
User’s Guide

HP B1449
8086/186 Assembler, Linker,
Librarian

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1988, 1990, 1991, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company
P.O . Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

ii

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1
Edition 2
Edition 3

64871-90901, October 1988 E1088
64871-97004, July 1991
B1449-97000, April 1993

B1449-97000 incorporates information which previously appeared in
64871-97004, 64871-97005, 64871-97006, and 64871-92003.

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

iii

Features

The as86 assembler:

• generates code for the complete Intel 8086/8088 and 80186/188
instruction set

• generates code for NEC V20/V30 extensions to 8086/186 instruction set
• supports Intel 8087 floating-point coprocessor instructions
• permits repeated definition of the same or of different code, data, and

constants segments within a single source file
• has high-level data structures for structured data types, bit fields, and

symbolic memory references
• allows control of the assembly process (conditional assembly, structured

control, listing and output control) through a flexible set of assembly
control statements

• produces extensive program listings that can include symbol table/cross
reference information

• as part of the HP B1449 8086/186 Advanced Cross Assembler/Linker
package, is well-integrated with the HP B1493 8086/186 C Advanced
Cross Compiler

• comes with a powerful, string-oriented macro preprocessor. The macro
preprocessor adds even more flexibility to the assembler with its features
(including support for recursive macros).

 The ld86 linking loader:

• produces relocatable object modules for later re-linking (incremental
linking)

• produces absolute object modules in HP-OMF 86 format absolute, Intel
Hexadecimal Object file format absolute, or HP 64000 format absolute

• can include symbols in the absolute object module for symbolic debugging
• allows independent specification of all relocatable segment load addresses
• allows specification of relocatable segment loading order
• supports segment groupings into either GROUP or CLASS
• allows definition of public symbols, or changes to the memory locations of

previously-defined public, at load-time (except for incremental links)
• can generate a cross reference table of public symbols and the modules in

which they are referenced, and also a memory map

iv

• can load object modules from a user library created by the ar86 librarian
• can make a copy of initialized data values that can be placed in ROM
• gives detailed, well-documented error messages

The ar86 librarian:

• produces libraries that can be loaded by the linking loader
• can add, delete or replace individual modules in a library
• can display library directories
• supports batch command line input and return codes for make-type

procedures
• has an optimized structure for fast access during load-time
• can be run in interactive mode as well as batch mode
• can accept Intel library files as input

v

In This Book

This book is organized into three parts:

Part 1. Quick Start Guide

A short lesson to get you started and summaries of command syntax.

Part 2. Assembler/Macro Preprocessor Reference

Detailed information about the assembler and macro preprocessor.

Part 3. Linker/Librarian Reference

Detailed information about the linker and librarian.

Part 4. Error Messages Reference

Lists of the error messages you might see during the assembly/linking process,
and what to do about them.

vi

Contents

Part 1 Quick Start Guide

1 Getting Started

Objectives of the Example Program 2

Description of the Example Program 3
The "mov_mesg.s" Program Module 3
The "transfer.s" Program Module 7
The "delay.s" Program Module 8

Assembling the Program Module Source Files 9
Starting the Macro Preprocessor 9
Starting the Assembler 9
Viewing the Assembler Listing Files 9

Creating an Example Library File 15

Linking the Program Module Relocatable Object Files 17
Linking the Object Modules 18

vii

2 Command Syntax

as86(1) 23

ap86(1) 30

ld86(1) 32

ar86(1) 45

Part 2 Assembler/Macro Preprocessor Reference

3 Assembler Introduction

Instruction Set 52

Target Microprocessors 52

Assembler Operation 52

File Formats 53
Input File Characteristics 53
Output File Characteristics 53

4 Assembler Syntax

Assembler Character Set 56
ASCII Codes 58

Symbols 59
Symbol Formation 59
Keywords 60
Instruction Mnemonics 62
Codemacro 62
Label 62

Contents

viii

Variable 62
Structure Name 63
Structure Field Name 63
Record Name 63
Record Field Name 63
Segment Name 64
Group Name 64
EQU Symbols 64

Constants 64
Integer Constant 65
Real Constant 66
Character Constant 67

Delimiters 68

Assembler Statements 68
General Syntax 68
Comment 69
Continuation Lines 70

5 Symbol and Expression Attributes

TYPE 73
OFFSET 73
BASE 74
INDEX 74
SEGMENT 75
SEGMENT RELOCATION 75
RELOCATION TYPE 75
SEGMENT ADDRESSABILITY 76
CS ADDRESSABILITY 77

6 Assembler Directives

Segmentation Directives 81
Program Segmentation 81
Default Segment - ??SEG 82

Contents

ix

Data Definition Directives 83
Data Objects 83

Linkage Directives 84
Program Linkage 84
ASSUME 86
DB, DW, DD, DQ, DT 88
END 94
EQU 96
EVEN 99
EXTRN 100
GROUP 103
LABEL 105
NAME 107
ORG 108
PROC/ENDP 109
PUBLIC 111
PURGE 112
RECORD 114
SEGMENT/ENDS 118
STRUC/ENDS 123

7 Expressions

Reference Syntax Conventions 128

Expression Overview 128
Absolute Expression 129
Relocatable Expression 130
External Expression 130

Expression Operands 131
Numeric Values 131
Memory and Register Expressions 133
EQU 136

Expression Operators Introduction 137

Arithmetic Operators 137
Unary Plus, Unary Minus 137

Contents

x

Binary Addition, Subtraction 138
[] Square Brackets 139
. (Dot operator) 140
Multiplication, Division, Modulo 141
SHL, SHR 142
HIGH, LOW 143

Logical Operators 144
AND, OR, XOR 144
NOT 145
EQ, NE, LT, LE, GT, GE 145

Memory Operators 146
SHORT 146
THIS 146
PTR 147
Segment or Group Override 148
OFFSET 149
SEG 149
TYPE 150
LENGTH 151
SIZE 152

Record Operators 154
MASK 154
WIDTH 154

Segment and Group Operators 156
SEGOFFSET 156
GRPOFFSET 156
SEGSIZE 157
GRPSIZE 158

Operator Precedence 159

8 Instructions and Operands

Operands 162
Accepted Operands 162

Contents

xi

Operand Positioning 164
Immediate Values 164
Registers 165
Memory Expressions and the MODRM Byte 169

Segment Addressability and Overrides 170
Addressability Checking 171
Default Segments 171
Segment Overrides 172
Improper Uses of Segment Overrides 172
Segment Override Byte 172
Overrides and Checking Against ASSUME 173
Segment Override Byte Generation 173

The Instruction Set 174

as86 Assembler Instruction Set 176

9 Assembler Controls

General Syntax for Assembler Controls 195
Primary and General Controls 195
Controls on the Command Line 195
Control Conflicts 196
Controls and File Names 196
Control Abbreviations 196
Controls and the Macro Preprocessor (ap86) 196

Primary Controls 197
[NO]CASE 197
DATE(string) 197
[NO]DEBUG 198
[NO]ERRORPRINT (filename) 198
[NO]EXTERN_CHECK 198
GEN 199
GENONLY 199
[NO]GROUP_INFO 199
[NO]HLASSYM 200
[NO]MACRO(string) 200
MOD086 200

Contents

xii

MOD186 201
MODV20 201
[NO]OBJECT (filename) 201
[NO]OPTIMIZE 202
PAGELENGTH(n) 202
PAGEWIDTH(n) 202
[NO]PAGING 203
[NO]PRINT(filename) 203
[NO]SYMBOLS 204
[NO]TYPE 204
[NO]UNREFERENCED_EXTERNALS 204
[NO]WARNING 205
WORKFILES(...) 205
[NO]XREF 205

General Controls 206
EJECT 206
[NO]GEN 206
GENONLY 206
INCLUDE(filename) 207
[NO]LIST 207
RESTORE 207
SAVE 208
TITLE(string) 208

Operational Differences in the Different Modes 209
8086 Mode 209
80186 Mode 209
V20 Mode 209

Contents

xiii

10 Assembler Listing Description

Assembly Listing 212

Cross Reference and Symbol Table Format Description 213

11 Codemacros

Referencing Codemacros 218

Codemacro Directives 219
CODEMACRO 219
ENDM 221

Codemacro Matching 221

The Specmod Field 223

Range Specification 227

Codemacro Matching Examples 229

Expressions in Codemacros 231

Directives within Codemacros 232
DB, DD, DW 233
MODRM 234
NOSEGFIX 235
ONLY186 (186 Mode Only) 236
Record Name Initialization 237
RELB, RELW 238
RFIX, RFIXM, RNFIX, RNFIXM, RWFIX 239
SEGFIX 241

Contents

xiv

12 Macro String Preprocessor Introduction

Input Source Characteristics 244

The Metacharacter ’%’ And The Call Pattern 245

Metacharacter Syntax 246

Literal Character * 247

Input Parsing 248

Output Buffering 248

Include Files 248

Macro Expressions 250
Operators 250
Numbers 251
Symbols 251
Balanced Text String (baltex) 252

13 Pre-Defined Macro Functions

Pre-Defined Macro Functions 254
%’ (Comment Function) 255
%n and %((Escape and Bracket Functions) 255
%EQS, %NES, %LTS, %LES, %GTS,%GES 256
%EVAL 257
%EXIT 258
%IF (Conditional Assembly Function) 258
%LEN 259
%MATCH 260
%METACHAR 262
%REPEAT 262
%SET 263
%SUBSTR 264
%WHILE 264

Contents

xv

Example Problem 265

14 User-Defined Macros

%DEFINE 269
Macro Reference 271
Referencing Macro-time Symbols 273

15 Assembler versions

Version 3.10 276
New Product Numbers 276
New Assembler Controls 276
New Linker/Loader Controls 276
New Assembler Defaults 276
New Location for Man Pages 276

Version 3.00 276
Demo Directory Change 276
New Assembler Controls 277
New Assembler Operators 277
New Linker Commands 277
Other Linker Changes 277

16 Converting HP 64853 Assembly Language Programs

acvt86 Introduction 280
Assembler Differences 281
External Declarations 283
Porting Procedure— Main Files with INCLUDE Files 284
acvt86 Warnings, ap86 Errors, as86 Errors 285

Code Substitution 286

Byte ordering for BIN, DECIMAL, HEX, OCT 287

Manual Macro Translations 287
Macro Calls 288

Contents

xvi

acvt86(1) Command Syntax 290

Comparison of Keywords 294
ALIGN 294
ASSUME 294
COMN 294
DATA 295
< EOF> 295
EQU 295
EXPAND 296
EXT 296
Label Field 296
LIST 297
MASK 297
NAME 297
NOWARN 297
Operator Field 297
ORG 298
PROC 299
PROG 301
REAL 301
Reserved Words 301
SPC 301
WARN 302
* (Comment) 302

Linking to 64853 Programs 303
L_to_o86(1) 304

nm64(1) 305

17 8086/186 Instructions in Hexadecimal Order

18 8086/186 Instruction Set Summary

Footnotes 357

Contents

xvii

Part 3 Linker/Librarian Reference

19 Linker/Loader Introduction

Linking And Loading From Libraries 362

Linking to the 8087 362
M:_WST, M:_WT, M:_NST, and other Floating Point Externals 363

20 Linker/Loader Operation

Primary Functions 368

Incremental Linking 368

Segments and Load Addresses 369
Logical Segment 369
Base Address 369
Physical Segment 369
Absolute Segment 370
Relocatable Segment 370
Paragraph (Segment) Number 370
Class 370
Group 371
Group Base Address 371
Module 372

Complete Name 372

Segment Attributes 372
Combine-type Attributes 373
Align-type Attribute 374
Segment Alignment 375

Contents

xviii

Base Address Assignment 378

21 Loader Commands

Loader Commands Introduction 384
Command Symbols 384
Complete Name 385
Order of Commands 385
Command Length 385

Loader Command Descriptions 386
ALIGN 387
Comment (*) 389
END 389
ERROR, WARN, NOERROR 389
EXIT 390
FORMAT 391
GROUP 392
INITDATA 394
LENGTH 395
LIST, NLIST 396
LISTABS 400
LISTMAP 400
LOAD 402
NAME 403
ORDER 403
PUBLIC 405
RESADD, RESNUM 406
SEG 407
SEGSIZE 409
START 410
TYPEMERGE 411
WIDTH 412

Contents

xix

22 Linker/Loader Listing Description

Two-Pass Load 414

Object Module Format 414

Loader Command File 415

Starting the Loader 416

Loader Listings 416

Load Map Listing 418

First Assembler Listing 421

Second Assembler Listing 425

Third Assembler Listing 427

23 Librarian Introduction

Librarian Introduction 432

Starting the Librarian 432
Command Line 432
Command File 432
Interactive Operation 433

Librarian Function 433

24 Librarian Commands

Command Syntax 438
Use of Special Characters 438
Command File Comments 439
File Names 439
The SAVE Command 439
Return Codes 440

Contents

xx

Commands Summary 441
Shorthand Names 442
ADDLIB 444
ADDMOD 444
CLEAR 445
CREATE 445
DELETE 446
DIRECTORY 446
END 447
EXTRACT 447
FULLDIR
LIST 448
HELP 449
OPEN 449
REPLACE 450
SAVE 450

25 Librarian Listing Description

Librarian Sample 1 453

Librarian Sample 2 456

Part 4 Error Messages Reference

26 Error Message Formats

Warning 462
Error 462
Fatal Error 462

Contents

xxi

Interactive and Non-Interactive Conditions 462

27 Assembler Error Messages

Syntax Errors 466

28 Macro String Preprocessor Error Messages

Error Codes and Messages 494

29 Loader Error Messages

Warning Messages 500

Error Messages 506

Fatal Error Messages 510

30 Librarian Error Messages

Librarian Error Messages 514

Contents

xxii

Part 1

Quick Start Guide

Part 1

2

1

Getting Started

A short example of the process of assembling, creating libraries, and linking
several program modules.

Chapter 1: Getting Started

1

Objectives of the Example Program

This list of topics covered by the example program is provided here to give you
an idea of why the program is written the way it is. The example program is
designed to show some of the basic features of the B1449 8086/186 Advanced
Cross Assembler/Linker. Consequently, the example programs:

• Contain 8086 assembly language instructions written in a manner that
makes use of relocatable program sections.

• Contain a few of the most used assembler directives.

• Contain an example of a simple macro definition.

• Contain an example of structured control statements.

• Show how the relocatable program sections are used with the Linking
Loader (ld86).

• Show how to link two or more program modules.

• Show how to link object files from a library file.

Chapter 1: Getting Started

2

Note The example programs in this chapter have been included with your
Assembler/Linker/Librarian software and can be found in directory:
/usr/hp64000/demo/languages/as86

Description of the Example Program

The example program moves data from three different memory locations to a
fourth memory location. The program will be written in three modules to
show how several program modules are linked together.

The mov_mesg.s program module is made up of a data table which contains
the messages to be transferred, the main program which will define a macro
and call "transfer" and "delay" subroutines, and a RAM location where the
messages will be transferred.

The transfer.s program module contains the "transfer" subroutine which is
called by the main program. The transfer.s subroutine will transfer a message
from the data table to the destination memory location. The address of the
message to be transferred will be passed in register SI, and the length of the
message will be passed in register CX.

The delay.s program module contains the "delay" subroutine which is called by
the main program. The delay.s subroutine will delay for the number of
seconds which are passed in register CX.

The delay.o and the transfer.o relocatable object files will be placed into an
example library file called exlib.a.

The "mov_mesg.s" Program Module

The example program of this chapter will move three messages which are
contained in a data table to another memory location. The three messages are
labeled MESSAGE_1, MESSAGE_2, and MESSAGE_3. The ends of the
messages are also labeled so that the program will know how many words of
data to transfer. The destination memory location is labeled VIDEO_RAM.

The example program will (1) move the first message to VIDEO_RAM, where
it will be displayed for about 10 seconds, (2) move the second message to

Chapter 1: Getting Started
Description of the Example Program

3

VIDEO_RAM, where it is displayed for about 7 seconds, and (3) move the
third message to VIDEO_RAM, where it is displayed for about 4 seconds. At
this point the program will l oop back and display the second and third
messages, one after the other, repeatedly. The mov_mesg.s source file is
shown in Figure 1-1.

$XREF
NAME MOV_MESG

PUBLIC START, VIDEO_RAM
EXTRN TRANSFER:FAR
EXTRN DELAY:FAR

TABLE SEGMENT
MESSAGE_1 DB ’The example program moves ’
DB ’this and two additional ’
DB ’messages to a RAM location. ’
MESSAGE_1_END LABEL BYTE
MESG_1_LENGTH EQU MESSAGE_1_END - MESSAGE_1

MESSAGE_2 DB ’The first message is’
DB ’displayed for a medium ’
DB ’length of time. ’
MESSAGE_2_END LABEL BYTE
MESG_2_LENGTH EQU MESSAGE_2_END - MESSAGE_2

MESSAGE_3 DB ’The second message is ’
DB ’displayed for a shorter ’
DB ’length of time. ’
MESSAGE_3_END LABEL BYTE
MESG_3_LENGTH EQU MESSAGE_3_END - MESSAGE_3

TABLE ENDS

Figure 1-1. The "mov_mesg.s" Source File

Chapter 1: Getting Started
Description of the Example Program

4

M_CODE SEGMENT
ASSUME CS:M_CODE, SS:STACK, DS:TABLE, ES:DATA

START:MOV AX, STACK; initialize stack
MOV SS, AX
MOV SP, OFFSET STACK_END

MOV AX, TABLE; text source
MOV DS, AX

MOV AX, DATA; text destination
MOV ES, AX

%*DEFINE (SET_UP(ADDRESS,LENGTH,COUNT))(
CALL CLEAR; clear ram area
MOV SI, OFFSET %ADDRESS ; make address source of text
MOV CX, %LENGTH / 2; store length of text in words
CALL TRANSFER; transfer text to ram area
MOV CX, %COUNT; load delay count
CALL DELAY; run delay loop
)

%SET_UP(MESSAGE_1,MESG_1_LENGTH,10)
REPEAT: %SET_UP(MESSAGE_2,MESG_2_LENGTH,7)
%SET_UP(MESSAGE_3,MESG_3_LEN GTH,4)
JMP REPEAT; display messages 2 and 3 endlessly @FIGURELISTING =

CLEAR PROC
MOV DI, OFFSET VIDEO_RAM ; point to area to be cleared
MOV CX,30; load number of words to write
AGAIN:MOV ES:[DI], 2020H; write 2 spaces
ADD DI, 2; move pointer 2 bytes
LOOP AGAIN; loop until out of words to clear
RET
CLEAR ENDP

M_CODE ENDS

DATA SEGMENT COMMON
VIDEO_RAM DW 0FFH DUP (?)
DATA ENDS

STACK SEGMENT STACK
DB 0FFH DUP (?)
STACK_END LABEL BYTE
STACK ENDS

END START

Figure 1-1. The "mov_mesg.s" Source File (Cont’d)

Chapter 1: Getting Started
Description of the Example Program

5

PUBLIC Definitions.

The first thing the mov_mesg.s program module does is define the symbols
which can be referenced by other program modules. These definitions are
made with the PUBLIC assembler directive. The label VIDEO_RAM is
defined as public because the transfer.s program module will reference the
destination memory locations. The label START is defined as a public for
program debugging convenience.

External Definitions.

The EXTRN assembler directive allows you to use labels or variables which
are defined in other program modules. In the mov_mesg.s program module,
the CALL TRANSFER and the CALL DELAY instructions use labels which
are defined in the transfer.s and delay.s program modules, respectively.
Therefore, TRANSFER and DELAY must be declared as external references.

The TABLE Program Segment.

The TABLE program segment contains the ASCII bytes of the three messages
which are written to the destination memory location. The DB assembler
directive is used to define the ASCII data. The lengths of the three messages
are assigned to labels with the EQU assembler directive.

The M_CODE Program Segment.

The executable code of the mov_mesg.s program module is found in the
M_CODE segment. After the user segment registers and stack pointer are
loaded, the SET_UP macro is defined. The three parameters in the macro
definition (ADDRESS, LENGTH, and COUNT) are assigned actual values in
the macro calls. Each time the macro is called, assembly code is generated
which calls the CLEAR, TRANSFER, and DELAY subroutines. (Parameters
are moved into registers before the TRANSFER and DELAY calls.) After
the macro is defined, it is called three times. The CLEAR subroutine, which
moves ASCII spaces to the destination memory locations, appears at the end
of the M_CODE program section.

The DATA Program Segment.

Storage locations are defined in the DATA program segment with the DW
assembler directive. This storage location is the destination of the three
messages and is labeled VIDEO_RAM.

Chapter 1: Getting Started
Description of the Example Program

6

The STACK Program Segment.

Storage locations are defined in the STACK program segment with the DB
assembler directive. This storage location is used for data stack.

The "transfer.s" Program Module

The main program branches to the subroutine contained in the transfer.s
program module. The "transfer" subroutine will move the data from the
address passed in SI to the destination memory location VIDEO_RAM.
Notice that the executable code in this module appears in a program segment
named T_CODE. Also, notice the public definition of the label TRANSFER
(which allows the main program to branch to this label) and the external
reference of the variable VIDEO_RAM which was defined in the main
program module. The transfer.s source file is shown in Figure 1-2.

$XREF
NAME TRANSFER

PUBLIC TRANSFER

EXTRN VIDEO_RAM: WORD

T_CODE SEGMENT
ASSUME CS:T_CODE

TRANSFER PROC FAR

MOV DI, OFFSET VIDEO_RAM; point to destination
REP MOVSW; move words until CX=0

RET

TRANSFER ENDP

T_CODE ENDS

END

Figure 1-2. The "transfe r.s" Source File

Chapter 1: Getting Started
Description of the Example Program

7

The "delay.s" Program Module

The main program branches to the "delay" subroutine contained in the delay.s
program module. The "delay" subroutine is used to display the various
messages for the number of seconds passed in register CX. This program
module’s executable code is placed in a program segment named D_CODE.
Notice the public definition of the DELAY label so that other program
modules can refer to this subroutine. The delay.s source file is shown in
Figure 1-3.

$XREF
NAME DELAY

PUBLIC DELAY

D_CODE SEGMENT
ASSUME CS:D_CODE

DELAY PROC FAR

MOV AX, 553; load delay constant
MUL CX; multiply twice by delay count
MUL CX
DLOOP:DEC AX; decrement value until at 0
JNZ DLOOP
RET

DELAY ENDP

D_CODE ENDS

END

Figure 1-3. The "delay.s" Source File

Chapter 1: Getting Started
Description of the Example Program

8

Assembling the Program Module Source Files

Assembling program module source files will create object files. The
commands to assemble the source files follow.

Starting the Macro Preprocessor

The macro preprocessor must be run for mov_mesg.s before it is assembled
because it contains macro definitions. The output of the macro
processor—the file mov_mesg.ap— is then used as input to the assembler.
The command to start the macro preprocessor:

$ ap86 mov_mesg.s -s > mov_mesg.ap

Starting the Assembler

The output of the macro preprocessor and the other two source files are
assembled with the following commands:

$ as86 -Lh mov_mesg.ap > mov_mesg.lis
$ as86 -Lh transfer.s > transfer.lis
$ as86 -Lh delay.s > delay.lis

The -L in the assembler commands above causes an assembler listing to be
sent to the standard output. The -h option in the assembler commands above
specifies that the assembler create HP 64000 assembler symbol files (with .A
suffixes). The "> " in the commands above redirects the standard output to a
file.

Viewing the Assembler Listing Files

You can view the assembler listings (files with the ".lis" extensions as specified
above) with the more command. For example, to view the "mov_mesg.lis" file,
enter the command below.

$ more mov_mesg.lis

Assembler listings for each of the program modules are shown in Figures 1-4
through 1-6.

Chapter 1: Getting Started
Assembling the Program Module Source Files

9

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Mon
Mar 29 08:36:04 1993
 MOV_MESG HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -Lh mov_mesg.ap
Line Offset Object-Bytes
1 0000 ; Hewlett-Packard Macro Preprocessor
2 0000 ; HPB1449-19302 A.03.10 24Mar93 Copr. HP
1988
3 0000 ; MKT:@(#) B1449-19302 A.03.10 8086/186
ASSEMBLER/LINKER 24Mar93 Unreleased
4 0000 $XREF
5 0000 NAME MOV_MESG
6 0000
7 0000 PUBLIC START, VIDEO_RAM
8 0000 EXTRN TRANSFER:FAR
9 0000 EXTRN DELAY:FAR
10 0000
11 0000 TABLE SEGMENT
12 0000 54 68 65 20 65 78 MESSAGE_1 DB ’The example program moves ’
12 61 6D 70 6C 65 20
12 70 72 6F 67 72 61
12 6D 20 6D 6F 76 65
12 73 20
13 001A 74 68 69 73 20 61 DB ’this and two additional ’
13 6E 64 20 74 77 6F
13 20 61 64 64 69 74
13 69 6F 6E 61 6C 20
14 0032 6D 65 73 73 61 67 DB ’messages to a RAM location. ’
14 65 73 20 74 6F 20
14 61 20 52 41 4D 20
14 6C 6F 63 61 74 69
14 6F 6E 2E 20
15 004E MESSAGE_1_END LABEL BYTE
16 004E MESG_1_LENGTH EQU MESSAGE_1_END - MESSAGE_1
17 004E
18 004E 54 68 65 20 66 69 MESSAGE_2 DB ’The first message is’
18 72 73 74 20 6D 65
18 73 73 61 67 65 20
18 69 73
19 0062 64 69 73 70 6C 61 DB ’displayed for a medium ’
19 79 65 64 20 66 6F
19 72 20 61 20 6D 65
19 64 69 75 6D 20
20 0079 6C 65 6E 67 74 68 DB ’length of time. ’
20 20 6F 66 20 74 69
20 6D 65 2E 20
21 0089 MESSAGE_2_END LABEL BYTE
22 0089 MESG_2_LENGTH EQU MESSAGE_2_END - MESSAGE_2
23 0089
24 0089 54 68 65 20 73 65 MESSAGE_3 DB ’The second message is ’
24 63 6F 6E 64 20 6D
24 65 73 73 61 67 65
24 20 69 73 20
25 009F 64 69 73 70 6C 61 DB ’displayed for a shorter ’
25 79 65 64 20 66 6F
25 72 20 61 20 73 68

Figure 1-4. The "mov_mesg.lis" Assembly Listing

Chapter 1: Getting Started
Assembling the Program Module Source Files

10

25 6F 72 74 65 72 20
26 00B7 6C 65 6E 67 74 68 DB ’length of time. ’

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Mon
Mar 29 08:36:04 1993
 MOV_MESG HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes
26 20 6F 66 20 74 69
26 6D 65 2E 20
27 00C7 MESSAGE_3_END LABEL BYTE
28 00C7 MESG_3_LENGTH EQU MESSAGE_3_END - MESSAGE_3
29 00C7
30 00C7 TABLE ENDS
31 0000
32 0000 M_CODE SEGMENT
33 0000 ASSUME CS:M_CODE, SS:STACK, DS:TABLE,
ES:DATA
34 0000
35 0000 B8 00 00 R START: MOV AX, STACK ; initialize
stack

36 0003 8E D0 MOV SS, AX
37 0005 BC FF 00 R MOV SP, OFFSET STACK_END
38 0008
39 0008 B8 00 00 R MOV AX, TABLE ; text source

40 000B 8E D8 MOV DS, AX
41 000D
42 000D B8 00 00 R MOV AX, DATA ; text destination

43 0010 8E C0 MOV ES, AX
44 0012
45 0012
46 0012
47 0012
48 0012 E8 41 00 CALL CLEAR ; clear ram area

49 0015 BE 00 00 MOV SI, OFFSET MESSAGE_1 ; make
address source of text

50 0018 B9 27 00 MOV CX, MESG_1_LENGTH / 2 ; store
length of text in words

51 001B 9A 00 00 00 00 E CALL TRANSFER ; transfer text
to ram area

52 0020 B9 0A 00 MOV CX, 10 ; load delay count

53 0023 9A 00 00 00 00 E CALL DELAY ; run delay loop

54 0028
55 0028 REPEAT:
56 0028 E8 2B 00 CALL CLEAR ; clear ram area

Figure 1-4. The "mov_mesg.lis" Assembly List (Cont’d)

Chapter 1: Getting Started
Assembling the Program Module Source Files

11

57 002B BE 4E 00 MOV SI, OFFSET MESSAGE_2 ; make
address source of text

58 002E B9 1D 00 MOV CX, MESG_2_LENGTH / 2 ; store
length of text in words

59 0031 9A 00 00 00 00 E CALL TRANSFER ; transfer text
to ram area

60 0036 B9 07 00 MOV CX, 7 ; load delay count

61 0039 9A 00 00 00 00 E CALL DELAY ; run delay loop

62 003E
63 003E
64 003E E8 15 00 CALL CLEAR ; clear ram area

65 0041 BE 89 00 MOV SI, OFFSET MESSAGE_3 ; make
address source of text

66 0044 B9 1F 00 MOV CX, MESG_3_LENGTH / 2 ; store
length of text in words

67 0047 9A 00 00 00 00 E CALL TRANSFER ; transfer text
to ram area

68 004C B9 04 00 MOV CX, 4 ; load delay count

69 004F 9A 00 00 00 00 E CALL DELAY ; run delay loop

70 0054
71 0054 EB D2 JMP REPEAT ; display
messages 2 and 3 endlessly

72 0056
73 0056 CLEAR PROC
74 0056 BF 00 00 R MOV DI, OFFSET VIDEO_RAM ; point to
area to be cleared

75 0059 B9 1E 00 MOV CX,30 ; load number of words
to write

76 005C 26 C7 05 20 20 AGAIN: MOV ES:[DI], 2020H ; write 2
spaces

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 3 Mon
Mar 29 08:36:04 1993
 MOV_MESG HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes
77 0061 83 C7 02 ADD DI, 2 ; move pointer 2 bytes

78 0064 E2 F6 LOOP AGAIN ; loop until out
of words to clear

Figure 1-4. The "mov_mesg.lis" Assembly List (Cont’d)

Chapter 1: Getting Started
Assembling the Program Module Source Files

12

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Mon
Mar 29 08:36:08 1993
 TRANSFER HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -Lh transfer.s
Line Offset Object-Bytes
1 0000 ; MKT:@(#) B1449-19302 A.03.10 8086/186
ASSEMBLER/LINKER 24Mar93

2 0000 $XREF
3 0000 NAME TRANSFER
4 0000
5 0000 PUBLIC TRANSFER
6 0000 EXTRN VIDEO_RAM: WORD
7 0000
8 0000 T_CODE SEGMENT
9 0000 ASSUME CS:T_CODE
10 0000
11 0000 TRANSFER PROC FAR
12 0000
13 0000 BF 00 00 E MOV DI, OFFSET VIDEO_RAM ; point to
destination

14 0003 F3 A5 REP MOVSW ; move words
until CX=0

15 0005 CB RET
16 0006
17 0006 TRANSFER ENDP
18 0006
19 0006 T_CODE ENDS
20 0000
21 0000 END

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Mon
Mar 29 08:36:08 1993
 TRANSFER HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
 Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
TRANSFER PROC T_CODE:0000 FAR -5 -11 -17
T_CODE SEGM SIZE=0006 PARA -8 9 19
VIDEO_RAM EXTERN WORD -6 13

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 1-5. The "transfer.lis" Assembly Listing

Chapter 1: Getting Started
Assembling the Program Module Source Files

13

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Mon
Mar 29 08:36:09 1993
 DELAY HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -Lh delay.s
Line Offset Object-Bytes
1 0000 ; MKT:@(#) B1449-19302 A.03.10 8086/186
ASSEMBLER/LINKER 24Mar93

2 0000 $XREF
3 0000 NAME DELAY
4 0000
5 0000 PUBLIC DELAY
6 0000
7 0000 D_CODE SEGMENT
8 0000 ASSUME CS:D_CODE
9 0000
10 0000 DELAY PROC FAR
11 0000
12 0000 B8 29 02 MOV AX, 553 ; load delay constant

13 0003 F7 E1 MUL CX ; multiply twice by
delay count

14 0005 F7 E1 MUL CX
15 0007 48 DLOOP: DEC AX ; decrement value
until at 0

16 0008 75 FD JNZ DLOOP
17 000A CB RET
18 000B
19 000B DELAY ENDP
20 000B
21 000B D_CODE ENDS
22 0000
23 0000 END

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Mon
Mar 29 08:36:09 1993
 DELAY HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
 Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
DELAY PROC D_CODE:0000 FAR -5 -10 -19
DLOOP LABEL D_CODE:0007 NEAR -15 16
D_CODE SEGM SIZE=000B PARA -7 8 21

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 1-6. The "delay.lis" Assembly Listing

Chapter 1: Getting Started
Assembling the Program Module Source Files

14

Creating an Example Library File

One of the objectives of this chapter is to show how object modules can be
linked from libraries. Before we can link from a library file, a library file must
be created. To create an example library file consisting of the "transfer.o" and
"delay.o" relocatable object modules, enter the following command:

$ ar86 -a delay.o,transfer.o -L exlib > exlib.lis

The -a option in the command above specifies that the files which follow are
to be added to the library. The -L option in the command above specifies that
a library listing file be sent to the standard output (which is redirected to the
"exlib.lis" file). The library listing file is shown in Figure 1-7.

Notice the warning message. Warning messages announce something that
might be a problem. Since you are creating a new library file, you already know
that "exlib.a" does not yet exist, so you can ignore the warning. The warning in
the first line of the listing appears on the display, not in the listing file.

Chapter 1: Getting Started
Creating an Example Library File

15

< ar86 >
 WARNING: (107) file exlib.a does not exist.
Hewlett-Packard ar86
HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988

OPEN exlib.a
 WARNING: (107) file exlib.a does not exist.
ADDMOD transfer.o
ADDMOD delay.o
LIST exlib.a
Hewlett-Packard ar86 Mon Mar 29 08:36:11 1993

HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988

Library being built exlib.a

 Module Size
TRANSFER ... 290
 ****** PUBLIC DEFINITIONS ******

TRANSFER
 ****** EXTERNAL REFERENCES ******

VIDEO_RAM

Public Count = 1
External Count = 1

 Module Size
DELAY ... 280
 ****** PUBLIC DEFINITIONS ******

DELAY
 ****** EXTERNAL REFERENCES ******

Public Count = 1
External Count = 0

Module Total = 2

SAVE

END

Warnings = 1
Errors = 0

Figure 1-7. The "exlib.lis" Library Listing

Chapter 1: Getting Started
Creating an Example Library File

16

Linking the Program Module Relocatable Object
Files

Linking is the process in which program modules are joined together to form a
single absolute file which can then be executed or debugged. Because you can
link several object modules to form an executable file, the Linking Loader is
sometimes called the "Linker". Also, because you can specify the load
addresses of various program sections, the Linking Loader will sometimes be
referred to as the "Loader". Either name is correct; the ld86 tool does both.

There are two ways that you can specify object files to be linked:

• enter the names of the files on the command line
• specify the names of the object files in a linker command file

The linker command file shown in Figure 1-8 will be used to link the three
object modules in the example program.

* Demo 8086 loader command file

NAME DEMO

ORDER M_CODE, T_CODE, D_CODE

SEG TABLE=1000H
SEG M_CODE=1400H
SEG DATA=1800H

LOAD mov_mesg.o, exlib.a

END

Figure 1-8. The "demo.k" Linker Command File

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

17

Linking the Object Modules

The command to link the example program object modules is shown below.
The -c option specifies that a linker command file will be supplying
information to the Linking Loader.

$ ld86 -c demo.k -Lh > demo.lis

The -L option in the command above specifies that an output load map listing
file be sent to the standard output (which is redirected to the "demo.lis" file).
The -h option specifies that the linker create HP 64000 format output files
(demo.X is the absolute file and demo.L is the linker symbol file). The load
map listing file is shown in Figure (1-9). The resulting executable (demo.X),
along with the linker symbol file (demo.L) and assembler symbol files
(mov_mesg.A, transfer.A, and delay.A), may be loaded into an emulator or
downloaded into ROM for execution.

Hewlett-Packard ld86 Mon Mar 29 08:36:13 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988
Command line: ld86 -h -L -c demo.k

* Demo 8086 loader command file

NAME DEMO

ORDER M_CODE, T_CODE, D_CODE

SEG TABLE=1000H
SEG M_CODE=1400H
SEG DATA=1800H

LOAD mov_mesg.o, exlib.a

END

OUTPUT MODULE NAME: DEMO
OUTPUT MODULE FORMAT: HP64000 absolute

START ADDRESS: 00140:00000 -> 01400

Figure 1-9. The "demo.lis" Load Map Listing

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

18

This completes the "Getting Started" example. For a complete description of
the as86, ap86, ld86, and ar86 commands and their options, refer to the
"Assembler/Macro Preprocesor/Linker/Librarian Command Syntax" chapter
that follows.

SEGMENT SUMMARY

SEGMENT/CLASS GROUP START END LENGTH ALIGN COMBINE

??SEG/ 00000 00000 00000 Para Public
STACK/ 00000 000FE 000FF Para Stack
??DATA1/??INIT 000FF 00101 00003 Byte Common
TABLE/ 01000 010C6 000C7 Para Private
M_CODE/ 01400 01466 00067 Para Private
T_CODE/ 01470 01475 00006 Para Private
D_CODE/ 01480 0148A 0000B Para Private
DATA/ 01800 019FD 001FE Para Common

MODULE SUMMARY

MODULE SEGMENT/CLASS HP SECT START END LENGTH

MOV_MESG /8086/asm/listing/mov_mesg.o
 M_CODE/ PROG 01400 01466 00067
 TABLE/ DATA 01000 010C6 000C7
 DATA/ COMMON 01800 019FD 001FE
 STACK/ ABS 00000 000FE 000FF

DELAY /8086/asm/listing/exlib.a
 D_CODE/ PROG 01480 0148A 0000B

TRANSFER /8086/asm/listing/exlib.a
 T_CODE/ PROG 01470 01475 00006
Link completed

Hewlett-Packard ld86 Mon Mar 29 08:36:13 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988

Figure 1-9. The "demo.lis" Load Map Listing (Cont’d)

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

19

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

20

2

Command Syntax

Syntax for the assembler, macro preprocessor, linker, and librarian.

Chapter 2: Command Syntax

21

Options may be entered on the command line to control generation of the
output listing and object module, and to turn internal assembler flags on and
off.

The information on the following syntax pages can be accessed on your
workstation via the man command. For example, to view the as86 on-line
manual page, just type in the following command:

 $ man as86

If this command doesn’t work ("No manual entry"), check that the
MANPATH environment variable includes the path $HP64000/man.

Chapter 2: Command Syntax

22

as86(1)

Name as86 - cross assembler for the Intel 8086/186 microprocessors

Synopsis /usr/hp64000/bin/as86 [options] file

Description as86 assembles the named file.

as86 attempts to open the file named on the command line. If this fails and
the file does not have a suffix (does not contain a period), as86 appends a .s to
the file name and attempts to open that file.

The output is a relocatable file containing Intel 8086/186 instructions and
symbolic data. The format of the output file is HP’s extension of the INTEL
8086 OMF relocatable file format.

An HP 64000 format assembler symbol file is also produced when the -h
option is used. The asmb_sym file name will have a .A suffix added to the
source file name.

The name of the object file may be specified with the -o option. If it is omitted,
the output file name is created by stripping off the ending suffix from the input
file name and appending .o in place of the suffix. Any full path prefix is also
stripped from the beginning of the input file name. The output files are placed
in the local directory, unless the file named with an -o option specifies a
different path.

The -L option may be used to obtain an assembler listing on standard output.
Standard output may be redirected into a listing file. This listing contains
offsets, instruction codes, symbol table information, symbol table cross
reference, and other useful information.

Options The following command line options are recognized by as86:

-f flaglist The flags in flaglist are used to select and change the internal assembler
control switches.

Chapter 2: Command Syntax
as86(1)

23

The flags recognized and their meanings are defined below. Each flag may be
set (or unset) either on the command line using the -f option as described here
or by entering the option in the assembler source program.

Groups of flags following the -f option must be separated by commas or
separated by white space and quoted. Any option that contains white space
must be quoted. For example, the following sets the flags debug, ty, title (my
title), and xref:

-f debug,ty -f "title (my title) xref"

A flag may be unset (turned off) by preceding the flag value with no. A
negated flag may not have a parameter. The following flags may not be
negated: include, pagelength, pagewidth, title, date, workfile, and optimize.
For example, the following turns off the debug and object flags:

-f nodebug,noobject

-H asmb_sym_file specifies a file name to override the default file name for the HP 64000 format
assembler symbol file. (See the -h option below.)

If asmb_sym_file has a suffix, then the name is used as is. Otherwise, a .A is
appended to form asmb_sym_file.A.

-h specifies that an HP 64000 format assembler symbol file should be produced.
The assembler symbol file name will have a .A suffix added to the source file
name. The source file name will have all preceding directories and the trailing
suffix stripped off before the .A is added. If the assembler symbol file is to be
used in an HP 64000 station, recall that file names in the HP 64000 are
restricted to nine characters in length and must begin with an upper case
letter. The default asmb_sym file name may be overridden with the -H option.

When writing the asmb_sym file, all identifiers in the source program are
converted to legal HP 64000 identifiers. Illegal characters within identifiers
such as ’?’ or ’ @’ will be converted to an ’_’ . Identifier names longer than 15
characters will be truncated to 15 characters. No attempt is made to search for
duplicate symbols created by the truncation.

-L specifies that an assembler listing file be written to standard output.

-o objfile specifies the name of the output file. This overrides the default file name for
the HP-OMF 86 format relocatable file produced.

Chapter 2: Command Syntax
as86(1)

24

Flags The following flags may be specified using the -f flaglist option. Flags may be
specified as either upper or lower case. All flags have a two-letter
abbreviation that may be used. Flags on the command line are set from left to
right, so the rightmost setting for a particular flag will be used. Some flags
may be used anywhere within a source file, which means the value of a flag
might be changed later in the source. These flags are also called general
controls. Other flags may only be used on either the command line or the first
lines of the source file. These flags are also called primary controls. A
primary control used on the command line will override a primary control
used in the source file. The last occurrence of a general control will be the one
which takes effect. This means that any occurrence of a general control in the
source file overrides the general control setting in the command line
beginning at the point in the source file where the general control occurs to
either the end of the assembly source file or until another duplicate control is
found.

case
ca

Causes symbols to be case sensitive. That is, upper and lower case characters
will be assumed different. The option nocase means that upper and lower case
characters in symbols are treated as upper case. Note that INTEL-generated
OMF is case insensitive (all upper case). This option, or its negated form, may
also be entered on the first assembly source lines. (Default: case)

debug
db

Causes debug and type information to be stored in the resulting relocatable
file. This option, or its negated form, may also be entered on the first
assembly source line. (Default: debug)

eject
ej

Causes a page eject to occur and a new page heading to be printed. This
option is only useful if a listing is being generated and paging is in effect. This
option may be used anywhere within the assembly source.

errorprint
[’(’filename’)’]
ep [’(’filename’)’]

Causes error and warning information to be displayed on standard error. If a
filename is used with the errorprint control, the filename is ignored. The
noerrorprint control suppresses error and warning messages from being
displayed on standard error. The nowarning control may be used to suppress
warning messages while allowing error messages to be displayed. (Default:
errorprint)

extern_check
ec

Causes use of external symbols to be checked such that an assume register has
been defined that can reference the external symbol. An error is generated if
this condition cannot be met. The noextern_check control causes the
assembler to allow any use of an external symbol without verifying that the
symbol is accessible through an assume register. (Default: extern_check)

Chapter 2: Command Syntax
as86(1)

25

gen
ge

Supplied for Intel compatibility. The assembler does no macro processing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

genonly
go

Supplied for Intel compatibility. The assembler does no macro processing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

group_info
gi

Causes the debug information emitted from the assembler to associate group
information to all symbols that belong to segments belonging to a group. Only
one group will be assigned, regardless of how many groups a given segment
belongs to. The nogroup_info control will only associate group information to
labels and procedures; variables will NOT have group information associated
with them. (Default: group_info)

hlassym
ha

Causes as86 to generate low-level symbol information for static procedures,
static data, and embedded code. This option is useful when
compiler-generated output is to be debugged in an emulator. If the output is
to be debugged in AxDB or AxDE, then the negated form of this option is
recommended. (Default: nohlassym)

include’(’filename ’)’
ic [’(’filename’)’]

Causes the indicated file to be included into the assembly code before any
other source is assembled. This option may be used anywhere within the
assembly source.

list
li [’(’filename’)’]

Causes assembly source to be displayed in the listing while it is being
assembled. The nolist option turns off the listing function until the next list
option. This option is only useful if a listing is produced. This option, or its
negated form, may be used anywhere in an assembly source file. (Default: list)

mod086
m0

Causes iAPX86 instruction set to be recognized. Errors or warnings will be
issued when instructions from conflicting instruction sets are encountered.
(Default: mod086)

mod186
m1

Causes iAPX186 instruction set to be recognized. Therefore, BOUND,
ENTER, INS, INSB, LEAVE, OUTS, OUTSB, OUTSW, POPA and PUSHA
are predefined symbols. The iAPX86 instructions will still be recognized.

modv20
mv

Causes v20/v30 support.

Chapter 2: Command Syntax
as86(1)

26

Note Except for the specific instructions that are V20/V30 extensions, as86 uses
Intel mnemonics. as86 uses Intel syntax for all instructions.

object
[’(’filename’)’]
oj

Causes an object (or relocatable) file to be created. The created file will have
the same name as the input file, only with a .o extension, unless the -o flag was
used. In that case, the object file will have the filename specified with that flag.
If a filename is specified with the object control, that filename is ignored. The
noobject option causes no relocatable file to be created. This option, or its
negated form, may also be entered on the first assembly source lines.
(Default: object)

optimize
op

Causes extra processing of the input file to remove extraneous NOPs. These
NOPs are generated when the assembler encounters certain forward
references in instructions. In those cases, the assembler does not know how
many bytes the instruction will require, so it allocates the maximum number of
bytes needed. If the instruction requires fewer bytes, then the assembler must
pad the object code with NOPs, so the addresses of following symbols remains
consistent. The optimize option causes the assembler to process the input file
to remove these extra NOP bytes, so as to generate the smallest amount of
object code possible.

pagelength
’(’NUMBER’)’
pl ’(’NUMBER’)’

Sets the maximum number of lines per listing page. This option is only useful
if a listing is produced and paging is enabled. This option may be entered on
the first assembly source lines.
(Default: pagelength(55))

pagewidth
’(’NUMBER’)’
pw ’(’NUMBER’)’

Sets the maximum width of each line in the listing. This option is only useful
if a listing is produced. This option may be entered on the first assembly
source lines. (Default: pagewidth(120))

paging
pi

Causes page ejects to occur whenever the maximum number of lines per listing
page is generated. The nopaging option causes no page ejects to occur
throughout the listing, due to page lengths. This option is only useful if a
listing is produced. This option, or its negated form, may be entered on the
first assembly source lines. (Default: paging)

print [’(’filename’)’]
pr [’(’filename’)’]

Prints the assembly listing. The noprint control suppresses the generation
of the listing file including error messages and symbol table listings. You
cannot override noprint with a list control occurring later in the program;
however, a list control with no preceding print or noprint implies print. The
file name parameter is accepted for Intel compatibility, but it is ignored by

Chapter 2: Command Syntax
as86(1)

27

the assembler. Any lines that precede the print control will not be output
to the listing. (Default: noprint)

restore
rs

Restores a previously saved state for the list/nolist flag. This option is only
useful if a listing is being generated. It may appear anywhere within a source
file.

save
sa

Saves the current status of the list/nolist flag. These settings may then be
restored later by using the restore flag. Up to 64 saves may be made. This
option is only useful if a listing is being generated. It may also appear
anywhere within a source file.

symbols
sb

Causes an alphabetically-sorted list of symbols to be appended to the listing.
This option differs from the xref option in that no cross-reference information
is placed in this list. Using the xref option overrides either symbols or
nosymbols. This option is only useful if a listing is produced. This option, or
its negated form, may also be entered on the first assembly source line.
(Default: symbols)

title(TEXT)
tt(TEXT)

Causes the TEXT to become the new title, which is printed at the top of each
listing page. This option is only useful if a listing is produced. This option
may be used anywhere in an assembly source file. (Default: title (MODULE
NAME))

unreferenced_
externals
ue

Causes all external symbols, whether they are referenced or not, to appear in
the resulting object file. If this option is not used, only those external symbols
that have been actually used will be emitted. All unreferenced external
symbols would not be generated, since that can cause unnecessary modules to
be loaded from library files. (Default: nounreferenced_externals)

warning
wa

Causes warning messages to be displayed on standard error. The negated form
suppresses warning messages from being sent to standard error. The
errorprint control overrides either use of this control. (Default: warning)

xref
xr

Produces a symbol table in the listing with source line definition and usage
cross referencing. This option is only useful if a listing is produced. This
option, or its negated form, may be entered on the first assembly source lines.
(Default: noxref)

Files file.s: Assembly language source file.

file.o: HP-OMF 86 format relocatable object file.

Chapter 2: Command Syntax
as86(1)

28

file.A: HP 64000 format assembler symbol file.

See Also HP B1449 8086/186 Assembler/Linker/Librarian User’s Guide, ld86(1),
ar86(1), ap86(1).

Diagnostics as86 returns zero if no errors are detected in the assembly source. Otherwise,
it returns non-zero.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

Chapter 2: Command Syntax
as86(1)

29

ap86(1)

Name ap86 - macro preprocessor for the Intel 8086/186 microprocessors

Synopsis /usr/hp64000/bin/ap86 file [-i includepath] [-s] [-e] [-c]

Description ap86 reads the named file and performs macro preprocessor replacements or
operations upon this file. The resulting text may be sent to standard output,
for redirection to another file for storage. Error messages for macro
operations may also be sent to standard error.

ap86 accepts the macro preprocessor language that is described in the Intel
8086 Assembler Reference Manual. This macro language allows the definition
and use of macros, evaluation and replacement of expressions, loop control,
and including of other text files. Correct use of a macro preprocessor can
simplify the task of writing assembly language source when redundant
operations are performed or code is shared between files.

Options The following command line options are recognized by ap86:

-i includepath This option causes the macro preprocessor to search that directory for any
include files that are referenced in the source file. If this option is not used,
the current directory is searched. The search only occurs for file names that
use relative paths for the include file. If the path names start with a ’/’, then no
search is required.

-s This option causes the macro preprocessor to send the processed file to
standard output. If this option is not used, the input file is processed, but no
text output is generated. If this option is used, the output should usually be
redirected to a file for use as input to the as86 assembler.

-e This option causes the macro preprocessor to display lines that contain errors
and the error message that was generated by processing that line. This text is
sent to standard error, so as not to interfere with the -s option. This option is
useful since the text generated on standard output does not always display
erroneous text in the most identifiable manner.

-c This option causes the macro preprocessor to be case insensitive. The default
is case sensitive. For example, if ap86 is started in default mode, then

Chapter 2: Command Syntax
ap86(1)

30

%SET(var1,-1) and %SET(VAR1,-2) cause substitutions for var1 of -1 and for
VAR1 of -2. But if ap86 is started with the -c (case insensitive) option, then
the last %SET will cause substitutions for both var1 and VAR1. Note that
predefined macro functions written in lower case letters, such as %set and
%define, are currently only recognized when the -c option is used. However,
predefined macro functions written in upper case letters are always
recognized.

Files file.s Assembly language source file.

See Also HP B1449 8086/186 Assembler/Linker/Librarian User’s Guide, ld86(1),
ar86(1), as86(1).

Diagnostics ap86 returns zero if no errors are detected in the macro source. Otherwise, it
returns non-zero.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

Chapter 2: Command Syntax
ap86(1)

31

ld86(1)

Name ld86 - cross linker/loader for Intel 8086/186 microprocessors

Synopsis /usr/hp64000/bin/ld86 [options] [files]

Description ld86 takes one or more relocatable object files as input and combines them to
produce a single output file. In doing so, it resolves references to external
symbols, assigns final addresses to procedures and variables, revises code and
data to reflect new addresses, and updates symbolic debug information (when
it is present in a file). ld86 accepts relocatables in Intel 8086 OMF format and
HP-OMF 86 format, as well as archive input files in ar86 format. These files
may be produced by a cross assembler (as86), or the archive file librarian
(ar86). While ar86 libraries are not in strict OMF format, ar86 can read in
existing Intel OMF format library files.

By default, the output is HP-OMF 86 absolute. HP-OMF 86 format is HP’s
implementation of 8086 binary OMF. This file contains Intel 8086/186
instructions and symbolic data. Options to ld86 may be used to create output
files in HP 64000 format absolute or the Intel Hexadecimal Object file format
absolute.

Typically, the output file contains instructions and data in absolute form. That
is, address information has been supplied to locate the program in target
memory.

The -i option may be used to specify a relocatable output file in a process
called incremental linking. In an incremental link, the input relocatable files
are simply combined into an output relocatable file. Incremental linking is
only supported for HP-OMF 86 format relocatable. Therefore, the -i option
cannot be used with either the -h option or the -H link_symb_file option.
relocatable output file

The operation of ld86 is controlled by LINKER COMMANDS (described
below). Linker commands specify the input relocatable and archive files, the
location and order of relocatable sections, and the content and format of the
output files.

Chapter 2: Command Syntax
ld86(1)

32

ld86 reads commands from a command_file or from standard input if no input
filenames were specified on the command line. A command_file is specified
using either the -c user_cmd or -d (default cmd_file) options. If a
command_file is not specified (using either the -c or -d options), then ld86
reads standard input. If standard input is a tty, ld86 enters interactive mode
and prompts for commands.

Input files may be specified in "LOAD" commands or on the command line.
The order of specification of the input files is significant to the operation of
the linker. If input files are specified on the command line, these files are
loaded before files specified in "LOAD" commands in the command_file.

If the input file names have a suffix, then the name is used as is. Otherwise,
ld86 appends .o to the name on the command line to form an input file name.

The basic name of the output file is determined in the following way. The
default basic file name is the command_file stripped of any preceding
pathname (up to and including the last ’/’) and stripped of any suffix (including
’.’). The default file name may be overridden by specifying the output file
name with the -o option. If no command_file is used, it is an error not to
specify the output file name with the -o option.

Depending on the format and type of output file, a suffix is appended to the
basic file name to form the output file name.

If the output is HP-OMF 86 format absolute, then the suffix is .x.

If the output is HP 64000 format absolute, then the suffixes are .X for the
absolute file and .L for the linker symbol file.

If performing an incremental link, then the output is in HP-OMF 86 format
relocatable and the suffix is .o.

Options The following command line options are recognized by ld86:

-c command_file The option specifies the name of the command_file to be used to supply
information to ld86. The file name part of the command file path, with suffix
stripped, is used to form the default names of output files unless the name is
specified with the -o option.

-d Use the default linker command file. ld86 examines the environment variable
LD86CMD to find the name of the linker command file. If LD86CMD

Chapter 2: Command Syntax
ld86(1)

33

doesn’t exist or is all blank, then the loader attempts to open
/usr/hp64000/etc/ld86cmd as the loader command file.

-f flaglist The flags in flaglist are used to select and change the internal linker control
switches.

The flags recognized and their meanings are defined below. A more complete
explanation may be found in the HP B1449 8086/186
Assembler/Linker/Librarian User’s Guide. Each flag may be set (or reset) in
either of two ways. A flag may be set on the command line using the -f option
described here. A flag may also be set using the LIST linker command and
reset using the NLIST linker command.

Groups of flags following the -f option must either be separated by commas or
separated by white space and quoted. For example, the following option sets
the flags c, d, s, and x:

-f c,d -f "s x"

A flag may be reset (turned off) by preceding the flag with no. For example,
the following option turns off the o and p flags:

-f noo -f nop

-H link_sym_file This option overrides the default file name for the HP 64000 format linker
symbol file (.L file) and absolute file (.X file). (See the -h option below.)

-h The option indicates that the linker should produce HP 64000 format output
files. There are two output files, the absolute file and the linker symbol file.
The default name for the absolute file is command_file.X and the default
name for the linker symbol file is command_file.L. The -f d flag is implied
through the use of the -H or -h flags.

It is the user’s responsibility to assure that all identifiers (i.e. global symbol
definitions and external symbol references) are converted to legal HP 64000
identifiers before being used. For example, Intel assembly language identifiers
may contain the characters _ (underscore), ? (question mark), and @ (at
sign) and have a maximum of 31 significant characters. To produce legal HP
64000 identifiers, all question marks, and at signs could be converted to _
(underbar). Identifiers will also need to be truncated to 15 characters
maximum.

Chapter 2: Command Syntax
ld86(1)

34

Note Conversion to HP 64000 symbols may have unexpected side effects. Duplicate
symbol errors may occur. ld86 DOES perform name translations, but will
NOT warn if duplicate symbols have been created. File names must also not
exceed 9 characters for the HP 64000 and must begin with an upper case letter.

-i specifies that an incremental link is to be performed. The relocatable input
files are combined to produce a relocatable output file. Any linker commands
which specify location (e.g. ORDER, GROUP) cause a linker error. The
name of the relocatable output file defaults to command_file.o. Incremental
linking is only supported for the HP-OMF 86 format. An error will be issued
if the -i option is used with either the -h option or the -H option.

-L specifies that an output load map listing be written to standard output.

-o objfile specifies the name of the output file. This overrides the default file name for
the HP-OMF 86 format absolute file, the HP-OMF 86 format relocatable file,
and the HP 64000 format absolute file.

Linker Commands The linker/loader recognizes the following commands in command files or in
interative mode. Square brackets, [], enclose optional parameters. Ellipsis
or ’...’ indicate the preceding item may be repeated.

* comment text... designates a comment.

SEG SEG segment= address

SEG segment= paragraph,offset

SEG /class= address

SEG /class= paragraph,offset

The SEG command specifies the base address of a user’s logical segment
(LSEG.). The user may also wish to use the ORDER command to control the
placement of segments which were not specified in the SEG command.

The ’segment’ portion is the name of a relocatable segment which may have a
classname attached with a slash, such as ’SEGNAME/CLASSNAME’. If a
segment has an associated classname, this classname must be specified or ld86
will not find the correct segment.

Chapter 2: Command Syntax
ld86(1)

35

The ’class’ is the name of a class. A classname preceded by a slash may appear
in place of the segment name, whereupon the first segment whose class
attribute is ’classname’ will be assigned the base address.

The ’address’ is the 20 bit address specifying where the segment will begin.
The range for ’address’ is 0 through 0FFFFFH. A segment register pointing to
the segment should have the value of ’address/16’.

The ’paragraph,offset’ base address will be ’16*paragraph+ offset’ where
paragraph or offset may be 0 through 0FFFFH.

Note Addresses are not rounded to conform with an alignment attribute from an
ALIGN command.

SEGSIZE SEGSIZE segment= length

SEGSIZE /class= length

The SEGSIZE command specifies the length of a segment in bytes. Although
SEGSIZE can be used to set the length of any segment, SEGSIZE is typically
used to set the size of a stack segment. A warning message is issued if the
segment does not have a combine type of STACK or COMMON.

GROUP GROUP group= address

GROUP group= paragraph,offset

GROUP specifies the absolute base address of a group, which must be a
multiple of 16 because it always lies on a paragraph boundary. The GROUP
command does not specify the base address of any segments within the group.
All such segments should lie within ’group address’ through ’group address’
plus 0FFFFH.

The ’group’ is the name of the group.

The ’address’ is the 20 bit address specifying where the group will begin. The
range for ’address’ is 0 through 0FFFFFH. A segment register pointing to the
group should have the value of ’address/16’.

The ’paragraph,offset’ base address will be ’16*paragraph+ offset’ where
paragraph or offset may be 0 through 0FFFFH.

ALIGN ALIGN segment= [blank,B,P,I,G,W]

Chapter 2: Command Syntax
ld86(1)

36

The ’align’ command may be used to override the alignment type of an input
module without reassembling. A named segment can be specified as Byte,
Page, Inpage, Paragraph, or Word relocatable regardless of the type specified
by the assembler. This could be used to place all segments on page boundaries
while debugging and then to create the final program as byte relocatable
without reassembling.

The ’segment’ is the name of a relocatable segment. The segment name may
have a classname following it, separated by a slash. If a segment has an
associated classname, this classname must be specified or ld86 will not find the
correct segment.

The ’blank’ specifies that the alignment type is to be what the assembler
specified.

The ’B’ specifies byte alignment.

The ’P’ specifies page alignment.

The ’I’ specifies inpage alignment.

The ’G’ specifies paragraph alignment.

The ’W’ specifies word alignment.

Note Do not put blanks between the ’= ’ and the alignment designator because a
blank is a legal alignment designator.

FORMAT FORMAT [ASCII,HP,OMF86,NOABS]
 [INCREMENTAL,LIMITED,LTL]

This command instructs the linker as to what format should be used in the
created output file. If the NOABS option is specified, then no object file is
generated. If ASCII is specified, then the output file will be in Intel
Hexadecimal format. If HP is specified, then the output will be in
HP64000 file format. If OMF86 is specified, then the output will be in HP’s
implementation of Intel OMF file format.

Different forms of OMF can be generated through three modifiers. If
no modifier is used, then the output is an absolute file. If the
INCREMENTAL modifier is used, then the output is a relocatable object
file. If LIMITED is specified, then the output will be an absolute file, but
all non- commented records will conform strictly to the Intel absolute file

Chapter 2: Command Syntax
ld86(1)

37

format document. Finally, the LTL modifier will cause a load-time loadable
file to be generated. These options can also be specified through the use of
command line options or through the use of the LIST command.

The LIMITED and LTL modifiers are only usable with an output file format
type of OMF86.

INITDATA INITDATA segment [,segment [, ...]] [,address]

Segment is the name of a relocatable segment expressed as either
’segmentname’, or
’segmentname/classname’, or
’/classname’.

Address indicates the beginning address of the ??DATAn/??INIT segment and
may be an absolute address from 0 through 0FFFFFH or the address may be in
paragraph, offset from where paragraph and offset are from 0 through
0FFFFH. Leading zeros are required on hexadecimal addresses in the initdata
command when the hex value begins with A-F.

The INITDATA command is used to specify that the indicated segments and
classes will be initialized in memory at run time.

ORDER ORDER element[, ...]

The first segment specified in the ORDER command will begin at address 0
and subsequent ones immediately after the preceding one. Addresses will not
be assigned which conflict with absolute segments, areas specified in
RESNUM or RESADD commands, or segments specified in a SEG
command. The ORDER command will not override the base address of an
absolute segment or one assigned with SEG. However, segments which
appear in the ORDER command following one of these segments will be
assigned space in memory above it.

The ’element’ may be any of the following: a segment name; a classname
preceded by a slash; a segment name followed by a slash and a classname; a
classname followed by one or more segment names separated by hyphens (as
in CLASSNAME-SEG1-SEG2-...-SEGn). A classname preceded by a slash
specifies all segment names with that class attribute in the order that the
loader finds them. The classname-segmentname-segmentname... element
would cause the loader to move the specified segments to the beginning of the
class. Any remaining unspecified segments would then immediately follow.

Chapter 2: Command Syntax
ld86(1)

38

If the first segment in a class has been assigned a base address with the SEG
command and an ORDER command has also been used, then the classname
should also be placed in the ORDER command so that segments in the class
will be assigned adjacent memory.

A segment name may not appear more than once in an ORDER command.
This includes both the explicit case of SEGMENT/CLASSNAME and the
implicit case of /CLASSNAME. The same classname may not appear more
than once following a comma, but it may appear in a
SEGMENTNAME/CLASSNAME combination as often as needed.

If an ampersand is encountered while the loader is expecting either a comma
or a hyphen, then the next line will be considered a continuation line. Only
the last ORDER command is effective. A warning noting that only the last
ORDER command is effective will be issued if more than one ORDER
command is used.

START START CS-value,IP-value
START address

START specifies the starting values for CS and IP, otherwise they will be
taken from the END record of the first main program. If no main program is
present, they would be zero.

CS-value and IP-value must be between 0 and 0FFFFH. The address value
must be between 0 and 0FFFFFH.

LOAD LOAD (-)module1[,(-)module2,...,(-)moduleN]

LOAD specifies input object modules to be loaded. Multiple LOAD
commands are allowed.

The ’module’ is a relocatable object file name or a library file name. Any
’library file’ preceded by a minus sign will cause all object modules within the
library to be read until an EOF is encountered.

Libraries not preceded by a minus sign will load only those modules needed to
resolve undefined EXTRNs.

A library should be loaded after all other non-libraries or else EXTRNs to a
library from a subsequently loaded file may not be resolved correctly.
Backward EXTRNs within a library are resolved correctly.

Chapter 2: Command Syntax
ld86(1)

39

END The END command causes the load to be finished and an output module
produced. This command should be included as the last command in a
command stream.

[NO]ERROR [NO]ERROR [UNREF,UNRES,OVERLAP,number] [, ...]

The ERROR and NOERROR commands specify that the message or message
number indicated is to be treated as an error or a non-error. The undefined
external reference message is denoted by the UNREF argument. The
unreferenced external message is denoted by the UNRES argument. The
memory overlap message is denoted by the OVERLAP argument. If a number
is given as an argument then it must corresponds to a particular error or
warning number of the linker. These commands have a global effect from the
point at which the linker processes the information contained in the
command. A subsequent ERROR or NOERROR command overrides any
values set by a previous one.

EXIT The EXIT command causes the linker to exit without finishing the load and
without producing an output module. An error message is issued to remind
the user that ld86 was terminated early.

PUBLIC PUBLIC sym1= value1[,sym2= value2]...

The PUBLIC command may be used to define and/or change the value of a
public definition.

The ’symN’ specifies a user defined public symbol definition which is
considered absolute instead of relative to a segment or a group.

The ’value’ is the 20 bit value to be assigned to the symbol.

LIST LIST/NLIST {flag [,flag] ...}

LIST sets linker flags. NLIST is the opposite of LIST and suppresses the
listing of the elements specified. The flags may also be set on the command
line and are defined below.

"a" creates an Intel Hexadecimal Object format absolute output file.

"b" creates an HP-OMF 86 format absolute output file.

"c" prints the identifier cross reference table in the load map. (Default: noc)

"d" causes public symbols to be put into the output object module. (Default:
d)

Chapter 2: Command Syntax
ld86(1)

40

"e" causes warning messages to be generated for any remaining undefined
external symbols during an incremental link. (Default: noe)

"i" causes incremental linking to occur resulting in a relocatable object file.
(Default: noi)

"l" causes warning messages to be printed for any unreferenced, unresolved
external references. (Default: nol)

"o" specifies that an object module is produced. (Default: o)

"p" specifies that any symbols present in the input modules (local) be placed in
the loader symbol table. Its purpose is to exclude symbols from certain input
modules from the output module. One does this by surrounding LOAD
commands with NLIST P and LIST P commands. (Default: p)

"q" causes ld86 to produce a ’limited’ form of Intel binary OMF which is
strictly compatible with Intel’s binary OMF document. (Default: noq)

"s" specifies that the local symbols be written into the object module and may
be used for debugging. (Default: s)

"t" specifies that the local symbol table be listed in the load map. (Default: not)

"u" disables case sensitivity for matching public symbols, external symbols,
segment names, group names, and class names. This also causes all symbols
(except module names) to be converted to upper case. (Default: nou)

"v" causes an expanded segment summary that lists the modules where the
segment parts came from. (Default: nov)

"w" causes ld86 to display all warning messages. (Default: w)

"x" causes symbols defined in PUBLIC commands to appear in the load map.
(Default: nox)

LISTABS LISTABS [[NO]INTERNALS,[NO]PUBLICS] [, ...]

The LISTABS command controls the output of certain items to the output
object module. Multiple LISTABS commands can be specified and have an
accumulative effect.

"INTERNALS" causes local symbols to be written to the output file. This is
equivalent to the LIST S command. (default: INTERNALS)

Chapter 2: Command Syntax
ld86(1)

41

"PUBLICS" causes globally defined symbols to be written to the output file.
This is equivalent to the LIST D command. (default: PUBLICS)

The LISTABS command will eventually replace the LIST/NLIST D and
LIST/NLIST S commands.

LISTMAP LISTMAP option [, option] ...

The LISTMAP command controls the output of certain items to the linker’s
map or listing file. The LISTMAP command options have a global effect.
Multiple LISTMAP commands that do not have any inconsistencies with
previous LISTMAP commands can be specified and have an accumulative
effect.

The valid values for option are as follows:

"[NO]CROSSFEF" controls whether or not a cross-reference will appear in
the linker listing file. (default: NOCROSSREF)

"[NO]INTERNALS [/BY_NAME,/NAME]" controls the listing of the
non-public symbol table to the listing file. If /BY_NAME or /NAME is
specified, the symbol table will be sorted by symbol name. (default:
NOINTERNALS)

"LENGTH number" controls the page length of the linker listing file. The
argument, number, must be between 5 and 255. (default: LENGTH 55)

"[NO]MODULE" controls the output of the module summary to the linker
listing file. (default: MODULE)

"[NO]PUBLICS [/BY_ADDR,/ADDR,/BY_NAME,/NAME]" controls the
listing of the public symbol table to the listing file. If /BY_NAME, /NAME, or
nothing is specified, the symbol table will be sorted by symbol name. If
/BY_ADDR, or /ADDR is specified, the symbol table will be sorted by address
values. (default: NOPUBLICS)

"[NO]SEGMENT" controls the output of the segment summary to the linker
listing file. (default: SEGMENT)

"[NO]VERBOSE" indicates whether or not additional information is to be
included in the segment summary portion of the linker listing file. If the
LISTMAP NOSEGEMENT option has been selected then the setting for
VERBOSE is irrelevant. (default: NOVERBOSE)

Chapter 2: Command Syntax
ld86(1)

42

"[NO]WARNINGS" controls the output of warning messages to the linker
listing file. (default: WARNINGS)

"WIDTH number" controls the page width of the linker listing file. The
argument, number, must be between 20 and 255. (default: WIDTH 80)

The LISTMAP command will eventually replace some of the functionality of
the LIST command.

NAME name NAME allows the user to specify the module name in the module header
record of the output file.

RESADD RESADD lowaddress,highaddress
RESNUM lowaddress,number

RESADD and RESNUM allow the user to declare certain areas of memory
off limits to the loader.

The ’lowaddress’ is a 20 bit address which is the lowest address of the memory
that may not be used.

The ’highaddress’ is a 20 bit address which is the highest address of the
memory that may not be used.

The ’number’ is a 20 bit value indicating the number of bytes (including
lowaddress) that may not be used.

TYPEMERGE TYPEMERGE [ALL | SIMPLE]
NOTYPEMERGE

The TYPEMERGE command removes redundant type information from the
resulting executable. Normally, no type information is removed by the linker.
However, since the HP-OMF 86 file format can only store up to 32k type
definitions, it may be necessary to remove some redundant types for larger
executables.

The ALL option causes all redundant types to be removed, while the SIMPLE
option causes only redundant simple types to be removed.

The NOTYPEMERGE command prevents the linker from removing any
redundant types. NOTYPEMERGE is the default operating mode for the
linker.

WARN WARN [UNREF,UNRES,OVERLAP,number] [, ...]

Chapter 2: Command Syntax
ld86(1)

43

The WARN command specifies that the message or message number
indicated is to be treated as a warning. The undefined external reference
message is denoted by the UNREF argument. The unreferenced external
message is denoted by the UNRES argument. The memory overlap message is
denoted by the OVERLAP argument. If a number is given as an argument
then it corresponds to a particular error or warning number of the linker.

These commands have a global effect from the point at which the linker
processes the information contained in the command. A subsequent WARN
command overrides any values set by a previous one.

Files /usr/hp64000/etc/ld86cmd: Default 8086/80186 linker command file

file.x: HP-OMF 86 format absolute object file

file.X: HP 64000 format absolute file

file.L: HP 64000 format linker symbol file

file.o: HP-OMF 86 format relocatable object file from incremental link

See Also HP B1449 8086/186 Assembler/Linker/Librarian User’s Guide , ar86(1),
as86(1), ap86(1).

Diagnostics ld86 returns zero if no errors are detected while linking, otherwise it returns
non-zero. Diagnostic messages are displayed on standard error.

Bugs Using the -h or -H options will cause global and external identifiers to be
converted to legal HP 64000 identifiers. Conversion can cause duplicate
symbols to be created.

Chapter 2: Command Syntax
ld86(1)

44

ar86(1)

Name ar86 - archive/library maintainer for Intel 8086/186 microprocessors

Synopsis /usr/hp64000/bin/ar86
/usr/hp64000/bin/ar86 [options][action] ... archivefile

Description ar86 maintains groups of relocatable files combined into a single archive file.
The archive files may then be used by ld86, the 8086/186 linker/loader, to form
executable programs for the Intel 8086/186 processors.

Individual relocatable files are inserted without change into the archive file.
In addition, there is a library symbol table which is used by the linker/loader,
ld86, to effect multiple passes over the library in an efficient manner.

Individual relocatable files define modules which have modulenames. The
modulename is usually the same as the name of the assembly source file (with
preceding pathname and suffix stripped). However, the assembler, as86, could
change the modulename if a NAME directive is used. The modulename is
used to identify the various modules that may exist within an archive file.

ar86 operates in either of two modes. The mode is determined by the presence
(or absence) of the archivefile name.

In the first mode,

ar86

an archivefile is not specified. ar86 reads librarian commands from standard
input. If the standard input is a terminal device, then ar86 operates in
interactive mode, prompting the user for librarian commands.

The librarian commands are defined below. The commands completely
control the operation of ar86. The commands specify the name of the archive
file and the actions to be performed on the modules which constitute the
library.

In the second mode,

Chapter 2: Command Syntax
ar86(1)

45

ar86 [options] [action] ... archivefile

all the control information is contained on the command line.

Archivefile names the archive file to be operated on. If the archivefile does
not exist, then an empty archive file is created before the actions are
performed.

If the archive file name contains a suffix (i.e. contains a period), then the name
is used as is to access the archive file. If the archive file name has no suffix,
then .a is appended to the name before accessing the archive file.

[action] is one of the following:

-a filelist The modules contained in the relocatable files in filelist are added to the
library contained in the archive file. If a module which already exists in the
library is added, it is an error (see -r to replace modules).

-d modulelist The modules in the modulelist are deleted from the library.

-r filelist The modules contained in the relocatable files in filelist replace modules of
the same name in the library.

-e modulelist The modules in the modulelist are extracted (i.e. copied) and put into
relocatable files. The name of the file is the same as the name of the module
but with the suffix .o appended.

These actions are applied in the following order, regardless of their order on
the command line: -a, -d, -r, -e.

In filelist (or modulelist), individual file names (or module names) may be
separated by commas or separated by white space with the whole list quoted.

If the file names in filelist have a suffix (i.e. contain a period), then the name is
used as is to access the relocatable input file. If the name has no suffix, then
.o is appended to the name to obtain the name of the input file.

The following option is recognized by ar86:

-L specifies that a library listing file be written to standard output. This output is
in the same format as that produced from the LIST command documented
below and is for the result of the archive session.

Chapter 2: Command Syntax
ar86(1)

46

Commands In the interactive mode, ar86 recognizes the following commands. In the
syntax descriptions below, square brackets [] enclose optional items. Ellipsis
’...’ indicate that the preceding item may be repeated.

ADDLIB archivefile [(module [, ...])]

Add one or more modules from the named library to the present library. If no
modules are specified, the entire library is included.

ADDMOD filename [, ...]

Add the module(s) contained in one or more relocatable files to the present
library.

CLEAR Resets the librarian to await the creation or opening of a library. All
information about the previous state of the librarian is lost.

CREATE archivefile

Specify the name of a new archive file to be created.

DELETE module [, ...]

Delete one or more modules from the current library.

DIRECTORY archivefile [(module [, ...])] [listfile]

Obtain a brief listing of the modules in a library. If no modules are specified,
the entire library is listed. If listfile is not specified, the listing goes to standard
output.

END
QUIT

Exit the librarian without saving the current library. Use SAVE to save the
results of the current session.

EXTRACT module [, ...]

Copy one or more modules to individual relocatable object files. The name of
the object file is the module name with .o appended.

FULLDIR archivefile [(module [, ...] [listfile]
LIST archivefile [(module [, ...])] [listfile]

Obtain a detailed listing of the modules in a library. If no modules are
specified, the entire library is listed. If listfile is not specified, the listing goes
to standard output.

Chapter 2: Command Syntax
ar86(1)

47

HELP Displays a list of commands that may be executed at the current time. Only
commands that are valid at the current time are displayed.

OPEN archivefile

Specify the name of a existing archive file to be opened. An archive file must
be opened before commands like ADDMOD, DELETE, EXTRACT, and
REPLACE can be used.

REPLACE filename [, ...]

Replace one or more existing modules in the present library with the modules
from the named files.

SAVE Saves the current library to disk. Use END to exit the librarian. The END
command will not save the current library before exiting, so the SAVE
command should be used before exiting the librarian if the library is to be
saved or updated.

Files

archivefile.a Relocatable archive file.

file.o Relocatable file produced by as86(1) or ld86(1).

See Also HP B1449 8086/186 Assembler/Linker/Librarian Reference Manuals, as86(1),
ld86(1), ap86(1).

Diagnostics ar86 returns zero if no errors are detected. Otherwise it returns non-zero if
errors are detected.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

Chapter 2: Command Syntax
ar86(1)

48

Part 2

Assembler/Macro Preprocessor
Reference

Part 2

50

3

Assembler Introduction

Overview of the instruction set, target microprocessors, input and output file
formats, and other similar information.

Chapter 3: Assembler Introduction

51

Instruction Set

The as86 assembler supports Intel instruction mnemonics, op codes, and
syntax for the target microprocessors and thus is compatible with those used in
Intel software and documentation.

The supported instruction set is listed in the chapter titled "Instructions and
Operands." For further information about the instruction set, refer to the
Intel iAPX 86/88, 186/188 User’s Manual Programmer’s Reference.

Target Microprocessors

The as86 supports the Intel 8086/186 chip family. The 8086/186 family includes
the 8086, 8088, 80186, and 80188. In addition to the 8086/186 family, the as86
assembler will accept NEC V20/V30 extensions to the 8086/186. For these
instructions, as86 accepts NEC mnemonics, but uses Intel syntax. For
overlapping instructions (instructions found in both the 8086/186 and
V20/V30), as86 accepts only Intel mnemonics and syntax. Unless an assembler
control changes the microprocessor mode, as86 defaults to the 8086 mode.

The as86 assembler also translates instructions specific to the Intel 8087 or
80187 floating-point coprocessor for coprocessor execution.

Assembler Operation

as86 is a two pass assembler. On the first pass, labels, variables, and other
user-defined symbols are examined and placed in an internal symbol table.
Additionally, structure definitions are stored.

On the second pass, as86 generates the object code, resolves symbolic
addresses, and outputs the object module if the assembly was error free. If it
was not error free, then as86 displays errors on the output listing device and
also a cumulative error count. In addition to the object module, as86 can also
output an HP 64000 format assembler symbol file for use in analysis tools.

Chapter 3: Assembler Introduction
Instruction Set

52

The assembly listing produced during pass two contains information
pertaining to the assembled program, including opcodes, assembled data, and
the original source statements. Based on command line options, as86 may also
output a symbol table or cross reference table which gives further information
not found in the standard assembly listing. Refer to the chapter titled
"Assembler Listing Description" for a more complete explanation of the
assembly listing and cross reference or symbol table information.

File Formats

Input File Characteristics

The source file input for the as86 assembler is a text file containing 8086/186
instructions, assembler directives, and assembler controls. This file can be
produced from an editor or the output file from another component of the HP
B1449 package, the ap86 macro preprocessor.

Output File Characteristics

HP-OMF 86

as86 produces a relocatable output object file in HP-OMF 86 format
relocatable. HP-OMF 86 format relocatable is a superset of Intel Binary OMF
relocatable. HP-OMF 86 format relocatable contains extensions to facilitate
code integration and debugging. This format has not been verified to be
strictly compatible with Intel Binary OMF relocatable. HP-OMF 86 format
relocatable files, therefore, may not work correctly with tools or systems
designed to consume Intel Binary OMF relocatable.

HP 64000 Assembler Sym bol File

as86 can optionally produce an HP 64000 format assembler symbol file. This
file is used by analysis tools. The purpose of the assembler symbol file is to
preserve the relationship between symbolic names that appeared in the
original source file and the memory locations that they referenced.

Chapter 3: Assembler Introduction
File Formats

53

Chapter 3: Assembler Introduction
File Formats

54

4

Assembler Syntax

The basic elements of assembler language.

Chapter 4: Assembler Syntax

55

Assembly language, like other programming languages, has a character set, a
vocabulary, rules of grammar, and conventions that allow for definition of
new words or elements. The rules that describe the language are referred to as
the "syntax" of the language. This chapter describes the basic elements of
assembler language:

• the character set

• symbols

• constants

• delimiters

These basic elements, in turn, are put together to form assembler statements.
This chapter also gives the general syntax of those statements.

Input source lines over 1024 characters in length will be truncated and an
error message will be generated.

Assembler Character Set

The assembler recognizes the characters in the following tables.

The characters are case sensitive by default. If case sensitivity is turned off,
then all lower case alphabetic characters are treated as if they were upper case,
unless they appear in quoted strings.

Alphabetic Characters

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

Numeric Characters

 0 1 2 3 4 5 6 7 8 9

Chapter 4: Assembler Syntax
Assembler Character Set

56

Special Characters

 blank horizontal tab > greater than
 $ dollar sign < less than * asterisk
 ’ single quote (left parenthesis , comma
) right parenthesis + plus sign @ commercial at
 - minus sign . period & ampersand
 : colon ! exclamation point ; semicolon
 " double quote = equal sign # sharp
 ? question mark % percent _ underscore
 [left bracket] right bracket \ back slash
 ‘ accent grave { left brace } right brace
 | vertical bar ~ tilde ^ caret (uparrow)
 / slash

Chapter 4: Assembler Syntax
Assembler Character Set

57

ASCII Codes

Char. ASCII Char. ASCII Char ASCII

blank
!
"
#
$
%
&
’
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;

<
=
>
?

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

^
_

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E

Chapter 4: Assembler Syntax
Assembler Character Set

58

Symbols

Symbol Formation

A symbol is a sequence of characters. The first character must be

• A-Z or a-z (alphabetic)

• ? (question mark)

• @ (commercial at sign)

• _ (underscore)

The second and following characters can be any of these characters or the
numerals 0-9. Symbols can be up to 255 characters in length, but only the first
31 characters are significant.

Symbols are used to represent arithmetic values, memory addresses, bit arrays
(masks), and so on.

Examples of valid symbols:

LAB1
@mask
LOOP_NUM
L2345678901234567890123456789012345

In the last symbol, the entire symbol is stored, but only 31 characters are used
for comparison.

Examples of invalid symbols:

ABORT* ;contains special character
1LAR ;begins with a numeric
PAN N ;embedded blank, symbol is PAN

Different symbols represent different kinds of data objects. In general, only a
few kinds of symbols are allowed in any particular syntactic construct. Any of
the following elements are considered to be symbols.

Chapter 4: Assembler Syntax
Symbols

59

Keywords

Keywords (also called Reserved Words) are symbols pre-defined by the
assembler which you can reference in certain acceptable constructs. Keyword
symbols are not user-definable, nor can you create a user-defined symbol with
a name that conflicts with a keyword. Keywords include directives and register
names, among others. Keywords are not case-sensitive. The full list of
assembler keywords appears in the following table. Although the keywords in
the table are in upper case, there is no requirement that they appear in upper
case in the source code.

??SEG
AAA
AAD
AAM
AAS
ABS
ADC
ADD
ADD4S
AH
AL
AND
ASSUME
AT
AX
BH
BL
BOUND
BP
BRKEM
BX
BYTE
CALL
CBW
CH
CL

Table 4-1. as86 Assembler Keywords and Instructions

Chapter 4: Assembler Syntax
Symbols

60

CLC
CLD
CLI
CLR1
CMC
CMP
CMP4S
CMPS
CMPSB
CMPSW
CODEMACRO
COMMON
CS
CWD
CX
DAA
DAS
DB
DD
DEC
DH
DI
DIV
DL
DQ
DS
DT
DUP
DW
DWORD
DX
END
ENDM
ENDP
ENDS
ENTER
EQ
EQU
ES

Table 4-2. as86 Assembler Keywords and Instr. (Cont’d)

Chapter 4: Assembler Syntax
Symbols

61

Instruction Mnemonics

A full set of instruction names (mnemonics) is pre-defined by the assembler.
Instruction names can be removed from the symbol table with the PURGE
directive and re-defined as something else. If you do this, the original meaning
of the instruction is lost. There are six instructions (the operators AND, NOT,
OR, SHL, SHR and XOR) that cannot be removed. A full list of the
pre-defined instruction mnemonics, including the argument combinations
acceptable for each, appears at the end of the chapter titled "Instructions and
Operands."

Codemacro

A codemacro is a user-defined instruction or prefix to an instruction. The
output generated from a codemacro can be a new instruction, a mixture of
normal instructions, or just about anything that a customer might want (some
assemblers define the normal instructions through the use of codemacros). A
codemacro can be defined with the same name as an existing instruction or it
can have a completely unique name that describes a new operation.
Codemacros can be used anywhere that a predefined instruction can be used.

Label

A label is a user-defined symbol denoting the address of an instruction. Labels
can be referenced only in the JMP and CALL instructions and variations
thereof. A label can be defined with the PROC directive or with the LABEL
directive, but there is another way to define a label that is used most often.

The most common way of defining a label is to place a name (followed by a
colon) before an instruction mnemonic, which defines it as a label. Labels have
certain attributes, but a discussion of those aspects of labels is left to the
chapter titled "Symbol and Expression Attributes." Example:

THIS_IS_A_LABEL: MOV AX,2

Variable

A variable is a user-defined symbol denoting the address of a location to be
used for data storage. Unlike many other assembly languages, as86
distinguishes between a label and a variable. They are defined according to
syntax and cannot be used interchangeably in expressions or instructions.

Chapter 4: Assembler Syntax
Symbols

62

However, when the LABEL directive is used with the keywords BYTE,
WORD, DWORD, QWORD, TBYTE, or with a variable that is a structure
name or record name, it defines a variable. When the LABEL directive is used
with the type designator NEAR or FAR, it defines a label. Variables have
certain attributes, which are discussed in the chapter titled "Symbol and
Expression Attributes."

Structure Name

A structure is a user-defined template describing the manner in which a block
of storage is to be broken up into elements. A structure template does not
have a storage area associated with it which means that a structure name,
while it is still a symbol, is not a variable. A structure template name does not
have attributes associated with it.

Structure Field Name

The individual elements of the structure template are called structure fields.
Structure fields may be optionally assigned names, but again, since the
structure template does not occupy storage, the structure field name is not a
true variable. A structure field name, when a structure is allocated using the
template, can be used with the dot operator to access an element of the
structure, but the structure field name cannot be used alone. Structure field
names do not have attributes associated with them.

Record Name

A record is a user-defined template describing how a one- or two-byte block of
storage is to be broken up into bit fields. A record template does not have a
storage area associated with it which means that a record name is not a
variable. Record names do not have attributes associated with them.

Record Field Name

Each bit field describes a number of bits and has a name associated with it.
Record field names are not variables, however, and do not have any attributes
associated with them.

Chapter 4: Assembler Syntax
Symbols

63

Segment Name

A segment is a user-defined logical division of the assembly source program. A
logical segment can contain code, data, or stack information. Logical segments
have names associated with them. These names are used to identify the logical
segments to the assembler and loader so that they will eventually be placed
together in the same physical segment in memory.

Group Name

A group name identifies a collection of logical segments gathered together
because of some common factor. At load time, a group will be placed in
memory such that any segment that is a member of the group will be within 64
kilobytes of the base of the group. Group names are also significant to the
assembler and loader.

EQU Symbols

EQU symbols are names associated with other symbols or expressions through
the use of the EQU assembler directive. EQU symbols are simply
"replacement names" that can be used anywhere the symbols or expressions
they replace could be used. Unlike symbols, however, EQU symbols are not
variables and are not allocated storage.

Constants

A constant is an invariant quantity that can be either an arithmetic value or a
character constant. Arithmetic values can be represented in either integer or
floating-point format.

This section describes integer constants, real constants, and character
constants.

Chapter 4: Assembler Syntax
Constants

64

Integer Constant

Decimal (base-10) constants can be defined as a sequence of numeric
characters optionally preceded by a plus or a minus sign. If unsigned, the value
is positive by default.

Internally, the assembler performs arithmetic on 17-bit quantities. A 17-bit
value is 16-bit value with the 17th bit (the leftmost bit) as a sign bit. This value
may range from -65535 to 65535 (-0FFFFH to 0FFFFH). However, integer
constants are only allocated 16 bits when the assembler stores them in the
output code. The 17-bit value can be interpreted as a signed or unsigned value
and stored in one or two bytes.

A one byte constant can contain an unsigned number with a value from 0 to
255. A two byte unsigned number can range from 0 to 65535. When a constant
is negative, its equivalent twos complement representation is generated and
placed in the field specified. A 1-byte twos complement number can range
from -128 to + 127. A 2-byte twos complement number can range from -32768
to + 32767. Whether or not a number is interpreted as a twos complement or
an unsigned number is typically up to you.

Integer constants outside this range (-65535 to + 65535) can appear only in the
DD, DQ and DT directives, and on the right side of an EQU directive. The
legal range is different for each directive, as discussed in the chapter called
"Assembler Directives."

Other Bases

Constants with bases other than decimal are defined by specifying a coded
descriptor after the constant. In addition, the base may restrict or expand the
accepted digits for the constant. The following list is of the available
descriptors and their meanings and the range of acceptable digits for each kind
of constant. If no descriptor follows a constant, the number is decimal by
default.

• B - a binary constant - digits must be either 0 or 1

• O - an octal constant - digits are 0-7 inclusive

• Q - an octal constant - digits are 0-7 inclusive

• D - a decimal constant (the default if no descriptor appears) - digits are
0-9 inclusive

Chapter 4: Assembler Syntax
Constants

65

• H - a hexadecimal constant - digits are 0-9 inclusive and the letters A-F
(or a-f — either are allowed regardless of case sensitivity)

Note Hexadecimal constants may not begin with the letters A-F (a-f). In those cases,
prefix the constant with a zero.

Examples of acceptable constants:

10011B ;binary constant
25 ;defaults to decimal constant
-0FFH ;hex constant - notice leading 0
1377Q ;octal constant
2d9fh ;hex constant

Real Constant

Real constants can only appear in DD, DQ, DT and EQU directives. There
are three syntactically distinct ways of defining real numbers.

Decimal Real Without Exponent

See the following figure for the syntax diagram of decimal reals with exponents.

Examples:

1.234
.1234
1234.

Figure 4-1. Syntax for Decimal Real Without Exponent

Chapter 4: Assembler Syntax
Constants

66

Decimal Real With Exponent

See the following figure for the syntax diagram for decimal reals with
exponents.

This format is interpreted to mean that the number to the left of the E is
multiplied by 10 raised to the power of the number to the right of the E.
Examples:

3.14159E-27 ;means 3.14159 * 10
-27

-1e4 ;means -10000.

Hex Real

The syntax is 8, 16, or 20 hex digits followed by the letter R (or 9, 17, or 21 hex
digits if a 0 must be prefixed to constants with leading hex digits of A-F).

Note that no sign is permitted. This format represents the actual bit pattern to
be placed in a variable of type DWORD (8 or 9), QWORD (16 or 17), or
TBYTE (20 or 21). (Intel’s documentation describes the bit patterns used to
represent real numbers.) Examples:

40490FDBR
0c0000000r

Character Constant

An ASCII character constant is specified by enclosing one or two characters
within single or double quotation marks. The constant is encoded as a 16-bit
number stored in different ways depending upon usage.

Figure 4-2. Syntax for Decimal Real with Exponent

Chapter 4: Assembler Syntax
Constants

67

A character string of arbitrary length can be specified with the DB assembler
directive.

A more complete discussion of character constants is contained in several of
the chapters that follow.

Delimiters

The characters "blank" and "tab" are referred to as delimiters.

Note There must be at least one delimiter between adjacent symbols and/or numeric
constants to prevent them from being interpreted as a single item.

Delimiters are significant in character strings. Delimiters are not required
between characters that have special meaning to the assembler (such as [, + ,
= , $, and so on).

Assembler Statements

General Syntax

The basic elements just described are put together to create statements and
instructions that the assembler understands. The rules that govern the ways
that statements may be formed are called syntax rules. The general syntax for
an as86 assembly language instruction statement is as follows:

[label :] [prefix] keyword [operand [, ...]] [;comment]

Each field in the general syntax has one or more of the delimiters discussed in
the previous section between it and adjacent fields. Each field has a different
purpose.

Chapter 4: Assembler Syntax
Delimiters

68

Label

The label is optional and, if present, identifies or marks the offset of the
instruction. This label may be used as a destination in CALL, JMP or
conditional branch instructions. Notice the colon following the label. It must
be present if the label is present.

Prefix

The prefix, if present, causes looping with string instructions or forces a bus
lock during the instruction’s execution. New prefixes can be defined through
the use of codemacro definitions.

Keyword

Keywords can be any of the instruction mnemonics (a list of instruction
mnemonics appears at the end of the chapter titled "Instructions and
Operands"), codemacros defined by the user, or an EQU symbol set to an
instruction or codemacro name.

Operand

An operand is an argument to the instruction in the keyword field. Commas
separate multiple operands. Operands are discussed more completely in the
chapter titled "Instructions and Operands."

Comment

The comment begins with a semicolon and continues until the end of the line.
Comments are used to make "notations" about the assembly language code so
that you or others may better understand the purpose of the code or how it
works.

Comment

Comments can appear after instructions, assembler directives, control
statements, macro definitions, or on lines by themselves. In fact, comments can
appear anywhere in the assembly source file as long as they are preceded by
semicolons. Comments are not processed by the assembler, but are passed
through to the assembler listing.

Chapter 4: Assembler Syntax
Assembler Statements

69

When a comment is on a line by itself, a leading semicolon must be the first
non-blank character (tabs are considered blank characters) on the line. Blank
lines are treated like comments.

Continuation Lines

Some assembler statements will not fit on a single line. If a statement will not
fit on a single line, it may be continued to the next line by beginning the next
line with the ampersand (&) character. The ampersand must be in column one
of the next line. Symbols, numbers, and strings cannot be broken across lines.
It is not acceptable to use the ampersand to continue a comment line. In most
cases, an error is likely to occur. Simply begin the new line with a semicolon to
make it another comment line.

Chapter 4: Assembler Syntax
Assembler Statements

70

5

Symbol and Expression Attributes

An introduction to attributes.

Chapter 5: Symbol and Expression Attributes

71

Symbols and expressions have certain attributes that determine where they
may be used with an instruction and what object code will be generated if they
are used. Most attributes are only important when a symbol or expression
involves a relocatable or external value. Absolute values will not involve most
attributes since absolute values are not modified by the loader.

There are nine attributes that a symbol or expression can have. They are

• TYPE

• OFFSET

• BASE

• INDEX

• SEGMENT

• SEGMENT RELOCATION

• RELOCATION TYPE

• SEGMENT ADDRESSABILITY

• CS ADDRESSABILITY

Not all attributes will apply in all cases, however. The following sections
discuss the different attributes and how they affect symbols and expressions.

Chapter 5: Symbol and Expression Attributes

72

TYPE

The TYPE attribute may belong to either a variable, label, or memory
expression. The fixed types are

• BYTE (1 byte)

• WORD (2 bytes)

• DWORD (4 bytes)

• QWORD (8 bytes)

• TBYTE (10 bytes)

• FAR (same or different segment)

• NEAR (same segment)

User-defined types are also possible and are created when a record or
structure template is defined. See the chapter titled "Assember Directives" for
more about records and structures.

It is possible for a memory expression to not have a type. Instead, the type is
determined by using the expression. These explicitly typeless memory
expressions are the so-called anonymous references.

OFFSET

The OFFSET attribute for a variable, label, or memory expression is the offset
from the start of a segment or group. It is simply the number of bytes from the
start of the segment or group. If the variable or label belongs to a
noncombinable segment or if the expression was generated from a numeric
value, the offset will be absolute. If the variable or label belongs to a
combinable segment or to a group, the offset will be relocatable.

Chapter 5: Symbol and Expression Attributes
TYPE

73

BASE

The BASE register may be set as part of a memory reference. If a base register
is used as part of an expression, the expression is known as a register
expression, to set it apart from the simpler memory expression.

The base registers are BX and BP. Only one of these registers may be present
in a any single register expression, although an index register may be present
with the base register. If a base register is used in a memory expression, its
contents are added to the memory offset at run-time to calculate a final offset
for a memory location. If both a base and index register are present in the
memory expression, then their values are first added together and then added
to the offset to produce the memory reference. If the memory expression does
not have a SEGMENT attribute (i.e., no variable, label, or segment override
was used as part of the expression), then a default segment register will be
used depending upon which base register appears in the register expression. If
the BX register is used, DS is the default segment register. If BP is used, the
default is SS. The default to SS for BP holds even if an index register is also
present in the memory expression.

INDEX

The INDEX register may also be used as part of a memory reference. If an
index register is used as part of an expression, either with or without a base
register, then the expression is known as a register expression, to set it apart
from the simpler memory expression.

The valid index registers are SI and DI. Only one index register can be present
in a single register expression. It is also possible, of course, that no index
register will be used. If an index register is used in a register expression, its
contents are added, at run-time, to a memory offset to calculate a final offset
for a memory location. If both an index and base register are used in a register
expression, both registers are added to the offset to calculate the final offset.
If the memory expression does not have a SEGMENT attribute and no base
register is used, then the DS segment register is used as a default.

Chapter 5: Symbol and Expression Attributes
BASE

74

SEGMENT

The SEGMENT attribute determines which segment a variable, label, or
memory expression belongs to. The segment attribute is the base value of that
segment. The base value is absolute if the segment has been placed using the
AT keyword. Otherwise, it is a relocatable value until load time. (This
attribute is also the value that is returned by using the SEG operator.)

SEGMENT RELOCATION

The SEGMENT RELOCATION attribute becomes important when a
variable, label, or memory expression belongs to a group. In contrast to the
SEGMENT attribute, this attribute determines which group the item belongs
to. The SEGMENT attribute identifies which segment within the group the
item belongs to. These two values must be known to correctly calculate offsets
for a memory expression. Normally, this attribute is the same as the
SEGMENT attribute unless the expression contains a group override. This
attribute can be ignored unless groups are used.

RELOCATION TYPE

The RELOCATION TYPE is determined by a combination of the type of an
expression and by operators that are applied to it. This value will be null if the
expression can be completely determined at assembly time. This is true of
offsets within non-combinable segments and for segment bases of segments
that use the AT keyword. This value will be set, however, if the item is an
offset from either a combinable segment or a segment base for a non-located
segment or group. The possible types of relocation are:

• OFFSET: This type of relocation will generate the offset of a variable,
label, or memory expression as part of the object code. A 16-bit offset
value will be calculated by the loader and inserted into the object code.
The offset will be calculated relative to the base of the segment or, if a

Chapter 5: Symbol and Expression Attributes
SEGMENT

75

group override is used, relative to the base of the group. It is possible to
add a 17-bit value to this offset.

• BASE: This type of relocation causes a 16-bit base value to be written
directly to the object code. The base will be the base address of the
segment that the variable, label, or memory expression belongs to unless a
group override is used. In that event, the base will be the base address of
the group. It is possible to add a 17-bit value to this base.

• HIGH: This type of relocation causes the upper 8-bit portion of an offset
to be written to object code. The offset is calculated using the same rules
as noted above, but only the high byte will be written out. It is possible to
add an 8-bit value to this byte.

• LOW: This type of relocation causes the lower 8-bit portion of the offset
to be written to object code. The offset is calculated using the same rules
as noted above, but only the low byte will be written out. It is possible to
add an 8-bit value to this byte.

SEGMENT ADDRESSABILITY

The SEGMENT ADDRESSABILITY of a memory location is determined by
the segment the memory location belongs to and by any segment or group
overrides applied. If a segment override is used to name a specific segment
register, that register is used to address the memory location. Otherwise, the
values found in the ASSUME directives must be tested. If the segment or
group is found through the current ASSUME values, then that segment
register is used to address that memory location. If no match is found, an
error is generated, since the memory cannot be accessed.

It is possible to have a memory location that does not belong to a segment or
group. This would be true of an anonymous memory reference, which looks
like

[BX][SI]
; base and index registers

In such a reference, the segment addressability will be determined by using the
default segment registers defined for the base and index registers. Recall that

Chapter 5: Symbol and Expression Attributes
SEGMENT ADDRESSABILITY

76

the default segment register will be DS unless the BP base register is used, in
which case the default will be the SS segment register.

CS ADDRESSABILITY

The CS ADDRESSABILITY of a label is determined from both the current
ASSUME value for the CS register, and any segment or group overrides that
are applied to the label.

Chapter 5: Symbol and Expression Attributes
CS ADDRESSABILITY

77

Chapter 5: Symbol and Expression Attributes
CS ADDRESSABILITY

78

6

Assembler Directives

Alphabetical description of assembler directives.

Chapter 6: Assembler Directives

79

This chapter describes the as86 assembler directives. In an assembly language
program, assembler directives are written as any other program statement
might be, but directives are not translated into equivalent machine language
instructions. Instead, assembler directives are interpreted as instructions to
the assembler to control the program assembly process itself.

In this chapter, directives are organized in alphabetical order for easy
reference. (The DB, DW, DD, DQ, and DT directives are described together
because of their similarity.) However, assembler directives may also be
grouped into three broad categories —Segmentation Directives, Data
Definition Directives, and Program Linkage Directives— which identify the
parts of the assembly process the different directives are designed to affect.
Segmentation Directives inform the assembler about the logical organization
of your program. Data Definition Directives control the allocation and
initialization of data, variables, and labels. Program Linkage Directives make
it possible to create modular assembly language programs. The first sections of
this chapter list the directives grouped by these three categories, briefly
describe their functions, and more thoroughly discuss some concepts
important to understanding how these directives work.

Chapter 6: Assembler Directives

80

Segmentation Directives

ASSUME informs the assembler of the contents of the segment registers.

GROUP combines several logical segments together.

SEGMENT/ENDS defines a logical segment in the assembly language
program code.

These directives control program segmentation (the dividing of the assembly
program into logical parts). To better understand program segmentation, read
the following discussion.

Program Segmentation

The 8086 can directly address one megabyte of memory. This memory is
viewed by the CPU through four segments, known as physical segments, each
containing up to 64K bytes. The start of each segment is defined by a value,
called a paragraph number, placed in one of the four special registers known
as segment registers. A paragraph number, or boundary, is located at a
memory address which is divisible by 16 (that is, the least significant
hexadecimal digit of the address is 0H). A physical segment is said to be active
if one of the segment registers contains the base address of the start of the
segment.

The four segments are classified as the code, data, stack, and extra segments.
They are each pointed to by a separate segment register:

CS for code

DS for data

SS for stack

ES for extra

Executable instructions will be in a physical segment defined by the value in
CS. Any stack operation will occur within the segment defined by SS. Data is
generally found in the segment pointed to by DS, but it can also be placed in
any of the other segments. The segment accessed through the ES register will
usually hold data also.

Chapter 6: Assembler Directives

81

A logical segment is a segment as defined within a single assembly file. The
linking loader can combine this logical segment with other segments of the
same name to form a single physical segment. The size of the physical segment
is limited to 64K, so the sum of the logical segments cannot exceed this limit.
The collection of segments into a group is another form of physical segment.

Default Segment - ??SEG

All code and data within a source file must exist within some segment. Any
code or data defined outside of segment directives within a source file will be
assigned to a segment automatically created by the assembler. This segment is
named ??SEG and exists in all object files. The ??SEG segment is defined to
be public, so it is combined with all other ??SEG segments from other
modules. It is also defined to be paragraph aligned.

Chapter 6: Assembler Directives

82

Data Definition Directives

DB defines one byte of storage.

DW defines one word (two bytes) of storage.

DD defines one double word (four bytes) of storage.

DQ defines one quad word of storage (eight bytes - 8087 data types).

DT defines one tbyte (ten bytes - 8087 data types) of storage.

EQU assigns a particular value to a symbol.

EVEN aligns code or data with a word boundary.

ORG adjusts the location counter within the current segment.

PROC/ENDP assigns a label to a sequence of instructions.

PURGE causes a user-defined symbol to become undefined.

RECORD defines a record template.

STRUC/ENDS defines a structure template.

Data Definition Directives control the definition and initialization of data
and/or storage as labels, variables, records, or structures.

Data Objects

The two most referenced data objects are variables and labels. With the Data
Definition Directives, you may define these and other data objects in your
program. Variables are data items, or areas of memory where values are
stored. Labels allow you to "mark" locations or sections in your code that may
be JMPed to or CALLed. One use of labels is to define "subroutine" locations
in order to create structured programs. Unlike high-level language
subroutines, however, scoping of names does not occur and you can "fall into"
an embedded "subroutine."

Records and structures may also be defined by this category of directives.
Records and structures are alike in that they are user-defined templates for
storage allocation and initialization, they are not allocated storage at

Chapter 6: Assembler Directives

83

definition time, the assembler "remembers" what they look like, they can be
referenced as often as you like, and each reference generates one or more
copies of storage in the format of the template. At the time of the reference,
records and structures may optionally have certain of their definition-time
default values replaced.

Records and structures are different, however, in their basic makeups. When
you define a structure, you specify how many bytes the template covers, how
the bytes will be broken up into variables, and what default values will be
placed into those bytes at allocation-time. In contrast, a record must be a one
or two byte collection of bit fields. When defining a record, you specify how
the record is to be broken up into bit fields, and any default values to be placed
in the bit fields at allocation-time. The record size depends upon the sum of
the number of bits in all the bit fields, which means the total may not exceed
16 bits.

Linkage Directives

END specifies the end of an assembly module.

EXTRN specifies symbols defined in other modules.

NAME assigns a name to an assembly module.

PUBLIC specifies which symbols are public.

Program Linkage Directives make it possible for you to create modular
assembly language programs. Refer to the discussion of program linkage that
follows to better understand the use of these directives.

Program Linkage

as86 supplies the necessary directives to support multi-module programs. A
program may be composed of many individual modules that can be separately
assembled or compiled. Each module may define variables or labels that other
modules may use. The Program Linkage Directives are the mechanisms in
as86 for communicating symbol information from module to module, for
identifying those symbols within the current module that may be used by other
modules, for stating what symbols (defined elsewhere) can be used within the

Chapter 6: Assembler Directives

84

current module, and for uniquely naming different object modules that are to
be linked together. Using these directives, you may specify a "main module,"
that is, a module which contains the code that will be initially executed upon
loading the program (the address the loader will use to initialize the start
address of the program). At the same time, you may also supply initialization
values for other segment registers.

Chapter 6: Assembler Directives

85

ASSUME

The ASSUME directive is used to inform the assembler of the contents of the
segment registers.

Syntax:
ASSUME segreg:segpart [,...]
(or)
ASSUME NOTHING

Where:
segreg is one of the segment registers CS,DS,ES or SS.

segpart is one of the following:

• A segment name. The base address of the segment is assumed to be in the
named register. All data (or code) in the segment is addressable through
this register.
Example:

ASSUME CS:CODE, DS:DATA

• A group name (must have been previously defined). The base address of
the group is assumed to be in the named register. All code or data in all
segments in the group are addressable through this register. Example:

ASSUME CS:CODEGRP, DS:DATAGRP

• A forward reference. Forward references with ASSUME are only allowed
for symbols which will be defined as segment names later in the program.
When the segment name is later defined, then it may be used to address
memory within the segment. Failure to define the segment name will
cause an error to be reported.

• The keyword SEG followed by the name of a previously-defined label,
variable or external symbol. The base address of the segment containing
the symbol (which may not be known until link-time) is assumed to be in
the named register. The specified symbol and any other data known to be

Chapter 6: Assembler Directives
ASSUME

86

in the segment are addressable through the register. (For an external
symbol defined outside a segment, no such data is known.) Example:

ASSUME CS:SEG START, DS:SEG COUNT

• The keyword NOTHING. The register is assumed to contain garbage. The
register will not be used to address any memory. The format

ASSUME NOTHING

is also legal; this is equivalent to

ASSUME CS:NOTHING,DS:NOTHING,ES:NOTHING,SS:NOTHING

Description: ASSUME is used by the assembler to

• determine if the code or data your program references is addressable

• decide whether a segment override byte should be generated.

Initially, the segment registers contain NOTHING (garbage) by default. The
assembler assumes the contents of each segment register has not changed
—since initialization or the last ASSUME— unless an ASSUME for that
register is encountered. ASSUME itself, however, does not alter the value in
the segment register. For example, the statement ’ASSUME DS:DATA’ does
not alter the contents of DS. You must, at some point, follow the ASSUME
with a MOV instruction to DS in order to access data in the DATA segment
without error.

CS register initialization, since it is done by the loader, does not require a
MOV, but CS still requires an ASSUME before it may be used.

Note There is an exception to the requirement that the CS register must have an
ASSUME before it is used. When a JMP instruction is used without a current
CS-ASSUME value, the default is to ASSUME the current segment. The
segment registers will not be checked. This only applies to NEAR references,
since a JMP to a FAR label requires that the CS register be updated.

Chapter 6: Assembler Directives
ASSUME

87

DB, DW, DD, DQ, DT

The DB, DW, DD, DQ, and DT directives are used to define variables and/or
initialize memory.

Syntax:
1 byte (Byte) initialization:
[name] DB init [,...]

2 byte (word) initialization:
[name] DW init [,...]

4 byte (dword) initialization:
[name] DD init [,...]

8 byte (qword) initialization:
[name] DQ init [,...]

10 byte (tbyte) initialization:
[name] DT init [,...]

(or)

[name] Dx repeatval DUP(init,[,...])
 (where x is B, W, D, Q, T)

Where:
name is a unique as86 symbol. Its associated attributes will be:

• segment - current segment

• offset - current location counter

• type - type of data initialization unit

init may take on many possible values depending upon what type of
initialization you wish to do. Init may be any of the following:

• A constant expression.

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

88

– DB - 1 byte initialization. An integer constant or an expression
which fits into 8 bits (either 0-extended or sign-extended) when
stored in twos complement format. The range is -255 to + 255.
High and low relocatable numbers (created by the HIGH and
LOW operators) are also acceptable scalars. Other relocatable
numbers, such as the offset of a variable, are not acceptable.
Examples:

DB 0

DB 65535 ;not accepted, out of range

DB -1 ;these are equivalent
DB 255 ;both generate hex FF

– DW - 2 byte initialization. A constant or expression that evaluates
to a number (either absolute or relocatable) which must fit into 16
bits (either 0-extended or sign-extended) when stored in twos
complement format. The range is -65535 to + 65535. Examples:

DW 0

DW 65536 ;not accepted, out of range

DW -1 ;these are equivalent
DW 65535 ;and generate hex FFFFH

– DD - 4 byte initialization. An integer constant or an expression
that evaluates to an absolute number. The value must fit into 16
bits (either 0-extended or sign-extended). The range is -65535 to
+ 65535. The 16-bit value is stored in the lower 2 bytes in twos
complement format (least significant byte first) and the higher 2
bytes are sign-filled. Relocatable numbers are not permitted (it is
impossible to determine how to fill the higher 2 bytes at
assembly-time).

Use DD for an integer constant in the range -4,294,967,295 to
+ 4,294,967,295 (from -(232+ 1) to + (232-1), but not small enough
to qualify for DW. Note that an expression cannot yield a value
this large; all expressions evaluate to 17-bit numbers. The value is
stored as a 32-bit twos complement integer, low byte first.

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

89

A decimal real. The valid range is roughly -3.4E38 to -1.2E-38, 0,
1.2E-38 to 3.4E38.

A hex real of 8 digits (or 9 digits if its leading digit is 0).

Examples of the possibilities:

DD 0 ;yields 00000000
DD 65535 ;yields FFFF0000 (low byte first)
 ;in 16-bit range
DD -1 ;yields FFFFFFFF

DD 65537 ;yields 01000100 (low byte first)
DD -65537 ;yields FFFFFEFF (low byte first)

DD 0.0 ;a decimal real
DD 3.14159 ;another decimal real

DD 0C0000000R ;a hex real

– DQ - 8 byte initialization. An integer constant, or an expression
whose value resolves to a 17-bit absolute number. The range of
constants is -(264+ 1) to + (264-1). Such integer values are stored
in 64-bit twos complement format.

A decimal real number which has an approximate legal range of
values is -1.7E308 to -2.3E-308, 0, 2.3E-308 to 1.7E308.

A hex real number consisting of 16 digits (or 17 digits if its leading
digit is 0).

– DT - 10 byte initialization. An integer constant, or an expression
that resolves to a 17-bit absolute number. The range of constants
is -(1018+ 1) to + (1018-1). All integer values are stored in 80-bit
signed-magnitude packed decimal (BCD) format, least significant
byte in the lowest address.

A decimal real number that has an approximate range of
-1.1E4932 to -3.4E-4932, 0, 3.4E-4932 to 1.1E4932.

A hex real number consisting of 20 digits (or 21 digits if its leading
digit is 0). Examples:

DT 65535 ;generates 35550600000000000000H ;(low byte first)
DT -65535 ;generates 35550600000000000080H ;(low byte first)

• The character "?" for indeterminate initialization.

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

90

– In situations where you wish to reserve storage but do not need to
initialize the area to any particular value, use the special character
"?" instead of a value. The area will be reserved with an
indeterminate value. Examples:

ABYTE DB ? ;reserve a byte
AWORD DW ? ;reserve a word (2 bytes)
ADWORD DD ? ;reserve a double word (4 bytes)
AQWORD DQ ? ;reserve a quad word (8 bytes)
ATBYTE DT ? ;reserve a tbyte (10 bytes)

• An address expression.

Note Assume registers are not checked when these directives are used with address
expressions. Therefore, the only way to get a group-relative reference is to
use a group override in the address expression.

– DW - 2 byte initialization. DW may be used with a variable name,
a label name, a group name, or a segment name. Using DW with a
variable or label name causes the offset of a variable or label
(relative to its segment or, if a group override is used, to its group)
to be stored. Using DW with a group or segment name causes the
paragraph number of that group or segment to be stored.
Examples:

DW COUNT ;COUNT is a variable or label
 ;store offset of COUNT from its segment

DW DATAGRP :COUNT ;store offset of COUNT from its
 ;group (DATAGRP)

DW CODE ;CODE is a segment or group name
 ;store the paragraph number

– DD - 4 byte initialization. DD may be used with a variable name,
a label name, a group name, or a segment name. Using DD with a
variable or label name causes the offset (relative to its segment or,
if a group override is used, to its group) of the variable or label to
be stored in the low order word and the segment or group base
address for the label or variable to be stored in the high order
word. Using DD with a group or segment name causes the
paragraph number of that group or segment to be stored in the

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

91

low order word. The high order word will be set to 00H. Using
DD with a variable or label name is equivalent to storing a pointer
to the variable or label address. Examples:

DD COUNT ;COUNT is a variable or label, a
 ;pointer to it is stored

is equivalent to

DW COUNT ;store offset of COUNT
DW SEG COUNT ;store COUNT’s segment

• Initialize with a string.

– DB - 1 byte initialization. A string of up to 1024 characters may be
specified with the DB directive. Each character in the string, left
to right, is assigned one byte of memory, low address to high
address. The string must be enclosed within single or double
quotes. A single quote may be embedded in the string by using two
consecutive quotes. Examples:

ALPHABET DB ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
WITHQUOTE DB ’THIS AIN’’T HARD!’ ;inserting single
 ;quote in string

– DW, DD, DQ, You may use these directives to code a string of 1
or 2 characters. Such a string is interpreted as a 17-bit number that
is stored differently than it would be if DB were used. If two
characters are stored, the second character in the string appears in
the low byte of the storage and the first character appears in the
next higher byte of the storage. If only one character is stored, the
low byte of the storage contains the character. With either a 1 or 2
byte string, if any bytes of the storage remain unfilled, they are set
to 00H. Using more than 2 characters in a string results in a
warning message and only the first 2 characters are used.

– DT DT can also code a two character string, but it does it in a way
different from the other directives. DT stores the string in BCD
packed decimal format. If a single character is stored, its decimal
ASCII value is stored in the low byte of storage. The remaining
bytes are set to 00H. If two characters are stored, however, it
becomes more complicated. It is done as follows:

The 17-bit hexadecimal number representing the string is
converted to its decimal equivalent. (The 17-bit hex number is
formed by placing the ASCII hex value of the first character of the

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

92

2 character string in the leftmost byte of the 17-bit word and
placing the ASCII hex value of the second character in the
rightmost byte of the 17-bit word. The sign bit is zero.)

Beginning with the rightmost digit of the resulting decimal value,
the decimal representation is stored 2 digits per byte, working
from right to left in the decimal value, until all digits are stored.

Any remaining bytes of storage are set to 00H.

Examples:

DB ’01’ ;generates 3031H (shown low byte first)
DW ’01’ ;generates 3130H (shown low byte first)
DW ’1’ ;generates 3100H (shown low byte first)
DD ’01’ ;generates 3130 0000H (shown low byte first)
DQ ’01’ ;generates 3130 0000 0000 0000H
 ;(shown low byte first)
DT ’01’ ;generates 3723 0100 0000 0000 0000H
 ;(shown low byte first)

Repeating value. The special construct, DUP, can initialize an area of
memory with a repeated value or a repeated list of values.

• repeatval specifies the number of data initialization units (from 1 to
65535) to be filled (bytes, words, dwords, qwords, or tbytes depending
upon whether Dx is DB, DW, DD, DQ, or DT).

• init (as an argument to DUP) may be a single occurrence of the
possibilities that were acceptable for init in the non-repeating-value
syntax, including another DUP, or init may be a list of these same values.
DUPs may be nested to eight levels deep. Below are some examples:

WORD1 DB 2 DUP (?) ;two consecutive bytes form word
DD 2 DUP (’01’) ;generates 3130000031300000H
NESTEDDUP DB 3 DUP (4 DUP (5 DUP (1, 6 DUP (0))))
 ;60 occurrences of 1,6 DUP (0)

If an indeterminate initialization is repeated, the memory reserved by that data
directive will NOT be initialized to 0. Also, repeating a relocatable value
(such as a location in memory) will result in only the first value being assigned
correctly. So this practice is discouraged.

Description: The DB, DW, DD, DQ, and DT directives are used to define variables and/or
initialize memory. The descriptions of the parts of the syntax adequately
describe these directives.

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

93

END

The END directive is used to inform the assembler that the last source
statement has occurred and optionally to specify initial vlaues for selected
registers.

Syntax:
END [regint [,...]]

Where:
regint This field defines the contents for a segment register (and possibly the
IP and SP registers). To initialize the segment registers, the field may take one
of the following forms:

[CS:] segname[:labelname]
DS: segname
SS: segname[:varname]

where

• segname is either a segment name or a group name. It identifies the
paragraph number to be loaded into the segment register.

• labelname is the name of a label defined in the module. If it is used alone,
its segment will be used to initialize the CS register and its offset will
initialize the IP. If it is used with a segname, then just its offset will be
used to initialize IP.

• varname is the name of a variable defined in the module. Its offset will be
used to initialize SP.

Description: An END directive is required for all assembly language programs. Any
statements that follow the END directive will not be processed. Specifying a
load address with the END directive also informs the loader that the current
module is the main program. The main program defines the start of execution
because execution begins at the address specified with the END directive for
the main program. If multiple load modules are combined by the loader, only
one module can specify a load address and therefore be considered the main
program.

Chapter 6: Assembler Directives
END

94

The END directive may also be used to define the initial contents of the DS
and SS segment registers by specifying values to be placed in these registers by
the linker/loader at load-time.

Note If the code is to be targeted for HP 64000 format absolute, you may only
initialize the CS:IP register with END. Initialize the other registers explicitly
within the code.

Examples The following examples show the proper syntax for initializing different
segment registers.

CS (code) segment register initialization:

END labelname ;initializes CS and IP
 ;(the segment part of the
 ;label is used for CS)
(or)
END CS:labelname ;same as ’labelname’
(or)
END CS:segname:labelname ;the segment part (paragraph
 ;number) to be loaded into
 ;CS is taken from segname

SS (stack) segment register initialization:

END SS:segname ;SP will be initialized to be
 ;equal to the size of the
 ;segment

(or)

END SS:segname:varname ;initializes SS and SP
 ;(SP will be initialized to
 ;the offset of varname)

DS (data) segment register initialization

END DS:segname ;initializes DS

Chapter 6: Assembler Directives
END

95

EQU

The EQU directive causes the assembler to assign a particular value to a
symbol.

Syntax:
equate_symbol EQU expression

Where:
equate__symbol is a mandatory symbol defined by this statement.

expression is one of the following items:

• A numeric constant or numeric expression. The value of the expression
must be determined at assembly time. Any symbols used in the expression
must have been previously defined. See the Description section below for
more discussion about real constants. Examples:

PI EQU 3.14159 ;real constant stored with
 ;10 byte precision
DD PI ;4 byte floating point
DQ PI ;8 byte floating point
DT PI ;10 byte floating point

E1 EQU 2 + 3 ;numeric expression
E2 EQU E1 AND 4 ;E1 previously defined
E3 EQU (E1 - E2) / 12 ;E1 and E2 previously defined

• A variable or label name (which may be a forward reference).

ALABEL EQU ALAB ;ALAB not defined yet
ALAB: MOV AX, 0

• A register name, including ST registers. Example:

COUNT EQU CX
POINTER EQU BX
MOV COUNT, 10 ;CX = 10
MOV POINTER, OFFSET ARRAY ;BX = offset of array
FREQ EQU ST(1)
FADD ST, FREQ

• An instruction or codemacro name.

BUMP EQU INC ;instruction name
BUMP AX ;same as INC AX

• A register expression. These may be single register expressions, or they
may also include a segment override. This construct is useful when

Chapter 6: Assembler Directives
EQU

96

defining data items to be accessed on the stack. Refer to the Description
section for a more information about the use of register expressions.
Examples:

STACKWORD EQU WORD PTR SS:[BP + 2]
AVAR EQU [BX + 3]
ANEXTVAR EQU ES:[BX]

Description: The EQU directive in as86 is more powerful than the EQU found in most
other assemblers. All the various attributes of address expressions are stored,
and any missing attributes may be added later with expression operators at the
time the EQUed symbol is referenced.

Decimal real numbers are stored in a full 10-byte format to prevent a loss of
precision; they may be used in DD, DQ, or DT directives later in your code.
Hex real numbers, however, are stored in as many bytes as the specification
indicates; they can be used later only in the single directive that accepts a hex
real of that size.

It is possible for a symbol to appear as a forward reference before it is defined
in an EQU. When this happens, the assembler assumes that the forward
reference will resolve to a number, variable or label. If this turns out not to be
the case, an error may occur on pass 2 if the assembler did not leave enough
room for an instruction on pass 1.

Symbol chaining (defining a symbol in terms of another symbol which is in
turn defined by another symbol) can be accomplished with the EQU directive,
but the chain must eventually end as a numeric or address expression. An
error occurs if the definition ends in a register or real number expression.
Circular EQU definitions are also errors. Example:

A EQU B
B EQU A ;ERROR! circular reference

A symbol defined by an EQU to an address expression consisting of more than
one symbol (for example, BYTE PTR VBL) is stored as a variable or label, if
possible. The entire EQU expression takes its attributes from the
sub-expression on the right-side of the EQU. However, not all attributes will
be set if attributes are missing from the right-side sub-expression. If that is the
case, missing attributes must be supplied when the symbol on the left-side of
the EQU is used elsewhere in an expression.

Examples:

Chapter 6: Assembler Directives
EQU

97

A EQU [BX][SI][5] ;anonymous reference — type
 ;information must be supplied
 ;when A used elsewhere
B EQU WORD PTR 10 ;segment information must be
 ;supplied later

Chapter 6: Assembler Directives
EQU

98

EVEN

The EVEN directive causes the Location Counter to be aligned to an even
value (a word boundary).

Syntax:
EVEN

Description: The assembler brings about alignment by generating a NOP (90H) instruction
if the current location counter contains an odd address value. The EVEN
directive cannot be used in a byte aligned segment. Doing so will cause an
error message to be generated.

Chapter 6: Assembler Directives
EVEN

99

EXTRN

The EXTRN directive is used to declare certain symbols as external
references.

Syntax:
EXTRN name:type [,...]

Where:
name is a symbol, declared PUBLIC (see PUBLIC directive later in this
chapter) in another module, to be defined as an external reference. Its
associated attributes are the following:

• segment - unknown unless defined within a SEGMENT/ENDS pair

• offset - unknown

• type - type declared in type argument

• relocation type - external

type is one of the following:

• The keyword BYTE, WORD, DWORD, QWORD, or TBYTE for a variable
which is one of these types.

• A structure name. Names a variable whose type is equal to the number of
bytes allocated in a preceding structure definition.

• A record name. Names a variable whose type will be either byte or word
depending on the preceding record definition.

• NEAR or FAR. A label of type near or far.

• ABS. A constant (17-bit number), always of type word.

Description: Symbols declared as EXTRN are not expected to be defined in the current
module (they cannot be), but are passed to the loader to be matched against
symbols declared PUBLIC in other modules. In as86, the EXTRN directive
will specify the name of the symbol and its associated type.

Chapter 6: Assembler Directives
EXTRN

100

Note The type declaration must agree with the type of the symbol declared
PUBLIC, but the loader does not do type-checking. It is your responsibility to
maintain type compatibility.

The type ABS is used to declare a constant. Despite the mnemonic ABS, this
number can prove to be offset relocatable or absolute when it is resolved
depending upon how it was defined as a PUBLIC symbol. In either case, name
can be used and treated like a constant value.

You must be careful in the placement of the EXTRN directive in relation to
the definition of the program segment. If you know the segment in which the
external symbol was defined as PUBLIC, place the EXTRN directive between
a SEGMENT/ENDS pair that is identical to the SEGMENT/ENDS pair in
which the object was defined in the other module. An external symbol defined
in this manner will be addressable through the segment register containing the
segment in question. In particular, a NEAR label defined EXTRN must be
defined in segment identical to the one where it is defined PUBLIC because of
the NEAR type restrictions.

Example:

In module "A"

DATA SEGMENT WORD PUBLIC
COUNT DB 0 ;declared as byte through DB
PUBLIC COUNT
DATA ENDS

In module "B"

DATA SEGMENT WORD PUBLIC ;different module, but same
 ;segment declaration
EXTRN COUNT:BYTE ;typed as byte
DATA ENDS

If you do not know the segment in which the external symbol is defined, or if
the segment in which it is defined is non-combinable, place the EXTRN
directive outside of all SEGMENT/ENDS pairs in your program. To address
the external symbol you must load the segment part (paragraph number) of
the symbol into a segment register using the SEG operator and then either use
an ASSUME directive to verify addressability or use a segment override for
each use of that symbol.

Chapter 6: Assembler Directives
EXTRN

101

Note The 8086/186 linker does NOT verify that the definition of an external symbol
matches the definition of its resolving public symbol. It is up to the user to
make sure that external symbol definitions are placed within the correct
segment or they should NOT be placed in a segment at all.

Example:

MOV AX, SEG COUNT
MOV ES, AX ;loads segment

(then)

ASSUME ES:SEG COUNT ;verify addressability
MOV DL, COUNT ;use symbol
(or)
MOV DL, ES:COUNT ;use segment override

Chapter 6: Assembler Directives
EXTRN

102

GROUP

The GROUP directive is used to specify several logical segments that are to
be placed in the same physical segment.

Syntax:
name GROUP segpart [,...]

Where:
name is a mandatory, unique, user-defined name for the group.

segpart is one of the following:

• A segment name.

• The keyword SEG followed by the name of a previously-defined variable,
label, or external symbol. This construct refers to the segment in which
the specified symbol lies. For externals, this may not be discovered until
link-time.

• An undefined symbol that must be defined later in the program as a
segment name or the assembler reports an error.

Description: At assembly-time you may specify that certain logical segments will all go in
the same physical segment so the assembler will know that all such segments
may be accessed from the same segment register. Such a collection of
segments is called a group. The ordering of the segments in a GROUP
directive will not necessarily control or represent the ordering of the segments
in memory nor are the segments in a group necessarily adjacent in memory.
GROUPing them only implies that they should lie within the same physical
segment.

The total address space covered by all segments in a group must be less than or
equal to 64K bytes. The size of the group is equal to the sum of the sizes of all
segments in the group. The assembler does not check whether the size of the
group is greater than 64K bytes, but the loader does.

A group has a base address. The base address of a group refers to the lowest
memory address of any segment in that group. The loader sets the group base

Chapter 6: Assembler Directives
GROUP

103

address, and all segments in the group are addressable from this same group
base address.

Forward references to group names are not allowed.

One of the uses of the group name is with the ASSUME directive. If, for
example, you have defined many different data segments that you intend to
form into one physical segment when the program is located in memory, you
could combine these segments with the GROUP directive. Since the contents
of all these data segments will be addressable through DS during the execution
of the program, you may use the group name in the ASSUME and to initialize
DS. For example,

DATAGRP GROUP DATA1, DATA2 ;DATA1 and DATA2 not
 ;defined yet

DATA1 SEGMENT
ABYTE DB 0
DATA1 ENDS

DATA2 SEGMENT
AWORD DW 0
DATA2 ENDS

ASSUME DS:DATAGRP, CS:CODE ;use group name in ASSUME
CODE SEGMENT
MOV AX, DATAGRP ;AX = base address of group
MOV DS, AX ;initialize DS
MOV AX, AWORD ;addressable through DS
.
.
.
CODE ENDS

Use of the OFFSET Operator With Groups

When using the OFFSET operator with a variable or label whose segment is
in a group, you must use the group name as a segment override in an
expression which references that variable or label, as in

MOV BX, OFFSET DATAGRP:COUNT

Also, if you wish to store the paragraph number of a variable or label defined
with a group, you must use a group override. Otherwise, the paragraph
number of the segment that contains the variable is stored instead. Example:

DW SEG DATAGRP:COUNT
DD DATAGRP:COUNT

Chapter 6: Assembler Directives
GROUP

104

LABEL

The LABEL directive is used to create a name for the current location of
assembly, whether it is data or code.

Syntax:
name LABEL type

Where:
name is a unique user-defined symbol. Its associated attributes are the
following:

• segment - current segment

• CS-assume - current CS-assume value (labels only)

• offset - current location counter

• type - as specified below

type is one of the following:

• The keyword BYTE, WORD, DWORD, QWORD, or TBYTE to create a
variable which is one of these types.

• A structure name Creates a variable whose type is equal to the number of
bytes allocated in a structure definition.

• A record name Creates a variable whose type will be either byte or word
depending on the record definition.

• NEAR or FAR To create a label of type near or far.

Chapter 6: Assembler Directives
LABEL

105

Description: The LABEL directive and the idea of a "label" should not be confused. The
LABEL directive creates a label or variable at the current location being
assembled. A label is a name for a location in the code that can be JMPed to
or CALLed.

The LABEL directive is used primarily to address the same data item or same
piece of code as different types. As a rule, as86 requires that the type of a data
reference match the type of the data definition (known as strong typing),
which makes this dual addressing difficult. If you want to access a variable
either as a word or as 2 bytes depending upon the context, the following would
allow you to do so:

WORDNAME LABEL WORD
LOWBYTE DB 0
HIBYTE DB 0

The LABEL directive also allows you to define two labels of different types
(for instance, both NEAR and FAR) but be careful that the right RET is
executed for the type of CALL made. The following (potentially fatal)
example illustrates this use:

AFARLABEL LABEL FAR
NEARLAB: MOV AX, BX
RET ;would be near, so some information
 ;would be left on the stack

as86 does not, in general, permit data storage at label locations—that makes
writing self-modifying code difficult.

Chapter 6: Assembler Directives
LABEL

106

NAME

The NAME directive is used to assign a name to an object module.

Syntax:
NAME module_name

Where:
module_name is a user-defined identifier. The name identifier can be any
length, but only the first 40 characters are meaningful.

Description: Every object module produced by as86 has a name; if you do not provide one,
the assembler issues a warning and gives the file a special name. The special
name is the source file base name stripped of any path and suffix. A module
name is not stored as a symbol. You can therefore duplicate a keyword or a
user-defined label without conflict. Module names are not affected by the case
control. They are always case-sensitive.

The linker does not require that modules have unique names, but it identifies
its input files by module name on its listing map. For this reason, assign each
module a unique name for clarity.

The librarian program does identify its modules by name. Every module used
as input to the librarian must have a unique name or an error will result.

Chapter 6: Assembler Directives
NAME

107

ORG

The ORG directive is used to alter the value of the Location Counter within
the current segment.

Syntax:
ORG expression

expression evaluates to

• an absolute number (modulo 65536) that does not contain forward
references or

• an offset relocatable number (modulo 65536) that is only relocatable from
the current segment. Using the offset of ’$’ (dollar sign is the special
character for the current location counter value) in a PUBLIC segment is
an example of this form of ORG.

Description: The ORG directive is used to locate code or data at a particular location
(offset) within a segment. Using ORG with an absolute segment allows you to
specify an actual memory location at which the code or data will be located.

Note Avoid expressions of the form

ORG OFFSET ($-1000)

since this particular expression will overwrite your last 1000 bytes of assembly
(or will re-ORG high in the current segment if the expression evaluates to a
negative number). An expression with the syntax "$+ 1000" will produce an
error because this expression evaluates to a label, not to a number. To achieve
what is intended, the expression "OFFSET ($+ 1000)" can be used.

Chapter 6: Assembler Directives
ORG

108

PROC/ENDP

The PROC/ENDP directive pair is used to delimit a section of code which can
then be CALLed from elsewhere in the program, much like a procedure in a
high-level language.

Syntax:
name PROC [type]
.
.
(instructions)
.
.
name ENDP

Where:
name is a unique user-defined symbol providing a label for the beginning of
the PROC. The name on the ENDP directive must match that on the most
recently defined PROC for which an ENDP was not already encountered. The
ENDP directive signals the end of a PROC definition to the assembler. The
attributes of the PROC name are the following:

• segment - current segment

• CS-assume - current CS-assume

• offset - current location of PROC directive

• type - depends on type indicated

• relocation type - depends on enclosing segment

type is the type of the label defined at the beginning of the PROC. Type can
be NEAR or FAR. NEAR is the default if no type is specified.

Chapter 6: Assembler Directives
PROC/ENDP

109

Description: The primary use of the PROC/ENDP pair is to give a type to the RET
instruction enclosed by the pair. A RET instruction generates a NEAR return
or a FAR return depending on whether the most recently defined PROC is
NEAR or FAR. A RET or IRET outside of a PROC/ENDP pair or inside a
pair which has no type specified is, by default, of type NEAR. Therefore, any
code you wish to CALL FAR and then successfully RET from should be
enclosed in a PROC/ENDP pair typed FAR.

Code execution begins at the instruction immediately following the PROC
Directive when PROCs are CALLed or JMPed to.

Nested PROCs

When a PROC is defined inside another (nested), it does not necessarily have
the same type assigned to its RET or IRET instruction as does the enclosing
PROC. For instance, an enclosing PROC may be typed FAR. When the next
PROC occurs, it might be a NEAR. For the duration of that PROC until the
ENDP, the type of any return instruction will be NEAR and not FAR. When
the ENDP is found for the nested PROC, however, the type reverts to the type
of the enclosing PROC, in this case FAR. Having a NEAR PROC inside a
FAR PROC, then, does not affect the enclosing PROC.

Differences Between PROCs and "Subroutines"

The code in a PROC/ENDP pair is not a procedure in the same sense as it is in
high-level languages. A few differences are of note:

• In contrast to the scoping of names in block-structured languages, all
labels and variables within the PROC/ENDP pair are not local to the
"subroutine", but are global to the entire file.

• It is possible for execution to "fall into" a PROC from the previous
instruction; it is not necessary to CALL a PROC to execute it. Executing a
RET or a IRET from a "fallen into" PROC can cause unpredictable
results.

• The ENDP does not function as a return-from-procedure; it marks the
end of the PROC for the assembler. It is possible for execution to "fall out
of" a PROC through the ENDP into the next instruction. To return from
a CALL, a RET or IRET instruction must be used.

Chapter 6: Assembler Directives
PROC/ENDP

110

PUBLIC

The PUBLIC directive is used to specify symbols, defined in one module, that
are available to other modules at link time.

Syntax:
PUBLIC name [,...]

Where:
name is the name of the symbol defined in the current module.

Description: Symbols designated PUBLIC will be placed in the object file and used by the
loader to resolve external references (made with the EXTRN directive) from
other modules.

PUBLIC symbols must be variables, labels or 17-bit constants defined by using
EQU; any other types will generate an error. A 17-bit constant can be absolute
or offset relocatable only; other relocation types are not allowed.

Chapter 6: Assembler Directives
PUBLIC

111

PURGE

The PURGE directive places a flag on the specified user-defined symbol in
the symbol table so that the symbol is no longer recognized.

Syntax:
PURGE symbol [,...]

symbol can be any keyword or user-defined symbol, except

• register names

• segment names (including ??SEG).

• group names

• hands-off keywords (see keyword list in chapter titled "Assembler Syntax")

• any user-defined symbol that appears in a PUBLIC statement

Description: A PURGEd symbol can be redefined following the PURGE statement. A
reference to the symbol following the PURGE statement, but before a
re-definition, is treated as a forward reference to the second definition. If a
PURGEd symbol is never redefined, references to the symbol following the
PURGE statement are considered errors (reference to undefined symbol).

Purging symbols does not physically remove them from the symbol table and
therefore PURGE cannot be used to deal with symbol table overflow.

If a variable or label that is defined in the current module but does not appear
in a PUBLIC or EXTRN statement (that is, a local symbol) is purged, it will
not appear in the object module. A PURGE directive, placed just before the
END statement can —in combination with the $DEBUG assembler control
statement— be used to pass on only a few selected symbols for debugging
purposes.

Any variable, label or absolute number that was defined by an EXTRN
statement can be purged, but the symbol will still appear in the object module
as an external reference.

Chapter 6: Assembler Directives
PURGE

112

If a symbol is defined by an EQU to another symbol (not an expression), a
PURGE on one of the symbols can cause unexpected results. The rule is that
if a symbol in a EQU chain is PURGEd, it and all symbols that precede it to
the beginning of the chain are also PURGEd.

Given the EQU chain that follows:

A EQU B
B EQU C
C DW 0 ;EQU chain resolving at C

The following PURGEs, which should not be considered as sequential code
but as separate lines somewhere in the assembly source program, would have
the described effects.

PURGE A ;purges only A (B and C are still defined)

PURGE B ;purges A and B (C still defined)

PURGE C ;purges A, B, and C

Chapter 6: Assembler Directives
PURGE

113

RECORD

The RECORD directive defines a record template.

Syntax:
name RECORD recfieldname:nnn[=datum] [,...]

Where:
name is a mandatory user-defined name for the record template.

recfieldname is a mandatory user-defined name for a bit field.

nnn is an integer constant, or an expression containing no forward references,
that evaluates to an absolute number. The range of nnn is from 1 to 16,
inclusive, and denotes how many bits will be in a bit field. Bits are counted
from high bit to low bit within the full byte or word. Thus, the first bit field
following the RECORD keyword is the most significant field of the record.

datum is an optional integer constant, or an expression containing no
forward references which evaluates to an absolute number, specifying a
default value for this bit field. This value can be overridden when the record is
allocated. If no datum is present, zero is the default. If the datum is present, it
must fit into the number of bits specified (nnn), zero-filled. For example, the
legal default values for a 1-bit field are 0 and 1. Values that are either negative
or too large are truncated to fit within a given field. A warning is also
generated.

Description: The RECORD directive always defines a 1-byte or 2-byte template. This
definition only describes a record; it does not allocate any memory at
definition time. If the total number of bits in a record template is one to eight,
the unit used to allocate storage when the record template is used is 1 byte. If
the number of bits is 9 to 16, then allocation is 2 bytes.

You might experience some confusion in those cases where the bit field
allocation does not fill exactly 8 or 16 bits. Although bit counting begins with
the most significant bit in cases where the byte or word is completely filled,
partially allocated records (the number of bits in the bit fields do not total
exactly 8 or 16 bits) will have their bit fields right-justified in the byte or word

Chapter 6: Assembler Directives
RECORD

114

and the remaining most significant bits will be zero-filled. This means that the
first bit in the left-most bit field where counting begins will not be the
left-most bit of the byte or word. The following definition

REC1 RECORD R1:3=7,R2:5 ;generates 11100000B or E0H

defines an 8-bit pattern which has all 8 bits filled. Note that R2, because it is
not initialized, is set to zero by default. However, the definition

REC2 RECORD R3:3=7,R4:3=3 ;generates 00111011B or 3BH

leaves two bits remaining in an 8-bit byte. The two three-bit bit fields are right
justified, and the remaining two bits, the two most significant bits, are
zero-filled. The following figure illustrates how, for the above example of
record template REC2, the partial record is defined by the RECORD
directive.

Similarly, the two 16-bit record definitions below illustrate what happens to
16-bit partial records.

REC3 RECORD R5:3=7,R6:13=4095
 ;generates 1110111111111111B or 0EFFFH
REC4 RECORD R7:1=1,R8:8=127
 ;generates 0000000101111111 or 017FH

Remember, the RECORD directive only defines a template, it does not
allocate storage. To see how to allocate storage using a record template, read
the next section.

Allocating Record Storage

After you have defined a record template, the template definition can be used
in the following syntax to allocate storage:

Syntax:

7 6 5 3 2 0

Zeroed Bitfield R3 Bitfield R4

2 bits 3 bits 3 bits

Figure 6-1. " Partial" Record Def inition

Chapter 6: Assembler Directives
RECORD

115

[name] recname <[[datum],] [...]>

(or)

[name] recname repeatval DUP (<[[datum],] [...]>)

Where: • name is an optional name to be declared as a variable with the following
attributes:

– segment - current segment being assembled

– offset - current location counter value

– type - total number of bytes in the record template (either 1 or 2)

• recname is the name assigned to a previously-defined record template
repeatval is a 17-bit integer constant, or an expression containing no
forward references and evaluating to a 17-bit absolute number, between 1
and 65535 inclusive. Repeatval specifies the number of copies of the
record to allocate.

• datum is an optional value to be used instead of the default value provided
in the template. All such values must be 17-bit integer constants, or
expressions that evaluate to 17-bit absolute numbers. Relocatable values
are not allowed.

– The first datum replaces the default value of the first bit field
within the record, the second datum replaces the default on the
second bit field, etc. Null data items are permitted (separated by
commas) to direct the assembler to use the default values; null
data values are useful when a default value other than the first
needs to be overridden. If a field is mmm bits wide, the least
significant mmm bits of the twos complement representation of
the datum are used. For example, if a 3-bit field is being
overridden, values of 6, -2, and 14 will all generate the 3 bits 110.
Examples (using the REC1 definition shown above):

FIRSTREC REC1 <> ;no overrides to defaults,
 ;generates 0E0H
SECNDREC REC1 <4> ;overrides R1 - generates 080H
THIRDREC REC1 <,5> ;overrides R2 - generates 0E5H
FIVERECS REC1 5 DUP (<>) ;5 copies of default record

It is allowable to nest record allocations up to 10 deep.

Chapter 6: Assembler Directives
RECORD

116

SEGMENT/ENDS

The SEGMENT/ENDS directive pair is used to define a logical segment.

Syntax: name SEGMENT [align-type][combine-type][’classname’]
.
.
.
name ENDS

Where:
name is a mandatory user-defined name that cannot conflict with any other
symbol.

align-type specifies what boundary the logical segment must be placed on. If
the align-type is not specified, PARA is the default. Align-type may be any of
the following keywords:

• BYTE - byte alignment. Segment can start anywhere.

• WORD - word alignment. The segment must start on an address divisible
by 2. (An address which has a least significant bit of 0.)

• PARA - an address divisible by 16. (An address which has its least
significant hexadecimal digit equal to 0H.)

• PAGE - page alignment. The segment must start on an address divisible by
256. (An address which has its two least significant hexadecimal digits
equal to 00H.)

• INPAGE - inpage alignment. The entire logical segment cannot be more
than 256 bytes long; it cannot cross a page boundary (an address divisible
by 256). It will be moved to start on an address divisible by 256 only if
movement is necessary to prevent the segment from crossing a page
boundary.

combine-type specifies the way in which the linking loader combines this
segment with other logical segments of the same name to form a physical
segment in memory. If combine-type is not specified, the logical segment will
not be combined with any other logical segment, not even one with the same
name from a different module. Combine-type can be any of the following
keywords:

Chapter 6: Assembler Directives
SEGMENT/ENDS

117

• PUBLIC - all segments of the same name defined to be PUBLIC will be
concatenated to form a single physical segment. The loader controls the
order of concatenation. The length of the resulting physical segment will
be equal to the sum of the lengths of the segments that have been
combined.

• COMMON - all segments of the same name defined to be COMMON will
be overlapped, starting at the same physical address, to form a physical
segment. The size of the resulting physical segment will be equal to the
size of the largest segment of those overlapped.

• STACK - all segments of the same name defined to be STACK will be
concatenated into a physical segment such that the combined segment will
end at a certain physical address (overlaid against high memory) and will
grow "downward." The length of the resulting segment will be the sum of
the lengths of the combined segments. (STACK is not a true keyword.
You can define a symbol to be STACK without conflicting with the usage
in the SEGMENT directive.)

• MEMORY - all segments of the same name defined to be MEMORY will
be combined so that the first memory segment encountered by the linker
will be treated as the physical "memory" segment. In the list of linked
modules, the first module that contains a "memory" segment will be used
to define the physical "memory" segment. It will be located at an address
above all other segments in the program. Any other segments of the type
memory that are encountered by the linker will be treated as common
with the first segment. The length of the physical memory segment will be
equal to the length of the first memory segment encountered (Memory,
like Stack, is not a true keyword. You can define a symbol to be
MEMORY without conflicting with the usage in the SEGMENT
directive).

• AT nnn - this segment will be placed at the paragraph number specified.
The expression nnn cannot contain forward references and must evaluate
to an absolute number. Absolute segments are not aligned by the linker;
the various align-type keywords are syntactically correct when used in
combination with AT but are ignored. Note that nnn represents a
paragraph number, not an actual address; therefore if AT 0444H is
specified, the segment will start at address 04440H. A segment created
with AT will be non-combinable with segments from other modules.

’classname’ is a name that may be used to indicate that segments are to be
located near each other in memory. When assigning physical addresses to

Chapter 6: Assembler Directives
SEGMENT/ENDS

118

these logical segments, the linking loader attempts to place logical segments
with the same classnames close together. However, the classname cannot be
used to combine segments such that they may be addressed through the same
segment register.

The classname must be enclosed in single quotes, as shown, or in double
quotes.

Classnames are not stored as symbols; they may duplicate symbol names (even
keywords) without conflict. If a classname is to be assigned to a segment,
assign it at the first occurrence of the segment in the source file.

Description: The SEGMENT/ENDS directive pair is used to define a logical segment. This
segment may be combined with other segments of the same name defined in
either the same module or in other modules. These logical segments will form
the physical segments, located in memory, that are pointed to by the segment
registers. Within a source module, each occurrence of an equivalent
SEGMENT/ENDS pair (with the same name) is viewed as being one part of a
single program segment.

Multiple Definitions of a Segment

The assembler keeps the value of the offset from the current segment (i.e.,
the most recent SEGMENT directive) in an internal location called the
location counter. The assembler saves the location counter for each segment
when it finds an ENDS for that segment, or if it finds a new SEGMENT
directive. Later, if the assembler finds another SEGMENT directive which
uses the name of that previously defined segment, the earlier location counter
is retrieved and used. For this reason, a segment may be broken into pieces
within a module, or between modules if it is combinable, and those pieces will
still be placed in the same physical segment.

The align-type, combine-type and classname need not be included with the
second and later SEGMENT directives for a segment of the same name. If
they are absent, the assembler takes the segment’s characteristics from the first
definition. However, any keywords that are present must match the first
definition, or an error is reported. If an absolute segment is broken into pieces
and the AT keyword is used on a SEGMENT directive for the second or later
piece, the absolute base address must match the first definition, even though
the location counter is taken from the stored value. The second part of the
segment will not start at the specified base address, but the AT value must
match. Examples of breaking a segment:

Chapter 6: Assembler Directives
SEGMENT/ENDS

119

S1 SEGMENT PUBLIC
NOP ;relocatable location 0
S1 ENDS

S1 SEGMENT ;assembler uses PUBLIC attribute
ADD AX,2 ;instruction at relocatable location 1
S1 ENDS

S2 SEGMENT AT 0444H
NOP ;instruction at absolute location 04440H
S2 ENDS

S2 SEGMENT AT 0444H
NOP ;instruction at absolute location 04441H
DB 14 dup(0) ;skip 14 bytes
S2 ENDS
S2 SEGMENT AT 0445H ;an error! Must use 0444H
NOP ;instruction at absolute location 04450H
S2 ENDS

Nested or Embedded Segments

It is legal to nest SEGMENT/ENDS pairs. Each ENDS must refer to the most
recently-defined SEGMENT whose ENDS was not yet encountered. The fact
that a segment is nested inside another does not mean that the code for the
nested segment is placed inside the enclosing segment. The code is the same as
it would be if no nesting occurred. Nesting helps you to define logical
structures to make programming easier. Example:

S1 SEGMENT PUBLIC
NOP ;goes into S1 segment
S2 SEGMENT PUBLIC
ADD AX,2 ;goes into S2 segment
S2 ENDS
SUB AX,3 ;goes into S1, S2 is "closed"

Improper Nesting:

S1 SEGMENT PUBLIC
NOP
S2 SEGMENT PUBLIC
ADD AX,2
S1 ENDS ;ENDS does not match most recent SEGMENT
 SUB AX,3
S2 ENDS ;ENDS does not match remaining SEGMENT

Maximum Number of Segments

If you use the default HP-OMF 86 object file format, you may use an
unlimited number of segments. The HP 64000 (.X) object file format allows

Chapter 6: Assembler Directives
SEGMENT/ENDS

120

only three named segments. Therefore, if you use the HP 64000 object file
format (the -h command-line option), use three or fewer relocatable segments
per module.

The first relocatable segment with code will be assigned the PROG segment.
The first relocatable segment with data will be assigned the DATA segment, if
that segment is not used for PROG. The next relocatable segment, whether it
contains code or data, will be assigned the COMN segment.

Chapter 6: Assembler Directives
SEGMENT/ENDS

121

STRUC/ENDS

The STRUC/ENDS directive pair is used to define a structure template.

Syntax:
name STRUC
.
.
<data directives>
.
.
name ENDS

Where:
name is a unique user-defined symbol that becomes the structure name. The
name on the ENDS must match the name on the STRUC. Its type attribute is
the following:

• type - number of bytes defined in structure data directives

Description: The structure definition only describes a given structure and its contents; it
does not allocate any memory at that time. All statements between the
STRUC and ENDS directives must be one of the following: DB, DW, DD,
DQ, or DT directives, comment lines, blank lines, or assembler controls. Any
assembler controls that are included within the STRUC/ENDS pair are not
stored as part of the template and therefore are not executed anew each time
the structure is referenced. Any symbols referenced in the argument field of
any of the included directives must have been previously defined. Forward
references are not allowed within a structure definition.

You will notice that the ENDS directive is also used to terminate a
SEGMENT definition. This is unambiguous, since an ENDS closing a
SEGMENT is not legal within a structure definition.

If a DB or other directive within a structure definition has a name in its name
field (which must be unique, and cannot previously have been the object of a
forward reference), this name is known as a structure field. It is not the same
as a variable, and it is not associated with any particular storage location or
segment. Structure names and structure fields can be used in very few syntactic

Chapter 6: Assembler Directives
STRUC/ENDS

122

constructs. Forward references to structure names and structure fields are not
allowed.

Structure field names do have associated attributes. They follow:

• offset - offset from the beginning of the structure definition

• type - type of data definition directive

Allocating Structure Storage

 After you have defined a structure template, it can be used in the following
syntax to allocate storage:

Syntax:
[name] strucname <[[datum],] [...]>
(or)
[name] strucname repeatval DUP (<[[datum],] [...]>)

Where: • name is an optional name to be declared as a variable with the following
attributes:

– segment - current segment being assembled
offset - current location counter value
type - total number of bytes in the structure template

• strucname is the name assigned to a previously defined structure template.

• repeatval is a 17-bit integer constant, or an expression containing no
forward references and evaluating to a 17-bit absolute number between 1
and 65535 (inclusive); it is the number of copies of the structure to
allocate.

• datum is an optional scalar to be used in place of the default value
provided in the template. The first datum replaces the default value on the
first data definition directive within the structure, the second datum
replaces the default on the second data definition directive, etc.

– Null data (separated by commas) is permitted and directs the
assembler to use the default value; this is useful when a value
other than the first occurring value must to be overridden. The
legal values for these scalars are the same as in the data definition
directive to which they apply, including the

Chapter 6: Assembler Directives
STRUC/ENDS

123

indeterminate-initialization keyword ’?’. Note that repeated data
(i.e., DUP expressions) cannot be used as an override.

– Not every default value can be overridden. Default values can be
replaced only if the template defined just one unit of data for the
data definition directive (structure field) that is to be overridden,
or the template defined a character string in a DB directive. These
conditions mean that such defaults as DB 1,2 and DW 10 DUP
(0) cannot be overridden.

The number of bytes used in a DB string is fixed when the structure is defined.
Such a string can be overridden only by another string. If a longer string is
used to override, it is truncated, and a warning message is given. If a shorter
string is used to override, it is filled out, using the characters at the end of the
default string.

The structure definition

 BLUEPRINT STRUC
 FIRST DW 0FFFEH
 SECOND DW BUFFER
 THIRD DB 7, 5
 FOURTH DB ’A’
 FIFTH DB ?
 SIXTH DW 257
 BLUEPRINT ENDS

yields a structure template like this:

15 0

.FIRST

.SECOND

.THIRD+ 1 .THIRD

.FIFTH .FOURTH

.SIXTH

Figure 6-2. Structure Definition and Allocation

Chapter 6: Assembler Directives
STRUC/ENDS

124

The instruction
 B1 BLUEPRINT < >
allocates storage for B1 that looks like:

15 0

F F F E

OFFSET (BUFFER)

0 5 0 7

indeterminate 4 1

0 1 0 1

The instruction
 B2 BLUEPRINT < ,0,,,255>
allocates storage for B2 that looks like:

15 0

0 F F F E

0 0 0 0

0 5 0 7

F F 4 1

0 1 0 1

Figure 6-2. Structure Def. and Allocation (Cont’d)

Chapter 6: Assembler Directives
STRUC/ENDS

125

Chapter 6: Assembler Directives
STRUC/ENDS

126

7

Expressions

The syntax and semantics of expressions.

Chapter 7: Expressions

127

This chapter describes the syntax and semantics of expressions. The early part
of the chapter explains the kinds of expressions and discusses expression
operands. The latter part lists the different expression operators and their
uses. The end of the chapter has a table showing the precedence ranking of the
expression operators.

Reference Syntax Conventions

The sections that include the references about the expression operators follow
certain conventions:

1 The name of the operator (or a descriptive term for the operator) appears
in the lefthand column.

2 The proper assembler syntax appears next under a heading of "Syntax."

3 A short description follows the syntax. The description explains the syntax
and any arguments appearing in the syntax. There may also be other
information relating to the operator itself or to using the operator.

4 Some expression operators may affect the attributes (see the "Symbol and
Expression Attributes" chapter) of its operands. If that is so, a list of
attributes and their values follows the description.

5 Some short examples that use the operator may follow the description or
attributes sections.

Expression Overview

An expression is a simple or complex combination of operands that may be
bound by operators. Operands can be numeric values or address expressions.
Operators include conventional unary and binary arithmetic operators (+ , -, *,
/, MOD, etc.), logical operators (AND, OR, XOR, NOT), or special
operators such as memory and record operators.

Expressions have certain attributes. Attributes are discussed thoroughly in the
chapter named "Symbol and Expression Attributes."

Expressions are in turn used as operands to assembly language instructions
and assembler directives. Expressions may be absolute, relocatable, or external.

Chapter 7: Expressions
Expression Overview

128

Absolute Expression

An absolute expression is one whose value is known completely at assembly
time. Assembly of absolute expressions results in object code that does not
need to be further modified by the loader. An absolute expression will have an
operand that is

• a numeric constant

• a constant memory expression (addresses which are known at assembly
time)

• record allocation values

• a record bit field offset

• a segment base located during assembly time with the AT keyword (AT is
discussed in the SEGMENT/ENDS directive in the "Assembler
Directives" chapter)

• an offset for a variable or label from a segment which is non-combinable

• a register name

Chapter 7: Expressions
Expression Overview

129

Relocatable Expression

A relocatable expression contains a relocatable operand as part of the
expression. The value of a relocatable expression is not known at assembly
time and must be assigned later by the loader. Relocatable expression values
are 16-bit values unless modified by the HIGH or LOW operators to become
8-bit values. A relocatable expression will have an operand that is

• a segment base where the segment is combinable (including all groups,
since their bases are not set until load time)

• a variable or label which belongs to a combinable segment

External Expression

An external expression is a relocatable expression which contains items that
are not within the module being assembled. These expressions reference
external variables, labels, or numbers. Their values must be assigned by the
loader when the module containing the referenced item is available for
relocating. External expressions, like relocatables, are assumed to be 16-bits
in size, but may be modified with the HIGH or LOW operators to be 8-bit
values. More information about external references appears in the chapter
titled "Assembler Directives."

During the assembly process, the assembler uses 17-bit numbers to perform
arithmetic and other operations involving expressions. A 17-bit number is a
16-bit number with an additional sign bit. The 17-bit number is used within
the assembler so that negative numbers with large absolute values (to -65535)
may be used in calculations. When the value is coded, the sign bit is discarded
and is not output, since only 16-bit values are used in the object code.

Chapter 7: Expressions
Expression Overview

130

Expression Operands

An expression may consist of only an operand, or operand(s) modified by one
or more operator(s). Operands are broadly divided into two groups: numeric
values and memory or register expressions. A numeric value will be directly
represented in the assembled code. A memory or register expression is an
indirect value because the assembler is coding a reference —or reserving a
space that will be filled later— which points to a location in memory where the
actual data resides. Expressions involving the EQU directive can be either a
numeric or memory expression.

Numeric Values

Numeric values result from a variety of different operands. Numeric
constants, obviously, are numeric values, but other, less clearly numeric
operands also produce numeric values. Any of the following operands can
generate numeric values:

• A constant. There are several ways that an absolute number, or constant,
may be represented to the as86 assembler. The easiest and most
straightforward way is to make the expression operand a decimal, octal,
hexadecimal, or binary number. The various representations are as follows:

– A decimal number is a series of digits, ranging from 0 to 9, that
optionally ends with the character ’D’. Decimal numbers are
base-10 and are the numbers people are most familiar with.

– An octal number is a base-8 number represented by a series of
digits, ranging from 0 to 7, and ending with either the character ’O’
or ’Q’.

– A hexadecimal number is a base-16 number represented by a
series of digits, ranging from 0 to 9, or by characters, ranging from
’A’ to ’F’ (or ’a’ to ’f’). These numbers must end with the character
’H’. A hexadecimal number may not begin with a character; in
those instances, place a leading zero in front of the hex number.

– A binary number is a base-2 number represented by a series of
digits, either 0 or 1, and ending with the character ’B’.

Examples of numeric constants:

Chapter 7: Expressions
Expression Operands

131

MOV AX, 35 ;decimal number
MOV AX, 12D ;decimal number with optional
 ;following ’D’
MOV AX, 37O ;octal number with the letter ’O’
MOV AX, 12Q ;octal number with following ’Q’
MOV AX, 12H ;hexadecimal number
MOV AX, 0A34H ;hexadecimal number with leading 0
MOV AX, 0110101B ;binary number

• Quoted string. A one or two character quoted string which is used as an
expression operand will be stored as a hexadecimal number in a two byte
word. Each byte contains the ASCII value of the character it stores. If two
characters are stored in a word, the first character is represented in the
high byte of the word and the second character is represented in the low
byte. If only a single character is stored, it is represented in the low byte
and the high byte is set to 00H. A quoted string always evaluates to a
positive 17-bit value. This method of representing numbers is
cumbersome and not very useful. It is also much more difficult to verify
that the value is correct. Examples:

MOV AX, ’A#’ ;generates 04123H
MOV AL, HIGH ’B’ ;generates 00H

• Record template. The chapter titled "Assembler Directives" discusses the
record structure. A record is a series of bit fields which may be defined
within a one or two byte structure called a template. Template definition
does not allocate storage, but specifying an occurrence of a record can
allocate memory, much like a DB (define byte) or a DW (define word)
directive might allocate memory. A record template may also be used as
an expression operand, but in this usage no memory is allocated. Instead,
the operand is evaluated to be a positive 17-bit value and used the same as
any number.

Examples:
R1 RECORD F1:3, F2:5, F3:2 ;the RECORD directive
 ;defines record template
MOV AX, R1<> ;value is 0 since
 ;no defaults specified
 ;in template definition
MOV AX, R1<2,14,3> ;value is 0013BH
MOV AX, R1<2,14,3> + 5 ;value is 00140H

• Record field. You may also use a record field name by itself as an
expression operand. If the field name is used without a MASK or WIDTH
operator, then the assembler replaces the field name with a number which
is the shift value required to move the lower bit of its bit field to the 0th
bit position. For example, using the record template definition above, the

Chapter 7: Expressions
Expression Operands

132

value that would be replaced for F1 is 7 since there are 7 bits of data to the
right of the field F1. The shift value, combined with the MASK operator
described later in this chapter, may be used to extract field values from a
record.

• Segment or group name. When used as an expression operand, the name
becomes an immediate value that is the paragraph number for the
segment or group. Since most segments and all groups are not assigned
this value by the assembler, it will usually be relocatable. Only segments
that use the AT keyword will have a fixed paragraph number known by the
assembler. These values may be used as is —to initialize a segment
register, for instance— or used wherever a relocatable number may be
used (except with HIGH and LOW). Examples:

MOV AX, SEG1 ;load paragraph number for segment
MOV DS, AX ;initialize DS register
MOV AX, GRP1 ;load paragraph number for group

Memory and Register Expressions

There are several ways to reference memory in assembly source files. Memory
might be referenced with operands which are any of the following:

• Variables or labels. Variables are defined through data directives and
structure or record allocations. Labels are defined through assembly
instructions or PROC directives. Either variables or labels may also be
defined through EXTRN statements or LABEL directives. Given the
variable and label definitions in the first three lines of the example below,
the last two lines use those definitions as memory operands:

WMEM DW 2 ;word variable
R1 RECORD F1:3, F2:4 ;record template definition
U1 R1 <> ;byte variable, from
 ;a record allocation
L1: MOV AX, WMEM ;NEAR label, using a word
 ;variable

MOV AL, U1 ;uses byte variable as operand
JMP L1 ;uses NEAR label as operand

• Variable with offset. Variables used as memory operands may have offsets
added to them in order to refer to memory locations near the memory
location of the variable. The variable with offset operand may be
expressed in two ways. Examples of both:

MOV AX, WMEM + 5 ;adds 5 to variable address
 ;accesses memory 5 bytes higher
 ;than location of variable WMEM
MOV AX, 5 + WMEM ;same result from slightly different
 ;way of expressing it

Chapter 7: Expressions
Expression Operands

133

MOV AX, WMEM[5] ;same result from very different
 ;way of expressing it

• Structure field. Much the same as using an added offset to a variable,
using a structure field name as part of a memory operand allows access to
memory that is near a variable. Offset is from the variable named when
storage using the structure template was allocated. Using a structure
field name as a memory operand also changes the type of the memory
expression to that of the field. Example:

ST1 STRUC
BFIELD DB ? ;field offset value from ST1 is 0
WFIELD DW ? ;field offset value from ST1 is 1
ST1 ENDS

MOV AX, BMEM.WFIELD ;adds 1 to offset, word type

• Register indirect reference. The 8086/186 processors also allow an
instruction to indirectly refer to memory by using base and/or index
registers. The contents of these registers are added to a variable’s offset at
runtime, which means a memory address can be created that is not known
when the assembly code is written. A register expression operand can
contain one base register name, one index register name, or one base and
one index register name. Additionally, constants may be part of the
operand along with the registers.

The valid base registers are BX and BP and the valid index registers are SI
and DI.

 Base or index registers used this way must be enclosed in square brackets
in a register expression, but there are several different ways to represent
expressions given this restriction.

– A base and index register may be added together explicitly by using
a ’+ ’ sign within the brackets or added implicitly by enclosing each
register name in separate, adjacent brackets.

– A base or index register alone may have a constant added to it or
subtracted from it in the same manner. (The ’-’ sign must be used
for subtraction, since adjacent brackets are, by default, added.)

– A base and index register added together may also have a constant
added using either a ’+ ’ sign or adjacent brackets, or a constant
may be subtracted by using a ’-’ sign within the brackets.

– A base and index register cannot be subtracted from one another,
however.

Chapter 7: Expressions
Expression Operands

134

Examples:
MOV AX, WMEM[BX] ;one base register,
 ;no index register

MOV AX, WMEM[BP][SI] ;these two slightly different
 ;expressions are equivalent
MOV AX, WMEM[BP+SI] ;both add one base register
 ;and one index register

MOV AX, WMEM[SI] ;no base register,
 ;one index register

MOV AX, WMEM[5][BP] ;both of these expressions use
MOV AX, WMEM[5+BP] ;an index register with a
 ;constant added

MOV AX, WMEM[BP-5] ;one base register with
 ;constant subtracted,
 ;no index register
MOV AX, WMEM[BX][DI][5] ;one base and one index
 ;register added
MOV AX, WMEM[BX+DI+5] ;with constant added also
 ;both expressions equivalent

• Anonymous reference. This form of register expression operand contains
only constants and registers and does not include a variable or label name.
Because there is no variable or label name, no segment or type
information is inherent in the expression.

This expression may be given a type and segment, using the PTR and
segment override operators. Otherwise, default values are assumed,
depending upon the instruction and the registers that are used. If the base
register BP is used, the default segment register is SS. Otherwise, the DS
segment register is the default segment register.

 A default type value may be assumed if other operands to the instruction
provide enough information to limit the type of the memory expression.
Otherwise, an error is generated. For a constant to be used as a memory
reference, it must be typed with the PTR operator so the assembler knows
to treat the value as such. Otherwise, the constant is treated as an
immediate value.

Examples:

MOV AX, [BX] ;default is DS segment
MOV AX, [BP][SI] ;default is SS segment
MOV AX, ES:[BX] ;segment is ES
MOV AX, DS: WORD PTR 5 ;segment is DS
MOV AX, [BX].WFIELD ;default is DS segment

Chapter 7: Expressions
Expression Operands

135

EQU

The EQU directive, discussed in the chapter titled "Assembler Directives,"
allows you to assign a value to a symbol. Some of the possible assignments
include register names, variables, memory expressions, or constants. The
symbol on the left side of the EQU directive may be used in an expression as
an operand. The result is the same as if whatever appears on the right side of
the EQU were used as an operand instead. Examples:

E1 EQU BX ;8086 register
MOV AX, E1 ;register to register
MOV AX,BX ;same as MOV AX, E1

E2 EQU WMEM ;variable
E3 EQU BMEM[BP][SI] ;register expression
E4 EQU 037B2H ;constant
MOV AX, WMEM[E1] ;register from memory
MOV AX, E2[E1] ;register from memory
MOV AL, E3 ;register from memory
MOV AX, E4 ;immediate value into register
MOV AX, E4 / 5 ;immediate value into register

Chapter 7: Expressions
Expression Operands

136

Expression Operators Introduction

Operators are functions that take one or more operands and return a new
value. Operators are used to build expressions that cannot be defined strictly
as simple operands. Use operators to add numbers, change the type of a
memory expression, or to cause segment overrides. You may use a complex
expression involving operators anywhere a simple operand may be used if the
value returned by the complex expression is equivalent to the value of the
simple operand.

Arithmetic Operators

The arithmetic operators conform to the commonly understood notions of
these operators. Arithmetic involving these operators is done using the full
17-bit representation of the operands. Negative number results are stored,
however, in twos complement form.

Unary Plus, Unary Minus

Syntax:
Unary Plus: + operand
Unary Minus: - operand

Description: The unary operators ’+ ’ and ’-’ each take a single operand and
return a single value as the result. The ’+ ’ operator may be applied to an
absolute or a relocatable value and the result will be an absolute or relocatable
value. The ’-’ operator may only be applied to absolute values. The result will
be the 2’s complement of the value. These operators may be thought of as
being the binary operators ’+ ’ and ’-’ with a lefthand operand of 0. Examples:

MOV AX, + 5 ;result is 5 or 00005H
MOV AX, - 2 ; result is -2 or 0FFFEH
MOV AX, + WMEM ;result is memory expression

Chapter 7: Expressions
Expression Operators Introduction

137

Binary Addition, Subtraction

Syntax:
Addition: operand1 + operand2
Subtraction: operand1 - operand2

Description: The binary operators ’+ ’ and ’-’ each take two operands and
return a single value as the result. If memory addresses are used, the offset
from the segment base is the value used as an operand. The types of operands
that are allowed and the types of the results are shown in the following table.

The shorthand words in the table mean the following:

ABSNUM = absolute number, constant
RELOCNUM = relocatable number (OFFSET, external ABS, SEG)
ADDR = memory address, possibly relocatable or external

Note that ADDR-ADDR is only valid if both memory addresses are either
absolute or relocatable. They must also belong to the same segment so that
their offsets are relative to the same base value. This allows the result to be
absolute. Neither address may be of an external reference, since its offset is
not known at assembly time. Examples:

EXTRN EXABS: ABS ;declared labels - variables
MEMSTART DB ?
WMEM DW 2
MEMEND DW ?

MOV AX, 5 + 15 ;result is 20 or 00014H
MOV AX, 3 - 12 ;result is -9 or 0FFF7H
MOV AX, WMEM + 5 ;result is offset of WMEM + 5

Operand 1 Operator Operand 2 Result

ABSNUM
RELOCNUM
ABSNUM
ADDR
ABSNUM
ADDR

+ , -
+ , -
+

+ , -
+
-

ABSNUM
ABSNUM
RELOCNUM
ABSNUM
ADDR
ADDR

ABSNUM
RELOCNUM
RELOCNUM
ADDR
ADDR
ABSNUM

Table 7-1. Binary Plus and Minus Results

Chapter 7: Expressions
Arithmetic Operators

138

MOV AX, 4 + EXABS ;result is external const + 4
MOV AX, MEMEND - MEMSTART ;result is number of bytes
 ;between MEMSTART and MEMEND

[] Square Brackets

Syntax:
address [data_or_reg]

Description: Square brackets give base and/or index attributes to an address
expression or create a new address expression. The square brackets must
occur in pairs. Such pairs cannot occur within angle brackets. However, more
than one pair of square brackets can occur in a single expression.

The contents of the brackets are very limited. The only valid register names
that can be used are BX, BP, SI, and DI. The first two, BX and BP, are base
registers and only one of the two can be present within an entire expression.
The SI and DI registers are index registers and, like base registers, only one of
these registers can be present within an entire expression. It is valid to have
both a base register and an index register in an expression. It is also possible
to place numeric constants within the brackets.

The above items can appear singly within square brackets, as in:

mov AX, wmem[BX][SI][5]

It is also valid to replace ’[]’ pairs with a ’+ ’ sign, as in:

mov AX, wmem[BX+SI+5]

The only time a minus sign is valid within square brackets is to subtract a
constant, as in:

mov AX, wmem[BX+SI-5]

Chapter 7: Expressions
Arithmetic Operators

139

The constant expression part of the square brackets modifies the offset value
of any memory value that is also part of the expression. The base and index
registers are used to denote indirect addressing as part of an expression. The
contents of the indicated registers are added to any memory expression offset
in the expression to create a final memory address.

A memory address is not required to be part of an expression which has square
brackets as part of itself. For example, take the following expression:

mov AX, [BX][SI][5]

This expression represents a memory location that is 5 bytes past the sum of
the contents of the BX and SI registers at the moment of execution for that
instruction. The segment register used for this instruction would be the DS
register. The SS register is used if the BP base register is part of the
expression. It is also valid to specify a different segment register through the
use of a segment override, such as:

mov AX, ES: [BX][SI][5]
mov AX, SEG1: [BX][SI][5]
mov AX, GRP1: [BX][SI][5]

. (Dot operator)

Syntax:
address ’.’ struc_field

Description: This operand accepts an address expression as its left operand
and a structure field as its right operand. The result of the operation is an
address expression whose offset is equal to the offset attribute of the left
operand plus the offset of the structure field within its structure template (in
bytes). The type of the resulting memory expression is the type of the structure
field. All other attributes are derived from the left operand. This operator is
convenient for addressing fields within memory that contains one or more
occurrences of a given structure. For example, suppose a structure was
defined like this:

Chapter 7: Expressions
Arithmetic Operators

140

STRUCNAME STRUC
BYTEFLD DB 0
WORDFLD DW 5 DUP (3)
 DT 3.14159
STRINGFL DB ’DEFAULT’
STRUCNAME ENDS

The offset of BYTEFLD, WORDFLD, and STRINGFL within this structure
template are 0,1, and 21, respectively. These structure field names can be used
to reference fields within a structure in memory, as in:

DATABLOCK STRUCNAME<>
MOV AX, DATABLOCK.WORDFLD ; WORD type
MOV CL, DATABLOCK.BYTEFLD ; BYTE type

MOV DI, OFFSET DATABLOCK
MOV AX, [DI].WORDFLD ; indirectly referencing memory

It is not valid to use the dot operator immediately after a digit, due to the
possible confusion with a real number. Instead, the operator must be
separated from the digit by parenthesis, such as:

(DATABLOCK + 2).WORDFLD ; valid
DATABLOCK + 2.WORDFLD ; illegal

Multiplication, Division, Modulo

Syntax:
Multiplication: absval * absval
Division: absval / absval
Modulo: absval MOD absval

Description: These three operators each take two absolute values as
operands and return a single absolute value. The ’*’ operator multiplies the
two operands and returns the result. The ’/’ operator divides the first operand
by the second operand. The MOD operator returns the value of the first
operand modulo the second operand. Modulo division discards the integer
quotient and returns a value that is only the remainder. For either straight
division (’/’) or modulo division, the righthand operand cannot have a value of
0 . Examples:

MOV AX, 5 * 3 ;result is 15 or 0000FH
MOV AX, (-2) * 5 ;result is -10 or 0FFF6H
MOV AX, 5 / 2 ;result is 2
MOV AX, 13 MOD 3 ;result is 1

Chapter 7: Expressions
Arithmetic Operators

141

SHL, SHR

Syntax:
absval SHL shiftvalue
absval SHR shiftvalue

Description: The SHL and SHR operators shift the first operand bitwise by
the value of the second operand. The SHL operator shifts bits to the left and
SHR shifts bits to the right. Bits that are shifted to the left beyond the
leftmost bit and bits that are shifted to the right beyond the rightmost bit are
lost. Bits with a value of 0 are shifted in to fill.

All 17 bits, including the sign bit, are shifted. Thus both operands must be
absolute values, and the result is also absolute.

For example, the statement

MOV AX, 1FFFFH SHR 3

places the value 3FFFH in the AX register. The binary values look like this:

1 1111 1111 1111 1111 (1FFFFH, before SHR 3)

0 0011 1111 1111 1111 (3FFFH, after SHR 3)

Notice that the sign bit (the leftmost bit) of the argument in the example was
shifted in when the shift right occurred.

It is possible for a shift to produce the invalid 17-bit number -65536 (10000H),
which is automatically converted to 0.

If the count is negative, the shift is performed in the opposite direction. If the
magnitude of the count is greater than 16, the result is 0.

Some other shifted values:

MOV AX, 5 SHL 2 ;result is 20 or 00014H
MOV AX, 13 SHR 2 ;result is 3
MOV AX, 44 SHL 11 ;result is 24576 or 06000H
MOV AX, (-54) SHR 3 ;result is 16377 or 3FF9H

Chapter 7: Expressions
Arithmetic Operators

142

HIGH, LOW

Syntax:
HIGH operand
LOW operand

Description: These operators take either an absolute value or relocatable
memory expression as an argument and return a BYTE-sized value of the
same type. HIGH returns the high byte of the operand, LOW returns the low
byte.

If the operand is a memory expression, it cannot contain index or base register
names.

Attributes: relocation type - high or low

Examples:

MOV AL, HIGH 01234H ;result is 012H
MOV AL, LOW 01234H ;result is 034H
MOV AH, HIGH WMEM ;result is high byte of offset
MOV AL, LOW WMEM ;result is low byte of offset

EXTRN EXTABS:ABS
MOV AL, HIGH EXTABS ;result is high byte of
 ;external number

The following identities apply to HIGH and LOW.

High (High X) = 0H
Low (Low X) = Low X
High (Low X) = 0H
Low (High X) = High X

Chapter 7: Expressions
Arithmetic Operators

143

Logical Operators

The logical operators return values that are the result of comparing operands.
(NOT can be seen as an exception.) AND, OR, and XOR compare the bits of
their operands while EQ, NE, ...,GE all compare the values of their operands.

AND, OR, XOR

Syntax:
absval AND absval
absval OR absval
absval XOR absval

Description: These operators each take two absolute values as operands and
return a single absolute value. If n is used to identify any given bit of the
result, bit n has its value set differently depending on the operator used. The
following rules apply:

• The AND operator will set a bit n of the result to 1 if bit n of both
operands is a 1; otherwise bit n is set to 0.

• The OR operator will set bit n of the result to 1 if bit n of either operand
is a 1; otherwise bit n is set to 0.

• The XOR operator will set bit n of the result to 1 if bit n of each operand
is different; bit n is set to 0 if both bits are the same.

The operations are performed on full 17-bit values. Examples:

MOV AX, 035H AND 3145H ;result is 5
MOV AX, 035H OR 3145H ;result is 3175H
MOV AX, 035H XOR 3145H ;result is 3170H

Chapter 7: Expressions
Logical Operators

144

NOT

Syntax:
NOT absval

Description: The NOT operator takes an absolute value as its operand and
returns an absolute value that is the one’s complement of the operand.

The one’s complement is derived by toggling the bits of the operand. If bit n
of the operand is 1, then bit n of the result will be 0. Similarly, if bit n of the
operand is 0, bit n of the result will be 1. The operation is performed on full
17-bit values.

Since the bitwise complement of 0FFFFH is 10000H (-65536) (which is not a
valid 17-bit value), NOT 0FFFFH is defined to be 0.

Examples:

MOV AX, NOT 1 ;result is 0FFFEH
MOV AX, NOT 55 ;result is 0FFC8H

EQ, NE, LT, LE, GT, GE

Syntax:
equal: operand1 EQ operand2
not equal: operand1 NE operand2
less than: operand1 LT operand2
less than or equal: operand1 LE operand2
greater than: operand1 GT operand2
greater than or equal: operand1 GE operand2

Description: These operators each compare their operands and return a
value that depends upon the result of the comparison. The result will be 0 if
the comparison is false and the value will be 0FFFFH if the comparison is
true. The operands must both be absolute numbers, both be memory
expressions, or both be segment base values. Memory expressions may not
contain base or index register names, may not refer to externals, and must
reside in the same segment. It is the offset portion of the memory addresses
that are compared. Offsets and absolute values are compared using 17-bit
arithmetic.

Chapter 7: Expressions
Logical Operators

145

Examples:

MOV AX, 15 GT 3 ;result is 0FFFFH
MOV AX, WMEM EQ BMEM ;result is 00000H
MOV AX, SEG WMEM EQ A ;result depends upon whether
 ;WMEM lies within segment A

Memory Operators

SHORT

Syntax:
SHORT label

Description: The SHORT operator takes a label as its operand. The
SHORT operator assures the assembler that the label will be within 127 bytes
of the current location counter. SHORT is mainly used with the JMP
instruction, where a forward reference to a label can result in either a one-
byte or two-byte displacement. The SHORT operator informs the assembler
that a one-byte displacement may be used (which only requires one byte of
storage) where otherwise a two-byte displacement would result in extra object
code size. It is up to you to ensure that the label is within 127 bytes because an
error occurs if it is not. Example:

JMP SHORT FWDLAB

THIS

Syntax:
THIS type

Description: The THIS operator takes a type name as an operator and
returns a memory reference of the given type. The memory referenced will be
for the current location and segment. The length of the memory will be 1.
The valid types for the operand are BYTE, WORD, DWORD, QWORD,
TBYTE, NEAR, and FAR. The result of this operator may be used as either
the right-hand side of an EQU (in which case it acts the same as a LABEL

Chapter 7: Expressions
Memory Operators

146

directive) or as a memory reference in an instruction (which would be a rare
use). Note that THIS NEAR is the same as ’$’. (Dollar sign is the special
character used to represent the location counter.)

Attributes: segment - current segment

offset - current location counter

type - as defined

relocation type - depends upon current segment

segment - current segment if defining variable

CS-assume - current CS assume value if defining label

Examples:

LAB2 EQU THIS FAR ;create FAR label
LAB1: NOP
DATAW EQU THIS WORD ;allow word accesses to bytes
DATABL DB 1
DATABH DB 2

PTR

Syntax:
type PTR operand

Description: The PTR operator is used to either set or change the type of its
operand. The valid types that may be used are BYTE, WORD, DWORD,
QWORD, TBYTE, NEAR, and FAR. The resulting expression will behave as
a variable, label, memory expression, or register expression of the given type.
Valid operands depend upon the type used. For instance, it is not possible to
change the type of a register expression to a NEAR or FAR label.

Attributes: type - as defined

Examples:

MOV AX, WORD PTR BMEM ;access as word
JMP NEAR PTR LABFAR ;use far label as NEAR
MOV AL, BYTE PTR [BP] ;typing an anonymous
 ;memory reference
MOV DS: WORD PTR 10, AX ;absolute offset typing

Chapter 7: Expressions
Memory Operators

147

Segment or Group Override

Syntax:
operand1 : operand2

Description: The segment override changes the segment attribute of the
second operand to that of the first operand for the duration of the instruction
statement. The first operand may be

• one of the segment registers (DS, ES, SS, or CS)

• the name of a segment

• the name of a group

The second operand must be a variable, label, memory expression, or register
expression. If the first operand is a segment register, then the second
operand’s segment addressability attribute is changed to that of the segment
register and no further testing is done. If the first operand is a segment name
or group name, then the ASSUME values are checked to see if a segment
register has been assumed to point to the segment or to the group. If one is
found, the segment relocation and addressability attributes are changed to that
of the matching segment register. If one is not found, it is an error. Remember,
segment overrides only affect the current instruction; the ASSUME directive
should be used for more global overrides.

The group override is useful when referring to variables or labels that belong
to segments in the group. If no override is used, all offsets are relative to the
base of the segment that the memory belongs to. The group override must be
used to make the offset relative to the base of the group, which is probably a
different value.

Attributes: segment relocation - set to value of group or segment name used

segment addressability - set for variables

CS-assume - set for labels if group or segment name used

Examples:

MOV AX, DS: WMEM ;offset from DS, base of segment
 ;that WMEM belongs to
MOV AX, SEG1: WMEM ;offset from base of SEG1, or group
 ;that SEG1 belongs to, depending upon

Chapter 7: Expressions
Memory Operators

148

 ;order of ASSUMES
MOV AX, GRP1: WMEM ;offset from base of GRP1
JMP FARLAB ;offset from base of segment
JMP GRP1: FARLAB ;offset from base of GRP1

OFFSET

Syntax:
OFFSET variable
OFFSET label

Description: The OFFSET operator takes a variable, label, or memory
expression as its operand and returns the offset value from some base as the
result. If no segment override appears in the operand, the offset will be from
the beginning of the segment. If a group name is used as a segment override,
then the offset will be from the group base. Remember that no checking is
done against the ASSUME values for the registers. To get the offset from a
group, an explicit group override must be used. In either case, the result is an
immediate value, not a memory address. The value may be relocatable,
depending upon whether the operand resides in a combinable segment or in a
group. The result of an OFFSET operator occupies 2 bytes if it is a
relocatable value. Otherwise, the number of bytes depends upon the value of
the offset. Example:

MOV SI, OFFSET WMEM ;offset from segment base
MOV SI, OFFSET GRP1:WMEM ;offset from group base

SEG

Syntax:
SEG variable
SEG label

Description: The SEG operator takes a variable, label, or memory
expression as its operand and returns a segment base as its result. The base
may be relocatable, depending upon the type of the segment or group that the
operand belongs to or on any overrides that have been applied to the operand.
The memory expression may not contain index or base register names.
Externals are allowed in the operand. The size of a relocatable segment base
is always 2 bytes unless the segment definition used the AT keyword. In that

Chapter 7: Expressions
Memory Operators

149

instance, the number of bytes may be 1 or 2, depending upon the segment
location.

The SEG operator should not be used with operands that belong to a group.
Instead, a segment register should be initialized to the group base so that all
memory addresses will be offset from that base. Otherwise, the group is not
being used correctly.

Note that the SEG operator may also be used in the ASSUME directive. See
the reference about the ASSUME directive in the chapter titled "Assembler
Directives" for more discussion on how SEG may be used with ASSUME.

Note The SEG operator will also accept a segment name or a group name as an
operator. Since segment names and group names do not have segment
attributes, SEG with a segment or group name does not perform any function.
The assembler ignores the SEG operator and acts as if only the segment or
group name were used.

Attributes: relocation type - base

Example:

MOV AX, SEG WMEM; load base value into AX
MOV DS, AX; initialize DS register

TYPE

Syntax:
TYPE variable
TYPE label

Description: The TYPE operator takes a variable, label, structure name, or
memory expression as its operand. TYPE returns an absolute value that
represents the type of the operand.

For most operands, the result is equal to the number of bytes allocated by a
single occurrence of the operand. This value could then be used for
incrementing a pointer into a data array, for example. The following are the
returned values for variables or labels of a given type:

Chapter 7: Expressions
Memory Operators

150

• BYTE - returns 1

• WORD - returns 2

• DWORD - returns 4

• QWORD - returns 8

• TBYTE - returns 10

• NEAR - returns -1 in two’s complement form

• FAR - returns -2 in two’s complement form

• record - returns number of bytes described by an occurrence of record

• structure - returns the sum of the sizes of the directives within the
structure

Examples:
MOV AX, TYPE WMEM ;result is 2
MOV AX, TYPE LABFAR ;result is -2 in two’s
 ;complement form (FFFEH)
REC1 RECORD F1:3, F2:5 ;record definition with
 ;RECORD directive
R1 REC1 <> ;storage allocation
 ;using record template
MOV AX, TYPE REC1 ;result is 1
MOV AX, TYPE R1 ;result is 1

ST1 STRUC ;structure template
 ;definition
 DB ?
 DW ?
ST1 ENDS
SU1 ST1 <> ;storage allocation using
 ;structure template
MOV AX, TYPE ST1 ;result is 3
MOV AX, TYPE SU1 ;result is 3

LENGTH

Syntax:
LENGTH variable

Description: The LENGTH operator takes a variable as its operand. It
returns an absolute value equal to the number of units that were defined with
the variable. A unit may include several bytes allocated by a single occurrence

Chapter 7: Expressions
Memory Operators

151

of a type, but it still counts as just one unit. For instance, a single word
allocation occupies two bytes, but from the point of view of LENGTH, it is
one unit (in this case one word). The length of external symbols is always
defined to be 1, regardless of how it is defined in a different file. LENGTH
does not operate on structure or record templates. Examples:

L1 DB 1
MOV AX, LENGTH L1 ;result in AX is 1

L2 DW 1,2
 MOV AX, LENGTH L2 ;result in AX is 2

L3 DB 5 DUP (2)
MOV AX, LENGTH L3 ;result in AX is 5

L4 DW 1, 4 DUP (?)
MOV AX, LENGTH L4 ;result in AX is 5

REC1 RECORD F1:3, F2:5 ;record template definition
R1 REC1 <> ;variable declared using record
 ;template
MOV AX, LENGTH R1 ;result in AX is 1

R2 REC1 5 DUP (<>) ;another variable with record
 ;template
MOV AX, LENGTH R2 ;result in AX is 5

ST1 STRUC ;structure template def.
 DB ?
 DW ?
ST1 ENDS
SU1 ST1 <> ;variable declared
 ;using structure template
MOV AX, LENGTH SU1 ;result in AX is 1

SIZE

Syntax:
SIZE variable

Description: The SIZE operator takes a variable, structure name, structure
field, or record name as its operand and returns an absolute value equal to the
total number of bytes defined by the operand. The size is generally equal to the
length of the operand multiplied by the operand’s type. Examples:

L1 DB 1
MOV AX, SIZE L1 ;result in AX is 1

L2 DW 1,2
MOV AX, SIZE L2 ;result in AX is 4

L3 DB 5 DUP (2)
MOV AX, SIZE L3 ;result in AX is 5

Chapter 7: Expressions
Memory Operators

152

L4 DW 1, 4 DUP (?)
MOV AX, SIZE L4 ;result in AX is 10

REC1 RECORD F1:3, F2:5 ;record template definition
R1 REC1 <> ;storage allocation using record
 ; template
MOV AX, SIZE R1 ;result placed in AX is 1
MOV AX, SIZE REC1 ;result placed in AX is 1

ST1 STRUC ;structure template def.
 DB ?
 STF1 DW ?
ST1 ENDS
SU1 ST1 <> ;variable declared using
 ;structure template
MOV AX, SIZE ST1 ;result placed in AX is 3
MOV AX, SIZE SU1 ;result placed in AX is 3
MOV AX, SIZE STF1 ;result in AX is 2

Chapter 7: Expressions
Memory Operators

153

Record Operators

Record operators are used with record structure templates and record
allocations to isolate bit fields of records and to find the actual number of bits
in a record.

MASK

Syntax:
MASK recfield

Description: The MASK operator takes a record field as its operand. It
returns an absolute number that will mask all the bits in a record except for
those that belong to the record field operand. A mask is a number that will
have 1’s for all bits within the record field and have 0’s for all other bits. It can
be either a byte- or word-sized value, depending upon the size of the record
and the positioning of the field within the record.

The MASK operator is useful when combined with the shift value (see
"Expression Operands" in this chapter) for a record field. Together, they allow
you to extract the value of a field. First, mask the record to isolate the bits
that belong to the field. Then, shift the field so that its least significant bit is in
the 0th bit position. The value of the result will now be equal to the value in
the record field. Example:

R1 RECORD F1:5, F2:2
U1 R1 <14,3>
:
:
MOV AL,U1 ;load record into register
AND AL,MASK F1 ;mask out extra bits with MASK
 ;operator and AND command
MOV CL, F1 ;put field shift value
 ;in register
SHR AL,CL ;shift field to lowest bit
 ;position - AL now contains
 ;value of record field

WIDTH

Syntax:
WIDTH operand

Chapter 7: Expressions
Record Operators

154

Description: The WIDTH operator takes a record name or record field as its
operand. It returns an absolute number that is the number of bits defined in
the operand. For a record name, the value will be the sum of the bits in the
record fields, and will not include unused bits. For a record field, the value is
the number of bits within that particular field. Examples:

R1 RECORD F1:5, F2:2
MOV AX, WIDTH R1 ;result in AX is 7
MOV AX, WIDTH F1 ;result in AX is 5

Chapter 7: Expressions
Record Operators

155

Segment and Group Operators

These operators return values that are only known at link-time. They generally
refer to the size or address of segments and groups within a program.

SEGOFFSET

Syntax:
SEGOFFSET segmentname

Description: The SEGOFFSET operator returns a value that is the offset of
the indicated segment from the next-lowest paragraph boundary. This value is
the same as the last hex-digit of the base address for the segment. If the
segment is paragraph or page aligned or is at an absolute location, then this
value will be 0. Otherwise, this value is a relocatable value that will be known
at final link time. The value will be range from 0 to 15, but will be word-sized
if it is relocatable. Example:

A SEGMENT BYTE

; LOAD PARAGRAPH VALUE FOR SEGMENT
MOV AX, A

; LOAD OFFSET OF SEGMENT FROM NEAREST
; PARAGRAPH. TOGETHER, THEY FORM THE
; START LOCATION FOR THE SEGMENT
MOV BX, SEGOFFSET A

GRPOFFSET

Syntax:
groupname GRPOFFSET segmentname

Description: The GRPOFFSET operator returns the offset of a segment’s
base from the start of a group that it belongs to. The segment must be defined
as part of the group or this operator will result in an error. Since the offset
within the group is not known until link time, this operator will result in a
word-sized relocatable value. The linker will generate a value from 0 to
0FFFFH at link time, which will the offset of the segment’s base from the start
of the group. Example:

Chapter 7: Expressions
Segment and Group Operators

156

GRGRP GROUP A,B

; POINT DS AT GROUP
MOV AX, GRGRP
MOV DS, AX

; SET UP POINTER TO START
; OF SEGMENT SO LOCATIONS
; WITHIN THE SEGMENT CAN BE
; REFERENCED FROM THE GROUP
; SELECTOR
MOV SI, GRGRP GRPOFFSET B

SEGSIZE

Syntax:
SEGSIZE segmentname

Description: The SEGSIZE operator returns a word-sized value that is the
size of the indicated segment. Since this size is not known (usually) at
assembly time, this operator generates a word-sized relocatable value. The
linker will generate a value from 0 to 0FFFFH at link time. Note that the
linker will return the value 0 if the group size is 64K.

Example:

A SEGMENT PUBLIC

; LOAD SEGMENT SIZE.
; COULD BE USED TO MAKE
; SURE INDEX VALUES DON’T
; GO OUTSIDE OF A SEGMENT.
MOV AX, SEGSIZE A

Chapter 7: Expressions
Segment and Group Operators

157

GRPSIZE

Syntax:
GRPSIZE groupname

Description: The GRPSIZE operator returns a word-sized value that is the
size of the indicated group. Since this size is not known at assembly time, this
operator generates a word-sized relocatable value. The linker will generate a
value from 0 to 0FFFFH at link time, which will be the size of the group. Note
that the linker will return the value 0 if the group size is 64K. Examples:

GRGRP GROUP A,B

MOV AX, GRPSIZE GRGRP

Chapter 7: Expressions
Segment and Group Operators

158

Operator Precedence

Complex expressions, or expressions that contain multiple operators, are
evaluated according to operator precedence rules:

• Expressions enclosed within parentheses are evaluated from the
innermost set of parenthesis to the outermost set. Within a set of
parenthesis, operators conform to the other precedence rules below.

• Excluding parentheses, sub-expressions that have operators of higher
precedence will be calculated before sub-expressions with operators of
lower precedence. For example, a multiply operation is done before an
addition operation.

• Excluding parentheses, sub-expressions which have operators of equal
precedence (Operators that appear on the same line in the following table
are of equal precedence.) are evaluated left-to-right. Left-to-right
evaluation means that if two operators of equal precedence appear in the
same expression, the operator which is closer to the leftmost end of the
expression will be evaluated before an operator closer to the rightmost
end. For instance, in the expression ’6 * 5 / 3’ the order of evaluation is
to multiply 6 by 5 and then divide by 3. The result is 10.

The ranking of operators from higher to lower precedence is given in the
following table.

Chapter 7: Expressions
Operator Precedence

159

Precedence Operators

Higher

↑

↓

Lower

(), [], < > , . ,LENGTH, SIZE, WIDTH, MASK , SEGOFFSET,
SEGSIZE, GRPOFFSET, GRPSIZE

PTR, OFFSET, SEG, TYPE, THIS, Segment Override

HIGH, LOW

*, /, MOD, SHR, SHL

Unary + , -

Binary + , -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

SHORT

Chapter 7: Expressions
Operator Precedence

160

8

Instructions and Operands

A discussion of operands and a list of recognized instructions.

Chapter 8: Instructions and Operands

161

Operands

You may recall that the general syntax of an assembler statement is as follows:

[label :] [prefix] keyword [operand [,...]] [;comment]

This section concentrates on the operand field of this syntax.

Accepted Operands

A list of assembly language instructions and the operand combinations
acceptable for each instruction is at the end of this chapter. Each allowable
combination has a limited range of values. Any other combination results in
an error condition.

Compatible Types

In most instances, if an instruction takes more than one operand, the operands
must be of the same type. For example, it is only possible to move a
WORD-sized value into a WORD destination. A mismatch error occurs if an
instruction attempts to move a WORD into a BYTE. It is possible, however,
to move a BYTE-sized immediate value into a WORD-sized destination. The
immediate is either stored as a WORD or it is sign-extended during execution.

Some instructions allow operands to be of different types. It is best to check
the list of instructions at the end of the chapter for allowable operand
combinations.

Required Typing

Many instructions do require that the memory operand be typed. Instructions
that take a single operand generate different object code depending upon the
type of the operand. Or, perhaps the type of one operand does not restrict the
valid type of the other operand. The assembler cannot decide what object code
to output in these instances. The following instructions demonstrate some
unacceptable operand combinations:

INC [BX] ;generate byte or word instruction?

Chapter 8: Instructions and Operands
Operands

162

ESC 5,[BX] ;5 doesn’t restrict memory

MOV [BX], 2 ;2 fits in a byte or word storage

The INC instruction accepts both BYTE and WORD memory operands. In
the above example, the assembler could not decide which instruction to
generate.

The ESC instruction also accepts BYTE and WORD memory operands. The
immediate value 5, in the example above, does not help limit the type of the
memory operand since the value is independent of the memory type.

For the MOV instruction above, the immediate value 2 is small enough to fit
in either a BYTE or a WORD. Again, the immediate operand does not
restrict the type sufficiently.

When in doubt, type these ambiguous expressions to avoid possible error
conditions.

Anonymous References

Most instructions are able to accept operands that do not have type
information—references known as anonymous memory references. These
references do not have a variable or any type information associated with
them, so the assembler must use other knowledge to determine the type. The
assembler may type the anonymous operand to be the same as another
operand in the instruction, or not require a type at all. The following
examples are of typing the same as another operand:

MOV AX, [BX] ;WORD since AX is a WORD-sized register

MOV [BX], AL ;BYTE since AL is a BYTE-sized register

MOV [BX], 1000 ;WORD since 1000 can’t be stored in BYTE

Assumed Type With Register

The assembler can easily determine the type of an anonymous reference if the
other operand is an 8086 register. Notice in the above example when AX and
AL were used. Another example of an instruction not needing a type (since it
handles all memory operands the same) is an 8087 floating point instruction.
Example:

FLDCW [BX]

Chapter 8: Instructions and Operands
Operands

163

Operand Positioning

If an instruction takes a single operand, the operand position (other than it
must be in the proper place) is not critical. Instructions which accept two
operands generally treat the first operand as the destination operand and the
second operand as the source operand. The movement of data is then from the
second operand into the first. The instruction

MOV AX, BX

takes the contents of the BX register and places it in the AX register. There
are exceptions. Some string instructions use the first operand as the source
operand and the second operand as the destination operand. Check the usage
of the operands when in doubt. The instruction list at the end of this chapter
—and in the Intel iAPX 86/88, 186/188 User’s Manual— includes information
on data movement between operands.

Immediate Values

 Immediate values are operands in many assembly language instructions. In
most cases, the immediate value is a source operand. This value is stored
directly in the destination operand or used to modify a value already stored
elsewhere, say in a register or memory location.

Immediate values are not always numbers. Immediate values are also
generated in many non-obvious ways as shown in the "Expressions" chapter.

Range of Immediate Values

Immediate values can be absolute, relocatable, or external numbers. The size
of the value is determined by the instruction used, by the value itself, and by
what type is assumed for it.

An absolute immediate may range anywhere from -65535 to 65535 depending
upon the instruction and the type of the operand. The INT (interrupt)
instruction, for instance, can only take a value from 0 to 255 since that is the
range of interrupt values for the 8086. A variable of type BYTE may take a
value from -255 to 255. A variable of type WORD may take a value from
-65535 to 65535.

A relocatable or external immediate is always assumed to be a 16-bit value
unless modified with a HIGH or LOW operator.

Chapter 8: Instructions and Operands
Operands

164

Registers

A very common operand is a processor register. A processor register is a
memory store that is internal to the 8086/186 processors, and the 8087
co-processor. Internal registers can be source operands or destination
operands for data. Some registers have special tasks which restrict their uses in
programs. Since some instructions may indirectly use or modify these
restricted registers, take care their contents are not accidentally modified or
misused.

The figure below shows the general purpose and special registers for the
8086/186 processor. Following the figure is a more detailed description of the
various processor registers.

Chapter 8: Instructions and Operands
Operands

165

DATA REGISTERS

7 0 7 0

AH (HIGH BYTE OF AX) AL (LOW BYTE OF AX)

BH (HIGH BYTE OF BX) BL (LOW BYTE OF BX)

CH (HIGH BYTE OF CX) CL (LOW BYTE OF CX)

DH (HIGH BYTE OF DX) DL (LOW BYTE OF DX)

POINTER AND INDEX REGISTERS

15 0

SP (STACK POINTER)

BP (BASE POINTER)

SI (SOURCE INDEX)

DI (DESTINATION INDEX)

SEGMENT REGISTERS

CS (CODE)

DS (DATA)

SS (STACK)

ES (EXTRA)

Figure 8-1. 8 086/186 Registers

Chapter 8: Instructions and Operands
Operands

166

16-bit Registers AX, BX, CX, DX, DI, SI, SP, BP

 There are eight 16-bit (WORD-sized) general purpose registers located on
the 8086/186 processors referenced by the unique register names AX, BX,
CX, DX, DI, SI, BP and SP. AX, BX, CX, and DX are general purpose data
registers. For most instructions that allow a register as an operand, these four
registers are used. DI, SI, BX and BP are the index and base registers.

Some instructions explicitly use certain registers. The CX register, for
instance, is used to control looping. Many string instructions use the SI as a
source pointer and DI as a destination pointer. The SP register points to the
top of stack and is modified whenever CALLs, PUSHs, or POPs occur. Data
loss can occur through a side effect of these explicit usages. Be careful to
protect the contents of these registers so they are not accidentally modified
through the use of an instruction.

8-bit Registers AL, AH, BL, BH, CL, CH, DL, DH

There are also eight 8-bit (BYTE-sized) registers. The unique names given to
them are AL, AH, BL, BH, CL, CH, DL, and DH. These registers are not
separate registers; instead they are the byte-addressable upper and lower
halves of the four 16-bit general-purpose data registers (AX, BX, CX, and
DX). AX, for instance, is equivalent to AL+ AH. (Not the value, but the
register.)

The ’L’ in AL means the low byte of AX and the ’H’ in AH means the high
byte AX. If you refer to AL, the assembler understands that you mean the low
byte of AX. If you refer to AX, the assembler understands that you mean the
entire 16 bits of AX.

You may load data into these registers either as a single 16-bit quantity or as
two 8-bit quantities. The resulting value in the register is the same.

Segment Registers CS, DS, SS, ES

8086/186 memory addresses are generated by offsetting from segment
registers. To be able to address a particular location in memory, that address
must be contained in one of the four, currently active physical segments. Each
segment has a maximum size of 64K and each has a particular register that
contains the base address (lowest memory location) of the segment. Each
segment has a different purpose:

Chapter 8: Instructions and Operands
Operands

167

• Executable code (program code) is located in the Code segment and is
addressable through the CS (Code Segment) register.

• Data is most often located in the Data segment (although it can be in any
of the four segments) and is addressed through the DS (Data Segment)
register.

• The program stack is located in the Stack segment and is addressed
through the SS (Stack Segment) register.

• Data often is located in the Extra segment and is addressed via the ES
(Extra Segment) register.

Memory Addressing A memory address is a 20-bit value —allowing the
8086/186 to address 1 megabyte of memory— that is calculated from the
segment base address located in one of the segment registers, and an offset
supplied either by the IP (instruction pointer), or by operands contained in the
instruction itself. To calculate the memory address, the 16-bit value in a given
segment register is first shifted to the left 4 bits. Then the offset value (either a
16-bit or 8-bit value) is added to the shifted value to generate the 20-bit
address necessary to access memory.

Segment Register Use The four segment registers have restricted use. The
only assembly instructions that may reference these registers as operands are
the MOV, PUSH, and POP instructions.

Some Assembler Directives also use the register names as part of their syntax,
but this use does not cause object code to be generated.

Other instructions indirectly reference the segment registers. LDS and LES,
for instance, could change the segment register contents. CALLs and JMPs
change the CS register if the branch takes execution out of the current
segment. Finally, as noted in the chapter titled "Expressions," segment register
names may be used as overrides in memory operands.

8087 Float ing Point Registers ST(0)...ST(7)

The 8087 co-processor has eight floating point stack registers. They are
referenced by the names ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), and
ST(7). ST(0) may be referenced as just ST without the appended (0). These
registers are only used with some 8087 floating point instructions.

Chapter 8: Instructions and Operands
Operands

168

They are not directly accessible to the 8086/186 processors. Instead, 8087
instructions make the contents of these registers available in memory. The
8087 floating point stack registers are 80 bits in size and store their values in
IEEE floating point format.

Memory Expressions and the MODRM Byte

Memory expressions may be either simple memory references (using a
variable name by itself) or a complex expressions involving register indirection
or offsets within structures. A simple memory reference will always take the
type of the variable, so that type must either be compatible with an instruction
or it must be re-typed with the PTR operator. Examples:

MOV AX, WMEM ;simple variable
MOV AX, [BX][SI] ;indirect anonymous
 ;memory reference
MOV AX, [BP].SFWORD ;indirect anonymous memory
 ;reference with offset
MOV AX, WMEM[BP][DI] ;indirect memory reference
MOV AX, STR1.SFWORD ;structure field reference
MOV AX, WORD PTR DMEM ;typed memory reference

Physical Address Calculation

The processor must generate a physical address for each memory reference.
The offset part of the address —the value which is added to the shifted
segment register address— may be coded into the instruction in one of four
ways:

• As a direct 16-bit offset.

• As an indirect offset through a base register, BX or BP, optionally with an
added (or subtracted) 8-bit or 16-bit displacement.

• As an indirect offset through an index register, SI or DI, optionally with
an added (or subtracted) 8-bit or 16-bit displacement.

• As an indirect offset through the sum of one base register and one index
register, optionally with an added (or subtracted) 8-bit or 16-bit
displacement.

MODRM Byte

The information describing how the offset is derived is stored in the object
code in a special byte called the MODRM byte. This byte has three fields:

Chapter 8: Instructions and Operands
Operands

169

1 The first field describes how many bytes are required to hold the
displacement portion of the address. This field can specify that 0, 1, or 2
bytes are required. If the value is a relocatable or external value, two bytes
are always required.

2 The second field contains a register code or part of the code for the
instruction; it is not relevant to this section.

3 The third field contains information describing what base and index
registers are used, if any, when generating the address.

The MODRM byte, along with any displacement value, determines the offset
of the memory address referenced in an instruction. Remember, the value is
just the offset of the memory address. The base from which to offset must still
be decided.

Single Memory Expression per Instruction

Each memory expression is either a source or destination for the instruction.
Most instructions allow only a single memory expression, since the MODRM
byte can only describe one. Some string instructions may have two memory
expressions as operands, but these instructions are special cases because the
operands are only used to check for segment addressability. Their offsets are
not emitted as object code. Instead, the SI and DI registers are used for
addressing the memory.

Segment Addressability and Overrides

The 8086 or 80186 processor generates a memory address by shifting the value
from a segment register four bits to the left and then adding an offset to the
shifted value. A segment of memory, up to a maximum of 64K bytes in size, is
active only if one of the four segment registers points to that particular piece
of memory.

Note that the segment is a physical segment, a physical piece of memory.
These physical segments contain the logical segments of your assembly
language program that you identified through SEGMENT/ENDS assembler
directive pairs and other, similar means.

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

170

With the ASSUME assembler directive, you tell the assembler what values to
assume as the base locations of the currently active segments. The ASSUME
directive, then, lets you inform the assembler of the relationship between the
logical segments you have defined in the program and the physical segments
where they will eventually be located.

Addressability Checking

During assembly, if the assembler encounters an instruction that generates a
memory reference, the assembler checks that reference against the value in the
ASSUME for that segment. The assembler generates an error if the location
in memory cannot be accessed through that particular segment register. The
exception to checking against the ASSUME is when a memory reference
contains a specific segment override.

NEAR and SHORT label references are also checked for addressability
through the CS segment register to assure the assembler that the label can be
reached during execution. A segment or group name may be used to override a
label if the CS segment register value will be different than that currently
assumed.

Addressability checking is done so that the correct object code may be
generated. Unless a memory reference contains a segment override, the
instruction is not preceded by a segment override byte in the generated object
code. If no segment override byte is coded with the instruction, then the
instruction memory reference defaults to a certain segment, depending upon
the nature of the instruction.

Default Segments

If a memory reference does not specifically name a segment register through a
segment override, there are default segment registers for memory references.
The CS register is the default for instruction fetching. The DS segment
register is the default for most memory data references, unless BP (a base
register) is specified for register indirection. The SS segment register is the
default if BP is used. Some string instructions default to the ES segment
register with certain operands.

Although there are default segment registers for references, you must still use
the ASSUME directive to inform the assembler where the bases of these
segments are located; again, to specify the relationship between logical and
physical segments and to aid in addressability checking.

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

171

Segment Overrides

An instruction may override these default registers by including a segment
override in the instruction operand. There are two reasons why a segment
override might be included in a memory reference:

• The memory location accessed in not located in the default segment that
would be used with a particular instruction.

• The memory location accessed is located within a group in a segment. In
this instance, the base of the group must be used for memory access, not
the base of the segment.

The override holds for the duration of the instruction only. Segment overrides
do not alter the contents of segment registers or the values specified in
ASSUME directives.

Improper Uses of Segment Overrides

The section on default segments mentions that some string instructions
default to the ES register. For these string instructions, you may not use
segment overrides for string operands. You may use segment overrides,
however, for the other memory operands in those instructions.

These and other exceptions are noted in the listing of instructions at the end
of this chapter.

Segment Override Byte

When the assembler generates code for an instruction containing a segment
override, the assembler precedes the instruction code with a segment override
byte. (Whether it will appear or not is discussed below.) This override byte, if
present, causes a specific segment register to be used to address that memory,
regardless of which segment the variable belongs to. In the segment override
byte, specific values are associated with specific registers. Examination of these
values can tell you which segment the override has been generated for. The
values are

CS - 2EH
DS - 3EH
SS - 36H
ES - 26H

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

172

Overrides and Checking Against ASSUME

If a segment name is used to override the default segment value for a memory
reference, then the ASSUME value for the override segment is checked to see
if it has been set to either

• the segment named in the override, or

• to a group that contains the segment named in the override.

If a group name is used, then the group name must match exactly.

Examples of segment overrides:

MOV AX, SEG1: WMEM ;matches segment or group
MOV AX, GRP1: WMEM ;matches group only

Segment Override Byte Generation

A memory reference that includes a segment override generates a segment
override byte depending upon the outcome of the following checks:

1 If the memory is addressable by the default segment register for that type
of instruction and operand, then the instruction needs no override byte.

2 If this test fails, then the segment registers are checked in the following
order: DS, ES, CS, and SS. If the memory expression is addressable by one
of these registers, then an override byte is generated for that register.

3 If no register match occurs, an error is generated. The checks are specific.
If the variable used in the memory expression was an external defined
outside of a segment, it can only match an ASSUME segment that has
been set to the SEG value of the external or to a group that includes that
segment.

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

173

The Instruction Set

This section contains the instruction set accepted by the as86 assembler. All
operand combinations are listed for each instruction. Some of these
instructions or operand combinations are only valid in certain modes (such as
80186 or V20). These restricted instructions are explained in the notes at the
end of the list of instructions.

A special code denotes what operand patterns are allowed for each
instruction. If no operands are shown, then none are expected for that
instruction. Otherwise, each operand will have a name, indicating what the
operand does, followed by a colon and a code indicating what type of operand
is to be used. If an operand is restricted to certain values, then these values will
be listed in parenthesis after the code. If more than one restricted value is
possible, then they will be separated by commas. Numeric ranges will be
denoted by their boundary values.

Chapter 8: Instructions and Operands
The Instruction Set

174

AB
AW
CB

CD
CW
D
DB
DW
EB
ED
EW
F
M
MB
MW
MD
MQ
MT
RB
RW
S
T
XB

XW

AL only
AX only
SHORT label with current segment and within
127 bytes of current location
FAR label, offset and base
NEAR label, within current segment
17-bit immediate value
1-byte immediate value, from -255 to 255
2-byte immediate value, from -65535 to 65535
either an 8-bit register or BYTE-type memory expression
DWORD-type memory expression
either a 16-bit register or WORD-type memory expression
8087 floating point stack register
any type of memory expression
BYTE-type memory expression
WORD-type memory expression
DWORD-type memory expression
QWORD-type memory expression
TBYTE-type memory expression
8-bit register
16-bit register
segment register
ST(0); top of 8087 floating point register stack
BYTE-type, simple memory expression;
no register indirection
WORD-type, simple memory expression;
no register indirection

Table 8-1. Operand Codes

Chapter 8: Instructions and Operands
The Instruction Set

175

as86 Assembler Instruction Set

AAA

AAD

AAM

AAS

ADC dst:AB,src:DB

ADC dst:AW,src:DB

ADC dst:AW,src:DW

ADC dst:EB,src:DB

ADC dst:EB,src:RB

ADC dst:EW,src:DB(-128,127)

ADC dst:EW,src:DW

ADC dst:EW,src:RW

ADC dst:RB,src:EB

ADC dst:RW,src:EW

ADD dst:AB,src:DB

ADD dst:AW,src:DB

ADD dst:AW,src:DW

ADD dst:EB,src:DB

ADD dst:EB,src:RB

ADD dst:EW,src:DB(-128,127)

ADD dst:EW,src:DW

ADD dst:EW,src:RW

ADD dst:RB,src:EB

ADD dst:RW,src:EW

ADD4S (Note 3)

ADD4S dst:M,src:M (Note 3)

AND dst:AB,src:DB

Table 8-2 Assembler Instruction Set.

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

176

AND dst:AW,src:DB

AND dst:AW,src:DW

AND dst:EB,src:DB

AND dst:EB,src:RB

AND dst:EW,src:DB

AND dst:EW,src:DW

AND dst:EW,src:RW

AND dst:RB,src:EB

AND dst:RW,src:EW

BOUND indx:RW,bptr:MD (Note 2)

BOUND indx:RW,bptr:MW (Note 2)

BRKEM vector:Db (Note 3)

CALL addr:CB

CALL addr:CD

CALL addr:CW

CALL addr:ED

CALL addr:EW

CBW

CLC

CLD

CLI

CLR1 dst:Eb,off:D(0,7) (Note 3)

CLR1 dst:Eb,off:Rb(CL) (Note 3)

CLR1 dst:Ew,off:D(0,15) (Note 3)

CLR1 dst:Ew,off:Rb(CL) (Note 3)

CMC

CMP dst:AB,src:DB

CMP dst:AW,src:DB

CMP dst:AW,src:DW

CMP dst:EB,src:DB

CMP dst:EB,src:RB

CMP dst:EW,src:DB(-128,127)

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

177

CMP dst:EW,src:DW

CMP dst:EW,src:RW

CMP dst:RB,src:EB

CMP dst:RW,src:EW

CMP4S (Note 3)

CMP4S dst:M,src:M (Note 3)

CMPS SI__ptr:MB,DI__ptr:MB (Note 1)

CMPS SI__ptr:MW,DI__ptr:MW (Note 1)

CMPSB

CMPSW

CWD

DAA

DAS

DEC dst:EB

DEC dst:RW

DIV divisor:EB

DIV divisor:EW

ENTER disp:D(0,0FFFFH),level:D(0,255) (Note 2)

ESC opcode:DB(0,63),addr:EB

ESC opcode:DB(0,63),addr:ED

ESC opcode:DB(0,63),addr:EW

EXT dst:Rb,count:D(0,15) (Note 3)

EXT dst:Rb,src:Rb (Note 3)

F2XM1

FABS

FADD

FADD dst:F,src:T

FADD dst:T,src:F

FADD memop:MD

FADD memop:MQ

FADDP dst:F,src:T

FBLD memop:MT

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

178

FBSTP memop:MT

FCHS

FCLEX

FCOM

FCOM fpst:F

FCOM memop:MD

FCOM memop:MQ

FCOMP

FCOMP fpst:F

FCOMP memop:MD

FCOMP memop:MQ

FCOMPP

FDECSTP

FDISI

FDIV

FDIV dst:F,src:T

FDIV dst:T,src:F

FDIV memop:MD

FDIV memop:MQ

FDIVP dst:F,src:T

FDIVR

FDIVR dst:F,src:T

FDIVR dst:T,src:F

FDIVR memop:MD

FDIVR memop:MQ

FDIVRP dst:F,src:T

FENI

FFREE fpst:F

FIADD memop:MD

FIADD memop:MW

FICOM memop:MD

FICOM memop:MW

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

179

FICOMP memop:MD

FICOMP memop:MW

FIDIV memop:MD

FIDIV memop:MW

FIDIVR memop:MD

FIDIVR memop:MW

FILD memop:MD

FILD memop:MQ

FILD memop:MW

FIMUL memop:MD

FIMUL memop:MW

FINCSTP

FINIT

FIST memop:MD

FIST memop:MW

FISTP memop:MD

FISTP memop:MQ

FISTP memop:MW

FISUB memop:MD

FISUB memop:MW

FISUBR memop:MD

FISUBR memop:MW

FLD fpst:F

FLD memop:MD

FLD memop:MQ

FLD memop:MT

FLD1

FLDCW memop:M

FLDENV memop:M

FLDL2E

FLDL2T

FLDLG2

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

180

FLDLN2

FLDPI

FLDZ

FMUL

FMUL dst:F,src:T

FMUL dst:T,src:F

FMUL memop:MD

FMUL memop:MQ

FMULP dst:F,src:T

FNCLEX

FNDISI

FNENI

FNINIT

FNOP

FNSAVE memop:M

FNSTCW memop:M

FNSTENV memop:M

FNSTSW memop:M

FPATAN

FPO2 opcode:D(0,127) (Note 3)

FPO2 opcode:D(0,15),addr:Mb (Note 3)

FPO2 opcode:D(0,15),addr:Md (Note 3)

FPO2 opcode:D(0,15),addr:Mq (Note 3)

FPO2 opcode:D(0,15),addr:Mt (Note 3)

FPO2 opcode:D(0,15),addr:Mw (Note 3)

FPREM

FPTAN

FRNDINT

FRSTOR memop:M

FSAVE memop:M

FSCALE

FSQRT

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

181

FST fpst:F

FST memop:MD

FST memop:MQ

FSTCW memop:M

FSTENV memop:M

FSTP fpst:F

FSTP memop:MD

FSTP memop:MQ

FSTP memop:MT

FSTSW memop:M

FSUB

FSUB dst:T,src:F

FSUB dstF,src:T

FSUB memop:MD

FSUB memop:MQ

FSUBP dst:F,src:T

FSUBR

FSUBR dst:F,src:T

FSUBR dst:T,src:F

FSUBR memop:MD

FSUBR memop:MQ

FSUBRP dst:F,src:T

FTST

FWAIT

FXAM

FXCH

FXCH fpst:F

FXTRACT

FYL2X

FYL2XP1

HLT

IDIV divisor:EB

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

182

IDIV divisor:EW

IMUL dst:RW,src1:EW,src2:DB(-128,127) (Note 2)

IMUL dst:RW,src1:EW,src2:DW (Note 2)

IMUL dst:RW,src2:DB(-128,127) (Note 2)

IMUL dst:RW,src2:DW (Note 2)

IMUL mplier:EB

IMUL mplier:EW

IN dst:AB,port:DB

IN dst:AB,port:RW(DX)

IN dst:AW,port:DB

IN dst:AW,port:RW(DX)

INC dst:EB

INC dst:EW

INC dst:RW

INS DI__ptr:EB,port:RW(DX) (Notes 1,2)

INS DI__ptr:EW,port:RW(DX) (Notes 1,2)

INS dst:Rb,count:D(0,15) (Note 3)

INS dst:Rb,src:Rb (Note 3)

INSB (Note 2)

INSW (Note 2)

INT itype:DB(3)

INT itype:DB

INTO

IRET

JA place:CB

JAE place:CB

JB place:CB

JBE place:CB

JC place:CB

JCXZ place:CB

JE place:CB

JG place:CB

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

183

JGE place:CB

JL place:CB

JLE place:CB

JMP place:CB

JMP place:CD

JMP place:CW

JMP place:EW

JMP place:MD

JNA place:CB

JNAE place:CB

JNB place:CB

JNBE place:CB

JNC place:CB

JNE place:CB

JNG place:CB

JNGE place:CB

JNL place:CB

JNLE place:CB

JNO place:CB

JNP place:CB

JNS place:CB

JNZ place:CB

JO place:CB

JP place:CB

JPE place:CB

JPO place:CB

JS place:CB

JZ place:CB

LAHF (Note 2)

LDS dst:RW,src:ED

LEA dst:RW,src:M

LEAVE

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

184

LES dst:RW,src:ED

LOCK PREFX

LODS SI__ptr:MB

LODS SI__ptr:MW

LODSB

LODSW

LOOP place:CB

LOOPE place:CB

LOOPNE place:CB

LOOPNZ place:CB

LOOPZ place:CB

MOV dst:AB,src:XB

MOV dst:AW,src:XW

MOV dst:EB,src:DB

MOV dst:EB,src:RB

MOV dst:EW,src:DB

MOV dst:EW,src:DW

MOV dst:EW,src:RW

MOV dst:EW,src:S

MOV dst:RB,src:EB

MOV dst:RW,src:EW

MOV dst:S(ES),src:EW

MOV dst:S(SS,DS),src:EW

MOV dst:XB,src:AB

MOV dst:XW,src:AW

MOVS DI__ptr:MB,SI__ptr:MB (Note 1)

MOVS DI__ptr:MW,SI__ptr:MW (Note 1)

MOVSB

MOVSW

MUL mplier:EB

MUL mplier:EW

NEG dst:EB

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

185

NEG dst:EW

NOP

NOT dst:EB

NOT dst:EW

NOT1 dst:Eb,off:D(0,7) (Note 3)

NOT1 dst:Eb,off:Rb(CL) (Note 3)

NOT1 dst:Ew,off:D(0,15) (Note 3)

NOT1 dst:Ew,off:Rb(CL) (Note 3)

OR dst:AB,src:DB

OR dst:AW,src:DB

OR dst:AW,src:DW

OR dst:EB,src:DB

OR dst:EB,src:RB

OR dst:EW,src:DB

OR dst:EW,src:DW

OR dst:EW,src:RW

OR dst:RB,src:EB

OR dst:RW,src:EW

OUT port:DB,dst:AB

OUT port:DB,dst:AW

OUT port:RW(DX),dst:AB

OUT port:RW(DX),dst:AW

OUTS port:RW(DX),SI_ptr:EB (Note 2)

OUTS port:RW(DX),SI_ptr:EW (Note 2)

OUTSB (Note 2)

OUTSW (Note 2)

POP dst:EW

POP dst:RW

POP dst:S(ES)

POP dst:S(SS,DS)

POPA (Note 2)

POPF

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

186

PUSH src:DB(-128,127) (Note 2)

PUSH src:DW (Note 2)

PUSH src:EW

PUSH src:RW

PUSH src:S

PUSHA (Note 2)

PUSHF

RCL dst:EB,count:DB(0,31) (Note 2)

RCL dst:EB,count:DB(1)

RCL dst:EB,count:RB(CL)

RCL dst:EW,count:DB(0,31) (Note 2)

RCL dst:EW,count:DB(1)

RCL dst:EW,count:RB(CL)

RCR dst:EB,count:DB(0,31) (Note 2)

RCR dst:EB,count:DB(1)

RCR dst:EB,count:RB(CL)

RCR dst:EW,count:DB(0,31) (Note 2)

RCR dst:EW,count:DB(1)

RCR dst:EW,count:RB(CL)

REP PREFX

REPC PREFX (Note 3)

REPE PREFX

REPNC PREFX (Note 3)

REPNE PREFX

REPNZ PREFX

REPZ PREFX

RET

RET src:DB

RET src:DW

ROL dst:EB,count:DB(0,31) (Note 2)

ROL dst:EB,count:DB(1)

ROL dst:EB,count:RB(CL)

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

187

ROL dst:EW,count:DB(0,31) (Note 2)

ROL dst:EW,count:DB(1)

ROL dst:EW,count:RB(CL)

ROL4 dst:Eb (Note 3)

ROR dst:EB,count:DB(0,31) (Note 2)

ROR dst:EB,count:DB(1)

ROR dst:EB,count:RB(CL)

ROR dst:EW,count:DB(0,31) (Note 2)

ROR dst:EW,count:DB(1)

ROR dst:EW,count:RB(CL)

ROR4 dst:Eb (Note 3)

SAHF

SAL dst:EB,count:DB(0,31) (Note 2)

SAL dst:EB,count:DB(1)

SAL dst:EB,count:RB(CL)

SAL dst:EW,count:DB(0,31) (Note 2)

SAL dst:EW,count:DB(1)

SAL dst:EW,count:RB(CL)

SAR dst:EB,count:DB(0,31) (Note 2)

SAR dst:EB,count:DB(1)

SAR dst:EB,count:RB(CL)

SAR dst:EW,count:DB(0,31) (Note 2)

SAR dst:EW,count:DB(1)

SAR dst:EW,count:RB(CL)

SBB dst:AB,src:DB

SBB dst:AW,src:DB

SBB dst:AW,src:DW

SBB dst:EB,src:DB

SBB dst:EB,src:RB

SBB dst:EW,src:DB(-128,127)

SBB dst:EW,src:DW

SBB dst:EW,src:RW

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

188

SBB dst:RB,src:EB

SBB dst:RW,src:EW

SCAS DI__ptr:MB (Note 1)

SCAS DI__ptr:MW (Note 1)

SCASB

SCASW

SET1 dst:Eb,off:D(0,7) (Note 3)

SET1 dst:Eb,off:Rb(CL) (Note 3)

SET1 dst:Ew,off:D(0,15) (Note 3)

SET1 dst:Ew,off:Rb(CL) (Note 3)

SHL dst:EB,count:DB(0,31) (Note 2)

SHL dst:EB,count:DB(1)

SHL dst:EB,count:RB(CL)

SHL dst:EW,count:DB(0,31) (Note 2)

SHL dst:EW,count:DB(1)

SHL dst:EW,count:RB(CL)

SHR dst:EB,count:DB(0,31) (Note 2)

SHR dst:EB,count:DB(1)

SHR dst:EB,count:RB(CL)

SHR dst:EW,count:DB(0,31) (Note 2)

SHR dst:EW,count:DB(1)

SHR dst:EW,count:RB(CL)

STD

STI

STOS DI__ptr:MB (Note 1)

STOS DI__ptr:MW (Note 1)

STOSB

STOSW

SUB dst:AB,src:DB

SUB dst:AW,src:DB

SUB dst:AW,src:DW

SUB dst:EB,src:DB

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

189

SUB dst:EB,src:RB

SUB dst:EW,src:DB(-128,127)

SUB dst:EW,src:DW

SUB dst:EW,src:RW

SUB dst:RB,src:EB

SUB dst:RW,src:EW

SUB4S (Note 3)

SUB4S dst:M,src:M(Note 3)

TEST dst:AB,src:DB

TEST dst:AW,src:DB

TEST dst:AW,src:DW

TEST dst:EB,src:DB

TEST dst:EB,src:RB

TEST dst:EW,src:DB

TEST dst:EW,src:DW

TEST dst:EW,src:RW

TEST dst:RB,src:EB

TEST dst:RW,src:EW

TEST1 dst:Eb,off:D(0,7) (Note 3)

TEST1 dst:Eb,off:Rb(CL) (Note 3)

TEST1 dst:Ew,off:D(0,15) (Note 3)

TEST1 dst:Ew,off:Rb(CL) (Note 3)

WAIT

XCHG dst:AW,src:RW

XCHG dst:EB,src:RB

XCHG dst:EW,src:RW

XCHG dst:RB,src:EB

XCHG dst:RW,src:AW

XCHG dst:RW,src:EW

XLAT table:MB

XLATB

XOR dst:AB,src:DB

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

190

XOR dst:AW,src:DB

XOR dst:AW,src:DW

XOR dst:EB,src:DB

XOR dst:EB,src:RB

XOR dst:EW,src:DB

XOR dst:EW,src:DW

XOR dst:EW,src:RW

XOR dst:RB,src:EB

XOR dst:RW,src:EW

Note 1: CMPS
INS
MOVS
SCAS
STOS

second operand must be ES addressable.
operand must be ES addressable.
first operand must be ES addressable.
operand must be ES addressable.
operand must be ES addressable. The register is always used to
address these operands, even if the ASSUMEd contents of ES and
DS are the same.

Note 2: These instruction/operand combinations will generate code that works correctly on an
80186, or a V20/V30, but not an 8086. A warning is printed whenever one of these
combinations is used in 8086 Mode.

Note 3: These instruction/operand combinations are accepted only in V20/V30 Mode.

Table 8-2. Assembler Instruction Set (Cont’d)

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

191

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

192

9

Assembler Controls

Description of assembler controls and control defaults.

Chapter 9: Assembler Controls

193

Assembler controls are internal assembler switches which let you enable and
disable certain aspects of the assembly process. This chapter describes
assembler controls and control defaults.

If a [NO] appears in the heading, it indicates that the word NO can be
prefixed to a control to make it do the opposite of what the control does
normally. For example, LIST turns on the output listing, but NOLIST turns
off printing of the listing. (The -L command line option causes a listing to be
generated.)

Chapter 9: Assembler Controls

194

General Syntax for Assembler Controls

The syntax of a control line in the source code is:

$control[(parameter)] [...]

The dollar sign may be preceded by tabs or blanks. Separators must be
included between adjacent controls. Examples:

$XREF
$INCLUDE(filename) DEBUG SYMBOLS
$PRINT ERRORPRINT(FILENAME)

Primary and General Controls

Assembler controls are classified as either primary or general. Primary control
statements occur only on the first few lines of the source program before any
non-control statements (other than comments and blank lines). Primary
controls are not processed when they occur after any statement other than a
control line; their presence after any statement other than a control line
causes an error. General controls, however, can be specified at any time in
the source program. In most instances, an error in either kind of control line
causes all remaining controls on the line to be ignored.

Controls on the Command Line

Assembler controls may also be included on the command line when the
assembler is invoked. If a primary control is entered on both the command
line and in the first lines of the source file being assembled, the control from
the command line overrides the control in the file for that particular assembly.

If a general control is entered on both the command line and in the file (since
general controls can appear anywhere in the file, the general control might be
far, relatively, from the beginning of the file), then the control from the
command line is in effect until the control in the source file is found. At that
point, the source file control overrides the command line control for the rest
of the assembly.

Chapter 9: Assembler Controls
General Syntax for Assembler Controls

195

Control Conflicts

If a primary control conflicts with another primary control and both are in the
source file, then the one that appears last takes effect. If the conflict is between
a control on the command line and one in the file, then the control which
appears on the command line overrides the one in the file.

If general controls conflict (whether both in the file or one on the command
line and one in the file), then the control which appears last will be the one to
take effect. Example:

$MOD186
$MOD086 ;this control is last, it will be the one
 ;to take effect

Controls and File Names

Certain controls accept a file name as a parameter. The file name parameters
are optional, except with INCLUDE, and are ignored with all controls except
INCLUDE. The [NO] form of these controls does not accept a file name.

Control Abbreviations

Each control can be abbreviated to a two-character equivalent; the
abbreviations are listed with each control. Abbreviations may be negated if the
full name of the control can be negated. Controls are not case-sensitive;
upper-case and lower-case letters are equivalent. Remember that their
arguments may be case sensitive, although the controls are not.

Controls and the Macro Preprocessor (ap86)

Most controls are used only by the assembler. The INCLUDE control acts
differently, however, if the source file is processed by the macro preprocessor
before assembly. If the source file contains INCLUDE controls and does go
through the macro preprocessor, then the macro preprocessor will expand the
INCLUDEs. The output from the preprocessor will then contain the include
files and will no longer contain the INCLUDE controls (not a problem, since
they are no longer necessary). The macro preprocessor does not act on any
other assembler controls.

Chapter 9: Assembler Controls
General Syntax for Assembler Controls

196

Primary Controls

[NO]CASE

shorthand = [NO]CA
default = CASE

Causes symbols to be case sensitive. That is, upper and lower case letters are
not equivalent. If this control is negated, then all lower case characters in
symbols will be treated as upper case. This control does not affect text within
strings (except for class names).

Note All Intel-generated OMF will contain case insensitive symbols.

DATE(string)

shorthand = DA

(No default necessary.)

The DATE control has no effect. It is supplied for Intel compatibility, and its
use will not generate an error. The date printed on the listing and placed in the
object file is obtained from the operating system.

Chapter 9: Assembler Controls
Primary Controls

197

[NO]DEBUG

shorthand = [NO]DB
default = DEBUG

Causes symbolic debug and type information to be placed into the output
object module. By default, only non-PURGEd variables, labels and numbers
are placed into the object module.

[NO]ERRORPRINT (filename)

shorthand = [NO]EP
default= ERRORPRINT

This control causes error and warning information to be displayed on standard
error. The filename, if present, is ignored and is only allowed for Intel
compatibility. The noerrorprint control suppresses error and warning
messages from being displayed on standard error. The nowarning control may
be used to suppress only warning messages while allowing error messages to be
displayed.

[NO]EXTERN_CHECK

shorthand = [NO]EC
default = EXTERN_CHECK

This control causes the use of external symbols to check that an ASSUME
register has been defined such that the external symbol can be referenced from
the ASSUME register. The noextern_check control causes the assembler to
allow any use of an external symbol without verifying that the symbol is
accessible through whatever assume register is used to reference that symbol.
This then requires the user to make sure that segment registers are correctly
set up to reference the segment that a given external symbol belongs to.

Chapter 9: Assembler Controls
Primary Controls

198

GEN

shorthand = GE
(No default necessary.)

Supplied for Intel compatibility. The assembler does no macro processing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

GENONLY

shorthand = GO
(No default necessary.)

Supplied for Intel compatibility. The assembler does no macro processing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

[NO]GROUP_INFO

shorthand = [NO]GI
default = GROUP_INFO

This control causes the debug information emitted from the assembler to
associate group information to all symbols that belong to segments that are
members of a group. Only one group will be assigned to a given symbol,
regardless of how many groups a given segment belongs to. The nogroup_info
control will only associate group information to labels and procedures;
variables will NOT have group information associated.

Chapter 9: Assembler Controls
Primary Controls

199

[NO]HLASSYM

shorthand = [NO]HA
default = NOHLASSYM

Causes as86 to generate low-level symbol information for static procedures,
static data, and embedded assembly code. This option is useful when
compiler-generated output is to be debugged in an emulator. If the output is
to be debugged in AxDB or AxDE, then the negated form of this option is
recommended.

[NO]MACRO(string)

shorthand = [NO]MR

(No default necessary.)

Enables or disables macro assembly. Since macro processing is accomplished
by a separate program, this control has no effect in either the assembler or the
macro preprocessor. It is supplied for Intel compatibility, and its use will not
generate an error.

MOD086

shorthand = M0
default = MOD086

Identifies the target microprocessor as 8086. The assembler generates errors
for instructions that are not part of the 8086 microprocessor instruction set.

Chapter 9: Assembler Controls
Primary Controls

200

MOD186

shorthand = M1
default = MOD086

Identifies the target microprocessor as 80186. The assembler generates errors
for instructions that are not part of 80186 microprocessor instruction set.

MODV20

shorthand = MV
default = MOD086

Identifies the target microprocessor as V20. Causes the V20/V30/V40/V50
instruction set to be recognized. Errors or warnings will be issued when
instructions from conflicting instruction sets are encountered. All instructions
are accepted without error in this mode.

Note In V20 mode, the as86 assembler accepts the extensions that are specific to the
NEC V20/V30 microprocessor. For these extensions, as86 accepts NEC
mnemonics, but uses Intel instruction syntax. Where instructions might
overlap (the NEC equivalent of an Intel instruction), as86 accepts only the
Intel instruction mnemonic and not the NEC mnemonic or syntax (which
might be different for the same function). This assembler is targeted for the
8086/186 family of microprocessors and should not be considered to support
the NEC V20/V30 microprocessor instruction mnemonics or syntax.

[NO]OBJECT (filename)

shorthand = [NO]OJ

default = OBJECT

Chapter 9: Assembler Controls
Primary Controls

201

Generates an output object module, but the optional file name is ignored and
only allowed for Intel compatibility. The assembler gives the object file the
same root name as the source file, with a ’.o’ (dot lower case o) default file
name extension.

[NO]OPTIMIZE

shorthand = OP
default = NOOPTIMIZE

This control will cause the assembler to spend extra time processing the input
file so the resulting object file has as few NOPs as possible. These NOPs are
generated when forward references are used in expressions. The assembler
does not always know how many bytes of output will be produced for a given
instruction, so it reserves extra space. If the instruction turns out to be shorter
than that size, then the assembler pads the rest of the length with NOP bytes.
This control will allow the assembler to spend time removing these NOPs
when they are generated under these conditions. Note that this control will
cause the assembler to run for a longer time than it otherwise would.

PAGELENGTH(n)

shorthand = PL
default = 55 lines per page

Specifies the page length of the listing as "n" lines, where n= 20 or more lines.

PAGEWIDTH(n)

shorthand = PW
default= 132 characters per line

Chapter 9: Assembler Controls
Primary Controls

202

Specifies the listing page width in number of characters, where n is a number
between 60 and 255, inclusive. Lines exceeding the current page width are
wrapped to the next line.

[NO]PAGING

shorthand = [NO]PI
default= PAGING

Formats the output listing so as to have headers at the top of each page. By
default, the headers supply the assembler name, title, and the date. If
NOPAGING is specified, then the listing does not contain page headers or
page ejects (except for an initial header on the first page). This option is only
useful if a listing is produced.

[NO]PRINT(filename)

shorthand = [NO]PR
default = NOPRINT

 Prints the assembly listing. The noprint control suppresses the generation
of the listing file including error messages and symbol table listings. You
cannot override noprint with a list control occurring later in the program;
however, a list control with no preceding print or noprint implies print. The
file name parameter is accepted for Intel compatibility, but it is ignored by
the assembler. Any lines that precede the print control will not be output
to the listing. (Default: noprint)

Chapter 9: Assembler Controls
Primary Controls

203

[NO]SYMBOLS

shorthand = [NO]SB
default= SYMBOLS

Prints an alphabetically sorted symbol table with the output listing. The
listing will not contain cross-reference information. Cross-reference
information is produced with the XREF control. If XREF is used, it will
override this control and cross-reference information will be produced. This
option is only useful if a listing is output.

[NO]TYPE

shorthand = [NO]TY
default = TYPE

This control is recognized for Intel compatibility only and its use will not have
any effect. Whether type information is generated depends upon the DEBUG
control being on.

[NO]UNREFERENCED_EXTERNALS

shorthand = [NO]UE
default = NOUNREFERENCED_EXTERNALS

 This control will cause all external symbols, including those that are
unreferenced, to appear in the generated object file. In certain cases, these
externals may be used to cause certain object files to be linked at link time. If
this control is not present or if the NOUNREFERENCED_EXTERNALS
control is used, any unreferenced externals will be removed from the resulting
object file. This form of the control is useful when using inline functions in
the Hewlett-Packard C cross compiler. This will prevent unnecessary routines
from being linked in that are being processed inline.

Chapter 9: Assembler Controls
Primary Controls

204

[NO]WARNING

shorthand = [NO]WA
default = WARNING

This control causes warning messages to be displayed along with any error
messages that may appear on standard error. The nowarning control
suppresses the warning messages so only error information is sent to standard
error. The errorprint control overrides either form of this control in
determining whether any information is sent to standard error or not.

WORKFILES(...)

shorthand = WF

(No default necessary.)

This control has no effect. It is supplied for Intel compatibility, and its use will
not generate an error.

[NO]XREF

shorthand = [NO]XR
default = NOXREF

Prints a cross reference table on the output listing. If you use both the XREF
and SYMBOLS controls, a cross reference table will be generated.

Chapter 9: Assembler Controls
Primary Controls

205

General Controls

EJECT

shorthand = EJ

(No default necessary.)

Advances the listing form to the beginning of the next page and prints a new
header. This is only useful if a listing is being generated and paging is in effect.

[NO]GEN

shorthand = [NO]GE

(No default necessary.)

This control has no effect in either the assembler or macro preprocessor. It is
supplied for Intel compatibility, and its use will not generate an error.

GENONLY

shorthand = GO

(No default necessary.)

This control has no effect in either the assembler or macro preprocessor. It is
supplied for Intel compatibility, and its use will not generate an error.

Chapter 9: Assembler Controls
General Controls

206

INCLUDE(filename)

shorthand = IC

(No default necessary.)

Indicates that the specified file should be included in the source input before
the next line of the current source file is processed. Unlike other controls,
INCLUDE must appear on a line by itself. No other controls, or other
INCLUDEs, can be on the same line.

Note The default directory for INCLUDE is always the current working directory.
To use a file in another directory, specify the complete path name.

[NO]LIST

shorthand = [NO]LI
default = LIST

Turns on assembly listing at any point in the program. If used in combination
with NOLIST, you can list a portion of the source file. NOLIST overrides
XREF and SYMBOLS. An error summary still goes to stdout and errors still
go to stderr regardless of LIST setting.

RESTORE

shorthand = RS

(No default necessary.)

Restores, as the current settings, the most recently-saved settings for
LIST/NOLIST that are on the stack. This control is used mainly to restore
LIST/NOLIST settings after returning from INCLUDE files.

Chapter 9: Assembler Controls
General Controls

207

SAVE

shorthand = SA

(No default necessary.)

Saves the current settings of LIST and NOLIST controls on a stack up to 64
entries deep. This control remains in effect until explicitly changed. SAVE is
typically used with RESTORE where LIST/NOLIST settings are saved before
an INCLUDE control switches the input source to another file. RESTORE
can be used to restore the settings at the end of the include file or upon
returning from the include file.

TITLE(string)

shorthand = TT
default = module name

Enables you to define a title of up to 41 characters in a page header.
Unquoted parentheses in "string" must be balanced. String may be quoted if
"unusual" characters are used in the title. The length of the title is bound by
PAGEWIDTH. If you want the title to appear on the first page, use the
TITLE control on the first source line or the command line.

Chapter 9: Assembler Controls
General Controls

208

Operational Differences in the Different Modes

The as86 operates in one of three modes depending upon the choice of
control: MOD086, MOD186, or MODV20. The 8086 mode is the default.

8086 Mode

The default 8086 mode is the simplest mode. It is intended for assembling
code destined for an 8086 or 8088. The pre-defined instructions which work in
the 80186, but not the 8086, are flagged with errors when they appear. The
80186 instructions that will be flagged:

BOUND, ENTER,IMUL with 2 or 3 operands, INS,INSB, INSW, LEAVE,
OUTS, OUTSB, OUTSW, POPA, PUSH immediate, PUSHA. The shifts
RCL, RCR, ROL, ROR, SAL, SAR, SHL, and SHR with a numeric second
operand other than 1.

The extensions for the V20 are also flagged with errors.

80186 Mode

The 80186 mode differs from the 8086 mode in that the pre-defined
instructions listed in the 8086 mode discussion above do not generate an error
when they are found. The V20 instructions, however, do generate errors.

V20 Mode

The V20 Mode differs from the 80186 mode in that it accepts the additional
V20 predefined instructions: EXT, ADD4S, CMP4S, SUB4S, ROL4, ROR4,
TEST1, NOT1, CLR1, BRKEM, FPO2, REPC, REPNC, and two additional
operand combinations for INS. Remember that for those instructions
common to the V20 and 8086 processor families, as86 accepts only Intel
mnemonics. In addition, as86 accepts only Intel syntax for all instructions.

If you are assembling programs for NEC V-Series microprocessors, you should
consider obtaining the Hewlett-Packard V-Series Cross Assembler.

Chapter 9: Assembler Controls
Operational Differences in the Different Modes

209

Chapter 9: Assembler Controls
Operational Differences in the Different Modes

210

10

Assembler Listing Description

Description of assembler listings, including a description of the optional
symbol table and cross reference format.

Chapter 10: Assembler Listing Description

211

Assembly Listing

The as86 Assembler uses a two-pass process. During the first pass, labels,
variables and other user-defined symbols are examined and placed in the
symbol table. Additionally, structures are stored internally.

During the second pass, the object code is generated, symbolic addresses are
resolved, and a listing and object module are produced. Errors detected
during the assembly process will be displayed on the output listing with a
cumulative error count. At the end of the assembly process a symbol table or a
cross reference table can be displayed.

The listing contains information pertaining to the assembled program,
including op codes, assembled data and the original source statements. The
listing can be used as a documentation tool by including comments and
remarks that describe the function of the particular program segment.

A sample assembler listing is provided in Chapter 1. Refer to the following
points to examine and understand the listing.

1 The page headings show the time and date of the program run.

2 The column titled "Line" contains decimal numbers associated with the
listing source lines. These numbers are referred to in the cross reference
table.

3 The column titled "Offset" contains a value that represents the first
memory address of any object code generated by this statement.

4 The columns under "Object-Bytes" show the object code generated by
instructions and directives in the file. Bytes are output lowest address first.

5 To the right of the data bytes are the assembler relocation flags. The flags
are ’R’ for relocatable operand, and ’E’ for external operand. If one
operand is relocatable and the other is external, the ’E’ flag will be
displayed.

6 The original source statements are reproduced to the right of the
object-bytes field.

7 At the end of the listing the assembler prints the number of assembler
errors. The assembler substitutes NOPs when it cannot translate a
particular opcode and therefore provides room for patching the program.

Chapter 10: Assembler Listing Description
Assembly Listing

212

A symbol table or cross reference table can be generated at the end of the
assembly listing if the option specifying its output is used. All user-defined
symbols, in alphabetic order, along with the symbol’s value type and attributes,
are listed in the symbol table.

Cross Reference and Symbol Table Format
Description

By default, the assembler produces a symbol table at the end of each listing. If
you want the assembler to produce a cross reference table in place of the
symbol table, use the XREF option.

If SYMBOLS and XREF are both specified, a cross reference table is
produced. The cross reference table includes all the information present in
the symbol table, but with line references noted for each symbol. The symbol
table listing and cross reference features can be turned on only at the
beginning of a program, and once on, cannot be turned off at a later point.

Label In the symbol table or cross reference listing header, the Label field lists the
symbol name.

Type The Type field describes the kind of symbol represented by the Label. This
field may be any of the following:

SEGM segment name

GROUP group name

CLASS class name

LOCAL local variable

PUBLIC public variable

EXTERN external variable or label

LABEL local far or near label

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

213

STRUC structure definition

STR_FLD structure field name

REC record definition

REC_FLD record field name

EQU equate symbol

PROC procedure name

UNDEF undefined symbol

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

214

Value The Value field appears to the right of the Type field and is used to indicate
attributes of the symbol. These attributes further describe what the symbol is
or where the symbol resides. The specific attributes shown depend upon the
Types above.

SEGM Size of segment (in bytes), followed by combine type
(PUBLIC/MEMORY/STACK/COMMON), followed
by alignment
(BYTE/WORD/PARA/PAGE/INPAGE/AT nnn),
followed by classname, if present.

GROUP List of segments that belong to the group. If a SEG
EXTRN was used, then the name of the external will
be displayed.

LOCAL, PUBLIC, EXTERN, LABEL, PROC

Segment name (if known), and offset within segment,
followed by type (BYTE/WORD/
 DWORD/QWORD/TBYTE/
NEAR/FAR/ABSOLUTE).

STRUC Size of structure, followed by number of fields.

STR_FLD Offset within structure, followed by type of field
(BYTE/WORD/
 DWORD/QWORD/TBYTE).

REC Size of record, followed by number of fields, followed by
width of record in bits.

REC_FLD Bit offset within record, followed by width of field in
bits.

EQU If EQU’d to a register, the name of the register is shown.

If EQU’d to a 17-bit value, NNNN.

If EQU’d to a real number, REAL.

If EQU’d to an instruction, INSTRUCTION.

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

215

If EQU’d to a memory expression, EXPRESSION.

The UNDEF and CLASS types do not have any attributes.

Cross Reference If a cross reference is being generated in addition to the symbol listing, then
line references will appear to the right of the Value field. Each line reference
will be separated from the next by a space.

The line on which the symbol is defined will have a minus sign placed before it.
All other line numbers indicate references to the symbol. It is possible for
there to be more than one definition of a symbol (for example, a segment).
Also, purged symbols may appear more than once in the table.

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

216

11

Codemacros

How to use the CODEMACRO directive.

Chapter 11: Codemacros

217

Codemacros define 8086, 8087, 8088, 80186, and V20 instructions. A
codemacro is a template for generating code, with certain bits fixed and other
bits that are supplied when the codemacro is referenced (much as a record or
structure). You must define the codemacro using the CODEMACRO
directive before referencing it.

Referencing Codemacros

Formal arguments can be defined on the call line and then referenced in the
body of the codemacro. Forward references to codemacros are illegal.

A codemacro is referenced by using its name in the opcode field of a source
statement. You must provide actual parameters at this time, which must
match the parameters as to the sort of entity described (number, WORD
address expression, segment register, etc.). Matching is described in detail
below. If matching is successful for all arguments, the codemacro is used to
generate code. At this time, the formal arguments in the codemacro body will
be replaced with data derived from the corresponding actual parameters.

Multiple codemacros with the same name are legal. When the name is
referenced, each of the defined codemacros is checked to determine whether
its formal arguments match the actual parameters you provide. The first
codemacro whose arguments match is used to generate code. Multiple
codemacros are checked in reverse order; the most recently-defined
codemacro is checked first. This feature permits a single symbol to generate a
variety of different code, depending on the arguments provided. When
defined, as86 compiles the codemacro into a compact internal form and stores
it in virtual memory.

Chapter 11: Codemacros
Referencing Codemacros

218

Codemacro Directives

CODEMACRO

Enters Codemacro Definition

Syntax
CODEMACRO cmac_name [formal:specmod[range]][,formal:specmod[range]]...
 ...
ENDM

or

CODEMACRO cmac_name PREFX
 ...
ENDM

Description
cmac_name The name associated with the defined codemacro. It

may have been previously defined as a codemacro, but
not as anything else. This name is stored as a symbol
and should not conflict with reserved words. Note that
using an instruction name in this field is legal and
results in an additional codemacro to be searched for
that name.

formal An arbitrary symbol defining a formal argument to the
codemacro. Formals are not stored as symbols, and can
duplicate keywords or even the cmac_name without
conflict. Formals have no existence outside their
codemacro and do not appear in the symbol table
listing, although two formal parameters to the same
codemacro cannot have the same name. A codemacro
can have at most 255 formal arguments.

specmod A letter or pair of letters describing the actual
parameters that will match this formal parameter.

The legal values for specmod are:

Chapter 11: Codemacros
Codemacro Directives

219

A Ab Aw
C Cb Cd Cw
D Db Dw
E Eb Ed Ew
F
M Mb Md Mq Mt Mw
R Rb Rw
S
T
X Xb Xd Xq Xt Xw

Upper- and lower-case letters are interchangeable for
these values. The convention of one upper-case letter
followed by one lower-case letter is used in this chapter
for clarity and to avoid confusion with the directives DB
and DW. The first letter of the specmod is referred to
as the specifier and the second letter as the modifier.
The meaning of the various specmods is described in
the table on page 223.

range An optional field that follows a parameter. It describes
a range of values that limits the acceptable modules for
the parameters matching the formal argument. The
first letter of the specmod must be A, D, R, or S. Any
other type of specmod is not permitted to have a range
field. The syntax and meaning of range fields is further
described later in this section.

PREFX A keyword that can appear instead of the formal
arguments, indicating that the codemacro name cannot
take parameters. Instead, it is used to precede another
codemacro or instruction name. At the time the
codemacro is referenced, an error is detected if another
codemacro or instruction does not follow this one.

PREFX is associated with the codemacro name as a
whole rather than separately with each codemacro. If
one codemacro uses PREFX, another codemacro with
the same name must also use PREFX. The last
codemacro defined controls in case of conflict. A
formal argument cannot be named PREFX.

Chapter 11: Codemacros
Codemacro Directives

220

The CODEMACRO directive lets you enter the codemacro definition mode
and specifies the formal arguments associated with the new codemacro. The
ENDM is used to terminate the codemacro definition mode. Each
CODEMACRO directive must have a corresponding ENDM directive, and
codemacro definitions cannot be nested.

Examples
CODEMACRO CMAC1 FORMAL1:Ew,FORMAL2:Db(10,20)
CODEMACRO CMAC2 FORMAL3:S
CODEMACRO CMAC3
CODEMACRO CMAC4 PREFX

ENDM

Terminates Codemacro Definition

Syntax
ENDM

Description The ENDM directive terminates the codemacro definition
mode. Each ENDM must correspond to a CODEMACRO directive. For
more information on ENDM, see the description of the CODEMACRO
directive in the previous section.

Codemacro Matching

The assembler performs two passes on the input file to match codemacro
references to definitions.

1 During pass 1, all actual parameters are evaluated. Parameters containing
undefined symbols are called “forward references,” and are treated
differently from other expressions. as86 is much more liberal concerning
what a forward reference can match than what a fully-evaluated expression
can match. Forward references are considered to be typeless unless type
information is specifically attached with PTR or SHORT.

2 The chain of codemacros corresponding to the instruction mnemonic is
searched, beginning with the last one defined. as86 looks for a codemacro

Chapter 11: Codemacros
Codemacro Matching

221

with the same number of formal arguments as there are actual parameters,
such that each actual parameter matches the corresponding formal as far
as specmod and range goes. Matching is described in the "Range
Specification" section. The first codemacro that matches is used as
described in # 3 below. If none matches, an error is reported.

3 The number of bytes of object code is estimated by executing the
codemacro and discarding the generated bytes. This estimate is used to
update the location counter. By default, forward references do not require
a segment override byte from the SEGFIX, RFIXM, and RNFIXM
directives.

4 During pass 2, the codemacro chain search starts at the beginning again.
Presumably, all forward references have now been resolved. If not, an
error is issued and the absolute number 0 is substituted for the undefined
symbol, which may in turn cause other errors. This resolution of forward
references can cause a different codemacro to be matched than in pass 1.
If none matches, an error is reported. If a codemacro matches in pass 1, it
does not necessarily have to match in pass 2.

5 Code is generated using the matched codemacro. A different number of
bytes of code can be generated than was called for in the estimate from
pass 1. If more code is generated in pass 1 than in pass 2, the extra room
allocated is filled with NOPs (90H). If more code is generated in pass 2
than in pass 1, an error message is issued and the entire space allocated is
filled with NOPs.

Chapter 11: Codemacros
Codemacro Matching

222

The Specmod Field

The specmod field determines what actual parameters match each formal
argument. In the table which follows, ‘‘variable’’ is an address expression with
type BYTE, WORD, DWORD, QWORD, TBYTE, a structure name, or a
record name, and ‘‘label’’ is an address expression with type NEAR or FAR.
For the purpose of matching, forward references during pass 1 are treated as a
special kind of expression that match certain specmods. Specmods match
actual parameters as shown in the table.

Specmod Match

A AX or AL.

Ab AL.

Aw AX.

C Any label, or any forward reference of type NEAR or FAR or
no_type.

Cb Any NEAR label with the same segment definition attribute as the
current assumed contents of CS via ASSUME and within the range
-128 to + 127 from the beginning of the code macro reference, or any
forward reference with SHORT attached.

Cd Any FAR label, or any forward reference without a type or of type
FAR.

CW Any NEAR label with the same segment definition attribute as the
current assumed contents of CS via ASSUME but farther away from
the beginning of the codemacro reference than -128 to + 127, or any
external NEAR label

D Any 17-bit number, or any forward reference with no type.

Db Any absolute number between -256 and 255, inclusive, or any number
of relocation type high or low

Table 11-1. Specmods and Parameter Matches

Chapter 11: Codemacros
The Specmod Field

223

Specmod Match

Dw Any absolute number not between -256 and 255 inclusive, or any
number of relocation type offset or base, or any forward reference
with no type.

E Any variable, or any address expression without a type, or any
register except segment registers, or any forward reference, except for
those typed NEAR

Eb Any variable with type BYTE

Ed Any variable with type DWORD, or any forward reference of type
DWORD or no type.

Ew Any variable with type WORD, or any 16-bit register, except segment
registers, or any forward reference of type WORD or no type.

F The floating-point stack or any element thereof: ST

M Any variable or any address expression without a type, or any forward
reference except those of type NEAR

Mb Any variable with type BYTE, or any forward reference of type
BYTE or no type.

Md Any variable with type DWORD, or any forward reference of type
DWORD or no type.

Mq Any variable with type QWORD, or any forward reference of type
QWORD or no type.

Mt Any variable with type TBYTE, or any forward reference of type
TBYTE or no type.

Mw Any variable with type WORD, or any forward reference oftype
WORD or no type.

R Any register except segment registers.

Rb Any 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL).

Rw Any 16-bit register except segment registers (AX, BX, CX, DX, SI,
DI, BP, SP)

Table 11-1. Specmods and Parameter Matches (Cont’d)

Chapter 11: Codemacros
The Specmod Field

224

In addition, typeless address expressions such as [BX] will sometimes match
the specmods Eb, Ew, Mb, and Mw. There must be enough information for
as86 to infer the size of the operation. This condition is met if the codemacro
has at least two formal arguments, and one or more of the actual parameters
corresponding to the other argument(s) is not either another typeless address
expression or a number that matches Db.

For example, suppose a codemacro has ARG1:Ew,ARG2:Ew as the formal
arguments. The actual parameters [BX],AX match, since AX implies a
WORD operation; however, the actual parameters [BX],[BX] do not match
since the information to infer the size of the operation is insufficient. This
condition means that any codemacro with a single formal parameter of
specmod Eb, etc., cannot match a typeless address expression, including
several of the built-in instructions (e.g., INC, FISUB, IMUL).

Specmod Match

S Segment registers (ES, DS, SS, CS)

T The floating-point stack top: ST or ST(0) only.

X Any variable or any address expression without a type, whose base
and index attributes are null or any forward reference except those of
types NEAR

Xb Any variable of type BYTE whose base and index attributes are null,
or any forward reference of type BYTE or no type.

Xd Any variable of type DWORD whose base and index attributes are
null

Xq Any variable of type QWORD whose base and index attributes are
null, or any forward reference of type QWORD or no type.

Xt Any variable of type TBYTE whose base and index attributes are
null, or any forward reference of type TBYTE or no type.

Xw Any variable of type WORD whose base and index attributes are null,
or any forward reference of type WORD or no type.

Table 11-1. Specmods and Parameter Matches (Cont’d)

Chapter 11: Codemacros
The Specmod Field

225

A few built-in instructions (e.g., FLDENV) have the specmod M on their
single formal parameter and, therefore, will accept a typeless address
expression.

Chapter 11: Codemacros
The Specmod Field

226

Range Specification

A codemacro range is a parenthesized list of one or two expressions separated
by a comma. The syntax of a range specification is:

(value1[,value2])

Each value must be a register name or an expression evaluating to an absolute
number (i.e. not an address). Registers are converted to absolute numbers
according to the following table.

Some codemacros have specific limits on the range of parameters that can be
used. This pertains to formals using specifiers A, D, R, or S.

When codemacros are referenced, the actual parameter is checked against the
specified range, converting actual registers according to the table. If the range
field contained a single value, the actual parameter must match it. If the range
field contained two values, the actual parameter must be greater than or equal
to the first and less than or equal to the second. Otherwise, the actual
parameter does not match. Relocatable actual parameters and forward
references never match a formal with a range field.

Register Number

AL, AX, ES
CL, CX, CS
DL, DX, SS
BL, BX, DS
AH, SP
CH, BP
DH, SI
BH, DI

0
1
2
3
4
5
6
7

Table 11-2. Absolute Number Conversion for Registers

Chapter 11: Codemacros
Range Specification

227

Examples:
S(0,2)
S(0)
Db(2,-1)
Db(-1,2)

Db(-1,DL)
Rw(DX)
Rb(CL)
Db(1)

Matches ES, CS, or SS.
 Matches only ES.
Generates error - invalid range.
Matches -1, 0, 1, or 2.
255 does not match (9-bit comparison).
Same as previous example.
Matches DX.
Matches CL.
Matches 1.

Chapter 11: Codemacros
Range Specification

228

Codemacro Matching Examples

This table shows a list of the arguments on some example codemacros for the
MOV instruction, in the order they are searched, along with actual parameters
that will match each. WORDVAR is a variable of type WORD, and
BYTEVAR is a variable of type BYTE.

Codemacro Reference Match

MOV WORDVAR,AX
MOV BYTEVAR,AL
MOV AX,WORDVAR
MOV AL,BYTEVAR
MOV SS,WORDVAR
MOV WORDVAR,CS
MOV CX,WORDVAR
MOV CL,BYTEVAR
MOV DS:[BX],AX
MOV DS:[BX],AL
MOV CX,1000
MOV CX,20
MOV CL,20
MOV WORDVAR,1000
MOV WORDVAR,20
MOV BYTEVAR,20

;8-bit move
;16-bit mov
;16-bit move,0 fill

;16-bit move, 0 fill

MOV dst:Xw,src:Aw
MOV dst:xb,src:Ab
MOV dst:Aw,src:Xw
MOV dst:Ab,src:Xb
MOV dst:S(SS,DS),src:Ew
MOV dst:Ew,src:S
MOV dst:Rw,src:Ew
MOV dst:Rb,src:Eb
MOV dst:Ew,src:Rw
MOV dst:Eb,src:Rb
MOV dst:Rw,src:Dw
MOV dst:Rw,src:Db
MOV dst:Rb,,src:Db
MOV dst:Ew,src:Dw
MOV dst:Ew,src:Db
MOV dst:Eb,src:Db

Table 11-3. Arguments and Actual Parameters

Chapter 11: Codemacros
Codemacro Matching Examples

229

The following is a list of some instructions that do not match the formal
argument pairs.

MOV CS,WORDVAR ; CS is not between SS and DS,
 ; and not equal to ES.
MOV ES,BYTEVAR ; No such 8-bit operation appears.
MOV WORDVAR,BL ; In general, 8-bit and 16-bit operands
 ; cannot mix.
MOV BL,WORDVAR ; Mixed 8- and 16-bit operands.
MOV BL,1000 ; Mixed 8- and 16-bit operands. 1000 won’t fit in BL.
MOV BYTEVAR,1000 ; Mixed 8- and 16-bit operands. 1000 won’t fit in
 ; BYTEVAR either.

Chapter 11: Codemacros
Codemacro Matching Examples

230

Expressions in Codemacros

Only a small subset of the usual expressions is available within codemacro
definitions. The following are allowed:

• Absolute numbers, and expressions which evaluate to absolute numbers.
No forward references are allowed within such expressions.

• Segment registers.

• Formal argument names.

• Shifted formal arguments.

Syntax:
formal_name.recordfield

where formal_name and recordfield are symbols. This means to perform a
right shift of the actual parameter corresponding to the formal_name at the
time the codemacro is referenced, by the number of bits given by the shift
count of the recordfield. The actual parameter must be an expression that
evaluates to an absolute number. If the actual parameter is a relocatable
number, an error is reported at the time the codemacro is referenced. The
predefined ESC instruction uses this construct.

PROCLEN PROCLEN has the value 255 if the most recently defined PROC at the time of
codemacro reference was declared FAR. It has the value 0 otherwise. Thus, if
the codemacro reference is not in a PROC, PROCLEN yields 0.

Chapter 11: Codemacros
Expressions in Codemacros

231

Directives within Codemacros

Only a few directives are legal within a codemacro definition, and these are
listed below. Instructions are not allowed within a codemacro definition, but
assembler controls and comments are; however, the assembler control is not
considered part of the codemacro. None of these directives are allowable
outside a codemacro definition unless so described elsewhere in this manual
(e.g. DB, DW, DD, and record names).

The following pages describe directives within codemacros.

Directive Function

DB
DD
DW
MODRM
NOSEGFIX
ONLY186
recordname
RELB
RELW
RFIX

RFIXM

RNFIX

RNFIXM

RWFIX
SEGFIX

Generates byte of immediate data.
Generates 4 bytes of immediate data.
Generates 2 bytes of immediate data.
Generates ModRM byte.
Checks for addressability through a certain seg register.
(186 Mode only) Identifies 186-only instructions.
Generates 1 or 2 bytes using the specified record template.
Generates 1-byte displacement.
Generates 2-byte displacement.
Generates a WAIT (9BH) followed by the first 5 bits of an
ESC(0D8H).
Generates a WAIT (9BH) followed by a segment override byte
(if needed) followed by the first 5 bits of an ESC (0D8H).
Generates an NOP (90H) followed by the first 5 bits of an
ESC(0D8H).
Generates a NOP (90H) followed by a segment override byte (if
needed) followed by the first 5 bits of an ESC (0D8H).
Generates a WAIT (9BH).
Generates segment-override byte if needed.

Table 11-4. Directives within Codemacros

Chapter 11: Codemacros
Directives within Codemacros

232

DB, DD, DW

Generates N-Bytes of Immediate Data

Syntax
DB absolute_numeric_expression
DB formal_name
DB formal_name.recordfield
DD absolute_numeric_expression
DD formal_name
DD formal_name.recordfield
DW absolute_numeric_expression
DW formal_name
DW formal_name.recordfield

Description
absolute_numeric
_expression

An absolute numeric expression.

formal_name A name that is a formal parameter to the codemacro.

formal_
name.recordfield

A name that is a formal parameter to a codemacro but
shifted according to the recordfield.

The DB, DD, and DW directives are similar to their counterparts outside
codemacros, but their legal operands are much more restricted.

Each consecutive appearance of a DB, DW, or DD directive within a
codemacro generates one, two, or four bytes, respectively.

It is possible for a formal argument with specmod Dw to appear in a DB
directive, where it will not fit, which will then cause an error at the time of
codemacro reference.

A formal_name without a recordfield must be of specifier D for the DB
directive and must be of specifier D, C, or X for the DW and DD directives.
(A specifier is the first letter of a specmod listed beginning on page 223.)

A formal_name appearing with a recordfield must have specifier D.

Chapter 11: Codemacros
Directives within Codemacros

233

MODRM

Generates ModRM Byte

Syntax
MODRM formal_name2,formal_name1

or

MODRM number,formal_name1

Description
formal_name1 An effective-address parameter. It must have a

specifier of E, M, R, X, A, or S. (A specifier is the first
letter of a specmod listed beginning on page 223.)

formal_name2 A parameter, usually a register. It must have a specifier
of D, R, A, or S.

number An expression evaluating to an absolute number.

MODRM generates the ModRM byte, which can contain a wide variety of
information: a register involved in the instruction, the base and index registers
of an operand, the addressing mode (direct address, relative to the current
location, immediate, register), a continuation of the opcode, etc.

as86 derives 5 bits of information from formal_name1, and 3 bits from the first
parameter. If the first operand of MODRM is a number that is either a
constant or a formal matching D, the low 3 bits are used in the generated byte.
If the first operand is a register with a matching A, R, or S, the 3 bits to use are
taken from the numeric values corresponding to registers as described in the
section on Range Specification.

Chapter 11: Codemacros
Directives within Codemacros

234

NOSEGFIX

checks for Addressability

Syntax
NOSEGFIX segreg , formal_name

Description
segreg One of the segment registers ES, CS, DS, SS.

formal_name A formal argument name whose specifier is E, M, or X
(a memory parameter).

NOSEGFIX ensures that a parameter is addressable through a specific
segment register. It is used in the built-in instruction set for the string
instructions MOVS, STOS, CMPS, SCAS, INS[186], for which one operand
must be addressable through ES.

NOSEGFIX checks the segment addressability attribute of the actual
parameter corresponding to the formal_name to ensure that the parameter is
addressable through the specified segment register. If the actual parameter is
a register (matching E), it is considered addressable. If the attribute is a
segment register, it must match the register on the NOSEGFIX. If the
attribute is null, it is not addressable. If the attribute is a segment or group,
as86 checks the assumed contents of the specified segment register through
ASSUME, as it does for SEGFIX. NOSEGFIX never generates any code. It
merely performs an error check. Note that this check is not performed at
argument matching time. It is possible for the actual parameters to match the
formal arguments of a codemacro that contains a NOSEGFIX directive and
then get an error on the NOSEGFIX, even if another codemacro exists farther
along in the codemacro chain that would not get this error. No codemacro in
the built-in instruction set can do this.

Chapter 11: Codemacros
Directives within Codemacros

235

ONLY186 (186 Mode Only)

Identifies 186-Only Instructions

Syntax
ONLY186

Description ONLY186 issues a warning message if the assembler is in 8086
mode. Generation of code proceeds normally. This protects you from
accidentally writing a 186-only instruction which will not work when the target
machine is an 8086.

Chapter 11: Codemacros
Directives within Codemacros

236

Record Name Initialization

Syntax
recordname<[expression][,expression]...>

Description
recordname The name of a previously-defined record.

expression One of the following:
• An expression evaluating to an absolute number
• A formal argument
• A formal argument plus a .recordfield
• Null
• PROCLEN

The record initialization directive lets you control bit fields in codemacro
definitions.

Formal arguments in either construct (with or without a .recordfield) must be
of specifier D, and the corresponding actual parameter cannot be relocatable
or an error will be reported when codemacros are expanded.

Each expression must evaluate to an absolute number, and only the bits
corresponding to the defined size of each .recordfield are used. Also, the least
significant bits of the expression value are used, and more significant bits are
discarded without any check. Null fields, as well as records outside
codemacros, result in the use of the default value at the time the record was
defined.

Chapter 11: Codemacros
Directives within Codemacros

237

RELB, RELW

Generates N-byte Displacement

Syntax
RELB formal_name
RELW formal_name

Description
formal_name The name of a formal parameter to the codemacro with

specmod type C.

The RELB and RELW directives generate a one- or two-byte displacement,
respectively, denoting the distance from the location of the codemacro
reference to a target which can only be a label. The displacement is measured
from the location after the bytes generated by RELB or RELW. Specifically,
if the target is the byte immediately following the generated displacement
whether that is 1 or 2 bytes, the generated displacement will be 1. These
directives take one operand, a formal argument that must be of specmod Cb or
Cw. RELB and RELW do not concern themselves with segment
addressability or the contents of CS.

During codemacro matching to Cb and Cw specmods, the assembler assumes
that any RELB or RELW in the codemacro will follow exactly one generated
byte and, as a result, the restriction of the displacement for Cb to -126 to + 129
occurs. This assumption is correct for all codemacros in the built-in
instruction set. You can write codemacros for which this assumption does not
hold. For example, you can write one equivalent to several predefined
instructions, but if this is done, the wrong match can be made at codemacro
reference-time.

Chapter 11: Codemacros
Directives within Codemacros

238

RFIX, RFIXM, RNFIX, RNFIXM, RWFIX

Generates WAIT or NOP

Syntax
RFIX formal_or_number
RFIXM formal_or_number, formal_name
RNFIX formal_or_number
RNFIXM formal_or_number, formal_name
RWFIX

Description
formal_or_number A codemacro parameter with specifier type D or an

absolute expression that evaluates to an absolute
number.

formal_name A codemacro parameter with specifier type E, M, or X.

These closely-related directives pertain to floating-point instructions. In all
modes, they generate bytes as follows:

RFIX WAIT (9BH) followed by the first word of an ESC
(0D8H)

RFIXM WAIT (9BH) followed by a segment override byte (if
needed) followed by the first word of an ESC (0D8H)

RNFIX NOP (90H) followed by the first word of an ESC
(0D8H)

RNFIXM NOP (90H) followed by a segment override byte (if
needed) followed by the first word of an ESC (0D8H)

RWFIX WAIT (9BH)

RFIX and RNFIX have one operand; RFIXM and RNFIXM have two
operands; RWFIX has no operands. The first operand of each, except
RWFIX, is either a formal parameter with specifier D or an expression
evaluating to an absolute number. The least significant 3 bits of this operand
are taken as the last 3 bits of the generated ESC. If the corresponding actual
parameter is relocatable, an error is reported when codemacros are referenced.

Chapter 11: Codemacros
Directives within Codemacros

239

The second operand of RFIXM and RNFIXM is a formal argument of
specifier E, M, or X representing a memory address. The segment override
byte is issued or not, depending on this parameter; the algorithm is exactly the
same as that described under SEGFIX.

The preceding descriptions assume that the object code will be used on an
8087 chip. These directives are designed for use within floating-point
instructions. However, if the linker references the 8087 emulator library
instead, the WAIT and NOP instructions described are changed into
instructions to the emulator. The linker performs this function by resolving
external references generated by the R?FIX? directives. This is why, for
instance, a codemacro uses RWFIX instead of DB 9BH.

Intel provides two libraries, one of which is used as input to its linker for any
given absolute object module. One library is used if the code is destined for an
8087, and the other is used if the 8087 is to be emulated.

This use of built-in external references, which typically will not be of concern
to you, also means that any codemacro employing one of these directives
displays an E flag (i.e. external reference) on the output listing when
referenced. This includes all the floating-point instructions in the built-in
instruction set.

Chapter 11: Codemacros
Directives within Codemacros

240

SEGFIX

Generates Segment-Override Byte

Syntax
SEGFIX formal_name

Description
formal_name A codemacro parameter with specifier type E, M, or X.

The SEGFIX directive generates a segment-override byte, if needed (either
26H, 2EH, 36H, or 3EH). This instructs the hardware to use a different
segment register for the following instruction.

SEGFIX has one parameter which must be a formal argument name. This
argument represents a memory address and, therefore, must have one of the
specifiers (1st letter of the specmod) E, M, or X. A register (matching E)
never generates a segment override. An address expression has its segment
addressability attribute checked as follows:

• If this attribute is null, an error is reported.

• If the attribute is a segment register, that register is used for addressing.

• If the attribute is a group, the assumed contents of the segment registers
via ASSUME are checked to see if one of them contains the group.

• If the attribute is a segment, the assumed contents of the segment registers
via ASSUME are checked to see if one of them contains the segment or a
group containing the segment.

In the last two cases, the segment registers are examined in this order:

1 The register implied by the base and index attributes of the actual
parameter (DS or SS).

2 The other registers are examined in the order ES, CS, SS, DS.

The first register for which the check succeeds is used for addressing. If the
actual parameter cannot be addressed through any segment register, an error
is issued. Otherwise, once as86 has determined which segment register to use
for addressing, it determines whether that register is the default implied by the
base and index attributes. If so, no override byte is generated; if not, a segment

Chapter 11: Codemacros
Directives within Codemacros

241

override byte corresponding to the segment register used for addressing is
generated.

Chapter 11: Codemacros
Directives within Codemacros

242

12

Macro String Preprocessor
Introduction

Introduction to the Macro String Preprocessor.

Chapter 12: Macro String Preprocessor Introduction

243

The Macro String Preprocessor (ap86) is a character string replacement
program which performs pre-assembly processing of macros in assembly
language source files. It searches the source code for macro calls, and then
replaces those calls with the macro return values. The advantage of having the
macro string preprocessor is to permit frequently-used segments of code to be
used repeatedly by one or several users from a library, without having to
re-write the code for each use. You can automatically insert a section of code
into the source program by encoding a single line—the macro call.

At definition time, key constructs in the macro may be represented by formal
parameters; actual parameters are later substituted for the formal ones. ap86
handles conditional assembly, assembly-time loops, and is also capable of
recursion.

Note The macro preprocessor is case sensitive by default. Upper and lower case
characters are not equivalent to the preprocessor. The macro symbol
MACSYM would not be the same as macSYM, MaCSYM, or macsym. Case
sensitivity can, however, be turned off on the command line.

ap86 is implemented as a program separate from the assembler, thereby saving
time for those who do not use macros. It is compatible with the Intel syntax
for the 8086/186 macro languages. If you use macros in the source code, you
must run the Macro Preprocessor to produce an output file for input to the
assembler.

Input Source Characteristics

ap86 views its input file as a stream of characters instead of a sequence of
statements. All processing is character-oriented. The ends of lines are treated
as if they ended with a < line feed> . This character is called ’end-of-line’ or
’< EOL> ’ in text that follows.

Chapter 12: Macro String Preprocessor Introduction
Input Source Characteristics

244

The Metacharacter ’%’ And The Call Pattern

The macro preprocessor searches the input source one character at a time,
looking for a special character called the metacharacter. By default, this
character is the percent sign (’%’), but it can be dynamically changed. Until
the metacharacter is found, characters are passed to the output file without
change. When the metacharacter is found, the macro preprocessor reads and
interprets the characters following it, isolating a call pattern. The call pattern
is interpreted as instructions to the macro preprocessor and is not passed to
the output file. However, the macro preprocessor produces an expansion of
the call pattern that is written to the output file in place of the call pattern.
The call pattern can contain other metacharacters followed by call patterns;
these will also be expanded. Expansions are stacked, analogous to nested
subroutines. When the current expansion is complete, the stack is popped, and
the next higher expansion resumes where it left off. The expansion of a call
pattern is always a string of characters which can be null (zero characters) in
some cases, but most often it is one or more characters. When the outermost
expansion is completed, the macro preprocessor goes back to copying
characters while scanning for the metacharacter.

The source code below has statements that contain macros.

NOP
asymbl EQU 2
DB %LEN(%SUBSTR(5 DUP (0),1,1)) ;note blank before
 ;%SUBSTR
ADD AX,2

The example source code is treated by the macro preprocessor in this way:

1 Everything up to the first "%" is passed to the output unchanged. The text
has no significance to the macro preprocessor.

2 The first "%" invokes the pre-defined macro function LEN, which counts
the characters in its argument. (LEN, SUBSTR, and other pre-defined
macro functions used in these examples are described in detail in the
chapter called "Pre-defined Macro Functions.")

Everything up to but not including the balancing right parenthesis (in this
example, the last parenthesis) is the argument to LEN.

3 The argument to LEN contains a call to another pre-defined macro
function, SUBSTR, which extracts a substring from its first argument
according to parameters in the second and third arguments. The

Chapter 12: Macro String Preprocessor Introduction
The Metacharacter ’%’ And The Call Pattern

245

expansion of the outer function LEN therefore pauses while SUBSTR is
evaluated.

4 In this example, the result of SUBSTR is the single character ’5’. After
the evaluation, LEN resumes, in effect evaluating "%LEN(5)" (again,
notice the space in front of the 5). This produces the string "02H," which
is passed to the output.

The space between "%LEN(" and "%SUBSTR" is a significant part of the LEN
argument, but is not part of the call to SUBSTR. Following "02H," ap86 puts
out the < EOL> , which is the next character following the call pattern of LEN
in the source file. Notice that < EOL> is not part of the call pattern. The
assembler, therefore, sees the following line of text:

DB 02H<EOL>

Metacharacter Syntax

The metacharacter can be followed by

• a symbol

• a left parenthesis (

• an apostrophe ’

• a decimal digit

• an asterisk * (called the literal character), that in turn must be followed by
a symbol.

No other characters are acceptable, particularly spaces and tabs. A symbol
following the metacharacter (or the metacharacter-asterisk pair) must be one
of three things:

• A pre-defined macro function.

• A call to a previously-defined user macro.

• A reference to a previously-defined macro-expansion-time symbol or,
within a macro body, a formal argument or local symbol. The

Chapter 12: Macro String Preprocessor Introduction
Metacharacter Syntax

246

metacharacter is recognized anywhere in the source text, including within
character strings.

Getting a line such as

DB ’20% inflation’

to pass through the macro preprocessor requires special handling. Getting
these strings through the macro preprocessor is discussed in the "%n and %(
(Escape and Bracket Functions) in the chapter titled "Pre-defined Macro
Functions."

Literal Character *

The literal character (*) specifies that metacharacters contained in the
arguments to a function are not expanded. The literal character is placed
between the metacharacter and the function or macro name, and spaces or
other separators cannot precede or follow it. The literal character inhibits the
expansion of all user macros, symbols, and pre-defined functions. It does not
affect formal macro parameters, local symbols within macros, and the escape,
comment and bracket functions. If one of the lines of code from the previous
example were rewritten to contain the literal character before the LEN macro
name,

DB %*LEN(%SUBSTR(5 DUP (0),1,1))

then the SUBSTR call is not expanded. Instead, LEN counts the length of the
string ’%SUBSTR(5 DUP (0),1,1)’ and returns the string "16H." Output to
the assembler would then be

DB 16H <EOL>

If the literal character preceded SUBSTR instead of LEN, it would have no
effect in this example because the argument to SUBSTR does not contain any
metacharacters. Misuse of the literal character causes the macro preprocessor
to pass strings containing a metacharacter on to the assembler, where they will
usually be flagged as errors. The literal character is prohibited all together
with some functions; other functions accept it, but ignore it. The literal
character should almost always be used when defining a user-macro.

Chapter 12: Macro String Preprocessor Introduction
Literal Character *

247

Input Parsing

The macro preprocessor recognizes the operators listed on page 250. The
macro preprocessor only understands symbols in specific constructs which are
usually preceded by the metacharacter. Assembly-time user-defined symbols
(labels, etc.), the location counter, and EQUs are all unknown to the macro
preprocessor.

You must be careful that a macro call produces each < EOL> in the right
place. Readable input to the macro preprocessor frequently results in a large
number of output lines consisting only of blanks and end-of-lines. For user
convenience and assembler speed, such lines are always omitted from the
output. To create a blank line, deliberately use a blank comment line.

Output Buffering

The macro preprocessor buffers its output in an array that can hold 256
characters. When its buffer is full and another character (other than < EOL>)
is received, ap86 breaks the output line into two pieces. The break occurs at
the 256 character boundary and the remaining text is placed on the next line of
output. This and all other lines created from the long input line will begin
with a ’&’ so the assembler can recognize the line as a continuation. Since the
break is made at a fixed location, it is likely that the result will cause a syntax
error in the assembler. Thus, it is best if line lengths are restricted to less than
256 characters.

Include Files

INCLUDE is an assembler control command, but the macro preprocessor will
act on INCLUDE also. INCLUDE statements cause the macro preprocessor
to temporarily stop reading source statements from the current file. It begins
reading source statements from the file specified by the INCLUDE. It
continues reading from the include file until it finds the end-of-file for the
include file or it finds another INCLUDE. When the preprocessor resolves all

Chapter 12: Macro String Preprocessor Introduction
Input Parsing

248

INCLUDEs and does find the end-of-file for the include file, it then returns
to the file that contained the INCLUDE statement and again begins reading
source statements immediately after the INCLUDE statement.

Note The maximum depth that the macro preprocessor can handle nested
INCLUDE controls is to a level of eight. The restriction on the assembler
depends only upon the number of open files the operating system allows at
one time.

The syntax for the INCLUDE statement:

$INCLUDE(filename)

The ’$’ must be in column 1 for the preprocessor to recognize it for processing.

The default directory for INCLUDE is always the current working directory.

Any INCLUDE starting in column 1 of a source statement, whether from a
source file or an include file, is processed by the macro preprocessor when it is
first read. An INCLUDE within a macro definition can be processed at
assembly-time or at macro-expansion-time, depending on whether the ’$’
starts in column 1 in the definition. If an INCLUDE does have a ’$’ in column
1 in the definition, then it is expanded at definition time. Otherwise,
INCLUDE is not processed at macro-expansion-time. Example:

%*DEFINE(MAC1) ($INCLUDE(filename)) ;assembly-time
%*DEFINE(MAC2) (
$INCLUDE(filename) ;macro-definition time
)
%*DEFINE(MAC3(PARM1)) ($INCLUDE(%PARM1)) ;assembly-time
%*DEFINE(MAC4(PARM1)) (
 $INCLUDE(%PARM1) ;macro-definition time.
)

Since %PARM1 is an improper filename, this causes an error.

However, expansions of MAC4 will be the expected:

$INCLUDE(value-of-%parm1-at-expansion-time)

This is the same as MAC3, but MAC3 does not produce an error message.

Any $INCLUDE processed at macro-expansion-time causes the remainder of
its source line to be lost. If an error is detected while processing an
INCLUDE, the error message is placed in the output file as usual and the line
containing the INCLUDE is handled as ordinary text. If INCLUDE is

Chapter 12: Macro String Preprocessor Introduction
Include Files

249

misspelled or if the following left parenthesis is missing, no
macro-expansion-time error is reported; the string is passed intact to the
assembler.

Macro Expressions

Macro expressions appear in some of the pre-defined instructions and are
particularly important to the %SET macro function.

Operators

Expressions consist of one or more operands, and zero or more operators.
The recognized operator keywords and their relative precedence are in the
following table: (Operators that appear on the same line in the table have the
same relative precedence.)

Precedence Operators

Higher

↑

↓

Lower

HIGH, LOW

*, /, MOD, SHR, SHL

Unary and Binary + , -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Parentheses can be used to override the default precedence of these operators
and are recommended for complex expressions.

See Also Chapter 7, beginning on page 137, for definitions of the operators.

Chapter 12: Macro String Preprocessor Introduction
Macro Expressions

250

Numbers

Numbers are stored in 17-bit form with a range of -65535 to + 65535. Note
that the sign bit is stored, therefore -1 is not the same as +65535 for purposes
of macro-time operations (although they can be the same to the assembler).
Integer constants in bases other than decimal are defined by placing a coded
descriptor after the integer. The descriptors are as follows:

• B - binary

• O - octal

• Q - octal

• D - decimal (default)

• H - hexadecimal

Symbols

Symbols must begin with a letter or one of two special characters: the question
mark (’?’), or the underscore (’_’).

Like assembler symbols, the second and following characters can be any letter,
digit, question mark, or underscore. Only the first 31 characters of a symbol
are used by the macro processor to define that symbol; any additional
characters are only for documentation purposes.

By default, the macro preprocessor is case sensitive. That means that upper
and lower case letters are not equivalent in macro symbols. "ASYMBOL,"
according to the default, is not equivalent to "asymbol" or "ASYmBOL." Case
sensitivity, however, can be turned off on the command line.

A macro symbol must be preceded by the metacharacter (’%’) or the macro
preprocessor will treat it as ordinary text. The exception is a string argument
to a specific macro function.

The macro preprocessor does not recognize forward references because it
makes only one pass through the source. Any symbol must be defined before
it is used. Keywords are stored separately from symbols. Symbol names can
therefore duplicate operator keyword names without conflict.

Macro symbols always have a string as a value. If the string happens to
represent a valid numeric constant (such as ’01Q’ or ’2’), the symbol can be

Chapter 12: Macro String Preprocessor Introduction
Macro Expressions

251

used as the operand of an expression. Only macro-time symbols and 17-bit
integer constants are valid macro expression operands. The macro
preprocessor does not deal with relocatable numbers of any sort.

See Also Page 56 for the set of characters supported by the assembler and macro
preprocessor.

Balanced Text String (baltex)

A frequently-referenced concept is the balanced-text string (’baltex’), which is
a string of characters containing balanced parentheses. Formally, baltex either
contains no parentheses, or one or more sets of balanced parenthesis, as in

’baltex(baltex)baltex’

where each baltex is a balanced-text string (possibly null).

Chapter 12: Macro String Preprocessor Introduction
Macro Expressions

252

13

Pre-Defined Macro Functions

A description of the pre-defined macro functions found in ap86.

Chapter 13: Pre-Defined Macro Functions

253

Pre-defined macro functions are provided as building blocks so that you may
create user-defined macros. It would be nearly impossible to duplicate many
useful operations found in the pre-defined functions with equivalent
user-defined macros.

Note A user-defined macro may be re-defined in the source program at some point
after the original user definition. Redefinition does not cause errors; it does
cause the preceding macro definition to be lost. Pre-defined macro functions,
however, may not be re-defined. It is an error to try to do so.

Pre-Defined Macro Functions

The pre-defined macro functions listed below are recognized by the macro
preprocessor.

Note The pre-defined macro functions %IN, %OUT, %CI and %CO are not
supported by the ap86 macro preprocessor. These functions accept user input
to macro functions.
The pre-defined macro function %DEFINE does not appear in this chapter
because it is discussed in detail in the "User-Defined Macros" chapter.

%’ (comment function) %((bracket function)

%n (escape function) %DEFINE

%EQS %GES

%GTS %LES

%LTS %NES

%EVAL %EXIT

%IF %LEN

%MATCH %METACHAR

%REPEAT %SET

%SUBSTR %WHILE

Table 13-1. ap86 Pre-Defined Macro Functions

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

254

%’ (Comment Function)

Call Pattern:
%’ ...any text... ’ or end-of-line

Description: The comment function permits insertion of comments without
being passed on to the assembler. Everything from the quote up to a matching
closing quote or to an end-of-line is considered a comment. Metacharacters
within the comment string are not expanded. In the output, the call pattern
(including the closing end-of-line, if used) is replaced with the null string.

Example:
MOV AX,%ARG1 %’ ARG1 is the loop counter’
MOV SI,0 %’ Initialize index register
JMP $-2
%SET(symbol,02H) %’ Initialize: %SET(symbol,03H)’
DB %symbol

The second line in this example will result in an assembly-time error because
the end-of-line terminating the comment is removed along with the comment,
so the assembler sees the two instructions

MOV SI,0 JMP $-2

without an end-of-line between them. The fourth line shows that
metacharacters inside a comment are not expanded; the last line expands to
’DB 02H’ because the ’%SET’ was not executed within the comment. The
literal character (’*’) cannot be used with the comment function.

%n and %((Escape and Bracket Functions)

Call Pattern:
escape function: %n[n-characters]
bracket function: %(baltex)

Escape Function
Description: n is a decimal (base-10) digit from 0 to 9 inclusive. The
expanded value of the escape function pattern is the n-characters immediately
following n itself. These will be passed to the assembler without being

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

255

examined by the macro preprocessor. For example, ’%1%’ passes a ’%’ to the
output. The pattern ’%0’ passes no characters.

Bracket Function
Description: The expanded value of the bracket function is the "baltex" that
appears between the parenthesis. The bracket function inhibits the expansion
of all macros and functions within its argument except the escape function, the
comment function, and macro parameters. These are always expanded.

Escape and Bracket Functions (Generally)
Description: It is sometimes necessary to hide certain text from the macro
preprocessor, such as when a percent sign (%) is desired in the output or when
using strings involving unbalanced parentheses or commas as text. The escape
and bracket functions serve this need.

The bracket function might be more flexible than the escape function, but it
deals only with baltex, and the metacharacter is interpreted (although once a
call pattern has been detected it cannot be expanded). Examples:

%(1,2,3) ;1,2,3 is passed to the output (this might
 ;be used as the actual parameter to a
 ;macro to prevent the commas from being
 ;interpreted as delimiters)
%330% ;30% is passed to the output
%(30%) ;error — ’%)’ is not legal
%(%330%) ;%330% is evaluated, then used as
 ;an argument to %()
%(30%1%) ;same
%(%(30)) ;%(30) is passed to the output
DB ’30%1%’ ;DB ’30%’ is passed to the output because
 ;quotes are ignored by preprocessor

The literal character (’*’) is not accepted with the bracket or escape functions.

If the output of the macro is to include the escape character, you must
double-escape the output. For example, if macro MAC1 needs to output "DB
’%’", you could define MAC1 as follows:

%DEFINE(MAC1) (DB ’%3%1%’)

%EQS, %NES, %LTS, %LES, %GTS,%GES

Call Pattern:
%xxS(baltex1,baltex2)

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

256

 In the above call pattern, xx represents the first two characters of any of the
function names.

Description: The string relational functions all compare two strings,
character by character, left to right, and expand to a logical-valued string: –1H
for TRUE, and 00H for FALSE.

The first string cannot contain a comma unless the comma is protected by
parentheses, the escape function, or the bracket function.

Comparison is on the basis of ASCII character values. A blank character has
the value 20H, tab has the value 09H, and < EOL> has the value 0AH (< line
feed>). The comparison is true if the first argument has the relationship to
the second indicated by the function. (EQS is true if the two strings are equal.
GTS is true if the first string is "greater" than the second string.)

If two strings are of different lengths, but are identical on all characters in the
shorter string, the longer string is considered to be greater.

The literal character * is allowed, but it has no effect. Metacharacters in the
argument strings are always expanded. Example:

%EQS(0,00H) ;yields 00H (false), since comparison is
 ;of strings, not numeric values
%GTS(2,100H) ;yields -1H same reason as above
%GTS(c,CBA) ;yields -1H (true), since c>C (ASCII
 ;values), which ends comparison

%EVAL

Call Pattern:
%EVAL(expression)

Description: EVAL is used to evaluate an expression and it expands to a
string representing the numeric value of the expression. The expanded string
represents the value in hexadecimal. The first character of the expanded string
is always a digit 0-9, the last character is always ’H’, and the characters between
are the hexadecimal digits 0-F. The expression is evaluated using 17-bit
arithmetic, as always, but the expanded value is at most 16-bits. Negative
numbers are shown in twos complement form. The expanded string can be 3,
4, 5 or 6 characters in length. Examples:

%EVAL(3+3) ;yields 06H
%EVAL(3-3) ;yields 00H
%EVAL(-2) ;yields 0FFFEH

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

257

%SET(S1,44) ;null (decimal value)
%SET(S2,333Q) ;null (octal value)
%EVAL(%S1+%S2) ;yields 0107H

The call pattern %*EVAL is legal, but the literal character (’*’) has no effect;
metacharacters in the expression are always expanded.

%EXIT

Call Pattern:
%EXIT

Description: The EXIT function allows immediate exit from the most
recently invoked %REPEAT, %WHILE, or a user-defined macro. The call
pattern %EXIT has no argument; it ends with the character ’T’. Some
common uses are to prevent a WHILE loop from going on forever and to
allow multiple exit points from a user macro.

This macro illustrates the classic example of recursion, the factorial function:

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI %EVAL((%X)*%FACTORIAL(%X-1)))

The same result could also be accomplished by using %ELSE instead of
%EXIT. In this simple case using an %ELSE might even be clearer, but in
more complex examples the %IFs might be nested several levels deep, so
%EXIT would be much easier.

The call pattern %*EXIT is legal, but the literal character (’*’) has no effect.

%IF (Conditional Assembly Function)

Call Pattern:
%IF(expression) THEN (baltex1) [ELSE (baltex2)] FI

Description: The IF function enables a user to decide at macro-time whether
to assemble certain code or not. Doing this at macro-time has the advantage
that the assembler (which may require more execution time than the macro
preprocessor) sees only that code that is to be assembled.

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

258

The expanded value of %IF is the expanded value of either baltex1 or baltex2
(if present), but not both. The call pattern %IF first evaluates the numeric
expression. If the low bit of the 17-bit value is 1, then the expression is
considered true. Baltex1 is passed to the output as the expanded value of %IF.
If the low bit of the 17-bit value is 0, then the expression is considered false
and baltex2 becomes the expanded value of %IF (if baltex2 is present). If it is
not present, the expanded value of %IF is null.

Typically, the expression will contain comparison operators (EQ, and so forth)
or string comparison macro functions (%EQS, and so forth). These always
return –1 for true and 0 for false, so %IF does what you would expect.
However, any numeric value is acceptable.

The baltex that is not selected is also not expanded. Any %SETs in it, for
instance, will not be executed.

The keywords THEN, ELSE, and FI are not stored as symbols, and user
symbols can duplicate these names. Since the arguments are all baltex with
parentheses as delimiters, there is no problem with ambiguity.

Call patterns (%IFs) can be nested; each FI (and ELSE, if present) is
considered to go with the most recently defined IF. Example:

%*DEFINE(MAC(symbol)) (
%IF (%symbol LT 0)
THEN (%’goes with LT if’
 DB 00H
) ELSE (%’goes with LT if’
 %IF (%symbol GT 10)
 THEN (
 %set(newsymbol,%symbol-10)
 DB %newsymbol
) ELSE (%’goes with GT if’
 DB %symbol
) FI %’goes with GT if’
) FI %’goes with LT if’
)

The literal character (’*’) is legal with %IF and has the effect of suppressing
metacharacter expansion in whichever baltex is selected to become the output.
Metacharacters in the expression are always expanded.

%LEN

Call Pattern:
%LEN(baltex)

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

259

Description: The LEN function counts the characters in its argument and
expands to a string representing the numeric value of the expression. The
expanded string represents the value in hexadecimal. The first character of the
expanded string is always a digit 0-9, the last character is always ’H’, and the
characters between are the hexadecimal digits 0-F. The expression is evaluated
using 17-bit arithmetic, as always, but the expanded value is at most 16-bits.
Negative numbers are shown in twos complement form. The expanded string
can be 3, 4, 5 or 6 characters. The literal character (’*’) is legal and prevents
the expansion of metacharacters in the baltex string. Example:

%LEN(countme) ;yields 07H
%LEN(%EQS(ABC,abc)) ;depends on case sensitivity
%*LEN(%EQS(ABC,abc)) ;counts ’%EQS(ABC,abc)’
 ;and yields 0DH
%LEN() ;yields 00H

An < EOL> counts as one character (the line feed character). %LEN of a
SET-symbol will produce a number between 3 and 7 inclusive. It is the number
of characters of the internal string representation of the symbol value.

Note The value is a full 17-bits, with a minus sign if needed (signed magnitude
representation). Thus –2 is stored as ’-02H’ and 65534 is stored as ’0FFFEH’.
This is the only time (within a %LEN) that the value of a SET-symbol is not
really stored as a number.

%MATCH

Call Pattern:
%MATCH(name1 delimiter name2) (string)

Note The spaces surrounding the delimiter in the syntax above are not a part of the
call pattern; they are shown only for clarity. Spaces between the first and
second pair of parentheses are acceptable. Spaces, tabs, or end-of-lines are
skipped over if they appear there.

Description: Name1 and name2 are symbols (not necessarily previously
defined) and delimiter is a single character separating them. It can be any
character that is not valid in symbols. It could be a space, tab, comma,
end-of-line, parenthesis, or others.

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

260

MATCH divides a string into two parts at the first occurrence of the delimiter,
and assigns each part to a symbol. Its expansion is the null string. MATCH is
most commonly used in connection with loops, as described below.

MATCH searches the (expanded) string for the first occurrence of the
delimiter. When it is found, all characters in the string preceding the delimiter
are assigned as the value of name1. All characters following the delimiter are
assigned as the value of name2. Either value can be null. If the delimiter is not
present in string, the entire string is assigned to name1 and name2 receives the
null string as its value. Examples:

%MATCH(NAME1,NAME2) (A,B,C) ;NAME1=’A’, NAME2=’B,C’
%MATCH(NAME1 NAME2) (A,B,C) ;NAME1=’A,B,C’, NAME2=null
%MATCH(NAME1 , NAME2) (A,B,C) ;Error — illegal spaces
 ;around comma (delimiter in this example)

The literal character (’*’) is legal in conjunction with %MATCH and inhibits
the expansion of any metacharacters in "string." Example:

%SET(sym,2)
%MATCH(VAR1,VAR2) (%sym,02H) ;VAR1=02H, VAR2=02H
%*MATCH(VAR3,VAR4)(%SYM,02H) ;VAR3=%SYM, VAR4=02H
%SET(SYM,3)
DB %VAR1 ;yields DB 02H in the output
DB %VAR3 ;yields DB 03H and %SYM is
 ;expanded at reference time
DB %*VAR3 ;yields DB %SYM and causes an
 ;assembly-time error

The last example is case dependent and would not work if case sensitivity was
enabled.

The MATCH function is often used to extract similar fields out of a string one
at a time. Suppose a string consists of several numbers separated by spaces.
Such a string might be the expected value of a formal argument, for instance.
To generate a DB for each number:

%MATCH(TEMPVAR^JUNK) (%FORMALARG)
%WHILE(%LEN(%TEMPVAR) GT 0)
(%MATCH(NEXTNUM TEMPVAR) (%TEMPVAR)
DB %NEXTNUM
)

The first MATCH copies the formal argument to TEMPVAR, presuming
there are no carets (^) in %FORMALARG (this is a trick to evade the fact
that SET can assign only numeric values to a symbol; it cannot assign a string).
The condition of the WHILE loop states that TEMPVAR must still be
non-null. The MATCH inside the loop extracts the next number from
TEMPVAR and stores the rest of the string back in TEMPVAR. The DB is
then generated and we execute the WHILE test again.

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

261

%METACHAR

Call Pattern:
%METACHAR(baltex)

Description: The METACHAR function changes the metacharacter (% by
default) to a different, user-specified character. These are the acceptable
alternative metacharacters:

@ / + - # . __ = [] < > ! ’ " $ & , = % { } ~ ‘ | \ ^

The following characters cannot be used as a metacharacter:

the letters (A-Z, a-z)
the digits (0-9)
 _ ? * () blank tab <EOL>

The new metacharacter is taken to be the first character of the expanded value
of baltex, although baltex can be any number of characters long. The new
metacharacter takes effect immediately at the first character following the
right parenthesis delimiting the call pattern of METACHAR. The literal
character ’*’ is accepted on METACHAR, but it has no effect, as the argument
of METACHAR is always expanded.

Changing the metacharacter can have unforeseen catastrophic effects. For
example, any previously defined macros probably have the default
metacharacter (’%’) in the stored macro body. They will not expand correctly
if the metacharacter changes. The expanded value of the METACHAR
function is the null string.

%REPEAT

Call Pattern:
%REPEAT (expression) (baltex)

Description: The REPEAT function is one way to program a loop.
REPEAT evaluates the 17-bit numeric expression and then baltex is expanded
that many times. Note that the expression is expanded only once. If baltex
alters macro symbols that are involved in the expression, it does not affect
loop control. If the expression evaluates to be less than or equal to zero, baltex

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

262

is expanded zero times (the expanded value of REPEAT is the null string).
Example:

%REPEAT(5) (SHL AX,1
)

Note The < EOL> within baltex is necessary for correct expansion. Without the
< EOL> ; this REPEAT would produce

SHL AX,1SHL AX,1SHL AX,1SHL AX,1SHL AX,1

%*REPEAT is acceptable. The asterisk inhibits the expansion of
metacharacters within baltex. Metacharacters in ’expression’ are always
expanded.

%SET

Call Pattern:
%SET(name,expression)

Description: SET defines the string "name" as a symbol, whether or not it
was already defined, and gives it the value of "expression." Expression must
result in a number, but the value of name is stored as a string (like all macro
symbols). Generally, you can ignore this fact and treat name as if it were stored
as a number. Multiple SET directives can reference the same name. The
expanded value of the %SET call pattern is the null string.

The literal character (’*’) makes no sense with SET, since its first argument
must be a symbol and its second argument must evaluate to a number. Neither
argument can contain metacharacters after expansion. If the macro
preprocessor attempts to expand %*SET, it will report an error.

It is correct for the symbol-referencing construct to appear inside another SET
for the same symbol. Example:

%SET(username,%username+1)

This increments the value of ’username’ by one. However, the next example is
incorrect:

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

263

%SET(username,username+1)

This example generates a macro-time error because the character string
"username" is not a legal expression operand. Symbol-referencing is discussed
in the chapter titled "User-Defined Macros."

%SUBSTR

Call Pattern:
%SUBSTR(baltex,exp1,exp2)

Description: The SUBSTR function extracts a substring from its first
argument based on its second and third arguments.

In this pattern, exp1 and exp2 are numeric expressions. The expanded value of
the pattern is a substring of baltex. The substring begins at character number
exp1 and contains exp2 characters. If exp1 is less than or equal to 0, or greater
than the number of characters in baltex, then the expanded value is null. If
exp2 is less than or equal to 0, then the expanded value is null. If exp1 is of
such a size that the expansion value will not be null, but exp2 implies more
characters than remain in baltex, then the expanded value is all characters
from character exp1 to the end of baltex, inclusive. Examples:

%SUBSTR(12345678,4,2) ;yields 45
%SUBSTR(12345678,-1,2) ;yields null
%SUBSTR(12345678,10,2) ;yields null
%SUBSTR(12345678,2,-1) ;yields null
%SUBSTR(12345678,2,1000) ;yields 2345678

The literal character (’*’) is accepted with SUBSTR, but is ignored.
Metacharacters in any of the arguments are always expanded.

%WHILE

Call Pattern: %WHILE (expression) (baltex)

Description: The WHILE function programs macro-time loops. It works
similarly to the WHILE construct in high level languages.

WHILE evaluates the 17-bit numeric expression each time through the loop.
If the least significant bit of the expression is 0, the expanded value of WHILE

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

264

is the null string. If the least significant bit of the expression is 1, then baltex is
expanded and passed on as part of the expanded value of WHILE, and the
expression is evaluated again. The loop continues until the expression
evaluates to false (least significant bit is 0).

For the loop to terminate, baltex must modify the value of expression or an
EXIT function must be used. Otherwise the loop will never exit. WHILE is
often used in conjunction with either SET or MATCH, either of which will
update a macro symbol on each pass through the loop (see the example under
MATCH).

The call pattern %*WHILE is not accepted, since preventing the expansion of
baltex would result in an infinite loop. An error will be reported if %*WHILE
is found.

Example Problem

This example shows the effects of an incorrect factorial macro.

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI
%EVAL(%X*%FACTORIAL(%X-1))
)

The only difference between this example and the one shown with the %EXIT
function reference is that this one is missing the pair of parentheses around
the second %X. They are necessary, because the arguments of macros are
strings, not numbers. The incorrect version above called with the actual
parameter 4 expands successively to the following:

4*FACTORIAL(4-1)
 4-1*FACTORIAL(4-1-1)
 4-1-1*FACTORIAL(4-1-1-1)
 01H
 4-1-1*01H
 02H
 4-1*02H
 02H

Chapter 13: Pre-Defined Macro Functions
Example Problem

265

 4*02H
08H

The %FACTORIAL in the next lower calling level is evaluated before the
%EVAL in the one that called it is executed. That is as it should be and the
recursive property of this function is retained. The problem is that the normal
rules of precedence govern within the enclosing parentheses of %EVAL. This
means that the multiplication is done to just part of the intended value of %X,
instead of the full value, at any level. The result is therefore less than it should
be.

As a general guide, it is advisable to surround any macro-time symbol with
either parentheses or %EVAL() if you expect to produce a numeric value. For
this example, one fix is to put %EVAL() around %X-1 in the call to
%FACTORIAL. This forces evaluation of the subtraction before the value is
passed to the next lower calling level. Another fix is to put parentheses around
the second %X—as has been discussed and was done in the example for
%EXIT. This causes parentheses to be around the subtractions preceding the
multiplication sign that then force the intended order of arithmetic evaluation.
The corrected macro definition, using the %EVAL() fix, follows:

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI
%EVAL(%X*%FACTORIAL(%EVAL(%X-1)))
)

The corrected macro definition called with the same parameter of 4 would
expand as follows:

4*FACTORIAL(3)
 3*FACTORIAL(2)
 2*FACTORIAL(1)
 01H
 2*01H
 02H
 3*02H
 06H
 4*06H
018H

Chapter 13: Pre-Defined Macro Functions
Example Problem

266

14

User-Defined Macros

Information about defining macros, including the syntax for defining them,
and how macros are referenced.

Chapter 14: User-Defined Macros

267

User-defined macros are created by using the %DEFINE macro function.

User-defined macros can be defined in terms of themselves which means they
can invoke themselves within their own macro bodies. This ability is called
recursion. Any macro that calls itself must include a terminating condition
that causes the macro to "bottom out" eventually or the preprocessor can enter
into an infinite loop.

Chapter 14: User-Defined Macros

268

%DEFINE

 If you want to define a macro, you must use the DEFINE function.

Because the syntax for DEFINE is somewhat complicated, the following figure
contains the syntax diagram for DEFINE.

Where:

% is the current metacharacter (which is usually %).

* is the optional literal character. This character should be used with most
definitions. There are two reasons:

• It will inhibit the expansion of macro calls flagged by the current
metacharacter (usually %) within the macro body at the time of macro
definition. Instead, macro calls will be expanded at the time of macro
reference.

• You must use the literal character with any macro that has formal
parameters. Otherwise, the macro preprocessor will attempt to evaluate
any references to the formal arguments within the macro body as symbols
or other macro calls, which will result in errors.

Define is the pre-defined macro function for creating user-defined macros.

Figure 14-1. Syntax for User-Defined Macros

Chapter 14: User-Defined Macros

269

Name is the user-defined name to be associated with the macro. It cannot
conflict with the predefined macro functions, but it can duplicate an earlier
user-defined macro name or symbol. In the latter case, the previous meaning
of the symbol is lost. The macro name should not be preceded by the current
metacharacter (usually %).

Parameter is a formal parameter name. Formal parameters, if they exist, are
replaced by actual parameters when the macro is invoked.

Note Formal parameter names are not preceded by the metacharacter when they are
being declared in the macroname argument list. To reference a formal
parameter within the macro body, however, you must precede its name with
the metacharacter (as in %ARGUMENT_NAME for the formal parameter
ARGUMENT_NAME).

Parameter names must be distinct from one another within a macro, but they
can duplicate other formal parameter names in other macros, since they have
no existence outside the macro definition. They can also duplicate the names
of other user macros or macro functions. If they do duplicate other macro
function names, then the other macros or functions cannot be used within the
macro body, since the duplicated name will refer instead to the parameter.

Local is the word that must precede the local parameter list.

Symbol is a local symbol name. Such symbols can be used only within the
macro body. They are undefined outside of it.

The purpose of local symbols is to avoid multiply-defined symbols in the
output of the macro processor. Each time the macro is referenced, each local
symbol receives a unique two to five digit suffix. For example, if a local symbol
LABEL were defined for use within a macro, then the first macro invocation
might substitute LABEL00 and the second invocation might use LABEL01.
This way, the assembler would not see a multiply-defined symbol. When
locals are initially being declared following the LOCAL keyword, they must
not be preceded by the metacharacter. However, when referencing local
symbols in the macro body, they must be preceded by the metacharacter. The
symbol LOCAL is not reserved; a user symbol or macro can have this name.

Body is a balanced-text string. It can contain references to formal arguments
and local symbols, if any, as described above. It can also include references to

Chapter 14: User-Defined Macros

270

user-defined macros (including itself), to macro-expansion-time symbols
(preceded by ’%’), and to macro functions.

A macro should not redefine itself (%*DEFINE) within its body, however.
The expanded value of DEFINE is the null string, but the macro body is stored
internally for later use. A re-DEFINE in a macro body, then, is working at
cross purposes.

Macro Reference

A macro is referenced by preceding its name with the metacharacter. If the
macro was defined with formal arguments, the reference must include the
same number of actual parameters, enclosed in parentheses and separated by
commas. Actual parameters can be null, but the required delimiters must still
be present between them. Each actual parameter is substituted for its
corresponding formal parameter, wherever it appears in the macro body, on a
string basis.

The literal character (’*’) is acceptable in conjunction with references to
user-defined macros. Normally, all metacharacters in the actual parameters
are evaluated immediately when the macro reference is found and the
resulting strings are stored. They are then substituted for the formal
parameters as the macro body is copied. The literal character defers
evaluation of actual parameters until they are found in the macro body, and
they are re-evaluated each time they are found. It is possible, then, that the
values of actual parameters might change between evaluations depending on
what the macro body does.

Following are some sample macro definitions and references along with short
discussions about each. Each new macro and discussion begins with the new
%DEFINE, but an implied order of definition from first to last is understood
in order that some of the discussions make sense. Some of the macros are
intentionally incorrect.

%*DEFINE(MAC1) (DB 2)

MAC1 will have the string value "DB 2" when invoked.

%*DEFINE(MAC2(ARG1)) (DB %ARG1)

Chapter 14: User-Defined Macros

271

MAC2 is stored as "DB %ARG1". %ARG1 is to be evaluated at the time of
macro reference because of literal character (’*’) precedes DEFINE.

%*DEFINE(ERR1(ARG1)) (DB ARG1)

ERR1 shows a common error. The ’%’ is omitted from the formal parameter
in the macro body which means it will not be recognized. The assembler will
be passed "DB ARG1" when the macro is invoked, which is not likely to be
correct.

%*DEFINE(MAC3(ARG1)) (%MAC1
 %MAC2(%ARG1))

MAC3 references the previously-defined macros MAC1 and MAC2. Since the
evaluation of metacharacters in MAC3 is deferred (with *), this example
would also work if the definitions of MAC1 or MAC2 followed that of MAC3
(as long as they are defined before MAC3 is invoked).

%DEFINE(ERR2(ARG1)) (%MAC1
 %MAC2(%ARG1))

ERR2 shows another common error—the literal character was omitted. The
metacharacters in the macro body are expanded immediately (at
macro-definition time). Since there is a reference to a formal parameter, this
cannot be done—there is no actual parameter to substitute for it. The macro
preprocessor actually attempts to expand %ARG1 as a macro symbol or
user-macro. In some cases this might be possible, although it is not likely to
be what is expected.

%*DEFINE(ERR3(ARG1)) (%MAC1 %MAC2(%ARG1))

ERR3 shows another frequent user-error, a missing < EOL> . Since the body
of neither MAC1 nor MAC2 includes an < EOL> , ERR3 should include one
between their invocations (as MAC3 does). The invocation %ERR3(3) will
yield "DB 2 DB 3" and cause an assembler error. If MAC1 ended with an
< EOL> or MAC2 began with an < EOL> , ERR3 would be correct.

%DEFINE(MAC4) (%MAC1
 %MAC2(4))

Chapter 14: User-Defined Macros

272

MAC4 shows an acceptable use of DEFINE without ’*’. The stored body of
MAC4 is shown in the following example, since the calls to MAC1 and MAC2
are evaluated immediately:

’DB 2
DB 4’

With the definitions of MAC1 and MAC2 shown above, %MAC4 is the same
as %MAC3(4). But MAC1 and/or MAC2 might be redefined later on. In this
case, MAC3 will reference the new values, while MAC4 will not.

%*DEFINE(MAC5(ARG1)) LOCAL LABEL (
%LABEL: MOV AX,%ARG1[DI]
 INC DI
 LOOPNZ %LABEL)

MAC5 shows the use of a local symbol. Each invocation of MAC5 will create
a unique assembler-time symbol from LABEL.

Note that the macro definitions above produce no output, since each DEFINE
expands to the null string. Consider the macros as being defined sequentially
without separating blank lines. The end-of-lines between the terminating right
parenthesis of each macro body and the following metacharacter (’%’) of the
next macro result in blank lines that are not output. If the macro preprocessor
did not remove blank lines, these examples would generate seven blank lines.
This behavior is typical of readable macro code. All characters between the
delimiting parentheses (including end-of-lines) are considered part of the
macro body, which in turn is part of the syntax of DEFINE. Such characters
are not considered for output.

Referencing Macro-time Symbols

Symbols are defined by the SET and MATCH functions. A symbol is
referenced by preceding its name with the metacharacter, as in

%name

Without the metacharacter, the macro preprocessor treats "name" like any
other character string. The call pattern of the symbol ends where the name

Chapter 14: User-Defined Macros

273

ends (there is no argument in parentheses). The expanded value of this
construct is the character string that had been assigned to it. (For instance:
’01H’; or ’STRINGVALUE’; or the null string.)

The literal character (’*’) is proper with a macro-time symbol. It inhibits the
expansion of any metacharacters within the symbol value which otherwise
would be expanded. For example, suppose the value of a symbol SYM is
"%LEN(01H)." %SYM will expand to ’03H’, but %*SYM will expand to
"%LEN(01H)". Generally, the literal character should be omitted.

The literal character similarly affects formal parameters of macros within the
macro body. A formal parameter is not recognized if preceded by the literal
character. This permits giving a formal parameter the same name as a macro
function while still being able to access the function within the macro body.
Example:

%*DEFINE(MAC(LEN)) (DB %LEN
 DB %*LEN(%LEN))

The first %LEN is the formal argument LEN, as is the third. The second is
not recognized as an argument because of the literal character, so it reverts to
its normal meaning as a pre-defined function. The literal character has
meaning to this particular function, so the inner %LEN is not expanded.

The literal character cannot be used with local symbols within a macro body.

Chapter 14: User-Defined Macros

274

15

Assembler versions

Information about how this version of the software differs from previous
versions.

Chapter 15: Assembler versions

275

Version 3.10

New Product Numbers

The old product number for this product was 64871. The new product number
is B1449. The product numbers for some associated products, such as the C
cross compiler, have also changed from 64xxx to B14xx.

New Assembler Controls

The GEN, GENONLY, OPTIMIZE, EXTERN_CHECK, and
UNREFERENCED_EXTERNALS controls are new.

New Linker/Loader Controls

The ERROR, WARN, LISTMAP, and TYPEMERGE controls are new.

New Assembler Defaults

The defaults for the ERRORPRINT, SYMBOLS, and PRINT controls have
changed.

New Location for Man Pages

The on-line manual pages have been moved to the $HP64000/man directory.
Set your $MANPATH environment variable to include this directory.

New Linker Listing Format

The cross-reference table has been combined with the public and local symbol
tables.

Chapter 15: Assembler versions
Version 3.10

276

Version 3.00

Demo Directory Change

The directory that contains the example files,
/usr/hp64000/demo/languages/hp64871, has changed to
/usr/hp64000/demo/languages/as86. (This change does not apply to the HP
9000 Series 800 version.)

New Assembler Controls

The OPTIMIZE assembler control has been added. Use OPTIMIZE to reduce
the number of NOPs generated for forward references.

The [NO]UNREFERENCED_EXTERNALS assembler control has been
added. Unreferenced external symbols are removed by default. Use this
control to cause all external symbols, including those that are unreferenced, to
be placed into the generated object file.

The SYMBOLS assembler control now defaults to SYMBOLS instead of
NOSYMBOLS. Thus assembler listings will now normally contain a symbol
table.

New Assembler Operators

Four new operators have been added to the assembler. These operators are
SEGSIZE, SEGOFFSET, GRPSIZE, and GRPOFFSET. These operators
allow a program to access the size of segments or groups, the offset of the start
of a segment from a paragraph address, and the offset of a segment from a
group address.

New Linker Commands

The linker now supports two new commands: TYPEMERGE and
NOTYPEMERGE. These commands are used to control the amount and
number of type records within the generated output file. Problems can occur
if the number of type records in input files exceeds 32k. If this occurs, an
erroneous output file will result. The TYPEMERGE command allows the
linker to merge like type records so the number of type records required in the

Chapter 15: Assembler versions
Version 3.00

277

output file can be kept below this limit. Use of this command, however, will
cause the linker to run for a longer amount of time. This is necessary,
however, for very large programs.

Other Linker Changes

Modules in Incrementally-linked files will now be reported differently in the
listing. Any module within the file will be reported with two dashes (--) before
the module name. This is to indicate that the module is part of a larger
overall module. Also, incremental linking now works correctly when used to
create a final HP64000 absolute file.

One of the duplicate error 812 messages has been changed to become error
825.

Chapter 15: Assembler versions
Version 3.00

278

16

Converting HP 64853 Assembly
Language Programs

Changes that must be made to source files written for the HP 64853 assembler
so that they can be assembled with the HP B1449 assembler.

Chapter 16: Converting HP 6 4853 Assembly Language Programs

279

Not everything that appears in the HP 64853 format source files can be
translated into something that the HP B1449 assembler will recognize, but
most can. Translation is done in two ways. Some translations must be done
manually. Most translations, however, can be done by the acvt86 translation
program described in this chapter.

Note The program acvt86 automatically performs most of the transformations
described here. acvt86 is an unsupported porting tool. acvt86 is not a part of
the B1449 product and is distributed at no cost. Hewlett-Packard makes no
warranty on its quality or fitness for a particular purpose.

The first section of this chapter discusses the acvt86 porting tool and issues
that are caused by the differences between the two assemblers. The next
section describes the manual translations to macros that must be done
because the porting tool cannot perform some macro translations. The third
section gives the command syntax for acvt86. The final section is an old and
new list. This section is arranged alphabetically according to keywords in HP
64853 assembly language. It gives a side-by-side comparison between the old
and new syntax and shows you how acvt86 transforms particular HP 64853
constructs.

acvt86 Introduction

This section describes the way that acvt86 approaches the conversion process,
what it produces, and its limitations. It also describes the sequence you should
follow to translate files that contain include files. This section will give you a
better understanding of what you will have to do to complete the translation
process.

This section is not a complete description. If you need to find out how acvt86
converts a particular construct, you should write a test program and examine
the acvt86 output.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

280

Note The first line of an HP 64853 program identifies the target processor. HP
B1449 assembly language supports only the 8086/186 and 8088/188
processors. The HP B1449 assembler does not support the 70108, 70116,
8089, or 80286 microprocessors. Therefore, the following target processor
identifiers are not recognized: "70108", "70116", "8089_86", "8089_88", and
"80286".

Assembler Differences

The HP B1449 assembler is really two programs: the preprocessor, ap86; and
the assembler, as86. The preprocessor implements the following features of
the old HP 64853 assembler: SET directives, REPT directives, MACRO
definitions and expansions, and IF/ELSE/ENDIF conditional assembly
directives. The assembler then completes the process by assembling the file
produced by the preprocessor. acvt86 translates these features in the
following way.

IF

IF <expr>
lines
ELSE
lines
ENDIF

translates to

%IF((<expr>)NE 0)
THEN
(lines)
ELSE
(lines)
FI

EQU

id EQU <expr>

translates to

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

281

id EQU <expr>

If < expr> is a constant expression, acvt86 generates %SET(id,< expr>) and
acvt86 also stores id in its symbol table. Later, when id is referenced in
preprocessor expressions, acvt86 recognizes it and translates it to %id.

MACRO

id MACRO &P1,&P2
lines
MEND

translates to

%*DEFINE(id(P1,P2))
(lines)

acvt86 also stores id in its symbol table. Later, when id is referenced, acvt86
recognizes it and translates it to %id.

REPT

REPT <expr>
 next line

translates to

%REPEAT(<expr>)
(
 next line
)

SET

id SET <expr>

translates to

%SET(id, <expr>)

acvt86 stores id in its symbol table. Later, when id is referenced, acvt86
recognizes it and translates it to %id.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

282

Note Sometimes the constant expressions in IFs or REPTs cannot be translated.
HP 64853 calculates its constant expressions using 32 bit numbers. ap86 uses
only 17 bit numbers. HP 64853 allows constant expressions to be formed by
subtracting two relocatable symbols. ap86 cannot do this because it has no
knowledge of the value of relocatable symbols.

External Declarations

HP 64853 allows an external identifier to be associated with a segment
register in the EXT directive. For example:

EXT ES:X1 WORD
MOV AX,X1 ;references X1 using ES

If you use X1 in certain memory reference operands, the HP 64853 assembler
will automatically generate an ES: segment override for the instruction.

The HP B1449 assembler does not have an equivalent capability. Instead, an
external identifier can be associated with a segment by placing the EXTRN
directive inside a SEGMENT/ENDS pair. The segment may then be
associated with a segment register through an ASSUME directive.

Since it would be difficult to automatically perform this kind of
rearrangement, acvt86 instead does the following:

• When an external declaration with an associated segment register is
found, acvt86 stores the identifier and segment register in its symbol table.

• When the external identifier is referenced, acvt86 will generate (when
appropriate) an explicit segment override. For example, the instructions
shown above would be translated to the following.

EXTRN X1:WORD %’ES:D:X1’
MOV AX,ES:X1 ;references X1 using ES

The preprocessor comment %’ES:D:X1’ records the information in the
original EXT directive. If, in a subsequent translation, acvt86 sees this
comment when reading a translated include file, it can update its symbol table
just as if it saw the original declaration.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

283

Note You should not do SET definitions, constant EQU definitions, or "EXT
segreg:id" declarations using MACRO parameters. For example:

CSWORD MACRO &P1
EXT CS:&P1 WORD
MEND
CSWORD X1

While this arrangement works perfectly well in the HP 64853 assembler,
acvt86 cannot tell that the variable X1 will have the implied CS: override
quality. It may not translate references to X1 correctly.

Porting Procedure— Main Files with INCLUDE Files

Here is a procedure for translating a main file and its INCLUDE files. This
sequence gives acvt86 its most complete symbol table and allows it to do the
most accurate translation.

1 Translate the include files first. Use the -c option to specify the main file
as the context file. This allows definitions in the main program to be used
when translating the include file. Furthermore, as each include file is
translated, its definitions are available for translating subsequent include
files.

2 Make manual corrections to translated include files. Typically, this
means rewriting .IF, .GOTO, etc., directives in MACROs.

3 Translate the main file(s). Make corrections to the main file(s).

4 Assemble the main file(s) using the HP B1449 preprocessor/assembler.
Correct preprocessor and assembly errors.

For example, here are three files: prog.S, inc1, and inc2

Main File prog.S

" 8086 "
;prog.S
 EXT ES:X1 WORD
 INCLUDE inc1
 INCLUDE inc2

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

284

 M2 ;defined in inc2
END

Include File inc1

;inc1
DISP SET 6

Include File inc2

;inc2
M2 MACRO
 MOV AX,X1 ;X1 defined in prog.S
 ADD AX,DISP ;DISP defined in inc1
MEND

First, translate inc1 as follows.

$ acvt86 -c prog.S inc1 > inc1.h

Second, translate inc2. Because of the "-c prog.S" option and because we have
already created inc1.h, acvt86 will correctly translate the references to X1 and
DISP.

$ acvt86 -c prog.S inc2 > inc2.h

Finally, translate prog.S. Because inc2.h exists, acvt86 will correctly translate
the reference to macro M2.

$ acvt86 prog.S > prog.s

acvt86 Warnings, ap86 Errors, as86 Errors

To do a successful port, you must pay attention to messages from three
sources.

acvt86

acvt86 issues warnings when it detects something that may need your
attention. For example, it issues a warning when a MACRO call has more
actual parameters than it has formal parameters in the MACRO definition.
As previously explained, the two assemblers operate differently in this

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

285

situation. Depending on how your MACRO is written, you may or may not
need to change this statement.

ap86

After translating your files, you must understand and correct preprocessor
errors. For example, errors may result from using constant expressions whose
value is too large for the 17 bit preprocessor expression limit.

as86

Finally, you must understand and correct as86 errors. Assembler errors have
numerous causes. For example, HP 64853 allowed user labels to duplicate
instruction mnemonics (e.g. TEST). HP B1449 does not allow this and
produces a syntax error. In this case, you should change the name of the
offending label.

Code Substitution

acvt86 has a feature that allows HP B1449 code to coexist with HP64853 code
in an untranslated assembly source file. This feature is useful when, instead of
doing a one-time port, you want to maintain a single, untranslated source file
and then use acvt86 as necessary to obtain translated source.

acvt86 treats the comment ";sub64871;" in a special way. When acvt86 sees
that comment, it does the following:

• Discards all the text before the ;sub64871; comment. Any warnings
generated by this text are also discarded. Note that acvt86’s symbol table
is still updated normally if the discarded text contains certain directives.

• Writes any text following the ;sub64871; comment to standard output
without any changes.

In the example below, we want to substitute legal HP B1449 code for the .IF
and .NOP directives that acvt86 does not translate

.IF &P1.GE.0 LAB ;sub64871;%IF(%P1 LT 0) THEN (
 DW &P1
 LAB .NOP ;sub64871;) FI

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Code Substitution

286

acvt86 will produce the following output for the preceding text

%IF(%P1 LT 0) THEN (
 DW %P1
) FI

Note acvt86 only recognizes the substitution string ;sub64871; at the beginning of
the comment field. In the example below, acvt86 will not make a substitution
because comment text precedes the ;sub64871; string.

DW &&P1 ;indexed parameter;sub64871; DW %P1

Byte ordering for BIN, DECIMAL, HEX, OCT

These four HP 64853 directives generate data with bytes that are reversed
from the normal 8086 convention. When translating, you must adjust the
value of operands to these directives to compensate for this. This applies to
any numeric format: binary, decimal, hex, or octal. Example:

HEX

HP 64853 HP B1449
HEX ABCD DW 0CDABH

Manual Macro Translations

acvt86 automatically translates simple MACRO definitions (i.e. those without
.IF, .SET, .GOTO, or .NOP directives and without indexed "&&PNO"
parameters).

More complicated structures must be translated manually. Generally, this can
always be done except when .IF or .SET expressions use symbol values which
cannot be calculated at preprocessor time.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Byte ordering for BIN, DECIMAL, HEX, OCT

287

The HP 64853 .IF, .GOTO, and .NOP conditional assembly directives must be
manually translated into the HP B1449 %IF preprocessor directives. If the
branches in your MACRO do not define a block structure, you must
rearrange the MACRO to conform to the IF/THEN/ELSE structure of ap86.

Macros branches which do loops can be translated into %REPEAT or
%WHILE structures.)

The HP 64853 .IF directive performs either numeric or string comparisons
depending on the operands being compared. Numeric comparisons must
translate into ap86 numeric expressions; string comparisons must use the
ap86 preprocessor string comparison functions.

HP 64853 allowed a null parameter either to be the null string ("") or to be
omitted entirely (except for a comma placeholder). Here is how to test for an
omitted or null macro parameter. Check for both of these possibilities in your
translated .IF directive.

HP 64853 allows MACRO parameters to be referenced by number. HP B1449
has no equal facility. Two translation techniques can be used.

1 Use %*DEFINE to make a new identifier which has the value of the
indexed parameter.

2 Sometimes a MACRO indexes an indefinite number of parameters. This
can be handled with the %MATCH function. For example, the following
MACRO defines one word for each actual parameter. It stops on the first
null parameter or at the end of the list.

Macro Calls

Sometimes, a MACRO call specifies a different number of actual parameters
than formal parameters in the MACRO definition. acvt86 records the number
of formal parameters in a MACRO definition. It automatically handles the
first two of three situations described below. The third situation usually
requires a manual change.

3 If you specify fewer actual parameters than there are formal parameters,
ap86 will error and not expand the macro. To prevent this, acvt86
automatically generates additional null parameters on the macro call.

4 If you specify actual parameters and no formal parameters were declared,
ap86 does not consume the actual parameter list and they eventually
cause a syntax error. To prevent this, acvt86 suppresses the actual
parameter list.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Manual Macro Translations

288

5 If you specify more actual parameters than formal parameters, ap86 acts
as follows: the value of the last formal parameter is equal to the value of
its corresponding actual parameter concatenated with all the additional
actual parameters and comma delimiters. Any reference to the last formal
parameter will generate a different value than it did in the HP 64853
assembler. acvt86 issues a warning in this case. You should either
eliminate the extra actual parameters or rewrite the macro to preserve its
original function.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Manual Macro Translations

289

acvt86(1) Command Syntax

Note The program acvt86 automatically performs most of the transformations
described here. acvt86 is an unsupported porting tool. acvt86 is not a part of
the B1449 product and is distributed at no cost. Hewlett-Packard makes no
warranty on its quality or fitness for a particular purpose.

Name acvt86 - converts 8086 assembly programs from HP 64853 format to HP
B1449 format

Synopsis
/usr/contrib/bin/acvt86 [-dsw][-a align]
 [-c context] [-h suffix][file]

Description acvt86 translates assembly source programs from one dialect to another. It
assumes the input file is a legal 8086, 8088, 80186, or 80188 assembly program
for the HP 64853 assembler. The output may be assembled with the HP B1449
assembler.

acvt86 does not translate "70108", "70116", "8089_86", "8089_88", or "80286"
programs that were accepted by the HP 64853 assembler. Programs for these
microprocessors are also not accepted by the HP B1449 assembler.

acvt86 reads from standard input or the named file. It writes the translated
assembly to standard output. It writes warnings about functional differences
between the input and output to standard error.

acvt86 supports a one-time porting of assembly programs from one product to
another. The objective is to obtain the same (or functionally equal) bits from
the HP B1449 assembler as from the HP 64853 assembler. acvt86 changes
directives, delimiters, operators, and so on to achieve this goal. However,
because of differences between the two assemblers, this porting process
cannot be entirely automatic or trivial.

acvt86 makes two passes over its input file. The first pass builds a symbol table
of certain identifiers (MACROS, externals, etc.) that will effect the
translation; the second pass performs the translation.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

290

acvt86 may look at other files to supplement its symbol table. The -c
contextfile option incorporates the definitions from contextfile in the present
translation. Typically, a contextfile is a main, untranslated assembly module
while the present file is an INCLUDE file of contextfile. Whenever acvt86
encounters an INCLUDE directive (either in contextfile or the present
input), it attempts to open the already translated include file and read its
definitions. (See the -h suffix option for include file naming conventions.)

acvt86 has a code substitution feature. It allows HP B1449 code to coexist
with HP 64853 code in the same untranslated file. Refer to the section "Code
Substitution" for more information.

acvt86 was implemented with lex(1) and yacc(1). The source code is available
in /usr/contrib/src/acvt86/.

Options
-c context Scan the context file (and translated INCLUDE files

mentioned in it) for definitions to use when translating
file. This option is useful when translating INCLUDE
files. Specifying a context allows acvt86 to accurately
translate references to certain identifiers (MACROS,
externals, etc.) that were defined in the main "context"
file or its (translated) INCLUDE files.

-a align Align is one of the HP B1449 align-types of BYTE,
WORD, PARA, PAGE, INPAGE. Specify the
align-type used in segment directives for relocatable
segments. The default align-type of BYTE duplicates
the alignment behavior of the HP 64853 assembler.
However, the HP B1449 assembler errors when an
EVEN directive occurs within a BYTE aligned
segment. If EVEN directives will be used, use the -a
WORD option.

-d (differences) acvt86 writes pairs of input/output lines
only when they are different. This output is not suitable
for subsequent assembly.

-h suffix Specifies the suffix (default .h) which is added to file
names in INCLUDE directives to form the name of the
"translated" include file. If the file name in the

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

291

INCLUDE directive has a suffix (i.e. contains a period)
then suffix replaces the original suffix. Otherwise, suffix
is appended to the original file name.

For example, suppose an HP 64853 program contained the following directive.

INCLUDE file.H

acvt86 would translate this to the following HP B1449 control.

$INCLUDE(file.h)

It would also assume that file.H had already been translated into file.h and
attempt to read file.h before continuing with the present translation.

-s (silent) Suppress warnings to standard error.

-w (warn) Include warning messages (as comment lines) in
the standard output following the appropriate
translated line.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

292

Files /usr/contrib/bin/acvt86

Executable file for assembly language porting tool.

/usr/contrib/src/acvt86/*

Source code files and make file for assembly language
porting tool.

See Also ap86(1), as86(1), asm(1).

Diagnostics acvt86 returns non-zero if errors occur while performing I/O operations or
while parsing the command line. Otherwise it returns zero.

Warning messages and the source lines which caused them are written to
standard error.

Bugs acvt86 performs a limited set of transformations. Errors may occur when
assembling the output. The object code from the 64853 assembly may not be
the same as from the B1449 assembly.

acvt86 may detect a syntax error reading a legal HP 64853 program. The
syntax of the HP 64853 assembly language is irregular. Occasionally, a legal
assembler statement will be unacceptable to the translator. acvt86 will issue a
warning when it detects a syntax error. The offending statement must be
translated manually.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

293

Comparison of Keywords

This section provides a side-by-side comparison of some of the HP 64853
constructs with the HP B1449 constructs. acvt86 performs most of the
conversions shown in this section.

ALIGN

HP 64853 HP B1449

label ALIGN EVEN
 label:

In HP B1449 assembly language, EVEN directives cause errors if they appear
in segments with align-types of BYTE. Use an align-type of WORD if you
want to use the EVEN directive. Any label may appear on the following line.

ASSUME

HP 64853 HP B1449

ASSUME segreg:ORG ASSUME segreg:abs_segname

Most ASSUME directives need not be changed when moving to the HP B1449
assembler. However, when referring to absolute (for instance, ORGed)
segment, you must do things differently. Briefly, when translating the ORG
directive, you must create a named absolute segment using the SEGMENT
directive. The ASSUME directive should then refer to this segment name.
(See ORG for more information.)

COMN

HP 64853 HP B1449

label COMN <prevproc> END
 <prevseg> ENDS
 COMN SEGMENT BYTE COMMON
 label:

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

294

Issue an ENDP to end the previous PROC, if necessary. Issue an ENDS
directive to end the previous segment, if necessary. Any label must appear on
the line following the directive.

DATA

HP 64853 HP B1449

label DATA <prevproc> ENDP

 <prevseg> ENDS

 DATA SEGMENT BYTE PUBLIC
 label:

Issue an ENDP to end the previous PROC, if necessary. Issue an ENDS
directive to end the previous segment, if necessary. Any label must appear on
the line following the directive.

< EOF>

HP 64853 HP B1449

<EOF> <prevproc> ENDP
 <prevseg> ENDS
 END
 <EOF>

Add an END directive to the module if not already present. Also, issue ENDP
and ENDS directives if necessary.

EQU

HP 64853 HP B1449

id EQU <expr> id EQU <expr>
 %SET(id, <expr>)

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

295

If an EQU label is ever referenced in a preprocessor expression (IF, REPT, or
SET), then you must define that label for the preprocessor using the %SET
directive. References to id in preprocessor expressions must be changed to
%id.

EXPAND

The EXPAND function cannot be translated.

EXT

HP 64853 HP B1449

EXT id EXTRN id:NEAR

EXT id type EXTRN id:type

EXT segreg:id type EXTRN id:type

The HP 64853 declaration "EXT segreg:id" causes an automatic segment
override when id is used in a memory reference operand. The HP B1449
assembler does not have an equal feature. Two approaches can be used to
obtain the same code. You can either find all the references to id and add an
explicit segment override to the operand when appropriate, or, place all the
EXTRN directives with a particular associated segment register inside a
segment. In the second case, you then must make sure an ASSUME directive
is in effect for the proper segment register when the external identifiers are
used.

Label Field
 HP 64853 HP B1449
 label: directive label directive

 label instruction label: instruction

 label macroname operands label: %macroname(operands)

Colons following labels are now significant. With the HP 64853 assembler, a
colon following a label was optional. HP B1449 assembler prohibits a colon
on a label for an assembler directive. HPB1449 assembler requires a colon on
a label for a blank line, an instruction, and a macro definition.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

296

LIST

HP 64853 HP B1449

LIST $LIST

LIST n $PAGELENGTH(n) LIST

Note PAGELENGTH is a primary control. It, and other HP B1449 primary
controls, must be placed at the beginning of the file before any executable
statements.

MASK

The MASK function cannot be translated. You must find any ASC directives
which are affected and change the operands.

NAME

The NAME function, which puts a comment in the relocatable object module,
cannot be translated.

NOWARN

The NOWARN function cannot be translated.

Operator Field

HP 64853 HP B1449

.AN. AND

.EQ. EQ

.GE. GE

.GT. GT

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

297

.LE. LE

.LT LT

.NE. NE

.NT. NOT

.OR. OR

.SL. SHL

.SR. SHR

#1234 1234

Remove the pound sign before literal operands.

Within a string, make the following translations.

• A quote (’) becomes two quotes in series (’’).

• To the macro preprocessor, the percent sign, left parenthesis, and right
parenthesis are special characters. You should add a preprocessor escape
sequence to percent and to unbalanced parentheses to avoid processor
errors.

• HP B1449 string delimiters are different.

HP 64853 HP B1449

"string" ’string’
^string^ ’string’
’string’ ’string’

ORG

HP 64853 HP B1449

label ORG <prevproc> ENDP
 <prevseg> ENDS

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

298

 abs_seg SEGMENT AT PARA_VAL
 ORG OFFSET_VAL
 label:

The HP 64853 ORG directive begins an absolute segment. Translate as
follows.

• Issue an ENDP to end the previous PROC, if necessary.

• Issue an ENDS to end the previous segment, if necessary.

• The upper 16 bits of the ORG expression represents the segment value
and the lower 16 bits represent the offset. You must extract the
paragraph value and the offset manually because the HP B1449 does not
do 32 bit arithmetic.

• Start an absolute segment, using the AT keyword, at the paragraph value.

• Set the offset using the ORG directive.

• Any label must follow the ORG to retain its original value. It is not
necessary to create a new absolute segment for every ORG directive.
Several ORGed sections (with the same segment values) may be
combined. The HP B1449 ORG directive may be used to set the offset
with the absolute segment.

PROC

HP 64853 HP B1449

label PROC type <prevproc> ENDP

 label PROC type

PROC FAR <prevproc> ENDP

 dummy PROC FAR

Issue an ENDP to end the previous procedure if necessary.

An unlabeled PROC directive is only useful for its effect on subsequent RET
instructions. If the unlabeled PROC has type FAR, create a dummy PROC to

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

299

retain the same behavior. This dummy procedure is unnecessary if the type of
the unlabeled PROC is NEAR because HP B1449, by default, creates NEAR
return instructions when RETs appear outside of any procedure.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

300

PROG

HP 64853 HP B1449

label PROG <prevseg> ENDS

 PROG SEGMENT BYTE PUBLIC

 label:

Issue an ENDS directive to end the previous segment if necessary. Any label
must appear on the line following the directive.

REAL

The REAL directive cannot be translated. REAL is not useful because the
byte order of its numbers is opposite the 8086/186 convention. Use DD, DQ,
or DT to create useful real numbers.

Reserved Words

HP 64853 HP B1449

TEST EQU 0 TESTx EQU 0

HP B1449 assembler recognizes more reserved identifiers. HP 64853 assembly
language allowed you to define labels that were spelled the same as either
instruction mnemonics or assembler directives. HP B1449 assembler does not
allow reserved word duplication. Change the spelling of identifiers that
duplicate reserved words.

SPC

HP 64853 HP B1449

SPC

The SPC function can only be translated into an equal number of empty
source lines.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

301

WARN

The WARN function cannot be translated.

* (Comment)

HP 64853 HP B1449

* comment ; comment

instr operand comment
 instr operand ;comment

HP 64853 sometimes allows comments to begin with an asterisk and
sometimes does not require any delimiter. HP B1449 requires all comments
to begin with semicolon.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

302

Linking to 64853 Programs

The HP B1449 linker does not accept either HP 64000 relocatable files or HP
64000 link_sym files. ld86 accepts only binary OMF relocatable files.

The utility L_to_o86 will transfer global symbol definitions from an HP 64000
link_sym file to an HP B1449 relocatable file. Thus, one can reference
symbols produced by the HP 64853 linker (or produced by ld86) from binary
OMF modules. Using this method, only the symbol definitions are linked. The
code from the HP 64853 program is contained in an HP 64000 absolute file
and must be loaded separately.

You may reference HP B1449 symbols from HP 64853 modules. Simply link
the link_sym file produced by ld86 with the HP 64853 linker.

L_to_o86 uses another utility called nm64. Both are described on the
following pages.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Linking to 64853 Programs

303

L_to_o86(1)

Name L_to_o86 - Transfer global symbol definitions from HP 64000 link_sym file(s)
to HP B1449 relocatable file(s)

Synopsis /usr/contrib/bin/L_to_o86 file ...

Note This utility program is unsupported. It is not a part of any HP product and is
provided at no cost. Hewlett-Packard makes no warranty on its quality or
fitness for a particular purpose.

L_to_o86 takes the global symbol definitions from an HP 64000 link_sym file
and puts them into a relocatable file. These absolute symbol values may then
be used in a linking operation by the HP B1449 8086/186 linker, ld86.

L_to_o86 produces one relocatable file for each link_sym file. The output file
name is formed from the input name by stripping any preceding path name or
.L suffix and appending .o.

The conversion is done in three steps. First, nm64 converts the link_sym file to
a printable listing. Second, awk rearranges the listing into a 8086 assembly
source file. Third, as86 assembles the source into a relocatable.

See Also nm64(1), as86(1), ld86(1).

Diagnostics L_to_o86 returns 1 if there is a command line error or if any input file cannot
be opened. Otherwise, it returns zero. If the input file is not an HP 64000
link_sym file, then as86 will generate an assembly error message on standard
error. The relocatable file will be valid but will contain no symbol definitions.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Linking to 64853 Programs

304

nm64(1)

Name nm64 - print symbolic information from HP 64000 asmb_sym and link_sym
files

Synopsis /usr/contrib/bin/nm64 [-t] [file] ...

HP-UX Compat ibility
Level:

Contributed Software

Origin:

Hewlett Packard - Logic Systems Division

Note This utility program is unsupported. It is not a part of any HP product and is
provided at no cost. Hewlett-Packard makes no warranty on its quality or
fitness for a particular purpose.

Description Nm64 is similar to the HP-UX utility, nm(1). It prints (on standard output)
the symbol names, values, and relocation counter names for symbols contained
in HP 64000 asmb_sym (assembly symbol) and link_sym (linker symbol) files.
For the latter, it also prints the other types of records present: processor
configuration, name, and memory space.

Usually, asmb_sym files have a .A suffix and link_sym files have a .L suffix.

If no files are specified, nm64 attempts to read standard input.

If the -t option is specified, it will print lines prior to each section of the file
telling what disk address the section starts at.

See Also File Format Reference for the HP 64000-UX Microprocessor Development
Environment.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
nm64(1)

305

Diagnostics Nm64 returns 1 if it cannot open the input file. Otherwise, it returns zero.

Bugs Addresses for different target processors may be stored in either one-word or
two-word quantities. Assembly symbol files have no indication of which is used
so applies a simple heuristic test to figure it out. The test could possibly fail.

Nm64 may also attempt to interpret other types of files with unpredictable
results.

Chapter 16: Converting HP 6 4853 Assembly Language Programs
nm64(1)

306

17

8086/186 Instructions in
Hexadecimal Order

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

307

Hex Binary MODRM Byte Instruction Parameters Function

00 00000000 MOD REG R/M ADD EA,REG BYTE ADD (REG) TO EA

01 00000001 MOD REG R/M ADD EA,REG WORD ADD (REG) TO EA

02 00000010 MOD REG R/M ADD REG,EA BYTE ADD (EA) TO REG

03 00000011 MOD REG R/M ADD REG,EA WORD ADD (EA) TO REG

04 00000100 ADD AL,DATA8 BYTE ADD DATA TO REG
AL

05 00000101 ADD AX,DATA16 WORD ADD DATA TO REG
AX

06 00000110 PUSH ES PUSH (ES) ON STACK

07 00000111 POP ES POP STACK TO REG ES

08 00001000 MOD REG R/M OR EA,REG BYTE OR (REG) TO EA

09 00001001 MOD REG R/M OR EA,REG WORD OR (REG) TO EA

0A 00001010 MOD REG R/M OR REG,EA BYTE OR (EA) TO REG

0B 00001011 MOD REG R/M OR REG,EA WORD OR (EA) TO REG

0C 00001100 OR AL,DATA8 BYTE OR DATA TO REG AL

0D 00001101 OR AX,DATA16 WORD OR DATA TO REG
AX

0E 00001110 PUSH CS PUSH (CS) ON STACK

0F 00001111 (not used)

10 00010000 MOD REG R/M ADC EA,REG BYTE ADD (REG) W/
CARRY TO EA

11 00010001 MOD REG R/M ADC EA,REG WORD ADD (REG) W/
CARRY TO EA

12 00010010 MOD REG R/M ADC REA,EA BYTE ADD (EA) W/ CARRY
TO REG

13 00010011 MOD REG R/M ADC REG,EA WORD ADD (EA) W/
CARRY TO REG

14 00010100 ADC AL,DATA8 BYTE ADD DATA
W/CARRY TO REG AL

15 00010101 ADC AX,DATA16 WORD ADD DATA W/
CARRY TO REG AX

16 00010110 PUSH SS PUSH (SS) ON STACK

17 00010111 POP SS POP STACK TO REG SS

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

308

Hex Binary MODRM Byte Instruction Parameters Function

18 00011000 MOD REG R/M SBB EA,REG BYTE SUB (REG) W/
BORROW FROM EA

19 00011001 MOD REG R/M SBB EA,REG WORD SUB (REG) W/
BORROW FROM EA

1A 00011010 MOD REG R/M SBB REG,EA BYTE SUB (EA) W/
BORROW FROM REG

1B 00011011 MOD REG R/M SBB REG,EA WORD SUB (EA) W/
BORROW FROM REG

1C 00011100 SBB AL,DATA8 BYTE SUB DATA W/
BORROW FROM REG AL

1D 00011101 SBB AX,DATA16 WORD SUB DATA W/
BORROW FROM REG AX

1E 00011110 PUSH DS PUSH (DS) ON STACK

1F 00011111 POP DS POP STACK TO REG DS

20 00100000 MOD REG R/M AND EA,REG BYTE AND (REG) TO EA

21 00100001 MOD REG R/M AND EA,REG WORD AND (REG) TO EA

22 00100010 MOD REG R/M AND REG,EA BYTE AND (EA) TO REG

23 00100011 MOD REG R/M AND REG,EA WORD AND (EA) TO REG

24 00100100 AND AL,DATA8 BYTE AND DATA TO REG
AL

25 00100101 AND AX,DATA16 WORD AND DATA TO REG
AX

26 00100110 ES: SEGMENT OVERIDE W/
SEGMENT REG ES

27 00100111 DAA DECIMAL ADJUST FOR
ADD

28 00101000 MOD REG R/M SUB EA,REG BYTE SUBTRACT (REG)
FROM EA

29 00101001 MOD REG R/M SUB EA,REG WORD SUBTRACT (REG)
FROM EA

2A 00101010 MOD REG R/M SUB REG,EA BYTE SUBTRACT (EA)
FROM REG

2B 00101011 MOD REG R/M SUB REG,EA WORD SUBTRACT (EA)
FROM REG

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

309

Hex Binary MODRM Byte Instruction Parameters Function

2C 00101100 SUB AL,DATA8 BYTE SUBTRACT DATA
FROM REG AL

2D 00101101 SUB AX,DATA16 WORD SUBTRACT DATA
FROM REG AX

2E 00101110 CS: SEGMENT OVERIDE W/
SEGMENT REG CS

2F 00101111 DAS DECIMAL ADJUST FOR
SUBTRACT

30 00110000 MOD REG R/M XOR EA,REG BYTE XOR (REG) TO EA

31 00110001 MOD REG R/M XOR EA,REG WORD XOR (REG) TO EA

32 00110010 MOD REG R/M XOR REG,EA BYTE XOR (EA) TO REG

33 00110011 MOD REG R/M XOR REG,EA WORD XOR (EA) TO REG

34 00110100 XOR AL,DATA8 BYTE XOR DATA TO REG
AL

35 00110101 XOR AX,DATA16 WORD XOR DATA TO REG
AX

36 00110110 SS: SEGMENT OVERIDE W/
SEGMENT REG SS

37 00110111 AAA ASCII ADJUST FOR ADD

38 00111000 MOD REG R/M CMP EA,REG BYTE COMPARE (EA)
WITH (REG)

39 00111001 MOD REG R/M CMP EA,REG WORD COMPARE (EA)
WITH (REG)

3A 00111010 MOD REG R/M CMP REG,EA BYTE COMPARE (REG)
WITH (EA)

3B 00111011 MOD REG R/M CMP REG,EA WORD COMPARE (REG)
WITH (EA)

3C 00111100 CMP AL,DATA8 BYTE COMPARE DATA
WITH (AL)

3D 00111101 CMP AX,DATA16 WORD COMPARE DATA
WITH (AX)

3E 00111110 DS: SEGMENT OVERIDE W/
SEGMENT REG DS

3F 00111111 AAS ASCII ADJUST FOR
SUBTRACT

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

310

Hex Binary MODRM Byte Instruction Parameters Function

40 01000000 INC AX INCREMENT (AX)

41 01000001 INC CX INCREMENT (CX)

42 01000010 INC DX INCREMENT (DX)

43 01000011 INC BX INCREMENT (BX)

44 01000100 INC SP INCREMENT (SP)

45 01000101 INC BP INCREMENT (BP)

46 01000110 INC SI INCREMENT (SI)

47 01000111 INC DI INCREMENT (DI)

48 01001000 DEC AX DECREMENT (AX)

49 01001001 DEC CX DECREMENT (CX)

4A 01001010 DEC DX DECREMENT (DX)

4B 01001011 DEC BX DECREMENT (BX)

4C 01001100 DEC SP DECREMENT (SP)

4D 01001101 DEC BP DECREMENT (BP)

4E 01001110 DEC SI DECREMENT (SI)

4F 01001111 DEC DI DECREMENT (DI)

50 01010000 PUSH AX PUSH (AX) ON STACK

51 01010001 PUSH CX PUSH (CX) ON STACK

52 01010010 PUSH DX PUSH (DX) ON STACK

53 01010011 PUSH BX PUSH (BX) ON STACK

54 01010100 PUSH SP PUSH (SP) ON STACK

55 01010101 PUSH BP PUSH (BP) ON STACK

56 01010110 PUSH SI PUSH (SI) ON STACK

57 01010111 PUSH DI PUSH (DI) ON STACK

58 01011000 POP AX POP STACK TO REG AX

59 01011001 POP CX POP STACK TO REG CX

5A 01011010 POP DX POP STACK TO REG DX

5B 01011011 POP BX POP STACK TO REG BX

5C 01011100 POP SP POP STACK TO REG SP

5D 01011101 POP BP POP STACK TO REG BP

5E 01011110 POP SI POP STACK TO REG SI

5F 01011111 POP DI POP STACK TO REG DI

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

311

Hex Binary MODRM Byte Instruction Parameters Function

60 01100000 PUSHA PUSH ALL DATA

61 01100001 POPA POP ALL DATA

62 01100010 MOD REG R/M BOUND REG,EA CHECK INDEX IN REG
AGAINST BOUNDS AT EA

63 01100011 (not used)

64 01100100 (not used)

65 01100101 (not used)

66 01100110 (not used)

67 01100111 (not used)

68 01101000 PUSH DATA16 PUSH WORD DATA ON
STACK

69 01101001 MOD REG R/M IMUL REG,EA,
DATA16

MULTIPLY (EA) BY WORD
DATA; SIGNED

6A 01101010 PUSH DATA8 PUSH BYTE DATA ON
STACK; SIGN-EXTEND

6B 01101011 MOD REG R/M IMUL REG,EA,
DATA8

MULTIPLY (EA) BY BYTE
DATA; SIGNED

6C 01101100 INS DST8 BYTE INPUT

6D 01101101 INS DST16 WORD INPUT

6E 01101110 OUTS DST8 BYTE OUTPUT

6F 01101111 OUTS DST16 WORD OUTPUT

70 01110000 JO DISP8 JUMP ON OVERFLOW

71 01110001 JNO DISP8 JUMP ON NOT OVERFLOW

72 01110010 JC/JB/JNAE DISP8 JUMP ON BELOW/NOT
ABOVE OR EQUAL

73 01110011 JNC/JNB/
JAE

DISP8 JUMP ON NOT
BELOW/ABOVE OR EQUAL

74 01110100 JE/JZ DISP8 JUMP ON EQUAL/ZERO

75 01110101 JNE/JNZ DISP8 JUMP ON NOT EQUAL/NOT
ZERO

76 01110110 JBE/JNA DISP8 JUMP ON BELOW OR
EQUAL/NOT ABOVE

77 01110111 JNBE/JA DISP8 JUMP ON NOT BELOW OR
EQUAL/ABOVE

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

312

Hex Binary MODRM Byte Instruction Parameters Function

78 01111000 JS DISP8 JUMP ON SIGN

79 01111001 JNS DISP8 JUMP ON NOT SIGN

7A 01111010 JP/JPE DISP8 JUMP ON PARITY/PARITY
EVEN

7B 01111011 JNP/JPO DISP8 JUMP ON NOT
PARITY/PARITY ODD

7C 01111100 JL/JNGE DISP8 JUMP ON LESS/NOT
GREATER OR EQUAL

7D 01111101 JNL/JGE DISP8 JUMP ON NOT
LESS/GREATER OR EQUAL

7E 01111110 JLE/JNG DISP8 JUMP ON LESS OR
EQUAL/NOT GREATER

7F 01111111 JNLE/JG DISP8 JUMP ON NOT LESS OR
EQUAL/GREATER

80 10000000 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA

80 10000000 MOD 001 R/M OR EA,DATA8 BYTE OR DATA TO EA

80 10000000 MOD 010 R/M ADC EA,DATA8 BYTE ADD DATA
W/CARRY TO EA

80 10000000 MOD 011 R/M SBB EA,DATA8 BYTE SUB DATA
W/BORROW FROM EA

80 10000000 MOD 100 R/M AND EA,DATA8 BYTE AND DATA TO EA

80 10000000 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA
FROM EA

80 10000000 MOD 110 R/M XOR EA,DATA8 BYTE XOR DATA TO EA

80 10000000 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA
WITH (EA)

81 10000001 MOD 000 R/M ADD EA,DATA16 WORD ADD DATA TO EA

81 10000001 MOD 001 R/M OR EA,DATA16 WORD OR DATA TO EA

81 10000001 MOD 010 R/M ADC EA,DATA16 WORD ADD DATA
W/CARRY TO EA

81 10000001 MOD 011 R/M SBB EA,DATA16 WORD SUB DATA W/
BORROW FROM EA

81 10000001 MOD 100 R/M AND EA,DATA16 WORD AND DATA TO EA

81 10000001 MOD 101 R/M SUB EA,DATA16 WORD SUBTRACT DATA
FROM EA

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

313

Hex Binary MODRM Byte Instruction Parameters Function

81 10000001 MOD 110 R/M XOR EA,DATA16 WORD XOR DATA TO EA

81 10000001 MOD 111 R/M CMP EA,DATA16 WORD COMPARE DATA
WITH (EA)

82 10000010 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA

82 10000010 MOD 001 R/M (not used)

82 10000010 MOD 010 R/M ADC EA,DATA8 BYTE ADD DATA W/
CARRY TO EA

82 10000010 MOD 011 R/M SBB EA,DATA8 BYTE SUB DATA W/
BORROW FROM EA

82 10000010 MOD 100 R/M (not used)

82 10000010 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA
FROM EA

82 10000010 MOD 110 R/M (not used)

82 10000010 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA
WITH (EA)

83 10000011 MOD 000 R/M ADD EA,DATA8 WORD ADD DATA TO EA

83 10000011 MOD 001 R/M (not used)

83 10000011 MOD 010 R/M ADC EA,DATA8 WORD ADD DATA W/
CARRY TO EA

83 10000011 MOD 011 R/M SBB EA,DATA8 WORD SUB DATA W/
BORROW FROM EA

83 10000011 MOD 100 R/M (not used)

83 10000011 MOD 101 R/M SUB EA,DATA8 WORD SUBTRACT DATA
FROM EA

83 10000011 MOD 110 R/M (not used)

83 10000011 MOD 111 R/M CMP EA,DATA8 WORD COMPARE DATA
WITH (EA)

84 10000100 MOD REG R/M TEST EA,REG BYTE TEST (EA) WITH
(REG)

85 10000101 MOD REG R/M TEST EA,REG WORD TEST (EA) WITH
(REG)

86 10000110 MOD REG R/M XCHG REG,EA BYTE EXCHANGE (REG)
WITH (EA)

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

314

Hex Binary MODRM Byte Instruction Parameters Function

87 10000111 MOD REG R/M XCHG REG,EA WORD EXCHANGE (REG)
WITH (EA)

88 10001000 MOD REG R/M MOV EA,REG BYTE MOVE (REG) TO EA

89 10001001 MOD REG R/M MOV EA,REG WORD MOVE (REG) TO EA

8A 10001010 MOD REG R/M MOV REG,EA BYTE MOVE (EA) TO REG

8B 10001011 MOD REG R/M MOV REG,EA WORD MOVE (EA) TO REG

8C 10001100 MOD 0SR R/M MOV EA,SR WORD MOVE (SEGMENT
REG SR) TO EA

8C 10001100 MOD 1-- R/M (not used)

8D 10001101 MOD REG R/M LEA REG,EA LOAD EFFECTIVE
ADDRESS OF EA TO REG

8E 10001110 MOD 0SR R/M MOV SR,EA WORD MOVE (EA) TO
SEGMENT REG SR

8E 10001110 MOD -- R/M (not used)

8F 10001111 MOD 000 R/M POP EA POP STACK TO EA

8F 10001111 MOD 001 R/M (not used)

8F 10001111 MOD 010 R/M (not used)

8F 10001111 MOD 011 R/M (not used)

8F 10001111 MOD 100 R/M (not used)

8F 10001111 MOD 101 R/M (not used)

8F 10001111 MOD 110 R/M (not used)

8F 10001111 MOD 111 R/M (not used)

90 10010000 XCHG AX,AX EXCHANGE (AX) WITH
(AX)

91 10010001 XCHG AX,CX EXCHANGE (AX) WITH
(CX)

92 10010010 XCHG AX,DX EXCHANGE (AX) WITH
(DX)

93 10010011 XCHG AX,BX EXCHANGE (AX) WITH
(BX)

94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP)

95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP)

96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI)

97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (DI)

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

315

Hex Binary MODRM Byte Instruction Parameters Function

98 10011000 CBW BYTE CONVERT (AL) TO
WORD (AX)

99 10011001 CWD WORD CONVERT (AX) TO
DOUBLE WORD

9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT
CALL

9B 10011011 WAIT WAIT FOR TEST SIGNAL

9C 10011100 PUSHF PUSH FLAGS ON STACK

9D 10011101 POPF POP STACK TO FLAGS

9E 10011110 SAHF STORE (AH) INTO FLAGS

9F 10011111 LAHF LOAD REG AH WITH
FLAGS

A0 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO
REG AL

A1 10100001 MOV AX,ADDR16 WORD MOVE (ADDR) TO
REG AX

A2 10100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR

A3 10100011 MOV ADDR16,AX WORD MOVE (AX) TO
ADDR

A4 10100100 MOVS DST8,SRC8 BYTE MOVE, STRING OP

A5 10100101 MOVS DST16,SRC16 WORD MOVE, STRING OP

A6 10100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING
OP

A7 10100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING
OP

A8 10101000 TEST AL,DATA8 BYTE TEST (AL) WITH
DATA

A9 10101001 TEST AX,DATA16 WORD TEST (AX) WITH
DATA

AA 10101010 STOS DST8 BYTE STORE, STRING OP

AB 10101011 STOS DST16 WORD STORE, STRING OP

AC 10101100 LODS SRC8 BYTE LOAD, STRING OP

AD 10101101 LODS SRC16 WORD LOAD, STRING OP

AE 10101110 SCAS DIPTR8 BYTE SCAN, STRING OP

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

316

Hex Binary MODRM Byte Instruction Parameters Function

AF 10101111 SCAS DIPTR16 WORD SCAN, STRING OP

B0 10110000 MOV AL,DATA8 BYTE MOVE DATA TO REG
AL

B1 10110001 MOV CL,DATA8 BYTE MOVE DATA TO REG
CL

B2 10110010 MOV DL,DATA8 BYTE MOVE DATA TO REG
DL

B3 10110011 MOV BL,DATA8 BYTE MOVE DATA TO REG
BL

B4 10110100 MOV AH,DATA8 BYTE MOVE DATA TO REG
AH

B5 10110101 MOV CH,DATA8 BYTE MOVE DATA TO REG
CH

B6 10110110 MOV DH,DATA8 BYTE MOVE DATA TO REG
DH

B7 10110111 MOV BH,DATA8 BYTE MOVE DATA TO REG
BH

B8 10111000 MOV AX,DATA16 WORD MOVE DATA TO
REG AX

B9 10111001 MOV CX,DATA16 WORD MOVE DATA TO
REG CX

BA 10111010 MOV DX,DATA16 WORD MOVE DATA TO
REG DX

BB 10111011 MOV BX,DATA16 WORD MOVE DATA TO
REG BX

BC 10111100 MOV SP,DATA16 WORD MOVE DATA TO
REG SP

BD 10111101 MOV BP,DATA16 WORD MOVE DATA TO
REG BP

BE 10111110 MOV SI,DATA16 WORD MOVE DATA TO
REG SI

BF 10111111 MOV DI,DATA16 WORD MOVE DATA TO
REG DI

C0 11000000 MOD 000 R/M ROL EA,DATA8 BYTE ROTATE EA LEFT
DATA8 BITS

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

317

Hex Binary MODRM Byte Instruction Parameters Function

C0 11000000 MOD 001 R/M ROR EA,DATA8 BYTE ROTATE EA RIGHT
DATA8 BITS

C0 11000000 MOD 010 R/M RCL EA,DATA8 BYTE ROTATE EA LEFT
THRU CARRY DATA8 BITS

C0 11000000 MOD 011 R/M RCR EA,DATA8 BYTE ROTATE EA RIGHT
THRU CARRY DATA8 BITS

C0 11000000 MOD 100 R/M SHL/SAL EA,DATA8 BYTE SHIFT EA LEFT
DATA8 BITS

C0 11000000 MOD 101 R/M SHR EA,DATA8 BYTE SHIFT EA RIGHT
DATA8 BITS

C0 11000000 MOD 110 R/M (not used)

C0 11000000 MOD 111 R/M SAR EA,DATA8 BYTE SHIFT SIGNED EA
RIGHT DATA8 BITS

C1 11000001 MOD 000 R/M ROL EA,DATA8 WORD ROTATE EA LEFT
DATA8 BITS

C1 11000001 MOD 001 R/M ROR EA,DATA8 WORD ROTATE EA RIGHT
DATA8 BITS

C1 11000001 MOD 010 R/M RCL EA,DATA8 WORD ROTATE EA LEFT
THRUCARRY DATA8
BITSCARRY DATA8 BITS

C1 11000001 MOD 011 R/M RCR EA,DATA8 WORD ROTATE EA RIGHT
THRU CARRY DATA8 BITS

C1 11000001 MOD 100 R/M SHL/SAL EA,DATA8 WORD SHIFT EA LEFT
DATA8 BITS

C1 11000001 MOD 101 R/M SHR EA,DATA8 WORD SHIFT EA RIGHT
DATA8 BITS

C1 11000001 MOD 110 R/M (not used)

C1 11000001 MOD 111 R/M SAR EA,DATA8 WORD SHIFT SIGNED EA
RIGHT DATA8 BITS

C2 11000010 RET DATA16 INTRA SEGMENT RETURN

C3 11000011 RET INTRA SEGMENT RETURN

C4 11000100 MOD REG R/M LES ES,REG,
EA

WORD LOAD REG AND
SEGMENT REG ES

C5 11000101 MOD REG R/M LDS DS,REG,EA WORD LOAD REG AND
SEGMENT REG DS

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

318

Hex Binary MODRM Byte Instruction Parameters Function

C6 11000110 MOD 000 R/M MOV EA,DATA8 BYTE MOVE DATA TO EA

C6 11000110 MOD 001 R/M (not used)

C6 11000110 MOD 010 R/M (not used)

C6 11000110 MOD 011 R/M (not used)

C6 11000110 MOD 100 R/M (not used)

C6 11000110 MOD 101 R/M (not used)

C6 11000110 MOD 110 R/M (not used)

C6 11000110 MOD 111 R/M (not used)

C7 11000111 MOD 000 R/M MOV EA,DATA16 WORD MOVE DATA TO EA

C7 11000111 MOD 001 R/M (not used)

C7 11000111 MOD 010 R/M (not used)

C7 11000111 MOD 011 R/M (not used)

C7 11000111 MOD 100 R/M (not used)

C7 11000111 MOD 101 R/M (not used)

C7 11000111 MOD 110 R/M (not used)

C7 11000111 MOD 111 R/M (not used)

C8 11001000 ENTER DATA16,
DATA8

PERFORM ENTER
SEQUENCE

C9 11001001 LEAVE PERFORM LEAVE
SEQUENCE

CA 11001010 RET DATA16 INTER SEGMENT RETURN

CB 11001011 RET INTER SEGMENT RETURN

CC 11001100 INT 3 TYPE 3 INTERRUPT

CD 11001101 INT TYPE TYPED INTERRUPT

CE 11001110 INTO INTERRUPT ON
OVERFLOW

CF 11001111 IRET RETURN FROM
INTERRUPT

D0 11010000 MOD 000 R/M ROL EA,1 BYTE ROTATE EA LEFT 1
BIT

D0 11010000 MOD 001 R/M ROR EA,1 BYTE ROTATE EA RIGHT 1
BIT

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

319

Hex Binary MODRM Byte Instruction Parameters Function

D0 11010000 MOD 010 R/M RCL EA,1 BYTE ROTATE EA LEFT
THRU CARRY 1 BIT

D0 11010000 MOD 011 R/M RCR EA,1 BYTE ROTATE EA RIGHT
THRU CARRY 1 BIT

D0 11010000 MOD 100 R/M SHL EA,1 BYTE SHIFT EA LEFT 1 BIT

D0 11010000 MOD 101 R/M SHR EA,1 BYTE SHIFT EA RIGHT 1
BIT

D0 11010000 MOD 110 R/M (not used)

D0 11010000 MOD 111 R/M SAR EA,1 BYTE SHIFT SIGNED EA
RIGHT 1 BIT

D1 11010001 MOD 000 R/M ROL EA,1 WORD ROTATE EA LEFT 1
BIT

D1 11010001 MOD 001 R/M ROR EA,1 WORD ROTATE EA RIGHT
1 BIT

D1 11010001 MOD 010 R/M RCL EA,1 WORD ROTATE EA LEFT
THRU CARRY 1 BIT

D1 11010001 MOD 011 R/M RCR EA,1 WORD ROTATE EA RIGHT
THRU CARRY 1 BIT

D1 11010001 MOD 100 R/M SHL EA,1 WORD SHIFT EA LEFT 1 BIT

D1 11010001 MOD 101 R/M SHR EA,1 WORD SHIFT EA RIGHT 1
BIT

D1 11010001 MOD 110 R/M (not used)

D1 11010001 MOD 111 R/M SAR EA,1 WORD SHIFT SIGNED EA
RIGHT 1 BIT

D2 11010010 MOD 000 R/M ROL EA,CL BYTE ROTATE EA LEFT
(CL) BITS

D2 11010010 MOD 001 R/M ROR EA,CL BYTE ROTATE EA RIGHT
(CL) BITS

D2 11010010 MOD 010 R/M RCL EA,CL BYTE ROTATE EA LEFT
THRU CARRY (CL) BITS

D2 11010010 MOD 011 R/M RCR EA,CL BYTE ROTATE EA RIGHT
THRU CARRY (CL) BITS

D2 11010010 MOD 100 R/M SHL EA,CL BYTE SHIFT EA LEFT (CL)
BITS

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

320

Hex Binary MODRM Byte Instruction Parameters Function

D2 11010010 MOD 101 R/M SHR EA,CL BYTE SHIFT EA RIGHT (CL)
BITS

D2 11010010 MOD 110 R/M (not used)

D2 11010010 MOD 111 R/M SAR EA,CL BYTE SHIFT SIGNED EA
RIGHT (CL) BITS

D3 11010011 MOD 000 R/M ROL EA,CL WORD ROTATE EA LEFT
(CL) BITS

D3 11010011 MOD 001 R/M ROR EA,CL WORD ROTATE EA RIGHT
(CL) BITS

D3 11010011 MOD 010 R/M RCL EA,CL WORD ROTATE EA LEFT
THRU CARRY (CL) BITS

D3 11010011 MOD 011 R/M RCR EA,CL WORD ROTATE EA RIGHT
THRU CARRY (CL) BITS

D3 11010011 MOD 100 R/M SHL EA,CL WORD SHIFT EA LEFT (CL)
BITS

D3 11010011 MOD 101 R/M SHR EA,CL WORD SHIFT EA RIGHT
(CL) BITS

D3 11010011 MOD 110 R/M (not used)

D3 11010011 MOD 111 R/M SAR EA,CL WORD SHIFT SIGNED EA
RIGHT (CL) BITS

D4 11010100 00001010 AAM ASCII ADJUST FOR
MULTIPLY

D5 11010101 00001010 AAD ASCII ADJUST FOR DIVIDE

D6 11010110 (not used)

D7 11010111 XLAT TABLE TRANSLATE USING (BX)

D8 11011--- MOD --- R/M ESC EA ESCAPE TO EXTERNAL
DEVICE

D8 11011000 MOD 000 R/M FADD Short-real ADD 4-BYTE EA TO ST

D8 11011000 MOD 001 R/M FMUL Short-real MULTIPLY ST BY 4-BYTE
EA

D8 11011000 MOD 010 R/M FCOM Short-real COMPARE 4-BYTE EA
WITH ST

D8 11011000 MOD 011 R/M FCOMP Short-real COMPARE 4-BYTE EA
WITH ST AND POP

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

321

Hex Binary MODRM Byte Instruction Parameters Function

D8 11011000 MOD 100 R/M FSUB Short-real SUBTRACT 4-BYTE EA
FROM ST

D8 11011000 MOD 101 R/M FSUBR Short-real SUBTRACT ST FROM
4-BYTE EA

D8 11011000 MOD 110 R/M FDIV Short-real DIVIDE ST BY 4-BYTE EA

D8 11011000 MOD 111 R/M FDIVR Short-real DIVIDE 4-BYTE EA BY ST

D8 11011000 1 1 000 (i) FADD ST,ST(i) ADD ELEMENT TO ST

D8 11011000 1 1 001 (i) FMUL ST,ST(i) MULTIPLY ST BY ELEMENT

D8 11011000 1 1 010 (i) FCOM ST(i) COMPARE ST(i) WITH ST

D8 11011000 1 1 011 (i) FCOMP ST(i) COMPARE ST(i) WITH ST
AND POP

D8 11011000 1 1 100 (i) FSUB ST,ST(i) SUBTRACT ELEMENT
FROM ST

D8 11011000 1 1 101 (i) FSUBR ST,ST(i) SUBTRACT ST FROM
STACK ELEMENT

D8 11011000 1 1 110 (i) FDIV ST,ST(i) DIVIDE ST BY ELEMENT

D8 11011000 1 1 111 (i) FDIVR ST,ST(i) DIVIDE ST(i) BY ST

D9 11011001 MOD 000 R/M FLD Short-real PUSH 4-BYTE EA TO ST

D9 11011001 MOD 001 R/M (not used)

D9 11011001 MOD 010 R/M FST Short-real STORE 4-BYTE REAL TO EA

D9 11011001 MOD 011 R/M FSTP Short-real STORE 4-BYTE REAL TO
EA AND POP

D9 11011001 MOD 100 R/M FLDENV 14 BYTES LOAD 8087 ENVIRONMENT
FROM EA

D9 11011001 MOD 101 R/M FLDCW 2-BYTES LOAD CONTROL WORD
FROM EA

D9 11011001 MOD 110 R/M FSTENV 14-BYTES STORE 8087
ENVIRONMENT INTO EA

D9 11011001 MOD 111 R/M FSTCW 2-BYTES STORE CONTROL WORD
INTO EA

D9 11011001 1 1 000 (i) FLD ST(i) PUSH ST(i) ONTO ST

D9 11011001 1 1 001 (i) FXCH ST(i) EXCHANGE ST AND ST(i)

D9 11011001 1 1 010 000 FNOP STORE ST IN ST

D9 11011001 1 1 010 001 (not used)

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

322

Hex Binary MODRM Byte Instruction Parameters Function

D9 11011001 1 1 010 01- (not used)

D9 11011001 1 1 010 1-- (not used)

D9 11011001 1 1 011 (i) *(1)

D9 11011001 1 1 100 000 FCHS CHANGE SIGN OF ST

D9 11011001 1 1 100 001 FABS TAKE ABSOLUTE VALUE
OF ST

D9 11011001 1 1 100 01- (not used)

D9 11011001 1 1 100 100 FTST TEST ST AGAINST 0.0

D9 11011001 1 1 100 101 FXAM EXAMINE ST AND REPORT
CONDITION CODE

D9 11011001 1 1 100 11- (not used)

D9 11011001 1 1 101 000 FLD1 PUSH + 1.0 TO ST

D9 11011001 1 1 101 001 FLDL2T PUSH log 2 10 TO ST

D9 11011001 1 1 101 010 FLDL2E PUSH log 2 e TO ST

D9 11011001 1 1 101 011 FLDPI PUSH Pi TO ST

D9 11011001 1 1 101 100 FLDLG2 PUSH log 10 2 TO ST

D9 11011001 1 1 101 101 FLDLN2 PUSH log e 2 TO ST

D9 11011001 1 1 101 110 FLDZ PUSH ZERO TO ST

D9 11011001 1 1 101 111 (not used)

D9 11011001 1 1 110 000 F2XM1 CALCULATE 2 x - 1

D9 11011001 1 1 110 001 FYL2X CALCULATE FUNCTION
Y*log 2 X

D9 11011001 1 1 110 010 FPTAN CALCULATE TAN OF 0 AS
A RATIO

D9 11011001 1 1 110 011 FPATAN CALCULATE ARCTAN OF 0

D9 11011001 1 1 110 100 FXTRACT EXTRACT EXPONENT AND
SIGNIFICAND FROM ST
VALUE

D9 11011001 1 1 110 101 (not used)

D9 11011001 1 1 110 110 FDECSTP DECREMENT STACK
POINTER IN STATUS WORD

D9 11011001 1 1 110 111 FINCSTP INCREMENT STACK
POINTER IN STATUS WORD

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

323

Hex Binary MODRM Byte Instruction Parameters Function

D9 11011001 1 1 111 000 FPREM MODULO DIVISION OF ST
BY ST(1)

D9 11011001 1 1 110 001 FYL2XP1 CALCULATE VALUE OF
Y*log 2 (X + 1)

D9 11011001 1 1 111 010 FSQRT CALCULATE SQUARE
ROOT OF ST

D9 11011001 1 1 111 011 (not used)

D9 11011001 1 1 111 100 FRNDINT ROUND ST TO INTEGER

D9 11011001 1 1 111 101 FSCALE ADD ST(1) TO EXPONENT
OF ST

D9 11011001 1 1 111 11- (not used)

DA 11011010 MOD 000 R/M RIADD Short-integer ADD 4-BYTE INTEGER EA
TO ST

DA 11011010 MOD 001 R/M FIMUL Short-integer MULTIPLY ST BY 4-BYTE
INTEGER EA

DA 11011010 MOD 010 R/M FICOM Short-integer CONVERT 4-BYTE
INTEGER EA, AND
COMPARE WITH ST

DA 11011010 MOD 011 R/M FICOMP Short-integer CONVERT 4-BYTE
INTEGER EA, COMPARE
WITH ST, POP

DA 11011010 MOD 100 R/M FISUB Short-integer SUBTRACT 4-BYTE
INTEGER EA FROM ST

DA 11011010 MOD 101 R/M FISUBR Short-integer SUBTRACT ST FROM
4-BYTE INTEGER EA

DA 11011010 MOD 110 R/M FIDIV Short-integer DIVIDE ST BY 4-BYTE
INTEGER EA

DA 11011010 MOD 111 R/M FIDIVR Short-integer DIVIDE 4-BYTE INTEGER
EA BY ST

DA 11011010 1 1 -- --- (not used)

DB 11011011 MOD 000 R/M FILD Short-integer

DB 11011011 MOD 001 R/M (not used)

DB 11011011 MOD 010 R/M FIST Short-integer STORE ROUNDED ST IN
4-BYTE INTEGER EA

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

324

Hex Binary MODRM Byte Instruction Parameters Function

DB 11011011 MOD 011 R/M FISTP Short-integer STORE ROUNDED ST IN
4-BYTE INTEGER EA, POP

DB 11011011 MOD 100 R/M (not used)

DB 11011011 MOD 101 R/M FLD Temp-real PUSH 10-BYTE EA ONTO ST

DB 11011011 MOD 110 R/M Reserved

DB 11011011 MOD 111 R/M FSTP Temp-real STORE ST INTO 10-BYTE
EA, POP

DB 11011011 1 1 0-- --- Reserved

DB 11011011 1 1 100 000 FENI ENABLE INTERRUPT

DB 11011011 1 1 100 001 FDISI DISABLE INTERRUPTS

DB 11011011 1 1 100 010 FCLEX CLEAR EXCEPTIONS

DB 11011011 1 1 100 011 FINIT INITIALIZE PROCESSOR

DB 11011011 1 1 100 1-- Reserved

DB 11011011 1 1 101 --- Reserved

DB 11011011 1 1 11- --- Reserved

DC 11011100 MOD 000 R/M FADD Long-real ADD 8-BYTE EA TO ST

DC 11011100 MOD 001 R/M FMUL Long-real MULTIPLY ST BY 8-BYTE
EA

DC 11011100 MOD 010 R/M FCOM Long-real COMPARE ST WITH 8-BYTE
EA

DC 11011100 MOD 011 R/M FCOMP Long-real COMPARE ST WITH 8-BYTE
EA

DC 11011100 MOD 100 R/M FSUB Long-real SUBTRACT 8-BYTE EA
FROM ST

DC 11011100 MOD 101 R/M FSUBR Long-real SUBTRACT ST FROM
8-BYTE EA

DC 11011100 MOD 110 R/M FDIV Long-real DIVIDE ST BY 8-BYTE EA

DC 11011100 MOD 111 R/M FDIVR Long-real DIVIDE 8-BYTE EA BY ST

DC 11011100 1 1 000 (i) FADD ST(i), ST ADD ST TO ELEMENT

DC 11011100 1 1 001 (i) FMUL ST(i), ST MULTIPLY ELEMENT BY ST

DC 11011100 1 1 010 (i) *(2)

DC 11011100 1 1 011 (i) *(3)

DC 11011100 1 1 100 (i) FSUBR ST(i), ST SUBTRACT ST FROM
ELEMENT

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

325

Hex Binary MODRM Byte Instruction Parameters Function

DC 11011100 1 1 101 (i) FSUB ST(i), ST SUBTRACT ELEMENT
FROM ST

DC 11011100 1 1 110 (i) FDIVR ST(i), ST DIVIDE ST(i) BY ST

DC 11011100 1 1 111 (i) FDIV ST(i), ST DIVIDE ST BY ST(i)

DD 11011101 MOD 000 R/M FLD Long-real PUSH 8-BYTE EA ONTO ST

DD 11011101 MOD 001 R/M Reserved

DD 11011101 MOD 010 R/M FST Long-real STORE ST INTO 8-BYTE EA

DD 11011101 MOD 011 R/M FSTP Long-real STORE ST INTO 8-BYTE EA

DD 11011101 MOD 100 R/M FRSTOR 94-BYTES RESTORE 8087 STATE
FROM EA

DD 11011101 MOD 101 R/M Reserved

DD 11011101 MOD 110 R/M FSAVE 94-BYES SAVE 8087 STATE TO EA

DD 11011101 MOD 111 R/M FSTSW 2-BYTES STORE 8087 STATUS WORD
TO 2-BYTE EA

DD 11011101 1 1 000 (i) FFREE ST(i) SET STACK TAG TO
"EMPTY"

DD 11011101 1 1 001 (i) *(4)

DD 11011101 1 1 010 (i) FST ST(i) STORE ST INTO ST(i)

DD 11011101 1 1 011 (i) FSTP ST(i) STORE ST INTO ST(i), POP

DD 11011101 1 1 1-- --- Reserved

DE 11011110 MOD 000 R/M FIADD Word-integer ADD 2-BYTE INTEGER EA
TO ST

DE 11011110 MOD 001 R/M FIMUL Word-integer MULTIPLY ST BY 2-BYTE
INTEGER EA

DE 11011110 MOD 010 R/M FICOM Word-integer COMPARE 2-BYTE EA
INTEGER WITH ST

DE 11011110 MOD 011 R/M FICOMP Word-integer COMPARE 2-BYTE
INTEGER EA WITH ST, POP

DE 11011110 MOD 100 R/M FISUB Word-integer SUBTRACT 2-BYTE
INTEGER EA FROM ST

DE 11011110 MOD 101 R/M FISUBR Word-integer SUBTRACT ST FROM
2-BYTE INTEGER EA

DE 11011110 MOD 110 R/M FIDIV Word-integer DIVIDE ST BY 2-BYTE
INTEGER EA

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

326

Hex Binary MODRM Byte Instruction Parameters Function

DE 11011110 MOD 111 R/M FIDIVR Word-integer DIVIDE 2-BYTE INTEGER
EA BY ST

DE 11011110 1 1 000 (i) FADDP ST(i), ST ADD ST TO ELEMENT

DE 11011110 1 1 001 (i) FMULP ST(i), ST MULTIPLY ST BY
ELEMENT, POP

DE 11011110 1 1 010 --- *(5)

DE 11011110 1 1 011 000 Reserved

DE 11011110 1 1 011 001 FCOMPP COMPARE ST WITH ST(1),
POP TWICE

DE 11011110 1 1 011 01- Reserved

DE 11011110 1 1 011 1-- Reserved

DE 11011110 1 1 100 (i) FSUBRP ST(i), ST SUBTRACT ST FROM
ELEMENT, POP

DE 11011110 1 1 101 (i) FSUBP ST(i), ST SUBTRACT ST(i) FROM ST,
POP

DE 11011110 1 1 110 (i) FDIVRP ST(i), ST DIVIDE STACK ELEMENT
BY ST, POP

DE 11011110 1 1 111 (i) FDIVP ST(i), ST DIVIDE ST BY STACK
ELEMENT, POP

DF 11011111 MOD 000 R/M FILD Word-integer CONVERT 2-BYTE EA AND
PUSH ONTO STACK

DF 11011111 MOD 001 R/M Reserved

DF 11011111 MOD 010 R/M FIST Word-integer ROUND ST AND STORE IN
2-BYTE INTEGER EA

DF 11011111 MOD 011 R/M FISTP Word-integer ROUND ST, STORE IN
2-BYTE INTEGER EA, POP

DF 11011111 MOD 100 R/M FBLD Packed decimal LOAD BCD TO ST

DF 11011111 MOD 101 R/M FILD Long-integer CONVERT 8-BYTE
INTEGER EA AND PUSH
ONTO STACK

DF 11011111 MOD 110 R/M FBSTP Packed decimal CONVERT ST, STORE IN
10-BYTE BCD EA, POP

DF 11011111 MOD 111 R/M FISTP Long-integer ROUND ST, STORE IN
8-BYTE INTEGER EA, POP

DF 11011111 1 1 000 (i) *(6)

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

327

Hex Binary MODRM Byte Instruction Parameters Function

DF 11011111 1 1 001 (i) *(7)

DF 11011111 1 1 010 (i) *(8)

DF 11011111 1 1 011 (i) *(9)

DF 11011111 1 1 --- --- Reserved

E0 11100000 LOOPNZ/
LOOPNE

DISP8 LOOP (CX) TIMES WHILE
NOT ZERO/NOT EQUAL

E1 11100001 LOOPZ/
LOOPE

DISP8 LOOP (CX) TIMES WHILE
ZERO/EQUAL

E2 11100010 LOOP DISP8 LOOP (CX) TIMES

E3 11100011 JCXZ DISP8 JUMP ON (CX)= 0

E4 11100100 IN AL,PORT BYTE INPUT FROM PORT
TO REG AL

E5 11100101 IN AX,PORT WORD INPUT FROM PORT
TO REG AX

E6 11100110 OUT PORT,AL BYTE OUTPUT (AL) TO
PORT

E7 11100111 OUT PORT,AX WORD OUTPUT (AX) TO
PORT

E8 11101000 CALL DISP16 DIRECT INTRA SEGMENT
CALL

E9 11101001 JMP DISP16 DIRECT INTRA SEGMENT
JUMP

EA 11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT
JUMP

EB 11101010 JMP DISP8 DIRECT INTRA SEGMENT
JUMP

EC 11101010 IN AL,DX BYTE INPUT FROM PORT
(DX) TO REG AL

ED 11101010 IN AX,DX WORD INPUT FROM PORT
(DX) TO REG AX

EE 11101010 OUT DX,AL BYTE OUTPUT (AL) TO
PORT (DX)

EF 11101010 OUT DX,AX WORD OUTPUT (AX) TO
PORT (DX)

F0 11110000 LOCK BUS LOCK PREFIX

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

328

Hex Binary MODRM Byte Instruction Parameters Function

F1 11110001 (not used)

F2 11110010 REPNZ/REPNE REPEAT WHILE (CX) not
equal to 0 AND (ZF) = 0

F3 11110011 REPZ/REPE
/REP

REPEAT WHILE (CX) not
equal to 0 AND (ZF) = 1

F4 11110100 HLT HALT

F5 11110101 CMC COMPLEMENT CARRY
FLAG

F6 11110110 MOD 000 R/M TEST EA,DATA8 BYTE TEST (EA) WITH
DATA

F6 11110110 MOD 001 R/M (not used)

F6 11110110 MOD 010 R/M NOT EA BYTE INVERT EA

F6 11110110 MOD 011 R/M NEG EA BYTE NEGATE EA

F6 11110110 MOD 100 R/M MUL EA BYTE MULTIPLY BY (EA),
UNSIGNED

F6 11110110 MOD 101 R/M IMUL EA BYTE MULTIPLY BY (EA),
SIGNED

F6 11110110 MOD 110 R/M DIV EA BYTE DIVIDE BY (EA),
UNSIGNED

F6 11110110 MOD 111 R/M IDIV EA BYTE DIVIDE BY (EA),
SIGNED

F7 11110111 MOD 000 R/M TEST EA,DATA16 WORD TEST (EA) WITH
DATA

F7 11110111 MOD 001 R/M (not used)

F7 11110111 MOD 010 R/M NOT EA WORD INVERT EA

F7 11110111 MOD 011 R/M NEG EA WORD NEGATE EA

F7 11110111 MOD 100 R/M MUL EA WORD MULTIPLY BY (EA),
UNSIGNED

F7 11110111 MOD 101 R/M IMUL EA WORD MULTIPLY BY (EA),
SIGNED

F7 11110111 MOD 110 R/M DIV EA WORD DIVIDE BY (EA),
UNSIGNED

F7 11110111 MOD 111 R/M IDIV EA WORD DIVIDE BY (EA),
SIGNED

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

329

Hex Binary MODRM Byte Instruction Parameters Function

F8 11111000 CLC CLEAR CARRY FLAG

F9 11111001 STC SET CARRY FLAG

FA 11111010 CLI CLEAR INTERRUPT FLAG

FB 11111011 STI SET INTERRUPT FLAG

FC 11111100 CLD CLEAR DIRECTION FLAG

FD 11111101 STD SET DIRECTION FLAG

FE 11111110 MOD 000 R/M INC EA BYTE INCREMENT EA

FE 11111110 MOD 001 R/M DEC EA BYTE DECREMENT EA

FE 11111110 MOD 010 R/M (not used)

FE 11111110 MOD 011 R/M (not used)

FE 11111110 MOD 100 R/M (not used)

FE 11111110 MOD 101 R/M (not used)

FE 11111110 MOD 110 R/M (not used)

FE 11111110 MOD 111 R/M (not used)

FF 11111111 MOD 000 R/M INC EA WORD INCREMENT EA

FF 11111111 MOD 001 R/M DEC EA WORD DECREMENT EA

FF 11111111 MOD 001 R/M CALL EA INDIRECT INTRA
SEGMENT CALL

FF 11111111 MOD 011 R/M CALL EA INDIRECT INTER
SEGMENT CALL

FF 11111111 MOD 100 R/M JMP EA INDIRECT INTRA
SEGMENT JUMP

FF 11111111 MOD 101 R/M JMP EA INDIRECT INTER
SEGMENT JUMP

FF 11111111 MOD 110 R/M PUSH EA PUSH (EA) ON STACK

FF 11111111 MOD 111 R/M (not used)

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

330

FLAGS REGISTER CONTAINS:

 X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

*The marked encodings are not generated by the language translators. If
however, the 8087 encounters one of these encodings in the instruction
stream, it will execute it as follows:

1 FSTP ST(i)
2 FCOM ST(i)
3 FCOMP ST(i)
4 FXCH ST(i)
5 FCOMP ST(i)
6 FFREE ST(i) and pop stack
7 FXCH ST(i)
8 FSTP ST(i)
9 FSTP ST(i)

 IAPX 86/88/186 Instruct ion Set Matrix

b
d
f
i
ia
ib
id
is
iw
l
m
r
r/m
SI
sr
t
v
w
z

= byte operation
= direct
= from CPU reg
= immediate
= immed.to accum.
= immediate byte
= indirect
= immed. byte sign ext.
= immediate word
= long ie. intersegment
= memory
= register
= EA is second byte
= short intrasegment
= segment register
= to CPU reg
= variable
= word operation
= zero

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

331

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE.

16-BIT (W= 1) 8-BIT (W= 0) SEGMENT REG

000 AX
001 CX
010 DX
011 BX
100 SP
101 BP
110 SI
111 DI

000 AL
001 CL
010 DL
011 BL
100 AH
101 CH
110 DH
111 BH

00 ES
01 CS
10 SS
11 DS

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BX) + (SI)
00 001 (BX) + (DI)
00 010 (BP) + (SI)
00 011 (BP) + (DI)
00 100 (SI)
00 101 (DI)
00 110 DISP16 (DIRECT ADDRESS)
00 111 (BX)
01 000 (BX) + (SI) + DISP8
01 001 (BX) + (DI) + DISP8
01 010 (BP) + (SI) + DISP8
01 011 (BP) + (DI) + DISP8
01 100 (SI) + DISP8
01 101 (DI) + DISP8
01 110 (BP) + DISP8
01 111 (BX) + DISP8
10 000 (BX) + (SI) + DISP16

DS
DS
SS
SS
DS
DS
DS
DS
DS
DS
SS
SS
DS
DS
SS
DS
DS

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

332

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS) (Cont’d)

10 001 (BX) + (DI) + DISP16
10 010 (BP) + (SI) + DISP16
10 011 (BP) + (DI) + DISP16
10 100 (SI) + DISP16
10 101 (DI) + DISP16
10 110 (BP) + DISP16
10 111 (BX) + DISP16
11 000 REG AX / AL
11 001 REG CX /CL
11 010 REG DX /DL
11 011 REG BX /BL
11 100 REG SP / AH
11 101 REG BP /CH
11 110 REG SI /DH
11 111 REG DI /BH

DS
SS
SS
DS
DS
SS
DS

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

333

IAPX 86/186 Instruction Set Matrix

LO

Hi 0 1 2 3 4 5 6 7

0 ADD
b.f.r/m

ADD
w.f.r/m

ADD
b.t.r/m

ADD
w.t.r/m

ADD
b.ia

ADD
w.ia

PUSH
ES

POP
ES

1 ADC
b.f.r/m

ADC
w.f.r/m

ADC
b.t.r/m

ADC
w.t.r/m

ADC
b.ia

ADC
w.ia

PUSH
SS

POP
SS

2 AND
b.f.r/m

AND
w.f.r/m

AND
b.t.r/m

AND
w.t.r/m

AND
b.ia

AND
w.ia

SEG
ES

DAA

3 XOR
b.f.r/m

XOR
w.f.r/m

XOR
b.t.r/m

XOR
w.t.r/m

XOR
b.ia

XOR
w.ia

SEG
SS

AAA

4 INC
AX

INC
CX

INC
DX

INC
BX

INC
SP

INC
BP

INC
SI

INC
DI

5 PUSH
AX

PUSH
CX

PUSH
DX

PUSH
BX

PUSH
SP

PUSH
BP

PUSH
SI

PUSH
DI

6 PUSHA POPA BOUND
R.R/M

7 JO JNO JB/
JNAE

JNB/
JAE

JE/
JZ

JNE/
JNZ

JBE/
JNA

JNBE/
JA

8 Immed
b.r/m

Immed
w.r/m

Immed
b.r/m

Immed
is.r/m

TEST
b.r/m

TEST
w.r/m

XCHG
b.r/m

XCHG
w.r/m

9 NOP XCHG
CX

XCHG
DX

XCHG
BX

XCHG
SP

XCHG
BP

XCHG
SI

XCHG
DI

A MOV
m → AL

MOV
m → AX

MOV
AL → m

MOV
AX → m

MOVS
b

MOVS
w

CMPS
b

CMPS
w

B MOV
i → AL

MOV
i → CL

MOV
i → DL

MOV
i → BL

MOV
i → AH

MOV
i → C

MOV
i → DH

MOV
i → BH

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

334

IAPX 86/186 Instruction Set Matrix

LO

Hi 0 1 2 3 4 5 6 7

C Shift
b.r/m.i

Shift
w.r/mi

IRET
(i - SP)

IRET LES LDS MOV
b.i.r/m

MOV
w.i.r/m

D Shift
b

Shift
w

Shift
b.v

Shift
w.v

AAM AAD XLAT

E LOOPNZ/
LOOPNE

LOOPZ/
LOOPE

LOOP JCXZ IN
b

IN
w

OUT
b

OUT
w

F LOCK REP REPZ HLT CMC Grp 1
b.r/m

Grp 1
w.r/m

IAPX 86/186 Instruction Set Matrix

LO

Hi 8 9 A B C D E F

0 OR
b.f.r/m

OR
w.f.r/m

OR
b.t.r/m

OR
w.t.r/m

OR
b.ia

OR
w.ia

PUSH
CS

1 SBB
b.f.r/m

SBB
w.f.r/m

SBB
b.t.r/m

SBB
w.t.r/m

SBB
b.ia

SBB
w.ia

PUSH
DS

POP
DS

2 SUB
b.f.r/m

SUB
w.f.r/m

SUB
b.t.r/m

SUB
w.t.r/m

SUB
b.ia

SUB
w.ia

SEG
CS

DAS

3 CMP
b.f.r/m

CMP
w.f.r/m

CMP
b.t.r/m

CMP
w.t.r/m

CMP
b.ia

CMP
w.ia

SEG
DS

AAS

4 DEC
AX

DEC
CX

DEC
DX

DEC
BX

DEC
SP

DEC
BP

DEC
SI

DEC
DI

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

335

IAPX 86/186 Instruction Set Matrix

LO

Hi 8 9 A B C D E F

5 POP
AX

POP
CX

POP
DX

POP
BX

POP
SP

POP
BP

POP
SI

POP
DI

6 PUSH
iw

IMUL
r.iw.r/m

PUSH
is

IMUL
r.is.r/m

INS
b

INS
w

OUTS
b

OUTS
w

7 JS JNS JP/
JPE

JNP/
JPO

JL/
JNGE

JNL/
JGE

JLE/
JNG

JNLE/
JG

8 MOV
b.f.r/m

MOV
w.f.r/m

MOV
b.t.r/m

MOV
w.t.r/m

MOV
sr.f.r/m

LEA MOV
sr.t.r/m

POP
r/m

9 CBW CWD CALL
i.d

WAIT PUSHF POPF SAHF LAHF

A TEST
b.i

TEST
w.i

STOS
b

STOS
w

LODS
b

LODS
w

SCAS
b

SCAS
w

B MOV
i → AX

MOV
i → CX

MOV
i → DX

MOV
i → BX

MOV
i → SP

MOV
i → BP

MOV
i → SI

MOV
i → DI

C ENTER
iw.ib

LEAVE IRET
I . (i - SP)

IRET
I

INT
Type 3

INT
(Any)

INTO IRET

D ESC
0

ESC
1

ESC
2

ESC
3

ESC
4

ESC
5

ESC
6

ESC
7

E CALL
d

JMP
d

JMP
i.d

JMP
si.d

IN
v.b

IN
v.w

OUT
v.d

OUT
v.w

F CLC STC CLI STI CLD STD Grp 2
b.r/m

Grp 2
w.r/m

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

336

Where

mod r/m 000 001 010 011 100 101 110 111

Immed ADD OR ADC SBB AND SUB XOR CMP

Shift ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR

Grp 1 TEST NOT NEG MUL IMUL DIV IDIV

Grp 2 INC DEC CALL
id

CALL
I id

JMP
id

JMP
I id

PUSH

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

337

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

338

18

8086/186 Instruction Set Summary

Chapter 18: 8086/186 Instruct ion Set Summary

339

Function Formal 186
Clock
Cycles

Comments

DATA TRANSFER
MOVE = Move:

Register to
Register/Memory

1000100w mod reg
r/m 2/12

Register/Memory to
register

1000101w mod reg
r/m 2/9

Immediate to
register/memory

1100011w mod 000
r/m

data data if w= 1
12-13 8/16-bit

Immediate to register 1011w reg data data if w= 1 3-4 8/16-bit

Memory to
accumulator

1010000w addr-low addr-high
9

Accumulator to
memory

1010001w addr-low addr-high
8

Register/memory to
segment register

10001110 mod 0 reg r/m

2/9

Segment/register to
register/memory

10001100 mod 0 reg r/m

2/11

Chapter 18: 8086/186 Instruct ion Set Summary

340

Function Formal 186
Clock
Cycles

Comments

PUSH = Push:
Memory

11111111 mod 110
r/m 16

Register 01010 reg 10

Segment register 000 reg 110 9

*Immediate 011010s0 data data if s = 010

*PUSHA = Push All 01100000 36

POP = Pop: Memory 10001111 mod 000
r/m

20

Register 01011 reg 10

Segment register 000 reg 111 (reg ≠ 01) 8

*POPA = Pop All 01100001 51

XCHG = Exchange:

Register/memory with
register

1000011w mod reg
r/m 4/17

Register with
accumulator

10010 reg
3

IN = Input from:
Fixed port

1110010w port
10

Chapter 18: 8086/186 Instruct ion Set Summary

341

Function Formal 186
Clock
Cycles

Comments

Variable port 1110110w 8

OUT = Output to:

Fixed port 1110011w port 9

Variable port 1110111w 7

XLAT = translate
byte to AL

11010111
11

LEA = Load EA to
register

10001101 mod reg
r/m 6

LDS = Load pointer
to DS

11000101 mod reg
r/m (mod ≠ 11) 18

LES = Load pointer
to ES

11000100 mod reg
r/m (mod ≠ 11) 18

LAHF = Load AH
with flags

10011111
2

SAHF = Store AH
into flags

10011110
3

PUSHF = Push flags 10011100 9

POPF = Pop flags 10011101 8

Chapter 18: 8086/186 Instruct ion Set Summary

342

Function Formal 186
Clock
Cycles

Comments

ARITHMETIC ADD
= Add:

Reg/memory with
register to either

000000dw mod reg
r/m 3/10

Immediate to
register/memory

100000sw mod 000
r/m

data data if s w - 01

4/16

Immediate to
accumulator

0000010w data data if w - 1
3/4 8/16-bit

ADC = ADD with
carry:

Reg/memory with
register to either

000100dw mod reg
r/m 3/10

Immediate to
register/memory

100000sw mod 010
r/m

data data is s w - 01

4/16

Immediate to
accumulator

0001010w data data if w - 1
3/4 8/16-bit

INC = Increment:

Register/memory 1111111w mod 000
r/m

3/15

Register 01000 reg 3

Chapter 18: 8086/186 Instruct ion Set Summary

343

Function Formal 186
Clock
Cycles

Comments

SUB = Subtract:

Reg/memory and
register to either

001010dw mod reg
r/m 3/10

Immediate from
register/memory

100000sw mod 101
r/m

data data if s w 01

4/16

Immediate from
accumulator

0010110w data data if w - 1
3/4 8/16-bit

SBB = Subtract with
borrow:

Reg/memory and
register to either

000110dw mod reg
r/m 3/10

Immediate from
register/memory

100000sw mod 011
r/m

data data if s w - 01

4/16

Immediate from
accumulator

0001110w data data if w - 1
3/4 8/16-bit

DEC = Decrement:

Register/memory 1111111w mod 001
r/m

3/15

Register 01001 reg 3

Chapter 18: 8086/186 Instruct ion Set Summary

344

Function Formal 186
Clock
Cycles

Comments

CMP = Compare:

Register/memory with
register

0011101w mod reg
r/m 3/10

Register with
register/memory

0011100w mod reg
r/m 3/10

Immediate with
register/memory

100000sw mod 111
r/m

data data if s w - 01

3/10

Immediate with
accumulator

0011110w data data if w - 1
3/4 8/16-bit

NEG = Change sign 1111011w mod 011
r/m

3

AAA = ASCII adjust
for add

00110111
8

DAA = Decimal
adjust for add

00100111
4

AAS = ASCII adjust
for subtract

00111111
7

DAS = Decimal
adjust for subtract

00101111
4

MUL = Multiply
(unsigned):

1111011w mod 100
r/m

Register-Byte 26-28

Register-Word 35-37

Chapter 18: 8086/186 Instruct ion Set Summary

345

Function Formal 186
Clock
Cycles

Comments

Memory-Byte 32-34

Memory-Word 41-43

IMUL = Integer
multiply (signed):

1111011w mod 101
r/m

Register-Byte 25-28

Register-Word 34-37

Memory-Byte 31-34

Memory-Word 40-43

*IMUL = Integer
immediate multiply
(signed)

011010s1 mod reg
r/m

data data if s= 0
22-25/29-32

DIV = Divide
(unsigned):

1111011w mod 110
r/m

Register-Byte 29

Register-Word 38

Memory-Byte 35

Memory-Word 44

IDIV = Integer divide
(signed):

1111011w mod 111
r/m

Chapter 18: 8086/186 Instruct ion Set Summary

346

Function Formal 186
Clock
Cycles

Comments

Register-Byte 44-52

Register-Word 53-61

Memory-Byte 50-58

Memory-Word 59-67

AAM = ASCII adjust
for multiply

11010100 00001010
19

AAD = ASCII adjust
for divide

11010101 00001010
15

CBW = Convert byte
to word

10011000
2

CWD = Convert word
to double word

10011001
4

LOGIC
Shift/Rotate
Instructions:

Register/Memory by 1 1101000w mod TTT
r/m

2/15

Register/Memory by
CL

1101001w mod TTT
r/m 5+ m/17+ n

*Register/Memory by
Count

1100000w mod TTT
r/m

count
5+ n/17+ n

Chapter 18: 8086/186 Instruct ion Set Summary

347

Function Formal 186
Clock
Cycles

Comments

TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

AND = And:

Reg/memory and
register to either

001000dw mod reg
r/m 3/10

Immediate to
register/memory

1000000w mod 100
r/m

data data if w= 1
4/16

Immediate to
accumulator

0010010w data data if w= 1
3/4 8/16-bit

TEST = And function
to flags, no result:

Register/memory and
register

1000010w mod reg
r/m 3/10

Immediate data and
register/memory

1111011w mod 000
r/m

data data if w= 1 4/10

Immediate data and
accumulator

1010100w data data if w= 1
3/4 8/16-bit

Chapter 18: 8086/186 Instruct ion Set Summary

348

Function Formal 186
Clock
Cycles

Comments

OR = Or:

Reg/memory and
register to either

000010dw mod reg
r/m 3/10

Immediate to
register/memory

1000000w mod 001
r/m

data data if w= 1
4/16

Immediate to
accumulator

0000110w data data if w= 1
3/4 8/16-bit

XOR = Exclusive or:

Reg/memory and
register to either

001100dw mod reg
r/m 3/10

Immediate to
register/memory

1000000w mod 110
r/m

data data if w= 1
4/16

Immediate to
accumulator

0011010w data data if w= 1
3/4 8/16-bit

NOT = Invert
register/memory

1111011w mod 010
r/m 3

STRING
MANIPULATION

MOVS = Move
byte/word

1010010w
14

CMPS = Compare
byte/word

1010011w
22

Chapter 18: 8086/186 Instruct ion Set Summary

349

Function Formal 186
Clock
Cycles

Comments

SCAS = Scan
byte/word

1010111w
15

LODS = Load
byte/wd to AL/AX

1010110w
12

STOS = Star byte/wd
from AL/A

1010101w
10

*INS = Input byte/wd
from DX port

0110110w
14

*OUTS = Output
byte/wd to DX port

0110111w
14

Repeated by count in
CX

MOVS - Move string 11110010 1010010w 8 + 8n

CMPS - Compare
string

1111001z 11010011w
5 + 22n

SCAS - Scan string 1111001z 11010111w 5 + 15n

LODS - Load string 11110010 1010110w 6 + 11n

STOS - Store string 11110010 1010101w 6 + 9n

*INS = Input string 11110010 0110110w 8 + 8n

*OUTS = Output
string

11110010 0110111w
8 + 8n

Chapter 18: 8086/186 Instruct ion Set Summary

350

Function Formal 186
Clock
Cycles

Comments

CONTROL
TRANSFER

CALL = Call:
Direct within segment

11101000 disp-low disp--high
14

Register memory
indirect within sement

11111111 mod 010
r/m 13/19

Direct intersegment 10011010 segment offset 23

segment selector

Indirect intersegment 11111111 mod 011
r/m

(mod ≠ 11) 38

JMP = Unconditional
jump:

Short long 11101011 disp-low 13

Direct within segment 11101001 disp-low disp-high 13

Register/memory
indirect within segment

11111111 mod 100
r/m 11/17

Direct intersegment 11101010 segment offset 13

segment selector

Chapter 18: 8086/186 Instruct ion Set Summary

351

Function Formal 186
Clock
Cycles

Comments

Indirect intersegment 11111111 mod 101
r/m

(mod ≠ 11) 26

RET = Return from
CALL:

Within segment 11000011 16

Within seg adding
immed to SP

11000010 data-low data-high

Intersegment 11001011 28

Intersegment adding
immediate to SP

11001010 data-low data-high
25

JE/JZ = Jump on
equal zero

01110100 disp
4/13 13 if JMP

JL/JNGE = Jump on
less not greater or
equal

01111100 disp
4/13 taken

JLE/JNG = Jump on
less or equal not
greater

01111110 disp
4/13 4 if JMP

JB/JNAE = Jump on
below not above or
equal

01110010 disp
4/13 not taken

JBE/JNA = Jump on
below or equal not
above

01110110 disp
4/13

Chapter 18: 8086/186 Instruct ion Set Summary

352

Function Formal 186
Clock
Cycles

Comments

JP/JPE = Jump on
parity even

01111010 disp
4/13

JO = Jump on
overflow

01110000 disp
4/13

JS = Jump on sign 01111000 disp 4/13

JNE/JNZ = Jump on
not equal not zero

01110101 disp
4/13

JNL/JGE = Jump on
not less greater or
equal

01111101 disp
4/13

JNLE/JG = Jump on
not less or equal
greater

01111111 disp
4/13

JNB/JAE = Jump on
not below above or
equal

01110011 disp
4/13

JNBE/JA = Jump on
not below or equal
above

01110111 disp
4/13

JNP/JPO = Jump on
not parity odd

01111011 disp
4/13

JNO = Jump on not
overflow

01110001 disp
4/13

JNS = Jump on not
sign

01111001 disp
4/13

Chapter 18: 8086/186 Instruct ion Set Summary

353

Function Formal 186
Clock
Cycles

Comments

LOOP = Loop CX
times

11100010 disp
5/15

LOOPZ/LOOPE =
Loop while zero equal

11100001 disp
6/16

LOOPNZ/LOOPNE
= Loop while not zero
equal

11100000 disp
16

JMP
taken/

JCXZ = Jump on CX
zero

11100011 disp
5

JMP not
taken

*ENTER = Enter
Procedure

11001000 data-low data-high L

L = 0
L= 1
L> > 1

15
25

22= 16
(n-1)

LEAVE = Leave
Procedure

11001001
8

INT = Interrupt:

Type specified 11001101 type 47

Type 3 11001100 45 if
INT.taken/

Chapter 18: 8086/186 Instruct ion Set Summary

354

Function Formal 186
Clock
Cycles

Comments

INTO = Interrupt on
overflow

11001110
48/4

if INT.not
taken

IRET = Interrupt
return

11001111 28

*BOUND = Detect
value out of range

01100010 mod reg
r/m 33-35

PROCESSOR
CONTROL

CLC = Clear carry 11111000 2

CMC = Complement
carry

11110101
2

STC = Set carry 11111001 2

CLD = Clear direction11111100 2

STD = Set direction 11111101 2

CLI = Clear interrupt 11111010 2

STI = Set interrupt 11111011 2

HLT = Halt 11110100 2

WAIT = Wait 10011011 6 if test = 0

LOCK = Bus lock
prefix

11110000
2

Chapter 18: 8086/186 Instruct ion Set Summary

355

Function Formal 186
Clock
Cycles

Comments

ESC = Processor
Extension Escape

10011TTT mod LLL
r/m

6

(TTT LLL are opcode to processor extension)

Chapter 18: 8086/186 Instruct ion Set Summary

356

Footnotes

The effective Address (EA) of the memory operand is computed according to
the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

if mod = 00 then DISP = 0*, disp-low and disp-high are absent

if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is
absent

if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP

if r/m = 001 then EA = (BX) + (DI) + DISP

if r/m = 010 then EA = (BP) + (SI) + DISP

if r/m = 011 then EA = (BP) + (DI) + DISP

if r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if required)

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

SEGMENT OVERRIDE PREFIX

001 reg 110

reg is assigned according to the following:

reg Segment
Register

00 ES

Chapter 18: 8086/186 Instruct ion Set Summary

357

01 CS

10 SS

11 DS

REG is assigned according to the following table:

16-Bit (w = 1) 8-Bit (w = 0)

000 AX 000 AL

001 CX 001 CL

010 DX 010 DL

011 BX 011 BL

100 SP 100 AH

101 BP 101 CH

110 SI 110 DH

111 DI 111 BH

The physical addresses of all operands addressed by the BP register are
computed using the SS segment register. The physical addresses of the
destination operands of the string primitive operations (those addressed by
the DI register) are computed using the ES segment, which may not be
overridden.

Chapter 18: 8086/186 Instruct ion Set Summary

358

Part 3

Linker/Librarian Reference

Part 3

360

19

Linker/Loader Introduction

Introduction to the linking loader.

Chapter 19: Linker/Loader Introduction

361

The linking loader can be used to combine several independently assembled
relocatable object modules into a single absolute object module.

When an absolute load is performed, relocatable addresses are transformed
into absolute addresses, external references between modules are resolved,
and the final absolute address value is substituted for each external symbol
reference. The loader allows you to specify the program segment addresses,
external definitions, and assign the final load address and segment loading
order. Absolute output can be produced in either HP-OMF 86 format
absolute (default), Intel Hexadecimal Object file format absolute, or HP 64000
format absolute.

Note HP-OMF 86 format is the HP implementation of Intel Binary OMF. It
contains certain extensions to facilitate analysis and emulation. HP-OMF 86
has not been verified to be strictly compatible with Intel Binary OMF and may
not work correctly in tools or systems designed to consume Intel Binary OMF.

The linking loader can also be used to combine relocatable object modules
into a single relocatable object module suitable for later re-linking with other
modules. This option is known as incremental linking. Output is produced in
HP-OMF 86 format relocatable. Certain loader commands cannot be used
with this option: RESADD, RESNUM, GROUP, INITDATA, START and
ORDER.

Linking And Loading From Libraries

The linking loader provides the ability to load object modules from a library.
The ar86 Librarian is used to create such a library. The loader will include only
those modules from a library that are necessary to resolve external references.

Linking to the 8087

This section applies to the code generated in 8086 and 80186 modes that is
intended to run on the 8087 coprocessor.

Chapter 19: Linker/Loader Introduction
Linking And Loading From Libraries

362

Many target systems use an 8087 coprocessor to execute floating point
instructions. However, it is also possible to use software emulation for these
same floating point instructions. In fact, Intel has an emulator package that
includes an emulation library for the 8087 (named en87.lib). Most floating
point instructions must be modified at link time if the emulation library code
is to be accessed instead of the 8087. To do this, the as86 assembler generates
certain external references to invoke the correct emulation function in the
software library.

If you are using an 8087, you must still resolve the external references so that
the code is not changed. Unfortunately, the external names that are used
contain a colon (’:’). Because the assembler does not accept this character in
user-defined symbols, the public symbols needed to resolve these externals
cannot be created in the assembler. The loader, however, does accept the
colon in loader symbols. You must define these publics in the loader
command file with the PUBLIC command. This command should look like
this:

PUBLIC M:_WST=0,M:_WT=0,M:_NST=0
PUBLIC M:_WCS=0,M:_WDS=0,M:_WES=0,M:_WSS=0
PUBLIC M:_NCS=0,M:_NDS=0,M:_NES=0,M:_NSS=0

This command will cause the created floating point code to work as is with the
8087 coprocessor.

M:_WST, M:_WT, M:_NST, and other Floating Point
Externals

A brief explanation of these externals will help you to understand why they
exist. As can be seen from the above linker command, there are eleven
externals that can be generated.

• The "M:_WST" external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of its object code.

• The "M:_NST" external is generated for those floating point instructions
that start with a 90H byte.

• The "M:_WT" instruction is used for the FWAIT floating point
instruction. (The WAIT instruction does NOT get modified through the
mechanism described here, so it should not be used if software emulation
is desired).

Chapter 19: Linker/Loader Introduction
Linking to the 8087

363

• The "M:_WCS" external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of the instruction and a CS
segment override byte is required for the memory operand.

• The "M:_NCS" external is generated whenever a floating point instruction
is used that has a 90H byte at the start of the instruction and a CS segment
override byte is required for the memory operand.

• The "M:_WDS" external is generated whenever a floating point
instruction is used that has a 9BH byte at the start of the instruction and a
DS segment override byte is required for the memory operand.

• The "M:_NDS" external is generated whenever a floating point instruction
is used that has a 90H byte at the start of the instruction and a DS segment
override byte is required for the memory operand.

• The "M:_WES" external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of the instruction and a ES
segment override byte is required for the memory operand.

• The "M:_NES" external is generated whenever a floating point instruction
is used that has a 90H byte at the start of the instruction and a ES segment
override byte is required for the memory operand.

• The "M:_WSS" external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of the instruction and a SS segment
override byte is required for the memory operand.

• The "M:_NSS" external is generated whenever a floating point instruction
is used that has a 90H byte at the start of the instruction and a SS segment
override byte is required for the memory operand.

When a floating point instruction is used that meets one of the above criteria,
a fixup is placed in the relocatable file so the floating point instruction can be
converted into an equivalent instruction for the 8087 emulation libraries. The
fixups convert the floating point instructions to become interrupt instructions
that interpret floating point code. If the libraries are not being used, then the
public must have a value of 0 so the fixup does not modify the code.

If you are linking with the Intel emulation library, there is no need to define
these publics. Instead, the publics will be defined within the library such that
the floating point instructions are modified to work with the library. Modify all
programs that use the emulation libraries to call the INIT87 Intel library

Chapter 19: Linker/Loader Introduction
Linking to the 8087

364

routine. It is equally valid to use the FINIT instruction if the emulation
libraries are not being used.

Chapter 19: Linker/Loader Introduction
Linking to the 8087

365

Chapter 19: Linker/Loader Introduction
Linking to the 8087

366

20

Linker/Loader Operation

Description of loader operation.

Chapter 20: Linker/Loader Operation

367

This chapter briefly describes the function of the loader, reviews some
concepts necessary to understanding how the loader functions, and explains
some aspects of the loader operation—for instance, how the loader goes about
locating object modules in memory when a load occurs. A later section of this
chapter explains the load procedure and touches on issues the loader must
consider when loading modules that are very different in makeup. This
information will help you to better control and optimize the load process.

Primary Functions

Many programs are too long to be conveniently assembled as a single module.
To avoid long assembly times or to reduce the size of the assembler symbol
table, long programs can be subdivided into smaller modules, assembled
separately, and then linked together by the linking loader. After the separate
program modules are linked and loaded, the output module functions as if it
had been generated by a single assembly.

The primary functions of the linking loader are:

• Resolve external references between modules and check for undefined
references (link).

• Adjust all relocatable addresses to the proper absolute addresses (load).

• Place debug information in proper format for analysis tools.

• Produce as output the final absolute object module.

Incremental Linking

A powerful and useful feature of the ld86 is the incremental linking ability.
Incremental linking means that the loader can produce a single relocatable
object module from assembled relocatable object modules, and resolve all
external references between the modules loaded. Undefined external
references to other modules can still exist in the output object module. These
are reported on the load map.

Chapter 20: Linker/Loader Operation
Primary Functions

368

Incremental linking is useful for two reasons:

• First, it enables groups of users to easily share relocatable object modules
for joint development of code.

• Long lists of previously-debugged object modules do not have to be linked
with those modules currently under development. Instead, one
incrementally-linked module can be created and linked with the new
modules; it is therefore unnecessary to know all the original module
names that are in the incrementally-linked module.

The ORDER, GROUP, INITDATA, START, RESADD, and RESNUM
loader commands cannot be used when incremental linking.

Segments and Load Addresses

To effectively use the as86 Assembler and ld86 Linking Loader, you must
understand the various program segments and segment load addresses. The
terms summarized below are described more completely elsewhere in this
manual.

Logical Segment

A logical segment is a programmer-defined division of the assembly program
that will assemble into a contiguous segment of related code that is no larger
than 64K bytes. Logical divisions would be code, data, and stack segments.
The word segment, when used alone, means logical segment or program
segment.

Base Address

The base address is the lowest address of a physical segment. All offsets within
a segment are counted from the base address.

Physical Segment

A physical segment is a contiguous block of 64K bytes of memory. Physical
segments contain the code and/or data when the program is loaded into

Chapter 20: Linker/Loader Operation
Segments and Load Addresses

369

memory. Physical segments are paragraph-aligned which means that their
base addresses are divisible by 16 (least significant hex digit equal to 0H). The
base address of a physical segment is the number you ASSUME (the reference
is made through a segment name) for a segment register in order to be able to
access memory within the segment. The loader does not check against
ASSUME values. It is your responsibility to make sure they are correct.

Absolute Segment

An absolute segment is a segment whose base address is completely known at
assembly-time. In the assembly source code, the AT keyword followed by an
address produces an absolute segment. (The loader command SEG can also
assign an absolute address to a relocatable segment.)

Relocatable Segment

A relocatable segment is one whose base address is not known at
assembly-time. The base address is calculated by the loader during the load
process.

Paragraph (Segment) Number

A paragraph is 16 bytes in length. A paragraph-aligned address starts at a
20-bit address that is divisible by 16 (lowest significant digit is 0H). The upper
16 bits of the 20-bit address is the paragraph number. A paragraph number
lies between 0 and 0FFFFH, inclusive. The base address of a segment may be
defined in terms of a paragraph number and offset. First, multiply the
paragraph number by 16. Then, add an offset from 0 to 15 to that number.
The result is a 20-bit address which can be a base address. A paragraph
number may also be the start of a physical segment.

Class

A class is a collection of segments that have had the same symbol (class name)
associated with them at assembly-time. The segments in a class are placed
adjacent to each other in memory by the loader, unless you specify otherwise
through loader commands. Note that adjacent does not necessarily mean
contiguous. It only means that other segments will not be placed between
them.

Chapter 20: Linker/Loader Operation
Segments and Load Addresses

370

Group

A group is a collection of segments that are to be placed within the same
physical segment. They can therefore be addressed from a single segment
register. The segment register must contain the group base address, not the
segment base address. Unlike segments in a class, the segments in a group are
not necessarily adjacent in memory, but must lie within 64K of the base
address of the group.

Note If a group of a given name exists in more than one file and the lists of segments
named as part of the group is not the same in each file, the loader will create a
group of that name that has a segment list that is the union of the segment lists
from the files. For instance, if file A had the following GROUP directive

 datagrup GROUP data1, data2, data4

and file B has the same group, but the segment list is different, such as

 datagrup GROUP data1, data3, data5

then the loader will merge this group. The result would be a group "datagrup"
that contains data1, data2, data3, data4, and data5. Although data1 appears
twice, it will not be duplicated in the group.

This is, in effect, a merging of the two group lists. The resulting group must
still be contained within the 64K boundary. The loader does not report that it
has merged groups.

This feature may be used to create groups when all member segments or
externals are not known, or when it is inconvenient to create empty segments
just to include them in a group list.

Group Base Address

If set by the loader, the base address of group is the base address of the
"lowest" segment in the group (the segment base address that is less than or
equal to all the other segment base addresses in the group.) It is a 20-bit
address divisible by 16. It is either set at load time by the loader or specified
explicitly with the GROUP loader command.

Chapter 20: Linker/Loader Operation
Segments and Load Addresses

371

Module

A module is the relocatable object code resulting from a single assembly. It
can contain pieces of one or more segments. (Each module contains at least
the default segment ??SEG.)

Provided that the segment parts are not private (non-combinable), the loader
can combine parts of a segment from different modules. When combined,
these parts make up a contiguous block of memory as if they were from a
contiguous piece of object code.

Note The default combine-type is private (non-combinable).

In order for segment parts to be other than private, they must be explicitly
declared as public, or some other combine-type, in the assembly source code.

Complete Name

The loader identifies a segment by its segment name and its class name together.
The term complete name refers to the segment name/class name pair. If two
segments from different assemblies have the same segment name but different
class names (or if one has a class name and the other does not), these segments
are considered to be different, unrelated entities. The loader may not
recognize a segment as being valid if it must have a class name appended to it
and the class name does not appear. This treatment is different from that of
the assembler. Each segment has a unique complete name, but more than one
segment can use the same segment name.

Segment Attributes

Each segment (or piece of a segment) has two attributes associated with it at
assembly-time: a combine-type attribute and an align-type attribute. All
segments have these attributes because if you do not specify explicit attributes,

Chapter 20: Linker/Loader Operation
Complete Name

372

the assembler defaults to a non-combinable combine-type and a
paragraph-aligned align-type.

Parts of the same segment (as specified by a complete name) from different
modules must have the same combine-type, or the loader issues an error. The
align-types, however, do not have to be the same.

The align-type of an absolute segment is always paragraph because of the
manner that it is defined in the assembly code.

Combine-type Attributes

The combine-type attribute specifies how different pieces of a segment will be
united by the loader. A segment piece may have a combine-type attribute of
non-combinable, public, common, stack, or memory. These attributes are
described in the next sections.

Non-combinable

The assembler defaults to non-combinable if you do not specify a
combine-type attribute. The term private is sometimes used to mean
non-combinable. If different modules contain non-combinable segments of
the same name, they are treated as separate segments and are not combined by
the loader.

Public

Public means combinable. The loader concatenates pieces of a public segment
from different modules to form a contiguous segment. The length of the
resulting segment is the sum of lengths of the combined pieces.

Common

Pieces of the common segment from different modules are overlapped. The
base address is the same for all such pieces. The length of the combined
segment is the length of the largest of the pieces. Such segments are useful as
a shared data area.

Stack

Pieces of the stack segment from different modules are concatenated such that
they end at the same address (in high memory). The length of the combined

Chapter 20: Linker/Loader Operation
Segment Attributes

373

segment is the sum of the lengths of all the pieces. Such segments are generally
used to hold the system stack.

Memory

Memory combines different segment pieces in the same manner as a common
segment, but the memory segment is placed above all other segments in
memory (unless specified otherwise by loader commands). The length of the
combined memory segment is the length of the largest of those combined. If
two segments with different complete names both have the memory
combine-type attribute, only the first one encountered is treated as memory;
any others are treated as common segments and an error is generated
indicating the segment that has not been treated as memory.

Align-type Attribute

The align-type attribute specifies how segment base addresses will be aligned
in memory, and, in some cases, how the parts of a segment are aligned within
the segment.

A segment can have one of five align-type attributes.

Page

The base address of a page-aligned segment must be divisible by 256 (two least
significant hexadecimal digits equal to 00H). Uninitialized bytes may be left
between the pieces of a public segment to maintain align-type.

Paragraph

The base address of a paragraph-aligned segment must be divisible by 16 (least
significant hexadecimal digit equal to 0H). Uninitialized bytes may be left
between the pieces of a public segment to maintain align-type.

Word

The base address of a word-aligned segment must be even (divisible by two).
Uninitialized bytes may be left between the pieces of a public segment to
maintain alignment.

Chapter 20: Linker/Loader Operation
Segment Attributes

374

Byte

The pieces of a segment from different object modules will be placed
immediately after each other, regardless of the base address, and there will be
no memory wasted.

Inpage

The inpage segment must fit within a page (256 bytes). If the loader
determines that such a program segment cannot fit within the current page, it
begins the segment on the next page boundary. If the segment is greater than
256 bytes and will not fit within a page at all, a warning is issued. Within a
page, segment pieces are byte-aligned.

Segment Alignment

The align-types for different segment parts from different modules do not have
to be the same. For this reason, two questions must be addressed.

1 How is the segment base address affected by conflicting alignments among
parts?

2 How is the alignment of the segment parts within the segment affected by
conflicting alignments among parts?

The next two sections answer these questions. They will refer to the following
example source code pieces.

Assembly source code for Module A:

DATASEG SEGMENT WORD PUBLIC ;word-aligned
.
.
.
DATASEG ENDS

Assembly source code for Module B:

DATASEG SEGMENT PARA PUBLIC ;paragraph-aligned
.
.
.
DATASEG ENDS

Alignment of Base Address

If align-types do conflict (and there is not an ALIGN command in the
command stream), the loader will assign a base address with the most

Chapter 20: Linker/Loader Operation
Segment Attributes

375

restrictive alignment from any part of the segment. In Module A, DATASEG
has a word alignment. In Module B, the same segment has a paragraph
alignment. The loader will combine these two parts into a single segment at
load time. If there is no ALIGN command to assign a different alignment, the
loader will use the most restrictive alignment carried by any of the segment
parts. The base address of the combined segment will be aligned according to
that most restrictive alignment. Of the combine-types, page alignment is the
most restrictive. The ranking, from higher to lower, is

PAGE
PARAgraph
WORD
BYTE
INPAGE

In this example, the loader would align DATASEG on a paragraph boundary.

The alignment assignment is the same regardless of the order that the modules
were loaded or the combine-types (PUBLIC, STACK, and so on) of the
segment parts.

However, if an ALIGN command appeared in the command stream, the
alignment it specified would override any alignment carried by the segment
parts. (ALIGN is, obviously, a loader command with which you may change
the alignment of a segment.) This would occur even if the alignment set by the
ALIGN command was less restrictive than the alignments carried by the
segments. To continue the example, if the loader command

* byte-alignment specified
ALIGN DATASEG=B

appeared in the command stream either before or after the modules
containing the segments were loaded, the align-type for the DATASEG
segment would be byte despite the fact that both parts carry alignments that
are more restrictive (word and paragraph).

Another loader command that affects alignment is the SEG command. SEG is
used to assign absolute addresses to relocatable segments. A SEG command
will override both the alignment carried by a segment and the alignment
specified by the ALIGN command.

Chapter 20: Linker/Loader Operation
Segment Attributes

376

Note Changing the alignment of a non-combinable segment can create problems.
Incorrect code might be produced because the loader cannot correctly modify
the offsets within non-combinable segments.

Alignment Within a Combined Segment

The combine-type of the segment parts does affect how the parts of the
combined segment will be aligned within the segment.

PUBLIC Combine-type. Each part of a public segment retains the
alignment it carried with it from the assembler. Within the combined
segment, the loader aligns each segment part according to the alignment it
carries, with the exception of the first segment part. The first segment might
not retain its alignment because the loader might adjust it either to conform to
the most restrictive alignment or in response to an ALIGN loader command.
In the example given earlier, the loader would combine the segment and align
the base address and parts in the following way (assume no ALIGN command
will be used and the load order is Module A and then Module B):

The most restrictive alignment is paragraph. The entire combined segment
will be aligned on a paragraph boundary. Note that since Module A is loaded
first, it will be aligned not on a word boundary, but on a paragraph boundary.

Module B is the next segment part to be placed. Its alignment, within the
segment, will be on a paragraph boundary. Suppose that the segment part
from Module A is just 3 bytes in length. The loader will still move the
segment part from Module B to the next paragraph boundary. That leaves 13
bytes unused between the first and second parts. Suppose the segment part
from Module B is 10 bytes in length. The entire combined segment will be 26
bytes in length although 13 bytes are unused.

STACK Combine-type. For a stack segment, the align-type attribute applies
to the base (low) address of the combined segment. The align-type of the
pieces of the segment are ignored by the loader. They are concatenated
contiguously in memory just as a stack should be. Again referring back to the
example, if the combine-type was STACK instead of PUBLIC, the combined
segment would begin on a paragraph boundary and its combined length would
be the sum of the lengths of the parts.

Chapter 20: Linker/Loader Operation
Segment Attributes

377

COMMON Combine-type. Since pieces of a COMMON segment are
overlaid, the align type of any part is only used to determine the most
restrictive alignment in the absence of an ALIGN command.

MEMORY Combine-type. Since pieces of a MEMORY segment are
overlaid, the align type of any part is only used to determine the most
restrictive alignment in the absence of an ALIGN command.

NON-COMBINABLE Combine-type. Private segments are not combined.
The alignment a private segment carries from assembly is used to align the
base address unless it is changed with an ALIGN command.

Base Address Assignment

Segments are assigned space in memory in a user-controlled order. The order
can be both implicit and explicit.

• Implicit order depends upon where the segments appeared in the original
source code to the assembler. The order they appeared in the source code
controls the order they appear in the object module. The order that they
appear in the object module can control the order they appear in the
output from the loader, if no other restrictions apply.

The exception is the default segment ??SEG. It appears first in the object
module unless the -h or -H command line options are used with the
assembler. Then the order of the first three segments will depend upon
the first code, data, and mixed segments. This ordering is used in the
generation of HP64000 absolute files.

Implicit order also depends on the order that the modules are given to the
loader. Modules are given to the loader from the command line and from
LOAD commands in the command file. The modules specified on the
command line "precede" modules in files named in the command file.
Among modules in the files named in the command files, the modules that
the loader finds nearer to the beginning of the command file "precede" the
modules found in files later in the command file.

• Explicit order comes from the loader command ORDER, from the
ordering caused by the presence of segments made absolute either at

Chapter 20: Linker/Loader Operation
Base Address Assignment

378

assembly time or load time, and from any classes that might appear in the
load files.

If libraries are included in the load, library relocatable object modules that are
not selected for inclusion in the absolute object module do not have their
segment names examined by the loader. A description of the algorithm used to
assign base addresses follows:

1 The loader reads all its commands and all files specified in LOAD
commands, and determines what segments are present, the align-type, and
the size of each. These are placed in an internal structure in the order in
which the loader finds their names.

2 The loader blocks reserved memory areas and assigns base addresses for
absolute segments. Memory reserving is done through the two loader
commands RESADD and RESNUM. Absolute segments have their
addresses specified either at assembly time with the AT keyword or at load
time with the SEG command. The absolute segments are marked in the
structure as having had their base addresses assigned.

A segment name can appear in a SEG command, but a SEG command
may also refer to a class name. If a class name appears in a SEG
command, the first segment in that class that does not yet have a base
address (the first such segment whose name was encountered by the
loader and was not an absolute segment or was not named in a SEG
command) is assigned the specified base address and marked in the
structure. Other segments in such a class are not assigned base addresses
at this time, however.

3 All segments named in ORDER commands, and segments within a class
named in ORDER commands, are assigned base addresses in the order in
which they were named in the commands. The loader attempts to begin
loading these segments at physical address 00000H, if possible.

There are several issues to consider in this step.

The areas of memory reserved with RESADD and RESNUM
cannot be used.

If a class is named in an ORDER command, it may contain
segments which have already been assigned base addresses
because they were either absolute segments or they appeared first
in the list following the order command. If, for instance, an
ORDER command contains a segment name in the middle of the
order specification and that segment was an absolute segment, the

Chapter 20: Linker/Loader Operation
Base Address Assignment

379

loader must work around that absolute segment when placing the
class in memory. Some segments will go before the absolute
segment, some will follow it.

Since classes must be adjacent, they cannot be fitted around
reserved memory areas.

Alignment must be maintained which means the loader must
adjust base addresses so that they conform to the align-type for a
segment and/or the alignment restrictions imposed by other
segments in the same physical segment.

4 The first segment with a combine-type of MEMORY that does not yet
have a base address is marked and saved, but is not assigned a base address
at this time. (This segment would already have a base address only if it
appeared in an ORDER command or SEG command or it was an
absolute segment.)

5 Any segments remaining in the segment structure are assigned base
addresses beginning just above the last segment assigned in step 3. The
loader attempts to fill memory contiguously while taking into
consideration the reserved memory, absolute segments, and alignment
maintenance. The order that segments are assigned addresses is the order
that they appear in the internal structure (the order in which the loader
first found them.) Of course, if the loader finds a segment with a class
name, then it loads all the segments in the class regardless of the order
that they appear in the structure.

6 The memory segment marked and saved in step 4 is assigned a base
address above all addresses used so far. If this cannot be done within a
20-bit address space (the base address needed does not exist in the address
space, or the base address plus the size exceeds the address space), an
error is reported.

7 The base addresses of any groups are assigned, unless they were
user-specified in a GROUP loader command. If the loader sets the group
base address, it is the 20-bit address of the segment in the group that is
"lowest" in memory. (It is an address divisible by 16 and is less than or
equal to the lowest base address of any segment in the group.) If the base
address has been specified by the GROUP loader command, then the
loader error-checks against the value in the GROUP command. Note
that this algorithm does nothing to ensure that the segments in a group lie
within 64K of the group base; that is your responsibility. However, the
loader will report an error if this is not the case. One way to ensure

Chapter 20: Linker/Loader Operation
Base Address Assignment

380

segments in a group will lie within the 64K limit is to assign all segments
in a group the same class name; then they will be adjacent in memory
unless you override with SEG commands.

Chapter 20: Linker/Loader Operation
Base Address Assignment

381

Chapter 20: Linker/Loader Operation
Base Address Assignment

382

21

Loader Commands

Description of the various loader commands.

Chapter 21: Loader Commands

383

Loader commands give you the ability to control the linking/loading process to
a very high degree. These commands may be given to the loader in the
interactive mode or they may appear in a load command file.

The descriptions include the syntax for the command, a short description of
the purpose of the command, and possibly an example of the command in use.

Loader Commands Introduction

The ld86 Linking Loader reads a sequence of commands in batch mode from
a command file or reads commands in the interactive mode from some other
input device such as a terminal. One of the loader commands, the LOAD
command, specifies the object modules to be loaded from files or other logical
devices along with the loader commands. The loader generates an absolute
load module suitable for loading into an actual microprocessor. The output
module is written to the output device in HP-OMF 86 format absolute, unless
the optional Intel Hexadecimal Object file format absolute or the HP 64000
format absolute is specified. The loader is also capable of producing
HP-OMF 86 format relocatable from an option known as incremental
linking. Incrementally-linked object modules can later be re-linked into
absolute formats.

All commands must begin in column 1. Command arguments can begin in
any column, but the arguments must be separated from the command by at
least one separator. Generally, separators (blanks or tabs) are allowed
anywhere, except within a symbol or a number. Exceptions are described
under the individual commands. The loader command file may have
comments placed in it. Comments are denoted by a preceding asterisk.

Command Symbols

Symbols that are command arguments follow the same rules as assembler
symbols with the exception that a colon is an accepted character in loader
symbols, although not as the first character. Command arguments that are
numeric can be either decimal or hexadecimal. Hexadecimal constants are
terminated by an upper or lower case H (for instance, 1FH). Like the
assembler, hex numbers that begin with the hex digits A-F must have a leading
zero to avoid confusing them with symbols in certain commands.

Chapter 21: Loader Commands

384

Complete Name

Some of the loader commands take segment names as arguments. If a segment
belongs to a class, you must use the segment name and class name together to
refer to the segment. The proper form is segment name followed by a slash
followed by the class name. The segment name/class name pair is known as
the complete name. The loader will not recognize a segment as valid if its
class name is missing. Any segment name without a specified class name is
assumed to have a null class name. A null class name cannot be explicitly
referenced, therefore SEGNAME/ without a following class name is not
acceptable.

Note The loader does not read all loader commands before it begins some
processing. Therefore, it cannot always tell whether it has received a valid
segment name with a command that accepts one. It is possible to enter a
segment name that is invalid at the time it is entered, but that will be made
valid by later actions. If the loader completes the load and the invalid segment
name has not been resolved, it issues an error stating that it cannot find the
segment in question. Unfortunately, a segment name that must have a class
name, and does not, will cause this error. A segment name with a group name
in the place of a class name will also cause this error. Both cases are not
obvious as to why they caused errors so check that the complete name for the
segment has been properly specified when this error appears.

Order of Commands

Commands may be entered in any order. The same command, with the
exception of EXIT and END, may be used more than once. (EXIT and END
both terminate the reading from the command file). If ORDER, START,
NAME, LIST and NLIST appear more than once, only the last one will be in
effect. Other commands may appear as often as required, and they will be
executed each time.

Command Length

The maximum line length, for a command entered interactively or placed in
a command file, is 254 characters.

Chapter 21: Loader Commands

385

Loader Command Descriptions

In the command descriptions in this section, square brackets ("[" "]") are used
to indicate optional arguments. Square brackets containing an ellipsis
indicate that the preceding argument can be repeated zero or more times.
The following summary lists the commands in the order of their occurrence
in the remainder of this section.

COMMAND FUNCTION

ALIGN
Comment (*)
END
ERROR
EXIT
FORMAT
GROUP
INITDATA
LENGTH
LIST
LISTABS
LISTMAP
LOAD
NAME
NLIST
NOERROR
NOTYPEMERGE
ORDER
PUBLIC
RESADD
RESNUM
SEG
SEGSIZE
START
TYPEMERGE
WARN
WIDTH

Set Alignment for a Segment
Specify Comment
End Command Stream and Finish Load
Change Message Severity to ERROR
Exit Loader
Specifies Output Format
Set Group Base Address
Specify Initialized Data in ROM
Set Page Length
List Specified Elements
List Specified Elements
Specifies Layout and Content of the Map
Load Specified Object Modules
Specify Output Module Name
Do not List Specified Elements
Change Message Severity to NOERROR
Do not Merge Type Information
Specify Segment Order
Specify Symbol Definitions
Mark Memory as Reserved
Mark Memory as Reserved
Set Segment Base Address
Specify Segment Size
Specify Starting Output Module Address
Merge Like Type Definitions
Change Message Severity to WARNING
Set Page Width

Chapter 21: Loader Commands

386

ALIGN

Syntax:
ALIGN segment=blank | B | P | I | G | W

The vertical bar between arguments means "or" and implies that only one of
the six arguments may appear.

Where:
segment is the name of a relocatable segment. Segment can be a segment
name or a complete name (segment name/class name pair). An absolute
segment is accepted syntactically, but ALIGN on an absolute segment has no
effect. The equal sign must be included, even if a blank follows.

blank keeps the align-type the same as specified in the assembler. This is the
default. Because blank is a significant character in this location, separating
blanks are not permitted between the equal sign and the alignment
mnemonic.

B specifies BYTE alignment.

P specifies PAGE alignment.

I specifies INPAGE alignment.

G specifies PARAgraph alignment.

W specifies WORD alignment.

Description: Each segment from an assembler-generated module carries its align-type
information. It is either the align-type specified in the assembly source code
or the default align-type of PARA (paragraph alignment). Other possible
align-types are BYTE, WORD, PAGE, and INPAGE.

At load time, you may accept the align-type the segment already has or you
may override it without re-assembling the module. The ALIGN command
allows you to do either.

Chapter 21: Loader Commands
ALIGN

387

Typically, you would use ALIGN to make all segments page-aligned to assist
you with debugging and then, before the final load, use ALIGN to change the
segments to byte-aligned to save memory space.

The ALIGN command can appear in the command stream either before or
after the modules containing the segment or segment pieces are loaded and it
will override the original alignment.

If an absolute segment (set at assembly-time with the AT keyword) appears in
an ALIGN directive, ALIGN is ignored and the loader issues a warning. If a
relocatable segment that has its base address set with a SEG command
appears in an ALIGN directive, the SEG command overrides the ALIGN
command and the alignment specified is ignored.

Note If a non-combinable segment appears in an ALIGN command, incorrect code
may be produced because the loader cannot modify the offsets within
non-combinable segments.

Examples:

ALIGN SEG1=B
ALIGN SEG2/CLASS1=G
ALIGN SEG3=
*blank is argument—align-type is that
*which the segment carries from assembly

Chapter 21: Loader Commands
ALIGN

388

Comment (*)

Syntax:
* loader comment line

The asterisk is used to indicate a comment in the command stream. The
asterisk must be entered in column 1. The loader ignores any text on the line
until the end-of-line character is reached.

END

Syntax:
END

Description: This command initiates the final steps in the load process. After an END
command is found in the command file, the loader completes the load,
produces an output object module, and returns to the host computer
operating system. If the command file does not contain an END command,
the loader stops reading commands when it detects of an end-of-file and
initiates the final steps at that point. However, using the END command
promotes command file clarity and readability.

ERROR, WARN, NOERROR

Syntax:
ERROR condition{condition} ...
WARN condition{condition} ...
NOERROR condition{condition} ...

Chapter 21: Loader Commands
Comment (*)

389

Where:
condition One of UNREF, UNRES, OVERLAP, or a number

corresponding to the message number of the error or
warning.

UNREF refers to the undefined external reference
error. UNRES refers to the unreferenced external
warning. OVERLAP refers to the memory overlap
warning.

These commands change the way a message or group of messages is treated.
ERROR causes the message to be treated as an error; WARN causes the
message to be treated as a warning; NOERROR causes the message to be
treated as a non-error (that is, the error condition is ignored).

The ERROR, WARN, and NOERROR commands affect all messages which
are generated after the linker encounters the command. The change in
message severity remains in effect until the linker has finished processing. The
effect of these commands cannot be changed by subsequent ERROR, WARN,
or NOERROR commands.

Fatal errors and messages generated by the ERROR, WARN, or NOERROR
command cannot be overridden or modified.

EXIT

Syntax:
EXIT

Description: EXIT terminates the loader execution without generation of a load map or
output object module.

The EXIT command can be used in the interactive mode to exit the loader
when an error occurs that requires leaving the loader to fix. In the interactive
mode, most command errors are recoverable; however, errors in the LOAD
command are generally not recoverable.

Chapter 21: Loader Commands
EXIT

390

This command can also be used in a command file. In this case, the final load
will not take place, but the commands up to and including the EXIT
command will be read and checked for errors. The loader ignores any
commands following the EXIT command in a command file.

FORMAT

Syntax:
FORMAT type
FORMAT modifier
FORMAT type modifier
FORMAT NOABS

Where:
type One of the following:

 ASCII
 HP
 OMF86

modifier One of the following:

 INCREMENTAL
 LIMITED
 LTL

Description: The FORMAT command lets you specify the output object module format.

The type option indicates which output format is to be generated by the
linker. A list of acceptable formats follows:

• ASCII refers to the Intel Hexadecimal Object File Format

• HP refers to the HP 64000 Object Module Format (HP-OMF)

• OMF86 refers to Intel Binary OMF86 as extended by HP (HP-OMF86)

Chapter 21: Loader Commands
FORMAT

391

• NOABS prevents an absolute file from being produced

If an unsupported type specifier is encountered, an error or warning will be
generated and the default output format will be produced.

If NOABS is specified, no object file will be produced; however, internal
processing will be carried out and a map file will be produced if requested.
Only one format type may be specified. In addition, NOABS cannot be used
with any of the modifier options. If either of these conditions occurs, an error
or warning will be issued and the FORMAT command will be ignored.

The following modifiers may be used only withthe OMF86 file type. If no type
is specified, OMF86 will be assumed.

• The INCREMENTAL modifier to the FORMAT command indicates that
incremental linking is to be performed.

• The LIMITED modifier to the FORMAT command limits the amount of
usable segment base information contained in the OMF86 data records.

• The LTL modifier to the FORMAT command produces a Load-Time
Locatable object module in OMF86 format.

FORMAT cannot be specified without any options. If such a situation is
encountered, an error or warning will be issued and the command will be
ignored.

The FORMAT command has a global effect. If multiple FORMAT
commands are encountered, a warning message will be generated and the first
FORMAT command will be used.

All FORMAT commands must appear before the first LOAD command in a
command file. Any FORMAT commands appearing after the first LOAD
command will be flagged with an error or warning and ignored.

GROUP

Syntax:
GROUP group=address
GROUP group=paragraph,offset

Chapter 21: Loader Commands
GROUP

392

Where:
group is the name of a group.

address specifies an address where the group begins. The address must be
divisible by 16, or an error is reported. The acceptable range, given the
paragraph restriction, is from 0 to 0FFFF0H.

paragraph specifies an actual value to be loaded into a segment register.
The range for this value must be within 0 to 0FFFFH, inclusive, or an error is
reported.

offset specifies the offset from the given paragraph. The offset must be 0 or
the loader reports an error.

Description: This command specifies the absolute base address of a group. Such an
address always lies on a paragraph boundary (a multiple of 16). The default
group base, if there is no GROUP command, is calculated by the loader in the
manner explained in the "Base Address Assignment" section beginning on
page 378.

You can enter multiple GROUP commands specifying the same group name,
but only the last one applies.

Note that the GROUP command does not assign a base address to any of the
segments in the group. If you specify the location of a group with the GROUP
command, you must ensure that all such segments lie entirely within the 64K
limit imposed on physical segments. This is accomplished with the ORDER
and SEG commands. The loader reports an error if this condition does not
hold for any segment in the group. Examples:

GROUP DGROUP=100H
* DGroup starts at 100H
GROUP CGROUP=7,0
* CGroup starts at 70H

Chapter 21: Loader Commands
GROUP

393

INITDATA

Syntax:
INITDATA segment [,segment [,...]] [,address]

Where:
segment could be one of the following:

• segmentname

• segmentname/classname

• /classname

address could be one of the following:

• An address value from 0 to 1048576 (0FFFFFH), inclusive, or

• A paragraph,offset pair. The paragraph and offset may range from 0 to
65535 (0FFFFH), inclusive. With either form, leading zeros are required
for hexadecimal values that start with the hex digits A-F.

Description: The INITDATA command specifies those data segments or classes that will be
initialized in memory at run time. The INITDATA command optionally can
be used to specify the base address of the created logical segment(s).

Initialized data in the specified segments is placed in new segments at the
specified address. These new segments are named ??DATAn/??INIT, where n
is the number of required segments depending upon the amount of data
needed.

If an address is not specified, an address determined by the SEG command or
the base address assignment algorithm is used. If you have compiler libraries
from the Hewlett-Packard CC8086 C cross compiler, a routine in the compiler
startup code copies all initialize data from the created segments into the
original segments. Likewise, there is an assembly file,
/usr/hp64000/lib/8086/src/initdata.s, which may be used to copy the initialize
data.

Chapter 21: Loader Commands
INITDATA

394

Example:
INITDATA /data, 0fff0h

The example illustrates the use of the INITDATA command.

LENGTH

Syntax:
LENGTH n

Description: Specifies the page length of the output listing as "n" lines, where n is a
number greater than 3. The default is 60 lines per page. Example:

LENGTH 55

Chapter 21: Loader Commands
LENGTH

395

LIST, NLIST

Syntax:
LIST [A,B,C,D,E,I,L,O,P,Q,S,T,U,V,W,X]

NLIST [A,B,C,D,E,I,L,O,P,Q,S,T,U,V,W,X] @NCW = Note

The LIST and NLIST commands are being replaced by the FORMAT,
LISTABS, and LISTMAP commands.

Note LIST A, LIST B, and LIST I are mutually exclusive. If more than one appears
in a command stream, the first one is used to specify the output format and the
others generate warnings and are ignored. Similarly, LIST Q can only be used
with LIST B, since LIST Q makes the Intel Binary OMF produced more
compatible with older Intel tools that accept the binary format.

Where:
A LIST - Creates an Intel Hexadecimal Object file format

absolute output file.

NLIST - Accepted syntactically, but has no effect. Will
not toggle LIST option for this flag.

B LIST - Creates an absolute file in the HP-OMF 86
format absolute. (default)

NLIST - Accepted syntactically, but has no effect. Will
not toggle LIST option for this flag.

C LIST - Creates a cross reference listing. Use of this
option could slow program execution.

NLIST - Inhibits production of a cross reference listing.
(default)

Chapter 21: Loader Commands
LIST, NLIST

396

D LIST - Places public definition symbols in the output
object module. This option causes the Intel
Hexadecimal Object format absolute to be unusable in
Intel tools. (default)

NLIST - Inhibits placement of public definition symbols
in the output object module.

E LIST - Causes warning messages to be generated for
any remaining undefined external symbols during an
incremental link.

NLIST - Inhibits warning messages for any remaining
undefined external symbols during an incremental
link. (default)

I LIST - Produces relocatable output object modules in
the HP-OMF 86 format relocatable that can then be
incrementally linked. (default is HP-OMF 86 absolute
output)

NLIST - Accepted syntactically, but has no effect. Will
not toggle LIST option for this flag.

L LIST - Causes warning messages to be printed for any
unreferenced, unresolved, external references.

NLIST - Inhibits warning messages for any
unreferenced, unresolved, external references. (default)

O LIST - Specifies that an output object module is to be
produced. (default)

NLIST - Inhibits production of an output module. This
is useful when checking for errors.

P LIST - Places local symbols present in the input
modules in the loader symbol table. (default)

Chapter 21: Loader Commands
LIST, NLIST

397

NLIST - Inhibits placement of local symbols from the
input object modules into the loader symbol table.
Useful when many modules are being loaded and the
loader is executing more slowly due to the large
number of symbols.

Q LIST - Causes the loader to produce a "limited" form of
Intel binary OMF that is strictly compatible with the
Intel Binary OMF document.

NLIST - Causes the loader to produce HP-OMF 86
absolute, the HP extension of the Intel Binary OMF
used in high level analysis. (default)

S LIST - Writes local symbol information to the object
module. This feature is useful for debugging. Local
symbols are those placed into the object module by the
assembler that are not external definitions. This
option causes the Intel Hexadecimal Object format
absolute to be unusable in Intel tools. (default)

NLIST - Inhibits writing of the local symbol table to the
object module.

Note In the relocatable and absolute HP-OMF 86 output modes, line numbers and
procedure definitions present in the input files are preserved and stored in
the output file. In the Intel Hexadecimal Object file format absolute output
mode, external definitions and debug symbols are written to the output file.
Since the set of external definition symbols cannot be distinct from the debug
symbols, duplicate symbol definitions can occur in the ASCII hexadecimal
output file.

T LIST - Prints the local symbol table on the output
listing.

NLIST - Inhibits printing the local symbol table on the
list output device. (default)

Chapter 21: Loader Commands
LIST, NLIST

398

U LIST - Disables case-sensitivity for matching public and
external symbols. Converts all symbols in the file to
upper case (which may affect debugging).

NLIST - Enables case-sensitivity for matching public
and external symbols. (default)

V LIST - Produces an expanded segment summary in the
load map that lists the modules where the segment
parts were found.

NLIST - Inhibits production of an expanded segment
summary in the load map that lists the modules where
the segment parts were found. (default)

W LIST - Enables display of warning messages to the
output listing and to the terminal. (default)

NLIST - Inhibits display of warning messages to the
output listing and to the terminal.

X LIST - Prints the public definition symbol table on the
output listing.

NLIST - Inhibits listing the public definition symbol
table on the list output device. (default)

Description: The LIST and NLIST commands are used to generate or suppress listings of
the elements specified.

LIST T,X
*prints local and external definition
*symbol tables in the output listing
NLIST O
*suppresses production of
*an output object module

Chapter 21: Loader Commands
LIST, NLIST

399

LISTABS

Syntax:

LISTABS [[NO]INTERNALS,[NO]PUBLICS] [, ...]The LISTABS command controls the output of certain items to the output
object module. Multiple LISTABS commands can be specified and have an
accumulative effect.

• INTERNALS causes local symbols to be written to the output file. This is
equivalent to the LIST S command. (default: INTERNALS)

• PUBLICS causes globally defined symbols to be written to the output file.
This is equivalent to the LIST D command. (default: PUBLICS)

The LISTABS command will eventually replace the LIST/NLIST D and
LIST/NLIST S commands.

LISTMAP

Syntax:

LISTMAP option[,option]...

Where:

option One of the following:

[NO]CROSSREF
[NO]INTERNALS[/BY_NAME| /NAME]
LENGTH number
[NO]MODULE
[NO]PUBLICS[/BY_ADDR| /ADDR| /BY_NAME| /NA
ME]
[NO]SEGMENT
[NO]VERBOSE
[NO]WARNINGS
WIDTH number

Chapter 21: Loader Commands
LISTABS

400

The LISTMAP command controls the output of certain items to the linker’s
map file.

Each of the functions of the LISTMAP command are described below:

• CROSSREF causes a cross-reference listing to be output to the map file.
NOCROSSREF suppresses the generation of this cross-reference listing.
(default = NOCROSSREF)

• INTERNALS causes a listing of the non-public (local) symbol table to be
output to the map file. NOINTERNALS suppresses the output of the
non-public symbol table. If /BY_NAME or /NAME is specified, the
symbol table is listed in ASCII order. (default = NOINTERNALS)

• LENGTH specifies the map file page length to a number between 5 and
255. (default = 255)

• MODULE controls the output of the module summary to the map file.
(default = MODULE)

• PUBLICS causes a listing of the public symbol table to be output to the
map file. NOPUBLICS suppresses the output of the public symbol table.
If /BY_NAME, /NAME, or nothing is specified, the public symbol table is
lissted in ASCII order. If /BY_ADDR or /ADDR is specified, the table is
listed in address order. (default = NOPUBLICS)

• SEGMENT controls the output of the segment summary to the map file.
(default = SEGMENT)

• VERBOSE controls the output of additional information to the segment
summary in the map file. This opiton has no effect if LISTMAP
NOSEGMENT is specified.

• WARNINGS controls the output of warnings to the map file. (default =
WARNINGS)

• WIDTH specifies the page width as a number between 20 and 255.
(default = WIDTH 80)

Note LISTMAP CROSSREF was formerly known as LIST C. LISTMAP
INTERNALS was formerly known as LIST T, and LISTMAP PUBLICS was
formerly known as LIST X.

Chapter 21: Loader Commands
LISTMAP

401

LOAD

Syntax:
LOAD [-]module[,...]

Where:
module names a file in which the object module or library resides. Any
module or library preceded by a minus sign will have its object modules read
until an EOF is detected. Without the minus sign present, the loader would
load only those modules from the library that were necessary to resolve
external references. The minus sign preceding a library forces all modules in
the library to be loaded.

Description: The LOAD command is used to specify one or more input object modules to
be loaded. The command operand is the name of the file containing the object
module. Input object modules can consist of relocatable modules from the
assembly process, relocatable modules from incremental linking, or libraries.

If any file name is preceded by a minus sign, it indicates that all object
modules should be read from the file. In order that external references are
handled correctly, the following order for loading libraries, along with other
kinds of object modules, should be observed.

• Libraries should be loaded after all non-libraries. From libraries, the
loader will load only those modules that are necessary to resolve
undefined external references (EXTRNs), unless the library file name is
preceded by a minus sign.

• Backward external references within a library are resolved correctly.
However, external references to a library from a file loaded after the
library has been loaded are generally not resolved correctly. Therefore,
libraries should be loaded last.

• When two libraries makes external references to each other, it is
generally necessary to LOAD one of them twice (for example, LOAD
LIBA,LIBB,LIBA) in order to pick up all the necessary modules.

Object modules may or may not be read until the EOF. The object modules
are loaded in the order specified, with each piece of each segment being

Chapter 21: Loader Commands
LOAD

402

loaded into memory at a higher address than all preceding pieces of the same
segment. Any number of LOAD commands can be used. Example:

LOAD ONE,-EACH.o

In the example, suppose that EACH.o contains two modules. This load
command will cause three modules to be loaded: the first from the file named
ONE.o, and the next two from the file EACH.o.

NAME

Syntax:
NAME name

Where:
name is a symbol that specifies the new name for the object module.

Description: The name command is used to give a new name to the output object module.
In the load map listing, the new name (or current name) is found next to the
heading "OUTPUT MODULE NAME:".

ORDER

Syntax:
ORDER element[,...]

Where:
element could be one of the following:

Chapter 21: Loader Commands
NAME

403

• segmentname

• segmentname/classname

• /classname Equivalent to specifying all segment names with that class
attribute in the order their names were encountered by the loader. All
such segments are placed as adjacent as possible in memory (allowing for
SEG commands, absolute segments, and reserved areas).

• classname—segname1—segname2—...—segnameN (Notice the hyphen
separating each name.) The specifically named segments are moved to the
beginning of the class and ordered the way they appear in the command.
Any segments remaining in the class are assigned memory immediately
after the specified ones.

Description: The ORDER command is used to override the loader’s default order of
assigning base addresses to segments. It is useful in forcing collections of
segments addressed from the same segment register (for instance, a group) to
lie close to each other in memory.

All segments specified in the ORDER command are assigned base addresses
as follows: the first one specified begins at the lowest address possible, and
subsequent segments begin immediately after the preceding one. The loader
does not assign addresses that conflict with absolute segments, areas specified
in the RESADD/RESNUM commands, or segments specified in a SEG
command. The ORDER command does not override the base address of an
absolute segment or one assigned with SEG. If any such segment appears in
the ORDER command, any segment following it in the ORDER command is
assigned space in memory above the absolute segment.

Continuation Line. If more than one line of ordering information is needed,
use an ampersand (’&’) where the linker is expecting a comma or a hyphen. If
breaking at a comma, leave the comma on the first line. If breaking at a
hyphen, place the hyphyen on the second line.

Examples:

ORDER SEG1,SEG2,SEG3
*orders segments

ORDER SEG1/CLASS1,/CLASS2-SEG2-SEG3
*(the remaining segments in CLASS2 follow, if they exist)

Chapter 21: Loader Commands
ORDER

404

ORDER SEG1,CLASS1-SEG2-SEG3,&
SEG4,CLASS2&
-SEG5
*note continuation line

See Also The "Base Address Assignment" section beginning on page 378.

PUBLIC

Syntax:
PUBLIC symbol=address [,...]
PUBLIC symbol=paragraph,offset [,...]

Where:
symbol is a user-defined public symbol

address is the new 20-bit address of the symbol. The address has a range of
0 to 1048575 (0FFFFFH), inclusive. The symbol’s paragraph value is equal to
the address shifted right by 4. The offset of the symbol is the address modulo
16.

paragraph is a paragraph boundary number. Paragraph is multiplied by 16
and then the offset is added to it. Paragraph may range from 0 to 65535
(0FFFFH).

offset is a number in the range of 0 to 65535 (0FFFFH). It is added to the
multiplied paragraph number to form a 20-bit address.

Description: This command is used to define and/or change the address of a public
definition. If a symbol specified by this command is already a public
definition (from an input object module where the symbol was an argument
to the assembler PUBLIC directive), the address of the symbol is changed to
the user-specified value. If the symbol is not already defined, it is entered into
the loader symbol table along with the specified address. It will then be
available to satisfy external references from object modules. This command

Chapter 21: Loader Commands
PUBLIC

405

allows you to specify the address of some public symbols at load-time and
possibly to avoid a reassembly. All symbols used with this command are
considered absolute rather than relative to either a segment or a group.
Example:

PUBLIC INPUT=2FH,OUTPUT=200H

RESADD, RESNUM

Syntax:
RESADD lowaddress,highaddress
RESNUM lowaddress,number

Where:
lowaddress is the lowest address of the reserved memory space.

highaddress is the highest address of the reserved memory space.
Highaddress must be greater than or equal to lowaddress.

number is the number of bytes, beginning at and including the low address,
to reserve. If the number is 0, no area is reserved.

Description: The RESADD and RESNUM commands allow you to declare certain areas
of memory as off limits to the loader; no relocatable code is placed in these
areas. You might wish to use these commands to avoid overwriting an
operating system in low memory, for example.

If a reserved area conflicts with a previously reserved area, an absolute
segment, or a segment name in a SEG directive, the loader issues a warning
message and loading continues. If the warning is caused by the RESNUM or
RESADD command, any non-overlapping space is reserved.

If the highaddress of the reserved area (either specified directly or computed
as lowaddress+ number-1) is greater than 1048575 (0FFFFFH), all memory
from lowaddress to this limit is marked reserved. Examples:

Chapter 21: Loader Commands
RESADD, RESNUM

406

RESADD 0,1FFH
*this and the following are equivalent
RESNUM 0,200H

SEG

Syntax:
SEG segment=address
SEG segment=paragraph,offset
SEG /class=address
SEG /class=paragraph,offset

Where:
segment is the name of a relocatable segment. It can have a classname
attached with a slash as in segname/classname.

class is the name of a class

address specifies that the segment will begin at the given address. The
range of the address must be from 0 to 1048575 (0FFFFFH), inclusive, or an
error occurs.

paragraph will be a paragraph number ranging from 0 to 65535 (0FFFFH),
inclusive, or an error occurs.

offset is a number ranging from 0 to 65535 (0FFFFH), inclusive, or an error
occurs. Base address of the segment will be 16 times the paragraph number
plus the offset.

Description: The SEG command specifies the base address of a logical segment.

In most cases, when you use a SEG command, you should also specify an
ORDER command to control the placement of other segments that did not
appear in the SEG command.

A class name, preceded by slash, can appear in place of a segment name. In
this case, the first segment whose class attribute matches the class name is

Chapter 21: Loader Commands
SEG

407

assigned the base address. Exceptions apply to absolute segments and
segments that appear explicitly in a SEG command. They are not then eligible
to be assigned a base address with this classname construct. Other segments
with the same class attribute are not assigned base addresses at this time.
However, the loader algorithm for assigning base addresses eventually causes
these segments to lie immediately above the first segment in the class, unless
you have entered an ORDER command.

If you enter a classname and no segments with that class attribute are ever
found, a warning is issued following the END command, and loading
continues.

The address specification in this command has two variations: it can use
either one numeric argument or two numeric arguments separated by a
comma. The first form indicates a 20-bit address, which becomes the base
address of the segment. The second form indicates a 16-bit paragraph number
followed by a 16-bit offset; the base address of the segment is 16*(paragraph
number)+ offset. For example, SEG name=4440H and SEG name=444H,0
specify the same address. So does SEG name=440H,40H and other
combinations.

A base address specified by the SEG command is never rounded up or down
to conform with the alignment attribute carried from the assembly or reset by
an ALIGN command. Instead, the loader uses the base address that you
specified with SEG and issues a warning if an alignment conflict occurs.

If an absolute segment appears as an argument to SEG, an error is reported,
though it might not be reported until the absolute segment is read from an
object module. In this conflicting address case, the loader uses the address first
found.

Note Do not use SEG to place a non-combinable segment on anything other than a
paragraph boundary. Doing so can cause incorrect output code to be created
because the loader cannot properly modify the offsets within a
non-combinable segment.

Multiple SEG commands specifying the same segment name or classname can
occur, and the loader does not issue an error. The last command, for a given
segment, applies.

Chapter 21: Loader Commands
SEG

408

See Also The "Base Address Assignment" section beginning on page 378 describes the
algorithm used to calculate load addresses when they are not explicitly
provided.

SEGSIZE

Syntax:
SEGSIZE segment=length
SEGSIZE /class=length

Where:
segment is the name of a relocatable segment. It can have a classname
attached with a slash as in segname/classname.

class is the name of a class.

length specifies the segment length in bytes.

Description: The SEGSIZE command is used to specify the length of a segment in bytes. If
you do not use the SEGSIZE command, the length of each of the segments in
the output object module defaults to the length appropriate for the
combine-type of the segment.

Use SEGSIZE only for STACK and COMMON segments. SEGSIZE is
typically used to set the size of a stack segment.

Chapter 21: Loader Commands
SEGSIZE

409

START

Syntax:
START CS-value,IP-value
START address

Where:
CS-value used to initialize the CS (code) segment register. The value must
be in the range 0 through 65535 (0FFFFH).

IP-value used to initialize IP (instruction pointer). The value must be in the
range 0 through 65535 (0FFFFH).

Address Used to initialize CS and IP. CS will be assigned the value of
address divided by 16 and IP will be assigned address modulo 16. The address
must be in the range 0 through 1048575 (0FFFFFH).

Description: This command is used to provide the starting values for CS and IP in the
terminator record of the object module. If START is not used, then the
CS:IP value comes from the END directive initialization in the main program
module. If the END directive has a value and START is also used, then the
value specified with START overrides the value from the END directive. If no
START is used and no main module is present, then the start value defaults
to zero. Example:

START 0,100H

Note If the output is to be HP 64000 format absolute, the loader only allows CS:IP
pair to be loaded by using an initialization value with the END directive for
the main module. The DS and SS registers values may also have had
initialization values specified with the END directive, but the loader ignores
these values if the output is to be HP 64000 format absolute. You must have
assembly code in the program that explictly loads DS and SS when the target
format is to be HP absolute. Do not expect the START command to allow
you to get around this restriction.

Chapter 21: Loader Commands
START

410

TYPEMERGE

Syntax: TYPEMERGE [ALL | SIMPLE]
NOTYPEMERGE

Description: The HP-OMF 86 file format is only able to store up to 32k type definitions. If
many modules are being linked, many type definitions might exist within each
of the modules. In a large executable, the 32k type limit may be exceeded,
even though the code size is small. If this limit is exceeded, the loader will
stop processing the type information from that point on. Since this
information is useful for debugging the executable, it would be best if this
information were not lost.

To get around this problem, it is possible to have the loader merge some of the
redundant type information so that the total number of types stored in the
resulting executable is minimal.

If the SIMPLE form of the TYPEMERGE is used, only the basic type
definitions used in assembly code will be merged. While this, by itself, may
greatly reduce the number of types in the resulting executable, it may not be
enough.

The ALL form of the TYPEMERGE command will cause all redundant type
information to be removed. This form will create the smallest amount of type
information possible for the resulting executable and will create less than 32k
types in all but the most exotic cases. This is the default form of the command,
when there are no modifiers to the basic command.

Either form of the TYPEMERGE command will cause extra processing time
during the loader’s execution. This is due to the extra overhead caused by the
checking for redundant types. This overhead may be necessary, however, if the
32k limit is being exceeded during normal linking.

If you do not want to spend the extra processing time for removing redundant
types, the NOTYPEMERGE command may be used. Since this is also the
default operating mode of the loader, you do not need to specify
NOTYPEMERGE to get this behavior. An explicit command is necessary
only if you want to remove some or all redundant type information.

Chapter 21: Loader Commands
TYPEMERGE

411

Either command must be used before any input executables are loaded by the
loader. If input has already been read in, a warning is generated and the
command is ignored.

Examples:

typemerge simple ; remove only redundant simple types
typemerge all ; remove all redundant types
notypemerge ; don’t merge any type information

WIDTH

Syntax:
WIDTH n

Description: The WIDTH command specifies the listing page width in number of
characters, where n is a number less than 254. Characters outside this page
width range are not printed. The default is 80 characters. Note that WIDTH
can only appear in a load command file. It does not take effect until the loader
finds it. Any output that may have occurred before the WIDTH command
will be the default width. Since the WIDTH command cannot appear on the
command line, the echo of the command line and the HP header line will
always appear at their full width.

Example:

WIDTH 60

Chapter 21: Loader Commands
WIDTH

412

22

Linker/Loader Listing Description

Examples of loader operation.

Chapter 22: Linker/Loader Listing Description

413

This chapter demonstrates the operation of the loader. It contains a load
command file and a load map listing produced by a load using a command file.
For reference, this chapter also includes the assembly source listings for the
modules that are loaded.

Two-Pass Load

The loader uses a two-pass process. During the first pass, the loader
commands and object modules are checked for errors. After the loader finds
an END command, a symbol table is formed.

Errors detected during the first pass of processing will be displayed on the
listing. If the loader in executed in batch mode, fatal errors cause the loader to
terminate with the message "LOAD NOT COMPLETED."

If the loader is executed in the interactive mode, many errors are not fatal and
the loader command processing will continue. The loader will report the
errors it encounters with a message immediately following the line in error,
and the load will end with the message "LOAD COMPLETED."

During pass two of processing, the final absolute object module is produced,
along with a module summary and a segment summary. If there are any
groups present, they will also appear in the segment summary. A local symbol
table, public symbol table, and cross reference table are listed in the load map
if you use the options specifying their output. The load map also indicates the
starting address of the load, as well as the output module name and format.

Object Module Format

The output object module can be produced in HP-OMF 86 format absolute,
Intel Hexadecimal Object file format absolute, or HP 64000 format absolute.
Optionally, an incremental format, HP-OMF 86 format relocatable, can be
produced instead of the absolute formats. These relocatable format output
modules can then be re-linked to form absolute output modules.

Chapter 22: Linker/Loader Listing Description
Two-Pass Load

414

Loader Command File

The following figure shows the loader command file "load.k." It contains
several of the loader commands described in earlier chapters.

* TEST PROGRAM FOR 8086/8087/80186 LINKING LOADER

*

* Note that object modules are read from the files ld86a.o,

* ld86b.o and ld86c.o.

*

list t,s,x,d,c,u

seg /code=500h

seg /data=80000h

order /code,comseg,/stack,/data

resadd 5A0h,5A2h

nlist p

public extraneous= 1000

load ld86a.o

list p

load ld86b.o

load ld86c.o

end

Figure 22-1. The "load.k" Loader Command File

Chapter 22: Linker/Loader Listing Description
Loader Command File

415

Starting the Loader

The following command is used to start the ld86 linking loader with the
command file "load.k."

$ ld86 -c load.k -o load.x -L > load.lis

• The dash c option tells ld86 to use the command file "load.k."

• The dash o option tells ld86 to output the object file as "load.x."

• The dash L option tells ld86 to output a load map listing to standard
output.

• The greater than sign redirects standard output to the listing file "load.lis."

The load map file later in this chapter is produced by this command line entry.

Loader Listings

The following pages show a sample loader listing. Note the following points
when examining the sample loader listing.

• The first page of the sample listing shows the loader command file, the
output module name and format, and warnings or errors that occur.

– For this example, the absolute object module is produced in the
default HP-OMF 86 format absolute. Object modules can also be
produced in Intel Hexadecimal Object file format absolute,
HP-OMF 86 format relocatable (incremental links), or HP 64000
format absolute.

• The load map file also begins on the first page. Within each summary, the
width of each field expands to fit the largest number of characters needed.
The line wraps if it is longer than the WIDTH setting.

• The MODULE SUMMARY information contains a listing of all
modules, the name of each segment in the modules, the class of each

Chapter 22: Linker/Loader Listing Description
Starting the Loader

416

segment, the segment start address and end address, and a complete
filename (including search path if appropriate).

• The SEGMENT SUMMARY shows the segments, the class and/or group
of each segment, the segment start and end address, segment length,
segment align-type, and segment combine-type. An extra three bytes is
generated by the loader for processing the INITDATA command, because
you have no initialized data. This is shown in the segment summary as
??DATA1/??INIT .

• The LOCAL SYMBOL TABLE lists the local symbols and the modules
(and function if applicable) where they reside. The table also shows the
segment where the symbol is found, the class of that segment, the
absolute address of the symbol, and modules where the symbol is
referenced.

• The PUBLIC SYMBOL TABLE lists the public symbols and the modules
where they reside. The table also shows the segment where the symbol is
found, the class of that segment, the absolute address of the symbol, and
modules where the symbol is referenced.

The loader listing file follows in the next figure. Following that are the three
sample assembler listing files.

Chapter 22: Linker/Loader Listing Description
Loader Listings

417

Load Map Listing

Hewlett-Packard ld86 Thu Apr 1 14:51:02 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988
Command line: ld86 -c load.k -o load.x -L

* TEST PROGRAM FOR 8086/8087/80188 LINKING LOADER
*
* Note that object modules are read from the files ld86a.o,
* ld86b.o and ld86c.o.
*
list t,s,x,d,c,u
seg /code=500h
seg /data=80000h
order /code,comseg,/stack,/data
resadd 5A0h,5A2h
nlist p
public extraneous= 1000
load ld86a.o
list p
load ld86b.o
load ld86c.o
end

OUTPUT MODULE NAME: load
OUTPUT MODULE FORMAT: OMF-86

START ADDRESS: 00050:00000 -> 00500

** ERROR (308): Undefined external(s):

SYMBOL REFERENCES

SCAN MAIN

SEGMENT SUMMARY

SEGMENT/CLASS GROUP START END LENGTH ALIGN COMBINE

ASEG1/ 00000 00025 00026 Abs seg Private
??DATA1/??INIT 00026 00028 00003 Byte Common
??SEG/ 00030 00030 00000 Para Public
CSEG1/CODE CODEGRP 00500 00547 00048 Byte Public
CSEG2/CODE CODEGRP 00548 00591 0004A Byte Public
COMSEG/ 00592 00594 00003 Byte Common
(Reserved Area) 005A0 005A2 00003

Figure 22-2. The "load.lis" Load Map File

Chapter 22: Linker/Loader Listing Description
Load Map Listing

418

SSEG1/STACK 005A3 005B6 00014 Byte Stack
DSEG1/DATA 80000 8004F 00050 Byte Public
DSEG2/DATA 80100 8010D 0000E Page Private
ASEG2/ FFFF0 FFFF4 00005 Abs seg Private

Hewlett-Packard ld86 Thu Apr 1 14:51:02 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988
MODULE SUMMARY

MODULE SEGMENT/CLASS START END LENGTH

MAIN /8086/asm/lkref-list/ld86a.o
 CSEG1/CODE 00500 00547 00048
 SSEG1/STACK 005A3 005B6 00014
 COMSEG/ 00592 00592 00001
 DSEG1/DATA 80000 8004F 00050

ABSCODE /8086/asm/lkref-list/ld86b.o
 DSEG2/DATA 80100 8010D 0000E
 COMSEG/ 00592 00594 00003
 ASEG2/ FFFF0 FFFF4 00005
 ASEG1/ 00000 00025 00026

READMOD /8086/asm/lkref-list/ld86c.o
 CSEG2/CODE 00548 00591 0004A
 COMSEG/ 00592 00592 00001

PUBLIC SYMBOL TABLE

SYMBOL SEGMENT/CLASS ADDRESS/VALUE MODULE REFERENCES

CRLF CSEG1/CODE 0050:003D MAIN READMOD
ECHO COMSEG/ 0059:0002 MAIN
EXTRANEOUS 003E:0008
IBUFEND DSEG1/DATA 8000:0050 MAIN READMOD
IN8 CSEG1/CODE 0050:0025 MAIN READMOD
INBUF DSEG1/DATA 8000:0000 MAIN READMOD
MAINF CSEG1/CODE 0050:0000 MAIN ABSCODE
OUT8 CSEG1/CODE 0050:0032 MAIN READMOD
READ CSEG2/CODE 0054:0008 READMOD MAIN
TABLE1 DSEG2/DATA 8010:0000 ABSCODE

LOCAL SYMBOL TABLE

 SYMBOL FUNCTION SEGMENT/CLASS ADDRESS/VALUE ATTRIBUTE

MODULE ABSCODE
 ABSCODE 0000:0000 ABS ADDRESS
 TABLE1 ABSCODE DSEG2/DATA 8010:0000 ABS ADDRESS
 TABLE2 ABSCODE DSEG2/DATA 8010:0004 ABS ADDRESS
 FIN ABSCODE ASEG1/ 0000:0025 ABS ADDRESS
 DT1 ABSCODE COMSEG/ 0059:0002 ABS ADDRESS

Figure 22-2. The "load.lis" Load Map File (Cont’d)

Chapter 22: Linker/Loader Listing Description
Load Map Listing

419

 DT2 ABSCODE COMSEG/ 0059:0003 ABS ADDRESS

MODULE READMOD
 READMOD 0000:0000 ABS ADDRESS
 READ CSEG2/CODE 0054:0008 ABS ADDRESS
 READ10 READ CSEG2/CODE 0054:000E ABS ADDRESS
 READ20 READ CSEG2/CODE 0054:001A ABS ADDRESS
 READ30 READ CSEG2/CODE 0054:0024 ABS ADDRESS

Hewlett-Packard ld86 Thu Apr 1 14:51:02 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988
 SYMBOL FUNCTION SEGMENT/CLASS ADDRESS/VALUE ATTRIBUTE

 READ40 READ CSEG2/CODE 0054:002A ABS ADDRESS
 READ50 READ CSEG2/CODE 0054:0033 ABS ADDRESS
 READ60 READ CSEG2/CODE 0054:003B ABS ADDRESS
 READ70 READ CSEG2/CODE 0054:003F ABS ADDRESS
 READ80 READ CSEG2/CODE 0054:0045 ABS ADDRESS
 ECHO READ COMSEG/ 0059:0002 ABS ADDRESS
 ASCR READ 0000:000D ABS ADDRESS
 BSPA READ 0000:0008 ABS ADDRESS
 BLNK READ 0000:0020 ABS ADDRESS
 TAB READ 0000:0009 ABS ADDRESS
Link completed

Figure 22-2. The "load.lis" Load Map File (Cont’d)

Chapter 22: Linker/Loader Listing Description
Load Map Listing

420

First Assembler Listing

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Thu
Apr 1 14:50:59 1993
 MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -o ld86a.o -L ld86a.s
Line Offset Object-Bytes
1 0000 $XREF DEBUG
2 0000 NAME MAIN
3 0000 PUBLIC INBUF,IBUFEND,IN8,OUT8,CRLF,ECHO
4 0000 PUBLIC MAINF
5 0000 EXTRN READ:NEAR,SCAN:NEAR
6 0000 CODEGRP GROUP CSEG1
7 0000 ASSUME
CS:CODEGRP,DS:DSEG1,SS:SSEG1,ES:COMSEG
8 0000 ;
9 0000 ; DEFINE DATA AREAS AND EQU’S
10 0000 ; ALTHOUGH NOT STRICTLY NECESSARY, PUTTING
THESE AREAS AFTER THE CODE
11 0000 ; SEGMENT RESULTS IN 15 EXTRA BYTES OF NOP’S
DUE TO FORWARD REFERENCES
12 0000 ;
13 0000 SSEG1 SEGMENT BYTE STACK ’STACK’
14 0000 20(DB 20 DUP(?)
14 0000 ??)
15 0014
16 0014 STAKTOP LABEL BYTE
17 0014 SSEG1 ENDS
18 0000 ;
19 0000 COMSEG SEGMENT BYTE COMMON
20 0000 1(ECHO DB 1 DUP (?)
20 0000 ??)
21 0001 COMSEG ENDS
22 0000
23 0000 DSEG1 SEGMENT BYTE PUBLIC ’DATA’
24 0000 80(INBUF DB 80 DUP(?)
24 0000 ??)
25 0050 IBUFEND LABEL BYTE
26 0050 DSEG1 ENDS
27 0000
28 0000 USTAT EQU 0
29 0000 UDATOUT EQU 0
30 0000 UDATIN EQU 0
31 0000 TRDY EQU 1
32 0000 RRDY EQU 2
33 0000 ASLF EQU 10
34 0000 ASCR EQU 13
35 0000 BLNK EQU 20H

Figure 22-3. The "ld86a.lis" Assembly Listing

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

421

36 0000 ;
37 0000 ; CODE STARTS HERE
38 0000 ;
39 0000 CSEG1 SEGMENT BYTE PUBLIC ’CODE’
40 0000 MAINF LABEL FAR
41 0000 B8 00 00 R MAIN: MOV AX,DSEG1 ; SET DS, ES and SS
SEGMENT REGISTERS

42 0003 8E D8 MOV DS,AX ; AND BX AND SP AS
POINTERS WITHIN SEGMENT

43 0005 BB 00 00 R MOV BX,OFFSET INBUF
44 0008 B8 00 00 R MOV AX,SSEG1
45 000B 8E D0 MOV SS,AX
46 000D BC 14 00 R MOV SP,OFFSET STAKTOP
47 0010 B8 00 00 R MOV AX,COMSEG
48 0013 8E C0 MOV ES,AX

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Thu
Apr 1 14:50:59 1993
 MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes
49 0015 E8 00 00 E CALL READ
50 0018 8A 07 MAIN10: MOV AL,[BX]
51 001A 3C 20 CMP AL,BLNK
52 001C 43 INC BX
53 001D 74 F9 JZ MAIN10
54 001F E8 00 00 E CALL SCAN
55 0022 43 INC BX
56 0023 EB DB JMP MAIN
57 0025 ;
58 0025 ; NAME - IN8
59 0025 ;
60 0025 ; THIS ROUTINE WILL INPUT A CHARACTER FROM
THE TERMINAL
61 0025 ;
62 0025 ; ENTRY PARAMETERS
63 0025 ; NONE
64 0025 ;
65 0025 ; EXIT PARAMETERS
66 0025 ; AL - INPUT CHARACTER
67 0025 ; DL - DITTO
68 0025 ;
69 0025 ; REGISTERS USED
70 0025 ; AL,BL,DL
71 0025 ;
72 0025 IN8 PROC
73 0025 E4 00 IN AL,USTAT
74 0027 24 02 AND AL,RRDY
75 0029 74 FA JZ IN8
76 002B E4 00 IN AL,UDATIN
77 002D 24 7F AND AL,127
78 002F 8A D0 MOV DL,AL
79 0031 C3 RET
80 0032 IN8 ENDP

Figure 22-3. The "ld86a.lis" Assembly Listing (Cont’d)

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

422

81 0032 ;
82 0032 ; NAME - OUT8
83 0032 ;
84 0032 ; THIS ROUTINE IS USED TO OUTPUT A CHARACTER
TO THE TERMINAL
85 0032 ;
86 0032 ; ENTRY PARAMETERS
87 0032 ; DL - CHARACTER TO OUTPUT
88 0032 ;
89 0032 ; EXIT PARAMETERS
90 0032 ; NONE
91 0032 ;
92 0032 ; REGISTERS USED
93 0032 ; AL,BL,DL
94 0032 ;
95 0032 OUT8 PROC
96 0032 E4 00 IN AL,USTAT
97 0034 24 01 AND AL,TRDY
98 0036 74 FA JZ OUT8
99 0038 8A C2 MOV AL,DL
100 003A E6 00 OUT UDATOUT,AL

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 3 Thu
Apr 1 14:50:59 1993
 MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes
101 003C C3 RET
102 003D OUT8 ENDP
103 003D ;
104 003D ; NAME - CRLF
105 003D ;
106 003D ; THIS ROUTINE OUTPUTS A CARRIAGE RETURN AND
LINE FEED
107 003D ;
108 003D ;
109 003D CRLF PROC
110 003D B2 0D MOV DL,ASCR
111 003F E8 F0 FF CALL OUT8
112 0042 B2 0A MOV DL,ASLF
113 0044 E8 EB FF CALL OUT8
114 0047 C3 RET
115 0048 CRLF ENDP
116 0048 CSEG1 ENDS
117 0000
118 0000 END MAINF

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 4 Thu
Apr 1 14:50:59 1993
 MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
 Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
ASCR EQU 000D -34 110
ASLF EQU 000A -33 112

Figure 22-3. The "ld86a.lis" Assembly Listing (Cont’d)

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

423

BLNK EQU 0020 -35 51
CODE CLASS
CODEGRP GROUP CSEG1 -6 7
COMSEG SEGM SIZE=0001 COMMON BYTE 7 -19 21 47
CRLF PROC CSEG1:003D NEAR -3 -109 -115
CSEG1 SEGM SIZE=0048 PUBLIC BYTE CLASS ’CODE’ 6 -39 116
DATA CLASS
DSEG1 SEGM SIZE=0050 PUBLIC BYTE CLASS ’DATA’ 7 -23 26 41
ECHO PUBLIC COMSEG:0000 BYTE -3 -20
IBUFEND PUBLIC DSEG1:0050 BYTE -3 -25
IN8 PROC CSEG1:0025 NEAR -3 -72 75 -80
INBUF PUBLIC DSEG1:0000 BYTE -3 -24 43
MAIN LABEL CSEG1:0000 NEAR -41 56
MAIN10 LABEL CSEG1:0018 NEAR -50 53
MAINF LABEL CSEG1:0000 FAR -4 -40 118
OUT8 PROC CSEG1:0032 NEAR -3 -95 98 -102 111 113
READ EXTERN NEAR -5 49
RRDY EQU 0002 -32 74
SCAN EXTERN NEAR -5 54
SSEG1 SEGM SIZE=0014 STACK BYTE CLASS ’STACK’ 7 -13 17 44
STACK CLASS
STAKTOP LOCAL SSEG1:0014 BYTE -16 46
TRDY EQU 0001 -31 97
UDATIN EQU 0000 -30 76
UDATOUT EQU 0000 -29 100
USTAT EQU 0000 -28 73 96

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 22-3. The "ld86a.lis" Assembly Listing (Cont’d)

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

424

Second Assembler Listing

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Thu
Apr 1 14:51:00 1993
 ABSCODE HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -o ld86b.o -L ld86b.s
Line Offset Object-Bytes
1 0000 $SYMBOLS
2 0000 NAME ABSCODE
3 0000 PUBLIC TABLE1
4 0000 EXTRN MAINF:FAR
5 0000 ASSUME CS:ASEG1,ES:COMSEG
6 0000
7 0000 ; FORM RESET START ADDRESS
8 0000 ASEG2 SEGMENT AT 0FFFFH
9 0000 EA 00 00 00 00 E JMP MAINF ; START OF PROGRAM

10 0005 ASEG2 ENDS
11 0000
12 0000 DSEG2 SEGMENT PAGE ’DATA’
13 0000 0A 14 1E 00 TABLE1 DB 10,20,30,0
14 0004 5(TABLE2 DW 5 DUP(?)
14 0004 ?? ??)
15 000E DSEG2 ENDS
16 0000
17 0000 ASEG1 SEGMENT AT 0
18 0000 14 00 DW 20
19 0002 00 00 DW 0
20 0004 1E 00 DW 30
21 0006 00 00 DW 0
22 0014 ORG 20
23 0014 ;
24 0014 ; PROCESS INTERRUPTS (IF WE GOT THERE CS/IP
WERE STACKED ALONG THE WAY)
25 0014 ;
26 0014 26 80 3E 00 00 00 R CMP ES:DT1,0 ; ES: NECESSARY
TO AVOID ERROR 3

27 001A 74 09 JZ FIN
28 001C F3 A5 REP MOVSW
29 001E 26 C7 06 01 00 01 00 R MOV ES:DT2,1 ; SAME HERE

30 0025 CF FIN: IRET
31 0026 ASEG1 ENDS
32 0000
33 0000 COMSEG SEGMENT BYTE COMMON
34 0000 1(DT1 DB 1 DUP(?)

Figure 22-4. The "ld86b.lis" Assembly Listing

Chapter 22: Linker/Loader Listing Description
Second Assembler Listing

425

34 0000 ??)
35 0001 1(DT2 DW 1 DUP(?)
35 0001 ?? ??)
36 0003 COMSEG ENDS
37 0000 END

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Thu
Apr 1 14:51:00 1993
 ABSCODE HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
 Symbol Table

Label Type Value
??SEG SEGM SIZE=0000 PUBLIC PARA
ASEG1 SEGM SIZE=0026 ABSOLUTE AT 0000
ASEG2 SEGM SIZE=0005 ABSOLUTE AT FFFF
COMSEG SEGM SIZE=0003 COMMON BYTE
DATA CLASS
DSEG2 SEGM SIZE=000E PAGE CLASS ’DATA’
DT1 LOCAL COMSEG:0000 BYTE
DT2 LOCAL COMSEG:0001 WORD
FIN LABEL ASEG1:0025 NEAR
MAINF EXTERN FAR
TABLE1 PUBLIC DSEG2:0000 BYTE
TABLE2 LOCAL DSEG2:0004 WORD

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 22-4. The "ld86b.lis" Assembly Listing (Cont’d)

Chapter 22: Linker/Loader Listing Description
Second Assembler Listing

426

Third Assembler Listing

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Thu
Apr 1 14:51:01 1993
 READMOD HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -o ld86c.o -L ld86c.s
Line Offset Object-Bytes
1 0000 $XREF DEBUG
2 0000 NAME READMOD
3 0000 PUBLIC READ
4 0000 EXTRN CRLF:NEAR
5 0000 EXTRN IN8:NEAR,OUT8:NEAR
6 0000 CODEGRP GROUP CSEG2
7 0000 DSEG1 SEGMENT BYTE PUBLIC ’DATA’ ; PLACE
INBUF, IBUFEND WITHIN

8 0000 EXTRN INBUF:BYTE,IBUFEND:BYTE ; DSEG1
SO THEY CAN BE ADDRESSED

9 0000 DSEG1 ENDS
10 0000
11 0000 ASSUME CS:CODEGRP,DS:DSEG1,ES:COMSEG
12 0000 ;
13 0000 ; DEFINE DATA AREA AND EQU’S
14 0000 ;
15 0000 COMSEG SEGMENT BYTE COMMON
16 0000 1(ECHO DB 1 DUP(?)
16 0000 ??)
17 0001 COMSEG ENDS
18 0000 ;
19 0000 ASCR EQU 13
20 0000 BSPA EQU 8
21 0000 BLNK EQU 20H
22 0000 TAB EQU 09H
23 0000 ;
24 0000 ; NAME - READ
25 0000 ;
26 0000 ; THIS ROUTINE READS IN A LINE FROM THE
TERMINAL AND
27 0000 ; PLACES IT INTO THE INPUT BUFFER. THE
FOLLOWING ARE
28 0000 ; SPECIAL CHARACTERS.
29 0000 ; CR - END OF CURRENT LINE
30 0000 ; CONTROL-X - DELETE CURRENT LINE
31 0000 ; DEL - DELETE CHARACTER
32 0000 ; ALL DISPLAYABLE CHARACTERS BETWEEN BLANK

Figure 22-5. The "ld86c.lis" Assembly Listing

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

427

AND Z AND THE
33 0000 ; ABOVE SPECIAL CHARACTERS ARE RECOGNIZED BY
THIS ROUTINE AS
34 0000 ; WELL AS THE TAB. ALL OTHER CHARACTERS ARE
IGNORED. AN
35 0000 ; ATTEMPT TO INPUT MORE CHARACTERS THAN IS
ALLOWED IN THE
36 0000 ; INPUT BUFFER WILL BE INDICATED BY A
BACKSPACE.
37 0000 ;
38 0000 ; ENTRY PARAMETERS
39 0000 ; ECHO - ECHO FLAG, 0=NO ECHO
40 0000 ;
41 0000 ; EXIT PARAMETERS
42 0000 ; INBUF - CONTAINS INPUT LINE
43 0000 ;
44 0000 ; REGISTERS USED
45 0000 ; AL,BX,CL
46 0000 ;
47 0000 CSEG2 SEGMENT BYTE PUBLIC ’CODE’
48 0000 READ PROC
49 0000 BB 00 00 E MOV BX,OFFSET INBUF
50 0003 B9 00 00 MOV CX,0

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Thu
Apr 1 14:51:01 1993
 READMOD HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes
51 0006 E8 00 00 E READ10: CALL IN8
52 0009 3C 18 CMP AL,24
53 000B 75 05 JNZ READ20
54 000D E8 00 00 E CALL CRLF
55 0010 EB EE JMP READ
56 0012 3C 0D READ20: CMP AL,ASCR
57 0014 75 06 JNZ READ30
58 0016 E3 EE JCXZ READ10
59 0018 C6 07 0D MOV BYTE PTR [BX],ASCR
60 001B C3 RET
61 001C 3C 7F READ30: CMP AL,127
62 001E 75 0B JNZ READ50
63 0020 E3 E4 JCXZ READ10
64 0022 4B READ40: DEC BX
65 0023 49 DEC CX
66 0024 B2 08 MOV DL,BSPA
67 0026 E8 00 00 E CALL OUT8
68 0029 EB 0C JMP SHORT READ70
69 002B 3C 09 READ50: CMP AL,TAB
70 002D 74 04 JZ READ60
71 002F 3C 20 CMP AL,BLNK
72 0031 72 04 JB READ70
73 0033 88 07 READ60: MOV [BX],AL
74 0035 43 INC BX
75 0036 41 INC CX
76 0037 81 FB 00 00 E READ70: CMP BX,OFFSET IBUFEND
77 003B 74 E5 JZ READ40

Figure 22-5. The "ld86c.lis" Assembly Listing (Cont’d)

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

428

78 003D 26 80 3E 00 00 00 R READ80: CMP ECHO,0
79 0043 74 C1 JZ READ10
80 0045 E8 00 00 E CALL OUT8
81 0048 EB BC JMP READ10
82 004A READ ENDP
83 004A CSEG2 ENDS
84 0000 ;
85 0000 END

 Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 3 Thu
Apr 1 14:51:01 1993
 READMOD HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
 Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
ASCR EQU 000D -19 56 59
BLNK EQU 0020 -21 71
BSPA EQU 0008 -20 66
CODE CLASS
CODEGRP GROUP CSEG2 -6 11
COMSEG SEGM SIZE=0001 COMMON BYTE 11 -15 17
CRLF EXTERN NEAR -4 54
CSEG2 SEGM SIZE=004A PUBLIC BYTE CLASS ’CODE’ 6 -47 83
DATA CLASS
DSEG1 SEGM SIZE=0000 PUBLIC BYTE CLASS ’DATA’ -7 9 11
ECHO LOCAL COMSEG:0000 BYTE -16 78
IBUFEND EXTERN DSEG1: BYTE -8 76
IN8 EXTERN NEAR -5 51
INBUF EXTERN DSEG1: BYTE -8 49
OUT8 EXTERN NEAR -5 67 80
READ PROC CSEG2:0000 NEAR -3 -48 55 -82
READ10 LABEL CSEG2:0006 NEAR -51 58 63 79 81
READ20 LABEL CSEG2:0012 NEAR 53 -56
READ30 LABEL CSEG2:001C NEAR 57 -61
READ40 LABEL CSEG2:0022 NEAR -64 77
READ50 LABEL CSEG2:002B NEAR 62 -69
READ60 LABEL CSEG2:0033 NEAR 70 -73
READ70 LABEL CSEG2:0037 NEAR 68 72 -76
READ80 LABEL CSEG2:003D NEAR -78
TAB EQU 0009 -22 69

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 22-5. The "ld86c.lis" Assembly Listing (Cont’d)

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

429

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

430

23

Librarian Introduction

General operation of the librarian.

Chapter 23: Librarian Introduction

431

Librarian Introduction

The ar86 Librarian is used to build program libraries, or collections of
relocatable object modules, that reside in a single file. These libraries are the
best place to store frequently-used object modules that the linking loader can
then efficiently access and combine with newly developed assembly programs.
Efficiency is realized through reducing the number of files that must be
opened by the loader.

The word "module," when used in discussing the librarian, refers to a
relocatable object module that results from assembling a source program with
the as86 cross assembler.

Starting the Librarian

There are three ways to start the ar86 Librarian.

Command Line

You may enter librarian commands on the command line. Only certain library
commands can be used on the command line. They are -a, -d, -r, -e, and -L.
(They are equivalent to ADDMOD, DELETE, REPLACE, EXTRACT and
LIST, respectively.) All command line commands require a list as an argument
and a library file name argument. These librarian commands can be entered
in any order on the command line, but the librarian processes the commands
in a fixed order of -a, -d, -r, -e, and -L.

Command File

You may place librarian commands in a command file to be read in batch
mode. Any error that occurs during command file processing is considered
fatal. The command that generated the error is skipped and processing of any
remaining commands continues. These remaining commands are checked for
errors—and executed, if possible—but a library file, if specified, is not
generated if an error was found. The librarian processes commands in the
command file in the exact order in which they are specified.

Chapter 23: Librarian Introduction
Librarian Introduction

432

Interactive Operation

The third method enables you to enter librarian commands interactively from
the terminal. In interactive mode, most librarian command errors are not
fatal. When an illegal command is entered, the librarian displays an error
message and provides an opportunity to re-enter the command.

Librarian Function

When writing modular programs, communication among the various modules
is established through use of PUBLIC and EXTERNAL symbols. Public and
external symbols can be seen as a way to pass information to the functions and
receive information from the functions contained in the library modules. In
addition, the functions contain entry points in the form of PUBLIC labels that
can be used in CALL and JMP instructions. While it is necessary to know the
entry points and parameter passing mechanisms, it is not necessary to know
the name of the object module that contains the function. For instance, a
library file could contain a dozen or more functions in a single module or a
dozen or so functions in a dozen or so modules. As long as you know the
function entry points, it does not matter to you how the modules are
organized in the library.

The following example is a more practical illustration of using the library.

Suppose a programmer writes a series of program modules consisting of a
number of mathematical routines including a few modules that calculate
transcendental functions. These modules are then gathered into a library file
through use of the ar86 Librarian.

Sometime later, a programmer, either the one who wrote the mathematical
routines or someone else, has a requirement to calculate an arc-tangent
function within a program being written. The programmer is aware of the fact
that there is an arc-tangent function in a library file, knows the name of the
entry point of the routine, knows how to pass parameters to the arc-tangent
function, and knows how to accept the result of the calculation.

The programmer must do only two things:

Chapter 23: Librarian Introduction
Librarian Function

433

• CALL the arc-tangent function from the program being developed,
placing the public name of the entry point into the argument field of the
CALL or JMP instruction, and

• Place the public entry point name of the arc-tangent function in the
argument field of an external reference pseudo-op in the program being
written.

Even though the programmer does not know the name of the relocatable
object module that contains the arc-tangent function, the linking loader
includes the relocatable module containing the correct module by informing
the loader to use the required library file(s).

You do not have to specify which module contains the arc-tangent function.
The loader automatically searches the named library, looking for the entry
point name coded as the argument of the CALL statement. When the entry
point name has been found, the loader identifies the module in which it
resides, and then includes the module containing the entry point name in the
current load.

The loader determines which of the library modules to load by examining the
internal list of unresolved external references accumulated during the load
process. It then accesses the library file to determine if there is a match
between unresolved external references, and a label or name that has been
declared public in the library file modules. The loader then identifies which
modules contain the matching public symbols, and loads those modules just as
if the programmer had explicitly directed the loader to load the proper
modules.

When the inclusion of a module in the library adds an undefined reference to
the list of undefined references, the loader will access the library again until
all external references have been satisfied or until no more matches are
possible. All public symbols within a library must have unique names.

Chapter 23: Librarian Introduction
Librarian Function

434

Note The librarian is always case sensitive with respect to symbol names. Two
symbols with the same characters are only identical if the cases of the
characters match as well. This means that "SYMBOL" is not equivalent to
"symbol" or "SYMbol." The librarian will treat these three symbols as unique.
Trouble might arise if the loader is started with case sensitivity turned off and
then asked to load a library containing, for instance, these three symbols. The
first occurrence of that symbol, regardless of case, will satisfy the external
reference the loader is trying to resolve. However, the resolution may be to
the wrong symbol because the loader, unlike the librarian, did not consider
case. The result may not be what you intended.

Chapter 23: Librarian Introduction
Librarian Function

435

Chapter 23: Librarian Introduction
Librarian Function

436

24

Librarian Commands

Descriptions of the librarian commands.

Chapter 24: Librarian Commands

437

The librarian reads a sequence of commands from the command input device
in interactive or batch mode. The command sequence must be terminated by
the END command. Relocatable object modules are read as input and
collected in organized libraries as specified in the command input file.

Command Syntax

The librarian recognizes six special characters:

 * - asterisk
 ; - semicolon
 , - comma
 (- left parenthesis
) - right parenthesis
 + - plus

Use of Special Characters

The use of special characters in the command syntax is described in this
section.

The asterisk (’*’) and the semicolon (;), when used on a command line, cause
the librarian to ignore the rest of the line. These characters can be used to
place comments in a command sequence. The librarian does not process
comments; they are passed to the output file.

The comma (’,’) separates members of a list of similar elements. The list can
contain module names or module filenames.

The left and right parentheses (), used in pairs, denote a list of similar
elements in a command. Parentheses can be used to group module names that
are members of a library only.

The plus sign (’+ ’) followed by a carriage return allows you to continue a list
on subsequent line(s). Care should be exercised when using line continuation.
Do not break up or interrupt a complete syntactical unit (for instance, do not

Chapter 24: Librarian Commands

438

try to continue a filename, a module name, or a command). If the
continuation character is used immediately after a command, it must be
separated from the command by at least one blank or the librarian cannot
recognize the command. Except as noted above, the line continuation
character can appear anywhere in a command line.

Also, blanks can be used freely within commands (between
syntactically-identifiable units). Example:

DELETE MOD1 , MOD2 ;is the same as
DELETE MOD1,MOD2

Command File Comments

Comments can be included in a command file to document the processing.
These are included by use of the semicolon (;) or asterisk (*). Example:

;this is a complete line of comment
addmod modulea.o
;this is a command line comment
addmod moduleb
* this is another comment

File Names

File names appear in commands as arguments. A file name might be the name
of an existing library file, a library file being created, or an object file
containing one or more modules to be archived. If an open fails on a file name
that does not have a suffix, the librarian will append a ".a" for a library file—or
a ".o" for an object file—and again try to open the file. Similarly, if the
librarian is writing a library to a file name that does not have a suffix, it will
append a ".a" to the file before writing it.

The SAVE Command

The SAVE command causes the librarian to save a library with any changes
you may have made. At the same time, the SAVE command does the
equivalent of the CLEAR command and clears the librarian. You may then
open or create another file without affecting or corrupting the previous work.

Chapter 24: Librarian Commands

439

Return Codes

The librarian provides operating-system specific return codes. The librarian
either completes without encountering an error, displays a message or
warning, or terminates with an error.

Chapter 24: Librarian Commands

440

Commands Summary

The following commands are described in this chapter in the order shown:

COMMAND

ADDLIB
ADDMOD
CLEAR
CREATE
DELETE
DIRECTORY
END
EXTRACT
FULLDIR
HELP
LIST

OPEN
QUIT

REPLACE
SAVE

FUNCTION

Add Module(s) from Another Library
Add Object Module(s) to Current Library
Clear Library Session Since Last SAVE
Define New Library
Delete Module(s) from Current Library
List Library Modules
Terminate Librarian Execution
Copy Library Module to a File
Display Library or Library Module Contents
Display Context-sensitive Command Syntax
Display Library or Library Module Contents (Same as
FULLDIR)
Open an Existing Library
Terminate Librarian Executions
(Same as END)
Replace Library Module
Save Contents of Current Library

Chapter 24: Librarian Commands

441

Shorthand Names

The librarian allows shortened forms of the above commands. The following
list is the minimum characters that may be entered for the command to be
recognizable. However, the librarian will accept anything from the minimum
number of characters to the full command name as correct. That means that
CR, CRE, CREA, CREAT, and CREATE are all acceptable for the create
command. (The command is in uppercase here for clarity. Commands can be
in either uppercase or lowercase.) The shorthand forms of the commands are
as follows:

COMMAND

ADDLIB
ADDMOD
CLEAR
CREATE
DELETE
DIRECTORY
END
EXTRACT
FULLDIR
HELP
LIST
OPEN
QUIT
REPLACE
SAVE

SHORTHAND

ADDL
ADDM
CL
CR
DE
DI
EN
EX
FUL
H
L
OP
Q
R
S

Chapter 24: Librarian Commands

442

Note The ar86 librarian archives modules into library files. The librarian
references modules by module names. Modules are contained in object files
created by the as86 assembler, but a module name may not be the same as the
object file name because a module may be explicitly named within the
assembly code using the NAME assembler directive. It may be entirely
different than the file name. If a module is not explicitly named, then the
module name defaults to the assembly source file name stripped of its leading
path name and trailing suffix (including the period) if the suffix exists.

Module names are of no concern once the library has been built, but each
module name must be unique. Therefore, when trying to add modules to a
library, it is possible to have module name conflicts. Since the librarian will
not allow duplicate module names within a library, it may be necessary to
re-assemble the module to change its name. Merely changing the object file
name will not change the module name because that information is coded into
the object file.

To the librarian, module names are always case sensitive, regardless of how
the assembler was started.

In the references for the library commands, square brackets (’[]’) indicate
optional arguments. Square brackets containing an ellipsis denote that the
preceding argument can be repeated zero or more times.

Chapter 24: Librarian Commands

443

ADDLIB

Syntax:
ADDLIB library_filename[(module_name[,...])]

Where:
library_filename is the name of the library where the modules reside.

module_name is the name(s) of the relocatable object module(s) to be
added to the library currently being created or modified.

Description: The ADDLIB command is used to add one or more object modules from one
library to the library currently being created or modified.

The OPEN or CREATE command must precede the ADDLIB command, and
name the library to which the object modules will be added. Example:

OPEN library1.a
ADDLIB math.a (square,sqroot) ;math.a contains modules
 ;to be added to library1.a

ADDMOD

Syntax:
ADDMOD filename [,...]

Where:
filename is the file to be added to the library currently being created or
modified.

Description: The ADDMOD command adds a non-library file containing one or more
relocatable object modules to the library named in the OPEN or CREATE
command. The OPEN or CREATE command must precede the ADDMOD
command. Example:

Chapter 24: Librarian Commands
ADDLIB

444

OPEN library2.a
ADDMOD math.mbr

CLEAR

Syntax:
CLEAR

Description: Use the CLEAR command to clear the current library session since the last
SAVE (or since entering the librarian if no SAVE has been entered since
librarian startup). Using CLEAR is equivalent to re-starting the librarian.

CREATE

Syntax:
CREATE library_name

Where:
library_name is the name of the library file being created. If the file name
already exists, an error occurs.

Description: Use the CREATE command to define a new library. You can create only one
library at a time. A newly-created library must be saved before a second one is
created.

In the interactive mode, if the library file name already exists, a warning is
displayed. In the command line mode, if the library file already exists, the
librarian issues an error message. No library is created. Example:

CREATE math.a

Chapter 24: Librarian Commands
CLEAR

445

DELETE

Syntax:
DELETE module_name [,...]

Where:
module_name is the name of the module to be removed from the library
currently being created or modified.

Description: The DELETE command removes one or more relocatable object modules
from the library named in the OPEN or CREATE command. Object module
names are case-sensitive. An OPEN or CREATE command must precede
DELETE.

DIRECTORY

Syntax:
DIRECTORY library_name
 [(module_name [,...])] [list_filename]

Where:
library_name is the name of the library whose module names and sizes are
to be listed.

module_name is the name of a specific module in the library file whose size
is to be listed.

list_filename is the file where the directory information should be written. If
the listing output file is not specified, the output defaults the standard list
device (usually the terminal).

Chapter 24: Librarian Commands
DELETE

446

Description: The DIRECTORY command lists module names and sizes of the modules in
the specified library. The sizes listed are the number of bytes required to store
the modules on the host computer system. If you enter just the library_name,
all modules are listed; if you enter specific module_names, directory
information is displayed for the named modules only. You can include full file
specification (including pathname) for the desired library directory. Object
module names are case-sensitive. The directory displays on the standard
output device, or it can be directed to a file.

END

Syntax:
END
QUIT

Description: The END and QUIT commands terminate librarian command processing. No
library file is implicitly saved.

Note Because END and QUIT do not implicitly save the library file, you must issue
a SAVE command before issuing an END command or the library you are
working on will be lost. END will not issue a warning that will tell you to save
your library before ending.

EXTRACT

Syntax:
EXTRACT module_name [,...]

Chapter 24: Librarian Commands
END

447

Where:
module_name is the module to be copied from the library currently being
created or modified.

Description: The EXTRACT command copies a library module to a file outside the library.
The file name will be the module name with a ".o" (dot o) appended. The file
can then be added to another library. An OPEN or CREATE command must
precede the EXTRACT command.

FULLDIR
LIST

Syntax:
FULLDIR library_name
 [(module_name[,...])] [list_filename]

LIST library_name
 [(module_name[,...])] [list_filename]

Where:
library_name is the library file whose contents are to be listed.

module_name is the name of a specific module whose contents will be listed.

list_filename is the output listing filename. If you do not enter the filename,
the output defaults to the standard list device (usually the terminal).

Description: The FULLDIR and LIST commands are used to request a full directory
display of a library’s contents including module names, their sizes, and all
public symbol definitions and external references. The sizes listed are the
number of bytes required to store the modules on the host computer system.

If you enter just the library_name, the contents of all modules are listed; if you
enter specific module_names, information is displayed for the named modules
only. Both commands perform the same operation.

Chapter 24: Librarian Commands
FULLDIR
LIST

448

HELP

Syntax:
HELP

Description: The HELP command is used to obtain a list of commands with the correct
invocation syntax. HELP is context-sensitive. The commands displayed are
only those that can be legally entered at the time you type HELP.

OPEN

Syntax:
OPEN library_name

Where:
library_name is the name of the library file to be opened.

Description: The OPEN command enables an existing library to be referenced in
conjunction with succeeding commands that add modules, delete modules, or
replace modules. Only one library can be opened at a time.

If the librarian commands require creation of a new version of the library, the
old version will be overwritten when the SAVE command is issued.

If the library cannot be located or opened for input, an error is reported. In
batch mode or command-line entry, execution is terminated.

Chapter 24: Librarian Commands
HELP

449

REPLACE

Syntax:
REPLACE file_name [,...]

Where:
file_name the file containing one or more modules that will replace the
module of the same name in the library currently being created or modified.

Description: The REPLACE command is used to replace one or more library modules
with one or more non-library object modules with the same name. The
replacement object modules (there may be more than one in the object file)
must have the same names as the library modules they replace. REPLACE
must be preceded by an OPEN or CREATE command.

SAVE

Syntax:
SAVE

Description: The SAVE command saves the contents of the library being created or
modified. When a SAVE command is issued, all the librarian commands
issued since the library was CREATEd or OPENed are executed, the library is
modified accordingly, and it is written to the library file. If an old version of
the library already exists, it will be overwritten by the new version at this time.
No backup of the old library file is made. Until a SAVE command is issued,
librarian commands are only checked for form, content, and syntax.

Note You must use the SAVE command to explicitly save the library file. If you
END the command session without a SAVE, the library file is not modified
and all the changes that you specified will be lost.

Chapter 24: Librarian Commands
REPLACE

450

25

Librarian Listing Description

Example librarian command files.

Chapter 25: Librarian Listing Description

451

This chapter shows example librarian command files and librarian listings to
illustrate the input command file invocation and the information that can be
produced about the library being created or modified. The assembly listings
for the object modules that are being archived do not appear in this chapter.

Unless a LIST command or the -L appears in the command stream, only error
messages and commands are echoed to standard output. If a LIST command
is used in command file batch mode or in interactive mode, a listing that gives
more information about the library can be produced. The -L option in
command line mode also produces such a listing.

The listing shows each module name, the public and external definitions for
each module, the size of each module in bytes, and a count of the public and
external definitions for each module. After all modules are listed, the listing
gives the number of modules in the library and may report any errors that
might have occurred. The listing may also show any loader commands from
interactive or command file batch mode execution.

Chapter 25: Librarian Listing Description

452

Librarian Sample 1

In librarian sample 1, a new library, libcmd1.a, is created. Three modules
(modu1.o, modu2.o, and modu3.o) are added to it. The contents of the library
are then listed. The librarian command file libcmd1 is shown in the following
figure.

The librarian is started in batch mode with a command file in the following
way:

$ ar86 < libcmd1 > libcmd1.lis

ar86 is started interactively, receives input redirected from the command file,
and produces a listing in libcmd1.lis by redirecting standard output. The
libcmd1.lis listing file appears in the next figure.

cr libcmd1.a
addmod modu1.o
addmod modu2.o
addmod modu3.o
list libcmd1.a

Figure 25-1. The "libcmd1" Librarian Command File

Chapter 25: Librarian Listing Description
Librarian Sample 1

453

Hewlett-Packard AR86 Wed Nov 2 11:05:44 1988

cr libcmd1.a
addmod modu1.o
addmod modu2.o
addmod modu3.o
list libcmd1.a

Hewlett-Packard AR86 Wed Nov 2 11:05:45 1988

Library being built libcmd1.a

 Module Size
MODULE1 ... 424
 ****** PUBLIC DEFINITIONS ******

MODU1TEN MODU1SIX
MODU1NINE MODU1FIVE
 ****** EXTERNAL REFERENCES ******

MODU1ONE MODU1TWO
MODU1THREE MODU1FOUR
MODU1SEVEN MODU1EIGHT

Public Count = 4
External Count = 6

 Module Size
MODULE2 ... 428
 ****** PUBLIC DEFINITIONS ******

MODU2SIX MODU2NINE
MODU2FIVE MODU2TEN
 ****** EXTERNAL REFERENCES ******

MODU2ONE MODU2TWO
MODU2THREE MODU2FOUR
MODU2SEVEN MODU2EIGHT

Figure 25-2. The "libcmd1.lis" Librarian Listing

Chapter 25: Librarian Listing Description
Librarian Sample 1

454

Public Count = 4
External Count = 6

 Module Size
MODULE3 ... 436
 ****** PUBLIC DEFINITIONS ******

MODU3NINE MODU3FIVE
MODU3TEN MODU3SIX
 ****** EXTERNAL REFERENCES ******

MODU3ONE MODU3TWO
MODU3THREE MODU3FOUR
MODU3SEVEN MODU3EIGHT

Public Count = 4
External Count = 6

Module Total = 3

save
end

Figure 25-2. The "libcmd1.lis" Library Listing (Cont’d)

Chapter 25: Librarian Listing Description
Librarian Sample 1

455

Librarian Sample 2

In librarian sample 2, a new library, libcmd2.a, is created. Four modules
(modu1.o, modu2.o, modu3.o, and modu4.o) are added to it. However, one of
the modules, modu4.o, does not exist. Two things occur because it does not. It
causes an error to be generated that says it does not exist and the library is not
created because the error occurred in batch mode. A listing is still produced.
It lists the modules that did exist and the information about them just as it
appears in the first sample, but it also contains a message that informs you the
library was not created.

For this sample, the librarian is started in command line batch mode in the
following way:

 ar86 -L -a modu1.o,modu2.o,modu3.o,modu4.o libcmd2.a > libcmd2.lis

• The dash L option specifies a listing.

• The dash a option directs the loader to add the file list that follows the -a.

• libcmd2.a is the library to be created.

• The greater than sign redirects the listing to the file libcmd2.lis.

In addition to the errors reported in the file, a duplicate set of errors are
reported to the terminal. The listing appears in the next figure.

Chapter 25: Librarian Listing Description
Librarian Sample 2

456

 WARNING: (107) file libcmd2.a does not exist
 (101) unable to open file modu4.o.
 ERROR: (104) file modu4.o not included.
list libcmd2.a

Hewlett-Packard AR86 Wed Nov 2 11:02:57 1988

Library being built libcmd2.a

 Module Size
MODULE1 ... 424
 ****** PUBLIC DEFINITIONS ******

MODU1TEN MODU1SIX
MODU1NINE MODU1FIVE
 ****** EXTERNAL REFERENCES ******

MODU1ONE MODU1TWO
MODU1THREE MODU1FOUR
MODU1SEVEN MODU1EIGHT

Public Count = 4
External Count = 6

 Module Size
MODULE2 ... 428
 ****** PUBLIC DEFINITIONS ******

MODU2SIX MODU2NINE
MODU2FIVE MODU2TEN
 ****** EXTERNAL REFERENCES ******

MODU2ONE MODU2TWO
MODU2THREE MODU2FOUR
MODU2SEVEN MODU2EIGHT

Public Count = 4
External Count = 6

Figure 25-3. The "libcmd2.lis" Library Listing

Chapter 25: Librarian Listing Description
Librarian Sample 2

457

 Module Size
MODULE3 ... 436
 ****** PUBLIC DEFINITIONS ******

MODU3NINE MODU3FIVE
MODU3TEN MODU3SIX
 ****** EXTERNAL REFERENCES ******

MODU3ONE MODU3TWO
MODU3THREE MODU3FOUR
MODU3SEVEN MODU3EIGHT

Public Count = 4
External Count = 6

Module Total = 3

 (253) Library libcmd2.a not written.

Warnings = 1
Errors = 1

Figure 25-3. The "libcmd2.lis" Library Listing (Cont’d)

Chapter 25: Librarian Listing Description
Librarian Sample 2

458

Part 4

Error Messages Reference

Part 4

460

26

Error Message Formats

Chapter 26: Error Message Formats

461

There are three classes of errors that may occur during assembler, macro
preprocessor, linker, or librarian execution:

Warning

Warnings announce something that might be a problem in the output file. This
may or may not indicate a problem with the program.

After a warning, the output files are written normally.

After a warning, as86, ap86, ld86, and ar86 return a code indicating "success"
so that command files and "make" operations continue normally.

Error

Errors announce something that is wrong in the output file. For example, a
reference to an unresolved symbol will cause problems at run-time.

After an error, the output files are written normally. The output files are
complete and may be useful in subsequent operations.

After an error, an "error" code is returned so that command files and "make"
operations stop.

Fatal Error

A fatal error announces a condition that causes processing to be discontinued.
After a fatal error, the output files are incomplete and corrupt. They are not
useful for subsequent operations.

After a fatal error, an "error" code is returned so that command files and
"make" operations stop.

Interactive and Non-Interactive Conditions

Some conditions produce either warnings or errors, depending on whether the
tool is run in interactive or batch mode. In interactive mode, a particular
condition causes a warning because the user has a chance to reissue the
command correctly. In batch mode, the same condition causes an error.

Chapter 26: Error Message Formats
Interactive and Non-Interactive Conditions

462

For example, suppose the file tt2.o does not exist and that lib.a does exist. If
we invoked the librarian in batch mode as follows:

$ ar86 -a "tt2.o" lib.a

We would see an error.

< ar86 >
 (101) unable to open file tt2.o.
 ERROR: (104) file tt2.o not included.
 (253) Library lib.a not written.

ar86 would terminate and return you to the system prompt.

However, in the interactive mode, if you type the following command:

ar86> addmod tt2.o

You would see a warning.

(101) unable to open file tt2.o.
 WARNING: (104) file tt2.o not included.

ar86 would then again display its command prompt and allow you to continue.

Chapter 26: Error Message Formats
Interactive and Non-Interactive Conditions

463

Chapter 26: Error Message Formats
Interactive and Non-Interactive Conditions

464

27

Assembler Error Messages

Chapter 27: Assembler Error Messages

465

When the assembler encounters a syntax error, it does not generate code for
the instruction or directive on the line and any of its continuation lines where
the error occurs. The error message is printed on the line below the error,
with a caret (^) pointing to the offending syntax.

In some cases, the assembler issues a general syntax error that indicates there
is something wrong at the place the caret points, but the specific nature of the
error is not determined.

In the event of a syntax error, the assembler does not generate code, but
continues processing with the next statement.

Syntax Errors

500 Expecting an expression.

The assembler expected an expression, but found something different at the
location pointed to by the caret.

501 Expecting an OR-level expression.

The assembler expected an OR-level expression, but found something
different at the location pointed to by the caret.

OR-level expressions include all the AND-level expressions plus the OR and
XOR operators.

502 OR or XOR expected.

The assembler expected an OR or XOR operator, but found something
different at the location pointed to by the caret.

503 Expecting an AND-level expression.

The assembler expected an AND-level expression, but found something
different at the location pointed to by the caret.

AND-level expressions include all the NOT-level expressions, and the AND
operator.

504 AND expected.

Chapter 27: Assembler Error Messages
Syntax Errors

466

The assembler expected an AND operator, but found something different at
the location pointed to by the caret.

505 Expecting a NOT-level expression.

The assembler expected a NOT-level expression, but found something
different at the location pointed to by the caret.

506 Expecting a relational operator-level expression.

The assembler expected a relational-level expression, but found something
different at the location pointed to by the caret.

Relational-level expressions include all binary addition-level expressions plus
the EQ, NE, LT, LE, GT, and GE operators.

507 Expecting a relational operator.

The assembler expected a relational operator, but found something different
at the location pointed to by the caret.

The relational operators are: EQ, NE, LT, LE, GT, and GE.

508 ENDS or constant definition directive expected.

The assembler expected to find an ENDS directive but found something
different at the location pointed to by the caret.

509 Expecting an addition operator.

The assembler expected an addition operator, but found something different
at the location pointed to by the caret.

The addition operators are plus (+) and minus (—).

510 Expecting a multiplication-level expression.

The assembler expected a multiplication-level expression, but found
something different at the location pointed to by the caret.

Multiplication-level expressions include all

• byte-level expressions

• MOD, SHR, SHL

• multiplication and division operators

Chapter 27: Assembler Error Messages
Syntax Errors

467

• base registers (BX, BP) and index registers (SI, DI)

511 Expecting a multiplication operator.

The assembler expected a multiplication operator, but found something
different at the location pointed to by the caret.

The multiplication operators are MOD, SHR, SHL, and multiplication (*)
and division (/).

512 Expecting a valid argument to NAME.

The assembler expected a valid module name argument to the NAME
directive, but found something different at the location pointed to by the
caret.

Byte-level expressions include all secondary-level expressions plus the HIGH
and LOW operators.

513 Expecting a secondary-level expression.

The assembler expected to find a secondary-level instruction but found
something different at the location pointed to by the caret. Secondary-level
expressions include all primary-level expressions, the segment override
(colon), the PTR, OFFSET, SEG, and TYPE operators.

514 Expecting a primary-level expression.

The assembler expected a primary-level expression, but found something
different at the location pointed to by the caret.

Primary-level expressions include all expression primitives as well as the
MASK, WIDTH, SIZE, and LENGTH operators, and the dot operator for
structures.

516 Expecting a symbolic name.

The assembler expected a symbolic name, but found something different at
the location pointed to by the caret.

517 Expecting an integer constant.

The assembler expected an integer constant, but found something different at
the location pointed to by the caret.

520 Expecting a register.

Chapter 27: Assembler Error Messages
Syntax Errors

468

The assembler expected a register (such as AX, BX, BP, SI, and others) but
found something different at the location pointed to by the caret.

521 Segment register expected.

The assembler expected a segment register (CS, DS, ES, or SS) but found
something different at the location pointed to by the caret.

522 NOTHING or segment register expected.

The assembler expected the keyword NOTHING or a segment register (CS,
DS, ES, or SS) but found something different at the location pointed to by
the caret.

523 Expecting an identifier or integer constant.

The assembler expected an identifier or integer constant, but found
something different at the location pointed to by the caret.

524 Expecting identifier, directive, or colon.

The assembler expected an identifier, directive, or colon, but found something
different at the location pointed to by the caret.

525 Expecting an identifier or constant definition directive.

The assembler expected an identifier or constant definition directive (such as
DB, DW, DD, and others) but found something different at the location
pointed to by the caret.

526 Expecting an identifier or type.

The assembler expected an identifier or type, but found something different
at the location pointed to by the caret.

527 SEGMENT expected.

The assembler expected a segment, but found something different at the
location pointed to by the caret.

528 PTR expected.

The assembler expected a PTR operator, but found something different at
the location pointed to by the caret.

529 DUP expected.

Chapter 27: Assembler Error Messages
Syntax Errors

469

The assembler expected DUP, but found something different at the location
pointed to by the caret.

530 Expecting a comma.

The assembler expected a comma, but found something different at the
location pointed to by the caret.

531 Expecting a colon.

The assembler expected a colon, but found something different at the location
pointed to by the caret.

532 Expecting a period, left bracket, or left angle bracket.

The assembler expected a period (.), left bracket ([), or left angle bracket (),
but found something different at the location pointed to by the caret.

533 Expecting right bracket.

The assembler expected a right bracket, but found something different at the
location pointed to by the caret.

534 Expecting a left parenthesis.

The assembler expected a left parenthesis, but found something different at
the location pointed to by the caret.

535 Dollar sign expected.

The assembler expected a dollar sign ’$’, but found something different at the
location pointed to by the caret.

536 Expecting comma or right angle bracket.

The assembler expected a comma or right angle bracket, but found something
different at the location pointed to by the caret.

537 Expecting comma or right parenthesis.

The assembler expected a comma or right parenthesis, but found something
different at the location pointed to by the caret.

538 Expecting a left bracket.

The assembler expected a left bracket, but found something different at the
location pointed to by the caret.

Chapter 27: Assembler Error Messages
Syntax Errors

470

539 Expecting a right parenthesis.

The assembler expected a right parenthesis, but found something different at
the location pointed to by the caret.

540 Expecting a label or a statement.

The assembler expected a label or a statement, but found something different
at the location pointed to by the caret.

541 Expecting an instruction mnemonic.

The assembler expected an instruction mnemonic, but found something
different at the location pointed to by the caret.

543 Assembler general control expected.

The assembler expected a general control, but found something different at
the location pointed to by the caret.

544 Expecting an assembler control.

The assembler expected an assembler control, but found something different
at the location pointed to by the caret.

545 Constant definition directive expected.

The assembler expected a constant definition directive such as DB, DW, DD,
and others, but found something different at the location pointed to by the
caret.

546 Unexpected control or directive name, or missing END directive.

An illegal primary control or directive was found at the location pointed to by
the caret or an END directive was not found before the end of the source file.

547 Expecting a string.

The assembler expected a string, but found something different at the
location pointed to by the caret.

548 Expecting parenthesized text.

The assembler expected a valid attribute to the SEGMENT directive, but
found something different at the location pointed to by the caret.

549 Expecting valid attribute to the SEGMENT directive.

Chapter 27: Assembler Error Messages
Syntax Errors

471

The assembler expected to find an alignment type such as BYTE, PARA,
INPAGE, and others, but found something different at the location pointed
to by the caret.

550 Expecting a combine type.

The assembler expected a combine type (PUBLIC, STACK, COMMON, and
others) but found something different at the location pointed to by the caret.

551 Continuation line found where initial line was expected.

The assembler found the continuation character (ampersand [’&’]) as the
first character on a line that it was expecting to begin rather than to continue
with an assembly statement.

552 Logical end of program already encountered.

Assembler statements, directives, or controls were found in a source file
AFTER an END directive was encountered. The only legal input after an
END directive are comment lines or blank lines.

554 Structure or record initialization expected.

The assembler expected to encounter a left angle bracket, but found
something different at the location pointed to by the caret.

555 Record field initialization expected.

The assembler expected to encounter an equal sign, but found something
different at the location pointed to by the caret.

556 Expecting a valid member of a GROUP.

The assembler expected a valid member of a GROUP (such as a segment
name), but found something different at the location pointed to by the caret.

557 Expecting an item which can be purged.

The assembler expected an item that can be purged (such as symbolic names,
instructions, and others), but found something different at the location
pointed to by the caret.

558 Expecting a valid END initialization element.

The assembler expected a valid END initialization element, but found
something different at the location pointed to by the caret.

Chapter 27: Assembler Error Messages
Syntax Errors

472

559 Expecting a valid ASSUME element.

The assembler expected a valid ASSUME element, but found something
different at the location pointed to by the caret.

561 Expecting valid CODEMACRO parameter information.

The assembler expected to find valid CODEMACRO parameter information
but found something different at the location pointed to by the caret.

562 Expecting a codemacro parameter specifier.

The assembler expected to find a codemacro parameter specifier but found
something different at the location pointed to by the caret.

563 This statement is not valid in a codemacro definition.

The caret points to a statement that is not legal in the body of a codemacro
definition.

564 Expecting a type.

The assembler expected a Type (such as BYTE, WORD, DWORD, and
others) but found something different at the location pointed to by the caret.

565 Unbalanced string delimiters.

A string that was opened with an apostrophe or quotation mark does not
have a closing apostrophe or quotation mark. Usually this is caused by failing
to double occurrences of apostrophes or quotation marks that are contained
in the text of the string.

566 Syntax error.

In some cases, the assembler can determine that there is a syntax error, but
can’t determine exactly what the error is. In these cases, this general message
is generated, with the caret indicating the point of the error.

567 Syntax error in command line options.

Control options on the command line may only be delimited with spaces, tabs,
or commas. Also, any arguments to controls must be delimited with
parentheses.

568 Unbalanced parentheses.

Chapter 27: Assembler Error Messages
Syntax Errors

473

The number of right parentheses in the line does not match the number of left
parenthesis. In complicated continued expressions, this could be due to the
following line not having its continuation character in the first column.

569 Illegal operand for unary MINUS or NOT.

Neither the unary minus nor the NOT operator can have a relocatable
operand. The operand pointed to by the caret is relocatable.

570 Expecting a unary addition-level expression.

The assembler expected to find a unary addition-level expression, but found
something different at the location pointed to by the caret. Unary
addition-level expressions include all of the multiplication level expressions as
well as unary plus and minus.

571 Additional information encountered beyond end of statement.

After reaching what it thought was the logical end of a statement, the
assembler found additional text at the location pointed to by the caret.

572 Expecting decimal or hexadecimal floating-point constant.

The assembler expected to find a decimal or hexadecimal floating-point
constant at the location pointed to by the caret.

573 Expecting a signed integer constant.

The assembler expected to find an integer constant with or without a leading
unary plus or minus, but found something different at the location pointed to
by the caret.

574 Expecting a SHORT-level expression.

The assembler expected to find a SHORT-level expression but found
something different at the location pointed to by the caret. SHORT-level
expressions include all of the OR-level expressions as well as the SHORT
operator.

575 Expecting an argument to an instruction or codemacro.

The assembler expected to find an argument to an instruction or codemacro,
but found something different at the location pointed to by the caret.

600 Illegal or mismatched argument.

Chapter 27: Assembler Error Messages
Syntax Errors

474

The caret points to the place where the operand type is incorrect for the
instruction, or where the type doesn’t match up correctly with another of the
operands in the instruction.

601 Anonymous memory type.

The size of the operand pointed to by the caret cannot be determined from
the operand’s expression, or from the content of other operands in the
instruction.

602 Illegal type of expression.

The expression pointed to by the caret is either not allowed in the directive or
in the instruction in which it is specified, or the expression is not a valid
expression.

603 Illegal type of argument in expression.

The operator that precedes or follows the sub-expression being pointed to by
the caret does not allow this type of sub-expression or one of its operands.
Certain operators (such as * or /) allow only sub-expressions that resolve to
an absolute number as an operand. Other operators only allow non-absolute
expressions when certain conditions exist (see the description of ’-’ and
relational operators).

604 Illegal or duplicate memory argument.

Only one argument that references a memory location is allowed in any given
instruction.

605 This instruction requires at least one operand.

More than one operand had been supplied to this instruction, when only one
operand is allowed.

606 This instruction requires at least two operands.

Less than two operands (or more than two) have been supplied to this
instruction; two are required.

607 This instruction requires three operands.

Less than three operands have been supplied to this instruction; three are
required.

608 Duplicate declaration of symbolic name.

Chapter 27: Assembler Error Messages
Syntax Errors

475

The symbolic name, pointed to by the caret, has already been declared in a
previous statement.

609 Duplicate specification of module name.

This message occurs when more than one NAME directive appears in the
source program.

610 Duplicate occurrence of base register in register expression.

 Only one base register (BX or BP) may be used in any given register
expression.

611 Duplicate occurrence of index register in register expression.

Only one index register (SI or DI) may be used in any given register
expression.

612 This symbol is not defined as a label.

The caret points to a symbol, in a directive or expression, that must be a labl.
The symbol pointed to by the caret is not a label.

613 This symbol is not defined as a segment or group.

The caret points to a symbol, in a directive or expression, that must be a
segment name or group name. The symbol pointed to by the caret is not a
segment or group name.

614 This symbol is not defined as a variable.

The caret points to a symbol, in a directive or expression, that must be a
variable. The symbol pointed to by the caret is not a variable.

615 This symbol is not defined as a structure.

The caret points to a symbol, in a directive or expression, that must be a
structure. The symbol pointed to by the caret is not a structure.

616 This symbol is not defined as a structure field.

The caret points to a symbol, in a directive or expression, that must be a
structure field. The symbol pointed to by the caret is not a structure field.

617 This symbol is not defined as a structure or record.

Chapter 27: Assembler Error Messages
Syntax Errors

476

The caret points to a symbol, in a directive or expression, that must be a
structure or record. The symbol pointed to by the caret is not a structure or
record.

618 This symbol is not defined as a record field.

The caret points to a symbol in a directive or expression that is required to be
a record field in order to be valid. The symbol pointed to by the caret is not of
this kind.

619 This symbol is not defined as a segment.

The caret points to a symbol, in a directive or expression, that must be a
segment. The symbol pointed to by the caret is not a segment.

620 Alignment type inconsistent.

The alignment type specified in this SEGMENT directive is not the same as
one specified in a previous segment directive for the same segment.

621 Combine type inconsistent.

The combine type specified in this SEGMENT directive is not the same as
one specified in a previous segment directive for the same segment.

623 Illegal or premature termination of segment.

This error indicates improper nesting of segments or a misspelling of the
segment name in either the SEGMENT or ENDS directives.

624 Segment nesting level exceeded.

Segments can be nested to a level of 16 only.

625 Missing SEGMENT directive or previous segment nesting error.

This ENDS directive has no associated SEGMENT directive, either due to
omission or to a nesting error on its associated SEGMENT directive.

626 Expecting alignment type, combine type, or classname.

The assembler expected an alignment type, combine type, or classname, but
found something different at the location pointed to by the caret.

627 Classname inconsistent.

Chapter 27: Assembler Error Messages
Syntax Errors

477

The classname specified in this SEGMENT directive is not the same as one
specified in a previous segment directive for the same segment.

628 Illegal type of symbol in this ASSUME.

This error occurs when a symbol other than a segment or group is used in an
ASSUME directive without being preceded by the SEG operator.

629 Initialization nest level exceeded.

When using the DUP construct in conjunction with a data directive (DB,
DW, DD, DQ, or DT), the maximum nesting level for DUPs is eight.

630 This symbol does not have a defined segment value, or segment not
addressable.

The symbolic name pointed to by the caret does not have a segment attribute
in the list of legal attributes.

631 This argument does not have a defined offset value.

The symbolic name pointed to by the caret does not have a offset attribute in
the list of accepted attributes.

632 This argument does not have a defined type value.

The symbolic name pointed to by the caret does not have a type attribute in
the list of accepted attributes.

633 This argument does not have a defined length value.

The symbolic name pointed to by the caret does not have a length attribute in
the list of accepted attributes.

634 This argument does not have a defined size value.

The symbolic name pointed to by the caret does not have a size attribute in
the list of accepted attributes.

635 This argument does not have a defined field width value.

The symbolic name pointed to by the caret does not have a field width
attribute in the list of accepted attributes.

636 This argument does not have a defined mask value.

Chapter 27: Assembler Error Messages
Syntax Errors

478

The symbolic name pointed to by the caret does not have a mask attribute in
the list of accepted attributes.

637 Immediate value overflow.

The immediate value is not within the proper range for its context.
Specifically, it is not within the range 0 to 0FFH for DB, 0 to 0FFFFH for
DW or an instruction, and 0 to 0FFFFFFFFH for all others.

638 This expression must be absolute.

The expression must resolve to an absolute number to be permissible in this
context.

639 Item cannot be addressed by segment registers.

The segment associated with the variable pointed to by the caret is not
currently ASSUMEd into any of the segment registers, nor has an explicit
segment override been used.

641 Invalid floating point constant

The floating point constant pointed to by the caret is not a valid floating point
constant. No valid floating-point value can be stored for this constant.

642 Illegal operand in this register expression.

Register expressions may contain a base register (BX or BP), an index register
(SI or DI), and any expression that evaluates to an absolute value.
Expressions or symbols with relocatable results are not permitted.

643 Division by zero attempted.

The divisor portion of this expression involving the division operator is itself
an expression that evaluates to an absolute number with a value of 0.

645 This relational operator has an invalid operand or operands.

See the description of relational operators for what operands are valid.

648 Hexadecimal real constants are invalid in this context.

Hexadecimal real constants are allowed only in data definition statements or
EQU definitions.

649 Illegal floating-point stack register (0-7 allowed).

Chapter 27: Assembler Error Messages
Syntax Errors

479

A mnemonic representing an 8087 floating-point stack register was not in the
legal list of mnemonics (ST,ST(0),ST(1),...,ST(7)).

650 Value too large for one-byte displacement.

The number (or expression that evaluates to an absolute number) is pointed
to by the caret is either less than -128 or greater than 255, and thus cannot be
represented in just one byte.

651 Hex real constant size does not match with data directive.

Hex real constants must be eight significant hex digits for the DD directive,
sixteen significant digits for the DQ directive, and twenty significant digits for
the DT directive.

653 This symbol cannot be purged.

The following kinds of symbols cannot be purged:

• keywords

• segment names (including ??SEG)

• group names

• any user-defined symbol that has appeared in a PUBLIC statement

654 Symbol cannot be declared PUBLIC.

PUBLIC symbols must be variables, labels or 17-bit constants; any other
types will generate an error.

655 This symbol cannot be a member of a group.

Only segments, externals, or variables may be used in a GROUP directive.
Only a segment may be forward referenced.

656 Illegal statement in this context.

This error is generated if a PROCLEN directive appears outside of a
CODEMACRO definition, a STRUC statement appears within a structure
definition, or if a structure initialization occurs within another structure
initialization.

658 Illegal or premature termination of procedure.

Chapter 27: Assembler Error Messages
Syntax Errors

480

This error indicates improper nesting of procedure or a misspelling of the
procedure name in either the PROC or ENDP directives.

659 Procedure nesting level exceeded.

Procedures can be nested to a level of 16 only.

660 Illegal type in this context.

This error is generated if a type other than NEAR or FAR appears in a
PROC directive, or if a type other than a standard type (e.g. a structure or
record name) appears as the argument to the THIS operator.

661 Illegal termination of structure.

This error indicates a misspelling of the structure name in either the STRUC
or ENDS directives.

662 Null initialization is not allowed in this context.

Null (or default) initialization is permitted only in structure or record
initialization, not in structure or record definition or data definition
directives.

663 Invalid record field size.

A given field within a record can be no larger than 16 bits, or no smaller than
1 bit.

664 Maximum record size exceeded.

The size of a record is limited to 16 bits.

666 This variable is not defined as a record.

The caret points to a symbol, in a directive or expression, that must be a
record. The symbol pointed to by the caret is not a record.

667 Include file nesting limit exceeded.

The limit for nested include files has been exceeded. This limit is operating
system specific.

668 Cannot open include file.

Chapter 27: Assembler Error Messages
Syntax Errors

481

The filename specified in the preceding include control is misspelled, the
associated file is not in the current directory, or the associated file cannot be
opened.

669 Illegal type of EQU in this context.

An example of this error is an EQU to an 8086 instruction mnemonic as the
expression portion of a data definition directive, such as DB. Many other
similar conditions exist that will generate this error.

670 Too many arguments specified for this instruction.

The particular instruction pointed to by the caret does not allow as many
arguments as are specified. INC AX,BX, for example, has one too many
arguments.

671 This type of segment override is illegal in this context.

 Certain types of expressions are not permitted to have a segment override
operator (colon operator) as part of the expression. The expression pointed
to by the caret is one such expression.

672 Illegal value for PAGELENGTH control.

The minimum value in the PAGELENGTH control is 20 lines.

673 Illegal value for PAGEWIDTH control.

The legal values for the PAGEWIDTH control fall in the range of 41 to 255
columns, inclusive.

674 Illegal value for TITLE control.

The string for a TITLE control is limited to a length of 40 characters.

675 More than 64 levels of control saves.

The $SAVE control cannot be nested to a depth greater than 64.

676 More than 64 levels of control restores.

The $RESTORE control cannot be nested to a depth greater than 64.

677 This symbol is not a parameter to this codemacro.

The symbol pointed to by the caret, which is contained within a codemacro
definition, is not present in the CODEMACRO statement for the current

Chapter 27: Assembler Error Messages
Syntax Errors

482

codemacro. Therefore, the symbol cannot be a parameter to the current
codemacro.

678 This symbol is not defined as a codemacro parameter.

The caret points to a symbol in a directive or expression that is required to be
a codemacro parameter in order for it to be valid. The symbol pointed to by
the caret is not a codemacro parameter.

679 This codemacro parameter’s specifier is invalid in this context.

Certain directives within a codemacro definition allow only parameters that
have specific types of codemacro specifiers. The codemacro parameter
pointed to by the caret is not of the specific type needed for the directive in
which it is used.

680 Illegal range expression in codemacro parameter definition.

Either the range expression pointed to by the caret does not evaluate to an
absolute number, or it is out of range according to the codemacro specifier
with which it is associated.

681 This symbol is not a valid codemacro specifier.

The symbol pointed to by the caret is not one of the valid codemacro specmod
fields listed on page 223.

682 Duplicate definition of codemacro parameter.

The symbol pointed to by the caret has appeared more than once in the same
codemacro directive and is a duplicate definition.

683 This expression is illegal within a codemacro definition.

Null initialization expressions, DUP expressions, and dot operator
expressions that don’t use a record field as their right operand are illegal
within a codemacro definition.

684 This statement is not allowed in a codemacro definition.

Only a limited number of types of statements is allowed in a codemacro
definition. For a complete list, see the chapter titled Codemacros.

685 This instruction or codemacro has too many operands.

as86 limits the number of operands to 3 in an instruction and to 255 in a
codemacro.

Chapter 27: Assembler Error Messages
Syntax Errors

483

686 Duplicate use of NOSEGFIX directive in codemacro definition.

Only one NOSEGFIX directive can be used in any given codemacro
definition.

687 Duplicate use of SEGFIX directive in codemacro definition.

Only one SEGFIX directive can be used in any given codemacro definition.

688 PREFX and non-PREFX codemacros cannot have the same name.

The codemacro symbol being pointed to by the caret has been defined in
codemacro directives both with and without the PREFX keyword. The last
definition of the codemacro is the one that will be in effect.

689 Missing PROC directive or previous procedure nesting error.

This ENDP directive has no matching PROC directive due to an omission or
a nesting error involving its associated PROC directive.

690 This symbol has not been defined.

During Pass 1, the assembler assumes that an undefined symbol is a forward
reference. This message occurs when the symbol is still not defined in Pass 2.
The assembler generates NOPs and continues assembly. You should modify
the code to define the symbol, or the symbol will have no value.

691 CS cannot be destination register.

CS can only be changed by using an ASSUME directive, a JMP or CALL
instruction to a FAR location, and a MOV or POP has been used to load the
CS register.

692 Pass 1 estimate of instruction bytes insufficient.

The number of bytes reserved for an instruction as a result of a forward
reference in Pass 1 did not leave enough code space for the instruction in Pass
2. There are two possible remedies:

Specify the sizes of forward-referenced variables using the PTR operator.

Use the $OPTIMIZE control.

693 This symbol is not defined as a group.

The symbol before the GRPOFFSET operator or following the GRPSIZE
operator must be a group name. If it is not, then this error is generated.

Chapter 27: Assembler Error Messages
Syntax Errors

484

694 Shift values greater than 31.

A value for one of the shift or rotate instructions evaluated to a value that was
greater than 31. Adjust the shift value and reassemble.

695 ES cannot be overridden in this string instruction.

 Certain types of string instructions (e.g. MOVS) require that their second
operand use the ES:DI combination for their reference. In such instances, the
ES register cannot be overridden. Modify the program to do such operations
through the ES register, and reassemble.

697 Illegal character in numeric constant.

An illegal character for a numeric constant was found in the constant pointed
to by the caret. Remove the illegal character and reassemble.

698 Illegal DUP value.

A negative or zero repeat count value for a DUP initialization was found at
the location pointed to by the caret. Only positive repeat values are allowed.
Correct and reassemble.

699 No forward references allowed in EQU expressions.

The expression pointed to by the caret contains an as-yet undefined symbol.
Since this expression is being defined as an EQU symbol, such forward
references are not allowed. Eliminate the forward reference by moving the
definition of the as-yet undefined symbol in front of this EQU definition, and
reassemble.

701 This construct is invalid in the current assembly mode.

Certain constructs that are accepted only by a given assembly mode (MOD086,
MOD186, MODV20) that aren’t accepted in the current assembly mode will
cause this error to be generated.

702 No module name specified.

No NAME directive was found in the source program. The default name,
which is the basename of the source file, will be used.

703 This symbol was previously declared public.

The symbol pointed to by the caret previously appeared in this or another
PUBLIC directive.

Chapter 27: Assembler Error Messages
Syntax Errors

485

704 Too many initializations specified: remainder ignored.

When re-initializing a structure or record at allocation time, this message is
generated if more initialization values were specified than there were fields in
the structure or record.

705 This field cannot be re-initialized: value not changed.

Structure fields with many values or a DUP expression cannot be re-initialized
at allocation time.

706 Illegal initialization value: not re-initialized.

An attempt was made to initialize a structure or record field with an invalid
value.

707 Location counter overflow.

Addition of the current instruction or data definition directive causes the
current segment’s location counter to exceed the value 0FFFFH, i.e. the 64K
limit of a segment. The location counter is set to the value MOD 65536.

Note This may cause previous code or data to be overwritten if this is ignored.

708 This EQU cannot be made public.

Certain types of EQU symbols, such as those representing instructions or
address expressions, are not permitted to be declared PUBLIC.

709 Floating point overflow: set to infinity.

The number of bytes in a floating point value exceeds the limit of a DD (32
bytes), DT (80 bytes) or DQ (64 bytes) directive. Assembly continues; adjust
the value to fit within the limit of the Data Directive used.

710 Floating point underflow: set to zero.

The number of bytes in a floating point value is under the limit of a DD (32
bytes), DT (80 bytes) or DQ (64 bytes) directive. Assembly continues; adjust
the value to fit within the limit of the Data Directive used.

711 BCD value exceeds 18 decimal digits.

A packed decimal value (DT) can take 18 digits only; anything over 18 is
truncated. Assembly continues; adjust the value to fit within the 18 digit limit.

Chapter 27: Assembler Error Messages
Syntax Errors

486

712 Integer value exceeds 64-bit limit.

This warning occurs when an integer constant used in a DQ directive has a
value outside the range 0 to FFFFFFFFFFFFFFFFH. Correct the value and
reassemble.

716 This and future preprocessor statements will be ignored.

Meta characters have not been preprocessed; assembly continues. The
assembler does not process any lines with meta characters. Execute the macro
string preprocessor before assembling.

717 Segment limit exceeded for this segment.

The specified segment contains instructions and/or data that take up more
than the maximum allowable 64K bytes of space. Break the segment into
multiple segments or shrink the size of the segment, and reassemble.

718 Procedure not closed within this segment.

A procedure (or procedures) whose PROC directive was defined in the
segment having an ENDS directive which is currently being processed has not
yet been closed. The procedure should be closed by inserting an ENDP
directive at some point before the ENDS directive.

719 Segment not closed by end of module.

One or more segments were open at the point where the assembler found the
END directive. The segments should be closed at the appropriate point
within the source file.

720 Procedure closed in segment other than the one it was defined in.

The ENDP directive, which closes a procedure, appears in a different segment
than the one in which the matching PROC directive appears. Make sure that
the PROC and ENDP directives reside within the same segment.

722 String truncated to 2 characters before integer conversion.

A string that appears anywhere other than in a DB directive must be either 1
or 2 characters long. If such a string is longer than 2 characters, it will be
truncated to 2 characters and converted to an integer.

724 Record field overflow: ’value’ modulo ’field width’ used.

Chapter 27: Assembler Error Messages
Syntax Errors

487

If a record field initialization or reinitialization expression evaluates to a
value that won’t fit the specified record field, the appropriate modulo
operation is performed in order to force the value to fit.

726 Illegal assembly mode.

The instruction pointed to by the caret is not valid in this assembler.

727 Overriding string too large for field.

If a string field in a structure is reinitialized and the string is too long for the
specified field, the string is truncated and this warning message is displayed.

728 Source path names for debug have been truncated to 255 characters.

If the assembly module was produced by the AxLS C compiler and the full
path name for the source file or any include file is longer than 255 characters,
the assembler will truncate the path name from the left, adding an ellipsis to
the name to create a total length of 255 characters, and emit this message.

729 High-level block nesting limit exceeded: some variable scoping lost.

Nesting of high-level procedure or code blocks is allowed up to a depth of 15.
Any nesting beyond this depth will result in the loss of information about
which block symbols belong to.

800 EVEN directive cannot be in a BYTE aligned segment.

You cannot use the EVEN directive within a segment whose alignment
attribute is BYTE. In such a segment, there is no need to force the alignment
to be on a word boundary as it will not be any more effective by doing so.
Comment out or remove the unnecessary EVEN directive and reassemble.

801 CS-IP initialization required for main module.

Some register initializations were provided on the END directive; however,
this error message indicates that no initialization for the CS:IP registers was
provided. If any register initializations are provided, an initialization for
CS:IP must be provided as well. Add the appropriate initialization and
reassemble.

802 Illegal initialization of SS register.

It is illegal to initialize the SS register to anything other than a segment base.
In particular, group bases are not allowed. Correct the initialization on the
END directive and reassemble.

Chapter 27: Assembler Error Messages
Syntax Errors

488

803 Circular chain of equates.

EQU symbols in a list with a length of at least one were defined as other EQU
symbols in such a way that the last symbol in the list was defined as the first
symbol in the list. Usually, such a construct results from symbol spelling
errors, or in larger programs, widely scattered EQU definitions. Correct the
erroneous EQU definition and reassemble.

804 Illegal to use relocatables in DB, DQ, or DT.

If a relocatable value appears in an expression for a DB, DQ, or DT directive,
this error is generated. Remove the relocatable value and reassemble.

805 Variables or Labels cannot be in DB, DQ, or DT.

An expression that contains a variable or label is not allowed in a DB, DQ, or
DT directive.

806 Illegal to use multiple INCLUDE controls on line.

Only one INCLUDE control is allowed on any given line containing
assembler controls. Split the control line into as many lines as necessary to
obtain control lines with only one INCLUDE control per line, and
reassemble.

807 Inconsistent AT value given for segment.

A segment was specified in a previous SEGMENT directive with a different
absolute paragraph number than is specified in the current SEGMENT
directive. The paragraph values should be the same.

808 This codemacro specifier cannot have a range.

The codemacro specmod field being pointed to by the caret is not permitted
to have an associated range. Only codemacro parameters with specifiers A, D,
R, or S can have range values.

809 Duplicate specification of alignment type.

A segment directive can only have a single alignment type as an option. This
error is generated if more than one alignment type is detected in the segment
directive.

810 Duplicate specification of combine type.

Chapter 27: Assembler Error Messages
Syntax Errors

489

A segment directive can only have a single combine type as an option. This
error is generated if more than one combine type is detected in the segment
directive.

811 Duplicate specification of class name.

A segment was specified in a previous SEGMENT directive with a different
class name than is specified in the current SEGMENT directive. Both
SEGMENT directives should use the same class name.

812 Maximum source line length exceeded.

An input source line exceeded 1024 characters in length. The assembler will
not accept lines longer than this length.

813 Maximum string length exceeded.

A string was defined that exceeded 1024 characters in length. The assembler
will not accept strings longer than this length.

820 Relocatable numbers not allowed in DD.

A relocatable value was used in a DD directive, which is not allowed. Only
relocatable full addresses, segment, or group names may be used in a DD
directive.

825 Codemacro argument cannot be addressed by the required segment register.

The codemacro requires that one of its arguments be addressable through a
specific segment register. The current ASSUME contents for that register
does not allow that argument to be reached, so this error is generated.

826 Iterated Data record offset is too large for a fixup.

Fixups to object code can only occur within the first 1024 bytes of a record. In
this instance, an iterated data record is being created that is larger than 1024
bytes and requires a fixup beyond that point. This cannot be represented in
HP-OMF86 so this error is generated.

827 OMF record length exceeds maximum value.

An HP-OMF86 record can only be 64K in size. Any attempt to generate more
than 64K of text in a single HP-OMF86 record will result in this error message.

828 Codemacro instruction length exceeds 247 bytes.

Chapter 27: Assembler Error Messages
Syntax Errors

490

A single codemacro instruction can only generate up to 247 bytes of object
code. Any instruction that generates more than that number of bytes will
result in this error message.

996 Internal error.

997 Fatal Error.

998 *** Fatal Internal Error: Unimplemented Semantics ***.

999 ********** FATAL INTERNAL ERROR **********.

Chapter 27: Assembler Error Messages
Syntax Errors

491

Chapter 27: Assembler Error Messages
Syntax Errors

492

28

Macro String Preprocessor Error
Messages

Chapter 28: Macro String Preprocessor Error Messages

493

The Macro Preprocessor produces numbered error messages. This chapter
explains the meaning of the numeric codes. More than one message may
appear for a given source line. Each message is printed immediately upon
detection of the error (because the macro processor is character-oriented, not
line-oriented). The usual effect is for a message to appear before any output
from the source line that caused the error. Macro error messages appear as
assembler comments in the output source file, like this:

; ***** ERROR 301

Error Codes and Messages

301 Undefined macro name.

The text following a metacharacter (%) is not a recognized user function
name or built-in macro function. The reference is ignored, not passed to the
output file, and processing continues with the character following the name.

302 Illegal call to %EXIT.

%EXIT is outside any user macros, WHILEs, or REPEATs. The call is
ignored, %EXIT is not passed to the output file, and processing continues.

303 Illegal expression.

A numeric expression was expected. There could be a missing % from a
macro-time symbol or a syntax error, among others. This message is produced
when ap86 is trying to evaluate an expression within EVAL, IF, WHILE,
SUBSTR or REPEAT. The function call is aborted (any output from it is
lost) and processing continues following the call pattern of the function. This
message is also reported when an illegal character is detected in a string being
compared with %EQS (or other string comparison functions).

304 Logical Expression Error

305 Missing "FI".

Self-explanatory. This has no effect except to produce the message. However,
the search for FI is character-by-character, so that if FE was present when FI

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

494

was expected, the F would be removed from the output file. The E and
subsequent characters would be passed on normally.

306 Missing "THEN".

Self-explanatory. The call to IF is aborted and processing continues following
the first character which failed to match. Thus the THEN and ELSE clauses,
and the ELSE and FI keywords, will be treated as normal text and expanded
normally. As with FI, the search for THEN is character- by-character.

307 Illegal attempt to redefine macro.

A built-in function cannot be re-defined at any time. It is not possible to
re-define a macro formal parameter within the macro body or a macro name
within its own body.

309 Missing balanced string.

In a call to a built-in function, a required balanced-text string delimited by
parentheses is not present. This error can also be generated when the leading
left parenthesis is not found where expected. The function call is aborted and
scanning continues from the point at which the error was detected.

310 Missing list item.

A list item (delimited by commas) is missing. The function or macro call is
aborted and scanning continues from the point where the error was detected.

311 Missing delimiter.

A delimiter required when scanning of a user-defined macro or built-in
function (a comma, usually) is not present. The macro function call is aborted
and scanning continues from the point at which the error was detected.

312 Premature EOF.

The end of the input file occurred while the call to the macro was being
scanned. This usually occurs when a right parenthesis is omitted, causing the
Macro Preprocessor to scan to the end of the file searching for it. Note that
even if the closing parenthesis of a macro call is given, this error may occur if
any preceding commas are missing, since the Macro Preprocessor searches for
delimiters one by one.

313 Macro stack overflow.

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

495

The macro context stack MSTAK has overflowed. This stack is 64 deep and
contains an entry for each symbol preceded by the metacharacter. The cause
of this error is excessive recursion in macro calls or expansions; a likely source
is a user-programmed infinite loop. When this error is encountered, the stack
is emptied and all pending output destroyed; scanning continues at the next
character in the input file. This message can also be produced to indicate that
INCLUDEs were nested too deeply.

314 Nested macro error.

315 String buffer overflow.

The string buffer used in conjunction with the macro stack to save
intermediate results from nested macro calls has overflowed.

318 Illegal metacharacter.

Self-explanatory. The current metacharacter remains unchanged.

319 Unbalanced right parenthesis.

During the scan of a call to a user-defined macro, an unmatched right
parenthesis was encountered. This is frequently because of a missing
argument (the right parenthesis terminating the macro call was found when a
comma was expected). The call is aborted and scanning continues from the
point at which the error was detected.

338 Invalid symbol.

A symbol (not preceded by the metacharacter) is required in certain contexts,
such as the MATCH, DEFINE and SET functions. This symbol was not valid.

340 Literal character on SET or WHILE.

The constructs %*SET and %*WHILE make no sense and produce this
message. The * is ignored, and the Macro Preprocessor attempts to expand
SET or WHILE normally.

401 Bad or missing parameter.

The parameter to a control is not correctly formed, or a control that requires a
parameter does not have one. Typographical errors often lead to this message.

414 Unable to open include file.

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

496

Self-explanatory.

901 Scan stack overflow.

This error indicates that the stack used for evaluating complex expressions has
overflowed. This will not occur for any expression likely to be useful in
practice. Break the expression into smaller ones.

906 Macro symbol table exhausted.

The macro-time symbol table is full. This table contains symbol names plus
the string values of SET and MATCH symbols.

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

497

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

498

29

Loader Error Messages

List of the loader error messages.

Chapter 29: Loader Error Messages

499

Warning Messages

400 Repeated segment name in ORDER command: [SEGMENT__NAME].

The loader displays this message when there is an implicit or explicit
reference to the same segment name. If the reference is implicit, the duplicate
segment name is embedded in a class specified by a classname in the ORDER
command. If the reference is explicit, the duplicate segment name occurs at
least twice in the current ORDER command. The duplicate occurrences of
the segment name are ignored and loading continues.

401 SEG , ALIGN, or SEGSIZE command used on absolute segment.

The loader encountered a user-specified base address for an absolute
segment. The user-specified base address is ignored and loading continues.

402 ORDER command cannot be obeyed.

The loader generates this message because the placement of absolute
segments, SEG commands, and/or reserved areas prohibits placement of the
segments in memory in the order specified. This message applies only to
segments explicitly named in the ORDER command. Segments implicitly
named (such as by specifying a classname with an ORDER command) do not
have an implied order. The order of segments will not be as specified in the
ORDER command and loading continues.

403 This external symbol is undefined: [SYMBOL__NAME].

 The loader displays this message when it finds an external symbol in the
symbol section of a module that is undefined by the user or undefined in any
module. The undefined external symbol may or may not actually be
referenced. Loading continues.

404 Group is larger than 65536 bytes: [GROUP__NAME].

 According to the base address assignment, all members of the group specified
by GROUP__NAME do not fit within 64K bytes of one another; thus the
segments as currently loaded cannot be addressed by a single segment register
(which is the purpose of having groups). By judicious use of classnames in the
assembler, or SEG and ORDER commands in the loader, it may be possible
to get all group elements within 64K bytes of each other. Relocation errors
may result from any references to the group parts outside the 65536 byte
group base. Loading continues.

Chapter 29: Loader Error Messages

500

405 Group contains undefined or absolute external.

One of the input modules contains a GROUP element defined by means of
an external name. The external name is either undefined or defined as
absolute; therefore its segment base cannot be determined. Relocation errors
will result from references to the external name, whether or not an error is
reported. Loading continues.

406 Memory segment is not at the top of memory: [SEGMENT__NAME].

The loader displays this message whenever more than one segment has the
memory attribute, or whenever a SEG or ORDER command causes the single
memory segment to be misplaced. Everything is loaded where assigned and
loading continues.

407 Memory overlap by segment [SEGMENT__NAME].

 The loader generates this warning when an area reserved by a RESNUM or
RESADD command, an absolute segment, or a segment specified in a SEG
directive conflicts with a previously-reserved area. The previously-reserved
area could have been reserved by the RESNUM, RESADD, or SEG directive
or by an absolute segment. Any additionally relocatable segments will not
overlap. Any additional previously-unreserved space is reserved and loading
continues.

408 No segments with classname [CLASS__NAME].

 The classname displayed in the message appears in a SEG or ORDER
command, but no segments with that classname exist. The classname is
ignored and loading continues.

409 SEGSIZE used with public or private segment: [SEGMENT__NAME].

The SEGMENT__NAME displayed in the message is the name of the
segment altered by the SEGSIZE command. The loader issues this message if
the segment does not have a combine type of STACK or COMMON.

SEGSIZE is typically used to set the size of a stack segment but you can use
it to set the length of any segment. The user-specified length is used in the
segment. There is a possibility of overlapped data. No further warning will be
given and loading continues.

410 User-specified base address does not match alignment type for segment
[SEGMENT__NAME].

Chapter 29: Loader Error Messages

501

The loader displays this message when the base address specified in the SEG
command does not match either the alignment carried by the segment or with
the alignment specified by an ALIGN command. The loader ignores the
alignment attribute and loads the segment at the user-specified base address.
Loading continues.

411 Inpage alignment cannot be performed for segment [SEGMENT__NAME].

The named segment is too large to fit in a page (256 bytes). The segment is
loaded at the next page boundary. Loading continues.

412 Respecification of output object module format.

In any given invocation of the linking loader, you can specify only one output
format among the following three: HP-OMF 86 format absolute, Intel
Hexadecimal Object file format absolute, or HP 64000 format absolute. You
can override the default format; however, if you explicitly request either HP
64000 absolute output or Intel Hexadecimal output on the command line or
in a LIST command, or any combination of these, the above warning message
is generated. Loading continues; the output format is left as it was first set.

413 The following command/option is not allowed after a LOAD command:
[OPTION__NAME].

The output format options in the LIST and NLIST commands (B, I, or H)
cannot be specified after a LOAD command is issued. This is because the
loader’s internal data structures have been set to accommodate only the
output format in force at the time of the first LOAD command. The option
specified in the OPTION__NAME field of the error message is ignored and
loading continues.

414 SEGSIZE value too small for stack or common segment:
[SEGMENT__NAME].

The length chosen for the stack or common segment named in the error
message was too small to accommodate the length requested by a portion of
the segment. Depending upon the actual amount of stack or common space
used by the program, the length may be adequate. To alleviate this condition,
eliminate the offending SEGSIZE directive, or increase its length parameter.
The user-specified length for the segment is used. The possibility of data
overlap exists and no further warning will be given. Loading continues.

415 OMF buffer flushed: NAME command ignored; output module name is:
[MODULE__NAME].

Chapter 29: Loader Error Messages

502

This message occurs if an internal table containing class and segment group
names is about to overflow the buffer. It has to be flushed to the output object
module before any NAME command is encountered. At that time, the
module__name will default to the name of the loader command file, or if
there is no command file, to the first file loaded. Module_name becomes the
default module name. Loading continues.

416 Undefined external referenced in module.

This message is generated only when the LIST E option is selected during an
incremental link. This option specifies this warning message be generated
during an incremental link for any undefined external symbols that are
referenced. The module name displayed in the message makes a reference to
an external symbol that was neither defined by you nor defined in another
module. The name of the referenced external is listed along with the module
name. Linking continues. Note that this warning usually does not indicate a
problem as undefined external symbols are permitted in relocatable object
modules. However, this warning alerts you to any unresolved external symbols
that you may have thought were already resolved.

417 Duplicate ORDER command: previous order commands ignored.

The linker found a second or subsequent ORDER command. Any
information contained in the previous ORDER command(s) is now lost, even
if the newly-found ORDER command contains errors. If the newly-found
ORDER command contains errors, no ORDER command information is
saved unless another valid ORDER command is found later in the command
file. Linking continues.

418 Null GRPDEF record referenced during relocation.

 A group containing no member segments or externals was used as the base of
a relocation operation. The base of the item being relocated rather than the
non-existent base of the group was used to perform the relocation. Linking
continues.

419 No object file entries for user-defined segment.

 A segment name or class name has been specified in an ALIGN, INITDATA,
ORDER, SEG, or SEGSIZE command that was not found anywhere in the
object modules that were loaded by the linker. This error message either
means that your command file has an unnecessary segment or class name
reference or you are not loading one or more of your object modules. Both of
these situations can be remedied in the command file by deleting references

Chapter 29: Loader Error Messages

503

to the displayed segment or class or by including LOAD commands for the
object modules containing the displayed segment or class. Linking continues.

420 No object file entries for user-defined group.

A group name has been specified in a GROUP command that was not found
anywhere in the object modules that were loaded by the linker. This either
means that your command file has an unnecessary group name reference or
you are not loading one or more of your object modules. Both of these
situations can be remedied in the command file by deleting references to the
displayed group or by including LOAD commands for the object modules
containing the displayed group. Linking continues.

421 Nonstandard debug information encountered and removed.

Debug information that is not part of the standard HP-OMF86 or Intel file
format was stripped from the file.

422 External defined in different segment than specified in reference: [SYMBOL]

An external symbol was defined to exist within a specific segment but, after
resolving the external with a public symbol, the base segment for the external
is different. In this case, the linker gives a warning so the user is aware of this
incompatibility. The best solution is to place the definition of the external
symbol within the correct segment. If this segment is not known, the external
symbol should not be defined within any segments.

423 TYPDEF record limit exceeded - types set to NULL

The HP-OMF86 file format is only able to represent 32k types. If this limit is
exceeded in the linker, this warning is generated. All type information after
the first 32k types will be lost. All of the type information can probably be
saved through the appropriate use of the ’TYPEMERGE’ command in the
linker command file.

424 The following pathname was truncated in the OMF output: [FILENAME]

The maximum length for pathnames in OMF is 255 characters. If the length of
the absolute path to the object file is greater than this limit, then the
pathname must be truncated.

425 Multiple Register Initialization for: [REGISTER]

Three registers in the 8086/186 processor may be initialized at runtime. These
registers are CS:IP, DS, and SS. Normally, only a single input module contains

Chapter 29: Loader Error Messages

504

the register initialization information. If more than one input module
contains this information, then this error is generated and the last
initialization value is used.

Chapter 29: Loader Error Messages

505

Error Messages

300 Invalid name [INVALID__TEXT].

The loader displays this message when it encounters illegal characters or too
many characters in a command. The maximum length of PUBLICs is 255
characters; the maximum length of SEGs, CLASSES, and GROUPs is 40
characters. The command that uses the name is not processed. Loading
continues.

301 Invalid hexadecimal value: [HEX_VAL]

The linker expected to find a valid hexadecimal constant; instead, the text
displayed in the HEX_VAL field of the message was found. The text should
be corrected to conform to the syntax for hexadecimal constants: digits 0 to 9,
letters a through f or A through F, preceded by a leading zero if a letter is
used as the most significant digit, and followed by a trailing h or H.

302 Invalid command operand.

An operand specified for a command contains invalid characters, does not
exist, or is too large. Loading continues; the command in which the error
occurs is ignored.

303 Error occurred when closing a file.

Loading continues; however, the file in question may become corrupt.

304 Undefined external encountered as a member of group.

In the assembler, it is possible to define a group in terms of segments,
segments of variables, or segments of external symbols. Since external symbols
may be defined outside of any segments, the assembler does not have enough
information to decide what segment the external belongs to, so it must wait
until link time before this is decided. And if the external symbol is not defined
in any input modules, the linker is also unable to decide which segment
belongs in the group. Under these circumstances, this error message is
generated and no segment is placed in the group.

305 Invalid loader command: [INVALID__COMMAND].

 The command displayed in this message is not a valid loader command.
Loading continues; the erroneous command is ignored.

Chapter 29: Loader Error Messages

506

306 Invalid command syntax at or before: [COMMAND__TEXT].

 Loading continues; the command in which the error occurs is ignored.

307 Duplicate public symbol: [DUPLICATE SYMBOL__NAME].

 The symbol name displayed in this message was defined previously in another
module. Loading continues; the first definition of this public symbol is the
one the loader uses for symbol recognition.

308 Undefined external referenced in module
[MODULE__NAME:EXTERNAL__NAME].

The module name displayed in this message makes reference to an external
symbol that was neither defined by the user nor defined in another module.
The name of the referenced external is listed along with the module name.
Loading continues; zeros are substituted for the value of the external.

309 Relocation error at [ERROR__ADDRESS].

A relocated value is too large to fit in the number of bytes allocated for it.
For example, this message occurs if a self-relative jump to a NEAR label is
outside the boundary of a 16-bit displacement. Loading continues; however,
the specific relocation is not performed and the absolute object module is not
likely to be useful.

310 Segment mismatch on combine type for segment [SEGMENT__NAME].

The loader displays this message when different modules that contain parts of
the same segment have different combine type attributes. Loading continues;
the specified segment is NOT COMBINED.

311 Combined segment is larger than 65536 bytes.

 During initial loading, a (combined) segment length exceeds the 64K
segment size. Loading continues; however, the absolute file produced is most
likely useless.

312 Unexpected character in symbol [SYMBOL__NAME].

 The loader displays the name of the symbol in which an invalid character
occurs. Loading continues; the symbol containing the invalid character is not
processed.

313 Segment(s) located beyond 0FFFFFH boundary.

Chapter 29: Loader Error Messages

507

The linked module exceeds memory requirements for the 8086/186
microprocessor. Loading continues; however, the absolute file produced is
most likely useless.

314 Procedure/block nesting limit exceeded.

The loader displays this message if the source program contains procedures
and functions nested to a level deeper than 15. Loading continues; however,
the loader cannot produce the proper procedure and scoping information.

315 Continuation line error.

The loader displays this message when it encounters incorrect syntax for
specifying a continuation line. Loading continues; however, the loader ignores
continued information until it encounters a line of code beginning with the
correct syntax.

316 Specified group base is not divisible by 16 [GROUP__NAME].

A group base value specified in a GROUP command for the
GROUP__NAME displayed in the message is not divisible by 16, and hence
is not on a paragraph boundary. In order to fix this problem, a value divisible
by 16 should be substituted in the GROUP command. Loading continues; no
group addresses are assigned.

317 RESNUM or RESADD command overlaps previously-reserved memory.

The loader generates this warning when the first part of an area previously
reserved by a RESNUM or RESADD directive, an absolute segment, or a
segment specified in a SEG directive conflicts with a reserved area.
Relocatable segments will not overlap. Loading continues; any additional
non-overlapping space is reserved.

318 This command not allowed with relocatable output: ignored.

 The INITDATA command should only be used when you are performing a
final (not incremental) link. Loading continues; the INITDATA command is
ignored.

319 Numeric value out of range: [BAD_VALUE]

A numeric value found in the command file was outside the range
(0< = value< = 0FFFFH) for 16-bit values or outside the range
(0< = value< = 0FFFFFH) for 20-bit values. This can be fixed by correcting
the erroneous value in the command file. Linking continues. The command
containing the incorrect value is ignored.

Chapter 29: Loader Error Messages

508

329 Invalid BLKDEF record for block: [BLOCK_NAME]
Invalid unnamed BLKDEF record

An illegal BLKDEF record was seen by the linker. This record either has no
name or has an illegal attribute. This error probably indicates that the file is
either corrupt or was generated by a nonsupported tool.

Chapter 29: Loader Error Messages

509

Fatal Error Messages

 330 Bad Intel object record.

The byte that was read in as the first byte of an Intel OMF record was not a
valid record marker as indicated in the Intel 8086 Relocatable Object Module
Format Specification. The input file has probably been corrupted.

331 Invalid checksum in object record.

The object record has a checksum error; the input object file has probably
been corrupted.

332 Load terminated by user.

This error is generated when the EXIT command is encountered.

333 Unable to open file [FILENAME].

The file named in this message could not be opened. Check for correct
spelling and verify the file’s existence.

334 Linker Internal error # [ERROR__NU MBER].

 Should this error display, contact Hewlett-Packard Customer Support.

335 First record is not a valid relocatable header record.

A header record is not the first record in the object module.

336 Unexpected end of file encountered.

The loader encountered a physical end-of-file before it read records to
indicate end-of-module.

337 Illegal object record length [LENGTH].

The object record exceeds 64K bytes. LENGTH is the length of the object
record in bytes.

338 Segment, group, or external index out of range.

An external reference is made to an external symbol that does not exist in the
object module.

Chapter 29: Loader Error Messages

510

339 Unable to open temporary file.

340 Disk file output error -- program aborted.

While the linker was attempting to write to a disk file, an error occurred.
Usually, this is caused by a lack of disk space. Freeing up some disk space
may help.

341 Disk file input error -- program aborted.

While the linker was attempting to read from a disk file, an error occurred.

342 Disk file seek error -- program aborted.

While the linker was attempting to seek a position in a disk file, an error
occurred.

343 The command line exceeds the command line length limit:

The maximum command line length is 1024 characters. If this limit is
exceeded, then the command line cannot be processed.

344 File Overwrite condition: [TEXT].

It is possible for the creation of an output file to destroy one of the input files
or another output file. For this reason, the linker checks to see if the creation
of the output file will overwrite one of these other files. If this is the case, then
this error is generated and the linker does not proceed any further.

345 BLKEND record has no matching BLKDEF, or nesting limit previously
exceeded.

If the end of a procedure block (in the debug information within a module)
does not have a matching beginning, then this error is generated. The input
object file must be recreated by the assembler without any detected errors.

Chapter 29: Loader Error Messages

511

Chapter 29: Loader Error Messages

512

30

Librarian Error Messages

List of the librarian error messages.

Chapter 30: Librarian Error Messages

513

Librarian Error Messages

100 Could not close file [FILENAME] to open another file.

 In order to reduce processing overhead, the librarian keeps OPENed files
open. This message is displayed if too many files are open and the librarian
unsuccessfully attempts to close a file in order to open a new one. To remedy
this situation, reduce the number of files you are working with during a given
session.

101 Unable to open file [FILENAME].

The librarian could not open the named file when executing an ADDMOD,
REPLACE, or OPEN command. This error could be caused by either an
invalid filename specification or when the specified file does not exist. The
librarian ignores the command that generates this error.

102 Unable to close file [FILENAME].

The librarian generates this error when it encounters an operating system
error, and cannot close the named file. This message typically is accompanied
by another error message that provides a more specific reason for not closing
the named file.

104 File [FILENAME] not included.

The librarian issues this message when it cannot execute the ADDMOD
command because the named file is corrupted or does not exist. This message
has a companion message that specifically states why the named file is not
included in the library.

106 File [LIBRARY__NAME] exists already.

The librarian generates this message when you have used the CREATE
command, and the named library currently exists. The librarian displays a
warning in batch and interactive modes.

107 File [FILENAME] does not exist.

The librarian generates this message when you have issued an OPEN
command, and the named file does not exist. If you are creating a new library
file, you may ignore this message.

108 Library file [LIBRARY__NAME] not opened.

Chapter 30: Librarian Error Messages

514

201 Module [MODULE__NAME] not found.

The librarian could not locate the named module in the library to execute a
DELETE, REPLACE, or EXTRACT command.

203 Module [MODULE__NAME] already exists in current library

 The librarian cannot execute an ADDMOD or ADDLIB command because
the module named in the message exists in the current library. If you wish to
replace a module in the library, use the REPLACE command. The librarian
ignores the ADDMOD or ADDLIB command that contains a duplicate
module name.

204 [FILENAME] is a library file.

The librarian generates this error message when it attempts to execute an
ADDMOD or OPEN command, and the associated filename is not an object
module. The command containing the erroneous file is ignored.

205 [FILENAME] is not a library file.

The librarian issues this error message when it attempts to execute an
ADDLIB or OPEN command, and the associated filename is an object
module. The librarian ignores the command containing the erroneous file.

206 Module [MODULE__NAME] is not included in the library.

 The librarian issues this message with a companion message that gives the
specific reason for not including the named module in the library. This
message describes the result: the named module is not included in the library.

207 Bad object record.

Either the object module has been corrupted or it is not a legal relocatable
object file. The librarian issues this message with a companion message that
names the file with the bad object record. The command associated with the
bad object record file will be ignored.

208 Bad library header record.

The library has a bad header record. The librarian issues this message with a
companion message that names the file with the bad header record. The
command associated with the bad library header record will be ignored.

209 Duplicate symbol [SYMBOL__NAME].

Chapter 30: Librarian Error Messages

515

A module named in an ADDLIB, ADDMOD, or REPLACE command has
the same public definition symbol that occurs in another module. The
librarian issues this message with a companion message that provides
information about what action it takes. The librarian considers symbols to be
case-sensitive.

210 Bad object record in file [FILENAME].

The named library or module file may have been corrupted.

250 Out of memory.

The librarian issues this message when there is not enough system memory to
execute commands issued since the last CREATE or OPEN command.

251 Failed writing library [REASON].

The librarian generates this message when it attempts to execute a SAVE
command and cannot. The message provides the reason for inability to create
a library. The librarian abandons the current session affected by the SAVE
command that caused the error.

253 Library [LIBRARY__NAME] not written.

The librarian issues this message when an error occurs earlier in the session
that prevents the library from being saved. This message is typically
accompanied by another message that contains the reason the named library
was not created.

254 Failed writing module [MODULE__NAME] to file [FILENAME].

 When attempting to execute an EXTRACT command, the librarian cannot
write the named module from an existing library to the (new) file, which is
external to the library. A companion error message describes the reason that
the module cannot be extracted. If an error is encountered in batch mode, all
commands following the EXTRACT command will not be executed; however,
they will still be checked for syntactic validity.

255 Replacement not done.

The librarian issues this message when it cannot execute the REPLACE
command for the reason specified in the companion message.

256 Extraction failed.

The module named in the EXTRACT command is not extracted.

Chapter 30: Librarian Error Messages

516

257 Illegal command.

The librarian generates this message when it encounters either an incorrect
command sequence or an incorrect command syntax.

259 Quote Not terminated.

A string is missing a closing quote.

262 There is no library to be saved.

The SAVE command does not have a library to save.

Chapter 30: Librarian Error Messages

517

Chapter 30: Librarian Error Messages

518

Index

% escape character, 256
_ (underscore character), 24

A .A suffix, 23–24
absolute expression, 129
absolute segment

loader, 370
acvt86 translation tool, 290–293
adding base and index register

in expression, 134
addition operator

binary, 138
unary, 137

ADDLIB librarian command, 444
ADDMOD librarian command, 444
ALIGN loader command, 387–388
align-type attribute

loader, 374
alignment, 37
allocating record storage, 115
allocating structure storage, 124
AND operator, 144
anonymous reference, 163

with expression, 135
ap86, 30–31
ar86, 45–48
archiver, 45–48
arithmetic operator, 137
as86, 23–29
ASCII codes, 58
asmb_sym file, 23
assembler, 23–29

control general syntax, 195
cross reference format, 213–216
directive, 79–126
error messages, 465–492

519

assembler (continued)
general controls, 195
listing, 211–216
operation, 52
primary controls, 195
statement syntax, 68
symbol table format, 213–216

assembler controls
CASE, 197
DATE, 197
DEBUG, 198
EJECT, 206
ERRORPRINT, 198
GEN, 206
general, 206–208
GENONLY, 206
INCLUDE, 207
INCLUDE with macro preprocessor, 248
LIST, 207
MACRO, 200
MOD086, 200
MOD186, 201
MODV20, 201
OBJECT, 202
OPTIMIZE, 202
PAGELENGTH, 202
PAGEWIDTH, 203
primary, 197
PRINT, 203
RESTORE, 207
SAVE, 208
SYMBOLS, 204
TITLE, 208
TYPE, 204
UNREFERENCED_EXTERNALS, 204
WORKFILES, 205
XREF, 205

assembler syntax
blank line, 70
comment, 69
continuation line, 70

Index

520

assembler syntax (continued)
keyword, 69
label, 69
operand, 69
prefix, 69
symbol, 59

assembling program modules, 9–14
assembly source translation

acvt86 tool, 290–293
assembly source translation

HP 64853 to HP B1449, 279–306
ASSUME directive, 86–87
assumed, 163
* operator, 141, 389
attribute

BASE, 74
CS ADDRESSABILITY, 77
INDEX, 74
OFFSET, 73
RELOCATION TYPE, 75
SEGMENT, 75
SEGMENT ADDRESSABILITY, 76
SEGMENT RELOCATION, 75
TYPE, 73

B balanced text string, 252
baltex, 252
base address

loader, 369
base address assignment

loader, 378–382
BASE attribute, 74
base register

in expression, 134
binary minus, 138
binary plus, 138
blank line in syntax, 70
bracket macro function, 255
byte align-type

loader, 375

Index

521

C caret, 466
CASE assembler control, 197
case sensitivity, 399

assembler controls, 197
macro preprocessor, 244, 251

case-sensitivity, 25, 31, 35, 41, 56
changes to the assembler, 275–278
character constant, 67
character set, 56–58
characters, 24
class

loader, 370
class name

loader, 372
CLEAR librarian command, 445
clearing flags, 24
code translation

acvt86 tool, 290–293
HP 64853 to HP B1449, 279–306

colon
 with label, 62

combine-type attribute
loader, 373

command file
loader listing, 416

command files, 18, 33
command line length, 511
command syntax, 21–48
commands

arguments to loader commands, 384
length of with loader, 385
librarian, 441
order in loader, 385

comment in syntax, 69
comment macro function, 255
comments

librarian, 439
loader, 389

comments, linker, 35
common segment

loader, 373

Index

522

complete name, 385
loader, 372

constant, 64
character, 67
integer, 65
real, 66

continuation line in syntax, 70
controls, 25
controls, assembler

CASE, 197
DATE, 197
DEBUG, 198
EJECT, 206
ERRORPRINT, 198
GEN, 206
general, 195, 206–208
GENONLY, 206
INCLUDE, 207
LIST, 207
MACRO, 200
MOD086, 200
MOD186, 201
MODV20, 201
OBJECT, 202
OPTIMIZE, 202
PAGELENGTH, 202
PAGEWIDTH, 203
primary, 195, 197
PRINT, 203
RESTORE, 207
SAVE, 208
SYMBOLS, 204
TITLE, 208
TYPE, 204
UNREFERENCED_EXTERNALS, 204
WORKFILES, 205
XREF, 205

CREATE librarian command, 445
creating macros, 269
cross reference format, 213–216

Index

523

cross reference table, 28
CS ADDRESSABILITY attribute, 77

D data definition directive, 83
data object, 83
DATE assembler control, 197
DB directive, 88–93

with string, 92
DD directive, 88–93
DEBUG assembler control, 198
debug information, 25
default

PROC directive, 109
segment, 82
segment register, 87
segments for memory addressing, 171

DEFINE macro function, 269
defining macros, 269
definitions

external, 6
PUBLIC, 6–7
storage locations, 6

DELETE librarian command, 446
differences between processor modes, 209–210
directive

assembler, 79–126
ASSUME, 86–87
data definition, 83
DB, 88–93
DB with string, 92
DD, 88–93
DQ, 88–93
DT, 88–93
DW, 88–93
DW, DD, DQ, DT with string, 92
END, 94
ENDP, 109–110
ENDS (segments), 118–122
ENDS (structures), 123–126
EQU, 96–98
EXTRN, 100–102
GROUP, 103–104

Index

524

directive (continued)
LABEL, 105–106
NAME, 107
ORG, 108
PROC, 109–110
program linkage, 84
PUBLIC, 111
PURGE, 112–113
RECORD, 114–117
SEGMENT, 118–122
segmentation, 81
STRUC, 123–126

DIRECTORY librarian command, 446
division operator, 141
DQdirective, 88–93
DT directive, 88–93
DW directive, 88–93
DW, DD, DQ, DT directive

with string, 92

E 8086 processor mode, 209
EBCDIC codes, 58
EJECT assembler control, 206
eject page, 25
END directive, 94
END librarian command, 447
END loader command, 389
ENDP directive, 109–110
ENDS directive, 118–122
ENDS directive (structures), 123–126
EQ operator, 145
EQS macro function, 257
EQU directive, 96–98
EQU symbols defined, 64
error messages, assembler, 465–492
ERROR loader command, 389
error messages

formats, 461–464
interactive vs. non-interactive, 462–464
librarian, 513–518
loader, 499–512
macro preprocessor, 493–498

Index

525

error messages, suppressing, 25
ERRORPRINT assembler control, 198
escape macro function, 255
EVAL macro function, 257
example program

assembling program modules, 9–14
description of, 3–8
linking relocatable object files, 17–20
objectives of, 2

EXIT loader command, 390
EXIT macro function, 258
expression

absolute, 129
anonymous, 135
base register in, 134
with EQU directive, 136
external, 130
generally, 128
group name operand, 133
index register in, 134
label name operand, 133
in macro preprocessor, 250–252
numeric operand, 131
operand, 131
operands, 162–169
operator, 137
operator, arithmetic, 137
operator, logical, 144
operator, record, 154
record field operand, 132
record operand, 132
register indirect, 134
relocatable, 130
segment name operand, 133
string operand, 132
structure field operand, 134
variable name operand, 133

external definitions, 6
external expression, 130
external references, 6

checking, 25

Index

526

EXTRACT librarian command, 447
EXTRN directive, 100–102

F file format, 18, 23–24, 29, 32–35, 40, 44
file names

assembler output, 24
object, 17, 23
output, 33
source, 23
symbol file, 24

flags
assembler, 24–25
unsetting, 24

FORMAT loader command, 391
formats for error messages, 461–464
FULLDIR librarian command, 448
function

%((bracket) macro, 255
bracket macro, 255
%’ (comment) macro, 255
comment macro, 255
DEFINE macro, 269
EQS macro, 257
%n (escape) macro, 255
escape macro, 255
EVAL macro, 257
EXIT macro, 258
GES macro, 257
GTS macro, 257
IF macro, 258
LEN, 245
LEN macro, 260
LES macro, 257
LTS macro, 257
MATCH macro, 260
METACHAR macro, 262
NES macro, 257
REPEAT macro, 262
SET macro, 263
SUBSTR, 245
SUBSTR macro, 264
WHILE macro, 264

Index

527

G GE operator, 145
GEN assembler control, 206
general assembler controls, 195, 206–208
general controls, 25
general syntax, 68
GENONLY assembler control, 206
GES macro function, 257
group, 103–104

loader, 371
mismatched groups merged, 371
OFFSET operator with, 104
override operator, 148

group base address
loader, 371

GROUP directive, 103–104
GROUP loader command, 392–393
group name

defined, 64
as expression operand, 133

groups, 26, 35–36
GT operator, 145
GTS macro function, 257

H HELP librarian command, 449
HIGH operator, 143
HP 64000 format

See file format
HP 64853 programs, linking to, 303–304
HP 64853 to HP B1449 translation, 279–306

I identifiers, 24
IF macro function, 258
immediate, 164
immediate value

See also numeric value
INCLUDE assembler control, 207

with macro preprocessor, 248
include file, 26
incorrect macro example, 265
incremental linking, 32, 368
INDEX attribute, 74

Index

528

index register
in expression, 134

INITDATA loader command, 394
initialization

record, 115
segment register, 95
structure, 124

initialize data, 394
initialized memory, 38
inpage align-type

loader, 375
instruction mnemonic defined, 62
instruction set, 52

8086/186, 339
8086/186 in hexadecimal order, 307–338
assembler, 174

instruction sets, 26
integer constant, 65

K keyword defined, 60
keyword in syntax, 69

L L_to_o86 porting tool, 304
label, 83

in syntax, 69
LABEL directive, 105–106
label name

defined, 62
as expression operand, 133

ld86, 32–44
LE operator, 145
LEN function, 245
LEN macro function, 260
LENGTH loader command, 395
LENGTH operator, 151
LES macro function, 257
libary maintainer (ar86), 45–48
librarian

command syntax, 438
commands, 441
comments, 439
error messages, 513–518

Index

529

librarian (continued)
features, v
introduction, 432
sample program, 453, 456
special characters, 438
use of, 433

librarian command
ADDLIB, 444
ADDMOD, 444
CLEAR, 445
CREATE, 445
DELETE, 446
DIRECTORY, 446
END, 447
EXTRACT, 447
FULLDIR, 448
HELP, 449
OPEN, 449
REPLACE, 450
SAVE, 450

library files, creating, 15–16
linker, 17
linker/loader, 32–44
linking loader

introduction, 361–366
linking to 64853 programs, 303–304
linking, definition of, 17–20
LIST assembler control, 207
LIST loader command, 396–399
LISTABS loader commands, 400
listing, assembler, 212
listings, 9, 15, 18, 23
LISTMAP loader commands, 400–401
literal (*) character, 247
literal character, 256
LOAD loader command, 402
load map, 18

Index

530

loader, 17, 361–366
absolute segment, 370
align-type attribute, 374
base address, 369
base address assignment, 378–382
byte align-type, 375
class, 370
class name, 372
combine-type attribute, 373
command file listing, 416
common segment, 373
complete name, 372
error messages, 499–512
fatal error messages, 510
features, iv
group, 371
group base address, 371
incremental linking, 368
inpage align-type, 375
introduction, 361–366
linking/loading from libraries, 362
logical segment, 369
memory segment, 374
merging mismatched groups, 371
module, 372
non-combinable segment, 373
non-fatal error messages, 506
page align-type, 374
paragraph number, 370
physical segment, 369
primary functions, 368
public segment, 373
relocatable segment, 370
segment number, 370
segments and load addresses, 369
stack segment, 373
symbol with, 384
warning messages, 500
word align-type, 374

Index

531

loader command
ALIGN, 387–388
command argument, 384
command length, 385
command order, 385
* (comment), 389
descriptions, 386
END, 389
EXIT, 390
FORMAT, 391
GROUP, 392–393
INITDATA, 394
LENGTH, 395
LIST, 396–399
LOAD, 402
NAME, 403
NLIST, 396–399
NOTYPEMERGE, 411
ORDER, 403–404
PUBLIC, 405
RESADD, 406
RESNUM, 406
SEG, 407–408
SEGSIZE, 409
START, 410
TYPEMERGE, 411
WIDTH, 412

loader commands
ERROR, 389
LISTABS, 400
LISTMAP, 400–401
NOERROR, 389
WARN, 389

logical operator, 144
logical segment, 82

loader, 369
LOW operator, 143
LT operator, 145
LTS macro function, 257

Index

532

M MACRO assembler control, 200
macro example (incorrect), 265
macro function

bracket, 255
comment, 255
DEFINE, 269
EQS, 257
escape, 255
EVAL, 257
EXIT, 258
GES, 257
GTS, 257
IF, 258
LEN, 245, 260
LES, 257
LTS, 257
MATCH, 260
METACHAR, 262
NES, 257
REPEAT, 262
SET, 263
string relational, 257
SUBSTR, 245, 264
WHILE, 264

macro preprocessor, 30–31, 243–252
balanced text string (baltex), 252
error messages, 493–498
INCLUDE file, 248
input parsing, 248
input source characteristics, 244
literal character, 247
metacharacter (%), 245
output buffering, 248
starting, 9
symbol in, 251
with expressions, 250–252
with operators, 250–252

man pages, 22
MASK operator, 154
MATCH macro function, 260
memory addressing, 168–169

Index

533

memory segment
loader, 374

message severity, 389
METACHAR macro function, 262
microprocessors, 52
—

binary, 138
unary, 137
with base and index register, 134

mismatched groups, merging, 371
MOD operator, 141
MOD086 assembler control, 200
MOD186 assembler control, 201
modifier (codemacro specmod), 220
MODRM

codemacro directive, 234
description of MODRM byte, 169
values for MODRM byte, 358

MODRM byte, 169
module

loader, 372
size, 411

MODV20 assembler control, 201
multiple register initialization, 505
multiple segment definition, 120

N NAME directive, 107
NAME loader command, 403
NE operator, 145
NES macro function, 257
nesting segments, 121
NLIST loader command, 396–399
nm64 porting tool, 305
NOERROR loader command, 389
non-combinable segment

loader, 373
NOPs, removing, 27
NOT operator, 145
NOTYPEMERGE loader command, 411
number

17-bit, 130

Index

534

numeric constant
other bases, 65

numeric value
character constant, 67
constant, 64
as expression operand, 131
immediate value, 164
integer constant, 65
real constant, 66

O .o suffix, 23, 27
OBJECT assembler control, 202
OFFSET attribute, 73
OFFSET operator, 149

with group, 104
OMF format

See file format
OPEN librarian command, 449
operand

in syntax, 69
positioning, 164
required typing, 162

operating notices, 275–278
operation differences, processor modes, 209–210
operation of assembler, 52
operator

AND, 144
/, 141
EQ, 145
GE, 145
GT, 145
HIGH, 143
LE, 145
LENGTH, 151
logical, 144
LOW, 143
LT, 145
macro preprocessor, 250–252
MASK, 154
—, unary, 137–138
MOD, 141
*, 141

Index

535

operator (continued)
NE, 145
NOT, 145
OFFSET, 149
OR, 144
+ , unary, 137–138, 145
PTR, 147
record, 154
SEG, 149
SHL, 142
SHORT, 146
SHR, 142
SIZE, 152
THIS, 146
TYPE, 150
WIDTH, 155
XOR, 144

operator precedence, 159
operators, 137
OPTIMIZE assembler control, 202
optimizing, 27
OR operator, 144
ORDER loader command, 403–404
order of input files, 33
ORG directive, 108
override

group, 148
segment, 148, 172
segment override checked against ASSUME, 173

P % (metacharacter), 245, 255
page align-type

loader, 374
page eject, 25
page length, 27
page width, 27
PAGELENGTH assembler control, 202
PAGEWIDTH assembler control, 203
paragraph number

loader, 370
physical segment, 81

loader, 369

Index

536

+ , 145
binary, 138
unary, 137
with base & index register, 134

porting tool
L_to_o86, 304
nm64, 305

position of operand, 164
pre-defined macro function, 253–266
precedence

of operators, 159
prefix in syntax, 69
preprocessor, 30–31
primary assembler controls, 195, 197
primary controls, 25
primary functions

loader, 368
PRINT assembler control, 203
PROC directive, 109–110

default, 109
processor mode

80186, 209
8086, 209
differences, 209–210
V20, 209

program linkage, 84
program linkage directive, 84
program segmentation, 81
PTR operator, 147
PUBLIC directive, 111
PUBLIC loader command, 405
public segment

loader, 373
PURGE directive, 112–113

Q quoted string
as expression operand, 132

R real constant, 66
record

differences from structure, 84
as expression operand, 132

Index

537

record (continued)
initialization, 115
name defined, 63
similarities to structure, 83

RECORD directive, 114–117
record field

as expression operand, 132
name defined, 63

record operator, 154
register

16-bit, 167
8-bit, 167
8087, 168
assumed type, 163
base, 167
floating point, 168
index, 167
segment, 81, 167–168

register indirect expression, 134
relocatable expression, 130
relocatable segment

loader, 370
RELOCATION TYPE attribute, 75
REPEAT macro function, 262
REPLACE librarian command, 450
RESADD loader command, 406
RESNUM loader command, 406
RESTORE assembler control, 207
ROM, 18

S 17-bit number, 130
SAVE assembler control, 208
SAVE librarian command, 450
saving and restoring settings, 28
SEG loader command, 407–408
SEG operator, 149
segment

addressability, 170
default, 82
logical, 82
maximum number, 121
nesting, 121

Index

538

segment (continued)
override operator, 148
register, 81

SEGMENT ADDRESSABILITY attribute, 76
SEGMENT attribute, 75
SEGMENT directive, 118–122
segment name

defined, 64
as expression operand, 133

segment number, loader, 370
segment override, 172

checked against ASSUME, 173
segment register

default value, 87
initialization, 95

SEGMENT RELOCATION attribute, 75
segmentation

directive, 81
multiple segment definition, 120
of program, 81

segments and load addresses
loader, 369

SEGSIZE loader command, 409
SET macro function, 263
severity, message, 389
sharing code between files, 30
SHL operator, 142
SHORT operator, 146
SHR operator, 142
SIZE operator, 152
/ operator, 141
specifier (codemacro specmod), 220
specmod, 219
stack segment

loader, 373
* (comment) loader command, 389
START loader command, 410
string

as expression operand, 132
with DB directive, 92
with DW, DD, DQ, DT directive, 92

Index

539

string relational macro function, 257
STRUC directive, 123–126
structure

differences from record, 84
initialization, 124
name defined, 63
similarities to record, 83

structure field
as expression operand, 134
name defined, 63

SUBSTR macro function, 245, 264
subtraction operator

binary, 138
unary, 137

suffixes, 23–24, 29, 33, 45–46
supported instruction set, 52
supported microprocessors, 52
symbol

EQU symbols, 64
group name, 64
instruction mnemonic, 62
keyword, 60
label, 62
label with colon, 62
macro preprocessor, 251
record field name, 63
record name, 63
segment name, 64
structure field name, 63
structure name, 63
variable, 62

symbol in syntax, 59
symbol information, 26
symbol table format, 213–216
symbol with loader, 384
SYMBOLS assembler control, 204
syntax

blank line, 70
comment, 69
continuation line, 70
keyword, 69

Index

540

syntax (continued)
label, 69
operand, 69
prefix, 69
symbol, 59

T THIS operator, 146
TITLE assembler control, 208
translation

acvt86 tool, 290–293
HP 64853 to HP B1449, 279–306

TYPE assembler control, 204
TYPE attribute, 73
type limit, 411
TYPE operator, 150
TYPEMERGE loader command, 411

U unary minus, 137
unary plus, 137
unreferenced externals, 28
UNREFERENCED_EXTERNALS assembler control, 204
unsetting flags, 24
upper case

See case-sensitivity
user-defined macro, 269
user-defined macros, 267–274

V V20 processor mode, 209
V20/V30 mnemonics, 27
variable, 83
variable name

defined, 62
as expression operand, 133

version number, 275–278

W WARN loader command, 389
warnings, suppressing, 28
WHILE macro function, 264
WIDTH loader command, 412
WIDTH operator, 155
word align-type

loader, 374
WORKFILES assembler control, 205

Index

541

X XOR operator, 144
XREF assembler control, 205

Index

542

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or replace products which
prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

	Features
	In This Book
	Contents
	Quick Start Guide
	Getting Started
	Command Syntax

	Assembler/Macro Preprocessor Reference
	Assembler Introduction
	Assembler Syntax
	Symbol and Expression Attributes
	Assembler Directives
	Expressions
	Instructions and Operands
	Assembler Controls
	Assembler Listing Description
	Codemacros
	Macro String Preprocessor Introduction
	Pre-Defined Macro Functions
	User-Defined Macros
	Assembler versions
	Converting HP 64853 Assembly Language Programs
	8086/186 Instructions in Hexadecimal Order
	8086/186 Instruction Set Summary

	Linker/Librarian Reference
	Linker/Loader Introduction
	Linker/Loader Operation
	Loader Commands
	Linker/Loader Listing Description
	Librarian Introduction
	Librarian Commands
	Librarian Listing Description

	Error Messages Reference
	Error Message Formats
	Assembler Error Messages
	Macro String Preprocessor Error Messages
	Loader Error Messages
	Librarian Error Messages

	Index
	Certification and Warranty

