
User’s Guide

HP B1493 8086/186 C Cross
Compiler

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1987-1993, 1995, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

MS-DOS is a U.S. registered trademark of Microsoft Corp.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Hewlett-Packard Company
P.O . Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

ii

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5

64904-90902, September 1988 E0988
64904-97000/97001, September 1989
64904-97002/97003, February 1990
B1493-97000, September 1993
B1493-97001, June 1995

B1493-97000 incorporates information which previously appeared in
64904-92007, 64904-97002, and 64904-97003.

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

iii

Features

The 8086/186 C Cross Compiler translates C source code into 8086/186
assembly language which can be accepted by the HP B1449 assembler. This
compiler has special features to help meet the needs of the embedded system
designer:

• ANSI standard C compiler and preprocessor.
• Standard command line interface for compatibility with make and other

utilities.
• Complete C support and math libraries from ANSI standard for

nonhosted environments.
• In-line code generation and libraries to support the 8087 floating point

coprocessor.
• Three ways to embed assembly language in C source.
• Named section specification in C source.
• Choice of small or large memory model for function calls and static data

access.
• Option to copy initial value data from ROM to RAM at load time.
• Listings with generated assembly language, C source, and cross references.
• Fully reentrant generated code.
• Optimization for either time or space.
• Constant folding, automatic register variable selection, and other global

optimizations.
• Full symbol information and C source line numbers provided for

debugging, emulation, simulation, and analysis tools.
• Compiler reliability ensured through object-oriented design and

exhaustive testing.

iv

Contents

Part 1 Quick Start Guide

1 Getting Started

In this chapter 2
What you need to know 2

Parts of the compiler 3
Summary of compiler options 4
Summary of file extensions 6
To install the software 7
To create a simple C program 8
To compile a simple program 9
To generate an assembly listing 10
To select a memory model 11
Large Model 11
Small Model 11
Medium Model 12
Compact Model 12
An Example Using Large Memory Model 12
An Example Using Small Memory Model 16
An Example Using Compact Memory Model 19
An Example Using Medium Memory Model 22

Calling Run-Time and Support Libraries 25
To specify the target microprocessor 28
To compile for a debugger 29
To use a makefile 30
To modify environment libraries 33
About environment libraries 35
To view the on-line man pages 36

vii

Part 2 Compiler Reference

2 C Compilation Overview

Execution Environment Dependencies 40

C Compilation Overview 41
Compilation Control Routine 44
C Preprocessor 44
C Compiler 44
Peephole Optimizer 44
Assembly Preprocessor 45
Assembler 45
Source File Lister 45
Librarian 45
Linker 46

ANSI Extensions to C 46
Assignment Compatibility 46
Function Prototypes 47
Pragmas 48
The void Type 49
The volatile Type Modifier 49
The const Type Modifier 50
Translation Limits 51

3 Internal Data Representation

Arithmetic Data Types 54
Floating-Point Data Types 54
Characters 57

Derived Data Types 58
Pointers 59
Arrays 59
Structures 61
Unions 63
Enumeration Types 63

Contents

viii

Alignment Considerations 64
Alignment Examples 66

4 Compiler Generated Assembly Code

Assembly Language Symbol Names 69
Symbol Prefixes 69
Situations Where C Symbols are Modified 70
pragma ALIAS 71
Compiler Generated Symbols 71

Debug Directives 72

Stack Frame Management 72
Structure Results 77
Parameter Passing 77
Pushing the Old Frame Pointer 78
Reserving Space For "C" Variables 78
Pushing Data Segment (DS) Register 78
Buffering Register Variable (SI) 79
Buffering 8087 Floating Point Register Variables 79
Accessing Parameters 79
Accessing Locals 85
Using the Stack for Temporary Storage 85
Function Results 85
Function Exit 85

Register Usage 87
Register Variable SI 87
Passing Data 88
8087 Registers 89

Run-Time Error Checking 90

Memory Model Mismatch Checking 90

Using Assembly Language in the C Source File 92
pragma ASM
pragma END_ASM 93

Contents

ix

__asm ("C_string") 97
pragma FUNCTION_ENTRY,
pragma FUNCTION_EXIT,
pragma FUNCTION_RETURN 99
Assembly Language in Macros 102
Assembly Language and the Small Memory Model 102

5 Optimizations

Universal Optimizations 106
Constant Folding 107
Expression Simplification 108
Operation Simplification 109
Optimizing Expressions in a Logical Context 110
Loop Construct Optimization 110
Switch Statement Optimization 111
Automatic Allocation of Register Variables 111
String Coalescing 111

The Optimize Option 114
Time vs. Space Optimization 115
Maintaining Debug Code 115
Peephole Optimization 116
Effect of volatile Data on Peephole Optimizations 118
Function Entry and Exit 118
What to do when optimization causes problems 119

6 Embedded Systems Considerations

Execution Environments 122

Common problems when compiling for an emulator 123
Loading supplied emulation configuration files 123
Using the "-d" option 123
Using embedded assembly code with small memory model 124

Memory Models 124
Small memory model 125
Large memory model 125

Contents

x

Medium Memory Model 126
Compact Memory Model 126

Segment Names 127
Segment name defaults 127
pragma SEGMENT 128
pragma DS 131

RAM and ROM Considerations 131
No initialized RAM data 131
RAM data initialized from mass storage 132
RAM data initialized from ROM 133
Where to load constants 133
RAM and ROM for small memory model 133

Placement of External Declarations 134

The "volatile" Type Modifier 136

Reentrant Code 138
Nonreentrant library routines 138

Implementing Functions as Interrupt Routines 139
pragma INTERRUPT 139
Loading the vector address 139

Eliminating I/O 140

7 Libraries

Run-Time Library Routines 144

Support Library and Math Library Routines 145
Library Routines Not Provided 145
Include (Header) Files 146

Contents

xi

List of All Library Routines 148

Support Library and Math Library Descriptions 156
abs, labs 157
assert 158
atexit 159
bsearch 160
div, ldiv 162
exp 163
fclose, fflush 164
ferror, feof, clearerr 165
fgetpos, fseek, fsetpos, rewind, ftell 166
floor, ceil, fmod, frem, fabs 168
fopen, freopen 169
_fp_error 171
fread, fwrite 175
frexp, ldexp, modf 176
getc, getchar, fgetc 177
gets, fgets 178
isalpha, isupper, islower, ... 179
localeconv 181
log, log10 186
malloc, free, realloc, calloc 187
mblen, mbstowcs, mbtowc, wcstombs, wctomb, strxfrm 189
memchr, memcmp, memcpy, memmove, memset 191
perror, errno 192
pow 193
printf, fprintf, sprintf 194
putc, putchar, fputc 199
puts, fputs 201
qsort 202
rand, srand 203
remove 204
scanf, fscanf, sscanf 205
setbuf, setvbuf 210
setjmp, longjmp 212
setlocale 214
sin, cos, tan, asin, acos, atan, atan2 216
sinh, cosh, tanh 218
sqrt 219
strcat, strncat, ... 220

Contents

xii

strtod, atof 223
strtol, strtoul, atol, atoi 224
toupper, tolower, _toupper, _tolower 226
ungetc 227
va_list, va_start, va_arg, va_end 228
vprintf, vfprintf, vsprintf 230

8 Environment-Dependent Routines

Program Setup 235
Differences Between "crt0" and "crt1" 235
The "_display_message()" Routine 236
Linking the Program Setup Routines 236
Emulator Configuration Files 236

Memory Map 238

Dynamic Allocation 241
Rewriting the "_getmem" Function 241

Input and Output 242
Environment-Dependent I/O Functions 242
clear_screen 243
close 244
exec_cmd 245
exit, _exit 247
_getmem 248
initsimio 250
kill 251
lseek 252
open 254
pos_cursor 257
read 258
sbrk 260
unlink 261
write 263

Contents

xiii

9 Compile-Time Errors

Errors 266

Warnings 274

10 Run-Time Errors

Floating-Point Error Messages 278

Debug Error Messages 279
Pointer Faults: 280
Range Faults: 280

Startup Error Messages 281

11 Run-Time Routines

Conversion Routines 286
F64_TO_F32< size> 286
F32_TO_F64< size> 286
F64_TO_UI32< size> 287
UI32_TO_F64< size> 287
F64_TO_UI16< size> 288
UI16_TO_F64< size> 288
F64_TO_I32< size> 289
I32_TO_F64< size> 289
F64_TO_I16< size> 290
I16_TO_F64< size> 290
F32_TO_UI32< size> 291
UI32_TO_F32< size> 291
F32_TO_UI16< size> 292
UI16_TO_F32< size> 292
F32_TO_I32< size> 293
I32_TO_F32< size> 293
F32_TO_I16< size> 294
I16_TO_F32< size> 294

Contents

xiv

Floating Point Addition Routines 295
ADD_F64A< size> 295
ADD_F64B< size> 296
ADD_F64C< size> 296
INC_F64< size> 297
ADD_F32A< size> 297
ADD_F32B< size> 298
ADD_F32C< size> 298
INC_F32< size> 299

Floating Point Subtraction Routines 300
SUB_F64A< size> 300
SUB_F64B< size> 300
SUB_F64C< size> 301
DEC_F64< size> 301
SUB_F32A< size> 302
SUB_F32B< size> 302
SUB_F32C< size> 303
DEC_F32< size> 303

Floating Point Multiplication Routines 304
MUL_F64A< size> 304
MUL_F64B< size> 304
MUL_F64C< size> 305
MUL_F32A< size> 305
MUL_F32B< size> 306
MUL_F32C< size> 306

Floating Point Division Routines 307
DIV_F64A< size> 307
DIV_F64B< size> 307
DIV_F64C< size> 308
DIV_F32A< size> 308
DIV_F32B< size> 309
DIV_F32C< size> 309

Floating Point Comparison Routines 310
EQUAL_F64< size> 310
EQUAL_F32< size> 311
LESS_F64< size> 311

Contents

xv

LESS_F32< size> 312
LESS_EQ_F64< size> 312
LESS_EQ_F32< size> 313

Integer Multiplication Routines 314
MUL_I32A< size> 314
MUL_I32B< size> 314

Integer Division Routines 315
DIV_UI32A< size> 315
DIV_UI32B< size> 315
DIV_I32A< size> 316
DIV_I32B< size> 316

Integer Modulo Routines 317
MOD_UI32A< size> 317
MOD_UI32B< size> 317
MOD_I32A< size> 318
MOD_I32B< size> 318

Pointer and Range Fault Routines 319
FAULT_PTR< size> 319
FAULT_UI32< size> 320
FAULT_UI16< size> 321
FAULT_UI8< size> 322
FAULT_I32< size> 323
FAULT_I16< size> 324
FAULT_I8< size> 325

Stack Frame Figures 326

12 Behavior of Math Library Functions

13 Comparison to C/64000

General C/64000 Options 338
AMNESIA 338
ASM_FILE 339
ASMB_SYM 339

Contents

xvi

DEBUG 339
EMIT_CODE 339
END_ORG 339
ENTRY 339
EXTENSIONS 339
FIXED_PARAMETERS 339
FULL_LIST 340
INIT_ZEROS 340
LINE_NUMBERS 340
LIST 340
LIST_CODE 340
LIST_OBJ 340
LONG_NAMES 340
OPTIMIZE 341
ORG 341
PAGE 341
RECURSIVE 341
SEPARATE 341
SHORT_ARITH 341
STANDARD 341
TITLE 341
UPPER_KEYS 342
USER_DEFINED 342
WARN 342
WIDTH 342

8086-Specific C/64000 Options 342
ALIGN 342
CS_EXTVARS, ES_EXTVARS, SS_EXTVARS 342
DS_EXTVARS, FAR_EXTVARS 342
FAR_LIBRARIES, SHORT_LIBRARIES 343
FAR_PROC, POINTER_SIZE 343
INT 343
INTERRUPT 343
SEPARATE_CONST 343

Contents

xvii

Differences from HP 64818 Code 344

14 ASCII Character Set

15 Stack Models

16 About this Version

Version 4.01 364
New memory models 364
Control of NOPs 364
C+ + style comments 364
Enhanced -M option 364
New usage message 364

Version 4.00 364
New product number 364
New command-line options 365
New default environments 365
Re-organized manual 365

Version 3.50 365
Behavior of sprintf 365
Formatted printing 365
Streams 366
Void pointers 366
qsort function 366
Environment library modules 366
Improved performance 366
__asm ("C_string") function 366
Modifying function entry/exit code 367
New segment names 367

17 On-line Manual Pages

cc8086 (1) 370
cpp8086(1) 387
clst8086 (1) 392

Contents

xviii

Part 1

Quick Start Guide

Part 1

2

1

Getting Started

How to get started using the compiler.

Chapter 1: Getting Started

1

In this chapter

This chapter contains the following information:

• An overview of the 8086/186 C compiler.

• Instructions for common tasks, such as compiling a simple program.

• Short examples so you can practice the common tasks.

What you need to know

Before you begin to learn how to use this compiler, you should be familiar
with the following:

• The C programming language.

• The Intel 8086 microprocessor architecture.

• Basic host operating system commands (such as cp, mv, ls, mkdir , rm , and
cd) and a text editor (such as vi).

In addition, most sections in this manual assume that you are familiar with
8086/186 assembly language.

Chapter 1: Getting Started

2

Parts of the compiler

The "compiler" is really a set of programs:

• cc8086, the C compilation control command.

• cpp8086, the C preprocessor.

• clst8086, the lister.

• ccom8086, the C compiler.

• opt8086, the peephole optimizer.

The compiler makes use of several assembler programs:

• ap86, the assembler preprocessor.

• as86, the assembler.

• ld86, the linking loader.

To compile a C program, you can use just the cc8086 C compilation control
command. The cc8086 command will run the other programs as needed.

Chapter 1: Getting Started

3

Summary of compiler options

-b Invoke Basis Branch Analyzer preprocessor.

-c Do not link programs (object files are generated).

-C Do not strip C-style comments in preprocessor.

-d Separate data into initialized and uninitialized
segments.

-D name[= def] Define name to the preprocessor.

-e Fast error checking (no code is generated).

-E Preprocess only (send result to standard output).

-f Generate code to use the 8087 coprocessor.

-g Generate run-time error checking code (overrides -O).

-h Generate HP 64000 format (.X) files.

-I dir Change include file search algorithm.

-k linkcomfile Link using the linkcomfile linker command file.

-K Enforce strict segment consistency.

-lx Search libx.a when linking.

-L[i][x] Generate ".O" listing(s). The -i option causes include
files to be expanded and included in the listing. The -x
option causes cross-reference tables to be included in
the listings. (Overridden by -e, -E, and -P.)

-m memoryModel Specify memory model, small, compact, medium, or
large.

Chapter 1: Getting Started
Summary of compiler options

4

-M Cause generation of more warning messages than are
generated by default.

-n Cause static functions in the large memory model to be
called "NEAR".

-N Cause linking with linkcom.k (no I/O) rather than
iolinkcom.k.

-o outfile Name absolute file outfile instead of a.out.x.

-O[G][T] Optimize. -O for space, -OT for time, -OG for
debugging.

-p processor Compile code for the specified processor.

-P Preprocess only (send result to .i files).

-Q Byte align data in memory instead of default word
alignment.

-r dir Use default linker command file in /usr/hp64000/env/dir
instead of the default.

-s Strip symbol table information (overridden by -g and
-L).

-S Only generate assembly source files (with .s extensions).

-t c,name Insert subprocess c whose full path is name.

-u Consider non-constant static data uninitialized.

-U name Undefine name to the preprocessor.

-v Verbose (produce step-by-step description on stderr).

-w Suppress warning messages.

-W c,args Pass args as parameters to subprocess c.

Chapter 1: Getting Started
Summary of compiler options

5

Summary of file extensions

.a Library (archive) files.

.A HP format assembler symbol file.

.c C source files.

.EA, .EB Emulator configuration files.

.h Include (header) files.

.i "Preprocess only" output (generated with the -P option).

.k Linker command file.

.L HP format linker symbol file.

.o Relocatable object file.

.O Listing files (generated with the -L option).

.s Assembly language source file.

.x HP-OMF 86 absolute (executable) file.

.X HP format absolute (executable) file. (Generated with
the -h option.)

.Ys Symbol file directory.

Chapter 1: Getting Started
Summary of file extensions

6

To install the software

1 Load the software from the software media.

Instructions for installing the software are provided with the software media,
or in your operating system’s system administration guide.

2 Set the HP64000 environment variable.

Set this variable to the location of the software, usually /usr/hp64000.

3 Set the MANPATH environment variable.

Add $HP64000/man to this variable so that you can read the on-line "man
pages."

4 Set the PATH environment variable.

Add $HP64000/bin to your path so that you can run the compiler programs.

You should add these commands to your .login, .vueprofile, or .profile file (if
they are not there already) so that you won’t need to re-enter them every time
you log in.

Examples If you installed the compiler in the root directory on an HP-UX system, enter:

export HP64000=/usr/hp64000
export PATH=$PATH:$HP64000/bin
export MANPATH=$MANPATH:$HP64000/man

On a Sun system, you would enter:

setenv HP64000 /usr/hp64000
setenv PATH $PATH:$HP64000/bin
setenv MANPATH $MANPATH:$HP64000/man

Chapter 1: Getting Started
To install the software

7

To create a simple C program

• Use a text editor to create the file simple.c:

main()
{
 char str[80];

 printf("Enter string: ");
 gets(str);
 printf("\nYou entered: \"%s\"\n", str);
}

Figure 1-1. The "simple.c" Example Program

Chapter 1: Getting Started
To create a simple C program

8

To compile a simple program

• Use the cc8086 comand at your host operating system prompt.

Example To compile the "simple.c" example program, enter the following command:

cc8086 simple.c

This command generates the executable file a.out.x by default. The compiler
will print a warning message because a target processor was not specified.
Because this is just an example, ignore the warning.

Chapter 1: Getting Started
To compile a simple program

9

To generate an assembly listing

• Use the -L compiler option.

This option generates a listing of the C source, which includes the generated
assembly code, and a linker listing.

Example To generate the listings for "simple.c", enter:

cc8086 -L simple.c

The mixed source and assembly listing is sent to file simple.O, and a linker
listing is sent to file a.out.O.

Examine the simple.O file and note how:

• Addresses of strings are passed as parameters to the "_printf" support
library routine (String1+ 0 is pushed, then _printf is called).

• String literals are placed in the "const" section.

Now look at a.out.O and note that:

• The file shows the default linker command (generated by the compilation
control command).

• The linker command is followed by the contents of the default linker
command file. The default linker command file loads some libraries and
an emulation monitor or monitor stub.

• Modules are listed in the order they are loaded. Modules within library
files are listed in alphabetical order.

• The module crt0 is the program setup routine. Program execution will
begin with this routine.

Chapter 1: Getting Started
To generate an assembly listing

10

To select a memory model

The 8086/186 C compiler allows you to select one of four available memory
models: large, medium, compact, or small. The compiler defaults to the large
memory model (option -m large).

Large Model

The large memory model allows your code and data to be broken up into many
named segments of your own choosing. These segments can be located
anywhere in memory at link time, independent of each other. Segments
containing "constant" data may be located next to code segments to facilitate
putting code and data constants in ROM. In fact, "constant" data may be
placed in the same segment as code. Segments may also be "ORGed" to
absolute physical memory locations through the use of the # pragma
SEGMENT directive. The efficiency of the compiler in calling functions and
accessing data is controllable through the use of # pragma SEGMENT and
pragma DS directives and the -n option.

Small Model

The small memory model produces more compact code than the large memory
model. The small memory model places all code in a single, pre-defined,
physical segment and places all data, stack, heap, and constants into a second,
pre-defined physical segment. Code in the first segment is accessed
"segment-relative,", but all data in the second physical segment is accessed
"group-relative" because the pre-defined segments that are combined to form
the second physical segment are part of a group named data_const. Because
the small memory model uses just two physical segments, code is limited to
64K bytes and data, stack, heap, and constants together are limited to 64K
bytes.

The # pragma SEGMENT directive and the # pragma DS directive cannot be
used with the small memory model and are therefore warned at and ignored if
they are encountered. Also, small memory model does not support "ORGing"
a segment because this conflicts with the "rules" of small memory model.

Chapter 1: Getting Started
To select a memory model

11

Note It is possible to place constant data in ROM when using the small memory
model if the embedded environment has RAM near the ROM and both RAM
and ROM can be addressed within the 64K limit required for group-relative
accesses. If the embedded system cannot meet these requirements, then the
constant data must be placed in RAM and initialized at either load-time or at
run-time (depending upon the embedded environment).

Medium Model

The medium memory model has one or more code segments, like the large
memory model, and one data segment.

Compact Model

The compact memory model has one or more data segments, like the large
model, and one code segment.

An Example Using Large Memory Model

The compiler generates code to load the DS register with the paragraph
number of the currently active static data segment (providing any such
accesses are made in the function) at the beginning of each function.
Thereafter, accesses to items in the data segment are performed DS-relative
and all other accesses are performed ES-relative; which is far more expensive
since ES must, potentially, be reloaded prior to each access. Thus, care should
be taken to have the most appropriate data segment active at function
definition (using the # pragma SEGMENT and # pragma DS directives).

Auto variables and parameters are accessed SS-relative since they are on the
stack and therefore located in the userstack segment.

The example program demonstrates how the compiler selects the segment
with which to perform DS-relative accesses. When largemodel.c is compiled
using the following command line, the largemodel.O listing file results.

$ cc8086 -SOL largemodel.c <RETURN>

Chapter 1: Getting Started
To select a memory model

12

#pragma SEGMENT DATA=my_data1
int i1;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
int i2; /* This is in the "active" static data segment. */

void function()
{
 i1 += i2; /* i2 is in "active" static data segment. */
}

#pragma SEGMENT PROG=my_prog1
main()
{
 long a1; /* a1 is a dynamic variable on the stack. */

 a1 = 1; /* Accessed SS-relative. */
 i1++; /* Accessed DS-relative. */
 i2++; /* Accessed ES-relative. */
 function();
}

Figure 1-2. largemodel.c

Chapter 1: Getting Started
To select a memory model

13

HPB1493-19303 8086 C Cross Compiler A.04.01 largemodel.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: large
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "largemodel"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
my_prog2 SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(my_prog2)
 1 #pragma SEGMENT DATA=my_data1
 2 int i1;
 3 #pragma SEGMENT PROG=my_prog2 DATA=my_data2
 4 int i2; /* This is in the "active" static data segment. */
 5
 6 void function()
 7 {
 PUBLIC _function
 ASSUME CS:%CodeSegment,DS:my_data2
_function PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH DS
 MOV AX,my_data2
 MOV DS,AX
 8 i1 += i2; /* i2 is in "active" static data segment. */
 MOV DX,SEG _i1
 MOV DI,OFFSET _i1+0
 MOV AX,%DS:WORD PTR _i2[0]
 MOV ES,DX
 ADD ES:WORD PTR [DI],AX
 9 }
functionExit1:
 POP DS
returnLabel1:
 RET
_function ENDP
my_prog2 ENDS
my_prog1 SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(my_prog1)
 10
 11 #pragma SEGMENT PROG=my_prog1
 12 main()
 13 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:my_data2
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP

Figure 1-3. largemodel.O

Chapter 1: Getting Started
To select a memory model

14

 SUB SP,4
 PUSH DS
 MOV AX,my_data2
 MOV DS,AX
%SET(S_a1,-4)
 14 long a1; /* a1 is a dynamic variable on the stack. */
 15
 16 a1 = 1; /* Accessed SS-relative. */
 MOV SS:WORD PTR [BP+%S_a1+0],1
 MOV SS:WORD PTR [BP+%S_a1+0+2],0
 17 i1++; /* Accessed DS1-relative. */
 MOV DX,SEG _i1
 MOV DI,OFFSET _i1+0
 MOV ES,DX
 INC ES:WORD PTR [DI]
 18 i2++; /* Accessed DS0-relative. */
 INC %DS:WORD PTR _i2[0]
 19 function();
 CALL FAR PTR _function
 20 }
functionExit2:
 POP DS
 MOV SP,BP
 POP BP
returnLabel2:
 RET
_main ENDP
my_prog1 ENDS
my_data1 SEGMENT %DALIGN PUBLIC
 PUBLIC _i1
 EVEN
_i1 LABEL BYTE
 DB 2 DUP(0)
my_data1 ENDS
my_data2 SEGMENT %DALIGN PUBLIC
 PUBLIC _i2
 EVEN
_i2 LABEL BYTE
 DB 2 DUP(0)
my_data2 ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 1-3. largemodel.O (continued)

Chapter 1: Getting Started
To select a memory model

15

An Example Using Small Memory Model

Notice that the difference between the source file for large model and the
source file for small model is the absence of the # pragma SEGMENT
directives. The # pragma SEGMENT directive and the # pragma DS directive
are not valid for small model. If they appear, they are warned and ignored.

All functions are called "NEAR" and are accessed CS-relative. Data, stack,
heap, and constants all become part of the data_const group and are accessed
group-relative. The DS, ES, and SS registers are loaded with the same value,
the data_const paragraph number, by the program startup routine (crt0.o).

The smallmodel.O listing shows some of the pre-defined segments that make
up the data_const group. (Segments heap and userstack are added to the
group at link time.) Through the use of an ASSUME statement, the DS
register is associated with the group base of data_const instead of a segment
base value. For this reason, all DS-relative accesses to data are
group-name-relative instead of segment-name-relative.

int i1; /* Will be put in segment "data". */
int i2; /* Will be put in segment "data". */

void function()
{ /* Will be put in segment "prog/CODE" */
 /* (segment "prog" is in class "CODE").*/
 i1 += i2;
}

main()
{ /* Will be put in segment "prog/CODE". */
 long a1; /* a1 is a dynamic variable on the stack. */

 a1 = 1;
 i1++;
 i2++;
 function();
}

Figure 1-4. smallmodel.c

Chapter 1: Getting Started
To select a memory model

16

When smallmodel.c is compiled using the following command line, the
smallmodel.O listing file results.

$ cc8086 -SOL -m small smallmodel.c <RETURN>

HPB1493-19303 8086 C Cross Compiler A.04.01 smallmodel.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: small
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "smallmodel"
%DEFINE(MM_CHECK_)(MM_CHECK_S)
%DEFINE(SS)(DS)
%DEFINE(DS)(data_const)
%DEFINE(GRP)(data_const)
%GRP GROUP data,idata,udata,const
data SEGMENT WORD PUBLIC
data ENDS
idata SEGMENT WORD PUBLIC
idata ENDS
udata SEGMENT WORD PUBLIC
udata ENDS
const SEGMENT WORD PUBLIC
const ENDS
prog SEGMENT BYTE PUBLIC ’CODE’
 1 int i1; /* Will be put in segment "data". */
 2 int i2; /* Will be put in segment "data". */
 3
 4 void function()
 5 { /* Will be put in segment "prog/CODE" */
 PUBLIC _function
 ASSUME CS:prog,DS:%GRP
_function PROC NEAR
%SET(SAVE_ALL_NPX,2)
 6 /* (segment "prog" is in class "CODE").*/
 7 i1 += i2;
 MOV AX,%DS:WORD PTR _i2[0]
 ADD %DS:WORD PTR _i1[0],AX
 8 }
functionExit1:
returnLabel1:
 RET
_function ENDP
 9
 10 main()
 11 { /* Will be put in segment "prog/CODE". */
 PUBLIC _main
 ASSUME CS:prog,DS:%GRP
_main PROC NEAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP

Figure 1-5. smallmodel.O

Chapter 1: Getting Started
To select a memory model

17

 SUB SP,4
%SET(S_a1,-4)
 12 long a1; /* a1 is a dynamic variable on the stack. */
 13
 14 a1 = 1;
 MOV SS:WORD PTR [BP+%S_a1+0],1
 MOV SS:WORD PTR [BP+%S_a1+0+2],0
 15 i1++;
 INC %DS:WORD PTR _i1[0]
 16 i2++;
 INC %DS:WORD PTR _i2[0]
 17 function();
 CALL NEAR PTR _function
 18 }
functionExit2:
 MOV SP,BP
 POP BP
returnLabel2:
 RET
_main ENDP
prog ENDS
data SEGMENT WORD PUBLIC
 PUBLIC _i1
 EVEN
_i1 LABEL BYTE
 DB 2 DUP(0)
 PUBLIC _i2
 EVEN
_i2 LABEL BYTE
 DB 2 DUP(0)
data ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 1-5. smallmodel.O (continued)

Chapter 1: Getting Started
To select a memory model

18

An Example Using Compact Memory Model

All functions are called "FAR." Data, stack, heap, and constants all become
part of the data_const group and are accessed group-releative just as with the
small memory model.

Through the use of an ASSUME statement, the DS register is associated with
the group base of data_const instead of a segment base value. For this reason,
all DS-relative accesses to data are group-name-relative instead of
segment-name-relative.

When compactmodel.c is compiled using the following command line, the
compactmodel.O listing file results.

$ cc8086 -SOLm compact compactmodel.c <RETURN>

#pragma SEGMENT DATA=my_data1
int i1;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
int i2; /* This is in the "active" static data segment. */

void function()
{
 i1 += i2; /* i2 is in "active" static data segment. */
}

#pragma SEGMENT DATA=my_prog1
main()
{
 long a1; /* a1 is a dynamic variable on the stack. */

 a1 = 1; /* Accessed SS-relative. */
 i1++; /* Accessed DS-relative. */
 i2++; /* Accessed DS-relative. */
 function();
}

Figure 1-6. compactmodel.c

Chapter 1: Getting Started
To select a memory model

19

HPB1493-19303 8086 C CROSS COMPILER A.04.01 compactmodel.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: compact
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "compactmodel"
%DEFINE(MM_CHECK_)(MM_CHECK_C)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
my_prog2 SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(my_prog2)
 1 #pragma SEGMENT DATA=my_data1
 2 int i1;
 3 #pragma SEGMENT PROG=my_prog2 DATA=my_data2
 4 int i2; /* This is in the "active" static data segment. */
 5
 6 void function()
 7 {
 PUBLIC _function
 ASSUME CS:prog,DS:my_data2
_function PROC NEAR
%SET(SAVE_ALL_NPX,2)
 PUSH DS
 MOV AX,my_data2
 MOV DS,AX
 8 i1 += i2; /* i2 is in "active" static data segment. */
 MOV DX,SEG _i1
 MOV DI,OFFSET _i1+0
 MOV AX,%DS:WORD PTR _i2[0]
 MOV ES,DX
 ADD ES:WORD PTR [DI],AX
 9 }
functionExit1:
 POP DS
returnLabel1:
 RET
_function ENDP
 10
 11 #pragma SEGMENT DATA=my_prog1
 12 main()
 13 {
 PUBLIC _main
 ASSUME CS:prog,DS:NOTHING
_main PROC NEAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,4
%SET(S_a1,-4)
 14 long a1; /* a1 is a dynamic variable on the stack. */
 15

Figure 1-7. compactmodel.O

Chapter 1: Getting Started
To select a memory model

20

 16 a1 = 1; /* Accessed SS-relative. */
 MOV SS:WORD PTR [BP+%S_a1+0],1
 MOV SS:WORD PTR [BP+%S_a1+0+2],0
 17 i1++; /* Accessed DS-relative. */
 MOV DX,SEG _i1
 MOV DI,OFFSET _i1+0
 MOV ES,DX
 INC ES:WORD PTR [DI]
 18 i2++; /* Accessed DS-relative. */
 MOV DX,SEG _i2
 MOV DI,OFFSET _i2+0
 MOV ES,DX
 INC ES:WORD PTR [DI]
 19 function();
 CALL NEAR PTR _function
 20 }
functionExit2:
 MOV SP,BP
 POP BP
returnLabel2:
 RET
_main ENDP
my_prog2 ENDS
my_data1 SEGMENT %DALIGN PUBLIC
 PUBLIC _i1
 EVEN
_i1 LABEL BYTE
 DB 2 DUP(0)
my_data1 ENDS
my_data2 SEGMENT %DALIGN PUBLIC
 PUBLIC _i2
 EVEN
_i2 LABEL BYTE
 DB 2 DUP(0)
my_data2 ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 1-7. compactmodel.O (continued)

Chapter 1: Getting Started
To select a memory model

21

An Example Using Medium Memory Model

All functions are called "NEAR" and are accessed CS-relative.

The ES, DS, and SS registers are loaded with the same value, the data_const
paragraph number, by the program startup routine crt0.o, just as with the
small memory model.

When mediummodel.c is compiled using the following command line, the
mediummodel.O listing file results.

$ cc8086 -SOLm medium mediummodel.c <RETURN>

#pragma SEGMENT DATA=my_data1
int i1;
#pragma SEGMENT PROG=my_prog2 DATA=my_data2
int i2; /* This is in the "active" static data segment. */

void function()
{
 i1 += i2; /* i2 is in "active" static data segment. */
}

#pragma SEGMENT DATA=my_prog1
main()
{
 long a1; /* a1 is a dynamic variable on the stack. */

 a1 = 1;
 i1++;
 i2++;
 function();
}

Figure 1-8. mediummodel.c

Chapter 1: Getting Started
To select a memory model

22

HPB1493-19303 8086 C CROSS COMPILER A.04.01 mediummodel.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: medium
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "mediummodel"
%DEFINE(MM_CHECK_)(MM_CHECK_M)
%DEFINE(lib)(lib)
%DEFINE(SS)(DS)
%DEFINE(DS)(data_const)
%DEFINE(GRP)(data_const)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
%GRP GROUP data,idata,udata,const
data SEGMENT WORD PUBLIC
data ENDS
idata SEGMENT WORD PUBLIC
idata ENDS
udata SEGMENT WORD PUBLIC
udata ENDS
const SEGMENT WORD PUBLIC
const ENDS
my_prog2 SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(my_prog2)
 1 #pragma SEGMENT DATA=my_data1
 2 int i1;
 3 #pragma SEGMENT PROG=my_prog2 DATA=my_data2
 4 int i2; /* This is in the "active" static data segment. */
 5
 6 void function()
 7 {
 PUBLIC _function
 ASSUME CS:%CodeSegment,DS:%GRP
_function PROC FAR
%SET(SAVE_ALL_NPX,2)
 8 i1 += i2; /* i2 is in "active" static data segment. */
 MOV AX,%DS:WORD PTR _i2[0]
 ADD %DS:WORD PTR _i1[0],AX
 9 }
functionExit1:
returnLabel1:
 RET
_function ENDP
 10
 11 #pragma SEGMENT DATA=my_prog1
 12 main()
 13 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:%GRP
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP

Figure 1-9. mediummodel.O

Chapter 1: Getting Started
To select a memory model

23

 SUB SP,4
%SET(S_a1,-4)
 14 long a1; /* a1 is a dynamic variable on the stack. */
 15
 16 a1 = 1;
 MOV SS:WORD PTR [BP+%S_a1+0],1
 MOV SS:WORD PTR [BP+%S_a1+0+2],0
 17 i1++;
 INC %DS:WORD PTR _i1[0]
 18 i2++;
 INC %DS:WORD PTR _i2[0]
 19 function();
 CALL FAR PTR _function
 20 }
functionExit2:
 MOV SP,BP
 POP BP
returnLabel2:
 RET
_main ENDP
my_prog2 ENDS
my_data1 SEGMENT %DALIGN PUBLIC
 PUBLIC _i1
 EVEN
_i1 LABEL BYTE
 DB 2 DUP(0)
my_data1 ENDS
my_data2 SEGMENT %DALIGN PUBLIC
 PUBLIC _i2
 EVEN
_i2 LABEL BYTE
 DB 2 DUP(0)
my_data2 ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 1-9. mediummodel.O (continued

Chapter 1: Getting Started
To select a memory model

24

Calling Ru n-Time and Support Libraries

Run-time library routines are called implicitly by the generated assembly code.
For example, with large and medium memory model, ADD_F32A_LM,
ADD_F32B_L, or ADD_F32C_L would be called to add two floats. Which of
the three routines the compiler actually uses depends on where the arguments
are found and how the code is being optimized. For the small adn compact
memory model ADD_F32A_SC, ADD_F32B_S, or ADD_F32C_S would be
called. Note that the names are different between memory models to
guarantee that the correct run-time library is used.

Since these implicitly called routines are not visible in the C source, a special
segment named lib is reserved and understood by the compiler to be the
segment in which the run-time library is defined. (lib is replaced with prog for
the small and compact memory model).

Support library routines, unlike run-time library routines, are called explicitly
in the C source. Thus, they behave just as though they were user-written
functions. For the large and medium memory model, their segment names are
the same as the base name of the library (e.g., libc.a’s segment is libc). For the
small and compact model, the segment name is prog, the same as with
user-written code.

The libcalls.c listing shows the calling of run-time library routines and the
calling of a support library routine. Note that it is important to use # include
< stdio.h> since without it the compiler does not know that printf() is in
named segment libc. When libcalls.c is compiled using the following command
line, the libcalls.O listing file results.

$ cc8086 -SOL libcalls.c

#include <stdio.h>
main()
{
 float f = 1.0;
 float g = 1.0;

 printf("Sum is %f\n", f+g);
}

Figure 1-10. libcalls.c

Chapter 1: Getting Started
To select a memory model

25

HPB1493-19303 8086 C Cross Compiler A.04.01 libcalls.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95
; Memory Model: large
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "libcalls"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_libcalls SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(prog_libcalls)
 1 #include <stdio.h>
 2 main()
 3 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,8
%SET(S_f,-8)
 MOV SS:WORD PTR [BP+%S_f+0],00H
 MOV SS:WORD PTR [BP+%S_f+0+2],03F80H
%SET(S_g,-4)
 MOV SS:WORD PTR [BP+%S_g+0],00H
 MOV SS:WORD PTR [BP+%S_g+0+2],03F80H
 4 float f = 1.0;
 5 float g = 1.0;
 6
 7 printf("Sum is %f\n", f+g);
 LES DI,SS:DWORD PTR [BP+%S_f+0]
 PUSH ES
 PUSH DI
 LES DI,SS:DWORD PTR [BP+%S_g+0]
 PUSH ES
 PUSH DI
%lib SEGMENT WORD PUBLIC ’CODE’
 EXTRN ADD_F32A_LM:FAR
%lib ENDS
 CALL FAR PTR ADD_F32A_LM
 POP AX
 POP DX
 SUB SP,8
%lib SEGMENT WORD PUBLIC ’CODE’
 EXTRN F32_TO_F64_LM:FAR
%lib ENDS
 CALL FAR PTR F32_TO_F64_LM
 MOV DX,SEG String1
 MOV AX,OFFSET String1+0

Figure 1-11. libcalls.O

Chapter 1: Getting Started
To select a memory model

26

 PUSH DX
 PUSH AX
 CALL FAR PTR _printf
 ADD SP,12
 8 }
functionExit1:
 MOV SP,BP
 POP BP
returnLabel1:
 RET
_main ENDP
prog_libcalls ENDS
 EXTRN _printf:FAR
const SEGMENT %DALIGN PUBLIC
String1 LABEL BYTE
 DB ’Sum is ’
 DB 37
 DB ’f’
 DB 10
 DB 0
const ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 1-11. libcall s.O (cont inued)

Chapter 1: Getting Started
To select a memory model

27

To specify the target microprocessor

• Use the appropriate compiler command:

• cc8086 for the 8086
• cc80186 for the 80186

Chapter 1: Getting Started
To specify the target microprocessor

28

To compile for a debugger

To gain the most benefit from HP debuggers and emulators, follow these
guidelines:

• Use the -OG option to generate debugging information.

• Avoid optimizing modes (-O or -OT).

• Turn off the automatic creation of register variables (-Wc,-F).

• Do not use the -h option. HP debuggers now use .x rather than .X files.

• Use the C compiler’s floating point library routines to generate code that
will run interchangeably in both the debugger/simulator and the
debugger/emulator.

• Use the same environment files as you would use to compile for an HP
64700-series emulator.

Example To compile the simple.c program to be run in a debugger, use the following
command:

cc8086 simple.c -LM -OG simple.c

See Also See the User’s Guide for your debugger/emulator, debugger/simulator, or
emulator interface for information on how to run a program in the debugger
or emulator environment.

Chapter 1: Getting Started
To compile for a debugger

29

To use a makefile

The make command can simplify the process of compiling your programs. This
command allows you to specify which files are dependent on which other files
(for example, make "knows" that files which end in .o are produced by
compiling corresponding files that end in .c or by assembling programs that
end in .s). If your host operating system is HP-UX, see the man page for make
in section 1 of the HP-UX Reference Manual. See also "Make, a Program for
Maintaining Computer Programs" in the "Programming Environment" volume
of HP-UX Concepts and Tutorials.

Because cc8086 is similar to the host cc command, it is easy to tell make how
to compile, assemble, and link using cross tools. To any makefile designed for
the host, you need to add some definitions and set up some options. These are:

CC=/usr/hp64000/bin/cc8086
AS=/usr/hp64000/bin/as86
LD=/usr/hp64000/bin/ld86

These definitions will cause make’s "built-in" rules to access the cross tools,
and because the built-in options mean the same thing to the cross tools as they
do to the host tools, the built-in rules now work when invoking the cross tools.

Assembling a .s file produced by the cc8086 compiler requires that two
programs be executed in succession, the assembly macro preprocessor (ap86)
and the assembler (as86). Because of this, the implicit suffix rule .s.o: cannot
be used; you should explicitly put a .s.o: rule in your makefile:

.s.o:
 $(CC) $(CFLAGS) -c $*.s

A second difference involves the implicit rule .c: which tells make to build to
an executable file from a C source file. Make expects that the executable file
has no suffix, but the 8086/186 cross language tools expect a .x suffix (.X if -h
option has been selected). The solution is to simply specify your own suffix
rule (.c.x: or .c.X:) which performs the functionality of the .c: implicit rule:

.c.X:
 $(CC) $(CFLAGS) -o $*.X $*.c

Chapter 1: Getting Started
To use a makefile

30

Note The SunOS make command adds a "-target" option to the compiler command
line. To remove this option, add the following statement to the beginning of
the makefile:

COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c

Make also has a mechanism for passing additional options to the compiler,
assembler, and linker. The additional options are passed each time the
program is invoked and are thus set only for "global" options. For example, to
always have the compiler and assembler produce listings, one might use:

CFLAGS = "-L"
ASFLAGS = "-Lfnot"

Some versions of make give default values for these options.

Here is an example makefile:

These definitions are added to use the cc8086 cross tools.

CC = cc8086

All object files (make knows how to generate them from
sources based on implicit rules).

OBJECTS = main.o file1.o grammar.o

This dependency links the program together.

program.x: $(OBJECTS)
 $(CC) $(OBJECTS) -o program.x

This dependency causes make to recompile file1.c
whenever file1.h has been touched.

file1.o: file1.h

When run in a directory containing sources:

main.c file1.c grammar.y file1.h

The commands generated by HP-UX make will be:

cc8086 -O -c main.c
cc8086 -O -c file1.c
yacc grammar.y
cc8086 -O -c y.tab.c
rm y.tab.c

Chapter 1: Getting Started
To use a makefile

31

mv y.tab.o grammar.o
cc8086 main.o file1.o grammar.o -o program.x

This example assumes that /usr/hp64000/bin has been added to your PATH
environment variable.

You can see what commands will be generated by make by using the following
command:

make -n

Chapter 1: Getting Started
To use a makefile

32

To modify environment libraries

To modify the environment-dependent library env.a, the startup routines
crt0.o or crt1.o, or the monitor stub mon_stub.o:

1 Set up directories for the different memory models.

Select a directory from which you expect to run the compiler. The make utility
will be used to create new environment-dependent libraries and object files
which contain the changes made to the source files. As provided, Makefile
assumes there are five directories named src, large, medium, compact and
small in a parent directory. Makefile expects to be located in, and run from
the src directory. The object and library-archive files will be built in the large,
medium, compact, and small directories; the emulation monitor is built in the
parent directory (the directory you are currently in). The following command
sets up the needed directories.

$ mkdir src large medium compact small

2 Copy the source files.

The following command copies the environment-dependent source files to the
current directory.

cp /usr/hp64000/env/hp <emul_env> /src/* src

3 Edit the source files.

The following command changes the permissions of the source files so that
you will be able to save any changes you make while editing the files.

cd src
chmod 644 *

Now you may edit the source files as needed.

4 Run the "make" command.

Chapter 1: Getting Started
To modify environment libraries

33

The following command will create, for both large and small memory models,
new environment-dependent library files, env.a, new startup and
error-handling modules, crt0.o, crt1.o, init_stub.o, and div_by_0.o, and a new
emulation monitor module, monitor.o, which is common to both memory
models.

make all

In addition to the all target, other targets are available for the make command
which will create only those files needed. A list of these available targets is
displayed by the following command.

make help

The following command will remove unnecessary intermediate files left by the
make all command.

make clean

Now return to the parent directory.

cd ..

5 Modify the default linker command file.

The following commands copy the default I/O linker command file to the
current directory so that you can edit it to load the environment file just
created. (Copy linkcom.k if your programs do not use I/O.)

cp /usr/hp64000/env/hp <emul_env> /large/iolinkcom.k large
chmod 644 large/iolinkcom.k
vi large/iolinkcom.k

Change all lines which read:

LOAD /usr/hp64000/env/hp <emul_env> /large/env.a

to

LOAD large/env.a

If small memory model is being used, do the same procedure as for the large
memory except substitute small for large in all the commands.

If the medium or compact memory model is used, follow the same procedure
as for the large memory model, except substitute "medium" or "compact" for
"large" in all the commands.

Chapter 1: Getting Started
To modify environment libraries

34

Similarly, if you have modified the startup module source file crt0.s or crt1.s,
or the monitor stub mon_stub.s, you should also change the linker command
file so that it loads the local version instead of the shipped version.

If no emulation monitor is needed, the LOAD command for monitor.o may be
commented out or removed. The env.a library, which is loaded after monitor.o,
will resolve the necessary external symbols. Note that monitor.o, when used,
must be loaded before env.a.

Note The environment for HP 64700 series emulators for the Intel family does not
include a monitor.o file. These emulators use a background monitor which
does not need to be linked to the user’s code.

Specifying the modified linker command file when compiling your program
(with the -k option) will cause the linker to call in routines from the modified
environment-dependent library. Remember to use -k < memory
model> /iolinkcom.k to get the appropriate modified linker command file.

About environment libraries

Many files are linked into the C program from the environment libraries.
These libraries reside in the subdirectories of /usr/hp64000/env and are
designed to support the emulator (and simulator, if available). But these do
more than just help you use the emulator.

The 8086/186 C compiler has only limited information about the environment
in which compiled programs will ultimately execute. All the high level
functions depend on the environment libraries to provide the low level hooks
into the execution environment (or target system). The supplied environment
libraries provide the hooks necessary to operate in the emulator environment.
They also serve as a pattern for you to create your own low level hooks to
allow the 8086/186 C compiler to work in your own execution environment.
You may either modify our environment files (the source code is provided) or
use the files as a pattern to create your own equivalent files. HP has made
every effort to narrow this "hook-up point" as much as possible, but you will
need to make some modifications in order to run your programs in your own
execution environment.

Chapter 1: Getting Started
To modify environment libraries

35

To view the on-line man pages

• Use the host operating system’s man command.

You can display on-line "man pages" for any of the programs which make up
the 8086/186 C Cross Compiler:

• cc8086

• cpp8086

• clst8086

Refer to the on-line man pages for detailed information about command-line
options and compiler directives.

Because the man pages contain important information which is not included
in this manual, HP recommends that you print the cc8086 man page and keep
it near your computer.

The man pages are in the directory $HP64000/man. If the man command
cannot find the man pages, check that you have added this directory to the
MANPATH environment variable.

Example To view the cc8086 on-line manual page, just type in the following command
from the operating system prompt:

man cc8086

Information on the cc8086 compiler syntax and options will be scrolled onto
your display.

Chapter 1: Getting Started
To view the on-line man pages

36

Part 2

Compiler Reference

Part 2

38

2

C Compilation Overview

An overview of the 8086/186 C Cross Compiler and a description of the ANSI
C language.

Chapter 2: C Compilation Overview

39

Execution Environment Dependencies

Providing the "standard I/O" and storage allocation C library functions creates
dependencies on the environment in which programs execute.

Since the 8086/186 C compiler is a tool to help you develop software for your
own target system execution environments, HP has been careful about any
execution environment dependencies associated with this compiler or its
libraries.

The compiler provides the "standard I/O" and storage allocation library
functions; therefore, there are some environment dependencies to be aware of.
The compiler isolates these environment dependencies to make it easier to
tailor the compiler to your own target system execution environment.

The execution environment-dependent routines provided with the 8086/186 C
compiler are written to work in the HP development environments, but they
need to be rewritten for target system execution environments.

Chapter 2: C Compilation Overview
Execution Environment Dependencies

40

C Compilation Overview

An overview of the 8086/186 C compiler is shown in figure 2-1. The entire
process is controlled by the command line fed to the compilation control
routine. Rectangles in the diagram represent either data provided by the
programmer (C source file, for example) or data produced by one of the
circular processes (output listing, for example). Each process is described
following the figure.

In the following figure, the names of programs appear in parentheses. These
names refer to the cross tools, and not to the native tools. For example, "cc"
refers to cc8086 cross compiler and not to the native host cc compiler.

Chapter 2: C Compilation Overview
C Compilation Overview

41

Figure 2-1. C Compilation Overview

Chapter 2: C Compilation Overview
C Compilation Overview

42

Note When you use the cc8086 command, the 8086/186 C compiler generates 8086
code. When you use the cc80186 command, the 8086/186 C compiler generates
80186 instructions where it is optimal to do so. In cases where 80186-specific
instructions have no advantage over 8086 instructions, 8086 instructions are
generated.

Except for the generation of 80186 instructions, the 8086 and 80186 compilers
are identical.

Throughout the remainder of the manual, this product is referred to as the
8086/186 C compiler. You should take that to mean 8086/186 C Cross
Compiler.

Chapter 2: C Compilation Overview
C Compilation Overview

43

Compilation Control Routine

The entire system is controlled by a compilation control routine, cc8086 (or
cc80186 for the 80186). The compilation control routine calls in sequence: the
C preprocessor (cpp8086), the C compiler (ccom8086S/C/M/L), optionally the
peephole optimizer (opt8086), the assembly macro preprocessor (ap86), the
assembler (as86), optionally the lister (clst8086), and the linker (ld86). Many
of these programs may be run individually using the cc8086 command’s
options. See the on-line man pages for the description of the command syntax
and options.

The librarian (ar86) is a separate tool for building archive files used by the
linker.

C Preprocessor

The 8086/186 C preprocessor accepts C preprocessor directives which modify
the source code that the compiler sees. This modification includes expansion
of include files, expansion of macros, and management of conditional
compilation. See the on-line man page for a description of the C preprocessor.

C Compiler

The 8086/186 C compiler accepts C language as defined by the ANSI C
Standard. The compiler performs a translation with optional optimizations
(see the "Optimizations" chapter) and emits an assembly language source file
containing embedded directives which provide information to be used by the
lister and later by the debugger and analyzer (see the "Compiler Generated
Assembly Code" chapter). The compiler also emits error and warning
messages to the standard error output. These messages include the original
source line on which the error occurred with a pointer to the offending token.

Peephole Optimizer

The peephole optimizer is run when the "optimize" command line option is
specified. It performs peephole optimization on the assembly output of the
compiler. The optimizer makes allowances for volatile data types and
embedded assembly code to avoid changing the functionality of the generated
code. The optimizer works properly only on compiler-generated assembly
code and is not a stand alone tool for use on hand-written assembly code.

Chapter 2: C Compilation Overview
C Compilation Overview

44

Refer to the "Optimizations" chapter for more information on the peephole
optimizer.

Assembly Preprocessor

The assembly preprocessor is the HP B1449 assembly preprocessor which
accepts an assembly language source file (optionally containing symbolic
debug information defined by special directives) and produces another
assembly language file which has all assembly preprocessor macros, etc.
expanded. The 8086/186 C compiler generates assembly preprocessor macros;
therefore, assembly language code generated by the 8086/186 C compiler must
pass through the assembly preprocessor before being assembled.

Assembler

The assembler is the HP B1449 assembler which accepts an assembly language
source file (optionally containing symbolic debug information defined by
special directives) and produces an object code file (optionally containing a
representation of the symbolic debug information from the assembly source)
and an optional listing for use by the lister in generating the final listing. The
assembler also has a switch for generating HP 64000 format assembler symbol
files.

Source File Lister

The source file lister is run when the "listing" command line option is
specified. The lister uses the assembler source or listing, C source file, and
include files to produce a listing. The listing includes embedded assembly
language and, optionally, expanded include files and a cross reference table.
The lister is controlled by "*LINE*" directives inserted by the compiler into
the output assembly code. Because the lister is usually run by the compilation
control routine, details of the lister directives are not described in this manual.
See the on-line man page for the description of clst8086 command syntax and
options.

Librarian

The librarian is the HP B1449 librarian which combines several object code
files (generated by the assembler) into an archive file which the linker will

Chapter 2: C Compilation Overview
C Compilation Overview

45

search when it tries to resolve external references. The libraries that are part
of the compiler product are made with this librarian.

Linker

The linker is the HP B1449 linker which accepts several object code or archive
files (generated by the assembler or librarian, respectively) and creates an
absolute file containing all object code and symbols to be loaded. Optional
load maps may be generated as well as HP 64000 format linker symbol and
absolute files.

ANSI Extensions to C

The B1493 8086/186 C Cross Compiler complies with ANSI/ISO standard
9899-1990. In some cases, programs which compile with no errors on old C
compilers will result in errors or warnings with this compiler. Although this
may seem inconvenient, modifying the source will result in portability to other
ANSI standard C compilers.

Assignment Compatibility

The ANSI standard has more carefully regulated assignment compatibility. In
particular, pointers and integers are no longer considered to be assignment
compatible without casts, and pointers to different typed objects are not
assignment compatible without casts.

Pointers and Integers

Because assignments between pointers and integers occur often in many
existing C programs, such assignments are warned rather than being flagged as
errors by the 8086/186 C Cross Compiler. It is still recommended practice not
to perform such assignments without casts.

Pointers and Pointers

The assignment of a "pointer to one type" to a "pointer to another type" only
generates a warning message. However, the ANSI standard has provided a

Chapter 2: C Compilation Overview
ANSI Extensions to C

46

new type (void) to which a pointer may point; the resulting "pointer to void"
may be assigned to any pointer.

Function Prototypes

Function prototypes allow you to specify the types of function parameters and
whether a function accepts variable parameters. They allow the compiler to
check the consistency of parameter types between declarations and calls of a
function in a file. Because the linker does not check for incompatible calls
across file boundaries, we recommend that you use an include file to declare
the function at all reference and definition points.

Function prototype information is used by the compiler to generate more
efficient code by not widening passed parameters. That is, short and char
passed parameters are not widened to int ; and float parameters are not
widened to double, as is the case in the absence of function prototypes.

Old style function declarations (those without any parameter information)
continue to have the same meaning as before. All short and char parameters
are widened to int , and all float parameters are widened to double at the
function call. The appropriate inverse conversions are performed at function
entry. Old style and prototype declarations for the same symbol can coexist as
long as all of the parameter types specified in the prototype are the widened
types and as long as the ellipsis is not used. It is good practice to convert all
declarations to prototype syntax if prototypes are going to be used.

The consistency checking between the type of expression passed as a
parameter to a prototyped function and the declared type of the corresponding
parameter requires that the two types be assignment compatible. The
parameter expression will be converted to the formal parameter type prior to
its value being passed.

The following is an example of function prototype usage:

extern int printf(const char *format, ...);

/* Note the optional use of identifier "format" to document the parameter’s
 meaning. The ellipsis indicates zero or more additional parameters. */

extern float float_operation(float,float);

/* In this case, only type names are given for the parameters. */

/* The following is the prototype syntax for a function definition. */

void func(int i)
{
 float f;

Chapter 2: C Compilation Overview
ANSI Extensions to C

47

 f = float_operation(i, 2.0);

 /* The int "i" and the double "2.0" will be converted to float
 before being passed (the "2.0" is converted at compile time).
 Both parameters are passed as floats without the expensive
 run time conversion to double which old style functions cause. */
}

Pragmas

Pragmas are special preprocessor directives which allow compilers to
implement special features. By definition, any pragma that a compiler does
not understand will be ignored. However, because pragmas allow compilers to
deviate from the standard, their number has been kept to a minimum.

The pragmas which the 8086/186 C compiler understands are listed below.
Pragmas which are not recognized cause a warning message to be written to
the standard error output.

pragma SEGMENT

Provides for renaming the default program segment names. (Refer to the
"Segment Names" section of the "Embedded Systems Considerations" chapter
for more information.)

pragma DS

Provides for re-specifying which segment will be accessed DS-relative. (Refer
to the "Segment Names" section of the "Embedded Systems Considerations"
chapter for more information.)

pragma ASM/END_ASM

Provides for including assembly language in the C source file. (Refer to the
"Using Assembly Language in the C Source File" section of the "Compiler
Generated Assembly Code" chapter for more information.)

pragma FUNCTION_ENTRY/EXIT/RETURN "C_string"

Provides for including assembly language instructions in the function entry
and exit code of the compiler-generated assembly code. (Refer to the "Using
Assembly Language in the C Source File" section of the "Compiler Generated
Assembly Code" chapter for more information.)

Chapter 2: C Compilation Overview
ANSI Extensions to C

48

pragma INTERRUPT

Provides for implementing functions as interrupt routines. (Refer to the
"Implementing Functions as Interrupt Routines" section of the "Embedded
Systems Considerations" chapter for more information.)

pragma ALIAS

Provides for the naming of an assembly language symbol associated with a C
source file symbol. (Refer to the "Assembly Language Symbol Names" section
of the "Compiler Generated Assembly Code" chapter for more information.)

The void Type

A new type, void, has been added by ANSI. It has two fundamental purposes.
The first is to allow a function to be defined to have no return value (i.e., a
procedure). Since void typed objects cannot be assigned to other objects, such
procedures cannot be used in a context where a return value is required. (Of
course, the protection afforded by this mechanism is limited to programs
where functions are declared with a void return type using old style
declarations or function prototypes.)

The second use of type void is to declare generic pointers. By definition,
pointers to void, e.g., "void *genericPtr;", are assignment compatible with
pointers to any other type. This can also be a convenient type for the return
type of a function such as malloc whose result is then assignment compatible
with any pointer.

The volatile Type Modifier

The type modifier volatile specifies that a particular variable’s value may
change from one read to another or following a write. An obvious example of
such a "variable" is an I/O port in an embedded system. The volatile type
modifier informs the compiler of this behavior so that the compiler can avoid
performing optimizations which assume that variables’ contents are not
changed unexpectedly. (Refer to the "Effect of volatile Data on Peephole
Optimizations" section in the "Optimizations" chapter; also, refer to "The
volatile Type Modifier" section in the "Embedded Systems Considerations"
chapter for examples of its use.)

Chapter 2: C Compilation Overview
ANSI Extensions to C

49

The const Type Modifier

An object declared with the const type modifier tells the compiler that the
object cannot be assigned to, incremented, or decremented; statements which
attempt to do so will cause errors. Pointers to const storage cannot be
assigned to pointers to non-const storage. Objects declared with the const
type modifier can be accessed, but they cannot be written to. An object
declared with the const type modifier, which has static storage class, is placed
in the CONST segment (see the "# pragma SEGMENT" section in the
"Embedded Systems Considerations" chapter). Some examples of how the
const type modifier is used follow.

static const char message[][7] = {
 "First ",
 "Second",
 "Third "
 };

const char *cnst_chr_ptr; /* The pointer may be modified, */
 /* but that which it points to */
 /* may not. */

char *const ptr; /* The pointer may not be modified,*/
 /* but that which it points to may.*/

const char *const ptr; /* Neither the pointer nor that */
 /* which it points to may be */
 /* modified. */

Chapter 2: C Compilation Overview
ANSI Extensions to C

50

Translation Limits

The ANSI C Standard has set standard translation limits which must be met or
exceeded by conforming implementations. The following list meets or exceeds
all such limits put forth by the standard.

• Approximately 50 nesting levels in compound statements, iteration
control structures, and selection control structures.

• Unlimited levels of nesting in preprocessor conditional compilation
blocks.

• Approximately 100 pointer, array, and function declarators modifying a
basic type in a declaration.

• Limited to 128 levels of expression nesting.

• There are 255 significant case-sensitive characters in an internal identifier.

• There are 255 significant case-sensitive characters in a macro name.

• There are 30 significant case-sensitive characters in an external identifier.

• Limited to 216-2 bytes of local variables in one function block.

• Unlimited simultaneous macro definitions.

• Limited to 216–2 bytes of parameters in function definition and call.

• Limited to 127 parameters in preprocessor macro.

• Limited to 1024 characters in a logical source line.

• 1023 characters in a single string literal (1024 including a trailing null
character). There is no limit on the size of string made from adjacent
string literals.

• A single object may be as large as 216–2 bytes in size.

• Unlimited nesting levels of include files.

• Unlimited number of cases in a switch statement.

• Size of a switch statement body is limited to 216–1 bytes of generated code.

Chapter 2: C Compilation Overview
ANSI Extensions to C

51

Chapter 2: C Compilation Overview
ANSI Extensions to C

52

3

Internal Data Representation

How arithmetic and derived data types (arrays, pointers, structures, etc.) are
represented in memory.

Chapter 3: Internal Data Representation

53

This chapter does not describe how to use data types in your programs. Refer
to The C Programming Language for information such as escape sequences,
printf conversions, and declaration syntax.

Arithmetic Data Types

The arithmetic data types are listed in the following table:

The integral data types (char, short, int , and long) are signed by default;
however, they may be used in combination with the unsigned keyword to yield
unsigned data types (unsigned by itself means unsigned int). All integral data
types use two’s complement representation.

Floating-Point Data Types

Floating-point data types are stored in the IEEE single and double precision
formats. Both formats have a sign bit field, an exponent field, and a fraction
field. The fields represent floating-point numbers in the following manner:

Floating-Point Number = <sign> 1.<fraction field> x 2(<exponent field> - bias).

Sign Bit Field. The sign bit field is the most significant bit of the
floating-point number. The sign bit is 0 for positive numbers and 1 for
negative numbers.

Type # of Bits Range of Values (Signed) (Unsigned)

char 8 –128 to 127 0 to 255

short 16 –32768 to 32767 0 to 65535

int 16 –32768 to 32767 0 to 65535

long 32 –2147483648 to 2147483647 0 to 4294967295

float 32 + /– 1.18 x 10-38 to + /– 3.4 x 1038

double 64 + /– 2.23 x 10-308 to + /– 1.8 x 10308

Table 3-1. Arithmetic Data Types

Chapter 3: Internal Data Representation
Arithmetic Data Types

54

Fraction Field. The fraction field contains the fractional part of a
"normalized" number. "Normalized" numbers are greater than or equal to 1
and less than 2. Since all normalized numbers are of the form
"1.XXXXXXXX", the "1" becomes implicit and is not stored in memory. The
bits in the fraction field are the bits to the right of the binary point, and they
represent negative powers of 2. For example:

0.011 (binary) = 2 -2 + 2 -3 = 0.25 + 0.125 = 0.375.

Exponent Field. The exponent field contains a biased exponent; that is, a
constant bias is subtracted from the number in the exponent field to yield the
actual exponent. (The bias makes negative exponents possible.)

If both the exponent field and the fraction field are zero, the floating-point
number is zero.

NaN. A NaN (Not a Number) is a special value which is used when the result
of an operation is undefined. For example, adding positive infinity to negative
infinity results in a NaN.

Float

The float data type is stored in the IEEE single precision format which is 32
bits long. The most significant bit is the sign bit, the next 8 most significant
bits are the exponent field, and the remaining 23 bits are the fraction field. The
bias of the exponent is 127. The range of single precision format values is from
1.18 x 10-38 to 3.4 x 1038. The floating-point number is precise to 6 decimal
digits.

31 30 23 22 0

S Exp. + Bias Fraction

0 000 0000 0 000 0000 0000 0000 0000 0000 = 0.0
0 011 1111 1 000 0000 0000 0000 0000 0000 = 1.0
1 011 1111 1 011 0000 0000 0000 0000 0000 = -1.375
1 111 1111 1 111 1111 1111 1111 1111 1111 = NaN (Not a Number)

Chapter 3: Internal Data Representation
Arithmetic Data Types

55

Double

The double data type is stored in the IEEE double precision format which is
64 bits long. The most significant bit is the sign bit, the next 11 most significant
bits are the exponent field, and the remaining 52 bits are the fraction field. The
bias of the exponent is 1023. The range of double precision format values is
from 2.23 x 10-308 to 1.8 x 10308. The floating-point number is precise to 15
decimal digits.

63 62 52 51 0

S Exp. + Bias Fraction

0 000 0000 0000 0000 0000 0000 ... 0000 0000 0000 0000 = 0.0
0 011 1111 1111 0000 0000 0000 ... 0000 0000 0000 0000 = 1.0
1 011 1111 1110 0110 0000 0000 ... 0000 0000 0000 0000 = -0.6875
1 111 1111 1111 1111 1111 1111 ... 1111 1111 1111 1111 = NaN

Precision of Real Number Operations

In the absence of the "generate code for the 8087" command line option, all
real number operations are accomplished by calls to the real number routines
(described in the "Conversion" and "Floating-Point Routines" sections of the
"Small Memory Model Run-Time Routines" and "Large Memory Model
Run-Time Routines" chapters) or to math library routines which eventually
call run-time library routines. With the "generate code for the 8087" command
line option, most real number operations are performed in-line with 8087
instructions.

All of this has a subtle effect on the precision of floating-point results.

Without the 8 087. When routines are used to perform floating-point
operations, all intermediate results are truncated to 64-bit precision
immediately, and no 80-bit intermediate results are carried on into subsequent
calculations. The precision of the results reflects this implementation.

With the 8087. When the "generate code for the 8087" (-f) command line
option is used, many intermediate results are kept with 80 bits of precision and
are passed on into subsequent operations without truncation.

The 8087 allows you to control its precision, rounding, trapping, and infinity
behaviors. You may change the behavior of the 8087 by using the
_set_fp_control() function, which is described under _fp_error in the
"Libraries" chapter.

Chapter 3: Internal Data Representation
Arithmetic Data Types

56

Characters

In addition to the char type, the 8086/186 C compiler supports wide
(extended) characters with the wchar_t type. The wchar_t type is
implemented as unsigned long. Constants in the extended character set are
written with a preceeding L modifier. Library routines which support wide
characters are described under mblen in the "Libraries" chapter.

Multi-byte characters are not supported.

If a multi-character constant (for example, ’abc’) is encountered, the compiler
multiplies the value of the first character by 256 and adds the value of the
second character. If there are remaining characters, the new value is
multiplied by 256 and the next character is added until no more characters are
left. (Some previous versions of the compiler technology simply accepted the
first character and discarded the others.)

Chapter 3: Internal Data Representation
Arithmetic Data Types

57

Derived Data Types

The following objects are derived data types. The sizes of each data type (or
the calculation used to determine the size) are listed.

Pointers 16-bits (Small memory model); 32-bits (Large memory
model).

Arrays (Number of elements)*(Size of one element).

Structures Sum of the sizes of each member. (Members, as well as
the structure itself, may be padded for alignment.)

Unions Size of the largest member. (This member, as well as
the union itself, may be padded for alignment.)

Enum types 1 or 2 bytes depending on the constant values of the
elements.

Chapter 3: Internal Data Representation
Derived Data Types

58

Pointers

Pointers are addresses which point to stored values. Pointers occupy four bytes
(two bytes for the small memory model) and are aligned on two byte
boundaries. The following program is a simple example of how pointers are
used.

main()
{
 int value;
 int *ptr /* "ptr" is of type pointer to "int". */

 value = 256;
 ptr = &value; /* "ptr" = the address of the location */
 /* at which "value" is stored. */
}

Arrays

Arrays are made up of a fixed number of elements of the same type.
Multi-dimensional arrays can be thought of as arrays of arrays (of arrays, etc.)
where each array represents a single dimension. Index values for each
dimension are used to access the elements of a multi-dimensional array.

The amount of storage allocated for an array is the sum of the space used by
all its elements. An array is aligned on the alignment boundary of its elements.
For example, a short array with 10 elements would use 20 bytes and be aligned
on a two byte boundary.

The first element of a one-dimensional array (index equals zero) is located at
the lowest address of the storage allocated for the array. Elements of
multi-dimensional arrays are stored in row-major order (in other words, the
rightmost index changes more rapidly with successive memory locations).

The following program shows some simple arrays.

float fpns[10]; /* 10*4 = 40 Bytes of storage allocated */
 /* at 2-byte aligned address. */
main()
{
 int array[4][7]; /* 4*7*2 = 56 Bytes allocated */
 int i, j; /* on the stack. */

 fpns[1] = 1.0;
 for (i = 0; i < 4; i++)
 for (j = 0; j < 7; j++)
 array[i][j] = 0;
}

Chapter 3: Internal Data Representation
Derived Data Types

59

Strings

Strings are a sequence of characters or escape sequences enclosed in double
quotes ("). Strings may be used in two distinct contexts. The first is in C
program statements or as intitializers of type char * where they are treated as
if they are of type "const char *". For example:

char *p, *q = "abc";
p = "xyz";

When used in such a context, the compiler places the string, together with an
additional NULL (0) termination character, in the named CONST linker
segment (named "const" by default).

The second context in which strings may be used is as initializers of arrays of
char. If the initialized array is an automatic, the initialization occurs at
run-time, and the compiler places the string and NULL terminator in the
named CONST linker segment just as above. If, however, the array being
initialized is a static, the initialization occurs at load-time (or is in ROM). For
example:

const char string[] = "abcdefghi";

When a string is used to initialize an array, the compiler places the initialized
array in either the named DATA linker segment (if the array’s type is not
"const") or in the named CONST linker segment (if the array’s type is "const").
A terminating NULL (0) character is appended to the string only if there is
room in the declared array (or if it is "open" as above).

Note Trying to change the value of a string constant may cause unwanted side
effects. The reason for this is explained in the "Optimizations" chapter.

The compiler accepts hexadecimal escape sequences of unlimited length. The
example below is interpreted as a single hex value:

*str = "\x064f";

 In order to produce the string "df", you could modify the string in the following
way:

*str = "\x064" "f";

Chapter 3: Internal Data Representation
Derived Data Types

60

Structures

Structures are named collections of members. Structure members may be of
different types, they may be specified as bit fields, or they may even be pointers
to the structure in which they are defined (self-referential structures).

Structures may be passed as parameters to and returned from functions. (See
the "Stack Frame Management" section of the "Compiler Generated Assembly
Code" chapter for more information on how structures are passed to and
returned from functions.)

The amount of storage allocated for a structure is the sum of the space
required by all its members, the alignment padding between members, and
padding at the end of the structure to make its size a multiple of two bytes. For
example, a structure whose members are a char, an int , and a double would be
allocated 12 bytes (one byte following the char is "wasted" to align the int).
Members are located in the allocated space in the order that they are declared.

An example of a simple structure follows.

struct example { /* 12 bytes of storage allocated at 2-byte boundary. */
 char c; /* First byte of structure. */
 int i; /* Begins at 3rd byte of structure. */
 double d; /* Begins at 5th byte of structure. */
} var;

main()
{
 var.c = ’a’;
 var.i = -1;
 var.d = 1.0;
}

When the "byte align data" option is used, there will be no alignment padding
between members or at the end of a structure. The structure size may be other
than a multiple of two bytes.

Chapter 3: Internal Data Representation
Derived Data Types

61

Bit Fields

Bit fields are structure or union members which are defined as a number of
bits. A colon separates the length of a bit field from the declarator. Bit fields
can be signed (declared as plain integral types) or unsigned (declared as
unsigned integral types). All integral types are allowed in bit field
declarations, but are converted to int or unsigned int. The high order bit of a
signed bit field is the sign bit.

Bit fields are packed from the high-order bits to the low-order bits in the
words of memory they occupy. Bit padding can be generated by omitting the
name from the bit field declaration. Consecutive bit fields are packed
adjacently regardless of integer boundaries. However, a bit field with a
specified width of zero will cause the following bit field to start on the next int
(word) boundary.

Examples of bit field declarations follow.

struct {
 int f1:4; /* f1 is a signed bit field, */
 /* occupying bits 0-3 of the */
 /* first word. */
 /* */
 unsigned :8; /* 8 bits of padding occupy */
 /* bits 4-11 of the first */
 /* word. */
 /* */
 unsigned f2:8; /* f2 occupies bits 12-15 of the */
 /* first word and bits */
 /* 0-3 of the second word. */
 /* */
 int :0,f3:7; /* f3 occupies bits 0-6 of */
 /* the third word. */
} a; /* The size of the structure is */
 /* 6 bytes. */

Chapter 3: Internal Data Representation
Derived Data Types

62

Unions

Unions are like structures except that each member has a zero offset from the
beginning of the union. Unions provide a way to access the same memory
locations in more than one format. A simple example of a union is shown
below.

union {
 float fp_rep;
 struct {
 unsigned int lowbits;
 unsigned int :15;
 unsigned int sign : 1;
 } parts
} fp_num;

main()
{
 fp_num.fp_rep = 1.0;
 if (fp_num.parts.sign == 0)
 fp_num.parts.sign = 1;
}

Enumeration Types

Enumeration type declarations define elements of a finite set. Each element
of the enumerated type becomes a constant. The first element is equal to a
constant value of 0, the second is equal to 1, and so on. You can assign a
particular constant value to an element, and the values of the elements which
follow will incr ement from that value.

An enumeration type is considered to be the smallest integral type which can
represent all the values of the enumeration.

• If the constant values for all elements are between -128 and + 127, the
enumeration type is allocated the same space as char types.

• If the condition above is not true, but the constant values for all elements
are between -32768 and + 32767, the enumeration type is allocated the
same space as short int types.

• If the constant value of any element is outside the range
-32768 to + 32767, it is an error.

Chapter 3: Internal Data Representation
Derived Data Types

63

An enum typed variable can be used in expressions wherever integral typed
variables are allowed. An enumerated constant is always of type integer. The
following program shows a simple enumerated type.

enum color {yellow, red, green, blue=8, violet} paint;

/* The elements of the enumeration type "color" equal the */
/* following constants: yellow = 0, red = 1, green = 2, */
/* blue = 8, and violet = 9. */

main()
{
 enum color marker;

 if (marker == green)
 {
 paint = marker;
 marker++; /* This statement is allowed, but */
 /* marker = 3 instead of "blue" */
 /* which is 8. */
 }
}

The values of an enumerated type are considered to be declared the moment
they are encountered in the source file. Thus it is possible to have a
declaration like the following:

enum {apple, orange = apple} e;

Alignment Considerations

Variable and constant data, as opposed to executable instructions, may be
aligned or padded by the compiler. In this context, aligned is defined to mean
that the memory allocated to the variable begins at a particular byte boundary
(e.g., an alignment of two bytes means that a variable’s absolute address is a
multiple of two); padded is defined to mean that the size of a type was rounded
up to guarantee that the number of bytes in that type is a multiple of two.

Arrays are aligned according to their element type’s alignment and are not
padded. Note, however, that an array’s elements may be padded (if it is an
array of structures or unions).

Structure members are aligned relative to the start of the structure (and
padded if they are structures or unions) in accordance with their type.

Chapter 3: Internal Data Representation
Alignment Considerations

64

Unless function prototypes are used (see the "ANSI Extensions" section in the
"C Compiler Overview" chapter), all char and short parameters are widened to
ints when they are passed and, thus, follow int alignment rules when they are
passed. Note that inside a called function, char or short parameters are
reduced to their normal char and short size.

Alignment can be changed by using the compiler’s "byte align data" (-Q)
option. In the presence of this option, data is aligned at byte boundaries.

The following table summarizes the default alignment and padding of the
various data types when the "byte align data" option is not used.

Note If the "byte align data" option is used, alignment is always 1 and there is no
padding.

Data Type Alignment Padded?

char 1 N

short 2 N

int 2 N

long 2 N

pointer 2 N

float 2 N

double 2 N

struct 2 Y

union 2 Y

Table 3-2. Arithmetic Data Type Alignment

Chapter 3: Internal Data Representation
Alignment Considerations

65

Alignment Examples

These examples assume that the "byte align data" option is not used.

Default alignment dictates that a char variable followed by an int variable
"wastes" one byte of memory between the two objects. Note that there are no
"wasted" bytes when a char variable is followed by an array of char, but one
byte is "wasted" when a char variable is followed by a structure.

The sizeof bytestruct declared with:

struct {char element;} bytestruct;

is two (the minimum sizeof any struct type) and the sizeof biggerstruct
declared with:

struct {char element1;
 int element2;} biggerstruct;

is four (one for element1, one "wasted" for alignment, two for element2, and
none for padding as the size is a multiple of two).

Chapter 3: Internal Data Representation
Alignment Considerations

66

4

Compiler Generated Assembly Code

Description of the assembly code generated by the compiler.

Chapter 4: Compiler Generated Assembly Code

67

The compiler generates assembly code for the HP B1449 assembly macro
preprocessor (ap86) and assembler (as86). Knowing how the compiler
generates this code will help you to write assembly language routines that
interface with C functions.

In this chapter you will find information about the following subjects:

• Assembly language symbol names

• Debug directives

• Stack frames (how parameters are passed to and from C functions)

• Register usage

• Run-time error checking

• Memory model mismatch checking

• Ways to include assembly language in a C source file

Chapter 4: Compiler Generated Assembly Code

68

Assembly Language Symbol Names

The compiler prefixes characters to the names given in the C source (to
prevent potential conflicts with assembler reserved words) when generating
assembly language symbols to represent addresses and stack offsets of C
variables.

Symbol Prefixes

The _ Prefix

Externs, globals, statics, and functions have an underscore (_) prefix. You can
change the prefix for external variables (externs, globals, and functions) to a
different string by using a cc8086 option (-Wc,-l). Refer to the on-line man
page for more information on changing this prefix character.

The S_ Prefix

Parameters and automatics have "S_" prefixed. The "S" indicates symbols that
are SET equal to stack offsets.

The L_ Prefix

The only other symbol names from the C source which are passed on to the
assembly code are C label names. These labels have "L_" and a unique ASCII
number prefixed to them in the generated assembly code.

See figure 4-1 for an example of how the compiler creates symbol names.

These symbol names are not used by debuggers and emulators unless the
debuggers and emulators consume HP format absolute files. The C source
symbol names are defined using debug directives (see the following "Debug
Directives" section).

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

69

Situations Where C Symbols are Modified

There are four cases where the compiler modifies the names of C variables to
guarantee that they are unique in the assembly code:

1 If a parameter or automatic name exceeds 29 characters in length, then it
must be made unique since the assembler only recognizes 31 (29 + 2 for
"S_") significant characters in a symbol.

2 If there is a variable with the same name in a containing scope in the C
source, then a parameter or automatic name must be made unique since
both symbols must exist at the same time in the assembler (which doesn’t
understand scoping).

3 All local statics (those declared inside a function) are made unique, since
a global static of the same name may be declared later.

4 External statics (those declared outside a function) are made unique if
their name exceeds 30 characters in length since the assembler only
recognizes 31 (30 + 1 for "_") significant characters in a symbol.

 /* Assembly Symbol Name: */
 /* --------------------- */
float ext_var; /* _ext_var */
 /* */
main() /* _main */
{ /* */
 char auto_var; /* S_auto_var */
 static int number; /* _1_number */
 /* */
 auto_var = ’a’; /* */
 goto label; /* */
label: /* L_2_label */
 function(number); /* */
} /* */
 /* */
int number; /* _number */
 /* */
function(i) /* _function */
int i; /* S_i */
{ /* */
 i = 1; /* */
} /* */

Figure 4-1. Examples of Generated Symbol Names

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

70

In all four cases, symbol names are made unique by inserting a unique ASCII
number and an underscore between the initial underscore (or "S_") and the C
name. For example:

_123_name
S_123_name

pragma ALIAS

Syntax:

pragma ALIAS Csymbolname Assemsymbolname
pragma ALIAS Csymbolname "Assemsymbolname"

This pragma allows overriding of the C compiler algorithm for converting C
source file symbol names into unique assembler symbol names (the algorithm
generally prefixes an "_" or "S_"). This pragma should be used with great care
as it may generate assembly-time errors due to conflicts between
Assemsymbolname and other assembly language symbols. Use the quotation
marks if the Assemsymbolname would not be a valid C identifier. This pragma
should be placed before any references to the symbol.

Compiler Generated Symbols

The compiler generates assembly language labels for C loops, switch
statements, and other constructs which require labels. The name of the label
is related to the use of the label; for example, the label "forLoop3" might be
used to implement a for loop.

Chapter 4: Compiler Generated Assembly Code
Assembly Language Symbol Names

71

Debug Directives

If the "strip symbol table information" compiler command line option is not
used, the compiler generates all the HP B1449 debug directives necessary to
use debugger, emulation, and analysis tools. This debug information consists
of source file and line references, type names and structure, symbol type and
access information, and function call information. One LINE directive is
output for each C source statement to associate the generated assembly code
with the C source file line number.

Stack Frame Management

In block-structured languages (C, Pascal, etc.), the stack is used to pass
parameters into and receive results from each of the blocks which make up the
program. In C, these blocks are called functions. In addition to passing values
and returning results, the stack is used for a function’s local variables and to
buffer register variables. The area of the stack used by a function is called a
"stack frame". To illustrate what makes up stack frames and how they are
managed, one must observe what happens to the stack when a function is
called; these events are listed below and described in this section.

Note This section applies only to C function calls. Run-time libraries invoked in
compiler-generated code may use different (and more efficient) stack frame
management because these calls are not constrained by C language calling
conventions.

• Space is reserved for a structure result (if the size returned is greater than
4 bytes).

• Parameters are pushed (last is pushed first).

• A pointer to the result address is pushed (if size returned is greater than 4
bytes).

• The subroutine call is made and the return address is pushed.

• The old frame pointer is pushed.

Chapter 4: Compiler Generated Assembly Code
Debug Directives

72

• Space for automatics (locals) is allocated.

• The old Data Segment (register DS) is pushed and DS is loaded with the
new data segment paragraph number. (Large memory model only.)

• The old register variable (register SI) is pushed to buffer its value.

• The complete internal state of the 8087 is pushed if the "generate code for
the 8087" command line option was used and one or more floating-point
register variables are used in the function.

• During function execution, intermediate values may be stored on the stack
temporarily.

• Function return values are stored in working registers or returned
indirectly through a pointer on the stack (possibly into space reserved on
the stack).

• At function exit, the 8087 state, if it was saved, is restored; any 8087
registers which were saved are restored; register variables are restored and
locals are deallocated; and the calling routine deallocates parameters and
uses the structure result.

The general format of a stack frame is shown in figure 4-2. An example of the
code generated for stack frame management is shown in figure 4-3.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

73

High Address Used stack space

Reserved space for
structure result

Absent if result is < = 4 bytes or if
result is returned through a variable.

Last parameter
⇑

First parameter

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

[segment] Result
[offset] address

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

[segment] Return
[offset] address

(Address size is 2 words.)

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no parameters or
locals. (Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered data
segment (DS)

Absent if function does not access
DS-relative static data.

Buffered register
variable (SI)

Absent if function does not use
register variables.

8087 register
variables

Present when "-f" option is used and
8087 register variables are used

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 4-2. St ack Frame Format

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

74

HPB1493-19303 8086 C Cross Compiler A.04.01 esfm.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: large
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "esfm"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_esfm SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(prog_esfm)
 1 typedef struct {
 2 int month,day,year;
 3 } date;
 4
 5 int year = 87;
 6
 7 main()
 8 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:data
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,6
 PUSH DS
 MOV AX,data
 MOV DS,AX
%SET(S_d,-6)
 9 date d,set_date();
 10
 11 set_date(d,5,18,year);
 SUB SP,6
 PUSH %DS:WORD PTR _year[0]
 MOV AX,18
 PUSH AX
 MOV AX,5
 PUSH AX
 PUSH SS:WORD PTR [BP+%S_d+0+4]
 PUSH SS:WORD PTR [BP+%S_d+0+2]
 PUSH SS:WORD PTR [BP+%S_d+0]
 MOV AX,SP
 ADD AX,12
 PUSH SS
 PUSH AX
 CALL FAR PTR _set_date
 ADD SP,6+0+12+4
 12 }
functionExit1:

Figure 4-3. Example St ack Frame Management Code

Space reserved for
structure result.

Parameters
pushed.

Structure
result address
pushed.

Stack pointer incremented
(parameters popped).

 Function
call.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

75

 POP DS
 MOV SP,BP
 POP BP
returnLabel1:
 RET
_main ENDP
 13
 14 date set_date(x,mo,da,yr)
 15 date x;
 16 int mo,da,yr;
 17 {
 PUBLIC _set_date
 ASSUME CS:%CodeSegment,DS:NOTHING
_set_date PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,16
 PUSH SI
%SET(S_x,10)
%SET(S_mo,16)
%SET(S_da,18)
%SET(S_yr,20)
%SET(S_i1,-16)
%SET(S_i2,-8)
;S_i3 is in register SI.
 18 double i1,i2;
 19 register int i3;
 20
 21 x.month = mo;
 MOV AX,SS:WORD PTR [BP+%S_mo+0]
 MOV SS:WORD PTR [BP+%S_x+0],AX
 22 x.day = da;
 MOV AX,SS:WORD PTR [BP+%S_da+0]
 MOV SS:WORD PTR [BP+%S_x+2],AX
 23 x.year = yr;
 MOV AX,SS:WORD PTR [BP+%S_yr+0]
 MOV SS:WORD PTR [BP+%S_x+4],AX
 24 return(x);
 PUSH SS:WORD PTR [BP+%S_x+0+4]
 PUSH SS:WORD PTR [BP+%S_x+0+2]
 PUSH SS:WORD PTR [BP+%S_x+0]
 LES DI,SS:DWORD PTR [BP+6]
 CLD
 POP AX
 STOSW
 POP AX
 STOSW
 POP AX
 STOSW
 25 }
functionExit2:
 POP SI
 MOV SP,BP
 POP BP
returnLabel2:
 RET
_set_date ENDP

Figure 4-3. Example St ack Frame Mgmt. Code (Cont’d)

Old frame pointer
pushed and
space for locals
allocated.

Structure
result
returned.

Function exit.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

76

Structure Results

C allows functions to return results of type struct. Although most function
results are returned in a working register (AL, AX, DL-AX, or DX-AX),
structures greater in size than 4 bytes are returned to a location specified by
the result location pointer. The result location pointer is pushed onto the
stack after the parameters and before the return address.

In a C statement such as "structure = f(x)", the address of the variable
"structure" may be pushed as the result location pointer, and the called
function will return its resultant structure directly into memory reserved for
the "structure" variable.

In other statements, such as "i = f(x).field", space must be reserved on the
stack (prior to pushing parameters) to hold the function structure result. The
address of this reserved stack space will be pushed as the result location
pointer (after the parameters and before the return address), and the function
will return its resultant structure into the reserved stack space. This approach
maintains reentrancy for functions returning structures.

Parameter Passing

Parameters are pushed on the stack in right to left order as they appear in the
function call (in other words, the last passed parameter is pushed first).
Unless function prototypes are used (see the "ANSI Extensions" section in the
"C Compiler Overview" chapter), parameters of type char are rounded up to
int when passed, and parameters of type float are rounded up to double when
passed.

prog_esfm ENDS
data SEGMENT %DALIGN PUBLIC
 PUBLIC _year
 EVEN
_year LABEL BYTE
 DW 87
data ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 4-3. Example St ack Frame Mgmt. Code (Cont’d)

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

77

After the parameters (and, possibly, a result address) are pushed, the function
is called. The subroutine call pushes the return address on the stack following
the parameters.

Pushing the Old Frame Pointer

Within a called function’s prolog, a PUSH BP instruction followed by a MOV
BP,SP instruction (or just a ENTER instruction) is used to save the old frame
pointer (BP) and set up the new stack frame. This occurs only if one or more
of the following conditions is true:

• The "optimize" option is off.

• The "run-time error checking" option is on.

• Automatic variables exist for the current function.

• Parameters exist for the current function.

• The current function returns a value which has a size greater than 4 bytes.
(This causes a "result address" to be placed on the stack.)

Reserving Space For "C" Variables

After the instructions for setting up the stack frame, any automatic variables
and any register variables that cannot be assigned to the SI register are
allocated by decrementing the stack pointer (SP). No stack pointer
adjustment instruction will be generated if there are no automatic variables or
unassigned register variables. (Total local space is padded to a multiple of two
bytes.)

Pushing Data Segment (DS) Register

(Large and compact memory models only). Following the allocation of
automatics, if the memory model is "large" and the current function references
any static data, the data segment (DS) register will be pushed on the stack and
then loaded with a new segment paragraph number. This is to allow the
DS-relative accesses within the current function to address the appropriate
static data segment. This code for setting up a new DS-relative static data
segment will never appear for the small and medium memory models, and
does not appear for the large memory model when there is no static data
associated with the current function.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

78

Buffering Register Variable (SI)

Next, the function prolog pushes the old register variable (SI) on the stack if
SI has been allocated for use by the function as a register variable. Also, the
compiler may use this register for an automatic regardless of whether or not it
has been declared with the register storage class specifier (see the "Register
Usage" section which follows).

Buffering 8087 Floating Point Register Variables

The last code in the function prolog saves floating point register variables
ST(2) through ST(6). In general, it is more cost effective when saving several
8087 registers to save the whole 8087 state instead of saving individual
registers. Therefore, if the 8087 is being used (that is, if the "generate code for
the 8087" option is on) and one or more floating point register variables are to
be used by the function then the complete 8087 internal state is saved into a
94-byte space on the stack. This is accomplished with an FSAVE instruction
followed by an FLDCW instruction. The FLDCW instruction is necessary to
propagate the previously set up 8087 control word into the reset 8087. (The
FSAVE instruction also resets the 8087.) At function epilog the internal state
of the 8087 is restored with instructions FSTCW and FRSTOR. Here, the
FSTCW is required to propagate back any changes made to the 8087 control
word while in this function.

Observe that the 8087 status word is not propagated when 8087 register
variables are saved. This is normally not a problem, except when exceptions
are masked that are to be later unmasked and acted upon. These pending
exceptions might not be retained outside of the function where they occur.
This loss of "exceptions history" occurs only when the "generate code for the
8087" option is on and floating point register variables are used.

For interrupt routines, if the "generate code for the 8087" option is on the
complete 8087 internal state is saved regardless of whether or not floating
point register variables are used. Also, the 8087 control word is not
propagated, so the interrupt routine writer must set up the control word
before using the 8087.

Accessing Parameters

Each parameter’s assembly symbol name is SET to that parameter’s offset
from the frame pointer. The value of these offsets differ from one stack model

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

79

to another. Refer to the "Stack Models" chapter for illustrations of the stack
models.

In the stack shown in figure 4-2, the offset of the first parameter will be 6
(large memory model) if the value returned is 4 bytes or less. The offset of the
first parameter will be 10 (large memory model) if the result size is greater
than 4 bytes. For example, if "p" is the first parameter passed, the compiler
may generate the following line in the assembly:

%SET(S_p,6)

Parameters are accessed by using the symbol names relative to BP. Notice that
when referencing a parameter, a percent sign (%) must precede the parameter
name. For example:

MOV SI,SS:WORD PTR [BP+%S_p+0]

Shortening Parameters

Unless function prototypes are used (see the "ANSI Extensions to C" section
in the "C Compiler Overview" chapter), parameters of type char are widened
to int when passed. Thus, any parameters formally declared to be of type char
must be shortened from int. Since this shortening is defined to be by
truncation, it is accomplished by simply using the parameter as if it were a
char. (The parameter’s offset needs no adjusting.)

Similarly, float parameters are widened to double when passed. Thus, any
formal float parameters must be shortened from their passed double form. To
avoid problems when such parameters are optional, a float local variable is
allocated, and the double value is converted to float and stored in the local
variable. The formal parameter’s offset from the frame pointer is then set to
be that of the new local variable.

An example of the widening and shortening of parameters is shown in figure
4-4. The same example using function prototypes is shown in figure 4-5.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

80

HPB1493-19303 8086 C Cross Compiler A.04.01 parmshrt.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: large
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "parmshrt"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_parmshrt SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(prog_parmshrt)
 1 main()
 2 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,6
%SET(S_c,-6)
%SET(S_f,-4)
 3 char c, char_funct();
 4 float f, float_funct();
 5
 6 char_funct(c);
 MOV AL,SS:BYTE PTR [BP+%S_c+0]
 CBW
 PUSH AX
 CALL FAR PTR _char_funct
 POP CX
 7 float_funct(f);
 LES DI,SS:DWORD PTR [BP+%S_f+0]
 MOV DX,ES
 XCHG AX,DI
 SUB SP,8
%lib SEGMENT WORD PUBLIC ’CODE’
 EXTRN F32_TO_F64_LM:FAR
%lib ENDS
 CALL FAR PTR F32_TO_F64_LM
 CALL FAR PTR _float_funct
 ADD SP,8
 8 }
functionExit1:
 MOV SP,BP
 POP BP
returnLabel1:
 RET
_main ENDP

Figure 4-4. Widening and Shortening of Parameters

char widened to int .

float widened to double

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

81

 9
 10 char char_funct(chr)
 11 char chr;
 12 {
 PUBLIC _char_funct
 ASSUME CS:%CodeSegment,DS:NOTHING
_char_funct PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
%SET(S_chr,6)
 13 chr = ’A’;
 MOV SS:BYTE PTR [BP+%S_chr+0],65
 14 return(chr);
 MOV AL,65
 15 }
functionExit2:
 POP BP
returnLabel2:
 RET
_char_funct ENDP
 16
 17 float float_funct(flt)
 18 float flt;
 19 {
 PUBLIC _float_funct
 ASSUME CS:%CodeSegment,DS:NOTHING
_float_funct PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,4
%SET(S_flt,-4)
%SET(S_wide_param1,6)
 PUSH SS:WORD PTR [BP+%S_wide_param1+0+6]
 PUSH SS:WORD PTR [BP+%S_wide_param1+0+4]
 PUSH SS:WORD PTR [BP+%S_wide_param1+0+2]
 PUSH SS:WORD PTR [BP+%S_wide_param1+0]
%lib SEGMENT WORD PUBLIC ’CODE’
 EXTRN F64_TO_F32_LM:FAR
%lib ENDS
 CALL FAR PTR F64_TO_F32_LM
 MOV SS:WORD PTR [BP+%S_flt+0],AX
 MOV SS:WORD PTR [BP+%S_flt+0+2],DX
 20 flt = 1.0;
 MOV SS:WORD PTR [BP+%S_flt+0],00H
 MOV SS:WORD PTR [BP+%S_flt+0+2],03F80H
 21 return(flt);
 LES DI,SS:DWORD PTR [BP+%S_flt+0]
 MOV DX,ES
 XCHG AX,DI
 22 }
functionExit3:
 MOV SP,BP
 POP BP
returnLabel3:
 RET
_float_funct ENDP
prog_parmshrt ENDS

int shortened to
char (offset
points to least
significant byte
of parameter.)

double shortened to float.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

82

HPB1493-19303 8086 C Cross Compiler A.04.01 protypes.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: large
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "protypes"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_protypes SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(prog_protypes)
 1 main()
 2 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,6
%SET(S_c,-6)
%SET(S_f,-4)
 3 char c, char_funct(char);
 4 float f, float_funct(float);
 5
 6 char_funct(c);
 MOV AL,SS:BYTE PTR [BP+%S_c+0]
 PUSH AX
 CALL FAR PTR _char_funct
 POP CX
 7 float_funct(f);
 LES DI,SS:DWORD PTR [BP+%S_f+0]
 PUSH ES
 PUSH DI
 CALL FAR PTR _float_funct
 ADD SP,4
 8 }
functionExit1:
 MOV SP,BP
 POP BP
returnLabel1:
 RET
_main ENDP
 9
 10 char char_funct(
 11 char chr)

Figure 4-5. Function Prototype Parameter Passing

char no longer
widened to int .

float no longer
widened to double.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

83

 12 {
 PUBLIC _char_funct
 ASSUME CS:%CodeSegment,DS:NOTHING
_char_funct PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
%SET(S_chr,6)
 13 chr = ’A’;
 MOV SS:BYTE PTR [BP+%S_chr+0],65
 14 return(chr);
 MOV AL,65
 15 }
functionExit2:
 POP BP
returnLabel2:
 RET
_char_funct ENDP
 16
 17 float float_funct(
 18 float flt)
 19 {
 PUBLIC _float_funct
 ASSUME CS:%CodeSegment,DS:NOTHING
_float_funct PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
%SET(S_flt,6)
 20 flt = 1.0;
 MOV SS:WORD PTR [BP+%S_flt+0],00H
 MOV SS:WORD PTR [BP+%S_flt+0+2],03F80H
 21 return(flt);
 LES DI,SS:DWORD PTR [BP+%S_flt+0]
 MOV DX,ES
 XCHG AX,DI
 22 }
functionExit3:
 POP BP
returnLabel3:
 RET
_float_funct ENDP
prog_protypes ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 4-5. Function Prototype Parameters (Cont’d)

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

84

Accessing Locals

The last local (automatic) variable declared appears first on the stack. Each
local variable’s assembly symbol name is SET to that variable’s offset from the
frame pointer. For example, if "r" is the first local declared, and there are 20
bytes of local variables, then the compiler generates the following line in the
assembly:

 %SET(S_r,-20)

Local variables are accessed using the symbol name relative to BP. Notice that
when referencing a local (automatic) variable, a percent sign (%) must
precede the variable name. For example:

 MOV SS:WORD PTR[BP+%S_r+0],DX

Using the Stack for Temporary Storage

Code generated by the function’s body may or may not use the stack for
temporary storage of intermediate results. This temporary storage size is
dynamic through the function, but has all been removed by the time the
function exit code is executed.

Function Results

Function return values of one, two, three, or four bytes are returned in
working registers AL, AX, DL-AX, or DX-AX respectively. Results greater in
size are returned indirectly through a "result address" pointer pushed by the
calling routine. This pointer may point to a static memory location, an
automatic variable, or temporary space on the stack.

Function Exit

At function exit, if the 8087 state was saved, it is restored. If the register
variable (SI) has been buffered it is popped. If the data segment register (DS)
has been buffered and altered, it is popped. And finally, if there is a stack
frame, it is removed by adjusting the stack pointer past the automatics (if any)
and popping the old frame pointer back into BP. The function return itself
pops the return address. The calling routine is responsible for incrementing

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

85

the stack pointer, popping the passed parameters, and, if necessary, removing
the space reserved for structure function results. Function exit behavior may
be modified by using the pragmas described in this chapter.

Chapter 4: Compiler Generated Assembly Code
Stack Frame Management

86

Register Usage

Note This section applies only to C function calls. Run-time libraries invoked in
compiler-generated code may use other conventions understood by the calling
code. (See the "Run-Time Library Description" chapter.)

For the small memory and medium models, registers AX, BX, CX, DX, and
DI are reserved as working registers for use in holding intermediate values of
calculations. For the large and compact memory models, the working registers
include those registers used for the small memory model and additionally
register ES. Function return values of one, two, three, or four bytes are
returned in working registers AL, AX, DL-AX, or DX-AX respectively.
Larger types are returned on the stack. Registers BP and SP are the frame
pointer and stack pointers.

For all memory models, the compiler will use the lower byte of registers AX,
BX, CX, and DX (registers AL, BL, CL, and DL) to hold chars. The compiler
also pairs up word registers in multiple combinations to create pseudo 32-bit
registers for holding longs, floats, and additionally, pointers when large or
compact memory model is in effect. For the small and medium memory
model, these pseudo registers are in MSW-LSW order: DX-AX, AX-BX,
CX-BX, DX-BX, AX-DI, CX-DI, and DX-DI. If the "byte align data"
compiler option is used, the register pair DL-AX is used for 24-bit data. The
large and compact memory models include those pseudo registers used by the
small memory model as well as ES-BX and ES-DI. All four memory models
also include a 64-bit pseudo register CX-BX-DX-AX.

Register Variable SI

Register SI is allocated by the compiler for use as a register variable. For the
small and medium memory model this register variable may be either an
integer or a pointer; for the large and compact memory model, it can only be
an integer because a pointer will not fit.

Chapter 4: Compiler Generated Assembly Code
Register Usage

87

Using the priorities listed below, the compiler allocates one of the following
types of objects to register SI:

1 The first variable (parameter or local) declared with register storage class.

2 A local non-static or function variable, or the address of a static variable,
according to frequency of occurrence of the variable’s name in the
function.

Specific use of the auto storage class prevents a local variable from becoming a
register variable.

To better understand the allocation scheme, consider the following example.
Suppose a local non-static variable appears just once in the function body. A
parameter appears twice in the function body. Which gets the register? The
local variable does because the parameter, which appears less than three times,
has not "qualified" for consideration for frequency of occurrence.

Now let us suppose that the parameter appears n times where n is three or
greater. Suppose the local non-static variable appears n–1 times. Which gets
the register? The parameter because it has "qualified" for consideration and
has a greater number of occurrences.

Passing Data

For C functions, no registers are used to explicitly pass data to a called
function. Data is passed implicitly by using segment registers (according to
the memory model) to maintain segment bases across a call boundary. The
following registers are used to explicitly pass data back to the caller: AL for
8-bit data, AX for 16-bit data, DL-AX for 24-bit data, and the DX-AX pair for
32-bit data. All other return data is passed back via the stack. No other
registers are used explicitly for passing data back to the caller.

The following registers must not be corrupted by a called routine (that is, the
called routine must return with the same value sent by the caller):

• CS, DS, and SS segment registers for all four models.

• ES segment register for the small and medium memory model.

• SP, BP, and SI registers for all four memory models.

The compiler makes the following assumptions about segment registers, which
affect whether a register will be reloaded or assumed to contain the needed
value:

Chapter 4: Compiler Generated Assembly Code
Register Usage

88

• CS does not change for the small and compact memory model.

• DS, SS, and ES contain the same value and do not change for the small
and medium memory model.

• SS does not change for all four models.

8087 Registers

When using the "generate code for the 8087" option the compiler will use 8087
registers ST(0), ST(1), and ST(7) as working registers. The remaining five
8087 registers ST(2) through ST(6) are reserved for float and double register
variables.

At code startup (crt0 or crt1) the 8087 is reset and its control word initialized.
The 8087 NPX stack pointer (STP) is initialized to 0. STP can be from 0 to 7
and determines which 8087 hardware register is actually at "top of stack".
Normally the compiler operates with STP equal to 0. When an object is to be
loaded into the 8087 the compiler may "push" the object onto the 8087 "top of
stack", causing STP to become 7. The compiler will eventually "pop" this
value, with STP returning to 0. This "pushing" and "popping" effectively moves
objects through register ST(7).

Registers ST(0) and ST(1) are general purpose working registers and are
allowed to be either "empty" or contain a number, NaN, etc. Register ST(7) is
a special purpose working register. The compiler expects that ST(7) will be
"empty" except when the compiler is moving data through it. It is imperative
that ST(7) be "empty" following in-line assembly code, or an 8087 "illegal
operation" exception may occur. It is also required that in-line assembly code
end with the 8087 NPX stack pointer (STP) in its original state (normally 0).
In-line assembly code may leave registers ST(0) and ST(1) in any state.

Chapter 4: Compiler Generated Assembly Code
Register Usage

89

Run-Time Error Checking

Specifying the "generate run-time error checking" (-g) option causes the
compiler to generate code for the following types of additional run-time error
checking:

• Dereferences of all NULL pointers and uninitialized automatic pointers
are detected and reported. (Dereferencing is also called indirection; in
other words, it is access to the object to which a pointer points.) This
requires the initialization of automatic pointers at run-time with a value
(–1) indicating they are uninitialized. Note that static variables are not
initialized to the uninitialized pointer value, because the default value for
static variables is zero.

• Array references outside declaration index bounds are detected and
reported.

The "generate run-time error checking" option will override the "optimize" and
"strip symbol table information" options. See the on-line man pages for more
information on the compiler command line options.

Memory Model Mismatch Checking

Because the compiler supports four different memory models it is important
to distinguish code generated using one memory model from that generated
with the other. Program modules compiled with small memory model may not
be linked with modules compiled with large memory model. An attempt to do
so will result in a link-time "unresolved symbol" error with the "memory model
check" symbol.

Run-time library lib routines have different names from one memory model to
the other. Small memory model routines end with "_S", compact memory
model routines end with "_C", medium memory model routines end with "_M",
and large memory model routines end with "_L". This guarantees that the
wrong run-time library can never be accidentally linked to the user’s code.
Many routines can be used by two memory models; thus "_LM" routines can be
used by the large or medium memory model.

Chapter 4: Compiler Generated Assembly Code
Run-Time Error Checking

90

Code from compiled libraries, such as libc and libm, and the user’s C code is
guaranteed to be linkable only with modules compiled with the same memory
model. This memory model checking is accomplished with a "memory model
check" symbol which is different for each memory model. They symbol is
MM_CHECK_S for the small memory model, MM_CHECK_C for compact,
MM_CHECK _M for medium, and MM_CHECK_L for large. The memory
model checking symbol adds only two bytes to the length of a program because
the data word that holds the symbol is placed in a COMMON segment.

Figure 4-6 shows the assembly code which makes an external reference to the
"memory model check" symbol. This symbol is defined by the startup code
(crt0 or crt1) in the environment library (env). Thus, crt0 (or crt1) determines
which memory model is expected to be in effect.

HPB1493-19303 8086 C Cross Compiler A.04.01 mmcheck.c

;
;MKT:@(#) B1493-19303 A.04.01 8086 C CROSS COMPILER 03May95

; Memory Model: large
;
$PAGEWIDTH(230)
$NOPAGING
 NAME "mmcheck"
%DEFINE(MM_CHECK_)(MM_CHECK_L)
%DEFINE(lib)(lib)
%DEFINE(SS)(SS)
%DEFINE(DS)(DS)
%DEFINE(ALIGN)(WORD)
%DEFINE(DALIGN)(WORD)
prog_mmcheck SEGMENT %ALIGN PUBLIC ’CODE’
%DEFINE(CodeSegment)(prog_mmcheck)
 1 main()
 2 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:NOTHING
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 3 }
functionExit1:
returnLabel1:
 RET
_main ENDP
prog_mmcheck ENDS
 EXTRN %MM_CHECK_:BYTE
mm_check SEGMENT BYTE COMMON
 DW OFFSET %MM_CHECK_
mm_check ENDS
 END

Figure 4-6. Memory Model Checking

Chapter 4: Compiler Generated Assembly Code
Memory Model Mismatch Checking

91

Using Assembly Language in the C Source File

The 8086/186 C compiler provides three mechanisms to embed assembly
language instructions. Which one you choose depends on where you want the
assembly language to appear and your purpose for including the assembly
language instructions. The mechanisms are:

• # pragma ASM and # pragma END_ASM

• __asm ("C_string")

• # pragma FUNCTION_ENTRY "C_string",
pragma FUNCTION_EXIT "C_string", and
pragma FUNCTION_RETURN "C_string"

The compiler changes the names of C variables and functions into assembly
language symbols. If you know how the changed symbol names will appear in
the generated assembly code, you may easily use C variables and functions in
your embedded assembly code. (For more information on symbol names, see
the "Symbol Names" section in this chapter.)

When you embed assembly language, all assumptions about working registers
for optimization purposes are forgotten. The register variable (SI), the frame
pointer (BP), and the stack pointer (SP) are not buffered prior to embedded
assembly language sections. You should buffer these registers if they will be
used by your assembly code.

Optimizations do not affect your embedded assembly code.

None of these mechanisms are part of the ANSI standard, so programs which
use embedded assembly language may not be portable to other compilers.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

92

pragma ASM
pragma END_ASM

Syntax:
#pragma ASM
 .
 (assembly language statement(s))
 .
#pragma END_ASM

These two pragmas bracket a portion of inline assembly code. You may use
these pragmas anywhere a C statement or external declaration can occur. Place
the # pragma ASM before the beginning of your embedded assembly code and
place the # pragma END_ASM after the code.

The assembly instructions must conform to the format and syntax required by
the HP B1449 assembler. The C compiler does not check the embedded
assembly instructions for correctness. The compiler simply passes the assembly
language statements, unchanged, to the assembler. You may, however, use the
C preprocessor to alter embedded assembly language instructions.

Example Figures 4-7, 4-8, and 4-9 give examples of using the # pragma ASM/END_ASM
to embed assembly code in a C source file.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

93

main()
{
 printf("Starting interrupt test.\n");
#pragma ASM
 INT 33 ;Interrupt handler is at 00084H.
#pragma END_ASM

 printf("Ending interrupt test.\n");
}

#pragma ASM
interrupt_table SEGMENT AT 8 ;Locate segment at 00080H.
 ORG 4 ;Org to 00084H.
 DD _interrupt_handler
interrupt_table ENDS
#pragma END_ASM

#pragma INTERRUPT
static void interrupt_handler()
{
 printf("An interrupt 33 has occurred.\n");
}

Figure 4-7. # pragma ASM/END_ASM Example 1

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

94

/* Example of embedded assembly language code when using large memory model. */

main()
{
 auto int i1, i2;

 i1 = 1;
 i2 = get_global();

/* Swap i1 and i2 but do it in assembly. */
#pragma ASM
 MOV AX,[BP+%S_i1] ;Percent needed for auto or parameter.
 XCHG AX,[BP+%S_i2]
 MOV [BP+%S_i1],AX
#pragma END_ASM

 printf("i1 = %d\ni2 = %d\n", i1, i2);
}

#pragma SEGMENT DATA=my_data
int global_var = 1234;
#pragma SEGMENT UNDO

int get_global()

{
 register int reg_var; /* reg_var is held in register SI. */

#pragma ASM
 PUSH DS ;Save current data segment.
 MOV AX,SEG _global_var
 MOV DS,AX
 MOV SI,DS:WORD PTR _global_var ;Put it in reg_var.
 POP DS ;Restore data segment
#pragma END_ASM

 return(reg_var);
}

Figure 4-8. # pragma ASM/END_ASM Example 2

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

95

int *p;
int i;

main()
{
 p = &i; /* Get address of i. */
 i++; /* Increment i. */
 printf("Using C: p = %p, i = %d\n",p,i);

 /* The following lines of assembly do the same thing as the lines */
 /* "p = &i;" and "i++;" in C. It illustrates the GROUP override */
 /* requirements when embedding in-line assembly for small memory */
 /* model. The compiler defines both %DS and %GRP to be the group */
 /* name "data_const" when using small memory model. The macros */
 /* could be replaced with "data_const" directly in this source but */
 /* this could mean incompatibility with future releases of the */
 /* compiler. For large memory model %DS is defined to be just */
 /* "DS"; %GRP is not defined. Because %DS is available for both */
 /* memory models it can be used to write assembly code that will */
 /* work for both small and large memory models. Note the "INC..." */
 /* line of assembly. */

 #pragma ASM
 #ifdef __SMALL_MODEL/* SMALL memory model */
 MOV %DS:WORD PTR _p,OFFSET %GRP:_i
 #else/* LARGE memory model */
 ;Compiler has set up DS register to access p and i DS-relative.
 MOV DS:WORD PTR _p,OFFSET _i
 MOV DS:WORD PTR _p[2],SEG _i
 #endif
 INC %DS:WORD PTR _i;For both small and large model.
 #pragma END_ASM

 printf("Using assembly: p = %p, i = %d\n",p,i);
}

Figure 4-9. # pragma ASM/END_ASM Example 3

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

96

__asm ("C_string")

Syntax:
__asm ("C_string")

The quotes are part of the C_string argument and the two preceding
underscores are required to meet ANSI name space requirements.

The __asm function is another way to embed assembly code. It differs from the
pragma ASM/END_ASM pair in two ways:

• # pragma ASM/END_ASM brackets a section of inline assembly code. In
contrast, the assembly language instructions are contained in a "C_string"
argument to the __asm function.

• # pragma ASM/END_ASM may appear either inside or outside of a
function body. Because __asm is syntactically a function call, it may only
appear inside a function body just as any other function call must.

The __asm function has some advantages over the # pragma ASM/END_ASM
mechanism. First, this function can be part of a macro definition which means
you may define a macro that contains embedded assembly language. The
pragma ASM/END_ASM pair cannot be used to do this. Second, for single
assembly instructions, the __asm function is more expedient because it
requires just the function call on a single line.

The "C_string" argument is a character string containing one or more lines of
assembly code. (The quotes are part of the argument.) It must contain white
space so that when the string is output to the generated assembly code, it will
conform to the format and syntax required by the HP B1449 Assembler. The C
compiler does not check the C_string for correctness. The compiler simply
outputs the string to the assembly code.

Example Figure 4-10 gives an example of using the __asm function.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

97

/* Example of embedded assembly code when using large memory model. */

#define SAVE_DS __asm("\tPUSH DS ;Save current data segment.");
#define RESTORE_DS __asm("\tPOP DS ;Restore data segment");

main()
{
 auto int i1, i2;

 i1 = 1;
 i2 = get_global();

/* Swap i1 and i2 but do it in assembly. */

/* Notice the "\t" white space that must appear in order to conform */
/* to the Assembler requirement that instructions cannot begin in */
/* column 1. Spaces or a tab character would also have worked. */
/* Notice also that there is no need to terminate the string with */
/* a newline. Also, more than one assembly line may be handled */
/* by a single __asm() function by separating the lines with a "\n".*/

 __asm("\tMOV AX,[BP+%S_i1] ;Percent needed for auto or parameter.");
 __asm("\tXCHG AX,[BP+%S_i2]\n\tMOV [BP+%S_i1],AX");

 printf("i1 = %d\ni2 = %d\n", i1, i2);
}

#pragma SEGMENT DATA=my_data
int global_var = 1234;
#pragma SEGMENT UNDO

int get_global()
{
 register int reg_var; /* reg_var is held in register SI. */

/* Notice the use of cpp macros to specify assembly code. */
 SAVE_DS
 __asm("\tMOV AX,SEG _global_var");
 __asm("\tMOV DS,AX");
 __asm("\tMOV SI,DS:WORD PTR _global_var ;Put it in reg_var.");
 RESTORE_DS

 return(reg_var);
}

Figure 4-10. __asm Function Embedded Assembly

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

98

pragma F UNCTION_ENTRY,
pragma F UNCTION_EXIT,
pragma F UNCTION_RETURN

Syntax:
#pragma FUNCTION_ENTRY "C_string"
#pragma FUNCTION_EXIT "C_string"
#pragma FUNCTION_RETURN "C_string"

The third mechanism is # pragma FUNCTION_ENTRY /EXIT /RETURN .
These pragmas are not a pair like # pragma ASM/END_ASM. They may be
used independently of each other or they may be used together.

pragma FUNCTION_ENTRY may be used to insert assembly language
instructions into function entry code. Similarly, # pragma FUNCTION_EXIT
and # pragma FUNCTION_RETURN may be used to insert assembly language
instructions into function exit code. Neither # pragma ASM/END_ASM nor
the __asm function is able to place embedded assembly in the function entry
or exit code. The embedded code is placed as follows:

• # pragma FUNCTION_ENTRY places the embedded assembly code
immediately after the label generated from the function name. Because
the embedded assembly occurs before any function entry code, you can
modify the way a function is entered.

• # pragma FUNCTION_EXIT places the embedded assembly immediately
before the function return label. That is, it follows the function exit code,
but precedes the function return. (Some NOPs may appear between the
embedded assembly code and the return label.) This pragma gives you the
flexibility to control function return and also allows you to perform extra
instructions before function return.

• # pragma FUNCTION_RETURN places the embedded assembly
immediately after the function return label. Use this pragma if you want to
use your own function return code. For example, you might want to trap
to a debugging routine.

Remember, you may use # pragma FUNCTION_ENTRY, FUNCTION_EXIT,
and FUNCTION_RETURN by themselves, or you may use all of them together.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

99

Two limitations apply to these pragmas:

• # pragma FUNCTION_ENTRY, # pragma FUNCTION_EXIT , and
pragma FUNCTION_RETURN may only appear outside of a function
body.

• # pragma FUNCTION_ENTRY, # pragma FUNCTION_EXIT , and
pragma FUNCTION_RETURN must precede the function they are to
affect. They are in effect only for the immediately following function and
no other.

These pragmas take a "C_string" argument. (The quotes are part of the
argument and no parentheses surround the argument.) As with the __asm
function, the "C_string" argument is a character string containing assembly
language instructions. It must contain white space and newlines ("\n") so that
when the string is output to the generated assembly code, it will conform to
the format and syntax required by the HP B1449 assembler. The C compiler
does not check the C_string for correctness. The compiler simply outputs the
string to the assembly code.

Example Figure 4-11 gives an example of using # pragma FUNCTION_EXIT along with
pragma INTERRUPT (discussed in the "Embedded Systems Considerations"
chapter) to cause an interrupt service routine to trap back to the operating
system instead of allowing it to terminate with an IRET instruction as it would
if # pragma INTERRUPT were used alone. When this routine enters its
function exit code, it will do the cleanup of the stack and other chores in
preparation of the IRET. But because the # pragma FUNCTION_EXIT code
causes the routine to trap back to the operating system, it will never execute
the IRET.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

100

#pragma INTERRUPT
#pragma FUNCTION_EXIT "\tINT 2 ;Trap back to operating system."

static void interrupt_handler()
{
 printf("An interrupt 33 has occurred.\n");
}
/* Interrupt routine exits via "INT 2" instead of "IRET". */

Figure 4-11. # pragma FUNCTION_EXIT

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

101

Assembly Language in Macros

To use assembly language in a macro, use the __asm function. The # pragma
mechanism does not work in a macro.

When you write the macro, remember the following suggestions:

• Use __asm, not one of the pragmas.

• Do not use macro parameters in the assemly code. The C preprocessor
does not expand names inside the quotation marks.

• Use spaces and tabs (entered as "\t") to place "white space" in the assembly
code.

• If you need to place more than one line of assembly language in the
macro, either use an __asm statement for each line or place a "\n" between
lines. The C preprocessor will place the entire macro on one line, then
the compiler will change the "\n" to a newline when generating the
assembly code.

• Be careful about changing the values of C variables (side effects) in the
macro. You may wish to include the names of such variables in the name
of the macro.

• You can examine the generated assembly code by compiling with
cc8086 -SL and looking at the .O file. If you need to understand how
the C preprocessor affected the code, use cc8086 -E .

Assembly Language and the Small Memory Model

When writing embedded assembly code in a C source file that is expected to be
compiled using small memory model certain considerations must be made.
For small memory model the compiler places all segments containing data or
constants (data, idata, udata, heap, userstack, and const) into an assembly
language group called data_const. The compiler then accesses objects in the
data_const group "group-relative" instead of "segment-relative". For large
memory model the compiler does "segment-relative" accesses to all data and
constant objects because no segments are in a group. Objects contained in
program segments (functions, for example) are always accessed (or called)
"segment-relative", regardless of the memory model.

Figure 4-7 can be compiled using either memory model. It does not contain
memory model dependent pragmas or assembly code.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

102

Figure 4-8 can be compiled only for large memory model because it does
contain a SEGMENT pragma and also contains memory model dependent
assembly code. If compiled with small memory model the SEGMENT pragma
would simply be warned at and ignored when encountered. However, the
assembly instructions accessing _global_var would not produce functional
code. Specifically, 1) the line "MOV AX,SEG _global_var" would load the AX
register with the segment paragraph number of _global_var instead of the
group paragraph number as it should, and 2) the line "MOV SI,DS:WORD
PTR _global_var" may access _global_var as if it were not contained in a group
and therefore go to the wrong place in memory.

Figure 4-9 demonstrates how to write assembly code that functions correctly
no matter which memory model is used. At the beginning of the assembly file
it produces, the compiler defines an assembly language macro DS to be either
DS for large memory model (nothing needs to be changed), or data_const for
small memory model. Thereafter, %DS: can be used instead of DS: to specify
a "segment-relative" override for large memory model and at the same time a
"group-relative" override for small memory model. For small memory model
only, the compiler also defines another macro GRP to be data_const. This
second macro allows embedded, "small memory model only" assembly code to
reference the group name independently of the group name created by the
compiler. Figure 4-9 shows its use as well.

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

103

Chapter 4: Compiler Generated Assembly Code
Using Assembly Language in the C Source File

104

5

Optimizations

Description of optimizations performed by the compiler.

Chapter 5: Optimizations

105

The 8086/186 C compiler performs many optimizations automatically; there is
also an "optimize" command line option (-O) to cause peephole optimization,
time or space optimization, and other compile-time costly optimizations. This
chapter first describes the optimizations which are always performed; next, it
describes the optimizations which occur as a result of the "optimize" command
line option.

Universal Optimizations

The 8086/186 C compiler automatically performs many optimizations on C
programs. Several of the most notable types of optimizations are listed below
and described in this section.

• Constant Folding.

• Expression Simplification.

• Operation Simplification (involves multiplies, divides, and mods by
powers of two).

• Optimizing Expressions in a Logical Context (involves expressions which
contain logical operators).

• Loop Construct Optimization.

• Switch Statement Optimization.

• Automatic Allocation of Register Variables.

The compiler may do many specific things for each type of optimization. The
descriptions which follow contain examples to illustrate the kinds of things
which are done for each type of optimization; they do not show every specific
optimization performed by the compiler.

Note In the general examples which follow, E represents any expression, C
represents any constant, !0 represents a constant with a non-zero value, and
other operator symbols are their C equivalents.

Chapter 5: Optimizations
Universal Optimizations

106

Constant Folding

Whenever an expression contains operations made on constants, the compiler
combines the constants to form a single constant. By folding constants, the
compiler can eliminate the code which would otherwise be generated to
perform the operations. A general and specific example of constant folding is
shown below.

C1 * C2 - C3 / C4 ⇒ C5

i = 4 * 3 - 10 / 2; ⇒ i = 7;

Chapter 5: Optimizations
Universal Optimizations

107

Constant Folding Across Expressions

The compiler will rearrange integer expressions to fold constants.

(E1 + C1) + (E2 + C2) ⇒ (E1 + E2) + (C1 + C2)

(E1 * C1) * (E2 * C2) ⇒ (E1 * E2) * (C1 * C2)

(E1 + C1) * C2 ⇒ (E1 * C2) + (C1 * C2)

(E1 < < C1) * (E2 * C2) ⇒ (E1 * E2) * ((2C1) * C2)

i = (x * 3 + 1) * 3 + 2 ⇒ i = x * 9 + 5

Maintaining Order of Evaluation

Parentheses force grouping (prevent constant folding) of floating-point
expressions. The unary plus (+) operator may be used to force grouping of
arithmetic expressions. The unary plus operator may not be used to force
grouping of pointer expressions. For example:

i = x+ 4.141 + y+ 2.067 + 3.287; ⇒ i = x + y + 9.495;

i= x+ 4.141 + (y+ 2.067)+ 3.287; ⇒ i = x + + (y + 2.067) + 7.428;

i= x+ 4.141 + + (y+ 2.067)+ 3.287; ⇒ i = x + + (y + 2.067) + 7.428;

Expression Simplification

The compiler will simplify expressions, if possible, by using the basic laws,
identities, and definitions of conditional, logical, bitwise, and arithmetic
operations. Some examples of expressions which get simplified follow.

Conditional:

0 ? E1 : E2 ⇒ E2

!0 ? E1 : E2 ⇒ E1

Chapter 5: Optimizations
Universal Optimizations

108

Logical:

E && 0 ⇒ 0 (unless E has side effects; then E,0)

E | | 0 ⇒ E

E1 && !E2 ⇒ !(!E1 | | E2)

Bitwise:

E & 0 ⇒ 0 (unless E has side effects; then E,0)

E | 0 ⇒ E

E ^ 0 ⇒ E

E < < 0 ⇒ E

Arithmetic:

E + 0 ⇒ E

-E1 - (-E2) ⇒ E2 - E1

E * 0 ⇒ 0 (unless E has side effects; then E,0)

E * 1 ⇒ E

E / -1 ⇒ -E

E % 1 ⇒ 0 (unless E has side effects; then E,0)

Operation Simplification

Multiplications (whether explicit or as a result of scaling an array index),
divisions, and mods of integral types by constants which equal powers of two
can be simplified to bitwise operations which are shorter and faster. Generally:

E * (2C) ⇒ E < < C

E / (2C) ⇒ E > > C

E % (2C) ⇒ E & (2C - 1)

Chapter 5: Optimizations
Universal Optimizations

109

Optimizing Expressions in a Logical Context

When expressions containing logical operators are used in a logical context
(for example, to yield a "true" or "false" in a control flow statement test
expression), the compiler will generate code which evaluates the expression
piece by piece. For example, suppose the test expression for an if statement is
two expressions ANDed together. The compiler generates code which
evaluates the first expression and branches out if it is "false" (if, at run-time,
the first expression is "false", the second expression will not be evaluated). The
compiler also generates code to evaluate the second expression in case the first
is "true". The code generated as a result of this optimization is smaller and
faster. Several "pseudo code" examples of optimizations on expressions in a
logical context are shown below.

if (0) goto label ⇒ (Nothing.)

if (!0) goto label ⇒ goto label

if (E1 | | E2) goto label ⇒ if (E1) goto label

if (E2) goto label

if (E1 && E2) goto label ⇒ if (!E1) goto skip

if (E2) goto label

skip:

Loop Construct Optimization

The compiler places the evaluation of a loop construct’s test expression at the
end of the loop to avoid the execution of a "goto" at each loop iteration. A
"goto" is generated to branch to the test for the first iteration. However, if the
compiler can determine that the loop will execute at least once, the "goto" can
be optimized out. Whenever the test expression becomes "false", execution
simply "falls through".

Chapter 5: Optimizations
Universal Optimizations

110

The loop construct optimization can be generally expressed as follows.

while (E) { statements } ⇒ goto end

beginning:

{ statements }

end: if (E) goto beginning

for (i = 0; i < 10;) ⇒ i = 0

{ statements } beginning:

{ statements }

if (i < 10) goto beginning

Switch Statement Optimization

If there is code associated with at least 25% of the cases in a switch statement,
the compiler will generate a jump table to access the code associated with each
case. If less than 25% of the cases have associated code, the compiler will
generate a hybrid binary/linear search to access the cases. The linear search
can be up to four items long, otherwise a binary test is performed.

Automatic Allocation of Register Variables

Operating on variables which reside in registers is faster and more efficient
than operating on variables in memory. The 8086/186 C compiler will
automatically allocate variables to registers even in the absence of the register
storage class specifier. Note that the presence of the auto storage class
specifier prevents this optimization. For more information on the algorithm
used by the compiler to allocate these variables, see the "Register Usage"
section in the "Compiler Generated Assembly Code" chapter.

String Coalescing

When the compiler finds identical string constants, it stores them at a single
memory location. In the following example, both string1 and string2 will point
to the same memory location containing the string "abcde":

char *string1, *string2;
string1 = "abcde";
string2 = "abcde";

Chapter 5: Optimizations
Universal Optimizations

111

Only string constants allocated by the compiler are coalesced. For example,
the following strings will not be coalesced because the user, rather than the
compiler, is allocating the storage:

char string3[8] = "abcde";
char string4[8] = "abcde";

Note Trying to change the value of a string constant may cause unwanted side
effects.

The compiler treats string literals as constants. Do not attempt to change the
contents of a string which has been defined as a string literal. Be especially
careful if you are using character pointers. For example, the following
statements will change the value of both string1 and string2 to "abXde":

char *string1, *string2;
string1 = "abcde";
string2 = "abcde";

*(string1 + 2) = ’X’;

The compiler will not warn you about this.

Chapter 5: Optimizations
Universal Optimizations

112

 1 struct test {
 2 int a,b,c,d,e,f;
 3 } x, y;
 4
 5 main()
 6 {
 0000 PUBLIC _main
 0000 ASSUME CS:prog_space,DS:data
 0000 _main PROC FAR
 0000
 0000 1E PUSH DS
 0001 B8 00 00 R MOV AX,data
 0004 8E D8 MOV DS,AX
 7 y = x;
 0006 BA 00 00 R MOV DX,SEG _x
 0009 B8 00 00 R MOV AX,OFFSET _x+0
 000C 83 EC 0C SUB SP,12
 000F 96 XCHG AX,SI
 0010 8C DB MOV BX,DS
 0012 8E DA MOV DS,DX
 0014 8B FC MOV DI,SP
 0016 8C D1 MOV CX,SS
 0018 8E C1 MOV ES,CX
 001A B9 06 00 MOV CX,6
 001D FC CLD
 001E F3 A5 REP MOVSW
 0020 8E DB MOV DS,BX
 0022 8B F0 MOV SI,AX
 0024 BA 00 00 R MOV DX,SEG _y
 0027 BF 0C 00 R MOV DI,OFFSET _y+0
 002A 8E C2 MOV ES,DX
 002C B9 06 00 MOV CX,6
 002F FC CLD
 0030 L0:
 0030 58 POP AX
 0031 AB STOSW
 0032 E2 FC LOOP L0
 8 }
--

 1 struct test {
 2 int a,b,c,d,e,f;
 3 } x, y;
 4
 5 main()
 6 {
 0000 PUBLIC _main
 0000 ASSUME CS:prog_time,DS:data
 0000 _main PROC FAR
 0000
 0000 1E PUSH DS
 0001 B8 00 00 R MOV AX,data
 0004 8E D8 MOV DS,AX
 7 y = x;

Figure 5-1. Example of Time vs. Space Optimization

OPTIMIZED FOR SPACE (Default).

OPTIMIZED FOR TIME. (More bytes
used to accomplish structure assignment,

but code executes faster.)

Chapter 5: Optimizations
Universal Optimizations

113

The Optimize Option

The "optimize" command line option (-O) causes the compiler to use a more
exhaustive algorithm in an attempt to generate locally optimal code; it also
causes the compiler to run the peephole assembly code optimizer (unless the
"generate run-time error checking code" option is also specified, in which case
the "optimize" command line option is ignored).

You may find it easier to debug your code if you do not use the "optimize"
option. Optimizations may make it difficult to follow the program flow. After
the code is executing properly, use optimization to improve execution speed or
to shrink the size of the executable code.

 0006 BA 00 00 R MOV DX,SEG _x
 0009 B8 00 00 R MOV AX,OFFSET _x+0
 000C 83 EC 0C SUB SP,12
 000F 96 XCHG AX,SI
 0010 8C DB MOV BX,DS
 0012 8E DA MOV DS,DX
 0014 8B FC MOV DI,SP
 0016 8C D1 MOV CX,SS
 0018 8E C1 MOV ES,CX
 001A B9 06 00 MOV CX,6
 001D FC CLD
 001E F3 A5 REP MOVSW
 0020 8E DB MOV DS,BX
 0022 8B F0 MOV SI,AX
 0024 BA 00 00 R MOV DX,SEG _y
 0027 BF 0C 00 R MOV DI,OFFSET _y+0
 002A 8E C2 MOV ES,DX
 002C 8B F4 MOV SI,SP
 002E 8C DA MOV DX,DS
 0030 8C D1 MOV CX,SS
 0032 8E D9 MOV DS,CX
 0034 B9 06 00 MOV CX,6
 0037 FC CLD
 0038 F3 A5 REP MOVSW
 003A 83 C4 0C ADD SP,12
 003D 8E DA MOV DS,DX
 003F 8B F0 MOV SI,AX
 8 }

Figure 5-1. Example of Time vs. Space Optimization

Chapter 5: Optimizations
The Optimize Option

114

Time vs. Space Optimization

By default, the -O option causes the generated code to be optimized for space.
That is, the compiler tries to generate as few bytes of code as possible (even,
occasionally, at the expense of execution speed). However, if optimizing for
time is more important (in other words, the generated code should execute as
fast as possible), you can append the "time" option to the "optimize" option
(-OT). Optimizing for time will cause the compiler to use more space if
machine cycles can be saved. The listings in figure 5-1 give an example of a
time vs. space trade-off.

Maintaining Debug Code

The compiler normally generates code which makes the resulting programs
easier to debug with an HP emulator or simulator. This debug code includes:

1 Generation of no-operation (NOP) instructions preceding all labels. This
provides unique addresses for all labels.

2 Buffering of the frame pointer on the stack at function entry and
restoration of the frame pointer at function exit, even when this is known
to be unnecessary.

When the "optimize" option is specified, this debug code is optimized out.
However, if you wish the compiler to generate debug code and perform the
other optimizations, use the "generate debug code" option with the "optimize"
option. See the on-line man pages for more information on the compiler
command line options.

Chapter 5: Optimizations
The Optimize Option

115

Peephole Optimization

The peephole optimizer, which is run when the "optimize" command line
option is specified, adds another pass to the compilation process. The
peephole optimizer examines the assembly language instructions generated by
the compiler and performs the optimizations described in the following
subsections.

Branch (Jump) Shortening

Perhaps the most common peephole optimization is branch shortening.
Neither the compiler (by itself) nor the assembler is capable of determining
the distance of a forward branch. Consequently, NEAR jumps with 16-bit
displacements are generated by default.

The peephole optimizer, on the other hand, is capable of determining the
distance of forward branches, and it will replace NEAR jump instructions with
SHORT jump instructions wherever possible.

Tail Merging

A tail is a sequence of instructions before an unconditional jump.

When two blocks of code end in identical branches, the peephole optimizer
checks if the blocks have the same tail statements. If the blocks do have
identical tail statements, the peephole optimizer will replace the first tail with
a "goto" the second. For example:

. . . ⇒ . . .

{ tail 1 } ⇒ goto sametail

goto label ⇒ . . .

. . . ⇒ sametail:

{ tail 2 } (Same as tail 1.) ⇒ { tail 2}

goto label ⇒ goto label

. . . ⇒ . . .

label: ⇒ label:

Tail merging can take place wherever tails are found, including if-then-else
and switch statements. The compiler does not limit the size of tails that can be
merged.

Chapter 5: Optimizations
The Optimize Option

116

If tail merging would cause an additional branch to be executed, it is not
performed when "optimize for time" is specified.

Redundant Register Load Elimination

When the peephole optimizer detects that a register is being loaded with a
value it already contains, the second load is eliminated. (Compare to
"Strength Reduction" below.)

MOV BX,DS: WORD PTR__i[0]

. . .

MOV BX,DS: WORD PTR__i[0] ; This instruction is removed.

Redundant Jump Elimination

When one jump occurs immediately after another jump, the two jumps are
combined to form a single jump. Note that this optimization is performed on
the generated assembly code, but a C code equivalent example would be the
following:

if (x = = y) goto aaa; ⇒ if (x = = y) goto bbb;

.

aaa:goto bbb aaa: goto bbb;

.

bbb: bbb:

Unreachable Code Elimination

As compilers normally generate code, they can produce assembly instructions
which will never get executed. The peephole optimizer can recognize
unreachable assembly instructions and remove them.

Strength Reduction

Strength reduction refers to optimizations which can be made due to the
optimizer’s ability to remember the contents of registers. For example, the
compiler may generate code to move a variable into one register, and later
generate code to move the same variable into another register. The peephole
optimizer can replace the second move with a move from the first register to
the second (which is shorter and faster). One to two bytes will be saved by the
example strength reduction optimization shown below.

Chapter 5: Optimizations
The Optimize Option

117

MOV BX,DS: WORD PTR__i[0] ⇒ MOV BX,DS: WORD PTR__i[0]

MOV AX,DS: WORD PTR__i[0] ⇒ MOV AX,BX

Redundant Scale Calculat ion Elimination

The array index in C must be scaled to its corresponding value in assembly
code. For example: In an array of integers, the index value must be doubled.
The peephole optimizer removes any redundant scaling. In the code shown
below, the second scaling calculation would be removed:

MOV BX,DS: WORD PTR__i[0]

SHL BX,1

.

.

.

MOV BX,DS: WORD PTR__i[0]

SHL BX,1

Before the second scaling calculation, the optimizer verifies that the contents
of BX and _i have not been changed between the two scaling operations.

Effect of volatile Data on Peephole Optimizations

Any function that includes a volatile declaration or which follows any volatile
declaration in a file will not have "data motion" optimizations performed on it.
Data motion optimizations include redundant load elimination, strength
reduction optimizations, and redundant scale calculation elimination.

These optimizations account for considerably less than half of the space
savings and roughly half of the speed savings that the peephole optimizer is
capable of.

Branch shortening and branch structure simplification optimizations (tail
merging, redundant jump elimination, and unreachable code elimination) are
unaffected by volatile data.

Function Entry and Exit

The -O option also affects function entry and exit code. Whenever a called
function has no parameters, no automatics, and returns a result whose size is

Chapter 5: Optimizations
The Optimize Option

118

four bytes or less, the instructions which are used to push the old stack frame
pointer at function entry and restore the frame pointer on exit are not
generated.

What to do when optimization causes problems

Occasionally, the peephole optimizer can make incorrect assumptions,
resulting in code that does not execute properly. Use the -Wo,-m
command-line option to eliminate some of the risky optimizations (especially
common sub-expression optimizations). If the code still doesn’t execute
properly, you may need to avoid the -O optimizations.

Chapter 5: Optimizations
The Optimize Option

119

Chapter 5: Optimizations
The Optimize Option

120

6

Embedded Systems Considerations

Issues to consider when using the 8086/186 C compiler to generate code for
your target system.

Chapter 6: Embedded Systems Considerations

121

Execution Environments

The compiler cannot know the design of your target system. Therefore, all
high-level functions and library routines depend on environment-dependent
libraries to supply low-level hooks into the target execution environment.

The environment-dependent routines which are supplied with the compiler
allow programs produced by the compiler to execute in an emulator. The
supplied routines also support the debugger/simulator. Use these files as
examples to create your own environment-dependent routines. We expect that
you will need to modify the supplied files. You must use your own knowledge
of your target system to decide what changes must be made.

Chapter 6: Embedded Systems Considerations
Execution Environments

122

Common problems when compiling for an
emulator

If you plan to execute your program in an emulator environment, follow these
guidelines:

• Copy emulation configuration files (*.EA) from the environment directory
to a local directory prior to using.

• Use # pragma SEGMENT DATA= idata to specify the segment for
"initialized" data external declarations when using the -d option (separate
initialized and uninitialized data).

Loading supplied emulation configuration files

Symptoms: In the emulator, one of the two supplied emulation
configuration files is loaded from the directory
/usr/hp64000/env/hp< emul_env> and the following error message appears:

ERROR: Could not create
 /usr/hp64000/env/hp <emul_env> /ioconfig.EB

Description: There are two forms of emulator configuration files. The first
form (.EA), which is supplied, is an ASCII file. The second form (.EB), which
is created from the ASCII file by the emulator, is a binary file. This binary file
is not portable between versions of HP 64000 emulators and therefore not
supplied.

When loading a configuration file, the emulator attempts to create the binary
version of the file if one does not already exist. This binary file is created in
the same directory as the ASCII file. The directory which contains the
supplied configuration files is not meant to be modified and is write-protected.
In order to use the supplied configuration file, it must first be copied to a local
(writable) directory.

Using the "-d" option

Symptoms: During compilation, cc8086 displays the following warning:

warning- Extern ’variable_name’ assumed to be in UDATA.

Chapter 6: Embedded Systems Considerations
Common problems when compiling for an emulator

123

Description: The "Separate Initialized and Uninitialized Data" option (-d)
causes the compiler to place static variable definitions with initializers in
segment idata by default, and static variable definitions without initializers in
segment udata by default. When an external declaration of a static variable is
encountered the compiler assumes the external variable is uninitialized, places
the external declaration in segment udata, and issues a warning regarding this
assumption. It is very important that if the external is instead an initialized
variable that this warning be heeded and the external declaration placed in the
proper segment (idata). To do this, place a # pragma SEGMENT
DATA= idata directive before the initialized variable’s external declaration
and a # pragma SEGMENT UNDO following it. The second pragma merely
"undoes" the first pragma. See the "Embedded Systems" chapter for more
details on using these pragmas.

Using embedded assembly code with small memory model

Description: For the small memory model, the compiler places all data
objects in an assembly language group called data_const. When writing
embedded assembly code, group-relative accesses MUST be performed instead
of segment-relative accesses to static variables and constants. Using
segment-relative accesses can cause non-functional code to be produced.

Memory Models

Memory models determine how both segments are to be mapped into memory
and the size of pointers. The 8086/186 C compiler provides four memory
models, small, compact, medium, and large. The small memory model uses
fixed segments and 16-bit pointers. The compact memory model provides one
or more data segments and one code segment. The medium memory model
uses one or more code segments and one data segment. The large memory
model provides a flexible number of non-fixed segments and uses 32-bit
pointers. Throughout a program, a single memory model must be used; code
modules compiled with different memory models cannot be linked together.

Chapter 6: Embedded Systems Considerations
Memory Models

124

Small memory model

The small memory model has two physical segments which never change. One
is a code segment (CS register does not change). The other is a combined
microprocessor stack and DS-relative static data group called data_const. (DS,
SS, and ES registers are identical and do not change.) This group contains all
the data, stack, heap, and constant type segments. This group is placed into a
single physical segment at link time. Data and constants are accessed
group-relative.

There are no ES-relative static data segments in this model. Both the function
and data pointer sizes are 16 bits. Pointer subtraction between function and
data pointers will yield unknown results.

Segment groups and classes are discussed in greater detail in your linker
manual.

Large memory model

The large memory model may have one or more code segments (CS register
may change), one independent stack segment (SS register does not change),
zero or one DS-relative static data segment for each C function (DS register
may change), and zero or more ES-relative static data segments (ES register
may change). Both function and data pointer sizes are 32 bits.

Except for comparisons between two pointers, pointer arithmetic is performed
only on the lower 16 bits (the OFFSET part of the SEGMENT:OFFSET
address). Operations to compare two pointers are performed using the
complete logical address; no translation to a physical address is done.

Functions are considered to be FAR and are called as such (except when a
static function is encountered and the user has specified the compiler option
which says that static functions are to be NEAR).

The last defined static data segment preceding a function is accessed
DS-relative. (See # pragma SEGMENT and # pragma DS.) All other static
data segments are accessed ES-relative within that function.

Note Only one static data segment can be DS-relative per function, but that
segment can be different for each function.

Chapter 6: Embedded Systems Considerations
Memory Models

125

Medium Memory Model

The medium memory model may have one or more code segments (the CS
register may change) and one data segment (the DS, SS, and ES registers are
identical and do not change). The function pointer size is 32 bits, and the data
pointer size is 16 bits.

Compact Memory Model

The compact memory model has one fixed code segment (the CS register does
not change) and one or more data segments (the DS, SS, and ES registers are
not identical and may change). The function pointer size is 16 bits, and the
data pointer size is 32 bits.

Chapter 6: Embedded Systems Considerations
Memory Models

126

Segment Names

Segment names are used by the linker/loader to locate program code and data
at the addresses appropriate for the target system environment. Code
generated by the compiler is placed in relocatable program segments as
follows:

• Executable code is placed in the PROG segment (by default, named either
prog_basename when using the largeor medium memory model, or prog
when using the small or compact memory model).

• Static variables are placed in the DATA segment (named data by default).

• Constants and string literals are placed in the CONST segment (named
const by default).

When declaring external data, it is important that the declaration be placed in
the segment where the data actually resides. If this is not done, a run-time
error may occur when the wrong segment base is used for accessing an external.

All code generated by the compiler is placed in segments with the class name
"CODE". Thus the complete name of the default PROG segment is
prog_basename/CODE.

If there are multiple declarations for the same symbol within a single file, the
compiler checks that the segment in which the symbol is declared is the same
in all cases.

Segment name defaults

For large and medium memory model, the compiler allows more than one user
program segment. To facilitate easy use of the compiler when user code
exceeds 64K bytes (the maximum that can be placed in a single segment), the
default PROG segment name is based, in part, on the C source filename. Thus,
with large and medium memory model the default PROG segment name is of
the form prog_basename where basename is the C source file name with the
".c" suffix removed and any illegal characters (for a segment name) changed to
underscore (_).

Chapter 6: Embedded Systems Considerations
Segment Names

127

When using the small and compact memory model, the PROG segment name
is always prog. Since the SEGMENT pragma is not valid for small memory
model (only one user program segment is allowed) the user cannot change this
segment name.

The DATA segment name defaults to data. When the "separate initialized
data and uninitialized data" option is used, DATA is replaced with IDATA
and UDATA which default respectively to idata and udata.

The CONST segment name defaults to const.

Like the PROG segment name, DATA, IDATA, UDATA, and CONST
segment names cannot be altered from their defaults when using small and
compact memory model. When using large and medium memory model, these
segment names can be changed with a SEGMENT pragma in the C source.

pragma SEGMENT

Syntax:

#pragma SEGMENT [PROG=pname] [DATA= dname] [CONST= cname]

#pragma SEGMENT [PROG=address] [DATA= address] [CONST= address]

#pragma SEGMENT [PROG=pname] [UDATA= udname] [IDATA= idname] [CONST= cname]

#pragma SEGMENT [PROG=address] [UDATA= address] [IDATA= address] [CONST= address]

#pragma SEGMENT UNDO

Note This pragma is only valid for the large, medium, and compact memory model.
It is warned and ignored if it is used with the small memory model.

Description

The first form of this pragma causes the program, static data, and static
constant information to be placed in segments named pname, dname, and
cname respectively until the next SEGMENT pragma is encountered. The
linker also expects to find external data in these named segments.

In the second form, 20-bit physical addresses are given in place of the segment
names causing the subsequent information to be ORG’d starting at the given
address. The segment name associated with an ORG’d segment is of the form
orghexaddress, where hexaddress is the physical address of the segment. For
example, segment org00012345H is located at 0x12345.

Chapter 6: Embedded Systems Considerations
Segment Names

128

When absolute addresses are used, all information (program, data, or
constant) to be ORG’d must immediately follow the # pragma SEGMENT
line and come prior to any information (program, data, or constant) which is
output in another named or ORG’d segment. For example:

 #pragma SEGMENT DATA=0x1000
 int i, j, k;
 const int l;
 int m, n, o;

will cause an error since constant integer "l" is output in another segment
(const) and since integers "m, n, o" also need to be ORG’d as they are data.
Corrected this becomes:

 #pragma SEGMENT DATA=0x1000
 int i, j, k;
 int m, n, o;
 const int l;

Other cases that cause information to be put out in new segments include
extern definitions and string literals.

The third and fourth forms listed are the same as the first two forms, but with
IDATA and UDATA substituted for DATA. These forms make sense only in
the presence of the "separate initialized and uninitialized data" option that
forces separation of explicitly initialized data from implicitly initialized data
(or uninitialized data with the "uninitialized data" option). Non-constant,
static data items explicitly initialized by means of a C initializer go into the
IDATA named segment. Non-constant, static data items, not explicitly
initialized by means of a C initializer, go into the UDATA named segment.

Chapter 6: Embedded Systems Considerations
Segment Names

129

The absolute addresses and segment names may be intermixed for the three
different information types (program, static data, static constant) in the same
SEGMENT pragma. If the target segment is not specified for one of the
information types, then it remains unchanged.

In the absence of a DS pragma, the DATA segment (or UDATA segment
when using "separate initialized and uninitialized data" option) in effect at
function entry is the default segment for DS-relative data accesses. (See below
for information on the DS pragma.)

The last form, # pragma SEGMENT UNDO, "undoes" the effect of the
immediately preceding SEGMENT directive. That is, it restores the name (or
address) of any segment renamed (or ORG’d) in the last directive. This form is
useful at the end of # include files to restore the segment environment which
existed prior to the # include file. (Include files must contain SEGMENT
directives to define the segments that externs are in.)

This compiler places all code in the class ’CODE’. No other class names are
supported.

The SEGMENT pragma must be placed outside a function body.

Note # pragma SEGMENT UNDO is implemented by a one-level-deep stack. That
is, only the most recent SEGMENT pragma may be "undone" or, said another
way, two # pragma SEGMENT UNDOs in a row will not undo two SEGMENT
pragmas. This is of particular importance when an include file further includes
other files. Since include files will generally surround their extern declarations
with a SEGMENT-SEGMENT UNDO pair, care must be taken not to put an
include inside of this pair as it will result logically in two "UNDO"s in a row.

Chapter 6: Embedded Systems Considerations
Segment Names

130

pragma DS

Syntax:

#pragma DS segmentName

Note This pragma is only valid for the large and compact memory model. It is
warned and ignored if it is used with the small and medium memory model.

Description

This pragma specifies that all subsequent functions should arrange to access
any data in segment segmentName, rather than the default of the current
DATA (or UDATA) segment name, using DS-relative addressing. (See the
SEGMENT pragma regarding default segment names.) If subsequent functions
access any static data in segment segmentName, their preambles load DS with
segmentName and use it in accesses. The effect of this is that once a DS
pragma is used, the DS-relative segment name is fixed until another DS
pragma is encountered.

RAM and ROM Considerations

This section addresses special considerations of loading your programs into
RAM and ROM environments.

The C language specifies that, without explicit initialization, static (C static or
extern) variables will be initialized to zero. Declarator initializers allow you to
specify initial values other than zero. The following subsections discuss how
these variables are initialized in different environments.

No initialized RAM data

There is an "uninitialized data" option for the compiler which prevents
initialization to zero of all static variables which have no explicit initialization.
Normally, these static variables are specified by the C language to be
initialized to zero.

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

131

The "uninitialized data" option also causes warning messages to be printed
whenever static initializers are used in non-constant declarations. Observe that
this option does not prevent the generation of "initialized data" when the user
explicitly initializes a static (C static or extern) variable. By using this option
you can verify that your program contains no variables requiring initialization.

The "uninitialized data" option cannot check for the use of a static variable
which has not been assigned a value (although the compiler generates
warnings occasionally), so make sure your programs do not assume an
initialized value.

RAM data initialized from mass storage

Programs executed in operating systems, in emulation environments, or in
simulation environments have a "load time" where initialization can occur.
The initial values, or default values of zero, for static variables are therefore
written to RAM at load time.

To facilitate optimal load time initialization of static data, a command line
option has been provided to separate explicitly initialized data from
uninitialized data (or data initialized to zero by default) into different named
segments. By default, these segments are named idata and udata, but these
names can be changed by using # pragma SEGMENT (see above).

The value of this "separate initialized and uninitialized data" option is that it
allows the loader to load initialized static data contiguously into RAM from
the idata segment. Also, locations in the udata segment can be set to zero in
an efficient, contiguous manner, if uninitialized data is to be given default
initialization.

The use of the "separate initialized from uninitialized" option together with
the "uninitialized data" option (described above) supports emulation of an
environment with a load time (for initializing explicitly initialized static data)
which does not initialize uninitialized data to zero. When used together, the
compiler does not warn on explicit initializations of non-constant static data,
but places such data in segment idata (by default). Static data which is not
explicitly initialized is reserved space in segment udata (by default), but is not
initialized to zero at emulation/simulation load time.

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

132

RAM data initialized from ROM

Unlike environments with mass storage, such as in operating systems or
emulators, embedded environments have no "load time" and therefore cannot
have load time initialization. As an example, when a target system is powered
up, the contents of RAM data locations are not defined. However, the C
language allows for a "prior to execution" initialization of static variables. To
accomplish this initialization, the program’s start-up code (crt0 or crt1) can
invoke a run time routine (_initdata()) to copy initial value data from ROM to
RAM for these variables. The "initial value data" ROM tables which
_initdata() reads are placed in a special series of segments. These segments are
named ??DATA1, ??DATA2, etc. in segment class ??INIT. The segment class is
used when referencing the segments in the linker command file. The number
of segments actually used depends on how much space is needed for the tables.

The default linker command files which are shipped with the compiler are
configured such that the "initial value data" tables are not constructed and the
run time initialization of static variables is not performed. Only minor
modification of the linker command file is needed for the tables to be built by
the linker and the _initdata() routine to be called from crt0 (or crt1).

Where to load constants

Symbols declared with the const type modifier are considered to be ROM
locations and are initialized by definition (small memory model differs in this
regard, see the next subsection for more detail). For RAM/ROM embedded
systems, both program and constants will ultimately reside in ROM and
therefore the default segments prog and const contain ROMable information.
In contrast, segments which hold program variables are not ROMable, but
instead must be placed in RAM.

RAM and ROM for small memory model

With the small memory model, constants will be placed in a segment named
const, and static data will be placed in a segment named data (idata or udata if
the "separate initialized and uninitialized data" option is on). These four
segments (const, data, idata, udata) plus the stack and heap segments
(userstack, heap) are placed by the compiler in a group named data_const.
The total size of this group, after linking, must be no more than 64K bytes; all
segments in the group are linked to become a single physical segment.
Therefore, although it is possible to position the const segment to be placed in

Chapter 6: Embedded Systems Considerations
RAM and ROM Considerations

133

ROM, there must be RAM nearby in the address space to hold the other
non-constant segments in the group. If the embedded environment is such that
RAM and ROM are are too distant (size of data_const would become greater
than 64K bytes) then segment const must be placed in RAM and initialized at
either load time, if it exists, or at run time. Initialization of constants in RAM
is done identically to that for "initialized data"; the assembly code produced by
the compiler for allocating a constant is the same as that for allocating an
"initialized data" variable.

In summary, for small memory model, constants can be placed in ROM if
there is RAM nearby to hold data. Otherwise constants must be placed in
RAM, along with the data, and then initialized at either load time (emulator,
simulator, or operating system environment) or at run time (embedded
environment).

Placement of External Declarations

The compiler expects that all external data or constant declarations be
explicitly placed in the same named segment in which the data or constant is
defined (where storage is allocated). For example, if a static variable int x is
defined in one file to be in DATA segment my_data1, then any extern int x
declaration MUST be placed in segment my_data1. Failure to place external
delcarations in their correct segments may result in non-functional code. The
compiler uses this segment information to determine if it can or cannot
perform a DS-relative access on a given variable or constant.

With small memory model, because the segment names are predefined and not
alterable by the user, externals are handled properly without the use of
SEGMENT pragmas.

Care must be taken when declaring external, initialized data when the
"separate initialized and uninitialized data" option is in effect under large
memory model. With this option in effect, initialized data definitions will be
placed in segment idata by default (no SEGMENT pragma). However, with
this same option, all external data declarations will be placed in segment udata
by default. The compiler cannot know whether an external variable is
initialized or uninitialized and therefore assumes it to be uninitialized and
chooses the UDATA default segment name (udata). The compiler warns

Chapter 6: Embedded Systems Considerations
Placement of External Declarations

134

when it makes this assumption. But because this assumption is wrong
(external initialized variables are really in idata), incorrect code will result.

It is imperative that when using the "separate initialized and uninitialized
data" option all external declarations of initialized data be placed in the
correct segment as shown in the following example. Note that DATA must be
used, instead of IDATA or UDATA, to tell the compiler where an external is
located.

File: main.c

#pragma SEGMENT DATA=idata
extern int abc; /* Tell compiler "abc" is in segment "idata". */
#pragma SEGMENT UNDO

#pragma SEGMENT DATA=udata
extern int def; /* Tell compiler "def" is in segment "udata". */
#pragma SEGMENT UNDO

main()
{
 abc++;
 def = abc;
}

File: ext_data.c

int abc=123; /* "abc" is allocated space in segment "idata". */
int def; /* "def" is allocated space in segment "udata". */

Chapter 6: Embedded Systems Considerations
Placement of External Declarations

135

The "volatile" Type Modifier

The volatile type modifier is used in declarations to specify that an object’s
value may change in ways unknown to the compiler. A volatile type modifier
makes the compiler access an object literally, as specified in C statements.
Literal interpretations of C statements can be important in programs which
are closely tied to hardware such as memory mapped I/O devices or device
drivers. The volatile type modifier is necessary because optimizations can take
short-cuts, using methods which differ from the literal interpretation but
which yield the same result.

The listings shown in figure 6-1 give an example of the effect given by the
volatile type modifier. The top listing shows code in which the assignment of
"io_port" to "secondValue" has been optimized into a "MOV AX,SI"
instruction which does not actually read "io_port" (whose value may have
changed since its assignment to "firstValue"). The bottom listing shows the
"io_port" variable declared with the volatile type modifier. Notice that the
assignment of "io_port" to "secondValue" does not get optimized.

For the user who wants a controlled way of toggling an address line, it is
guaranteed that a simple assignment to a volatile variable which has a size
equal to the data bus width of the target processor will cause exactly one write.
An access of such a variable will cause exactly one read. For example:

volatile char *p = (char *) 0x12340005; /* 0x12340005 is logical address of
 I/O port. 0x12345 is physical
 address of I/O port. */
main()
{
 p = 0; / Exactly one write to address 0x12345. */
 p; / Exactly one read of address 0x12345. */
}

A pointer-to-volatile cannot be assigned to a pointer-to-non-volatile without a
cast.

Note If the "byte align data" option is on, short and int variables may be accessed
with two reads or writes instead of just one.

Chapter 6: Embedded Systems Considerations
The "volatile" Type Modifier

136

 1 int io_port;
 2
 3 main()
 4 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:data
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,4
 PUSH DS
 MOV AX,data
 MOV DS,AX
 PUSH SI
;S_firstValue is in register SI.
%SET(S_secondValue,-4)
%SET(S_tmp,-2)
 5 int firstValue, secondValue, tmp;
 6
 7 firstValue = io_port;
 MOV SI,%DS:WORD PTR _io_port[0]
 8 secondValue = io_port;
 MOV AX,SI
 MOV SS:WORD PTR [BP+%S_secondValue+0],AX
 9 tmp = firstValue;
 MOV SS:WORD PTR [BP+%S_tmp+0],SI
 10 }
--
 1 volatile int io_port;
 2
 3 main()
 4 {
 PUBLIC _main
 ASSUME CS:%CodeSegment,DS:data
_main PROC FAR
%SET(SAVE_ALL_NPX,2)
 PUSH BP
 MOV BP,SP
 SUB SP,4
 PUSH DS
 MOV AX,data
 MOV DS,AX
 PUSH SI
;S_firstValue is in register SI.
%SET(S_secondValue,-4)
%SET(S_tmp,-2)
 5 int firstValue, secondValue, tmp;
 6
 7 firstValue = io_port;
 MOV SI,%DS:WORD PTR _io_port[0]
 8 secondValue = io_port;
 MOV AX,%DS:WORD PTR _io_port[0]
 MOV SS:WORD PTR [BP+%S_secondValue+0],AX
 9 tmp = firstValue;
 MOV SS:WORD PTR [BP+%S_tmp+0],SI
 10 }

Figure 6-1. "volatile" Type Modifier Example

OPTIMIZATION
PERFORMED

NO OPTIMIZATION
PERFORMED

Chapter 6: Embedded Systems Considerations
The "volatile" Type Modifier

137

Reentrant Code

Reentrant code is code that can be interrupted during its execution and
re-invoked by subsequent calls any number of times. A nonreentrant routine
might, for example, operate on static data or external variables; if this routine
is interrupted and called from somewhere else, the data it was originally
operating on might be destroyed. Interrupt handlers and other routines which
may be interrupted and called again must be reentrant.

The 8086/186 C compiler generates reentrant code.

Nonreentrant library routines

Most of the library routines which have been shipped with the compiler are
reentrant. However, some of the libraries are not reentrant; they are listed
below.

Nonreentrant routines should not be called from interrupt handlers or other
reentrant routines.

Some libraries use the global symbol errno. Note that the value of errno can be
overwritten in a multitasking or reentrant environment.

assert
atexit
calloc
close
fclose
fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread

free
freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc
getchar
gets
lseek

malloc
open
printf
putc
putchar
puts
rand
read
realloc
remove

rewind
scanf
setbuf
setvbuf
srand
strtok
strtol
ungetc
unlink
vfprintf
vprintf
write

Table 6-1. Nonreentrant Library Routines

Chapter 6: Embedded Systems Considerations
Reentrant Code

138

Implementing Functions as Interrupt Routines

Interrupt routines are not intended to return values. Therefore, the type
specifier void must be used to declare functions which you wish to implement
as interrupt routines. The INTERRUPT pragma is used to specify that a
function should be implemented as an interrupt routine.

pragma INTERRUPT

This pragma specifies that the next encountered function be implemented as
an interrupt routine. This means that all working registers are saved at
function entry (plus any register variables which have been allocated), no
parameter passing or returned result is allowed, and a return from interrupt is
generated at the return point.

If you are using assembly language code, remember that registers which are
not used by the compiler as working registers or as register variables are not
saved at function entry. See page 87 for a list of the compiler’s working
registers.

Note that only the next encountered function is affected--not subsequent
functions.

The INTERRUPT pragma may be used any place a C external declaration may.
An example of a function implemented as an interrupt routine is shown below.

#pragma INTERRUPT

void int_routine()
{
 .
 .
 .
}

Loading the vector address

Using the INTERRUPT pragma will cause all registers to be pushed onto the
stack upon function entry, and a return from interrupt instruction is generated
for function exit. However, you must make sure that the address of the
function is loaded into the vector table. For example, integer divide-by-zero
interrupts are handled by an environment-dependent file which is
automatically linked in. Its source (div_by_0.c) contains a vector table which
may be modified to contain the address of your interrupt handler written in C.

Chapter 6: Embedded Systems Considerations
Implementing Functions as Interrupt Routines

139

In your own target system, it will be easiest to implement your vector table in
C. For example, if you had implemented one routine totally in assembly
language and named it "_asm_int_routine", you could declare your vector table
and initialize it with:

extern void asm_int_routine();

#pragma SEGMENT DATA=0x00

void (*vectorTable[])() = {. . ., asm_int_routine, . . .,
 int_routine, . . .};

#pragma SEGMENT UNDO
#pragma INTERRUPT

void int_routine() {
 .
 .
 .
}

Note When using small memory model, the vector table must be coded in assembly
in order to specify both the segments and offsets of the interrupt handlers. See
the figure in the "Compiler Generated Assembly Code" chapter for an example.

Eliminating I/O

Your embedded system may well have no file I/O capability. If this is the case,
you can specify a linker command file which avoids the overhead of initializing
emulation simulated I/O buffers for stdin, stdout, and stderr. See the
description of cc8086 in the on-line man page.

Chapter 6: Embedded Systems Considerations
Eliminating I/O

140

7

Libraries

Descriptions of the run-time and support libraries.

Chapter 7: Libraries

141

Four varieties of libraries are provided with the 8086/186 C compiler. Each of
these libraries comes in four versions: small memory model, compact memory
model, medium memory model, and large memory model. Four versions are
provided because you cannot mix memory models within a program. All code
must be compiled and linked with the same memory model option.

A check is done at link-time to ensure that all libraries and user-written code
have been compiled using the same memory model. This feature eliminates
code defects due to mixing the memory models. These defects could be stack
misalignment, use of garbage data, and incompatibility of code or data sizes.
These code defects would be very hard to find.

A separate version of the math library is provided for use with the 8087. The
cc80186 compiler shares the cc8086 libraries.

The four varieties of libraries are:

• Environment libraries which contain environment-dependent routines,
such as exit(), open(), sbrk(), etc. See the "Environment Dependent
Routines" chapter for full details.

• Run-time libraries which contain routines required to do real number
arithmetic, initializations, run-time debug checks, etc.

• Support libraries which contain C functions such as fopen(), getchar(),
malloc(), printf(), etc.

• Math libraries which contain C functions such as exp(), floor(), sin(), etc.

A group of .h include files are also provided for use with the various libraries.

The names of the various libraries and the segment names used to locate them
by the linker are given below. The names of the libraries for the four memory
models are the same, but the directories where they reside on your computer
are different.

Chapter 7: Libraries

142

Library Library
Name

Large Memory Model
Segment (PROG, DATA)

Small Memory Model
Segment (PROG, DATA)

Environment env.a env/CODE, envdata,
userstack, heap

prog/CODE, data,
userstack, heap

Run-time lib.a lib/CODE, libdata prog/CODE, data

Run-time
(8087)

lib87.a lib/CODE, libdata prog/CODE, data

Support libc.a libc/CODE, libcdata prog/CODE, data

Math libm.a libm/CODE prog/CODE

Math (8087) libm87.a libm/CODE prog/CODE

Table 7-1. Library Names

Chapter 7: Libraries

143

Run-Time Library Routines

The run-time library, lib.a or lib87.a, contains routines used at run-time by
the compiler-generated code. The calls to these routines are placed in the
assembly code file by the compiler in place of generated assembly code (in-line
code). The reasons for using library calls instead of generating in-line code
vary from conserving space to minimizing repetition of in-line code to
maintenance considerations (the same reasons C functions are used).

The run-time libraries may be called from compiler-generated code and
assembly code (including embedded assembly code within the C source). Also,
it should be possible to replace any or most of the library routines with your
own routines.

The names of all run-time library routines end in _S for small memory model
libraries, _C for compact memory model libraries, _M for medium memory
model libraries, and _L for large memory model libraries. This is to guarantee
that a library routine from one memory model will never be accidentally linked
to a call for the other memory model.

The names of all run-time library routines end in _SC for small and compact
memory model libraries, and in _LM for large and medium memory model
libraries.

See appendices "Small Memory Model Run-time Routines" and "Large
Memory Model Run-Time Routines" for descriptions of the interface and
functionality of all run-time library routines.

Chapter 7: Libraries

144

Support Library and Math Library Routines

In general, the implementation of the support library routines is likely to
deviate subtly from the standard due to environment dependencies. Where
possible, the sources for these environment-dependent routines (which are
customized to HP development environments) are provided as part of the
compiler product (see the chapters describing "Environment Dependent
Routines").

Library Routines Not Provided

Several "standard" C library routines are not provided with the 8086/186 C
compiler.

• General Utilities. The < stdlib.h> functions abort, getenv, and system are
not supported.

• Input/Output . The < stdio.h> definitions L_tmpnam, FILENAME_MAX ,
and TMP_MAX , as well as the rename, tmpfile , and tmpnam routines, are
not supported.

• Signal Handling. The < signal.h> routines are not provided because of
their extreme environment dependencies.

• Date and Time. The < time.h> routines are not provided because of their
extreme environment dependencies.

Chapter 7: Libraries

145

Include (Header) Files

The following is a list of include files which are shipped with the compiler:

assert.h Defines the macro assert.

ctype.h Defines the "character classification" macros (e.g.,
isalnum, isalpha, etc.).

errno.h Declares errno and macros used to test errno.

float.h Describes the IEEE single- and double-precision
floating-point representations and contains definitions
of the limiting values of floating-point types.

fp_control.h Declares the floating-point error functions. This
header file also defines the macros which can be used as
arguments to the _set_fp_control function, or to check
the return value of the _get_fp_status function.

limits.h Contains definitions of the limiting values for integral
types.

locale.h Declares the setlocale and localeconv functions and
defines the lconv structure. Also defines the categories
which the functions can change.

math.h Declares the standard math library routines and
HUGE_VAL .

memory.h Declares sbrk and _getmem.

setjmp.h Defines the jmp_buf type and declares the setjmp and
longjmp functions.

simio.h Declares the simulated I/O functions and companion
macros.

stdarg.h Provides the va_list type and the macros which are used
to access variable-length argument lists, va_start,
va_arg, and va_end. For a description of the variable

Chapter 7: Libraries

146

argument list macros, see the entry for "va_list" in this
chapter.

stddef.h Defines the ptrdiff_t , size_t, and wchar_t types and the
NULL null pointer constant. This header file also
defines the offsetof macro.

stdio.h Declares all the functions that handle input and output.
This header file also defines the FILE type, buffering
macros, file positioning macros, the maximum number
of open files, and buffer size macros.

stdlib.h Defines the types div_t and ldiv_t , and also the macros
EXIT_SUCCESS, EXIT_FAILURE , RAND_MAX , and
MB_CUR_MAX . This header file also declares standard
library functions.

string.h Declares the character string and memory operations.

Chapter 7: Libraries

147

List of All Library Routines

The following table lists all of the library routines shipped with this compiler.

An asterisk (*) in the Index column means that you can find a description of
the routine in this manual by looking in the index.

The routines not marked with an asterisk are not described in this manual.
These routines are run-time routines or subroutines used by the libraries. You
should not use these undocumented routines in your programs because they
are likely to be changed or even deleted in future versions of the compiler.

Index Definition name Library

* ADD_F32A_size lib
lib87

* ADD_F32B_size lib
lib87

* ADD_F32C_size lib
lib87

* ADD_F64A_size lib
lib87

* ADD_F64B_size lib
lib87

* ADD_F64C_size lib
lib87

* DEC_F32_size lib
lib87

* DEC_F64_size lib
lib87

* DIV_F32A_size lib
lib87

* DIV_F32B_size lib
lib87

* DIV_F32C_size lib
lib87

Index Definition name Library

* DIV_F64A_size lib
lib87

* DIV_F64B_size lib
lib87

* DIV_F64C_size lib
lib87

* DIV_I32A_size lib
lib87

* DIV_I32B_size lib
lib87

* DIV_UI32A_size lib
lib87

* DIV_UI32B_size lib
lib87

DPADD_size lib
lib87

DPDIV_size lib
lib87

DPMUL_size lib
lib87

DPRDIV_size lib
lib87

Chapter 7: Libraries

148

Index Definition name Library

* EQUAL_F32_size lib
lib87

* EQUAL_F64_size lib
lib87

Err_Handler lib
lib87

* F32_TO_F64_size lib
lib87

* F32_TO_I16_size lib
lib87

* F32_TO_I32_size lib
lib87

* F32_TO_UI16_size lib
lib87

* F32_TO_UI32_size lib
lib87

* F64_TO_F32_size lib
lib87

* F64_TO_I16_size lib
lib87

* F64_TO_I32_size lib
lib87

* F64_TO_UI16_size lib
lib87

* F64_TO_UI32_size lib
lib87

* FAULT_I16_size lib
lib87

* FAULT_I32_size lib
lib87

* FAULT_I8_size lib
lib87

Index Definition name Library

* FAULT_PTR_size lib
lib87

* FAULT_UI16_size lib
lib87

* FAULT_UI32_size lib
lib87

* FAULT_UI8_size lib
lib87

FPADD_size lib
lib87

FPDIV_size lib
lib87

FPMUL_size lib
lib87

FPRDIV_size lib
lib87

* I16_TO_F32_size lib
lib87

* I16_TO_F64_size lib
lib87

* I32_TO_F32_size lib
lib87

* I32_TO_F64_size lib
lib87

* INC_F32_size lib
lib87

* INC_F64_size lib
lib87

* LESS_EQ_F32_size lib
lib87

* LESS_EQ_F64_size lib
lib87

Chapter 7: Libraries

149

Index Definition name Library

* LESS_F32_size lib
lib87

* LESS_F64_size lib
lib87

L_1_IO_check_loop env

L_2_IO_exit_loop env

* MOD_I32A_size lib
lib87

* MOD_I32B_size lib
lib87

* MOD_UI32A_size lib
lib87

* MOD_UI32B_size lib
lib87

MONITOR_MESSAGE env

* MUL_F32A_size lib
lib87

* MUL_F32B_size lib
lib87

* MUL_F32C_size lib
lib87

* MUL_F64A_size lib
lib87

* MUL_F64B_size lib
lib87

* MUL_F64C_size lib
lib87

* MUL_I32A_size lib
lib87

* MUL_I32B_size lib
lib87

Index Definition name Library

* SUB_F32A_size lib
lib87

* SUB_F32B_size lib
lib87

* SUB_F32C_size lib
lib87

* SUB_F64A_size lib
lib87

* SUB_F64B_size lib
lib87

* SUB_F64C_size lib
lib87

TOP_OF_STACK env

UI16_TO_F32_size lib
lib87

* UI16_TO_F64_size lib
lib87

* UI32_TO_F32_size lib
lib87

* UI32_TO_F64_size lib
lib87

USER_ENTRY env

USR_STACK env

XEnv_86_except env

__TOP_OF_HEAP env

__USR_HEAP env

* ___fflush libc

* __assert libc

Chapter 7: Libraries

150

Index Definition name Library

__bufendtab env

__bufsync libc

* __clear_fp_status lib
lib87

* __ctype libc

__dbl_to_str libc

* __display_message env

__doprnt libc

__doscan libc

__err_handler lib
lib87

* __error_msg env

__exec_funcs libc

* __exit env

__exit_msg env

__filbuf libc

__findbuf libc

__findiop libc

__flsbuf libc

* __fp_control lib

* __fp_error libm
libm87

* __fp_status lib

__fp_trap env

Index Definition name Library

* __get_fp_control lib
lib87

* __get_fp_status lib
lib87

* __getmem env

__hex_NaN libm
libm87

__hex_NaNf libm
libm87

* __infinity libc

* __init_fp lib
lib87

* __initdata env

__io_bufsiz env

__iob env

__lastbuf env

__lconv_data libc

__malloc_init libc

__memccpy libc

* __open_max env

__rand_seed libc

__readFile libc

__readStr libc

* __set_fp_control lib
lib87

__sibuf env

Chapter 7: Libraries

151

Index Definition name Library

__smbuf env

__sobuf env

* __startup env

__stdbuf env

__swrite libc

__top_of_func_stack libc

__wrtchk libc

__xflsbuf libc

* _abs libc

_abs_out_adrs env

* _acos libm
libm87

* _asin libm
libm87

* _atan libm
libm87

* _atan2 libm
libm87

* _atexit libc

* _atof libc

* _atoi libc

* _atol libc

* _bsearch libc

Index Definition name Library

* _calloc libc

* _ceil libm
libm87

* _clear_screen env

* _clearerr libc

* _close env

* _cos libm
libm87

* _cosh libm
libm87

_count env

_data_buff env

_data_ptr env

* _div libc

* _errno libc

* _exec_cmd env

* _exit env

* _exp libm
libm87

* _fabs libm
libm87

* _fclose libc

* _feof libc

* _ferror libc

Chapter 7: Libraries

152

Index Definition name Library

* _fflush libc

* _fgetc libc

* _fgetpos libc

* _fgets libc

* _floor libm
libm87

* _fmod libm
libm87

* _fopen libc

* _fprintf libc

* _fputc libc

* _fputs libc

* _fread libc

* _free libc

* _frem libm
libm87

* _freopen libc

* _frexp libm
libm87

* _fscanf libc

* _fseek libc

* _fsetpos libc

* _ftell libc

Index Definition name Library

* _fwrite libc

* _getc libc

* _getchar libc

* _gets libc

* _initsimio env

* _isalnum libc

* _isalpha libc

* _iscntrl libc

* _isdigit libc

* _isgraph libc

* _islower libc

* _isprint libc

* _ispunct libc

* _isspace libc

* _isupper libc

* _isxdigit libc

* _kill env

* _labs libc

* _ldexp libm
libm87

* _ldiv libc

Chapter 7: Libraries

153

Index Definition name Library

* _localeconv libc

* _log libm
libm87

* _log10 libm
libm87

* _longjmp libc

* _lseek env

* _malloc libc

* _mblen libc

* _mbstowcs libc

* _mbtowc libc

* _memchr libc

* _memcmp libc

* _memcpy libc

* _memmove libc

* _memset libc

* _modf libm
libm87

* _open env

_open_file env

* _perror libc

* _pos_cursor env

Index Definition name Library

* _pow libm
libm87

* _printf libc

* _putc libc

* _putchar libc

* _puts libc

* _qsort libc

* _rand libc

* _read env

* _realloc libc

* _remove libc

* _rewind libc

* _sbrk env

* _scanf libc

* _setbuf libc

* _setjmp libc

* _setlocale libc

* _setvbuf libc

* _sin libm
libm87

* _sinh libm
libm87

Chapter 7: Libraries

154

Index Definition name Library

* _sprintf libc

* _sqrt libm
libm87

* _srand libc

* _sscanf libc

* _strcat libc

* _strchr libc

* _strcmp libc

* _strcoll libc

* _strcpy libc

* _strcspn libc

* _strerror libc

* _strlen libc

* _strncat libc

* _strncmp libc

* _strncpy libc

* _strpbrk libc

* _strrchr libc

* _strspn libc

* _strstr libc

* _strtod libc

Index Definition name Library

* _strtok libc

* _strtol libc

* _strtoul libc

* _strxfrm libc

_systemio_buf env

* _tan libm
libm87

* _tanh libm
libm87

* _tolower libc

* _toupper libc

* _ungetc libc

* _unlink env

* _vfprintf libc

* _vprintf libc

* _vsprintf libc

_wait_for_io env

* _wcstombs libc

* _wctomb libc

* _write env

Chapter 7: Libraries

155

Support Library and Math Library Descriptions

The remainder of this chapter describes the support and math library
functions. Functions declared in the math.h include file are found in the math
library archive file libm.a. All other functions are found in the support
library archive file libc.a.

Note The open, close, read, write , lseek, unlink , exit, _exit, _getmem,
and sbrk functions have execution environment dependencies; therefore, these
libraries are described in the "Environment-Dependent Routines" chapter.

Chapter 7: Libraries

156

abs, labs

Return Integer Absolute Value

Synopsis # include < stdlib.h>

int abs (int i);

long int labs (long int i);

Description Abs returns the absolute value of its integer operand.

Labs is similar to abs except that the argument and the returned value each
have type long int.

Warnings In two’s-complement representation, the absolute value of the negative
integer with the largest magnitude is undefined. This error is ignored.

See Also floor .

Chapter 7: Libraries
abs, labs

157

assert

Put Diagnostics into Programs

Synopsis # include < assert.h>

void assert (const char *expression);

Description The assert macro puts diagnostics into programs. When it is executed, if
expression is false (equal to zero), the assert macro writes information about
the particular call that failed (including the text of the argument, the name of
the source file, and the source line number − the latter are respectively the
values of the preprocessing macros __FILE__ and __LINE__) on the standard
error file in the format shown below. It then calls the _exit function.

Assertion failed: <expression>, file <__FILE__>, line <__LINE__>

Diagnostics When the assert.h header file is included and the macro NDEBUG is defined,
the assert macro will be defined to do nothing. This allows you to compile
your code with or without the assert checking by simply defining or undefining
the macro NDEBUG. Assert returns no value.

See Also _exit.

Chapter 7: Libraries
assert

158

atexit

Call Function at Program Termination

Synopsis # include < stdlib.h>

int atexit (void (*func)(void));

Description Atexit will register the func function to be called without arguments at normal
program termination. Up to 32 separate function registrations can be
performed.

Diagnostics Atexit returns zero if the registration succeeds, or non-zero if it fails.

See Also exit.

Chapter 7: Libraries
atexit

159

bsearch

Binary Search a Sorted Table

Synopsis # include < stdlib.h>

void *bsearch (
const void *key,
const void *base,
size_t nel, size_t size,
int (*compar)(const void *, const void *));

Description Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm
B. It returns a pointer into a table indicating where a datum may be found.
The table must be previously sorted in increasing order according to a
provided comparison function. Key points to a datum instance to be sought in
the table. Base points to the element at the base of the table. Nel is the
number of elements in the table. Compar is the name of the comparison
function, which is called with two arguments that point to the elements being
compared. The function must return an integer less than, equal to, or greater
than zero as accordingly the first argument is to be considered less than, equal
to, or greater than the second.

Notes The pointers to the key and the element at the base of the table should be of
type pointer-to-element, and cast to type void pointer. The comparison
function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared. Although declared as
void pointer type, the value returned should be cast into type
pointer-to-element.

Example The example below searches a table containing pointers to nodes consisting of
a string and its length. The table is ordered alphabetically on the string in the
node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node
and prints out the string and its length, or prints an error message.

Chapter 7: Libraries
bsearch

160

#include <stdio.h>
#include <stdlib.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
 char *string;
 int length;
};
struct node table[TABSIZE]; /* table to be searched */
 .
 .
 .
{
 struct node *node_ptr, node;
 int node_compare(); /* routine to compare 2 nodes */
 char str_space[20]; /* space to read string into */
 .
 .
 .
 node.string = str_space;
 while (scanf("%s", node.string) != EOF) {
 node_ptr = (struct node *)bsearch((void *)(&node),
 (void *)table, TABSIZE,
 sizeof(struct node), node_compare);
 if (node_ptr != NULL) {
 (void)printf("string = %20s, length = %d\n",
 node_ptr->string, node_ptr->length);
 } else {
 (void)printf("not found: %s\n", node.string);
 }
 }
}
/* This routine compares two nodes based on an
 alphabetical ordering of the string field. */
int
node_compare(node1, node2)
struct node *node1, *node2;
{
 return strcmp(node1->string, node2->string);
}

See Also qsort.

Diagnostics A NULL pointer is returned if the key cannot be found in the table.

Bugs A random entry is returned if more than one entry matches the selection
criteria.

Chapter 7: Libraries
bsearch

161

div, ldiv

Divide Functions

Synopsis # include < stdlib.h>

div_t div (int numer, int denom);

ldiv_t ldiv (long int numer, long int denom);

Description Div computes the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the sign of the
quotient is that of the mathematical quotient, and the magnitude of the
quotient is the largest integer less than the magnitude of the mathematical
quotient. If the result cannot be represented, the behavior is undefined.

Ldiv is similar to div except that the arguments and members of the returned
structure (which has type ldiv_t) all have type long int.

Diagnostics The div function returns a structure of type div_t, comprising both the
quotient and the remainder. The structure is defined by stdlib.h as shown
below.

typedef struct {
 int quot; /* Quotient */
 int rem; /* Remainder */
 } div_t;

typedef struct {
 long int quot; /* Quotient */
 long int rem; /* Remainder */
 } ldiv_t;

Chapter 7: Libraries
div, ldiv

162

exp

Exponential Functions

Synopsis # include < math.h>

double exp (double x);

Description Exp returns ex.

Diagnostics Exp sets errno to ERANGE and returns HUGE_VAL when the correct value
would overflow, or 0 when the correct value would underflow. In addition to
errno, bits in a global status flag or in the floating point coprocessor
floating-point status register are set when error conditions arise.

The error-handling is done by the run-time _fp_error routine.

See Also _fp_error, _get_fp_status, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
exp

163

fclose, fflush

Close or Flush a Stream

Synopsis # include < stdio.h>

int fclose (FILE *stream);

int fflush (FILE *stream);

Description Fclose causes any buffered data for the named stream to be written out, and
the stream to be closed. Buffers allocated by the standard input/output system
are freed.

Fclose is performed automatically for all open files upon calling exit.

Fflush causes any buffered data for the named stream to be written to that file.
If the argument is NULL, then all open files are flushed. The stream or
streams remain open.

Diagnostics These functions return 0 for success, and EOF if any error (such as trying to
write to a file that has not been opened for writing) was detected.

See Also close, exit, fopen, setbuf.

Chapter 7: Libraries
fclose, fflush

164

ferror, feof, clearerr

Stream Status Inquiries

Synopsis # include < stdio.h>

int ferror (FILE *stream);

int feof (FILE *stream);

void clearerr (FILE *stream);

Description Ferror returns non-zero when an I/O error has previously occurred reading
from or writing to the named stream, otherwise zero. Unless cleared by
clearerr, or unless the specific stdio routine so indicates, the error indication
lasts until the stream is closed.

Feof returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
stream.

Note These functions are implemented as macros and functions. To use a function
instead of a macro, # undef the macro before function invocation.

See Also open, fopen.

Chapter 7: Libraries
ferror, feof, clearerr

165

fgetpos, fseek, fsetpos, rewind, ftell

Position File Pointer

Synopsis # include < stdio.h>

int fgetpos (FILE *stream, fpos_t *pos);

int fseek (FILE *stream, long offset, int ptrname);

int fsetpos (FILE *stream, const fpos_t *pos);

long ftell (FILE *stream);

void rewind (FILE *stream);

Description Fgetpos stores the current value of the file pointer on the stream in the object
pointed to by pos. The value stored contains unspecified information usable
by the fsetpos function for repositioning the stream to its position at the time
of the call to the fgetpos function.

Fsetpos sets the file pointer for the stream to the value of the object pointed to
by pos which is a value returned by an earlier call to fgetpos on the same stream.

Fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning, from
the current position, or from the end of the file, according as ptrname has the
value SEEK_SET, SEEK_CUR, or SEEK_END.

Rewind (stream) is equivalent to (void) fseek (stream , 0L, SEEK_SET).

Fsetpos, fseek, and rewind clear the end-of-file indicator and undo any effects of
the ungetc function on the same stream. After an fsetpos, fseek, or rewind call,
the next operation on an update stream may be either input or output. Rewind
also does an implicit clearerr call.

Ftell returns the offset of the current byte relative to the beginning of the file
associated with the named stream.

Chapter 7: Libraries
fgetpos, fseek, fsetpos, rewind, ftell

166

See Also lseek, fopen, ungetc.

Diagnostics The fgetpos and fsetpos functions return zero if successful; otherwise, they
return non-zero and errno is set to a non-zero value.

Fseek returns non-zero for improper seeks, otherwise zero. An improper seek
can be, for example, an fseek done on a file that has not been opened via fopen;
in particular, fseek may not be used on a terminal.

Ftell returns –1 for error conditions and sets errno to a non-zero value. If
either the argument to ftell is NULL or if the file is not open, then ftell sets
errno to EBADF.

Warning In UNIX-base operating sytems, the offset returned by ftell is measured in
bytes, and a program may seek to positions relative to that offset. Portability
to non-UNIX systems requires that an offset be used by fseek directly. Do not
use the offset in calculations—the offset might not be measured in bytes.

Chapter 7: Libraries
fgetpos, fseek, fsetpos, rewind, ftell

167

floor, ceil, fmod, frem, fabs

Floor, Ceiling, Remainder, and Absolute Value

Synopsis # include < math.h>

double floor (double x);
double ceil (double x);
double fmod (double x, double y);
double frem (double x, double y);
double fabs (double x);

Description Floor returns the largest integer (as a double-precision number) not greater
than x.

Ceil returns the smallest integer (as a double-precision number) not less than x.

Fmod returns the floating-point remainder of the division of x by y: NaN if y is
zero or + /-HUGE_VAL if x/y would overflow; otherwise the number f with the
same sign as x, such that x = iy + f for some integer i, and |f| < |y| .

Frem is the same as fmod except that the remainder is computed in
round-to-nearest mode, and the result may have a different sign than x. For
example:

fmod (x, y) = x – (y*i) Where i = (int) (x/y)

frem (x, y) = x – (y*i) Where i = (int) (x/y + 0.5)

fmod (5.2, 10) = 5.2 – (10*0) = 5.2
frem (5.2, 10) = 5.2 – (10*1) = –4.8

Fabs returns the absolute value of x, | x| ; errno is set whenever an exception
condition occurs.

See Also abs, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
floor, ceil, fmod, frem, fabs

168

fopen, freopen

Open or Re-Open a Stream File

Synopsis # include < stdio.h>

FILE *fopen (
const char *file_name,
const char *type);

FILE *freopen (
const char *file_name,
const char *type,
FILE *stream);

Description Fopen opens the file named by file_name and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the stream.

File_name points to a character string that contains the name of the file to be
opened.

Type is a character string having one of the following values:

"r", "rb" Open for reading.

"w", "wb" Truncate or create for writing.

"a", "ab" Append; open for writing at end of file, or create for
writing.

"r+ ", "rb+ ", "r+ b" Open for update (reading and writing).

"w+ ", "wb+ ", "w+ b" Truncate or create for update.

"a+ ", "ab+ ", "a+ b" Append; open or create for update at end-of-file.

A character "b" in the type string signifies that the file is a binary file. In this
implementation, the presence or absence of the "b" has no effect.

Chapter 7: Libraries
fopen, freopen

169

Freopen substitutes the named file in place of the open stream. The original
stream is closed, regardless of whether the open ultimately succeeds. Freopen
returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

When a file is opened for update (i.e., the character "+ " is present in the type
string), both input and output may be done on the resulting stream. However,
input may not be directly followed by output unless there is an intervening call
to fflush or to one of the file positioning functions (rewind, fseek, fsetpos). The
same is true for following output directly with input.

When a file is opened for append (i.e., the character "a" is present in the type
string), information already present in the file cannot be overwritten. Fseek
may be used to reposition the file pointer to any position in the file, but when
output is written to the file, the current file pointer is disregarded. Undefined
behavior will occur if the file is also opened for update and the preceding rules
for update mode are not followed.

See Also open, fclose, fseek.

Diagnostics Fopen and freopen return a NULL pointer if file-name cannot be accessed, if
there are too many open files, or if the arguments are incorrect.

Chapter 7: Libraries
fopen, freopen

170

_fp_error

Floating-Point Error Functions

Synopsis # include < fp_control.h>

void _clear_fp_status (void);

int _get_fp_status (void);

void _set_fp_control (int mode);

int _get_fp_control (void);

void _init_fp (void);

Description Technically, _fp_error is a run-time routine in that it is only called from other
run-time library and math library functions. Its purpose is to simulate the
exception processing that is present on the 8087 NPX. Therefore, _fp_error is
referenced only when the 8086/186 library libm.a) is loaded.

_fp_error composes the return value defined by the IEEE Floating Point
Standard 754 (see the "Behavior of Math Library Functions" chapter) and
returns the value if trapping does not take place. The trapping decision is
handled by a piece of common code in the run-time library. This code inspects
a global control flag to see if the trap bit associated with the current exception
is set. If the bit is set, an error message is composed and control passes to the
monitor program so that the message can be displayed. If the bit is not set,
then a global status flag is updated to reflect the exception that just occurred
and processing continues.

The following functions can be used to inspect and set the global control flag
and the global status flag:

_clear_fp_status clears the global status flag.

_get_fp_status returns the global status flag.

_set_fp_control sets the global control flag to mode.

Chapter 7: Libraries
_fp_error

171

_get_fp_control returns the global control flag.

_init_fp resets the 8087 by executing the FINIT instruction (if lib87.a is being
used) and clears the global status flag and the global control flag.

The 8086/186 libraries always perform operations in double precision and
round to nearest. By default, trapping is enabled on all floating-point
exceptions except inexact results. The following macro disables trapping:

NOTRAP Disable all traps.

The remaining macros may be OR’ed together to form mode when invoking
_set_fp_control. (Do not OR them with NOTRAP.)

INEXACT Trap on inexact result.

DIVZERO Trap on division by zero.

UNDERFLOW Trap on underflow.

OVERFLOW Trap on overflow.

OPERROR Trap on operand error.

PLOSS Trap on loss of precision (applies to 8086/186—not
8087—math libraries).

The following macros may be used when inspecting the return value from
_get_fp_status:

NOERRORS No errors have been detected since the last invocation
of _clear_fp_status.

INEXACT
DIVZERO
UNDERFLOW
OVERFLOW
OPERROR
PLOSS

Chapter 7: Libraries
_fp_error

172

When using the 8087 chip, the control word contains some additional
information. The 8087 allows you to control trapping, precision, infinity, and
rounding behaviors.

The following macros can be used to select the 8087 behavior that is desired:

Precision:

SGLPREC Single precision (32-bit floating point number).

DBLPREC Double precision (64-bit floating point number).

EXTPREC Extended precision (80-bit floating point number).

Infinity:

PROJECTIVE Infinity is unsigned.

AFFINE Distinguish + infinity from –infinity.

Rounding:

RNDNEAR Round towards the "nearest" number.

RNDNEGINF Round towards negative infinity.

RNDPOSINF Round towards positive infinity.

RNDZERO Round towards zero.

Trapping:

DENORM_OP Trap when a denormalized operand is encountered.

Select exactly one macro each from the precision, rounding, and infinity
categories every time that _set_fp_control is called. Any number of trapping
macros can be selected.

Note that an OPERROR trap can occur when a 8087 floating point register is
used before it is initialized.

Example You may change the control word without respecifying all of the different
categories. This can be done by using the current value of the control variable

Chapter 7: Libraries
_fp_error

173

and using masking. For example, the following function call turns on
divide-by-zero trapping without altering any of the other control flags:

_set_fp_control(_get_fp_control() | DIVZERO);

The next example turns off the overflow and underflow traps:

_set_fp_control(_get_fp_control() &
 ~(UNDERFLOW | OVERFLOW));

Chapter 7: Libraries
_fp_error

174

fread, fwrite

Buffered Binary I/O to Stream

Synopsis # include < stdio.h>

size_t fread (void *ptr, size_t size,
 size_t nitems, FILE *stream);

size_t fwrite (const void *ptr, size_t size,
 size_t nitems, FILE *stream);

Description Fread copies, into an array pointed to by ptr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of length size. Fread stops appending
bytes if an end-of-file or error condition is encountered while reading stream,
or if nitems items have been read. Fread leaves the file pointer in stream, if
defined, pointing to the byte following the last byte read if there is one. Fread
does not change the contents of stream.

Fwrite appends at most nitems items of data from the array pointed to by ptr to
the named output stream. Fwrite stops appending when it has appended
nitems items of data or if an error condition is encountered on stream. Fwrite
does not change the contents of the array pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data type
other than void it should be cast into a pointer to void.

See Also read, write , fopen, getc, gets, printf , putc, puts, scanf.

Diagnostics Fread and fwrite return the number of items read or written. If size or nitems is
zero, no characters are read or written and 0 is returned by both fread and
fwrite.

Chapter 7: Libraries
fread, fwrite

175

frexp, ldexp, modf

Return Mantissa and Ex ponent

Synopsis # include < math.h>

double frexp (double value, int *eptr);

double ldexp (double value, int *exp);

double modf (double value, double *iptr);

Description Every non-zero number can be written uniquely as x * 2n where the "mantissa"
(fraction) x is in the range 0.5 < = |x| < 1.0, and the "exponent" n is an integer.

Frexp returns the mantissa of a double value, and stores the exponent
indirectly in the location pointed to by eptr. If value is zero, both results
returned by frexp are zero.

Ldexp returns the quantity value * 2exp.

Modf returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

Diagnostics If ldexp would cause overflow, + /-HUGE_VAL is returned (according to the
sign of value), and errno is set to ERANGE. If ldexp would cause underflow,
zero is returned and errno is set to ERANGE.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
frexp, ldexp, modf

176

getc, getchar, fgetc

Get Character from Stream

Synopsis # include < stdio.h>

int getc (FILE *stream);
int getchar (void);
int fgetc (FILE *stream);

Description Getc returns the next character (i.e., byte) from the named input stream, as an
integer. It also moves the file pointer, if defined, ahead one character in
stream. Getchar is defined as getc(stdin). Getc is a macro and so cannot be
used if a function is necessary; for example one cannot have a function pointer
point to it. Getchar is implemented as a macro and as a function. To use a
function instead of a macro, # undef the macro before function invocation.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs more
slowly than getc, but it takes less space per invocation and its name can be
passed as an argument to a function.

See Also fclose, ferror , fopen, fread, gets, putc, scanf.

Diagnostics These functions return the constant EOF at end-of-file or upon an error.

Warning If the integer value returned by getc, getchar, or fgetc is stored into a character
variable and then compared against the integer constant EOF, the comparison
may never succeed, because sign-extension of a character on widening to
integer is machine-dependent.

Bugs Because it is implemented as a macro, getc treats incorrectly a stream
argument with side effects. In particular, getc(*f+ +) does not work sensibly.
Fgetc should be used instead.

Chapter 7: Libraries
getc, getchar, fgetc

177

gets, fgets

Get a String from a Stream

Synopsis # include < stdio.h>

char *gets (char *s);

char *fgets (char *s, int n, FILE *stream);

Description Gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file condition is
encountered. The new-line character is discarded and the string is terminated
with a null character.

Fgets reads characters from the stream into the array pointed to by s, until n-1
characters are read, or a new-line character is read and transferred to s, or an
end-of-file condition is encountered. The string is then terminated with a null
character.

See Also ferror , fopen, fread, getc, puts, scanf.

Diagnostics If end-of-file is encountered and no characters have been read, no characters
are transferred to s and a NULL pointer is returned. If a read error occurs,
such as trying to use these functions on a file that has not been opened for
reading, a NULL pointer is returned, and the contents of s are indeterminate.
Otherwise s is returned.

Chapter 7: Libraries
gets, fgets

178

isalpha, isupper, islower, ...

Classify Characters

Synopsis # include < ctype.h>

int isalpha (int c);

. . .

Description These routines classify character-coded integer values by table lookup. Each is
a predicate returning nonzero for true, zero for false. These routines are
implemented both as macros and functions. To use a function instead of a
macro, # undef the macro before function invocation.

isalpha c is a letter.

isupper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace c is a space, tab, carriage return, new-line, vertical tab,
or form-feed.

ispunct c is a printing character that is neither a control
character nor an alphanumeric character nor a space.

isprint c is a printing character, code 040 (space) through 0176
(tilde).

isgraph c is a printing character, like isprint except false for
space.

Chapter 7: Libraries
isalpha, isupper, islower, ...

179

iscntrl c is a delete character (0177) or an ordinary control
character (less than 040).

Diagnostics If the argument to any of these macros is not in the domain of the function,
the result is undefined. The domain for these functions is the integer values
[0, 255] and EOF.

Chapter 7: Libraries
isalpha, isupper, islower, ...

180

localeconv

Locale Conversion

Synopsis # include < locale.h>

struct lconv *localeconv (void);

Description localeconv sets the components of an object of type struct lconv to the
appropriate numeric quantity formatting values for the current locale.

Within the structure lconv, members of type char * point to strings. Any char
pointer, except char *decimal_point may point to a null string ("") to indicate
that the value is either not available in the current locale or of zero length in
the current locale.

The following are members of the lconv structure:

char *decimal_point

is the decimal point character used to format
non-monetary quantities.

char *thousands_sep

 is used to separate groups of digits before the decimal
point in non-monetary quantities.

char *grouping

is a string, the elements of which indicate the size of
each group of digits in formatted non-monetary
quantities.

char *int_curr_symbol

is the international currency symbol used in the current
locale. The first three characters in this string contain
the alphabetic international currency symbol in
accordance with ISO 4217 Codes for the Representation

Chapter 7: Libraries
localeconv

181

of Currency and Funds. The fourth character is (last
before the null terminator) is the character used to
separate the currency symbol from the monetary
quantity.

char *currency_symbol

is the local currency symbol for the current locale.

char *mon_decimal_point

is the decimal point used to format the monetary values.

char *mon_thousands_sep

is the separator for groups of digits before the decimal
point in the monetary values.

char *mon_grouping

is a string, the elements of which indicate the size of
each group of digits in formatted monetary quantities.

char *positive_sign

is the string used to signify non-negative formatted
monetary values.

char *positive_sign

is the string used to signify negative formatted monetary
values.

char int_frac_digits

is the number of fractional digits (after the decimal
point) to display in an internationally formatted
monetary value.

char frac_digits

is the number of fractional digits (after the decimal
point) to display in a formatted monetary value.

Chapter 7: Libraries
localeconv

182

char p_cs_precedes

for a formatted non-negative monetary value, is set to
one if the currency_symbol precedes the value or set to
zero if the currency_symbol follows the value.

char p_sep_by_space

for a formatted non-negative monetary value, is set to
one if the currency_symbol is separated from the value
by a space and set to zero if it is not separated from the
value by a space.

char n_cs_precedes

for a formatted negative monetary value, is set to one if
the currency_symbol precedes the value or set to zero if
the currency_symbol follows the value.

char p_sep_by_space

for a formatted negative monetary value, is set to one if
the currency_symbol is separated from the value by a
space and set to zero if it is not separated from the
value by a space.

char p_sign_posn

is a value indicating the positioning of the negative sign
for a formatted non-negative monetary value.

char n_sign_posn

is a value indicating the positioning of the negative sign
for a formatted negative monetary value.

The elements grouping and mon_grouping specify the grouping of digits in
non-monetary and monetary quantities. Both strings are strings of grouping
counts. The first element of the string, say s[0], unless it is CHAR_MAX, is
the number of digits to group before the first separator character. s[1], unless
it is zero or CHAR_MAX, is the number of digits to group after grouping s[0]
digits. s[2], unless it is zero or CHAR_MAX, is the number of digits to group
after s[0] digits and s[1] digits have been grouped. And so on. If s[i] is zero,

Chapter 7: Libraries
localeconv

183

then the value in s[i-1] is the grouping value for all subsequent digits. If s[i] is
CHAR_MAX, then no further grouping is performed.

The value of either p_sign_posn and n_sign_posn is interpreted in the following
way:

0 Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and
currency_symbol.

2 The sign string follows the quantity and currency_symbol.

3 The sign string immediately precedes the
currency_symbol.

4 The sign string immediately follows the currency_symbol.

Diagnostics The localeconv routine returns a pointer to the filled object. The returned
structure is not to be modified directly by the program, but may be overwritten
by further calls to localeconv. In addition, calls to setlocale with the categories
LC_ALL, LC_MONETARY, and LC_NUMERIC may overwrite the contents
of the structure.

Note The locale supported by the libraries is the "C" locale. localeconv will return
the "C" locale only. The following table lists the return values for the various
structure elements.

Chapter 7: Libraries
localeconv

184

 Additionally, there is a macro MB_CUR_MAX defined in stdlib.h that returns
the maximum number of bytes a multi-byte character could have in the current
locale. Because multi-byte characters are not supported, this macro always
returns one.

See Also setlocale

Element Returned Value

char *decimal_point "."

char *thousands_sep ""

char *grouping ""

char *int_curr_symbol ""

char *currency_symbol ""

char *mon_decimal_point ""

char *mon_thousands_sep ""

char *mon_grouping ""

char *positive_sign ""

char *negative_sign ""

char int_frac_digits ""

char frac_digits CHAR_MAX

char p_cs_precedes CHAR_MAX

char p_sep_by_space CHAR_MAX

char n_cs_precedes CHAR_MAX

char n_sep_by_space CHAR_MAX

char p_sign_posn CHAR_MAX

char n_sign_posn CHAR_MAX

Table 7-2. Element Values Returned by localeconv

Chapter 7: Libraries
localeconv

185

log, log10

Logarithm Functions

Synopsis # include < math.h>

double log (double x);

double log10 (double x);

Description Log returns the natural logarithm of x. The value of x must be positive.

Log10 returns the logarithm base ten of x. The value of x must be positive.

Diagnostics Log and log10 return -HUGE_VAL and set errno to EDOM when x is negative.
Log and log10 return an NaN and set errno to ERANGE when x is zero. The
error action is determined by the bits of the global control flag.

These error-handling procedures may be changed with the function _fp_error.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
log, log10

186

malloc, free, realloc, calloc

Main Memory Allocator

Synopsis # include < stdlib.h>

void *malloc (size_t size);

void free (void *ptr);

void *realloc (void *ptr, size_t size);

void *calloc (size_t nelem, size_t elsize);

Description Malloc and free provide a simple general-purpose memory allocation package.
Malloc returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation.

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

Malloc calls _getmem to get more memory when there is no suitable space
already free.

Realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes. If the size argument to realloc is zero, then
a free operation is done.

If no free block of size bytes is available in the storage arena, then realloc will
ask malloc to enlarge the arena by size bytes and will then move the data to the
new space.

Calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

Chapter 7: Libraries
malloc, free, realloc, calloc

187

See Also _getmem. (Described in the "Environment-Dependent Routines" chapter.)

Diagnostics Malloc, realloc and calloc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When this happens the block pointed to by ptr may be
destroyed.

Chapter 7: Libraries
malloc, free, realloc, calloc

188

mblen, mbstowcs, mbtowc, wcstombs, wctomb,
strxfrm

Multi-byte Character Operations

Synopsis # include < stdlib.h>

int mblen (const char *s, size_t n);

size_t mbstowcs (wchar_t *pwcs, const char *s, size_t n);

int mbtowc (wchar_t *pwc, const char *s, size_t n);

size_t wcstombs (char *s, const wchar_t *pwcs, size_t n);

int wctomb (char *s, wchar_t wchar);

include < string.h>

size_t strxfrm (char *s1, const char *s2, size_t n);

Description mblen, because multi-byte characters are not supported, returns zero if the
first argument is NULL—without regard to the value of n. If the first
argument is not NULL, then mblen returns negative one if n is zero or returns
one if n is nonzero.

mbstowcs copies n multi-byte characters from the second argument into the
first, transforming each multi-byte character into its wide character
representation. Because multi-byte characters are not supported, mbtowcs
copies n bytes from the second argument to the first while transforming each
byte to its wide character representation. Transformation is accomplished by
moving the character value into the least significant byte and zero-filling the
remaining bytes of the wide character. If there is room left in the first
argument after copying all bytes, mbstowcs appends a null terminating
character to the first argument. mbstowcs returns the number of multi-bytes
copied (which, in this implementation, is the number of bytes copied). That

Chapter 7: Libraries
mblen, mbstowcs, mbtowc, wcstombs, wctomb, strxfrm

189

number may be less than n if a null character is found in the second argument
before n bytes are read.

mbtowc transforms the multi-byte character from the second argument into its
wide character representation and places it into the first argument. mbtowc
uses at most n bytes from the second argument. Because multi-byte characters
are not supported, mbtowc copies n characters from the second argument into
the first and transforms each character as it is copied by moving the character
value into the least significant byte and zero-filling the remaining bytes of the
wide character. mbtowc returns zero if the second argument is NULL or
returns one if the second argument is not NULL.

wcstombs copies n wide characters from the second argument into the first
while transforming each wide character into its multi-byte character
representation. Because multi-byte characters are not supported, wctombs
copies at most n characters from the second argument into the first while
transforming each character by copying just the least significant byte of the
wide character. If there is room in the first argument after copying, wcstombs
appends a null terminator. wcstombs returns the number of bytes copied,
which may be less than n if a null terminating character is found in the second
string before n bytes are read.

wctomb transforms the wide character pointed to by the second argument into
a multi-byte character and places it in the first argument. The wide character
will be represented by at most MB_CUR_MAX characters in the multi-byte
character. Because multi-byte characters are not supported, MB_CUR_MAX
is always one and therefore the wide character transformed into a single
character. The transformation is accomplished by copying the least significant
byte of the wide character into the char. wctomb returns zero if the second
argument is NULL or returns one if the second argument is not NULL.

strxfrm, because multi-byte characters are not supported, simply does a
byte-by-byte copy from s2 to s1 of up to n characters.

Note In addition to the multi-byte character operations, the macro MB_CUR_MAX
returns the maximum number of bytes a multi-byte character could have in the
current locale. Because multi-byte characters are not supported, this macro
always returns one.

Chapter 7: Libraries
mblen, mbstowcs, mbtowc, wcstombs, wctomb, strxfrm

190

memchr, memcmp, memcpy, memmove, memset

Memory Operations

Synopsis # include < string.h>

void *memchr (const void *s, int c, size_t n);
int memcmp (const void *s1, const void *s2, size_t n);
void *memcpy (void *s1, const void *s2, size_t n);
void *memmove (void *s1, const void *s2, size_t n);
void *memset (void *s, int c, size_t n);

Description These functions operate efficiently on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not check
for the overflow of any receiving memory area.

Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, according as s1 is
lexicographically less than, equal to, or greater than s2. (n equal to zero yields
equality.) In some operating systems, memcmp uses unsigned char for
character comparisons. This may not be true for other implementations.

Memcpy copies n characters from memory area s2 to s1. It returns s1.

Memmove works like memcpy except that memmove handles overlapping
moves properly.

Memset sets the first n characters in memory area s to the value of character c.
It returns s.

Bugs Strcpy and memcpy may fail for overlapping moves; use memmove instead.

See Also strchr , strrchr , strcmp, strncmp, strcpy, strncpy.

Chapter 7: Libraries
memchr, memcmp, memcpy, memmove, memset

191

perror, errno

System Error Messages

Synopsis # include < stdio.h>

void perror (const char *s);

include < errno.h>

extern int errno;

Description Perror produces a message on the standard error output, describing the last
error encountered during a call to a system or library function. The argument
string s is printed first, then a colon and a blank, then the message and a
new-line. To be of most use, the argument string should include the name of
the program that incurred the error. The error number is taken from the
external variable errno, which is set when errors occur but not cleared when
non-erroneous calls are made.

The value of errno might not be what you expect if your program uses
multitasking; errno can be overwritten by some library routines.

See Also strerror .

Chapter 7: Libraries
perror, errno

192

pow

Power Function

Synopsis # include < math.h>

double pow (double x, double y);

Description Pow returns xy. If x is zero, y must be positive. If x is negative, y must be an
integer.

Diagnostics Pow returns NaN (Not a Number) and sets errno to EDOM when x is 0 and y is
non-positive, or when x is negative and y is not an integer. The error action is
determined by the bits of the global control flag. When the correct value for
pow would overflow or underflow, pow returns + /-HUGE_VAL or 0
respectively, and sets errno to ERANGE.

These error-handling procedures may be changed with the function _fp_error.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
pow

193

printf, fprintf, sprintf

Print Formatted Output

Synopsis # include < stdio.h>

int printf (const char *format, ...);

int fprintf (FILE *stream, const char *format, ...);

int sprintf (char *s, const char *format, ...);

Description Printf places output on the standard output stream stdout. Fprintf places
output on the named output stream. Sprintf places "output", followed by the
null character (\0), in consecutive bytes starting at s; it is the user’s
responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the case
of sprintf), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of
the format. The format is a character string that contains two types of objects:
plain characters, which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or more args. The
results are undefined if there are insufficient args for the format. If the format
is exhausted while args remain, the excess args are evaluated but ignored.

The behavior of the sprintf function is undefined if the destination array is also
one of the other arguments. This undefined behavior of sprintf is particularly
important because the behavior has changed between versions of the HP cross
compilers.

Each conversion specification is introduced by the character %. After the %,
the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum "field width". If the
converted value has fewer characters than the field width, it will be padded
on the left (or right, if the left-adjustment flag ‘-’, described below, has

Chapter 7: Libraries
printf, fprintf, sprintf

194

been given) to the field width. If the field width for a conversion is
preceded by a 0, the padding is done with zeros instead of spaces.

A precision that gives the minimum number of digits to appear for the d, i,
o, u, x, or X conversions, the number of digits to appear after the decimal
point for the e, E, and f conversions, the maximum number of significant
digits for the g and G conversions, or the maximum number of characters
to be printed from a string in s conversion. The precision takes the form
of a period (.) followed by a decimal digit string; a null digit string is
treated as zero.

An optional l (ell) specifying that a following d, i, o, u, x, or X conversion
character applies to a long integer arg, or an optional h specifying that a
following d, i, o, u, x, or X conversion character applies to a short integer
arg. A "%ln" format means that the argument is a pointer to a long integer
and a "%hn" format means that the argument is a pointer to a short
integer.

An optional L specifies that a following e, E, f, g, or G conversion
character applies to a long double arg.

An l or L before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The
arg that is actually converted is not fetched until the conversion letter is seen,
so the args specifying field width or precision must appear before the arg (if
any) to be converted.

Chapter 7: Libraries
printf, fprintf, sprintf

195

The flag characters and their meanings are:

– The result of the conversion will be left-justified within
the field.

+ The result of a signed conversion will always begin with
a sign (+ or -).

blank If the first character of a signed conversion is not a sign,
a blank will be prefixed to the result. This implies that
if the blank and + flags both appear, the blank flag will
be ignored.

This flag specifies that the value is to be converted to an
"alternate form." For c, d, i, s, and u conversions, the
flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a
zero. For x or X conversion, a non-zero result will have
0x or 0X prefixed to it. For e, E, f, g, and G conversions,
the result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point
appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will
not be removed from the result (which they normally
are).

The conversion characters and their meanings are:

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i),
unsigned octal, unsigned decimal, or hexadecimal
notation (x and X), respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum
number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older
versions, padding with leading zeroes may alternatively
be specified by prefixing a zero to the field width. This
does not imply an octal value for the field width.) The
default precision is 1. The result of converting a zero
value with a precision of zero is a null string.

Chapter 7: Libraries
printf, fprintf, sprintf

196

f The double arg is converted to decimal notation in the
style "[-]ddd.ddd", where the number of digits after the
decimal point is equal to the precision specification. If
the precision is missing, six digits are output; if the
precision is explicitly 0, no decimal point appears.

e, E The double arg is converted in the style
"[-]d.ddde+ /-ddd", where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, six digits
are produced; if the precision is zero, no decimal point
appears. The E format code will produce a number
with E instead of e introducing the exponent. The
exponent always contains at least two digits.

g, G The double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision
specifying the number of significant digits. The style
used depends on the value converted: style e will be
used only if the exponent resulting from the conversion
is less than –4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal point
appears only if it is followed by a digit.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null
character (\0) is encountered or the number of
characters indicated by the precision specification is
reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null character
are printed. A NULL value for arg will yield undefined
results.

p The arg is taken to be a pointer to void. The value of
the pointer is converted to a sequence of printable
characters, in the same manner as %x .

Chapter 7: Libraries
printf, fprintf, sprintf

197

n The arg is taken to be a pointer to an integer into which
is written the number of characters written to the
output stream so far by this call to printf. No argument
is converted.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field;
if the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printf and
fprintf are printed as if putc had been called.

Examples To print a date and time in the form "Sunday, July 3, 10:02", where weekday
and month are pointers to null-terminated strings:

printf("%s, %s %d, %d : %. 2d", weekday, month, day, hour,
min);

To print pi to 5 decimal places:

printf("pi = % . 5f", 4 * atan(1 . 0));

The value of string1 is undefined after the following line of code:

sprintf (string1, "%s %d", string1, integer1);

See Also putc, scanf, vprintf .

Chapter 7: Libraries
printf, fprintf, sprintf

198

putc, putchar, fputc

Put a Character on a Stream

Synopsis # include < stdio.h>

int putc (int c, FILE *stream);

int putchar (int c);

int fputc (int c, FILE *stream);

Description Putc writes the character c onto the output stream (at the position where the
file pointer, if defined, is pointing). Putchar(c) is defined as putc (c, stdout).
Putc is implemented as a macro; putchar is implemented as a macro and as a
function. To use a function instead of a macro, # undef the macro before
function invocation.

Fputc behaves like putc, but is a genuine function rather than a macro; it may
therefore be used as an argument. Fputc runs more slowly than putc, but it
takes less space per invocation and its name can be passed as an argument to a
function.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file. The standard error output
stream stderr is by default unbuffered, but use of freopen (see fopen) will cause
it to become buffered. When an output stream is unbuffered, information is
queued for writing on the destination file or terminal as soon as written; when
it is buffered, many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing as soon as the line is
completed (that is, as soon as a new-line character is written or input is
requested). Fflush can also be used to explicitly write the buffer. Setbuf or
setvbuf may be used to change the stream’s buffering strategy.

These routines do not have the means to determine if a file is associated with a
terminal. Therefore, files are fully buffered, except for stdin and stdout which
are set to line-buffered by the _startup routine and stderr which is not buffered.

See Also fclose, ferror , fopen, fwrite , getc, fread, printf , puts, setbuf.

Chapter 7: Libraries
putc, putchar, fputc

199

Diagnostics On success, these functions each return the value they have written. On
failure, they return the constant EOF. This will occur if the file stream is not
open for writing or if the output file cannot be increased.

Line buffering may cause confusion or malfunctioning of programs which use
standard I/O routines but use read themselves to read from standard input. In
cases where a large amount of computation is done after printing part of a line
on an output terminal, it is necessary to fflush the standard output before
going off and computing so that the output will appear.

Bugs Because it is implemented as a macro, putc treats incorrectly a stream
argument with side effects. In particular, putc(c, *f+ +); doesn’t work
sensibly. Fputc should be used instead.

Chapter 7: Libraries
putc, putchar, fputc

200

puts, fputs

Put a String on a Stream

Synopsis # include < stdio.h>

int puts (const char *s);

int fputs (const char *s, FILE *stream);

Description Puts writes the null-terminated string pointed to by s, followed by a new-line
character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character. Note that puts appends
a new-line character, but fputs does not.

Diagnostics If the routine is successful, puts and fputs both return the number of characters
written. In the case of puts, the return value includes the implied newline
character which means that the return value will equal the length of the
argument string + 1.

See Also ferror , fopen, fread, printf , putc.

Chapter 7: Libraries
puts, fputs

201

qsort

Table Sorting Routine

Synopsis # include < stdlib.h>

void qsort (
void *base,
size_t nel, size_t size,
int (*compar)(const void *, const void *));

Description Base points to the element at the base of the table. Nel is the number of
elements in the table. Compar is the name of the comparison function, which
is called with two arguments that point to the elements being compared. The
function passed as compar must return an integer less than, equal to, or
greater than zero as a consequence of whether its first argument is to be
considered less than, equal to, or greater than the second. This is the same
return convention that strcmp uses.

Notes The pointer to the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character. The comparison function need not compare
every byte, so arbitrary data may be contained in the elements in addition to
the values being compared. The order in the output of two items which
compare as equal is unpredictable.

See Also bsearch.

Chapter 7: Libraries
qsort

202

rand, srand

Simple Random Number Generator

Synopsis # include < stdlib.h>

int rand (void);

void srand (unsigned int seed);

Description Rand uses a multiplicative congruential random-number generator with
period 232 that returns successive pseudo-random numbers in the range from 0
to 215-1.

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

Note The spectral properties of rand leave a great deal to be desired. These
functions use a global variable to seed the random number generator. Calling
one of these routines from an interrupt routine will cause the random number
sequence to be non-repeatable.

Chapter 7: Libraries
rand, srand

203

remove

Remove a File

Synopsis # include < stdio.h>

int remove (const char *filename);

Description Remove causes the file whose name is the string pointed to by filename to be
removed. Subsequent attempts to open the file will fail, unless it is created
anew. If the file is open, the behavior of the remove function is the same as
unlink. Remove is implemented as a macro and as a function. To use the
function instead of the macro, # undef the macro before function invocation.

Return Value Remove returns zero if the operation succeeds, non-zero if it fails.

See Also fopen, open, unlink .

Chapter 7: Libraries
remove

204

scanf, fscanf, sscanf

(standard I/O library function)

Formatted Input from Stream

Synopsis # include < stdio.h>

int scanf (const char *format, ...);

int fscanf (FILE *stream, const char *format, ...);

int sscanf (const char *s, const char *format, ...);

Description Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each function
reads characters, interprets them according to a format, and stores the results
in its arguments. Each expects, as arguments, a control string format described
below, and a set of pointer arguments indicating where the converted input
should be stored.

The control string usually contains conversion specifications, which are used
to direct interpretation of input sequences. The control string may contain:

1 White-space characters (blanks, tabs, new-lines, or form-feeds) which
cause input to be read up to the next non-white-space character.
White-space in the format string does not mean that white space must
appear in the input.

2 An ordinary character (not %), which must match the next character of the
input stream.

3 Conversion specifications, consisting of the character %, an optional
assignment suppressing character * , an optional numerical maximum field
width, an optional l (ell), L, or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument,
unless assignment suppression was indicated by * . The suppression of

Chapter 7: Libraries
scanf, fscanf, sscanf

205

assignment provides a way of describing an input field which is to be skipped.
An input field is defined as a string of non-space characters; it extends to the
next inappropriate character or until the field width, if specified, is exhausted.
For all descriptors except "[" and "c", white space leading an input field is
skipped.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For a
suppressed field, no pointer argument is given. The following conversion
codes are legal:

% A single % is expected in the input at this point; no
assignment is done.

d A decimal integer is expected; the corresponding
argument should be an integer pointer.

i A signed integer is expected (whose format is the same
as expected by strtol when its base argument is zero); the
corresponding argument should be an integer pointer.

u An unsigned decimal integer is expected; the
corresponding argument should be an unsigned integer
pointer.

o An octal integer is expected; the corresponding
argument should be an integer pointer.

x A hexadecimal integer is expected; the corresponding
argument should be an integer pointer.

e,f,g A floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is an
optionally signed string of digits, possibly containing a
decimal point, followed by an optional exponent field
consisting of an E or an e, followed by an optional + or
– followed by an integer.

s A character string is expected; the corresponding
argument should be a character pointer pointing to an

Chapter 7: Libraries
scanf, fscanf, sscanf

206

array of characters large enough to accept the string and
a terminating \0, which will be added automatically.
The input field is terminated by a white-space character.
Note that scanf cannot read a null string.

c A character is expected; the corresponding argument
should be a character pointer. The normal skip over
white space is suppressed in this case; to read the next
non-space character, use %1s. If a field width is given,
the corresponding argument should refer to a character
array; the indicated number of characters is read.

[Indicates string data and the normal skip over leading
white space is suppressed. The left bracket is followed
by a set of characters, which we will call the scanset, and
a right bracket; the input field is the maximal sequence
of input characters consisting entirely of characters in
the scanset. The circumflex (^), when it appears as the
first character in the scanset, serves as a complement
operator and redefines the scanset as the set of all
characters not contained in the remainder of the scanset
string. There are some conventions used in the
construction of the scanset. A range of characters may
be represented by the construct first-last, thus
[0123456789] may be expressed [0-9]. Using this
convention, first must be lexically less than or equal to
last, or else the dash will stand for itself. The dash will
also stand for itself whenever it is the first or the last
character in the scanset. To include the right square
bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a circumflex) of
the scanset, and in this case it will not be syntactically
interpreted as the closing bracket. The corresponding
argument must point to a character array large enough
to hold the data field and the terminating \0, which will
be added automatically. At least one character must
match for this conversion to be considered successful.

p A hexadecimal number, which should be the same as
the set of sequences that may be produced by the %p
conversion of the printf function. The corresponding

Chapter 7: Libraries
scanf, fscanf, sscanf

207

argument should be a pointer to a pointer-to-void. For
any input item other than a value converted earlier
during the same program execution, the behavior of %p
is undefined.

n No input is consumed. The corresponding argument
should be a pointer to integer into which is to be
written the number of characters read from the input
stream so far by this call to the scanf function.
Execution of an %n directive does not increment the
assignment count returned at the completion of
execution of the scanf function.

The conversion characters d, u, o, and x may be preceded by l or h to indicate
that a pointer to long or to short rather than to int is in the argument list.
Similarly, the conversion characters e, f, and g may be preceded by l or L to
indicate that a pointer to double or long double rather than to float is in the
argument list (long double is equivalent to double with this compiler). The l,
h, or L modifier is ignored for other conversion characters.

Scanf conversion terminates at EOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input stream.

Scanf returns the number of successfully matched and assigned input items;
this number can be zero in the event of an early conflict between an input
character and the control string. If the input ends before the first conflict or
conversion, EOF is returned.

Examples The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain thompson\0. Or:

Chapter 7: Libraries
scanf, fscanf, sscanf

208

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The
next call to getchar (see getc) will return a.

See Also getc, printf , strtod, strtol .

Note Trailing white space (including a new-line) is left unread unless matched in the
control string.

Diagnostics These functions return EOF if an input failure occurs before any conversion.
Otherwise, the number of input items assigned (which may be fewer than
provided for, or even zero, in case of an early conflict) is returned.

Chapter 7: Libraries
scanf, fscanf, sscanf

209

setbuf, setvbuf

Assign Buffering to a Stream File

Synopsis # include < stdio.h>

void setbuf (FILE *stream, char *buf);

int setvbuf (
FILE *stream,
char *buf,
int type,
size_t size);

Description Setbuf may be used after a stream has been opened but before it is read or
written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is the NULL pointer input/output will be
completely unbuffered. A constant BUFSIZ, defined in the < stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

Setvbuf may be used after a stream has been opened but before it is read or
written. Type determines how stream will be buffered. Legal values for type
(defined in stdio.h) are:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line buffered. The buffer will be
flushed when a newline is written, the buffer is full, or
when input is requested from other streams.

_IONBF Causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering
instead of an automatically allocated buffer (from malloc). Size specifies the
size of the buffer to be used. The constant BUFSIZ in < stdio.h> is suggested
as a good buffer size. If input/output is unbuffered, buf and size are ignored.

Chapter 7: Libraries
setbuf, setvbuf

210

By default, all input/output is fully buffered.

See Also fopen, getc, malloc, putc.

Diagnostics If an illegal value for type or size is provided, setvbuf returns a non-zero value.
Otherwise, the value returned will be zero.

Note A common source of error is allocating buffer space as an "automatic" variable
in a code block, and then failing to close the stream in the same block.

Chapter 7: Libraries
setbuf, setvbuf

211

setjmp, longjmp

Non-Local Goto

Synopsis # include < setjmp.h>

int setjmp (jmp_buf env);

void longjmp (jmp_buf env, int val);

Description These functions are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_buf, is defined in
the < setjmp.h> header file) for later use by longjmp. It returns the value 0.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execution
continues as if the corresponding call of setjmp had just returned the value val.
Longjmp cannot cause setjmp to return the value 0. If longjmp is invoked with
a second argument of 0, setjmp will return 1.

All globally accessible objects have values as of the time longjmp was called.
All automatics local to the destination stack frame have values as of the time
setjmp was called, provided none were modified after calling setjmp; if
modified, the value of an automatic is undefined.

If a longjmp is executed and the environment in which the setjmp was executed
no longer exists, errors can occur. The conditions under which the
environment of the setjmp no longer exists include: exiting the procedure
which contains the setjmp call, and exiting an inner block with temporary
storage (e.g., a block with declarations in C, a with statement in Pascal). This
condition may or may not be detectable. An attempt is made by determining if
the stack frame pointer in env points to a location not in the currently active
stack. If this is the case, longjmp will return a –1. Otherwise, the longjmp will
occur, and if the environment no longer exists, the contents of the temporary
storage of an inner block are unpredictable. This condition may also cause
unexpected process termination. If the procedure has been exited the results
are unpredictable.

Chapter 7: Libraries
setjmp, longjmp

212

Passing longjmp a pointer to a buffer not created by setjmp, or a buffer that has
been modified by the user, can cause all the problems listed above, and more.

Warning If longjmp is called even though env was never primed by a call to setjmp, or
when the last such call was in a function which has since returned, absolute
chaos is guaranteed.

Chapter 7: Libraries
setjmp, longjmp

213

setlocale

Locale Control

Synopsis # include < locale.h>

char *setlocale (int category, const char *locale);

Description Setlocale selects the appropriate piece of the program’s locale as specified by
the category and locale arguments. Setlocale may be used to read or modify all
or part of the program’s current locale. Using LC_ALL for category specifies
the program’s entire locale. Other values for category name only a part of the
program’s locale. LC_COLLATE affects the behavior of the strcoll function.
LC_TYPE affects the behavior of the character handling functions.
LC_NUMERIC affects the decimal-point character for the formatted
input/output functions (printf, scanf, etc.) and the string conversion functions
(strtod, strtol, etc.).

A value of "C" for locale specifies the minimal environment for C translation; a
value of " " for locale is equivalent to "C". At present, the only locale that is
implemented is "C".

At program startup, the equivalent of

setlocale (LC_ALL, "C");

is executed.

Diagnostics If a pointer to a string is given for locale and the selection can be honored, the
setlocale function returns the string associated with the specified category for
the new locale. If the selection cannot be honored, the setlocale function
returns a null pointer, and the program’s locale is not changed.

A null pointer for locale causes the setlocale function to return the string
associated with the category for the program’s current locale; the program’s
locale is not changed. This inquiry can fail by returning a null pointer only if
the category is LC_ALL and the most recent successful locale-setting call used
a category other than LC_ALL .

Chapter 7: Libraries
setlocale

214

The string returned by the setlocale function is such that a subsequent call with
that string and its associated category will restore that part of the program’s
locale. The string returned shall not be modified by the program, but may be
overwritten by a subsequent call to the setlocale function.

See Also localeconv, strtod, strtol , printf , scanf, strcoll, strxfrm .

Chapter 7: Libraries
setlocale

215

sin, cos, tan, asin, acos, atan, atan2

Trigonometric Functions

Synopsis # include < math.h>

double sin (double x);

double cos (double x);

double tan (double x);

double asin (double x);

double acos (double x);

double atan (double x);

double atan2 (double y, double x);

Description Sin, cos and tan return respectively the sine, cosine, and tangent of their
argument, x, measured in radians.

The approximate limit for the values passed to these functions is 2.98E8 for sin
and cos, and 1.49E8 for tan.

Asin returns the arcsine of x, in the range –π/2 to π/2.

Acos returns the arccosine of x, in the range 0 to π.

Atan returns the arctangent of x, in the range –π/2 to π/2.

Atan2 returns the arctangent of y / x, in the range –π to π, using the signs of
both arguments to determine the quadrant of the return value.

Diagnostics Sin, cos, and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there would
otherwise be a complete loss of significance. errno is set to ERANGE.

Chapter 7: Libraries
sin, cos, tan, asin, acos, atan, atan2

216

If x is greater than one for asin or acos, a Not-a-Number (NaN) is returned. If
both arguments for atan2 are zero, 0.0 is the result. Errno is set to EDOM for
both of these conditions.

Error actions are determined by the bits of a global control flag (see the
_fp_error description).

See Also _fp_error, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
sin, cos, tan, asin, acos, atan, atan2

217

sinh, cosh, tanh

Hyperbolic Functions

Synopsis # include < math.h>

double sinh (double x);

double cosh (double x);

double tanh (double x);

Description Sinh, cosh, and tanh return, respectively, the hyperbolic sine, cosine, and
tangent of their argument. These are double-precision routines.

Diagnostics Sinh and cosh set errno to ERANGE and return HUGE_VAL (sinh may return
-HUGE_VAL for negative x) when the correct value would overflow.

These error-handling procedures may be changed with the function _fp_error.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
sinh, cosh, tanh

218

sqrt

Square Root Function

Synopsis # include < math.h>

double sqrt (double x);

Description Sqrt returns the non-negative square root of x. The value of x may not be
negative.

Diagnostics Sqrt returns a NaN and sets errno to EDOM when x is negative. The error
action is determined by the bits of a global control flag.

These error-handling procedures may be changed with the function _fp_error.

See Also _fp_error, "Behavior of Math Library Functions" chapter.

Chapter 7: Libraries
sqrt

219

strcat, strncat, ...

String Operations

Synopsis # include < string.h>

char *strcat (char *s1, const char *s2);

char *strncat (char *s1, const char *s2, size_t n);

int strcmp (const char *s1, const char *s2);

int strncmp (const char *s1, const char *s2, size_t n);

int strcoll (const char *s1, const char *s2);

char *strcpy (char *s1, const char *s2);

char *strncpy (char *s1, const char *s2, size_t n);

char *strerror (int errnum);

size_t strlen (const char *s);

char *strchr (const char *s, int c);

char *strrchr (const char *s, int c);

char *strpbrk (const char *s1, const char *s2);

size_t strspn (const char *s1, const char *s2);

size_t strcspn (const char *s1, const char *s2);

char *strstr (const char *s1, const char *s2);

char *strtok (char *s1, const char *s2);

Chapter 7: Libraries
strcat, strncat, ...

220

Description These functions operate on null-terminated strings. The arguments s1, s2 and
s point to strings (arrays of characters terminated by a null character). The
functions strcat, strncat, strcpy, and strncpy all alter s1. These functions do not
check for overflow of the array pointed to by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends at
most n characters. It copies less if s2 is shorter than n characters. Each
returns a pointer to the null-terminated result (the original value of s1).

Strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0, according as s1 is lexicographically less than, equal to, or
greater than s2. Strncmp makes the same comparison but looks at most n
characters (n less than or equal to zero yields equality). Both of these routines
use unsigned char for character comparison.

The strcoll function returns an integer greater than, equal to, or less than zero,
according to whether the string pointed to by s1 is greater than, equal to, or
less than the string pointed to by s2. The comparison is based on strings
interpreted as appropriate to the program’s locale.

Strcpy copies string s2 to s1, stopping after the null character has been copied.
Strncpy copies exactly n characters, truncating s2 or adding null characters to
s1 if necessary. The result will not be null-terminated if the length of s2 is n or
more. If the length of s2 is less than n, characters from the first null in s2 to
the nth character are copied as nulls. Each function returns s1.

Note that strncpy should not be used to copy n bytes of an arbitrary structure.
If that structure contains a null byte anywhere, strncpy will terminate the copy
when it encounters the null byte, thus copying fewer than n bytes. Use the
memcpy function for these cases.

Strerror maps the error number in errnum (returned from errno) to an error
message string. Strerror returns a pointer to the string, the contents of which
describe the meaning of the error number. The array pointed to must not be
modified by the program.

Strlen returns the number of characters in s, not including the terminating null
character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c (an
8-bit ASCII value) in string s, or a NULL pointer if c does not occur in the
string. The null character terminating a string is considered to be part of the
string.

Chapter 7: Libraries
strcat, strncat, ...

221

Strpbrk returns a pointer to the first occurrence in string s1 of any character
from string s2, or a NULL pointer if no character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

Strstr locates the first occurrence in the string pointed to by s1 of the sequence
of characters (excluding the terminating null character) in the string pointed
to by s2. Strstr returns a pointer to the located string, or a null pointer if the
string is not found. If the second argument, s2, has a length of zero, then strstr
returns the first argument as the return value.

Strtok considers the string s1 to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator string
s2. The first call (with pointer s1 specified) returns a pointer to the first
character of the first token, and will have written a null character into s1
immediately following the returned token. The function keeps track of its
position in the string between separate calls, so that subsequent calls (which
must be made with the first argument a NULL pointer) will work through the
string s1 immediately following that token. In this way subsequent calls will
work through the string s1 until no tokens remain. The separator string s2
may be different from call to call. When no token remains in s1, a NULL
pointer is returned.

Since the strtok function must keep track of its position in the input string, this
function cannot be made reentrant.

Note For user convenience, all these functions are declared in the optional
< string.h> header file.

Bugs The copy operations cannot check for overflow of any receiving string. NULL
arguments cause undefined behavior.

Character movement is performed differently in different implementations.
Memmove should be used for overlapping moves.

Chapter 7: Libraries
strcat, strncat, ...

222

strtod, atof

String to Double -Precision Number

Synopsis # include < stdlib.h>

double strtod (const char *str, char **ptr);

double atof (const char *str);

Description Strtod returns as a double-precision floating-point number the value
represented by the character string pointed to by str. The string is scanned up
to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters (as defined by
isspace), then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e or E followed by an optional sign, followed
by an integer.

If the value of ptr is not (char **)NULL, the variable to which it points is set
to point at the character after the last number, if any, that was recognized. If
no number can be formed, *ptr is set to str, and zero is returned.

Atof(str) is equivalent to strtod(str, (char **)NULL).

See Also scanf, strtol .

Diagnostics If the correct value would cause overflow, + /-HUGE_VAL is returned
(according to the sign of the value), and errno is set to ERANGE. If the correct
value would cause underflow, zero is returned and errno is set to ERANGE.

Chapter 7: Libraries
strtod, atof

223

strtol, strtoul, atol, atoi

Convert String to Integer

Synopsis # include < stdlib.h>

long strtol (const char *str, char **ptr, int base);

unsigned long strtoul (
const char *str,
char **ptr,
int base);

long atol (const char *str);

int atoi (const char *str);

Description Strtol returns as a long integer the value represented by the character string
pointed to by str. The string is scanned up to the first character inconsistent
with the base. Leading "white-space" characters (as defined by isspace in
ctype.h) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating
the scan is returned in the location pointed to by ptr. If no integer can be
formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and "0x"
or "0X" is ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an
optional leading sign a leading zero indicates octal conversion, and a leading
"0x" or "0X" hexadecimal conversion. Otherwise, decimal conversion is used.

Strtoul is the same as strtol except that no leading plus or minus is allowed in
the string pointed to by str.

Atol(str) is equivalent to strtol(str, (char **)NULL, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

Chapter 7: Libraries
strtol, strtoul, atol, atoi

224

See Also atof, ctype, scanf, strtod.

Bugs Overflow conditions are ignored.

Chapter 7: Libraries
strtol, strtoul, atol, atoi

225

toupper, tolower, _toupper, _tolower

Translate Characters

Synopsis # include < ctype.h>

int toupper (int c);

int tolower (int c);

int _toupper (int c);

int _tolower (int c);

Description Toupper and tolower have as domain the range of getc: the integers from –1
through 255. If the argument of toupper represents a lower-case letter, the
result is the corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the corresponding lower-case
letter. All other arguments in the domain are returned unchanged. Toupper
and tolower are implemented both as macros and functions. To use a function
instead of a macro, # undef the macro before function invocation.

The macros _toupper and _tolower accomplish the same thing as toupper and
tolower but have restricted domains and are faster. _toupper requires a
lower-case letter as its argument; its result is the corresponding upper-case
letter. The macro _tolower requires an upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments outside the domain
cause undefined results. Use of this form will never work with foreign
character sets.

See Also getc.

Chapter 7: Libraries
toupper, tolower, _toupper, _tolower

226

ungetc

Push Character Back into Input Stream

Synopsis # include < stdio.h>

int ungetc (int c, FILE *stream);

Description Ungetc inserts the character c into the buffer associated with an input stream.
That character, c, will be returned by the next getc call on that stream. Ungetc
returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered. In the case that
stream is stdin, one character may be pushed back onto the buffer without a
previous read statement.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek erases all memory of inserted characters.

See Also fseek, getc, setbuf.

Diagnostics Ungetc returns EOF if it cannot insert the character.

Chapter 7: Libraries
ungetc

227

va_list, va_start, va_arg, va_end

Synopsis # include < stdarg.h>

va_list
void va_start(va_list list, arg_n)
type va_arg(va_list list, type)
void va_end(va_list list)

Description The preceding macros are used for functions that have variable numbers of
arguments. The type va_list is used to track which of the optional arguments
are being processed.

The va_start macro is used to initialize the variable of type va_list. Its second
argument, arg_n, is the last of the non-optional arguments of the current
function. The type of arg_n must be of the default argument promotion types
(int, long, double; not char, short, enum, or float).

The va_arg macro evaluates to the value of the next optional argument from
when the function was invoked. Each successive call to va_arg gives the next
argument that was given. The second argument to va_arg is the type of the
argument that was passed next in the list. Again this type should only be from
the set of default argument promotion types (int, long, double, pointers, and
structures). Using a type of short, char, enum, or float will cause undefined
behavior because these types can not be passed as optional arguments.

The va_end macro should be called when the last of the optional arguments
has been processed. This ensures proper termination of the optional
argument processing.

Example The following function takes a variable number of arguments that are all of
type integer. The function returns the sum of all of the optional arguments.

#include <stdarg.h>
int
sum(int count, ...)
{
 va_list args;
 int result = 0;

Chapter 7: Libraries
va_list, va_start, va_arg, va_end

228

 va_start(args, count);
 while (count-- > 0)
 result += va_arg(args, int);
 va_end(args);
 return result;
}

See also vprintf

Chapter 7: Libraries
va_list, va_start, va_arg, va_end

229

vprintf, vfprintf, vsprintf

Formatted Output of Varargs List

Synopsis # include < stdio.h>
include < stdarg.h>

int vprintf (const char *format, va_list ap);

int vfprintf (
FILE *stream,
const char *format,
va_list ap);

int vsprintf (
char *s,
const char *format,
va_list ap);

Description Vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by stdargs.h.

Chapter 7: Libraries
vprintf, vfprintf, vsprintf

230

Example The following demonstrates how vfprintf could be used to write an error
routine.

#include <stdio.h>
#include <stdarg.h>
 . . .
/* "error" should be called like:
 * error(function_name, format, arg1, arg2...); */
void
error(char *function_name, char *format, ...)
{
 va_list args;

 va_start(args, format);
 /* print out name of function causing error */
 (void)fprintf(stderr, "ERROR in %s: ", function_name);
 /* print out remainder of message */
 (void)vfprintf(stderr, format, args);
 va_end(args);
 exit(1);
}

See Also printf , stdarg.h.

Chapter 7: Libraries
vprintf, vfprintf, vsprintf

231

Chapter 7: Libraries
vprintf, vfprintf, vsprintf

232

8

Environment-Dependent Routines

Description of the emulator environment-dependent routines.

Chapter 8: Environment-Dependent Routines

233

This chapter describes the HP emulator execution environment-dependent
routines. The source files for these interface routines (as well as the object
code files) are provided so they can be customized for target system execution
environments.

The environment-dependent routines (except monitor and mon_stub) and
library functions are all located in linker segment name env. This segment
name may be used just as any other segment name would be (for example, in
SEGMENT pragmas). See the on-line man pages for a complete description of
the cc8086 and cc80186 command syntax and options.

The environment-dependent routines relate to the following areas of C
programming.

• Program Setup.

• Dynamic Memory Allocation.

• Program Input and Output.

Chapter 8: Environment-Dependent Routines

234

Program Setup

Two program setup routines are provided with the 8086/186 C compiler.

crt0.o For programs which use I/O.

crt1.o For programs which do not use I/O.

These routines define the entry point for program setup, entry() , and are
responsible for general preexecution setup such as initialization of the stack
pointer. At the end of preexecution initialization, these setup routines call
main().

The source files of the program setup routines have been provided (and are
well commented) in case they need to be rewritten, for example, to change any
of the default initializations or to add any new program setup such as
establishing values other than zero for argv and argc.

Differences Between "crt0" and "crt1"

The difference between the two program setup routines is that crt0 will call
the _startup() library routine to open the standard input, output, and error
files: stdin, stdout, and stderr. The crt1 routine does not open the standard
input, output, and error streams and has been provided to avoid the overhead
of loading the stdio library for a program which doesn’t use it.

When using crt1 instead of crt0, the behavior of the exit() and _exit() library
routines is different. Since crt1 is used in non-I/O applications, neither exit()
nor _exit() will flush buffers or close open files. The exit() routine simply
executes functions which have been logged by the atexit() routine, and the
_exit() routine just calls _exit_msg().

Chapter 8: Environment-Dependent Routines

235

The "_display_message()" Routine

The _display_message() routine displays run-time error messages. A call to
_display_message() guarantees program termination. The
_display_message() routine is called from _exit() (via _exit_msg()) and other
library routines; it is also called by the code generated when the "generate
run-time error checking" command line option is specified.

The _display_message() routine causes the emulation monitor program to
display a message on the emulation display’s STATUS line.

An example of how the _display_message() routine is called can be found in
the startup.c source file.

Linking the Program Setup Routines

The program setup routines are loaded, respectively, by the following linker
command files.

iolinkcom.k Links program with crt0.o.

linkcom.k Links program with crt1.o.

fiolinkcom.k Links program containing 8087 code with crt0.o.

flinkcom.k Links program containing 8087 code with crt1.o.

Since C assumes that stdin, stdout, and stderr are opened prior to main()
being called, cc8086 automatically uses the iolinkcom.k (or fiolinkcom.k)
linker command file. To link with crt1.o instead, use the cc8086 "no I/O"
option to specify that the linkcom.k (or flinkcom.k) command file be used.

If you use the "generate code for the 8087" (-f) option, fiolinkcom.k or
flinkcom.k will be used instead of iolinkcom.k or linkcom.k. These linker
command files substitute lib87.a for lib.a and libm87.a for libm.a.

Whenever the environment-dependent library, env.a, is modified, you must
also modify the default linker command file to load the new library.

Emulator Configuration Files

Two to four configuration files are provided for each supported emulator:

Chapter 8: Environment-Dependent Routines

236

ioconfig.EA For programs linked with crt0.o.

config.EA For programs linked with crt1.o.

fioconfig.EA For programs containing 8087 code and linked with
crt0.o.

fconfig.EA For programs containing 8087 code and linked with
crt1.o.

Polling for simulated I/O is enabled by the ioconfig.EA and fioconfig.EA files
because the stdin, stdout, and stderr streams (which are set up by the crt0
routine) are implemented via simulated I/O in the emulation environment.
The config.EA and fconfig.EA files do not enable polling for simulated I/O
because crt1 does not set up the standard input, output, and error streams.

Configuration files fioconfig.EA and fconfig.EA are supplied only for those
emulation environments which support the 8087. These configuration files
should be used whenever the program contains 8087 code.

Chapter 8: Environment-Dependent Routines

237

Memory Map

Notice that each memory model has its own memory map. Check figures 8-3
and 8-4 (figures 8-5 and 8-6 for HP 647xx emulation environments) to find out
where the segments are placed for a particular memory model. The segment
ordering is specified by the default linker command files iolinkcom.k and
linkcom.k (fiolinkcom.k and flinkcom.k when using the 8087). The memory
map is defined by the provided emulator configuration files ioconfig.EA and
config.EA (fioconfig.EA and fconfig.EA when using the 8087). Because
emulator configuration files map memory for absolute code located by the
linker, modifications to the default linker command files will usually
necessitate modifications to the emulator configuration as well.

Note When using small memory model with the run-time error checking option
turned on, no user code (PROG Segment prog/CODE) or data (DATA
Segment data) should be placed where OFFSET = 0000. The NULL pointer
is defined to be 0000. If you store code or data at OFFSET 0000, the address
of that code or data will be confused with the NULL pointer.

Note that the small memory model map has the PROG and DATA segments
beginning at 80002H and 10002H to avoid this situation.

Chapter 8: Environment-Dependent Routines

238

00000H
(emul ROM)

003FFH
SEGMENT interrupt

(1K)

Space reserved for interrupt
vectors.

•
•
•

10000H

(emul RAM)

1F3FFH

SEGMENT envdata
SEGMENT libdata
SEGMENT libcdata

SEGMENT data
SEGMENT idata
SEGMENT udata

SEGMENT heap (4K)
SEGMENT userstack

(61K)

Environment-dependent data
Run-time library data
Support library data
Default for user data
Initialized user data
Uninitialized user data
System dynamic pool
System stack

•
•
•

80000H

(emul ROM)

8FFFFH

CLASS CODE
SEGMENT libcconst
SEGMENT libmconst

CLASS ??INIT
SEGMENT mm_check

SEGMENT const
(64K)

All code space
Support library constants
Math library constants
Initialized-data tables
Memory model check
Default for user constants

FFFFFH

•
•
•

Figure 8-1. Default Memory Map for Large Memory Model

Chapter 8: Environment-Dependent Routines

239

00000H
(emul ROM)

003FFH
SEGMENT interrupt

(1K)

Space reserved for interrupt
vectors.

•
•
•

10002H

(emul RAM)

1F3FFH

SEGMENT data
SEGMENT idata
SEGMENT udata

SEGMENT heap (4K)
SEGMENT userstack

SEGMENT const
SEGMENT envdata

(61K)

Library & default user data
Initialized user data
Uninitialized user data
System dynamic pool
System dynamic stack
User constants
INITDATA data

•
•
•

80002H

(emul ROM)

8FFFFH

CLASS CODE
CLASS ??INIT

SEGMENT mm_check
(64K)

All code space
Initialized-data tables
Memory model check

FFFFFH

•
•
•

Figure 8-2. Default Memory Map for Small Memory Model

Chapter 8: Environment-Dependent Routines

240

Dynamic Allocation

There are several dynamic allocation routines in the libc.a support library
(e.g., malloc, realloc, etc.). The only environment dependency is isolated in
the function _getmem(). For these dynamic allocation routines to work, the
function _getmem() must return memory allocated from the system. The
source for the _getmem() function is provided in the "shipped sources"
directory.

As provided, _getmem() returns an address to a block of dynamic memory and
the size of that block. If the block size requested by malloc() cannot be
satisfied, the largest block left in the heap will be returned. The calling
sequence is:

void *_getmem(int *size);

ptr = _getmem(&size);

The size of the block allocated, whether it is larger or smaller than the size
requested, is returned indirectly through the pointer parameter. Calling
_getmem() with a size equal to zero will cause the current address of the heap
to be returned.

If desired, _getmem() may be written to return more than the requested
amount of memory; the dynamic allocation routines will take advantage of this.

Rewriting the "_getmem" Function

This routine (in file getmem.c) should be rewritten to return memory in the
best way for the target system. In a simple embedded system this routine
should probably be written to return the address of an array big enough to use
up all available RAM not used by the rest of the program. If an operating
system is present, the routine should be written to return a large chunk of
memory from the operating system at each call. This routine is similar to the
host operating system sbrk() function.

After the _getmem() function is rewritten and compiled, the new getmem.o
object file should be loaded before the env.a library, or be used (with ar86) to
replace the existing getmem object module in the env.a library. Refer to the
"Getting Started" chapter for an automated way to rebuild the env.a library
using the make utility.

Chapter 8: Environment-Dependent Routines

241

Input and Output

Many of the functions defined by stdio.h use the basic I/O functions found in
the systemio support library module. These basic I/O functions are: open(),
close(), read(), write() , lseek(), and unlink() . The systemio functions provided
use the simulated I/O feature of the emulation environments. The C source
code for the basic I/O functions is provided in the "shipped sources" directory.

As provided, the I/O system defines the maximum number of I/O control
blocks available as 12 (which equals the maximum number of simulated I/O
files that can be open at the same time), and the size of the I/O buffers is
defined to be 1020 bytes (based on the 255 byte size of the simulated I/O
buffer). These values can be changed by redefining the macros FOPEN_MAX
and BUFSIZ in the header file stdio.h; after the values of these macros are
changed, you must recompile the file startup.c. Changes to FOPEN_MAX and
BUFSIZ will not take effect until a new startup.o object file is made and
placed in the environment dependent library, env.a.

The systemio.c file should be rewritten for the target system environment.

After the systemio.c file is rewritten and compiled, the new systemio.o object
file should either be loaded before the env.a library, or be used (with ar86) to
replace the existing systemio object module in the env.a library. Refer to the
"Getting Started" chapter for an automated way to rebuild the env.a library
using the make utility.

Environment-Dependent I/O Functions

The remainder of this chapter describes the I/O library functions which are
dependent on the emulator execution environments. Functions declared in the
simio.h include file are found in the environment-dependent library archive
file env.a.

Chapter 8: Environment-Dependent Routines

242

clear_screen

Clear the Simulated I/O Display

Synopsis # include < simio.h>

int clear_screen (int fildes);

Description Clear_screen clears the simulated I/O display if stdout is directed to the display.
Fildes is the file descriptor obtained from an open system call to open stdout.

Errors Clear_screen will fail and the display will not be cleared if one of the following
conditions is true; errno will be set accordingly.

[INVALID_CMD]

Attempt to clear the display on a file that is not a
display.

[INVALID_DESC]

Fildes is not an open file descriptor.

[CONTINUE_ERROR]

Attempt to clear the display after a continued
emulation session (emulation is exited and then
reentered).

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Chapter 8: Environment-Dependent Routines
clear_screen

243

close

Close a File Descriptor

Synopsis # include < simio.h>

int close (int fildes);

Description Fildes is a file descriptor obtained from an open system call. Close closes the
file indicated by fildes.

Errors Close will fail and the file will not be closed if one of the following conditions
is true; errno will be set accordingly.

[INVALID_DESC]

Fildes is not an open file descriptor.

[CONTINUE_ERROR]

Attempt to close any file descriptor after a continued
emulation session (emulation is exited and then
reentered).

[UNIX_ERROR]

Any error from the host operating system close(2)
function.

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

See Also open.

Chapter 8: Environment-Dependent Routines
close

244

exec_cmd

Execute Operating System Command on the Host

Synopsis # include < simio.h>

int exec_cmd (
const char *command,
int *file1,
int *file2,
int *file3);

Description Exec_cmd executes an operating system command on the host computer.
Command is a pointer to a string composed of the command to be executed
and any parameters required by that command. File1, file2, and file3 are
pointers to variables which will be set to the file descriptors of the pipes
connected to stdin, stdout, and stderr of the process spawned. If any pointer is
NULL, that pipe is connected to /dev/null and no file descriptor is returned.

Errors Exec_cmd will fail and the command will not be executed if one of the
following conditions is true; errno will be set accordingly.

[CANNOT_READ_MEMORY]

Read of command name failed.

[NO_FREE_DESC]

The simulated I/O descriptor table is full.

[TOO_MANY_FILES]

Host pipe(2) command failed.

[NO_FREE_PROC_ID]

The maximum number of processes are already active.

[TOO_MANY_PROCESSES]

Chapter 8: Environment-Dependent Routines
exec_cmd

245

Host fork(2) failed and errno = EAGAIN.

[INVALID_CMD_NAME]

The command name length is zero.

[UNIX_ERROR]

Host fork(2) failed and errno does not equal EAGAIN.

Return Value Upon successful completion, a process ID number > = 0, and the pipes’ file
descriptors are returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

Chapter 8: Environment-Dependent Routines
exec_cmd

246

exit, _exit

Terminate Process

Synopsis # include < stdlib.h>

void exit (int status);

void _exit (int status);

Description Exit is equivalent to _exit, except that exit flushes stdio buffers, while _exit does
not. Also, exit executes any routines that have been logged by the atexit
routine; _exit does not do this. Both exit and _exit terminate the calling
process by closing all open file descriptors. _display_message() is called via
_exit_msg(), with the message: "Prog end, returned < arg> ", where "arg" is
either the value returned by main() or the argument passed to an explicit call
to exit.

When programs are not linked with the I/O routines (the "no I/O" command
line option is used), the behavior is the same as above except that exit does not
flush stdio buffers, and neither function closes open file descriptors.

See Also atexit.

Chapter 8: Environment-Dependent Routines
exit, _exit

247

_getmem

Get Block of Memory from System Heap

Synopsis # include < memory.h>

void *_getmem(int *size);

Description _getmem is called by the support library dynamic allocation routines (e.g.,
malloc, realloc, etc.) and the sbrk function. For these functions to work,
_getmem must return memory allocated from the system.

_getmem returns an address to a block of dynamic memory and the size of that
block. If the block size requested by malloc cannot be satisfied, the largest
block left in the heap will be returned. Size can be negative, in which case the
amount of allocated space is decreased.

Return Value The size of the block allocated, whether it is larger or smaller than the size
requested, is returned indirectly through the pointer parameter. Calling
_getmem with a size equal to zero will cause the current address of the heap to
be returned.

If desired, _getmem may be rewritten to return more than the requested
amount of memory; the dynamic allocation routines (e.g., malloc, realloc, etc.)
will take advantage of this.

Warnings Deallocating memory (calling _getmem with a negative size) without first
having allocated the memory will cause unknown results.

Chapter 8: Environment-Dependent Routines
_getmem

248

Example An example of how the _getmem function is used can be found in the shipped
source file sbrk.c shown below.

#include <memory.h>
#pragma SEGMENT PROG=env DATA=envdata CONST=env
extern void *_getmem();

void
*sbrk(incr)
int incr;
{
 void *ptr; /* pointer to memory block allocated */
 char *tptr; /* used to zero memory block allocated */
 int size = incr;

 ptr = _getmem(&size);
 if(size != incr) /* was request satisfied? */
 {
 size = -size; /* free block returned by _getmem since */
 _getmem(&size); /* did not satisfy request. */
 return (char *)-1;
 }

 /* initialize memory block to be returned to zero */
 for (tptr = ptr; tptr < (char *)ptr+incr; tptr++)
 *tptr = 0;
 return ptr;
}

See Also malloc, free, realloc, calloc, sbrk.

Chapter 8: Environment-Dependent Routines
_getmem

249

initsimio

Initialize Simulated I/O

Synopsis # include < simio.h>

int initsimio (void);

Description It is not necessary to call the initsimio function prior to calling any other
functions implemented via simulated I/O; however, doing so will allow you to
restart a program, which was stopped with simulated I/O files still open,
without any side effects from the previously opened files.

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Chapter 8: Environment-Dependent Routines
initsimio

250

kill

Kill Simulated I/O Process

Synopsis # include < simio.h>

int kill (int pid, int sig);

Description Kill sends signal sig to a process running on the host which is identified by the
process ID number pid.

Errors Kill will fail and the process will not be killed if one of the following conditions
is true; errno will be set accordingly.

[NO_PERMISSION]

Host kill(2) failed because of a permissions error.

[INVALID_PROC_ID]

The simulated I/O process ID is unused or out of range
(the simulated I/O process entry does not exist).

[INVALID_SIGNAL]

Host kill(2) failed because sig is not a valid signal.

[NO_SUCH_PROCESS]

The host operating system process does not exist.

[UNIX_ERROR]

Host kill(2) failed for some other reason.

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Chapter 8: Environment-Dependent Routines
kill

251

lseek

Move Read/Write File Pointer

Synopsis # include < simio.h>
include < stdio.h>

long lseek (int fildes, long int offset, int whence);

Description Fildes is a file descriptor returned from a open system call. Lseek sets the file
pointer associated with fildes as follows. (The SEEK_* macros are defined in
< stdio.h> which must be included.)

If whence is SEEK_SET, the pointer is set to offset bytes. If whence is
SEEK_CUR, the pointer is set to its current location plus offset. If whence is
SEEK_END, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in
bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the
following are true:

[INVALID_DESC]

Fildes is not an open file descriptor.

[NO_SEEK_ON_PIPE]

Fildes is associated with a pipe or fifo.

[INVALID_OPTIONS]

Whence is any illegal value.

[INVALID_OPTIONS]

The resulting file pointer would be negative.

Chapter 8: Environment-Dependent Routines
lseek

252

[INVALID_CMD]

Fildes is display or keyboard.

[CONTINUE_ERROR]

Attempt to move a file pointer after a continued
emulation session (emulation is exited and then
reentered).

[UNIX_ERROR]

Some host operating system call has failed. Some
devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

Return Value Upon successful completion, a non-negative integer indicating the file pointer
value is returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

See Also open.

Chapter 8: Environment-Dependent Routines
lseek

253

open

Open File for Reading or Writing

Synopsis # include < simio.h>

int open (const char *path, int option);

Description Open requests the host to open a file specified by path with the given options.
If the operation is successful, open will return a valid file descriptor. If
unsuccessful, open will set errno and return -1. Option values are constructed
by OR-ing flags from the list below.

O_READ Open for reading only.

O_WRITE Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes.

O_APPEND If set, the file pointer will be set to the end of the file
prior to each write.

O_CREATE If the file exists, this flag has no effect. Otherwise, the
file is created, the owner ID of the file is set to the
effective user ID of the process, and the group ID of the
file is set to the effective group ID of the process.

O_TRUNC If the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

O_EXCL If O_EXCL and O_CREATE are set, open will fail if
the file exists.

Chapter 8: Environment-Dependent Routines
open

254

Errors Open will fail and the file will not be opened if one of the following conditions
is true. Errno will be set accordingly:

[UNIX_ERROR]
A component of the path prefix is not a directory, or,

The named file is a directory and option is write or
read/write, or,

The named file resides on a read-only file system and
option is write or read/write, or,

The named file is a character special or block special
file, and the device associated with this special file does
not exist, or,

The file is open for execution and option is write or
read/write. Normal executable files are only open for a
short time when they start execution. Other executable
file types may be kept open for a long time, or
indefinitely under some circumstances, or,

A signal was caught during the open system call, or,
The system file table is full.

[FILE_NOT_FOUND]
O_CREATE is not set and the named file does not exist.

[NO_PERMISSION]
A component of the path prefix denies search
permission, or,

Option permission is denied for the named file.

[TOO_MANY_FILES]
More than the maximum number of file descriptors are
currently open.

[FILE_EXISTS]
O_CREATE and O_EXCL are set, and the named file
exists.

Chapter 8: Environment-Dependent Routines
open

255

[INVALID_FILE_NAME]
Path is null.

[INVALID_OPTIONS]
Option specifies both O_WRITE and O_RDWR. Also,
undefined bits set in the option parameter.

[NO_FREE_DESC]
The maximum number of simulated I/O files are already
open.

Return Value Upon successful completion, the file descriptor is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

See Also close, lseek, read, write .

Chapter 8: Environment-Dependent Routines
open

256

pos_cursor

Position Cursor on Simulated I/O Display

Synopsis # include < simio.h>

int pos_cursor (int fildes, int col, int row);

Description Pos_cursor positions the cursor to (column, line) on the display if stdout is
directed to the display.

Errors Pos_cursor will fail if one of the following conditions is true; errno will be set
accordingly.

[INVALID_CMD]
Attempt to position the cursor on a file that is not a
display.

[INVALID_ROW_OR_COLUMN]

Row is greater than or equal to 50 rows, or col is greater
than or equal to 80 columns (or the number of columns
on the display, whichever is greater).

[INVALID_DESC]
Fildes is not an open file descriptor.

[CONTINUE_ERROR]
Attempt to position the cursor after a continued
emulation session (emulation is exited and then
reentered).

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

Chapter 8: Environment-Dependent Routines
pos_cursor

257

read

Read Input

Synopsis # include < simio.h>

int read (int fildes, void *buf, int nbyte);

Description Read requests the host to read nbytes from the file specified by fildes and place
them into buf. If the operation is successful, read returns the number of bytes
read. If unsuccessful, read sets errno and returns -1.

On devices capable of seeking, the read starts at a position in the file given by
the file pointer associated with fildes. Upon return from read, the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a device is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the number of
bytes left in the file is less than nbyte bytes. A value of 0 is returned when an
end-of-file has been reached.

Errors Read will fail if one of the following conditions is true and errno will be set
accordingly:

[INVALID_DESC]

Fildes is not a valid file descriptor open for reading.

[INVALID_CMD]

Attempt to read from the display.

Chapter 8: Environment-Dependent Routines
read

258

[CONTINUE_ERROR]

Attempt to read anything after a continued emulation
session (emulation is exited and then reentered).

[UNIX_ERROR]

Any error from host read(2).

Return Value Upon successful completion a non-negative integer is returned indicating the
number of bytes actually read. Otherwise, a -1 is returned and errno is set to
indicate the error.

Note

Although no more than 255 bytes are transferred from the host at one time,
there is no practical limit to the number of bytes that can be read per
invocation of read.

See Also open.

Chapter 8: Environment-Dependent Routines
read

259

sbrk

Get Block of Zero-Filled Memory from System Heap

Synopsis # include < memory.h>

void *sbrk (int increment);

Description Sbrk is used to get a block of dynamically allocated memory, increment bytes in
length, from the system heap. The newly allocated space is set to zero.
Increment can be negative, in which case the amount of allocated space is
decreased.

Return Value Upon successful completion, sbrk returns a pointer to the first byte of the
memory block requested. Otherwise, a value of -1 is returned.

Warnings The pointer returned by sbrk is not aligned in any manner. Loading or storing
words through this pointer could cause alignment problems.

Care should be taken when using sbrk in conjunction with calls to the main
memory allocator routines (malloc, calloc, realloc, and free). All these
routines allocate and deallocate data memory from the system heap. Although
you should not attempt this, it is possible to deallocate data memory allocated
through the main memory allocator functions with a subsequent call to sbrk.

See Also malloc, free, realloc, calloc, _getmem.

Chapter 8: Environment-Dependent Routines
sbrk

260

unlink

Remove Directory Entry

Synopsis # include < simio.h>

int unlink (const char *path);

Description Unlink causes the file whose name is pointed to by path to be removed; the file
remains open, however, and can be accessed until it is closed. Subsequent
attempts to open the file will fail, unless it is created anew.

Errors Unlink will fail if one of the following conditions is true, and errno will be set
accordingly.

[INVALID_FILE_NAME]

A component of the path prefix is not a directory.

[FILE_NOT_FOUND]

The named file does not exist, path is NULL, or a
component of path does not exist.

[NO_PERMISSION]

Search permission is denied for a component of the
path prefix. Write permission is denied for the
directory containing the file to be removed.

[UNIX_ERROR]

The host unlink(2) function failed for some reason
other than denied permissions.

Chapter 8: Environment-Dependent Routines
unlink

261

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

See Also close, open.

Chapter 8: Environment-Dependent Routines
unlink

262

write

Write on a File

Synopsis # include < simio.h>

int write (int fildes, const void *buf, int nbyte);

Description Write requests the host to write nbyte bytes from buf to the file specified by
fildes. If the operation is successful, write returns the number of bytes written.
If unsuccessful, write sets errno and returns -1.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the
file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
device’s current position. The value of a file pointer associated with such a
device is undefined.

If the O_APPEND flag of the file status flags is set when the file is opened, the
file pointer will be set to the end of the file prior to the first write.

If a write requests that more bytes be written than there is room for, only as
many bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512 bytes
will return 20. The next write of a non-zero number of bytes will give a failure
return (except as noted below).

Chapter 8: Environment-Dependent Routines
write

263

Errors Write will fail and the file pointer will remain unchanged if one of the
following conditions is true and errno will be set accordingly:

[INVALID_DESC]

Fildes is not a valid file descriptor open for writing.

[UNIX_ERROR]

The current file position (as set by lseek) is less than
zero.

[INVALID_COMMAND]

Fildes indicates the keyboard.

[CONTINUE_ERROR]

Attempt to write anything after a continued emulation
session (emulation is exited and then reentered).

Write will fail and the file pointer will be updated to reflect the amount of data
transferred if one of the following conditions is true and errno will be set
accordingly:

[UNIX_ERROR]

An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size.

Return Value Upon successful completion, the number of bytes actually written is returned.
Otherwise, -1 is returned, and errno is set to indicate the error.

See Also lseek, open.

Chapter 8: Environment-Dependent Routines
write

264

9

Compile-Time Errors

Explanations of compile-time error messages.

Chapter 9: Compile-Time Errors

265

Errors are problems which prevent a program from compiling successfully.
When you see an error message, you must correct the error then compile the
program again.

Warnings are possible problems which may cause your program to execute
incorrectly. When you see a warning message, you need to decide whether
your code is correct. Warnings are listed at the end of this chapter.

The errors and warnings are listed here in alphabetical order.

In addition to the error or warning message, the compiler shows the line of
code, the file name, and the line number.

Errors

Address initializer is too large to fit in declared type. This error can
occur when an attempt is made to store a pointer in a variable which was
declared with too small a size, such as "short" or "char."

Address of automatic variable is not constant.

Assign of ptr to const to ptr to non-const. This error occurs when a
pointer to constant is assigned to a pointer to non-constant. For example:

ptr_to_non_const = ptr_to_const;

This error prevents the inadvertent modification of constant data via pointers.
A cast can be used to override this checking.

Assign of ptr to volatile to ptr to non-volatile. This error occurs when a
pointer to volatile is assigned to a pointer to non-volatile.

ptr_to_non_volatile = ptr_to_volatile;

This error prevents optimizations from being inadvertently made where the
volatile type modifier has said that they shouldn’t. A cast can be used to
override this checking.

Bad command line syntax.

Chapter 9: Compile-Time Errors

266

Bad constant expression. This means that a non-constant expression has
been used in a context where a constant expression is required.

Bad digit in octal constant.

Bad function declarator. This is a syntax error which occurs when the
parser is expecting the start of a function definition. It is often followed by
many errors due to the parser being out of sync.

Bad integer constant. This error occurs when a non-integral constant is
used in a context where an integer constant is required.

Bit field < name> must be integral type.

Bit width of < bit field name> cannot be 0.

Bit width of < bit field name> too large.

Break must be inside looping construct or switch.

Can only initialize first member of a union.

Can’t access array member of non-lvalue structure.

Can’t declare void object < identifier/member name> . The only objects
which may be declared with type void are functions returning void and pointers
to void.

Cannot assign to a constant. This error occurs when a symbol declared
with the "const" type modifier is assigned a value.

Cannot have array of functions. Arrays may not have functions as
elements, but they may have pointers to functions as elements. (Hint: use
typedef to declare a type "pointer to function," then declare an array of this
type.)

Cannot have array of void. Although you cannot declare an array of void
objects, you may declare an array of pointers to void. For example, you may
declare void *ptr_array[10] .

Chapter 9: Compile-Time Errors

267

Cannot take address of a bit field. This error occurs when the unary
address operator (&) is used on a bit field.

Cannot take address of a register. This error occurs when the unary
address operator (&) is used on a variable declared with the register storage
class specifier.

Cannot take sizeof this type. Sizeof cannot be applied to a function, bit
field, a void, or an undimensioned array.

Case statement must be inside switch.

Case values must be integral.

Character string constant exceeds maximum length. The maximum
length for character strings is 1023 characters (1024 if the NULL is counted).

Comment terminator ’* /’ without comment start.

Condition of ’?:’ must be scalar. The scalar types include the arithmetic
types (char, short, int, long, float, double) and pointers.

Constant literal too large. A constant literal has an implied type. If the
value is too large for that type, then an error occurs.

Continue must be inside looping construct.

Control expression must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Declaration for nonexistent parameter. This error occurs when a
declaration list of formal parameters contains a declaration for a parameter
not listed in the function declarator.

Default statement must be inside switch.

Division or modulo by zero. This error occurs when the compiler
determines that a constant folding optimization will cause a divide by zero.
Use the unary plus (+) operator to prevent the rearrangement of expressions.

Duplicate label < identifier> .

Chapter 9: Compile-Time Errors

268

Duplicate structure or union member < name> .

Empty character literal.

Enum constant value not representable as int. All enumeration values
must be representable in an int type.

Exceeded automatic variable space. This error occurs when there is too
much local storage. The limit is 216-2 bytes.

Exceeded parameter passing space. This error occurs when there is too
much parameter storage. The limit is 216-2 bytes.

Expression too complex.

Function call has fewer params than prototype.

Function call has more params than prototype.

Function cannot return array.

Function cannot return function.

Function parameter cannot be void.

Goto non-existent label < identifier> .

Illegal cast operands. This error occurs when an expression cannot be
converted to the type specified by the cast construct (for example, casting
between a data pointer and a float). The cast operator can only be applied to
scalar or void types

Illegal character in input. This is usually caused when a control character
has been placed in the C source code.

Illegal function name.

Illegal operand types of < operator> . The operand types are incompatible
with the operator.

Illegal preprocessor directive in input.

Chapter 9: Compile-Time Errors

269

Incompatible array initializer. The initializer given for an array is not
compatible with the type of the array elements.

Incompatible initializer. The initializer given is not compatible with the type
of the variable being initialized.

Initializer too large for array.

Interrupt routine must return type void.

Left operand of < operator> must be an lvalue. An "lvalue" is an
expression to which values can be assigned.

Missing right delimiter on string literal.

Mixed new and old style parameter declarations.

More initializers than structure members.

Multiple defaults in switch.

Must init arithmetic type with arithmetic value. Arithmetic types (char,
short, int, long, float, and double) must be initialized with arithmetic values.

Must initialize bit field with integral constant.

Must init pointer with compatible pointer or 0. A compatible pointer is a
pointer with the same type or a data pointer with type (void *) . (The NULL
pointer constant is 0.)

Near function < identifier> called across segments. A call to a static
function in a different segment has been attempted with the cc8086 "near calls"
option specified.

Negative or zero array size.

No digits in hexadecimal constant.

Only high order dimension of array can be empty.

Operand of < operator> cannot be constant.

Chapter 9: Compile-Time Errors

270

Operand of < operator> must be an lvalue. An "lvalue" is an expression
to which values can be assigned.

Operand of < operator> must be arithmetic. The arithmetic types are:
char, short, int, long, float, and double.

Operand of < operator> must be integral. The integral types are: char,
short, int, and long.

Operand of < operator> must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Operand of pointer dereference must be a pointer. Something other
than a pointer was found immediately following a dereferencing (indirection)
operator * . Check the declaration of the operand to make sure it is a pointer.
You may also see this error message if an arithmetic expression is incorrect
(remember that ** is not an arithmetic operator in C).

Operands of ’[]’ must be a pointer and an integral. This error occurs
when the array name and the index are not alternately a pointer and an
integral type (char, short, int, long).

Operands of < operator> must be integral. The integral types are: char,
short, int, and long.

Operands of < operator> must be scalar. The scalar types include the
arithmetic types (char, short, int, long, float, double) and pointers.

Overflow during floating point constant folding. This error occurs when
the compiler determines that a constant folding optimization on floating-point
values will cause an overflow. Use the unary plus (+) operator to prevent the
rearrangement of expressions.

Param expr type not compatible with prototype.

Param list can only appear in definition. An old style declaration of a
function so that another function may use it, like

extern char foo ();

cannot include parameters, as in

Chapter 9: Compile-Time Errors

271

extern char foo (a, b);

Only the function definition may include a parameter list.

Param type of < name> differs from prototype.

Parameter type must have id in function definition.

Parameters not allowed for interrupt routine.

Parser stack overf low. This error occurs when the compiler has reached a
syntactic translation limit. This will only occur in extreme cases. The
translation limits are listed in the "C Compiler Overview" chapter.

Redeclaration of section/segment for symbol < id> .
This error occurs when the same symbol is declared in two differently named
program segments.

Redeclaration of symbol < identifier> . Rename one of the symbols. In
some previous versions of the compiler technology, parameter names were
ignored in prototype declarations.

Redeclaration of tag < identifier> .

Redeclaration of whether symbol < identifier> is ORGed.
This error occurs when the same symbol is declared in a relocatable program
segment and in an absolute program segment (defined with the SEGMENT
pragma).

Redefinition of function < identifier> .

Repeated case value.

Return expression does not match function type.

Reuse of absolute address for symbol < name> . This error occurs when
absolute address segment declarations have been given such that address
overlaps occur in the assembly code. All symbols located at a particular
address must be in the same segment (prog, data, or const) and they must all
be either defined in the same module or defined externally.

Chapter 9: Compile-Time Errors

272

Static initializer not a representable constant.

Structure can’t contain function < member name> . If you want to store a
function in a structure, store a pointer to the function. For example, int
(*funcptr)() would be a valid structure element.

Structure can’t contain undimensioned array < identifier> . You must
give a dimension for any array inside a structure; for example, use i[10]
instead of i[] .

Structure can’t contain void < member name> . Structure elements may
not be objects of type void. However, pointers to void are allowed. For
example void v is not allowed in a structure, but void *pv is allowed.

Structure element reference of non-structure. The identifier in front of
the "." was not declared as a structure.

Switch condition must be integral. In switch (expression) the expression
must return a value of type int .

Syntax error. This error is often caused by a missing semicolon on the
preceding line.

Type cannot have zero size. This error will occur if the only member of a
structure is a bit field whose size is zero.

Type too large. This error occurs when a type’s size is greater than 216-2
bytes.

Undeclared structure member < name> . This error occurs when you
attempt to access a structure member which has not been declared.

Undeclared symbol < identifier> .

Underflow during floating point constant folding. This error occurs when
the compiler determines that a constant folding optimization on floating-point
values will cause an underflow. Use the unary plus (+) operator to prevent
the rearrangement of expressions.

Chapter 9: Compile-Time Errors

273

Uninitialized definition of undimensioned array. This error occurs when
no dimension is specified in an array declaration. The highest order
dimension in an array declaration may be empty if the declaration is initialized.

Unknown or incorrect pragma (ignored).

Unknown type size. This error can occur when a variable declared with the
type of an undeclared structure tag is used before the structure is declared.

Unresolved static function < name> . This error indicates that a static
function of the form "static f();" was declared, but the function body was never
defined.

Warnings

Alias symbol < name> already referenced. Place the # pragma ALIAS
before the symbol is used. For example, place it immediately before or after
the declaration. The alias will not cause substitution of the symbol name in
any references which precede the alias.

Array index out of range.

Assignment between different pointer types.

Assignment between pointer and integer.

Cast from less to more restrictive pointer. This warning message is
enabled when the cc8086 "generate additional warnings" option is specified.

Comparison between different pointer types.

Comparison between pointer and integer.

Confusing line directives may affect debug info. This warning indicates
that the line synchronization information passed to the compiler did not
correspond to a proper nesting of include files. This is probably due to
inconsistent # line directives in the source.

Chapter 9: Compile-Time Errors

274

Duplicate const qualifier on type. The type was already declared as const.

Duplicate volatile qualifier on type. The type was already declared as
volatile.

Empty body of control statement. This warning message is enabled when
the cc8086 "generate additional warnings" option is specified.

Empty external declaration.

Extern < identifier> assumed to be in UDATA. The compiler cannot
determine if the external identifier was initialized and has placed the identifier
in the UDATA segment. If the variable is initialized, it is very important to
place the variable in the correct segment (idata). To do this, use a # pragma
SEGMENT DATA= idata before the external declaration to name the
initialized data segment. See the "Embedded Systems" chapter for more
information. (This condition occurs only when the "separate initialized and
uninitialized data" option is used).

External symbol < identifier> exceeds significant length.

Illegal escaped character. Backslash ignored. As an example, the string
"\q" would cause the warning to be generated, and the string would become "q".

Local variable < identifier> referenced only once.

Missing parameter declaration (defaulted to int). This warning message
is enabled when the cc8086 "generate additional warnings" option is specified.

Mixing extern declaration of < identifier> with near calls. This warning
message is enabled when the cc8086 "NEAR calls" compiler option is specified
and a function is declared as extern and later as static. The resulting symbol is
changed from extern to static in midstream, which may result in incorrect
"NEAR" calls to a "FAR" function. Remember that the extern declaration may
be implicit.

Mixing function pointer < identifier> with near calls.
This warning message is enabled when the cc8086 "near calls" option is
specified and function pointers are declared.

More than one character in character literal.

Chapter 9: Compile-Time Errors

275

No emulation local syms if .c and .A file not in same directory. This
warning is generated whenever a path to a source file is specified and the
"generate HP 64000 format files" option is used. If you will be using an
emulator, compile all sources in the directory where they exist.

Non-constant initializer for constant type variable.

Octal or hex character constant too big (truncated).

Shift by out of range constant value.

Static initializer will not be loaded. This warning is enabled when the
"uninitialized data" compiler command line option is specified. It warns that
there is no load-time initialization for statics and externals

Struct, union, or enum tag used but not declared. It is possible to
declare pointers to structures or unions before they are defined. The C
language allows this form of forward referencing. This message means that a
forward reference for a tag was seen, but never resolved. This warning message
is enabled when the cc8086 "generate additional warnings" option is specified.

Test expression is an assignment. This warning message is enabled when
the cc8086 "generate additional warnings" option is specified.

Unreferenced symbol < identifier> . The symbol was declared but is not
used.

Chapter 9: Compile-Time Errors

276

10

Run-Time Errors

Explanations of run-time error messages.

Chapter 10: Run-Time Errors

277

There are three basic types of run-time error messages. The largest group is
generated by floating-point exceptions. The two smaller groups are debug
error messages and startup error messages.

Floating-Point Error Messages

In accordance with the IEEE floating-point standard, trapping on
floating-point exceptions may be enabled or disabled. (See the _fp_error
description in the "Libraries" chapter.) If the trap associated with a specific
exception is disabled, an IEEE defined value is returned, a global exception
flag is set, and no error message is displayed. Conversely, if the trap is enabled
and an exception is detected, an error message is displayed on the emulation
status line and the program terminates. This type of error message is
composed as follows:

Chapter 10: Run-Time Errors

278

Flt Pt Invalid Operation. This error occurs when an operand is invalid for
the operation performed. Examples include:

• 0 * Infinity.

• (+ Infinity) + (–Infinity).

• 0/0 or Infinity/Infinity.

• Comparison between NaN and any other value.

• Floating point register variable is read without having been initialized
(8087 only).

Flt Pt Overflow. This error occurs when the result of an operation is too
large to be represented in the destination format.

Flt Pt Underflow. This error occurs when the result of an operation is too
small to be represented in the destination format. If trapping is disabled, the
result will be denormalized.

Flt Pt Divide by Zero. This error occurs when attempting to divide a
non-zero value by zero. (Zero divided by zero is an invalid operation error.)

Flt Pt Imprecise. This error occurs when the result requires rounding. Due
to the high probability of rounding, this trap is typically disabled.

Flt Pt Significance Loss. This error occurs when precision is lost during the
reduction of large arguments in the trigonometric functions.

Flt Pt Denormal This error occurs after an operation is attempted on a
denormal number (8087 only).

Debug Error Messages

If programs are compiled using the "generate run-time error checking" option,
code is generated to perform checks for the dereferencing of NULL and
uninitialized pointers, and for range errors in array accesses. If one of these
conditions occurs, the following type of message is displayed:

Chapter 10: Run-Time Errors

279

Pointer Faults:

<file>:<line number> nil ptr
<file>:<line number> uninit ptr

Range Faults:

<file>:<line number> <index> > <max index>
<file>:<line number> <index> < 0

Where < file> refers to the C source file containing the offending instruction.
This field may be truncated, if necessary, to 12 characters after the ".c"
extension is removed from the file name.

Where < line number> is the line number within the C source file which
contains the offending instruction.

Where < index> is the index into the array.

And where < max index> is the upper bound of the array. This field may be
replaced with "max" if the message won’t fit on the status line.

Chapter 10: Run-Time Errors

280

Startup Error Messages

If the crt0 program setup file is linked with the program, the startup routine is
called to open the, stdin, stdout, and stderr streams. If for any reason one of
these files cannot be opened, the following type of message is displayed:

Can’t open <file>, prog aborted

Where < file> is either "stdin", "stdout", or "stderr".

At program termination, a message is always displayed. This message is
composed within the _exit_msg() library routine and is:

Program end, returned <arg>

Where < arg> is either the value returned by main() or the argument passed
to an explicit call to exit().

If an integer divide by zero is attempted, the program will terminate with the
following message displayed:

Integer divide by zero

Chapter 10: Run-Time Errors

281

Chapter 10: Run-Time Errors

282

11

Run-Time Routines

Descriptions of run-time routines.

Chapter 11: Run-Time Routines

283

Run-time library routines are usually called by compiler generated code;
however, they may be called from assembly language programs as well
(including embedded assembly code within the C source file). The routines
listed here may in turn call other subroutines; those subroutines are not listed
here.

Note These run-time routines may change in future versions of the compiler.

The names of some run-time routines have changed between versions of the
compiler; for example, many large model routines were renamed from _L to
_LM when support for the medium memory model was added.

The following conventions are followed for this appendix:

< size> _S or _SC for the small memory model, _L or _LM for
the large memory model, _C or _SC for the compact
memory model, _M or _LM for the medium model.

< pointer size> 16 for the small memory model, 32 for the large
memory model.

DXAX 32-bit pseudo-register consisting of registers DX and
AX with DX holding the most significant word.

ESDI 32-bit pseudo-register consisting of registers ES and DI
with ES holding the segment and DI holding the offset.

F64 Double (8 bytes).

F32 Float (4 bytes).

UI32 Unsigned Long (4 bytes).

I32 Signed Long (4 bytes).

UI16 Unsigned Integer (2 bytes).

I16 Signed Integer (2 bytes).

Chapter 11: Run-Time Routines

284

() Indirection. For example, (DI) represents the memory
location pointed to by register DI.

PARM0 Last parameter pushed on the stack.

PARM1 If present, this parameter is pushed on the stack just
prior to PARM0. These parameters may be four or
eight bytes in size, depending on the specific library
routine. Some routines do not use the stack to pass
parameters.

Figures 9-1 through 9-4 can be found at the end of this appendix.

Chapter 11: Run-Time Routines

285

Conversion Routines

F64_TO_F32< size>

Converts a 64-bit floating point value to a 32-bit floating point value by
rounding to nearest. A zero is returned for a denormal 64-bit floating point
value.

Input: F64 in PARM0 (8 bytes).

Output: F32 in register DXAX.

Registers Destroyed: BX, CX.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: DXAX ← cast PARM0.

Stack Upon Entry: Figure 9-1.

F32_TO_F64< size>

Converts a 32-bit floating point value to a 64-bit floating point value. A zero is
returned for a denormal 32-bit floating point value. The additional mantissa
bits of the 64-bit floating point value are always returned zero, even when
converting an NaN.

Input: F32 in register DXAX.

Output: F64 in PARM0 (8 bytes).

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: PARM0 ← cast DXAX.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Conversion Routines

286

F64_TO_UI32< size>

Converts a 64-bit floating point value to a 32-bit unsigned integer by
truncation. Floating point values that cannot be represented by a 32-bit
unsigned integer return 0x80000000.

Input: F64 in PARM0 (8 bytes).

Output: UI32 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: DXAX ← cast PARM0.

Stack Upon Entry: Figure 9-1.

UI32_TO_F64< size>

Converts a 32-bit unsigned integer to a 64-bit floating point value.

Input: UI32 in register DXAX.

Output: F64 in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.

Synopsis: PARM0 ← cast DXAX.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Conversion Routines

287

F64_TO_UI16< size>

Converts a 64-bit floating point value to a 16-bit unsigned integer by
truncation. Floating point values that cannot be represented by a 16-bit
unsigned integer return 0x8000.

Input: F64 in PARM0 (8 bytes).

Output: UI16 in register AX.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: AX ← cast PARM0.

Stack Upon Entry: Figure 9-1.

UI16_TO_F64< size>

Converts a 16-bit unsigned integer to a 64-bit floating point value.

Input: UI16 in register AX.

Output: F64 in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.

Synopsis: PARM0 ← cast AX.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Conversion Routines

288

F64_TO_I32< size>

Converts a 64-bit floating point value to a 32-bit signed integer by truncation.
Floating point values that cannot be represented by a 32-bit signed integer
return 0x80000000.

Input: F64 in PARM0 (8 bytes).

Output: I32 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: DXAX ← cast PARM0.

Stack Upon Entry: Figure 9-1.

I32_TO_F64< size>

Converts a 32-bit signed integer to a 64-bit floating point value.

Input: I32 in register DXAX.

Output: F64 in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.

Synopsis: PARM0 ← cast DXAX.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Conversion Routines

289

F64_TO_I16< size>

Converts a 64-bit floating point value to a 16-bit signed integer by truncation.
Floating point values that cannot be represented by a 16-bit signed integer
return 0x8000.

Input: F64 in PARM0 (8 bytes).

Output: I16 in register AX.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: AX ← cast PARM0.

Stack Upon Entry: Figure 9-1.

I16_TO_F64< size>

Converts a 16-bit signed integer to a 64-bit floating point value.

Input: I16 in register AX.

Output: F64 in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: None.

Synopsis: PARM0 ← cast AX.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Conversion Routines

290

F32_TO_UI32< size>

Converts a 32-bit floating point value to a 32-bit unsigned integer by
truncation. Floating point values that cannot be represented by a 32-bit
unsigned integer return 0x80000000.

Input: F32 in register DXAX.

Output: UI32 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: DXAX ← cast DXAX.

UI32_TO_F32< size>

Converts a 32-bit unsigned integer to a 32-bit floating point value by rounding
to nearest.

Input: UI32 in register DXAX.

Output: F32 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: DXAX ← cast DXAX.

Chapter 11: Run-Time Routines
Conversion Routines

291

F32_TO_UI16< size>

Converts a 32-bit floating point value to a 16-bit unsigned integer by
truncation. Floating point values that cannot be represented by a 16-bit
unsigned integer return 0x8000.

Input: F32 in register DXAX.

Output: UI16 in register AX.

Registers Destroyed: CX, DX.

Side Effects: None.

Synopsis: AX ← cast DXAX.

UI16_TO_F32< size>

Converts a 16-bit unsigned integer to a 32-bit floating point value.

Input: UI16 in register AX.

Output: F32 in register DXAX.

Registers Destroyed: None.

Side Effects: None.

Synopsis: DXAX ← cast AX.

Chapter 11: Run-Time Routines
Conversion Routines

292

F32_TO_I32< size>

Converts a 32-bit floating point value to a 32-bit signed integer by truncation.
Floating point values that cannot be represented by a 32-bit signed integer
return 0x80000000.

Input: F32 in register DXAX.

Output: I32 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: DXAX ← cast DXAX.

I32_TO_F32< size>

Converts a 32-bit signed integer to a 32-bit floating point value by rounding to
nearest.

Input: I32 in register DXAX.

Output: F32 in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: DXAX ← cast DXAX.

Chapter 11: Run-Time Routines
Conversion Routines

293

F32_TO_I16< size>

Converts a 32-bit floating point value to a 16-bit signed integer by truncation.
Floating point values that cannot be represented by a 16-bit signed integer
return 0x8000.

Input: F32 in register DXAX.

Output: I16 in register AX.

Registers Destroyed: CX, DX.

Side Effects: None.

Synopsis: AX ← cast DXAX.

I16_TO_F32< size>

Converts a 16-bit signed integer to a 32-bit floating point value.

Input: I16 in register AX.

Output: F32 in register DXAX.

Registers Destroyed: None.

Side Effects: None.

Synopsis: DXAX ← cast AX.

Chapter 11: Run-Time Routines
Conversion Routines

294

Floating Point Addition Routines

ADD_F64A< size>

Adds two 64-bit floating point values, returning a 64-bit floating point value.

Input: F64 addend in PARM1 (8 bytes).
F64 addor in PARM0 (8 bytes).

Output: F64 result in PARM1 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: PARM1 ← PARM1 + PARM0.

Stack Upon Entry: Figure 9-2.

Chapter 11: Run-Time Routines
Floating Point Addition Routines

295

ADD_F64B< size>

Adds two 64-bit floating point values, returning a 64-bit floating point value in
two places.

Input: Pointer to F64 addend/result in DI.
F64 addor in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.
F64 result in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) + PARM0.

Stack Upon Entry: Figure 9-1.

ADD_F64C< size>

Adds two 64-bit floating point values, returning a 64-bit floating point value.

Input: Pointer to F64 addend/result in DI.
F64 addor in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: (DI) ← (DI) + PARM0.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Floating Point Addition Routines

296

INC_F64< size>

Adds 1.0 to a 64-bit floating point value, returning two 64-bit floating point
values; the original value and the incremented value.

Input: Pointer to F64 source/result operand in DI.

Output: Original F64 source value (pointed to by DI) in
PARM0 (8 bytes).
F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: PARM0 ← (DI).
(DI) ← (DI) + 1.0.

Stack Upon Entry: Figure 9-1.

ADD_F32A< size>

Adds two 32-bit floating point values, returning a 32-bit floating point value.

Input: F32 addend in PARM1 (4 bytes).
F32 addor in PARM0 (4 bytes).

Output: F32 result in PARM1 (4 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: PARM1 ← PARM1 + PARM0.

Stack Upon Entry: Figure 9-4.

Chapter 11: Run-Time Routines
Floating Point Addition Routines

297

ADD_F32B< size>

Adds two 32-bit floating point values, returning a 32-bit floating point value in
two places.

Input: Pointer to F32 addend/result in DI.
F32 addor in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.
F32 result in PARM0 (4 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) + PARM0.

Stack Upon Entry: Figure 9-3.

ADD_F32C< size>

Adds two 32-bit floating point values, returning a 32-bit floating point value.

Input: Pointer to F32 addend/result in DI.
F32 addor in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: (DI) ← (DI) + PARM0.

Stack Upon Entry: Figure 9-3.

Chapter 11: Run-Time Routines
Floating Point Addition Routines

298

INC_F32< size>

Adds 1.0 to a 32-bit floating point value, returning two 32-bit floating point
values: the original value; the incremented value.

Input: Pointer to F32 source/result operand in DI.

Output: Original F32 source value (pointed to by DI) in
PARM0 (4 bytes).
F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: PARM0 ← (DI).
(DI) ← (DI) + 1.0.

Stack Upon Entry: Figure 9-3.

Chapter 11: Run-Time Routines
Floating Point Addition Routines

299

Floating Point Subtraction Routines

SUB_F64A< size>

Subtracts a 64-bit floating point value from another 64-bit floating point
value, returning a 64-bit floating point value.

Input: F64 minuend in PARM1 (8 bytes).
F64 subtrahend in PARM0 (8 bytes).

Output: F64 result in PARM1 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: PARM1 ← PARM1 – PARM0.

Stack Upon Entry: Figure 9-2.

SUB_F64B< size>

Subtracts a 64-bit floating point value from another 64-bit floating point
value, returning a 64-bit floating point value in two places.

Input: Ptr to F64 minuend/result in DI.
F64 subtrahend in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.
F64 result in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) – PARM0.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

300

SUB_F64C< size>

Subtracts a 64-bit floating point value from another 64-bit floating point
value, returning a 64-bit floating point value.

Input: Pointer to F64 minuend/result in DI.
F64 subtrahend in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: (DI) ← (DI) – PARM0.

Stack Upon Entry: Figure 9-1.

DEC_F64< size>

Subtracts 1.0 from a 64-bit floating point value, returning two 64-bit floating
point values; the original value and the decremented value.

Input: Pointer to F64 source/result operand in DI.

Output: Original F64 source value (pointed to by DI) in
PARM0 (8 bytes).
F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: PARM0 ← (DI).
(DI) ← (DI) – 1.0.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

301

SUB_F32A< size>

Subtracts a 32-bit floating point value from another 32-bit floating point
value, returning a 32-bit floating point value.

Input: F32 minuend in PARM1 (4 bytes).
F32 subtrahend in PARM0 (4 bytes).

Output: F32 result in PARM1 (4 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: PARM1 ← PARM1 – PARM0.

Stack Upon Entry: Figure 9-4.

SUB_F32B< size>

Subtracts a 32-bit floating point value from another 32-bit floating point
value, returning a 32-bit floating point value in two places.

Input: Pointer to F32 minuend/result in DI.
F32 subtrahend in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.
F32 result in PARM0 (4 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) – PARM0.

Stack Upon Entry: Figure 9-3.

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

302

SUB_F32C< size>

Subtracts a 32-bit floating point value from another 32-bit floating point
value, returning a 32-bit floating point value.

Input: Pointer to F32 minuend/result in DI.
F32 subtrahend in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: (DI) ← (DI) – PARM0.

Stack Upon Entry: Figure 9-3.

DEC_F32< size>

Subtracts 1.0 from a 32-bit floating point value, returning two 32-bit floating
point values; the original value and the decremented value.

Input: Pointer to F32 source/result operand in DI.

Output: Original F32 source value (pointed to by DI) in
PARM0 (4 bytes).
F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: PARM0 ← (DI).
(DI) ← (DI) – 1.0.

Stack Upon Entry: Figure 9-3.

Chapter 11: Run-Time Routines
Floating Point Subtraction Routines

303

Floating Point Multiplication Routines

MUL_F64A< size>

Multiplies two 64-bit floating point values, returning a 64-bit floating point
value.

Input: F64 multiplicand in PARM1 (8 bytes).
F64 multiplier in PARM0 (8 bytes).

Output: F64 result in PARM1 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: PARM1 ← PARM1 ∗PARM0.

Stack Upon Entry: Figure 9-2.

MUL_F64B< size>

Multiplies two 64-bit floating point values, returning a 64-bit floating point
value in two places.

Input: Pointer to F64 multiplicand/result in DI.
F64 multiplier in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.
F64 result in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) ∗PARM0.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Floating Point Multiplication Routines

304

MUL_F64C< size>

Multiplies two 64-bit floating point values, returning a 64-bit floating point
value.

Input: Pointer to F64 multiplicand/result in DI.
F64 multiplier in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: (DI) ← (DI) ∗PARM0.

Stack Upon Entry: Figure 9-1.

MUL_F32A< size>

Multiplies two 32-bit floating point values, returning a 32-bit floating point
value.

Input: F32 multiplicand in PARM1 (4 bytes).
F32 multiplier in PARM0 (4 bytes).

Output: F32 result in PARM1 (4 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: PARM1 ← PARM1 ∗PARM0.

Stack Upon Entry: Figure 9-4.

Chapter 11: Run-Time Routines
Floating Point Multiplication Routines

305

MUL_F32B< size>

Multiplies two 32-bit floating point values, returning a 32-bit floating point
value in two places.

Input: Pointer to F32 multiplicand/result in DI.
F32 multiplier in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.
F32 result in PARM0 (4 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) ∗PARM0.

Stack Upon Entry: Figure 9-3.

MUL_F32C< size>

Multiplies two 32-bit floating point values, returning a 32-bit floating point
value.

Input: Pointer to F32 multiplicand/result in DI.
F32 multiplier in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: (DI) ← (DI) ∗PARM0.

Stack Upon Entry: Figure 9-3.

Chapter 11: Run-Time Routines
Floating Point Multiplication Routines

306

Floating Point Division Routines

DIV_F64A< size>

Divides a 64-bit floating point value by another 64-bit floating point value,
returning a 64-bit floating point value.

Input: F64 dividend in PARM1 (8 bytes).
F64 divisor in PARM0 (8 bytes).

Output: F64 result in PARM1 (8 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: PARM1 ← PARM1 / PARM0.

Stack Upon Entry: Figure 9-2.

DIV_F64B< size>

Divides a 64-bit floating point value by another 64-bit floating point value,
returning a 64-bit floating point value in two places.

Input: Pointer to F64 dividend/result in DI.
F64 divisor in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.
F64 result in PARM0 (8 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) / PARM0.

Stack Upon Entry: Figure 9-1.

Chapter 11: Run-Time Routines
Floating Point Division Routines

307

DIV_F64C< size>

Divides a 64-bit floating point value by another 64-bit floating point value,
returning a 64-bit floating point value.

Input: Pointer to F64 dividend/result in DI.
F64 divisor in PARM0 (8 bytes).

Output: F64 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 8.

Synopsis: (DI) ← (DI) / PARM0.

Stack Upon Entry: Figure 9-1.

DIV_F32A< size>

Divides a 32-bit floating point value by another 32-bit floating point value,
returning a 32-bit floating point value.

Input: F32 dividend in PARM1 (4 bytes).
F32 divisor in PARM0 (4 bytes).

Output: F32 result in PARM1 (4 bytes).

Registers Destroyed: AX, BX, CX, DX, DI.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: PARM1 ← PARM1 / PARM0.

Stack Upon Entry: Figure 9-4.

Chapter 11: Run-Time Routines
Floating Point Division Routines

308

DIV_F32B< size>

Divides a 32-bit floating point value by another 32-bit floating point value,
returning a 32-bit floating point value in two places.

Input: Pointer to F32 dividend/result in DI.
F32 divisor in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.
F32 result in PARM0 (4 bytes).

Registers Destroyed: AX, BX, CX, DX.

Side Effects: None.

Synopsis: (DI),PARM0 ← (DI) / PARM0.

Stack Upon Entry: Figure 9-3.

DIV_F32C< size>

Divides a 32-bit floating point value by another 32-bit floating point value,
returning a 32-bit floating point value.

Input: Pointer to F32 dividend/result in DI.
F32 divisor in PARM0 (4 bytes).

Output: F32 result in memory location pointed to by DI.

Registers Destroyed: AX, BX, CX, DX.

Side Effects: PARM0 is deallocated by this routine via RET 4.

Synopsis: (DI) ← (DI) / PARM0.

Stack Upon Entry: Figure 9-3.

Chapter 11: Run-Time Routines
Floating Point Division Routines

309

Floating Point Comparison Routines

EQUAL_F64< size>

Compares two 64-bit floating point values, returning a 16-bit value of 0 if
operand1 ≠ operand2, and 1 if operand1 = operand2.

Input: F64 operand1 in PARM1 (8 bytes).
F64 operand2 in PARM0 (8 bytes).

Output: Boolean in AX where 0 = false,
1 = true.

Registers Destroyed: CX, DX, DI.

Side Effects: PARM0 and PARM1 are deallocated by this
routine via RET 16.

Synopsis: AX ← 1 if {PARM1 = PARM0} is true,
0 otherwise.

Stack Upon Entry: Figure 9-2.

Chapter 11: Run-Time Routines
Floating Point Comparison Routines

310

EQUAL_F32< size>

Compares two 32-bit floating point values, returning a 16-bit value of 0 if
operand1 ≠ operand2, and 1 if operand1 = operand2.

Input: F32 operand1 in register DXAX.
F32 operand2 in register CXBX.

Output: Boolean in AX where 0 = false,
1 = true.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: None.

Synopsis: AX ← 1 if {DXAX = CXBX} is true, 0 otherwise.

LESS_F64< size>

Compares two 64-bit floating point values, returning a 16-bit value of 0 if
operand1 ≥ operand2, and 1 if operand1 < operand2.

Input: F64 operand1 in PARM1 (8 bytes).
F64 operand2 in PARM0 (8 bytes).

Output: Boolean in AX where 0 = false,
1 = true.

Registers Destroyed: CX, DX, DI.

Side Effects: PARM0 and PARM1 are deallocated by this
routine via RET 16.

Synopsis: AX ← 1 if {PARM1 < PARM0} is true,
0 otherwise.

Stack Upon Entry: Figure 9-2.

Chapter 11: Run-Time Routines
Floating Point Comparison Routines

311

LESS_F32< size>

Compares two 32-bit floating point values, returning a 16-bit value of 0 if
operand1 ≥ operand2, and 1 if operand1 < operand2.

Input: F32 operand1 in register DXAX.
F32 operand2 in register CXBX.

Output: Boolean in AX where 0 = false,
1 = true.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: None.

Synopsis: AX ← 1 if {DXAX < CXBX} is true, 0 otherwise.

LESS_EQ_F64< size>

Compares two 64-bit floating point values, returning a 16-bit value of 0 if
operand1 > operand2, and 1 if operand1 ≤ operand2.

Input: F64 operand1 in PARM1 (8 bytes).
F64 operand2 in PARM0 (8 bytes).

Output: Boolean in AX where 0 = false,
1 = true.

Registers Destroyed: CX, DX, DI.

Side Effects: PARM0 and PARM1 are deallocated by this
routine via RET 16.

Synopsis: AX ← 1 if {PARM1 ≤ PARM0} is true,
0 otherwise.

Stack Upon Entry: Figure 9-2.

Chapter 11: Run-Time Routines
Floating Point Comparison Routines

312

LESS_EQ_F32< size>

Compares two 32-bit floating point values, returning a 16-bit value of 0 if
operand1 > operand2, and 1 if operand1 ≤ operand2.

Input: F32 operand1 in register DXAX.
F32 operand2 in register CXBX.

Output: Boolean in AX where 0 = false,
1 = true.

Registers Destroyed: BX, CX, DX, DI.

Side Effects: None.

Synopsis: AX ← 1 if {DXAX ≤ CXBX} is true, 0 otherwise.

Chapter 11: Run-Time Routines
Floating Point Comparison Routines

313

Integer Multiplication Routines

MUL_I32A< size>

Multiplies two 32-bit long values (signed or unsigned), returning a 32-bit long
value (signed or unsigned as appropriate).

Input: I32 or UI32 multiplicand in register CXDI.
I32 or UI32 multiplier in register AXBX.

Output: I32 or UI32 result in register DXAX.

Registers Destroyed: CX.

Side Effects: None.

Synopsis: DXAX ← CXDI ∗ AXBX

MUL_I32B< size>

Multiplies two 32-bit long values (signed or unsigned), returning a 32-bit long
value (signed or unsigned as appropriate) in two places.

Input: Pointer to I32 or UI32 multiplicand/result in DI.
I32 or UI32 multiplier in register AXBX.

Output: I32 or UI32 result in memory location pointed to by
DI.
I32 or UI32 result in register DXAX.

Registers Destroyed: CX.

Side Effects: None.

Synopsis: (DI),DXAX ← (DI) * AXBX.

Chapter 11: Run-Time Routines
Integer Multiplication Routines

314

Integer Division Routines

DIV_UI32A< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a 32-bit unsigned long value.

Input: UI32 dividend in register CXDI.
UI32 divisor in register AXBX.

Output: UI32 result in register DXAX.

Registers Destroyed: BX, DI.

Side Effects: None.

Synopsis: DXAX ← CXDI / AXBX.

DIV_UI32B< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a 32-bit unsigned long value in two places.

Input: Pointer to UI32 dividend/result in DI.
UI32 divisor in register AXBX.

Output: UI32 result in memory location pointed to by DI.
UI32 result in register DXAX.

Registers Destroyed: BX, CX.

Side Effects: None.

Synopsis: (DI),DXAX ← (DI) / AXBX.

Chapter 11: Run-Time Routines
Integer Division Routines

315

DIV_I32A< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a 32-bit signed long value.

Input: I32 dividend in register CXDI.
I32 divisor in register AXBX.

Output: I32 result in register DXAX.

Registers Destroyed: BX, CX, DI.

Side Effects: None.

Synopsis: DXAX ← CXDI / AXBX.

DIV_I32B< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a 32-bit signed long value in two places.

Input: Pointer to I32 dividend/result in DI.
I32 divisor in register AXBX.

Output: I32 result in memory location pointed to by DI.
I32 result in register DXAX.

Registers Destroyed: BX, CX.

Side Effects: None.

Synopsis: (DI),DXAX ← (DI) / AXBX.

Chapter 11: Run-Time Routines
Integer Division Routines

316

Integer Modulo Routines

MOD_UI32A< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a 32-bit unsigned long remainder.

Input: UI32 dividend in register CXDI.
UI32 divisor in register AXBX.

Output: UI32 result in register DXAX.

Registers Destroyed: CX, DI.

Side Effects: None.

Synopsis: DXAX ← CXDI mod AXBX.

MOD_UI32B< size>

Divides a 32-bit unsigned long value by another 32-bit unsigned long value,
returning a 32-bit unsigned long remainder in two places.

Input: Pointer to UI32 dividend/result in DI.
UI32 divisor in register AXBX.

Output: UI32 result in memory location pointed to by DI.
UI32 result in register DXAX.

Registers Destroyed: CX.

Side Effects: None.

Synopsis: (DI),DXAX ← (DI) mod AXBX.

Chapter 11: Run-Time Routines
Integer Modulo Routines

317

MOD_I32A< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a 32-bit signed long remainder.

Input: I32 dividend in register CXDI.
I32 divisor in register AXBX.

Output: I32 result in register DXAX.

Registers Destroyed: CX, DI.

Side Effects: None.

Synopsis: DXAX ← CXDI mod AXBX.

MOD_I32B< size>

Divides a 32-bit signed long value by another 32-bit signed long value,
returning a 32-bit signed long remainder in two places.

Input: Pointer to I32 dividend/result in DI.
I32 divisor in register AXBX.

Output: I32 result in memory location pointed to by DI.
I32 result in register DXAX.

Registers Destroyed: CX.

Side Effects: None.

Synopsis: (DI),DXAX ← (DI) mod AXBX.

Chapter 11: Run-Time Routines
Integer Modulo Routines

318

Pointer and Range Fault Routines

FAULT_PTR< size>

Traps the appropriate error when a pointer is checked and found to be
uninitialized or containing a NIL. A call to _error_msg(fault_type, text_ptr,
line_num) is made with fault_type set to 0 for a NIL pointer and –1 for an
unitialized pointer. text_ptr points to the filename and line_num is the line
number.

Input: Fault code number in register AX where:
0 = NIL pointer
–1 = Uninitialized pointer

< pointer size>-bit pointer at TOS to information
block of the form:
UI32 line number
Filename (variable number of bytes)
0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num) and
never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

319

FAULT_UI32< size>

Traps the appropriate error when an unsigned long variable is checked and
found to be outside of a predefined range. A call to _error_msg(fault_type,
text_ptr, line_num, value, limit) is made with fault_type set to 1. text_ptr points
to the filename, line_num is the line number, value is the bad index value, and
limit is the index limit.

Input: UI32 out of range index value in register DXAX

< pointer size>-bit pointer at TOS to information
block of the form:
UI16 index limit
UI32 line number
Filename (variable number of bytes)
0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num, value,
limit) and never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

320

FAULT_UI16< size>

Traps the appropriate error when an unsigned integer variable is checked and
found to be outside of a predefined range. A call to _error_msg(fault_type,
text_ptr, line_num, value, limit) is made with fault_type set to 2. text_ptr points
to the filename, line_num is the line number, value is the bad index value, and
limit is the index limit.

Input: UI16 out of range index value in register AX.

< pointer size>-bit pointer at TOS to information
block of the form:
UI16 Index limit.
UI32 Line number.
Filename (variable number of bytes).
0 (Filename terminator).

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num, value,
limit) and never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

321

FAULT_UI8< size>

Traps the appropriate error when an unsigned char variable is checked and
found to be outside of a predefined range. A call to _error_msg(fault_type,
text_ptr, line_num, value, limit) is made with fault_type set to 3. text_ptr points
to the filename, line_num is the line number, value is the bad index value, and
limit is the index limit.

Input: UI8 Out of range index value in register AL.

< pointer size>-bit pointer at TOS to information
block of the form:
UI16 index limit
UI32
Line number.
Filename (variable number of bytes).
0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num, value,
limit) and never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

322

FAULT_I32< size>

Traps the appropriate error when a signed long variable is checked and found
to be outside of a predefined range. A call to _error_msg(fault_type, text_ptr,
line_num, value, limit) is made with fault_type set to 4. text_ptr points to the
filename, line_num is the line number, value is the bad index value, and limit is
the index limit.

Input: I32 out of range index value in register DXAX.

< pointer size>-bit pointer at TOS to information
block of the form:
UI16 Index limit.
UI32 Line number.
Filename (Variable number of bytes).
0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num, value,
limit) and never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

323

FAULT_I16< size>

Traps the appropriate error when a signed integer variable is checked and
found to be outside of a predefined range. A call to _error_msg(fault_type,
text_ptr, line_num, value, limit) is made with fault_type set to 5. text_ptr points
to the filename, line_num is the line number, value is the bad index value, and
limit is the index limit.

Input: I16 out of range index value in register AX.

< pointer size>-bit pointer at TOS to information
block of the form:
UI16 Index limit
UI32 Line number.
Filename (Variable number of bytes).
0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num, value,
limit) and never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

324

FAULT_I8< size>

Traps the appropriate error when a signed char variable is checked and found
to be outside of a predefined range. A call to _error_msg(fault_type, text_ptr,
line_num, value, limit) is made with fault_type set to 6. text_ptr points to the
filename, line_num is the line number, value is the bad index value, and limit is
the index limit.

Input: I8 out of range index value in register AL.

< pointer size>-bit pointer at TOS to information
block of the form:
UI16 Index limit.
UI32 Line number.
Filename (Variable number of bytes).
0 (Filename terminator)

Output: None.

Registers Destroyed: N/A

Side Effects: This routine may not be returned from.

Synopsis: Call _error_msg(fault_type, text_ptr, line_num, value,
limit) and never return.

Chapter 11: Run-Time Routines
Pointer and Range Fault Routines

325

Stack Frame Figures

This section contains the figures that are referred to throughout this appendix.

High Address Used stack space

[msw]
64-bit source and/or

result operand
[lsw]

PARM0 (8 bytes)

Stack pointer (SP)
Caller’s return

address

segment:offset if large model

Low Address Top of stack
(unused stack space)

Figure 11-1. St ack Frame with Do uble Parameter

Chapter 11: Run-Time Routines
Stack Frame Figures

326

High Address Used stack space

[msw]
64-bit left source

and/or result
operand

[lsw]

PARM1 (8 bytes)

[msw]
64-bit right source

operand
[lsw]

PARM0 (8 bytes)

Stack pointer (SP)
Caller’s return

address

segment:offset if large model

Low Address Top of stack
(unused stack space)

Figure 11-2. St ack Frame with Two Do uble Parameters

Chapter 11: Run-Time Routines
Stack Frame Figures

327

High Address Used stack space

[msw]
32-bit source and/or

result operand
[lsw]

PARM0 (4 bytes)

Stack pointer (SP)
Caller’s return

address

segment:offset if large model

Low Address Top of stack
(unused stack space)

Figure 11-3. St ack Frame with Float or L ong Parameter

High Address Used stack space

[msw]
32-bit left source

and/or result
operand

[lsw]

PARM1 (4 bytes)

[msw]
32-bit right source

operand
[lsw]

PARM0 (4 bytes)

Stack pointer (SP)
Caller’s return

address

segment:offset if large model

Low Address Top of stack
(unused stack space)

Figure 11-4. St ack Frame with 2 Float/L ong Parameters

Chapter 11: Run-Time Routines
Stack Frame Figures

328

12

Behavior of Math Library Functions

Results of math library functions for various types of floating-point input
values.

Chapter 12: Math Library Functions

329

The first table which follows describes the behavior of the math library
functions which are passed a single parameter. The remaining tables describe
the math library functions which are passed two parameters.

Wherever the result is an exception, the IEEE defined return value is also
listed. The IEEE defined value is returned if trapping on that exception is
disabled. (See the _fp_error description in the "Libraries" chapter for
information on enabling/disabling trapping on floating-point exceptions.)

NUMBER TYPES EXCEPTION TYPES

D Denormalized number DBZ Divide by zero

N Normalized number DMN Domain error

NaN Not a number IOP Invalid operation

R Real number OVR Overflow

x,y Function input RNG Range error

[] Possible result TLS Total loss of significance

UND Underflow

Figure 12-1. Legend for Math Library Behavior Tables

Chapter 12: Math Library Functions

330

FUNCTION INPUT

Funct. - ∞ -N -D -0 +0 +D +N +∞ NaN

acos IOP NaN [IOP NaN] π/2 π/2 π/2 π/2 [IOP NaN] IOP
NaN

x

asin IOP NaN [IOP NaN] x 0 0 x [IOP NaN] IOP
NaN

x

atan - π/2 R x 0 0 x R π/2 x

ceil - ∞ R 0 0 0 1 R +∞ x

cos IOP NaN [TLS NaN] 1 1 1 1 [TLS NaN] IOP
NaN

x

cosh +∞ [OVR + ∞] 1 1 1 1 [OVR + ∞] + ∞ x

exp 0 [UND 0.0] 1 1 1 1 [OVR + ∞] + ∞ x

floor - ∞ R -1 0 0 0 R +∞ x

frexp IOP NaN R R 0 0 R R IOP
NaN

x

ldexp - ∞ R R 0 0 R R +∞ x

log IOP NaN IOP NaN IOP NaN IOP
- ∞

IOP
- ∞

R R +∞ x

log10 IOP NaN IOP NaN IOP NaN IOP
- ∞

IOP
- ∞

R R +∞ x

modf IOP NaN R R 0 0 R R IOP
NaN

x

sin IOP NaN [TLS NaN] x 0 0 x [TLS NaN] IOP
NaN

x

sinh - ∞ [OVR - ∞] 1 1 1 1 [OVR + ∞] + ∞ x

sqrt IOP NaN IOP NaN IOP NaN 0 0 R R +∞ x

tan IOP NaN [TLS NaN] x 0 0 x [TLS NaN] IOP
NaN

x

tanh -1 R x 0 0 x R 1 x

Table 12-1. Behavior of Functions with One Parameter

Chapter 12: Math Library Functions

331

atan2(x,y) y

-∞ -N -D -0 + 0 + D + N +∞ NaN

-∞ IOP
NaN

-π/2 -π/2 -π/2 -π/2 -π/2 -π/2 IOP
NaN

y

-N -π R R -π/2 -π/2 R R 0 y

-D -π R R -π/2 -π/2 R R 0 y

-0 -π -π -π IOP 0 IOP 0 0 0 0 y

x + 0 π π π IOP 0 IOP 0 0 0 0 y

+ D π R R π/2 π/2 R R 0 y

+ N π R R π/2 π/2 R R 0 y

+ ∞ IOP
NaN

π/2 π/2 π/2 π/2 π/2 π/2 IOP
NaN

y

NaN x x x x x x x x x

Table 12-2. "atan2" Behavior

Chapter 12: Math Library Functions

332

pow(x,y) y

-∞ -N -D -0 + 0 + D + N +∞ NaN

-∞ 0 0 0 1 1 IOP+∞ [IOP+ /-∞] IOP+ ∞ y

< -1 0 R R 1 1 R R IOP+∞ y

= -1 IOP 1.0 R R 1 1 R R IOP 1.0 y

> -1,< 0 IOP
+ ∞

R R 1 1 R R 0 y

-0 IOP
NaN

IOP
NaN

IOP
NaN

IOP
NaN

IOP
NaN

0 0 0 y

x + 0 IOP
NaN

IOP
NaN

IOP
NaN

IOP
NaN

IOP
NaN

0 0 0 y

> 0,< 1 +∞ R R 1 1 R R 0 y

= + 1 1.0 R R 1 1 R R 1.0 y

> + 1 0 R R 1 1 R R +∞ y

+ ∞ 0 0 0 1 1 +∞ + ∞ + ∞ y

NaN x x x x x x x x x

Table 12-3. "pow" Behavior

add(x,y) y

-∞ -N -0 + 0 + N +∞ NaN

-∞ -∞ -∞ -∞ -∞ -∞ IOP NaN y

-N -∞ R x x R + ∞ y

-0 -∞ y -0 + 0 y +∞ y

x + 0 -∞ y + 0 + 0 y +∞ y

+ N -∞ R x x R + ∞ y

+ ∞ IOP NaN +∞ + ∞ + ∞ + ∞ + ∞ y

NaN x x x x x x x

Table 12-4. "add" Behavior

Chapter 12: Math Library Functions

333

sub(x,y) y

-∞ -N -0 + 0 + N +∞ NaN

-∞ IOP NaN -∞ -∞ -∞ -∞ -∞ y

-N + ∞ R x x R -∞ y

-0 + ∞ -y + 0 -0 -y -∞ y

x + 0 + ∞ -y + 0 + 0 -y -∞ y

+ N + ∞ R x x R -∞ y

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞ IOP NaN y

NaN x x x x x x x

Table 12-5. "sub" Behavior

mul(x,y) y

-∞ -N -0 + 0 + N +∞ NaN

-∞ + ∞ + ∞ IOP NaN IOP NaN -∞ -∞ y

-N + ∞ + R + 0 -0 -R -∞ y

-0 IOP NaN + 0 + 0 -0 -0 IOP NaN y

x + 0 IOP NaN -0 -0 + 0 + 0 IOP NaN y

+ N -∞ -R -0 + 0 + R +∞ y

+ ∞ -∞ -∞ IOP NaN IOP NaN +∞ + ∞ y

NaN x x x x x x x

Table 12-6. "mul" Behavior

Chapter 12: Math Library Functions

334

div(x,y) y

-∞ -N -0 + 0 + N +∞ NaN

-∞ IOP NaN +∞ + ∞ -∞ -∞ IOP NaN y

-N + 0 + R DBZ +∞ DBZ -∞ -R -0 y

-0 + 0 + 0 IOP NaN IOP NaN -0 -0 y

x + 0 -0 -0 IOP NaN IOP NaN + 0 + 0 y

+ N -0 -R DBZ -∞ DBZ + ∞ + R + 0 y

+ ∞ IOP NaN -∞ -∞ + ∞ + ∞ IOP NaN y

NaN x x x x x x x

Table 12-7. "div" Behavior

fmod(x,y)
frem(x,y)

y

-∞ -N -0 + 0 + N +∞ NaN

-∞ IOP NaN IOP NaN IOP NaN IOP NaN IOP NaN IOP NaN y

-N x + R IOP NaN IOP NaN -R x y

-0 -0 -0 IOP NaN IOP NaN -0 -0 y

x + 0 + 0 + 0 IOP NaN IOP NaN + 0 + 0 y

+ N x + R IOP NaN IOP NaN + R x y

+ ∞ IOP NaN IOP NaN IOP NaN IOP NaN IOP NaN IOP NaN y

NaN x x x x x x x

Table 12-8. "fmod" and "frem" Behaviors

Chapter 12: Math Library Functions

335

Chapter 12: Math Library Functions

336

13

Comparison to C/64000

Information needed to convert files from C/64000.

Chapter 13: Comparison to C/64000

337

The 8086/186 C Cross Compiler is more similar to native C implementations
than C/64000. Specifically, it supports register variables as intended by C and
it includes a robust set of support libraries.

Another area in which this implementation of C differs significantly from
C/64000 is in the area of compiler options. A list of the C/64000 options
follows (both general and processor-specific), and comparable options of this
implementation are described. Note that many C/64000 options could be
specified in the source file and, thus, could be varied within the file; some of
the 8086/186 C compiler’s comparable options are specified on the command
line and affect the entire file.

All of the absolute (.X) files generated by the 8086/186 C Cross Compiler use a
data bus width of 16 bits. If you used the directives "8088" or "80188" with
C/64000, be aware that you must now specify the data bus width when
programming PROMs. Thus instead of

program from file.X start 0 rom addr 0

you should use

program from file.X start 0 rom addr 0 system rom data width 0

If you do not specify the data width, the PROM will contain only alternate
bytes from the file.

General C/64000 Options

AMNESIA

This directive in C/64000 encompassed two distinct compiler concerns which
are addressed separately in this compiler. First, it was intended to allow for
memory mapped I/O locations or locations which could change in value as a
result of an asynchronous event such as an interrupt. Second, it was intended
to defeat a limited form of common subexpression elimination implemented
in C/64000. Both of these intents are addressed by the ANSI standard
qualifier volatile in this implementation.

Chapter 13: Comparison to C/64000
General C/64000 Options

338

ASM_FILE

This is not implemented. A listing with embedded assembly can be provided
with the "listing" and "add assembly code to listing" command line options; the
"generate assembly source files" option causes assembly source files to be
created.

ASMB_SYM

HP format "asmb_sym" files can be generated via a command line option.

DEBUG

This occurs by default. The "strip symbol table information" command line
option will remove debug symbols.

EMIT_CODE

This is implemented by a command line option.

END_ORG

This was used to terminate an ORG’d segment. In the new compiler, ORG
functionality is accomplished via the SEGMENT pragma which is terminated
by another SEGMENT pragma.

ENTRY

This is handled by the crt0 or crt1 routines to which programs are linked.

EXTENSIONS

This is not supported.

FIXED_PARAMETERS

The intention of this option was to allow the calling of PASCAL/64000
routines from C/64000 routines. This capability can be accomplished through
the ASM pragma.

Chapter 13: Comparison to C/64000
General C/64000 Options

339

FULL_LIST

This is implemented by specifying all the command line options which affect
the listing sent to the standard output.

INIT_ZEROS

The main purpose of this option was to avoid large compiler output
containing primarily zero initializers for large arrays. This is not a problem
with the new assemblers and object file formats which can express large
initializers more compactly. There is a related option which gives warnings
that no load-time initialization can occur.

LINE_NUMBERS

This occurs by default. The "strip symbol table information" command line
option will remove line number symbols.

LIST

This is handled from the command line with the "listing" option.

LIST_CODE

This is handled from the command line with the "listing" option in addition to
the "add assembly code to listing" option.

LIST_OBJ

Object listing is always given with "add assembly code to listing" option
(specified in addition to the "listing" option).

LONG_NAMES

All internal names in this compiler have 255 character significance; external
names have 30 character significance.

Chapter 13: Comparison to C/64000
General C/64000 Options

340

OPTIMIZE

This is implemented via the "optimize" command line option.

ORG

This is implemented via the SEGMENT pragma.

PAGE

A page break can be generated by inserting a form feed in the source.

RECURSIVE

This is not implemented since, in C, the user may declare local variables to be
static (the only potential gain of this option).

SEPARATE

This option had no effect in the C/64000 8086/186 C compiler and is not
implemented in this compiler. However, the SEGMENT pragma permits
control over the segments in which program, data, and constants are placed.

SHORT_ARITH

This is not implemented. However, the new C is able to perform arithmetic
calculations on floats without expanding to double which provides much of the
savings that this option provided.

STANDARD

This is not implemented.

TITLE

This is not supported.

Chapter 13: Comparison to C/64000
General C/64000 Options

341

UPPER_KEYS

This is not supported.

USER_DEFINED

This is not implemented.

WARN

This is implemented via the "suppress warning messages" command line
option.

WIDTH

This option caused the 64000/C compiler to read only a portion of a source file
line (e.g., the first 80 characters). This option has no equivalent in the
8086/186 C compiler.

8086-Specific C/64 000 Options

ALIGN

By default, data and constants larger than one byte are aligned to a word
boundary for efficient access. When the "byte align data" compiler option is
used, data and constants are no longer necessarily aligned to a word boundary.

CS_EXTVARS, ES_EXTVARS, SS_EXTVARS

These are not implemented

DS_EXTVARS, FAR_EXTVARS

These are in effect supported. These are implemented via the SEGMENT
pragma and the command line option that controls the memory model.

Chapter 13: Comparison to C/64000
8086-Specific C/64000 Options

342

FAR_LIBRARIES, SHORT_LIBRARIES

These are not implemented. The FAR and NEAR aspects correspond to the
large and small memory models respectively.

FAR_PROC, POINTER_SIZE

These can be implemented by choice of memory model and the "near calls"
command line option in the large memory model.

INT

This is not implemented since the functionality can be accomplished by coding
the "INT" with in-line assembly (see ASM and END_ASM pragmas).

INTERRUPT

This is implemented in the new C via the INTERRUPT pragma.

SEPARATE_CONST

Switch tables for "case" statements (jump vectors) are always placed in code
segments. C constants (const declarations and strings) are put into their own
CONST segment. Constants are ROMable in the large memory model, since
the CONST segment can be placed adjacent to the PROG segment. In the
small memory model, the CONST segment is more restricted in its placement
in memory. See the section on "RAM and ROM Considerations" in the
chapter "Embedded Systems Considerations" for more details.

Chapter 13: Comparison to C/64000
8086-Specific C/64000 Options

343

Differences from HP 64 818 Code

This section describes:

1 The differences between the HP 64818 and HP B1493 C compilers.

2 Ways to convert code written for the HP 64818 so that it will work with
the B1493 C compiler.

Alignment

HP 64818 Word alignment is set by the $ALIGN ON$ option.

HP B1493 Word alignment is performed. Refer to the
"Alignment Considerations" section in the "Internal
Data Representations" chapter.

Integral promotions

HP 64818 A char, a short int, or an int bit-field, when used in
an expression will be converted to an int unless
$SHORT_ARITH ON$ is specified.

HP B1493 The effect is the same as if integral promotions were
always performed.

Float promotions

HP 64818 Promotion from a float to a double will be
performed in an arithmetic operation unless
$SHORT_ARITH ON$ is specified.

HP B1493 Promotion from a float to a double will not be
performed unless one of the operands is a double.

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

344

Shift operations

HP 64818 Logical shift on all shift operations. Shift by a
negative value will reverse the shift direction.

HP B1493 Logical shift on all left shifts and on right shifts of
unsigned expressions. Arithmetic shift is used on
all right shifts of a signed expression. Shift by a
negative value will cause unexpected behavior.

To convert: Reverse the direction for every negative shift. Cast
the expression to unsigned before the shift
operation if logical shift is required.

Operations on structures

HP 64818 Structures may be assigned, compared for equality,
passed as parameters, or returned from functions.

HP B1493 Structures may be assigned, passed as parameters,
and returned from functions. No comparison for
equality is allowed.

To convert: Comparison for equality between structures must
be done with in-line code or with user supplied
function calls.

Symbol names

HP 64818 The first 15 characters in a symbol name are
significant.

HP B1493 Internal names have 255 significant characters.
External names have 30 significant characters.

To convert: A23456789012345__bcd and
A23456789012345__xyz are taken as two different
symbols in HP B1493.

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

345

Numeric constant formats

HP 64818 $EXTENSIONS ON$ permits use of HP 64000
format for defining binary, octal, decimal, and
hexadecimal constants (e.g., 0FFH).

HP B1493 Supports the standard constant formats (e.g., 0xff).

To convert: Conversion from HP 64000 format to C constant
format (e.g., 0FFH to 0xff) is needed.

String constant allocation

HP 64818 Identical string constants or string constants that
are a subset of another will be mapped into the
same location to minimize space.

HP B1493 Each string constant will have its own memory
space allocated in segment const.

To convert: Affects only the assembly code that accesses the
absolute location of the constant.

Memory management

HP 64818 INITHEAP, INCREASEHEAP, NEW, DISPOSE,
MARK and RELEASE are provided for dynamic
memory management.

HP B1493 calloc(), free(), malloc(), realloc(), __getmem(), and
others are provided.

To convert: Calls to INITHEAP, NEW, DISPOSE must be
converted to calls to malloc(), and free(). Be aware
that the calling sequences and the return values are
different in these sets of functions. The heap is
initialized during the provided program setup
procedures for later use by __getmem().

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

346

Math functions

HP 64818 ABS, SQRT, SIN, COS, ARCTAN, LN, and EXP
are provided.

HP B1493 abs(), sqrt(), sin(), cos(), atan(), log(), exp(), and
others are provided in the standard C arithmetic
library.

To convert: Calls to ABS, SQRT, SIN, COS, ARCTAN, LN,
and EXP must be converted to calls to the
corresponding function in the C math library.

Passing a byte-sized parameter

HP 64818 All signed and unsigned scalar values are extended
to a 16-bit value and then pushed on the stack.

HP B1493 Same as HP 64818.

Passing a p ointer

HP 64818 Pointers are pushed on the stack as 16 or 32 bit
quantities as specified by the $POINTER_SIZE n$
option.

HP B1493 32-bit pointers are pushed on the stack for large
memory model, 16-bit pointers for small memory
model.

Passing a float ing-point value

HP 64818 All floating point values are pushed on the stack as
64 bit double precision qualities, with the least
significant bytes in lower memory addresses.

HP B1493 Same as HP 64818.

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

347

Passing a structure

HP 64818 Structures are pushed on the stack on word
boundaries. The last word of the structure is passed
first.

HP B1493 Same as HP 64818.

Passing an array

HP 64818 The address of the array is pushed on the stack.

HP B1493 Same as HP 64818.

Function return values

HP 64818 One byte results will be returned in register BL, two
byte results in register BX. Return values greater
than two bytes will be saved in the location pointed
to by the result address pushed by the calling
routine.

HP B1493 One byte results will be returned in register AL, two
byte results in AX, three byte results in register pair
DL, AX, and four byte results in register pair DX,
AX. Return values greater than four bytes will be
saved in the location pointed to by the result
address pushed by the calling routine. This pointer
may point to a static memory location, an automatic
variable, or temporary space on the stack.

Removing parameters

HP 64818 If the $FIXED_PARAMETER$ option is OFF
(default), the calling routine is responsible for
removing parameters from the stack. If the option
is ON, the parameters are removed by the called
routine.

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

348

HP B1493 The calling routine is responsible for removing
parameters from the stack.

Assembly Code Considerations

Stack frame management is different in the HP 64818 and HP B1493
compilers, as you can see by the parameter passing differences listed above.

The assemblers used with each of the compilers are also different. The HP
B1449 assembler is used with the HP B1493 compiler.

Refer to the 8086/186 Assembler, L inker, L ibrarian manual for a description of
the differences between the assemblers.

When converting assembly language routines, it is best to surround the
routines with C function headers and tails and embed your assembly language
instructions inside # pragma ASM and # pragma END_ASM directives. You
may have to change the instructions which access the parameters and return
values, but if you use the compiler generated symbols (SET equal to BP
offsets), you will be protected should anything about the compiler ever change.
Refer to the "Compiler Generated Assembly Code" chapter for information
about the HP B1493 compiler’s calling conventions.

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

349

Chapter 13: Comparison to C/64000
Differences from HP 64818 Code

350

14

ASCII Character Set

Chapter 14: ASCII Character Set

351

Asc Dec Hex Oct Chr Asc Dec Hex Oct Chr Asc Dec Hex Oct Chr
nul 0 00 000 ’\0’ + 43 2B 053 V 86 56 126
soh 1 01 001 ’\1’ , 44 2C 054 W 87 57 127
stx 2 02 002 ’\2’ - 45 2D 055 X 88 58 130
etx 3 03 003 ’\3’ . 46 2E 056 Y 89 59 131
eot 4 04 004 ’\4’ / 47 2F 057 Z 90 5A 132
enq 5 05 005 ’\5’ 0 48 30 060 [91 5B 133
ack 6 06 006 ’\6’ 1 49 31 061 \ 92 5C 134 ’\\’
bel 7 07 007 ’\7’ 2 50 32 062] 93 5D 135
bs 8 08 010 ’\b’ 3 51 33 063 ^ 94 5E 136
tab 9 09 011 ’\t’ 4 52 34 064 _ 95 5F 137
lf 10 0A 012 ’\n’ 5 53 35 065 ‘ 96 60 140
vt 11 0B 013 ’\f’ 6 54 36 066 a 97 61 141
ff 12 0C 014 ’\r’ 7 55 37 067 b 98 62 142
cr 13 0D 015 ’\15’ 8 56 38 070 c 99 63 143
so 14 0E 016 ’\16’ 9 57 39 071 d 100 64 144
si 15 0F 017 ’\17’ : 58 3A 072 e 101 65 145
dle 16 10 020 ’\20’ ; 59 3B 073 f 102 66 146
dc1 17 11 021 ’\21’ < 60 3C 074 g 103 67 147
dc2 18 12 022 ’\22’ = 61 3D 075 h 104 68 150
dc3 19 13 023 ’\23’ > 62 3E 076 i 105 69 151
dc4 20 14 024 ’\24’ ? 63 3F 077 j 106 6A 152
syn 22 16 026 ’\26’ A 65 41 101 l 108 6C 154
etb 23 17 027 ’\27’ B 66 42 102 m 109 6D 155
can 24 18 030 ’\30’ C 67 43 103 n 110 6E 156
em 25 19 031 ’\31’ D 68 44 104 o 111 6F 157
sub 26 1A 032 ’\32’ E 69 45 105 p 112 70 160
esc 27 1B 033 ’\33’ F 70 46 106 q 113 71 161
fs 28 1C 034 ’\34’ G 71 47 107 r 114 72 162
gs 29 1D 035 ’\35’ H 72 48 110 s 115 73 163
rs 30 1E 036 ’\36’ I 73 49 111 t 116 74 164
us 31 1F 037 ’\37’ J 74 4A 112 u 117 75 165

32 20 040 K 75 4B 113 v 118 76 166
! 33 21 041 L 76 4C 114 w 119 77 167
" 34 22 042 M 77 4D 115 x 120 78 170
35 23 043 N 78 4E 116 y 121 79 171
$ 36 24 044 O 79 4F 117 z 122 7A 172
% 37 25 045 P 80 50 120 { 123 7B 173
& 38 26 046 Q 81 51 121 | 124 7C 174
’ 39 27 047 ’\’’ R 82 52 122 } 125 7D 175
(40 28 050 S 83 53 123 ~ 126 7E 176
) 41 29 051 T 84 54 124 del 127 7F 177 ’\177’
* 42 2A 052 U 85 55 125

Chapter 14: ASCII Character Set

352

15

Stack Models

Diagrams of the five stack models used in the 8086/186 C Cross Compiler.

Chapter 15: Stack Models

353

The stack models are:

• Stack Model for Small Memory Model

• Stack Model for Large Memory Model

• Stack Model for Medium Memory Model

• Stack Model for Compact Memory Model

• Near Stack Model for Large and Compact Memory Model (The near stack
model applies when the "near calls" option is used.)

• Interrupt Stack Model for Large and Compact Memory Model

• Interrupt Stack Model for Small and Medium Memory Model

Chapter 15: Stack Models

354

High Address Used stack space

Reserved space for
structure result

Absent if result is < = 4 bytes or if
result is returned through a variable.

Last parameter
⇑

First parameter

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Result address Absent if size returned is < = 4 bytes.
(Address size is 1 word.)

Return address (Address size is 1 word.)

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no parameters or
locals. (Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present when -f option is used and
floating point register variables are
used. (Size is 94 bytes.)

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-2. St ack for Small Memory Model

Chapter 15: Stack Models

355

High Address Used stack space

Reserved space for
structure result

Absent if result is < = 4 bytes or if
result is returned through a variable.

Last parameter
⇑

First parameter

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

[segment] Result
[offset] address

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

[segment] Return
[offset] address

(Address size is 2 words.)

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no parameters or
locals. (Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered data
segment (DS)

Absent if function does not access
DS-relative static data.

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present when -f option is used and
floating point register variables are
used. (Size is 94 bytes.)

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-3. St ack for Large Memory Model

Chapter 15: Stack Models

356

High Address Used stack space

Reserved space for
structure result

Absent if result is < = 4 bytes or if
result is returned through a variable.

Last parameter
⇑

First parameter

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

Result address Absent if size returned is < = 4 bytes.
(Address size is 1 word.)

[segment] Return
[offset] address

(Address size is 2 word.)

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no parameters or
locals. (Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present when -f option is used and
floating point register variables are
used. (Size is 94 bytes.)

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-4. St ack for Me dium Memory Model

Chapter 15: Stack Models

357

High Address Used stack space

Reserved space for
structure result

Absent if result is < = 4 bytes or if
result is returned through a variable.

Last parameter
⇑

First parameter

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

[segment] Result
[offset] address

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

Return address (Address size is 1 words.)

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no parameters or
locals. (Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered data
segment (DS)

Absent if function does not access
DS-relative static data.

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present when -f option is used and
floating point register variables are
used. (Size is 94 bytes.)

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-5. St ack for Compact Memory Model

Chapter 15: Stack Models

358

High Address Used stack space

Reserved space for
structure result

Absent if result is < = 4 bytes or if
result is returned through a variable.

Last parameter
⇑

First parameter

Absent if no parameters are passed.
(Last passed parameter is pushed
first.)

[segment] Result
[offset] address

Absent if size returned is < = 4 bytes.
(Address size is 2 words.)

Return address (Address size is 1 word.)

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no parameters or
locals, and size returned is < = 4 bytes.
(Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered data
segment (DS)

Absent if function does not access
DS-relative static data.

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present when -f option is used and
floating point register variables are
used. (Size is 94 bytes.)

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-6. NEAR St ack for Large and Compact Model

Chapter 15: Stack Models

359

High Address Used stack space

[segment] Interrupt
return

[offset] address

Processor flags

Old AX

Old CX

Old DX

Old BX

Old DI

Old ES

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no locals.
(Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered data
segment (DS)

Absent if function does not access
DS0-relative static data.

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present if -f is used (94 bytes).

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-7. Interrupt St ack for Large & Compact Model

Chapter 15: Stack Models

360

High Address Used stack space

[segment] Interrupt
return

[offset] address

Processor flags

Old AX

Old CX

Old DX

Old BX

Old DI

Frame pointer (BP)
Old frame pointer

(BP)

Absent if there are no locals.
(Size is 1 word.)

Last local
⇑

First local

Absent if function does not declare
any local (automatic) variables. (Last
declared local is first on stack.)

Buffered register
variable (SI)

Absent if function does not use
register variables.

Saved 8087 state Present if -f is used (94 bytes).

Stack pointer (SP)
Temporaries

⇓
Stack changes as temporaries are
saved and used in expressions.

Low Address Top of stack

Figure 15-8. Interrupt St ack for Small & Compact Model

Chapter 15: Stack Models

361

Chapter 15: Stack Models

362

16

About this Version

How this version of the compiler differs from previous versions.

Chapter 16: About this Version

363

Version 4.01

New memory models

The compact and medium memory models are supported. The "-m compact"
option tells the compiler to generate code for the compact memory model.
The "-m medium" option tells the compiler to generate code for the medium
memory model.

Control of NOPs

The -Wc,Hx option allows you to specify the number of NOPs between
functions. The default number is 1.

C+ + style comments

C+ + style comments are now accepted by cpp8086.

Enhanced -M option

The compiler warns when a function is used without a previously declared
prototype if the -M command-line option is used.

New usage message

cc086 prints a usage message if no options are used on the command line.

Version 4.00

New product number

The product number has been changed to B1493 for all hosts.

The old product number was 64904 (for HP 300/400 hosts), and B1427 (for
Apollo hosts—no longer supported).

Chapter 16: About this Version
Version 4.01

364

New command-line options

The -Wo,m option tells the optimizer to avoid certain optimizations.

The -K option enforces strict segment information consistency.

New default environments

All of the default environments supplied with the compiler are now HP
64700-series emulators.

Renamed run-time library routines

Some run-time library routines have been renamed in anticipation of the
addition of medium and compact memory models. Routines which will be
supported by both the large and medium models now have a _LM suffix.
Routines which will be supported by both the small and compact models have
a _SC suffix.

Re-organized manual

The User’s Guide and Reference manuals have been combined and the chapters
have been re-organized a bit.

Version 3.50

Behavior of sprintf

The behavior of the sprintf function is undefined if the destination array is also
one of the other arguments. For example, the value of string1 is undefined
after the following line of code:

sprintf (string1, "%s %d", string1, integer1);

This undefined behavior of sprintf is particularly important because the
behavior has changed between versions of the compiler.

Chapter 16: About this Version
Version 3.50

365

Formatted printing

The formatted printing functions, such as printf and sprintf, use less stack
space. They use 350 fewer bytes than in version 3.40 compilers.

Streams

The ungetc library function can now be used as the first operation on a stream.

Void pointers

Void pointers now may be compared using the relational operators "< ", "< = ",
"> ", and "> = ".

qsort function

The qsort function is now reentrant.

The variable _qsort_buffer has been removed from the libc.a library. In
previous versions of the compiler, this variable needed to be initialized in the
program startup code. All references to _qsort_buffer should be removed.

Environment library modules

Previous versions of the compiler loaded some modules from env.a even
though those modules were not used. The library has been restructured so that
fewer modules will be loaded.

You may need to load the environment library (env.a) twice to resolve all
external references. The linker command files (for example,
/usr/hp64000/env/hp6476x/iolinkcom.k) show how this can be done.

Improved performance

The compile speed has been significantly improved. @S2 = Code sharing

You will see greatly reduced code size if you use sprintf or vsprintf and one of
the file-oriented printf routines (printf, fprintf, vprintf, or vfprintf). These
functions now share much of their code.

The string versions of the printf routines are still reentrant.

Chapter 16: About this Version
Version 3.50

366

__asm ("C_string") function

In addition to the # pragma ASM/END_ASM method of embedding assembly
code in the C source, the 8086/186 C compiler supports the __asm
("C_string") function. (It is not a true function, but is treated syntactically as a
function.) __asm, which may only appear inside a function body just as any
other function call might, outputs one or more lines of assembly to the output
compiler-generated assembly code. The two leading underscores are required
and are present to conform to ANSI name space requirements.

The assembly language instructions are contained in the C_string argument.
The compiler does not check the assembly instructions for correctness. It
simply passes the instructions to the assembler. The C_string argument must
contain whitespace and newlines so assembly instructions will conform to the
format and syntax required by the HP B1449 Assembler.

The __asm function has two advantages over the ASM/ENDASM pragmas:
first, it may be used in macro definitions, and second, it is sometimes more
expedient for single instructions.

Modifying function entry/exit code

Three new pragmas are available in this release of the compiler. They are
pragma FUNCTION_ENTRY "C_string" , # pragma FUNCTION_EXIT
"C_string" , and # pragma FUNCTION_RETURN "C_string" . These pragmas
allow you to insert embedded assembly code in the entry and exit code of a
function. They are useful for monitoring and debugging function calls.

New segment names

All compiler-generated code is now placed in segments with the class name
"CODE." Thus there are now segment names in the .k files such as "lib/CODE"
and "libm/CODE" in place of "lib" and "libm."

This change affects the iolinkcom.k, linkcom.k, fiolinkcom.k, and flinkcom.k
files in /usr/hp64000/env/hp6476x/large, /usr/hp64000/env/hp6476x/small, and
the corresponding directories for the other supported emulators.

Library constants are no longer placed in the same segment as the code. The
constants for "libc" and "libm" are now placed in segments "libcconst" and
"libmconst," respectively.

Chapter 16: About this Version
Version 3.50

367

If you will be using the .k that are shipped with the compiler, these changes
will not affect you. If, however, you have modified .k files for a previous
version of the compiler, you will need to add the new section names.

Chapter 16: About this Version
Version 3.50

368

17

On-line Manual Pages

Printed copies of the on-line documentation.

Chapter 17: On-line Manual Pages

369

cc8086 (1)

NAME cc8086 - C cross compiler for Intel 8086 microprocessor

SYNOPSIS /usr/hp64000/bin/cc8086 [options] files
/usr/hp64000/bin/cc80186 [options] files

DESCRIPTION The cc8086 program is a C cross-compiler which generates object code for the
Intel 8086 microprocessor. Cc80186 generates object code for the Intel 80186
microprocessor. They accept several types of arguments:

Arguments whose names end with .c are taken to be C source programs. They
are compiled and each object program is left on the file whose name is that of
the source with .o substituted for .c. The .o file is deleted only if a single C
program is compiled and linked all in one step.

In the same way, arguments whose names end with .s are taken to be assembly
source programs and are assembled, producing a .o file.

Arguments whose names end with .i are taken to be C source programs which
have already been preprocessed (see -P). They are compiled without invoking
cpp8086(1) and each object program is left on the file whose name is that of
the source with .o substituted for .i.

Arguments whose names end with .o are taken to be relocatable object files
which are to be included in the link operation.

Arguments can be passed to the compiler through the CC8086OPTS
environment variable as well as on the command line. The compiler picks up
the value of CC8086OPTS and places its contents before any arguments on the
command line. For example (in sh(1) notation):

 CC8086OPTS= -v
 export CC8086OPTS
 cc8086 -L prog.c

is equivalent to:

 cc8086 -v -L prog.c

The compiler also checks the environment variable HP64000. If it has been set
and exported, it is used as the directory path (in place of the default
/usr/hp64000) for executables (e.g., /lib/cpp8086), libraries specified by using -l

Chapter 17: On-line Manual Pages
cc8086 (1)

370

(e.g. /lib/8086/large/libm.a), include files (e.g. /include/8086/stdio.h), and the
default linker command file (/env/hp6476x/large/iolinkcom.k).

The following options are recognized by cc8086:

-b

Cause the compiler to use the Branch Validator preprocessor, which inserts
additional code for branch counting. See bbacpp8086(1).

-c

Suppress the link edit phase of the compilation and force an object (.o) file to
be produced even if only one program is compiled. Produces a .o file for each
.c file.

-C

Do not strip C-style comments in the preprocessor except those found on
preprocessor directive lines. See cpp8086(1).

-d

Separate data output into initialized (non-constant data explicitly initialized
with a C initializer) and uninitialized (non-constant data implicitly initialized
to zero, in the absence of -u, at load time). The default output segments are
udata and idata. See also # pragma SEGMENT.

-D name= def
-D name

Define name to the preprocessor. See cpp8086(1).

-e

Turn off code generation allowing fast syntactic and semantic error checking
of the source program. This option overrides the -L, -c, and -S options.

-E

Run only cpp8086(1) on the named C programs and send the result to the
standard output.

-f

Generate 8087 (floating point coprocessor) code for floating point operations.
This option causes code to be generated in-line for operations which might

Chapter 17: On-line Manual Pages
cc8086 (1)

371

otherwise be performed with run-time library calls. It also causes linker
command file fiolinkcom.k (or flinkcom.k, if -N used) to be used. These linker
command files use the 8087 run-time (lib87.a) and math (libm87.a) library files.

-g

Generate additional (but less optimal) code which performs run-time error
checking. Note that it is not necessary to use -g to get complete symbolic
debugging.

The two types of run-time checks made are:

1) Dereferences of all NIL pointers and uninitialized automatic pointers
are detected and reported. This requires the initialization of automatic
pointers at run-time with a value (-1) indicating that they are
uninitialized. Note that initialization of statics to the uninitialized pointer
value is not possible, as statics default to zero.

2) Array references outside declaration index bounds are detected and
reported.

This option overrides the -O or -s option.

-h

Cause generation of an HP 64000 format assembler symbol file, linker symbol
file, and absolute file for debugging purposes. The assembler symbol file is
named (source basename).A, the linker symbol file (output file name).L, and
the absolute file (output file name).X. The symbol file names can be changed
with the -H assembler or linker option passed via the -W option.

-I dir

Change the search algorithm used by the preprocessor for finding include files.
See cpp8086(1).

-k linkcomfile

Cause the named linkcomfile to be used by the linker rather than the default
/usr/hp64000/env/hp6476x/large/iolinkcom.k (see also -f, -N and -r).

Note that if the environment variable HP64000 is set and exported, the
/usr/hp64000 part of the path for the default file becomes $HP64000.

See ld86(1) for details about the format of linker command files.

The -k option overrides any linker command file implications of the -f,

Chapter 17: On-line Manual Pages
cc8086 (1)

372

-N, -p, or -r options.

-K

Cause the compiler to strictly enforce section information for variables. By
default, the compiler does not require that the section information between a
symbol declaration and definition match exactly. This option forces the
information to be identical.

Section information for variables and functions are communicated to the
compiler via the SEGMENT pragma. With this information the compiler can
address different sections of code and data with different address modes. If a
different section is named for a "extern" reference than the actual variable
declaration, then undesired addressing modes could be used. This could lead
to a defect in code generation that is very difficult to locate. Usage of the -K
option will cause this type of coding error to be found at compile time. Its use
is highly recommended.

See also the discussion about # pragma SEGMENT.

-lx

Cause the linker to search the library /usr/hp64000/lib/8086/large/libx.a (or
/usr/hp64000/lib/8086/small/libx.a if -m small is used, or /usr/hp64000/lib/
8086/medium/libx.a if -m medium is used, or /usr/hp64000/lib/8086/compact/
libx.a if -m compact is used,). Use -l "" to load lib.a. If the environment
variable HP64000 is set and exported, the /usr/hp64000 part of the path
becomes $HP64000. Note that -l options must appear after any files which
reference library routines, typically at the end of the command line. You do
not need to use the -l option if the library is loaded by the linker command file.

-L[i][x]

Cause the compiler to generate a listing file (suffixed with .O) for each C
source compiled. This listing contains C source intermixed with generated
assembly code.

If the -S (do not assemble) option is present, the intermixed assembly is just as
it appears in the .s file; otherwise, the intermixed assembly is taken from the
assembler’s listing file with program counters and object code.

If the -i option is present, include files are expanded and included in the listing.

If the -x option is present, a symbol cross-reference table is appended to the
compiler listing and also to any assembler or linker listings.

Chapter 17: On-line Manual Pages
cc8086 (1)

373

If the assembler is invoked for any .s files on the command line, an assembler
listing is produced in the corresponding listing file suffixed .O and -x invokes
the assembler’s cross-reference.

If the linker is invoked, a linker listing is produced in a listing file named
outfile.O (default a.out.O, see -o) and -x invokes the linker’s cross-reference.

Options which prevent compilation (-e, -E, and -P) prevent the generation of
listings.

-m memoryModel

Cause the compiler to generate code for the selected memory model. If this
option is not present, the large memory model is assumed. memoryModel may
be either:

large large memory model (default)
small small memory model
medium for the medium memory model
compact for the compact memory model

The small memory model has two segments which never change. One is a
code segment (CS does not change). The other is a combined stack and
DS-relative static data segment (DS, SS, and ES are identical and do not
change). In this model all pointers are 16 bits.

The large memory model may have one or more code segments (CS may
change); one independent stack segment (SS does not change); zero or one
DS-relative static data segment for each C function (DS may change); and
zero, one, or more ES-relative static data segments (ES may change). In this
model all pointers are 32 bits. Functions are considered to be "FAR" and are
called as such except when a static function is encountered and the -n option is
in effect.

The medium memory model may have one or more code segments (the CS
register may change) and one data segment (the DS, SS, and ES registers are
identical and do not change). The function pointer size is 32 bits, and the data
pointer size is 16 bits.

The compact memory model has one fixed code segment (the CS register does
not change) and one or more data segments (the DS, SS, and ES registers are
not identical and may change). The function pointer size is 16 bits, and the
data pointer size is 32 bits.

-M

Chapter 17: On-line Manual Pages
cc8086 (1)

374

Cause the compiler to generate more warning messages for possible errors in
the C source than are generated by default.

-n

Cause all static functions in large memory model to be called "NEAR". This
option should be used only when the user can guarantee that all static
functions within the source file(s) being compiled are called from the same
segment and that no pointer arithmetic is being performed to generate the
call. This option is ignored in the presence of -m small.

-N

Cause the compiler to link using the linkcom.k (flinkcom.k, if -f used) linker
command file rather than the iolinkcom.k (fiolinkcom.k, if -f used) command
file. The [f]linkcom.k command file loads the crt1.o program setup routine
which does not open stdin, stdout, or stderr. -N is overridden by the -k option,
but works in conjunction with the -r option.

-o outfile

Name the output file from the linker outfile.x (or outfile.X and outfile.L if the
-h option is specified). Outfile is a.out by default.

-O[G][T]

Generate locally optimal code and invoke an assembly code optimizer. Code is
optimized for space (even, possibly, at the expense of time) unless -T is also
specified.

If the -T option is present, code is optimized for time whenever time and space
optimizations conflict. If the -G option is present, additional code is generated
(as it is when -O is not used) to make the program easier to debug using an HP
emulator or debugger. This includes:

1) Generation of no-operation (NOP) instructions preceding all labels.
This provides unique addresses for all labels. Note that the peephole
optimizer will remove any of these no-operation instructions that it
considers to be dead code (following an unconditional branch).

2) Buffering of the frame-pointer on the stack at function entry and
restoration of the frame-pointer at function exit, even when this is known
not to be necessary.

Chapter 17: On-line Manual Pages
cc8086 (1)

375

The -O option is overridden by the -g option.

-P

Run only cpp8086(1) on the named C programs and leave the result on
corresponding files suffixed .i.

-Q

Cause the compiler to byte align data in memory, rather than the default word
alignment. Data of types short, int, long, pointer, float, double, struct, and
union will be aligned on byte rather than word boundaries. Data of types
struct and union will not be padded. Note that the size of structures and
unions as well as the offsets of their members are affected by this option.
Therefore, modules which define structures or unions and those which
reference them or their members must both be compiled with the same
alignment. For the sake of safety, it is recommended that all sources linked
together be compiled with the same alignment. libc.a, libm.a, and the run-time
(lib.a) and environment libraries (env.a) are compatible with modules
compiled under either alignment.

-r dir

Cause the compiler to use default linker command files iolinkcom.k, linkcom.k,
fiolinkcom.k, or flinkcom.k (see -N and -f) in run-time environment directory
/usr/hp64000/env/dir/large (or /usr/hp64000/env/dir/[mem_model] if -m
[mem_model] present) rather than in the default
/usr/hp64000/env/hp6476x/large. For the Intel family of the HP 64700 series of
emulators, the run-time environment is hp6476x. If the environment variable
HP64000 is set and exported, the /usr/hp64000 part of the path for the above
environments becomes $HP64000. The -r option is overridden by the -k
option, but works in conjunction with the -N and -m options.

-s

Cause the output of the compiler, assembler, and linker to be stripped of
symbol table information. The use of this option will prevent the use of
symbols for analysis/debug purposes in any consumers of the executable. This
option is overridden by the -g option and, for file and line information, by the
-L option.

-S

Chapter 17: On-line Manual Pages
cc8086 (1)

376

Compile the named C programs and leave the assembly language output on
corresponding files suffixed .s. This option prevents invocation of the
assembler.

-t c,name

Substitute or insert subprocess c with name where c is one or more of a set of
identifiers indicating the subprocess(es). This option works in one of two
modes:

1) If c is a single identifier, name represents the full path name of the new
subprocess. For example: cc8086 -tp,/mydir/cpp source.c

2) If c is a set of identifiers, name represents a prefix to which the standard
suffixes are concatenated to construct the full path names of the new
subprocesses. For example: cc8086 -tpc2L,/mydir/ -tal,/mydir2/ source.c

c can be one or more of the following identifiers:

p preprocessor (standard suffix is cpp8086)

c compiler body (standard suffix is ccom8086L or ccom8086S)

0 same as c

o optimizer (standard suffix is opt8086)

2 same as o

m macro preprocessor for assembler (standard suffix is ap86)

a assembler (standard suffix is as86)

L lister (standard suffix is clst8086)

l linker (standard suffix is ld86)

Note also in this context that the standard processes invoked are named:

/usr/hp64000/lib/cpp8086
/usr/hp64000/lib/ccom8086L (or ccom8086S, ccom8086C, or ccom8086M)
/usr/hp64000/lib/opt8086
/usr/hp64000/bin/ap86
/usr/hp64000/bin/as86
/usr/hp64000/lib/clst8086
/usr/hp64000/bin/ld86

Chapter 17: On-line Manual Pages
cc8086 (1)

377

If the environment variable HP64000 is set and exported, the /usr/hp64000 part
of the path for the above files becomes $HP64000.

-u

Cause the compiler to consider all non-constant static data as uninitialized
and to issue a warning whenever an initializer is placed on such static data.
This option is useful for embedded environments where no load-time
initialization is possible (as opposed to environments, such as emulation or
simulation, where load-time initialization of static data is possible only when
the user loads the memory).

-U name

Remove any initial definition of name, where name is a reserved symbol that is
predefined by the preprocessor or a symbol defined by a -D option regardless
of the order of the options. Normally, cc(1) predefines symbols that reflect
simultaneously the host and execution environment. Since cc8086 is a cross
development tool, it predefines one symbol indicating the cross environment
and one target processor symbol. Additionally, a symbol is predefined to
indicate which memory model is being used. The reserved symbols are:

cross environment: __hp64000
target processor: __i8086
memory model: __LARGE_MODEL or __SMALL_MODEL or
__MEDIUM_MODEL or __COMPACT_MODEL

-v

Enable verbose mode, producing a step-by-step description of the compilation
process on stderr.

-w

Suppress warning messages.

-W c,arg1[,arg2,...,argN]

Cause arg1 through argN to be passed as parameters to subprocess c of the
compilation process. The args are of the form -argoption[,argvalue], where
argoption is the name of an option to be passed to the subprocess and argvalue
is an argument to argoption. The valid values for c are those listed under the -t
option. For example, to invoke the -t option of clst8086(1): cc8086 -L -WL,-t
source.c

Chapter 17: On-line Manual Pages
cc8086 (1)

378

Note that options other than the above are not recognized and cause a
warning message to be written to stderr.

The following options to ccom8086 are accessible via the -W option described
above:

-C segname

Change the default segment name for constant output (see CONST under
pragma SEGMENT below) from the default const to the argument, segname.

-D segname
-D segname1,segname2

If one argument is given, change the default segment name for data output
(see DATA under # pragma SEGMENT) from the default data to the
argument, segname.

If two arguments are given, change the default segment name for uninitialized
data output (see UDATA under # pragma SEGMENT) from the default udata
to the first argument, segname1, and change the default segment name for
initialized data output (see IDATA under # pragma SEGMENT) from the
default idata to the second argument, segname2.

-F

Turn off the compiler’s automatic creation of register variables for addresses
of statics and frequently used variables.

-l prefix

Alter the compiler’s algorithm for creating assembly language labels from C
symbols. Rather than using an underscore at the beginning of such labels, the
compiler will use prefix. Since the default prefix is ’_’, it is used as a special case
for specifying that no prefix be used via -Wc,-l_. This option should be used
with great care as it may generate assembly-time and/or link-time errors due
to conflicts between compiler-generated assembly language labels and other
assembly symbols. See also # pragma ALIAS .

-N modulename

Cause the compiler to use modulename for the argument to the NAME
directive in the assembly source produced rather than the default modulename
which is the C source file basename (see basename(1)).

Chapter 17: On-line Manual Pages
cc8086 (1)

379

-P segname

Change the default segment name for program output (see PROG under
pragma SEGMENT) from the default prog_basename to the argument,
segname.

In addition to standard C in the C source files, cc8086 accepts and ignores all
pragmas except the following:

pragma ALIAS Csymbolname Assemblysymbolname
pragma ALIAS Csymbolname """Assemblysymbolname"""

This pragma allows overriding of the C compiler’s algorithm for converting a
C source file symbol name into a unique assembler symbol name (the
algorithm generally prepends an "_" or "S_"). This pragma must be placed
before any references to the symbol. This pragma should be used with great
care as it may generate assembly-time and/or link-time errors due to conflicts
between Assemblysymbolname and other assembly symbols. Use the quotation
marks if the Assemblysymbolname would not be a valid C identifier.

pragma ASM
pragma END_ASM

These pragmas are used to bracket sections of assembly code which are
inserted into the assembly code generated by the compiler. The assembly code
optimizer assumes that working registers AX, BX, CX, DX, DI, processor
status word (PSW), ST(0) and ST(1) when using -f, and in large memory
model ES are destroyed in embedded assembly code sections; therefore, they
may be freely used. The register variable (SI), the frame pointer (BP), the
stack pointer (SP), the segment registers (CS, DS, SS, and, for small memory
model, ES), and the floating point register variables (ST(2) through ST(6))
when using -f are not buffered prior to embedded assembly language sections.
So, inadvertently writing over one of these registers should be avoided. Also,
when using the -f option the 8087 stack pointer must not be left in an altered
state and ST(7) must be "free". Embedded assembly code may reference C
variables. The compiler incorporates the C name of variables and functions
into their corresponding assembly code symbols facilitating the referencing of
C variables from embedded assembly code. In particular: externs, globals,
statics, and functions have an underscore (_) prepended to their C name and,
for each parameter and automatic, an assembly-time constant is created by
prepending S_ to its C name. This constant is a frame-pointer-relative offset
used to access the parameter or automatic value. Because of scoping
requirements and a 30 character significance limit on assembly names, C
names longer than 29 characters and those which appear in nested scopes may

Chapter 17: On-line Manual Pages
cc8086 (1)

380

have an additional ASCII number prepended to make them unique. See the
COMPILER GENERATED ASSEMBLY CODE chapter in the manual for a
complete discussion and examples of assembly symbol name generation. The
ASM pragma may be used any place in a C source (i.e. inside or outside of a C
function).

pragma DS segmentName

This pragma is only valid for large memory model; it is ignored in the presence
of -m small. This pragma specifies that all subsequent functions should
arrange to access any data in segment segmentName (rather than the default of
the current DATA or UDATA segment name, see # pragma SEGMENT) using
DS-relative addressing. If subsequent functions access any static data in
segment segmentName, their preambles load DS with segmentName and use it
in accesses. The effect of this is that once a DS pragma is used, the DS-relative
segment name is fixed until another DS pragma is encountered.

pragma FUNCTION_ENTRY "C_String"
pragma FUNCTION_EXIT "C_String"
pragma FUNCTION_RETURN "C_String"

These pragmas also allow you to insert assembly code into the generated
assembly code. They differ from the ASM pragma in several ways:

They are not required to be paired and may be used independently or together.
They may only appear outside of a function body. They affect only a single
function and must precede that function in the C source. They do not bracket
the embedded assembly. Instead, the assembly is contained in the "C_String"
argument. This argument is a C character string. It must contain whitespace
and newlines so that when the compiler outputs the string to the generated
source, it will conform to the format and syntax required by the assembler.
pragma FUNCTION_ENTRY will place the embedded assembly in a
function’s entry code. The embedded code appears immediately after the label
generated from the function name in the C source and will precede the code
generated for function entry. # pragma FUNCTION_EXIT will place the
embedded assembly in a function’s exit code. The embedded code appears
after the code generated for the function exit and precedes the function return
label. # pragma FUNCTION_RETURN will place the embedded assembly in a
function’s exit code. The embedded code appears after the return label. These
pragmas give you the flexibility to modify the function entry and exit code. An
example is using FUNCTION_RETURN to force an interrupt service routine
to trap back to the operating system instead of simply returning to the point of
interrupt. (See also # pragma INTERRUPT.) The information found under

Chapter 17: On-line Manual Pages
cc8086 (1)

381

pragma ASM about accessing C symbols and about register buffering holds
true for these pragmas as well.

pragma INTERRUPT

This pragma specifies that the next encountered function be implemented as
an interrupt routine. This means that all working registers are saved at
function entry and restored prior to function exit (in addition to the register
variable which ordinarily is buffered), no parameter passing or returned result
is allowed, and a return from interrupt is generated at the return point. In the
presence of the -f option, the 8087’s complete internal state is saved. Note that
only the next encountered function is affected--not subsequent functions. The
INTERRUPT pragma may be used any place a C external declaration may.

pragma SEGMENT [PROG= pname] [DATA= dname] [CONST= cname]

pragma SEGMENT [PROG= addr] [DATA= addr] [CONST= addr]

pragma SEGMENT [PROG= pname] [UDATA= udname] [IDATA= idname]
 [CONST= cname]

pragma SEGMENT [PROG= addr] [UDATA= addr] [IDATA= addr]
 [CONST= addr]

pragma SEGMENT UNDO
pragma SEGMENT [PROG= pname] [DATA= dname] [CONST= cname]

pragma SEGMENT [PROG= addr] [DATA= addr]

 [CONST= addr]

pragma SEGMENT [PROG= pname] [UDATA= idname]
 [IDATA= udname] [CONST= cname]

pragma SEGMENT [PROG= addr] [UDATA= addr]
 [IDATA= addr] [CONST= addr]

pragma SEGMENT UNDO
This pragma is valid for large, medium, and compact memory model; it is
ignored in the presence of -m small. The first form of this pragma causes the
program, static data, and static constant information to be placed in segments
named pname, dname, and cname respectively until the next SEGMENT
pragma is encountered. This segment information is used for specifying the
location of symbols to the linker. The linker expects to find external data in
the segment whose name is active when the external declaration is made. In
the second form, 20-bit physical addresses, whose syntax is the same as for C

Chapter 17: On-line Manual Pages
cc8086 (1)

382

constants, are given in place of the segment names causing the subsequent
information to be ORG’d starting at the given address. The segment name
associated with an ORG’d segment is of the form orghexaddress where
hexaddress is the physical address where the segment is located. For example,
org00012345H is located at 0x12345. The third and fourth forms listed are the
same as the first two forms with UDATA and IDATA substituted for data.
These forms make sense only in the presence of the -d option which forces
separation of explicitly initialized data from implicitly initialized (or
uninitialized with -u) data. Non-constant static data items explicitly initialized
by means of a C initializer go into the IDATA named segment. Non-constant
static data items not explicitly initialized by means of a C initializer go into the
UDATA named segment. Always use DATA (as opposed to UDATA or IDATA)
to locate an external declaration in a segment. Note that changing DATA also
changes both UDATA and IDATA . The absolute addresses and segment names
may be intermixed for the three (four, counting UDATA and IDATA) different
information types (program, static data, static constant) in the same
SEGMENT pragma. If the target segment is not specified for one of the
information types, then it remains unchanged. The last form, # pragma
SEGMENT UNDO, "undoes" the effect of the immediately preceding
SEGMENT directive. That is, it restores the name (or address) of any segment
renamed (or ORG’d) in the last directive. This form is useful at the end of
include files to restore the segment environment which existed prior to the
include file. (Include files should contain SEGMENT directives to define
the segments that externs are in.) Default (without -d):
PROG= prog_basename DATA= data CONST= const Default (with -d):
PROG= prog_basename UDATA= udata IDATA= idata CONST= const
basename is the C source file base name (see basename(1)) with all characters
not legal for a segment name changed to underscore (_).

Note that pragmas other than the above are not recognized and cause a
warning message to be written to stderr.

FILES file.c C source file

file.s assembly source file

file.o object file

file.a library (archive) file

/usr/hp64000/lib/cpp8086 preprocessor

/usr/hp64000/lib/ccom8086L compiler for large memory model

Chapter 17: On-line Manual Pages
cc8086 (1)

383

/usr/hp64000/lib/ccom8086S compiler for small memory model

/usr/hp64000/lib/ccom8086C compiler for compact memory model

/usr/hp64000/lib/ccom8086M compiler for medium memory model

/usr/hp64000/lib/opt8086 optimizer

/usr/hp64000/bin/ap86 macro preprocessor for assembler

/usr/hp64000/bin/as86 assembler

/usr/hp64000/lib/clst8086 lister (C listing generator)

/usr/hp64000/bin/ld86 linker

/usr/hp64000/include/8086 standard directory for # include files

Note that, when environment variable HP64000 is set and exported, it replaces
"/usr/hp64000" in all of the above file names.

/usr/hp64000/lib/8086/large/lib.a run-time library

/usr/hp64000/lib/8086/large/libc.a standard C support library

/usr/hp64000/lib/8086/large/libm.a
auxiliary math C support library

/usr/hp64000/lib/8086/large/lib87.a
run-time library using 8087

/usr/hp64000/lib/8086/large/libm87.a
auxiliary math C support library using 8087

/usr/hp64000/env/hp6476x/large/env.a
execution environment dependent library

/usr/hp64000/env/hp6476x/large/iolinkcom.k
default linker command file

/usr/hp64000/env/hp6476x/large/linkcom.k
linker command file when -N (no I/O) used

/usr/hp64000/env/hp6476x/large/fiolinkcom.k
linker command file when -f (8087 code) used

/usr/hp64000/env/hp6476x/large/flinkcom.k
linker command file when -N (no I/O) and -f (8087 code) used

Chapter 17: On-line Manual Pages
cc8086 (1)

384

/usr/hp64000/env/hp6476x/large/crt0.o
default program setup routine

/usr/hp64000/env/hp6476x/large/crt1.o
program setup routine with no I/O initialization

/usr/hp64000/env/hp6476x/large/div_by_0.o
integer divide by zero interrupt routine

/usr/hp64000/env/hp6476x/large/vector8087.o 8087
exceptions interrupt routine

Note that when the -m small (small memory model), -m medium (medium
memory model), or -m compact (compact memory model) option is used the
large in the above paths is changed to small, medium, or compact.

/usr/hp64000/env/hp6476x/ioconfig.EA
emulation configuration file corresponding to
 iolinkcom.k and fiolinkcom.k if present

/usr/hp64000/env/hp6476x/config.EA
emulation configuration file corresponding to
linkcom.k and flinkcom.k if present

/usr/hp64000/env/hp6476x/fioconfig.EA
emulation configuration file corresponding to fiolinkcom.k

/usr/hp64000/env/hp6476x/fconfig.EA
emulation configuration file corresponding to flinkcom.k

/usr/hp64000/env/hp6476x/src
directory containing sources for environment
dependent routines and emulation monitor

See the -r option for easy access.

AUTHOR The cc8086 program was developed by the Hewlett-Packard Company.

SEE ALSO ap86(1), ar86(1), as86(1), bbacpp8086(1), clst8086(1), cpp8086(1), ld86(1)

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, 1988
HP 8086/186 C Cross Compiler User’s Guide, Hewlett-Packard, 1995

Chapter 17: On-line Manual Pages
cc8086 (1)

385

DIAGNOSTICS cc8086 returns zero if no errors are detected during the compilation process,
otherwise it returns non-zero.

The diagnostics produced by cc8086 are intended to be self-explanatory.
Occasional messages may be written to stderr by the assembler. Error messages
produced by the compiler are always written to stderr and consist of the
original C source line on which the error was detected followed by a line
containing a pointer to the token at which the error was detected and an
explanatory message. Note that, for syntax errors, the token indicated will
often be the token following the error.

Chapter 17: On-line Manual Pages
cc8086 (1)

386

cpp8086(1)

NAME cpp8086 - C cross language preprocessor for Intel 8086 microprocessor

SYNOPSIS /usr/hp64000/lib/cpp8086 [options] ifile [ofile]

DESCRIPTION The cpp8086 command is the ANSI/ISO standard (9899-1990) C language
preprocessor which is invoked as the first pass of any C compilation using the
cc8086(1) command. Its purpose is to process include files, conditional
compilation instructions, and macros. Thus the output of cpp8086 is designed
to be in a form acceptable as input to the next pass of the C compiler. The
preferred way to invoke cpp8086 is through the cc8086(1) command, since the
functionality of cpp8086 may someday be moved elsewhere. Therefore, the
direct invocation of cpp8086 is not recommended. See m4(1) for a general
macro processor.

The cpp8086 command optionally accepts one or two file names as arguments.
The arguments ifile and ofile are respectively the input and output for the
preprocessor. If ofile is not supplied it defaults to standard output.

The following options to cpp8086 are recognized:

-P

Preprocess the input without producing the line control information used by
the next pass of the C compiler.

-C

By default, cpp8086 strips C-style comments. If the -C option is specified, all
comments (except those found on cpp8086 directive lines) are passed along.

-U name

Remove any initial definition of name, where name is a symbol defined by a -D
option regardless of the order of the options.

-D name
-D name= def

Define name as if by a # define directive. If no = def is given, name is defined as
1. The -D option has lower precedence than the -U option. That is, if the same
name is used in both a -U option and a -D option, the name is undefined
regardless of the order of the options.

Chapter 17: On-line Manual Pages
cpp8086(1)

387

-I dir Add dir to the directory search list for # include files whose names do
not begin with /. Thus, # include files whose names are enclosed in "\| " are
searched for first in the directory of the file containing the # include line, then
in directories named in -I options in left-to-right order. For # include files
whose names are enclosed in < > , the directory of the file containing the
include line is not searched. However, all directories specified with -I
options will still be searched.

To access the standard header files shipped with the C compiler, add the
directory /usr/hp64000/include/8086 to the search list via this option.

-g

Causes cpp8086 to generate file date and column position information. File
date information is appended to the line and file synchronization information
which is normally generated indicating the last modified date of the source and
include files. Column position synchronization information is provided
whenever macro substitution takes place. The line ’this is a line’, where ’is’ is a
macro defined to be ’was’, would generate the output ’this ^ Awas^ Bis^ C a
line’. The three control characters are used to delimit the new and old strings.
Consumers of the output can use this information to determine actual source
file column positions. The original characters reflect the state of the input line
after trigraphs are substituted, continuation lines are catenated, and comments
are removed. Use of these constructs preceding functional code on a line
makes the column information inaccurate. Use of -C avoids this problem for
comments.

-w

Prevents cpp8086 from generating warnings.

Five special names are understood by cpp8086. They can be used anywhere
(including in macros) just as any other defined name.

LINE is defined as the current line number (as a decimal integer) as known by
cpp8086.

FILE is defined as the current file name (as a C string) as known by cpp8086.

DATE is defined as the current date (as a C string) of the form "Mmm dd yyyy".

TIME is defined as the current time (as a C string) of the form "hh:mm:ss".

STDC is defined as 1 indicating an ANSI standard C compiler.

Chapter 17: On-line Manual Pages
cpp8086(1)

388

All cpp8086 directives start with lines begun by # . Any number of blanks and
tabs are allowed before and after the # . The directives are:

define " name" " " token-string Replace subsequent instances of name with
token-string. (token-string may be null).

define name(arg, ..., arg) token-string Notice that there can be no space
between name and the (. Replace subsequent instances of name(arg, ..., arg) by
token-string, where each occurrence of an arg in the token-string is replaced by
the corresponding set of tokens in the comma-separated list. When a macro
with arguments is expanded, the arguments are placed into the expanded
token-string after they have been recursively macro substituted. After the
entire token-string has been expanded, cpp8086 re-starts its scan for names to
expand at the beginning of the newly created token-string. Any name which was
expanded in a nested macro invocation is not available for expansion until the
end of the parent macro.

The # operator in the replacement token-string is a "stringization" unary
operator causing the parameter name following it to become a C string literal
containing the substituted argument. For example:

 # define stringize(a) # a
 stringize(This will be a "string".\n)

becomes:

 "This will be \"string\".\n"

The # # operator in the replacement token-string is a concatenation operator
which allows the user to substitute for a portion of an identifier, operator, or
other token by placing the # # between the parameter and the remainder of
the token. First the parameter is substituted and then the # # and any white
space surrounding it are removed. For example:

 # define f(x) var # # x
 f(3)

results in:

 var3

undef " name"
Cause the definition of name (if any) to be forgotten from now on.

Chapter 17: On-line Manual Pages
cpp8086(1)

389

include "filename"
include < filename>
include token-string
Include at this point the contents of filename (which is then run through
cpp8086). If the # include doesn’t match one of the first two forms then the
token-string is macro substituted and retried to see if it matches one of the first
two forms. See the -I option above for more detail.

line integer-constant "filename"
Causes cpp8086 to generate line control information for the next pass of the C
compiler. Integer-constant is the line number of the next line and filename is
the file where it comes from. If "filename" is not given, the current file name is
unchanged.

endif
Ends a section of lines begun by a test directive (# if, # ifdef, or # ifndef). Each
test directive must have a matching # endif.

ifdef " name"
The lines following will appear in the output if and only if name has been the
subject of a previous # define without being the subject of an intervening
undef.

ifndef " name"
The lines following will not appear in the output if and only if name has been
the subject of a previous # define without being the subject of an intervening
undef.

if " constant-expression"
Lines following will appear in the output if and only if the constant-expression
evaluates to non-zero. All binary non-assignment C operators, the ?:
operator, the unary -, !, and ~ operators are all legal in constant-expression.
The precedence of the operators is the same as defined by the C language.
There is also a unary operator defined, which can be used in
constant-expression in these two forms: defined (name) or defined name. This
allows the utility of # ifdef and # ifndef in a # if directive. Only these
operators, integer constants, and names which are known by cpp8086 should
be used in constant-expression. In particular, the sizeof operator is not
available.

elif " constant-expression"
Any number of # elif directives can occur between one of the test directives
and the matching # endif. If none of the preceding test or # elif directives have
been true and this constant-expression evaluates to true then the following

Chapter 17: On-line Manual Pages
cpp8086(1)

390

lines will appear in the output. The constant-expression is evaluated the same
as in the # if directive.

else
Can occur after a test directive and any intervening # elif directives and before
the matching # endif directive. If none of the preceding tests have been true
then the following lines will appear in the output.

pragma
All lines with the # pragma directive are passed unchanged to the output
except for removal of leading whitespace.

error " token-string"
Write a diagnostic message to stderr. The preprocessor will continue
processing after this directive is encountered, but cc8086 will not continue the
compilation process. The # error directive is useful for debugging # if and
ifdef directives.

The test directives and the possible # elif and # else directives can be nested.
The cpp8086 command supports names up to 255 characters in length.

FILES /usr/hp64000/include/8086 directory for standard # include files.

AUTHOR The cpp8086 command was developed by the Hewlett-Packard Company.

SEE ALSO cc8086(1), m4(1)
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, 1988
HP 8086/186 C Cross Compiler User’s Guide, Hewlett-Packard, 1995

DIAGNOSTICS The error messages produced by cpp8086 are intended to be self-explanatory.
The line number and filename where the error occurred are printed along with
the diagnostic.

NOTES When new-line characters are found in argument lists for macros to be
expanded, the current version of cpp8086 replaces these new-lines with blanks.

Chapter 17: On-line Manual Pages
cpp8086(1)

391

clst8086 (1)

NAME clst8086 - Listing generator for the 8086 C cross compiler

SYNOPSIS /usr/hp64000/lib/clst8086 [options] outputfile

DESCRIPTION The clst8086 program is the listing generator of the C cross-compiler for the
Intel 8086 microprocessor. It generates a listing in outputfile (stdout, if -o
present) from the assembly source or listing file read from stdin. The lister’s
ability to include C source file lines is driven by ?file, ?line, and "*LINE*"
directives in the assembly code. The preferred way to invoke clst8086 is
through the cc8086(1) command, since the functionality may someday be
moved elsewhere. Therefore, the use of clst8086 other than in this framework
is not suggested.

The default listing produced contains C source lines with line numbers and
interleaved assembly code (except special ?directives, see -d below). C include
files are not expanded, and no cross reference is listed. The contents of listings
generated vary with the following options:

The first two options support options of cc8086(1).

-i

Add C source included via # include C pre-processor directives.

-x

Add cross reference of symbols in C source and any expanded include files.

The following remaining options are not directly used by cc8086(1), but may
be used via cc8086(1)’s -W option or by invoking the lister directly.

-a

Delete assembly source lines (possibly with associated program counter and
object code values).

-c

Suppress the C source lines. This results in, essentially, an assembler listing or
source file.

Chapter 17: On-line Manual Pages
clst8086 (1)

392

-d

Do not omit assembly source lines containing "?pseudo-operations".

-H header

Cause header to be used as the first line generated on each page of the listing.

-o

Override the output file specified and write the listing to stdout. This may be
used, via -W, to cause cc8086(1) to produce listings to stdout.

-t

Surround C source statements with HP terminal "inverse video on" (i.e. esc &
d B) and "inverse video off" (i.e. esc & d @) escape sequences for convenient
terminal viewing. This is particularly handy when viewing lister output with
the more(1) command; it is not too handy when viewing lister output with the
vi(1) command.

Note that options other than the above are not recognized and cause a
warning message to be written to stderr.

AUTHOR Clst8086 was developed by the Hewlett-Packard Company.

SEE ALSO as86(1), cc8086(1)
HP 8086/186 C Cross Compiler User’s Guide, Hewlett-Packard, 1995

Chapter 17: On-line Manual Pages
clst8086 (1)

393

Chapter 17: On-line Manual Pages
clst8086 (1)

394

Index

* (indirection operator)
See pointers, dereferencing

80186 support, 43, 142
8087

See floating point coprocessor
_error_msg, 319

A abort (standard C function), 145
abs (math library function), 157
access

See segment relative access
accessing on-line command descriptions, note on, 36
acos (math library function), 216–217
ADD_F32A addition routine, 297
ADD_F32B addition routine, 298
ADD_F32C addition routine, 298
ADD_F64A addition routine, 295
ADD_F64B addition routine, 296
ADD_F64C addition routine, 296
ALIAS pragma, 71

See the on-line man page
alignment considerations, internal data, 64–66
ANSI standard, 46–52

embedded assembly language, 92
ar86 librarian, 45
arguments

optional, 228–229
arithmetic data types, internal data representation, 54–57
array

of pointers to functions, 267
arrays

alignment, 64, 66
initializing with strings, 60
internal data representation, 59

as86 assembler, 45
asin (math library function), 216–217

395

__asm () function, 97, 102
ASM pragma, 93
assembler (as86) and C compilation, 45
assembly language, 67–104

in the C source file, 92–104
memory model independent code, 103
symbol names, 69–71
with small model, 102

assembly preprocessor, 45
assert (support library function), 158
assert.h, include file, 146
assignment compatibility, 46

between pointer and integers, 46
between pointer and pointers, 46

atan, atan2 (math library function), 216–217
atexit (support library function), 159
atof (support library function), 223
atoi, atol (support library function), 224–225
auto variables, 12
auto, storage class specifier, 111
AxLS (Advanced Cross Language System), 39–52

B behavior of exit and _exit when using crt1, 235
behavior of math library functions, 329
binary search, bsearch routine, 160–161
bit fields, internal data representation, 62
branch shortening (peephole optimization), 116, 118
bsearch (standard library function), 160–161
buffering of output streams, 199
bufsiz, macro defining I/O buffer size, 242
bus width, 338

C C compilation overview, 39–52
C compiler (ccom8086)

See the on-line man pages
C compiler (ccom8086L, ccom8086S), 44
C language

ANSI extensions, 46–52
translation limits, 51

C preprocessor (cpp8086), 44

Index

396

C/64000 comparison
general options, 338–341
processor specific options, 342–343

calling conventions (stack frame management), 72–86
calling libraries

See libraries
calloc (support library function), 187–188
casts, 46, 160, 175, 202
cc8086

option summary, 4–5
cc8086 (compilation control routine), 44

See also the on-line man pages
ccom8086 C compiler, 44
ceil (math library function), 168
character data types, 57
characters, multi-byte, 185
checking for memory model mismatch, 90–91
_clear_fp_status (math library function), 171–174
clear_screen (env. dependent library function), 243
clearerr (standard I/O library function), 165
close (environment-dependent library function), 244
clst8086 lister, 45
coalescing (optimization), 111
CODE class name, 127
command-line options, 369
compact memory model, 124–126
compilation control routine (cc8086), 44
compilation control routine (cc8086, cc80186), 44
compiler features, iv
compiler generated assembly code, 67–104
compiler generated symbols, 71
config.EA, emulator configuration file, 236
configuration files for HP emulators, 236
const type modifier, 50
const, default constant segment name, 127
constant folding (optimization), 107
constants

string, 60
constants, multi-character, 57
constants, string, 111
constants, where to load, 133

Index

397

cos (math library function), 216–217
cosh (math library function), 218
cpp8086 C preprocessor, 44
crt0 program setup routine, 235
crt0.o file, 16
crt1 program setup routine, 235

behavior of exit and _exit when using, 235
ctype.h, include file, 146

D ??DATA segment, 133
data bus width, 338
data motion optimizations, 118
data types

arithmetic, 54–57
character, 57
derived, 58–63
floating-point, 54
integral, 54
volatile modifier, 136–137

data, default data segment name, 127
data_const, 103
debug code, maintaining despite optimization, 115
debug directives, 72
debug error messages (run-time), 279
DEC_F32 subtraction routine, 303
DEC_F64 subtraction routine, 301
default linker command file, iolinkcom.k, 236
default modes of operation in the 8087 and 8086 libraries, 172
default PROG names, small and large memory model, 127
denormal number, 279
denormalized operand, trap on, 173
dependencies, execution environment, 40
dereferencing

See pointers, dereferencing
dereferencing, definition of, 90
derived data types, internal data representation, 58–63
diagnostics, assert macro, 158
display_message (display run-time error messages), 236
div (math library function), 162
DIV_F32A division routine, 308
DIV_F32B division routine, 309
DIV_F32C division routine, 309

Index

398

DIV_F64A division routine, 307
DIV_F64B division routine, 307
DIV_F64C division routine, 308
DIV_I32A division routine, 316
DIV_I32B division routine, 316
div_t type (defined in stdlib.h), 147
DIV_UI32A division routine, 315
DIV_UI32B division routine, 315
divide by zero, trapping on, 172
double data type, examples of, 56
double-precision (IEEE) floating-point format, 56
DS pragma, 131
dynamic allocation, 241

E embedded assembly language
in C source, 92–104
memory model independent, 103
small model, 102

embedded systems considerations, 121
emulator configuration files, 236
END_ASM pragma, 93
enumeration types, internal data representation, 63
env, segment name of environment-dependent routines, 234
env.a, environment-dependent library, 242
environment, 35
environment-dependent libraries, modifying, 33–35
environment-dependent routines, 40, 122, 145, 233–264
EQUAL_F32 comparison routine, 311
EQUAL_F64 comparison routine, 310
errno (support library function), 146, 192
errors

compile-time, 265–276
multiple declarations, 127
run-time, 277–282

escape sequences, 60
example

calling run-time and support libraries, 25
using large memory model, 12

examples, alignment, 66
exceptions history, loss of, 79
exec_cmd (env. dependent library function), 245–246

Index

399

execution environment, 35
See also libraries

execution environment dependencies, 40
execution environments, 122
exit and _exit, how crt1 affects behavior, 235, 247
exit, _exit (env. dependent library function), 247
exp (math library function), 163
exponent field, 55
expressions

constant folding across, 108
in a logical context (optimization), 110
simplification (optimization), 108

extended character set, 57
extensions (ANSI) to C, 46–52
extensions, file name, 6
extern definitions, 129
external declarations, 47, 70

placement of, 134–135
static, 131
warning about, 275
warning about NEAR calls, 275

external declarations, segment name check, 127
external definitions, 130
external identifiers

length of, 51
external references, 46

F F32_TO_F64 conversion routine, 286
F32_TO_I16 conversion routine, 294
F32_TO_I32 conversion routine, 293
F32_TO_UI16 conversion routine, 292
F32_TO_UI32 conversion routine, 291
F64_TO_F32 conversion routine, 286
F64_TO_I16 conversion routine, 290
F64_TO_I32 conversion routine, 289
F64_TO_UI16 conversion routine, 288
F64_TO_UI32 conversion routine, 287
fabs (math library function), 168
FAR functions, 125
FAULT_I16 fault routine, 324
FAULT_I32 fault routine, 323
FAULT_I8 fault routine, 325

Index

400

FAULT_PTR fault routine, 319
FAULT_UI16 fault routine, 321
FAULT_UI32 fault routine, 320
FAULT_UI8 fault routine, 322
fclose (standard I/O library function), 164
features of the compiler, iv
ferror, feof (standard I/O library function), 165
fflush (standard I/O library function), 164
fgetc (standard I/O library function), 177
fgetpos (standard I/O library function), 166–167
fgets (standard I/O library function), 178
fields in floating-point data types, 54
file extensions, 6
file names

extensions, 6
file output, 199
files

emulator configuration, 236
include (header), 142, 146
library, 142
linker command, 236
program setup routines (crt0, crt1), 235

float data type, examples of, 55
float.h, include file, 146
floating point coprocessor, 171–174
floating point coprocessor (8087), 56, 79, 142, 279

control word, 173
precision of real number operations, 56
registers, 89

floating-point data types, 54
floating-point error functions, 146
floating-point error messages (run-time), 278
floating-point formats (single- and double-precision), 55
floor (math library function), 168
fmod (math library function), 168
fopen (standard I/O library function), 169–170
fopen_max macro (max. number of I/O control blocks), 242
fp_control.h, include file, 146, 171
_fp_error (math library function), 171–174
fprintf (standard I/O library function), 194–198
fputc (standard I/O library function), 199–200

Index

401

fputs (standard I/O library function), 201
fraction field, 55
frame pointer, offset of parameters, 79
frame pointer, stack frame management, 78
fread (standard I/O library function), 175
free (support library function), 187–188
frem (math library function), 168
freopen (standard I/O library function), 169–170
frexp (support library function), 176
fscanf, 205–209
fseek (standard I/O library function), 166–167
fsetpos (standard I/O library function), 166–167
ftell (standard I/O library function), 166–167
function entry and exit, 118
function prototypes

example, 47
how to use, 47
parameter passing example, 80

FUNCTION_ENTRY pragma, 99
FUNCTION_EXIT pragma, 99
FUNCTION_RETURN pragma, 99
functions

array of pointers to, 267
calls, 72
data passing, 88
exit, 85
FAR calls, 125
implementing as interrupt routines, 139
prolog, 79
results, 85
return value on stack, 78

fwrite (standard I/O library function), 175

G generate code for 8087 (command line option)
precision of operations, 56, 173
precision of real number operations, 56
register usage, 87–89

generate debug code (command line option), 115
generate run-time error checking, 90
generic pointers, 49
_get_fp_control (math library function), 171–174
_get_fp_status (math library function), 171–174

Index

402

getc, getchar (standard I/O library function), 177
getenv (standard C function), 145
_getmem (env. dependent library function), 241

rewriting, 241
getmem (env. dependent library function), 248–249
gets (standard I/O library function), 178
getting started, 1–36
groups, 125
GRP macro, 103

H header files, 146
memory.h, 248, 260
simio.h, 242

hex escape sequences, 60
hooks for execution environment, 35
HP-UX commands, 2

I I/O, eliminating, 140
I16_TO_F32 conversion routine, 294
I16_TO_F64 conversion routine, 290
I32_TO_F32 conversion routine, 293
I32_TO_F64 conversion routine, 289
INC_F32 addition routine, 299
INC_F64 addition routine, 297
include files, 130, 146

conflict with SECTION pragma, 130
memory.h, 248, 260
simio.h, 242

inexact result, trapping on, 172
infinity, controlling 8087 behavior, 173
??INIT segment class, 133
_init_fp (support library function for 8087), 172
initdata, 133
initializing arrays, 60
initsimio (env. dependent library function), 250
input and output, 242
installation, 7
integers, assignment compatibility, 46
integral data types, 54, 146
internal data representation, 53–66
INTERRUPT pragma, 139

See also pragmas

Index

403

interrupt routines
implementing functions as, 139
stack models, 354

interrupt routines and the 8087, 79
ioconfig.EA, emulator configuration file, 236
iolinkcom.k

default linker command file, 236
isalnum (support library function), 179–180
isalpha (support library function), 179–180
iscntrl (support library function), 179–180
isdigit (support library function), 179–180
isgraph (support library function), 179–180
islower (support library function), 179–180
isprint (support library function), 179–180
ispunct (support library function), 179–180
isspace (support library function), 179–180
isupper (support library function), 179–180
isxdigit (support library function), 179–180

J jmp_buf type (defined in setjmp.h), 146
jump shortening

See branch shortening

K kill (environment-dependent library function), 251

L l_tmpnam, standard C definition, 145
labs (math library function), 157
large and small memory mismatch, link time, 90–91
large memory model, 124–126

See memory model
segment name defaults, 127

ld86 linker/loader, 46
ldexp (support library function), 176
ldiv (math library function), 162
ldiv_t type (defined in stdlib.h), 147
LESS_EQ_F32 comparison routine, 313
LESS_EQ_F64 comparison routine, 312
LESS_F32 comparison routine, 312
LESS_F64 comparison routine, 311
librarian, C compilation overview, 45

Index

404

libraries, 141–232
calling run-time and support, 25
default modes of operation in the 8087 and 8086, 172
environment-dependent library files, 34
environment-dependent segment name, 234
list of all routines, 148
math, 56
nonreentrant routines, 138
purpose of environment libraries, 35
routine names, 144
run-time, 56, 144
support, 145
support routines not provided, 145

limits, translation, 51
limits.h, include file, 146
linkcom.k, linker command file (no I/O), 236
linker (ld86) and C compilation, 46
linker command file (default), iolinkcom.k, 236
lister (clst8086), 45
listing generated, 12, 17, 19, 22
literals, string, 111
loading constants, where to load, 133
local variables, how the compiler allocates stack space for, 78
locale.h, include file, 146
localeconv (support library function), 181–185
locals, how the compiler accesses, 85
log, log10 (math library function), 186
longjmp (support library function), 212–213
loop construct optimization, 110
loss of precision, trapping on, 172
lseek (environment-dependent library function), 252–253

M macros
embedding assembly language, 102

make utility, 33–34
makefiles, using with cc8086, 30–32
malloc (support library function), 187–188
man, on-line command descriptions, 36, 369
map memory model, 238
mass storage initialization of RAM data, 132

Index

405

math library, 145
behavior of functions, 329
descriptions, 156

math.h, include file, 146
MB_CUR_MAX macro, 185
mblen (support library function), 189–190
mbstowcs (support library function), 189–190
mbtowc (support library function), 189–190
memchr (support library function), 191
memcmp (support library function), 191
memcpy (support library function), 191
memmove (support library function), 191
memory access (forced by volatile), 136–137
memory model, 34

discussion of, 124–126
example using large memory model, 12
independent assembly code, 103
library dependencies, 142, 284
map, 238
mismatch checking, 90–91, 142
segment name defaults, 127
selection, 11–27
small, 16, 19, 22
stack usage, 354

memory.h, include file, 248, 260
memset (support library function), 191
"mixing extern declaration ..." warning, 275
MOD_I32A modulo routine, 318
MOD_I32B modulo routine, 318
MOD_UI32A modulo routine, 317
MOD_UI32B modulo routine, 317
modes of operation in the 8087 and 8086 libraries, default, 172
modf (support library function), 176
mon_stub.o file, 33
MUL_F32A multiplication routine, 305
MUL_F32B multiplication routine, 306
MUL_F32C multiplication routine, 306
MUL_F64A multiplication routine, 304
MUL_F64B multiplication routine, 304
MUL_F64C multiplication routine, 305
MUL_I32A multiplication routine, 314

Index

406

MUL_I32B multiplication routine, 314
multi-byte characters, 185
multi-character constants, 57
multiple symbol declarations, segment name check, 127

N names
See symbol names

NaN, 55
near stack model, 354
nil pointers

See null pointers
no initialized RAM data, 131
nonreentrant library routines, 138
normalized numbers, 55
Not a Number (NaN), 55
note on

accessing on-line command descriptions, 36
notes

changing string constants, 60, 112
environment-dependent library functions, 156
nested SEGMENT-SEGMENT UNDO pairs, 130
universal optimizations examples, 106

NPX
See floating point coprocessor

NULL character
in initialized arrays, 60
in strings, 60

null pointers, 90, 279

O on-line command descriptions (HP-UX man command), 36
open (environment-dependent library function), 254–256
operand error, trapping on, 172
operating modes in the 8087 and 8086 libraries, default, 172
operating system commands, 2
operation simplification (optimization), 109
opt8086 peephole optimizer, 44
optimizations, 105–120

automatic allocation of register variables, 111
constant folding, 107
expression simplification, 108
expressions in a logical context, 110
function entry and exit, 118

Index

407

optimizations (cont)
loop construct, 110
maintaining debug code during, 115
operation simplification, 109
switch statement, 111
those activated with the command line option, 114–120
time vs. space, 115
universal (always performed), 106–113
See also peephole optimizations

option summary, 4–5
options, detailed descriptions, 369
order of evaluation, maintaining, 108
overflow, trapping on, 172
overview of C compilation, 39–52

P padding
internal data representation, 64
structures, 61

parameters, 12
how the compiler accesses, 79
passing of (stack frame management), 77
shortening of, 80
widening of, 47, 65, 77

parentheses, 108
peephole optimizations, 116–118

branch shortening, 116
branch shortening/simplification optimizations, 118
data motion optimizations, 118
effect of volatile data on, 118
redundant jump elimination, 117
redundant register load elimination, 117
strength reduction, 117
tail merging, 116
unreachable code elimination, 117

peephole optimizer (opt8086), 44
perror (standard I/O library function), 192
pointers

assignment compatibility, 46
dereferencing, 90, 271
subtraction, 125
void, 46

pos_cursor (env. dependent library function), 257

Index

408

pow (math library function), 193
pragmas, 16, 19, 22, 48

ALIAS, 71
ASM and END_ASM, 93
DS, 103, 131
FUNCTION_ENTRY, 99
FUNCTION_EXIT, 99
FUNCTION_RETURN, 99
INTERRUPT, 102, 139
See also names of specific pragmas
SEGMENT, 103, 128, 131
See the on-line man pages

precision of real number operations, 56, 173, 279
prefixes for assembly language symbols, 69–71
preprocessor

 C, 44
assembly, 45
C, 102

preprocessor directives
See pragmas

printf (standard I/O library function), 194–198
prog, default small model PROG name, 127
prog_basename, default large model PROG names, 127
program setup routines, 235

differences between crt0 and crt1, 235
linking the, 236

PROM programming, 338
prototypes

See function prototypes
ptrdiff_t type (defined in stddef.h), 147
putc, putchar (standard I/O library function), 199–200
puts (standard I/O library function), 201

Q qsort (support library function), 202

R RAM and ROM considerations, 131–133
RAM and ROM for Small Memory Model, 133
RAM data initialized from mass storage, 132
RAM data initialized from ROM, 133
RAM data, no initialization, 131
rand (support library function), 203
read (environment-dependent library function), 258–259

Index

409

real number operations, precision of, 56, 173
realloc (support library function), 187–188
redeclaration of extern as static, 275
redundant jump elimination (peephole optimization), 117
redundant register load elim. (peephole optimization), 117
reentrant code, 138

functions returning structures, 77
register usage, 87–89

buffering(8087 registers), 79
register variables

automatic allocation (optimization), 111
buffering (SI), 79
reserved registers, 89

register, storage class specifier, 111
relocatable segments, 127–130
remove (support library function), 204
rename (standard C function), 145
reseting the 8087, 79
return values, 77
rewind (standard I/O library function), 166–167
ROM and RAM for Small Memory Model, 133
rounding, and the 8087, 173
run-time error checking, generating code for, 90
run-time libraries

See libraries
run-time library, 144

See also libraries
precision of real number operations, 56

S sbrk (environment-dependent library function), 260
sbrk, operating system library function, 241
scanf (standard I/O library function), 205–209
scope

assembler naming, 70
segment names, 127–130

changing default, 131
defaults for large memory model, 127
defaults for memory models, 127
defaults for small memory model, 128
environment-dependent routines (env), 234
external data, 127
multiple declarations of the same symbol, 127

Index

410

SEGMENT pragma, 16, 19, 22, 128
segment relative access, 12
SEGMENT-SEGMENT UNDO pairs, note on nested, 130
_set_fp_control (math library function), 171–174
setbuf, setvbuf (standard I/O library function), 210–211
setjmp (support library function), 212–213
setjmp.h, include file, 146
setlocale (support library function), 214–215
shortening of parameters, 80
side effects, 102, 112
sign bit field, 54
signal.h, standard include file, 145
signed integral data types, 54
simio.h, include file, 242
simple example program, compiling and executing, 9
sin (math library function), 216–217
single-precision (IEEE) floating-point format, 55
sinh (math library function), 218
size_t type (defined in stddef.h), 147
small and large memory model mismatch, link time, 90–91
small memory model, 124–126

and assembly language, 102
See memory model
RAM and ROM, 133
segment name defaults, 128

sprintf (standard I/O library function), 194–198
sqrt (math library function), 219
srand (support library function), 203
sscanf (standard I/O library function), 205
stack frame management, 72–86
stack models, 354
stack pointer, 8087, 89
standards

See ANSI standard
startup error messages (run-time), 281
startup, library routine called by crt0, 235
static variables, 70

accidental redeclaration, 275
const, 50
initialized arrays, 60

stdarg.h, include file, 146

Index

411

stddef.h, include file, 147
stdin, stdout, stderr streams, 235
stdio.h

definitions and functions not provided, 145
include file, 147

stdlib.h
functions not supported, 145
include file, 147

strcat (support library function), 220–222
strchr (support library function), 220–222
strcmp (support library function), 220–222
strcoll (support library function), 220–222
strcpy (support library function), 220–222
strcspn (support library function), 220–222
streams

buffered binary I/O to, 175
closing and flushing, 164
EOF, 200
failure to close, 211
file buffering, 210
formatted print to, 194
formatted read from, 205
opening, 169
print string to, 201
printing character to, 199
push character back, 227
reading characters, 177
standard error, 199
status inquiries, 165

strength reduction (peephole optimization), 117
strerror (support library function), 220–222
string.h, include file, 147
strings

and character pointers, 112
coalescing (optimization), 111
constant, 60
constants, optimization, 111
definition, 60
escape sequences, 60
initializing an array, 60

Index

412

strings (cont)
literals, 129
literals in CONST segment, 127
printing to a string, 194, 230–232
side effects, 112

strip symbol table information option, 72
strlen (support library function), 220–222
strncat (support library function), 220–222
strncmp (support library function), 220–222
strncpy (support library function), 220–222
strpbrk (support library function), 220–222
strrchr (support library function), 220–222
strspn (support library function), 220–222
strstr (support library function), 220–222
strtod (support library function), 223
strtok (support library function), 220–222
strtol, strtoul (support library function), 224–225
structure results, 72, 77
structures

internal data representation, 61
size of, 61

strxfrm (support library function), 189–190
SUB_F32A subtraction routine, 302
SUB_F32B subtraction routine, 302
SUB_F32C subtraction routine, 303
SUB_F64A subtraction routine, 300
SUB_F64B subtraction routine, 300
SUB_F64C subtraction routine, 301
summary of cc8086 options, 4–5
support libraries

See libraries
support library, 145

descriptions, 156
routines not provided, 145

switch statement optimization, 111
symbol names

assembly language, 69–71
parameters, 79
situations where C symbols are modified, 70

system (standard C function), 145
systemio, environment dependent I/O functions, 242

Index

413

T table
binary search routine, 160–161
character classification, 179
sort routine, 202

tail merging (peephole optimization), 116
tan (math library function), 216–217
tanh (math library function), 218
temporary storage, use of the stack, 85
time vs. space optimization, 115
time.h, standard include file, 145
tmp_max, standard C definition, 145
tmpfile (standard C function), 145
tmpnam (standard C function), 145
tolower, _tolower (support library function), 226
toupper, _toupper (support library function), 226
translation limits, 51
traps, 172
types

See data types

U UDATA SEGMENT, 275
UI16_TO_F32 conversion routine, 292
UI16_TO_F64 conversion routine, 288
UI32_TO_F32 conversion routine, 291
UI32_TO_F64 conversion routine, 287
unary plus (+) operator, 108
underflow, trapping on, 172
undo, form of the segment pragma, 130
ungetc (standard I/O library function), 227
uninitialized data option, 132
unions

internal data representations, 63
size of, 58

unlink (environment-dependent library function), 261–262
unreachable code elimination (peephole optimization), 117
user-defined option (C/64000 only), 342

V va_arg, va_end, and va_start macros, 146
va_list, 228–229
va_list type (defined in stdarg.h), 146
variable argument lists, 228–229

Index

414

variable names, 70
symbol names, 69–71

vector address, functions as interrupt routines, 139
void type, 49

assignment compatibility of pointers, 47
volatile type modifier, 49, 136–137

effect on peephole optimizations, 118
vprintf, vfprintf, vsprintf (std. I/O library function), 230–232

W warnings, compile-time, 274
uninitialized data, 132

wchar_t type (defined in stddef.h), 57, 147
wcstombs (support library function), 189–190
wctomb (support library function), 189–190
white space, 102
wide characters, 57
widening of parameters, 47, 77, 80
write (environment-dependent library function), 263–264

Index

415

Index

416

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or replace products which
prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

	Features
	Contents
	Quick Start Guide
	Getting Started

	Compiler Reference
	C Compilation Overview
	Internal Data Representation
	Compiler Generated Assembly Code
	Optimizations
	Embedded Systems Considerations
	Libraries
	Environment-Dependent Routines
	Compile-Time Errors
	Run-Time Errors
	Run-Time Routines
	Behavior of Math Library Functions
	Comparison to C/64000
	ASCII Character Set
	Stack Models
	About this Version
	On-line Manual Pages

	Index
	Certification and Warranty

