost of increased
assembly time because it makes additional passes over the file. (default:
noopnop)

p= proc Identifies the target processor (default: 68000). Valid values for proc
are: 68000 68EC000 68HC000 68HC001 68302 68008 68010 68330 68331
68332 68333 68340 CPU32 68020 680EC20 68030 680EC30 68040 68EC040

p, pco Assembler uses PC-plus-displacement mode to access operands (of the
form expression) within an absolute section. Nopco causes such references to
use absolute mode. (default: nopco)

pcr Assembler uses PC-plus-displacement mode to access operands (of the
form expression) within a relocatable section. Nopcr causes such references to
use absolute mode. (default: pcr)

quick Quick allows the assembler to optimize certain mnemonics when
possible. The mnemonics are: MOVE to MOVEQ, ADD to ADDQ, and SUB
to SUBQ. Noquick prevents these optimizations. (default: quick)
r

pcs Assembler uses PC-plus-displacement mode to access operands (of the
form expression) when the instruction is in a relocatable section and the
operand is in a different relocatable section. Nopcs causes such references to
use absolute mode. (default: nopcs)

rel32 This flag applies to the following 68020 address modes.

 (bd,An,Xn) ([bd,An,Xn],od) ([bd,An],Xn,od)
 (bd,PC,Xn) ([bd,PC,Xn],od) ([bd,PC],Xn,od)

Rel32 causes the assembler to use 32-bit base and outer displacements for
forward, external, or relocatable operands. Norel32 causes 16-bit base and
outer displacements. This flag applies to operands that do not have explicit
word or longword size qualifiers. (default=norel32)

s List the source text in program listing. (default: s)

t List the symbol table in program listing. (default: t)

w Generate messages for warnings. now means suppress warnings. (default: w)

x, cre List the cross reference table in the program listing. The cross reference
table replaces the symbol table in the listing. (default: nox)

Command Syntax
as68k(1)

30

FILES file.s Assembly language source file. (Unix)
file.src Assembly language source file. (DOS)
file.o HP-MRI IEEE-695 relocatable object file. (Unix)
file.obj HP-MRI IEEE-695 relocatable object file. (DOS)
file.A HP 64000 format assembler symbol file

SEE ALSO HP 68000 Family Assembler/L inker/L ibrarian User’s Guide, ld68k(1), ar68k(1).

DIAGNOSTICS The as68k command returns zero if no errors are detected in the assembly
source. Otherwise, it returns non-zero.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

BUGS The following is not a defect but rather a sometimes misunderstood aspect of
as68k.

Beware of labels on a line by themselves. They may not be aligned as you
expect. For example,

 SECT A
 STRING DC.B ’odd’
 START
 LEA STACKTOP,SP

The label START will have an odd value. If the PC is loaded with an odd
value, a run time error will occur.

There are two ways to avoid this problem. You may put the label on the same
line as the instruction or directive. The label will have the same alignment as
the instruction. For example,

 SECT A
 STRING DC.B ’odd’
 START LEA STACKTOP,SP

You may also use an align directive after the byte constants. For example,

 SECT A
 STRING DC.B ’odd’
 ALIGN 2
 START
 LEA STACKTOP,SP

Command Syntax
as68k(1)

31

ld68k(1)

NAME ld68k - cross linker/loader for Motorola family microprocessors

SYNOPSIS /usr/hp64000/bin/ld68k [options] [files]
/usr/hp64000/bin/ld68030 [options] [files]
/usr/hp64000/bin/ld68040 [options] [files]

Under DOS on a PC:
\hpas68k\ld68k [options] [files]

DESCRIPTION The ld68k command takes one or more relocatable object files as input and
combines them to produce a single output file. In doing so it resolves
references to external symbols, assigns final addresses to procedures and
variables, revises code and data to reflect new addresses and updates symbolic
debug information (when it is present in a file).

If ld68030 or ld68040 is used to invoke the linker the default chip is set to
68030 or 68040.

By default, the output file format is HP-MRI IEEE-695 (HP’s implementation
of the IEEE standard 695 MUFOM format). This file contains Motorola
680xx instructions and symbolic data. Options may be used to create output
files in HP 64000 format or Motorola S-Record format. Refer to the
OUTPUT FILE FORMATS section which follows for more information.

Usually, the output file contains instructions and data in absolute form. That
is, address information has been supplied to locate the program in target
memory.

The -i option may be used to specify a relocatable output file in a process
called incremental linking. In an incremental link, the input relocatable files
are simply combined into an output relocatable file. While address
information may be specified in an incremental link, the instructions and data
remain in relocatable form. The addresses specified during an incremental
link may be changed in subsequent links.

The operation of ld68k is controlled by LINKER COMMANDS (described
below). Linker commands specify the input relocatable and archive files, the
location and order of relocatable sections, and the contents of the output files.

Command Syntax
ld68k(1)

32

The ld68k program reads commands from the command line or from a
command_file using either the -c option. The ld68k program no longer reads
commands from standard input using pipes or interactive commands.

The ld68k program accepts relocatable and archive input files in HP-MRI
IEEE-695 format. These files may be produced by the cross compiler, the cross
assembler (as68k), the cross linker itself (ld68k), or the archive file librarian
(ar68k).

Input files may be specified in "LOAD" commands or on the command line.
The order of specification of the input files is significant to the operation of
the linker.

If input files are specified on the command line, these files are loaded in
addition to files specified in "LOAD" commands in the command_file. Input
files specified on the command line will precede any input files mentioned in
LOAD commands.

If the input file names have a suffix, then the name is used as is. Otherwise,
ld68k appends .o to the name on the command line. The suffix .obj is appended
when ld68k is run on a PC under DOS.

The name of the output file may be specified with the -o option; if that is
omitted, the name of the output file is derived from the name of the
command_file. It is an error if neither the output file name nor the
command_file name is specified.

The default names of the output files are determined in the following way. Any
pathname and any ending suffix (i.e. including the last ’.’) is stripped from the
command_file name to form the basic output file name. Then, depending on
the type of the output file, a suffix is appended to the basic name to form the
output file name.

If the output is HP-MRI IEEE-695 absolute format, then the suffix is .x. The
suffix will be .abs on the PC host.

If the output is HP 64000 format, then the suffixes are .X for the absolute file
and .L for the linker symbol file.

If the output is Motorola S-Record format, then the suffix is .x.

If an incremental link is done, then the output is in HP-MRI IEEE-695
relocatable format and the suffix is .o. On the PC host running DOS, the suffix
will be .obj.

Command Syntax
ld68k(1)

33

The following options are recognized by ld68k:

-b

This option is included for backward compatibility and does not affect ld68k
operation.

-c command_file

This option specifies the name of the command_file to be used to supply
information to ld68k. The file name part of the command file path, with suffix
stripped, is used to form the default names of output files.

-f flaglist

This linker command will NOT be present in future versions. All flag
functionality will be accessible via other command line options and/or the
linker command file. The flags in flaglist are used to select and change the
internal linker control switches. The flags recognized and their meanings are
defined below. A more complete explanation may be found in the HP 68000
Family Assembler/L inker/L ibrarian User’s Guide. Each flag may be set (or
unset) in either of two ways. A flag may be set on the command line using the
-f option described here. A flag may also be set using the LIST linker
command and unset using the NLIST linker command. Groups of flags
following the -f option must be separated by commas or separated by white
space and quoted. For example, the following option sets the flags c, d, s, and x.

 -f c,d -f "s x"

A flag may be unset (turned off) by preceding the flag with - or no. For
example, the following option turns off the o and p flags.

 -f noo,-p

Errors in the flaglist are not detected immediately when the command line is
processed. Rather, the loader acts as if a "LIST flaglist" command preceded
the first command in the loader command file.

-H link_sym_file

This option overrides the default file name for the HP 64000 format linker
symbol file. (See the -h option below.) If link_sym_file has a suffix, then the
name is used as is. Otherwise, .L is appended to form link_sym_file.L.

Command Syntax
ld68k(1)

34

-h

The option indicates that the linker should produce HP 64000 format output
files. There are two output files, the absolute file and the linker symbol file.
The default name for the absolute file is command_file.X while the default
name for the linker symbol file is command_file.L. When writing the link_sym
file, all identifiers (i.e. global symbol definitions) are converted to legal
HP64000 identifiers. That is, Motorola assembly language identifiers may
contain the characters . (period), ? (question mark), and $ (dollar sign) and
have a maximum of 31 significant characters. To produce legal HP64000
identifiers in the link_sym file, all periods, question marks, and dollar signs are
converted to _ (underbar) and identifiers are truncated to 15 characters
maximum.

-i

Specifies that an incremental link be performed. The relocatable input files
are combined to produce a relocatable output file. The name of the
relocatable output file defaults to command_file.o. On a PC machine running
DOS, the file name defaults to command_file.obj. The following linker
commands are illegal during an incremental link: ABSOLUTE, BASE,
CPAGE, INDEX, INITDATA, NOPAGE, ORDER, PAGE, RESADD,
RESMEM, and SORDER.

-L

Specifies that output load map listing be written to standard output.

-m

Same as -L above.

-o objfile

Specifies the name of the output file. This overrides the default file name for
HP-MRI IEEE-695 absolute file, the HP-MRI IEEE-695 relocatable file, the
HP 64000 format absolute file, or the Motorola S-Record file. If obj_file has a
suffix, then the name is used as is. Otherwise the appropriate suffix will be
appended.

-u symbol

Creates an external reference to symbol. This reference may force the linker to
load a library module. The EXTERN command performs the same function
as the -u option.

Command Syntax
ld68k(1)

35

 LINKER
COMMANDS

The linker/locator recognizes the following commands. Square brackets []
enclose optional parameters. Ellipsis ... indicate the preceding item may be
repeated.

; comment text ...

Designates a comment.

command continuation character

Allows a command to be continued on the following line.

’ escape character

Causes the character following the escape char to be treated as a normal
character.

ABSOLUTE sectname [,sectname] ... c

auses only the code from the specified relocatable sectname(s) to be written to
the absolute output file. Without the ABSOLUTE command, code from all
absolute and relocatable sections is written. See LOAD_SYMBOLS command.

ALIAS sectname1,sectname2

specifies that the code in relocatable section sectname2 be treated as if it were
actually in relocatable section sectname1.

ALIGN section= number
ALIGNMOD section= number

The ALIGN command sets the alignment of the beginning of the section only.
Number must be a power of 2. The ALIGNMOD command increases the
alignment boundary of each individual module section to number.

BASE address

specifies the address where the linker begins placing relocatable sections. The
SECT or COMMON commands may override BASE for individual sections.
Address is decimal unless preceded by $ for hexadecimal, @ for octal, or % for
binary.

Command Syntax
ld68k(1)

36

CASE [class,...]
LOWERCASE [class,...]
UPPERCASE [class,...]

control the case sensitivity of various classes of symbols during linking. Class
may be PUBLICS (to indicate global or external symbols), MODULES (to
indicate module names), or SECTIONS (to indicate section names). If no
class is specified, all symbol classes are affected. CASE means that upper and
lower case characters remain distinct and unchanged. LOWERCASE shifts
all letters to lower case and UPPERCASE shifts all letters to upper case.

CHIP processor[,buswidth]

specifies the target processor. Processor may be 68000, 68EC000, 68HC000,
68HC001, 68008, 68010, 68302, 68330, 68331, 68332, 68333, 68340, 68020,
68EC020, 68030, 68EC030, 68040, or 68EC040. The optional buswidth is a
number specifying the width (in bits) of the address bus of the target system.

COMMON sectname= address

specifies the load address of a common section. See BASE for address syntax.

CPAGE sectname

specifies that the starting address of the common section named sectname be
rounded up to a $100 (hexadecimal) boundary.

DEBUG_SYMBOLS
NODEBUG_SYMBOLS

These commands control putting local symbols into output files. These
commands may be placed between LOAD commands to selectively copy
symbols from certain modules. DEBUG_SYMBOLS is a synonym for the
LIST P command and NODEBUG_SYMBOLS is a synonym for the NLIST P
command.

END

Causes the load to be finished and an output module produced.

ERROR condition[,condition] ...
NOERROR condition[,condition] ...
WARN condition[,condition] ...

Cause the condition(s) specified to be modified. Condition may be most error
or warning numbers. Fatal error conditions may not be modified.

Command Syntax
ld68k(1)

37

EXIT

Causes the linker to exit without finishing the load and without producing an
output module.

EXTERN name [,name] ...

Creates an external reference to name. This reference can cause the loading of
a library module.

FORMAT option

Specifies the format of the object file. Option may be HP (for HP 64000), S
(for Motorola S-Record), IEEE (for HP-MRI IEEE-695 absolute), IEEE
INCREMENTAL , or NOABS (for no output file). IEEE INCREMENTAL is
the same as the -i option. Default is to produce HP-MRI IEEE-695 absolute.
INCLUDE filename Includes the contents of filename in the linker command
file.

INDEX ?areg,sectname,offset

Associates an address register with a relocatable section and an offset for the
purpose of computing displacements in address-register-plus-displacement
mode. The areg value may be any of A2, A3, A4, or A5.

INITDATA merge_arg [,merge_arg] ...

Provides a means of placing one or more initialized data sections in ROM. A
section named ??INITDATA is written to the absolute file. At run time, the
sections named by the ??INITDATA must be moved from the ROM location
to their actual link time addresses by an initcopy routine. ??INITDATA and
sections named by ??INITDATA are ordered and assigned an address using
standard linker commands. See INITDATA under the LINKER COMMANDS
section of the user’s manual for more information. For a demonstration and
sample code see /usr/hp64000/demo/languages/B3641/features/INITDATA.
On the PC host, the example code is placed in the examples subdirectory.

INTFILE
NOINTFILE

INTFILE allows very large programs to be linked. Intermediate data is kept in
a temporary file rather than virtual memory. The INTFILE command is
equivalent to the -b command line option.

LIST flag [,flag] ...

Command Syntax
ld68k(1)

38

Sets linker flags. The flags may also be set on the command line and are
defined below. LIST and NLIST will not be supported in future releases.

LISTABS option [,option] ...

Controls putting different types of symbol information into the output file.
LISTABS PUBLICS is the same as LIST D and puts global symbols into
S-Record files. LISTABS NOPUBLICS is the same as NLIST D and turns off
global symbols. LISTABS INTERNALS is the same as LIST S and puts local
symbols in S-record files. LISTABS NOINTERNALS is the same as NLIST S
and turns off local symbols to S-Record files. LISTABS NOINTERNALS
also turns off all compiler generated symbols and local assembly symbols to
IEEE-695 files.

LISTMAP option [,option] ...

Controls the output of certain types of information to the linker listing. The
option value may be any of CROSSREF, NOCROSSREF, INTERNALS,
NOINTERNALS, PUBLICS, or NOPUBLICS. LISTMAP CROSSREF is
the same as LIST C and turns on the cross reference listing. LISTMAP
INTERNALS is the same as LIST T and turns on the local symbol listing.
LISTMAP PUBLICS is the same as LIST X and turns on the global symbol
listing.

LOAD filename [,filename] ...

Specifies the name of IEEE relocatable files or archive files from which
symbols and code are to be included in the load.

LOAD_SYMBOLS filename [,filename] ...

Specifies the name of IEEE relocatable files or archive files from which to
load symbols and allocate space, code is not loaded. See ABSOLUTE
command.

MERGE sectname merge_arg [,merge_arg] ...

Renames the sections specified in merge_arg to sectname. The MERGE
command allows you to select pieces of a section defined in particular
modules, change the name of these pieces, and then locate these pieces using
the new name. Merge_arg may be any of the following.

 sect2 or {sect2,module} or {*,module}

Command Syntax
ld68k(1)

39

The first form renames all of sect2 to sectname. The second form renames just
the portion of sect2 defined in module to sectname. The third form renames all
the sections defined in module to sectname.

NAME name

Specifies the name to be put into the (extended) Motorola S-Record output
file.

NLIST flag [,flag] ...

Unsets linker flags. Flags are defined below. NLIST and LIST will not be
supported in future releases.

ORDER sectname [,sectname] ...

Specifies the order in which ordinary (non-basepage) relocatable sections are
placed in memory. The default order is the order in which section names are
encountered by the linker, either in linker commands or in input modules.

PAGE sectname
NOPAGE sectname

PAGE turns on page relocation (i.e. locating each subsection on a $100
(hexadecimal) boundary) for sectname. NOPAGE restores normal subsection
alignment. Default is no page relocation.

PUBLIC name= address
PUBLIC name= name2

Defines a global identifier name whose value is either address or the value of
another symbol name2. See BASE for address syntax.

RESADD low_addr,high_addr
RESMEM low_addr,size

Reserve areas of memory that will not be used by the linker for other sections.

SORDER sectname [,sectname] ...

Specifies the order in which short (basepage) relocatable sections are placed in
memory.

SECT sectname= address

Specifies the load address of ordinary relocatable section sectname. See BASE
for address syntax.

Command Syntax
ld68k(1)

40

SECTSIZE sect= size

Allows modification of section size at link time.

START address

Specifies the starting address for the program. See BASE for address syntax.

FLAGS The following flags may be specified using the -f flaglist option.

a Produce the output file in Motorola S-Record format. Same as FORMAT S
command. (default: HP-MRI IEEE-695 format)

c Print the identifier cross reference table in the load map. Same as LISTMAP
CROSSREF command. (default: noc)

d Put global symbols into the S-Record output file. This flag has no effect on
IEEE-695 or HP 64000 files. Same as LISTABS PUBLICS command.
(default: nod)

h Produce the output file in HP 64000 format. Same as FORMAT HP
command. (default: HP-MRI IEEE-695 format)

i Produce the output file in HP-MRI IEEE-695 format. Same as FORMAT
IEEE command. (default: HP-MRI IEEE-695 format)

o Produce an output file. LIST NOO is the same as FORMAT NOABS
command. (default: o)

p Place symbols in the input modules into the linker symbol table. This flag
affects only Motorola S-Record output files. Its purpose is to exclude symbols
from certain input modules from the output module. One does this by
surrounding LOAD commands with NLIST P and LIST P commands. Same as
DEBUG_SYMBOLS command. (default: p)

s Put symbols into the output file. The exact behavior depends on the output
file format. Same as LISTABS INTERNALS command. (default: s)
S-Records: S writes local symbols and their values in a simple, displayable
format at the beginning of the file. Nos suppresses these symbols. IEEE-695:
S writes local assembly symbols and compiler generated symbol and type
information to the output file. Nos suppresses this information. Global
assembly symbols (those mentioned in XDEF directives) are always written to
the output file regardless of any flag. HP 64000: The s flag has no effect on the
HP 64000 link_sym file.

Command Syntax
ld68k(1)

41

t Print local symbols in the load map. Same as LISTMAP INTERNALS
command. (default: not)

x Print global symbols defined in PUBLIC commands in the load map. Same
as LISTMAP PUBLICS command. (default: nox)

OUTPUT FILE
FORMATS

HP 64000 HP 64000 files are consumed by a number of HP 64000 emulators,
logic analyzers, and other products. Check the operating manual for your
particular HP product to determine what formats it will accept. The HP 64000
absolute, link_sym, and asmb_sym file formats are documented in HP-UX File
Format Operating Manual With this information, you can write your own tools
that use the loader’s absolute and symbolic output.

HP-MRI IEEE-695 Hewlett Packard’s implementation of IEEE 695 MUFOM
is consumed by HP 64000 emulators, debuggers, and other products. Check
the operating manual for your particular HP product to determine what
formats it will accept. Documentation for this format can be obtained by
contacting Hewlett Packard.

Motorola S-Records S-Records are used by many non-HP tools. The format
expresses absolute code and (optionally) symbol-value pairs using only
displayable ASCII characters and newlines. S-Records are described in HP
64888 File Format Converter Operating Manual. With this information, you can
write your own tools that use the loader’s absolute and symbolic output.

FILES command_file.x HP-MRI IEEE-695 absolute object file or Motorola
S-Record absolute file (Unix)

command_file.abs HP-MRI IEEE-695 absolute object file or Motorola
S-Record absolute file (DOS)

command_file.X HP 64000 format absolute file

command_file.L HP 64000 format linker symbol file

command_file.o HP-MRI IEEE-695 relocatable object file from incremental
link (Unix)

command_file.obj HP-MRI IEEE-695 relocatable object file from incremental
link (DOS)

SEE ALSO HP 68000 Family Assembler/L inker/L ibrarian User’s Guide, ar68k(1), as68k(1).

DIAGNOSTICS The ld68k command returns zero if no errors are detected while linking,
otherwise returns non-zero.

Command Syntax
ld68k(1)

42

Diagnostic messages are displayed on standard error.

BUGS Programs that linked without error using version 1.00 of ld68k may produce
undefined symbol errors using later versions of ld68k. The information below
explains the cause of the problem and tells how to correct it.

As68k allows identifiers to contain period (.), dollar sign ($), and question
mark (?) and have up to 31 significant characters. Identifiers in HP 64000
asmb_sym and link_sym files may not contain periods, dollar signs, or question
marks and can have only 15 significant characters. To create legal HP 64000
identifiers, period, dollar, and question mark are changed to underbar (_) and
identifiers are truncated to 15 characters if necessary.

Version 1.00 of as68k and ld68k differ from later versions with respect to when
the conversion was done.

Version 1.00 tools performed Motorola-to-HP symbol conversion only when
the -h option was used and then immediately when the symbol was seen. Thus,
with the -h option, a name spelled "a.b$" would match a name spelled "a_b_".
This would apply during assembly and/or during linking when global
definitions were matched with external references. We thought this was an
undesirable and confusing side effect of the -h option.

Later versions of the tools never change a symbol’s spelling for the purpose of
symbol matching. Symbols are converted only when they are written to the HP
asmb_sym and link_sym files. Undefined symbols occur because now symbols
must always be spelled exactly the same in order to match.

We recommend the following procedure. First, if possible, reassemble all
modules that were produced with version 1.00 of as68k. Second, after linking,
correct undefined symbol errors by going back to the source and changing
symbols so that definitions and references are spelled exactly the same.

Version 1.60 linker command file syntax differs somewhat from earlier
versions. Most users will need to make changes to pre-1.60 linker command
files to use the new INITDATA and comment syntax. See INITDATA and ";"
under LINKER COMMANDS .

Command Syntax
ld68k(1)

43

ar68k(1)

NAME ar68k - archive and library maintainer for Motorola 68k processors.

SYNOPSIS /usr/hp64000/bin/ar68k
/usr/hp64000/bin/ar68k [options] [action] ... archivefile
/usr/hp64000/bin/ar68030 [options] [action] ... archivefile
/usr/hp64000/bin/ar68040 [options] [action] ... archivefile

Under DOS on a PC:
\hpas68k\ar68k [options] [action] ... archivefile

DESCRIPTION The ar68k command maintains groups of relocatable files combined into a
single archive (or library) file. The archive files may then be used by ld68k (1),
the 68000 family linker/locator, to form executable programs for the Motorola
68000 family processors.

The ar68030 and ar68040 commands are synonyms for the ar68k command.
They are provide to maintain backward-compatibility with previous versions of
these tools.

Individual relocatable files are inserted without change into the archive file.
In addition, there is a library symbol table which is used by the linker/locator,
ld68k (1), to effect multiple passes over the library in an efficient manner.

Individual relocatable files define modules which have modulenames. The
modulename is determined in the following way. If the assembly source file
contains an IDNT directive, then this directive defines the module name.
Otherwise, the module name is the name of the assembly source file (with
preceding pathname and suffix stripped).

The ar68k command operates in either of two modes. The mode is determined
by the presence (or absence) of the archivefile name.

In the first mode,

 ar68k

An archivefile is not specified. The ar68k command reads librarian commands
from standard input. If the standard input is a terminal device, then ar68k
operates in interactive mode, prompting the user for librarian commands.

Command Syntax
ar68k(1)

44

The librarian commands are defined below. Additional information may be
found in the HP 68000 Family Assembler/L inker/L ibrarian User’s Guide. The
commands completely control the operation of ar68k. The commands specify
the name of the archive file and the actions to be performed on the modules
which constitute the library.

In the second mode,

 ar68k [options] [action] ... archivefile

all the control information is contained on the command line.

The archivefile argument names the archive file to be operated on. If the
archivefile does not exist, then an empty archive file is created before the
actions are performed.

If the archive file name contains a suffix (i.e. contains a period), then the name
is used as is to access the archive file. If the archive file name has no suffix,
then .a is appended to the name before accessing the archive file. In the DOS
environment on a PC, the .lib suffix is used instead of .a.

Action is one of the following:

-a filelist

The modules contained in the relocatable files in filelist are added to the
library contained in the archive file. If a module which already exists in the
library is added, it is an error.

-d modulelist

The modules in the modulelist are deleted from the library.

-r filelist

The modules contained in the relocatable files in filelist replace modules of the
same name in the library.

-e modulelist

The modules in the modulelist are extracted (i.e. copied) and put into
relocatable files. The name of the file is the same as the name of the module
but with the suffix .o appended. In the DOS environment on the PC host, the
suffix .obj is used instead of .o.

Command Syntax
ar68k(1)

45

In filelist (or modulelist), individual files (or modules) may be separated by
commas or separated by white space with the whole list quoted.

If the file names in file list have a suffix (i.e. contain a period), then the name
is used as is to access the relocatable input file. If the name has no suffix, then
.o (.obj on DOS) is appended to the name to obtain the name of the input file.

The following option is recognized by ar68k:

-L specifies that a library listing file be written to standard output.

LIBRARIAN
COMMANDS

The ar68k command recognizes the following commands. In the syntax
descriptions below, square brackets [] enclose optional items. Ellipsis ...
indicate that the preceding item may be repeated.

ADDLIB archivefile [(module [,module] ...)]

Add one or more modules from the named library to the present library. If no
modules are specified, the entire library is included.

ADDMOD filename [,filename] ...

Add the module contained in one or more relocatable files to the present
library.

CLEAR

Removes the current library so that another CREATE or OPEN command
can be issued.

CREATE archivefile

Specify the name of a new archive file to be created.

DELETE module [,module] ...

Delete one or more modules from the current library.

DIRECTORY archivefile [(module [,module] ...)] [listfile]

Obtain a brief listing of the modules in a library. If no modules are specified,
the entire library is listed. If listfile is not specified, the listing goes to standard
output.

Command Syntax
ar68k(1)

46

END,
EXIT
QUIT

Exit the librarian without saving the current library. Use SAVE to save the
results of the current session.

EXTRACT module [,module] ...

Copy one or more modules to individual relocatable object files. The name of
the object file is the module name with .o appended. The module name will be
appended with .obj on DOS machines.

HELP

Display the commands (and their syntax) that are valid in the current context.

LIST archivefile [(module [,module] ...)] [listfile]

Obtain a detailed listing of the modules in a library. If no modules are
specified, the entire library is listed. If listfile is not specified, the listing goes
to standard output.

OPEN archivefile [(module [,module] ...)]

Specify the name of an existing archive file to be opened. If individual
modules are specified, only those modules are visible to the librarian while
executing subsequent commands. If no modules are specified, all the modules
in the existing library are used.

REPLACE filename [,filename] ...

Replace one or more existing modules in the present library with the modules
from the named files.

SAVE

Exit the librarian saving the current library. Use END to exit without saving
the results of the current session.

FILES archivefile.a Relocatable archive file. (Unix)

archivefile.lib Relocatable archive file. (DOS)

file.o HP-MRI IEEE-695 relocatable object file. (Unix)

file.obj HP-MRI IEEE-695 relocatable object file. (DOS)

Command Syntax
ar68k(1)

47

SEE ALSO HP 68000 Family Assembler/L inker/L ibrarian User’s Guide, as68k(1), ld68k(1).

DIAGNOSTICS The ar68k command returns zero if no errors are detected. It returns non-zero
when errors are detected.

Diagnostic messages are displayed on standard error.

Command Syntax
ar68k(1)

48

Part 2

Reference

Part 2

50

3

Assembler Introduction

This chapter describes the as68k Relocatable Macro Assembler for the 68000
family of microprocessors.

51

The as68k Relocatable Macro Assembler for the 68000 family of
microprocessors translates symbolic machine instructions into binary object
code that can be executed by a 68000 family microprocessor. The 68000 family
includes the 68000, 68008, 68010, 68302, 68332, and 68020, 68030, and 68040
microprocessors. The instructions specific to the 68881 Floating Point
Coprocessor are also translated into the binary code for coprocessor
execution.

Object code is produced in a relocatable format by the assembler. Relocatable
modules produced by the assembler are linked into a single absolute module
by the linking loader.

The as68k mnemonic operation codes, the assembler directives, and the
assembler syntax, are all compatible with that used by Motorola in its software
products and documentation.

The as68k assembler is a two-pass program that issues helpful error messages,
produces an easy to read program listing and symbol table, and outputs a
computer readable relocatable object module.

Symbolic information is available for debugging. Assembler symbol files can
be produced, and the relocatable object file contains symbolic information
which passes through the linker into the IEEE absolute file.

Either the 68000, 68010, 68332, 68020, 68030, or 68040 instruction set may be
selected. The assembler will check that only the appropriate instructions are
used for the selected processor.

as68k Features

Features of as68k include:

• Manufacturer-compatible symbolic machine operation codes (opcodes,
directives) are provided.

• Instructions for the 68000 family of microprocessors and the 68881
coprocessor are supported.

• 68030/040 MMU instructions are accepted.

• Conditional assembly is provided.

Assembler Introduction
as68k Features

52

• User-defined macros are provided.

• Pascal-like run time structured loop control directives are provided.

• Character codes may be specified in ASCII or EBCDIC.

• Case sensitive symbols are supported (with an option to turn off case
sensitivity).

• Complex expression evaluation is provided.

• Flexible assembly listing control statements are provided.

• Symbolic or cross reference table listing may be generated.

• Symbols may be included in the output object module for symbolic
debugging.

• Relocatable modules may be produced.

• A2-A5 relative addressing is supported.

• Complex relocation is supported in the Loader.

• Supports long file names.

These features aid the program developer in producing well documented,
modular, working programs in a minimum of time.

Assembler Statements

An assembly language program is comprised of statements written in symbolic
machine language. There are four types of assembly language statements:

• Instructions.

• Directives.

• Macros.

• Comments.

Assembler Introduction
Assembler Statements

53

All but comment statements are written in the following format:

Label Operation Operand Comment

The various fields that comprise a statement are separated by one or more
blanks or tabs, and in some cases, a colon or semicolon. Statements may be a
maximum of 512 characters long.

Label Field

The label field assigns a memory address or constant value to the symbolic
name contained in the field. The label field may begin in any column if
terminated by a colon, or it must begin in column one when the colon is
omitted. A label may be the only field in a statement.

The first 31 characters of a label are significant.

Labels are case sensitive by default. You can turn off case sensitivity with the
"OPT NOCASE" assembler directive.

Operation Field

The operation field specifies a symbolic operation code, a directive, or a
macro call. If present, this field must begin after column one and be separated
from the label field by one or more blanks, tabs, or a colon. Assembly
language instructions and directives may be upper or lower case. Macros can
be case sensitive or not depending on the CASE flag.

Operand Field

The operand field is used to enter arguments for the opcode, directive, or
macro specified in the operation field. The operand field, if present, is
separated from the operation field by one or more blanks or tabs.

Comment Field

The comment field gives you a place to put messages stating the purpose of a
statement or group of statements. The comment field is always optional, and
if present, must be separated from the preceding field by one or more blanks,
tabs, an exclamation point or a semicolon. For those opcodes and directives

Assembler Introduction
Assembler Statements

54

that have optional operands that are not present, the comment field must
always start with an exclamation point or a semicolon.

Statement Examples

The next few section give examples of the four types of statements that can be
used in assembly language programs.

Instruction Statement

The instruction statement is a written specification for a particular machine
operation, expressed by a symbolic operation code, also called a mnemonic,
and operands. Symbolic addresses may be defined by the statement and
symbolic addresses may also be used for opcode operands. For example:

Label Operation Operand Comment

ISAM MOVE MEM,D2

Where:

ISAM A symbol representing the memory address of the
instruction.

MOVE A symbolic opcode representing the bit pattern of the
move instruction.

MEM A symbol representing a memory address.

D2 A reserved symbol representing data register number 2.

Assembler Introduction
Statement Examples

55

Directive Statement

A directive statement is interpreted as a control statement to the assembler. It
is not translated into a machine instruction. For example:

Label Operation Operand Comment

ABAT DC DELT

Where:

ABAT A symbol. The assembler will assign the value of the
location counter to this symbol. The location counter
(assembly program counter) contains the address of the
first byte of the code generated by the directive DC.

DC A directive that instructs the assembler program to
allocate two bytes of memory.

DELT A symbol representing an address. The address will be
placed into the two bytes allocated by the DC directive.

Macro Statement

A macro statement is a call to a sequence of instructions or a definition of a
sequence of instructions as a macro. A call can be made many times from any
part of a program as long as the call appears after the macro definition. The
chapter "Macros" explains macros in greater detail. The following is an
example of a macro definition and call:

1 MAC1 MACRO P1
2 L&&P1 MOVE D0,D1 ; Create label using parameter.
3 ENDM
4
5 MAC1 XX ; Call macro.
5.1 00000000 3200 LXX MOVE D0,D1 ; Create label using parameter.
6 END

Comment Statement

A comment statement is not processed by the assembler program. Instead, it
is reproduced on the assembly listing and may be used to document groups of
assembly language statements. A comment statement is indicated by encoding

Assembler Introduction
Statement Examples

56

an asterisk in the first column, or an exclamation point or semicolon as the
first nonblank character on a line. For example:

* THIS IS A COMMENT STATEMENT
 ; THIS IS ALSO A COMMENT STATEMENT

Blank lines are also treated as comment statements.

Return Codes

as68k will return 0 if the program assembles without errors. If errors are
detected, the assembler will return 1.

Error messages are written to the standard error output and to the assembler
listing. Error messages and warnings are listed in the "Assembler Error
Messages" appendix.

Assembler Syntax

The assembler language, like other programming languages, has a character
set, a vocabulary, rules of grammar, and allows for definition of new words or
elements. The rules that describe the language are referred to as the "syntax"
of the language.

Assembler Introduction
Assembler Syntax

57

Assembler Character Set

The assembler will recognize ASCII characters 20 hex through 7E hex. Any
other characters, except in a comment field, will generate an error. Many of
the special characters have no predefined meaning except as character
constants.

Alphabetic Characte rs:

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m n o p q r s t u v w x y z

Numeric Characters:

 0 1 2 3 4 5 6 7 8 9

Special Characters:

 (blank)
 > (greater than)
 < (less than)
 ’ (single quote)
 , (comma)
 + (plus sign)
 - (minus sign)
 & (ampersand)
 ! (exclamation)
 " (double quote)
 # (sharp)
 % (percent)
 { (left curved bracket)
 } (right curved bracket)
 [(left square bracket)
] (right square bracket)
 ^ (up arrow)
 / (slash)
 $ (dollar)
 * (asterisk)
 ((left parenthesis)
) (right parenthesis)
 @ (commercial at)
 . (period)
 : (colon)
 ; (semi-colon)
 = (equal sign)
 _ (underbar)
 ? (question mark)
 | (vertical bar)
 ‘ (grave accent)
 ~ (tilde)
 \ (back slash)

Assembler Introduction
Assembler Character Set

58

Symbols

A symbol is a sequence of characters. The first character in a symbol must be
alphabetic or one of the special characters: ? (question mark), . (period), or _
(underbar). Subsequent characters in the symbol may consist of any of the
special characters just mentioned, a $ (dollar sign), alphabetic letters, or
numeric digits. Embedded blanks are not permitted in symbols. Symbols are
case sensitive by default. To turn off case sensitivity, use the "OPT NOCASE"
assembler directive.

The assembler generates "local" symbols in macros that start with the
character sequence \@. However, these symbols are only valid inside a macro.

Symbols may be up to 31 characters in length. They may actually be longer,
but only the first 31 characters are used by the assembler for symbol definition.

Symbols are used to represent arithmetic values, memory addresses, bit arrays
(masks), etc. Examples of valid symbols are:

LAB1
mask
LOOP$NUM
L23456789012345678901234567890123456789 (truncated to 31 characters)

Examples of invalid symbols are:

ABORT * (contains special character)
1LAR (begins with a numeric)
PAN N (embedded blank, symbol is PAN)

Symbols beginning with two or more question marks, for example ??LAB1,
are treated slightly differently by the assembler. as68k uses the two question
mark convention to identify "assembler generated" symbols. For example,
when the assembler creates unique labels in macro expansions, it generates
symbols of the form ??0001, ??0002, etc. These assembler generated symbols
are not included in the assembler listing or the HP format "asmb_sym" file
unless the OPT G assembler flag is set.

If you code your own symbols beginning with two question marks, these
symbols will not be available for debugging unless you specify the OPT G
directive.

Assembler Introduction
Symbols

59

Reserved Symbols

The as68k assembler has internally defined the symbolic register names that
Motorola uses in their assembly language to denote the various hardware
registers. They are:

32-bit address registers A0, A1, A2, A3, A4, A5, A6, A7, SP

32-bit data registers D0, D1, D2, D3, D4, D5, D6, D7

control registers PC, SR, CCR, USP

68331/332/010/030/040
vector base/function code
registers

VBR, SFC or SFCR, DFC or DFCR

68020/30/40 cache/stack
registers

CACR, CAAR, MSP, ISP

68030/40 MMU
registers

CRP, SRP, TC, TT0, TT1, MMUSR, ITT0, ITT1,
DTT0, DTT1

68020/30 pseudo
registers

ZA0, ZA1, ZA2, ZA3, ZA4, ZA5, ZA6, ZA7, ZD0,
ZD1, ZD2, ZD3, ZD4, ZD5, ZD6, ZD7, ZPC

68881 registers FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, FPCR,
FPSR, FPIAR, CONTROL, STATUS, IADDR

Users may also define their own keywords with the EQU directive to represent
the above predefined registers.

For Example:

COUNT EQU D4
 ADD.B #1,COUNT

is the same as:

 ADD.B #1,D4

The reserved symbol "NARG" is used to represent the number of arguments
passed on a macro call.

Assembler Introduction
Symbols

60

Reserved symbols will not appear in a symbol table or in a cross reference
listing.

Location Counter Symbol (*)

The asterisk (*) is the symbol for the "location counter" (also often called the
"assembly program counter"). The value of the location counter symbol is the
address associated with the first byte of the current instruction. The location
program counter symbol can be absolute or relocatable depending on whether
it appears in an absolute or relocatable section.

Symbol Types

The assembler assigns data types to symbols. These data types are transmitted
by the assembler and loader to the HP-MRI IEEE-695 absolute file.
Debugging tools which consume HP-MRI IEEE-695 files may use these data
types when interpreting assembly language modules.

The symbol type is determined by associating the label with an instruction or
directive. Instructions are always given the type "Code Address". Directives
DC, DS, and DCB have their data types determined by the size extension, as
shown in the example below.

The type is determined by the instruction or directive on the same line as the
label. If the symbol is defined on a line without an instruction or directive,
then the type is determined by the first code generating instruction or directive
which follows the label (in the same section). Finally, if no code generating
directive follows the unattached label, the label receives type "Code Address".

LAB1 ; type Code Address because instruction follows
INST MOVE D0,D1 ; type Code Address
LAB2 ; type Unsigned Byte because DC.B directive follows
BYTE DC.B 0 ; type Unsigned Byte
WORD DC.W 0 ; type Unsigned Short
LONG DC.L 0 ; type Unsigned Long
FLOAT DC.S 0.0 ; type 32-Bit Float
DOUBLE DC.D 0.0 ; type 64-Bit Float
XTEND DC.X 0.0 ; type Extended Float
LAB3 ; type Code Address because END follows
 END

Assembler Introduction
Symbols

61

Constants

A constant is an invariant quantity. It may be an arithmetic value or a
character code. Arithmetic values may be represented in either integer or
floating point format.

Integer Constants

In most cases, integer constants must be contained in one, two, or four bytes.
A one byte constant can contain an unsigned number with a value from 0 to
255. A two byte unsigned number can range from 0 to 65535. A four byte
unsigned number can range from 0 to 4,294,967,295. When a constant is
negative, its equivalent two’s complement representation is generated and
placed in the field specified. A one byte two’s complement number may range
from –128 to 128. A two byte two’s complement negative number may range
from –32768 to 32767. A four byte two’s complement signed number may
range from -2,147,483,648 to 2,147,483,647.

Numbers whose most significant bit is set may be either interpreted as a large
positive number or a negative number. For example, the one byte number $FF
may be either + 255 or -1 depending on the usage. The assembler will
correctly recognize numbers in either form, but the user is generally
responsible for their interpretation.

All constants are evaluated as 32 bit quantities, i.e., modulo 232. Whenever an
attempt is made to place a constant in a field for which it is too large, an error
message is generated by the assembler.

Decimal constants may be defined as a sequence of numeric characters
optionally preceded by a plus or a minus sign. If unsigned, the value is
assumed to be positive.

Constants with bases other than decimal are defined by specifying a coded
descriptor or special character before or after the constant. Motorola uses the
special characters to indicate base.

Assembler Introduction
Constants

62

The following table lists the available descriptors and their meanings. If no
descriptor is given, the number is assumed to be decimal.

Examples of constants are:

%1001
@56
640537
$3AB
45
100101B

Floating-Point Constants

Floating point numbers may be in either decimal or hexadecimal format. A
decimal floating point number must contain either a decimal point or an "E"
indicating the beginning of the exponent field. For example: "3.14159",
"-22E-100". The latter example means "-22 times (10 to the -100th power)".
Underscores may occur before or after the "E" to increase readability.
Underscores are ignored in determining the value of a constant.

A hexadecimal floating point number is denoted by a colon ":" followed by a
series of hex digits: up to 8 digits for single-precision, 16 digits for
double-precision, or 24 digits for extended-precision or packed-decimal. The

BASE PREFIX SUFFIX

Binary % B

Octal @ O, Q

Decimal none D

Hexadecimal $ H (Leading 0’s are required
for hex numbers whose first
character is not a decimal
number.)

Table 3-1. Constant Base Descriptor Prefixes/Suffixes

Assembler Introduction
Constants

63

digits specified are placed in the field as they stand; the user is responsible for
determining how a given floating-point number is encoded in hexadecimal
digits. If fewer digits than the maximum permitted are specified, the ones that
are present will be left-justified within the field. Thus the first digits specified
always represent the sign and exponent bits.

Floating-point constants are only permitted in DC, DCB, and FEQU
directives.

Character Constants

An ASCII or EBCDIC character constant may be specified by enclosing one or
more characters within quote marks and preceding them with an A for ASCII
or an E for EBCDIC. If no descriptor is specified, the string is assumed to be
ASCII. Examples of character constants are:

ADD.B #’Z’,D2
EOR #E’0’,CCR ;in hex: F000
ANDI #A’aB’,D7
MOVE.L #’JUMP’,(A2)

Note When character strings are used as operands of word and longword
operations, the assembler assigns values according to the following rules.
These rules were chosen because they are compatible with the Motorola
M68000 Family Resident Structured Assembler.

Assembler Introduction
Constants

64

In DC directives, character strings are always left justified in words or
longwords. Any remaining bytes on the right of the word or longword are
filled with zeros. For example:

DC.B ’A’ ; Hex value is 41
DC.B ’AB’ ; Hex value is 41 42
DC.W ’A’ ; Hex value is 4100
DC.W ’AB’ ; Hex value is 4142
DC.W ’ABC’ ; Hex value is 4142 4300
DC.L ’A’ ; Hex value is 41000000
DC.L ’AB’ ; Hex value is 41420000
DC.L ’ABC’ ; Hex value is 41424300
DC.L ’ABCD’ ; Hex value is 41424344
DC.L ’ABCDE’ ; Hex value is 41424344 45000000

In any other context, the justification depends on the number of characters in
the string. Strings that are 1 or 2 characters long are left justified to the
nearest word boundary. Strings that are 3 or 4 characters long are left justified
in the longword. Remaining bytes on the right are zero filled. For example:

MOVE.B #’A’,D0 ; Value moved is hex 41
MOVE.W #’A’,D0 ; Value moved is hex 4100
MOVE.W #’AB’,D0 ; Value moved is hex 4142
MOVE.L #’A’,D0 ; Value moved is hex 00004100 NOTE!
MOVE.L #’AB’,D0 ; Value moved is hex 00004142 NOTE!
MOVE.L #’ABC’,D0 ; Value moved is hex 41424300 NOTE!
MOVE.L #’ABCD’,D0 ; Value moved is hex 41424344 NOTE!

To generate code for a single quotation mark (or a caret) in a character
constant or string delimited by single quotes (or carets), it must be specified as
two single quote marks (or two carets). For example:

’DON’’T’
^THE ’ AND ^^ DELIMITERS^

The code for a single quote mark will be generated once for every two quote
marks that appear contiguously within the character string.

Assembler Introduction
Constants

65

Expressions

An expression is a sequence of one or more symbols, constants or other
syntactic structures separated by arithmetic operators. Expressions are
evaluated left to right, subject to the precedence of operators shown below.
Parentheses may be used to establish the correct order of the arithmetic
operators and it is recommended that they be used in complex expressions
involving operators such as > > , &, = , etc. The following table summarizes
the operators and their precedences:

Precedence Operator

1 = = test for existing operand

2 + unary plus

- unary minus

" logical NOT

.SIZEOF. size of combined section

.STARTOF. starting address of combined section

3 > > shift right

< < shift left

4 & logical AND

! logical OR

!! exclusive OR

5 * multiplication

/ division

6 + addition

- subtraction

Table 3-2. Operator Precedence

Assembler Introduction
Expressions

66

The = = operator is used to determine whether an operand exists. This is
further described in the "Macro Call" section of the "Macros" chapter.

The .STARTOF. and .SIZEOF. operators help you to write code that
initializes or copies logical sections of memory. The section being referenced
in these operators must have been previously defined in a SECT or
COMMON directives.

The .STARTOF. operator gives the starting address of the combined section
in which the named subsection will be contained. The .SIZEOF. operator
gives the size of the combined section.

The comparison operators = , > = , etc., return a logical True (all one bits) if
the comparison is true and a logical False (zero) if the comparison is not true.
All operands are considered to be unsigned 32 bit values and the comparison
is unsigned. (Thus, comparisons against 0 in particular are not very useful.)
An example follows:

IF DATA=5

The shift operators (> > , < <) shift the argument that goes before the
operator right or left the number of bits specified by the argument that follows
the operator. Zeros are shifted into the high or low order bits. An example
follows:

DC.B 2<<BIT

Note Embedded blanks are not allowed in expressions. The assembler interprets
spaces as termination characters. Expressions are limited to about 45 separate
"entities" per expression. An entity could be a symbol, an operator, a literal,
parentheses, and so on. If you find that you must have an expression with an
over-limit number of entities, you may be able to use EQUs to break up the
expression into subexpressions and not exceed the limit.

Precedence Operator (Cont’d)

7 = ,< > equality, not equality

> ,> = greater than, greater or equal

< ,< = less than, less or equal

Assembler Introduction
Expressions

67

All expressions are evaluated modulo 232 and must resolve to a single unique
value that can be contained in 32 bits. Consequently, character strings longer
than four characters are not permitted in expressions. When an attempt is
made to place an expression in a one or two byte field and the calculated result
is too large to fit, an error message is generated. Examples of valid
expressions:

PAM+3
LOOP+(ADDR>>8)
(PAM+$45)/CAL
VAL1=VAL2
IDAM&255

Assembler Listing Description

As previously stated, the as68k assembler uses two passes. During the first
pass, macros are expanded, labels are examined and placed into the symbol
table, opcodes and directives are decoded, and statement byte lengths are
determined so the location counter may be updated.

During the second pass, the object code is generated, symbolic addresses are
resolved, and a listing and output object module are produced. Errors
detected during the assembly process will be displayed on the output listing
with a cumulative error count also given.

At the end of the assembly process a symbol table or a cross reference table
may be displayed.

Assembler Listing

During pass two of the assembly process, a program listing is produced. The
main purpose of the listing is to convey all pertinent information about the
assembled program, the memory addresses, and their values. The load
module, also produced during pass two, contains the object code address and
value information, but in a format that is easily read by computers.

The following points may help you better understand the listing format.

Assembler Introduction
Assembler Listing Description

68

• When the assembler detects error conditions during the assembly process,
an "ERROR" message will appear on the line following the source code
which caused the error. An explanation of the individual assembler
warnings and errors is given in the "Assembler Error Messages" appendix.

• The column titled "Line" contains decimal numbers that are associated
with the listing source lines. These numbers are referred to in the cross
reference table. The numbers can include periods (.) separating the digits.
These periods provide a distinction between nesting levels of included or
macro expanded code.

• The column titled "Address" contains a value that represents the first
memory address of any object code generated by this statement or the
value of an EQU or SET or FAIL directive.

• To the right of the address are up to three words of object code generated
by the assembly language source statement. Additional words of object
code are shown on subsequent lines. The first hexadecimal number
represents one word of data to be stored in the memory address and the
memory address plus one. If there are additional words, they will be be
stored in subsequent memory locations.

• To the right of the data words are the assembler relocation flags.
The flags are:
 R - relocatable operand.
 E - external operand.
 C - complex relocatable operand.
If one operand is relocatable and another external, an E will be displayed.

• The user’s original source statements are reproduced to the right of the
above information.

• At the end of the listing the assembler prints the message "Errors: nnnnn,
Warnings: nnnnn". Warnings are marked by a WARNING message;
errors are marked by an ERROR message. See the "Assembler Error
Messages" appendix for a complete list of error messages. The assembler
substitutes two words of NOP’s when it cannot translate a particular
opcode and so provides room for patching the program.

• A symbol table or cross reference table is generated at the end of the
assembly listing. The table lists all symbols defined in alphabetical order,
along with the section in which they were defined, as well as their final
absolute values. Line numbers in which the labels occur are listed under
"REFERENCES".

Assembler Introduction
Assembler Listing Description

69

Cross Reference Table Format

The cross reference option is turned off by default. To turn it on, use "OPT
X"; and to turn it off again, use "OPT -X" (see the OPT description in the
"Assembler Directives" chapter). The assembler will produce a symbol table,
and the symbol table will contain cross reference information if "OPT X" has
been specified.

You can limit the listing of cross references to selected portions of the
program by turning the cross reference option on and off. However, to obtain
the cross reference listing, the option must be turned on before the END
directive. Typically, the "OPT X" directive will be one of the first statements in
the source program and will never be turned off.

All symbols defined by the user in the program are listed under the heading
"LABEL". The symbol values are listed under "VALUE". Any flag to the left
of the values indicates the relocation type of the symbols.

Under REFERENCES, a line number preceded by a minus sign indicates that
the symbol was defined on that line. Line numbers not preceded by a minus
sign indicate a reference to a symbol. If no line numbers appear, the symbol is
the internal system symbol NARG. Note that for SET symbols or for multiply
defined symbols, more than one definition may appear for the symbol. Section
names, macro names, and the module name do not appear in the symbol table
listing.

Assembler Introduction
Assembler Listing Description

70

4

Instructions and Address Modes

This chapter describes the instructions and address modes used by the 68000
family and 68881 processors.

71

This chapter describes:

• The 68000 family and 68881 assembly language instruction mnemonics
and qualifiers.

• How the assembler will generate code for variants of certain instructions
depending on the instruction’s operands.

• The address modes for the 68000 family microprocessors.

• Assembler syntax and the address modes which are generated for a
particular syntax.

• How you can control the generation of address modes by setting or
clearing various assembler options (with the OPT directive).

Instructions and Address Modes

72

Instructions

The assembler instructions and their legal operands are defined in the
following Motorola publications:

• MC68000 16/32-bit Microprocessor User’s Manual (Fourth Edition
MC68000UM(AD4))

• MC68020 32-bit Microprocessor User’s Manual (Second Edition
MC68020UM/AD)

• MC68030 Enhanced 32-bit Microprocessor User’s Manual
(MC68030UM/AD)

• MC68040 32-bit Microprocessor User’s Manual (MC68040UM/AD)

• CPU32 32-Bit Instruction Processor Reference Manual (Preliminary Rev.
0.8)

• MC68881 Floating-Point Coprocessor User’s Manual (MC68881UM/AD)

• M68000 Family Resident Structured Assembler Reference Manual
(M68KMASM/D10)

Sometimes, the Motorola assembler manual and the Motorola processor
manuals define different mnemonics for the same operation. as68k generally
recognizes both methods.

Instructions and Address Modes
Instructions

73

Caution The following instructions do not act as you might expect.

DIVS.L a,Dq ;Dq is both upper & lower half of 64 bit dividend.

DIVU.L a,Dq ;Dq is both upper & lower half of 64 bit dividend.

These instructions divide a 64 bit dividend by a 32 bit divisor and put a 32 bit
quotient into Dq. The 64 bit dividend is formed by using Dq as both the high
half and low half of the number. This is not a very useful operation.

The assembler’s behavior contradicts the description in Motorola’s MC68020
32-bit Microprocessor User’s Manual. However, the behavior is compatible with
the Motorola M68000 Family Resident Structured Assembler and was chosen
for that reason.

In order to divide a 32 bit dividend and obtain a 32 bit quotient, write the
following.

DIVSL.L a,Dq ; 32/32 == 32q

TDIVS.L a,Dq ; 32/32 == 32q

DIVUL.L a,Dq ; 32/32 == 32q

TDIVU.L a,Dq ; 32/32 == 32q

In order to divide a 64 bit dividend in a sensible way, write the following.

DIVS.L a,Dr:Dq ; 64/32 == 32q,32r

Qualifiers

Instruction mnemonics may in some cases have a qualifier (also called an
extension), which is separated from the mnemonic by a period.

Scope Qualifiers

The qualifier field usually is used to specify the scope of operation for an
instruction. For this purpose, the recognized codes are ".B" (byte), ".W"
(word), and ".L" (longword). If an instruction which may have more than one
qualifier is coded without one, ".W" is the default.

Instructions and Address Modes
Qualifiers

74

A few instructions use the qualifier field to force the assembler to override its
defaults in choosing the short or long form of an instruction; the recognized
codes in this case are ".S" (short) and ".L" (long).

Floating Point Qualifiers

Floating point operations use the ".W", ".B", and ".L" integer qualifiers as well
as additional qualifiers for real numbers. The floating point qualifiers are ".S"
for single precision real, ".D" for double precision real, ".X" for extended
precision real, and ".P" for packed decimal string real.

Mnemonics

A list of the allowable 68000 family instruction mnemonics is shown in table
2-1. The legal qualifiers for each are listed. If no qualifiers are listed after a
mnemonic, none are legal. Footnotes are used to provide additional
information.

The notation "cc" (lower case) indicates one of the condition codes: T, F, HI,
LS, CC (or HS), CS (or LO), NE, EQ, VC, VS, PL, MI, GE, LT, GT or LE.

The processor and FPU instructions shown in the tables use this notation for
the qualifiers:

Qualifier Meaning

B, W, L 68000 sizes; specifies signed integer data types of byte (8
bits), word (16 bits), or long word (32 bits).

S Single precision real (32 bits).

D Double precision real (64 bits).

X Extended precision real (96 bits).

P Packed Decimal (BCD) string real (96 bits, 12 bytes).

FPn One of the 8 floating point data registers.

FPcr One of the 3 floating point system control registers
(control - FPCR, status - FPSR, or iaddr - FPIAR).

cc Index into the 68881 constant ROM.

Instructions and Address Modes
Mnemonics

75

(note) Mnemonic Qualifiers

 ABCD B
 ADD B W L
 ADDA W L
 ADDI B W L
 ADDQ B W L
 ADDX B W L
 AND B W L
 ANDI to CCR B
 ANDI to SR W
 ANDI to other B W L
 ASL B W L
 ASR B W L
 (6) Bcc B W L S (BT and BF are invalid - use BRA)
 (7) BCHG B L
 (7) BCLR B L
 (1) BFCHG
 (1) BFCLR
 (1) BFEXTS
 (1) BFEXTU
 (1) BFFFO
 (1) BFINS
 (1) BFSET
 (1) BFTST
 (8) BGND
 (2) BKPT
 (6) BRA B W L S
 (7) BSET B L
 (6) BSR B W L S
 (7) BTST B L
 (1) CALLM
 (1) CAS B W L
 (1) CAS2 B W L
 (3) CHK W L
 (10) CHK2 B W L
 (11) CINVA
 (11) CINVL
 (11) CIVNP
 CLR B W L
 CMP B W L
 CMPA W L
 CMPI B W L
 CMPM B W L
 (10) CMP2 B W L
 (11) CPUSHA
 (11) CPUSHL
 (11) CPUSHP
 DBcc W (DBRA is also legal; same as DBF)

Table 4-3. Instruction Mnemonics

Instructions and Address Modes
Mnemonics

76

 (note) Mnemonic Qualifiers

 (3) DIVS W L (with .L, 64-bit dividend/32-bit divisor)
 (10) DIVSL L (32-bit dividend/32-bit divisor)
 (3) DIVU W L (with .L, 64-bit dividend/32-bit divisor)
 (10) DIVUL L (32-bit dividend/32-bit divisor)
 EOR B W L
 EORI to SR W
 EORI to CCR B
 EORI to other B W L
 EXG L
 (4) EXT W L
 (4) EXTB W L
 (4) EXTW L
 ILLEGAL
 JMP
 JSR
 LEA L
 (3) LINK W L
 (8) LPSTOP
 LSL B W L
 LSR B W L
 (2) MOVE from CCR W
 MOVE to CCR W
 MOVE from SR W
 MOVE to SR W
 MOVE to/from USP L
 MOVE other B W L
 MOVEA W L
 (2) MOVEC L
 MOVEM W L
 MOVEP W L
 MOVEQ L
 (2) MOVES B W L
 (11) MOVE16 L
 (3) MULS W L
 (3) MULU W L
 NBCD B
 NEG B W L
 NEGX B W L
 NOP
 NOT B W L
 OR B W L
 ORI to CCR B
 ORI to SR W
 ORI to other B W L
 (1) PACK
 PEA L

Table 4-1. Instruction Mnemonics (Cont’d)

Instructions and Address Modes
Mnemonics

77

 (note) Mnemonic Qualifiers

 (11) PFLUSHAN
 (11) PFLUSHN
(10)(11) PLOAD
(10)(11) PMOVE
 (11) PTEST
 RESET
 ROL B W L
 ROR B W L
 ROXL B W L
 ROXR B W L
 (2) RTD
 RTE
 (1) RTM
 RTR
 RTS
 SBCD B
 Scc B
 STOP
 SUB B W L
 SUBA W L
 SUBI B W L
 SUBQ B W L
 SUBX B W L
 SWAP W
 TAS B
 (8) TBLS B W L
 (8) TBLSN B W L
 (8) TBLU B W L
 (8) TBLUN B W L
 (10) TDIVS L (same as DIVSL, 32-bit dividend/32-bit divisor)
 (10) TDIVU L (same as DIVUL, 32-bit dividend/32-bit divisor)
 TRAP
 (5) TRAPcc W L
 (5) Tcc
 (5) TPcc W L
 TRAPV
 TST B W L
 UNLK
 (1) UNPK

Table 4-1. Instruction Mnemonics (Cont’d)

Instructions and Address Modes
Mnemonics

78

NOTES:
 (1): 68020/68030 or CPU32 only.
 (2): 68010 or greater only.
 (3): The .L qualifier is valid only for 68331/332, 68020 and greater processors.
Cannot be used in code that will target chips less capable than the 68331/332.
 (4): There are 3 distinct Extend operations. Extend Byte to Word may be coded
as EXT.W or EXTB.W. Extend Word to Long may be coded as EXT.L or EXTW.L. Extend Byte
to Long, which is valid only for 68331/332, 68020 and greater processors, must be coded
as EXTB.L.
 (5): TRAPcc, Tcc and TPcc (68331/332, 68020 and greater processors) are
different mnemonics for the same instructions. TRAPcc may or may not take an operand;
Tcc may not have an operand, and TPcc must have an operand.
 (6): The ".B" extension forces a Byte instruction. The ".W" extension forces a
Word instruction. The ".L" extension forces a Word instruction when a chip other than
the 68331/332 or 68020 is targeted. When the 68331/332, 68020 or greater processor is
targeted, a Longword instruction is forced unless the OPT OLD directive is used to
force Word instruction to be used.
 (7): For the single-bit instructions, the generated code is fully determinable
from the operands and therefore the qualifier serves no function. For compatibility,
however, the qualifiers .B and .L are accepted, and if a qualifier is present the
operands are checked to be sure they match the qualifier.
 (8): 68331 and 68332 only. Cannot be used in any other target.
 (9): 68030 MMU instructions. These instructions have several variations.
 (10): Cannot be used for target less capable than 68331/332.
 (11): Added or modified for 68040.
 (12): 68030 only.

Table 4-1. Instruction Mnemonics (Cont’d)

Instructions and Address Modes
Mnemonics

79

Floating Point Mnemonics

A list of the allowable instruction mnemonics for the 68881 floating point
coprocessor and the 68040 floating point unit is shown in table 2-2. The legal
qualifiers for each are listed. If no qualifiers are listed after a mnemonic, none
are legal. Footnotes are used to provide additional information.

The notation "cc" (lower case) indicates one of the condition codes: GT, GE,
LT, GL, LE, GLE, SEQ, ST, NGT, NGE, NLT, NGL, NLE, NGLE, SNEQ,
SF, OGT, OGE, OLT, OGL, OLE, OR, EQ, T, ULE, ULT, UGE, UEQ,
UGT, UN, NEQ, or F.

An "F" in the 68881 column means that the instruction is supported by the
68881/882. An "F" in the 68040 column means that the instruction is fully
supported in the 68040 hardware. A "P" in the 68040 column means that the
instruction is supported in hardware except for the packed decimal formats.

Unimplemented 68881/882 instructions are trapped by the 68040. The
instructions may then be handled using software routines.

Instructions and Address Modes
Floating Point Mnemonics

80

 (note) Mnemonic 68881 68040 Qualifiers

 (3) FABS F P B W L S D X P
 (3) FACOS F B W L S D X P
 (2) FADD F P B W L S D X P
 (3) FASIN F B W L S D X P
 (3) FATAN F B W L S D X P
 (3) FATANH F B W L S D X P
 (4) FBcc F F W L
 (2) FCMP F P B W L S D X P
 (3) FCOS F B W L S D X P
 (3) FCOSH F B W L S D X P
 (4) FDBcc F F W
 FDABS F B W L S D X
 FDADD F B W L S D X
 FDDIV F B W L S D X
 (2) FDIV F P B W L S D X P
 FDMOVE F B W L S D X
 FDMUL F B W L S D X
 FDNEG F B W L S D X
 FDSQRT F B W L S D X
 FDSUB F B W L S D X
 (3) FETOX F B W L S D X P
 (3) FETOXM1 F B W L S D X P
 (3) FGETEXP F B W L S D X P
 (3) FGETMAN F B W L S D X P
 (3) FINT F B W L S D X P
 (3) FINTRZ F B W L S D X P
 (3) FLOG10 F B W L S D X P
 (3) FLOG2 F B W L S D X P
 (3) FLOGN F B W L S D X P
 (3) FLOGNP1 F B W L S D X P
 (2) FMOD F B W L S D X P
 (1) FMOVE to FPn F P B W L S D X P
 (1) FMOVE from FPn F B W L S D X P
 (1) FMOVE FPcr F L
 (1) FMOVECR F B W L S D X P
 (1) FMOVEM FPn F F L X
 (1) FMOVEM FPcr F F L X
 (2) FMUL F P B W L S D X P
 (3) FNEG F P B W L S D X P
 (4) FNOP F P
 (2) FREM F B W L S D X P
 (5) FRESTORE F F
 FSABS F B W L S D X
 FSADD F B W L S D X
 (5) FSAVE F F
 (2) FSCALE F B W L S D X P
 (4) FScc F F B

Table 4-2. 68881 Instruct ion Mnemonics

Instructions and Address Modes
Floating Point Mnemonics

81

 (note) Mnemonic 68881 68040 Qualifiers

 FSDIV F B W L S D X
 (2) FSGLDIV F B W L S D X P
 (2) FSGLMUL F B W L S D X P
 (3) FSIN F B W L S D X P
 (3) FSINCOS F B W L S D X P (dual monadic)
 (3) FSINH F B W L S D X P
 FSMOVE F B W L S D X
 FSMUL F B W L S D X
 FSNEG F B W L S D X
 (3) FSQRT F P B W L S D X P
 FSSQRT F B W L S D X
 FSSUB F B W L S D X
 (2) FSUB F P B W L S D X P
 (3) FTAN F B W L S D X P
 (3) FTANH F B W L S D X P
 (3) FTENTOX F B W L S D X P
 (5) FTRAPcc F F W L
 (4) FTcc F F
 (4) FTPcc F F W L
 (4) FTST F P B W L S D X P
 (3) FTWOTOX F B W L S D X P

NOTES:
 (1): 68881 Data Movement instruction. Moves operands into,
between, or out of the floating point data registers.
 (2): 68881 Dyadic Operation instruction. Performs arithmetic
operations requiring two operands, e.g. subtract. One of the
operands is always from a floating point data register; the other may
be from a memory address register, from an integer data register, or
from a floating point data register. The result is stored in a
floating point data register.
 (3): 68881 Monadic Operation instruction. Performs arithmetic
operations that require only one operand, e.g. cosine. The operation
is performed on the source operand; the result is stored in a
destination which is always a floating point data register that you
must specify.
 (4): 68881 Program Control instruction. Tests an operand
instruction for condition codes set in a floating point status
register. The branch instructions within this group allow the user to
set a variable based on the floating point condition codes; then use
this variable in other program and system control instructions.
 (5): 68881 System Control instruction. Communicates with the
operating system using a conditional trap instruction. This type of
instruction utilizes the same conditional tests as the program
control instruction and additionally allows a 16- or 32-bit operand
into the instruction for the purpose of passing information to the
operating system.

Table 4-2. 68881 Instruct ion Mnemonics (Cont’d)

Instructions and Address Modes
Floating Point Mnemonics

82

Variants of Instruction Types

The assembler allows you to use "generic" instruction types when writing your
programs, and it will generate code for variants of the instruction where
appropriate. The assembler generates code for variants of an instruction either
because the variant form is implied by the operands or because fewer bytes of
code are generated for the variant instruction.

The variants recognized by the assembler are:

Generic Variants

ADD ADD, ADDA, ADDQ, ADDI, ADDX

AND AND, ANDI

CMP CMP, CMPA, CMPM, CMPI, CMP2

EOR EOR, EORI

MOVE MOVE, MOVEA, MOVEQ, MOVEM, MOVEP,
MOVES

OR OR, ORI

SUB SUB, SUBA, SUBQ, SUBI, SUBX

Example:

D250 ADD (A0),D1
D2D0 ADD (A0),A1 ; ADDA
5E50 ADD #7,(A0) ; ADDQ
0650 FFFF ADD #$ffff,(a0) ; ADDI

When the ADD and SUB instructions have operands which are legal for either
the ADDQ or the ADDI variant (for example, # 1,D4), the assembler chooses
ADDQ or SUBQ because these instructions are two bytes shorter than ADDI.
You can, however, force the ADDI form by specifying the ADDI mnemonic.

We recommend that you use the mnemonics of the variant forms because the
resulting code is easier to understand.

Instructions and Address Modes
Variants of Instruction Types

83

Instruction Operands

In general, instructions have zero, one, two or three operands, and in some
cases the same mnemonic may take different numbers of operands to indicate
different functions. Not all address modes are necessarily legal for a particular
operand of a particular instruction. The legal address modes for an operand
vary in an irregular way, which is fully described in the Motorola 32-Bit
Microprocessor User’s Manual (68020/30/40), the Motorola Floating-Point
Coprocessor User’s Manual (68881), and 16/32-bit Microprocessor
Programmer’s Reference Manual (other 68000 family processors). There are
differences in legal address modes between chips, which are described in detail
in these Motorola manuals.

Registers

The assembler recognizes the register mnemonics listed and described below.
Register mnemonics may be upper or lower case, and are reserved symbols.

Data Registers

D0-D7 32-bit Data Registers.

ZD0-ZD7 Suppressed Data Registers (68020/30 only). The
register specified is used in the instruction, but its value
is taken to be zero for effective address calculations.

Address Registers

A0-A7 32-Bit Address Registers.

ZA0-ZA7 Suppressed Address Registers (68020/30 only). The
register specified is used in the instruction, but its value
is taken to be zero for effective address calculations.

Stack Registers

A7, SP System Stack Pointer.

Instructions and Address Modes
Registers

84

USP User Stack Pointer (for user state).

MSP Master Stack Pointer (68020 supervisor state).

ISP Interrupt Stack Pointer (68020 interrupt state).

Status Registers

CCR Condition Code Register. The CCR is the lower eight
bits of the status register (SR).

SR Status Register. All 16 bits can be modified in the
supervisor state; only the lower 8 (CCR) can be
modified in the user state. (Note that STATUS is the
name for the floating-point status register.)

MMUSR MMU Status Register (68040 only). Contains memory
management status information.

Program Counter Registers

PC Program Counter (used in PC relative address modes).
The program counter contains the address of the
location two bytes beyond the beginning of the
currently executing instruction. The user mnemonic PC
does not directly access the program counter register,
but is used to force the use of program counter relative
address modes.

ZPC Suppressed Program Counter (68020/30 only). The PC
is used in the instruction, but its value is taken to be
zero for effective address calculations.

Function Code Registers

SFC, SFCR Alternate Function Code Source Register
(68010/20/30/40 only).

DFC, DFCR Alternate Function Code Destination Register
(68010/20/30/40 only).

Instructions and Address Modes
Registers

85

Cache Registers (68020/30/40 only)

CACR Cache Control Register. Controls on-chip instruction
and data caches.

CAAR Cache Control Register (68020/30). Holds the address
for cache control functions.

Root Pointer Registers (68030/40 only)

CRP CPU Root Pointer. Points to root of translation tree for
currently executing task.

SRP Supervisor Root Pointer. Points to root of translation
tree that describes supervisor address space.

URP User Root Pointer. Points to root of translation tree
that describes user address space.

Translation Registers (68030/40 only)

TC Translation Control register. Controls address
translation.

TT0, TT1 Transparent Translation registers. Each specifies
separate blocks of memory that are directly addressable
without address translation. (68030 only)

ITT0, ITT1 Instruction Transparent Translation registers. Each
specifies separate blocks of instruction memory that are
directly addressable without address translation. (68040
only)

DTT0, DTT1 Instruction Transparent Translation registers. Each
specifies separate blocks of data memory that are
directly addressable without address translation. (68040
only)

Instructions and Address Modes
Registers

86

Floating Point Registers

FP0-FP7 Floating-Point Data Registers (68881 and 68040).

FPCR, CONTROL Floating-Point Control Register (68881 and 68040).

FPSR, STATUS Floating-Point Status Register (68881 and 68040).

IADDR/FPIAR Floating-Point Instruction Address Register (68881 and
68040).

Other Registers

VBR Vector Base Register (68010/20/30/40). Used for
multiple vector table areas.

The 68881 floating point coprocessor uses the 68020 instruction set and
addressing modes to provide a logical extension to the integer capabilities of
the 68020 processor. In addition to the eight 32-bit Address Registers (A0 to
A7), and eight 32-bit Integer Data Registers (D0 to D7) of the 68020, the
68020/68881 processor combination provides eight Floating Point Data
Registers (FP0 to FP7). The 68881 interfaces to the 68020 transparently. You
access the floating point registers of the 68881 as though they were resident in
the 68020. The 68881 coprocessor interface places no restrictions on the use of
the 68020 registers. Floating point operations are coded exactly the same as
integer operations.

Instructions and Address Modes
Registers

87

Address Modes

The Motorola 68000/HC001/08/10/302 supports a basic set of addressing
modes. For the purposes of representation and explanation, we can refer to
the 68000 addressing modes as the “68000 model.” The Motorola 68020
supports, in addition to the basic 68000 model modes, additional addressing
modes and expanded functionality for some of the basic 68000 modes. The
“68020 model” is a superset of the 68000 model. The Motorola 68331/332
supports all the basic 68000 modes and a some of the additional modes of the
68020. The “68332 model” is a superset of the 68000 model and a subset of the
68020 model. The Motorola 68030/40 supports the 68000, the 68332, and the
68020 addressing models. The following table summarizes the addresssing
models supported by each microprocessor:

Processor Address Model Supported

68000 68000 Model

68HC001 68000 Model

68008 68000 Model

68010 68000 Model

68302 68000 Model

68331 68000 Model
68332 Model

68332 68000 Model
68332 Model

68020 68000 Model
68332 Model
68020 Model

68030 68000 Model
68020 Model

68040 68000 Model
68020 Model

Table 4-3. Address Models

Instructions and Address Modes
Address Modes

88

Understanding the differences among the addressing models is important for
two reasons:

• Incompatibilities and errors can occur if you choose addressing modes
from a model not supported by your target processor or that conflict with
CHIP or OPT P= directives.

For instance, if you specify a processor that supports the 68000 model
(68000 or 68010) with a CHIP or OPT P= directive and then use
instructions that use 68020 model addressing modes, the assembler will
error. Or, if you choose 68020 model addressing modes and a compatible
CHIP or OPT P= directive, problems may still occur if you attempt to
execute the code on a processor that supports only the 68000 model modes.

• Incompatibilities and errors can also occur if the as68k chooses addressing
modes (based on the manner in which operands were specified) from a
model not supported by your target processor or that conflict with CHIP
or OPT P= directives.

Instructions and Address Modes
Address Modes

89

The 68000 Model

The 68000 model defines twelve addressing modes. These modes are valid for
all 68000 family processors. User’s manuals for older chips (68000, for
instance) group these addressing modes in broad terms. We choose, however,
to define them more explicitly. Table 2-4 summarizes the addressing modes
common to all 68000 family chips. (Each addressing mode is preceded by a
roman numeral. These roman numerals will be used through the rest of the
manual as a short form for these addressing modes.)

 Register Direct Modes

 I) Data Register Direct
 II) Address Register Direct

 Register Indirect Modes

 III) Address Register Indirect
 IV) Address Register Indirect with Postincrement
 V) Address Register Indirect with Predecrement
 VI) Address Register Indirect with (16-bit) Displacement

 Register Indirect with Index Modes

 VII) Address Register Indirect with (8-bit) Displacement and Index

 Absolute Address Modes

 VIII) Absolute Short Address
 IX) Absolute Long Address

 Program Counter Indirect with Displacement Mode

 X) Program Counter Indirect with (16-bit) Displacement

 Program Counter Indirect with Index Modes

 XI) Program Counter Indirect with (8-bit) Displacement and Index

 Immediate Data

 XII) Immediate

Table 4-4. 68000 Model A ddressing Modes

Instructions and Address Modes
Address Modes

90

The 68020 Model

The expanded addressing modes for the 68020 model are variations of two of
the 68000 model modes. They are the Address Register Indirect with (8 bit)
Displacement and Index and Program Counter Indirect with (8 bit)
Displacement and Index. In the 68000 model, these two modes have a specially
formatted word of extension not found in the other ten modes. In the 68020
model, these two modes also have a specially formatted word of extension. The
interpretation of that extension word can be slightly different, however, in the
68020 model. The six variations defined for these two modes also have a
specially formatted extension word and may be followed by additional words of
extension. These differences between the two modes give the 68020 model
much expanded capabilities over the 68000 model. Table 2-6 summarizes the
variations and additions of the 68020 model. (The subscripted roman
numerals will be used to refer to these 68020 model modes later in the
manual.)

 Register Indirect with Index Modes

 VIIa) Address Register Indirect with (8-bit) Displacement and Index *
 VIIb) Address Register Indirect with (16- or 32-bit) Base Displacement
 and Index

 Memory Indirect Address Modes

 VIIc) Memory Indirect Post-Indexed
 VIId) Memory Indirect Pre-Indexed

 Program Counter Indirect with Index Modes

 XIa) Program Counter Indirect with (8-bit) Displacement and Index *
 XIb) Program Counter Indirect with (16- or 32-bit) Base Displacement
 and Index

 Program Counter Memory Indirect Modes

 XIc) Program Counter Memory Indirect Post-Indexed
 XId) Program Counter Memory Indirect Pre-Indexed

 * In these modes, you may specify a scale factor of 2, 4, or 8.
 The 68000 model only allows a scale factor of 1.

Table 4-5. 68020 Model Varied and A dditional Modes

Instructions and Address Modes
Address Modes

91

The 68332 Model

The 68332 model is a superset of the 68000 model and a subset of the 68020
model. Table 2-5 summarizes the addressing modes. Each addressing mode is
preceded by a roman numeral. These roman numerals will be used through the
rest of the manual as a short form for these addressing modes. Roman
numerals VIIa, VIIb, XIa, and XIb correspond to the addressing modes found
in the 68020 model (table 2-6). All addressing modes except VIIb and XIb are
also found in the 68000 model.

 Register Direct Modes

 I) Data Register Direct
 II) Address Register Direct

 Register Indirect Modes

 III) Address Register Indirect
 IV) Address Register Indirect with Postincrement
 V) Address Register Indirect with Predecrement
 VI) Address Register Indirect with (16-bit) Displacement

 Register Indirect with Index Modes

 VIIa) Address Register Indirect with (8-bit) Displacement and Index *
 VIIb) Address Register Indirect with (16- or 32-bit) Base Displacement and Index

 Absolute Address Modes

 VIII) Absolute Short Address
 IX) Absolute Long Address

 Program Counter Indirect with Displacement Mode

 X) Program Counter Indirect with (16-bit) Displacement

 Program Counter Indirect with Index Modes

 XIa) Program Counter Indirect with (8-bit) Displacement and Index *
 XIb) Program Counter Indirect with (16- or 32-bit) Base Displacement and Index

 Immediate Data

 XII) Immediate

* In these modes, you may specify a scale factor of 2, 4, or 8.
 The 68000 model only allows a scale factor of 1.

Table 4-6. 68332 Model A ddressing Modes

Instructions and Address Modes
Address Modes

92

Explanations of Address Modes

The Program Counter relative modes refer to a memory address in terms of its
distance from the instruction. At execution time, the Program Counter will
contain a value 2 greater than the beginning of the instruction, that is, the
address of the first byte of extension.

 The 68000, 68HC001, 68008, 68302, 68010, 68331, and 68332 microprocessors
may address odd memory locations only when the instruction is operating on a
single byte. Neither the assembler nor the loader checks for this and in many
cases (such as indexed address modes), neither the assembler nor the loader is
capable of checking for this situation. The 68020/30/40 have no such
restriction. However, all chips do require that every instruction begin at an
even address, and the assembler enforces this. Data may begin at an even or
odd address.

The remaining subsections briefly explain the particulars of both the 68000
model modes that apply to all 68000 family processors and the 68020 model
modes that apply to the 68020 and later processors.

Register Direct Modes (I & II)

Depending upon the mode, the Register Direct Modes act directly on the
contents of either a data register or an address register.

All other modes specify an address in memory; the contents of this address are
used as the instruction operand.

Address Register Indirect (III)

The Address Register Indirect Mode provides the memory address in an
address register.

Address Register Indirect with Postincrement (IV)

The Address Register Indirect with Postincrement Mode provides the memory
address in an Address Register and, after using the address, increments the
register by one, two, or four, depending upon whether the scope of the
operation is byte (.B), word (.W), or longword (.L).

Instructions and Address Modes
Address Modes

93

Address Register Indirect with Predecrement (V)

The Address Register Indirect with Predecrement Mode decrements an
Address Register by one, two or four, depending upon whether the size of the
operand is byte (.B), word (.W), or longword (.L), and then uses the resulting
contents of the register as the memory address. None of the preceding modes
require any extension bytes.

Address Register Indirect with (16-bit) Displacement (VI)

In Address Register Indirect with Displacement Mode, the address is the sum
of the contents of an address register and a sign-extended 16-bit displacement;
it requires 2 bytes of extension.

Address Reg. Indirect with 8-Bit Displacement and Index (V II, 68000
model)

In Address Register Indirect with Displacement and Index Mode the address
is the sum of the contents of an Address Register, the contents of an Index
Register (which may be an Address or a Data Register) and a sign-extended
8-bit displacement. It requires 2 bytes of extension. The Index Register
involved may use either all 32 bits or 16 bits sign-extended.

Address Reg. Indirect with 8-Bit Displacement and Index
(VIIa, 68332/020 model)

In addition to the capabilities of the 68000 model, the 68332 model and the
68020 model allow the Index Register contents to be multiplied by a scale
factor of 1, 2, 4, or 8 before being added to the Address Register contents. The
scale factor is coded into bits 9 and 10 of the specially formatted extension
word. In the 68000 model mode (VII), the scale factor is always 1.

Address Reg. Ind. with Base Displ. and Index
(VIIb, 68332/020 model)

The Address Register Indirect with Base Displacement and Index Mode
calculates the memory address as the sum of the contents of an Address
Register, the contents of an Index Register (which may be an Address or a
Data Register) and a sign-extended base displacement which may be either 16
or 32 bits. This mode requires at least 2 bytes of extension, plus 2 more for a
16-bit displacement or 4 more for a 32-bit displacement. The Index Register
involved may use either all 32 bits or 16 bits sign-extended. The Index Register

Instructions and Address Modes
Address Modes

94

contents may be multiplied by a scale factor of 1, 2, 4, or 8 before being added
to the Address Register contents. Any or all of the Address Register, Index
Register and displacement may be specified to be null, in which case they are
taken to have a value of 0. A null displacement does not require any extension
bytes.

Memory Indirect Post-Indexed (V IIc, 68020 model)

The Memory Indirect Post-Indexed Mode first calculates an intermediate
address as the sum of the contents of an Address Register and a sign-extended
base displacement which may be either 16 or 32 bits. The final memory address
is then calculated as the sum of the contents of the intermediate address, the
contents of an Index Register (which may be an Address or a Data Register),
and an outer displacement which may be either 16 or 32 bits. This mode
requires at least 2 bytes of extension, plus 2 more for each displacement which
is 16 bits and 4 more for each displacement which is 32 bits. The Index
Register involved may use either all 32 bits or 16 bits sign-extended. The Index
Register contents may be multiplied by a scale factor of 1, 2, 4, or 8 before
being added to the intermediate address contents and the outer displacement.
Any or all of the Address Register, Index Register, base displacement and
outer displacement may be specified to be null, in which case they are taken to
have a value of 0. Null displacements do not require any extension bytes.

Memory Indirect Pre-Indexed (VIId, 6 8020 model)

The Memory Indirect Pre-Indexed Mode first calculates an intermediate
address as the sum of the contents of an Address Register, an Index Register
(which may be an Address or a Data Register), and a sign-extended base
displacement which may be either 16 or 32 bits. The final memory address is
then calculated as the sum of the contents of the intermediate address and an
outer displacement which may be either 16 or 32 bits. This mode requires at
least 2 bytes of extension, plus 2 more for each displacement which is 16 bits
and 4 more for each displacement which is 32 bits. The Index Register
involved may use either all 32 bits or 16 bits sign-extended. The Index Register
contents may be multiplied by a scale factor of 1, 2, 4, or 8 before being added
to the Address Register contents and the base displacement. Any or all of the
Address Register, Index Register, base displacement and outer displacement
may be specified to be null, in which case they are taken to have a value of 0.
Null displacements do not require any extension bytes.

Instructions and Address Modes
Address Modes

95

Absolute Short (VIII)

The Absolute Modes provide an actual memory address right in the
instruction. For Absolute Short Mode this address is 16 bits sign-extended (2
bytes of extension). Because 16-bit addresses are sign-extended, the areas of
memory addressable by Absolute Short Mode are from 0 to $7FFF plus an
area in high memory, the address range of which is dependent on the target
chip (from $FF8000 to $FFFFFF for the 68000 and 68010, from $F8000 to
$FFFFF for the 68008, and from $FFFF8000 to $FFFFFFFF for the
68020/30/40).

Regardless of the target chip, the assembler recognizes only the absolute
addresses from $FFFF8000 to $FFFFFFFF as being in the high
short-addressable area of memory. (If it is necessary to use Absolute Short
Mode on the actual area of high memory that is short-addressable on the
target chip, any absolute code should be placed in a separate module and
referenced as XREF.S from other modules, which technique causes the use of
Absolute Short address mode in most cases. Alternatively such code could be
made relocatable and placed in a SECTION.S, then located correctly at link
time; in this case the high-short-addressable code need not be in a separate
module.)

Absolute Long (IX)

The Absolute Modes provide an actual memory address right in the
instruction. Absolute Long Mode contains a full 32-bit address in the
instruction and can thus address any memory location on any chip (4 bytes of
extension).

Program Counter with Displacement (X)

The Program Counter Indirect with Displacement Mode calculates the
memory address by adding the value of the Program Counter to a
sign-extended 16-bit displacement; it requires 2 bytes of extension.

Program Counter with 8-Bit Displacement and Index
(XI, 68000 model)

The Program Counter Indirect with 8-bit Displacement and Index Mode
calculates the memory address by adding the value of the Program Counter,
the contents of an Index Register (which may be Address or Data, and may use

Instructions and Address Modes
Address Modes

96

the entire 32 bits or the low order 16 bits, sign-extended), and a sign-extended
8-bit displacement; it requires 2 bytes of extension.

Program Counter with 8-Bit Displacement and Index
(XIa, 68332/020 model)

The 68332 model and 68020 model allow the Index Register contents to be
multiplied by a scale factor of 1, 2, 4, or 8 before being added to the other
components. The scale factor is coded into bits 9 and 10 of the specially
formatted extension word. In the 68000 model mode (XI), the scale factor is
always 1.

PC with Base Displacement and Index (XIb, 68332/020 model)

The Program Counter Indirect with Base Displacement and Index Mode
calculates the memory address by adding the value of the Program Counter,
the contents of an Index Register (which may be Address or Data, and may use
the entire 32 bits or the low order 16 bits, sign-extended), and a sign-extended
displacement, which may be either 16 or 32 bits. This mode requires at least 2
bytes of extension, plus 2 more for a 16-bit displacement or 4 more for a 32-bit
displacement. The Index Register may be multiplied by a scale factor of 1, 2, 4,
or 8 before being added to the other components. Any or all of the Address
Register, Index Register, and displacement may be specified to be null, in
which case they are taken to have a value of 0. A null displacement does not
require any extension bytes.

PC Memory Indirect Post-Indexed (X Ic, 68020 model)

The Program Counter Memory Indirect Post-Indexed Mode first calculates an
Intermediate address as the sum of the contents of the Program Counter and a
sign-extended base displacement which may be either 16 or 32 bits. The final
memory address is then calculated as the sum of the contents of the
Intermediate address, the contents of an Index Register (which may be an
Address or a Data Register), and a sign-extended outer displacement which
may be either 16 or 32 bits. This mode requires at least 2 bytes of extension,
plus 2 more for each displacement which is 16 bits and 4 more for each
displacement which is 32 bits. The Index Register involved may use either all
32 bits or 16 bits sign-extended. The Index Register contents may be
multiplied by a scale factor of 1, 2, 4, or 8 before being added to the
Intermediate address contents and the outer displacement. Any or all of the
Program Counter, Index Register, base displacement and outer displacement

Instructions and Address Modes
Address Modes

97

may be specified to be null, in which case they are taken to have a value of 0.
Null displacements do not require any extension bytes.

PC Memory Indirect Pre-Indexed (XId, 6 8020 model)

The Program Counter Memory Indirect Pre-Indexed Mode first calculates an
Intermediate address as the sum of the contents of the Program Counter, an
Index Register (which may be an Address or a Data Register), and a
sign-extended base displacement which may be either 16 or 32 bits. The final
memory address is then calculated as the sum of the contents of the
Intermediate address and a sign-extended outer displacement which may be
either 16 or 32 bits. This mode requires at least 2 bytes of extension, plus 2
more for each displacement which is 16 bits and 4 more for each displacement
which is 32 bits. The Index Register involved may use either all 32 bits or 16
bits sign-extended. The Index Register contents may be multiplied by a scale
factor of 1, 2, 4, or 8 before being added to the Program Counter contents and
the base displacement. Any or all of the Program Counter, Index Register,
base displacement and outer displacement may be specified to be null, in
which case they are taken to have a value of 0. Null displacements do not
require any extension bytes.

Immediate (XII)

The final address mode provides data directly in the instruction (Immediate
Mode). The number of bits used and the number of bytes of extension varies
with the instruction and with the qualifier. Immediate data is always evaluated
first as a 32-bit unsigned two’s complement value. If the instruction requires
fewer than 32 bits, the most significant bits are checked and discarded. If the
bits discarded are all 0 or all 1, the instruction assembles normally, while if the
bits discarded are mixed zeros and ones, a warning is printed. The immediate
operands of ADDQ, SUBQ, TRAP, BKPT and all Shifts (which are smaller
than a byte) may not be relocatable or external. All other immediate operands
may be relocatable or external.

68881 Floating-Point Coprocessor and Address Modes

The 68881 floating-point coprocessor utilizes the 68020 addressing modes by
requesting the 68020/30 to perform addressing mode calculations based on the
68881 instructions. The 68881 knows nothing about addressing modes. When
instructed to do so by the 68881, the 68020/30 evaluates the instruction,

Instructions and Address Modes
Address Modes

98

transfers the operands through the coprocessor interface, and performs the
addressing mode calculations.

Any of the 68020 addressing modes may be used with floating point
instructions, including address/ data register direct, indexed indirect, auto
increment, auto decrement, and immediate mode. When a floating point
instruction is encountered, the 68020 evaluates the instruction to its
addressing modes. These include all 68020 addressing modes listed here, with
the exception of a few restrictions for certain instructions. The exceptions are
fully described in Motorola Floating-Point Coprocessor User’s Manual.

68040 Floating-Point Unit and Address Modes

The 68040 floating point unit uses the 68040 to perform address calculations.
Thus any of the 68040 addressing modes may be used with floating point
instructions.

Instructions and Address Modes
Address Modes

99

Assembler Syntax for Effective Address Fields

The assembler creates just one address mode for certain ways of specifying
operands, while others may result in one of several modes. The following
paragraphs describe how the Assembler makes such decisions. See table 2-6
for a definition of the terms which are used to describe operand syntax.

Rules of Assembler Syntax

Motorola’s 68020-oriented syntax is fully supported. This syntax uses square
brackets "[","]" to designate the components of the intermediate address in the
68020 address modes, and parentheses to group the other components of an
effective address. The following facts apply to address mode syntax:

• The syntaxes "< exp> (anything)" (old 68000) and "(< exp> ,anything)"
(68020) are completely equivalent.

• The order of items separated by commas within square brackets or
parentheses ("grouping characters") is not significant, unless there are two
A-registers, neither having an appended size code nor scale factor, present
within the same grouping characters. In this case (which is syntactically
ambiguous) the leftmost register is taken as the Address Register and the
rightmost as the Index Register.

• A 68000 model mode will be chosen if this is a possible interpretation of
the operand, as these modes are more efficient. However, any of the
following is sufficient to force a 68020 model address mode (perhaps with
some null fields):

– Using a Z-register (ZPC, ZAn or ZDn).

– Using square brackets.

– Specifying an explicit .L size code on a displacement. (Note that a
.W qualifier does not force a 68020 model mode.) For example:

 ((LABEL).L,A1)

– Specifying a scale factor other than 1 on an index register.

– Specifying a displacement too large to fit in the 68000 model
mode. Forward references are assumed to require 32 bits, while

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

100

externals and relocatables are assumed to require 16 bits (but if
the absolute part of an expression such as "reloc+ abs" is too large
to fit in 16 bits, a 32-bit field will be used perforce). These defaults
may be overridden by explicit .W and .L codes, and if a forward
reference is later found to fit in 16 bits after all, a 68000 model
mode may be selected on pass 2. (There will then be some extra
NOPs trailing the instruction, however.) The OPT flags BRW and
FRS do not apply to forward references which appear in
conjunction with a register.

Note that coding, for example, "(< exp> ,An)" rather than "< exp> (An)" is
not sufficient to force the use of a 68020 model mode. Nor is specifying a
scale factor of 1 explicitly. Errors will occur when assembler syntax forces
68020 model address modes and the target microprocessor (specified with
the CHIP or OPT P= directives) is not one that supports 68020 model
addressing modes.

• Assembler syntaxes which generate "Address Register Indirect with
Displacement" or "Memory Indirect" modes (for example, "(< exp> ,An)"
or "([< exp> ,An],Rn)") allow < exp> to be an absolute or relocatable
expression. If < exp> is an absolute expression, the assembler will use it as
the displacement. If < exp> is a relocatable expression, the syntax says,
"access the location of the relocatable expression using register ’An’
indirect," and the linker/loader will calculate the final displacement. (See
the "A2-A5 Relative Addressing" section for more information.)

• Absolute expressions in operands which generate Program Counter
relative address modes (for example, "(< abs exp> ,PC)") can have two
different meanings depending on the ABSPCADD assembler flag.

By default, ABSPCADD is on, and the absolute expression is considered
to be the address from which the current PC is subtracted to form the
displacement.

When the ABSPCADD flag is off (OPT NOABSPCADD or OPT
-ABSPCADD), the absolute expression is considered to be the
displacement.

While you can use the OPT NOABSPCADD assembler option to code
actual displacements in Program Counter relative instructions, there is
also a way to specify actual displacements when the ABSPCADD flag is
on. For example, if you would like to specify a displacement of + 8 from
the current location counter, you could use the syntax "(*+ 8,PC)" (which

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

101

is equivalent to OPT NOABSPCADD and the syntax "(6,PC)". The PC is
2 greater than the "*" location counter symbol.)

In the tables that follow, the 68020 notation is used, but the facts listed above
should be kept in mind. For example, the discussion of the operand "(< abs
exp> ,An,Rn{.W| .L})" includes the forms "< abs exp> (An,Rn{.W| .L})" and
"(< abs exp> ,Rn{.W| .L},An)".

Operand Syntax and Addressing Modes

The following tables list what addressing modes the assembler will choose for
the various operand syntaxes.

SYNTAX TERM DEFINITION

An Represents an address register.

Dn Represents a data register.

Rn Represents either an address or data register, or a suppressed register
(ZAn or ZDn). as68k does not recognize the mnemonic Rn.

< abs exp> Represents an absolute expression, including an external reference with
no section specified.

< rel exp> Represents a relocatable expression, including an external reference
with a section specified.

< exp> Represents either an absolute or relocatable expression.

{ } Represent a field that may or may not be present. (Note that the braces
are required syntax in the 68020 BFxxx instructions, however.)

Table 4-7. Definition of Syntax Terms

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

102

Dn
An

The operands Dn and An always result in the Data
Register Direct (I) and the Address Register Direct (II)
modes, respectively.

(An)
(An)+
-(An)

The operands "(An)","(An)+ " and "-(An)" always result in
the Address Register Indirect (III) , Address Register
Indirect with Postincrement (IV) , and Address Register
Indirect with Predecrement (V) modes, respectively.

< exp> This operand results in the Immediate (XII) mode. An
absolute expression must be within a certain size range
that is dependent on the instruction and qualifier code. 8-
16- and 32-bit immediate data can be a relocatable
expression.

(< exp> ,An) This operand is resolved as Address Register Indirect with
Displacement (VI), provided the expression fits in 16 bits
(sign-extended). The assembler assumes an external
expression will fit into 16 bits.

If the expression does not fit in 16 bits, the 68020 model
mode Address Register Indirect with Base Displacement
and Index (VIIb) is used. The specified A-register is used
as the Address Register and the Index Register is taken to
be null.

As a special case, "(0,An)" generates the more efficient
Address Register Indirect (III) despite the explicit zero
displacement. A programmer who wishes to generate an
explicit zero displacement will have to use an external
symbol.

(Dn)
(Rn.W)
(Rn.L)
(< exp> ,Dn)
(,Rn{.W| .L})

These operands generate the 68020 mode Address
Register Indirect with Base Displacement and Index
(VIIb) . The specified register is used as the Index register.

Table 4-8. Operand Syntax & Addressing Modes

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

103

(< abs exp> ,An,Rn,{ .W| .L}{*scl})
(An,Rn{.W| .L}{*scl})

If the target microprocessor is not the 68020/30/40 or
68331/332, the address mode generated is Address
Register Indirect with 8-Bit Displacement and Index
(VII) . The < abs exp> must resolve to an 8-bit, sign
extended value. Otherwise, an error will occur. If the
target microprocessor is the 68020/30/40 or 68331/332, the
following cases determine the address mode generated:
1. If < abs exp> is backward defined, its value fits in 8 bits,
and the scale factor is 1, the Address Register Indirect
with 8-Bit Displacement and Index (VII) 68000 model
mode is generated. If the scale factor is greater than 1 (2,
4, or 8), then the 68020 model mode VIIa is generated.

2. If < abs exp> is backward defined and its value is
greater than 8 bits, the Address Register Indirect with
Base Displacement and Index (VIIb) mode is generated.

3. If < abs exp> is forward defined and its value fits in 8
bits and the scale factor is 1, the Address Register Indirect
with 8-Bit Displacement and Index (VII) 68000 model
mode is generated. If the scale factor is greater than 1 (2,
4, or 8), then the 68020 model mode VIIa is generated.

4. If < abs exp> is forward defined and its value is greater
than 8 bits, an error occurs because the assembler assumes
that any forward defined absolutes will fit into 8 bits.

If < abs exp> is absent, a displacement of 0 is used.
Reading left-to-right, the first A-register found that does
not have size code or scale factor is the Address register.
The other register is the Index register.

Table 4-8. Operand Syntax & Addressing Modes (Cont’d)

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

104

(< rel exp> ,An,Rn{.W| .L}{*scl}) If the target microprocessor is not the 68020/30/40 or
68331/332, this syntax always results in an error because
the assembler did not allocate enough memory on the first
pass.
If the target microprocessor is the 68020/30/40 or
68331/332, this syntax results in the Address Register
Indirect with Base Displacement and Index (VIIb). If
< rel exp> is forward defined, an error occurs because the
assembler did not allocate enough memory on the first
pass.
Reading left-to-right, the first A-register found that does
not have size code or scale factor is the Address register.
The other register is the Index register.

([. . .] ,Rn . . .)
([< exp> ,An],Rn{.W| .L})

Any operand containing square brackets with a register
specified outside the brackets (necessarily an Index
Register), but not containing "PC" or "ZPC", generates the
68020 model Memory Indirect Post-Indexed (VIIc) mode.
Any registers and displacements not specified are taken to
be null. Any relocatable displacements are assumed to be
16 bits unless specified to be 32 bits by enclosing the
expression in parentheses and attaching .L, i.e.,
(< exp>).L.

([. . .,Rn], . .)
([< exp> ,An,Rn{.W| .L}])

Any operand which contains square brackets, with no
register specified outside the brackets, and no "PC" or
"ZPC" inside the brackets, generates the 68020 model
Memory Indirect Pre-Indexed (VIId) mode. Any registers
and displacements not specified are taken to be null. Any
relocatable displacements are assumed to be 16 bits unless
specified to be 32 bits by enclosing the expression in
parentheses and attaching .L, i.e., (< exp>).L.

(< exp> ,Dn,Rn{.W| .L})
(Dn,Rn{.W| .L})

These operands are invalid. One of the two registers must
be an A-register or PC.

Table 4-8. Operand Syntax & Addressing Modes (Cont’d)

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

105

(< exp> ,PC) This operand always results in Program Counter Indirect
with Displacement (X) mode.

If < exp> is an absolute expression, it is by default taken
to be an address. The flag NOABSPCADD may be used
to cause the absolute expression to be used as the
displacement.

If < exp> is an address, the displacement is calculated to
be the value of < exp> minus the current value of the
program counter. Sometimes, the assembler can calculate
the displacement; in most cases, the calculation is
postponed until link time when the actual location of both
the instruction and the operand are known.

Table 4-8. Operand Syntax & Addressing Modes (Cont’d)

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

106

(< exp> ,PC,Rn{.W| .L}{*scl})
(PC,Rn{.W| .L}{*scl})

This operand results in modes XI , XIa , or XIb according to
the following rules.

1.If < exp> is relocatable. If < exp> is defined in the same
section and the same source file as the instruction, the
assembler can calculate the relative distance between < exp>
and the instruction. Otherwise, the assembler cannot
calculate the relative displacement and this calculation must
be performed at link time.

a. If the assembler can calculate the displacement and this
displacement will fit into 8 bits sign-extended, then
mode XI is chosen.

b. If the assembler can calculate the displacement, this
displacement will fit into 8 bits sign-extended, and a
scale factor greater than 1 is specified, then mode XIa is
chosen.

c. If the assembler cannot calculate the displacement or
the displacement will not fit into 8 bits sign-extended,
mode XIb is chosen.

2. If < exp> is absolute.

a. If the ABSPCADD flag is in effect and the instruction is
also in an absolute section. In this case, the assembler
can calculate the distance between < exp> and the
instruction.

- If the displacement will fit into 8 bits sign-extended,
mode XI will be chosen. A scale factor greater than 1
will cause mode XIa .

- If < exp> is backward defined and the displacement is
larger than 8 bits, mode XIb is chosen.

- If < exp> is forward defined and the displacement is
larger than 8 bits, an error will occur because the
assembler did not allocate enough space on pass 1.

Table 4-8. Operand Syntax & Addressing Modes (Cont’d)

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

107

b. If the ABSPCADD flag is in effect and the instruction is
in a relocatable section.

- If < exp> is backward defined, mode XIb is chosen.

- If < exp> is forward defined, an error will occur
because the assembler did not allocate enough space in
pass 1.

c. If the NOABSPCADD flag is in effect. If < exp> will
fit into 8 bits sign-extended, mode XI is chosen. A scale
factor greater than one will cause mode XIa . If < exp>
will not fit into 8 bits, then mode XIb is chosen.

((< exp>).W,PC,Rn{.W| .L}{*scl})
((< exp>).L,PC,Rn{.W| .L}{*scl})

A size qualifier on < exp> , e.g. (< exp>).W or
(< exp>).L causes mode XIb to be chosen.

([. . .,PC],Rn,. . .)
([< exp> ,PC],Rn{.W| .L})

Any operand containing square brackets, with PC or
ZPC inside, and a register specified outside the
brackets (necessarily an Index Register), generates the
68020 model Program Counter Memory Indirect
Post-Indexed (XIc) mode. When ZPC is used, the
specified < exp> for the base displacement is always
taken to be the displacement itself (in other words, the
PC contents are not subtracted from it). At run-time,
the PC is not used to create the effective address.

([. . .,PC,Rn], . . .)
([< exp> ,PC,Rn{.W| .L}])

Any operand which contains square brackets, with PC
or ZPC inside, and no register specified outside,
generates the 68020 model Program Counter Memory
Indirect Pre-Indexed (XId) mode. When ZPC is used,
the specified < exp> for the base displacement is
always taken to be the displacement itself (in other
words, the PC contents are not subtracted from it). At
run-time, the PC is not used to create the effective
address.

Table 4-8. Operand Syntax & Addressing Modes (Cont’d)

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

108

< exp>

The operand < exp> results in one of three modes: Absolute Short (VIII) ,
Absolute Long (IX), or Program Counter Indirect with Displacement (X). In
most cases, good results will be obtained by allowing the assembler to use its
default action.

Note The PCR assembler flag (see the OPT assembler directive) controls the
selection of addressing modes from a relocatable section to the same
relocatable section in the same module.

You should note the following facts carefully before using the "< exp> "
addressing modes table:

• The table does not apply to the Bcc or DBcc instructions, which use
Program Counter plus Displacement mode.

• The final choice between address modes VIII and IX may be specified by
the .S or .L qualifier on the JMP and JSR instructions. These qualifiers
will not cause an absolute mode to be used instead of mode X, nor will
they cause a reference to a location that is known to be in
short-addressable memory to use absolute long mode.

The operand forms "(< exp>).W" and "(< exp>).L" are subject to the same
rules as < exp> with the following clarifications:

• If an absolute (as opposed to a PC-relative) mode is chosen, "(< exp>).W"
forces the Absolute Short (VIII) mode and "(< exp>).L" forces the
Absolute Long (IX) mode.

• On forward references, "(< exp>).W" forces 16 bits of extension to be
allocated while "(< exp>).L" forces 32 bits of extension to be allocated.

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

109

Instruction
Section Type

Expression Type

ABS < abs exp> < rel exp> unknown
(forward ref)

If OPT P is set and the
displacement is within
16-bit range, then
mode X.

Else, if operand is in
short addressable
memory, then mode
VII .

Else mode IX .

If section of operand is
short, then VIII , else IX .

If OPT F is set, then
2 bytes allocated,
else 4 bytes
allocated.

REL If operand is in
short-addressable
memory, then VIII ,
else IX .

If OPT NOPCR is set, then
if section of operand is
short, then VIII , else IX .

Else, if operand and
instruction are in same
section and displacement
within 16-bits, then X.

Else, if section of operand is
short, then VIII , else IX .

If OPT F is set, then
2 bytes allocated,
else 4 bytes
allocated.

ABS External Reference in Specified
Section

External Reference in Unspecified
Section

If section of operand is short, then
VII , else IX .

If operand was defined in XREF.S
or if OPT F set, then VII , else IX .

REL If OPT R set, then X.

Else, if section of operand is short,
then VIII , else IX .

If operand was defined in XREF.S
or if OPT F set, then VIII , else IX .

Table 4-9. Choosing Address Modes for < exp>

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

110

How Code is Generated for Forward Defined Symbols

The assembler operates in two passes.

In Pass 1, when evaluating an operand, one or more labels may be forward
defined. The assembler will not know whether these labels are absolute or
relocatable symbols until later in the assembly. The assembler makes
assumptions about forward defined labels; it selects a tentative address mode
and allocates space for the instruction based on these assumptions.

In Pass 2, the assembler knows everything about the forward defined labels
and will do one of three things:

1 It will generate the same addressing mode as it selected in Pass 1, and the
space allocated for the instruction is exact.

2 It will see that a shorter, more efficient address mode could be used. It will
generate the shorter address mode and fill the remaining allocated space
with NOP instructions. The combination of the shorter address mode and
the NOP instructions generally executes faster than the longer, less
efficient address mode. For example, consider the instructions which
follow.

In Pass 1, the assembler assumes that the MOVE instruction will require
the Absolute Long (IX) address mode. In Pass 2, the assembler sees that
F1 may be accessed using the Absolute Short (VIII) address mode which
requires only one word of operand extension. The assembler generates the
MOVE instruction using the absolute short mode and fills the remaining
word of the allocated instruction space with a NOP (4E71H) instruction.

The assembler flag opnop can be used to remove the NOP instructions
that were used as filler. opnop causes the assembler to make additional
passes through the code. This slows the assembly process but results in
somewhat more compact code.

3 It will see that it did not allocate enough space in Pass 1 to generate the
required instruction. An error will occur. For example, consider the
instructions which follow.

Line Address
1 00000000 3038 1000 4E71 MOVE F1,D0 ;Label F1 is
forward defined.
2
3 00001000 F1 EQU 1000H ;F1 may be
accessed using
4 ;absolute short

Instructions and Address Modes
Assembler Syntax for Effective Address Fields

111

Line Address
1 00000000 3028 0000 MOVE F1(A0),D0;Label F1 is forward defined.
 ** ERROR:(601) Value was truncated to fit in its field.
2
3 00020000 F1 EQU 20000H ;F1 is too large to be a
 ;16-bit displacement.
5 END

In Pass 1, the assembler assumes that it will use the Address Register
Indirect with Displacement (VI) mode which requires one word of
operand extension. In Pass 2, the assembler determines that one word of
extension is inadequate and an error occurs.

User Control of Address Modes

The default choice for address mode is Absolute Long (in all cases except
those where it is known that a more compact mode will work). Since this mode
generates the longest machine codes (requiring 4 bytes of extension), you may
want to choose a more compact and faster mode in some cases.

The choice of mode may be controlled in several ways:

1 Relocatable sections or external references may be specified as short (see
the "Relocation" chapter for further information), meaning that any
references to those sections and external references will use Absolute
Short mode in preference to Absolute Long (but not in preference to
other modes). Short sections and external references are always placed in
the short-addressable areas of memory by the loader.

2 The option flag PCR may be set using the OPT directive. PCR (the
default) causes references from a relocatable section to the same
relocatable section in the same file to generate Program Counter with
Displacement (X) mode if the displacement will fit into a signed 16-bit
field. NOPCR causes such references to use absolute short or absolute
long mode.

3 The option flag P may be set via the OPT directive, causing all references
to a known absolute location from an absolute location to use Program
Counter Indirect with Displacement mode, provided the displacement is
within 16-bit range.

Instructions and Address Modes
User Control of Address Modes

112

4 The option flag R may be set via the OPT directive, which causes all
references from a relocatable location to a relocatable location (including
external locations known to be in a relocatable section because the section
name was specified with the XREF directive) to use Program Counter
Indirect with Displacement mode. Most such references must be resolved
by the loader. This option may cause assembler or linker errors if the
referenced locations are not within a 16-bit displacement from the current
PC.

5 The option flag F may be set via the OPT directive, causing all forward
references except those in relative branch instructions (Bcc) to allocate
only 2 bytes for the extension, rather than the default of 4 bytes. This
option may result in errors at link-time, since it is possible that a location
can only be addressed by Absolute Long mode, in which case there will
not be room for the address and an error will result. With the default
setting, however, even if 4 bytes are allocated, a 2-byte address mode may
be selected finally (in accordance with the preceding table), in which case
the final 2 bytes will be filled with a NOP.

6 The option flag B may be set via the OPT directive, which applies only to
the relative branch instructions (Bcc) and causes forward references in
one of these instructions to use the shorter form of the instruction, with
8-bit displacement. Here again it is possible that there may not be room
for the actual displacement and errors may occur.

7 Individual Bcc, JMP and JSR instructions may use the .S or .L qualifiers
on the opcode in order to force use of the short or long form of the
instruction. In the Bcc instructions, use of these qualifiers forces the
appropriate form. In the JMP and JSR instructions, use of these qualifiers
does not force an absolute address mode to be chosen in those cases where
a PC with displacement is known to work. However, if an absolute mode is
used, the qualifier will force the choice of short or long, unless the
reference is known to exist in short-addressable memory.

A Bcc.S instruction may not reference the next statement since this would
result in an 8-bit displacement of 0, causing the hardware to take the
following word as the 16-bit displacement, rather than as an instruction.
Also, a Bcc.S may not reference an external reference or any location
outside the instruction section (since the loader cannot resolve 8-bit
displacements.)

Instructions and Address Modes
User Control of Address Modes

113

A2-A5 Relative Addressing

A2-A5 relative addressing refers to the method of accessing memory locations
relative to an address in an address register. A2-A5 relative addressing is
associated with the "address register indirect with displacement" addressing
modes and the INDEX linker/loader command.

Address Register Indirect with Displacement Modes

The "address register indirect with displacement" addressing modes are
generated by operand syntaxes such as "< exp> (An)" or "(< exp> ,An,Rn)",
etc. The displacements are calculated, if possible, by the assembler when
"< exp> " is an absolute expression or by the linker/loader when "< exp> " is a
relocatable expression.

Absolute Expressions vs. Relocatable Expressions

When assembly language operands combine absolute expressions with address
register indirection, the absolute expression is actually the displacement to be
included with the instruction code.

When assembly language operands combine relocatable expressions with
address register indirection (for example, < rel exp> (An) or (< rel exp> ,An)),
the syntax says, "Access the location of the relocatable expression indirectly,
using the address register." In other words, the relocatable expression is the
effective address. When relocatable expressions are combined with address
register indirection, the linker/loader will calculate the displacements with the
following equation:

<ea> = An + disp

disp = <ea> - An

disp = <relocatable expression> - An

The linker/loader knows the value of the relocatable expression; however, it
does not know what will be in "An" when the instruction executes.

To solve the linker’s problem of not knowing the run-time contents of an
address register (and allow you to use relocatable expressions in conjunction

Instructions and Address Modes
A2-A5 Relative Addressing

114

with the powerful "address register indirect with displacement" modes), the
linker/loader INDEX command was created to allow you to specify the
run-time value of "An".

The INDEX Linker/Loader Command

The INDEX loader command allows you to equate the run-time value of an
address register (A2, A3, A4, or A5) with the load address of a relocatable
section and an offset. The INDEX command will also create a public symbol
in the form "?An" (where n = 2, 3, 4, or 5). The public symbol created can be
declared as an external symbol in the assembly language source file (with the
XREF directive) and used to initialize the appropriate address register.

When the INDEX command is not used, the linker will still calculate
displacements for operands which combine relocatable expressions and
address register indirection; however, the linker/loader will assume the
run-time value of "An" to be zero.

Advantages of A2-A5 Relative Addressing

A2-A5 relative addressing is useful when:

• Accessing statically allocated data areas. Accessing statically allocated
data areas with A2-A5 relative addressing is as efficient as using the
absolute short addressing mode with the additional benefit of being able
to locate the data area (up to 64K bytes long) anywhere in memory.

• Accessing dynamically allocated data areas which are independent of the
code that accesses them.

Accessing Statically Allocated Areas

The 68000/20 model address register indirect with displacement addressing
modes (for example, those modes generated for syntaxes such as "< exp> (An)"
or "(< exp> ,An,Rn)", etc.) are often the fastest and most efficient ways to
access code or data locations; this is especially true when accessing code or
data in high memory where the alternative would be to use absolute long
addressing (see figure 2-1). Notice that the address register indirect mode is
coded in two fewer bytes than the absolute long mode.

Instructions and Address Modes
A2-A5 Relative Addressing

115

The address register indirect mode is useful because you can access locations
anywhere in memory with the same number of bytes of code generated. Also,
with a signed 16-bit displacement, you can access up to 64K bytes (+ /- 32K)
relative to the contents of the address register.

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:21:21
1993

Command line: as68k -L modes.s
Line Address
1 SECT DATA
2 00000000 WORD1 DS.W 1
3 00000002 DS.B 0FFFEH
4 ; Address Mode Generated:
5 SECT CODE ;----------------------
6 00000000 3039 0000 0000 R MOVE WORD1,D0 ; Absolute Long.
7 00000006 302A 0000 R MOVE WORD1(A2),D0 ; Address Reg. Indirect
8 ; with Displacement.
9 END
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:21:21
1993

 Symbol Table

Label Value

WORD1 DATA:00000000

Figure 4-1. Absolute and Indirect Address Modes

Instructions and Address Modes
A2-A5 Relative Addressing

116

Accessing Dynamically Allocated Areas

Dynamic memory allocation routines are typically passed the size of some
element (for which memory is to be allocated) and return the address of the
data area which has been allocated (in other words, a pointer to the allocated
block of memory). At link-time, the linker/loader does not know what the
address of the dynamically allocated area will be, but it does know the kind of
element that memory is to be allocated for. With this knowledge, and with the
help of the INDEX command, displacements can be calculated for A2-A5
relative addressing instructions. At run-time, the address of the dynamically
allocated area is placed in the appropriate address register, and the
dynamically allocated area can be accessed via A2-A5 relative addressing.

Example

The following is a simple example of A2-A5 relative addressing and how to use
the INDEX command. A listing of the assembly language source file is shown
in figure 2-2. The linker/loader listing in figure 2-3 shows the INDEX
command used with an offset. The linker/loader listing in figure 2-4 shows the
INDEX command used without an offset. Comments are included in the
assembly source file and in the linker command files to explain the
instructions and commands in detail.

Instructions and Address Modes
A2-A5 Relative Addressing

117

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 1 Wed Apr 28 15:20:07
1993

Command line: as68k -L example.s
Line Address
1 XREF ?A2 ; This symbol defined by the
2 ; linker/loader INDEX command.
3
4 XDEF VAR ; (To get the effective address
5 ; on the linker/loader listing.)
6
7 SECT DATA
8 00000000 DS.B 6000H
9 00006000 VAR DS.B 9FFFH ; Effective address of VAR =
10 ; load address of DATA =
11 ; section 6000H.
12
13 SECT PROG
14 00000000 247C 0000 0000 E MOVE.L #?A2,A2 ; Initialize A2 with the
15 ; run-time value specified
16 ; in the INDEX command.
17
18 00000006 426A 6000 R CLR VAR(A2) ;Address Register Indirect
19 ; with Displacement Mode
20 ; is generated. When this
21 ; module is linked, the
22 ; linker will calculate the
23 ; 16-bit displacement by
24 ; subtracting the run-time
25 ; value of A2 (as specified
26 ; by the INDEX command)
27 ; from the effective address
28 ; of VAR.
29 END
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Page 2 Wed Apr 28 15:20:07
1993

 Symbol Table

Label Value

?A2 External
VAR DATA:00006000

Figure 4-2. A2-A5 Relative Addressing Example

Instructions and Address Modes
A2-A5 Relative Addressing

118

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:01 1993
 Page 1

Command line: ld68k -c lnk_cmd.k -L

NAME lnk_cmd
LIST C ; Include a cross-reference listing on the output.

INDEX ?A2,DATA,8000H ; The run-time value of A2 equals the
 ; load address of the DATA section plus
 ; an offset of 8000H (this allows 16-bit
 ; signed displacements to access +/- 32K
 ; bytes relative to A2).

SECT DATA=0FF0000H ; Run-time of A2 is
 ; 0FF0000H + 8000H = 0FF8000H

; The displacement calculated for the "CLR VAR(A2)" instruction is
; the effective address of VAR (0FF0000 + 6000H) minus the run-time
; value of (0FF8000H):
;
; Displacement = 0FF6000H - 0FF8000H = -2000H = 0E000H.
;
; At run-time, the "MOVE.L #?A2,A2" instruction initializes A2
; with 0FF8000H. The "CLR VAR(A2)" instruction clears the location
; indexed by A2 plus the displacement, which equals:
;
; 0FF8000H + 0E000H = 0FF8000H + (-2000H) = 0FF6000H.

SECT PROG=1000H
LOAD example.o
END
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:01 1993
 Page 2

OUTPUT MODULE NAME: lnk_cmd
OUTPUT MODULE FORMAT: IEEE

Figure 4-3. Using the INDEX Command with Offset

Instructions and Address Modes
A2-A5 Relative Addressing

119

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN

PROG NORMAL CODE 00001000 00001009 0000000A 2 (WORD)
DATA NORMAL DATA 00FF0000 00FFFFFE 0000FFFF 2 (WORD)

MODULE SUMMARY

MODULE SECTION:START SECTION:END FILE

example DATA:00FF0000 DATA:00FFFFFE /users/merff/asm68k/example.o
 PROG:00001000 PROG:00001009

CROSS REFERENCE TABLE

SYMBOL SECTION ADDRESS MODULE

?A2 00FF8000 -$$
 example
VAR DATA 00FF6000 -example

START ADDRESS: 00000000

Link Completed

Figure 4-3. Using INDEX with Offset (Cont’d)

Instructions and Address Modes
A2-A5 Relative Addressing

120

 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:13 1993
 Page 1

Command line: ld68k -c lnk_cmd2.k -L

NAME lnk_cmd
LIST C ; Include a cross-reference listing on the output.

INDEX ?A2,DATA,0 ; The run-time value of A2 equals the
 ; load address of the DATA section.

SECT DATA=0FF0000H ; Run-time of A2 is 0FF0000H.

; The displacement calculated for the "CLR VAR(A2)" instruction is
; the effective address of VAR (0FF0000 + 6000H) minus the run-time
; value of (0FF0000H):
;
; Displacement = 0FF6000H - 0FF0000H = 6000H.
;
; At run-time, the "MOVE.L #?A2,A2" instruction initializes A2
; with 0FF0000H. The "CLR VAR(A2)" instruction clears the location
; indexed by A2 plus the displacement, which equals:
;
; 0FF0000H + 6000H = 0FF6000H.

SECT PROG=1000H
LOAD example.o
END
 HPB3641-19300 A.02.00 27Apr93 Copr. HP 1988 Wed Apr 28 15:21:13 1993
 Page 2

OUTPUT MODULE NAME: lnk_cmd
OUTPUT MODULE FORMAT: IEEE

Figure 4-4. Using INDEX without Offset

Instructions and Address Modes
A2-A5 Relative Addressing

121

SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN

PROG NORMAL CODE 00001000 00001009 0000000A 2 (WORD)
DATA NORMAL DATA 00FF0000 00FFFFFE 0000FFFF 2 (WORD)

MODULE SUMMARY

MODULE SECTION:START SECTION:END FILE

example DATA:00FF0000 DATA:00FFFFFE /users/merff/asm68k/example.o
 PROG:00001000 PROG:00001009

CROSS REFERENCE TABLE

SYMBOL SECTION ADDRESS MODULE

?A2 00FF0000 -$$
 example
VAR DATA 00FF6000 -example

START ADDRESS: 00000000

Link Completed

Figure 4-4. Using INDEX without Offset (Cont’d)

Instructions and Address Modes
A2-A5 Relative Addressing

122

5

Relocation

This chapter explains relocatable programming and section attributes.

123

The object module produced by the assembler is in a relocatable format, which
allows you to write programs whose final addresses will be adjusted by the
linking loader. The relocatable format also allows individual program
modules to be changed without reassembling the complete program. Separate
object modules can be linked together into a final program.

Relocatable programming provides the following advantages:

• Actual memory addresses are of no concern until the final load time.

• Large programs may be easily separated into smaller pieces, developed
separately, and linked together.

• If one piece contains an error, only that one need be modified and
reassembled.

• Once developed, a library of routines may be used by many users.

• The linker will adjust addresses to meet program requirements.

Relocation

124

Program Sections

To take advantage of relocatability, you should understand the concept of
program sections and how separate object modules are linked together. A
program section is that part of a program which contains its own location
counter and is a logically distinct section. At load time, the addresses for each
section may be specified separately.

Section names may be any symbol or a two-digit decimal number. Section
names may duplicate labels or register names without conflict. Section names
may appear in COMMON, SECT (or SECTION) and XREF directives as well
as in the .STARTOF. and .SIZEOF. operators.

as68k provides for up to 256 program sections. One section is predefined,
noncommon section 0. Each section has five attributes: the
common/noncommon attribute, the short/long attribute, the section contents
attribute, the alignment attribute, and the HP Section type attribute.

Common vs. Noncommon Attributes

A section becomes Common when its name appears in a COMMON directive,
and becomes Noncommon when its name appears in a SECT or SECTION
directive. It is a fatal error for the same section name to appear in both
directives. The loader loads all common sections with the same name (from
different modules) into the same place in memory, while noncommon sections
with the same name (from different modules) are concatenated. Otherwise,
Common and Noncommon sections are treated alike.

We suggest that you avoid putting instructions or code-generating directives
(DC, DCB) in Common sections. If a user initializes the same Common
section in two different modules, both sets of code will be loaded into the same
memory locations by the Linker, and a warning is generated. This can
obviously cause problems. On the other hand, initializing a Common section
in only one module can be useful.

In a given assembly a section name may appear in an XREF directive before
appearing in either a SECT (or SECTION) or COMMON directive. When
this occurs, the assembler accepts the name as a valid new section name and
assigns the Long or Short attribute to it as declared in the XREF directive, but
does not yet assign the common or noncommon attribute to it.

Relocation
Program Sections

125

The common or noncommon attribute may be set by the subsequent
occurrence of a SECT or COMMON directive that uses the same section
name. However, if the current assembly does not assign the
common/noncommon attribute, the linking loader may do so. In the latter
instance, the section name must appear in a SECT or COMMON directive in
another assembly; one whose object module is included in the load.

Short vs. Long Attributes

A section becomes short when its name appears in a COMMON.S, SECT.S,
SECTION.S, or XREF.S directive. It becomes long when its name appears in
any of these directives without the .S extension. If a section is short in one
place and long in another place, a warning is produced and the section is
designated as short thereafter. The loader will load all short sections into the
areas of memory addressable with 16-bit absolute addresses. These areas are
from 0 to $7FFF and from $FF8000 to $FFFFFF for the 68000 and 68010,
$F8000 to $FFFFF for the 68008, and $FFFF8000 to $FFFFFFFF for the
68020/30/40 and CPU32. (The linker CHIP command can specify a bus width
parameter that could alter the location of the high short page.) In certain
situations, the assembler will choose a more compact address mode when a
reference is made to a short section (see the "Instructions and Address Modes"
chapter for details). Otherwise short and long sections are treated alike.

Section Alignment Attribute

The section alignment attribute may be either 1, 2 or 4. The section alignment
attribute affects the beginning address of each file’s contribution to a section.

A section alignment attribute of 4 combined with the ALIGN 4 directive can
ensure that data items are located at longword boundaries. This may speed
execution on some target systems where the memory bus is 32 bits wide.

The default section alignment attribute is 2 unless the CHIP directive specifies
68020/30/40, in which case the default attribute is 4. The alignment attribute is
specified in the SECTION assembler directive as shown in the following
example.

SECTION A,4

If the alignment attribute is specified differently in several files, the alignment
attribute is affected in the following way:

Relocation
Program Sections

126

• If there is no ALIGN linker command, the first module loaded in the
section is always aligned modulo 4 if any of the modules for that section
specify quad alignment. All other modules are aligned as specified by
those modules.

• If there is an ALIGN linker command, all relocatable subsections of that
section are aligned modulo the largest of the alignments.

Section Contents Attributes

There are four types of relocatable sections:

• Program code (C).

• Data (D).

• Mixed Code and data (M).

• ROMable data (R).

The SECTION assembler directive allows you to explicitly specify a section’s
contents by adding a ",C", ",D", ",M", or ",R" qualifier to the SECTION
directive. (See the SECTION description in the "Assembler Directives"
chapter for details.)

The section contents attribute is used by certain HP debuggers to gain
efficiency and to prevent certain debugging commands from operating in
particular areas of target memory.

The section contents attribute may be specified explicitly in the SECTION
directive. For example:

SECTION A,,C ; Specifies a CODE section

If the section contents attribute is not specified explicitly, the assembler
assigns the section type according to the following rules.

1 If, after the SECTION directive, the assembler encounters only
instructions, the assembler will set the section contents attribute to
program code (C).

2 If, after the SECTION directive, the assembler encounters only data
definition directives (DC, for example), the assembler will set the section
contents attribute to data (D).

Relocation
Program Sections

127

3 If, after the SECTION directive, the assembler encounters both
instructions and data, the assembler will set the section contents attribute
to mixed (M).

HP Section Type Attribute

The HP 64000 symbolic files, asmb_sym and link_sym, supply program symbol
information to HP 64000 emulators and analysis tools.

The HP Section type may be specified explicitly in the SECTION directive.
For example,

SECTION A,,C,P ;SECTION A MAPS TO HP PROG

The fourth operand of the SECTION directive may be P for PROG, D for
DATA, C for COMN, or A for ABS.

If the HP type is not specified explicitly, the assembler uses the following rules.

• Program code (C) sections map to the HP 64000 section PROG.

• Data (D) sections map to the HP 64000 section DATA.

• ROMable data (R) sections map to the HP 64000 section COMN.

• "Extra" code, data, and ROMable data sections map to the HP 64000
section ABS (see below).

• Absolute (ORGed, in other words) sections map to the HP 64000 section
ABS.

The HP 64000 assembler symbol and linker symbol file formats have the
following characteristics.

• The file formats allow a maximum of three relocatable sections per
assembly source file. For each assembly, at most one section may be
mapped to PROG, one section may be mapped to DATA, and one
section may be mapped to COMN.

• The file formats allow an unlimited number of absolute sections per
assembly source file.

If the assembler, through any combination of SECTION directives, attempts
to map more than one section onto PROG, DATA, or COMN using the rules

Relocation
Program Sections

128

above, then this mapping conflicts with the HP 64000 file formats. The
assembler and linker resort to the following stratagems.

• The second and subsequent sections that map to either PROG, DATA, or
COMN are called "extra" CODE, DATA, & ROM sections.

• The symbols from "extra" sections are omitted from the HP 64000
assembler symbol file. This means that local (as opposed to global)
symbols from extra sections will NOT be available at analysis time. When
this happens, the assembler issues the following warning:

WARNING: (604) Manximum number of typed sections exceeded in HP mode.

• The code from "extra" section is correct and is treated normally.

• The linker, when producing a link_sym file, maps the symbols from "extra"
sections onto HP 64000 ABS sections. The symbol values are correct.
They simply show up as ABS on HP emulators and analysis tools.

Because the HP 64870 assembler allows many relocatable sections, sometimes
it is impossible to produce perfect HP 64000 assembler symbol and linker
symbol files. In these situations, your code is always correct. At worst, you
will not have access to some local symbols in some assembly files. You can
overcome these limitations by moving "extra" sections to a different source file.

Other Things to Know About Sections

Typically, a section will contain either instructions or data; this allows you to
place the sections in a RAM/ROM environment. Common sections are
generally used for program variables that reside in RAM. Common sections
are analogous to named COMMON in FORTRAN. As with non-relocatable
assemblers, users may also specify absolute addresses when assembling a
program. In this case, the object modules, even if in relocatable format, will
contain instructions or data that will reside in the specified memory locations.

Relocation
Program Sections

129

How the Assembler Assigns Section Attributes

Table 3-1 illustrates how a section is assigned the common/noncommon and
short/long attributes. An example of how to use this table follows:

Previous
Section
Attribute

New statement in which section name appears:

XREF XREF.S SECT SECT.S COMMON COMMON.S

Undefined Xref-only
LONG

Xref-only
SHORT

Non-
common
LONG

Non-
common
SHORT

Common
LONG

Common
SHORT

Xref-only
LONG

Xref-only
LONG

Xref-only*
SHORT

Non-
common
LONG

Non-
common*
SHORT

Common
LONG

Common
SHORT

Xref-only
SHORT

Xref-only*
SHORT

Xref-only
SHORT

Non-
common*
SHORT

Non-
common
SHORT

Common*
SHORT

Common
SHORT

Common
LONG

Common
LONG

Common*
SHORT

ERROR ERROR Common
LONG

Common*
SHORT

Common
SHORT

Common*
SHORT

Common
SHORT

ERROR ERROR Common*
SHORT

Common
SHORT

Non-
common
LONG

Non-
common
LONG

Non-
common*
SHORT

Non-
common
LONG

Non-
common*
SHORT

ERROR ERROR

Non-
common
SHORT

Non-
common*
SHORT

Non-
common
SHORT

Non-
common*
SHORT

Non-
common
SHORT

ERROR ERROR

* = Warning produced.

Table 5-10. How Section Attributes are Assigned

Relocation
Program Sections

130

The first time a section name appears, it has no previous attributes; the first
horizontal row of the table, marked undefined, is appropriate. If the name
first appears in an XREF.S statement, it will afterwards be short, but neither
common nor noncommon (XREF-only). If the name later appears for a
second time in a SECT statement, it is then assigned the Noncommon
attribute as well and a Warning is produced.

Linking

The object modules produced by the assembler are combined or linked
together by a linking loader. The loader converts all relocatable addresses into
absolute addresses and resolves references from one module to another.
Linkage between modules is provided by external definitions (XDEF),
external references (XREF), as well as the Common Sections. External
definitions are defined in other object modules via the linking loader.
External references are symbols referenced in one module but defined in
another module. The linking loader combines the external definitions from
one program with the external references from other programs to obtain the
final addresses. A program may contain both external references and
definitions.

Relocation
Linking

131

Relocatable vs. Absolute Symbols

Each symbol in the assembler has associated with it a symbol type, which
marks the symbol as absolute or relocatable. If relocatable, the type also
indicates the section to which the symbol belongs. Symbols whose values are
not dependent upon program origin are absolute, and those whose values
change when the program origin is changed are called relocatable. Absolute
and relocatable symbols may both appear in an absolute or relocatable
program section.

Absolute symbols are defined as follows:

• A symbol in the label field of an instruction that is in an absolute section
of code.

• A symbol is made equal to an absolute expression by the EQU or SET
directive. This occurs even if the program is assembling a relocatable
section.

• An external reference with no section attached is considered to be
absolute for the purpose of determining address modes.

• The difference between two relocatable symbols if both symbols are
defined in the same section in the same source file.

Relocatable symbols are defined as follows:

• A symbol in the label field of an instruction when the program is
assembling a relocatable section.

• A symbol is made equal to a relocatable expression by the EQU or SET
directives.

• An external reference is relocatable.

• A reference to the location counter (*) while assembling a relocatable
section is relocatable.

Relocation
Relocatable vs. Absolute Symbols

132

Relocatable Expressions

The relocatability of an expression is determined by the relocation of the
symbols that compose the expression. All numeric constants are considered
absolute. Relocatable expressions may be combined to produce an absolute
expression, a relocatable expression, or in certain instances, a complex
relocatable expression. The following list shows those expressions whose
result is relocatable: (ABS denotes an absolute symbol, constant, or expression
and REL denotes a relocatable symbol or expression)

ABS+REL
REL+ABS
REL+REL
REL-ABS
REL-REL

1

ABS*REL
REL*ABS
REL*REL
REL/ABS
REL/REL

1

1. Absolute if both relocatable expressions are defined
in the same section in the same source file. Otherwise,
it is relocatable.

Note
Complex relocatable expressions are not allowed in the ORG, OFFSET,
COMLINE, END, FAIL, SPC, and LLEN directives.

Complex relocatable expressions result when two relocatable expressions are
subtracted or added together. Only the plus "+ " and minus "-" operators are
allowed within these subexpressions. In certain instances, subexpressions may
evaluate to an absolute value. This can occur in cases where a subexpression
comprises the difference between two relocatable symbols.

After assembly has been completed, one of three types of expressions result:

• Absolute expression - The expression evaluates to an absolute value
independent of any relocatable section addresses.

Relocation
Relocatable Expressions

133

• Simple relocatable expression - The expression evaluates to an absolute
offset from a single relocatable section address.

• Complex relocatable expression - The expression evaluates to a constant
absolute offset from either of the following:

– A single, negated start address of a relocatable section.

– References to the start address of two or more relocatable
sections.

In addition, the following expressions are valid and produce an absolute
expression. Both relocatable subexpressions must be relocatable in the same
program section and must be defined in the current module (no externals).

REL=REL
REL<>REL
REL<=REL
REL<REL
REL>=REL
REL>REL
REL+REL
REL-REL
REL*REL
REL/REL

Relocation
Relocatable Expressions

134

Label Alignment

Beware of labels on a line by themselves. They may not be aligned as you
expect. For example,

 SECT A
 STRING DC.B ’odd’
 START
 LEA STACKTOP,SP

The label START will have an odd value. If the PC is loaded with an odd
value, a run time error will occur.

There are two ways to avoid this problem:

• You may put the label on the same line as the instruction or directive.
The label will have the same alignment as the instruction. For example,

 SECT A
 STRING DC.B ’odd’
 START LEA STACKTOP,SP

• You may also use an align directive after the byte constants. For example,

 SECT A
 STRING DC.B ’odd’
 ALIGN 2
 START
 LEA STACKTOP,SP‘

Relocation
Label Alignment

135

Relocation
Label Alignment

136

6

Assembler Directives

This chapter describes all directives (also called Psuedo-Ops) except those
primarily associated with macro assembly and structured syntax.

137

Assembler directives are written as ordinary statements in the assembler
language, but rather than being translated into equivalent machine language,
they are interpreted as commands to the assembler itself. Through use of these
directives, the Assembler will reserve memory space, define bytes of data,
assign values to symbols, control the output listing, etc. The following is a
complete list of the directives that are described in this chapter.

ALIGN Specify instruction alignment.

CHIP Specify Target Microprocessor.

COMLINE Define Storage.

COMMON Specify Common Section.

DC Define Constant Value.

DCB Define Constant Block.

DS Define Storage.

ELSEC Conditional Assembly Converse.

END End of Assembly.

ENDC End Conditional Assembly.

ENDR End Repeat.

EQU Equate a Symbol to an Expression (permanent).

FAIL Generate a Programmed Error.

FEQU Equate a Symbol to a Floating Point Expression.

FILE Include Source File (same as INCLUDE).

FOPT Specify Floating-Point Options.

FORMAT Format Listing (ignored).

Assembler Directives

138

IDNT Specify Module Name.

IFC Conditional Assembly String Equality Test.

IFDEF Conditional Assembly Symbol Definition Test.

IFEQ Conditional Assembly Equal to Zero Test.

IFGE Conditional Assembly Nonnegative Test.

IFGT Conditional Assembly Greater than Zero Test.

IFLE Conditional Assembly Nonpositive Test.

IFLT Conditional Assembly Less than Zero Test.

IFNC Conditional Assembly String Inequality Test.

IFNDEF Conditional Assembly Symbol Not Defined Test.

IFNE Conditional Assembly Unequal to Zero Test.

INCLUDE Include Source File.

INTFILE Specify File for Intermediate Storage.

IRP Specify Indefinite Repeat.

IRPC Specify Indefinite Repeat Character.

LIST List the Assembly.

LLEN Set Length of Line in Assembler Listing.

MASK2 Assemble for R9M chip (ignored).

NAME Specify Module Name.

NOFORMAT Don’t Format Listing (ignored).

Assembler Directives

139

NOLIST Don’t List the Assembly.

NOOBJ Don’t Create Object File.

NOPAGE Suppress Paging on Listing.

OFFSET Define Table of Offsets.

OPT Set Options for Assembly.

ORG Begin an Absolute Section.

PAGE Advance Listing Form to Next Page.

PLEN Specify Length of Listing Page.

REG Define a Register List.

REPT Specify Repeat.

RESTORE Restore previously SAVEed assembly options.

SAVE Save assembler options.

SECT Specify Section.

SECTION Specify Section.

SET Equate a Symbol to an Expression (temporary).

SPC Space lines on listing.

TTL Set Program Heading.

XCOM Specify Weak External Reference.

XDEF Specify External Definition.

XREF Specify External Reference.

Assembler Directives

140

Notation

In the following descriptions, brackets ({ }) are used to indicate optional
parameters. If more than one item appears within a single pair of brackets, a
choice is indicated.

Assembler Directives

141

ALIGN

Specify Byte Alignment

Syntax:

Label Operation Operand Comment

ALIGN n

Where:
n Equals either 1, 2 or 4.

Description: This directive may be used to specify the byte boundary on which the address
of the next instruction is to be aligned. The number may be either 1, 2 or 4.

The ALIGN directive is useful for adjusting the location counter to the
nearest word or longword boundary.

Modulo 4 alignment can be used to optimize execution speeds, depending on
the target system memory design.

However, in order for modulo 4 alignment to work in a relocatable section,
you must first ensure the alignment of a section when it is located by the
linker. This is done by specifying a section alignment attribute of 4 in the
SECTION directive. See the following example.

Example:

Label Operation Operand Comment

 SECTION A,4 ;The beginning of every file’s
 ;contribution to a section will be
 ;quad aligned.
 DC.B ’A number of characters’
LABEL1 ALIGN 4 ;Ensure next data item is
 ;quad aligned.
Q1 DC.L 0 ;Q1 is on a mod 4 boundary.

See also Other aspects of section and label alignment are discussed in chapter 5.

Assembler Directives
ALIGN

142

CHIP

Specify Target Microprocessor

Syntax:

Label Operation Operand Comment

CHIP target

Where:
target Is one of the following processor designations: 68000,

68EC000, 68HC000, 68HC001, 68008, 68010, 68302, 68330,
68331, 68332, 68333, 68340, CPU32, 68020, 68EC020,
68030, 68EC030, 68040, or 68EC040.

Description: This directive specifies the microprocessor on which the resulting object code
will be run. The microprocessor may be the 68000, 68EC000, 68HC000,
68HC001, 68008, 68010, 68302, 68330, 68331, 68332, 68333, 68340, CPU32,
68020, 68EC020, 68030, 68EC030, 68040, or 68EC040. The differences, from
the assembler’s point of view, are as follows:

1 The 68010 has the additional instructions MOVECaN INDIC, MOVES,
RTD and MOVE from CCR. If one of these instructions is encountered
when the CHIP is set to 68000 or 68008, code for the instruction is
generated, but an error occurs.

2 The 68020 has the additional instructions BFCHG, BFCLR, BFEXTS,
BFEXTU, BFFFO, BFINS, BFSET, BFTST, BKPT, CALLM, CAS,
CAS2, CHK2, CMP2, DIVSL, DIVUL, PACK, RTM, TDIVS, TDIVU,
TRAPcc, Tcc, TPcc, and UNPK. It has six new address modes as
described in the INSTRUCTIONS AND ADDRESS MODES chapter.
The Bcc, BSR, DIVS, DIVU, EXTB, LINK, MOVEC, MULS, MULU
and TST instructions accept additional qualifiers and/or operands. Using
any of these constructs when the CHIP is not set to 68020 causes an error.
Note that using new 68020 syntax is not sufficient to cause an error,
provided the generated code is 68000-compatible. Examples of this
include an explicit *1 scale factor on an index register, using the EXTB
and EXTW synonyms for EXT, placing a displacement inside rather than

Assembler Directives
CHIP

143

outside the delimiting parentheses, and rearranging the order of registers
inside parentheses.

3 The 68331 and 68332 have, in addition to 68010 capabilities, the
additional instructions BGND, CHK2, CMP2, EXTB, LPSTOP, TBLS,
TBLU, TBLSN, TBLUN, TRAPcc, Tcc, and, TPcc. It has new addressing
modes as described in the Instructions and Addressing Modes chapter.
The Bcc, BSR, DIVS, DIVU, LINK, MULS, MULU, and TST accept
additional qualifiers and/or operands.

The 68331 and 68332 do not have a co-processor interface. Therefore,
CHIP 68332 (68331) disables the 68881 FPU instructions.

4 The 68030 has the additional instructions PFLUSH, PFLUSHA,
PLOADR, PLOADW, PMOVE, PMOVEFD, PTESTR, and PTESTW. It
also has the additional registers CRP, SRP, TC, TT0, TT1, and MMUSER.

5 The 68040 has the same instructions as the 68020/30 with the addition of
CINVL, CINVP, CINVA, CPUSHA, CPUSHL, CPUSHP, MOVE16,
PFLUSHAN, and PFLUSHN.

If no CHIP or OPT P= (which has the same function) directive appears, the
target is assumed to be the 68000.

Using new Motorola 68020, 68030, or 68040 syntax is not sufficient to produce
a warning, provided the generated code is 68000-compatible. Examples of new
syntax are explicit scale factor on an index register, using the EXTB and
EXTW synonyms for EXT, placing a displacement inside rather than outside
delimiting parentheses, and rearranging the order of registers inside
parentheses.

Chip designations are now processed as strings, which means using absolute
expressions with the CHIP directive is no longer valid.

Assembler Directives
CHIP

144

COMLINE

Define Storage

Syntax:

Label Operation Operand Comment

{label} COMLINE n

Where:
n The number of bytes of memory to be reserved.

Description: This directive may be used in the source code to reserve a block of sequential
locations (in bytes). The number of bytes is specified in the argument (e.g.,
COMLINE 8 reserves 8 bytes in memory). COMLINE is supplied for
Motorola compatibility. as68k treats this directive identically to DS.B.

Assembler Directives
COMLINE

145

COMMON

Specify Common Section

Syntax: There are 3 distinct syntaxes:

Label Operation Operand Comment

{label} COMMON{.S} sname[,[n][,[contents][,HPtype]]]

COMMON{.S} snumber[,[n][,[contents][,HPtype]]]

label COMMON{.S} snumber[,[n][,[contents][,HPtype]]]

Where:
sname The name of the COMMON section.

snumber A one or two digit decimal number used to construct the
COMMON section name.

n Alignment for this module section. May be 1, 2 or 4.

contents An indication of the contents of this module section. May
be M (mixed code & data), C (code), D (data), or R
(ROMable data).

HPtype How to map this section onto HP 64000 symbol files. May
be P (PROG), D (DATA), C (COMN), or A (ABS).

Description: The COMMON directive specifies to the assembler that the following
statements should be assembled in the relocatable mode using the named
common section specified. This section remains in effect until an ORG,
SECT, SECTION, OFFSET, or another COMMON directive is assembled
that specifies a different section. Initially all section location counters are set
to zero.

The user may alternate between various sections with multiple SECT and
COMMON directives within one program. The assembler will maintain the
current value of the location counter for each section.

The common section name may be any symbol or a two-digit decimal number.
The label field has different meanings in these two cases.

Assembler Directives
COMMON

146

In all cases, the optional .S determines whether or not the section has the
short attribute. In the first case, "sname" is the name of the specified common
section, and "label", if present, will be assigned the address of the current
location counter; in other words, it is a normal label. In the second case,
"snumber" is a two-digit decimal number which is the name of the common
section. In the third case, "snumber" is a one or two digit decimal number, and
"label" is combined with "snumber" to produce the name of the common
section.

Note that the same section name or number should not appear in both a
COMMON and a SECT directive, except where a label is placed on a
numbered section to create a named common area. Note also that relocatable
section 0 is predefined to have the noncommon attribute and thus may not
appear in an unlabeled COMMON directive.

Example:

Label Operation Operand Comment

LABEL1 COMMON SECT1 ;name is SECT1, LABEL1 is
 ;normal symbol
 COMMON CODE ;name is CODE
 COMMON 1 ;name is 1, common section
LABEL1 COMMON 1 ;name is 1LABEL1, common section.
 ;No conflict with other LABEL1
 COMMON C1,4,D,D ;name is C1
 ;alignment mod 4
 ;contents r/w data
 ;maps to HP DATA section

Assembler Directives
COMMON

147

DC

Define Constant

Syntax:

Label Operation Operand Comment

{label} DC{.qualifier} operand1{,operand2,...}

Where:
label An optional label that will be assigned the address of the

first byte defined.

qualifier May be .B for byte data, .W for word data, .L for longword
data, .S for single-precision floating, .D for double-precision
floating, .P for packed decimal floating, or .X for
extended-precision floating. Default is .W.

operand For qualifiers .B, .W and .L, a character string or an
expression. All expressions are calculated as 32-bit values.
For .B, this value must fit in 8 bits (either 0-filled or
one-filled); for .W, it must fit in 16 bits. If this condition is
violated, a warning is produced. For qualifiers .S, .D, .P,
and .X, a floating-point number is required. A
floating-point number which cannot be stored in the
indicated number of bits (because its exponent is too large)
is reported as an error. However, excessive bits of precision
in a specified mantissa are truncated without a warning.

Description: The DC directive is used to define up to 509 bytes of data. For operands other
than character strings, the assembler will allocate one byte per operand for a
DC.B, two bytes per operand for a DC.W or DC with no qualifier, four bytes
per operand for a DC.L or DC.S, eight bytes per operand for a DC.D, and
twelve bytes per operand for a DC.P or DC.X. All operands (except character
strings) must evaluate to a value that fits in this number of bytes or an error is
generated. Negative values are stored using their two’s complement
representation. Operands of a DC.W or DC.L may be relocatable; operands

Assembler Directives
DC

148

of a DC.B may not be. Operands of a DC.S, DC.D, DC.X, or DC.P may only
be floating-point numbers.

Character strings are stored one character per byte, starting at the
lowest-addressed byte. Character strings in a DC.W or DC.L are padded out
with zeroes in the least significant bytes of the last words, if necessary, to bring
the total number of bytes allocated to a multiple of 2 or 4, respectively.

If an odd number of bytes is entered in a DC.B directive, the odd byte on the
right will be skipped and the Location Counter aligned to an even value,
unless the next statement is another DC.B, a DS.B or a DCB.B. The byte
skipped over is not initialized in any way.

The .S and .D qualifiers permit definition of Single and Double precision
floating-point numbers respectively. The generated bit patterns are IEEE
standard and compatible with the Motorola MC68881 coprocessor, and also
with the 68040 on-chip coprocessor. Single precision is 1 sign bit, 8 exponent
bits (biased by 127), and 23 mantissa bits. Double precision is 1 sign bit, 11
exponent bits (biased by 1023), and 52 mantissa bits.

The .X qualifier permits the definition of an Extended precision floating-point
number. The .P qualifier permits the definition of a Packed Decimal
floating-point number.

Floating point numbers may be in either decimal or hexadecimal format. A
decimal floating-point number must contain either a decimal point or an "E"
indicating the beginning of the exponent field. For example: "3.14159",
"-22E-100". The latter example means "-22 times (10 to the -100th power)".
Underscores may occur before or after the "E" to increase readability.
Underscores are ignored in determining the value of a constant.

A hexadecimal floating point number is denoted by a colon ":" followed by a
series of hex digits: up to 8 digits for single-precision, or 16 digits for
double-precision. The digits specified are placed in the field as they stand; the
user is responsible for determining how a given floating-point number is
encoded in hexadecimal digits. If fewer digits than the maximum permitted
are specified, the ones that are present will be left-justified within the field.
Thus the first digits specified always represent the sign and exponent bits.

The DC.S, DC.D, DC.X, and DC.P directives will accept only floating-point
numbers as operands. DC with any other qualifier will not accept
floating-point numbers as operands.

Assembler Directives
DC

149

Example (generated
bytes shown):

4142 4344 4566 DC.B ’ABCDEfghi’
6768 69
45 DC.B ’E’ ; starts at odd address
6500 DC ’e’
4500 0000 DC.L ’E’
3132 3334 3500 DC.L ’12345’
0000
000A 0005 0007 DC.W 10,5,7
00FF DC $FF
3F80 0000 DC.S 1.0
3FF0 0000 0000 DC.D 1.0
0000
3F80 0000 DC.S :3F8
3FF0 0000 0000 DC.D :3FF
0000
3FF0 0000 0000 DC.P 1.0
0000 0000 0000
3FF0 0000 0000 DC.P :3FF
0000 0000 0000
3FFF 8000 0000 DC.X 1.0
0000 0000 0000
3FFF 8000 0000 DC.X :3FFF8
0000 0000 0000

Assembler Directives
DC

150

DCB

Define Constant Block

Syntax:

Label Operation Operand Comment

{label} DCB{.qualifier} length,value

Where:
label An optional label that will be assigned the address of the

first byte allocated.

qualifier Defines the units in which storage is measured. May be .B
for bytes, .W for words, .L for longwords, .S for
single-precision floating, .D for double-precision floating, .P
for packed-decimal floating, or .X for extended-precision
floating. Default is .W.

length An absolute expression defining the number of units of
storage to allocate. The expression may not contain
forward, undefined or external references.

value The value to which each unit is initialized. For qualifiers .B,
.W and .L, this is an expression that may contain forward
references, relocatables, externals or complex expressions.
For qualifiers .S, .D, .P, and .X, this is a floating-point
number as described under the DC directive.

Description: The DCB directive causes the assembler to allocate a block of bytes, words,
longwords, single-precision floating numbers (32 bits) or double-precision
floating numbers (64 bits) depending on the qualifier. Each unit allocated is
set to the same given value. This directive causes the location counter to be
aligned to a word boundary, unless the .B qualifier is specified.

Use of the DCB directive causes the assembler to generate a byte of code for
each byte (not unit) allocated. This can lead to large object files.

Assembler Directives
DCB

151

Example:

Label Operation Operand Comment

 DCB.L 100,$FFFFFFFF

Assembler Directives
DCB

152

DS

Define Storage

Syntax:

Label Operation Operand Comment

{label} DS{.qualifier} size

Where:
label An optional label that will be assigned the address of the

first byte allocated.

qualifier Defines the units in which storage is allocated. May be .B
for bytes, .W for words, .L for longwords, .S for
single-precision floating, .D for double-precision floating, .P
for packed-decimal floating, or .X for extended-precision
floating. Default is .W.

size A value that specifies the number of units to be allocated by
this directive. Any symbols used in this expression must be
previously defined. The final expression may not contain
any relocatable terms.

Description: This directive is used to reserve a block of sequential locations of memory. It
causes the program counter to be advanced. The contents of the reserved
bytes are unpredictable. Locations may be reserved in units of bytes, words,
longwords, single-precision floating numbers (32 bits), double-precision
floating numbers (64 bits), extended precision floating-point numbers (96
bits), or packed binary coded decimal floating-point numbers (96 bits).

The Define Storage (DS) directive causes the location counter to be aligned to
a word boundary unless the .B qualifier is used. The form DS 0 may be used to
force alignment between two DC.B, DS.B or DCB.B statements, if necessary.

Assembler Directives
DS

153

Example:

Label Operation Operand Comment

JAKE DS $62
MOE DS.B 100

Assembler Directives
DS

154

ELSEC

Conditional Assembly Converse

The ELSEC directive is used in conjunction with one of the conditional
assembly directives (IFNE, IFEQ, IFLT, IFLE, IFGE, IFGT, IFC, or IFNC)
and is the converse of the conditional assembly directive. When the argument
of the conditional assembly directive evaluates to false, all statements between
the ELSEC directive and the next ENDC are assembled. When the argument
of the conditional assembly directive evaluates to true, no statements between
the ELSEC directive and the next ENDC are assembled.

The ELSEC directive is optional and can only appear once within a
conditional block.

Example:

Label Operation Operand Comment

 IFNE MAIN
 -
 ELSEC
 -
 ENDC

Assembler Directives
ELSEC

155

END

End of Assembly

Syntax:

Label Operation Operand Comment

END {expression}

Where:
expression An address that is placed in the end record of the load

module and informs the loader where program execution is
to begin. If this expression is not specified, the module is
considered not to contain a starting address. If no module
read by the loader contains a starting address, execution
begins at absolute 0. If {expression} is not present but a
comment field is present, the latter must be preceded by
semicolon (;) or exclamation mark (!).

Description: The END directive is used to inform the assembler that the last source
statement has been read and to indicate a load module starting address. Any
statements following the END directive will not be processed.

Specifying a load address in this directive also informs the loader that this is a
main program. If multiple load modules are combined by the Linking Loader,
only one module may specify a load address and hence be a main program.

Example:

Label Operation Operand Comment

 END MAIN

Assembler Directives
END

156

ENDC

End Conditional Assembly Code

Syntax:

Label Operation Operand Comment

ENDC

Description: The ENDC directive is used to inform the Assembler where the source code
subject to the conditional assembly statement ends. In the case of nested IFxx
statements, an ENDC is paired with the most recent IFxx statement.

In the following code, if the expression SUM-4 is equal to zero, the
instructions between the IFEQ and ELSEC directives will not be assembled
and those between the ELSEC and ENDC will be assembled. If SUM-4 is
non-zero, the opposite occurs. To inhibit listing the non-assembled
instructions the OPT -I directive may be used.

Example:

Label Operation Operand Comment

 MOVE #22,D2
 IFEQ SUM-4
 ORI #200,D3 ;assembled if
 ADD D0,VALUE+3 ;SUM-4 is zero
 ELSEC
 ORI #$1F,D3 ;assembled if
 ROL #1,D0 ;SUM-4 is non-zero
 ENDC

Assembler Directives
ENDC

157

ENDR

End Repeat

Syntax:

Label Operation Operand Comment

ENDR

Description: The ENDR directive is used to end a repeat statement as defined by the
REPT, IRP, or IRPC directives. Note that an ENDR does not terminate a
macro definition.

Example:

Label Operation Operand Comment

 IRP D1
 ADD D0,VALUE+3
 ENDR

Assembler Directives
ENDR

158

EQU

Equate a Symbol to an Expression

Syntax:

Label Operation Operand Comment

label EQU expression

label EQU keyword

label EQU externsymbol[+ offset]

label EQU externsymbol[-offset]

Where:
label A symbol defined by this statement.

expression An expression whose value will be assigned to the given
label for the duration of the current assembly. An attempt
to re-equate the same label will result in an error. Any
symbols used in the expression must be defined previously.

keyword A keyword defined by the assembler or a symbol previously
defined by this directive as a keyword. Keyword may also be
a simple forward reference.

externsymbol An externally defined symbol (XREF).

offset A constant integer value.

Description: The EQU directive causes the assembler to assign a particular value to a new
label, which may be an absolute or a relocatable section value (see the
"Relocatable Symbols" section in the "Relocation" chapter). It may also be a
single external symbol. In the case of an external symbol, you may add or
subtract a constant value from the label.

Simple forward references (a single symbol with no operators) are now
accepted by EQU.

Assembler Directives
EQU

159

EQU may also be used to define new keywords to be used instead of the
predefined assembler keywords, which allows the user to assign meaningful
names to processor registers.

Example:

Label Operation Operand Comment

SEVEN EQU D7
INDEX EQU A5

Note The following example illustrates the misuse of an EQU.

Label Operation Operand Comment

Reg EQU D0
 MOVE #0,0(A0,Reg.L) ; "Reg.L" causes error.

Reg.L EQU D0.L
 MOVE #0,0(A0,Reg) ; No error occurs.

Assembler Directives
EQU

160

FAIL

Generate Programmed Error

Syntax:

Label Operation Operand Comment

FAIL {expression}

Where:
expression If present, should be absolute and contain no forward

references. If absent, 0 is used. If the value of {expression}
is less than 500, FAIL produces error number 591. If
{expression} is greater or equal to 500, FAIL produces a
warning number 591.

Description: The FAIL directive may be used to indicate an error or warning. The typical
place for this directive is within convoluted nestings of macros and conditional
assemblies, to mark a path of assembly that would never be taken if the code
did what the user intended. If the value of {expression} is less than 500, FAIL
produces error number 591. If {expression} is greater or equal to 500, FAIL
produces a warning number 591. When a FAIL directive is assembled, the
assembler marks it with a "Fail encountered" error or warning message and
displays the 32-bit value of the directive’s argument in the address field of the
listing.

Assembler Directives
FAIL

161

FEQU

Equate a Symbol to a Floating Expression

Syntax:

Label Operation Operand Comment

label FEQU{.qual} fp-expression

Where:
label A symbol defined by this statement.

qual May be .S for single-precision, .D for double-precision, .X
for extended-precision, or .P for packed-decimal.

fp-expression An floating-point expression whose value will be assigned to
the given label for the duration of the current assembly. An
attempt to re-equate the same label will result in an error.
Any symbols used in the expression must be defined
previously.

Description: The FEQU directive allows the assembler to assign a floating-point expression
to a symbol. as68k supports the IEEE standard floating-point number format
with the exponent section being optional.

Floating point numbers may be in either decimal or hexadecimal format. A
decimal floating-point number must contain either a decimal point or an "E"
indicating the beginning of the exponent field. For example: "3.14159",
"-22E-100". The latter example means "-22 times (10 to the -100th power)".
Underscores may occur before or after the "E" to increase readability.
Underscores are ignored in determining the value of a constant.

A hexadecimal floating point number is denoted by a colon ":" followed by a
series of hex digits: up to 8 digits for single-precision, or 16 digits for
double-precision. The digits specified are placed in the field as they stand; the
user is responsible for determining how a given floating-point number is
encoded in hexadecimal digits. If fewer digits than the maximum permitted
are specified, the ones that are present will be left-justified within the field.
Thus the first digits specified always represent the sign and exponent bits.

Assembler Directives
FEQU

162

Example:

Label Operation Operand Comment

COUNT1 FEQU 123.45
COUNT2 FEQU.X :9AB

Assembler Directives
FEQU

163

FILE

Specify Include File

See the description for the INCLUDE directive later in this chapter.

Assembler Directives
FILE

164

FOPT

Specify Floating-Point Options

Syntax:

Label Operation Operand Comment

FOPT ID= n

Where:
n A number in the range 0 through 7 specifying the

coprocessor ID field.

Description: The FOPT directive specifies the coprocessor ID field (0 through 7) used in
subsequent 68881 floating-point instructions. If no FOPT directive is
specified, the default ID is 1 (the 68881 coprocessor).

Example:

Label Operation Operand Comment

 FOPT ID=2 ; Specify 68881 ID #2.
 FMOVE.D #2.0,FP0 ; Move to 68881 ID #2.
 FOPT ID=1 ; Specify 68881 ID #1.
 FMOVE.D #2.0,FP0 ; Move to 68881 ID #1.

Assembler Directives
FOPT

165

FORMAT, NOFORMAT

Format the Listing

Syntax:

Label Operation Operand Comment

[NO]FORMAT

Description: These directives are recognized for Motorola compatibility but are ignored by
the assembler. as68k does not require them but recognizes them for
compatibility with the Motorola directives FORMAT and NOFORMAT.
Motorola uses these directives to format or not to format the source listing.

Assembler Directives
FORMAT, NOFORMAT

166

IDNT

Specify Module Name

Syntax:

Label Operation Operand Comment

name IDNT

Where:
name The name to be placed in the object module denoting the

module name to the loader. This name must follow all the
rules of a symbol. This name appears in the label field of
the statement. The operand field of the statement is
ignored.

Description: The IDNT directive is used to assign a name to the object module produced by
the assembler. It is identical in function to the NAME directive; however,
IDNT allows only legal identifiers for the module name, while NAME allows
an arbitrary sequence of characters. Only one IDNT directive should appear in
a program.

If an IDNT or NAME directive is not specified by the user, the default name is
the input file name (without path and extension).

Assembler Directives
IDNT

167

IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE

Conditional Statements Comparing to Zero

Syntax:

Label Operation Operand Comment

IFxx expression

Where:
expression Evaluates to a value that determines whether or not the

assembly between the IFxx and the following ELSEC or
ENDC will take place. Any symbols used in this expression
must be previously defined. The expression may not be
relocatable.

Description: The IFxx directive may be used to conditionally assemble source text between
the IFxx directive and the ELSE or ENDC directive. When the expression in
the operand field is in the indicated relationship to zero, the code will be
assembled. IFxx statements may be nested up to 16 levels and appear at any
place within the source text.

Note that these directives perform a signed comparison, treating their
operands as two’s complement 32-bit signed integers ranging from -$80000000
to + $7FFFFFFF. In contrast, the logical operators > , < = and so forth
perform unsigned comparisons, treating their operands as 32-bit unsigned
integers ranging from 0 to + $FFFFFFFF. Therefore "IFGT X" is not
equivalent to "IFNE X> 0". Logical operators return a value of $FFFFFFFF
for TRUE and zero for FALSE.

Example:

Label Operation Operand Comment

 IFGE RAMBASE

Assembler Directives
IFEQ, IFNE, IFGT, IFGE, IFLT, IFLE

168

IFC, IFNC

Conditional Assembly String Equality Test

Syntax:

Label Operation Operand Comment

IFC {string1},{string2}

IFNC {string1},{string2}

Where:
string1
string2

Are defined below.

Description: The IFC and IFNC directives provide a way to test whether two strings are or
are not equal. Depending on the result of the comparison, following
statements up to the next ELSEC or ENDC will or will not be assembled (like
the IF statement). These directives take two string arguments, both optional,
separated by a required comma. The strings are defined as follows (where the
term "nonblank" excludes tab characters also):

• If the first nonblank character following the directive is a comma, the first
string is null.

• If the first nonblank character following the directive is a single quote, the
first string consists of all characters from this quote to the matching
closing quote, including the delimiting quotes. As usual, two adjacent
quotes represent a quote character within the string. In this case, the next
nonblank after the closing quote must be a comma and blanks between
the closing quote and the comma are not significant. Commas may appear
between the quotes as part of the string.

• If the first nonblank character following the directive is neither a comma
nor a single quote, the first string consists of all characters from this one
to the last nonblank before the first comma on the line. The comma is
not part of the string. An unbalanced quote may be part of a string in this
format. Note that a string in this format cannot contain commas.

• The first string is always terminated by a comma, which is referred to
below as the "delimiting comma".

Assembler Directives
IFC, IFNC

169

• If there are no nonblanks after the delimiting comma, the second string is
null.

• If the first nonblank after the delimiting comma is a semicolon, the
second string is null.

• If the first nonblank after the delimiting comma is a single quote, the
second string goes from this quote to the terminating quote, as for the first
string. Any characters after the terminating quote are ignored.

• If the first nonblank after the delimiting comma is not a single quote or a
semicolon, the second string goes from the first nonblank following the
delimiting comma to the last nonblank before the first semicolon
following the delimiting comma; or, if there is no semicolon following the
delimiting comma, to the last nonblank on the line. In this format, the
first semicolon after the delimiting comma is considered a comment
delimiter; it and all characters after it are ignored. Note that in this
format, the second string may not contain semicolons.

Examples:

Label Operation Operand Comment

 IFC ’STRING’,’STRING’ ;equal--assembly continues
 IFNC ’string’,’ string’ ;unequal (blank in 2nd string)
 ;assembly continues
 IFC A’\1’,A’\2’ ;always unequal
 IFC ’\1’,’\2’ ;parameters are expanded
 IFC \1,\2 ;parameters are expanded
 IFC string , string ;equal (blanks not significant)

Assembler Directives
IFC, IFNC

170

IFDEF, IFNDEF

Conditional Assembly Symbol Definition Test

Syntax:

Label Operation Operand Comment

IFDEF, symbol
IFNDEF, symbol

Where:
symbol Is a program symbol that may or may not have been defined

or declared external. No forward references are allowed.

Description: The IFDEF and IFNDEF directives provide a way to test if a symbol has been
defined or declared external. Depending on the result of the test, following
statements up to the nex ELSEC or ENDC will or will not be assembled.
These directives take a single symbol as an argument that cannot be a forward
reference.

Assembler Directives
IFDEF, IFNDEF

171

INCLUDE

Include Source File

Syntax:

Label Operation Operand Comment

INCLUDE filename

FILE filename

Where:
filename The name of the host computer file to be inserted in the

Assembly Source File.

No lower to upper case conversion is performed on file
names. If the file name has a suffix ("x.h", for example), the
file name is passed without change to the operating system.
If the file name has no suffix ("source", for example), then
the suffix ".s" is appended to the filename before it is passed
to the operating system.

Description: The INCLUDE (FILE) Directive may be used to insert an external source file
into the input source code stream at Assembly time. Include statements may
not be nested and have some limitations when combined with macro calls. A
macro call may contain an INCLUDE directive, but, if an INCLUDE file is
invoked by a macro call, the INCLUDE file may not contain any additional
macro calls.

The default search directory (when none is explicitly specified), is the current
directory. Additional search paths may be specified on the command line. See
the as68k syntax in the on-line manual pages.

Example:

Label Operation Operand Comment

 INCLUDE EXTERNAL.S
 FILE EXTERNAL.S

Assembler Directives
INCLUDE

172

[NO]INTFILE

Sorts Information Using Intermediate File or Virtual Memory

Syntax:

Label Operation Operand Comment

[NO]INTFILE

Description: The linker, like the assembler, is a two pass program. Intermediate
information is stored, by default (for non-PC hosts), using virtual memory
between pass 1 and 2. The INTFILE command lets you store this
intermediate information in a temporary file. The NOINTFILE command lets
you store this information using virtual memory. Use this command if
ERROR 340 occurs.

With different systems, using a temporary file may be faster than using virtual
memory. Also, depending on the configuration for running large jobs, the
virtual allocation size can be limited if a virtual error is returned and error
message (ERROR 340) is displayed.

Using the INTFILE command is the same as specifying the -b option on the
command line.

Example:

INTFILE
LOAD mod1.obj
END

Assembler Directives
[NO]INTFILE

173

IRP

Specify Indefinite Repeat

Syntax:

Label Operation Operand Comment

{label} IRP model parameter{,actual parameter, . . .}

Where:
label An optional label assigned the address of the current

program counter.

model parameter The parameter which will be replaced by actual
parameters.

actual parameter The actual parameter whose number determines the
number of repeats.

Description: The IRP directive specification includes a "model" parameter followed by a
list of actual parameters. The sequence of statements enclosed by the IRP and
ENDR directives is repeated once for each actual parameter, substituting the
actual parameter everywhere the model is found. Parameter substitution is
identical to that which is performed in a macro.

The parameter list begins after the model parameter. A null parameter list
causes the macro to be expanded one time with a null replacing the model
parameter.

Like macro definitions, repeat directives cannot be nested. Only one macro
definition may be used inside a repeat directive.

Example:

Label Operation Operand Comment

 IRP DUMMY,SUB1,SUB2,SUB3
 JSR DUMMY ;Three JSR instructions generated
. ENDR

Assembler Directives
IRP

174

IRPC

Specify Indefinite Repeat Character

Syntax:

Label Operation Operand Comment

{label} IRPC model parameter{,actual parameter}

Where:
label An optional label assigned the address of the current

program counter.

model parameter The parameter which will be replaced by actual parameters.

actual parameter The actual parameter whose length determines the number
of repeats.

Each character in the parameter will be substituted for the
model parameter during each repetition.

Description: The IRPC directive specifies a model parameter and a single actual parameter.
The sequence of statements is repeated once for each character of the actual
parameter. The IRPC directive may be terminated with the ENDR directive.

The actual parameter list begins after the first parameter. A null actual
parameter list causes the macro to be expanded one time with a null replacing
the model parameter.

Like macro definitions, repeat directives cannot be nested. Only one macro
definition may be used inside a repeat directive.

Example:

Label Operation Operand Comment

 IRPC DUMMY,1234
 MOVE #DUMMY,D0 ;Four MOVE and JSR instructions
 JSR SUB ;are generated.
 ENDR

Assembler Directives
IRPC

175

LIST

Turn On Source Listing

Label Operation Operand Comment

LIST

Description: This directive causes a listing of the assembly to be printed. This is the
default. (The OPT S directive is another way to indicate a listing of the
assembly is to be printed.)

Assembler Directives
LIST

176

LLEN

Change Length of Output Listing Line

Syntax:

Label Operation Operand Comment

LLEN n

Where:
n An absolute expression whose value is between 37 and 1100

inclusive. Forward references are not allowed.

Description: This directive changes the length of the line on the source listing. The user
specifies the new length, which must be between 37 and 1100 inclusive. The
value of 116 allows printing of the full 80 columns of the input source. The
default value for the line length is 132.

This directive does not affect the header lines at the top of each page, which
are printed in a format of fixed length.

Assembler Directives
LLEN

177

MASK2

Generate Code for R9M

This directive is recognized for Motorola compatibility but is ignored.

Assembler Directives
MASK2

178

NAME

Specify Module Name

Syntax:

Label Operation Operand Comment

NAME modulename

Where:
modulename The name to be placed in the object module denoting the

module name to the loader.

Modulename is specified as an arbitrary sequence of
characters from the first non-white-space character
following NAME through the end of the line.

Note Because the modulename is everything up to the end of the line, a comment
field used with the NAME directive will cause the comment to become part of
the modulename.

Description: The NAME directive is used to assign a name to the object module produced
by the assembler. It is identical in function to the IDNT directive. However,
the syntax of NAME allows the module name to be an arbitrary sequence of
characters while IDNT allows only legal identifiers. Only one NAME or
IDNT directive should appear in a program.

If a NAME or IDNT directive is not specified, the default module name is the
input file name (without path and extension).

Assembler Directives
NAME

179

NOLIST

Turn Off Source Listing

Label Operation Operand Comment

NOLIST

Description: This directive suppresses printing of the assembler listing. The OPT -S
directive may also be used to suppress the listing.

Assembler Directives
NOLIST

180

NOOBJ

Suppress Creation of Output Object Module

Label Operation Operand Comment

NOOBJ

Description: This directive suppresses creation of the output object module. The OPT -O
directive may also be used for this purpose.

Assembler Directives
NOOBJ

181

NOPAGE

Suppress Paging on Listing

Label Operation Operand Comment

NOPAGE

Description: This directive suppresses all page ejects and page headers on the output
listing, including those explicitly specified by the PAGE directive. NOPAGE
affects the entire listing, no matter where the directive appears in the program.
Once paging has been disabled it cannot be re-enabled.

Assembler Directives
NOPAGE

182

OFFSET

Define Table of Offsets

Label Operation Operand Comment

{label} OFFSET n

Where:
label An optional label to identify the offset location.

n An absolute expression containing no forward references.

Description: This directive is used to define a table of absolute offsets. It is present for
convenience and compatibility, but performs no function that cannot be
handled with EQU’s. The OFFSET directive is much like ORG in that it
terminates the previous section and alters the Location Counter to an
absolute value. However, an OFFSET "section" may not contain code and
instructions, DC and DCB directives are illegal within an OFFSET section.
OFFSET has one operand, which is an expression that must be absolute and
must contain no forward or external references. This required operand is the
new value for the Location Counter. The OFFSET "section" is terminated by
an ORG, OFFSET, SECT, SECTION, COMMON or END directive.

The usual use for OFFSET is to define a storage template in mnemonic terms.
For example, suppose we want to define symbols to represent the beginnings
of the 80 column rows of an 80 column by 24 row character terminal screen.
Suppose further that we define an area of memory called SCREEN and that
we will address the rows as SCREEN+ ROW1, SCREEN+ ROW2, and so on.

The following example uses EQU to achieve the purpose.

Label Operation Operand Comment

SCREEN DS.B 80*24
ROW1 EQU SCREEN+0
ROW2 EQU SCREEN+80
ROW3 EQU SCREEN+160
 .
 .
 .
ROW24 EQU SCREEN+1840

A clearer alternative for complex structures is the use of OFFSET.

Assembler Directives
OFFSET

183

Label Operation Operand Comment

SCREEN DS.B 80*24
 OFFSET 0
ROW1: OFFSET 80
ROW2: OFFSET 80
 .
 .
 .
ROW24: OFFSET 80
 END

Assembler Directives
OFFSET

184

OPT

Set the Options Specified

Syntax:

Label Operation Operand Comment

OPT [no| -]flag {,[no| -]flag}...

Precede the flag with "-" or NO to turn the flag off.

Where: flag is one of the following:

ABSPCADD (Absolute w/PC = Address) specifies that an absolute
expression appearing in conjunction with the mnemonic
"PC" refers to an address rather than an absolute
displacement. Thus 5(PC) would refer to absolute address
5, reached via PC relative mode, rather than 5+ current PC.
This flag applies to the base displacement, not the outer
displacement, in the 68020/30/40 expressions containing
square brackets. This flag may be turned on and off at the
user’s discretion; the last setting applies.
(Default= ABSPCADD)

B
BRB
BRS

(Branch) specifies that forward references in relative branch
instructions (Bxx) will use the short form of the instruction
(8-bit displacement). This option affects only Bxx
instructions (Default= BRW, or 16 bit displacements).

BRL (Branch) forces the long address mode to be used in relative
branch instructions (Bcc, BRA, BSR) that have forward
references. In 68020/30/40 mode, 32-bit displacements will
be used unless OPT OLD has been specified. If OPT OLD
has been specified with 68020/30/40 mode, 16 bit
displacements will be used. In all other processor modes, 16
bit displacements are used. (Default= BRW, or 16 bit
displacements).

Assembler Directives
OPT

185

Note NOB, NOBRB, NOBRS, and NOBRL all cause BRW to be chosen.

BRW (Branch) forces 16 bit displacements to always be used in
relative branch instructions (Bcc, BRA, BRS) that have
forward references (Default= BRW, or 16-bit
displacements.)

C
CEX

Specifies that all lines of data (after the first) generated by
the DC directive will be listed. NOTE: this option does not
affect the operation of the DC directive. CEX is a synonym
for C (Default= C).

CASE Specifies that symbols are case sensitive (Default= CASE).

CL
I

Lists instructions not assembled due to conditional
assembly statements (Default).

CRE
X

Specifies that the cross reference information appears as an
addition to the symbol table information
(Default= NOCRE).

D (Debug) specifies that the symbol table will be placed into
the object module and may be used for debugging. This
option must also be specified before any instruction that
generates object code. If OPT CASE is set, symbols are
placed in symbol table as defined. (Default= D).

E (Error) specifies that Error messages and Warnings will be
listed on the standard error output (Default= E).

F
FRS

Causes the assembler to allocate 16 bits for extensions on
instructions whose operands contain forward defined
symbols. F is a synonym for FRS and -F or NOF is a
synonym for FRL (Default= FRL).

FRL Causes the assembler to allocate 32 bits for extensions on
instructions whose operands contain forward defined
symbols. During Pass 2, the assembler may decide to access
the operand using absolute-short, absolute-long, or
PC-plus-displacement modes (Default= FRL).

Assembler Directives
OPT

186

G List the assembler generated symbols in the symbol or cross
reference table. If D is also on, these symbols are placed in
the object module as well (Default= NOG).

HLASYM Affects the symbolic information in the IEEE relocatable
file for compiler-generated modules. Hlasym causes
assembly- level local symbols to be put into the output file.
Nohlasym causes assembly-level local symbols from
compiler-generated modules resulting in smaller output
files. Compiler-generated symbols are not affected by this
flag (default: nohlasym).

M
MEX

(Macro expansion) specifies that macro expansions and
structured syntax expressions will be listed in the program
listing. MEX is a synonym for M (Default= M).

MC (Macro calls) specifies that macro calls will be listed in the
program listing (Default= MC).

MD (Macro Definitions) specifies that macro definitions will be
listed in the program listing (Default= MD).

NEST= n Sets the maximum nesting level of macros to n. The default
is the maximum level for nesting (Default= 100).

O (Object) specifies that the object module will be produced
(Default= O).

OLD Specifies that the interpretation of the OPT BRL directive,
and explicit .L qualifiers on Bcc instructions, will be 16-bit
displacements (as appropriate for the 68010 and earlier
processors), even though the processor mode is 68020 or
greater. This is convenient for migrating 68000 programs
onto the 68020/30/40 and CPU32 chips.
(Default= NOOLD).

OP= n Sets the maximum number of optimization loops that the
assembler will do if OPT OPNOP is set. The assembler will
discontinue looping either when there is a pass in which no

Assembler Directives
OPT

187

optimization occurs or when this limit is reached
(Default= OP= 3).

OPNOP Remove NOP instructions generated by the assembler.
When the assembler encounters a forward reference during
pass 1, it will allocate space for an instruction based on
worst case assumptions. During pass 2, it will sometimes
generate a shorter form of the instruction and fill the
remaining space with NOPs. This flag removes those NOPs
but at the cost of increased assembly time because it makes
additional passes over the file (Default: noopnop).

P
PCO

(Program counter relative) specifies that a program counter
with displacement address mode will be used on references
within the absolute section, provided that this address mode
is legal for the instruction and that the displacement from
the program counter fits within the 16-bit field provided.
This option does not affect references either from or to a
relocatable section. PCO is a synonym for P
(Default= NOP).

P= chip (Processor type) identifies the target processor. This option
is distinguished from OPT P by the equals sign, which must
immediately follow the P. See the CHIP directive (which is
equivalent to OPT P=) for a list of valid processor types
and for a discussion of the differences between the various
target processors. The preceding NO or minus sign is not
permitted on this option, because it makes no sense
(Default= 68000).

PCR (PC Relative) specifies that a program counter plus
displacement address mode will be used on references from
a relocatable section to the same relocatable section. This
applies to all instructions for which the program counter
relative address mode is legal, provided that the
displacement fits into the 16-bit field.

PCS
R

(Relocatable) specifies that a program counter with
displacement address mode will be used on references from
a relocatable section to a relocatable section. This applies
to all instructions for which program counter relative is a

Assembler Directives
OPT

188

legal address mode. The PCS flag applies to references to a
different section within a file and to all external references
that have any relocatable section name specified. If R is on
and a reference to a relocatable section results in a
displacement larger than 16 bits, it is considered an error.
PCS is a synonym for R (Default= NOR).

QUICK Quick allows the assembler to optimize certain mnemonics
when possible. The mnemonic optimizations are MOVE to
MOVEQ, ADD to ADDQ, and SUB to SUBQ. NOQUICK
prevents these optimizations (Default= QUICK).

REL32 This flag applies to 68020/30/40 address modes.

Rel32 causes the assembler to use 32-bit base and outer
displacements for forward, external, or relocatable operands.

Norel32 causes 16-bit base and outer displacements. This
flag applies to operands that do not have explicit word or
longword size qualifiers (Default: norel32).

S (Source) specifies the source text will be listed. The
directives LIST and NOLIST are other ways to specify OPT
S and OPT -S respectively (Default= S).

T (Table) specifies the symbol table will be listed (Default= T).

W Specifies that warnings are to be suppressed during the
assembly (Default= NOW).

Description: The OPT directive may be used to generate listings of the elements specified,
to influence the assembler’s choice of address modes in ambiguous situations,
and to control the form of the object output.

The defaults in the assembler are:

• The source text, symbol table, macro definitions, macro calls, macro
expansions, and conditional assembly statements not assembled are all
listed.

• An object module in relocatable format is produced.

Assembler Directives
OPT

189

• The symbol table is placed into the object module.

• References to locations whose relative displacement cannot be
determined at assembly time will use an absolute address mode, unless the
user specifically requests otherwise.

• Forward and external references will leave room for an absolute long
address.

• A relative branch to a forward reference will use the long (16-bit
displacement) form of the instruction.

• The target chip is the 68000.

• The 68881 instructions are legal.

• Symbols are case sensitive.

• Error messages and warnings are listed to the standard error output.

To turn on an option, use the single or multiple letter code shown below.
(Many options have more than one possible spelling.) To turn off an option,
precede it by a minus sign or the characters "NO". Default settings for options
are shown below.

Error messages are always listed, regardless of the elements specified. In
particular, the E option may be used to generate a listing that consists only of
error messages and is in a separate file.

Example:

Label Operation Operand Comment

 OPT -x,D do not list cross reference
 table but put symbol
 table in object module

Assembler Directives
OPT

190

ORG

Begin Absolute Section

Syntax:

Label Operation Operand Comment

ORG{.qualifier} {expression} {,name}

Where:
qualifier May be S or L. ORG.S is interpreted as both ORG and

OPT FRS. ORG.L is interpreted as both ORG and OPT
FRL. ORG with no qualifier does not alter the F option.

expression A value that will replace the contents of the Assembly
Location Counter; bytes subsequently assembled will be
assigned memory addresses beginning with this value. This
expression may contain no forward, undefined, or
relocatable symbols (including external references). The
form " * + or- displacement " is legal. The value of * in this
case is the ending value of the previous absolute section, or
0 for the first absolute section.

name Specifies the name of the section.

If a comment field is present, it must be preceded by semicolon (;) or
exclamation mark (!).

Description: The ORG directive is used to begin an absolute section. The Location
Counter is set to the value of the operand, if present. If there is no operand,
the Location Counter is set to immediately follow the last preceding absolute
section, if there was one. If the first ORG in a program has no operand, the
Location Counter is set to 0. All subsequent bytes will be assigned sequential
addresses beginning with the address in the Location Counter.

If the program does not have an ORG, SECT, SECTION or COMMON
statement before the first code-generating statement, a SECTION 0 is
assumed and assembly begins at location zero in the relocatable noncommon
long section named 0.

Assembler Directives
ORG

191

Example:

Label Operation Operand Comment

 ORG $100

Assembler Directives
ORG

192

PAGE

Advance Listing Form to Next Page

Syntax:

Label Operation Operand Comment

PAGE

Description: This directive instructs the assembler to skip to the top of the next page on
the listing form, in order to make program listings easier to read. Some
programmers prefer to start each subroutine on a new page. If the NOPAGE
directive was specified, this directive is ignored.

Assembler Directives
PAGE

193

PLEN

Specify Length of Listing Page

Syntax:

Label Operation Operand Comment

PLEN n

Where:
n An absolute expression whose value is greater than 12.

Description: PLEN specifies the number of lines in an assembler listing page. The default
value is 60. The value specified must be greater than 12.

Assembler Directives
PLEN

194

REG

Define Register List

Syntax:

Label Operation Operand Comment

label REG register-list

Where:
label A symbol whose value is to be defined.

register-list List of registers in the format recognized by the MOVEM
instruction, to wit:

 - A single register.
 - A range of consecutive registers of the same type (A or
D), denoted by the lowest and highest registers to be
transferred separated by a hyphen (lower one must come
first).
 - Any combination of the above separated by a slash.

Description: This directive assigns a symbolic name to a register list for future use by the
MOVEM instruction. The symbol may be redefined as a different register list.
Note that this redefinition is not compatible with Motorola.

Example:

Label Operation Operand Comment

SAVE REG A1-A5/D0/D2-D4/D7
 MOVEM (A6),SAVE

Assembler Directives
REG

195

REPT

Specify Repeat

Syntax:

Label Operation Operand Comment

{label} REPT count

Where:
label An optional label assigned the address of the current

program counter.

count An expression indicating the number of times to repeat the
code. This expression may not be relocatable or contain
symbols not previously defined.

Description: This directive allows a sequence of directives to be repeated a specified
number of times. The statements to be repeated are those between the REPT
and the following ENDR directive. The statements are expanded from the
point at which the REPT directive is encountered.

Example:

Label Operation Operand Comment

 REPT 3 ;Repeat next 2 lines 3 times.
 DC.B ’A’
 DC.B ’B’
 ENDR

Assembler Directives
REPT

196

RESTORE

Restore Assembler Options

Syntax:

Label Operation Operand Comment

RESTORE

Description: The RESTORE directive restores those options that were previously saved by
the SAVE command. Once RESTORE is specified, all options specified after
the last SAVE will no longer have any effect.

Example:

OPT P=68010
 . . .
 . . .
SAVE
OPT P=68020 ; 68020 instructions are now legal
 . . .
 . . .
CAS D0,D1,(A3) ; 68020 instruction
 . . .
 . . .
RESTORE
 . . . ; 68020 instructions are no longer legal
 . . .
END

Assembler Directives
RESTORE

197

SAVE

Save Assembler Options

Syntax:

Label Operation Operand Comment

SAVE

Description: The SAVE directive saves the current set of OPT options (see the OPT
command for a list of these options). The processor and coprocessor types are
also saved.

The options can be restored at a later time with the RESTORE command.
Once RESTORE is specified, all options specified after the last SAVE will no
longer have any effect.

Example:

OPT P=68010
 . . .
 . . .
SAVE
OPT P=68020 ; 68020 instructions are now legal
 . . .
 . . .
CAS D0,D1,(A3) ; 68020 instruction
 . . .
 . . .
RESTORE
 . . . ; 68020 instructions are no longer legal
 . . .
END

Assembler Directives
SAVE

198

SECT, SECTION

Specify Section

Syntax: There are three distinct syntaxes:

Label Operation Operand Comment

{label} SECT{.S} sname{,align}{,contents}{,HPtype}

SECT{.S} snumber{,align}{,contents}{,HPtype}

label SECT{.S} snumber{,align}{,contents}{,HPtype}

Where:
label Specifies a label equal to the address of the current program

counter. If snumber is specified, label cannot be used if
SECT is a non-common section. If snumber is a common
section, then snumber and label will be combined to form
the section name.

.S Assigns the absolute short attribute to the section. All
symbols specified will be found in an area of memory
accessible by a 16-bit address, or they will be constants with
a 16 bit or smaller value.

sname Symbol name. Any valid symbol may be used.

align The number of bytes of alignment, 1, 2 or 4. The section
alignment attribute allows you to specify that a section be
located on a 1, 2, or 4 byte boundary. Refer to the
"Relocation" chapter for more information.

contents Contents of section:

 C - Program code.
 D - Data.
 M - Mixed code & data.
 R - ROMable Data.

The section contents attribute is used by HP debuggers to
gain efficiency. See Relocation chapter.

Assembler Directives
SECT, SECTION

199

HPtype Specifies how to map this section on to the HP 64000
asmb_sym and link_sym files

 A - ABS
 C - COMN
 D - DATA
 P - PROG

snumber Section number. Up to two decimal digits may be used.

Description: The SECT directive specifies to the assembler that the following statements
should be assembled in the relocatable section specified, which remains in
effect until an ORG, OFFSET, COMMON or another SECT or SECTION
directive is assembled that specifies a different section. Initially all section
location counters are set to zero.

SECT and SECTION are completely equivalent.

The user may alternate between the various sections with multiple section
directives within one program. The assembler will maintain the current value
of the location counter for each section.

Creating a common section name by combining the label and section number
is not a behavior that is consistent with the Motorola assembler.

Example:

Label Operation Operand Comment

LABEL1 SECT SECT1 ;name is SECT1, LABEL1 is
 ;normal symbol.
 SECT.S CODE ;name is CODE.
 SECTION 0 ;name is 0, noncommon section.
LABEL1 SECTION 0 ;name is 0LABEL1, common section.
 SECT A,4 ;in each file, 1st byte of
 ;section A is quad aligned.
 SECT B,4,C ;quad aligned, section
 ;type = program code.
 SECT C,,D,C ;C section type = data.
 ;HP 64000 section COMN

Assembler Directives
SECT, SECTION

200

SET

Equate a Symbol to an Expression

Syntax:

Label Operation Operand Comment

label SET expression

Where:
label A symbol defined by this statement.

expression A value that will be assigned to the given label until
changed by another SET directive. Any symbols used in the
expression must be previously defined.

Description: The SET directive sets a symbol equal to a particular value. Unlike the EQU
directive, multiple SET directives for the same symbol may be placed in a
source program. The most recent SET directive determines the value of the
symbol until another SET directive is processed.

Like EQU, this directive may also be used to define new keywords.

Example:

Label Operation Operand Comment

GO SET 5
GO SET GO+10

Assembler Directives
SET

201

SPC

Space Lines on Listing

Syntax:

Label Operation Operand Comment

SPC expression

Where:
expression Must evaluate to an absolute value that determines how

many lines are to be skipped. It may not be relocatable, but
may contain forward references.

Description: This directive causes one or more blank lines to appear on the output listing.
It enables the programmer to format the listing for easier reading. The
directive itself does not appear in the listing.

The user may also use a blank source statement to insert blank lines on the
listing.

Example:

Label Operation Operand Comment

 SPC 7

Assembler Directives
SPC

202

TTL

Set Program Heading

Syntax:

Label Operation Operand Comment

TTL heading

Where:
heading Title that will be placed at the beginning of each page. Up

to 60 characters may be used in the heading, with additional
characters being ignored. The heading may optionally be
delimited by single quotes, as shown in the example. If so,
the quotes are not considered part of the title. If the
terminating quote is not present, the first 60 characters will
be used.

Description: This directive is used to print a heading at the beginning of each page of the
listing, in addition to the line identifying the listing as output of the as68k
assembler. The default heading defined by the assembler is all blank. For a
user specified title to appear on the first page of the output listing, this
directive must be the first statement in the program.

Example:

Label Operation Operand Comment

 TTL ’TEST PROGRAM’

Assembler Directives
TTL

203

XCOM

Specify Weak External References

Syntax:

Label Operation Operand Comment

XCOM symbol,size

Where:
symbol The name of a symbol referenced in this module but defined

in a different module or by the linker.

size The size in bytes that the linker will reserve if there is no
specific public definition for this symbol.

Description: The XCOM directive specifies a symbol that is referenced in this module but is
assumed to be defined in a separate module. If no module defines symbols,
then the linker will reserve space for the symbol in a section named "zerovars".

This directive was created to support the assembly of compiler- generated
assembly code. Some languages like ANSI C permit several modules to define
the same variable. In order to prevent duplicate symbol errors, a compiler
might generate XCOM directives for its variables instead of defining variables
in each module. The linker will then allocate space for the symbols.

XCOM directives can appear anywhere within the program. You can declare
common symbols to be externally defined multiple times. Common symbol
references can appear in any section including absolute sections.

A size (in bytes) must be supplied so that if the linker must define the symbol,
the appropriate size will be allotted.

Example:

XCOM PROC1,1

In this example, the weak external reference for the symbol PROC1 assumes
that the final value is long. If the linker must define its value, one byte of
space will be reserved for it.

Assembler Directives
XCOM

204

XDEF

Specify External Definition

Syntax:

Label Operation Operand Comment

XDEF symbol list

Where:
symbol list A list of symbols separated by commas that specify the

names defined in this module and to be referenced by other
modules. Symbols in the list cannot be separated by spaces.

Description: This directive specifies a list of symbols that will be given the external
definition attribute. These symbols will then be made available to other
modules by the linker. Symbols appearing in this directive are placed in the
object module.

XDEF may appear anywhere within the program and each symbol may be
declared multiple times. Declarations after the first, for any given symbol, will
be ignored.

Symbols that are declared with this directive (but not defined in the program)
will be flagged as undefined in the output listing.

Note An XDEF will override a previous XREF for any symbol that has not been
previously defined.

Example:

Label Operation Operand Comment

 XDEF SCAN,LABEL,COSINE

Assembler Directives
XDEF

205

XREF

Specify External Reference

Syntax:

Label Operation Operand Comment

XREF{.S} {sname:}symbol{,{sname:}symbol,...}

Where:
.S Means that all symbols in the statement will be found in the

area of memory accessible by the absolute short mode, or
will be constants with 16-bit or smaller values. Also, any
section whose name or number appears in the statement is
designated as short.

sname A section name or number.

symbol The name of a symbol referenced in this module that is
defined in a different module. Spaces are not allowed
between the symbols in the list.

Description: This directive specifies a list of symbols that will be given the external
reference attribute, and optionally assigns to each symbol the name (or
number) of a relocatable section. External references are symbols that are
referenced in this program module but defined within another program. The
XREF directive provides the linkage to those symbols through the Linking
Loader.

XREF may appear anywhere within the program and each symbol may be
declared multiple times. Declarations after the first, for any given symbol, will
be ignored.

Specifying the section name (or number) of an external reference sometimes
affects the assembler’s choice of address mode (refer to the "Instructions and
Address Modes" chapter). Also, during the Linking process, the Loader will
verify that the externally referenced symbol is indeed in the specified section.
An external reference with no section name or number specified is presumed
to be absolute for the purpose of selecting addressing modes.

Assembler Directives
XREF

206

A section name (or number) applies to all symbols following it, until the
appearance of another section name (or number) or the end of the statement.
It is legal for a section name to appear only in XREF statements. In this case,
however, it counts toward the total of 200 allowable section names.

Example:

Label Operation Operand Comment

 XREF PROC1,PROC2,SECT1:INPUT,2:OUTPUT

Assembler Directives
XREF

207

Assembler Directives
XREF

208

7

Macros

This chapter defines the parts of a macro and describes some directives you
can use to define macros.

209

A macro is a sequence of instructions that can be automatically inserted in the
assembly source text by encoding a single instruction, known as the macro call.
The macro definition is written only once, but can be called any number of
times. The macro definition may contain parameters which can be changed
for each call. The macro facility simplifies the coding of programs, reduces
the chance of programmer error, and makes programs easier to understand,
since the source code need only be changed in one location, which is in the
macro definition.

A macro definition consists of three parts: a heading, a body, and a terminator
and must precede any call to this macro. A macro may be redefined at any
place in the program, but the most recent definition of a macro name will be
used when the macro is called. A standard assembler mnemonic (e.g., OR)
may also be redefined by defining a macro with the name OR. In this case all
subsequent uses of the OR instruction in the program will cause the macro to
be expanded.

Macros

210

Macro Heading

The heading, which consists of the directive MACRO, gives the macro a name
and defines any formal parameters.

Label Operation Operand Comment

label MACRO {parameter list}

Label specifies the macro name and must not end and must not contain a
period (such as for as size qualifier like .W) because these strings will be
interpreted as a qualifier or a shorter name when the macro is invoked later,
and the correct macro will not be referenced. Other than this, the macro
name may be any legal symbol and it may be the same as other program
defined symbols since it has meaning only in the operation field. For example,
TAB could be the name of a symbol as well as a macro.

If a macro name is identical to a machine instruction or an assembler directive,
the mnemonic is redefined by the macro. Once a mnemonic has been
redefined as a macro, there is no way of returning that name to be a standard
instruction mnemonic. A macro name may also be redefined as a new macro
with a new body.

The operand field of the MACRO line may contain the names of dummy
formal parameters in the order in which they will occur on the macro call.
Each parameter is a symbol and multiple parameters must be separated by
commas. The symbols used as formal parameters are known only to the macro
definition and may be used as regular symbols outside the macro.

Named formal parameters need not be specified. Unnamed parameters (and
named parameters as well) can be referenced with the Motorola backslash
notation (described below) in terms of the parameter’s position on the call
line. However, unnamed (i.e., null) formal parameters are not allowed if they
are followed by any named parameters; for example, "XYZ MACRO
,,PARAM3" is not allowed. This means that unnamed parameters must either
come after all named parameters on the macro definition line or must be
assigned a dummy name.

Macros
Macro Heading

211

Macro Body

The first line of code following the MACRO directive that is not a LOCAL
directive is the start of the macro body. MACRO body statements are placed
in a macro file for use when the macro is called. During a macro call, an error
will be generated if another macro is defined within a macro. No statements
in a macro definition are assembled at definition time; they are simply stored
in the macro file until called, at which time they are inserted in the source
code at the position of the macro call.

The name of a formal parameter specified on the MACRO directive may
appear within the macro body in any field. If a parameter exists, it is marked,
and the real corresponding parameter from the macro call will be substituted
when the macro is called. Parameters are not recognized in a comment
statement or in the comment field of a statement, provided the comment field
is prefixed by a semicolon (;).

Alternatively, parameters may be referenced in the form \n where n is a
non-negative integer. Parameter \0 is the qualifier (extension) of the macro
call and may appear only as a qualifier on opcodes in the macro body. (This is
the only format in which this qualifier can be referenced). Parameters
\1,\2...\9,\A,...\Z are the first,second... real parameters on the macro call line.

Macro parameters will be expanded in a quoted string. But, if the quoted
string is preceded by "A" or "E" (for ASCII or EBCDIC), macro parameters
are not recognized within the string. This extension permits backslashes and
formal parameter names to appear as a string when the user so desires.

When referring to macro parameters in the macro body, you may precede the
macro parameter with "&&". This allows you to embed the parameter in a
string. For example:

1 MAC1 MACRO P1
2 L&&P1 MOVE D0,D1 ; Create label using parameter.
3 ENDM
4
5 MAC1 XX ; Call macro.
5.1 00000000 3200 LXX MOVE D0,D1 ; Create label using parameter.
6 END

Macros
Macro Body

212

Macro Terminator

The ENDM directive terminates the macro definition. During a Macro
definition an ENDM must be found before another MACRO directive may be
used. An END directive also terminates a macro definition as well as the
assembly of the file in which it is contained.

The format of the ENDM directive is as follows:

Label Operation Operand Comment

{label} ENDM

Where:

label An optional label that becomes the symbolic address of
the first byte of memory following the inserted macro.
Labels with embedded parameters are not allowed on
the same line as the ENDM directive. The label can be
placed on the line preceding the ENDM directive for
the desired effect.

Macros
Macro Terminator

213

Macro Call

A macro may be called by encoding the macro name in the operation field of
the statement.

The format of the call is shown below.

Label Operation Operand Comment

{label} name{.qualifier} {parameter list}

Where:

label An optional label that will be assigned a value equal to
the current program counter.

name The name of the macro called. This name should have
been defined by the MACRO directive or an error
message will be generated.

qualifier An optional qualifier that may be B, W, L or S and is
passed to the macro as parameter \0.

parameter A list of parameters separated by commas. Parameters
may be constants, symbols, expressions, character
strings or any other text separated by commas. The
number of parameters cannot exceed 35.

The parameters in the macro call are actual parameters and their names may
be different than the formal parameters used in the macro definition. The
actual parameters will be substituted for the formal parameters in the order in
which they are written. Commas may be used to reserve a parameter position.
In this case, the parameter will be null (i.e., contain no actual characters).
The formal parameter corresponding to a null actual parameter is simply
removed during macro expansion. Any parameters not specified will be null.
The parameter list is terminated by a blank, tab, newline, or semicolon. The
macro processor does not recognize a semicolon as a delimiter. A comment
beginning with a semicolon following the parameter list must be separated
from the parameter list by a blank or tab (white space).

Macros
Macro Call

214

All actual parameters are passed as character strings into the macro definition
statements. Thus, symbols are passed by name and not by value. In other
words, if a symbol’s value is changed in the macro, in its expansion it will also
have the new value outside of the macro. Thus SET directives within a macro
body may alter the value of parameters passed to the macro.

The angle brackets (< >), are used to delimit actual parameters that may
contain other delimiters. When the left bracket is the first character of any
parameter, all characters between it and the matching right bracket are
considered part of that parameter. The outer brackets are removed when the
parameter is substituted in a line. Angle brackets may be nested for use
within nested macro calls. The brackets are the ONLY way to pass a
parameter that contains a blank, comma, or other delimiter. For example, to
use the instruction "ROL # 1,D1" as an actual parameter would require
placing < ROL # 1,D1> in the actual parameter list. A null parameter may
consist of the angle brackets with no intervening characters, but the characters
< and > may not be passed as parameters and the parameter \0 may not
contain angle brackets.

An example of a macro call and its expansion is shown below. Note that
expanded code is marked with plus signs.

Label Operation Operand Comment

GET MACRO W,Y,Z ;macro definition
 MOVE #w,D5
 ROL #1,D5
 y
z JMP \4
 ADD.\0 #5,D0
 ENDM

 -
LOOP GET.B 200,<BRA DATA>,ENTRY,MAIN ;macro call
 JMP FIRST
 -

 -
 -
LOOP GET.B 200,<BRA DATA>,ENTRY,MAIN ;macro expansion
+ MOVE #200,D5
+ ROL #1,D5
+ BRA DATA
+ENTRY JMP MAIN
+ ADD.B #5,D0
 JMP FIRST

The operator double equal sign (= =), pronounced "exists", may be used to
determine whether a parameter is present or not in the macro call. This
operator returns a true value (all ones) if any operand follows the = = and a

Macros
Macro Call

215

false value (all zeros) otherwise. For example, the following code checks
whether the second parameter is present.

Label Operation Operand Comment

MSET MACRO DATA,MEM
 IFNE ==MEM
 MOVE #DATA,MEM
 ELSEC
 MOVE #DATA,(A1)
 ENDM

The = = operator may be used in combination with other operators. It takes
as its argument the entire remainder of the line, up to a comment delimiter (if
present) or the end of the line. Therefore, using other operators to the right
of = = is useless. Also, if a comment field is to follow an = = operator, it
must be prefixed with a semicolon (;). A parameter consisting entirely of
blank characters will test as null.

Macros
Macro Call

216

LOCAL - Define Local Symbol

All labels, including those within macros, are known to the entire program. A
macro containing a label that is called more than once will cause a duplicate
label error to be generated. To avoid this problem, the user may declare labels
within macros to be local to the macro. Each time the macro is called the
assembler assigns each local symbol a system generated unique symbol of the
form ??nnnn. Thus, the first local symbol will be ??0001, the second ??0002,
etc. The assembler does not start at ??0001 for each macro, but increases the
count for each local symbol encountered. The maximum number of local
symbols allowed inside a macro definition is 90.

The symbols defined in this directive are treated like formal macro parameters
and hence may be used in the operand field of instructions. The operand field
of the LOCAL directive may not contain any formal parameters defined on
the MACRO directive line. As many LOCAL directives as necessary may be
included within a macro definition but they must occur immediately after the
MACRO directive and before the first line of the macro body, including
comment lines. LOCAL directives that appear outside a macro definition will
generate an error.

For compatibility with existing code, the assembler will also recognize the
Motorola method of declaring local symbols. The string "\@" denotes the
presence of a local symbol. The full name of the symbol is formed by
concatenating "\@" with any adjacent symbol(s) (e.g., "DON\@T" counts as
one local symbol). The total length of a symbol formed in this way should not
exceed 31 characters, or the assembler may not resolve it correctly. At macro
expansion time, the entire local symbol is replaced by a symbol of the form
??nnnn, just like named local symbols. This form may be mixed with named
local symbols without conflict (although this is not recommended).

Local symbols declared by the "\@" construction may not be present in a
LOCAL statement, but are recognized as they appear.

The \@ format is not recommended for new code, as it obscures the meaning
of the macro definition without adding clarity to the expansion.

Macros
LOCAL - Define Local Symbol

217

Syntax:

Label Operation Operand Comment

 LOCAL symbol list

Where:

symbol list A list of symbols that are separated by commas and that
are to be defined local to this macro.

Example of local symbol usage:

Label Operation Operand Comment

WAIT MACRO TIME ;macro definition
 LOCAL LAB1
LAB2\@ MOVE.B #TIME,D0
LAB1 DBLE D0,LAB2\@
 ENDM

??0002 MOVE.B #5,D0 ;First call
??0001 DBLE D0,??0002 ;with TIME=5.

??0004 MOVE.B #$FF,D0 ;Second call
??0003 DBLE D0,??0004 ;with TIME=$FF

Macros
LOCAL - Define Local Symbol

218

MEXIT - Alternate Macro Exit

The MEXIT directive provides an alternate method for terminating a macro
expansion. During a macro expansion, an MEXIT directive causes expansion
of the current macro to stop and all code between the MEXIT and the ENDM
for this macro to be ignored. If macros are nested, MEXIT causes code
generation to return to the previous level of macro expansion. Note that
either MEXIT or ENDM may be used to terminate a macro expansion, but
only ENDM may be used to terminate a macro definition.

Syntax:

Label Operation Operand Comment

{label} MEXIT

Where:

label An optional label that will be given the address of the
current location counter. In the following example, the
code following the MEXIT will not be assembled if
DATA is non-zero.

Label Operation Operand Comment

STORE MACRO DATA
 -
 -
 IFEQ DATA
 MEXIT
 ENDC
 -
 -
 ENDM

Macros
MEXIT - Alternate Macro Exit

219

Macro Parameter Count

The special symbol NARG may be used when it is necessary to know the
number of parameters passed on the macro call statement to the macro. This
symbol is used like any other symbol and represents the number of actual
parameters passed to the macro, as opposed to the number of formal
parameters in the macro definition. NARG is considered to be zero outside
of a macro. It is typically used when generating tables within macros, along
with conditional assembly statements. This count only represents parameters
that are not null.

Example:

Label Operation Operand Comment

GEN MACRO P1,P2,P3
 IFNE NARG
 DC.B P1,NARG
 GEN P2,P3
 ENDC
 ENDM

ADD1 EQU $7F ;macro call.
ADD2 EQU 3
 GEN ADD1,ADD2

* Macro Expansion:
 IFNE NARG ;(value of NARG)
7F02 DC.B ADD1,NARG
 GEN ADD2,
 IFNE NARG
0301 DC.B ADD2,NARG
 GEN ,
 IF NARG
 DC.B ,NARG ; not executed
 GEN , ; not executed
 ENDC
 ENDC
 ENDC

Note that the value of NARG is not displayed in the expansion, any more than
the value of any other symbol. In the example above the DC.B directive is
used so that the value of NARG can be seen.

Macros
Macro Parameter C ount

220

8

Structured Control Statements

This chapter describes the high-level control directives which you may use in
your assembly language programs.

221

as68k includes several high level language constructs, like those of C and
Pascal, that control runtime loops and conditional execution. These
constructs make it easier to write fast, compact assembly language code. The
following control directives are provided:

• IF . . . ELSE . . . ENDI

• WHILE . . . ENDW

• REPEAT . . . UNTIL

• FOR . . . ENDF

Within the constructs, the following keywords may also be used:

THEN, DO, TO, DOWNTO, AND, OR, and BY.

The following extensions to the Motorola control directives alter the flow of
the loop constructs:

• BREAK

• NEXT

BREAK may be used to prematurely exit a loop. NEXT may be used to
proceed to the next iteration of the loop.

Each of the structured control directives generates one or more assembly
language instructions. The instructions generated typically include compare
and branch instructions.

Operands give you control over which registers and memory locations are used
to hold the loop counts or values to be compared for the loop end conditions.
There is no restriction on storing into the loop counter, loop increment
variable, or either of the loop bounds for the loop. When writing code for the
loop body, be careful not to alter these variables.

The IF structure directive should not be confused with the IFxx conditional
assembly directive. At assembly time, each structure directive is translated
into the appropriate assembly language code that will be executed at run time.
Conditional assembly directives do not generate any code; they only control
what will and will not be assembled.

Structured Control Statements

222

Structured Control Expressions

The IF, UNTIL and WHILE statements require a field referred to as a
"structured-control expression" in their syntax. This expression has a logical
value of "true" or "false" and is one of the following:

1 A condition code (CC, EQ, etc.) enclosed in angle brackets. For example:
"< MI> ". Any of the 14 condition codes accepted in the conditional
branch instruction (Bcc) is legal.

2 Two expressions as defined in the "Expressions" section of the "Assembler
Syntax" chapter, separated by a condition code enclosed in angle brackets
(e.g., "COUNT < LE> # 4"). These expressions will be used as operands
for the CMP instruction; if they do not form a legal pair of operands for
this instruction, an error will occur when the CMP is assembled. The #
sign is required on all immediate operands, as in the example.

3 Two structured-control expressions, each of either type 1 or type 2 above,
separated by the keywords AND or OR. These keywords may optionally
have one of the qualifiers .B, .W or .L (e.g., COUNT < LE> # 4 AND.B
< CC> ").

More complex combinations, such as "COUNT < LE> # 4 AND < CC> OR
X < GT> Y", are not allowed. As in the examples, at least one space or tab
must appear between different parts of a structured-control expression.

The first type of structured-control expression generates a conditional branch
instruction (Bcc), which merely tests the indicated bits of the condition codes.
(The test may be complemented to reflect the programmer’s intent in some
constructs.) Obviously, these codes should somehow be previously set. The
expression is "true" if the condition code setting described is true.

The second type of structured-control expression generates a CMP (compare)
instruction followed by a conditional branch. The size of the CMP is
controlled by the qualifier on the directive containing the structured-control
expression. It is not always possible to produce a single conditional branch
that is equivalent in meaning to the expression coded; this is further discussed
below.

The third type of structured-control expression generates the code for its left
side followed by the code for its right side: there are no extra instructions
generated by the AND or OR. The branches are constructed so that the right
side of AND is not evaluated when the left side is false (the compound

Structured Control Statements
Structured Control Expressions

223

expression is known to be false), nor is the right side of OR evaluated when
the left side is true (the compound expression is known to be true). The size
of the CMP (if any) to the left of the AND or OR is taken from the qualifier
on the directive; the size of the CMP (if any) to the right of the AND or OR is
taken from the qualifier on the AND or OR. A compound expression
containing AND is true if and only if the expressions on both sides of AND are
true, otherwise it is false. A compound expression containing OR is false if
and only if the expressions on both sides of OR are false, otherwise it is true.

The assembler normally uses the expression preceding a condition code as the
left operand of CMP, and the expression following the condition code as the
right operand of CMP. But if this is not a legal combination of operands for
CMP, the assembler will switch the operands and leave the specified condition
code alone. To preserve the meaning of the specified comparison, the
assembler will change the condition code as follows.

<CC> <==> <LS>
<CS> <==> <HI>
<EQ> <==> <EQ>
<NE> <==> <NE>
<GE> <==> <LE>
<GT> <==> <LT>
<PL> <==> <MI> *
<VC> <==> <VC> *
<VS> <==> <VS> *

In the first six cases, the new condition is exactly equivalent. In the last three
(asterisked), it is not always and is marked with a warning message flag on the
assembly listing when it occurs. The conversions of VC to VC, and VS to VS,
fail when the result of the comparison is the largest negative number
representable in the operation size ($80, $8000, or $80000000). The
conversion of PL to MI or of MI to PL fails in the same case, and also when
the result of the comparison is 0. It is recommended that such flagged
expressions be recoded to express the programmer’s intent.

Structured Control Statements
Structured Control Expressions

224

FOR...ENDF Loop

Syntax:

FOR{.qualifier} op1 = op2 TO op3 {BY op4} DO{.extent}
 <loop body>
ENDF

or:

FOR{.qualifier} op1 = op2 DOWNTO op3 {BY op4} DO{.extent}
 <loop body>
ENDF

These statements are iterated loops, like the FOR of Pascal or C and the DO
of FORTRAN. The loop counter is "op1", which must be an expression that is
legal as the right side of a MOVE instruction (typically a label or a register).
The initial value is "op2" and "op3" is the final value of this counter. On each
pass through the loop, "op1" is incremented for TO (decremented for
DOWNTO) by "op4" if present, or by 1 if "op4" is not present. The loop is
executed until "op1" is greater than "op3" for TO ("op1" less than "op3" for
DOWNTO), which means that it may be executed zero times if "op1" is
greater than "op3" (for TO) when the loop is entered.

The loop body may be any statements, but if any structured control statements
are included, they must be nested properly.

The FOR...ENDF loop generates a MOVE, a CMP, and either an ADD or
SUB, plus various conditional and unconditional branches. The MOVE,
CMP and ADD or SUB may all have a qualifier that is taken from the
qualifier field of the FOR statement for all three instructions. The CMP is
performed at the top of the loop, which means that the following conditional
branch out of the loop is a forward reference. This branch may be given an
explicit size code (.S or .L) by appending the code to the DO keyword as the
"extent" field. If not present, the size of the forward branch is determined by
the current setting of the B option (OPT BRL or OPT BRS).

The generated CMP instruction is executed once, even if the values of "op1"
and "op3" are such that the body of the loop is executed zero times. Upon exit
from the loop, "op1" will contain the last value to which it was
incremented/decremented (which will be outside the range of the loop
bounds) and the condition codes will reflect the failing CMP. Unlike most

Structured Control Statements
FOR...ENDF Loop

225

high-level languages, there is no restriction on storing into the loop counter,
loop increment, or either of the loop bounds within the loop (of course doing
this is error prone).

Spaces or tabs are required as separators as shown above. Note particularly
the required spaces around the equals sign.

Fields "op1" through "op4" are used as instruction operands just as they
appear; if a legal instruction is not produced, errors will occur when the
generated instruction is assembled. Any immediate data must have # signs
attached. If any operand is an A register, the qualifier on FOR must not be .B
(byte). The default increment size of 1 is usually inappropriate when
branching through Word or Long sized data.

Examples:

Label Operation Operand Comment

 FOR.B D1 = #1 TO #10 DO.S
 MOVE.W D1,(A2)+
 ENDF

 FOR.L A1 = #HIGHADD DOWNTO #LOWADD BY #4 DO
 MOVE.L (A1),-(A2)
 ENDF

Structured Control Statements
FOR...ENDF Loop

226

IF ... THEN ... ELSE ... ENDI Conditional Execution

Syntax:

IF{.qualifier} <structured-control-expression> THEN{.extent}
 <then-part>
{ELSE{.extent}
 <else-part> }
ENDI

This means that only the statements in the then-part are to be executed if the
< structured-control-expression> is true, and only the statements in the
(optional) else-part are to be executed if the < structured-control-expression>
is false. The qualifier on IF is used when generating code for the
< structured-control-expression> as explained above. The extent code on
THEN, which may be .S or .L, is used when generating the conditional branch
from the test (at IF) to the else-part. Similarly, the extent code on ELSE is
used when generating the unconditional branch from the end of the then-part
to the end of the else-part.

Structured Control Statements
IF ... THEN ... ELSE ... ENDI Conditional Execution

227

Examples:

Label Operation Operand Comment

 IF.B (A1) <LT> #0 THEN.S
 MOVE.B #0,(A1)
 ELSE.S
 ADD.B #1,(A1)
 ENDI

;This example shows mixed conditional assembly and structured
;syntax IFs.
;As you see, the combination is difficult to understand
;sometimes.

 IFNE VARIABLE ;conditional
 IF VARIABLE <NE> #0 THEN.S ;structured
 MOVE #0,VARIABLE
 ELSE.S ;unambiguously structured
 ;because of .S, no W flag is
 ;given
 JSR ERROR
 ELSEC ;conditional, because
 ;structured is illegal
 IF VARIABLE <EQ> #0 THEN.S ;structured
 MOVE #1,VARIABLE
 ENDC ;conditional
 ENDI ;structured- terminates
 ;whichever of the preceding
 ;structured IF’s was assembled

Structured Control Statements
IF ... THEN ... ELSE ... ENDI Conditional Execution

228

REPEAT ... UNTIL Loop

Syntax:

REPEAT
 <loop body>
UNTIL{.qualifier} <structured-control-expression>

The loop is executed until the < structured-control-expression> becomes true.
The test is placed at the end of the loop, so that the loop body is executed
once, even if the < structured-control-expression> is true upon entry to the
loop.

The REPEAT generates only a label and UNTIL generates code for the
< structured-control-expression> as described above. Since all branches
involved are backwards, there is no need for an extent field. The qualifier of
UNTIL is used in generating code for the < structured-control-expression> ,
as explained earlier in the previous "STRUCTURED-CONTROL
EXPRESSIONS" section of this chapter. A comment field on UNTIL must
be delimited by a semicolon or exclamation point, so that the assembler will
know to stop parsing the < structured-control-expression> .

Examples:

Label Operation Operand Comment

 REPEAT
 MOVE.L #-1,(A1)+
 MOVE.L #0,(A1)+
 UNTIL.L A1 <GE> #$FF8000

 ANDI #$FE,CCR ; clear Carry flag
 REPEAT ; this infinite loop might be used
 UNTIL <CS> ; while awaiting an external interrupt

Structured Control Statements
REPEAT ... UNTIL Loop

229

WHILE ... ENDW Loop

Syntax:

WHILE{.qualifier} <structured-control-expression> DO{.extent}
 <loop body>
ENDW

This means to repeat the < loop body> provided that the
< structured-control-expression> remains true. If it is false upon loop entry,
then the loop body is executed zero times (but the CMP test is executed once
and the condition codes will reflect this).

The qualifier on WHILE is used when generating code for the
< structured-control-expression> as explained above. The extent field of the
DO is applied to the conditional branch from the test out of the loop, which is
a forward reference.

Examples:

Label Operation Operand Comment

 WHILE A1 <NE> #0 DO.S
 MOVE #0,(A1)+
 ENDW

 WHILE.L #3 <LT> D0 AND.L #5 <LT> D1 DO.S
 JSR RETRY
 IF.L #5 <LT> D1 THEN.S
 ADD.L #1,D1
 ELSE.S
 MOVE.L #0,D1
 ADD.L #1,D0
 ENDI
 ENDW

Structured Control Statements
WHILE ... ENDW Loop

230

BREAK - Premature Loop Exit

The BREAK directive provides a convenient way to exit a loop (FOR,
WHILE or REPEAT) before the condition terminating the loop becomes
true. BREAK generates a jump to the assembler-generated label (which you
do not know when coding the program) that comes immediately after the
innermost active loop in which the BREAK appears. Since this branch is a
forward reference, an extent code .S or .L may be attached to the BREAK
directive to force either a short or long forward branch.

If a BREAK directive appears outside of a FOR-ENDF, WHILE-ENDW, or
REPEAT-UNTIL loop, an opcode error is reported and no code is generated.
BREAK is not allowed in an IF construct.

Structured Control Statements
BREAK - Premature Loop Exit

231

NEXT - Proceed to Next Loop Iteration

The NEXT directive provides a convenient way to proceed to the next
iteration of a loop (FOR, WHILE or REPEAT). NEXT generates a jump to
the assembler-generated label at the bottom of the innermost active loop in
which the NEXT directive appears. Since this branch is a forward reference,
an extent code .S or .L may be attached to the NEXT directive to force either a
short or long forward branch.

If a NEXT directive appears outside of a FOR-ENDF, WHILE-ENDW, or
REPEAT-UNTIL loop, an opcode error is reported and no code is generated.
NEXT is not allowed in an IF construct.

Structured Control Statements
NEXT - Proceed to Next Loop Iteration

232

Structured Directive Nesting

Structured directives may be nested to create multi-level control structures
subject to the following rule. A directive that begins a new control structure in
an inner loop must have a corresponding directive that terminates the control
structure in the same inner loop.

The assembler keeps track of structured control directives to ensure that they
are nested properly. The maximum nesting level is 64. This process is totally
independent of the assembly time macro stack and conditional assembly stack.
It is possible for the beginning of a structured control loop to be inside a
conditional assembly or a macro expansion. The directive ending the
structured control loop must be specified, but it need not be within the
conditional assembly or macro expansion.

An incorrectly nested control directive is flagged with an invalid opcode error
and ignored by the assembler. If a terminating directive is omitted, an
undefined label error will follow the control directive beginning the high level
construct.

An example of legal nesting is shown in the following example:

 REPEAT
 MOVE.B (A1)+,NEXT_CHAR ; Fetch character.
 CMP.B #CR,NEXT_CHAR ; We cannot use IF here because
 BNE.S label1 ; BREAK cannot be nested in an
 ; IF structure.
 ; Without the BREAK, we could use
 ; IF.B #CR <EQ> NEXT_CHAR THEN.S
 BREAK.S ; Leave the REPEAT...UNTIL loop
 ; when carriage return is found.
label1
 IF.B #BLANK <EQ> NEXT_CHAR THEN.S ; Skip blanks.
 BRA.S label2 ; Cannot use NEXT in an IF.
 ELSE.S
 MOVE.B NEXT_CHAR,(A2)+ ; Copy character into buffer.
 IF.L A2 <GT> #120 THEN.S ; Error if buffer overflows.
 JSR ERROR
 ENDI
 ENDI
label2
 UNTIL A1 <GT> #120
 RTS
END

Structured Control Statements
Structured Directive Nesting

233

Structured Directive Listings

The code generated by structured control directives is shown in the same way
on the listing as macro expansions. The code is marked with plus signs (+),
and is not shown if the M or MEX option is turned off.

Structured Control Statements
Structured Directive Listings

234

9

Linker/Loader Introduction

This chapter and subsequent chapters describe the 68000 Family Linking
Loader that accompanies the 68000 Family Relocatable Macro Assembler.

235

The linking loader may be used to combine several independently assembled
relocatable object modules into a single absolute object module. Relocatable
addresses are transformed into absolute addresses, external references
between modules are resolved, and the final absolute symbol value is
substituted for each relocatable symbol reference.

In addition, ld68k supports incremental linking. In an incremental link,
several relocatable modules are combined into a single relocatable file that
may be used in a subsequent linking operation. The output file format is HP’s
implementation of IEEE standard 695.

During incremental links, location information may be specified but, because
the code remains in relocatable form, these locations may be changed during
subsequent links. A number of linker commands are illegal in an incremental
link.

Linker/Loader Introduction

236

Linker/Loader Features

The 68000 family linking loader supports the following features:

• All relocatable section load addresses may be specified independently.

• The relocatable section loading order may be specified.

• External symbols may be defined or the values of previously defined
externals may be changed at load time.

• Object modules may be loaded from a library created by the librarian.

• Symbols and linenumber information may be included in the absolute
object module for symbolic debugging.

• A cross reference table of external symbols and all modules in which they
are referenced may be generated.

• First fit memory may be allocated for more compact load modules.

• Complex relocation is supported.

• A2 - A5 Relative addressing is provided.

• Relocatables may be combined into a single relocatable in a process
called incremental linking.

• Data initialization from ROM is supported.

• Multiple address spaces are supported.

Linker/Loader Operation

To avoid long assembly times, or to reduce the required size of the assembler
symbol table, long programs can be subdivided into smaller modules,
assembled separately, and linked together by the loader program. After the
separate program modules are linked and loaded, the output module functions
as if it had been generated by a single absolute assembly.

Linker/Loader Introduction
Linker/Loader Operation

237

The same program does the linking and loading for the 68000 Family Cross
Assembler/Linker/Librarian. The names "loader," "linker," "linking loader,"
and "linker/loader" all refer to the same program. This chapter will use the
name "loader."

The primary functions of the loader are to:

• Resolve external references between modules and check for undefined
references. (The linking process.)

• Adjust all relocatable addresses to the proper absolute addresses. (The
loading process.)

• Output the final absolute object module(s).

Program Sections

To use the assembler and loader effectively, you should understand the various
program sections and section load addresses.

Absolute Section

This section is that part of the assembly program that is not relocatable but is
to be loaded at fixed locations in memory. Absolute code is placed into the
output module exactly where specified by the input object modules. If no code
is generated by an instruction (the DS directive, for example), no code is
placed into the output module.

Relocatable Section

A relocatable section is a general purpose section which may contain both
instructions and data. A program may contain an unlimited number of
relocatable sections.

Each section is identified by a symbolic name. The same section name may
appear in different relocatable object modules. The section, as a whole, refers
to the totality of code from all object modules which is associated with the
section name. Instructions in one section can make reference to any other
section.

Linker/Loader Introduction
Program Sections

238

In the assembler, sections may be given numbers rather than names. If a label
appears before a SECTION directive which defines a numbered section, the
assembler creates a section name made up of the number and the label.
However, from the loader’s point of view, all sections are named.

On occasion it will be necessary to refer to the individual pieces of code from
various modules which make up a section; these will be called subsections.

Each relocatable section has five attributes: the common/noncommon
attribute, the short/long attribute, the alignment attribute, the section
contents attribute, and the HP type attribute.

Noncommon Section

A noncommon section is the only type available for code. The subsections of a
noncommon section are loaded into a contiguous block of memory and do not
overlap. The size of a noncommon section is the sum of the sizes of all its
subsections.

Common Section

These sections contain variables that may be referenced by each module. All
common subsections are loaded beginning at the same address providing an
effective communication area. This is similar to FORTRAN Common.

The length of a common section is the size of its largest subsection. If more
than one input subsection contains code or data in the same Common section,
the linker will issue a warning.

Short Section

A section which may be referenced by the absolute short address mode and
which therefore must be loaded into the areas of memory which can be
reached by a 16-bit sign-extended address. These areas are from 0 to $7FFF
inclusive, plus another area in high memory whose boundaries depend on the
target chip. For the 68000 and 68010 this area is from $FF8000 to $FFFFFF
inclusive; for the 68008 it is from $F8000 to $FFFFF inclusive; for the
68020/30/40 and CPU32, it is from $FFFF8000 to $FFFFFFFF inclusive. The
target chip may be specified by the CHIP command.

The loader never puts a short section in an inappropriate area of memory. A
section is designated as short if any of its subsections are short, or if it appears

Linker/Loader Introduction
Program Sections

239

in a SORDER directive in the loader commands. A target system may choose
not to implement all the available address lines for the target microprocessor.
For example, the 68020 has 32 address lines, but perhaps the target system
uses only 24 to control memory. In this case, the loader CHIP command may
be used to specify a bus width of 24 lines and therefore a target memory less
than 232 bytes. This also may move the upper short section to another memory
area. Refer to the loader CHIP command for more information.

Long Section

A section which is not short and which can be placed anywhere in memory.

Section Alignment

The section alignment attribute may be either 1, 2 or 4. The section alignment
attribute affects the beginning address of each file’s contribution to a section
(i.e., a subsection). That is, if several files each define a relocatable section A,
then the beginning address of each section A in each file will be rounded up to
a modulo 2 or a modulo 4 boundary if necessary.

Section Contents

There are four section contents indicators:

• Program code (C).

• Data (D).

• Mixed code & data (M).

• ROMable data (R).

The section contents attribute is used by certain HP debuggers in its operation.

Linker/Loader Introduction
Program Sections

240

HP Section Type

The HP section type is used to produce HP 64000 symbolic information in the
"asmb_sym" (assembler symbol) and "link_sym" (linker symbol) files. The HP
64000 file formats define three relocatable sections, PROG, DATA, and
COMN as well as the absolute section(s) ABS. The section type attribute is
used to map the various relocatable and absolute sections onto the HP 64000
sections PROG, DATA, COMN, and ABS.

Memory Space Assignment

Sections are assigned space in memory in an order which you can control.
Also, the initial address (load address) of any or all sections may be specified;
this does not alter the order in which sections are assigned space, but it affects
the location in memory of following sections which do not have load addresses
specified.

Several different kinds of addresses will be referred to in this manual. A load
address is the memory address at which the lowest byte of a section is placed. A
base address is the lowest address considered for loading relocatable sections
of the absolute object module. Loading need not begin at the base address if
SECT and/or COMMON commands are used. A starting address is the
location at which execution begins. The algorithm used to allocate memory is
a three-step procedure as follows:

1) Allocate absolute sections and sections specified by the SECT and
COMMON linker commands.
1) Allocate short sections (= Group I)
2) Allocate long sections (= Group II)

The order in which sections are assigned memory within their group is as
follows:

1 Any sections named in the last ORDER command (for Group II) or
SORDER command (for Group I), in the sequence in which they were
named in that command.

Linker/Loader Introduction
Memory Space Assignment

241

2 Any other sections belonging to the group, in the sequence in which their
names were encountered by the loader.

The loader encounters a name when it appears in a user command or when a
module is loaded (with the LOAD command) which refers to that name.
Names appear in relocatable object modules produced by the assembler in the
sequence in which they appeared in directives in the assembler source input.

Library relocatable object modules which are not selected for inclusion in the
absolute object module do not have their section names examined by the
loader.

To assign memory to a section, it is necessary to assign it a load address. For
those sections whose load addresses you have specified (in a SECT or
COMMON directive) nothing more need be done. Otherwise:

3 The first short section is loaded at the base address, as specified by the
BASE command. If no BASE command is given, the default base address
is 0.

4 Subsequent short sections are loaded immediately above the preceding
section, unless this would cause the high end of the section to extend
above $7FFF, in which case the section is loaded at the lowest address in
the short-addressable area of high memory (which depends on the target
chip). The loader will not split a short section between low and high
memory.

5 The first long section is loaded immediately above the short section most
recently loaded into low memory. Caution is required because an earlier
short section might have been loaded into memory above the most
recently loaded short section (if a SECT or COMMON command was
used) which will now overlap the long section.

If there are no short sections, the first long section is loaded at the base
address specified by the BASE command. If no BASE command is given,
the default base address is 0.

6 Subsequent long sections start immediately above the preceding long
section.

At present, the loader does not support function codes.

Linker/Loader Introduction
Memory Space Assignment

242

Incremental Linking

The incremental linking feature lets the linker produce a single relocatable
object module from several relocatable object modules, resolving all external
references between the modules loaded. Undefined external references to
other modules can still exist in the output object module. These are reported
on the link map.

Relocation Types

By default, sections are word relocatable. That is, they must begin on an even
location. (This is true even if an odd load address is specified; in this case the
address you supplied will be rounded up.) You may override the default by
specifying longword alignment in the SECTION directive.

Also, you may specify via the PAGE and CPAGE commands that certain
sections are page relocatable, meaning that their starting address is rounded
up to be a multiple of $100. Furthermore, this page relocatability can be
turned on and off between modules, which in effect allows you to control the
relocation type of each subsection.

Page relocation is useful for debugging since it means the absolute addresses
assigned by the loader will match the last two digits of the relocatable
addresses shown on the assembler listing.

In the typical load sequence, the loader places contiguously in memory all
subsections of the first section it assigns. This is followed immediately by all
subsections of the second section, etc. There are no extra bytes between the
subsections (unless a subsection contains an odd number of bytes, in which
case one byte is left in between the subsections in order that the next higher
subsection will start on an even address.)

If any of the subsections specify page relocation, however, the loader will start
that subsection at a page boundary to preserve relocation. Due to the internal
design of the loader, whenever any subsection is page relocatable, the first
subsection also starts on a page boundary, unless a load address is specified for
the section. (If paging is in effect at the time the first subsection of a section is
LOADed, even a specified load address will be rounded up.)

Linker/Loader Introduction
Relocation Types

243

Since all subsections of a common section start at the same location,
specifying page relocation for any common subsection results in page
relocation for the section.

Generating HP Format Absolute Files

The assembler provides a command line option to specify that an HP format
assembler symbol file be produced for debugging purposes. The linker/loader
provides a command line option to specify that HP format absolute and linker
symbol files be created.

Problems can arise when generating HP format files. For example, as68k
allows periods (.), question marks (?), and dollar signs ($) in symbol names
which are not legal characters in HP format symbols; these characters are
converted to underscores (_) when generating HP format files. Also, the as68k
assembler allows symbols up to 31 characters in length while the maximum
length of symbols in HP format files is 15 characters; symbols longer than 31
characters are truncated to 15 characters when generating HP format files.

Another problem that can occur when generating HP format files involves the
mapping of the large number of sections allowed with this assembler and
linker to the three sections (PROG, DATA, and COMN) allowed in HP
format files. ld68k uses the HP section type attribute to map relocatable
sections as shown below:

P ---> PROG
D ---> DATA
C ---> COMN
A ---> ABS

Whenever more than one section is mapped to an HP format section, the local
symbols in the sections after the first are lost, and a warning is issued. Also,
global symbols in sections after the first will become HP format absolute
symbols.

Linker/Loader Introduction
Generating HP Format Absolute Files

244

Return Codes

ld68k returns 0 if no errors are detected; otherwise, it returns nonzero. The
loader will complete normally, issue an informative message, issue a warning,
or end abnormally with an error message. Error messages and warnings are
listed in the "Loader Error Messages" appendix.

Loader Listing Description

The loader uses a two pass process in which the commands and object modules
are checked for errors, and a symbol table is formed after encountering the
END command. Many errors are not fatal and the loader command processing
will continue. The loader will report the errors it encounters with a message
immediately following the line in error, and the load will end with the
message "LOAD COMPLETED."

During pass two of processing, the final absolute object module is produced,
along with a load map and a listing of unresolved external references. A local
symbol table, public symbol table, and cross reference table may be listed in
the load map. The load map also indicates the starting address of the load, as
well as the output module name and format, and the section and module
summary. Detailed descriptions of the map file are found in the following
"Loader Listings" section.

Loader Listings

Note the following points when examining loader listings.

1 The first page of the listing shows all commands which you have entered
along with any command errors that occur.

2 The next page begins the load map which first displays the output module
name and the output module format. The load map next displays the
names of all sections followed by the attribute, starting address, ending
address, length and type of alignment for each section. Then, the load map

Linker/Loader Introduction
Loader Listings

245

displays a module summary containing the names of all the modules
followed by the starting address and ending address for each section in
each module. Any executable address errors encountered during pass 2 of
the load are indicated at the end of the module summary.

3 When the appropriate LIST command options are specified, lists of all
local symbols and public symbols are displayed in symbol tables. All
symbols in the map are truncated to 10 characters. Public symbols are
external definition symbols as declared in the assembler, and are used for
intermodule communication. Local symbols are those known to only a
single module. Local symbols are not used by the loader, but are listed so
their final absolute values may be seen. The attributes and sections are
listed for each local symbol, as well as the section offsets and modules
which define them. If the cross reference list option is specified, a cross
reference table is listed. Local symbols may be placed in the output object
module of the assembler by specifying the "LIST S" directive, and may
subsequently be used for symbolic debugging.

4 The local symbol table contains two types of symbols:

High level elements are compiler symbols whose attribute is LOCAL. The
OFFSET column indicates the stack address offset in bytes for each section.
High level symbols contain both MODULE and FUNCTION information.

Low level elements are assembler symbols whose attribute is ASMVAR.
OFFSET is the actual section address. Only the MODULE information is
listed in the local symbol table.

5 The public symbol table contains the list of PUBLIC symbols, the section,
the actual section address, and the modules.

6 The unresolved externals section contains a list of the undefined external
references.

7 The cross reference option is turned off by default. To produce the cross
reference table, use the "LIST C" command. All external symbols passed
to the loader are listed under the heading "SYMBOL". The symbol
section and address are listed. Any flag to the left of those values is the
segment attribute of the symbol.

Under "MODULE", a module name preceded by a minus sign indicates
that the symbol was defined in that module. Line numbers not preceded
by a minus sign indicate a reference to the symbol in that module.

8 Next, the starting address of the load is indicated.

Linker/Loader Introduction
Loader Listings

246

9 Finally, the end of the load is indicated by the "LOAD COMPLETED" or
"LOAD NOT COMPLETED" message.

Sometimes the module listed for a public symbol will be $$. $$ indicates that
the symbol does not belong to any module. $$ symbols occur in the following
situations:

10 Linker defined symbols. The PUBLIC, INDEX, and INITDATA
command cause the linker to define symbols.

11 Undefined symbols.

12 Common section names.

13 Global symbols whose value is outside of any section. Usually this is a
result of EQUing a symbol to a constant value.

Linker/Loader Introduction
Loader Listings

247

Linker/Loader Introduction
Loader Listings

248

10

Linker/Loader Commands

This chapter describes each of the linker/loader commands.

249

The loader reads a sequence of commands from a linker command file or from
standard input. The last command must be either an EXIT or END command.

The object modules are read from files specified in the LOAD command.

The output of the loader consists of an absolute load module suitable for
loading into an actual microprocessor. The output module is written in one of
several absolute object module formats as described in this chapter’s
FORMAT description.

Summary of Commands

The following pages describe the loader commands. In the command
descriptions, brackets, { }, are used to indicate optional arguments. A
summary of the commands is given below:

; (Comment) Specify Comment.

(Continuation) Line continuation character.

ABSOLUTE Specify the Sections Included in the Absolute File.

ALIAS Specify Section Assumed Name.

ALIGN{MOD} Sets Alignment for Named Section.

BASE Specify Location at which to begin Loading.

{LOWER}CASE Shifts Names to Lower Case.

{UPPER}CASE Shifts Names to Upper Case.

CHIP Specify Target Microprocessor.

COMMON Set Common Section Load Address.

CPAGE Set Paging for Common Section.

{NO}
DEBUG_SYMBOLS

Retains or Discards Internal Symbols.

END End Command Stream and Finish Loading.

Linker/Loader Commands

250

ERROR Change Message Severity to ERROR.

EXIT Exit Loader.

EXTERN Creates External References.

FORMAT Specify Absolute File Format.

INCLUDE Includes a Command File.

INDEX Give Loader the Run-Time Value of Register "An".

INITDATA Specify ROM Address for Section.

{NO}INTFILE Stores Information Using Intermediate File or
Virtual Memory.

LIST Set Loader Options.

LISTABS Lists Symbols to Output Object Module.

LISTMAP Specifies Layout and Content of the Map.

LOAD Load Specified Object Modules.

LOAD_SYMBOLS Load Object Module Symbol Information.

MERGE Combines Named Module Sections.

NAME Specify Output Module Name.

NLIST Clear Loader Options.

NOERROR Change Message Severity to NOERROR.

NOPAGE Turn off Paging for Section.

ORDER Specify Long Section Order.

PAGE Set Paging for Noncommon Section.

Linker/Loader Commands

251

PUBLIC Specify PUBLIC symbols (External Definitions).

RESADD Reserves Region of Memory.

RESMEM Reserves Region of Memory

SECT Set Noncommon Section Load Address.

SECTSIZE Set Minimum Section Size.

SORDER Specify Short Section Order.

START Specify Output Module Starting Address.

WARN Change Message Severity to WARNING.

Linker/Loader Commands

252

Command Format

Commands may begin in any column. Command arguments may follow in any
column and must be separated from the command by at least one blank.
Comments may follow commands as long as a semicolon separates the
command from the comment. Entire lines in the command stream may be
commented with a semicolon as the first nonblank character in the line.

Numeric command arguments may be either decimal or hexadecimal and may
be represented in either of the following two ways:

1 Hexadecimal constants may be preceded by a "$" (e.g., $1F) in which case
they need not have a leading zero even if they start with hexadecimal
characters A - F. Any legal hexadecimal constant may be used, and a
terminator is not required.

2 Hexadecimal constants may be terminated by the letter "H", or the letter
"X" (e.g., 1FX), in which case any legal hexadecimal constant may be used
in the command argument, and a leading $ is illegal.

Symbols and section names must follow the syntax rules for symbols given in
the assembler manual: i.e., they must begin with a letter, a period ".", a
question mark "?", or an underbar "_", and subsequent characters may be any
of these, a dollar sign "$", or a decimal digit.

Section names, symbols, and module names are case sensitive by default. The
LOWERCASE or UPPERCASE commands may be used to alter this. The
assembler directive OPT CASE may be used to specify that symbols are case
sensitive in the assembly.

Processing Order

The linker will process commands in the following order and also handle
positional dependencies by the following rules:

3 Preprocessed commands such as:

INCLUDE

are expanded before any linker commands are processed.

4 {NO}INTFILE must be before any LOAD command.

5 Non-position dependent commands are processed next.

BASE
CHIP

Linker/Loader Commands

253

FORMAT
NAME
START
LISTABS
LISTMAP
RESADD
RESMEM

6 Position-dependent commands are processed next.

CASE

should be before any command using names

LOWERCASE

should be before any command using names

UPPERCASE

should be before any command using names

{NO}PAGE

CPAGE

{NO}DEBUG_SYMBOLS

LOAD

EXTERN

7 Commands that are position-independent in the command file are
processed next, but they are operated on in the following order:

a. COMMON, SECT, PUBLIC
b. MERGE
c. ALIAS
d. ORDER, SORDER
e. ABSOLUTE, INDEX, INITDATA

8 Commands that end command processing are processed last.

END
EXIT

Linker/Loader Commands

254

; (Comment)

Specify Loader Comment

A semicolon may be used to specify a comment in the command stream.

Comments may be used to document loader command sequences. Comments
following loader commands must be separated from the command with a
semicolon. Entire lines may be commented by using the semicolon as the first
nonblank character in a line.

Note that the comment character has changed from the * (asterisk) used by
some previous HP loaders.

Example:

; LOADER COMMENT EXAMPLE
BASE $1000 ; Another comment.

Linker/Loader Commands
; (Comment)

255

(Continuation)

Continue Command

The # (pound sign) character may be used to continue a command from one
line to the next. This is particularly useful in ORDER commands containing a
large number of module names. The linker treats all characters and the
end-of-line following the # character as a single blank followed by the first
character of the next line.

Linker/Loader Commands
(Continuation)

256

ABSOLUTE

Specify the Sections Included in the Absolute File

Syntax:

Command Argument

ABSOLUTE sname{,sname} . . .

Where:
sname Is the name of a relocatable section to be put into the

output file.

Description: The ABSOLUTE command allows you to specify that only the code and data
from certain, specified program sections be included in the output file.
Without the ABSOLUTE command, all code and data from all sections in all
the input modules is put into the absolute output file.

The ABSOLUTE command allows you to use of code overlays. Typically, in an
application employing overlays, there is a main code section and several
"overlay" sections. Usually, the main section stays in memory. The overlays
are not resident but are loaded into memory as needed during the execution of
the program. However, the overlay sections need to be linked with the main
section.

When using the ABSOLUTE command, only code and data from relocatable
sections is ever put into the output. Code and data from absolute (i.e.,
ORGed) sections is never put into the output when the ABSOLUTE
command is used.

Example:

The following example shows how to link an application containing overlays.
It requires three link operations and three linker command files.

Linker/Loader Commands
ABSOLUTE

257

The program consists of a main program and two overlays. All the code and
data for the main section is in section "MAINSECT". All the code for first
overlay is in section "OV1SECT" and all the code for the second overlay is in
section "OV2SECT".

Linker command file for main section:

SECT MAINSECT=$1000 ; Locate the main section.
SECT OV1SECT=$2000 ; Locate first overlay.
SECT OV2SECT=$2000 ; Second overlay will cause ERROR: Section Overlap.
ABSOLUTE MAINSECT ; Only this section goes into output file.
LOAD MOD1,MOD2,...,MODn ; Load all modules for main, overlay 1, overlay 2.
END

Linker command file for first overlay section:

SECT MAINSECT=$1000 ; Locate the main section.
SECT OV1SECT=$2000 ; Locate first overlay.
SECT OV2SECT=$2000 ; Second overlay will cause ERROR: Section Overlap.
ABSOLUTE OV1SECT ; Only this section goes into output file.
LOAD MOD1,MOD2,...,MODn ; Load all modules for main, overlay 1, overlay 2.
END

Linker command file for second overlay section:

SECT MAINSECT=$1000 ; Locate the main section.
SECT OV1SECT=$2000 ; Locate first overlay.
SECT OV2SECT=$2000 ; Second overlay will cause ERROR: Section Overlap.
ABSOLUTE OV2SECT ; Only this section goes into output file.
LOAD MOD1,MOD2,...,MODn ; Load all modules for main, overlay 1, overlay 2.
END

Linker/Loader Commands
ABSOLUTE

258

ALIAS

Specify Section Assumed Name

Syntax:

Command Argument

ALIAS sname,alias_sname

Where:
sname Specifies the section name.

alias_sname Specifies the name of the section which is to be considered
the same as "sname".

Description: The ALIAS command allows you to specify that a certain section be
considered the same as another section. The alias command is useful in that
you can cause the loader to load the parts of those sections contiguously, as if
they were parts of the same section. The resulting output object file will show
the two combined sections under the alias name. Without the ALIAS
command, the loader would load the parts of those two sections in separate
areas.

The ALIAS command is similar to the MERGE command in that it can
combine differently named sections. However, the ALIAS command can only
combine two sections, and does so in the order they appear in LOAD
commands. The MERGE command can combine more than two sections and
combines them in the order specified in the MERGE command. MERGE and
ALIAS are mutually exclusive and cannot appear in the same link session.

If this command is used, it must be specified before any LOAD commands.

Example:

ALIAS SECT1, SECT2

Linker/Loader Commands
ALIAS

259

ALIGN{MOD}

Sets Alignment for Named Section

Syntax:

Command Argument

ALIGN{MOD} sname= align_value

Where:
sname A section name.

align_value A constant which is a power of 2 between 1 and 232.

Description: Every relocatable module section has an alignment attribute. When the
module section is located, its base address is made a multiple of the alignment
by the linker.

The ALIGNMOD command may be used to increase the alignment attribute
of the module sections of the named module. Note that the alignment of a
given combined section is the largest of its inclusive module sections.

The ALIGN command sets the alignment of the beginning of the combined
section only. If any of the module subsections that make up the combined
section has an alignment that exceeds the setting, a warning will be generated
and the combined section will have the greater alignment.

Linker/Loader Commands
ALIGN{MOD}

260

BASE

Specify Location at Which to Begin Loading

Syntax:

Command Argument

BASE number

Where:
number An absolute number.

Description: The BASE command specifies the lowest address where the loader will place a
relocatable section, provided the section does not have its load address
specified in a SECTION or COMMON command. You may find the BASE
command useful to avoid collision with an operating system, for example, in
low memory.

The BASE address must be an absolute number.

Example:

BASE $400

Linker/Loader Commands
BASE

261

[UPPER]CASE, [LOWER]CASE

Controls Case-Sensitivity

Syntax:

Command Argument

CASE {class{,class}...}

LOWERCASE {class{,class}...}

UPPERCASE {class{,class}...}

Where:
class One of the following:

PUBLICS
MODULES
SECTIONS

Description: The CASE command controls the case-sensitivity of various classes of
symbolic names.

Each of the functions of the CASE command are described below:

• CASE without the prefix UPPER or LOWER specifies that upper and
lower-case characters are distinct in name comparisons. Symbolic names
in the indicated class(es) are not modified on input.

• LOWERCASE causes the linker to shift names to lower case on input.
All symbolic names of the specified class(es) will appear in lower case in
the linker’s output files.

• UPPERCASE causes the linker to shift names to upper case on input. All
symbolic names of the specified class(es) will appear in upper case in the
linker’s output files.

The CASE, UPPERCASE, or LOWERCASE commands affect only the
classes of names specified by the class option. If class is not specified, all
classes of names are affected. Each class can have only one case specification
(i.e. CASE, UPPERCASE, or LOWERCASE).

Linker/Loader Commands
[UPPER]CASE, [LOWER]CASE

262

The PUBLICS class refers to all the public and external names. The
SECTIONS class refers to all the section names, and the MODULES class
refers to all the module names.

CASE, LOWERCASE, and UPPERCASE take immediate effect and should
be early in the command file.

Example:

Given the following command file:

UPPERCASE PUBLICS
LISTMAP PUBLICS
LOAD modulea, moduleb, modulec
END

All public and external names will be upper-cased in the linker’s output file.
The generated link map will contain a PUBLIC SYMBOL TABLE section
that will show all the upper-case public and external names. For example:

 . . .
 . . .
PUBLIC SYMBOL TABLE

SYMBOL SECTION ADDRESS MODULE

G1 sect3 00001200 MODULEA
G2 sect3 00001204 MODULEB
G3 sect3 00001208 MODULEC
 . . .
 . . .

Linker/Loader Commands
[UPPER]CASE, [LOWER]CASE

263

CHIP

Specify Target Microprocessor

Syntax:

Command Argument

CHIP target {,n}

Where:
target An expression evaluating to 68000, 68EC000, 68HC000,

68HC001, 68008, 68010, 68302, 68330, 68331, 68332, 68333,
68340, CPU32, 68020, 68EC020, 68030, 68EC030, 68040, or
68EC040.

n The bus width parameter.

Description: The CHIP command declares the microprocessor on which the linked code is
to run. The CHIP command may specify the 68000, 68EC000, 68HC000,
68HC001, 68008, 68010, 68302, 68330, 68331, 68332, 68333, 68340, CPU32,
68020, 68EC020, 68030, 68EC030, 68040, or 68EC040. The differences are the
instructions allowed, the size of the address space, and the addresses of the
high memory area which can be accessed with Absolute Short address mode.
The linker places sections with the Short attribute only in this area of memory
(or in the low short-addressable area of memory, which is from 0 to $7FFF for
all targets). If no CHIP command appears, the target microprocessor is taken
to be the one from the input modules with the greatest capability. For
example, if three modules specify 68000, 68010, and 68020 respectively, the
default will be taken to be 68020.

The 68010 implements more instructions that the 68000 or 68008 (which have
the same instruction set). The 68020 implements more instructions than the
68010. The 68030 and 68040 implement additional instructions over the
68020. In order to prevent an illegal opcode, the loader issues an error if a
module is loaded whose CHIP has greater capabilities than the CHIP specified
to the loader.

The differences between the various chips are summarized below:

Linker/Loader Commands
CHIP

264

CHIP Maximum Address High short-addressable area of memory
----- --------------- -------------------------------------
68000 $FFFFFF $FF8000 to $FFFFFF
68CH001 $FFFFFF $FF8000 to $FFFFFF
68010 $FFFFFF $FF8000 to $FFFFFF
68302 $FFFFFF $FF8000 to $FFFFFF
68331 $FFFFFF $FF8000 to $FFFFFF
68332 $FFFFFF $FF8000 to $FFFFFF
68008 $FFFFF $F8000 to $FFFFF
68020 $FFFFFFFF $FFFF8000 to $FFFFFFFF
68030 $FFFFFFFF $FFFF8000 to $FFFFFFFF
68040 $FFFFFFFF $FFFF8000 to $FFFFFFFF
CPU32 $FFFFFFFF $FFFF8000 to $FFFFFFFF

If present, the CHIP command must precede all other loader commands.

The CHIP command may also specify an optional bus width parameter to
override the maximum bus width implied for the target microprocessor. This
allows the maximum address in memory to be limited regardless of the bus
width possible for the chip. Limiting the bus width may also change the
location of the high short section of memory.

All absolute addresses which appear in later commands or object modules are
checked against the bounds established by the CHIP command.

The bus width parameter allows you to specify a maximum address up to 2n-1

and a high short-addressable area address range from 2n-$8000 to 2n-1.

Example:

CHIP 68020,24

Linker/Loader Commands
CHIP

265

COMMON

Set Common Section Load Address

Syntax:

Command Argument

COMMON sname,value

COMMON sname= value

COMMON sname value

Where:
sname Specifies the section name.

value Specifies the load address of the common section.

Description: This command is used to specify the load address of a common section. If this
command is used it must be specified before any LOAD commands.

If this is the first occurrence of this section name it is given the attributes
common and long.

Specify the section name followed by the address at which to begin loading the
section. The address specified is always rounded up to the next higher word
boundary, and to the next higher page boundary if paging is specified for this
common section.

Example:

COMMON COMSEC,2048

Note
The value is separated from the section name by a blank, comma, or equal
sign. Multiple COMMON commands with the same section name are
accepted without a warning, but only the last one will be used.

Linker/Loader Commands
COMMON

266

CPAGE

Set Common Section to be Page Relocatable

Syntax:

Command Argument

CPAGE sname

Where:
sname A section name.

Description: This command may be used to modify the relocation type of common
section(s) in the input object modules to Page. It allows you to override the
default relocation type of Word for a common section.

Since all subsections of a common section are loaded at the same address, the
CPAGE command need only be used once per section at the beginning of the
loading process. Once Page Relocation is turned on for a common section, it
cannot be turned off for later subsections of the section.

Specify the section name. If this is the first occurrence of the section name, it
is assigned the attributes common and long.

Example:

CPAGE P

Linker/Loader Commands
CPAGE

267

[NO]DEBUG_SYMBOLS

Retains or Discards Internal Symbols

Syntax:

Command Argument

{NO}DEBUG_SYMBOLS

Description: These commands control putting local symbols into Motorola S-Record
output files. These commands may be placed between LOAD commands to
selectively copy symbols from certain modules. DEBUG_SYMBOLS is a
synonym for the LIST P command and NODEBUG_SYMBOLS is a synonym
for the NLIST P command.

Linker/Loader Commands
[NO]DEBUG_SYMBOLS

268

END

End Command Stream and Finish Loader

Syntax:

Command Argument

END

Description: This command should be the last command in every command stream. It
initiates the final steps in the load process. END completes the load, produces
an output object module, and returns to the operating system.

Linker/Loader Commands
END

269

ERROR, WARN, NOERROR

Modify Message Severity

Syntax:

Command Argument

ERROR condition{condition} ...

WARN condition{condition} ...

NOERROR condition{condition} ...

Where:
condition One of UNREF, UNRES, OVERLAP, DUPLIBPUB, or a

number corresponding to the message number of the error
or warning.

Description: These commands change the way a message or group of messages is treated.
ERROR causes the message to be treated as an error; WARN causes the
message to be treated as a warning; NOERROR causes the message to be
treated as a non-error (that is, the message is ignored).

The ERROR, WARN, and NOERROR commands affect all messages which
are generated after the linker encounters the command. The change in
message severity remains in effect until the linker has finished processing. The
effect of these commands cannot be changed by subsequent ERROR, WARN,
or NOERROR commands.

Fatal errors and messages generated by the ERROR, WARN, or NOERROR
command cannot be overridden or modified.

Linker/Loader Commands
ERROR, WARN, NOERROR

270

EXIT

Exit Loader

Syntax:

Command Argument

EXIT

Description: The EXIT command is like the END command in that it is the final command
in the linker command file. The EXIT command differs from the END
command in that it prevents the final output from occurring. All object
modules are read and all linker commands are processed and checked for
errors, but no output module is generated.

Linker/Loader Commands
EXIT

271

EXTERN

Creates External References

Syntax:

Command Argument

EXTERN name{,name}...

Where:
name The symbolic name of an external reference that is to be

created.

Description: The EXTERN command creates external references for the linker to resolve.
The EXTERN command can appear anywhere in a command file.

Multiple EXTERN commands can appear in a command file.

The EXTERN command is in effect for a given name when that name is
specified in the command. It remains in effect until the end of the command
file, but it has no effect before the point of specification. An EXTERN
command with a specific name must appear before the LOAD command for
the library in which the specific external symbol is defined in order to force the
loading of the module associated with the external symbol.

The -u name command line option has the same effect as if an EXTERN
command is inserted into the command file before the first LOAD command,
if any.

Example:

EXTERN g1
LOAD module1.o,module2.o,extern.lib
END

In this example, the symbol g1 is not referenced in either module1 and
module2. So if a definition of g1 exists in extern.lib, the library module that
contains the definition will be loaded to resolve the external reference.

Linker/Loader Commands
EXTERN

272

FORMAT

Specify Absolute File Format

Syntax:

Command Argument

FORMAT option

Where: option is one of the following:

S Motorola S absolute hexadecimal.

IEEE HP-MRI IEEE-695 absolute output format.

INCREMENTAL IEEE relocatable format

HP HP 64000 absolute and linker symbol file format.

NOABS No output file. This is the same as the NLIST O
command.

Description: The FORMAT command may be used to specify which output absolute object
module format the loader is to produce. Option switches may be set to
produce absolute IEEE (default), Motorola S-record, HP 64000 format, IEEE
relocatable, or no output file at all.

Example:

FORMAT S

In this example, the loader produces an absolute load in Motorola S-Record
output format.

Linker/Loader Commands
FORMAT

273

INCLUDE

Includes a Command File

Syntax:

Command Argument

INCLUDE filename

Where:
filename The file to be included in the linker command file.

Description: The INCLUDE command lets additional command files be included in a
linker command file. At the point the INCLUDE command is specified, the
text contained in the file specified by filename is included in the linker
command file.

The INCLUDE command can appear multiple times anywhere in a linker
command file and can be nested up to a maximum depth of 16.

Example:

If setup.opt contains:

CHIP 68010
BASE $500

and a command file contains the following INCLUDE command:

INCLUDE setup.opt
LOAD module1,module2

the resulting link map will be:

 . . .
 . . .
INCLUDE setup.opt
CHIP 68010
BASE $500
*** End of include file: /some/where/setup.opt
LOAD module1,module2
 . . .
 . . .

Linker/Loader Commands
INCLUDE

274

An extra comment line:

*** End of include file: /some/where/setup.opt

with the absolute path name of the included file was added by the linker for
readability.

Linker/Loader Commands
INCLUDE

275

INDEX

Specify the Run-Time Value of Register "An"

Syntax:

Command Argument

INDEX ?REGn, SECTNAME, OFFSET

Where:
REGn Is one of the address registers: A2, A3, A4, or A5.

SECTNAME The name of a relocatable section whose load address (plus
an optional offset) is specified to equal the run-time value
of address register REGn.

OFFSET A number to be added to the load address of the relocatable
section specified. The result is specified to be the run-time
value of REGn.

Description: The INDEX command is used to inform the loader of the run-time value of an
address register "An" (where n = 2, 3, 4, or 5). The value you associate with a
particular "An" register will equal a relocatable section’s load address plus an
offset value.

Note The only A registers which may use the INDEX command are A2, A3, A4, or
A5.

A public symbol, equal to the run-time value specified, will be created in the
form "?An". This symbol can be declared as an external symbol in the
assembly language source file (with the XREF directive) and used to initialize
the appropriate address register.

Linker/Loader Commands
INDEX

276

Purpose of the INDEX Command

The loader needs to know the run-time value of an address register whenever
you use assembly language operands which combine relocatable expressions
and address register indirection. For example, consider the following
assembler syntax:

< rel exp> (An) or (< rel exp> ,An)

Operands of the form shown above will generate the Address Register
Indirect with Displacement address mode which requires a 16-bit
displacement. The relocatable expression in the syntax above is an effective
address or, in other words, the location to be accessed. The loader must
calculate the 16-bit displacement using the equation:

< ea> = An + disp
disp = < ea> - An
disp = < rel exp> - An

The INDEX command makes "An" a known value which enables the loader to
calculate the displacement. If the INDEX command is not used, the loader
will calculate the displacement under the assumption that the run-time value
of the address register is zero.

Other address modes which can contain relocatable expressions in conjunction
with address register indirection are the 68020 model modes: Address Register
Indirect with Base Displacement and Index, Memory Indirect Post-Indexed,
and Memory Indirect Pre-Indexed.

Example:
INDEX ?A2,DATA1,8000H * This offset allows "(A2)" indirect
 * addressing to access a full 64K bytes
 * in section DATA1 (using a 16-bit
 * signed displacement).

See the "A2-A5 Relative Addressing" chapter for additional information on
how the INDEX command may be used with array addressing for registers A2
through A5.

Linker/Loader Commands
INDEX

277

INITDATA

Specify Initialized Data in ROM

Syntax:

Command Argument

INITDATA merge_arg [,merge_arg] ...

Where:
merge_arg May be any of the following:

sectname
 or {sectname,module}
 or {*,module}

The first form copies data from section sectname. The
second form copies data from the portion of sectname
defined in module. The third form copies data from all
sections defined in module.

Description: The INITDATA command provides a method to copy data from ROM into
RAM before a program is executed.

INITDATA causes the linker to create a new data section called
??INITDATA. The data from the sections named in the command string is
copied into the ??INITDATA section.

The user program must call the initcopy() routine at run time to reinitialize
the data in RAM each time the program runs. The initcopy() routine checks
the special bytes generated by the linker in the section ??INITDATA to
provide the necessary information: copy destination address, copy size, and
data.

The ??INITDATA section may be ordered and assigned an address using
standard commands.

Linker/Loader Commands
INITDATA

278

Example:

The following example will cause the linker to crate the section ??INITDATA
at link time which contains all of the section contents for sec1, sec3 and sec4
so that they will be copied to a specified address at run time:

INITDATA sec1,sec3,sec4

The section name may be qualified by a module name and type, as in

INITDATA sec2,{module2,DATA}

More examples of the INITDATA command are supplied in directory

/usr/hp64000/demo/languages/B3641/
features/INITDATA

on UNIX systems, or in the examples directory on DOS systems.

Initcopy

The initcopy routine is supplied with the assembler in the library file
/usr/hp64000/lib/68000/initcopy.s (\hpas68k\initcopy.s on DOS systems). If you
have special needs, it is possible to write your own initcopy routine.

Supplied initcopy routine

The initcopy routine has been supplied in two forms: C source (.c), assembly
code from C (.s), and object code (.a). The object code form is supplied as a
library in the file /usr/hp64000/lib/68000/as68xxx.a (UNIX) or
\hpas68k\as68xxx.lib (DOS). On UNIX systems, the source code code forms
are in the src subdirectory.

Initcopy calls the C function memcpy(). The assembly source for memcpy is
supplied in the file memcpy.s.

Writing your own initcopy routine

The virtual address of the ROM section can be set using the .STARTOF.
operator.

Linker/Loader Commands
INITDATA

279

The data in the ??INITDATA ROM section uses the following special bytes.
These bytes are generated by the linker, and may be used by your initcopy
routine.

S Start of operation. It should be immediately followed by
one of the other special bytes.

C Copy. After this byte, you need to include the total number
of bytes which need to be copied, the destination address for
the data, then the data itself:

4 bytes 4 bytes length bytes

C length destination data

E End of operation.

R Repeat pattern. Not currently implemented. After this byte,
you need to include the repeat count, the destination
address, the size of the pattern, and then the pattern:

4 bytes 4 bytes 2 or 4 bytes size bytes

R count destination size pattern

B Byte repeat. Not currently implemented. After this byte,
you need to include the repeat count, the destination
address, and then the byte to be repeated:

4 bytes 4 bytes

B count destination byte

The R and B bytes are not implemented in the linker at this time. They may be
implemented in a later version of the linker to provide data compression.

Linker/Loader Commands
INITDATA

280

[NO]INTFILE

Stores Information Using Intermediate File or Virtual Memory

Syntax:

Command Argument

{NO}INFILE

Description: The linker, like the assembler, is a two pass program. Intermediate
information is stored, by default, using virtual memory between pass 1 and 2.
The INTFILE command lets you store this intermediate information in a
temporary file. The NOINTFILE command lets you store this information
using virtual memory.

With different systems, using a temporary file may be faster than using virtual
memory. Also, depending on the configuration for running large jobs, the
virtual allocation size can be limited. You can try to run the program using the
INTFILE command which then produces an intermediate file as opposed to
using virtual memory.

Example:

INTFILE
LOAD mod1.obj
LOAD mod2.obj
END

Linker/Loader Commands
[NO]INTFILE

281

LIST

Set Loader Options

Syntax:

Command Argument

LIST FLAG{,FLAG} . . .

Where: flag is one of the following:

A Specifies the output file format to be Motorola S-Record.
Same as FORMAT S. (Default= IEEE.)

C Specifies that a cross reference listing is to be produced.
Same as LISTMAP CROSSREF. (Default= NLIST C, i.e.,
no cross reference)

H Specifies HP 64000 format absolute and linker symbol
output files. Same as FORMAT HP. (Default = IEEE.)

I Specifies the output file format to be IEEE. Same as
FORMAT IEEE. (Default= IEEE.)

O Specifies that an object module is to be produced. NLIST is
the same as FORMAT NOABS. (Default= LIST O)

P The P flag only affects Motorola S-Record output files and
is therefore only effective when S-records are selected and
the S flag is in effect. The P flag specifies that the local
symbols from input modules loaded (while this flag is set)
be included in the output file. This flag can be turned off
and on between LOAD commands. Its purpose is to exclude
local symbols from particular modules because of duplicate
symbol conflicts. Same as DEBUG_SYMBOLS. (Default=
LIST P)

S Specifies that the local symbol table information be written
to the output file for debugging. The effect of the S flag

Linker/Loader Commands
LIST

282

depends upon what output format is selected. Same as
LISTABS INTERNALS. (Default= LIST S)

If the output is Motorola S-records, then the S flag causes
symbols and their values to be written at the beginning of
the S-record file. NOLIST S suppresses the writing of these
symbols.

If the output is IEEE-695, the S flag causes local assembly
symbols and compiler-generated symbol and type
information to be written to the IEEE file. NOLIST S
suppresses this information. Global assembly symbols (for
instance, those mentioned in XDEF directives) are always
written to the IEEE file regardless of any flag.

If the output is HP 64000 format, the S flag has no effect on
the link_sym file.

T Specifies that the local symbol table be listed on the loader
listing. Same as LISTMAP INTERNALS. (Default=
NLIST T, i.e., off)

X Specifies that the PUBLIC (global) symbol table be listed
on the loader listing. Same as LISTABS PUBLICS.
(Default= NLIST X, i.e., off)

Description: The LIST command may be used to change the loader internal flags. These
flags control the format and contents of the output file, as well as the contents
of the loader listing. The LIST options specified will remain in effect through
all modules until another LIST or NLIST command is encountered.

All of the flags have equivalent commands which perform the same function.

Linker/Loader Commands
LIST

283

Example:

LIST T,X ; list both local and
 ; definition symbol tables

Note Though the LIST command is available, it is a better choice to use LISTABS
and LISTMAP.

Linker/Loader Commands
LIST

284

LISTABS

Lists Symbols to Output Object Module

Syntax:

Command Argument

LISTABS option{,option}...

Where:
option One of the following:

{NO}PUBLICS Places globally-defined symbols into the output object
module. LISTABS NOPUBLICS prevents
globally-defined symbols from being placed in the
output object module. (Default: NOPUBLIC)

{NO}INTERNALS Places the internal (local) symbols in the output object
module and omits any symbols that are defined in
modules for which the NODEBUG_SYMBOLS
command is in effect. LISTABS NOINTERNALS
suppresses the placement of internal symbols into the
output object module. (Default: INTERNALS)

Description: The LISTABS command controls the output of certain items to the output
object module. Multiple LISTABS commands can be specified and have a
cumulative effect. Options that are inconsistent with previous LISTABS
commands cannot be specified in a succeeding LISTABS command. For
example, LISTABS PUBLICS cannot be followed by LISTABS NOPUBLICS,
but can be followed by LISTABS INTERNALS.

Linker/Loader Commands
LISTABS

285

LISTMAP

Specifies Layout and Content of the Map

Syntax:

Command Argument

LISTMAP option{,option}...

Where: option is one of the following:

{NO}CROSSREF Causes a cross-reference listing to be output to the map
file. NOCROSSREF suppresses the generation of this
cross-reference listing. (Default: NOCROSSREF)

{NO}INTERNALS Causes a listing of the non-public (local) symbol table
to be output to the map file. NONINTERNALS
suppresses the output of the non-public symbol table.
(Default: NOINTERNALS)

{NO}PUBLICS Causes a listing of the public symbol table to be output
to the map file. NOPUBLICS suppresses the output of
the public symbol table. (Default: NOPUBLICS)

LENGTH lval Sets the map file page length. The range for lval is 5 to
255. (Default: LENGTH 55)

Description: The LISTMAP command controls the output of certain items to the linker’s
map file. Multiple LISTMAP commands can be specified and have a
cumulative effect. Options that are inconsistent with previous LISTMAP
commands cannot be specified in a succeeding LISTMAP command.

Note LISTMAP CROSSREF was formerly known as LIST C. LISTMAP
INTERNALS was formerly known as LIST T, and LISTMAP PUBLICS was
formerly known as LIST X.

Linker/Loader Commands
LISTMAP

286

LOAD

Load Specified Object Modules

Syntax:

Command Argument

LOAD {-}filename1{,{-}filename2,...,{-}filen ameN}

Where:
filename Specifies the name of a file in which the object module or

library resides. If the filename contains a suffix, it is used as
is; otherwise, a suffix of ".o" or ".obj" (DOS) is appended to
form the actual filename. The minus sign in front of the
filename forces the linker to load all modules in filename.

Description: The LOAD command is used to specify one or more input object modules to
be loaded.

The file specified may contain either relocatable object modules (output of the
assembler), relocatable object modules from incremental linking, or libraries
(output of the librarian). Libraries and object modules differ in their internal
format, but you can treat them identically with the following exception:

Libraries should be loaded after all non-libraries. Libraries will load only
those modules which are necessary to resolve undefined XREFs, even if
the library file or device is preceded by a minus sign. Backward XREFs
within a library are resolved correctly. However, XREFs to a library from
a subsequently LOADed file are generally not resolved correctly.
Therefore, libraries should be LOADed last. In the case where each of
two libraries makes XREFs to the other, it is generally necessary to
LOAD one of them twice (for example, LOAD LIBA, LIBB, LIBA) to
pick up all the necessary modules.

The object modules are loaded in the order specified with each subsection
within each module being loaded into memory at a higher address than all
preceding subsections within its section. You may use as many LOAD
commands as needed.

Linker/Loader Commands
LOAD

287

Example:

LOAD FILE1

Linker/Loader Commands
LOAD

288

LOAD_SYMBOLS

Load Object Modules Symbol Information

Syntax:

Command Argument

LOAD_SYMBOLS {-}filename1{,{-}filename2,...,{-}filen ameN}

Where:
filename Specifies the name of a file in which the object module or

library resides. If the filename contains a suffix, it is used as
is; otherwise, a suffix of ".o" or ".obj" (DOS) is appended to
form the actual filename. The minus sign in front of the
filename forces the linker to load all modules in filename.

Description: The LOAD_SYMBOLS command allocates space internally to the linker for
modules contained in the specified file(s) for so that it may correctly fix up
symbols. The linker also retains all PUBLIC symbol definitions. Code and data
for the specified modules are not loaded, but symbol table and debug
information is loaded into the output file.

Input modules can consist of relocatable object modules (output of the
assembler), relocatable object modules from incremental linking, or libraries
(output of the librarian). If the specified modules are from a library, all
external symbols are also retained so that all forward references cause an
allocation of space. If the modules are not from a library, all external symbols
are ignored.

Example:

LOAD_SYMBOLS FILE1

Linker/Loader Commands
LOAD_SYMBOLS

289

MERGE

Specify Output Module Name

Syntax:

Command Argument

MERGE merge_name merge_arg{,merge_arg}...

Where:
merge_name The name of the new, combined section.

merge_arg is one of the following:

sname a section name

{sname,mname} a section name followed by a module name. The braces are
required.

* an asterisk can replace either or both the section name and
the module name. A wild card character, an asterisk means
all modules or sections.

Description: The MERGE command renames all the named subsections to a new section
named in the first argument. This command lets you overcome the default
combining of sections with the same name section by letting you create new
sections. The command lets you concatenate arbitrary lists of subsections.
The new section can then be placed anywhere in memory.

MERGE can be used during both incremental and absolute links.

MERGE commands will be executed in the order that they are found in the
command file.

Note MERGE and ALIAS are mutually exclusive. Any attempt to use both
commands in the same session will result in an error.

Linker/Loader Commands
MERGE

290

Example:
; There are three modules each containing three
; sections: SECT1, SECT2, SECT3.
;
MERGE NEW_SECT SECT1,{SECT2,MOD2},{SECT3,MOD3}
MERGE NEW_SECT {SECT3,MOD2}
;
SECT NEW_SECT=$1000
SECT SECT2=$2000
SECT SECT3=$3000
;
LOAD MOD1,MOD2,MOD3
;
; This causes a new section with the name NEW_SECT to
; be created. It is located at $1000
; containing the following module sections in the order listed:
; SECT1/MOD1, SECT1/MOD2, SECT1/MOD3, SECT2/MOD2, SECT3/MOD3,
; SECT3/MOD2.
;
; There is also SECT2 located at $2000 containing:
; SECT2/MOD2, SECT2/MOD3 and
; SECT3 located at $3000 containing:
; SECT3,MOD1

Linker/Loader Commands
MERGE

291

NAME

Specify Output Module Name

Syntax:

Command Argument

NAME name

Where:
name A symbol that specifies the object module name.

Description: The NAME command is used to specify the name of the final output object
module. This appears on the first line of the output object file as an extension
to the standard Motorola S-record hexadecimal format, which does not
contain a name. Any symbols assigned values by the PUBLIC command are
considered to lie in this load-time-defined module.

The name may be any standard symbol, up to 31 characters long. If you do not
specify a name, the name of the output module will be taken from the first
input module.

Example:

NAME READER

Linker/Loader Commands
NAME

292

NLIST

Clear Loader Options

Syntax:

Command Argument

NLIST FLAG{,FLAG} . . .

Where: FLAG is one of the following:

A Specifies the output file format to be Motorola S-Record.
(Default= IEEE.)

C Specifies that no cross reference listing is to be produced.
(Default= NLIST C)

I Specifies the output file format to be IEEE. (Default=
IEEE.)

O Specifies that no object module is to be produced.
(Default= LIST O)

P The P flag only affects Motorola S-Record output files. It
specifies that the local symbols from input modules loaded
(while this flag is set) be included in the output file. This
flag can be turned off and on between LOAD commands. Its
purpose is to exclude local symbols from particular modules
because of duplicate symbol conflicts. (Default= LIST P)

S Specifies that no local symbol table information is to be
written to the output file. (Default= LIST S)

T Specifies that the local symbol table is not listed on the
loader listing. (Default= NLIST T)

X Specifies that the PUBLIC (global) symbol table is not to be
listed on the loader listing. (Default= NLIST X)

Linker/Loader Commands
NLIST

293

Description: The NLIST command is the opposite of the LIST command and is used to
suppress the listing of the elements specified. The elements may be turned
back on with the LIST command.

Example:

NLIST O ; don’t produce an
 ; object module

Linker/Loader Commands
NLIST

294

NOPAGE

Turn Off Page Relocatability

Syntax:

Command Argument

NOPAGE sname

Where:
sname A section name, which should have previously appeared in a

PAGE directive.

Description: This directive restores the Relocation Type of a section to Word. It is legal
but unnecessary unless the specified section has previously appeared in a
PAGE command.

A section name appearing here for the first time is assigned the long attribute
but is assigned neither the common nor the noncommon attribute.

The typical use for this command is to turn off paging for modules which are
already known to work correctly (libraries, for instance), in order to save
memory space.

Linker/Loader Commands
NOPAGE

295

ORDER/SORDER

Specify Long/Short Section Order

Syntax:

Command Argument

ORDER lname{(sect_type)}{,lname{(sect_type)}}...

SORDER sname{(sect_type)}{,sname{(sect_type)}}...

Where:
lname The name of a section with the long attribute.

sname The name of a section with the short attribute.

sect_type Specifies a section type. Section type can be C for code, D
for data, M for mixed, or R for ROM data.

Note The same section name may not appear twice on an ORDER or SORDER
command. Multiple ORDER or SORDER commands are accepted without a
warning and concatenated.

Description: These commands alter the default order of assigning Load Addresses to
sections.

As described in the "Linker/Loader Operation" chapter, the normal order of
the sections in each group (the groups are [I] short sections and [II] long
sections) is just the order in which the loader encountered their names. Use
the ORDER and SORDER commands when you do not need to specify load
addresses for each section but would like the sections to be placed in memory
in a different order.

If you specify load addresses for the sections, the order of the sections might
not be important. Keep in mind, however, that even if a load address is
specified for a certain section, any sections assigned memory space after that
section will be loaded at the next available address. If, for example, you want
long section SECT2 to begin at $FFFF00, and all the other long sections to be

Linker/Loader Commands
ORDER/SORDER

296

placed together in lower memory, the ORDER command should be specified
with section SECT2 being the last argument. If this is not done, then any
sections which are listed after SECT2 will reside in upper memory above
section SECT2.

If you ask the loader to place one section where it would overlap another, the
loader will place the section at the first address which avoids the overlap, even
if that means changing the order from what you specified.

While the information necessary to determine the default order of the sections
is available to you, in complex cases it will be simpler to use the ORDER
command than to figure out the default order. The ORDER command applies
to long sections; the SORDER command to short sections.

If a section name appears in these commands for the first time it is assigned
the appropriate shortness attribute, but it is assigned neither the common nor
the noncommon attribute so that subsequently it may turn out to be either. If
the name of a short section appears in the long version of the ORDER
command this is a fatal error; however the final determination of which
sections are short cannot be made until all modules have been read, since any
short subsection declaration makes a section short. If the name of a long
section appears in the short version of the ORDER command a warning is
printed and the section is given the short attribute. (This may occur if a
SECT, COMMON, PAGE, CPAGE, or NOPAGE directive precedes the
SORDER command, since these directives assign newly found sections the
long attribute.)

Specify the order of the sections within each group by specifying section names
separated by commas. Any sections remaining within the group will be
assigned memory space after the sections specified in the command in the
order their names were encountered by the loader.

Linker/Loader Commands
ORDER/SORDER

297

Example:

ORDER SEC1,COMSEG
SORDER SEC2,SHORTSEC

An ORDER or SORDER command may be continued to the next line by
terminating it with a space followed by a pound sign (#). This character must
go between section names, like a comma.

ORDER SECT1 #
 SECT2,SECT3 #
 SECT4

Linker/Loader Commands
ORDER/SORDER

298

PAGE

Set Noncommon Section to be Page Relocatable

Syntax:

Command Argument

PAGE sname

Where:
sname A section name.

Description: This command may be used to modify the relocation type of a noncommon
section(s) in the input object modules to Page. As explained in the section
titled Relocation Types, all sections are assumed to be Word Relocatable at
first. This command allows you to override the default relocation type. After
the PAGE command is read, each subsection of the specified section loaded
thereafter will be loaded at the next nearest 256 byte boundary until a
NOPAGE command for the section is encountered.

The typical use of this command is to allow you to begin each section on a
page boundary, for ease of debugging. After debugging is completed the Page
commands are removed to avoid wasted memory space.

Specify the section name. If this is the first occurrence of this section name it
is given the attributes noncommon and long.

Example:

PAGE SECT1
PAGE SECT2

Linker/Loader Commands
PAGE

299

PUBLIC

Specify Public Symbols (External Definitions)

Syntax:

Command Argument

PUBLIC sym= value

PUBLIC sym= sym2{+ offset}

PUBLIC sym= sym2{-offset}

Where:
sym A user defined external definition symbol.

value A constant number.

sym2 Another global sym defined in a module or in a previous
PUBLIC command.

offset A constant value that may be added or subtracted from
symbol 2.

Description: This command is used to define and/or change the value of an external
definition (XDEF). Symbol names specified by the loader’s PUBLIC
command take precedence over symbol names defined during assembly.
Therefore, if a symbol specified by this command is already an external
definition (from an input object module defined by the assembler), the value
of the symbol is changed to that specified in the PUBLIC command. If the
symbol is not already defined, it will be entered into the loader’s symbol table
along with the specified value and will then be available to satisfy external
references from object modules. Symbols defined in the PUBLIC command
are absolute if their definition is a number or another absolute symbol; they
are relocatable if defined as equal to a relocatable symbol.

This command is position dependent in the linker command file. Public
symbols defined before a library containing the symbol is loaded with not be
resolved properly.

Linker/Loader Commands
PUBLIC

300

This command allows you to specify the value of some external symbols at
Load time and possibly to avoid a reassembly.

Example:

PUBLIC INPUT=$2F
PUBLIC OUTPUT=$200
PUBLIC newsymbol=oldsymbol

Linker/Loader Commands
PUBLIC

301

RESADD/RESMEM

Reserves Regions of Memory

Syntax:

Command Argument

RESADD low_addr,high_addr

RESMEM low_addr,size

Where:
low_addr Starting address of the memory to be reserved.

high_addr Ending address of the memory to be reserved.

size Number of bytes to be reserved.

Description: The RESADD/RESMEM commands reserve specified memory locations.
The reserved memory region is made into an absolute section that will show
up in the SECTION SUMMARY of the link map.

When sections are placed using ORDER or SORDER commands, nothing
will be loaded in the reserved memory region. This can be useful for
"skipping" a region of memory for a real-time operating system, for example.

If a section is placed at a specific address using the SECT command, and the
section overlaps a reserved region, a non-fatal error message is issued. The
load will still continue to completion, but the resulting absolute file will
contain sections at overlapping addresses. The linker issues a warning if
high_addr is less than low_addr for RESADD.

RESADD reserves the addresses low_addr to high_addr. RESMEM reserves
the addresses low_addr to low_addr + (size–1). The low_addr, high_addr, and
size are all numeric constants.

Linker/Loader Commands
RESADD/RESMEM

302

Example:

This command file:

RESMEM $200,$100
RESADD $2,$101
LOAD module1
END

will generate the following two entries in the SECTION SUMMARY of the
resulting link map if there are no overlapping sections.

 . . .
 . . .
SECTION SUMMARY

SECTION ATTRIBUTE START END LENGTH ALIGN
 ABSOLUTE 00000200 000002FF 00000100 0 (BYTE)
 ABSOLUTE 00000002 00000101 00000100 0 (BYTE)
 . . .
 . . .

Linker/Loader Commands
RESADD/RESMEM

303

SECT

Set Noncommon Section Load Address

Syntax:

Command Argument

SECT sname,value

SECT sname= value

SECT sname value

Where:
sname Specifies the section name.

value Specifies the load address of the section.

Description: The SECT command is used to specify the load address of a noncommon
Relocatable section. If this is the first occurrence of the section name, it is
given the attributes noncommon and long. Any use of this command must
precede any LOAD commands.

Specifies the section name followed by the address of the location at which to
start loading the section. The specified address will be rounded up to the next
alignment boundary in all cases, and to the next page boundary if paging is in
effect for the first subsection of the section.

Example:

SECT SECT1,$400
SECT SECT2=$1320

Note The value is separated from the section name by a blank, comma, or equal
sign. Multiple SECT commands with the same section name are accepted
without a warning, but only the last one will be used.

Linker/Loader Commands
SECT

304

SECTSIZE

Set Minimum Section Size

Syntax:

Command Argument

SECTSIZE sname= size {,sname= size}...

Where:
sname Specifies the section name.

size Specifies a constant representing the minimum seciton size,
in bytes.

Description: The SECTSIZE command specifies the minimum size in byes of a combined
continuous memory space defined by sname. It is an error to define a size less
than the size of the combined section unless the section is of type common.

If the section does not exist, it will be created and considered to be
noncommon.

Example:

SECTSIZE STACK=$100

Note The value is separated from the section name by a blank, comma, or equal
sign. Multiple SECT commands with the same section name are accepted
without a warning, but only the last one will be used.

Linker/Loader Commands
SECTSIZE

305

START

Specify Output Module Starting Address

Syntax:

Command Argument

START value

Where:
value Specifies the starting address to be used in the output object

module.

Description: This command is used to specify the absolute starting address to be placed in
the terminator record of the object module. If not specified, the starting
address is obtained from the END record of the main program of the input
modules. If no main program has been read, the starting address will be zero.

Evidently this directive should not be used unless the starting address falls in
an absolute section or in a relocatable section with a specified load address. In
the latter case, be warned that when the load address is rounded upwards to lie
on a word or page boundary, the starting address is not likewise rounded.

Example:

START $7FC

Linker/Loader Commands
START

306

11

Librarian Introduction

This chapter describes the operation of the ar68k librarian.

Librarian Introduction

307

The ar68k object module librarian may be used to build program libraries,
which are collections of relocatable object modules residing in a single file.
These libraries enable you to load frequently used object modules by referring
to publicly defined names, without concern for the specific names and
characteristics of the modules. The librarian accepts the relocatable object
module output of the as68k assembler.

The librarian performs the function of formatting and organizing library files
that will subsequently be used by the ld68k linking loader. Libraries are both a
convenient means for managing collections of relocatable object modules and
a more efficient means for linkers to access the modules when required. This
efficiency is realized by reducing the number of files that must be opened for
linking modules.

The word "module", as used in discussing the librarian, refers to a Relocatable
Object Module that results from assembling a source program, using the as68k
Relocatable Macro Assembler. Modules in a library must be in the format
produced by the Assembler.

This, and subsequent chapters, describe the ar68k librarian that accompanies
the as68k assembler, how to build and manipulate the libraries, and how the
ld68k loader utilizes the libraries.

Librarian Introduction

308

Librarian Features

The ar68k Object Module Librarian features the following:

• User friendly commands.

• Efficient operation.

• Batch Command line input and return codes for "make" type procedures.

• Optimized structure for fast linker access.

Librarian Introduction
Librarian Features

309

Librarian Operation

The librarian may be utilized in both an interactive or a batch mode. In
interactive mode, you interact with the librarian directly by entering
commands and receiving status responses. All commands are available in this
mode. There are two types of batch input modes available. The first uses an
input command file which can contain any of the available commands and
outputs resulting status messages to a listing file. The second batch mode uses
input commands from the command line only. This mode is limited to
addmod, delete, extract and replace functions within an existing library.

Librarian Function -- Overview

When writing modular programs (using Relocatable Macro Assemblers),
communication among the various modules is established through use of
XDEF and EXTERNAL Symbols. For example, the following illustration
shows three relocatable object modules that resulted from the assembly of
generic assembly language modules.

Librarian Introduction
Librarian Function -- Overview

310

SQUARE IDNT
 XDEF NEXT
 XREF FALLOW

; Program Module 1

 JMP FALLOW
 NEXT: NOP
 NOP
 END

SINCOS IDNT
 XDEF FALLOW
 XREF NEXT

; Program Module 2

 FALLOW: MOVE #8,D0
 NOP
 JMP NEXT
 END

ARCTAN IDNT
 XDEF ARCTAN

; Program Module n

 ARCTAN: MOVE 260,D1
 MULS D1,D2
 NOP
 END

Of the three modules shown, the first two can be seen to communicate with
one another through external references and public symbols, while the third is
a stand-alone module.

A Relocatable Object
Module that resides in
host system file
"swigget.o".

A Relocatable Object
Module that resides in
host system file
"bayer.o".

A Relocatable Object
Module that resides in
host system file
"knewel.o".

Librarian Introduction
Librarian Function -- Overview

311

The relocatable modules illustrated consist of load data information,
relocation information, and records that indicate:

 1) Public symbols
 2) External symbols.

The above relocatable object modules may be made Members of a library by
various combinations of librarian commands.

For example, a new library may be created by the following command.
Substitute ".lib" for ".a" if you are using a DOS system.

CREATE newrem.a
SAVE

or:

CREATE newrem.a
ADDMOD knewel.o
ADDMOD swigget,bayer
SAVE

There are several ways that the relocatable object modules can be
incorporated into a library by utilizing various librarian commands, which are
described in detail in the "Librarian Commands" chapter. Now that a library
containing these members has been built, it may be used by the ld68k loader.

Assume that you have written a program called "main". After "main" has been
assembled, the Relocatable Object Module that results is in a host system file
named "main.o" (or "main.obj" for DOS systems). This module has a reference
to the public symbol ARCTAN.

 XREF ARCTAN

 Main Module
 NOP
 JSR ARCTAN
 NOP
 END

A Relocatable Object
Module in host system
file "main.o".

Librarian Introduction
Librarian Function -- Overview

312

Before the existence of the library, you could have directed the loader as
follows.

LOAD main.o
LOAD bayer.o

Now that there is a library, you can direct the loader as follows.

LOAD main.o
LOAD newrem.a

The linking loader will access the library to attempt to resolve external
references, such as ARCTAN. Now, if we modify the "main" module so that it
calls the SINCOS module as well:

 XREF ARCTAN
 XREF FALLOW
 Main Module
 NOP
 JSR ARCTAN
 JSR FALLOW
 END

Without the ability to load from a library, it would be necessary to command
the linking loader as follows.

LOAD main.o
LOAD swigget.o
LOAD bayer.o
LOAD knewel.o

A Relocatable Object Module in host
system file "main.o".

Librarian Introduction
Librarian Function -- Overview

313

However, when using a linking loader with the ability to load from a library,
you need specify only:

LOAD main
LOAD newrem.a

The loader will load the relocatable object module "main" in the usual way. It
will load the other modules from the library.

The following is a more practical example of the use of the library.

A programmer writes a series of program modules consisting of a number of
mathematical routines including a few modules that calculate transcendental
functions. Then, these modules are gathered into a library file, through use of
the ar68k librarian.

Sometime later, a programmer, either the one who wrote the mathematical
routines or someone else, has a requirement to calculate an Arc-Tangent
function within a program he is writing. He is aware of the fact that there is
an Arc-Tangent Function in a library file. He knows the name of the Entry
Point of the routine and he also knows how to pass parameters to the
Arc-Tangent Function and how to accept the result of the calculation.

So, during the coding of his program he need do only two things:

1 JSR the Arc-Tangent function from the program he is developing, placing
the Public Name of the Entry Point into the argument field of the JSR or
JMP instruction.

2 Place the Public Entry Point name of the Arc-Tangent Function in the
argument field of an External Reference Pseudo-Op in the program he is
writing.

Even though he does not know the name of the relocatable object module that
contains the Arc-Tangent Function, he will be able to direct the linking
loader to include the relocatable module that contains the correct module
simply by informing the loader to use the required library file(s).

The ld68k linking loader need not be explicitly informed which module
contains the Arc-Tangent Function. The loader will automatically search the
named library, looking for the Entry Point name that the programmer wrote as
the argument of his JSR statement. When the Entry Point name has been
found, the loader identifies the module in which it resides, and then includes
the module containing the name in the current load.

Librarian Introduction
Librarian Function -- Overview

314

The loader determines which of the library modules to load by examining the
internal list of unresolved external references that it accumulated during the
load process and then accessing the library file to determine if there is a match
between such an unresolved external reference and a label or name that has
been declared Public in one of the modules in the library file. The loader then
identifies which module contains the matching Public symbol and loads it just
as if he had explicitly directed the loader to load the proper module.

Even if there are several unresolved external references, the loader will
attempt to load every module that contains corresponding public symbols, in
order to satisfy every possible reference. Even when the inclusion of a module
in the library adds an undefined reference to the list of undefined references,
the load will access the library again until all external references have been
satisfied. All public symbols within a library must have unique names.

The advantages of using a library are as follows.

• A user need only know the input parameters, output parameters, and
entry point name of the function in order to have it included in the final
load module.

• A library that is a collection of often-used functions can reside on your
system and be available at all times to everyone.

• Module names and entry point names of all the program modules you
create are easy to track.

Librarian Introduction
Librarian Function -- Overview

315

Command Syntax

The librarian recognizes six special characters:

* - asterisk
; - semicolon
, - comma
(- left parenthesis
) - right parenthesis
+ - plus

Use of Special Characters

The use of these special characters in the command syntax is described below.

Filename implies the ordinary file name syntax that would be used on the host
system.

Module names are written according to the rules for the assembler used to
create the Relocatable Object Modules. Each module must have a unique
module name.

Public symbols are written according to the definition given in the assembler
used to create the modules.

The asterisk (*) and the semicolon (;), when appearing in a Command line,
cause the librarian to ignore the rest of the line.

These characters may be used to place comments in a command sequence.
The librarian does not process the rest of the line, which will be written to the
output file as a comment.

The comma (,) separates members of a list of similar elements. The list may
contain module names, or module filenames.

The left and right parentheses (), used in pairs, denote a list of similar
elements in a command. Parentheses may be used to group module names
that are members of a library only.

The plus sign (+) followed by a carriage return allows you to continue a list
on subsequent line(s). Care should be exercised when using it. Do not break
up or interrupt a complete syntactical unit (i.e., do not try to continue a
filename, a module name, or a command). The command verb must be
terminated by a blank if it was an argument. If the continuation character (+)

Librarian Introduction
Command Syntax

316

is used immediately after the command verb, it must be separated from the
command by at least one blank.

Except as noted above, the line continuation character may appear anywhere
in a command.

Blanks

Except as noted above, blanks may be used freely within commands (between
syntactically identifiable units).

Example:

DELETE MOD1 , MOD2

is the same as:

DELETE MOD1,MOD2

Command File Comments

Comments may be included in a command file to document the processing.
These are included by use of the semicolon (;) or asterisk (*).

Example:

; this is a complete line of comment
addmod modulea.o ; this is a command line comment
addmod moduleb * this is another comment

Module Names

A module is the output generated when assembling source files. The module
name is controlled by the IDNT directive. If no IDNT directive is specified in
the assembly source file, then the module name is the source file name with
any leading path or trailing suffix stripped. If an IDNT directive is specified,
the module name is taken from the IDNT directive.

Librarian Introduction
Command Syntax

317

Return Codes

The librarian returns 0 if no errors are detected; otherwise, it returns nonzero.
The librarian will complete normally, issue an informative message, issue a
warning, or end abnormally with an error. Error messages and warnings are
listed in the "Librarian Error Messages" appendix.

Library Listing Format

The output listing contains the following information:

• Header information including the time of the library creation and the
version number of the librarian.

• A list of the librarian commands and the name of the library in progress.

• A list of the modules contained in the library. The public symbols defined
and the external symbols used in each module are listed, as well as a count
of the public and external symbols.

• A count of the number of modules in the library.

Sample Test Program Description

The sample test programs in the next section utilize command files and object
module files. If the object module files on your disk have different names, you
must edit the command file and replace these assumed names with the actual
names.

When you start the librarian, it will display a header and a prompt character.
Commands can be entered at this point. The librarian can also be run in batch
mode.

The following pages show the results of a librarian sample test execution. The
information is displayed at the terminal during interactive program execution.
If in batch mode, the information is printed in an output stream formatted
similar to those appearing in the next section.

Librarian Introduction
Sample Test Program Description

318

Example Librarian Listing

HPB3641-19300 Wed Apr 28 15:19:56 1993

 Version A.02.00
* Create a library called "exlib.a", add two relocatable
* modules, get a brief listing and a complete listing,
* save the current library, and exit.

CREATE exlib.a
ADDMOD transfer.o
ADDMOD delay.o
DIRECTORY exlib.a exlib.dir
LIST exlib.a
HPB3641-19300 A.02.00 Wed Apr 28 15:19:57 1993

Library being built exlib.a

 Module Size Processor
transfer ... 352 68000

 ****** PUBLIC DEFINITIONS ******
TRANSFER

 ****** EXTERNAL REFERENCES ******
VIDEO_RAM

Public Count = 1
External Count = 1

 Module Size Processor
delay ... 307 68000

 ****** PUBLIC DEFINITIONS ******
DELAY

Public Count = 1
External Count = 0
Module Count = 2
SAVE
END

Figure 11-5. Example Librarian Listing

Librarian Introduction
Example Librarian Listing

319

Description of Example

In this sample program, a new library, exlib.a, is created and two modules
(transfer.o and delay.o) are added to it without error. (If you are using a DOS
system, the extensions will be ".lib" and ".obj".) The contents of the library are
then listed in an output stream. The output stream shows each Module
Name, and its public definitions and external references during execution.
Symbols are case sensitive. The total public symbol count and total external
symbol count are listed for each module. The total module count as well as
total warnings and errors are displayed at the end of the output stream.

Brief Format Example Library Listing

Brief Format Listing Description

The brief format library listing shown above was generated with the
DIRECTORY loader command shown in the first listing. The name of the
library, the names of the modules in the library (and their sizes), and the
module count are included in the brief format listing.

HPB3641-19300 A.02.00 Tue Apr 27 15:44:36 1993

Library being built exlib.a

 Module Size Processor
transfer ... 352 68000
delay 307 68000

Module Count = 2

Figure 11-6. Brief Format Example Library Listing

Librarian Introduction
Brief Format Example Library Listing

320

12

Librarian Commands

This chapter describes the commands that are used by the ar68k Object
Module Librarian.

321

The Librarian reads a sequence of commands from the command input device.
Commands may be read in interactive or batch mode. The command sequence
must be terminated by an END or SAVE command. Relocatable object
modules are read as input and collected in organized libraries as specified in
the command input file.

Command Summary

The following list summarizes the commands described in this chapter.

ADDLIB Include Library Object Module in Current Library.

ADDMOD Add Object Module to Current Library.

CLEAR Remove the Current Library.

CREATE Define New Library.

DELETE Delete Module From Current Library.

DIRECTORY Brief Listing of Contents of Library.

END, EXIT, QUIT Terminate Execution of Librarian.

EXTRACT Copy Library Module to File.

FULLDIR, LIST List Contents of Library or Library Module.

HELP Display Current Valid Commands and Syntax.

OPEN Open an Existing Library.

REPLACE Replace Library Module.

SAVE Create Library File Saving Contents of Current Library.

Librarian Commands

322

ADDLIB

Include Library Object Module in Current Library

Syntax:

Command Argument

ADDLIB {path}libname{(mod{,mod} . . .)}

Where:
path Host specific path specification.

libname Library filename from which to add module(s). If the
library filename specied has a suffix, the name is used as is.
If the library file name specified has no suffix, the suffix ".a"
(".lib" for DOS) suffix is appended to "libname" before it is
used.

mod Name of relocatable object module(s) to include; if none
are specified, the entire library is included.

Description: The ADDLIB command is used to specify that object modules from another
library are to be included in the library currently being created or modified. An
OPEN or CREATE command must precede the ADDLIB to open or create
the library to which the modules will be added.

Example:

ADDLIB MATH.a (SQUARE,SQROOT)

The above Command directs the librarian to include the "SQUARE" and the
"SQROOT" Modules from library named MATH.a. into the current library.

Librarian Commands
ADDLIB

323

ADDMOD

Add Object Module to Current Library

Syntax:

Command Argument

ADDMOD filename {,filename} . . .

Where:
filename Filename (including path) of file containing the Relocatable

Object Module to be added to the library. If the filenames
contain suffixes, the filename is used as is. If the filenames
have no suffixes, then ".o" (or ".obj" for DOS) is appended
to the filename before it is used.

Description: The ADDMOD command specifies that an object module that is not in a
library file is to be included in the library currently being created or modified.
The module(s) to be added to the library should have been named with the
NAME directive at assembly time. The ADDMOD command must be
preceded by an OPEN or CREATE library command.

Example:

ADDMOD MATH.MBR

The above Command directs the librarian to add a Relocatable Object Module
from file "MATH.MBR" to the current library.

Librarian Commands
ADDMOD

324

CLEAR

Erase the Current Library

Syntax:

Command Argument

CLEAR

Description: Clears all library commands that have been entered in the current session
since the last SAVE command. Another CREATE or OPEN may then be
issued. This command is useful if you access several libraries in a single
librarian session.

Example:

OPEN lib1
DIR lib1
CLEAR ; allow a new current library
OPEN lib2

Librarian Commands
CLEAR

325

CREATE

Define New Library

Syntax:

Command Argument

CREATE {path}libname

Where:
path Host specific path specification.

libname Library filename. If the name of the library file has a suffix,
then it is used as is. If the library file name has no suffix,
then ".a" (or ".lib" for DOS) is appended to create the library
file name.

Description: The CREATE command specifies the name of a new library which becomes
the current library for the remainder of the commands.

Example:

CREATE TEMPOR.a

The above Command directs the librarian to create a file, "TEMPOR.a", on
the host system and format it as a library. If the file TEMPOR.a already exists,
the user will be given a warning in interactive mode. In batch mode, no
library will be created.

Librarian Commands
CREATE

326

DELETE

Delete Module From Current Library

Syntax:

Command Argument

DELETE mod{,mod} . . .

Where:
mod Name of module(s) to be removed from library named in

preceding OPEN or CREATE command.

Description: The DELETE command is used to specify module(s) to be removed from the
library currently being created or updated. The module names specified are
the Relocatable Object Modules that are to be deleted. The module name
may be defined with the IDNT or the NAME assembly directives. If IDNT or
NAME are not used, the module name is the name of the assembly source file,
with any preceding path or trailing suffix stripped.

Example:

DELETE ARCTAN,SQUARE,RAD

The above Command directs the librarian to delete the "ARCTAN",
"SQUARE" and "RAD" relocatable object modules from the current library.

Librarian Commands
DELETE

327

DIRECTORY

Brief Listing of Library Contents

Syntax:

Command Argument

DIRECTORY {path}libname{(mod{,mod} . . .)} {listfile}

Where:
path Host specific path specification.

libname Library file referenced; the current library is referenced by
its name. If the name of the library file has a suffix, then it is
used as is. If the library file name has no suffix, then ".a" (or
".lib" for DOS) is appended to create the library file name.

mod Module to be listed.

listfile Filename to receive listing; if not specified, default to
standard output (usually the terminal).

Description: The DIRECTORY command is used to request a brief listing of the contents
of a library. The directory listed is of the library specified by the user. The
user may specify the current library or another library. All modules in the
library are listed with their Module Names and Module sizes (in bytes).

Librarian Commands
DIRECTORY

328

Example:

DIRECTORY SIEVE.a (command input)

Library SIEVE.a
 \
Name Size \
SIEVE 1812 \
MODULE ... 228 (output)
MODULE1 .. 1032 /
 /
Number of Modules = 3

The above DIRECTORY Command will produce the listing of the modules in
SIEVE.a and the size (in bytes) of each module as shown. The listing is
produced on the standard output.

Librarian Commands
DIRECTORY

329

END, EXIT, QUIT

Terminate Execution of Librarian

Syntax:

Command Argument

END
EXIT
QUIT

Description: The END command (and variations) is used to terminate command processing
in the librarian. The END command does not cause the current library to be
saved. The results of previous commands are not saved. In order to save the
current library, you must terminate using the SAVE command.

Example:

ar68k
LIST NEW.a
END

In this example, the librarian program is opened so that the user may list the
contents of library NEW.a. The librarian is exited using the END command
as soon as the information needed has been received.

Librarian Commands
END, EXIT, QUIT

330

EXTRACT

Copy Library Module to File

Syntax:

Command Argument

EXTRACT mod{,mod} . . .

Where:
mod Name of module to be copied. The name of the output file

is the module name with ".o" (or ".obj") appended.

Description: The EXTRACT command is used to specify a library module that is to be
copied to a non-library file. EXTRACT is the converse of the ADDMOD
command. This command directs the librarian to copy the specified library
module, which is a catalogued member of the library file, out to an external
file in the host system. The extracted module is in the same format as when it
was generated by the Assembler; consequently, it can be loaded explicitly by
the Linking Loader.

The EXTRACT command must be preceded by an OPEN or CREATE
command for the library from which the extract is to occur.

Example:

EXTRACT MODA,MODB,MODC

In the above example, a list of modules is specified. The modules MODA,
MODB, and MODC are copied from the current library into object files of
the same names, but with ".o" appended. The filenames created in this case are
MODA.o, MODB.o, and MODC.o. The extension may be different on your
operating system. Refer to page 25 for a list of filename extensions on your
operating system.

Librarian Commands
EXTRACT

331

FULLDIR, LIST

List Contents of Library or Library Module

Syntax:

Command Argument

FULLDIR
LIST

{path}libname{(mod{,mod} . . .)} {listfile}
{path}libname{(mod{,mod} . . .)} {listfile}

Where:
path Host specific path specification.

libname Library file referenced. If the name of the library file has a
suffix, then it is used as is. If the library file name has no
suffix, then ".a" (".lib" for DOS) is appended to create the
library file name.

mod Module to be listed.

listfile Filename to receive listing; if not specified, default to
standard list device.

Description: The LIST command is used to request a complete or partial listing of a
library. Every specified module is listed, along with a list of External
References and Public Symbols. See the "Librarian Listing Description"
chapter for the listing format.

Example:

LIST TRIG.a (ARCSIN,TANGEN) TRIG.LIST

The above Command will cause the librarian to write information pertaining
to modules "ARCSIN" and "TANGEN", which are members of the library
"TRIG.a" into the host system file "TRIG.LIST".

Librarian Commands
FULLDIR, LIST

332

HELP

Display Current Valid Commands and Syntax

Syntax:

Command Argument

HELP

Description: The HELP command displays the currently valid librarian commands and the
acceptable syntax for each.

The librarian has two contexts with different valid commands. The first
context is when there is no current library, in other words, no CREATE or
OPEN command has been executed or a SAVE or CLEAR command has
been issued. The second context is when a current library exists.

Example:

ar68k> help
 CLEAR
 CREATE library_name
 DIRECTORY library_name[(module_name[,...])] [list_filename]
 END
 FULLDIR library_name[(module_name[,...])] [list_filename]
 HELP
 OPEN library_name
 SAVE

ar68k> create lib1

ar68k> help
 ADDLIB library_name[module_name[,...]]
 ADDMOD filename[,...]
 CLEAR
 DELETE module_name[,...]
 DIRECTORY library_name[(module_name[,...])] [list_filename]
 END

Librarian Commands
HELP

333

 EXTRACT module_name[,...]
 FULLDIR library_name[(module_name[,...])] [list_filename]
 HELP
 REPLACE filename[,filename]
 SAVE

Librarian Commands
HELP

334

OPEN

Open an Existing Library

Syntax:

Command Argument

OPEN {path}libname{(module{,module} . . .)}

Where:
path Host specific path specification.

libname Library file name. If the name of the library file has a suffix,
then it is used as is. If the library file name has no suffix,
then ".a" (".lib" for DOS) is appended to create the library
file name.

module If modules are specified, only those modules are included in
the current library. If no modules are specified, all modules
from "libname" are included.

Description: The OPEN command is used to specify that an existing library is to be
referenced in conjunction with succeeding maintenance commands. If the
maintenance commands require that a new generation of the library be
created, the new version or updated library will have the same name as the
current library. If the library cannot be located or opened for input, an error
is reported. If the librarian is operating in batch mode, execution will be
terminated.

Example:

OPEN MATH.a (ARCSIN,SQUARE)

In this example, modules ARCSIN and SQUARE are opened in library
MATH.a.

Librarian Commands
OPEN

335

REPLACE

Replace Library Module

Syntax:

Command Argument

REPLACE filename{,filename} . . .

Where:
filename Filename of file containing module. If the filenames

contain suffixes, the filename is used as is. If the filenames
have no suffixes, then ".o" (".obj" for DOS) is appended to
the filename before it is used.

Description: The REPLACE command is used to replace a library module with a
non-library module of the same name. This command directs the librarian to
open a named module file. The library module is then replaced with a module
of the same name from the Non-library file it opened.

Example:

REPLACE SENTIN.o

The Command above directs the librarian to replace module SENTIN with a
copy of the module named SENTIN, located in a file named SENTIN.o.

Librarian Commands
REPLACE

336

SAVE

Create Library File Saving Contents of Current Library

Syntax:

Command Argument

SAVE

Description: The SAVE command is used to terminate the librarian and write the current
library, saving the results of the preceding commands.

Prior to the SAVE command, the maintenance commands preceding were
only checked for correct syntax and module existence. At SAVE time the
actual processing of the maintainence commands takes place. SAVE
indicates that a library is to be built following the rules of the preceding
commands.

Example:

CREATE NEW.a
ADDMOD REL1.o, REL2.o
ADDMOD FORTUN.o
SAVE

In this example, "REL1", "REL2" and "FORTUN" relocatable object modules
will be saved in library named NEW.a.

Librarian Commands
SAVE

337

Librarian Commands
SAVE

338

A

Assembler Error Messages

This appendix describes the error messages and warnings that appear if errors
in the source program are detected during the assembly process.

339

The error message is printed on the listing immediately following the
statement in error.

The following list will serve as a guide to diagnosing the error. Most error
messages are self-explanatory. The listing displays a total error count. See the
"Error Message Formats" appendix for explanations of error severity levels.

The errors and messages for the Assembler are listed and described below.

(500) No error.

(501) Missing argument.

The argument is missing or contains an illegal character, etc. Mismatch on
common/noncommon section type.

(502) Operator expected but not found.

(503) A symbol was found which is invalid in this context.

(504) Right parenthesis not valid in this context.

(505) Operator not valid in this context.

(506) Expression terminator found prematurely.

(507) Operand expected but not found.

(508) Unbalanced parentheses.

(509) Complex relocatable value not valid in this context.

(510) Stack underflow (internal error).

(511) Invalid operands for \" operator.

(512) Invalid operands for & operator.

(513) Invalid operands for | operator.

(514) Invalid operands for | | operator.

(515) Invalid operands for = operator.

(516) Invalid operands for < > operator.

(517) Invalid operands for > = operator.

Assembler Error Messages
(500)–(517)

340

(518) Invalid operands for > operator.

(519) Invalid operands for < operator.

(520) Invalid operands for < = operator.

(521) Invalid operands for > > operator.

(522) Invalid operands for < < operator.

(523) Invalid operands for * operator.

(524) Invalid operands for / operator.

(525) Invalid character.

This message is produced as the result of a variety of syntactic errors. A
character may be invalid within the context where it is found. The input line
may be too long. A register name may be found where one is not allowed.

(526) Closing string delimiter missing.

(527) String longer than 4 characters invalid in this context.

(528) Invalid opcode.

(529) Invalid opcode/qualifier combination.

(530) Undefined symbol.

There is a symbolic name in the operand field that has never been defined.
The symbol should have been previously defined for certain directives and was
not, but may have been defined after the directive. A symbol declared on the
XDEF directive was not used in the program.

(531) Invalid nesting of IF . . . ENDC..

(532) Invalid nesting of IF . . . ELSEC . . . ENDC.

The opcode mnemonic is not a valid instruction, directive, or a macro call. A
macro defined within another macro, or conditional assembly statements are
nested too deeply. ELSEC, ENDC, or ENDM has been used without
preceding IF or MACRO.

(533) Missing ENDC.

(534) IF stack overflow; limit is 16 nesting levels.

Assembler Error Messages
(518)–(534)

341

(535) This directive not permitted in absolute assembly.

(536) Code generation not permitted in OFFSET section.

(537) Integer value is outside of its legal range.

(538) Label required on this directive.

(539) Duplicate IDNT directive (ignored).

(540) Relocatable expression invalid in this context.

A relocatable expression is used for a field that is not 16 or 32 bits long. An
operand that should be absolute is relocatable. An ORG directive makes a
reference to an external symbol.

(541) Comma expected but not found.

(542) Invalid section name.

(543) Section cannot be both COMMON and non-COMMON.

(544) Nested macro definition.

(545) Too many sections.

(546) Invalid symbol.

(547) This sort of symbol cannot be made an external definition.

(548) Invalid external symbol.

(549) Value will be sign-extended to 32 bits at runtime.

(550) Unable to open Include file.

(551) Invalid formal parameter name.

(552) Invalid local symbol name.

(553) Duplicate label (ignored).

The label in the statement has previously appeared in the label field. A label
on a SET directive previously appeared in a statement other than a SET
directive, or a label on a statement other than a SET directive now appears on
a SET directive. A label appears more than once in an XDEF directive. A
symbol defined in an XREF directive appears in the label field of some

Assembler Error Messages
(535)–(553)

342

statement. A keyword appears in the label field or in an XDEF or XREF
directive.

(554) Incompatible usage: Motorola does not permit a label on this directive.

(555) Section was declared both Short and non-Short. Section will be Short.

(556) NO not permitted on this flag.

(557) Unknown or missing option flag.

(558) Register list invalid in this context.

(559) .W or .L extension on register not valid in this context.

User should verify the validity of the extension on register.

(560) A register in a colon-separated pair is invalid in this context.

Register pairs cannot be separated by a colon in this instruction.

(561) A colon-separated pair of registers is invalid in this context.

Register pairs cannot be separated by a colon in this instruction.

(562) Register expected but not found.

(563) A register in a register list is invalid in this context.

(564) Registers separated by - in register list must be in ascending order.

(565) Registers separated by - in register list must be of same type.

(566) Invalid expression contains a register.

(567) Left parenthesis expected but not found.

(568) Square brackets invalid in this context.

(569) Multiple arithmetic expressions invalid within an operand.

(570) Left brace expected but not found.

(571) Colon expected but not found.

(572) Right brace expected but not found.

(573) Equals sign expected but not found.

Assembler Error Messages
(554)–(573)

343

(574) TO or DOWNTO expected but not found.

(575) DO expected but not found.

(576) Nesting of WHILE . . . ENDW invalid.

(577) Nesting of REPEAT . . . UNTIL invalid.

(578) Nesting of IF . . . ELSE . . . ENDI invalid.

Nested FILE or INCLUDE directives. ELSE and/or ENDI have been used
without the preceding required structural syntax directive.

(579) Nesting of IF . . . ENDI invalid.

(580) Nesting of FOR . . . ENDF invalid.

Invalid extension for nested FILE or INCLUDE directives. ENDF has been
used without the preceding required structural syntax directive.

(581) BREAK found outside a structured-syntax loop construct.

(582) NEXT found outside a structured-syntax loop construct.

(583) Invalid condition code in structured syntax directive.

(584) < (condition code) expected but not found.

(585) Code generated is equivalent in some cases. Recoding recommended.

(586) THEN expected but not found.

(587) This instruction has too many operands.

(588) This combination of operands is not valid for this instruction.

(589) Too few bytes allocated on Pass 1 for forward reference.

(590) This instruction will not work on the declared processor type.

The instruction or operand is illegal for the specified processor. Use the
CHIP directive to specify another processor.

(591) FAIL directive assembled.

A programmed error has occurred.

(592) Register list required for REG directive operand.

Assembler Error Messages
(574)–(592)

344

(593) This directive invalid outside a macro.

(594) This character invalid within real constant.

(595) A real constant was expected here.

(596) Real numbers invalid in this context.

(597) This real number too small to represent. Zero substituted.

(598) This real number is too large to represent. Infinity substituted.

(599) Macros nested too deeply. Use OPT NEST if this was your intent.

When nesting macros, the buffer available for macro parameters is full.

(600) Real numbers invalid in this context.

(601) Value was truncated to fit in its field.

An evaluated expression or constant is out of range for the field of the actual
machine instruction in which it is to be contained.

(602) Calculated displacement does not fit in truncated field.

(603) Structured Directives not properly closed.

(604) Local symbols from this section not included in HP asmb_sym file.

When assembling with the "generate HP format output files" option, more
than one relocatable section was mapped to HP section PROG, HP section
DATA, or HP section COMN. Local symbols from these extra sections are
not written to the "asmb_sym" assembler symbol file and will not be available
for debugging. To eliminate this warning, move the extra sections into a new
source module.

(605) Out of virtual memory.

You have exceeded the host system’s limit for process size. Try using the -b
(big) command line option.

(606) Invalid Value for alignment, can only be 0, 1, 2, or 4.

(607) End of File inside a macro or repeat definition.

Assembler Error Messages
(593)–(607)

345

(608) Expression stack overflow.

The expression stack can hold about 45 entities. A single expression, therefore,
cannot contain more than 45 entities. An entity is a symbol, an operator, a
literal, parentheses, and so on. The expression "a+ b" has three entities. If you
must create a single expression that has enough entities to overflow the
expression stack, you may be able to circumvent the limit by using EQUs to
build the expression from subexpressions.

(609) Value is outside of its legal range.

(610) Illegal branch to odd address.

(611) Unable to create or open intermediate file.

(612) Illegal high-level debug syntax.

(613) Incompatible processor/ co-processor combination.

(614) User label conflicts with register name.

(615) Floating point hex number too big for specified size.

(616) Too many relocations in this section. Limit is 64K.

(617)
(618)
(619)
(620)

(Not Used)

(621) Macro/repeat definition terminated by assembler.

(622) Macro expansion buffer overflowed. Truncated.

(623) Too many formal parameters. Limit is 36.

The limit to the number of parameters for a macro is thirty-six. Reduce the
number of formal parameters in the macro definition.

(624) Macro names cannot contain a period (.).

Periods are not allowed in macro names (except as the first character).

(625) Macro definition has too many local symbols.

The maximum number of local symbols allowed in a macro definition is 90.

Assembler Error Messages
(608)–(625)

346

(626) Invalid model parameter.

The model parameter may be missing in the IRP assembler directive.

(627) Expanded macro line is too long.

Break the line into two shorter lines.

(628) Recursive expression evaluation.

(629) Illegal CHIP identifier.

(630) Invalid operand for .STARTOF. operator

Check that the operand is a section name.

(631) Invalid operand for .SIZEOF. operator

Check that the operand is a section name.

(632) The number of nesting levels for macros cannot exceed 100.

(633) .W or .L extension on cache not valid in this context

The extension is not allowed on cache registers.

(634) Extra operand(s) ignored

Assembler Error Messages
(626)–(634)

347

Assembler Error Messages
(634)–(634)

348

B

Loader Error Messages

This appendix describes the error messages and warnings that may appear
during Linking.

 349

Errors and messages from the Loader will be non-fatal or fatal. If the error is
non-fatal, the Load will proceed after the error is reported. If the error is
fatal, the Loader will report the error, and the load will terminate
immediately.

Command errors are usually due to invalid commands or command
parameters and usually cause termination of the loading process in batch
mode. If command errors are encountered in interactive mode, the Load
usually continues.

Errors and messages are listed beneath the actual command in error. Load
messages normally occur during the loading of object modules initiated by the
LOAD command. These messages may be fatal or informative. For most
load messages, the message is followed by the record number in the input
module and the actual record in error. For a particular module the module
name is also listed at the start of the messages.

The mode of operation determines whether the informational message is
flagged as a warning or as an error. The severity of the error also varies
depending on the mode and environment. In general, the error or message is
more severe for the user of a batch file or command line mode, and less severe
for the user of interactive mode.

Most load errors should not occur. If they do, the user is advised to first
reassemble the program, and then to reload. If the error persists, the user
may contact Hewlett-Packard.

Loader Error Messages
–

350

The errors and messages are listed and described below.

(300) Bad IEEE Object Record.

Either the object module has been corrupted or it is not a IEEE relocatable
object file.

(301) Maximum Number Of Sections Exceeded.

The maximum number of allowable sections (2000) has been exceeded.

(302) Section Mismatch.

A section was typed common in one place and noncommon in another, or
short in one place and long in another. This message may arise if a section is
mentioned for the first time in a SECT, COMMON, PAGE, CPAGE, or
NOPAGE command, as these commands assign the long attribute to
newfound sections.

(303) Section Overlap.

Due to user specified addresses, or absolute sections, one or more of the
sections overlap. Some sections of memory may have multiple values loaded.
This message is non-fatal and loading continues, but it usually means that you
should change the load addresses so the sections do not overlap.

(304) Module Too Large.

At final load time the combined lengths of all program sections exceed the
maximum memory size, established by the CHIP command.

(305) Reserved Memory Table Full.

There are too many non-adjacent sections in the link. Try to reduce the
number of non-adjacent sections.

(306) Out of memory.

The loader has run out of memory in the host system.

(307) Duplicate Public.

A PUBLIC is defined that was already defined in another module. Loading
will continue and the symbol will be listed.

Loader Error Messages
(300)–(307)

 351

(308) Invalid CHIP Command.

The CHIP command as specified by the user is not a legal loader command.

(309) Invalid Command.

A command specified by the user is not a legal Loader command.

(310) Load Completed.

Message indicates normal load.

(311) Load Not Completed.

Message indicates abnormal load.

(312) Invalid ORDER command.

The ORDER command specified by the user is not a legal loader command.

(313) Invalid Operand.

An operand specified for a command contains invalid characters, does not
exist, or is too large.

(314) Chip inconsist.

The loader has encountered a file assembled with a CHIP directive which has
"greater" capabilities than the CHIP specified to the loader. For example, a
file assembled with the "CHIP 68020" directive is loaded with the "CHIP
68000" load command in effect. The module MAY contain instructions which
cannot execute on the target chip.

(315) Maximum memory has been exceeded.

The program exceeds the memory available for the target microprocessor.

(316) Short memory has been exceeded.

The short memory specified is not enough for all short sections.

(317) Section assigned address below BASE.

An absolute or relocatable section has been assigned an address less than the
address specified in the BASE command.

(318) Internal Error.

Loader Error Messages
(308)–(318)

352

The loader has encountered a fatal internal error.

(319) Cannot Open File.

The loader is unable to open the relocatable object file.

(320) Unresolved Externals:.

The unresolved external symbols are listed following this warning message.

(322) 8-bits Value Out of Range.

A relocated 8-bit value is out of range. An 8-bit field, generally an immediate
value, has too large a value. Loading continues but the loaded program often
will not run; the user should investigate.

All values are evaluated as unsigned 32-bit values. These values are expected
to be within 8 bits sign-extended (i.e., $FFFFFF80 to $FFFFFFFF or 0 to
$7F) displacements that will be sign-extended to 32 bits at run time (e.g., the
operand of MOVEQ). In the more common case of immediate values which
are not sign-extended at runtime, the expected range is 0 to $FF or
$FFFFFF00 to $FFFFFFFF. In either case the value inserted in the object
module is the low 8 bits of the complete 32-bit value, whether this error is
reported or not. This message interrupts the Load Map when it appears. The
section and location relative to the beginning of the subsection (i.e., the
address that appears on the assembler listing) are given for each occurrence.
The module is shown in the preceding line of the Load Map.

(323) 16-bits Value Out of Range at nnnn in module xxxx section yyyy.

The relocated value of an expression will not fit into a 16-bit field. Loading
will continue, but the program may not run properly. You should investigate
this warning.

For example, an absolute short instruction refers to a location that is not in
the range $0 through $7FFF or $FFFF8000 through $FFFFFFFF. A
PC-plus-16-bit-displacement instruction may refer to a location that is more
than + /-32K bytes from the present location.

Often, this error occurs in conjunction with an "Unresolved External" error.
The loader assigns the value zero to undefined symbols and then tries to
reference address 0.

All expressions are evaluated as unsigned 32-bit values. If a 16-bit field will be
sign-extended at run-time, then the value must fall within the range $0

Loader Error Messages
(319)–(323)

 353

through $7FFF or $FFFF8000 through $FFFFFFFF. If the field will not be
sign-extended, then the value must fall in the range $0 through $FFFF or
$FFFF0000 through $FFFFFFFF.

In any case, the value inserted into the field is the low 16 bits of the value.

(324) Section Mismatch Between Symbol Def and Ref.

An XREF from the assembler had a section associated with it which does not
match the section of the XDEF with the same name, or does not match the
section associated with a previous XREF to the same symbol. Unspecified
sections are considered to match any section name. The symbol is treated as
undefined. (This message may occur in the case of duplicate XDEFs as well.)

(325) Illegal HP section name.

The HP object file contains an illegal section name.

(326) Cannot open temporary file.

(327) Illegal ALIAS command.

(328) Illegal command for ALIAS section.

A section that was ALIASed to another section was mentioned in a loader
command. The original section name should not be referenced.

(329) Multiple initialization of a COMMON section.

This error occurs when more than one file defines data or instructions (as
opposed to just reserving space) in the same COMMON section. Since each
file’s contribution to a COMMON section will overlap, data from one file may
overwrite data from a second file.

(330) Illegal ALIAS for a COMMON section.

(331) Inconsistent IEEE object format.

The loader has encountered a relocatable module that it cannot properly
interpret. Usually, this results from using different versions of assembler and
loader programs. A later version of the assembler will produce a relocatable
that is rejected by an earlier version of the loader.

Loader Error Messages
(324)–(331)

354

(332) Object contains errors.

The assembler detected errors when the relocatable module was produced.
The module may contain code that will not execute properly.

(333) Source file does not exist.

This warning indicates that a source file could not be found in the same place
where it was compiled and assembled.

(334) Local symbols in CODE section.

This warning can occur if you are linking .o files which were assembled with
version 1.20 or earlier of the assembler. Re-assemble the files.

(335) Local symbols in DATA section.

This warning can occur if you are linking .o files which were assembled with
version 1.20 or earlier of the assembler. Re-assemble the files.

(336) Local symbols in COMN section.

When assembling with the "generate HP format output files" option, more
than one relocatable section was mapped to HP section DATA. Local
symbols from these extra sections are not written to the "asmb_sym"
assembler symbol file and will not be available for debugging. To eliminate
this warning, move the extra sections to a new source module.

This warning can occur if you are linking .o files which were assembled with
version 1.20 or earlier of the assembler. Re-assemble the files.

(337) Illegal command for incremental linking.

Only LOAD commands are allowed during an incremental link.

(338) Duplicate ROM section.

More than one INITDATA command was issued.

Loader Error Messages
(332)–(338)

 355

(339) Section moved to high short section.

The loader was locating short sections in low base page ($0000 through
$7FFF). It encountered a short section which would not fit in low base page.
It located the section in high base page. The addresses of high base page
depend on which microprocessor was specified with the CHIP command:

68008 $000F8000 through $000FFFFF.

68000/10/332 $00FF8000 through $00FFFFFF.

68020/30/40 $FFFF8000 through $FFFFFFFF.

68030 $FFFF8000 through $FFFFFFFF.

68040 $FFFF8000 through $FFFFFFFF.

This value may be modified by the loader CHIP command.

(340) Out of virtual memory.

You have exceeded the host system’s limits for process size.

(341) This command is illegal after LOAD is used.

(342) Incompatible incrementally linked object. Recreate the object.

The linker has read an incrementally linked relocatable file produced by the
HP 64870 68000/10/20 linker version 1.20. Because of a defect in the earlier
version, the file must be remade before it will be accepted by ld68k. You may
redo the incremental link with ld68k version 1.30 or later.

(343)

I/O Error.

(345) Duplicate Public From Library Module -- ignored.

A public symbol was already defined in the library.

(346) Could Not Construct Full Path Name:

Check that the objects you are trying to link are on the same host computer.

(347) Command Ignored:

Loader Error Messages
(339)–(347)

356

(348) Module Not Found,

(349) Section Previously Specified Or Non_existent:

(350) Illegal Multiple Case Specification for class

Each class (PUBLICS, MODULES, SECTIONS) can have only one case
specification (CASE, UPPERCASE, LOWERCASE).

(351) Write error - disk may be full.

An I/O error occurred while writing the output file. The output file will have
been removed if this error occurs.

(352) Section mismatch between PUBLIC def and Module ref for symbol xxx

(353) Redefinition of xxx

A symbol defined by the PUBLIC command or a register has been redefined.
Definitions can be made INDEX, PUBLIC, or XDEF commands. The value of
the symbol is the value specified by the last PUBLIC command.

(362) Too Many Errors

Any errors found after this message is shown will not be reported.

(364) Cannot ABSOLUTE unknown section,

This section is not defined in any of the modules loaded by the linker.

(365) Cannot ALIGN unknown section,

This section is not defined in any of the modules loaded by the linker.

(366) Cannot ALIGN absolute section,

Absolute sections have a fixed starting address and cannot be aligned.

(367) Absolute section cannot have the same name as other sections,

Absolute sections cannot be combined with relocatable sections.

(368) Combined section exceeds memory space,

(372) Section size shrunk for

The default size of a COMMON section was greater than specified by the
SECTSIZE command.

Loader Error Messages
(348)–(372)

 357

(373) 24-bit Value Out of Range at

The relocated value of an expression will not fit into a 24-bit field. Although
loading continues, the program may not run properly.

(374) ORDER command could not be obeyed for section,

An impossible section order was specified in the ORDER command. For
example,

ORDER sect1,sec2,sect3
SECT sect2=0

Since sect2 must begin at address 0, sect1 cannot precede sect2.

(375) No modules were loaded

No LOAD or LOAD_SYMBOLS commands were specified. Another error
may have prevented the linker from reading the LOAD command. Note that a
library will not be loaded if there are no undefined externals.

(376) Invalid modifier, modifier

(377) Duplicate section name specified in INITDATA command(s)

(379) Invalid INITDATA command

The INITDATA command is missing operands.

(380) ’*’ is no longer a valid comment character in this context

Use a semicolon (;) to begin comments in linker command files. (This is a
change from earlier versions of the assembler.)

Loader Error Messages
(373)–(380)

358

C

Librarian Error Messages

This chapter describes the error messages and warnings that may appear while
executing the librarian.

359

The librarian writes error messages to the current listing device. Some errors
are fatal, and some are warnings, depending upon the circumstances of the
particular operation. See the "Error Message Formats" appendix for
explanations of librarian error severity levels.

After executing the librarian, you should review the listing to make certain
that all commands have been properly processed. A message is written to the
listing device each time a library is written into a file.

The errors and messages for the librarian are listed and described below.

(100) Could not close file [filename] to open another file.

The librarian attempts to keep as many files open as it can to reduce overhead.
If too many files are open it must close one to open a new one.

(101) Unable to open file [filename] in mode [module name].

The librarian received an error when trying to open the named file in the
named module.

(102) Unable to close file [filename].

The librarian received an error when trying to close the named file.

(103) Unable to open input file [filename].

The librarian received an error when trying to open the named file.

(104) File [filename] not included.

The contents of the named file will not be included in the library.

(105) File not included.

The named file has not been included in the library.

(106) File [filename] exists already.

This message appears if the CREATE command is used and the library name
exists as a file already.

(107) File [filename] does not exist.

This message appears if the OPEN command is used and there is no such file.

Librarian Error Messages
(100)–(107)

360

(108) Library file [libname] not opened.

This message appears if the OPEN command is used but the library could not
be opened.

(109) Library file [libname] not included.

The contents of the named library file are not included in the current library.
This message appears if the ADDLIB command is used and the module
cannot be included in the current library.

(200) Module [module name] not found.

A named module was not found in the target library.

(201) Module [module name] not found.

A named module was not found in the target library.

(202) Module [module name] not found in current library.

The named module was not found in the library being built. Check the spelling.

(203) Module [module name] already exists in current library.

Duplicate module names.

(204) [filename] is a library file.

This is an informative message that appears when the librarian was looking for
a module file.

(205) [filename] is not a library file.

This is an informative message that appears when the librarian was looking for
a library file.

(206) Module [module name] is not being included in the library.

Self explanatory.

(207) Bad object record.

Either the object module has been corrupted or it is not a HP-MRI IEEE 695
relocatable object file.

Librarian Error Messages
(108)–(207)

361

(208) Bad library header record.

The library may have been corrupted.

(209) Duplicate symbol [filename].

Two different modules have the same public definition symbol. The Librarian
is always case sensitive with symbols.

(210) Bad object record in file [filename].

The library or module file may have been corrupted.

(250) Out of memory.

The librarian could not allocate any more memory from the system.

(251) Failed writing library.

This message is always preceded by the precise reason for the failure.

(252) Fseek or ftell error.

It is possible that one of the object files used to build the library has been
corrupted.

(253) Library [libname] not written.

This message is always preceded by the precise reason for the failure.

(254) Failed writing module [module name] to file [filename].

(255) Replacement not done.

The librarian was unable to perform the REPLACE as specified.

(256) Extraction Failed.

The librarian was unable to perform the EXTRACT as specified.

(257) Illegal command.

Retype the command or argument. This message could also mean that the
user attempted to start the command sequence with the ADDMOD command.

(258) Abrupt ending of comment.

There was a new line before the second quote.

Librarian Error Messages
(208)–(258)

362

(259) Quote not terminated.

There was a new line before the second quote.

Librarian Error Messages
(259)–(259)

363

Librarian Error Messages
(259)–(259)

364

D

Error Message Formats

This chapter explains the difference between warnings, errors, and fatal errors.

365

Error Classes

There are three classes of errors that may occur during assembler,
linker/loader, or librarian execution: warnings, errors, and fatal errors.

Warnings

Warnings announce something that might be a problem in the output file.
For example, the loader warns of a section mismatch between the definition
and reference of a symbol. This may or may not indicate a problem with the
program.

After a warning, the output files are written normally.

After a warning ar68k, as68k, and ld68k return a return code indicating
"success" so that command files and "make" operations continue normally.

Errors

Errors announce something that IS wrong in the output file. For example, an
unresolved external symbol will cause a loader error. A reference to an
unresolved symbol will cause problems at run-time.

After an error, the output files are written normally. The output files are
complete and may be useful in subsequent operations.

After an error ar68k, as68k, and ld68k return a return code indicating "error"
so that command files and "make" operations stop.

Error Message Formats
Error Classes

366

Fatal Errors

A fatal error announces a condition that causes processing to be discontinued.
For example, the linker/loader produces a fatal error when one of its input
modules is not a valid IEEE relocatable file.

After a fatal error, the output files are incomplete and corrupt. They are not
useful for subsequent operations.

After an error ar68k, as68k, and ld68k return a return code indicating "error"
so that command files and "make" operations stop.

Error Message Formats
Error Classes

367

Interactive and Non-Interactive Conditions

Some conditions produce either warnings or errors, depending on whether the
tool is run in interactive or batch mode. In interactive mode, a particular
condition causes a warning because the user has a chance to reissue the
command correctly. In batch mode, the same condition causes an error.

For example (on the HP-UX operating system), suppose the file tt2.o does not
exist. If we invoked the librarian in batch mode as follows:

$ ar68k -a "tt2.o" lib.a

We would see an error.

< ar68k >
 (101) unable to open file tt2.o.
 ERROR: (104) file tt2.o not included.
 (253) Library lib.a not written.

Warnings = 0
Errors = 1

In interactive mode, if we typed the following command:

ar68k> addmod tt2.o

We would see a warning.

 (101) unable to open file tt2.o.
 WARNING: (104) file tt2.o not included.

Error Message Formats
Interactive and Non-Interactive Conditions

368

E

Converting to HP B3641 Assembly
Language

This appendix describes how you can convert source files written for the HP
64845 assembler so that they will work with the 68000 Family
Assembler/Linker/Librarian.

369

Converting HP 64845 Assembly Language
Programs

This appendix documents the changes that must be made to source files
written for the HP 64845 assembler so that they can be assembled with the HP
B3641 assembler. Not everything that appears in the HP 64845 format source
files can be translated into something which the HP B3641 assembler will
recognize, but a good portion can.

Source file conversion utilities may be supplied with the assembler as
“contributed software.” These utilities, if supplied, will not be supported by
Hewlett-Packard.

Note Some of the source file conversions described in this appendix will allow
instructions to be assembled with no errors on the HP B3641 assembler.
However, the relocatable object code generated may not always be the same.
Identical instructions may cause different code to be generated due to the
method in which the assembler chooses addressing modes or optimizes
instructions. For example, given a source file line of "MOVE.L # 1,D0", the
HP 64845 assembler will generate code for a MOVE instruction with two
words of extension while the HP B3641 assembler will generate a MOVEQ
instruction with zero words of extension.

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Assembly Language Programs

370

Labels, assembly language instructions, numeric terms, and comments will not
have to be changed. Areas which require changes are listed below.

• Chip Directives. You are required to tell the HP 64845 assembler to
generate instructions for a certain microprocessor by including a string in
the first line & column of the source file. For example:

"68000"
^68010^
’68008’

Depending on what your target processor is, you either replace the chip
string with the appropriate HP B3641 assembler CHIP directive, or
remove the chip string from the source file altogether. In the absence of a
CHIP directive (or equivalent command line option), the B3641 defaults
to the 68000 processor. CHIP directives eqivalent to the preceding chip
strings are as follows:

CHIP 68000
CHIP 68010
CHIP 68008

• Flags. The HP B3641 assembler has flags that affect its behavior (see the
OPT assembler directive). For the HP B3641 assembler to operate in a
manner that is most like the HP 64845 assembler, you should always
include the following directives in programs to be assembled by the HP
B3641 assembler.

OPT NOABSPCADD ; Absolute expressions in PC-relative operands
 ; are treated as displacements.
OPT NOPCR ; Do not optimize absolute operands to be PC-relative.

• Pseudo-Ops. Some pseudo-ops used in HP 64845 source files have
comparable directives in the HP B3641 product. See “Converting
HP 64845 Pseudo-Ops" later in this appendix for more information.

• Operand Symbols and Delimiters. Various operand symbols and
delimiters will have to be modified; for example, the HP 64845 uses
brackets where 68000/10 syntax specifies parentheses, the symbol for
"current assembly location counter" is different, string delimiters are
different, and logical operators have different forms. See “Converting
HP 64845 Operands" later in this appendix for more information.

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Assembly Language Programs

371

• Character Strings. Character strings are packed differently in words or
longwords. See “Converting Character Constants" later in this appendix
for more information.

• Macros. Macros are similar; however, there are some fundamental
differences between HP 64845 macros and HP B3641 macros. See
“Converting HP 64845 Macros” later in this appendix for more
information.

• Miscellaneous. The HP 64845 assembler sometimes allows white space
where the HP B3641 assembler does not. See “Converting HP
64845—Miscellaneous” for more information about this and other
miscellaneous coversions.

In addition to issues surrounding coversion of HP 64845 assembler files for
use with the HP B3641 assembler, there are issues with using incrementally
linked or library files created with earlier versions of the HP 64870 assembler.
Refer to “Compatibility with older HP 64870 Files” later in ths appendix for
further information.

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Assembly Language Programs

372

Converting HP 64845 Pseudo-Ops

Listed below are the pseudo-ops allowed in HP 64845 source files and their
counterparts (if any) in the HP B3641 assembler.

HP 64845 HP B3641

ABSOLUTE_LONG
ABS_LONG

No substitute. The OPT FRL directive in the HP B3641
assembler is used to force absolute long addressing in
forward references only. The ABS_LONG pseudo-op
will force the absolute long address mode in forward
and backward references. To force the absolute long
address mode, use the .L extension on individual
operands (e.g., "(< exp>).L").

ABSOLUTE_SHORT
ABS_SHORT

No substitute. The OPT FRS directive in the HP B3641
assembler is used to force absolute short addressing in
forward references only. The ABS_SHORT pseudo-op
will force the absolute short address mode in forward
and backward references. To force the absolute short
address mode, use the .W extension on individual
operands (e.g., "(< exp>).W").

ASCII/ASC DC.B

A5_REL_ON
A5_REL_OFF

No substitute. The linker/loader INDEX command
provides for A2-A5 relative addressing. If the
A5_REL_ON pseudo-op is used, be sure to use the
linker/loader INDEX command and specify the
run-time value of "An" as the value you would assign to
A5 when answering the HP 64845
"PROG,DATA,COMN,A5?" linker question.

BINARY/BIN DC

The operand must be specified as a binary number by
adding a "%" prefix or a "B" suffix. (Warnings will be
generated if the operand of the DC directive must be
truncated to fit into 16-bits. The BIN pseudo-op will

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

373

also truncate to word lengths, but no warning is
generated.)

COMN COMMON COMN

DATA SECTION DATA,,D

DECIMAL/DEC DC

(Warnings will be generated if the operand of the DC
directive must be truncated to fit into 16-bits. The
DECIMAL pseudo-op will also truncate to word
lengths, but no warning is generated.)

END END

EQU EQU

EVEN ALIGN 2

EXPAND OPT C,I,M,ML,MC

EXTERNAL XREF

GLOBAL/GLB XDEF

HEX DC

The operand must be specified as a hexadecimal
number by adding a "$" prefix or a "H" suffix.
(Warnings will be generated if the operand of the DC
directive must be truncated to fit into 16-bits. The
HEX pseudo-op will also truncate to word lengths, but
no warning is generated.)

IF/ELSE/
ENDIF/IFEND

IFNE/ELSEC/ENDC

INCLUDE INCLUDE

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

374

LIST LIST, OPT S

MASK No substitute. It is possible to duplicate this operation
by ANDing and ORing each character in the ASCII
pseudo instruction’s operand with values defined in
SET directives.

* HP 64845 Instructions:
*------------------------
 MASK 77H,101B
 ASCII ’abcd’
 MASK 0A5H
 ASCII ’ef’

* HP B3641 Equivalent:
*------------------------
AND_VAL SET 77H
OR_VAL SET 101B
 DC.B ’a’&AND_VAL!OR_VAL
 DC.B ’b’&AND_VAL!OR_VAL
 DC.B ’c’&AND_VAL!OR_VAL
 DC.B ’d’&AND_VAL!OR_VAL
AND_VAL SET 0A5H
 DC.B ’e’&AND_VAL!OR_VAL
 DC.B ’f’&AND_VAL!OR_VAL

Remember, MASK only affects strings defined with the
ASC/ASCII pseudo instruction.

NAME No substitute.

NOLIST NOLIST, OPT -S

NOWARN OPT W

OCT/OCTAL DC

The operand must be specified as an octal number by
adding a "@" prefix or "O" or "Q" suffixes. (Warnings
will be generated if the operand of the DC directive
must be truncated to fit into 16-bits. The OCT
pseudo-op will also truncate to word lengths, but no
warning is generated.)

ORG ORG

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

375

PROG SECTION PROG,,P

REAL DC.S, DC.D

In the HP 64845 assembler, short reals are generated
by using "E" to specify the power of ten (e.g., 1.0E2) and
long reals are generated by using "L" to specify the
power of ten (e.g., 1.0L2). With the HP B3641
assembler, always use "E" to specify the exponent and
use "DC.S" to generate short reals or "DC.D" to
generate long reals.

REPT REPT and ENDR

The HP 64845 assembler allows you to repeat one
statement. The HP B3641 assembler allows you to
repeat a number of statements (the statements between
REPT and ENDR); therefore, you must add the ENDR
directive after the statement which is to be repeated.

RORG OPT NOPCR,NOPCS

The RORG directive is not exactly equal to OPT
NOPCR,NOPCS. The RORG directive affects
"absolute to relocatable" references and "relocatable to
absolute" references. No HP B3641 flag does this.

SET SET

SKIP PAGE

SPC SPC

TITLE TTL

WARN OPT -W

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Pseudo-Ops

376

Converting HP 64845 Operands

Arithmetic operators and numeric terms in HP 64845 operands do not have to
be changed before they are assembled with the HP B3641 assembler.

The HP 64845 assembler allowed spaces after commas in some operand lists
(e.g., lists of symbols in the GLOBAL and EXTERNAL pseudo-op
operands). The HP B3641 assembler will not allow spaces in operand lists.
Any time a space appears in an operand, the remainder of the line is
interpreted as a comment.

Other parts of the operand fields which must be changed are shown below.

HP 64845 HP B3641

[] ()

The HP 64845 assembler syntax requires brackets when
using the indirect address mode operands. These
brackets should be changed to parentheses before
assembling with the HP B3641 assembler.

$ *

Current assembly location counter symbol.

^ " ’ ’ ^

The HP 64845 assembler allowed three types of string
delimiters. In the HP B3641 source file, only the single
quote (’) and the caret (^) can be used as string
delimiters. When using the single quote character as a
string delimiter and you wish to include a single quote
as part of the string, use two adjacent single quotes.
The same is true for the caret character.

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Operands

377

Converting Character Constants

Be careful when using character constants as word or longword operands. The
HP 64845 assembler right justifies character constants. The HP B3641
assembler left justifies character constants on word or longword boundaries.
For example:

MOVE.L #’A’,D0 ; HP 64845 moves $00000041.
 ; HP B3641 moves $00004100.

Converting Logical Operators

Different symbols are used for logical operators in the HP 64845 assembler.
The HP B3641 equivalents are shown below.

HP 64845 HP B3641

.AN. &

Logical AND.

.NT. "

Logical one’s complement.

.OR. !

Logical OR.

.SL. < <

Shift left.

.SR. > >

Shift right.

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Operands

378

Converting HP 64845 Macros

There are some fundamental differences between macros in the HP 64845
assembler and macros in the HP B3641 assembler. The HP 64845 assembler
provides greater flexibility with its conditional macro assembly instructions,
and the capability offered by these conditional instructions cannot be
completely duplicated by the HP B3641 assembler. However, other parts of
HP 64845 macros are similar to HP macros.

Macro Headings

Macro headings are the same in both assemblers with one exception: macro
parameters must begin with the ampersand (&) character in the HP 64845
assembler. The ampersand is a special character in the HP B3641 assembler
and will cause errors if used in macro parameters. The solution to this
problem is: 1) remove the ampersand character in the macro definition line,
and 2) precede the parameter with "&&" in the macro body.

Unique Label Generation

In the HP 64845 assembler, unique local labels are created whenever a macro
is called by using four ampersand characters (&&&&) in macro definition
labels. The HP B3641 assembler uses the "\@" characters to accomplish the
same thing. When converting HP 64845 macros, replace every occurrence of
"&&&&" with "\@" before assembling with the HP B3641 assembler.

Be aware that the unique local symbols generated are not the same. For
example, suppose you specify the "LABEL&&&&" local symbol in a HP
64845 macro definition. The counterpart in the HP B3641 would be
"LABEL\@". On the first macro call in the HP 64845 assembler, the symbol
created would be "LABEL0001". With the HP B3641 assembler, the first
macro call would create the symbol "??0001".

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Macros

379

Conditional Assembly Within Macros

The HP 64845 assembler provided for conditional assembly within macros
with four conditional instructions:

.SET

.IF

.GOTO

.NOP

The ".SET" Instruction

The ".SET" conditional instruction in HP 64845 macros can be replaced with
the HP B3641 "SET" directive.

The ".IF" Conditional Branch Instruction

In the HP 64845 assembler, the ".IF" instruction is a conditional branch
instruction that uses six relational operators:

.EQ.

.NE.

.LT.

.GT.

.LE.

.GE.

The ".IF" conditional branch instruction has the following format:

Label Operation Operand Comment

 .IF <exp> .<relational operator>. <exp> label

If the value of the comparison is true, the HP 64845 assembler goes to the
"label" in the macro definition and continues to process the macro definition
instructions from that statement.

While you can set up (in the HP B3641 assembler) a macro definition that
contains a conditional macro call to itself, there is no way for a macro to call
parts of itself. The ".IF" instruction cannot be duplicated.

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Macros

380

The ".GOTO" Unconditional Branch Instruction

The ".GOTO" unconditional branch instruction cannot be duplicated because
of the same reasons listed above for the ".IF" conditional branch instruction.

The ".NOP" Instruction

The ".NOP" instruction is a no-operation instruction, and the effect is the
same as if the assembler were to begin processing the statement immediately
following this instruction. The ".NOP" instruction can be used with the ".IF"
and ".GOTO" conditional instructions to exit the macro conditionally. While
the HP B3641 assembler does not provide anything similar to the ".NOP"
macro instruction, it does provide the MEXIT macro instruction to exit a
macro.

Indexing Parameters

The HP 64845 assembler provides a way to index parameters in a macro
parameter list by using two ampersands and a macro local symbol (e.g.,
&&SYMB). The macro local symbol SYMB is usually set to equal a number,
or possibly a macro parameter, with the ".SET" instruction. The HP B3641
assembler also provides parameter indexing with the "\n" macro operator
(where n = the number of the parameter). Symbols set equal to numbers are
not allowed with the "\n" operator. To convert "&&SYMB" to "\n", you must
backtrack to find the number that SYMB equals and substitute that number
for "n".

Converting to HP B3641 Assembly Language
Converting HP 6 4845 Macros

381

Converting HP 64845— Miscellaneous

White Space

The HP 64845 assembler sometimes allows white space in lists of operands.
This white space will cause errors when assembled with the HP B3641
assembler. For example,

EXTERNAL LAB1, LAB2

should be rewritten as:

XREF LAB1,LAB2

White Space in Macro Parameters

In the HP B3641 assembly language, white space delimits an actual macro
parameter, even inside quoted strings. Therefore, strings containing white
space should be surrounded by angle brackets (< , >) as shown in the
following example.

M1 MACRO P1
 . . .
 ENDM

 M1 <"TWO WORDS">

Converting to HP B3641 Assembly Language
Converting HP 6 4845— Miscellaneous

382

Compatibility with older HP 64870 and HP 64874
Files

If you have been using an older revision of the HP 64870/B1464
68000/10/20/332 Assembler Linker Librarian or the HP 64874 68030/40
Assember Linker Librarian, you can still use your old relocatable, library, and
source files with the HP B3641. When using older files, there are three areas
for compatibility that must be considered:

• Relocatable and Library Files

• Assembler Source Files

• Linker Command Files

Note In the following text, the CHIP directive is mentioned several times. Anywhere
the CHIP directive can be used, the OPT P= directive can also be used to
specify the target processor.

Relocatable and Library Files

Relocatable files produced by older versions of the the HP 64870 and
HP 64874 and library files produced by the most recent version of the HP
64870 and HP 64874 Librarian are accepted, unchanged, as input files by the
HP B3641.

The reverse is not always true. Relocatable and library files produced by the
HP B3641 Assembler/Linker/Librarian will not be accepted by older versions
of the HP 64870 or HP 64874 assemblers if the CHIP directive used when
these files were created is not one that is accepted by the HP 64870 or
HP 64874. (For example, a CHIP 68030 directive used with the HP 64870, or a
CHIP 68020 directive used with the HP 64874.) One of the two following error
messages will occur:

FATAL ERROR: (300) Bad IEEE Object Record Module: Part: Header
Position: 0

or

ERROR: (314) Chip inconsistent

Converting to HP B3641 Assembly Language
Compatibility with older HP 6 4870 and HP 64874 Files

383

In addition to the CHIP directive problem, changes in the output module
format (OMF) will prevent the HP B3641 linker from linking output from
versions of the HP 64870 assembler that support the old OMF.

Assembly Source Files

Assembly files used with the HP 64874 Assembler/Linker/Librarian do not
require CHIP directives to identify the target processor, although if they are
present (and correct), they do not cause an error. If you use these same files
with the HP B3641, and wish to target the 68030 or 68040 processor, you must
include explicit CHIP directives in the files or specify the target processor on
the command line when you invoke the assembler.

Converting to HP B3641 Assembly Language
Compatibility with older HP 6 4870 and HP 64874 Files

384

F

About this Version

How this version of the assembler differs from previous versions.

385

Version 2.01

PC Platform Support

The assembler is now available for personal computers running MS-DOS.

Re-organized manual

The User’s Guide and Reference manuals have been combined and the
chapters have been re-organized a bit.

Version 2.00

Note: These changes may require you to change your linker
command files.

Combined products

The HP B3641 68000 Family Assembler/Linker/Librarian combines the HP
64870 and HP 64874 products into a single assembler that supports all
Motorola 68000 family microprocessors.

New features: as68k

• Byte relocation is now supported.

• The operators * and / are now allowed in relocatable expressions.

• The assembler now warns when extra operands are detected for assembler
directives.

• Passing a string that contains a space as a macro parameter no longer
causes improper macro expansion.

Chapter F: About this Version
Version 2.01

386

• A label on a odd address and on a line by itself now gets the odd address,
rather than the address of the next even aligned instruction.

• Sections may now have an alignment attribute of 1, in addition to
alignments of 2 and 4.

• Positional parameters and local macro labels cannot be placed in the label
part of an ENDM (macro terminator) directive. The same effect can be
achieved by placing the label on the line prior to the ENDM directive.

• The EQU directive now supports simple forward references (a symbol
with no operands) and allows constant offsets to be added or subtracted
from external symbols.

• A coprocessor id field number of 7 is now accepted correctly as an
operand by the FOPT directive.

• The IFDEF and IFNDEF directives have been added. These directives
control conditional assembly based on whether a symbol is defined or not
defined.

• The syntax of the ORG directive has been extended to allow absolute
sections to be named.

• The CHIP directive now accepts additional chip types. The valid chip
types accepted and corresponding instruction sets allowed are as follows:

Input Processor String Instruction Set Allowed

68000 68000

68EC000 68000

68HC000 68000

68HC001 68000

68008 68000

68010 68010

68302 CPU32

68330 CPU32

68331 CPU32

Chapter F: About this Version
Version 2.00

387

68332 CPU32

68333 CPU32

68340 CPU32

CPU32 CPU32

68020 68020

68EC020 68020

68030 68030

68EC030 68EC030

68040 68040

68EC040 68EC040

The CHIP directive no longer supports an absolute expression. Processor
types are processed as strings.

• The behavior of the XDEF and XREF directives has been changed. An
XDEF will override a previous XREF for any symbol that has not already
been defined.

New features: ld68k

• The symbol table manager has been enhanced. This results in as much as a
30 percent performance increase on large links.

• Static functions and static variables noew appear in the Local Symbol
Table section of the map file.

• The comment character in linker command files has been changed from
an asterisk (*) to a semicolon (;). The asterisk can still be used as a
comment character only if it is placed in column 1. Usage in other than
column 1 causes a collision with the use of ’*’ with the MERGE command.

• The command continuation character in linker command files is now the
pound sign (#) instead of the plus sign (+).

• The escape character in linker command files is now a single quote (’)
instead of the dash (-).

Chapter F: About this Version
Version 2.00

388

• The linker can now link an unlimited number of modules. In previous
versions, exceeding the limit of 500 modules could cause a core dump.

• The linker now generates an entry for the \0 section in the MODULE
SUMMARY of the map file.

• Section names in the SECTION SUMMARY of the map file are no
longer limited to 8 characters.

• The linker will now generate an error if no modules are loaded.

• The LIST and NLIST commands will not be supported in future releases
of the linker.

• The LISTMAP command now has an option to set the page length for the
map file listing.

• The new LOAD_SYMBOLS command instructs the linker to allocate
space for a module, but to only load symbols and debug information from
the module.

• The ORDER and SORDER commands now accept a section type
argument.

• The PUBLIC linker command now allows PUBLIC sym1= sym2+ offset
syntax.

• The new SECTSIZE command can be used to change section sizes at link
time.

• The START command will now accept a symbol or a value as an argument.

Chapter F: About this Version
Version 2.00

389

Chapter F: About this Version
Version 2.00

390

Index

"
" in linker command files 201

$
hexadecimal constant prefix 201

*
in linker command files 203
See also location counter
wild card in linker command files 238

_, in HP format files 192

A A2-A5 relative addressing 64 – 71
A2-A5 relative addressing, example 67
ABSOLUTE loader command 205 – 206
absolute long mode 46
absolute section 186
absolute short mode 46
absolute vs. relocatable symbols 82
ADDLIB librarian command 273
ADDMOD librarian command 274
address format in assembler listing 19
address lines 188
address modes 38 – 49

absolute short 187
and the 68881 48
user control of 62 – 63

address register indirect modes 43
with 8-bit displ. & index (68000 model) 44
with 8-bit displ. & index (68020 model) 44
with base displ. & index (68020 model) 44
with displacement 44
with postincrement 43
with predecrement 44

address register indirect with displacement addressing modes 64
address registers A2-A5 224 – 225
address rounding 191

Index

391

addresses
even and odd 191
odd locations 43

addressing modes
68000 model 40
68020 model 41
68332 model 42

addressing modes, operand syntax and 52
advantages of A2-A5 relative addressing 65
ALIAS loader command 207
ALIGN assembler directive 90
ALIGN loader commands 208
alignment (section) attributes 76
alignment, section 188
ALIGNMOD loader commands 208
arguments

linker command 201
as68k features 2
ASCII vs. EBCDIC character strings 14
assembler

character set 8
constants 12 – 15
directives 85 – 156
error messages 289 – 298
introduction 1 – 20
listing format description 18
statements 3 – 4
structured control directives 170
symbols 9 – 11

assembler listing
hint for debugging addresses 191

assembler syntax
rules 50

assembly language
converting HP 64845 source files 320 – 322
instructions 23
location counter symbol 11

assembly program counter
See location counter(*)

asterisk, librarian command character 264

Index

392

attributes (section)
common vs. noncommon 75
section type 77
short vs. long 76

attributes, section 187

B base address 189
BASE loader command 190, 209
blanks, librarian command file 265
BREAK directive (loop exit) 179
brief format library listing example, description 269

C C flag in assembler listing 19
CASE loader commands 210 – 211
case sensitivity

in linker 201
character constants 14
character constants, HP 64845 and HP B3641 328
character set (assembler) 8
CHIP assembler directive 91 – 92
CHIP loader commands 212 – 213
CLEAR librarian command 275
COMLINE assembler directive 93
comma, librarian command character 264
command format, linker 201
command syntax, librarian 264 – 265
comment field 4
comment statement 6
comments

librarian command file 265
linker command file (;) 203

comments, loader 203
COMMON assembler directive 94 – 95
COMMON loader command 214
common section 187
common vs. noncommon section attributes 75
complex relocatable expressions 83 – 84
conditional execution, IF...THEN...ELSE...ENDI 175 – 176

Index

393

constants 12 – 15
character 14
integer 12
linker command format 201

contents, section 188
continuation, loader 204
CONTROL register 37
converting HP 64845 source files

conditional assembly within macros 330
logical operators 328
macro headings 329
macro indexing parameters 331
macros 329 – 331
operands 327 – 328
pseudo-ops 323 – 326

CPAGE loader command 215
CREATE librarian command 276
cross reference table format 20

D data
in ROM 226 – 228
sharing between sections 187

DC assembler directive 96 – 98
DCB assembler directive 99 – 100
DELETE librarian command 277
directives

 list of 86
ALIGN 90
assembler 85 – 156
BREAK (structured control) 179
CHIP 91 – 92
COMLINE 93
COMMON 94 – 95
DC 96 – 98
DCB 99 – 100
DS 101 – 102
ELSE (structured syntax) 175 – 176
ELSEC 103
END 104
ENDC 105
ENDF 173 – 174

Index

394

directives (continued)
ENDI 175 – 176
ENDM 161
ENDR 106
ENDW (structured syntax) 178
EQU 107 – 108
FAIL 109
FEQU 110 – 111
FILE 112
FOPT 113
FOR 173 – 174
FORMAT 114
IDNT 115
IF (structured syntax) 175 – 176
IF GT 116
IFC 117 – 118
IFDEF 119
IFEQ 116
IFGE 116
IFLE 116
IFLT 116
IFNC 117 – 118
IFNDEF 119
IFNE 116
INCLUDE 120
INTFILE 121
IRP 122
IRPC 123
LIST 124
LLEN 125
LOCAL 165 – 166
MACRO 159
MASK2 126
MEXIT 167
NAME 127
NEXT (structured control) 179
NOFORMAT 114
NOLIST 128
NOOBJ 129
NOPAGE 130

Index

395

directives (continued)
OFFSET 131 – 132
OPT 133 – 138
ORG 139 – 140
PAGE 141
PLEN 142
REG 143
REPEAT (structured syntax) 177
REPT 144
RESTORE 145
SAVE 146
SECT/SECTION 147 – 148
SET 149
SPC 150
structured control 170
TTL 151
UNTIL (structured syntax) 177
WHILE (structured syntax) 178
XCOM 152
XDEF 153
XREF 154 – 156

DIRECTORY librarian command 278 – 279
DS assembler directive 101 – 102
dynamically allocated data areas, A2-A5 relative addressing 67

E E flag in assembler listing 19
EBCDIC vs. ASCII character strings 14
ELSE directive (structured syntax) 175 – 176
ELSEC assembler directive 103
END assembler directive 104, 116
END librarian command 280
END loader command 217
ENDC assembler directive 105
ENDF directive (structured syntax) 173 – 174
ENDI directive 175 – 176
ENDM directive 161
ENDR assembler directive 106
ENDW directive (structured syntax) 178
EQU assembler directive 107 – 108
ERROR loader command 218

Index

396

error messages
assembler 289 – 298
classes 316 – 317
formats 315 – 318
interactive vs. non-interactive 318
librarian 266, 309 – 314
loader 299 – 308

even addresses 191
example assembly statements 5 – 6
example library listing description 269
EXIT librarian command 280
EXIT loader command 219
expressions 16 – 17

relocatable 83 – 84
structured control 171 – 172

EXTERN loader commands 220
external symbols 81
EXTRACT librarian command 281

F FAIL assembler directive 109
features of as68k 2
FEQU assembler directive 110 – 111
FILE assembler directive 112
floating-point constants 13
floating-point coprocessor

registers 37
floating-point coprocessor (68881) and address modes 48
FOPT assembler directive 113
FOR directive 173 – 174
FOR...ENDF loop 173 – 174
FORMAT assembler directives 114
FORMAT loader command 221
format of assembler statements 3 – 4
formats for error messages 315 – 318
forward defined symbols, code generation for 61
FP data registers 37
FPCR register 37
FPIAR register 37
FPSR register 37
FULLDIR librarian command 282
function codes, not supported 190

Index

397

H HELP librarian command 283 – 284
hexadecimal constants in linker commands 201
how a librarian works 258 – 263
how code is generated for forward defined symbols 61
hp format absolute files, generating 192
HP section type 189
HP Section type attribute 78

I IADDR register 37
IDNT assembler directive 115
IF directive

BREAK not allowed 179
IF directive (structured syntax) 175 – 176
IF...THEN...ELSE...ENDI conditional execution 175 – 176
IFC assembler directive 117 – 118
IFDEF assembler directive 119
IFEQ assembler directive 116
IFGE assembler directive 116
IFGT assembler directive 116
IFLE assembler directive 116
IFLT assembler directive 116
IFNC assembler directive 117 – 118
IFNDEF assembler directive 119
IFNE assembler directive 116
immediate mode 48
INCLUDE assembler directive 120
INCLUDE loader commands 222 – 223
incremental linking 191
INDEX loader command 224 – 225

A2-A5 relative addressing 65
indirect addr. modes, absolute vs. relocatable expressions 64
initcopy routine 227
INITDATA loader command 226 – 228
INITDATA section 226
initdata() routine 226
initializing data 226 – 228
instruction operands 34
instructions (assembly language) 23
integer constants 12
INTFILE assembler directive 121
IRP assembler directive 122
IRPC assembler directive 123

Index

398

K keywords 170

L label field 4
librarian

command characters 264
definition 258
example listing 268
features 257
introduction 255 – 270
listing format description 266
messages and error concepts 316
operation 258
overview 258 – 263

librarian commands 271 – 288
ADDLIB 273
ADDMOD 274
CLEAR 275
CREATE 276
DELETE 277
DIRECTORY 278 – 279
END 280
EXIT 280
EXTRACT 281
FULLDIR 282
HELP 283 – 284
LIST 282
OPEN 285
QUIT 280
REPLACE 286
SAVE 287 – 288

librarian error messages 309 – 314
library listing, brief format example 269 – 270
library modules 190, 220
linker

See also loader
linker/loader

commands 197 – 254
features 185
introduction 183 – 196

linking 81
linking loader

See loader

Index

399

LIST assembler directive 124
LIST librarian command 282
LIST loader commands 230 – 232
LISTABS loader commands 233
listing of structured directives 182
listing format

 assembler 18
listings, loader 193 – 196
LISTMAP loader commands 234
LLEN assembler directive 125
load address 189
LOAD loader command 235 – 236
LOAD_SYMBOLS loader command 237
loader

error messages 299 – 308
functions of 186
listing format description 193 – 196
operation 185

loader commands 216
ABSOLUTE 205 – 206
ALIAS 207
ALIGN 208
ALIGNMOD 208
BASE 209
CASE 210 – 211
CHIP 212 – 213
comment 203
COMMON 214
continuation 204
CPAGE 215
END 217
ERROR 218
EXIT 219
EXTERN 220
FORMAT 221
INCLUDE 222 – 223
INDEX 224 – 225
INITDATA 226 – 228
INTFILE 229
LIST 230 – 232

Index

400

loader commands (continued)
LISTABS 233
LISTMAP 234
LOAD 235 – 236
LOAD_SYMBOLS 237
MERGE 238 – 239
NAME 240
NLIST 241 – 242
NOERROR 218
NOPAGE 243
ORDER 244 – 246
PAGE 247
PUBLIC 248 – 249
RESADD/RESMEM 250 – 251
SECT 252
SECTSIZE 253
SORDER 244 – 246
START 254
WARN 218

loader commands, summary 198
LOCAL directive 165 – 166
location counter (*) 11, 75, 82
long section 188
loop exit--BREAK directive 179

M macro body 160
macro call 162 – 164
MACRO directive 159
macro heading 159
macro parameter count 168
macro statement 6
macro terminator 161
macros 157 – 168

names 296
macros, MEXIT 167
MASK2 assembler directive 126
memory allocation, order of 189
memory indirect post-indexed mode (68020 model) 45
memory indirect pre-indexed mode (68020 model) 45
memory space assignment 189 – 190
MERGE loader command 238 – 239
message severity 218

Index

401

MEXIT directive 167
MMUSR register 35
modes (address), user control of 62 – 63
module names 265

N NAME assembler directive 127
NAME loader command 240
NARG assembler reserved symbol 10
NARG reserved symbol 168
nesting of structured directives 181
NEXT directive (structured control) 179
NLIST loader command 241 – 242
NOERROR loader command 218
NOFORMAT assembler directives 114
NOLIST assembler directive 128
noncommon section 187
noncommon vs. common section attributes 75
NOOBJ assembler directive 129
NOPAGE assembler directive 130
NOPAGE loader command 243
numeric linker command arguments 201

O odd addresses 191
odd memory locations, addressing 43
OFFSET assembler directive 131 – 132
OPEN librarian command 285
operand field 4
operand syntax and addressing modes 52
operands 34
operation field 4
operators 16 – 17
OPT assembler directive 133 – 138
ORDER loader command 189, 244 – 246
order of overlapping sections 245
ORG assembler directive 139 – 140
overlapping sections and section order 245

P PAGE assembler directive 141
PAGE loader command 247
page relocation 191
parameter count (macros) 168
parentheses, librarian command character 264
PC memory indirect post-indexed mode (68020 model) 47

Index

402

PC memory indirect pre-indexed mode (68020 model) 48
PC with 8-bit displacement and index mode (68000 model) 46
PC with 8-bit displacement and index mode (68020 model) 47
PC with base displacement and index mode (68020 model) 47
PC with displacement mode 46
PC, contents at execution time 43
PLEN assembler directive 142
plus sign, librarian command character 265
processing order, linker 201
program counter symbol

See location counter (*)
program sections 75 – 80

how the assembler assigns 80
other things to know 79

PUBLIC loader command 248 – 249

Q qualifiers 24
QUIT librarian command 280

R R flag in assembler listing 19
REG assembler directive 143
register direct modes 43
registers 34 – 37

floating-point 37
relocatable expressions 83 – 84
relocatable section 186
relocatable vs. absolute symbols 82
relocation 73 – 84
relocation flags 19
relocation types 191
REPEAT directive (structured syntax) 177
REPEAT...UNTIL loop 177
REPLACE librarian command 286
REPT assembler directive 144
RESADD/RESMEM loader command 250 – 251
reserved symbols 5, 10
RESTORE assembler directive 145
return codes 7

librarian 266
linker/loader error messages 193

Index

403

ROM
initializing data from 226

ROM, copying data from 226 – 228

S sample test program 266 – 267
SAVE assembler directive 146
SAVE librarian command 287 – 288
SECT loader command 252
SECT/SECTION assembler directive 147 – 148
section attributes

common vs. noncommon 75
how the assembler assigns 80
short vs. long 76

section types
attributes 77

sections 75 – 80, 186 – 188
 names 187
alignment 188
attributes 187
contents 188
initialized data 226
types 189
types of 186

SECTSIZE loader command 253
semicolon, librarian command character 264
semicolon,in linker command files 201, 203
SET assembler directive 149
severity, message 218
shared data sections 187
short section 187
short vs. long section 76
SIZEOF

generally 17
SORDER loader command 189, 244 – 246
SPC assembler directive 150
SR register 35
START loader command 254
STARTOF

generally 17
statement examples 5 – 6
statements, assembler 3 – 4
statically allocated data areas, A2-A5 relative addressing 65

Index

404

status register 37
MMU 35
processor 35

structured control expressions 171 – 172
structured control statements 169 – 182
structured directive listings 182
structured directive nesting 181
subsections 187, 191
symbol names

HP format files 192
symbol types 11
symbols

assembler 9 – 11
beginning with two question marks 9
external 81
forward defined, code generation for 61
local 165 – 166
location counter (*) 11
relocatable vs. absolute 82
reserved 10
valid examples 9

syntax for effective address fields 50 – 61

T TTL assembler directive 151
type (section) attributes 77

U until directive (structured syntax) 177
use of special characters 264
user control of address modes 62 – 63

V valid symbols, examples of 9
variants of instruction types 33

W WARN loader command 218
warnings, librarian 266
WHILE directive (structured syntax) 178
WHILE...ENDW loop 178

X XCOM assembler directive 152
XDEF assembler directive 153
XREF assembler directive 154 – 156

Index

405

Index

406

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or replace products which
prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

	In this Book
	Contents
	Quick Start Guide
	Getting Started
	Command Syntax

	Reference
	Assembler Introduction
	Instructions and Address Modes
	Relocation
	Assembler Directives
	Macros
	Structured Control Statements
	Linker/Loader Introduction
	Linker/Loader Commands
	Librarian Introduction
	Librarian Commands
	Assembler Error Messages
	Loader Error Messages
	Librarian Error Messages
	Error Message Formats
	Converting to HP B3641 Assembly Language
	About this Version

	Index
	Certification and Warranty

