User’s Guide

HP B1449
8086/186 Assembler, Linker,
Librarian

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damagesimection

with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1988, 1990, 1991, 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company

P.O . Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure bythe U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(¢)(1,2).

About this edition

Many product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition dates and the corresponding HP manual part numbers are as follows:

Edition 1 64871-90901, October 1988 E1088
Edition 2 64871-97004, July 1991
Edition 3 B1449-97000, April 1993

B1449-97000 ingrporates information which previously appeared in
64871-97004, 64871-97005, 64871-97006, and 64871-92003.

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

Features

The as86 assembler:

generates code for the complete Intel 8086/8088 and 80186/188
instruction set

generates code for NEC V20/V30 extensions to 8086/186uictgon set
supports InteB087 floating-point aprocessor instructions

permits repeated definition of the same or of different code, data, and
constants segments within a single source file

has high-level data structures for structured data types, bit fields, and
symbolic memory references

allows control of the assembly process (conditional assembly, structured
control, listing and output controbhtough a flexible set of assembly
control statements

produces extensive progrdistings that can include symbol table/cross
reference information

as part of the HP B1449 8086/186 Advanced Cross Assembler/Linker
package, is well-integrated with the HP B1493 8086/186 C Advanced
Cross Compiler

comes with a powerful, string-oriented macro preprocessor. The macro
preprocessor adds even more fldiipto the assembler with its features
(including support for recursive macros).

The 1d86 linking loader:

produces relocatable object modules for latelirrking (incremental

linking)

produces absolute object modules in HP-OMF 86 format absolute, Intel
Hexadecimal Object file format absolute, or HP 64000 format absolute
can include symbols in the absolute object module for symbolic debugging
allows independent specification of all relocatable segment load addresses
allows specification of relocatable segment loading order

supports segment groupings into either GROUP or CLASS

allows definition of public symbols, or changes to the memory locations of
previously-defined public, at load-time (except for incremental links)

can generate a cross reference table of public symbols and the modules in
which they are referenced, and also a memory map

» can load object modules from a user library created by the ar86 librarian
» can make a copy of initialized data values that can be placed in ROM
+ gives detailed, well-documentedrer messages

The ar86 librarian:

» produces libraries that can be loaded by the linking loader

e can add, delete or replace individual modules in a library

» can display library directories

» supports batch eomand linemput and return codes for make-type
procedures

* has an optimized structure for fast access during load-time

« can be run in interactive mode as well as batch mode

» can accept Intel library files as input

In This Book

This book is organized into three parts:

Part 1. Quick Start Guide

A short lesson to get you started anthswaries of command syntax.

Part 2. Assembler/Macro Preprocessor Reference

Detailed information about the assembler and macro preprocessor.

Part 3. Linker/Librarian Reference
Detailed information about the linker and librarian.

Part 4. Error Messages Reference

Lists of the error messages you might see during the assembly/linking process,
and what to do about them.

Vi

Contents

Part 1

Quick Start Guide

Getting Started

Objectives of the Example Program 2

Description of the Example Program 3

The "mov_mesg.s" Program Module 3
The "transfer.s" Program Module 7
The "delay.s" Program Module 8

Assembling the Program Module Source Files 9

Starting the Macro Preprocessor 9
Starting the Assembler 9
Viewing the Assembler Listing Files 9

Creating an Example Library File 15

Linking the Program Module Relocatable Object Files
Linking the Object Modules 18

17

Vii

Contents

2

Command Syntax
as86(1) 23
ap86(1) 30
Id86(1) 32
ar86(1) 45

Part 2

Assembler/Macro Preprocessor Reference

Assembler Introduction
Instruction Set 52
Target Microprocessors 52
Assembler Operation 52

File Formats 53

Input File Characteristics 53
Output File Characteristics 53

Assembler Syntax

Assembler Character Set 56
ASCIl Codes 58

Symbols 59

Symbol Formation 59
Keywords 60
Instruction Mnemonics 62
Codemacro 62

Label 62

viii

Contents

Variable 62

Structure Mime 63
Structure Field ldme 63
Record Name 63
Record Field Name 63
Segment Name 64
Group Name 64

EQU Symbols 64

Constants 64

Integer Constant 65
Real Constant 66
Character Constant 67

Delimiters 68

Assembler Statements 68

General Syntax 68
Comment 69
Continuation Lines 70

Symbol and Expression Attributes

TYPE 73

OFFSET 73

BASE 74

INDEX 74

SEGMENT 75

SEGMENT RELOCATION 75
RELOCATION TYPE 75
SEGMENT ADDRESSABILITY 76
CS ADDRESSABILITY 77

Assembler Directives

Segmentation Directives 81

Program Segmentation 81
Default Segment - ??SEG 82

Contents

Data Definition Directives 83
Data Objects 83

Linkage Directives 84

Program Linkage 84
ASSUME 86
DB,DW, DD, DQ, DT 88

END 94
EQU 96
EVEN 99

EXTRN 100
GROUP 103

LABEL 105
NAME 107
ORG 108

PROC/ENDP 109
PUBLIC 111

PURGE 112
RECORD 114
SEGMENT/ENDS 118
STRUC/ENDS 123

Expressions

Reference Syntax Conventions 128

Expression Overview 128

Absolute Expression 129
Relocatable Expression 130
External Expression 130

Expression Operands 131

Numeric Values 131
Memory and Register Expressions 133
EQU 136

Expression Operators Introduction

Arithmetic Operators 137
Unary Plus, Unary Minus 137

137

Binary Addition, Subtraction 138
[]1Square Brackets 139

. (Dot operator) 140

Multiplication, Division, Modulo 141
SHL,SHR 142

HIGH, LOW 143

Logical Operators 144

AND, OR, XOR 144
NOT 145
EQ,NE,LT,LE,GT, GE 145

Memory Operators 146

SHORT 146
THIS 146
PTR 147

Segment or Group Override 148
OFFSET 149

SEG 149

TYPE 150

LENGTH 151

SIZE 152

Record Operators 154
MASK 154
WIDTH 154

Segment and Group Operators

SEGOFFSET 156
GRPOFFSET 156
SEGSIZE 157
GRPSIZE 158

Operator Precedence 159

Instructions and Operands

Operands 162
Accepted Operands 162

156

Contents

xXi

Contents

Operand Positioning 164

Immediate Values 164

Registers 165

Memory Expressions and the MODRM Byte 169

Segment Addressability and Overrides 170

Addressability Checking 171

Default Segments 171

Segment Overrides 172

Improper Uses of Segment Overrides 172
Segment Override Byte 172

Overrides and Checking Against ASSUME 173
Segment Override Byte Generation 173

The Instruction Set 174

as86 Assembler Instruction Set 176

Assembler Controls

General Syntax for Assembler Controls 195

Primary and General Controls 195

Controls on the Command Line 195

Control Conflicts 196

Controls and File Names 196

Control Abbreviations 196

Controls and the Macro Preprocessor (ap86) 196

Primary Controls 197

[NO]JCASE 197
DATE(string) 197
[NOIDEBUG 198
[NOJERRORPRINT (filename) 198
[NOJEXTERN_CHECK 198
GEN 199

GENONLY 199
[NOJGROUP_INFO 199
[NOJHLASSYM 200
[NOJMACRO(string) 200
MODO086 200

Xii

Contents

MOD186 201

MODV20 201
[NOJOBJECT (filename) 201
[NOJOPTIMIZE 202
PAGELENGTH(n) 202
PAGEWIDTH(n) 202
[NOJPAGING 203
[NO]JPRINT(filename) 203
[NO]JSYMBOLS 204
[NO]TYPE 204
[NOJUNREFERENCED_EXTERNALS 204
[NOJWARNING 205
WORKFILES(...) 205
[NOJXREF 205

General Controls 206

EJECT 206

[NO]JGEN 206
GENONLY 206
INCLUDE(filename) 207
[NOJLIST 207
RESTORE 207

SAVE 208

TITLE(string) 208

Operational Differences in the Different Modes 209

8086 Mode 209
80186 Mode 209
V20 Mode 209

Xiii

Contents

10

11

Assembiler Listing Description
Assembly Listing 212

Cross Reference and Symbol Table Format Description

Codemacros
Referencing Codemacros 218

Codemacro Directives 219

CODEMACRO 219
ENDM 221

Codemacro Matching 221

The Specmod Field 223

Range Specification 227
Codemacro Matching Examples 229
Expressions in Codemacros 231

Directives within Codemacros 232

DB,DD,DW 233

MODRM 234

NOSEGFIX 235

ONLY186 (186 Mode Only) 236

Record Name Initialization 237

RELB, RELW 238

RFIX, RFIXM, RNFIX, RNFIXM, RWFIX 239
SEGFIX 241

213

Xiv

12

13

Macro String Preprocessor Introduction

Input Source Characteristics 244

The Metacharacter %’ And The Call Pattern
Metacharacter Syntax 246

Literal Character * 247

Input Parsing 248

Output Buffering 248

Include Files 248

Macro Expressions 250

Operators 250

Numbers 251

Symbols 251

Balanced Text String (baltex) 252

Pre-Defined Macro Functions

Pre-Defined Macro Functions 254

%’ (Comment Functn) 255

%n and %((Escape and Bracket Functions) 255
%EQS, %NES, %LTS, %LES, %GTS,%GES 256
%EVAL 257

%EXIT 258

%IF (Conditional Assembly Function) 258

%LEN 259

%MATCH 260

%METACHAR 262

%REPEAT 262

%SET 263

%SUBSTR 264

%WHILE 264

245

Contents

Contents

Example Problem 265

14 User-Defined Macros

%DEFINE 269
Macro Reference 271
Referencing Macro-time Symbols 273

15 Assembler versions

Version 3.10 276

New Product Numbers 276

New Assembler Controls 276
New Linker/Loader Controls 276
New Assembler Defaults 276
New Location for Man Pages 276

Version 3.00 276

Demo Directory Change 276
New Assembler Controls 277
New Assembler Operators 277
New Linker Commands 277
Other Linker Changes 277

16 Converting HP 64853 Assembly Language Programs

acvt86 Introduction 280

Assembler Differences 281

External Declarations 283

Porting Procedure— Main Files with INCLUDE Files 284
acvt86 Warnings, ap86 Errors86 Erors 285

Code Substitution 286
Byte ordering for BIN, DECIMAL, HEX, OCT 287

Manual Macro Translations 287
Macro Calls 288

17

18

acvt86(1) Command Syntax 290

Comparison of Keywords 294

ALIGN 294
ASSUME 294
COMN 294
DATA 295
<EOF> 295
EQU 295
EXPAND 296
EXT 296

Label Field 296
LIST 297
MASK 297
NAME 297
NOWARN 297
Operator Field 297

ORG 298

PROC 299

PROG 301

REAL 301

Reserved Words 301
SPC 301

WARN 302

* (Comment) 302

Linking to 64853 Programs 303
L_to_o86(1) 304

nmo64(1) 305

8086/186 Instructions in Hexadecimal Order

8086/186 Instruction Set Summary
Footnotes 357

Contents

Xvil

Contents

Part 3

19

20

Linker/Librarian Reference

Linker/Loader Introduction
Linking And Loading From Libraries 362

Linking to the 8087 362
M:_WST, M:_WT, M:_NST, and other Floating Point Externals

Linker/Loader Operation
Primary Functions 368
Incremental Linking 368

Segments and Load Addresses 369

Logical Segment 369

Base Address 369

Physical Segment 369

Absolute Segment 370
Relocatable Segment 370
Paragraph (Segment) Number 370
Class 370

Group 371

Group Base Address 371
Module 372

Complete Name 372

Segment Attributes 372

Combine-type Attributes 373
Align-type Attribute 374
Segment Alignment 375

363

Xviii

21

Contents

Base Address Assignment 378

Loader Commands

Loader Commands Introduction 384

Command Symbols 384
Complete Name 385
Order of Commands 385
Command Length 385

Loader Command Descriptions 386

ALIGN 387

Comment (*) 389

END 389

ERROR, WARN, NOERROR 389
EXIT 390

FORMAT 391
GROUP 392
INITDATA 394
LENGTH 395
LIST, NLIST 396
LISTABS 400
LISTMAP 400

LOAD 402

NAME 403

ORDER 403

PUBLIC 405

RESADD, RESNUM 406
SEG 407

SEGSIZE 409

START 410
TYPEMERGE 411
WIDTH 412

XiX

Contents

22

23

24

Linker/Loader Listing Description
Two-Pass Load 414

Object Module Format 414
Loader Command File 415
Starting the Loader 416
Loader Listings 416

Load Map Listing 418

First Assembler Listing 421
Second Assembler Listing 425
Third Assembler Listing 427

Librarian Introduction
Librarian Introduction 432

Starting the Librarian 432

Command Line 432
Command File 432
Interactive Operation 433

Librarian Function 433

Librarian Commands

Command Syntax 438

Use of Special Characters 438
Command File Comments 439
File Names 439

The SAVE Command 439
Return Codes 440

Contents

Commands Summary 441

Shorthand Mmes 442
ADDLIB 444
ADDMOD 444
CLEAR 445
CREATE 445
DELETE 446
DIRECTORY 446
END 447
EXTRACT 447
FULLDIR

LIST 448
HELP 449
OPEN 449
REPLACE 450
SAVE 450

25 Librarian Listing Description
Librarian Sample 1 453
Librarian Sample 2 456

Part 4 Error Messages Reference

26 Error Message Formats

Warning 462
Error 462
Fatal Error 462

Contents

Interactive and Non-Interactive Conditions

27 Assembler Error Messages

Syntax Errors 466

28 Macro String Preprocessor Error Messages
Error Codes and Messages 494

29 Loader Error Messages
Warning Messages 500
Error Messages 506

Fatal Error Messages 510

30 Librarian Error Messages

Librarian Error Messages 514

462

xxii

Part 1

Quick Start Guide

Part 1

Chapter 1: Getting Started

1 .

Getting Started

A short example of the process of assembling, creating libraries, and linking
several program modules.

Chapter 1: Getting Started

Objectives of the Example Program

This list of topics covered by the examplegram is provided here to give you

an idea of why the program is written the way it is. The example program is
designed to show some of the basic features of the B1449 8086/186 Advanced
Cross Assembler/Linker. Consequently, the example programs:

» Contain 8086 assembly languagetinstions written in a manner that
makes use of relocatable program sections.

+ Contain a few of the most used assembler directives.
» Contain an example of a simple macro definition.
» Contain an example of structured control sta¢nts.

» Show howthe relocatable program sections are used with the Linking
Loader (d86).

» Showhowto link two or more program modules.

» Showhowto link object files from a library file.

Chapter 1: Getting Started
Description of the Example Program

Note The example programs in this chapter have been included with your
Assembler/Linker/Librarian software and can be found in directory:
/usr/hp64000/demo/languages/as86

Description of the Example Program

The example program moves data from three diffenggrhory locations to a
fourthmemory location. The programilibe written in three modules to
show how several program modules are linked together.

Themov_mesg.program module is made up of a data table which contains
the messages to be transferred, the main program wilictefine a macro

and call 'transfer" and "delay" subroutines, and a RAM location where the
messages will be transferred.

Thetransfer.s program module contains the "transfer" subroutine which is
called by the main program. Thansfer.s subroutine Wi transfer a message
from the data table to the destination memory location. The address of the
message to be transferred will be passed in register Sl, and the length of the
message will be passed in register CX.

Thedelay.sprogram module contains the "delay"' subroutine which is called by
the main program. Theelay.ssubroutine W delay for the number of
seconds which are passed in register CX.

Thedelay.oand theransfer.o relocatable object files will be placed into an
example library file calle@xlib.a

The 'mov_mesg.s" Program Module

The example program of this chaptel move three messages which are
contained in a data table to another memory location. The three messages are
labeled MESSAGE_1, MESSAGE_2,and MESSAGE_3. The ends ofthe
messages are also labeled so that the progihknew how many words of

data to transfer. The destination memory location is labeled VIDEO_RAM.

The example programilv(1) move the first message to VIDEO_RAM, where
it will be displayed for about 10 seconds, (2) move the second message to

Chapter 1: Getting Started
Description of the Example Program

VIDEO_RAM, where it is displayed for about 7 seconds, and (3) move the
third message to VIDEO_RAM, where it is displayed for about 4 seconds. At
this point the programil oop back and display the second and third
messages, one after the other, repeatedly.nfdve mesg.source file is

shown in Figure 1-1.

$XREF
NAME MOV_MESG

PUBLIC START, VIDEO_RAM
EXTRN TRANSFER:FAR
EXTRN DELAY:FAR

TABLE SEGMENT

MESSAGE_1 DB 'The example program moves '

DB 'this and two additional ’

DB 'messages to a RAM location. ’

MESSAGE_1_END LABEL BYTE

MESG_1_LENGTH EQU MESSAGE_1_END - MESSAGE_1

MESSAGE_2 DB 'The first message is’

DB 'displayed for a medium’

DB ’'length of time. ’

MESSAGE_2_END LABEL BYTE

MESG_2_LENGTH EQU MESSAGE_2_END - MESSAGE_2

MESSAGE_3 DB 'The second message is’

DB 'displayed for a shorter’

DB ’'length of time. ’

MESSAGE_3_END LABEL BYTE

MESG_3_LENGTH EQU MESSAGE_3_END - MESSAGE_3

TABLE ENDS

Figure 1-1. The 'mov_mesg.s" Source File

M_CODE SEGMENT

Chapter 1: Getting Started
Description of the Example Program

ASSUME CS:M_CODE, SS:STACK, DS:TABLE, ES:DATA

START:MOV AX, STACK; initialize stack
MOV SS, AX
MOV SP, OFFSET STACK_END

MOV AX, TABLE; text source
MOV DS, AX

MOV AX, DATA,; text destination
MOV ES, AX

%*DEFINE (SET_UP(ADDRESS,LENGTH,COUNT))(

CALL CLEAR; clear ram area

MOV SI, OFFSET %ADDRESS ; make address source of text
MOV CX, %LENGTH / 2; store length of text in words

CALL TRANSFER,; transfer text to ram area
MOV CX, %COUNT; load delay count
CALL DELAY:; run delay loop

)

%SET_UP(MESSAGE_1,MESG_1_LENGTH,10)

REPEAT: %SET_UP(MESSAGE_2,MESG_2_LENGTH,7)

%SET_UP(MESSAGE_3,MESG_3 LEN GTH,4)

JMP REPEAT; display messages 2 and 3 endlessly @FIGURELISTING =

CLEAR PROC

MOV DI, OFFSET VIDEO_RAM ; point to area to be cleared

MOV CX,30; load number of words to write
AGAIN:MOV ES:[DI], 2020H; write 2 spaces
ADD DI, 2; move pointer 2 bytes

LOOP AGAIN; loop until out of words to clear
RET

CLEAR ENDP

M_CODE ENDS

DATA SEGMENT COMMON
VIDEO_RAM DW OFFH DUP (?)
DATA ENDS

STACK SEGMENT STACK
DB OFFH DUP (?)
STACK_END LABEL BYTE
STACK ENDS

END START

Figure 1-1. The 'mov_mesg.s" Source File (Cont'd)

Chapter 1: Getting Started
Description of the Example Program

PUBLIC Definitions.

The first thing thenov_mesg.program module does is define the symbols
which can be referenced by other program modules. These definitions are
made with the PUBLIC assembler directive. The label VIDEO_RAM is
defined as public because tti@nsfer.s program module W reference the
destination memory locations. The label START is defined as a public for
program debugging convenience.

External Definitions.

The EXTRN assembler directive allows you to use labels or variables which
are defined in other program modules. In i@/ _mesg.rogram module,

the CALL TRANSFER and the CALL DELAY instructions use labels which
are defined in th&ransfer.s anddelay.sprogram modules, respectively.
Therefore, TRANSFER and DELAY must be declared as external references.

The TABLE Program Segment.

The TABLE program segment contains theGibytes of the three messages
which are written to the destination memorylocation. The DB assembler
directive is used to define the ASCII data. The lengths of the three messages
are assigned to labels with the EQU assembler directive.

The M_CODE Program Segment.

The executable code of tieov_mesg.gprogram module is found in the
M_CODE segment. After the user segment registers and stack pointer are
loaded, the SET_UP macro is defined. The three parameters in the macro
definition (ADDRESS, LENGTH, and COUNT) are assigned actual values in
the macro calls. Each time the macro is called, assembly code is generated
which calls the CLEAR, TRANSFER, and DELAY swlitines. (Paameters

are moved into registers before the TRANSFER and DELAY calls.) After
the macro is defined, it is called three times. The CLEAR subroutine, which
moves ASCII spaces to the destination memory locations, appears at the end
of the M_CODE program section.

The DATA Program Segment.

Storage locations are defined in the DATA program segment with the DW
assembler directive. This storage location is the destination of the three
messages and is labeled VIDEO_RAM.

Chapter 1: Getting Started
Description of the Example Program

The STACK Program Segment.

Storage locations are defined in the STACK program segment with the D
assembler directive. This storage location is used for data stack.

The 'transfer.s" Program Module

The main program branches to the subroutine contained tnattsfer.s

program module. The "transfer" subroutiniéd move the data from the

address passed in Sl to the destination memory location VIDEO_RAM.
Notice that the executable code in this module appears in a program segment
named T_CODE. Also, notice the public definition of the label TRANSFER
(which allows the main program to branch to this label) and the external
reference of the variable VIDEO_RAM which was defined in the main
program module. Theansfer.s source file is shown in Figuike2.

$XREF
NAME TRANSFER

PUBLIC TRANSFER
EXTRN VIDEO_RAM: WORD

T_CODE SEGMENT
ASSUME CS:T_CODE

TRANSFER PROC FAR

MOV DI, OFFSET VIDEO_RAM; point to destination
REP MOVSW,; move words until CX=0

RET

TRANSFER ENDP
T_CODE ENDS
END

Figure 1-2. The 'transfe r.s"Source File

Chapter 1: Getting Started
Description of the Example Program

The 'delay.s" Program Module

The main program branches to the "delay" subroutine contained deldnes
program module. The "delay’ subroutine is used to display the various
messages for the number of seconds passed in register CX. This program
module’s executable code is placed in a program segnaem¢chD_CODE.
Notice the public definition of the DELAY label so that other program
modules can refer to this subroutine. T™eéay.ssource file is shown in

Figure 1-3.

$XREF
NAME DELAY

PUBLIC DELAY

D_CODE SEGMENT
ASSUME CS:D_CODE

DELAY PROC FAR

MOV AX, 553; load delay constant
MUL CX; multiply twice by delay count

MUL CX

DLOOP:DEC AX; decrement value until at 0

JNZ DLOOP
RET

DELAY ENDP
D_CODE ENDS
END

Figure 1-3.

The 'delay.s" Source File

Chapter 1: Getting Started
Assembling the Program Module Source Files

Assembling the Program Module Source Files

Assembling program module source fileH ereate object files. The
commands to assemble thrusce files follow.

Starting the Macro Preprocessor

The macro preprocessor must be run for mov_mesg.s before it is assembled
because it contains macro definitions. The output of the macro
processor—the filenov_mesg.ap- is then used as input to the assembler.
The command to start the macro precessor:

$ ap86 mov_mesg.s -s > mov_mesg.ap

Starting the Assembler

The output of the macro preprocessor and the other two source files are
assembled with the following commands:

$ as86 -Lh mov_mesg.ap > mov_mesg.lis
$ as86 -Lh transfer.s > transfer.lis
$ as86 -Lh delay.s > delay.lis

The-L in the assembler commands above causes an asséistbigrto be

sent to the standard output. THmeoption in the assembler commands above
specifies that the assembler create HP 64000 assembler symbol files (with .A
suffixes). The "> "in the commands above redirects the standard output to a
file.

Viewing the Assembler Listing Files

You can view the assembler listings (files with the "lis" extensions as specified
above) with thenore command. For example, to view the "mov_mlesdile,
enter the command below.

$ more mov_mesg.lis

Assembler listings for each of tipgogram modules are shown in Figures 1-4
through1-6.

Chapter 1: Getting Started
Assembling the Program Module Source Files

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Mon
Mar 29 08:36:04 1993
MOV_MESG HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -Lh mov_mesg.ap
Line Offset Object-Bytes
1 0000 ; Hewlett-Packard Macro Preprocessor
2 0000 ; HPB1449-19302 A.03.10 24Mar93 Copr. HP
1988
3 0000 ; MKT:@(#) B1449-19302 A.03.10 8086/186
ASSEMBLER/LINKER 24Mar93 Unreleased
4 0000 $XREF
5 0000 NAME MOV_MESG
6 0000
7 0000 PUBLIC START, VIDEO_RAM
8 0000 EXTRN TRANSFER:FAR
9 0000 EXTRN DELAY:FAR
10 0000
11 0000 TABLE SEGMENT
12 0000 54 68 65 2065 78 MESSAGE_1 DB 'The example program moves’
12 61 6D 70 6C 65 20
12 70 72 6F 67 72 61
12 6D 20 6D 6F 76 65
12 7320
13 001A 746869 732061 DB 'this and two additional ’
13 6E 64 20 74 77 6F
13 20 61 64 64 69 74
13 69 6F 6E 61 6C 20
14 0032 6D 6573736167 DB 'messages to a RAM location. ’
14 65 73 20 74 6F 20
14 61 2052 41 4D 20
14 6C 6F 63 61 74 69
14 6F 6E 2E 20
15 004E MESSAGE_1_END LABEL BYTE
16 004E MESG_1_LENGTH EQU MESSAGE_1_END - MESSAGE_1
17 004E
18 O004E 54 68 65 20 66 69 MESSAGE_2 DB 'The first message is’
18 72 7374 20 6D 65
18 73 7361 67 65 20
18 69 73
19 0062 6469 73706C 61 DB 'displayed for a medium’
19 79 65 64 20 66 6F
19 72 20 61 20 6D 65
19 64 69 75 6D 20
20 0079 6C 65 6E 67 74 68 DB ’'length of time.’
20 20 6F 66 20 74 69
20 6D 65 2E 20
21 0089 MESSAGE_2_END LABEL BYTE
22 0089 MESG_2_LENGTH EQU MESSAGE_2_END - MESSAGE_2
23 0089
24 0089 546865207365 MESSAGE_3 DB 'The second message is’
24 63 6F 6E 64 20 6D
24 65 73 73 61 67 65
24 2069 73 20
25 O009F 646973 706C 61 DB 'displayed for a shorter’
25 79 65 64 20 66 6F
25 72206120 73 68

Figure 1-4. The 'mov_mesg.lis" Assembly Listing

10

Chapter 1: Getting Started
Assembling the Program Module Source Files

25 6F 72 74 6572 20
26 00B7 6C 656E 67 7468 DB 'length of time.’

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Mon
Mar 29 08:36:04 1993

MOV_MESG HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988

Line Offset Object-Bytes

26 20 6F 66 20 74 69

26 6D 65 2E 20

27 00C7 MESSAGE_3_END LABEL BYTE

28 00C7 MESG_3_LENGTH EQU MESSAGE_3_END - MESSAGE_3
29 00C7

30 00C7 TABLE ENDS

31 0000

32 0000 M_CODE SEGMENT

33 0000 ASSUME CS:M_CODE, SS:STACK, DS:TABLE,
ES:DATA

34 0000

35 0000 B8 0000 R START: MOV AX, STACK ; initialize
stack

36 0003 8E DO MOV SS, AX

37 0005 BC FF 00 R MOV SP, OFFSET STACK_END

38 0008

39 0008 B8 0000 R MOV AX, TABLE ; text source

40 000B 8E D8 MOV DS, AX

41 000D

42 000D B8 00 00 R MOV AX, DATA ; text destination
43 0010 8ECO MOV ES, AX

44 0012

45 0012

46 0012

47 0012

48 0012 E84100 CALL CLEAR ; clear ram area

49 0015 BE 0000 MOV SI, OFFSET MESSAGE_1 ; make

address source of text

50 0018 B9 2700 MOV CX, MESG_1_LENGTH /2 ; store
length of text in words

51 001B 9A00000000 E CALL TRANSFER ; transfer text
to ram area

52 0020 B9 0A 00 MOV CX, 10 ; load delay count

53 0023 9A00000000 E CALL DELAY ; run delay loop

54 0028

55 0028 REPEAT:

56 0028 ES8 2B 00 CALL CLEAR ; clear ram area

Figure 1-4. The 'mov_mesg.lis" Assembly List (Cont’d)

11

Chapter 1: Getting Started
Assembling the Program Module Source Files

57 002B BE 4E 00 MOV SI, OFFSET MESSAGE_2 ; make
address source of text

58 002E B9 1D 00 MOV CX, MESG_2_LENGTH/2 ; store
length of text in words

59 0031 9A00000000 E CALL TRANSFER ; transfer text

to ram area

60 0036 B9 07 00 MOV CX, 7 ; load delay count

61 0039 9A00000000 E CALL DELAY ; run delay loop

62 003E

63 003E

64 O003E E8 1500 CALL CLEAR ; clear ram area

65 0041 BE 89 00 MOV SI, OFFSET MESSAGE_3 ; make
address source of text

66 0044 B9 1F 00 MOV CX, MESG_3_LENGTH /2 ; store
length of text in words

67 0047 9A00000000 E CALL TRANSFER ; transfer text

to ram area

68 004C B9 04 00 MOV CX, 4 ;load delay count

69 004F 9A 00000000 E CALL DELAY ; run delay loop

70 0054

71 0054 EBD2 JMP REPEAT ; display

messages 2 and 3 endlessly

72 0056

73 0056 CLEAR PROC

74 0056 BF 0000 R MOV DI, OFFSET VIDEO_RAM ; point to
area to be cleared

75 0059 B9 1E 00 MOV CX,30 ; load number of words

to write

76 005C 26 C7052020 AGAIN: MOV ES:[DI], 2020H ; write 2
spaces

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 3 Mon
Mar 29 08:36:04 1993

MOV_MESG HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes

77 0061 83 C702 ADD DI, 2 ; move pointer 2 bytes
78 0064 E2F6 LOOP AGAIN ; loop until out

of words to clear

Figure 1-4. The 'mov_mesg.lis" Assembly List (Cont’d)

12

Chapter 1: Getting Started
Assembling the Program Module Source Files

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Mon
Mar 29 08:36:08 1993
TRANSFER HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -Lh transfer.s
Line Offset Object-Bytes

1 0000 ; MKT:@(#) B1449-19302 A.03.10 8086/186
ASSEMBLER/LINKER 24Mar93

2 0000 $XREF

3 0000 NAME TRANSFER

4 0000

5 0000 PUBLIC TRANSFER

6 0000 EXTRN VIDEO_RAM: WORD

7 0000

8 0000 T_CODE SEGMENT

9 0000 ASSUME CS:T_CODE

10 0000

11 0000 TRANSFER PROC FAR

12 0000

13 0000 BF 0000 E MOV DI, OFFSET VIDEO_RAM ; point to
destination

14 0003 F3 A5 REP MOVSW ; move words
until CX=0

15 0005 CB RET

16 0006

17 0006 TRANSFER ENDP

18 0006

19 0006 T_CODE ENDS

20 0000

21 0000 END

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Mon
Mar 29 08:36:08 1993
TRANSFER HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
TRANSFER PROC T_CODE:0000 FAR -5-11-17
T_CODE SEGM SIZE=0006 PARA -89 19
VIDEO_RAM EXTERN WORD -6 13

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 1-5. The 'transfer.lis" Assembly Listing

13

Chapter 1: Getting Started
Assembling the Program Module Source Files

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Mon
Mar 29 08:36:09 1993
DELAY HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -Lh delay.s
Line Offset Object-Bytes

1 0000 ; MKT:@(#) B1449-19302 A.03.10 8086/186
ASSEMBLER/LINKER 24Mar93

2 0000 $XREF

3 0000 NAME DELAY

4 0000

5 0000 PUBLIC DELAY

6 0000

7 0000 D_CODE SEGMENT

8 0000 ASSUME CS:D_CODE

9 0000

10 0000 DELAY PROC FAR

11 0000

12 0000 B8 2902 MOV AX, 553 ; load delay constant
13 0003 F7E1l MUL CX ; multiply twice by
delay count

14 0005 F7E1 MUL CX

15 0007 48 DLOOP: DEC AX ; decrement value
until at 0

16 0008 75FD JNZ DLOOP

17 O000A CB RET

18 000B

19 000B DELAY ENDP

20 000B

21 000B D_CODE ENDS

22 0000

23 0000 END

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Mon
Mar 29 08:36:09 1993
DELAY HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
DELAY PROC D_CODE:0000 FAR -5-10-19
DLOOP LABEL D_CODE:0007 NEAR -15 16
D_CODE SEGM SIZE=000B PARA -7821

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 1-6. The 'delay.lis" Assembly Listing

14

Chapter 1: Getting Started
Creating an Example Library File

Creating an Example Library File .

One of the objectives of this chapter is to show how object modules can be
linked from libraries. Before we can link from a library file, a library file must
be created. To create an example library file consisting of the "transfer.o" and
"delay.o0" relocatable object modules, enter the following command:

$ ar86 -adelay.o,transfer.o -L exlib > exlib.lis

The -a option in the command above specifies that the files which follow are
to be added to the library. The -L option in the command above specifies that
a library listing file be sent to the standard output (which is redirected to the
"exlib.lis" file). The library listing file is shown in Figure 1-7.

Notice the warning message. Warning messages announce something that
mightbe a problem. Since you are creating a new library file, you already know
that "exlib.a" does not yet exist, so you can ignore the warning. The warning in
the first line of the listing appears on the display, not in the listing file.

15

Chapter 1: Getting Started
Creating an Example Library File

< ar86 >

WARNING: (107) file exlib.a does not exist.
Hewlett-Packard ar86
HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988

OPEN exlib.a
WARNING: (107) file exlib.a does not exist.
ADDMOD transfer.o
ADDMOD delay.o
LIST exlib.a
Hewlett-Packard ar86 Mon Mar 29 08:36:11 1993

HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Library being built exlib.a

Module Size
TRANSFER ... 290
wxxxxx PUBLIC DEFINITIONS *xxxxx

TRANSFER
weeeer EXTERNAL REFERENCES **+++*

VIDEO_RAM

Public Count=1
External Count = 1

Module Size
DELAY ... 280

wxxxxx PUBLIC DEFINITIONS *xxxxx
DELAY

wxxxxx EXTERNAL REFERENCES *****

Public Count=1
External Count =0
Module Total =2
SAVE

END

Warnings = 1
Errors =0

Figure 1-7. The "exlib.lis" Library Listing

16

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

Linking the Program Module Relocatable Object
Files

Linking is the process in which program modules are joined together to form a
single absolute file which can then be executed or debugged. Because you can
link several object modules to form an executable file, the Linking Loader is
sometimes called the "Linker". Also, because you can specify the load
addresses of various program sections, the Linking Loaiflesometimes be
referred to as the "Loader". Either namedsrect; theld86 tool does both.

There are two ways that you can specify object files to be linked:

* enter the names of the files on the command line

» specifythe names of the object files in a linker command file

The linker command file shown in Figuite8 will be used to link the three
object modules in the example program.

* Demo 8086 loader command file

NAME DEMO

ORDER M_CODE, T_CODE, D_CODE

SEG TABLE=1000H

SEG M_CODE=1400H

SEG DATA=1800H

LOAD mov_mesg.o, exlib.a

END

Figure 1-8. The 'demo.k"Linker Command File

17

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

Linking the Object Modules

The command to link the examppleogram object modules is shown below.
The -c option specifies that a linker command filk lve supplying
information to the Linking Loader.

$ 1d86 -c demo.k -Lh > demo.lis

The -L option in the command above specifies that an output loadistiag

file be sent to the standard output (which is redirected to the "demo.lis" file).
The -h option specifies that the linker create HP 64000 format output files
(demo.X is the absolute file and demo.L is the linker symbol file). The load
map listing file is shown in Figure (1-9). The resulting executable (demo.X),
along with the linker symbol file (demo.L) and assembler symbol files
(mov_mesg.A, transfer.A, and delay.A), may be loaded into an emulator or
downloaded into ROM for execution.

Hewlett-Packard 1d86 Mon Mar 29 08:36:13 1993
HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988

Command line: 1d86 -h -L -c demo.k

* Demo 8086 loader command file
NAME DEMO

ORDER M_CODE, T_CODE, D_CODE
SEG TABLE=1000H

SEG M_CODE=1400H

SEG DATA=1800H

LOAD mov_mesg.o, exlib.a

END

OUTPUT MODULE NAME: DEMO
OUTPUT MODULE FORMAT: HP64000 absolute

START ADDRESS: 00140:00000 -> 01400

Figure 1-9. The 'demo.lis" Load Map Listing

18

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

SEGMENT SUMMARY

SEGMENT/CLASS GROUP START END LENGTH ALIGN COMBINE

??SEG/ 00000 00000 00000 Para Public
STACK/ 00000 OOOFE OO0OFF Para Stack
??DATAL/??INIT OO0OFF 00101 00003 Byte Common
TABLE/ 01000 010C6 000C7 Para Private
M_CODE/ 01400 01466 00067 Para Private
T_CODE/ 01470 01475 00006 Para Private
D_CODE/ 01480 0148A 0000B Para Private
DATA/ 01800 O019FD O001FE Para Common

MODULE SUMMARY

MODULE SEGMENT/CLASS HP SECT START END LENGTH
MOV_MESG /8086/asm/listing/mov_mesg.o

M_CODE/ PROG 01400 01466 00067
TABLE/ DATA 01000 010C6 000C7
DATA/ COMMON 01800 O019FD O0O01FE
STACK/ ABS 00000 OOOFE OOOFF

DELAY /8086/asm/listing/exlib.a
D_CODE/ PROG 01480 0148A 0000B

TRANSFER /8086/asm/listing/exlib.a
T_CODE/ PROG 01470 01475 00006
Link completed

Hewlett-Packard 1d86 Mon Mar 29 08:36:13 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988

Figure 1-9. The 'demo.lis" Load Map Listing (Cont’d)

This completes the "Getting Started” example. For a complete description of
the as86, ap86, |d86, and ar8®wnands and their options, refer to the
"Assembler/Macro Preprocesor/Linker/Librarian M@moand Syntax" chapter
that follows.

19

Chapter 1: Getting Started
Linking the Program Module Relocatable Object Files

20

Chapter 2: Command Syntax

‘ _

Command Syntax

Syntax for the assembler, macro preprocessor, linker, and librarian.

21

Chapter 2: Command Syntax

Options may be entered on the command line to control generation of the
output listing and object module, and ton internal assembler flags on and
off.

The information on the following syntax pages can be accessed on your
workstation via thenan command. For example, to view tag86on-line
manual page, just type in the following command:

$ manas86

If this command doesn't work ("No manual entry"), check that the
MANPATH environment variable includes the path $4B00/man.

22

Chapter 2: Command Syntax
as86(1)

as86(1)
Name as86 - cross assembler for the Intel 8086/18Bapimcessors
Synopsis /usr/hp64000/bin/as86 [options] file
Description as86 assembles thamed file.

as86 attempts to open the filamed on the command line. If thiddeand
the file does not have a suffix (does not contain a period), as86 appends a .s to
the file name and attempts to open that file.

The output is a relocatable file containing Intel 8086/18& urtsions and
symbolic data. The format of the output file is HP’s extension of the INTEL
8086 OMF relocatable file format.

An HP 64000 format assembler symbol file is gisoduced when the -h
option is used. The asmb_sym file nanikvave a .A suffixadded to the
source file mme.

The name of the object file may be specified with the -0 option. Ifiit is omitted,
the output file name is created by stripping off the ending suffix fromniuet i

file name and appending .o in place of the suffix. Any full path prefixis also
stripped from the beginning of the input filame. The output files are placed
in the local directory, unless the file named with-@option specifies a

different path.

The -L option may be used to obtain an assembler listing on standard output.
Standard output may be redirected into a listing file. This listing contains
offsets, instruction codes, symbol table information, symbol table cross
reference, and other useful information.

Options The following command line options are recognized bg6a

-f flaglist The flags in flaglist are used to select and change the internal assembler
control switches.

23

Chapter 2: Command Syntax

as86(1)

-H asmb_sym_file

-L

-0 objfile

The flags recognized and their meanings are defined below. Each flag may be
set (or unset) either on themmand line using the -f option as described here
or by entering the option in the assembler source program.

Groups of flags following the -f option must be separated bycas or
separated by white space and quoted. Anyoption that contains white space
must be quoted. For example, the following sets the flags debug, ty, title (my
title), and xref:

-f debug,ty -f "title (my title) xref"

A flag may be unset (turned off) by preceding the flag value with no. A
negated flag may not have a parameter. The following flags may not be
negated: include, pagelength, pagewidth, title, date, workfile, and optimize.
For example, the following turns off the debug and object flags:

-f nodebug,noobject

specifies a file name to override the default file name for th&40@0 format
assembler symbol file. (See the -h option below.)

If asmb_sym_file has a suffix, then the name is used as is. Otherwise, a .A is
appended to form asmb_sym_file.A.

specifies that an HP 64000 format assembler symbohdelsl be produced.

The assembler symbol file namdllwave a .A suffixadded to thearce file

name. Theaurce file mame wil have all preceding directories and the trailing
suffix stripped off before the .A is added. Ifthe assembler symbol file is to be
used in an HP 64000 station, recall that figenes in the HB4000 are

restricted to nine characters in length and must begin with an upper case
letter. The default asmb_sym file name may be overridden with the -H option.

When writing the asmb_sym file, all identifiers in the source program are
converted to legal HP 64000 identifiers. Illegal characters within identifiers
such as ?’or ' @’ will be converted to an’ ’. Identifieames longer than 15
characters will bertincated to 15 characters. No attempt is made to search for
duplicate symbols created by the truncation.

specifies that an assembler listing file be written to standard output.

specifies the name of the output file. This overrides the default file name for
the HP-OMF 86 format relocatable file produced.

24

Flags

case
ca

debug
db

eject
ej

errorprint
['(filename’)’]
ep ['(filename’)']

extern_check
ec

Chapter 2: Command Syntax
as86(1)

The following flags may be specified using the -f flaglist option. Flags may be
specified as either upper or lower case. All flags have a two-letter
abbreviation that may be used. Flags on the command line are set from |
right, so the rightmost setting for a particular flag will be used. Some flags
may be used anywhere within a source file, wmaans the value of a flag
might be changed later in the source. These flags are also called general
controls. Other flags may only be used on either the command line or the first
lines of the source file. These flags are also called primary controls. A
primary control used on the command lini# ewverride a primary control

used in the source file. The last occurrence of a general corilidoéthe one
which takes effect. This means that anyuspcence of a general control in the
source file overrides the general control setting in thermand line

beginning at the point in the source file where the general control occurs to
either the end of the assembly source file or until another duplicate control is
found.

Causes symbols to be case sensitive. That is, upper and lower case characters
will be assumed different. The option nocasegans thatipper and lower case
characters in symbols are treated as upper case. Note that INTEL-generated
OMF is case insensitive (all upper case). This option, or its negated form, may
also be entered on the first assembly source lines. (Default: case)

Causes debug and type information to be stored in the resulting relocatable
file. This option, or its negated form, may also be entered on the first
assembly source line. (Default: debug)

Causes a page eject to occur and a new page heading to be printed. This
option is only useful if a listing is being generated and paging is in effect. This
option may be used anywhere within the assembly source.

Causes error and warning information to be displayed on standard error. Ifa
filename is used with thea®rprint control, the fileame is ighored. The
noerrorprint control suppresses error and warning messages from being
displayed on standard error. The nowarning control may be used to suppress
warning messages while allowing error messages to be displayed. (Default:
errorprint)

Causes use of external symbols to be checked such that an assume register has
been defined that can reference the external symbol. An error is generated if
this condition cannot be met. The noextern_check control causes the
assembler to allow any use of an external symbol without verifying that the
symbol is accessibléitough an assume register. (Default: extern_check)

25

Chapter 2: Command Syntax

as86(1)

gen
ge

genonly
go

group_info
gi

hlassym
ha

include’(’filename’y’
ic ['(filename')']

list
li ['(filename’)’]
mod086

mO

mod186
ml

modv20
mv

Supplied for Intel compatibility. The assembler does no mppoeessing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

Supplied for Intel compatibility. The assembler does no mpooeessing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

Causes the debug information emitted from the assembler to associate group
information to all symbols that belong to segments belonging to a group. Only
one group W be assigned, regardless of how mamggps a given segment
belongs to. The nogroup_info contrdllwnly associate gup information to
labels and procedures; variable NOT have goup information associated

with them. (Default: group_info)

Causes as86 to generate low-level symbol information for gteditedures,

static data, and embedded code. This option is useful when
compiler-generated output is to be debugged in an emulator. Ifthe output is
to be debugged in AXDB or AXDE, then the negated form of this option is
recommended. (Defaulhohlassym)

Causes the indicated file to be included into the assembly code before any
other source is assembled. This option may be used anywhere within the
assembly source.

Causes assembly source to be displayed ifigtieg while it is being
assembled. The nolist optioarhs off thelisting function until the next list
option. This option is only useful if a listingpsoduced. This option, or its
negated form, may be used anywhere in an assembly source file. (Diefgult:

Causes iAPX86 instruction set to be recognized. Errors or warnithgse w
issued when irtsuctions from conflicting instruction sets are encountered.
(Default: mod086)

Causes iAPX186 irisuction set to be recognized. Therefore, BOUND,
ENTER, INS, INSB, LEAVE, OUTS, OUTSB, OUTSW, POPA and PUSHA
are predefined symbols. The iIAPX86 instructioiitstill be recognized.

Causes v20/v30 support.

26

Chapter 2: Command Syntax
as86(1)

Note Except for the specific instructions that are V20/V30 extensi®8$ ases
Intel mnemonics. as86 uses Intel syntax for atringions.

object Causes an object (or relocatable) file to be created. The createdill fileve
['(filename’)’] the same name as theput file, only with a .0 extension, unless the -o flag w:
0j used. In that case, the object file will have the filere specified with that flag.

If a filename is specified with the object control, that filenamerisiigd. The
noobject option causes no relocatable file to be created. This option, or its
negated form, may also be entered on the first assembly source lines.
(Default: object)

optimize Causes extra prossing of thenput file to remove extraneous NOPs. These

op NOPs are generated when the assembler encounters certain forward
references in instructions. In those cases, the assembler does not know how
many bytes the instructioniwrequire, so it allocates the maximum number of
bytes needed. Ifthe instruction requires fewer bytes, then the assembler must
pad the object code with NOPSs, so the addresses of following symbols remains
consistent. Theptimize option causes the assembler to process the input file
to remove these extra NOP bytes, so as to generate the smallest amount of
object code possible.

pagelength Sets the maximum number of lines per listing page. This option is only useful
''NUMBER’Y’ if a listing isproduced and paging is enabled. This option may be entered on
pl'(NUMBER')’ the first assembly source lines.

(Default: pagelength(55))
pagewidth Sets the maximum width of each line in the listing. This option is only useful
''NUMBER’Y’ if a listing isproduced. This option may be entered on the first assembly
pw '(NUMBER’)’ source lines. (Default: pagewidtt®0))
paging Causes page ejects to occur whenever the maximum number of lines per listing
pi page is generated. The nopaging option causes no page ejects to occur

throughout thdisting, due to page lengths. This option is only useful if a
listing isproduced. This option, or its negated form, may be entered on the
first assembly source lines. (Default: paging)

print ['(filename’)’] Prints the assembly listing. The®print control suppresses the generation

pr['(filename')'] of the listing file including ror messages and symbol tali$¢ings. You
cannot override noprint withlest control ocarring later in the program;
however, a list control with no preceding printraprint implies print. The
file name parameter is accepted for Intel compldsipbut it is ignored by

27

Chapter 2: Command Syntax

as86(1)

restore
rs

save
sa

symbols
sb

title(TEXT)
tt(TEXT)

unreferenced _
externals
ue

warning
wa

xref
Xr

Files

the assembler. Anylines that precede the print control will not be output
to the listing. (Defaultnoprint)

Restores a previously saved state forlisténolist flag. This option is only
useful if a listing is being generated. It may appear anywhere witloiaraes
file.

Saves the current status of tist/nolist flag. These settings may then be
restored later by using the restore flag. Up to 64 saves may be made. This
option is only useful if a listing is being generated. It may also appear
anywhere within a source file.

Causes an alphabetically-sorted list of symbols to be appended to the listing.
This option differs from the xref option in that no cross-reference information
is placed in this list. Using the xref option overrides either symbols or
nosymbols. This option is only useful if a listingi®duced. This option, or

its negated form, may also be entered on the first assembly source line.
(Default: symbols)

Causes the TEXT to become the newtitle, which is printed at the top of each
listing page. This option is only useful if a listingiduced. This option

may be used anywhere in an assembly source file. (Default: title (MODULE
NAME))

Causes all external symbols, whether they are referenced or not, to appear in
the resulting object file. If this option is not used, only those external symbols
that have been actually used will be emitted. uklteferenced external

symbols would not be generated, since that can cause unnecessary modules to
be loaded from library files. (Default: nounreferenced_externals)

Causes warning messages to be displayed on standard error. The negated form
suppresses warning messages from being sent to standard error. The
errorprint control overrides either use of this control. (Default: warning)

Produces a symbol table in the listing wittusce line definition and usage

cross referencing. This option is only useful if a listingrisduced. This

option, or its negated form, may be entered on the first assembly source lines.
(Default: noxref)

file.s: Assembly language source file.

file.o: HP-OMF 86 format relocatable object file.

28

Chapter 2: Command Syntax

as86(1)
file.A: HP 64000 format assembler symbol file.
See Also HP B1449 8086/186 Assembler/Linker/Librarian User’s Guide, 1d86(1),
ar86(1), ap86(1).
Diagnostics as86 retirns zero if no errors are detected in the assembly source. Otherwise,

it returns non-zero.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

29

Chapter 2: Command Syntax

ap86(1)

Name

Synopsis

Description

Options

-i includepath

ap86(1)
ap86 - macro preprocessor for the 1r&8@86/186 micoprocessors

/usr/hp64000/bin/ap86 file [-i includepath] [-s][-e][-c]

ap86 reads the named file and performs macrpnoissor replaments or
operations upon this file. The resulting text may be sent to standard output,
for redirection to another file for storage. Error messages for macro
operations may also be sent to standard error.

ap86 accepts the macro preprocessor language that is described in the Intel
8086 Assembler Reference Manual. This macro language allows the definition
and use of macros, evaluation and replacement of &sipres, loop control,

and including of other text files. Correct use of a macro preprocessor can
simplify the task of writing assembly language source when redundant
operations are performed or code is shared between files.

The following command line options are recognized by ap86:

This option causes the macro preprocessor to search that directory for any
include files that are referenced in the source file. If this option is not used,
the current directory is searched. The search only occurs foafilesthat

use relative paths for the include file. If the path names start with a 7, then no
search is required.

This option causes the macro preprocessor to send the processed file to
standard output. If this option is not used, the input file is processed, but no
text output is generated. If this option is used, the output should usually be
redirected to a file for use as input to tls8@Gassembler.

This option causes the macro preprocessor to display lines that contain errors
and the error message that was generated byggiogethat line. This text is

sent to standard error, so as not to interfere with the -s option. This option is
useful since the text generated on standard output does not always display
erroneous text in the most identifiable manner.

This option causes the macro preprocessor to be case insensitive. The default
is case sensitive. For example, if ap86 is started in default mode, then

30

Files

See Also

Diagnostics

Chapter 2: Command Syntax
ap86(1)

%SET(varl,-1) and % SET(VAR1,-2) cause substitutions for varl of -1 and for
VAR1 of -2. But if ap86 is started with the -c (case insensitive) option, then
the last % SET will cause substitutions for both varl and VAR1. Note that
predefined macro functions written in lower case letters, such as %set an
%define, are currently only recognized when the -c option is used. Howe
predefined macro functions written in upper case letters are always
recognized.

file.s Assembly language source file.

HP B1449 8086/186 Assembler/Linker/Librarian User’s Guide, 1d86(1),
ar86(1), as86(1).

ap86 returns zero if no errors are detected in the macro source. Otherwise, it

returns non-zero.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

31

Chapter 2: Command Syntax

1d86(1)
1d86(1)
Name Id86 - cross linker/loader for Intel 8086/186 noiprocessors
Synopsis /usr/hp64000/bin/Id86 [options] [files]
Description Id86 takes one or more relocatable object files as input and combines them to

produce a single output file. In doing so, it resolves references to external
symbols, assigns final addresseptocedures and variables, revises code and
data to reflect new addresses, and updates symbolic debug information (when
it is present in a file). 1d86 accepts relocatables in Intel 8086 OMF format and
HP-OMF 86 format, as well as archive input files in ar86 format. These files
may be produced by a cross assembls8gp or the archive file librarian

(ar86). While ar86 libraries are not in strict OMF format, ar86 can read in
existing Intel OMF format library files.

By default, the output is HP-OMF 86 absolute. HP-OMF 86 format is HP’s
implementation of 8086 binary OMF. This file contains Intel 8086/186
instructions and symbolic data. Optionsto |[d86 may be used to create output
files in HP 64000 format absolute or the Intel Hexadecimal Object file format
absolute.

Typically, the output file contains instructions and data in absolute form. That
is, address information has been supplied to locate the program in target
memory.

The -i option may be used to specify a relocatable output file in a process
called incremental linking. In an incremental link, thput relocatable files
are simply combined into an output relocatable file. Incremental linking is
only supported for HP-OMF 86 format relocatable. Therefore, the -i option
cannot be used with either the -h option or the -H link_symb_file option.
relocatable output file

The operation of 1d86 is controlled by LINKER COMMANDS (described
below). Linker commands specify thepiut relocatable and archive files, the
location and order of relocatable sections, and the content and format of the
output files.

32

Options

-c command _file

Chapter 2: Command Syntax
1d86(1)

Id86 reads commands from a command_file or from standgnd if no input
filenames were specified on the command line. A command._file is specified
using either the -c user_cmd or -d (default cmd_file) options. Ifa
command_file is not specified (using either the -c or -d options), then 1d86

reads standard input. If standard input is a tty, Id86 enters interactive mo

and prompts for ammands.

Input files may be specified in "LOAD" comands or on the command line.
The order of specification of the input files is significant to the operation of
the linker. If input files are specified on thenomand line, these files are
loaded before files specified in "LOAD" commands in the command_file.

If the input file mmes have a suffix, then the name is used as is. Otherwise,
Id86 appends .o to the name on the command line to formpan file rame.

The basic name of the output file is determined in the following way. The
default basic file name is the command_file stripped of any preceding
pathnaméup to and including the last /) and stripped of any suffix (including
). The default file name may be overridden by specifying the output file
name with the -o option. If no command_file is used, it israorenot to

specify the output file name with the -o option.

Depending on the format and type of output file, a suffix is appended to the
basic file name to form the output file name.

If the output is HP-OMF 86 format absolute, then the suffixis .x.

If the output is HP 64000 format absolute, then the suffixes are .X for the
absolute file and .L for the linker symbol file.

If performing an incremental link, then the output is in HP-OMF 86 format
relocatable and the suffix is .0.

The following command line options are recognized by |d86:

The option specifies the name of the command_file to be usexb pdys
information to 1d86. The file name part of the command file path, with suffix
stripped, is used to form the default names of output files unless the name is
specified with the -0 option.

Use the default linker command file. |d86 examines therenment variable
LD86CMD to find the name of the linker command file. If LD86CMD

33

Chapter 2: Command Syntax

1d86(1)

. -f flaglist

-H link_sym_file

-h

doesn' exist or is all blank, then the loader attempts to open
/usr/hp64000/etc/ld86cmd as the loademaomand file.

The flags in flaglist are used to select and change the internal linker control
switches.

The flags recognized and their meanings are defined below. A more complete
explanation may be found in the HBR449 8086/186

Assembler/Linker/Librarian User’s Guide. Each flag may be set (or reset) in
either of two ways. A flag may be set on the command line using the -f option
described here. A flag may also be set using the LIST linker command and
reset using the NLIST linker command.

Groups of flags following the -f option must either be separatedrynas or
separated by white space and quoted. For example, the following option sets
the flags c, d, s, and x:

-fc,d-f"s x"

A flag may be reset (turned off) by preceding the flag with no. For example,
the following option turns off the o and p flags:

-f noo -f nop

This option overrides the default file name for the &#®00 format linker
symbol file (.L file) and absolute file (.X file). (See the -h option below.)

The option indicates that the linker should produceG4®00 format output
files. There are two output files, the absolute file and the linker symbol file.
The default name for the absolute file is command_file.X and the default
name for the linker symbol file is command_file.L. The -fd flag is implied
through the use of the -H or -h flags.

It is the user’s responsibility to assure that all identifiers (i.e. global symbol
definitions and external symbol references) are converted to legal HP 64000
identifiers before being used. For example, Intel assembly language identifiers
may contain the characters _ (underscore), ? (question mark), and @ (at
sign) and have a maximum of 31 significant characters. To produce legal HP
64000 identifiers, all question marks, and at signs could be converted to _
(underbar). Identifiers Walso need to bertincated to 15 characters

maximum.

34

Note

-L

-0 obijfile

Linker Commands

* comment text...

SEG

Chapter 2: Command Syntax
1d86(1)

Conversion to HP 64000 symbols may have unexpected side effects. Duplicate
symbol errors may occur. 1d86 DOES perforante translations, but will

NOT warn if duplicate symbols have been created. File names must also
exceed 9 characters for the HP 64000 and must begin witpber case letter.

specifies that an incremental link is to be performed. The relocatghi¢ i

files are combined to produce a relocatable output file. Any linkentands
which specify location (e.g. ORDER, GROUP) cause a linker error. The
name of the relocatable output file defaults to command_file.o. Incremental
linking is only supported for the HP-OMF 86 format. An errdtbe issued

if the -i option is used with either the -h option or the -H option.

specifies that an output load map listing be written to standard output.

specifies the name of the output file. This overrides the default file name for
the HP-OMF 86 format absolute file, the HP-OMF 86 format relocatable file,
and the HP 64000 format absolute file.

The linker/loader recognizes the following commands in command files or in
interative mode. Square brackets, [], enclose optional parametbpsisE
or ..."indicate the preceding item may be repeated.

designates a comment.

SEG segment= address

SEG segment= paragraph,offset
SEG /class= address

SEG /class= paragraph,offset

The SEG command specifies the base address of a user’s logical segment
(LSEG.). The user may also wish to use the ORDER command to control the
placement of segments which were not specified in the SEG command.

The 'segment’ portion is theame of a relocatable segment which may have a
classname attached with a slash, such as ' SEGNAME/CLASSNAME". Ifa
segment has an associated classname, this classname must be specified or 1d86
will not find the ©rrect segment.

35

Chapter 2: Command Syntax
1d86(1)

The ‘class’is the name of a class. A classname preceded by a slash may appear
in place of the segment name, whegpen the first segment whose class

attribute is ‘classname’ilvbe assigned the base address.

. The 'address’is the 20 bit address specifying where the segment will begin.
The range for 'address’is 0 throughFFFFH. A segment register pointing to
the segment should have the value of 'address/16..

The 'paragraph,offset’ base address will bg¢paragraph+ offset’ where
paragraph or offset may be 0 through=GFH.

Note Addresses are not rounded to conform with an alignment attribute from an
ALIGN command.

SEGSIZE SEGSIZE segment=length
SEGSIZE /class= length

The SEGSIZE command specifies the length of a segment in bytdsugh
SEGSIZE can be used to set the length of any segment, SEGSIZE is typically
used to set the size of a stack segment. A warning message is issued if the
segment does not have a combine type of STACK or COMMON.

GROUP GROUP group=address
GROUP group= paragraph,offset

GROUP specifies the absolute base address of a group, which must be a
multiple of 16 because it always lies on a paragraph boundary. The GROUP
command does not specify the base address of any segments withiautpe g
All such segments should lie within ‘group address’ through ‘group address’
plus OFFFFH.

The 'group’is the ame of the ppup.

The 'address’is the 20 bit address specifying where the grolugegin. The
range for ‘address’is 0 through BFFFH. A segment register pointing to the
group should have the value of 'address/16'".

The 'paragraph,offset’ base address will b@paragraph+ offset’ where
paragraph or offset may be 0 through=GFH.

ALIGN ALIGN segment= [blank,B,P,|,G,W]

36

Note

FORMAT

Chapter 2: Command Syntax
1d86(1)

The ‘align’command may be used to override the alignment type ofar i

module without reassembling. Aaamed segment can be specified as Byte,
Page, Inpage, Paragraph, or Word relocatable regardless of the type speGd
by the assembler. This could be used to place all segments on page boun
while debugging and then to create the final program as byte relocatable

without reassembling.

The 'segment’is the name of a relocatable segment. The segment name may
have a classname following it, separated by a slash. If a segment has an
associated classname, this classname must be specified oiilldg&8 find the
correct segment.

The blank’ specifies that the alignment type is to be what the assembler
specified.

The B’ specifies byte alignment.

The P’ specifies page alignment.

The I’ specifies inpage alignment.

The 'G’ specifies paragraph alignment.

The W’ specifies word alignment.

Do not put blanks between the ="and the alignment designator because a
blank is a legal alignment designator.

FORMAT [ASCII,HP,OMF86,NOABS]
[INCREMENTAL,LIMITED,LTL]

This command insucts the linker as to what format should be used in the
created output file. If the NOABS option is specified, then no object file is
generated. If ASCII is specified, then the output filebe in Intel
Hexadecimal format. IfHP is specified, then the output will be in
HP64000 file format. If OMF86 is specified, then the output will be in HP’s
implementation of Intel OMF file format.

Different forms of OMF can be generated through three modifiers. If
no modifier is used, then the output is an absolute file. If the
INCREMENTAL modifier is used, then the output is a relocatable object
file. If LIMITED is specified, then the output will be an absolute file, but
all non- caonmented recordsilvconform strictly to the Intel absolute file

37

Chapter 2: Command Syntax

1d86(1)

INITDATA

ORDER

format document. Finally, the LTL modifietilicause a load-time loadable
file to be generated. These options can also be specified through the use of
command line options ohtough the use of the LIST gonand.

The LIMITED and LTL modifiers are only usable with an output file format
type of OMF86.

INITDATA segment [,segment [, ...]] [,address]

Segment is the name of a relocatable segment expressed as either
'segmentname’, or

'segmentname/classname’, or

Iclassname’.

Address indicates the beginning address of the ??DATAN/??INIT segment and
may be an absolute address from 0 throughFFF+H or the address may be in
paragraph, offset from where paragraph and offset are from 0 through
OFFFFH. Leading zeros are required on hexadecimal addresses in the initdata
command when the hexvalue begins with A-F.

The INITDATA command is used to specify that the indicated segments and
classes will be initialized imemory at run time.

ORDER element], ...]

The first segment specified in the ORDER commailidoegin at address 0

and subsequent ones immediately after the preceding one. Addresses will not
be assigned which conflict with absolute segments, areas specified in
RESNUM or RESADD commands, or segments specified in a SEG

command. The ORDER commandlwot override the base address of an
absolute segment or one assigned with SEG. However, segments which
appear in the ORDER command following one of these segmdhlhe w

assigned space memory above it.

The 'element’ may be any of the following: a segment name; a classname
preceded by a slash; a segment name followed by a slash and a classname; a
classname followed by one or more segment names separated by hyphens (as
in CLASSNAME-SEG1-SEG2-...-SEGn). A classne preceded by a slash
specifies all segment names with that class attribute in the order that the
loader finds them. The classname-segmentname-segmentname... element
would cause the loader to move the specified segments to the beginning of the
class. Anyremaining unspecified segments would then immediately follow.

38

START

LOAD

Chapter 2: Command Syntax
1d86(1)

If the first segment in a class has been assigned a base address with the SEG
command and an ORDER command has also been used, then the classname
should also be placed in the ORDERMnand so that segments in the clas
will be assigned adjacemhemory.

A segment name may not appear more than once in an ORDER comma
This includes both the explicit case of SEGMENT/CLASSNAME and the
implicit case of CLASSNAME. The same classname may not appear more
than once following a comma, but it may appear in a
SEGMENTNAME/CLASSNAME combination as often as needed.

If an ampersand is encountered while the loader is expecting either a comma
or a hyphen, then the next line will be considered a continuation line. Only
the last ORDER command is effective. A warning noting that only the last
ORDER command is effectiveithbe issued if more than one ORDER
command is used.

START CS-value,IP-value
START address

START specifies the starting values for CS and IP, otherwise they will be
taken from the END record of the first main program. If no main program is
present, they would be zero.

CS-value and IP-value must be between 0 and OFFFFH. The address value
must be between 0 and OFFFFFH.

LOAD (-)modulel[,(-)module2,...,(-)moduleN]

LOAD specifies input object modules to be loaded. Multiple LOAD
commands are allowed.

The 'module’is a relocatable object file name or a library file name. Any
library file’ preceded by a minus sign will cause all object modules within the
library to be read until an EOF is encountered.

Libraries not preceded by a minus sign will load only those modules needed to
resolve undefined EXTRNS.

A library should be loaded after all other nliiraries or else EXTRNs to a
library from a subsequently loaded file may not be resolved correctly.
Backward EXTRNs within a library are resolved correctly.

39

Chapter 2: Command Syntax
1d86(1)

END The END command causes the load to be finished and an output module
produced. This anmand kould be included as the lastnemand in a
command stream.

[NOJERROR [NOJERROR [UNREF,UNRES,0VERLAP,number][, ..]

The ERROR and NOERROR commands specify that the message or message
number indicated is to be treated as an error or a non-error. The undefined
external reference message is denoted by the UNREF argument. The
unreferenced external message is denoted by the UNRES argument. The
memory overlap message is denoted by the OVERLAP argument. If a number
is given as an argument then it must corresponds to a particular error or
warning number of the linker. These commands have a global effect from the
point at which the linker processes the information contained in the

command. A subsequent ERROR or NOERROR command overrides any
values set by a previous one.

EXIT The EXIT command causes the linker to exithwiut finishing the load and
without producing an output module. An error messagsiged to remind
the user that 1d86 was terminated early.

PUBLIC PUBLIC sym1=valuel[,sym2=value2]...

The PUBLIC command may be used to define and/or change the value of a
public definition.

The 'symN’ specifies a user defined public symbol definition which is
considered absolute instead of relative to a segment or a group.

The value’is the 20 bit value to be assigned to the symbol.
LIST LIST/NLIST {flag [flag] ...}

LIST sets linker flags. NLIST is the opposite of LIST and suppresses the
listing of the elements specified. The flags may also be set on ittraaod
line and are defined below.

"a" creates an Intel Hexadecimal Object format absolute output file.
"b" creates an HP-OMF 86 format absolute output file.
"c" prints the identifier cross reference table in the load map. (Default: noc)

"d" causes public symbols to be put into the output object module. (Default:
d)

40

Chapter 2: Command Syntax
1d86(1)

"e" causes warning messages to be generated for any remaining undefined
external symbols during an incremental link. (Default: noe)

"I" causes incremental linking to occur resulting in a relocatable object file.
(Default: noi)

"I" causes warning messages to be printed for any unreferenced, unresolve
external references. (Default: nol)

"0" specifies that an object module is produced. (Default: o)

"p" specifies that any symbols present in the input modules (local) be placed in
the loader symbol table. Its purpose is to exclude symbols from certain input
modules from the output module. One does this by surrounding LOAD
commands with NLIST P and LIST P commands. (Default: p)

"g" causes |d86 to produce a limited’ form of Intel binary OMF which is
strictly compatible with Intel’s binary OMF document. (Default: noq)

"s" specifies that the local symbols be written into the object module and may
be used for debugging. (Default: s)

"t" specifies that the local symbol table be listed in the load map. (Default: not)

"u" disables case sensitivity for matching public symbols, external symbols,
segment namesr@up rames, and class names. This also causes all symbols
(except module names) to be convertedpper case. (Default: nou)

V' causes an expanded segment summaryigtathe modules where the
segment parts came from. (Default: nov)

‘W' causes |d86 to display all warning messages. (Default: w)

"X' causes symbols defined in PUBLIC commands to appear in the load map.
(Default: nox)

LISTABS LISTABS [[NO]JINTERNALS,[NOJPUBLICS]], ..]

The LISTABS command controls the output of certain items to the output
object module. Multiple LISTABS commands can be specified and have an
accumulative effect.

"INTERNALS" causes local symbols to be written to the output file. This is
equivalent to the LIST S command. (default: INTERNALS)

41

Chapter 2: Command Syntax

1d86(1)

LISTMAP

"PUBLICS" causes globally defined symbols to be written to the output file.
This is equivalent to the LIST D command. (default: PUBLICS)

The LISTABS command M eventually replace the LIST/NLIST D and
LIST/NLIST S commands.

LISTMAP option [, option] ...

The LISTMAP command controls the output of certain items to the linker’s
map or listing file. The LISTMAP aomand options have a global effect.
Multiple LISTMAP commands that do not have any ingistencies with
previous LISTMAP commands can be specified and have an accumulative
effect.

The valid values for option are as follows:

"INO]JCROSSFEF" controls whether or not a cross-refereritappear in
the linker listing file. (default: NOCROSSREF)

"INO]JINTERNALS [/BY _NAME,/NAME]" controls thelisting of the
non-public symbol table to tHisting file. If /BY_NAME or NAME is
specified, the symbol table will be sorted by symbarhe. (default:
NOINTERNALS)

"LENGTH number" controls the page length of the linker listing file. The
argument, number, must be between 5 and 255. (default: LENGTH 55)

"INOJIMODULE" controls the output of the module summaryto the linker
listing file. (default: MODULE)

"INOJPUBLICS [/BY_ADDR,/ADDR,/BY_NAME,/NAME]" controls the

listing of the public symbol table to the listing file. If/BY _NAMBAME, or
nothing is specified, the symbol table will be sorted by synbaie If

/BY _ADDR, or /ADDR is specified, the symbol table will be sorted by address
values. (default: NOPUBLICS)

"INOJSEGMENT" controls the output of the segment summary to the linker
listing file. (default: SEGMENT)

"INOJVERBOSE" indicates whether or not additional information is to be
included in the segment summaugrtion of the linketisting file. If the
LISTMAP NOSEGEMENT option has been selected then the setting for
VERBOSE is irrelevant. (default: NOVERBOSE)

42

NAME name

RESADD

TYPEMERGE

WARN

Chapter 2: Command Syntax
1d86(1)

"INOJWARNINGS" controls the output of warning messages to the linker
listing file. (default: WARNINGS)

"WIDTH number" controls the page width of the linker listing file. The
argument, number, must be between 20 and 255. (default: WIDTH 80)

The LISTMAP command iV eventually replace some of the functionality of
the LIST command.

NAME allows the user to specify the module name in the module header
record of the output file.

RESADD lowaddress,highaddress
RESNUM lowaddress,number

RESADD and RESNUM allow the user to declare certain areas of memory
off limits to the loader.

The lowaddress’is a 20 bit address which is the lowest address of the memory
that may not be used.

The ‘highaddress’is a 20 bit address which is the highest address of the
memory that may not be used.

The 'number’is a 20 bit value indicating the number of bytes (including
lowaddress) that may not be used.

TYPEMERGE [ALL | SIMPLE]
NOTYPEMERGE

The TYPEMERGE command removes redundant type information from the
resulting executable. Normally, no type information is removed by the linker.
However, since the HP-OMF 86 file format can only store up to 32k type
definitions, it may be necessary to remove some redundant types for larger
executables.

The ALL option causes all redundant types to be removed, while the SIMPLE
option causes only redundant simple types to be removed.

The NOTYPEMERGE command prevents the linker from removing any
redundant types. NOTYPEMERGE is the default operating mode for the
linker.

WARN [UNREF,UNRES,OVERLAP,number [, ..]

43

Chapter 2: Command Syntax

1d86(1)

Files

See Also

Diagnostics

Bugs

The WARN command specifies that the message or message number
indicated is to be treated as a warning. The undefined external reference
message is denoted by the UNREF argument. The unreferenced external
message is denoted by the UNRES argument. The memory overlap message is
denoted by the OVERLAP argument. If a number is given as an argument

then it corresponds to a particular error or warning number of the linker.

These commands have a global effect from the point at which the linker
processes the information contained in theagmnd. A subsequent WARN
command overrides any values set by a previous one.

/usr/hp64000/etc/ld86cmd: Default 8086/80186 linkemowand file
file.x: HP-OMF 86 format absolute object file

file.X: HP 64000 format absolute file

file.L: HP 64000 format linker symbol file

file.o: HP-OMF 86 format relocatable object file from incremental link

HP B1449 8086/186 Assembler/Linker/Librarian User’s Guide , ar86(1),
as86(1), ap86(1).

Id86 returns zero if no errors are detected while linking, otherwise it returns
non-zero. Diagnostic messages are displayed on standard error.

Using the -h or -H options will cause global and external identifiers to be
converted to legal HP 64000 identifiers. Conversion can cause duplicate
symbols to be created.

44

Chapter 2: Command Syntax

arg86(1)
ar86(1)
Name ar86 - archive/library maintainer for Intel 8086/186 rojgrocessors
Synopsis /usr/hp64000/bin/ar86
/usr/hp64000/bin/ar86 [options][action] archivefile
Description ar86 maintains groups of relocatable files combined into a single archive file.

The archive files may then be used by [d86, the 8086/186 linker/loader, to form
executable programs for the In88186/186processors.

Individual relocatable files are inserted without change into the archive file.
In addition, there is a library symbol table which is used by the linker/loader,
1d86, to effect multiple passes over the library in an efficient manner.

Individual relocatable files define modules which have modulenames. The
modulename is usually the same as the name of the assemidg sfile (with
preceding pathname and suffix stripped). However, the assemdéBér cauld
change the modulename if a NAME directive is used. The modulename is
used to identify the various modules that may exist within an archive file.

ar86 operates in either of two modes. The mode is determined by the presence
(or absence) of the archivefilame.

In the first mode,
ar86
an archivefile is not specified. ar86 reads librarian commands from standard

input. Ifthe standard input is a terminal device, then ar86 operates in
interactive mode, prompting the user for librariamoeands.

The librarian commands are defined below. The commands completely
control the operation of ar86. The commands specify the name of the archive
file and the actionsto be performed on the modules which constitute the
library.

In the second mode,

45

Chapter 2: Command Syntax

ar86(1)

-a filelist

-d modulelist

-1 filelist

-e modulelist

ar86 [options] [action] ... archivefile

all the control information is contained on the command line.

Archivefile names the archive file to be operated on. If the archivefile does
not exist, then an empty archive file is created before the actions are
performed.

If the archive file name contains a suffix (i.e. contains a period), then the name
is used as is to access the archive file. If the archive file name has no suffix,
then .a is appended to the name beforessatg the archive file.

[action] is one of the following:

The modules contained in the relocatable files in filelist are added to the
library contained in the archive file. If a module which already exists in the
libraryis added, it is an error (see -rto replace modules).

The modules in the modulelist are deleted from the library.

The modules contained in the relocatable files in filelist replace modules of
the same name in the library.

The modules in the modulelist are extracted (i.e. copied) and put into
relocatable files. The name of the file is the same as the name of the module
but with the suffix .o appended.

These actions are applied in the following order, regardless of their order on
the command line: -a, -d, -r, -e.

In filelist (or moduldist), individual file namegor module rames) may be
separated by commas or separated by white space with thelishqleoted.

If the file names in filst have a suffix (i.e. contain a period), then tlaene is
used as is to access the relocatable input file. If tmerhas no suffix, then
.0 is appended to the name to obtain the name ohfhd file.

The following option is recognized by ar86:

specifies that a library listing file be written to standard output. This output is
in the same format as that produced from the LIShroand documented
below and is for the result of the archive session.

46

Chapter 2: Command Syntax
arg86(1)

Commands In the interactive mode, ar86 recognizes the following commands. In the
syntax descriptions below, square brackets [] enclose optional items. Ellipsis
".."indicate that the preceding item may be repeated.

ADDLIB archivefile [(module [, ...])]

Add one or more modules from the named library to the present library. 1Tho
modules are specified, the entire library is included.

ADDMOD filename [,...]

Add the module(s) contained in one or more relocatable files to the present
library.

CLEAR Resets the librarian to await the creation or opening of a library. All
information about the previous state of the librarian is lost.

CREATE archivefile

Specify the name of a new archive file to be created.
DELETE module [, ...]

Delete one or more modules from the current library.
DIRECTORY archivefile [(module [, ...] Jistfile]

Obtain a brief listing of the modules in a library. If no modules are specified,
the entire library s listed. If listfile is not specified, the listing goes to standard

output.
END Exit the librarian without saving the current library. Use SAVE to save the
QUIT results of the current ssion.

EXTRACT module [, ...]

Copyone or more modules to individual relocatable object files. The name of
the object file is the module name with .0 appended.

FULLDIR archivefile [(module [, ...Jlistfile]
LIST archivefile [(module [, ...])]listfile]

Obtain a detailed listing of the modules in a library. If no modules are
specified, the entire library s listed. If listfile is not specified, the listing goes
to standard output.

47

Chapter 2: Command Syntax

ar86(1)

HELP

SAVE

Files
archivefile.a

file.o

See Also

Diagnostics

Displays a list of comands that may be executed at theaent time. Only
commands that are valid at therent time are displayed.

OPEN archivefile

Specify the name of a existing archive file to be opened. An archive file must
be opened before commands like ADDMOD, DELETE, EXTRACT, and
REPLACE can be used.

REPLACE filename [,..]

Replace one or more existing modules in the present library with the modules
from the named files.

Saves the current library to disk. Use END to exit the librarian. The END
command W not save the arrent library before exiting, so the SAVE
command kould be used before exiting the librarian if the library is to be
saved or updated.

Relocatable archive file.

Relocatable file produced bg86(1) or 1d86(1).

HP B1449 8086/186 Assembler/Linker/Librarian Reference Manuals, as86(1),
Id86(1), ap86(1).

ar86 returns zero if no errors are detected. Otherwise it returns non-zero if
errors are detected.

Diagnostic messages including optional lines containing assembly errors are
displayed on standard error.

48

Part 2

Assembler/Macro Preprocessor
Reference

Part 2

50

Chapter 3: Assembler Introduction

Assembler Introduction

Overview of the instruction set, target microprocessors, input and output file
formats, and other similar information.

51

Chapter 3: Assembler Introduction

Instruction Set

Instruction Set

The as86 assemblengports Intel instruction mnemonics, op codes, and
syntax for the target microprocessors and thus is compatible with those used in
Intel software and documentation.

The supported instruction setlisted in the chapter titled "Ituictions and
Operands." For further information about the instruction set, refer to the
Intel IAPX 86/88, 186/188 User's &hual Programmer's Reference

Target Microprocessors

The as86spports the InteB086/186 chip family. The 8086/186 family includes
the 8086, 8088, 80186, and 80188. In addition to the 8086/186 family, the as86
assembler will accept NEC V20/V30 extensions to the 8086/186. For these
instructions, a86 accepts NEC mnemonics, but uses Intel syntax. For
overlapping instructions (instructions found in both 8086/186 and

V20/V30), as86 accepts only Intel mnemonics and syntax. Unless an assembler
control changes the microprocessor mod8palefaults to the 8086 mode.

The as86 assembler also translatesutsions specific to the Int@&087 or
80187 floating-point @processor for coprocessor execution.

Assembler Operation

as86 is a two pass assembler. On the first pass, labels, variables, and other
user-defined symbols are examined and placed in an internal symbol table.
Additionally, structure definitions are stored.

On the second pass, as86 generates the object code, resolves symbolic
addresses, and outputs the object module if the assembly was error free. If it
was not error free, thers®6 displays eors on the outputsting device and

also a cumulative error count. In addition to the object mods&§ ean also
output an HP 64000 format assembler symbol file for use in analysis tools.

52

Chapter 3: Assembler Introduction
File Formats

The assembly listingroduced during pass two contains information
pertaining to the assembled program, including opcodes, assembled data, and
the original source staments. Based on command line optios86anay also
output a symbol table or cross reference table which gives further information
not found in the standard assemlid{ing. Refer to the chapter titled
"Assembler Listing Description" for a more complete explanation of the
assembly listing and cross reference or symbol table information.

File Formats

Input File Characteristics

The source file input for thes86 assembler is a text file containing 8086/186
instructions, assembler directives, and assembler controls. This file can be
produced from an editor or the output file from another component of the HP
B1449 package, the ap86 macrognecessor.

Output File Characteristics

HP-OMF 86

as86produces a relocatable output object file in HP-OMF 86 format
relocatable. HP-OMF 86 format relocatable is a superset of Intel Binary OMF
relocatable. HP-OMF 86 format relocatable contains extensions to facilitate
code integration and debugging. This format has not been verified to be
strictly compatible with Intel Binary OMF relocatable. HP-OMF 86 format
relocatable files, therefore, may not work correctly with tools or systems
designed to consume Intel Binary OMF relocatable.

HP 64000 Assembler Sym bol File

as86 can optionallgroduce an HB4000 format assembler symbol file. This
file is used by analysis tools. Tp@rpose of the assembler symbol file is to
preserve the relationship between symbolic names that appeared in the
original source file and thmemory locations that they referenced.

53

Chapter 3: Assembler Introduction
File Formats

54

Chapter 4: Assembler Syntax

Assembler Syntax

The basic elements of assembler language.

55

Chapter 4: Assembler Syntax
Assembler Character Set

Assembly language, like other pragnming languages, has a character set, a
vocabulary, rules of grammar, and conventions that allow for definition of

new words or elements. The rules that describe the language are referred to as
the "syntax' of the language. This chapter describes the basic elements of
assembler language:

» the character set
* symbols

e constants

» delimiters

These basic elements, in turn, are put together to form assembéensids.
This chapter also gives the general syntax of those statements.

Input source lines ovel024 characters in length will beuncated and an
error messageilvbe generated.

Assembler Character Set

The assembler recognizes the characters in the following tables.

The characters are case sensitive by default. If case sensitivity is turned off,
then all lower case alphabetic characters are treated as if they were upper case,
unless they appear in quoted strings.

Alphabetic Characters

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopqgrstuvwxyz

Numeric Characters
0123456789

56

Special Characters

blank horizontal tab
$ dollar sign < less than
' single quote (left parenthesis
) right parenthesis + plus sign
- minus sign . period
: colon ! exclamation point

" double quote
? question mark
[left bracket] right bracket
‘ accent grave { left brace
| vertical bar ~ tilde

/ slash

= equal sign
% percent

> greater than
* asterisk

, comma

@ commercial at
& ampersand

; semicolon

sharp

_ underscore
\ back slash
} right brace

A caret (uparrow)

Chapter 4: Assembler Syntax
Assembler Character Set

57

Chapter 4: Assembler Syntax
Assembler Character Set

ASCII Codes

Char. ASCI Char. ASCI Char ASCI

blank 20 @ 40 : 60
! 21 A 41 a 61
" 22 B 42 b 62
23 C 43 c 63
$ 24 D 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66
' 27 G 47 g 67
(28 H 48 h 68
) 29 | 49 i 69
* 2A J 4A j 6A
+ 2B K 4B k 6B
, 2C L 4C | 6C
- 2D M 4D m 6D
. 2E N 4E n 6E
/ 2F o) 4F) 6F
0 30 P 50 p 70
1 31 Q 51 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 Vv 56 v 76
7 37 W 57 w 77
8 38 X 58 X 78
9 39 Y 59 y 79
: 3A z 5A z 7A
: 3B [5B { 7B
< 3C \ 5C | 7C
= 3D] 5D } 7D
> 3E A 5E ~ 7E
? 3F _ 5F

58

Chapter 4: Assembler Syntax
Symbols

Symbols

Symbol Formation
A symbol is a sequence of characters. The first character must be

* A-Z or a-z (alphabetic)

e ?(question mark) .
e @ (commercial at sign)

* _ (underscore)

The second and following characters can be any of these characters or the
numerals 0-9. Symbols can be up to 255 characters in length, but only the first
31 characters are significant.

Symbols are used to represent arithmetic values, memory addresses, bit arrays
(masks), and so on.

Examples of valid symbols:

LAB1

@mask

LOOP_NUM
L2345678901234567890123456789012345

In the last symbol, the entire symbol is stored, but only 31 characters are used
for comparison.

Examples of invalid symbols:

ABORT* ;contains special character
1LAR ;begins with a numeric
PAN N ;embedded blank, symbol is PAN

Different symbols represent different kinds of data objects. In general, only a
few kinds of symbols are allowed in any particular syntactic construct. Any of
the following elements are considered to be symbols.

59

Chapter 4: Assembler Syntax

Symbols

Keywords

Keywords (also called Reserved Words) are symbols pre-defined by the
assembler which you can reference in certain acceptable constructs. Keyword
symbols are not user-definable, nor can you create a user-defined symbol with
a name that conflicts with a keyword. Keywords include directives and register
names, among others. Keywords are not case-sensitive. Tlistfafl

assembler keywords appears in the following table. Although the keywords in
the table are in upper case, there is no regquént that they appear upper

case in the source code.

Table 4-1. as86 Assembler Keywords and Instructions

??SEG
AAA
AAD
AAM
AAS
ABS
ADC
ADD
ADD4S
AH

AL

AND
ASSUME
AT

AX

BH

BL
BOUND
BP
BRKEM
BX
BYTE
CALL
CBW
CH

CL

60

Chapter 4: Assembler Syntax

Table 4-2. as86 Assembler Keywords and Instr. (Cont'd)

Symbols

CLC
CLD
CLI
CLR1
CcMC
CMP
CMP4S
CMPS
CMPSB
CMPSW
CODEMACRO
COMMON
cSs
CWD
CX
DAA
DAS
DB

DD
DEC
DH

DI

DIV

DL

DQ

DS

DT
DUP
DW
DWORD
DX
END
ENDM
ENDP
ENDS
ENTER
EQ

EQU
ES

61

Chapter 4: Assembler Syntax

Symbols

Instruction Mnemonics

A full set of instruction ames (mnemonics) is pre-defined by the assembler.
Instruction rames can be removed from the symbol table with the PURGE
directive and re-defined as something else. If you do this, the original meaning
of the instruction is lost. There are six instructions (the operators AND, NOT,
OR, SHL, SHR and XOR) that cannot be removed. Alistliof the

pre-defined instruction mnemonics, including the argument combinations
acceptable for each, appears at the end of the chapter titled "Instructions and
Operands."

Codemacro

A codemacro is a user-definedtinsction or prefix to an instruction. The

output generated from a codemacro can be a ndémgi®n, a mixture of

normal instructions, or just about anything that a customer might want (some
assemblers define the normal instructions through the use eframios). A
codemacro can be defined with the same name as an existingiio or it

can have a completely uniqgue name that describes a new operation.
Codemacros can be used anywhere that a predefineddtisn can be used.

Label

A label is a user-defined symbol denoting the address of an instruction. Labels
can be referenced onlyin the JMP and CALL instructions and variations
thereof. A label can be defined with the PROC directive or with the LABEL
directive, but there is another way to define a label that is used most often.

The most common way of defining a label is to place a name (followed by a
colon) before an instruction mnemonic, which defines it as a label. Labels have
certain attributes, but a discussion of those aspects of labels is left to the
chapter titled "Symbol and Expression Attributes." Example:

THIS_IS_A_LABEL: MOV AX,2

Variable

A variable is a user-defined symbol denoting the address of a location to be
used for data storage. Unlike many other assembly languages, as86
distinguishes between a label and a variable. They are defined according to
syntax and cannot be used interchangeably in sgpres or instructions.

62

Chapter 4: Assembler Syntax
Symbols

However, when the LABEL directive is used with the keywords BYTE,
WORD, DWORD, QWORD, TBYTE, or with a variable that is a structure
name or record name, it defines a variable. When the LABEL directive is used
with the type designator NEAR or FAR, it defines a label. Variables have
certain attributes, which are discussed in the chapter titled "Symbol and
Expression Attributes."

Structure Name

A structure is a user-defined template describing the manner in which a bl
of storage is to be broken up into elements. A structure template does no
have a storage area associated with it whielans that atucture rame,

while it is still a symbol, is not a variable. #&rscture template ame does not
have attributes associated with it.

Structure Field Name

The individual elements of the structure template are called structure fields.
Structure fields may be optionallggigned ames, but again, since the
structure template does not occupy storage, the structure &igld is not a

true variable. A structure fieldame, when atsucture is allocated using the
template, can be used with the dot operator to access an element of the
structure, but the structure fieldme canot be used alone. Structure field
names do not have attributes associated with them.

Record Name

A record is a user-defined template describing how a one- or two-byte block of
storage is to be broken up into bit fields. A record template does not have a
storage area associated with it whiokans that a record name is not a

variable. Record names do not have attributes associated with them.

Record Field Name

Each bit field describes a number of bits and has a name associated with it.
Record field names are not variables, however, and do not have any attributes
associated with them.

63

Chapter 4: Assembler Syntax

Constants

Segment Name

A segment is a user-defined logical division of the assembly source program. A
logical segment can contain code, data, or stack information. Logical segments
have names associated with them. These names are used to identify the logical
segments to the assembler and loader so that they will eventually be placed
together in the same physical segment in memory.

Group Name

A group rame identifies a collection of logical segments gathered together
because of some common factor. At load time, a gralipevplaced in
memory such that any segment that is a member ofrthegogull be within 64
kilobytes of the base of the group. Grougmes are also significant to the
assembler and loader.

EQU Symbols

EQU symbols are names associated with other symbols orssigpme through
the use of the EQU assembler directive. EQU symbols are simply
“replacement names" that can be used anywhere the symbols osstopse

they replace could be used. Unlike symbols, however, EQU symbols are not
variables and are not allocated storage.

Constants

A constant is an invariant quantity that can be either an arithmetic value or a
character constant. Arithmetic values can be represented in either integer or
floating-point format.

This section describes integer constants, real constants, and character
constants.

64

Chapter 4: Assembler Syntax
Constants

Integer Constant

Decimal (base-10) constants can be defined as a sequence of numeric
characters optionally preceded by a plus or a minus sign. If unsigned, the value
is positive by default.

Internally, the assembler performs arithmetic on 17-bit quantities. A 17-bit
value is 16-bit value with the 17th bit (the leftmost bit) as a sign bit. This value
may range from -65535 to 65535 (IFFH to OFFFFH). However, integer
constants are only allocated 16 bits when the assembler stores them in th
output code. The 17-bit value can be mpireeted as a signed or unsigned valu
and stored in one or two bytes.

A one byte constant can contain an unsigned number with a value from 0 to
255. A two byte unsigned number can range from 0 to 65535. When a constant
is negative, its equivalent twos complement representation is generated and
placed in the field specified. A 1-byte twos complement number can range
from -128 to + 127. A 2-byte twos complement number can range from -32768
to + 32767. Whether or not a number is ipireeted as a twos complement or

an unsigned number is typically up to you.

Integer constants outside this range (-65535 to + 65535) can appear onlyin the
DD, DQ and DT directives, and on the right side of an EQU directive. The

legal range is different for each directive, as discussed in the chapter called
"Assembler Directives."

Other Bases

Constants with bases other than decimal are defined by specifying a coded
descriptor after the constant. In addition, the base may restrict or expand the
accepted digits for the constant. The following list is of the available

descriptors and their meanings and the range of acceptable digits for each kind
of constant. If no descriptor follows a constant, the number is decimal by
default.

B -abinaryconstant - digits must be either O or 1
O - an octal constant - digits are 0-7 inclusive
 Q - an octal constant - digits are 0-7 inclusive

« D -adecimal constant (the default if no descriptor appears) - digits are
0-9 inclusive

65

Chapter 4: Assembler Syntax

Constants

Note

* H -ahexadecimal constant - digits are 0-9 inclusive and the letters A-F
(or a-f — either are allowed regardless of case sensitivity)

Hexadecimal constants may not begin with the letters A-F (a-f). In those cases,
prefix the constant with a zero.

Examples of acceptable constants:

10011B ;binary constant

25 ;defaults to decimal constant
-OFFH ;hex constant - notice leading O
1377Q ;octal constant

2d9fh ;hex constant

Real Constant

Real constants can only appear in DD, DQ, DT and EQU directives. There
are three syntactically distinct ways of defining real numbers.

Decimal Real Without Exponent

See the following figure for the syntax diagram of decimal reals with exponents.

=i

Figure 4-1. Syntax for Decimal Real Without Exponent

Examples:

1.234
1234
1234.

66

Chapter 4: Assembler Syntax
Constants

Decimal Real With Exponent

See the following figure for the syntax diagram for decimal reals with
exponents.

LS

Ce o~V
o D)
pee

Figure 4-2. Syntax for Decimal Real with Exponent

This format is interpreted tmean that the number to the left of the E is
multiplied by 10 raised to the power of the number to the right of the E.
Examples:

3.14159E-27 ;means 3.14159 * 10 27

-le4 :means -10000.

Hex Real

The syntaxis 8, 16, or 20 hex digits followed by the letter R (or 9, 17, or 21 hex
digits if a 0 must be prefixed to constants with leading hex digits of A-F).

Note that no sign is permitted. This format represents the actual bit pattern to
be placed in a variable of type DWORD (8 or 9), QWORD (16 or 17), or
TBYTE (20 or 21). (Intel's documentation describes the bit patterns used to
represent real numbers.) Examples:

40490FDBR
0c0000000r

Character Constant

An ASCII character constant is specified by enclosing one or two characters
within single or double quotation marks. The constant is encoded as a 16-bit
number stored in different ways depending upon usage.

67

Chapter 4: Assembler Syntax

Delimiters
A character string of arbitrary length can be specified with the DB assembler
directive.
A more complete discussion of character constants is contained in several of
the chapters that follow.
Delimiters
The characters "blank” and "tab" are referred to as delimiters.

Note There must be at least one delimiter between adjacent symbols and/or numeric
constants to prevent them from being interpreted as a single item.
Delimiters are significant in character strings. Delimiters are not required
between characters that have special meaning to the assembler (such as [, +,
=,$,and so on).
Assembler Statements
General Syntax
The basic elements just described are put together to create statements and
instructions that the assembler understands. The rules that govern the ways
that statements may be formed are called syntaxrules. The general syntax for
an as86 assembly languagetinstion staément is as follows:

[label :] [prefix] keyword [operand [, ...]] [;comment]

Each field in the general syntax has one or more of the delimiters discussed in
the previous section between it and adjacent fields. Each field has a different
purpose.

68

Chapter 4: Assembler Syntax
Assembler Statements

Label

The label is optional and, if present, identifies or marks the offset of the
instruction. This label may be used as a destination in CALL, JMP or
conditional branch instructions. Notice the colon following the label. It must
be present if the label is present.

Prefix

The prefix, if present, causes looping with string instructions or forcesa b
lock during the instruction’s execution. New prefixes can be defined throu
the use of codemacro definitions.

Keyword

Keywords can be any of the instruction mnemonidg{af ingruction
mnemonics appears at the end of the chapter titled "Instructions and
Operands"), codemacros defined by the user, or an EQU symbol set to an
instruction or codmacro name.

Operand

An operand is an argument to the instruction in the keyword fielchrtas
separate multiple operands. Operands are discussed more completely in the
chapter titled "Instructions and Operands.”

Comment

The comment begins with a semicolon and continues until the end of the line.
Comments are used to make "notations" about the assembly language code so
that you or others may better understand the purpose of the code or how it
works.

Comment

Comments can appear aftertingtions, assembler directives, control
statements, macro definitions, or on lines by themselves. In fact, comments can
appear anywhere in the assembly source file as long as they are preceded by
semicolons. Comments are rmrbcessed by the assembler, but are passed
through to the assemblisting.

69

Chapter 4: Assembler Syntax
Assembler Statements

When a comment is on a line by itself, a leading semicolon must be the first
non-blank character (tabs are considered blank characters) on the line. Blank
lines are treated like comments.

Continuation Lines

Some assembler statement mot fit on a single line. If a statment vill not

fit on a single line, it may be continued to the next line by beginning the next
line with the ampersand (&) character. The ampersand must be in column one
of the next line. Symbols, numbers, and strings cannot be broken across lines.
It is not acceptable to use the ampersand to continue a comment line. In most
cases, an error is likely to occur. Simply begin the new line with a semicolon to
make it another comment line.

70

Chapter 5: Symbol and Expression Attributes

Symbol and Expression Attributes

An introduction to attributes.

71

Chapter 5: Symbol and Expression Attributes

Symbols and expressions have certain attributes that determine where they
may be used with an instruction and what object cal&evgenerated if they

are used. Most attributes are only important when a symbol orssipne
involves a relocatable or external value. Absolute values will not involve most
attributes since absolute values are not modified by the loader.

There are nine attributes that a symbol or expression can have. Theyare

TYPE

OFFSET

BASE

INDEX

SEGMENT

SEGMENT RELOCATION
RELOCATION TYPE
SEGMENT ADDRESSABILITY
CS ADDRESSABILITY

Not all attributes will apply in all cases, however. The following sections
discuss the different attributes and how they affect symbols and expressions.

72

Chapter 5: Symbol and Expression Attributes
TYPE

TYPE

The TYPE attribute may belong to either a variable, label, or memory
expression. The fixed types are

« BYTE (1 byte)

* WORD (2 bytes)

« DWORD (4 bytes)

« QWORD (8 bytes)

« TBYTE (10 bytes)

* FAR (same or different segment)

* NEAR (same segment)

User-defined types are also possible and are created when a record or
structure template is defined. See the chapter titled "Assember Directives" for
more about records and structures.

It is possible for anemory expression to not have a type. Instead, the type is
determined by using the expression. These explicitly typeless memory
expressions are the so-called anonymous references.

OFFSET

The OFFSET attribute for a variable, label, or memory expression is the offset
from the start of a segment or group. It is simply the number of bytes from the
start of the segment or group. Ifthe variable or label belongs to a
noncombinable segment or if the ex@i®n was generated from a numeric
value, the offset will be absolute. Ifthe variable or label belongs to a
combinable segment or to a group, the offséte relocatable.

73

Chapter 5: Symbol and Expression Attributes

BASE

BASE

The BASE register may be set as part of a memoryreference. If a base register
is used as part of an expression, the expression is known as a register
expression, to set it apart from the simpler memory expression.

The base registers are BX and BP. Onlyone of these registers may be present
in a any single register expression, although an index register may be present
with the base register. If a base regisieused in a memory expression, its
contents are added to the memory offset at run-time to calculate a final offset
for a memory location. If both a base and index register are present in the
memory expression, then their values are first added together and then added
to the offset to produce theemory reference. If the memory expression does
not have a SEGMENT attribute (i.e., no variable, label, or segment override
was used as part of the expression), then a default segment redister w

used depending upon which base register appears in the registessexpref

the BX register is used, DS is the default segment register. If BP is used, the
default is SS. The default to SS for BP holds even if an index register is also
present in the memory expression.

INDEX

The INDEX register may also be used as part of a memoryreference. If an
index register is used as part of an expression, either with or without a base
register, then the expression is known as a register expression, to set it apart
from the simpler memory expression.

The valid indexregisters are Sl and DI. Only one indexregister can be present
in a single register expression. It is also possiblepofse, that no index

register will be used. If an index register is used in a register &{pre its

contents are added, at run-time, tm@mory offset to calculate a final offset

for a memory location. If both an index and base register are used in a register
expression, both registers are added to the offset to calculate the final offset.
If the memory expression does not have a SEGMENT attribute and no base
register is used, then the DS segment register is used as a default.

74

Chapter 5: Symbol and Expression Attributes
SEGMENT

SEGMENT

The SEGMENT attribute determines which segment a variable, label, or
memory expression belongs to. The segment attribute is the base value of that
segment. The base value is absolute if the segment has been placed using the
AT keyword. Otherwise, it is a relocatable value until load time. (This

attribute is also the value that is returned by using the SEG operator.)

SEGMENT RELOCATION

The SEGMENT RELOCATION attribute becomes important when a

variable, label, or memory expression belongs to a group. In contrast to the
SEGMENT attribute, this attribute determines whgabupthe item belongs

to. The SEGMENT attribute identifies which segment within the group the
item belongs to. These two values must be known to correctly calculate offsets
for a memory expression. Normally, this attribute is the same as the
SEGMENT attribute unless the expression contains a group override. This
attribute can be ignored unless groups are used.

RELOCATION TYPE

The RELOCATION TYPE is determined by a combination of the type of an
expression and by operators that are applied to it. This value will be null if the
expression can be completely determined at assembly time. This is true of
offsets within non-combinable segments and for segment bases of segments
that use the AT keyword. This value will be set, however, ifthe itemis an
offset from either a combinable segment or a segment base for a non-located
segment or group. The pgible types of relocation are:

« OFFSET: This type of relocation will generate the offset of a variable,
label, or memory expression as part of the object code. A 16-bit offset
value will be calculated by the loader and inserted into the object code.
The offset will be calculated relative to the base of the segment or, ifa

75

Chapter 5: Symbol and Expression Attributes
SEGMENT ADDRESSABILITY

group override is used, relative to the base of the group. Isslpe to
add a 17-bit value to this offset.

 BASE: This type of relocation causes a 16-bit base value to be written
directly to the object code. The base will be the base address of the
segment that the variable, label, or memory expression belongs to unless a
group override is used. In that event, the baddevthe base address of
the group. It is pssible to add a 17-bit value to this base.

* HIGH: This type of relocation causes the upper 8-bit portion of an offset
to be written to object code. The offset is calculated using the same rules
as noted above, but only the high byte will be written out. It $sibte to
add an 8-bit value to this byte.

 LOW: This type of relocation causes the lower 8-bit portion of the offset
to be written to object code. The offset is calculated using the same rules
as noted above, but only the low byte will be written out. It ssjide to
add an 8-bit value to this byte.

SEGMENT ADDRESSABILITY

The SEGMENT ADDRESSABILITY of a memory location is determined by
the segment the memory location belongs to and by any segment or group
overrides applied. If a segment override is used to name a specific segment
register, that register is used to address the memory location. Otherwise, the
values found in the ASSUME directives must be tested. Ifthe segment or
group is found through the current ASSUME values, then that segment
register is used to address that memory location. If no match is found, an
error is generated, since theemory cannot be accessed.

It is possible to havememory location that does not belong to a segment or
group. This would be true of an anonymousmory reference, which looks
like

[BX][SI]

; base and index registers

In such a reference, the segment addressability will be determined by using the
default segment registers defined for the base and indexregisters. Recall that

76

Chapter 5: Symbol and Expression Attributes
CS ADDRESSABILITY

the default segment register will be DS unless the BP base register is used, in
which case the default will be the SS segment register.

CS ADDRESSABILITY

The CS ADDRESSABILITY of a label is determined from both the current
ASSUME value for the CS register, and any segment or group overrides that
are applied to the label.

77

Chapter 5: Symbol and Expression Attributes
CS ADDRESSABILITY

78

Chapter 6: Assembler Directives

Assembler Directives

Alphabetical description of assembler directives.

79

Chapter 6: Assembler Directives

This chapter describes the as86 assembler directives. In an assembly language
program, assembler directives are written as any other prograemstait

might be, but directives are not translated into equivalent machine language
instructions. Instead, assembler directives are interpretiadtastions to

the assembleo control the program assembly process itself.

In this chapter, directives are organized in alphabetical order for easy
reference. (The DB, DW, DD, DQ, and DT directives are described together
because of their similarity.) However, assembler directives may also be
grouped into three broad categories —Segmentation Directives, Data
Definition Directives, and Program Linkage Directives— which identify the
parts of the assembly process the different directives are designed to affect.
Segmentation Directives inform the assembler about the logical organization
of your program. Data Definition Directives control the allocation and
initialization of data, variables, and labels. Program Linkage Directives make
it possible to create modular assembly langyaggrams. The first sections of
this chapter list the directivesauped by these three categories, briefly
describe their functions, and more thoroughly discuss some concepts
important to understanding how these directives work.

80

Chapter 6: Assembler Directives

Segmentation Directives

ASSUME informs the assembler of the contents of the segment registers.
GROUP combines several logical segments together.

SEGMENT/ENDS defines a logical segment in the assembly language
program code.

These directives control program segmentation (the dividing of the assembly
program into logical parts). To better understand program segmentation, read
the following discussion.

Program Segmentation
The 8086 can directly address one megabyteaerhory. This memoryis -

viewed by the CPU through four segments, known as physical segments,
containing up to 64K bytes. The start of each segment is defined by a value,
called a paragraph number, placed in one of the four special registers known
as segment registers. A paragraph number, or boundary, is located at a
memory address which is divisible by 16 (that is, the least significant
hexadecimal digit of the address is OH). A physical segment is saicaiiibe

if one of the segment registers contains the base address of the start of the
segment.

The four segments are skified as the code, data, stack, and extra segments.
They are each pointed to by a separate segment register:

CSfor code
DSfor data
SSfor stack
ESfor extra

Executable instructionsilvbe in a physical segment defined by the value in

CS. Any stack operation will occur within the segment defined by SS. Data is
generally found in the segment pointed to by DS, but it can also be placed in
any of the other segments. The segment accessed through the ES register will
usually hold data also.

81

Chapter 6: Assembler Directives

A logical segment is a segment as defined within a single assembly file. The
linking loader can combine this logical segment with other segments of the
same name to form a single physical segment. The size of the physical segment
is limited to 64K, so the sum of the logical segments cannot exceed this limit.
The collection of segments into a group is another form of physical segment.

Default Segment - ??SEG

All code and data within a source file must exist within some segment. Any
code or data defined outside of segment directives within a sourcdllfiie w
assigned to a segment automatically created by the assembler. This segment is
named ??SEG and exists in all object files. The ??SEG segment is defined to
be public, so it is combined with all other ??SEG segments from other
modules. It is also defined to be paragraph aligned.

82

Chapter 6: Assembler Directives

Data Definition Directives

DB defines one byte of storage.

DW defines one word (two bytes) of storage.

DD defines one double word (four bytes) of storage.

DQ defines one quad word of storage (eight byte3)87 data types).
DT defines one thyte (ten bytes - 8087 data types}oofge.

EQU assigns a particular value to a symbol.

EVEN aligns code or data with a word boundary.

ORG adjusts the location counter within the current segment.
PROC/ENDP assigns a label to a sequence offringions.
PURGE causes a user-defined symbol to become undefined.
RECORD defines a record template.

STRUC/ENDSdefines a structure template.

Data Definition Directives control the definition and initialization of data
and/or storage as labels, variables, records, or structures.

Data Objects

The two most referenced data objects are variables and labels. With the Data
Definition Directives, you may define these and other data objects in your
program. Variables are data items, or arease@hory where values are

stored. Labels allow you to "mark" locations or sections in your code that may
be JMPed to or CALLed. One use of labels is to definertautine” locations

in order to create structured programs. Unlike high-level language
subroutines, however, scoping @mes does not occur and you can "fall into"
an embedded "subroutine."

Records and structures may also be defined by this category of directives.
Records and structures are alike in that they are user-defined templates for
storage allocation and initialization, they are not allocated storage at

83

Chapter 6: Assembler Directives

definition time, the assembler "remembers" what theylook like, theycan be
referenced as often as you like, and each reference generates one or more
copies of storage in the format of the template. At the time of the reference,
records and structures may optionally have certain of their definition-time
default values replaced.

Records and structures are different, however, in their basic makeups. When
you define a structure, you specify how many bytes the template covers, how
the bytes will be broken up into variables, and what default values will be
placed into those bytes at allocation-time. In contrast, a record must be a one
or two byte collection of bit fields. When defining a record, you specify how

the record is to be broken up into bit fields, and any default values to be placed
in the bit fields at allocation-time. The record size depends upon the sum of
the number of bits in all the bit fields, which means the total may not exceed

16 bits.

Linkage Directives

END specifies the end of an assembly module.
EXTRN specifies symbols defined in other modules.
NAME assigns aame to an assembly module.
PUBLIC specifies which symbols are public.

Program Linkage Directives make it possible for you to create modular
assembly language programs. Refer to the dion of program linkage that
follows to better understand the use of these directives.

Program Linkage

as86 spplies the necessary directives to support multi-module programs. A
program may be composed of many individual modules that can be separately
assembled or compiled. Each module may define variables or labels that other
modules may use. The Program Linkage Directives are the mechanisms in
as86 for communicating symbol information from module to module, for
identifying those symbols within the current module that may be used by other
modules, for stating what symbols (defined elsewhere) can be used within the

84

Chapter 6: Assembler Directives

current module, and for uniquely naming different object modules that are to
be linked together. Using these directives, you may specify a "main module,"
that is, a module which contains the code that will be initially exeawed
loading the program (the address the loadBuge to initialize the start

address of the program). At the same time, you may also supply initialization
values for other segment registers.

85

Chapter 6: Assembler Directives

ASSUME
ASSUME
The ASSUME directive is used to inform the assembler of the contents of the
segment registers.
Syntax:
ASSUME segreg:segpart [,...]
(or)
ASSUME NOTHING
Where:

segreg is one of the segment registers CS,DS,ES or SS.

segpart is one of the following:

» Asegment nameThe base address of the segment is assumed to be in the
named register. All dat@r code) in the segment is addressable through
this register.

Example:

ASSUME CS:CODE, DS:DATA

* Agroup name(must have been previously defined). The base address of
the group is assumed to be in themed register. All code or data in all
segments in the group are addressable through this register. Example:

ASSUME CS:CODEGRP, DS:DATAGRP

» Aforward reference. Forward references with ASSUME are only allowed
for symbols which will be defined as segmeatres later in thprogram.
When the segment name is later defined, then it may be used to address
memory within the segment. Failure to define the segment name will
cause an error to be reported.

* The keyword SEG followed by the name of a previously-defined label,
variable or external symbol.The base address of the segment containing
the symbol (which may not be known until link-time) is assumed to be in
the named register. The specified symbol and any other data known to be

86

Chapter 6: Assembler Directives
ASSUME

in the segment are addressable through the register. (For an external
symbol defined outside a segment, no such data is known.) Example:

ASSUME CS:SEG START, DS:SEG COUNT

» The keyword NOTHING. The register is assumed to contain garbage. The
register will not be used to address ammory. The format
ASSUME NOTHING
is also legal; this is equivalent to

ASSUME CS:NOTHING,DS:NOTHING,ES:NOTHING,SS:NOTHING

Description: ASSUME is used by the assembler to
» determine if the code or data your program references is addressable
» decide whether a segment override byte should be generated.

Initially, the segment registers contain NOTHING (garbage) by default. T
assembler assumes the contents of each segment register has not chang
—since initialization or the last ASSUME— unless an ASSUME for that
register is encountered. ASSUME itself, however, does not alter the value in
the segment register. For example, the statement ASSUME DS:DATA'does
not alter the contents of DS. You must, at some point, follow the ASSUME
with a MOV instruction to DS in order to access data in the DATA segment
without error.

CS register initialization, since it is done by the loader, does not require a
MOV, but CS still requires an ASSUME before it may be used.

Note There is an exception to the requirement that the CS register must have an
ASSUME before it is used. When a JMP instruction is used without a current
CS-ASSUME value, the default is to ASSUME the current segment. The
segment registers will not be checked. This only applies to NEAR references,
since a JMP to a FAR label requires that the CS register be updated.

87

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

DB, DW, DD, DQ, DT

The DB, DW, DD, DQ, and DT directives are used to define variables and/or
initialize memory.

Syntax:
1 byte (Byte) initialization:
[name] DB init [,...]

2 byte (word) initialization:
[name] DW init [,...]

4 byte (dword) initialization:
[name] DD init [,...]

8 byte (qword) initialization:
[name] DQ init [,...]

10 byte (tbyte) initialization:
[name] DT init [,...]

(or)

[name] Dx repeatval DUP(init,[,...])
(where xis B, W, D, Q, T)

Where:
name is a unigue as86 symbol. Its associated attributibbav

e segment current segment
» offset- current location counter

* type - type of data initialization unit

init may take on many possible values dependpan what type of
initialization you wish to do. Init may be any of the following:

« Aconstant expression.

88

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

— DB- 1 byte initialization. An integer constant or an expression
which fits into 8 bits (either 0-extended or sign-extended) when
stored in twos complement format. The rang®%5 to + 255.

High and low relocatable numbers (created by the HIGH and
LOW operators) are also acceptable scalars. Other relocatable
numbers, such as the offset of a variable, are not acceptable.
Examples:

DB O

DB 65535 ;not accepted, out of range

DB -1 ;these are equivalent
DB 255 ;both generate hex FF

— DW- 2 byte initialization. A constant or expression that evaluat
to a number (either absolute or relocatable) which must fit into
bits (either 0-extended or sign-extended) when stored in twos
complement format. The range is -65535 to + 65535. Examples:

DW 0
DW 65536 ;not accepted, out of range

DW -1 ;these are equivalent
DW 65535 ;and generate hex FFFFH

— DD -4 byte initialization. An integer constant or an expression
that evaluates to an absolute number. The value must fit into 16
bits (either 0-extended or sign-extended). The range is -65535 to
+ 65535. The 16-bit value isaed in the lower 2 bytes in twos
complement format (least significant byte first) and the higher 2
bytes are sign-filled. Relocatable numbers are not permitted (it is
impossible to determine how tidl the higher 2 bytes at
assembly-time).

Use DD for an integer constant in the range -4,294,967,295 to
+4,294,967,295 (from -?3+ 1) to + (2°’2-1), but not small enough

to qualify for DW. Note that an expression cannot yield a value
this large; all expressions evaluate to 17-bit numbers. The value is
stored as 82-bit twos complement integer, low byte first.

89

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

A decimal real. The valid range is roughly -3.4E38 to -133E0,
1.2E-38to 3.4E38.

A hexreal of 8 digits (or 9 digits if its leading digit is 0).

Examples of the posslhies:

DD 0 ;yields 00000000

DD 65535 ;yields FFFF0000 (low byte first)
;in 16-bit range

DD -1 ;yields FFFFFFFF

DD 65537 ;yields 01000100 (low byte first)
DD -65537 ;yields FFFFFEFF (low byte first)

DD 0.0 ;a decimal real
DD 3.14159 ;another decimal real

DD 0CO000000R ;a hex real

— DQ - 8 byte initialization. An integer constant, or an expression
whose value resolves to a 17-bit absolute number. The range of
constants is -(621+ 1)to + (f“-l). Such integer values are stored
in 64-bit twos complement format.

A decimal real number which has an approximate legal range of
values is -1.7E308 to -2.3E-308, 0, 2.3E-308 to 1.7E308.

A hexreal number consisting of 16 digits 17 digits if its leading
digit is 0).

— DT - 10 byte initialization. An integer constant, or an expression
that resolves to a 17-bit absolute number. The range of constants
is —(101‘8+ 1) to + (168-1). All integer values are stored 89-bit
signed-magnitude packed decimal (BCD) format, least significant
byte in the lowest address.

A decimal real number that has an approximate range of
-1.1E4932 to -3.4E-4932, 0, 3.4E-4932 to 1.1E4932.

A hexreal number consisting of 20 digjts 21 digits if its leading
digit is 0). Examples:

DT 65535 ;generates 35550600000000000000H ;(low byte first)
DT -65535 ;generates 35550600000000000080H ;(low byte first)

e The character '?"for indeterminate initialization.

90

Note

DW COUNT

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

— In situations where you wish to reserve storage but do not need to

initialize the area to any particular value, use the special character
"?"instead of a value. The area will be reserved with an
indeterminate value. Examples:

ABYTE DB ? ;reserve a byte

AWORD DW ? ;reserve a word (2 bytes)
ADWORD DD ? ;reserve a double word (4 bytes)
AQWORD DQ ? ;reserve a quad word (8 bytes)
ATBYTE DT ? ;reserve a thyte (10 bytes)

An address expression.

Assume registers are not checked when these directives are used with address
expressions. Therefore, the only way to get a group-relative reference is
use a group override in the address espian.

— DW- 2 byte initialization. DW may be used with a variable name,

a label name, argup rame, or a segment name. Using DW with a
variable or label name causes the offset of a variable or label
(relative to its segment or, if a group override is used, to its group)
to be stored. Using DW with a group or segmearne causes the
paragraph number of that group or segment to be stored.
Examples:

;COUNT is a variable or label
;store offset of COUNT from its segment

DW DATAGRP :COUNT ;store offset of COUNT from its

DW CODE

;group (DATAGRP)

;CODE is a segment or group hame
;store the paragraph number

— DD - 4 byte initialization. DD may be used with a variable name,

a label name, argup rame, or a segment name. Using DD with a
variable or label name causes the offset (relative to its segment or,
if a group override is used, to its group) of the variable or label to
be stored in the low order word and the segment or group base
address for the label or variable to be stored in the high order
word. Using DD with a group or segmergme causes the

paragraph number of that group or segment to be stored in the

91

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

low order word. The high order word will be set to O0H. Using
DD with a variable or label name is equivalenttargg a pointer
to the variable or label address. Examples:

DD COUNT ;COUNT is a variable or label, a
;pointer to it is stored

is equivalent to

DW COUNT ;store offset of COUNT
DW SEG COUNT ;store COUNT'’s segment

* Initialize with a string.

— DB- 1 byte initialization. A string of up to 1024 characters may be
specified with the DB directive. Each character in the string, left
to right, is assigned one bytermemory, low address to high
address. The string must be enclosed within single or double
guotes. A single quote may be embedded in the string by using two
consecutive quotes. Examples:

ALPHABET DB 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'’
WITHQUOTE DB 'THIS AIN"T HARDY' ;inserting single
;quote in string

— Dw, DD, DQ, You may use these directives to code a string of 1
or 2 characters. Such a string is interpretedB&lit number that
is stored differently than it would be if DB were used. If two
characters are stored, the second character in the string appears in
the low byte of the storage and the first character appears in the
next higher byte of the storage. If only one character is stored, the
low byte of the storage contains the character. With eithera 1 or 2
byte string, if any bytes of the storagamain unilled, they are set
to OOH. Using more than 2 charactersin a string resultsin a
warning message and only the first 2 characters are used.

— DT DT can also code a two character string, but it does it in a way
different from the other directives. DT stores the string in BCD
packed decimal format. If a single character is stored, its decimal
ASCII value is tored in the low byte of storage. Themaining
bytes are set to O0H. If two characters are stored, however, it
becomes more complicated. It is done as follows:

The 17-bit hexadecimal number representing the string is
converted to its decimal equivalent. (The 17-bit hex number is
formed by placing the ASCII hex value of the first character of the

92

Chapter 6: Assembler Directives
DB, DW, DD, DQ, DT

2 character string in the leftmost byte of the 17-bit word and
placing the ASCII hex value of the second character in the
rightmost byte of the 17-bit word. The sign bit is zero.)

Beginning with the rightmost digit of the resulting decimal value,
the decimal representation is stored 2 digits per byte, working
from right to left in the decimal value, until all digits are stored.

Any remaining bytes ofterage are set to O0H.

Examples:

DB '01’ ;generates 3031H (shown low byte first)

DW '01’ ;generates 3130H (shown low byte first)

DW '1’ ;generates 3100H (shown low byte first)

DD '01’ ;generates 3130 0000H (shown low byte first)

DQ '01’ ;generates 3130 0000 0000 0000H
;(shown low byte first)

DT '01’ ;generates 3723 0100 0000 0000 0000H
;(shown low byte first)

Repeating value. The special construct, DUP, can initialize an area of
memory with a repeated value or a repeated list of values.

» repeatval specifies the number of data initialization units (from 1 to
65535) to beilled (bytes, words, dwords, qwords, or thytes depending
upon whether Dxis DB, DW, DD, DQ, or DT).

* init (as an argument to DUP) may be a single occurrence of the
possililities that were acceptable foit in the non-repeating-value
syntax, including another DUP, onit may be dist of these same values.
DUPs may be nested to eight levels deep. Below are some examples:

WORD1 DB 2 DUP (?) ;two consecutive bytes form word

DD 2 DUP ('01’) ;generates 3130000031300000H

NESTEDDUP DB 3 DUP (4 DUP (5 DUP (1, 6 DUP (0))))
;60 occurrences of 1,6 DUP (0)

If an indeterminate initialization is repeated, the memory reserved by that data
directive will NOT be initialized to 0. Also, repeating a relocatable value

(such as a location in memory) will result in only the first value bessigaed
correctly. So this practice is discouraged.

Description: The DB, DW, DD, DQ, and DT directives are used to define variables and/or
initialize memory. The descriptions of the parts of the syntax adequately
describe these directives.

93

Chapter 6: Assembler Directives

END

END

The END directive is used to inform the assembler that the last source

statement has ogcred and optionally to specify initial viaues for selected

registers.
Syntax:

END [regint [,...]]
Where:

regint This field defines the contents for a segment register (and possibly the

IP and SP registers). To initialize the segment registers, the field may take one

of the following forms:

[CS:] segname[:labelname]

DS: segname

SS: segname[:varname]

where

» segnames either a segment name orragp rame. It identifies the
paragraph number to be loaded into the segment register.

+ labelnameis the name of a label defined in the module. If it is used alone,
its segment will be used to initialize the CS register and its offset will
initialize the IP. Ifit is used with a segname, then just its offgebev
used to initialize IP.

+ varnameis the name of a variable defined in the module. lIts offdEbev
used to initialize SP.

Description: An END directive is required for all assembly language programs. Any

statements that follow the END directivélwot be processed. Specifying a

load address with the END directive also informs the loader that the current
module is the main program. The main program defines the start of execution
because execution begins at the address specified with the END directive for
the main program. If multiple load modules are combined by the loader, only
one module can specify a load address and therefore be considered the main
program.

94

Chapter 6: Assembler Directives
END

The END directive may also be used to define the initial contents of the DS
and SS segment registers by specifying values to be placed in these registers by
the linker/loader at load-time.

Note If the code is to be targeted for HP 64000 format absolute, you may only
initialize the CS:IP register with END. Initialize the other registers explicitly
within the code.

Examples The following examples show the proper syntax for initializing different
segment registers.

CS (code) segment register initialization:

END labelname ;initializes CS and IP
;(the segment part of the
;label is used for CS)

or
END CS:labelname ;same as 'labelname’
(o)
END CS:segname:labelname ;the segment part (paragraph
;number) to be loaded into
;CS is taken from segname

SS (stack) segment register initialization:
END SS:segname ;SP will be initialized to be

;equal to the size of the
;segment

(or)

END SS:segname:varname ;initializes SS and SP
;(SP will be initialized to
;the offset of varname)

DS (data) segment register initialization
END DS:segname ;initializes DS

95

Chapter 6: Assembler Directives

EQU

EQU

The EQU directive causes the assembler to assign a particular value to a

symbol.

Syntax:
equate_symbol EQU expression
Where:

equate__symbol is a mandatory symbol defined by this statement.

expression is one of the following items:

* Anumeric constant or numeric expressionThe value of the expression
must be determined at assembly time. Any symbols used in the expression
must have been previously defined. See the Description section below for
more discussion about real constants. Examples:

Pl EQU 3.14159 ;real constant stored with
;10 byte precision

DD PI ;4 byte floating point

DQ PI ;8 byte floating point

DT PI ;10 byte floating point

E1EQU 2 +3 ;numeric expression

E2 EQU E1 AND 4 ;E1 previously defined
E3 EQU (E1- E2)/12 ;E1 and E2 previously defined

* Avariable or label name(which may be a forward reference).
ALABEL EQU ALAB ;ALAB not defined yet
ALAB: MOV AX, 0

* Aregister name including ST registers. Example:

COUNT EQU CX

POINTER EQU BX

MOV COUNT, 10 ;CX =10

MOV POINTER, OFFSET ARRAY ;BX = offset of array
FREQ EQU ST(1)

FADD ST, FREQ

e Aninstruction or codemacro name.

BUMP EQU INC ;instruction name
BUMP AX ;same as INC AX

* Aregister expressionThese may be single register expressions, or they
may also include a segment override. This construct is useful when

96

Chapter 6: Assembler Directives
EQU

defining data items to be accessed on the stack. Refer to the Description
section for a more information about the use of register expressions.
Examples:

STACKWORD EQU WORD PTR SS:[BP + 2]

AVAR EQU [BX + 3]

ANEXTVAR EQU ES:[BX]

Description:

The EQU directive in as86 is more powerful than the EQUhfl in most

other assemblers. All the various attributes of address expressions are stored,
and any missing attributes may be added later with expression operators at the
time the EQUed symbol is referenced.

Decimal real numberare stored in a fullO-byte format to prevent a loss of
precision; they may be used in DD, DQ, or DT directives later in your code.
Hexreal numbers, however, are stored in as many bytes as the specification
indicates; they can be used later onlyin the single directive that accepts a
real of that size.

It is possible for a symbol to appear as a forward reference before it is defi

in an EQU. When this happens, the assembler assumes that the forward
reference will resolve to a number, variable or label. If thies out not to be

the case, an error may occur on pass 2 ifthe assembler did not leave enough
room for an instruction on pass 1.

Symbol chaining (defining a symbol in terms of another symbol which is in
turn defined by another symbol) can be accished with the EQU directive,
but the chain must eventually end as a numeric or address expression. An
error occurs if the definition ends in a register or real number ssjore
Circular EQU definitions are also errors. Example:

AEQU B
B EQU A ;ERROR! circular reference

A symbol defined by an EQU to audress expressiatonsisting of more than

one symbol (for example, BYTE PTR VBL) is stored as a variable or label, if
possible. The entire EQU expression takes its attributes from the
sub-expression on the right-side of the EQU. However, not all attributes will
be set if attributes are missing from the right-side sub-expression. If that is the
case, missing attributes must lpplied when the symbol on the left-side of

the EQU is used elsewhere in an expression.

Examples:

97

Chapter 6: Assembler Directives
EQU

A EQU [BX][SI][5] ;anonymous reference — type
;information must be supplied
;when A used elsewhere

B EQU WORD PTR 10 ;segment information must be
;supplied later

98

Chapter 6: Assembler Directives
EVEN

EVEN

The EVEN directive causes the Location Counter to be aligned to an even
value (a word boundary).

Syntax:
EVEN

Description: The assembler brings about alignment by generating a NOP (90H) instruction
if the current location counter contains an odd address value. The EVEN
directive cannot be used in a byte aligned segment. Doinglsause an
error message to be generated.

99

Chapter 6: Assembler Directives

EXTRN
EXTRN
The EXTRN directive is used to declare certain symbols as external
references.
Syntax:
EXTRN name:type [,...]
Where:
name is a symbol, declared PUBLIC (see PUBLIC directive later in this
chapter) in another module, to be defined as an external reference. Its
associated attributes are the following:
* segment unknown unless defined within a SEGMENT/ENDS pair
+ offset- unknown
* type - type declared itype argument
» relocation type- external
type is one of the following:
* The keywordBYTE, WORD, DWORD, QWORD, or TBYTE for a variable
which is one of these types.
» Astructure name.Names a variable whose type is equal to the number of
bytes allocated in a preceding structure definition.
» Arecord name.Names a variable whose typéle either byte or word
depending on the preceding record definition.
* NEAR or FAR. A label of type near or far.
* ABS.A constant (17-bit number), always of type word.
Description: Symbols declared as EXTRN are not expected to be defined in the current

module (theycannot be), but are passed to the loader to be matched against
symbols declared PUBLIC in other modules. In as86, the EXTRN directive
will specify the rame of the symbol and its associated type.

100

Chapter 6: Assembler Directives
EXTRN

Note The type declaration must agree with the type of the symbol declared
PUBLIC, but the loader does not do type-checking. It is your respbitysib
maintain type compatibility.

The type ABS is used to declare a constant. Despite the mnemonic ABS, this
number can prove to be offset relocatable or absolute when it is resolved
depending upon how it was defined as a PUBLIC symbol. In either case, name
can be used and treated like a constant value.

You must be careful in the placement of the EXTRN directive in relation to
the definition of the program segment. If you know the segment in which the
external symbol was defined as PUBLIC, place the EXTRN directive between
a SEGMENT/ENDS pair that identicalto the SEGMENT/ENDS pair in

which the object was defined in the other module. An external symbol defined
in this manner will be addressabledugh the segment register containing t
segment in question. In particular, a NEAR label defined EXTRN must be|
defined in segment identical to the one where it is defined PUBLIC becau
the NEAR type restrictions.

Example:
In module "A"
DATA SEGMENT WORD PUBLIC
COUNT DB 0 ;declared as byte through DB
PUBLIC COUNT
DATA ENDS
In module "B"

DATA SEGMENT WORD PUBLIC ;different module, but same
;segment declaration

EXTRN COUNT:BYTE ;typed as byte

DATA ENDS

If you do not know the segment in which the external symbol is defined, or if

the segment in which it is defined is non-combinable, place the EXTRN
directive outside of all SEGMENT/ENDS pairs in your program. To address
the external symbol you must load the segment part (paragraph number) of
the symbol into a segment register using the SEG operator and then either use
an ASSUME directive to verify addressability or use a segment override for
each use of that symbol.

101

Chapter 6: Assembler Directives

EXTRN

Note

The 8086/186 linker does NOT verify that the definition of an external symbol
matches the definition of its resolving public symbol. It is up to the user to
make sure that external symbol definitions are placed within the correct
segment or they should NOT be placed in a segment at all.

Example:

MOV AX, SEG COUNT

MOV ES, AX ;loads segment
(then)

ASSUME ES:SEG COUNT ;verify addressability
MOV DL, COUNT ;use symbol

(or)

MOV DL, ES:COUNT ;use segment override

102

Chapter 6: Assembler Directives
GROUP

GROUP

The GROUP directive is used to specify several logical segments that are to
be placed in the same physical segment.

Syntax:
name GROUP segpart [,...]
Where:

name is a mandatory, unique, user-defined name for them

segpart is one of the following:

* Asegment name.

» The keyword SEG followed by the name of a previously-defined variable,
label, or external symbol.This construct refers to the segment in which
the specified symbol lies. For externals, this may not be discovered until
link-time.

* An undefined symbolthat must be defined later in the program as a
segment name or the assemblgra®s an error.

Description: At assembly-time you may specify that certain logical segments will all go in

the same physical segment so the assembler will know that all such segments
may be accessed from the same segment register. Such a collection of
segments is calledgioup The ordering of the segmentsin a GROUP

directive will not necessarily control or represent the ordering of the segments
in memory nor are the segments in a group necessarily adjageptriory.
GROUPing them only implies that they should lie within the same physical
segment.

The total address space covered by all segments in a group must be less than or
equal to 64K bytes. The size of the group is equal to the sum of the sizes of all
segments in the group. The assembler does not check whether the size of the
group is greater than 64K bytes, but the loader does.

A group has a base address. The base address of a group refers to the lowest
memory address of any segment in that group. The loader sets the group base

103

Chapter 6: Assembler Directives
GROUP

address, and all segments in the group are addressable from this same group
base address.

Forward references to grouames are not allowed.

One ofthe uses of the groupme is with the ASSUME directive. If, for

example, you have defined many different data segments that you intend to
form into one physical segment when the program is locatedmory, you

could combine these segments with the GROUP directive. Since the contents
of all these data segments will be addressdbieugh DS during the execution

of the program, you may use the grougpe in the ASSUME and to initialize

DS. For example,

DATAGRP GROUP DATAL, DATA2 ;DATAL and DATA2 not
;defined yet

DATA1 SEGMENT
ABYTE DB O
DATA1 ENDS

DATA2 SEGMENT
AWORD DW 0
DATA2 ENDS

ASSUME DS:DATAGRP, CS:CODE ;use group name in ASSUME
CODE SEGMENT

MOV AX, DATAGRP ;AX = base address of group

MOV DS, AX ;initialize DS

MOV AX, AWORD ;addressable through DS

CODE ENDS

Use of the OFFSET Operator With Groups

When using the OFFSET operator with a variable or label whose segment is
in a group, you must use the grougnme as a segment override in an
expression which references that variable or label, as in

MOV BX, OFFSET DATAGRP:COUNT
Also, if you wish to store the paragraph number of a variable or label defined

with a group, you must use a group override. Otherwise, the paragraph
number of the segment that contains the variable is stored instead. Example:

DW SEG DATAGRP:COUNT
DD DATAGRP:COUNT

104

Chapter 6: Assembler Directives
LABEL

LABEL

The LABEL directive is used to create a name for tlmeant location of
assembly, whether it is data or code.

Syntax:
name LABEL type

Where:
name is a unique user-defined symbol. Its associated attributes are the
following:

e segment- current segment
e CS-assume current CS-assume value (labels only)
» offset- current location counter

* type - as specified below

type is one of the following:

* The keywordBYTE, WORD, DWORD, QWORD, or TBYTE to create a
variable which is one of these types.

» Astructure name Creates a variable whose type is equal to the number of
bytes allocated in a structure definition.

» Arecord name Creates a variable whose type will be either byte or word
depending on the record definition

* NEAR orFAR To create a label of type near or far.

105

Chapter 6: Assembler Directives

LABEL

Description:

The LABEL directive and the idea of a "label" should not be confused. The
LABEL directive creates a label or variable at the current location being
assembled. A label is a name for a location in the code that can be JMPed to
or CALLed.

The LABEL directive is used primarily to address the same data item or same
piece of code as different types. As a rule, as86 requires that the type of a data
reference match the type of the data definition (known as strong typing),
which makes this dual addressing difficult. If you want to access a variable
either as a word or as 2 bytes depending upon the context, the following would
allow you to do so:

WORDNAME LABEL WORD
LOWBYTE DB 0
HIBYTEDB O

The LABEL directive also allows you to define two labels of different types
(for instance, both NEAR and FAR) but be careful that the right RET is
executed for the type of CALL made. The following (potentially fatal)
example illustrates this use:

AFARLABEL LABEL FAR

NEARLAB: MOV AX, BX
;would be near, so some information
;:would be left on the stack

RET

as86 does not, in general, permit ddtaage at label locations—that makes
writing self-modifying code difficult.

106

Chapter 6: Assembler Directives
NAME

Syntax:

Where:

Description:

NAME

The NAME directive is used tosaign a mme to an object module.

NAME module _name

module_name is a user-defined identifier. The name identifier can be any
length, but only the first 40 characters are meaningful.

Every object module produced bs&6 has aame; if you do noprovide one,
the assembler issues a warning and gives the file a spaai@.nThe special
name is theaurce file base ame stripped of any path and suffix. A module
name is nott®red as a symbol. You can therefore duplicate a keyword or a
user-defined label without conflict. Modulames are not affected by the case
control. They are always case-sensitive.

The linker does not require that modules have unique names, but it identifies
its input files by module ame on itdisting map. For this reason, assign each
module a unique name for clarity.

The librarian program does identify its modules byre. Every module used
as input to the librarian must have a uniqaene or an gor will result.

107

Chapter 6: Assembler Directives

ORG
ORG
The ORG directive is used to alter the value of the Location Counter within
the current segment.

Syntax:

ORG expression

expression evaluatesto

» an absolute number (modulo 65536) that does not contain forward
references or

» an offset relocatable number (modulo 65536) that is only relocatable from
the current segment. Using the offset of '$’ (dollar sign is the special
character for the current location counter value) in a PUBLIC segment is
an example of this form of ORG.

Description: The ORG directive is used to locate code or data at a particular location
(offset) within a segment. Using ORG with an absolute segment allows you to
specify an actual memory location at which the code or data will be located.

Note Avoid expressions of the form

ORG OFFSET ($-1000)

since this particular expression will overwritguy last 1000 bytes of assembly
(or will re-ORG high in the grrent segment if the expssion evaluates to a
negative number). An expression with the syntax "$+ 10@D'pwoduce an

error because this exms®on evaluates to a label, not to a number. To achieve
what is intended, the expression "OFFSET ($+ 1000)" can be used.

108

Chapter 6: Assembler Directives
PROC/ENDP

PROC/ENDP

The PROC/ENDP directive pair is used to delimit a section of code which can
then be CALLed from elsewhere in theogram, much like a procedure in a
high-level language.

Syntax:
name PROC [type]
.(instructions)
.name ENDP
Where:

name is a unique user-defined symbol providing a label for the beginning of
the PROC. The name on the ENDP directive must match that on the most
recently defined PROC for which an ENDP was not already encountered. The
ENDP directive signals the end of a PROC definition to the assembler. The
attributes of the PROC name are the following:

e segment current segment

* CS-assume current CS-assume

» offset- current location of PROC directive
» type- depends on type indicated

» relocation type- depends on enclosing segment

type isthe type of the label defined at the beginning of the PROC. Type can
be NEAR or FAR. NEAR is the default if no type is specified.

109

Chapter 6: Assembler Directives

PROC/ENDP

Description:

The primary use of the PROC/ENDP pair is to give a type to the RET
instruction enclosed by the pair. A RET instruction generates a NEAR return
or a FAR return depending on whether the most recently defined PROC is
NEAR or FAR. A RET or IRET outside of a PROC/ENDP pair or inside a
pair which has no type specified is, by default, of type NEAR. Therefore, any
code you wish to CALL FAR and then successfully RET from should be
enclosed in a PROC/ENDP pair typed FAR.

Code execution begins at the instruction immediately following the PROC
Directive when PROCs are CALLed or JIMPed to.

Nested PROCs

When a PROC is defined inside another (nested), it does not necessarily have
the same type assigned to its RET or IRETringtion as does the enclosing
PROC. For instance, an enclosing PROC may be typed FAR. When the next
PROC occurs, it might be a NEAR. For the duration of that PROC until the
ENDP, the type of anyreturn instructioililve NEAR and not FAR. When

the ENDP is found for the nested PROC, however, the type reverts to the type
of the enclosing PROC, in this case FAR. Havinga NEAR PROC inside a
FAR PROC, then, does not affect the enclosing PROC.

Differences Between PROCSs and "Subroutines"

The code in a PROC/ENDP pair is not a procedure in the same sense asitisin
high-level languages. A few differences are of note:

* In contrast to the scoping of names in blotktstured languages, all
labels and variables within the PROC/ENDP pair are not local to the
"subroutine”, but are global to the entire file.

» ltis possible for execution to 'fall into"a PROC from the previous
instruction; it is not necessaryto CALL a PROC to execute it. Executing a
RET or aIRET from a 'fallen into" PROC can cause unpredictable
results.

« The ENDP does not function as a return-from-procedure; it marks the
end of the PROC for the assembler. It is possible for execution to "fall out
of'a PROC through the ENDP into the next instruction. To return from
a CALL, a RET or IRET instruction must be used.

110

Chapter 6: Assembler Directives
PUBLIC

Syntax:

Where:

Description:

PUBLIC

The PUBLIC directive is used to specify symbols, defined in one module, that
are available to other modules at link time.

PUBLIC name [,...]

name is the name of the symbol defined in therent module.

Symbols designated PUBLIC will be placed in the object file and used byt
loader to resolve external references (made with the EXTRN directive) fr
other modules.

PUBLIC symbols must be variables, labels or 17-bit constants defined by using
EQU; any other types will generate ama. A 17-bit constant can be absolute
or offset relocatable only; other relocation types are not allowed.

111

Chapter 6: Assembler Directives

PURGE

Syntax:

Description:

PURGE

The PURGE directive places a flag on the specified user-defined symbol in
the symbol table so that the symbol is no longer recognized.

PURGE symbol [,...]

symbol can be any keyword or user-defined symlatept

e register names

» segment namegincluding ??SEG).

e group names

* hands-off keywords(see keyword list in chapter titled "Assembler Syntax")

» any user-defined symbol that appears in a PUBLIC statement

A PURGEd symbol can be redefined following the PURGE statement. A
reference to the symbol following the PURGE statement, but before a
re-definition, is treated as a forward reference to the second definition. Ifa
PURGEd symbol is never redefined, references to the symbol following the
PURGE statement are considereres (reference to undefined symbol).

Purging symbols does not physically remove them from the symbol table and
therefore PURGE cannot be used to deal with symbol table overflow.

If a variable or label that is defined in the current module but does not appear
in a PUBLIC or EXTRN statement (that is, a local symbolpusged, it will

not appear in the object module. A PURGE directive, placed just before the
END statement can —in combination with the $DEBUG assembler control
statement— be used to pass on only a few selected symbols for debugging
purposes.

Any variable, label or absolute number that was defined by an EXTRN
statement can beurged, but the symbolilstill appear in the object module
as an external reference.

112

Chapter 6: Assembler Directives
PURGE

If a symbol is defined by an EQU to another symbol (not an esme), a
PURGE on one of the symbols can cause unexpected results. The rule is that
if a symbol in a EQU chain is PURGEGJ, it and all symbols that precede it to
the beginning of the chain are also PURGEd.

Given the EQU chain that follows:

AEQUB
BEQUC
CDWO ;EQU chain resolving at C

The following PURGESs, which should not be considered as sequential code
but as separate lines somewhere in the assembly source program, would have
the described effects.

PURGE A ;purges only A (B and C are still defined)
PURGE B ;purges A and B (C still defined)
PURGE C ;purges A, B, and C

113

Chapter 6: Assembler Directives

RECORD

Syntax:

Where:

Description:

RECORD

The RECORD directive defines a record template.

name RECORD recfieldname:nnn[=datum] [,...]

name is a mandatory user-defined name for the record template.
recfieldname is a mandatory user-defined name for a bit field.

nnn is an integer constant, or an expression containing no forward references,
that evaluates to an absolute number. The rangmofis from 1 to 16,

inclusive, and denotes how many bits will be in a bit field. Bits aumted

from high bit to low bit within the full byte or word. Thus, the first bit field
following the RECORD keyword is the most significant field of the record.

datum is an optional integer constant, or an expression containing no
forward references which evaluates to an absolute number, specifying a
default value for this bit field. This value can be overridden when the record is
allocated. If no datum is present, zero is the default. If the datum is present, it
must fit into the number of bits specified (nnn), zaled. For example, the

legal default values for a 1-bit field are 0 and 1. Values that are either negative
or too large are truncated to fit within a given field. A warning is also
generated.

The RECORD directive always defines a 1-byte or 2-byte template. This
definition only describes a record; it does not allocate any memory at
definition time. If the total number of bits in a record template is one to eight,
the unit used to allocate storage when the record template is used is 1 byte. If
the number of bits is 9 to 16, then allocation is 2 bytes.

You might experience some confusion in those cases where the bit field
allocation does not fill exactly 8 or 16 bits.tAbugh bit counting begins with
the most significant bit in cases where the byte or word is completely filled,
partially allocated records (the number of bits in the bit fields do not total
exactly 8 or 16 bits) will have their bit fields right-justified in the byte or word

114

Chapter 6: Assembler Directives
RECORD

and the remaining most significant bitslle zero-filled. Thismeans that the
first bit in the left-most bit field where counting begini mot be the
left-most bit of the byte or word. The following definition

REC1 RECORD R1:3=7,R2:5 ;generates 111000008 or EOH
defines an 8-bit pattern which has all 8 bits filled. Note that R2, because it is
not initialized, is set to zero by default. However, the definition

REC2 RECORD R3:3=7,R4:3=3 ;generates 00111011B or 3BH
leaves two bits remaining in an 8-bit byte. The two three-bit bit fields are right
justified, and the remaining two bits, the two most significant bits, are

zero-filled. The following figure illustrates how, for the above example of
record template REC2, the partial record is defined by the RECORD

directive.
7 6 ° 32 0
Zeroed Bitfield R3 Bitfield R4
2 bits 3 bits 3 bits

Figure 6-1. " Partial" Record Def inition

Similarly, the two 16-bit record definitions below illustrate what happens to
16-bit partial records.

REC3 RECORD R5:3=7,R6:13=4095
;generates 1110111111111111B or OEFFFH
REC4 RECORD R7:1=1,R8:8=127
;generates 0000000101111111 or 017FH
Remember, the RECORD directive only defines a template, it does not
allocate storage. To see how to allocate storage using a record template, read

the next section.

Allocating Record Storage

After you have defined a record template, the template definition can be used
in the following syntax to allocate storage:

Syntax:

115

Chapter 6: Assembler Directives
RECORD

[name] recname <[[datum],] [...]>

(or)

[name] recname repeatval DUP (<[[datum],] [...]>)

Where: * nameis an optional name to be declared as a variable with the following
attributes:

— segment current segment being assembled
— offset- current location counter value
— type - total number of bytes in the record template (either 1 or 2)

» recnameis the namessigned to a previously-defined record template
repeatvalis a 17-bit integer constant, or an expression containing no
forward references and evaluating to a 17-bit absolute number, between 1
and 65535 inclusive. Repeatval specifies the number of copies of the
record to allocate.

e datumis an optional value to be used instead of the default value provided
in the template. All such values must be 17-bit integer constants, or
expressions that evaluate to 17-bit absolute numbers. Relocatable values
are not allowed.

— The first datum replaces the default value of the first bit field
within the record, the second datum replaces the default on the
second bit field, etc. Null data items are permitted (separated by
commas) to direct the assembler to use the default values; null
data values are useful when a default value other than the first
needs to be overridden. If a field is mmm bits wide, the least
significant mmm bits of the twos complement representation of
the datum are used. For example, if a 3-bit field is being
overridden, values of 6, -2, and 14 will all generate the 3 bits 110.
Examples (using the REC1 definition shown above):

FIRSTREC REC1 <> ;no overrides to defaults,
;generates OEOH
SECNDREC REC1 <4> ;overrides R1 - generates 080H

THIRDREC REC1 <,5> ;overrides R2 - generates OE5H
FIVERECS REC1 5 DUP (<>) ;5 copies of default record

It is allowable to nest record allocations up to 10 deep.

116

Chapter 6: Assembler Directives
SEGMENT/ENDS

Syntax:

Where:

SEGMENT/ENDS

The SEGMENT/ENDS directive pair is used to define a logical segment.
name SEGMENT [align-type][combine-type]['classname’]

name ENDS

name is a mandatory user-defined name thatraa conflict with any other
symbol.

align-type specifies what boundary the logical segment must be placed o
the align-type is not specified, PARA is the default. Align-type may be any,
the following keywords:

* BYTE - byte alignment. Segment can start anywhere.

 WORD - word alignment. The segment must start on an address divisible
by 2. (An address which has a least significant bit of 0.)

* PARA - an address divisible by 16. (An address which has its least
significant hexadecimal digit equal to OH.)

* PAGE - page alignment. The segment must start on an address divisible by
256. (An address which has its two least significant hexadecimal digits
equal to O0H.)

* INPAGE - inpage alignment. The entire logical segment cannot be more
than 256 bytes long; it oaot cross a page boundary (an addressiblie
by 256). It vill be moved to start on an address divisible by 256 only if
movement is hecessary to prevent the segment frossiogpa page
boundary.

combine-type specifies the way in which the linking loader combines this
segment with other logical segments of the same name to form a physical
segment in memory. If combine-type is not specified, the logical segment will
not be combined with any other logical segment, not even one with the same
name from a different module. Combine-type can be any of the following
keywords:

117

Chapter 6: Assembler Directives

SEGMENT/ENDS

PUBLIC - all segments of the same name defined to be PUBLIGav
concatenated to form a single physical segment. The loader controls the
order of concatenation. The length of the resulting physical segment will
be equal to the sum of the lengths of the segments that have been
combined.

COMMON - all segments of the same name defined to be COMMON will
be overlapped, starting at the same physical address, to form a physical
segment. The size of the resulting physical segment will be equal to the
size of the largest segment of those overlapped.

STACK - all segments of the same name defined to be STAGKev
concatenated into a physical segment such that the combined segment will
endat a certain physical address (overlaid against high memory) and will
grow "downward." The length of the resulting segment will be the sum of
the lengths of the combined segments. (STACK is not a true keyword.
You can define a symbol to be STACK without conflicting with the usage

in the SEGMENT directive.)

MEMORY - all segments of the same name defined to be MEMORY will
be combined so that the first memory segment encountered by the linker
will be treated as the physicah&mory" segment. In the list of linked
modules, the first module that contains a "memory" segment will be used
to define the physical "memory" segment. It will be located at an address
above all other segments in the program. Anyother segments of the type
memory that are encountered by the linkékhe treated as common

with the first segment. The length of the physical memory segment will be
equal to the length of the first memory segment encountered (Memory,
like Stack, is not a true keyword. You can define a symbol to be
MEMORY without conflicting with the usage in the SEGMENT
directive).

AT nnn - this segment will be placed at the paragraph number specified.
The expression nnn cannot contain forward references and must evaluate
to an absolute number. Absolute segments are not aligned by the linker;
the various align-type keywords are syntactically correct when used in
combination with AT but are ignored. Note thatn represents a

paragraph number, not an actual address; therefore if AT 0444H is
specified, the segment will start at addr@$440H. A segment created

with AT will be non-combinable with segments from other modules.

‘classname’ is a name that may be used to indicate that segments are to be
located near each other in memory. When assigning physical addresses to

118

Description:

Chapter 6: Assembler Directives
SEGMENT/ENDS

these logical segments, the linking loader attempts to place logical segments
with the same classnames close together. However, the classrmame loa

used to combine segments such that they may be addressed through the same
segment register.

The classname must be enclosed in single quotes, as shown, or in double
quotes.

Classnames are nased as symbols; they may duplicate symtarhes (even
keywords) without conflict. If a clasame is to be ssigned to a segment,
assign it at the first ooerence of the segment in the source file.

The SEGMENT/ENDS directive pair is used to define a logical segment. This
segment may be combined with other segments of the same name defined in
either the same module or in other modules. These logical segments will form
the physical segments, located in memory, that are pointed to by the seg
registers. Within a source module, each occurrence of an equivalent
SEGMENT/ENDS pair (with the same name) is viewed as being one part
single program segment.

Multiple Definitions of a Segment

The assembler keeps the value of the offset from the current segment (i.e.,
the most recent SEGMENT directive) in an internal location called the
location counter. The assembler saves the location counter for each segment
when it finds an ENDS for that segment, or if it finds a new SEGMENT
directive. Later, if the assembler finds another SEGMENT directive which
uses the name of that previously defined segment, the earlier locatintec

is retrieved and used. For this reason, a segment may be broken into pieces
within a module, or between modules if it is combinable, and those pieces will
still be placed in the same physical segment.

The align-type, combine-type and classname need not be included with the
second and later SEGMENT directives for a segment of the same name. If
they are absent, the assembler takes the segment’s characteristics from the first
definition. However, any keywords that are present must match the first
definition, or an error is reported. If an absolute segment is broken into pieces
and the AT keyword is used on a SEGMENT directive for the second or later
piece, the absolute base address must match the first definition, even though
the location counter is taken from the stored value. The second part of the
segment will not start at the specified base address, but the AT value must
match. Examples of breaking a segment:

119

Chapter 6: Assembler Directives
SEGMENT/ENDS

S1 SEGMENT PUBLIC

NOP ;relocatable location 0

S1 ENDS

S1 SEGMENT ;assembler uses PUBLIC attribute
ADD AX,2 ;instruction at relocatable location 1
S1 ENDS

S2 SEGMENT AT 0444H

NOP ;instruction at absolute location 04440H
S2 ENDS

S2 SEGMENT AT 0444H

NOP ;instruction at absolute location 04441H
DB 14 dup(0) ;skip 14 bytes

S2 ENDS

S2 SEGMENT AT 0445H ;an error! Must use 0444H
NOP ;instruction at absolute location 04450H
S2 ENDS

Nested or Embedded Segments

It is legal to nest SEGMENT/ENDS pairs. Each ENDS must refer to the most
recently-defined SEGMENT whose ENDS was not yet encountered. The fact
that a segment is nested inside another does not mean that the code for the
nested segment is placed inside the enclosing segment. The code is the same as
it would be if no nesting occurred. Nesting helps you to define logical

structures to make pragmming easier. Example:

S1 SEGMENT PUBLIC

NOP ;goes into S1 segment

S2 SEGMENT PUBLIC

ADD AX,2 ;goes into S2 segment

S2 ENDS

SUB AX,3 ;goes into S1, S2 is "closed"

Improper Nesting:

S1 SEGMENT PUBLIC
NOP

S2 SEGMENT PUBLIC
ADD AX,2

S1 ENDS ;ENDS does not match most recent SEGMENT

SUB AX,3

S2 ENDS ;ENDS does not match remaining SEGMENT

Maximum Number of Segments

If you use the default HP-OMF 86 object file format, you may use an
unlimited number of segments. The HP 64000 (.X) object file format allows

120

Chapter 6: Assembler Directives
SEGMENT/ENDS

only three named segments. Therefore, if you use th64880 object file
format (the-h commanedine option), use three or fewer relocatable segments
per module.

The first relocatable segment with code will Issigned the PROG segment.

The first relocatable segment with data will lssigned the DATA segment, if
that segment is not used for PROG. The next relocatable segment, whether it
contains code or data, will besigned the COMN segment.

121

Chapter 6: Assembler Directives

STRUC/ENDS

Syntax:

Where:

Description:

STRUC/ENDS

The STRUC/ENDS directive pair is used to define a structure template.

name STRUC
<data directives>

name ENDS

name is a unique user-defined symbol that becomes the structume.nThe
name on the ENDS must match the name on the STRUC. Its type attribute is
the following:

* type- number of bytes defined in structure data directives

The structure definition only describes a given structure and its contents; it
does not allocate any memory at that time. All statements between the
STRUC and ENDS directives must be one of the following: DB, DW, DD,

DQ, or DT directives, comment lines, blank lines, or assembler controls. Any
assembler controls that are included within the STRUC/ENDS pair are not
stored as part of the template and therefore are not executed anew each time
the structure is referenced. Any symbols referenced in the argument field of
any of the included directives must have been previously defined. Forward
references are not allowed within a structure definition.

You will notice that the ENDS directive is also used to terminate a
SEGMENT definition. This is unambiguous, since an ENDS closing a
SEGMENT is not legal within a structure definition.

If a DB or other directive within a structure definition hasame in its name
field (which must be unique, and cannot previously have been the object of a
forward reference), this name is known asracure field. It is not the same

as a variable, and it is not associated with any particular storage location or
segment. Structureames andtsucture fields can be used in very few syntactic

122

Chapter 6: Assembler Directives
STRUC/ENDS

constructs. Forward references to structiamas andtsucture fields are not
allowed.

Structure field ames do have associated attributes. They follow:

» offset- offset from the beginning of the structure definition

» type - type of data definition directive

Allocating Structure Storage

After you have defined a structure template, it can be used in the following
syntax to allocate storage:

Syntax:
[name] strucname <[[datum],] [...]>
or
Ena)me] struchame repeatval DUP (<[[datum],] [...]>)
Where: * nameis an optional name to be declared as a variable with the following

attributes:

— segment current segment being assembled
offset - current location counter value
type - total number of bytes in the structure template

» strucnameis the namessigned to a previously definedhscture template.

» repeatvalis a 17-bit integer constant, or an expression containing no
forward references and evaluating to a 17-bit absolute number between 1
and 65535 (inclusive); it is the number of copies of thecsure to
allocate.

« datumis an optional scalar to be used in place of the default value
provided in the template. The first datum replaces the default value on the
first data definition directive within the structure, the second datum
replaces the default on the second data definition directive, etc.

— Null data (separated by commas) is permitted and directs the
assembler to use the default value; this is useful when a value
other than the first occurring value must to be overridden. The
legal values for these scalars are the same as in the data definition
directive to which they apply, including the

123

Chapter 6: Assembler Directives

STRUC/ENDS

indeterminate-initialization keyword '?. Note that repeated data
(i.e., DUP expressions) cannot be used as an override.

— Not every default value can be overridden. Default values can be
replaced only if the template defined just one unit of data for the
data definition directive (structure field) that is to be overridden,
or the template defined a character string in a DB directive. These
conditions mean that such defaults as DB 1,2 and DW 10 DUP
(0) cannot be overridden.

The number of bytes used in a DB string is fixed when the structure is defined.
Such a string can be overridden only by another string. If a longer string is
used to override, it is truncated, and a warning message is given. If a shorter
string is used to override, it is filled out, usingthe characters at the end of the
default string.

The structure definition

BLUEPRINT STRUC
FIRST DwW OFFFEH
SECOND DW BUFFER
THIRD DB 7,5
FOURTH DB A’
FIFTH DB ?
SIXTH DW 257

BLUEPRINT ENDS

yields a structure template like this:

15 0
FIRST
.SECOND
.THIRD+ 1 .THIRD
FIFTH .FOURTH
SIXTH

Figure 6-2. Structure Definition and Allocation

124

Chapter 6: Assembler Directives

The instruction
B1 BLUEPRINT <>
allocates storage for B1 that looks like:

15
F F F E
OFFSET (BUFFER)
0 5 0 7
indeterminate 4 1
0 1 01

The instruction
B2 BLUEPRINT < ,0,,,255>
allocates storage for B2 that looks like:

15

01 0 1

Figure 6-2. Structure Def. and Allocation (Cont’d)

STRUC/ENDS

125

Chapter 6: Assembler Directives
STRUC/ENDS

126

Chapter 7: Expressions

Expressions

The syntax and semantics of expressions.

127

Chapter 7: Expressions
Expression Overview

This chapter describes the syntax and semantics of expressions. The early part
of the chapter explains the kinds of expressions and discusses expression
operands. The latter part lists the different expression operators and their
uses. The end of the chapter has a table showing the precedence ranking of the
expression operators.

Reference Syntax Conventions

The sections that include the references about the expression operators follow
certain conventions:

1 The name of the operatéaor a descriptive term for the operator) appears
in the lefthand column.

2 The proper assembler syntax appears next under a heading of "Syntax."

3 A short description follows the syntax. The description explains the syntax
and any arguments appearing in the syntax. There may also be other
information relating to the operator itself or to using the operator.

4 Some expression operators may affect the attributes (see the "Symbol and
Expression Attributes" chapter) of its operands. If that is so, a list of
attributes and their values follows the description.

5 Some short examples that use the operator may follow the description or
attributes sections.

Expression Overview

An expression is a simple or complex combination of operands that may be
bound by operators. Operands can be numeric values or addressiexp.e
Operators include conventional unary and binary arithmetic operators (+, -, *,
/, MOD, etc.), logical operators (AND, OR, XOR, NOT), or special

operators such as memory and record operators.

Expressions have certain attributes. Attributes are discussed thoroughlyin the
chapter named "Symbol and Exps®n Attributes."

Expressions are in turn used as operands to assembly language instructions
and assembler directives. Expressions may be absolute, relocatable, or external.

128

Chapter 7: Expressions
Expression Overview

Absolute Expression

An absolute expression is one whose value is known completely at assembly
time. Assembly of absolute expressions results in object code that does not
need to be further modified by the loader. An absolute expression will have an
operand that is

a numeric constant

a constant memory expression (addresses which are known at assembly
time)

record allocation values
a record bit field offset

a segment base located during assembly time with the AT keyword (AT is
discussed in the SEGMENT/ENDS directive in the "Assembler
Directives" chapter)

an offset for a variable or label from a segment which is non-combinab)

a register name

129

Chapter 7: Expressions

Expression Overview

Relocatable Expression

A relocatable expression contains a relocatable operand as part of the
expression. The value of a relocatable expression is not known at assembly
time and must be assigned later by the loader. Relocatable expression values
are 16-bit values unless modified by the HIGH or LOW operators to become
8-bit values. A relocatable expression will have an operand that is

* asegment base where the segment is combinable (including all groups,
since their bases are not set until load time)

* avariable or label which belongs to a combinable segment

External Expression

An external expression is a relocatable expression which contains items that
are not within the module being assembled. These expressions reference
external variables, labels, or numbers. Their values must be assigned by the
loader when the module containing the referenced item is available for
relocating. External expressions, like relocatables, are assumed to be 16-bits
in size, but may be modified with the HIGH or LOW operators to be 8-bit
values. More information about external references appears in the chapter
titled "Assembler Directives."

During the assembly process, the assemblerlisés numbers to perform
arithmetic and other operations involving expressions. A 17-bit number is a
16-bit number with an additional sign bit. The 17-bit number is used within

the assembler so that negative numbers with large absolute values (to -65535)
may be used in calculations. When the value is coded, the sign bit is discarded
and is not output, since only 16-bit values are used in the object code.

130

Chapter 7: Expressions
Expression Operands

Expression Operands

An expression may consist of only an operand, or operand(s) modified by one
or more operator(s). Operands are broadly divided into two groups: numeric
values and memory or register expressions. A numeric value will be directly
represented in the assembled code. A memory or register expression is an
indirect value because the assembler is coding a reference —or reserving a
space that will be filled later— which points to a locatiomi@emory where the
actual data resides. Expressions involving the EQU directive can be either a
numeric or memory expression.

Numeric Values

Numeric values result from a variety of different operands. Numeric
constants, obviously, are numeric values, but other, less clearly numeric
operands also produce numeric values. Any of the following operands can
generate numeric values:

» Aconstant. There are several ways that an absolute number, or const
may be represented to the as86 assembler. The easiest and most
straightforward way is to make the expression operand a decimal, octal,
hexadecimal, or binary number. The various representations are as follows:

— A decimal number is a series of digits, ranging from 0 to 9, that
optionally ends with the character 'D’. Decimal numbers are
base-10 and are the numbers people are most familiar with.

— An octal number is a base-8 number represented by a series of
digits, ranging from 0 to 7, and ending with either the character 'O’

or'Q-

— A hexadecimal number is a base-16 number represented by a
series of digits, ranging from 0 to 9, or by characters, ranging from
'A'to F’(or 'a’'to f). These numbers must end with the character
'H’. A hexadecimal number may not begin with a character; in
those instances, place a leading zero in front of the hex number.

— A binary number is a base-2 number represented by a series of
digits, either 0 or 1, and ending with the character B’

Examples of numeric constants:

131

Chapter 7: Expressions
Expression Operands

MOV AX, 35 ;decimal number

MOV AX, 12D ;decimal number with optional
;following 'D’

MOV AX, 370 ;octal number with the letter 'O’

MOV AX, 12Q ;octal number with following 'Q’

MOV AX, 12H ;hexadecimal number

MOV AX, 0A34H ;hexadecimal number with leading O

MOV AX, 0110101B ;binary number

* Quoted string. A one or two character quoted string which is used as an
expression operand will béssed as a hexadecimal number in a two byte
word. Each byte contains the ASCII value of the characteoiies. If two
characters are stored in a word, the first character is represented in the
high byte of the word and the second character is represented in the low
byte. If only a single character is stored, it is represented in the low byte
and the high byte is set to 00H. A quoted string always evaluates to a
positive 17-bit value. This method of representing numbers is
cumbersome and not very useful. It is also much more difficult to verify
that the value is correct. Examples:

MOV AX, 'A#’ ;generates 04123H
MOV AL, HIGH 'B’ ;generates 00H

» Record template. The chapter titled "Assembler Directives" discusses the
record structure. A record is a series of bit fields which may be defined
within a one or two byte structure called a templdtemplate definition
does not allocate storage, but specifying an occurrence of a record can
allocate memory, much like a DB (define byte) or a DW (define word)
directive might allocate memory. A record template may also be used as
an expression operand, but in this usage no memory is allocated. Instead,
the operand is evaluated to be a positive 17-bit value and used the same as
any number.

Examples:

R1 RECORD F1:3, F2:5, F3:2 ;the RECORD directive
;defines record template

MOV AX, R1<> ;value is 0 since
;no defaults specified
;in template definition

MOV AX, R1<2,14,3> ;value is 0013BH

MOV AX, R1<2,14,3>+5 ;value is 00140H

* Record field. You may also use a record field name by itself as an
expression operand. If the field name is usatiavit a MASK or WIDTH
operator, then the assembler replaces the field name with a number which
is the shift value required to move the lower bit of its bit field to the Oth
bit position. For example, using the record template definition above, the

132

Chapter 7: Expressions
Expression Operands

value that would be replaced for F1 is 7 since there are 7 bits of data to the
right of the field F1. The shift value, combined with the MASK operator
described later in this chapter, may be used to extract field values from a
record.

* Segment or group name.When used as an expression operand, the name
becomes an immediate value that is the paragraph number for the
segment or group. Since most segments and all groups arssigteal
this value by the assembler, it will usually be relocatable. Only segments
that use the AT keyword will have a fixed paragraph number known by the
assembler. These values may be used as is —to initialize a segment
register, for instance— or used wherever a relocatable number may be
used (except with HIGH and LOW). Examples:

MOV AX, SEG1 ;load paragraph number for segment
MOV DS, AX ;initialize DS register
MOV AX, GRP1 ;load paragraph number for group

Memory and Register Expressions

There are several ways to reference memory in assembly source files. Me
might be referenced with operands which are any of the following:

» Variables or labels. Variables are defined through data directives and
structure or record allocations. Labels are defined through assembly
instructions or PROC directives. Either variables or labels may also be
defined through EXTRN statnents or LABEL directives. Given the
variable and label definitions in the first three lines of the example below,
the last two lines use those definitions as memory operands:

WMEM DW 2 ;word variable
R1 RECORD F1:3, F2:4 ;record template definition
Ul R1<> ;byte variable, from

;a record allocation
L1: MOV AX, WMEM ;NEAR label, using a word

;variable
MOV AL, U1l ;uses byte variable as operand
JMP L1 ;uses NEAR label as operand

* Variable with offset. Variables used as memory operands may have offsets
added to them in order to refer to memory locations near the memory
location of the variable. The variable with offset operand may be
expressed in two ways. Examples of both:

MOV AX, WMEM + 5 ;adds 5 to variable address
;accesses memory 5 bytes higher
;than location of variable WMEM

MOV AX, 5 + WMEM ;same result from slightly different
;way of expressing it

133

Chapter 7: Expressions
Expression Operands

MOV AX, WMEM[5] ;same result from very different
;way of expressing it
e Structure field. Much the same as using an added offset to a variable,
using a structure fieldame as part of a memory operand allows access to
memory that is near a variable. Offset is from the variable named when
storage using the structure template was allocated. Using a structure
field name as a memory operand also changes the type of the memory
expression to that of the field. Example:

ST1 STRUC

BFIELD DB ? Jfield offset value from ST1is 0
WFIELD DW ? Jfield offset value from ST1lis 1
ST1 ENDS

MOV AX, BMEM.WFIELD ;adds 1 to offset, word type

* Reqgister indirect reference The 8086/18processors also allow an
instruction to indirectly refer tmemory by using base and/or index
registers. The contents of these registers are added to a variable’s offset at
runtime, whichmeans a memory address can be created that is not known
when the assembly code is written. A register expression operand can
contain one base register name, one indexregister name, or one base and
one index register name. Additionally, constants may be part of the
operand along with the registers.

The valid base registers are BX and BP and the valid indexregisters are SI
and DlI.

Base or index registers used this way must be enclosed in square brackets
in a register expression, but there are several different ways to represent
expressions given this restriction.

— A base and index register may be added together explicitly by using
a '+ ’'sign within the brackets or added implicitly by enclosing each
register name in separate, adjacent brackets.

— A base or indexregister alone may have a constant added to it or
subtracted from it in the same manner. (The -'sign must be used
for subtraction, since adjacent brackets are, by default, added.)

— A base and indexregister added together may also have a constant
added using either a '+ "sign or adjacent brackets, or a constant
may be subtracted by using a -’ sign within the brackets.

— A base and indexregister cannot be subtracted from one another,
however.

134

Examples:
MOV AX, WMEM[BX]

Chapter 7: Expressions
Expression Operands

;one base register,

;no index register

MOV AX, WMEMI[BP][SI]

;these two slightly different

;expressions are equivalent

MOV AX, WMEM[BP+SI]

;both add one base register

;and one index register

MOV AX, WMEMI[SI]

;no base register,

;one index register

MOV AX, WMEMI[5][BP]
MOV AX, WMEM[5+BP]

;both of these expressions use
;an index register with a

;constant added

MOV AX, WMEM[BP-5]

;one base register with

;constant subtracted,
;no index register

MOV AX, WMEM[BX][DI][5]

;one base and one index

;register added

MOV AX, WMEM[BX+DI+5]

;with constant added also

;both expressions equivalent

Anonymous referenceThis form of register expression operand contains
only constants and registers and does not include a variable or label n
Because there is no variable or label name, no segment or type
information is inherent in the expression.

This expression may be given a type and segment, using the PTR and
segment override operators. Otherwise, default values are assumed,
depending upon the instruction and the registers that are used. If the base
register BP is used, the default segment register is SS. Otherwise, the DS
segment register is the default segment register.

A default type value may be assumed if other operands to the instruction
provide enough information to limit the type of tmemory expression.
Otherwise, an error is generated. For a constant to be usedessary
reference, it must be typed with the PTR operator so the assembler knows
to treat the value as such. Otherwise, the constant is treated as an
immediate value.

Examples:
MOV AX, [BX] ;default is DS segment
MOV AX, [BP][SI] ;default is SS segment
MOV AX, ES:[BX] ;segment is ES

MOV AX, DS: WORD PTR 5

MOV AX, [BX].WFIELD

;segment is DS

;default is DS segment

135

Chapter 7: Expressions
Expression Operands

EQU

The EQU directive, discussed in the chapter titled "Assembler Directives,"
allows you to assign a value to a symbol. Some of the possible assignments
include register names, variables, memory esgioms, or constants. The

symbol on the left side of the EQU directive may be used in an expression as
an operand. The result is the same as if whatever appears on the right side of
the EQU were used as an operand instead. Examples:

E1 EQU BX ;8086 register

MOV AX, E1 ;register to register
MOV AX,BX ;same as MOV AX, E1
E2 EQU WMEM ;variable

E3 EQU BMEMIBP][SI] ;register expression

E4 EQU 037B2H ;constant

MOV AX, WMEMI[E1] ;register from memory
MOV AX, E2[E1] ;register from memory

MOV AL, E3 ;register from memory

MOV AX, E4 ;immediate value into register
MOV AX,E4/5 ;immediate value into register

136

Chapter 7: Expressions
Expression Operators Introduction

Expression Operators Introduction

Operators are functions that take one or more operands and return a new
value. Operators are used to build expressions that cannot be defined strictly
as simple operands. Use operators to add numbers, change the type of a
memory expression, or to cause segment overrides. You may use a complex
expression involving operators anywhere a simple operand may be used if the
value returned by the complex exps®n is equivalent to the value of the

simple operand.

Syntax:

MOV AX, +5
MOV AX, - 2

Arithmetic Operators

The arithmetic operators conform to the commonly understood notions of
these operators. Arithmetic involving these operators is done using the fu
17-bit representation of the operands. Negative number resultoeed,s
however, in twos complement form.

Unary Plus, Unary Minus

Unary Plus: + operand
Unary Minus: - operand

Description: The unary operators +'and -’ each take a single operand and
return a single value as the result. The '+’'operator may be applied to an
absolute or a relocatable value and the result will be an absolute or relocatable
value. The ' operator mayonly be applied to absolute values. The result will
be the 2's complement of the value. These operators may be thought of as
being the binary operators '+ 'and -'with a lefthand operand of 0. Examples:

;result is 5 or 00005H
; result is -2 or OFFFEH

MOV AX, + WMEM ;result is memory expression

137

Chapter 7: Expressions
Arithmetic Operators

Binary Addition, Subtraction

Syntax:

Addition: operandl + operand2
Subtraction: operandl - operand2

Description: The binary operators + 'and -’ each take two operands and

return a single value as the resultmémory addresses are used, the offset

from the segment base is the value used as an operand. The types of operands
that are allowed and the types of the results are shown in the following table.

Table 7-1. Binary Plus and Minus Results

Operand 1 Operator Operand 2 Result
ABSNUM ;o ABSNUM ABSNUM
RELOCNUM +'_ ABSNUM RELOCNUM
ABSNUM +' RELOCNUM RELOCNUM
ADDR ;oo ABSNUM ADDR
ABSNUM +' ADDR ADDR
ADDR) ADDR ABSNUM

The shorthand words in the talmean the following:

ABSNUM = absolute number, constant
RELOCNUM = relocatable number (OFFSET, external ABS, SEG)
ADDR = memory address, possibly relocatable or external

EXTRN EXABS: ABS
MEMSTART DB ?
WMEM DW 2
MEMEND DW ?

MOV AX, 5+ 15
MOV AX, 3 -12
MOV AX, WMEM + 5

Note that ADDR-ADDR is only valid if both memory addresses are either
absolute or relocatable. They must also belong to the same segment so that
their offsets are relative to the same base value. This allows the result to be
absolute. Neither address may be of an external reference, since its offset is
not known at assembly time. Examples:

;declared labels - variables

;result is 20 or 00014H

;result is -9 or OFFF7H

;result is offset of WMEM + 5

138

MOV AX, 4 + EXABS

Chapter 7: Expressions
Arithmetic Operators

;result is external const + 4

MOV AX, MEMEND - MEMSTART ;result is number of bytes

Syntax:

;between MEMSTART and MEMEND

[] Square Brackets

address [data_or_reg]

Description: Square brackets give base and/or index attributes to an address
expression or create a new address expression. The square brackets must
occur in pairs. Such pairs cannot occur within angle brackets. However, more
than one pair of square brackets can occur in a single expression.

The contents of the brackets are very limited. The only valid register names
that can be used are BX, BP, Sl, and DI. The first two, BX and BP, are base
registers and only one of the two can be present within an entire expression.
The Sl and DI registers are index registers and, like base registers, only o
these registers can be present within an entire expression. It is valid to h
both a base register and an index register in an expression. It is also pos

to place numeric constants within the brackets.

The above items can appear singly within square brackets, as in:

mov AX, wmem[BX][SI][5]

It is also valid to replace T] pairs with a '+ 'sign, as in:

mov AX, wmem[BX+SI+5]

The only time a minus sign is valid within square brackets is to subtract a
constant, as in:

mov AX, wmem[BX+SI-5]

139

Chapter 7: Expressions

Arithmetic Operators

Syntax:

The constant expression part of the square brackets modifies the offset value
of any memory value that is also part of the expression. The base and index
registers are used to denote indirect addressing as part of an expression. The
contents of the indicated registers are added to any memory expression offset
in the expression to create a final memory address.

A memory address is not required to be part of an expression which has square
brackets as part of itself. For example, take the following expression:

mov AX, [BX][SI][5]

This expression represents a memory location that is 5 bytes past the sum of
the contents of the BX and Sl registers at the moment of execution for that
instruction. The segment register used for this instruction would be the DS
register. The SSregister is used if the BP base register is part of the
expression. It is also valid to specify a different segment register through the
use of a segment override, such as:

mov AX, ES: [BX][SI][5]
mov AX, SEG1: [BX][SI][5]
mov AX, GRP1: [BX][SI][5]

. (Dot operator)

address .’ struc_field

Description: This operand accepts an address expression as its left operand
and a structure field as its right operand. The result of the operation is an
address expression whose offset is equal to the offset attribute of the left
operand plus the offset of the structure field within its structure template (in
bytes). The type of the resulting memory expression is the type of the structure
field. All other attributes are derived from the left operand. This operator is
convenient for addressing fields withimemory that contains one or more
occurrences of a given structure. For example, suppose a structure was
defined like this:

140

Chapter 7: Expressions
Arithmetic Operators

STRUCNAME STRUC
BYTEFLD DB 0
WORDFLD DW 5 DUP (3)
DT 3.14159
STRINGFL DB 'DEFAULT’
STRUCNAME ENDS

The offset of BYTEFLD, WORDFLD, and STRINGFL within this structure
template are 0,1, and 21, respectively. These structure &ei@scan be used
to reference fields within a structurerimemory, as in:

DATABLOCK STRUCNAME<>
MOV AX, DATABLOCK.WORDFLD ; WORD type
MOV CL, DATABLOCK.BYTEFLD ; BYTE type

MOV DI, OFFSET DATABLOCK
MOV AX, [DI.WORDFLD ; indirectly referencing memory

It is not valid to use the dot operator immediately after a digit, due to the
possible confusion with a real number. Instead, the operator must be
separated from the digit by parenthesis, such as:

(DATABLOCK + 2).WORDFLD ; valid
DATABLOCK + 2.WORDFLD ; lllegal

Multiplication, Division, Modulo

Syntax:
Multiplication: absval * absval
Division: absval / absval
Modulo: absval MOD absval

Description: These three operators each take two absolute values as
operands and return a single absolute value. The *'operator multiplies the
two operands and returns the result. The 7 operator divides the first operand
by the second operand. The MOD operator returns the value of the first
operand modulo the second operand. Modulo division discards the integer
qguotient and returns a value that is only tamainder. For either straight
division (/) or modulo division, the righthand operand cannot have a value of
0. Examples:

MOV AX,5*3 ;resultis 15 or 0000FH
MOV AX, (-2) *5 ;result is -10 or OFFF6H
MOV AX,5/2 resultis 2

MOV AX, 13 MOD 3 ;resultis 1

141

Chapter 7: Expressions

Arithmetic Operators

Syntax:

MOV AX, 5 SHL 2
MOV AX, 13 SHR 2
MOV AX, 44 SHL 11

SHL, SHR

absval SHL shiftvalue
absval SHR shiftvalue

Description: The SHL and SHR operators shift the first operand bitwise by
the value of the second operand. The SHL operator shifts bits to the left and
SHR shifts bits to the right. Bits that are shifted to the left beyond the
leftmost bit and bits that are shifted to the right beyond the rightmost bit are
lost. Bits with a value of O are shifted in to fill.

All 17 bits, including the sign bit, are shifted. Thus both operands must be
absolute values, and the result is also absolute.

For example, the statement

MOV AX, 1FFFFH SHR 3

places the value 3FFFH in the AX register. The binary values look like this:

1111111111111 1111 (1FFFFH, before SHR 3)

00011 111111111111 (3FFFH, after SHR 3)

Notice that the sign bit (the leftmost bit) of the argument in the example was
shifted in when the shift right occurred.

It is possible for a shift tproduce the invalid 7-bit number -65536 (10000H),
which is automatically converted to 0.

If the count is negative, the shift is performed in the opposite direction. If the
magnitude of the count is greater than 16, the result is 0.

Some other shifted values:

;result is 20 or 00014H
resultis 3
;result is 24576 or 06000H

MOV AX, (-54) SHR 3 ;resultis 16377 or 3FF9H

142

Chapter 7: Expressions
Arithmetic Operators

HIGH, LOW
Syntax:
HIGH operand
LOW operand
Description: These operators take either an absolute value or relocatable
memory expression as an argument and return a B3iZéd value of the
same type. HIGH returns the high byte of the operand, LOW returns the low
byte.
If the operand is a memory expression, it cannot contain index or base register
names.
Attributes: relocation type - high or low
Examples:

MOV AL, HIGH 01234H ;result is 012H

MOV AL, LOW 01234H ;result is 034H

MOV AH, HIGH WMEM ;result is high byte of offset
MOV AL, LOW WMEM ;result is low byte of offset

EXTRN EXTABS:ABS
MOV AL, HIGH EXTABS ;result is high byte of
;external number

The following identities applyto HIGH and LOW.

High (High X) = OH
Low (Low X) = Low X
High (Low X) = OH
Low (High X) = High X

143

Chapter 7: Expressions
Logical Operators

Logical Operators

The logical operators return values that are the result of comparing operands.
(NOT can be seen as an exception.) AND, OR, and XOR compare the bits of
their operands while EQ, NE, ...,GE all compare the values of their operands.

AND, OR, XOR

Syntax:
absval AND absval
absval OR absval
absval XOR absval

Description: These operators each take two absolute values as operands and
return a single absolute value.nlfs used to identify any given bit of the

result, bitn has its value set differently depending on the operator used. The
following rules apply:

 The AND operator will set a bit of the result to 1 if bib of both
operands is a 1; otherwise hits set to 0.

» The OR operator will set bit of the result to 1 if bih of either operand
is a 1; otherwise bit is set to 0.

 The XOR operator will set bit of the result to 1 if bih of each operand
is different; bitn is set to 0 if both bits are the same.

The operations are performed on full 17-bit values. Examples:

MOV AX, 035H AND 3145H ;result is 5
MOV AX, 035H OR 3145H ;result is 3175H
MOV AX, 035H XOR 3145H ;resultis 3170H

144

Chapter 7: Expressions
Logical Operators

NOT

Syntax:
NOT absval

Description: The NOT operator takes an absolute value as its operand and
returns an absolute value that is the one’s complement of the operand.

The one’s complement is derived by toggling the bits of the operand.nif bit
of the operand is 1, then litof the result will be 0. Similarly, if bih of the
operand is 0, bib of the result will be 1. The operation is performed on full
17-bit values.

Since the bitwise complement of OFFFFH.@)00H (-65536) (which is not a
valid 17-bit value), NOT OFFFH is defined to be 0.

Examples:

MOV AX, NOT 1 ;resultis OFFFEH
MOV AX, NOT 55 ;result is OFFC8H

EQ, NE, LT, LE, GT, GE

Syntax:
equal: operandl EQ operand?2
not equal: operandl NE operand2
less than: operandl LT operand2
less than or equal: operandl LE operand2
greater than: operandl GT operand?2
greater than or equal: operand1l GE operand2

Description: These operators each compare their operands and return a
value that depends upon the result of the comparison. The rdkb# @ if

the comparison is false and the value will be=BFH if the comparison is

true. The operands must both be absolute numbers, both be memory
expressions, or both be segment base values. Memory expressions may not
contain base or index register names, may not refer to externals, and must
reside in the same segment. It is the offset portion ofdrmory addresses
that are compared. Offsets and absolute values are compared using 17-bit
arithmetic.

145

Chapter 7: Expressions
Memory Operators

Examples:

MOV AX, 15 GT 3 ;result is OFFFFH

MOV AX, WMEM EQ BMEM ;result is 00000H

MOV AX, SEG WMEM EQ A ;result depends upon whether
;WMEM lies within segment A

Memory Operators

SHORT

Syntax:
SHORT label
Description: The SHORT operator takes a label as its operand. The
SHORT operator assures the assembler that the label will be within 127 bytes
of the current location counter. SHORT is mainly used with the JIMP
instruction, where a forward reference to a label can result in either a one-
byte or two-byte displacement. The SHORT operator informs the assembler
that a one-byte displacement may be used (which only requires one byte of
storage) where otherwise a two-byte dispfaent would result in extra object
code size. It is up to you to ensure that the label is within 127 bytes because an
error occurs if it is not. Example:
JMP SHORT FWDLAB
THIS

Syntax:
THIS type

Description: The THIS operator takes a type name as an operator and
returns anemory reference of the given type. The memory referenced will be
for the current location and segment. The length ofrtemory will be 1.

The valid types for the operand are BYTE, WORD, DWORD, QWORD,
TBYTE, NEAR, and FAR. The result of this operator may be used as either
the right-hand side of an EQU (in which case it acts the same as a LABEL

146

Chapter 7: Expressions
Memory Operators

directive) or as a memory reference in an instruction (which would be a rare
use). Note that THIS NEAR is the same as '$. (Dollar sign is the special
character used to represent the location counter.)

Attributes: segment- current segment
offset- current location counter
type - as defined
relocation type - depends upon current segment
segment- current segment if defining variable

CS-assume current CS assume value if defining label

Examples:
LAB2 EQU THIS FAR ;create FAR label
LAB1: NOP
DATAW EQU THIS WORD ;allow word accesses to bytes
DATABL DB 1
DATABH DB 2
PTR
Syntax:
type PTR operand
Description: The PTR operator is used to either set or change the type of its
operand. The valid types that may be used are BYTE, WORD, DWORD,
QWORD, TBYTE, NEAR, and FAR. The resulting expression will behave as
a variable, label, memory expression, or register expression of the given type.
Valid operands depend upon the type used. For instance, it is ssibledo
change the type of a register expression to a NEAR or FAR label.
Attributes: type - as defined

Examples:

MOV AX, WORD PTR BMEM ;access as word

JMP NEAR PTR LABFAR ;use far label as NEAR

MOV AL, BYTE PTR [BP] ;typing an anonymous
;memory reference

MOV DS: WORD PTR 10, AX ;absolute offset typing

147

Chapter 7: Expressions

Memory Operators

Syntax:

Attributes:

MOV AX, DS: WMEM

Segment or Group Override

operandl : operand2

Description: The segment override changes the segment attribute of the
second operand to that of the first operand for the duration of the instruction
statement. The first operand may be

» one ofthe segment registers (DS, ES, SS, or CS)
* the name of a segment
» the name of argup

The second operand must be a variable, label, memory expression, or register
expression. Ifthe first operand is a segment register, then the second
operand’s segment addressability attribute is changed to that of the segment
register and no further testing is done. If the first operand is a segment name
or group rame, then the ASSUME values are checked to see if a segment
register has been assumed to point to the segment or to the group. Ifone is
found, the segment relocation and addrefispbttributes are changed to that

of the matching segment register. If one is not found, it is an erssnefber,
segment overrides only affect the current instruction; the ASSUME directive
should be used for more global overrides.

The group override is useful when referring to variables or labels that belong
to segments in the group. If no override is used, all offsets are relative to the
base of the segment that the memory belongs to. The group override must be
used to make the offset relative to the base of the group, which is probably a
different value.

segment relocation set to value of group or segmeranme used
segment addressability set for variables
CS-assume set for labels if group or segmeragme used

Examples:

;offset from DS, base of segment

;that WMEM belongs to

MOV AX, SEG1: WMEM

;offset from base of SEG1, or group

;that SEG1 belongs to, depending upon

148

Syntax:

Chapter 7: Expressions
Memory Operators

;order of ASSUMES
MOV AX, GRP1: WMEM
JMP FARLAB
JMP GRP1: FARLAB

;offset from base of GRP1

;offset from base of segment

;offset from base of GRP1

OFFSET

OFFSET variable
OFFSET label

Description: The OFFSET operator takes a variable, label, or memory
expression as its operand and returns the offset value from some base as the
result. If no segment override appears in the operand, the offset will be from
the beginning of the segment. If a growgpme is used as a segment override,
then the offset will be from thegup base. Bmember that no checking is

done against the ASSUME values for the registers. To get the offset from a
group, an explicit group override must be used. In either case, the result i
immediate value, not a memory address. The value may be relocatable,
depending upon whether the operand resides in a combinable segment o
group. The result ofan OFFSET operator occupies 2 bytes ifitis a
relocatable value. Otherwise, the number of bytes depends upon the value of
the offset. Example:

MOV SI, OFFSET WMEM ;offset from segment base
MOV SI, OFFSET GRP1:WMEM ;offset from group base

Syntax:

SEG

SEG variable
SEG label

Description: The SEG operator takes a variable, label, or memory

expression as its operand and returns a segment base as its result. The base
may be relocatable, depending upon the type of the segment or group that the
operand belongs to or on any overrides that have been applied to the operand.
The memory expression may not contain index or base register names.
Externals are allowed in the operand. The size of a relocatable segment base
is always 2 bytes unless the segment definition used the AT keyword. In that

149

Chapter 7: Expressions

Memory Operators

Note

Attributes:

instance, the number of bytes may be 1 or 2, depending upon the segment
location.

The SEG operator should not be used with operands that belong to a group.
Instead, a segment register should be initialized to the group base so that all
memory addresses will be offset from that base. Otherwise,rolig gs not

being used correctly.

Note that the SEG operator may also be used in the ASSUME directive. See
the reference about the ASSUME directive in the chapter titled "Assembler
Directives" for more discussion on how SEG may be used with ASSUME.

The SEG operator will also accept a segmemh@ or a goup rame as an
operator. Since segment names aralg rames do not have segment
attributes, SEG with a segment or growgpme does not perform any function.
The assembler ignores the SEG operator and acts as if only the segment or
group rame were used.

relocation type - base

Example:

MOV AX, SEG WMEM,; load base value into AX
MOV DS, AX; initialize DS register

Syntax:

TYPE

TYPE variable
TYPE label

Description: The TYPE operator takes a variable, label, structaraa or
memory expression as its operand. TYPE returns an absolute value that
represents the type of the operand.

For most operands, the result is equal to the number of bytes allocated by a
single occurrence of the operand. This value could then be used for
incrementing a pointer into a data array, for example. The following are the
returned values for variables or labels of a given type:

150

Chapter 7: Expressions
Memory Operators
* BYTE -returns 1
* WORD -returns 2
 DWORD -returns 4
e QWORD -returns 8
« TBYTE -returns 10
* NEAR -returns -1 in two’s complement form
* FAR -returns -2 in two's complement form
» record - returns number of bytes described by an occurrence of record

e structure - returns the sum of the sizes of the directives within the
structure

Examples:

MOV AX, TYPE WMEM result is 2

MOV AX, TYPE LABFAR resultis -2 in two’s
;complement form (FFFEH)

REC1 RECORD F1:3, F2:5 ;record definition with
;RECORD directive

R1 REC1 <> ;storage allocation
;using record template
MOV AX, TYPE REC1 sresultis 1
MOV AX, TYPE R1 resultis 1
ST1 STRUC ;structure template
;definition
DB ?
DW ?
ST1 ENDS
SU1 ST1 <> ;storage allocation using
;structure template
MOV AX, TYPE ST1 ;resultis 3
MOV AX, TYPE SU1 ;resultis 3
LENGTH
Syntax:

LENGTH variable

Description: The LENGTH operator takes a variable as its operand. It
returns an absolute value equal to the number of units that were defined with
the variable. A unit mayinclude several bytes allocated by a single occurrence

151

Chapter 7: Expressions
Memory Operators

of a type, but it stillgunts as just one unit. For instance, a single word
allocation occupies two bytes, but from the point of view of LENGTH, it is
one unit (in this case one word). The length of external symbols is always
defined to be 1, regardless of how it is defined in a different file. LENGTH
does not operate on structure or record templates. Examples:

L1DB1
MOV AX, LENGTH L1 resultin AXis 1

L2 DW 1,2
MOV AX, LENGTH L2 result in AX is 2

L3 DB 5 DUP (2)
MOV AX, LENGTH L3 resultin AX is 5

L4 DW 1, 4 DUP (?)
MOV AX, LENGTH L4 resultin AX is 5

REC1 RECORD F1:3, F2:5 ;record template definition

R1 REC1 <> ;variable declared using record
;template

MOV AX, LENGTH R1 ;result in AXis 1

R2 REC1 5 DUP (<>) ;another variable with record
;template
MOV AX, LENGTH R2 ;resultin AX is 5

ST1 STRUC ;structure template def.
DB ?
DW ?

ST1 ENDS

SU1 ST1 <> ;variable declared

;using structure template
MOV AX, LENGTH SU1 ;result in AXis 1

SIZE
Syntax:

SIZE variable
Description: The SIZE operator takes a variable, structuama, sructure
field, or record name as its operand andines an absolute value equal to the
total number of bytes defined by the operand. The size is generally equal to the
length of the operand multiplied by the operand’s type. Examples:

L1DB1

MOV AX, SIZE L1 ;result in AX is 1

L2 DW 1,2

MOV AX, SIZE L2 ;resultin AX is 4

L3 DB 5 DUP (2)
MOV AX, SIZE L3 result in AX is 5

152

Chapter 7: Expressions
Memory Operators

L4 DW 1, 4 DUP (?)
MOV AX, SIZE L4 ;result in AX is 10

REC1 RECORD F1:3, F2:5 ;record template definition

R1 REC1 <> ;storage allocation using record
; template

MOV AX, SIZE R1 ;result placed in AX is 1
MOV AX, SIZE REC1 ;result placed in AXis 1
ST1 STRUC ;structure template def.

DB ?

STF1DW ?
ST1 ENDS
SU1 ST1 <> ;variable declared using

;structure template
MOV AX, SIZE ST1 ;result placed in AX is 3
MOV AX, SIZE SU1 ;result placed in AX is 3
MOV AX, SIZE STF1 ;resultin AX'is 2

153

Chapter 7: Expressions

Record Operators

Syntax:

Record Operators

Record operators are used with record structure templates and record
allocations to isolate bit fields of records and to find the actual number of bits
in a record.

MASK

MASK recfield

Description: The MASK operator takes a record field as its operand. It
returns an absolute number thall mask all the bits in a record except for
those that belong to the record field operand. A mask is a number that will
have 1's for all bits within the record field and have 0's for all other bits. It can
be either a byte- or word-sized value, dependipgn the size of the record

and the positioning of the field within the record.

The MASK operator is useful when combined with the shift value (see
"Expression Operands"in this chapter) for a record field. Together, they allow
you to extract the value of a field. First, mask the record to isolate the bits
that belong to the field. Then, shift the field so that its least significant bit is in
the Oth bit position. The value of the result will now be equal to the value in
the record field. Example:

R1 RECORD F1:5, F2:2

Ul R1<14,3>

MOV AL,U1 ;load record into register

AND AL,MASK F1

;mask out extra bits with MASK

;operator and AND command

MOV CL, F1 ;put field shift value
;in register
SHR AL,CL ;shift field to lowest bit

;position - AL now contains
;value of record field

Syntax:

WIDTH

WIDTH operand

154

Chapter 7: Expressions
Record Operators

Description: The WIDTH operator takes a record name or record field as its
operand. It returns an absolute number that is the number of bits defined in
the operand. For a record name, the valilldoe the sum of the bits in the
record fields, and will not includenused bits. For a record field, the value is
the number of bits within that particular field. Examples:

R1 RECORD F1:5, F2:2

MOV AX, WIDTH R1 resultin AX is 7
MOV AX, WIDTH F1 result in AX is 5

155

Chapter 7: Expressions
Segment and Group Operators

Syntax:

A SEGMENT BYTE

Segment and Group Operators

These operators return values that are only known at link-time. They generally
refer to the size or address of segments and groups within a program.

SEGOFFSET

SEGOFFSET segmentname

Description: The SEGOFFSET operator returns a value that is the offset of
the indicated segment from the next-lowest paragraph boundary. This value is
the same as the last hex-digit of the base address for the segment. If the
segment is paragraph or page aligned or is at an absolute location, then this
value will be 0. Otherwise, this value is a relocatable value that will be known
at final link time. The value will be range from 0 to 15, but will be word-sized
ifit is relocatable. Example:

; LOAD PARAGRAPH VALUE FOR SEGMENT

MOV AX, A

; LOAD OFFSET OF SEGMENT FROM NEAREST
; PARAGRAPH. TOGETHER, THEY FORM THE

; START LOCATION FOR THE SEGMENT

MOV BX, SEGOFFSET A

Syntax:

GRPOFFSET

groupname GRPOFFSET segmentname

Description: The GRPOFFSET operator returns the offset of a segment’s
base from the start of a group that it belongs to. The segment must be defined
as part of the group or this operatall result in an eror. Since the offset

within the group is not known until link time, this operatalt vesult in a
word-sized relocatable value. The linker will generate a value from 0 to
OFFFFH at link time, which Wthe offset of the segment’s base from the start

of the group. Example:

156

Syntax:

Chapter 7: Expressions
Segment and Group Operators

GRGRP GROUP A,B

; POINT DS AT GROUP
MOV AX, GRGRP
MOV DS, AX

; SET UP POINTER TO START

; OF SEGMENT SO LOCATIONS

; WITHIN THE SEGMENT CAN BE

; REFERENCED FROM THE GROUP
; SELECTOR

MOV SI, GRGRP GRPOFFSET B

SEGSIZE

SEGSIZE segmentname

Description: The SEGSIZE operator returns a wesided value that is the
size of the indicated segment. Since this size is not known (usually) at
assembly time, this operator generates a word-sized relocatable value. The
linker will generate a value from 0 to BFFH at link time. Note that the

linker will return the value 0 if the group size is 64K.

Example:

A SEGMENT PUBLIC

; LOAD SEGMENT SIZE.

; COULD BE USED TO MAKE

; SURE INDEX VALUES DON'T

; GO OUTSIDE OF A SEGMENT.
MOV AX, SEGSIZE A

157

Chapter 7: Expressions
Segment and Group Operators

Syntax:

GRPSIZE

GRPSIZE groupname

Description: The GRPSIZE operator returns a wesided value that is the

size of the indicated group. Since this size is not known at assembly time, this
operator generates a word-sized relocatable value. The linker will generate a
value from 0 to OFFFFH at link time, whichilMbe the size of thergup. Note

that the linker will retirn the value 0 if the group size is 64K. Examples:

GRGRP GROUP A,B

MOV AX, GRPSIZE GRGRP

158

Chapter 7: Expressions
Operator Precedence

Operator Precedence

Complex expressions, or expressions that contain multiple operators, are
evaluated according to operator precedence rules:

Expressions enclosed within parentheses are evaluated from the
innermost set of parenthesis to the outermost set. Within a set of
parenthesis, operators conform to the other precedence rules below.

Excluding parentheses, sub-expressions that have operators of higher
precedence will be calculated before sub-espioms with operators of
lower precedence. For example, a multiply operation is done before an
addition operation.

Excluding parentheses, sub-expressions which have operators of equal
precedence (Operators that appear on the same line in the following table
are of equal precedence.) are evaluated left-to-right. Left-to-right
evaluation means that if two operators of equal precedence appear in
same expression, the operator which is closer to the leftmost end of t
expression will be evaluated before an operator closer to the rightmo
end. For instance, in the expression '6* 5/ 3’ the order of evaluation
to multiply 6 by 5 and then divide by 3. The result is 10.

The ranking of operators from higher to lower precedence is given in the
following table.

159

Chapter 7: Expressions
Operator Precedence

Precedence

Operators

Higher

Lower

0,[],.<>,.,LENGTH, SIZE, WIDTH, MASK , SEGOFFSET,
SEGSIZE, GRPOFFSET, GRPSIZE

PTR, OFFSET, SEG, TYPE, THIS, Segment Override
HIGH, LOW

* [, MOD, SHR, SHL

Unary +, -

Binary +, -

EQ, NE, LT, LE,GT, GE

NOT

AND

OR, XOR

SHORT

160

Chapter 8: Instructions and Operands

Instructions and Operands

A discussion of operands and a list of recognizetturcsions.

161

Chapter 8: Instructions and Operands

Operands

Operands

You may recall that the general syntax of an assembler statement is as follows:

[label :] [prefix] keyword [operand [,...]] [;comment]

INC [BX]

This section concentrates on the operand field of this syntax.

Accepted Operands

A list of assembly language itmactions and the operand combinations
acceptable for each instruction is at the end of this chapter. Each allowable
combination has a limited range of values. Any other combination results in
an error condition.

Compatible Types

In most instances, if an instruction takes more than one operand, the operands
must be of the same type. For example, it is only possible to move a
WORD-sized value into a WORD destination. A mismatcioreoccurs if an
instruction attempts to move a WORD into a BYTE. It isgible, however,

to move a BYTE-sized immediate value into a WORD-sized destination. The
immediate is either stored as a WORD or it is sign-extended during execution.

Some instructions allow operands to be of different types. It is best to check
the list of ingructions at the end of the chapter for allowable operand
combinations.

Required Typing

Many instructions do require that theemory operand be typed. Instructions

that take a single operand generate different object code depending upon the
type of the operand. Or, perhaps the type of one operand does not restrict the
valid type of the other operand. The assembler cannot decide what object code
to output in these instances. The following instructions demonstrate some
unacceptable operand combinations:

;generate byte or word instruction?

162

Chapter 8: Instructions and Operands
Operands

ESC 5,[BX] ;5 doesn’t restrict memory
MOV [BX], 2 ;2 fits in a byte or word storage

The INC instruction accepts both BYTE and WORI@mory operands. In
the above example, the assembler could not decide which instruction to
generate.

The ESC instruction also accepts BYTE and WOR&mory operands. The
immediate value 5, in the example above, does not help limit the type of the
memory operand since the value is independent of the memory type.

For the MOV instruction above, the immediate value 2 is small enough to fit
in either a BYTE or a WORD. Again, the immediate operand does not
restrict the type sufficiently.

When in doubt, type these ambiguous egpi@ns to avoid possiblerer
conditions.

Anonymous References

Most instructions are able to accept operands that do not have type
information—references known as anonymmemory references. These
references do not have a variable or any type information associated with
them, so the assembler must use other knowledge to determine the type.
assembler may type the anonymous operand to be the same as another
operand in the instruction, or not require a type at all. The following
examples are of typing the same as another operand:

MOV AX, [BX] ;WORD since AX is a WORD-sized register
MOV [BX], AL ;BYTE since AL is a BYTE-sized register
MOV [BX], 1000 ;WORD since 1000 can't be stored in BYTE

Assumed Type With Register

The assembler can easily determine the type ohamymous reference if the
other operand is an 8086 register. Notice in the above example when AX and
AL were used. Another example of an instruction not needing a type (since it
handles all memory operands the same) is an 8087 floating pdintatien.
Example:

FLDCW [BX]

163

Chapter 8: Instructions and Operands

Operands

Operand Positioning

If an instruction takes a single operand, the operand position (other than it
must be in the proper place) is not critical. Instructions which accept two
operands generally treat the first operand as the destination operand and the
second operand as the source operand. Thement of data is then from the
second operand into the first. The instruction

MOV AX, BX

takes the contents of the BX register and places it in the AX register. There

are exceptions. Some string instructions use the first operand as the source
operand and the second operand as the destination operand. Check the usage
of the operands when in doubt. The instructfienat the end of this chapter

—and in thelntel IAPX 86/88, 186/188 Usersaiual— includes information

on data movement between operands.

Immediate Values

Immediate values are operands in many assembly languagections. In

most cases, the immediate value is a source operand. This value is stored
directly in the destination operand or used to modify a value already stored
elsewhere, sayin a register or memory location.

Immediate values are not always numbers. Immediate values are also
generated in many non-obvious ways as shown in the "Esjores" chapter.

Range of Immediate Values

Immediate values can be absolute, relocatable, or external numbers. The size
of the value is determined by the instruction used, by the value itself, and by
what type is assumed for it.

An absolute immediate may range anywhere from -65535 to 65535 depending
upon the instruction and the type of the operand. The INT (interrupt)
instruction, for instance, can only take a value from 28®since that is the
range of interrupt values for t18986. A variable of type BYTE may take a

value from -255 to 255. A variable of type WORD may take a value from
-65535 to 65535.

A relocatable or external immediate is always assumed to be a 16-bit value
unless modified with a HIGH or LOW operator.

164

Chapter 8: Instructions and Operands
Operands

Registers

A very common operand is a processor register. A processor register is a
memory store that is internal to tB886/186rocessors, and tt8987

co-processor. Internal registers can be source operands or destination
operands for data. Some registers have special tasks which restrict their uses in
programs. Since some instructions may indirectly use or modify these
restricted registers, take care their contents are not accidentally modified or
misused.

The figure below shows the general purpose and special registers for the
8086/18Gprocessor. Following the figure is a more detailed description of the
various processor registers.

165

Chapter 8: Instructions and Operands

Operands
DATA REGISTERS

7 o/
AH (HIGH BYTE OF AX) AL (LOW BYTE OF AX)
BH (HIGH BYTE OF BX) BL (LOW BYTE OF BX)
CH (HIGH BYTE OF CX) CL (LOW BYTE OF CX)
DH (HIGH BYTE OF DX) DL (LOW BYTE OF DX)

POINTER AND INDEX REGISTERS
15

SP (STACK POINTER)

BP (BASE POINTER)

SI (SOURCE INDEX)

DI (DESTINATION INDEX)

SEGMENT REGISTERS

CS (CODE)

DS (DATA)

SS (STACK)

ES (EXTRA)

Figure 8-1. 8 086/186 Registers

166

Chapter 8: Instructions and Operands
Operands

16-bit Registers AX, BX, CX, DX, DI, SlI, SP, BP

There are eight 16-bit (WORD-sized) gengratpose registers located on

the 8086/18(processors referenced by the unique registenas AX, BX,

CX, DX, DI, SI, BP and SP. AX, BX, CX, and DX are general purpose data
registers. For most instructions that allow a register as an operand, these four
registers are used. DI, SI, BX and BP are the index and base registers.

Some instructions explicitly use certain registers. The CX register, for
instance, is used to control looping. Many string instructions use the Sl as a
source pointer and DI as a destination pointer. The SP register points to the
top of stack and is modified whenever CALLs, PUSHSs, or POPs occur. Data
loss can occur through a side effect of these explicit usages. Be careful to
protect the contents of these registers so they are not accidentally modified
through the use of an instruction.

8-bit Registers AL, AH, BL, BH, CL, CH, DL, DH

There are also eight 8-bit (BYTE-sized) registers. The uniguees given to
them are AL, AH, BL, BH, CL, CH, DL, and DH. These registers are not
separate registers; instead they are the byte-addressgide and lower
halves of the foull6-bit generapurpose data registers (AX, BX, CX, and
DX). AX, for instance, is equivalent to AL+ AH. (Not the value, but the
register.)

The L’in AL means the low byte of AX and the 'H'in AH means the high

byte AX. If you refer to AL, the assembler understands that you mean the low
byte of AX. If you refer to AX, the assembler understands that you mean the
entire 16 bits of AX.

You may load data into these registers either as a single 16-bit quantity or as
two 8-bit quantities. The resulting value in the register is the same.

Segment Registers CS, DS, SS, ES

8086/186memory addresses are generated by offsetting from segment
registers. To be able to address a particular location in memory, that address
must be contained in one of the four, currently active physical segments. Each
segment has a maximum size of 64K and each has a particular register that
contains the base address (lowest memory location) of the segment. Each
segment has a different purpose:

167

Chapter 8: Instructions and Operands

Operands

» Executable code (program code) is located in the Code segment and is
addressable through the CS (Code Segment) register.

« Datais most often located in the Data segment (although it can be in any
of the four segments) and is addressed through the DS (Data Segment)
register.

» The program stack is located in the Stack segment and is addressed
through the SS (Stack Segment) register.

» Data often islocated in the Extra segment and is addressed via the ES
(Extra Segment) register.

Memory Addressing A memory address is a 20-bit value —allowing the
8086/186 to address 1 megabyter@mory— that is calculated from the

segment base address located in one of the segment registers, and an offset
supplied either by the IP (instruction pointer), or by operands contained in the
instruction itself. To calculate thrmemory address, the 16-bit value in a given
segment register is first shifted to the left 4 bits. Then the offset value (either a
16-bit or 8-bit value) is added to the shifted value to generate the 20-bit
address necessary to access memory.

Segment Register Use The four segment registers have restricted use. The
only assembly instructions that may reference these registers as operands are
the MOV, PUSH, and POP instructions.

Some Assembler Directives also use the register names as part of their syntax,
but this use does not cause object code to be generated.

Other instructions indirectly reference the segment registers. LDS and LES,
for instance, could change the segment register contents. CALLs and JMPs
change the CS register if the branch takes execution out of the current
segment. Finally, as noted in the chapter titled "Expressions," segment register
names may be used as overrides in memory operands.

8087 Floating Point Registers ST(0)...ST(7)

The 8087 caprocessor has eight floating point stack registers. Theyare
referenced by the names ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), and
ST(7). ST(0) may be referenced as just ST without the appended (0). These
registers are only used with some 8087 floating poirttuicsions.

168

Chapter 8: Instructions and Operands
Operands

They are not directly accessible to the 8086fi8&essors. Instea®@087
instructions make the contents of these registers availabieimory. The
8087 floating point stack registers are 80 bits in size toré $heir values in
IEEE floating point format.

Memory Expressions and the MODRM Byte

Memory expressions may be either simple memory references (using a
variable name by itself) or a complex ex@si®ns involving register indirection

or offsets within structures. A simpheemory reference will always take the

type of the variable, so that type must either be compatible with an instruction
or it must be re-typed with the PTR operator. Examples:

MOV AX, WMEM ;simple variable
MOV AX, [BX][SI] ;indirect anonymous
;memory reference
MOV AX, [BP].SFWORD ;indirect anonymous memory
;reference with offset
MOV AX, WMEM[BP][DI] ;indirect memory reference
MOV AX, STR1.SFWORD ;structure field reference

MOV AX, WORD PTR DMEM ;typed memory reference

Physical Address Calculation

The processor must generate a physical address fonezlory reference.
The offset part of the address —the value which is added to the shifted
segment register address— may be coded into the instruction in one of fo

ways:
 As adirect 16-bit offset.

* Asan indirect offset through a base register, BX or BP, optionally with an
added (or subtracted) 8-bit #6-bit displaement.

» Asan indirect offset through an indexregister, Sl or DI, optionally with
an added (or subtracted) 8-bit I8-bit displaement.

* Asan indirect offset through the sum of one base register and one index
register, optionally with an added (or subtracted) 8-bitGbit
displacement.

MODRM Byte

The information describing how the offset is derived is stored in the object
code in a special byte called the MODRM byte. This byte has three fields:

169

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

1 Thefirst field describes how many bytes are required to hold the
displacemenportion of the address. This field can specifythat 0, 1, or 2
bytes are required. If the value is a relocatable or external value, two bytes
are always required.

2 The second field contains a register code or part of the code for the
instruction; it is not relevant to this section.

3 The third field contains information describing what base and index
registers are used, if any, when generating the address.

The MODRM byte, along with any displacement value, determines the offset
of the memory address referenced in an instructiem&nber, the value is

just the offset of the memory address. The base from which to offset must still
be decided.

Single Memory Expression per Instruction

Each memory expression is either a source or destination for the instruction.
Most instructions allow only a singleemory expression, since the MODRM

byte can only describe one. Some string instructions may havagwwry
expressions as operands, but these instructions are special cases because the
operands are only used to check for segment addressability. Their offsets are
not emitted as object code. Instead, the Sl and DI registers are used for
addressing thenemory.

Segment Addressability and Overrides

The 8086 or 8018processor generatesreemory address by shifting the value
from a segment register four bits to the left and then adding an offset to the
shifted value. A segment of memory, up to a maximum of 64K bytes in size, is
active only if one of the four segment registers points to that particular piece
of memory.

Note that the segment is a physical segment, a physical piece of memory.
These physical segments contain the logical segments of your assembly
language program that you identified through SEGMENT/ENDS assembler
directive pairs and other, similar means.

170

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

With the ASSUME assembler directive, you tell the assembler what values to
assume as the base locations of the currently active segments. The ASSUME
directive, then, lets you inform the assembler of the relationship between the
logical segments you have defined in the program and the physical segments
where they will eventually be located.

Addressability Checking

During assembly, if the assembler encounters an instruction that generates a
memory reference, the assembler checks that reference against the value in the
ASSUME for that segment. The assembler generates an error if the location

in memory cannot be accessed through that particular segment register. The
exception to checking against the ASSUME is when a memory reference
contains a specific segment override.

NEAR and SHORT label references are also checked for addressability
through the CS segment register to assure the assembler that the label can be
reached during execution. A segment or groama may be used to override a
label if the CS segment register value will be different than tinaeatly

assumed.

Addressability checking is done so that tleerect object code may be
generated. Unless a memory reference contains a segment override, the
instruction is not preceded by a segment override byte in the generated o
code. If no segment override byte is coded with the instruction, then the
instructionmemory reference defaults to a certain segment, depending upon
the nature of the instruction.

Default Segments

If a memory reference does not specifically name a segment registegh a
segment override, there are default segment registers for memory references.
The CSregister is the default for instruction fetching. The DS segment
register is the default for most memory data references, unless BP (a base
register) is specified for register indirection. The SS segment register is the
default if BP is used. Some string instructions default to the ES segment
register with certain operands.

Although there are default segment registers for references, you it wstest
the ASSUME directive to inform the assembler where the bases of these
segments are located; again, to specify the relationship between logical and
physical segments and to aid in addressability checking.

171

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

Segment Overrides

An instruction may override these default registers by including a segment
override in the instruction operand. There are two reasons why a segment
override might be included in a memory reference:

 The memorylocation accessed in not located in the default segment that
would be used with a particular instruction.

 The memorylocation accessed is located within a group in a segment. In
this instance, the base of the group must be usaddorory access, not
the base of the segment.

The override holds for the duration of the instruction only. Segment overrides
do not alter the contents of segment registers or the values specified in
ASSUME directives.

Improper Uses of Segment Overrides

The section on default segments mentions that some string instructions
default to the ES register. For these string instructions, you may not use
segment overrides for string operands. You may use segment overrides,
however, for the other memory operands in those instructions.

These and other exceptions are noted in the listing tiic$ons at the end
of this chapter.

Segment Override Byte

When the assembler generates code for an instruction containing a segment
override, the assembler precedes the instruction code with a segment override
byte. (Whether it will appear or not is discussed below.) This override byte, if
present, causes a specific segment register to be used to address that memory,
regardless of which segment the variable belongs to. In the segment override
byte, specific values are associated with specific registers. Examination of these
values can tell you which segment the override has been generated for. The
values are

CS - 2EH
DS - 3EH
SS - 36H
ES - 26H

172

Chapter 8: Instructions and Operands
Segment Addressability and Overrides

Overrides and Checking Against ASSUME

If a segment name is used to override the default segment value for a memory
reference, then the ASSUME value for the override segment is checked to see
if it has been set to either

» the segment named in the override, or
e to agroup that contains the segmeathed in the override.
If a group rame is used, then theaqp rame must match exactly.

Examples of segment overrides:

MOV AX, SEG1: WMEM ;matches segment or group
MOV AX, GRP1: WMEM ;matches group only

Segment Override Byte Generation
A memoryreference that includes a segment override generates a segment
override byte depending upon the outcome of the following checks:

1 Ifthe memoryis addressable by the default segment register for that type
of instruction and operand, then the instruction needs no override byte.

2 Ifthis test fails, then the segment registers are checked in the followin
order: DS, ES, CS, and SS. If the memory expression is addressable b
of these registers, then an override byte is generated for that register.

3 Ifno register match occurs, an error is generated. The checks are specific.
If the variable used in the memory expression was an external defined
outside of a segment, it can only match an ASSUME segment that has
been set to the SEG value of the external or to a group that includes that
segment.

173

Chapter 8: Instructions and Operands

The Instruction Set

The Instruction Set

This section contains the instruction set accepted byd®@assembler. All
operand combinations are listed for eachringtion. Some of these

instructions or operand combinations are only valid in certain modes (such as
80186 or V20). These restrictedtingctions are explained in the notes at the
end of the list of insuctions.

A special code denotes what operand patterns are allowed for each
instruction. Ifno operands are shown, then none are expected for that
instruction. Otherwise, each operanit have a rame, indicating what the
operand does, followed by a colon and a code indicating what type of operand
is to be used. If an operand is restricted to certain values, then these values will
be listed in parenthesis after the code. If more than one restricted value is
possible, then theyilvbe separated by comas. Numeric rangesliibe

denoted by their boundary values.

174

Chapter 8: Instructions and Operands
The Instruction Set

Table 8-1. Operand Codes

AB
AW
CB

CD
Ccw

DB
DW
EB
ED
EW

MB
MW
MD
MQ
MT
RB
RW

XB

XW

AL only

AX only

SHORT label with current segment and within
127 bytes oferrent location

FAR label, offset and base

NEAR label, within current segment

17-bit immediate value

1-byte immediate value, from -255 to 255
2-byte immediate value, from -65535 to 65535
either an 8-bit register or BY TE-type memory expression
DWORD-type memory expression

either a 16-bit register or WORD-typmeemory expression
8087 floating point stack register

any type of memory expression

BYTE-type memory expression

WORD-type memory expression

DWORD-type memory expression

QWORD-type memory expression

TBYTE-type memory expression

8-bit register

16-bit register

segment register

ST(0); top of 8087 floating point register stack
BYTE-type, simple memory expression;

no register indirection

WORD-type, simple memory expression;

no register indirection

175

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

as86 Assembler Instruction Set

Table 8-2 Assembler Instruction Set.

AAA

AAD

AAM

AAS

ADC dst:AB,src:DB
ADC dst:AW,src:DB
ADC dst:AW,src.DW
ADC dst:EB,src:DB
ADC dst:EB,src:RB
ADC dst:EW,src:DB(-128,127)
ADC dst:EW,src:DW
ADC dst:EW,src:RW
ADC dst:RB,src:EB
ADC dst:RW,src:EW
ADD dst:AB,src:DB
ADD dst:AW,src:DB
ADD dst:AW,src:.DW
ADD dst:EB,src:DB
ADD dst:EB,src:RB
ADD dst:EW,src:DB(-128,127)
ADD dst:EW,src.DW
ADD dst:EW,src:RW
ADD dst:RB,src:EB
ADD dst:RW,src:EW
ADDA4S

ADDA4S dst:M,src:M
AND dst:AB,src:DB

(Note 3)
(Note 3)

176

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

AND
AND
AND
AND
AND
AND
AND
AND
AND
BOUND
BOUND
BRKEM
CALL
CALL
CALL
CALL
CALL
CBW
CLC
CLD
CLlI
CLR1
CLR1
CLR1
CLR1
CMC
CMP
CMP
CMP
CMP
CMP
CMP

dst:AW,src:.DB
dst:AW,src:.DW
dst:EB,src:DB
dst:EB,src:RB
dst:EW,src:DB
dst:EW,src:.DW
dst:EW,src:RW
dst:RB,src:EB
dst:RW,src.EW
indx:RW,bptr:MD
indx:RW,bptr:-MW
vector:Db
addr:CB

addr:CD
addr:CW
addr:ED
addr:EW

dst:Eb,off:D(0,7)

dst:Eb,off:Rb(CL)
dst:Ew,off:D(0,15)
dst:Ew,off:Rb(CL)

dst:AB,src:DB
dst:AW,src:DB
dst:AW,src:DW
dst:EB,src:DB
dst:EB,src:RB
dst:EW,src:DB(-128,127)

(Note 2)
(Note 2)
(Note 3)

(Note 3)
(Note 3)
(Note 3)
(Note 3)

177

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

CMP dst:EW,src:DW

CMP dst:EW,src:RW

CMP dst:RB,src:EB

CMP dst:RW,src:EW

CMP4S (Note 3)

CMP4S dst:M,src:M (Note 3)
CMPS SI__ptr:MB,DI__ptr:MB (Note 1)
CMPS SI__ptr:MW,DI__ptr:-MW (Note 1)
CMPSB

CMPSW

CwD

DAA

DAS

DEC dst:EB

DEC dst:RW

DIV divisor:EB

DIV divisor:EW

ENTER disp:D(0,0FFFFH),level:D(255) (Note 2)

ESC opcode:DB(0,63),addr:EB

ESC opcode:DB(0,63),addr:ED

ESC opcode:DB(0,63),addr:EW

EXT dst:Rb,count:D(0,15) (Note 3)
EXT dst:Rb,src:Rb (Note 3)
F2XM1

FABS

FADD

FADD dst:F,src:T

FADD dst:T,src:F

FADD memop:MD

FADD memop:MQ

FADDP dst:F,src:T

FBLD memop:MT

178

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

FBSTP
FCHS
FCLEX
FCOM
FCOM
FCOM
FCOM
FCOMP
FCOMP
FCOMP
FCOMP
FCOMPP
FDECSTP
FDISI
FDIV
FDIV
FDIV
FDIV
FDIV
FDIVP
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVRP
FENI
FFREE
FIADD
FIADD
FICOM
FICOM

memop:MT

fpst:F
memop:MD
memop:MQ

fpst:F
memop:MD
memop:MQ

dst:F,src:T
dst:T,src:F
memop:MD
memop:MQ
dst:F,src:T

dst:F,src:T
dst:T,src:F
memop:MD
memop:MQ
dst:F,src:T

fpst:F
memop:MD
memop:MW
memop:MD
memop:MW

179

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

FICOMP memop:MD
FICOMP memop:MW
FIDIV memop:MD
FIDIV memop:MW
FIDIVR memop:MD
FIDIVR memop:MW
FILD memop:MD
FILD memop:MQ
FILD memop:MW
FIMUL memop:MD
FIMUL memop:MW
FINCSTP

FINIT

FIST memop:MD
FIST memop:MW
FISTP memop:MD
FISTP memop:MQ
FISTP memop:MW
FISUB memop:MD
FISUB memop:MW
FISUBR memop:MD
FISUBR memop:MW
FLD fpst:F

FLD memop:MD
FLD memop:MQ
FLD memop:MT
FLD1

FLDCW memop:M
FLDENV memop:M
FLDL2E

FLDL2T

FLDLG2

180

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

FLDLN2
FLDPI
FLDZ
FMUL
FMUL
FMUL
FMUL
FMUL
FMULP
FNCLEX
FNDISI
FNEN
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW
FPATAN
FPO2
FPO2
FPO2
FPO2
FPO2
FPO2
FPREM
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSQRT

dst:F,src:T
dst:T,src:F
memop:MD
memop:MQ
dst:F,src:T

memop:M
memop:M
memop:M
memop:M

opcode:D(0,127)
opcode:D(0,15),addr:Mb
opcode:D(0,15),addr:Md
opcode:D(0,15),addr:Mq
opcode:D(0,15),addr:Mt
opcode:D(0,15),addr:Mw

memop:M
memop:M

(Note 3)
(Note 3)
(Note 3)
(Note 3)
(Note 3)
(Note 3)

181

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

FST
FST
FST
FSTCW
FSTENV
FSTP
FSTP
FSTP
FSTP
FSTSW
FSUB
FSUB
FSUB
FSUB
FSUB
FSUBP
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBRP
FTST
FWAIT
FXAM
FXCH
FXCH
FXTRACT
FYL2X
FYL2XP1
HLT
IDIV

fpst:F
memop:MD
memop:MQ
memop:M
memop:M
fpst:F
memop:MD
memop:MQ
memop:MT
memop:M

dst:T,src:F
dstF,src:T
memop:MD
memop:MQ
dst:F,src:T

dst:F,src:T
dst:T,src:F
memop:MD
memop:MQ
dst:F,src:T

fpst:F

divisor:EB

182

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

IDIV divisor:.EW

IMUL dst:RW,srcl:EW,src2:DB(-128,127) (Note 2)
IMUL dst:RW,src1l:EW,src2:DW (Note 2)
IMUL dst:RW,src2:DB(-128,127) (Note 2)
IMUL dst:RW,src2:DW (Note 2)
IMUL mplier:EB

IMUL mplier:EW

IN dst:AB,port:DB

IN dst:AB,port:RW(DX)

IN dst:AW,port:DB

IN dst:AW,port:RW(DX)

INC dst:EB

INC dst:EW

INC dst:RW

INS DI__ptr:EB,port:RW(DX) (Notes 1,2)
INS DI__ptr:EW,port:RW(DX) (Notes 1,2)
INS dst:Rb,count:D(0,15) (Note 3)
INS dst:Rb,src:Rb (Note 3)
INSB (Note 2)
INSW (Note 2)
INT itype:DB(3)

INT itype:DB

INTO

IRET

JA place:CB

JAE place:CB

JB place:CB

JBE place:CB

JC place:CB

JCXZ place:CB

JE place:CB

JG place:CB

183

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

JGE place:CB
JL place:CB
JLE place:CB
JMP place:CB
JMP place:CD
JMP place:CW
JMP place:EW
JMP place:MD
JNA place:CB
JNAE place:CB
JNB place:CB
JNBE place:CB
JNC place:CB
JNE place:CB
ING place:CB
IJNGE place:CB
JNL place:CB
JNLE place:CB
JNO place:CB
JNP place:CB
JINS place:CB
JNZ place:CB
JO place:CB
JP place:CB
JPE place:CB
JPO place:CB
JS place:CB
Jz place:CB
LAHF (Note 2)
LDS dst:RW,src:ED
LEA dst:RW,src:M
LEAVE

184

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

LES dst:RW,src:ED
LOCK PREFX

LODS Sl ptr:MB
LODS SI___ptr:MW
LODSB

LODSW

LOOP place:CB
LOOPE place:CB
LOOPNE place:CB
LOOPNZ place:CB
LOOPZ place:CB

MOV dst:AB,src:XB
MOV dst:AW,src:XW
MOV dst:EB,src:DB
MOV dst:EB,src:RB
MOV dst:EW,src:DB
MOV dst:EW,src:DW
MOV dst:EW,src:RW
MOV dst:EW,src:S
MOV dst:RB,src:EB
MOV dst:RW,src:EW
MOV dst:S(ES),src:EW
MOV dst:S(SS,DS),src:EW
MOV dst:XB,src:AB
MOV dst:XW,src:AW
MOVS DI__ptr:MB,SI__ptr:MB (Note 1)
MOVS DI__ptr:MW,SI__ptr:MW (Note 1)
MOVSB

MOVSW

MUL mplier:EB

MUL mplier:EW

NEG dst:EB

185

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

NEG dst:EW

NOP

NOT dst:EB

NOT dst:EW

NOT1 dst:Eb,off:D(0,7) (Note 3)
NOT1 dst:Eb,off:Rb(CL) (Note 3)
NOT1 dst:Ew,off:D(0,15) (Note 3)
NOT1 dst:Ew,off:Rb(CL) (Note 3)
OR dst:AB,src:DB

OR dst:AW,src:DB

OR dst:AW,src:.DW

OR dst:EB,src:DB

OR dst:EB,src:RB

OR dst:EW,src:DB

OR dst:EW,src:DW

OR dst:EW,src:RW

OR dst:RB,src:EB

OR dst:RW,src:EW

ouT port:DB,dst:AB

ouT port:DB,dst:AW

ouT port:RW(DX),dst:AB

ouT port:RW(DX),dst:AW

OUTS port:RW(DX),SI_ptr:EB (Note 2)
OUTS port:RW(DX),SI_ptr:EW (Note 2)
OUTSB (Note 2)
OuUTSW (Note 2)
POP dst:EW

POP dst:RW

POP dst:S(ES)

POP dst:S(SS,DS)

POPA (Note 2)
POPF

186

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

PUSH src:DB(-128,127) (Note 2)
PUSH src:DW (Note 2)
PUSH Src:EW

PUSH src:RW

PUSH src:S

PUSHA (Note 2)
PUSHF

RCL dst:EB,count:DB(0,31) (Note 2)
RCL dst:EB,count:DB(1)

RCL dst:EB,count:RB(CL)

RCL dst:EW,count:DB(0,31) (Note 2)
RCL dst:EW,count:DB(1)

RCL dst:EW,count:RB(CL)

RCR dst:EB,count:DB(0,31) (Note 2)
RCR dst:EB,count:DB(1)

RCR dst:EB,count:RB(CL)

RCR dst:EW,count:DB(0,31) (Note 2)
RCR dst:EW,count:DB(1)

RCR dst:EW,count:RB(CL)

REP PREFX

REPC PREFX (Note 3)
REPE PREFX

REPNC PREFX (Note 3)
REPNE PREFX

REPNZ PREFX

REPZ PREFX

RET

RET src:DB

RET src:DW

ROL dst:EB,count:DB(0,31) (Note 2)
ROL dst:EB,count:DB(1)

ROL dst:EB,count:RB(CL)

187

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

ROL dst:EW,count:DB(0,31) (Note 2)
ROL dst:EW,count:DB(1)

ROL dst:EW,count:RB(CL)

ROL4 dst:Eb (Note 3)

ROR dst:EB,count:DB(0,31) (Note 2)
ROR dst:EB,count:DB(1)

ROR dst:EB,count:RB(CL)

ROR dst:EW,count:DB(0,31) (Note 2)
ROR dst:EW,count:DB(1)

ROR dst:EW,count:RB(CL)

ROR4 dst:Eb (Note 3)

SAHF

SAL dst:EB,count:DB(0,31) (Note 2)
SAL dst:EB,count:DB(1)

SAL dst:EB,count:RB(CL)

SAL dst:EW,count:DB(0,31) (Note 2)
SAL dst:EW,count:DB(1)

SAL dst:EW,count:RB(CL)

SAR dst:EB,count:DB(0,31) (Note 2)
SAR dst:EB,count:DB(1)

SAR dst:EB,count:RB(CL)

SAR dst:EW,count:DB(0,31) (Note 2)
SAR dst:EW,count:DB(1)

SAR dst:EW,count:RB(CL)

SBB dst:AB,src:DB

SBB dst:AW,src:DB

SBB dst:AW,src:DW

SBB dst:EB,src:DB

SBB dst:EB,src:RB

SBB dst:EW,src:DB(-128,127)

SBB dst:EW,src:DW

SBB dst:EW,src:RW

188

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

SBB dst:RB,src:EB

SBB dst:RW,src:EW

SCAS Dl__ ptr:MB (Note 1)

SCAS DI__ptr:MW (Note 1)

SCASB

SCASW

SET1 dst:Eb,off:D(0,7) (Note 3)
SET1 dst:Eb,offRb(CL) (Note 3)
SET1 dst:Ew,off:D(0,15) (Note 3)
SET1 dst:Ew,off:Rb(CL) (Note 3)
SHL dst:EB,count:DB(0,31) (Note 2)
SHL dst:EB,count:DB(1)

SHL dst:EB,count:RB(CL)

SHL dst:EW,count:DB(0,31) (Note 2)
SHL dst:EW,count:DB(1)

SHL dst:EW,count:RB(CL)

SHR dst:EB,count:DB(0,31) (Note 2)
SHR dst:EB,count:DB(1)

SHR dst:EB,count:RB(CL)

SHR dst:EW,count:DB(0,31) (Note 2)
SHR dst:EW,count:DB(1)

SHR dst:EW,count:RB(CL)

STD

STI

STOS DI__ptr:MB (Note 1)

STOS DI__ptr:MW (Note 1)

STOSB

STOSW

SUB dst:AB,src:DB

SUB dst:AW,src:DB

SUB dst:AW,src:DW

SUB dst:EB,src:DB

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

SUB
SUB
SUB
SUB
SUB
SUB
SUBA4S
SUBA4S
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST1
TEST1
TEST1
TEST1
WAIT
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XLAT
XLATB
XOR

dst:EB,src:RB

dst:EW,src:DB(-128,127)

dst:EW,src:.DW
dst:EW,src:RW
dst:RB,src:EB

dst:RW,src:EW

dst:M,src:M(Note 3)

dst:AB,src:DB
dst:AW,src:DB
dst:AW,src:.DW
dst:EB,src:DB
dst:EB,src:RB
dst:EW,src:DB
dst:EW,src:DW
dst:EW,src:RW
dst:RB,src:EB
dst:RW,src:EW
dst:Eb,off:D(0,7)
dst:Eb,off:Rb(CL)
dst:Ew,off:D(0,15)
dst:Ew,off:Rb(CL)

dst:AW,src:RW
dst:EB,src:RB
dst:EW,src:RW
dst:RB,src.EB
dst:RW,src:AW
dst:RW,src.EW
table:MB

dst:AB,src:DB

(Note 3)

(Note 3)
(Note 3)
(Note 3)
(Note 3)

190

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

Table 8-2. Assembler Instruction Set (Cont'd)

XOR dst:AW,src:DB

XOR dst:AW,src:DW

XOR dst:EB,src:DB

XOR dst:EB,src:RB

XOR dst:EW,src:DB

XOR dst:EW,src:DW

XOR dst:EW,src:RW

XOR dst:RB,src:EB

XOR dst:RW,src:EW

Note 1: CMPS second operand must be ES addressable.

INS operand must be ES addressable.

MOVS first operand must be ES addressable.

SCAS operand must be ES addressable.

STOS operand must be ES addressable. The register is always used
address these operands, even if the ASSUMEd contents of ES
DS are the same.

Note 2: These instruction/operand combinatiorisgenerate code that works correctly on an
80186, or a V20/V30, but not an 8086. A warning is printed whenever one of these
combinations is used in 8086 Mode.

Note 3: These instruction/operand combinations are accepted only in V20/V30 Mode.

191

Chapter 8: Instructions and Operands
as86 Assembler Instruction Set

192

Chapter 9: Assembler Controls

Assembler Controls

Description of assembler controls and control defaults.

193

Chapter 9: Assembler Controls

Assembler controls are internal assembler switches which let you enable and
disable certain aspects of the assembly process. This chapter describes
assembler controls and control defaults.

Ifa [NO] appearsin the heading, it indicates that the word NO can be
prefixed to a control to make it do the opposite of what the control does
normally. For example, LIST turns on the outfisting, but NOLIST urns
off printing of the listing. (The -L ammand line option causedisting to be
generated.)

194

Chapter 9: Assembler Controls
General Syntax for Assembler Controls

General Syntax for Assembler Controls

The syntax of a control line in the source code is:

$control[(parameter)] [...]

The dollar sign may be preceded by tabs or blanks. Separators must be
included between adjacent controls. Examples:

$XREF
$INCLUDE(filename) DEBUG SYMBOLS
$PRINT ERRORPRINT(FILENAME)

Primary and General Controls

Assembler controls are classified as either primary or general. Primary control
statements occur only on the first few lines of therse program before any
non-control stagments (other than comments and blank lines). Primary
controls are not processed when they occur after argnstait other than a
control line; their presence after any statement other than a control line
causes an error. General controls, however, can be specified at any time in
the source program. In most instances, an error in either kind of control line
causes all remaining controls on the line to moigd.

Controls on the Command Line

Assembler controls may also be included on the command line when the
assembler is invoked. If a primary control is entered on both the command
line and in the first lines of the source file being assembled, the control from
the command line overrides the control in the file for that particular assembly.

If a general control is entered on both the command line and in the file (since
general controls can appear anywhere in the file, the general control might be
far, relatively, from the beginning of the file), then the control from the
command line is in effect until the control in treusce file is found. At that
point, the source file control overrides themsnand line control for the rest

of the assembly.

195

Chapter 9: Assembler Controls
General Syntax for Assembler Controls

$MOD186

Control Conflicts

If a primary control conflicts with another primary control and both are in the
source file, then the one that appears last takes effect. If the conflict is between
a control on the command line and one in the file, then the control which
appears on the command line overrides the one in the file.

If general controls conflict (whether both in the file or one on the command
line and one in the file), then the control which appears last will be the one to
take effect. Example:

$MODO086 ;this control is last, it will be the one

;to take effect

Controls and File Names

Certain controls accept a file name as a parameter. The file name parameters
are optional, except with INCLUDE, and are ignored with all controls except
INCLUDE. The [NO] form of these controls does not accept a file name.

Control Abbreviations

Each control can be abbreviated to a two-character equivalent; the
abbreviations are listed with each control. Abbreviations may be negated if the
full name of the control can be negated. Controls are not case-sensitive;
upper-case and lower-case letters are equivaleame®ber that their

arguments may be case sensitive, although the controls are not.

Controls and the Macro Preprocessor (ap86)

Most controls are used only by the assembler. The INCLUDE control acts
differently, however, if the source file is processed by the macro preprocessor
before assembly. If the source file contains INCLUDE controls and does go
through the macro preprocessor, then the macro preprocasxpand the
INCLUDESs. The output from the preprocessadli then contain the include

files and will no longer contain the INCLUDE contr¢fet a problem, since
they are no longer necessary). The macro preprocessor does not act on any
other assembler controls.

196

Chapter 9: Assembler Controls
Primary Controls

Primary Controls

[NOJCASE

shorthand = [NO]CA
default = CASE

Causes symbols to be case sensitive. That is, upper and lower case letters are
not equivalent. Ifthis control is negated, then all lower case characters in
symbols will be treated agper case. This control does not affect text within
strings (except for class names).

Note All Intel-generated OMF will contain case insensitive symbols.

DATE(string)

shorthand = DA
(No default necessary.)

The DATE control has no effect. It is supplied for Intel compatibility, and its
use will not generate anrer. The date printed on thisting and placed in the
object file is obtained from the operating system.

197

Chapter 9: Assembler Controls
Primary Controls

[NO]DEBUG

shorthand = [NO]DB
default = DEBUG

Causes symbolic debug and type information to be placed into the output
object module. By default, only non-PURGEGd variables, labels and numbers
are placed into the object module.

[NOJERRORPRINT (filename)

shorthand = [NOJEP
default= ERRORPRINT

This control causes error and warning information to be displayed on standard
error. The filemme, if present, isipred and is only allowed for Intel

compatibility. The noeorprint control suppresses error and warning

messages from being displayed on standard error. The nowarning control may
be used to suppress only warning messages while allowing error messages to be
displayed.

[NOJEXTERN_CHECK

shorthand = [NO]EC
default = EXTERN_CHECK

This control causes the use of external symbols to check that an ASSUME
register has been defined such that the external symbol can be referenced from
the ASSUME register. The noextern_check control causes the assembler to
allow any use of an external symbol without verifying that the symbol is
accessibleirough whatever assume register is used to reference that symbol.
This then requires the user to make sure that segment registers are correctly
set up to reference the segment that a given external symbol belongs to.

198

Chapter 9: Assembler Controls
Primary Controls

GEN

shorthand = GE
(No default necessary.)

Supplied for Intel compatibility. The assembler does no mpoooessing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

GENONLY

shorthand = GO
(No default necessary.)

Supplied for Intel compatibility. The assembler does no mpoooessing.
This is done by the macro preprocessor, ap86(1). Therefore, this control has
no effect.

[NOJGROUP_INFO .

shorthand = [NO]GI
default = GROUP_INFO

This control causes the debug information emitted from the assembler to
associate group information to all symbols that belong to segments that are
members of arpup. Only one groupilwbe assigned to a given symbol,
regardless of how many groups a given segment belongs to. The nogroup_info
control will only associatergup information to labels and procedures;

variables will NOT havempup information associated.

199

Chapter 9: Assembler Controls

Primary Controls

[NOJHLASSYM

shorthand = [NOJHA
default = NOHLASSYM

Causes as86 to generate low-level symbol information for gteditedures,

static data, and embedded assembly code. This option is useful when
compiler-generated output is to be debugged in an emulator. Ifthe output is
to be debugged in AXDB or AXDE, then the negated form of this option is
recommended.

[NO]JMACRO(string)

shorthand = [NO]JMR
(No default necessary.)

Enables or disables macro assembly. Since macro smiagds accomplished

by a separate program, this control has no effect in either the assembler or the
macro preprocessor. It is supplied for Intel comphtypand its use will not
generate an error.

MODO086

shorthand = MO
default = MODO086

Identifies the target microprocessor8@86. The assembler generate®es
for instructions that are not part of tB@86 micoprocessor instruction set.

200

Chapter 9: Assembler Controls
Primary Controls

MOD186

shorthand = M1
default = MODO086

Identifies the target microprocessor&®d.86. The assembler generata®es
for instructions that are not part 8186 micoprocessor instruction set.

Note

MODV20

shorthand = MV
default = MODO086

Identifies the target microprocessor as V20. Causes the V20/V30/V40/V/50
instruction set to be recognized. Errors or warninbe issued when
instructions from conflicting instruction sets are encountered. All instructions
are accepted without error in this mode.

In V20 mode, the as86 assembler accepts the extensions that are specific to the
NEC V20/V30 microprocessor. For these extensios8g aaccepts NEC
mnemonics, but uses Intel instruction syntax. Where instructions might
overlap (the NEC equivalent of an Intel instruction38@& accepts only the
Intel instruction mnemonic and not the NEC mnemonic or syntax (which
might be different for the same function). This assembler is targeted for the
8086/186 family of mimoprocessors and should not be considered to support
the NEC V20/V30 microprocessor instruction mnemonics or syntax.

[NO]JOBJECT (filename)

shorthand = [NO]OJ
default = OBJECT

201

Chapter 9: Assembler Controls
Primary Controls

Generates an output object module, but the optional file nammeossd and
only allowed for Intel compatibility. The assembler gives the object file the
same root ame as theaurce file, with a .0’ (dot lower case o) default file
name extension.

[NOJOPTIMIZE

shorthand = OP
default = NOOPTIMIZE

This control will cause the assembler to spend extra piroeessing thenput

file so the resulting object file has as few NOPs as possible. These NOPs are
generated when forward references are used in expressions. The assembler
does not always know how many bytes of output wilpbeduced for a given
instruction, so it reserves extra space. If the instruction turns out to be shorter
than that size, then the assembler pads the rest of the length with NOP bytes.
This control will allow the assembler to spend time removing these NOPs
when they are generated under these conditions. Note that this control will
cause the assembler to run for a longer time than it otherwise would.

PAGELENGTH(n)

shorthand = PL
default = 55 lines per page

Specifies the page length of the listing as "n" lines, where n= 20 or more lines.

PAGEWIDTH(n)

shorthand = PW
default= 132 characters per line

202

Chapter 9: Assembler Controls
Primary Controls

Specifies the listing page width in number of characters, where n is a number
between 60 and 255, inclusive. Lines exceeding tineeat page width are
wrapped to the next line.

[NOJPAGING

shorthand = [NO]PI
default= PAGING

Formats the output listing so as to have headers at the top of each page. By
default, the headers supply the assembéene, title, and the date. If
NOPAGING is specified, then the listing does not contain page headers or
page ejects (except for an initial header on the first page). This option is only
useful if a listing ipproduced.

[NO]PRINT(filename)

shorthand = [NOJPR
default = NOPRINT

Prints the assembly listing. Theprint control suppressesthe generatio
of the listing file including ror messages and symbol tabi&ings. You
cannot override noprint withlest control ocarring later in the program;
however, a list control with no preceding printraprint implies print. The
file name parameter is accepted for Intel compldsipbut it is ignored by
the assembler. Anylines that precede the print control will not be output
to the listing. (Defaultnoprint)

203

Chapter 9: Assembler Controls

Primary Controls

[NO]SYMBOLS

shorthand = [NJ&6B
default= SYMBOLS

Prints an alphabetically sorted symbol table with the output listing. The
listing will not contain cres-reference information. Cross-reference
information is produced with the XREF control. If XREF is used, it will
override this control and cross-reference informatidhbe produced. This
option is only useful if a listing is output.

[NOJTYPE

shorthand = [NOJTY
default = TYPE

This control is recognized for Intel compatibility only and its use will not have
any effect. Whether type information is generated depends upon the DEBUG
control being on.

[NOJUNREFERENCED_EXTERNALS

shorthand = [NOJUE
default = NOUNREFERENCED_EXTERNALS

This control will cause all external symbols, including those that are
unreferenced, to appear in the generated object file. In certain cases, these
externals may be used to cause certain object files to be linked at link time. If
this control is not present or ifthe NOUNREFERENCED_EXTERNALS
control is used, any unreferenced externdlse removed from the resulting
object file. This form of the control is useful when using inline functions in

the Hewlett-Packard C cross compiler. This will preuemtecessary routines
from being linked in that are being processed inline.

204

Chapter 9: Assembler Controls
Primary Controls

[NOJWARNING

shorthand = [NO]JWA
default = WARNING

This control causes warning messages to be displayed along with any error
messages that may appear on standard error. The nowarning control
suppresses the warning messages so only error information is sent to standard
error. The errorprint control overrides either form of this control in
determining whether any information is sent to standard error or not.

WORKFILES(...)

shorthand = WF
(No default necessary.)

This control has no effect. It is supplied for Intel compatibility, and its use will
not generate an error.

[NO]XREF

shorthand = [NOJXR
default = NOXREF

Prints a cross reference table on the output listing. If you use both the XREF
and SYMBOLS controls, a cross reference table will be generated.

205

Chapter 9: Assembler Controls

General Controls

General Controls

EJECT

shorthand = EJ
(No default necessary.)

Advances the listing form to the beginning of the next page and prints a new
header. This is only useful if a listing is being generated and paging is in effect.

[NOJGEN

shorthand = [NO]GE
(No default necessary.)

This control has no effect in either the assembler or macro preprocessor. lItis
supplied for Intel compatibility, and its use will not generateraare

GENONLY

shorthand = GO
(No default necessary.)

This control has no effect in either the assembler or macro preprocessor. Itis
supplied for Intel compatibility, and its use will not generateraare

206

Chapter 9: Assembler Controls
General Controls

Note

INCLUDE(filename)

shorthand = IC
(No default necessary.)

Indicates that the specified file should be included in the source input before
the next line of the current source file is processed. Unlike other controls,
INCLUDE must appear on a line by itself. No other controls, or other
INCLUDES, can be on the same line.

The default directory for INCLUDE is always the current working directory.
To use afile in another directory, specify the complete path name.

[NOJLIST

shorthand = [NO]LI
default = LIST

Turns on assemblisting at any point in therogram. If used in combination
with NOLIST, you can list @ortion of the source file. NOLIST overrides
XREF and SYMBOLS. An error somary stll goes to stdout and errors still
go to stderr regardless of LIST setting.

RESTORE

shorthand = RS
(No default necessary.)

Restores, as the current settings, the most recently-saved settings for
LIST/NOLIST that are on the stack. This control is used mainly to restore
LIST/NOLIST settings after returning from INCLUDE files.

207

Chapter 9: Assembler Controls

General Controls

SAVE

shorthand = SA
(No default necessary.)

Saves the current settings of LIST and NOLIST controls on a stack up to 64
entries deep. This control remains in effect until explicitly changed. SAVE is
typically used with RESTORE where LIST/NOLIST settings are saved before
an INCLUDE control switches the input source to another file. RESTORE
can be used to restore the settings at the end of the include file or upon
returning from the include file.

TITLE(string)

shorthand = TT
default = module name

Enables you to define a title of up to 41 characters in a page header.
Unquoted parentheses in "string" must be balanced. String may be quoted if
"unusual” characters are used in the title. The length of the title is bound by
PAGEWIDTH. If you want the title to appear on the first page, use the
TITLE control on the first source line or thensmand line.

208

Chapter 9: Assembler Controls
Operational Differences in the Different Modes

Operational Differences in the Different Modes

The as86 operates in one of three modes depengioig the choice of
control: MOD086, MOD186, or MODV20. The 8086 mode is the default.

8086 Mode

The default 8086 mode is the simplest mode. It is intended for assembling
code destined for an 8086 or 8088. The pre-definaduatons which work in
the 80186, but not the 8086, are flagged witloes when they appear. The
80186 insructions that Wi be flagged:

BOUND, ENTER,IMUL with 2 or 3 operands, INS,INSB, INSW, LEAVE,
OUTS, OUTSB, OUTSW, POPA, PUSH immediate, PUSHA. The shifts
RCL, RCR, ROL, ROR, SAL, SAR, SHL, and SHR with a numeric second
operand other than 1.

The extensions for the V20 are also flagged with errors.

80186 Mode

The 80186 mode differs from the 8086 mode in that the pre-defined
instructiondisted in the 8086 mode discussion above do not generate@an
when they are found. The V20 instructions, however, do generate errors.

V20 Mode

The V20 Mode differs from the 80186 mode in that it accepts the additional
V20 predefined instructions: EXT, ADD4S, CMP4S,B45, ROL4, ROR4,
TEST1,NOT1, CLR1, BRKEM, FPO2, REPC, REPNC, and two additional
operand combinations for INS. Remember that for thogeuiotsons

common to the V20 and 80@Bocessor faiities, as86 accepts only Intel
mnemonics. In addition, as86 accepts only Intel syntax for afLicsons.

If you are assembling programs for NEC V-Series microprocessors, you should
consider obtaining the Hewlett-Packard V-Series Cross Assembler.

209

Chapter 9: Assembler Controls
Operational Differences in the Different Modes

210

Chapter 10: Assembler Listing Description

10

Assembler Listing Description

Description of assembler listings, including a description of the optional
symbol table and cross reference format.

211

Chapter 10: Assembler Listing Description

Assembly Listing

Assembly Listing

The as86 Assembler uses a two-garsscess. During the first pass, labels,
variables and other user-defined symbols are examined and placed in the
symbol table. Additionally, structures are stored internally.

During the second pass, the object code is generated, symbolic addresses are
resolved, and a listing and object module@r@duced. Errors detected

during the assembly processlWwe displayed on the output listing with a
cumulative error count. At the end of the assembly process a symbol table or a
cross reference table can be displayed.

The listing contains information pertaining to the assemptegram,
including op codes, assembled data and the original soureenstats. The
listing can be used as a documentation tool by includingwents and
remarks that describe the function of the particptagram segment.

A sample assembler listingpsovided in Chapter 1. Refer to the following
points to examine and understand the listing.

1 The page headings show the time and date of the program run.

2 The column titled "Line" contains decimal numbers associated with the
listing ource lines. These numbers are referred to in the cross reference
table.

3 The column titled "Offset" contains a value that represents the first
memory address of any object code generated by this statement.

4 The columns under "Object-Bytes" show the object code generated by
instructions and directives in the file. Bytes are output lowest address first.

5 To the right of the data bytes are the assembler relocation flags. The flags
are 'R’for relocatable operand, and E’for external operand. If one
operand is relocatable and the other is external, the E’flag will be
displayed.

6 The original source staments are produced to the right of the
object-bytes field.

7 Atthe end of the listing the assembler prints the number of assembler
errors. The assembler substitutes NOPs when it cannot translate a
particular opcode and therefore provides room for patching the program.

212

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

A symbol table or cross reference table can be generated at the end of the
assembly listing if the option specifying its output is used. All user-defined
symbols, in alphabetic order, along with the symbol’s value type and attributes,
are listed in the symbol table.

Cross Reference and Symbol Table Format
Description

By default, the assembler produces a symbol table at the end distiach If
you want the assembler to produce a cross reference table in place of the
symbol table, use the XREF option.

If SYMBOLS and XREF are both specified, a cross reference table is
produced. The cross reference table includes all the information present in
the symbol table, but with line references noted for each symbol. The symbol
table listing and cross reference features camutrestd on only at the

beginning of a program, and once on, cannot be turned off at a later point.

Label In the symbol table or cross reference listing header, the Label field lists the
symbol name.

Type The Type field describes the kind of symbol represented by the Label. This
field may be any of the following:

SEGM segment name
GROUP group name

CLASS class name

LOCAL local variable

PUBLIC public variable

EXTERN external variable or label
LABEL local far or near label

213

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

STRUC structure definition
STR_FLD structure field name
REC record definition
REC _FLD record field name
EQU equate symbol
PROC procedure name
UNDEF undefined symbol

214

Value

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

The Value field appears to the right of the Type field and is used to indicate
attributes of the symbol. These attributes further describe what the symbol is
or where the symbol resides. The specific attributes shown depend upon the
Types above.

SEGM Size of segment (in bytes), followed by combine type
(PUBLIC/MEMORY/STACK/COMMON), followed
by alignment
(BYTE/WORD/PARA/PAGE/INPAGE/AT nnn),
followed by classname, if present.

GROUP List of segments that belong to the group. Ifa SEG
EXTRN was used, then the name of the external will
be displayed.

LOCAL, PUBLIC, EXTERN, LABEL, PROC

Segment name (if known), and offset within segment,
followed by type (BYTE/WORD/

DWORD/QWORD/TBYTE/
NEAR/FAR/ABSOLUTE).

STRUC Size of structure, followed by number of fields.

STR_FLD Offset within structure, followed by type of field
(BYTE/WORD/
DWORD/QWORD/TBYTE).

REC Size of record, followed by number of fields, followed
width of record in bits.

REC_FLD Bit offset within record, followed by width of field in
bits.

EQU IfEQU to aregister, the name of the register is shown.

IfEQU' to a 17-bit valueNNNN.
IfEQU' to a real number, REAL.

IfEQU to an instruction, INSTRUCTION.

215

Chapter 10: Assembler Listing Description
Cross Reference and Symbol Table Format Description

Cross Reference

IfEQU'd to a memory expression, EXPRESSION.
The UNDEF and CLASS types do not have any attributes.

If a cross reference is being generated in addition to the symbol listing, then
line references will appear to the right of the Value field. Each line reference
will be separated from the next by a space.

The line on which the symbol is defined will have a minus sign placed before it.
All other line numbers indicate references to the symbol. It is possible for
there to be more than one definition of a symbol (for example, a segment).
Also, purged symbols may appear more than once in the table.

216

Chapter 11: Codemacros

11

Codemacros

How to use the CODEMACRO directive.

217

Chapter 11: Codemacros
Referencing Codemacros

Codemacros defin@086, 8087, 8088, 80186, and V20tistions. A

codemacro is a template for generating code, with certain bits fixed and other
bits that are supplied when the codemacro is referenced (much as a record or
structure). You must define the @adacro usingthe CODEMACRO

directive before referencing it.

Referencing Codemacros

Formal arguments can be defined on the call line and then referenced in the
body of the codemacro. Forward references to codemacrdiegeas.

A codemacro is referenced by using its name in the opcode fieldofees
statement. You mugtrovide actual pammeters at this time, which must

match the parameters as to the sort of entity desc(ibedber, WORD

address expression, segment register, etc.). Matching is described in detalil
below. If matching is successful for all arguments, the codemacro is used to
generate code. At thistime, the formal arguments in the codemacro body will
be replaced with data derived from the corresponding actuahpers.

Multiple codemacros with the same name are legal. When the name is
referenced, each of the defined codemacros is checked to determine whether
its formal arguments match the actual parameterpyouide. The first
codemacro whose arguments match is used to generate code. Multiple
codemacros are checked in reverse order; the most recently-defined
codemacro is checked first. This feature permits a single symbol to generate a
variety of different code, depending on the arguments provided. When
defined, as86 compiles the ardacro into a compact internal form andrss

it in virtual memory.

218

Chapter 11: Codemacros
Codemacro Directives

Codemacro Directives

CODEMACRO

Enters Codemacro Definition

Syntax
CODEMACRO cmac_name [formal:specmod[range]][,formal:specmod[range]]...
ENDM
or
CODEMACRO cmac_name PREFX
ENDM

Description

cmac_name The name associated with the defined codemacro. It
may have been previously defined as a codemacro, but
not as anything else. This nametred as a symbol
and should not conflict with reserved words. Note that
using an instructioname in this field is legal and
results in an additional codemacro to be searched for
that name.

formal An arbitrary symbol defining a formal argument to the
codemacro. Formals are nddsed as symbols, and can
duplicate keywords or even the cmac_nantéouit
conflict. Formals have no existence outside their
codemacro and do not appear in the symbol table
listing, athough two formal parmeters to the same
codemacro aanot have the sameame. A codemacro
can have at most 255 formal arguments.

specmod A letter or pair of letters describing the actual
parameters thatilvmatch this formal paameter.

The legal values for specmod are:

219

Chapter 11: Codemacros
Codemacro Directives

Ab Aw
Cb Cd Cw
Db Dw
Eb Ed Ew

Rb Rw

X—=1nounZ1moo >

range

PREFX

Mb Md Mg Mt Mw

Xb Xd Xq Xt Xw

Upper- and lower-case letters are interchangeable for
these values. The convention of one upper-case letter
followed by one lower-case letter is used in this chapter
for clarity and to avoid confusion with the directives DB
and DW. The first letter of the specmod is referred to
as the specifier and the second letter as the modifier.
The meaning of the various specmods is described in
the table on page 223.

An optional field that follows a parameter. It describes
a range of values that limits the acceptable modules for
the parameters matching the formal argument. The
first letter of the specmod must be A, D, R, or S. Any
other type of specmod is not permitted to have a range
field. The syntaxand meaning of range fields is further
described later in this section.

A keyword that can appear instead of the formal
arguments, indicating that the codemacro namact
take parameters. Instead, it is used to precede another
codemacro or intsuction rame. At the time the
codemacro is referenced, amaxr is detected if another
codemacro or irtsuction does not follow this one.

PREFX is associated with the codemacro name as a
whole rather than separately with each codemacro. If
one codemacro uses PREFX, another codemacro with
the same name must also use PREFX. The last
codemacro defined controls in case of conflict. A
formal argument cannot bemed PREFX.

220

Examples

Chapter 11: Codemacros
Codemacro Matching

The CODEMACRO directive lets you enter the codemacro definition mode
and specifies the formal arguments associated with the new codemacro. The
ENDM is used to terminate the codemacro definition mode. Each
CODEMACRO directive must have a corresponding ENDM directive, and
codemacro definitions amot be nested.

CODEMACRO CMAC1 FORMAL1:Ew,FORMAL2:Db(10,20)
CODEMACRO CMAC2 FORMALS3:S

CODEMACRO CMAC3

CODEMACRO CMAC4 PREFX

Syntax

ENDM

Terminates Codemacro Definition

ENDM

Description The ENDM directive terminates the codemacro definition
mode. Each ENDM must correspond to a CODEMACRO directive. For
more information on ENDM, see the description ofthe CODEMACRO
directive in the previous section.

Codemacro Matching

The assembler performs two passes on the input file to mateimemo
references to definitions.

1 During pass 1, all actual parameters are evaluated. Parameters containing
undefined symbols are called “forward references,” and are treated
differently from other expressions. as86 is much more liberal concerning
what a forward reference can match than what a fully-evaluated expression
can match. Forward references are considered to be typeless unless type
information is specifically attached with PTR or SHORT.

2 The chain of codemacrosmesponding to the instruction mnemonic is
searched, beginning with the last one defined. as86 looks foreanemdo

221

Chapter 11: Codemacros
Codemacro Matching

with the same number of formal arguments as there are actual parameters,
such that each actual parameter matchesdhesponding formal as far

as specmod and range goes. Matching is described in the "Range
Specification" section. The first codemacro that matches is used as
described in # 3 below. If none matches, an error is reported.

3 The number of bytes of object code is estimated by executing the
codemacro and discarding the generated bytes. This estimate is used to
update the location counter. By default, forward references do not require
a segment override byte from the SEGFIX, RFIXM, and RNFIXM
directives.

4 During pass 2, the codemacro chain search starts at the beginning again.
Presumably, all forward references have now been resolved. If not, an
error isissued and the absolute number 0 is substituted for the undefined
symbol, which may in turn cause other errors. This resolution of forward
references can cause a different codemacro to be matched than in pass 1.
If none matches, an error is reported. If asmodcro matches in pass 1, it
does not necessarily have to match in pass 2.

5 Code is generated using the matched codemacro. A different number of
bytes of code can be generated than was called for in the estimate from
pass 1. If more code is generated in pass 1 than in pass 2, the extra room
allocated is filled with NOPs (90H). If more code is generated in pass 2
than in pass 1, an error messagesaed and the entire space allocated is
filled with NOPs.

222

Chapter 11: Codemacros
The Specmod Field

The Specmod Field

The specmod field determines what actual parameters match each formal
argument. In the table which follows, ‘variable” is an address expression with
type BYTE, WORD, DWORD, QWORD, TBYTE, a structurame, or a

record name, and ‘label”’ is an address egsien with type NEAR or FAR.

For the purpose of matching, forward references during pass 1 are treated as a
special kind of expression that match certain specmods. Specmods match
actual parameters as shown in the table.

Table 11-1. Specmods and Parameter Matches

Specmod Match

A AX or AL.

Ab AL.

Aw AX.

C Any label, or any forward reference of type NEAR or FAR or
no_type.

Cb Any NEAR label with the same segment definition attribute as the
current assumed contents of CS via ASSUME and within the range
-128 to + 127 from the beginning of the code macro reference, o any
forward reference with SHORT attached.

Cd Any FAR label, or any forward reference without a type or of type|
FAR.

CwW Any NEAR label with the same segment definition attribute as the
current assumed contents of CS via ASSUME but farther away frp
the beginning of the codemacro reference ti&8 to + 127, or any
external NEAR label

D Any 17-bit number, or any forward reference with no type.

Db Any absolute number between -256 and 255, inclusive, or any number

of relocation type high or low

223

Chapter 11: Codemacros
The Specmod Field

Table 11-1. Specmods and Parameter Matches (Cont'd)

Specmod

Dw

Eb
Ed

Ew

Mb

md

Mq

Mt

Mw

Rb
Rw

Match

Any absolute number not between -256 and 255 inclusive, or any

number of relocation type offset or base, or any forward reference

with no type.

Any variable, or any address expression without a type, or any
register except segment registers, or any forward reference, exce
those typed NEAR

Any variable with type BYTE

Any variable with type DWORD, or any forward reference of type
DWORD or no type.

Any variable with type WORD, or any 16-bit register, except segm
registers, or any forward reference of type WORD or no type.

The floating-point stack or any element thereof: ST

Any variable or any address expression without a type, or any fory
reference except those of type NEAR

Any variable with type BYTE, or any forward reference of type
BYTE or no type.

Any variable with type DWORD, or any forward reference of type
DWORD or no type.

Any variable with type QWORD, or any forward reference of type
QWORD or no type.

Any variable with type TBYTE, or any forward reference of type
TBYTE or no type.

Any variable with type WORD, or any forward reference oftype
WORD or no type.

Any register except segment registers.
Any 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL).

Any 16-bit register except segment registers (AX, BX, CX, DX, SlI
DI, BP, SP)

pt for

ent

vard

224

Chapter 11: Codemacros
The Specmod Field

Table 11-1. Specmods and Parameter Matches (Cont'd)

Specmod Match

S Segment registers (ES, DS, SS, CS)

T The floating-point stack top: ST or ST(0) only.

X Any variable or any address expression without a type, whose base
and index attributes are null or any forward reference except those of
types NEAR

Xb Any variable of type BYTE whose base and index attributes are null,
or any forward reference of type BYTE or no type.

Xd Any variable of type DWORD whose base and index attributes arg
null

Xq Any variable of type QWORD whose base and index attributes are

null, or any forward reference of type QWORD or no type.

Xt Any variable of type TBYTE whose base and index attributes are
null, or any forward reference of type TBYTE or no type.

Xw Any variable of type WORD whose base and index attributes are |null,
or any forward reference of type WORD or no type.

In addition, typeless address expressions such as [BX] will sometimes match
the specmods Eb, Ew, Mb, and Mw. There must be enough information for
as86 to infer the size of the operation. This condition is met if thencadro

has at least two formal arguments, and one or more of the actual parame
corresponding to the other argument(s) is not either another typeless ad
expression or a number that matches Db.

For example, suppose a edacro has ARG1:Ew,ARG2:Ew as the formal
arguments. The actual parameters [BX],AX match, since AX implies a
WORD operation; however, the actual parameters [BX],[BX] do not match
since the information to infer the size of the operation is insufficient. This
condition means that any codemacro with a single formal parameter of
specmod Eb, etc., cannot match a typeless addresssxpreincluding
several of the built-in instructions (e.g., INC, FISUB, IMUL).

225

Chapter 11: Codemacros
The Specmod Field

A few built-in instructions (e.g., FLDENV) have the specmod M on their
single formal parameter and, thereforél| accept a typeless address
expression.

226

Chapter 11: Codemacros
Range Specification

Range Specification

A codemacro range is a parenthesilistdof one or two expressions separated
by a comma. The syntax of a range specification is:
(valuel[,value2])

Each value must be a register name or an sgwe evaluating to an absolute

number (i.e. not an address). Registers are converted to absolute numbers
according to the following table.

Table 11-2. Absolute Number Conversion for Registers

Register Number

AL, AX,ES
CL,CX, CS
DL, DX, SS
BL, BX, DS
AH, SP
CH, BP
DH, SI
BH, DI

~No o~ wdNEFE O

Some codemacros have specific limits on the range of parameters that can be
used. This pertains to formals using specifiers A, D, R, or S.

When codemacros are referenced, the actual parameter is checked again
specified range, converting actual registers according to the table. Ifther

field contained a single value, the actual parameter must match it. If the range
field contained two values, the actual parameter must be greater than or equal
to the first and less than or equal to the second. Otherwise, the actual
parameter does not match. Relocatable actual parameters and forward
references never match a formal with a range field.

227

Chapter 11: Codemacros

Range Specification

Examples:

S(0,2)
S(0)

Db(2,-1)
Db(-1,2)

Db(-1,DL)
Rw(DX)
Rb(CL)
Db(1)

Matches ES, CS, or SS.

Matches only ES.

Generates error - invalid range.
Matches -1, 0, 1, or 2.

255 does not match (9-bit companig.
Same as previous example.
Matches DX.

Matches CL.

Matches 1.

228

Chapter 11: Codemacros
Codemacro Matching Examples

Codemacro Matching Examples

This table shows a list of the arguments on some exampésraaos for the
MOV instruction, in the order they are searched, along with actuahpeters
that will match each. WORDVAR is a variable of type WORD, and
BYTEVAR is a variable of type BYTE.

Table 11-3. Arguments and Actual Parameters

Codemacro Reference

Match

MOV WORDVAR ,AX
MOV BYTEVAR,AL
MOV AX,WORDVAR
MOV AL,BYTEVAR
MOV SS,WORDVAR
MOV WORDVAR,CS
MOV CX,WORDVAR
MOV CL,BYTEVAR
MOV DS:[BX],AX
MOV DS:[BX],AL
MOV CX,1000

MOV CX,20

MOV CL,20

MOV WORDVAR,1000
MOV WORDVAR 20
MOV BYTEVAR,20

:8-bit move
:16-bit mov
:16-bit move,0 fill

:16-bit move, O fill

MOV dst:Xw,src:Aw
MOV dst:xb,src:Ab
MOV dst:Aw,src:Xw
MOV dst:Ab,src:Xb
MOV dst:S(SS,DS),src:Ew
MOV dst:Ew,src:S
MOV dst:Rw,src:Ew
MOV dst:Rb,src:Eb
MOV dst:Ew,src:Rw
MOV dst:Eb,src:Rb
MOV dst:Rw,src:Dw
MOV dst:Rw,src:Db
MOV dst:Rb,,src:Db
MOV dst:Ew,src:Dw
MOV dst:Ew,src:Db
MOV dst:Eb,src:Db

229

Chapter 11: Codemacros
Codemacro Matching Examples

The following is a list of some itgictions that do not match the formal
argument pairs.

MOV CS,WORDVAR ; CS is not between SS and DS,
; and not equal to ES.
MOV ES,BYTEVAR ; No such 8-bit operation appears.
MOV WORDVAR,BL ; In general, 8-bit and 16-bit operands
; cannot mix.
MOV BL,WORDVAR ; Mixed 8- and 16-bit operands.
MOV BL,1000 ; Mixed 8- and 16-bit operands. 1000 won't fit in BL.
MOV BYTEVAR,1000 ; Mixed 8- and 16-bit operands. 1000 won't fit in
; BYTEVAR either.

230

Chapter 11: Codemacros
Expressions in Codemacros

Expressions in Codemacros

Only a small subset of the usual expressions is available within codemacro
definitions. The following are allowed:

» Absolute numbers, and expressions which evaluate to absolute numbers.
No forward references are allowed within such expressions.

* Segment registers.
* Formal argument names.

» Shifted formal arguments.

Syntax:
formal_name.recordfield

where formal_name and recordfield are symbols. This means to perform a
right shift of the actual parametesrcesponding to the formalame at the
time the codemacro is referenced, by the number of bits given by the shift
count of the recordfield. The actual pareter must be an exgson that
evaluates to an absolute number. Ifthe actual parameter is a relocatable
number, an error is reported at the time theecoacro is referenced. The
predefined ESC instruction uses this construct.

PROCLEN PROCLEN has the value 255 if the most recently defined PROC at the time of
codemacro reference was declared FAR. It has the value 0 otherwise. Thus, if
the codemacro reference is notin a PROC, PROCLEN yields 0.

231

Chapter 11: Codemacros
Directives within Codemacros

Directives within Codemacros

Only a few directives are legal within a codemacro definition, and these are
listed below. Insuctions are not allowed within a cethacro definition, but
assembler controls and comments are; however, the assembler control is not
considered part of the codemacro. None of these directives are allowable
outside a codemacro definition unless so described elsewhere in this manual
(e.g. DB, DW, DD, and record names).

The following pages describe directives within codemacros.

Table 11-4. Directives within Codemacros

Directive Function

DB Generates byte ofimmediate data.

DD Generates 4 bytes of immediate data.

DW Generates 2 bytes ofimmediate data.

MODRM Generates ModRM byte.

NOSEGFIX Checks for addressabilitiitough a certain seg register.

ONLY186 (186 Mode only) Identifies 186-only itrsictions.

recordname Generates 1 or 2 bytes using the specified record template.

RELB Generates 1-byte displacement.

RELW Generates 2-byte displacement.

RFIX Generates a WAIT (9BH) followed by the first 5 bits of an
ESC(OD8H).

RFIXM Generates a WAIT (9BH) followed by a segment override byte
(if needed) followed by the first 5 bits of an ESC (0D8H).

RNFIX Generates an NOP (90H) followed by the first 5 bits of an
ESC(OD8H).

RNFIXM Generates a NOP (90H) followed by a segment override byte (if
needed) followed by the first 5 bits of an ESC (0D8H).

RWFIX Generates a WAIT (9BH).

SEGFIX Generates segment-override byte if needed.

232

Chapter 11: Codemacros
Directives within Codemacros

DB, DD, DW

Generates N-Bytes of Immediate Data

Syntax

DB absolute_numeric_expression
DB formal_name

DB formal_name.recordfield

DD absolute_numeric_expression
DD formal_name

DD formal_name.recordfield

DW absolute_numeric_expression
DW formal_name

DW formal_name.recordfield

Description
absolute_numeric An absolute numeric expression.
_expression

formal_name A name that is a formal parameter to the codemacro.

formal_ A name that is a formal parameter to a codemacro but
name.recordfield shifted according to the recordfield.

The DB, DD, and DW directives are similar to their counterparts outside
codemacros, but their legal operands are much more restricted.

Each consecutive appearance of a DB, DW, or DD directive within a
codemacro generates one, two,aurfbytes, respectively.

It is possible for a formal argument with specmod Dw to appear in a DB
directive, where it will not fit, which will then cause amr@ at the time of
codemacro reference.

A formal_name wihout a recordfield must be of specifier D for the DB
directive and must be of specifier D, C, or X for the DW and DD directives.
(A specifier is the first letter of a specmod listed beginning on page 223.)

A formal_name appearing with a recordfield must have specifier D.

233

Chapter 11: Codemacros
Directives within Codemacros

Syntax

Description

MODRM
Generates ModRM Byte

MODRM formal_name2,formal_namel

or

MODRM number,formal_namel

formal_namel An effective-address parameter. It must have a
specifier of E, M, R, X, A, or S. (A specifier is the first
letter of a specmod listed beginning on page 223.)

formal_name2 A parameter, usually a register. It must have a specifier
of D,R, A, orS.
number An expression evaluating to an absolute number.

MODRM generates the ModRM byte, which can contain a wide variety of
information: a register involved in the instruction, the base and index registers
of an operand, the addressing mode (direct address, relative taortbatc
location, immediate, register), a continuation of the opcode, etc.

as86 derives 5 bits of information from formadme1, and 3 bits from the first
parameter. If the first operand of MODRM is a number that is either a
constant or a formal matching D, the low 3 bits are used in the generated byte.
If the first operand is a register with a matching A, R, or S, the 3 bits to use are
taken from the numeric values corresponding to registers as described in the
section on Range Specification.

234

Syntax

Description

Chapter 11: Codemacros
Directives within Codemacros

NOSEGFIX

checks for Addressability

NOSEGFIX segreg , formal_name

segreg One of the segment registers ES, CS, DS, SS.

formal_name A formal argument name whose specifier is E, M, or X
(a memory parameter).

NOSEGFIX ensures that a parameter is addresshtBegh a specific
segment register. It is used in the built-in instruction set for the string
instructions MOVS, STOS, CMPS, SCAS,3M.86], for which one operand
must be addressable through ES.

NOSEGFIX checks the segment addressability attribute of the actual
parameter arresponding to the formalame to ensure that the parameter is
addressable through the specified segment register. If the actaaigtar is

a register (matching E), it is considered addressable. If the attribute is a
segment register, it must match the register on the NOSEGFIX. Ifthe
attribute is null, it is not addressable. If the attribute is a segment or group,
as86 checks the assumed contents of the specified segment régistght
ASSUME, as it does for SEGFIX. NOSEGFIX never generates any code. It
merely performs an error check. Note that this check is not performed at
argument matching time. It is possible for the actuahpeters to match the
formal arguments of a codemacro that contains a NOSEGFIX directive and
then get an error on the NOSEGFIX, even if anotheenwatro exists farther
along in the codemacro chain that would not get thisre No co¯o in

the built-in instruction set can do this.

235

Chapter 11: Codemacros
Directives within Codemacros

ONLY186 (186 Mode Only)

Identifies 186-Only Instructions

Syntax
ONLY186

Description ONLY186 issues a warning message if the assembler is in 8086
mode. Generation of code proceeds normally. This protects you from
accidentally writing a 186-only itigiction which vill not work when the target
machine is an 8086.

236

Chapter 11: Codemacros
Directives within Codemacros

Record Name Initialization

Syntax
recordname<[expression][,expression]...>

Description
recordname The name of a previously-defined record.
expression One of the following:

* An expression evaluating to an absolute number
» A formal argument

» A formal argument plus a .recordfield

e Null

+ PROCLEN

The record initialization directive lets you control bit fields in codemacro
definitions.

Formal arguments in either construct (with or without a .recordfield) must be
of specifier D, and the corresponding actualgpagter canot be relocatable
or an error W be reported when cogimacros are expanded.

Each expression must evaluate to an absolute number, and only the bits
corresponding to the defined size of each .recordfield are used. Also, the least
significant bits of the expression value are used, and more significant bits are
discarded without any check. Null fields, as well as records outside
codemacros, result in the use of the default value at the time the record was
defined.

237

Chapter 11: Codemacros
Directives within Codemacros

Syntax

Description

RELB, RELW

Generates N-byte Displacement

RELB formal_name
RELW formal_name

formal_name The name of a formal parameter to the codemacro with
specmod type C.

The RELB and RELW directives generate a one- or two-byte displacement,
respectively, denoting the distance from the location of the codemacro
reference to a target which can only be a label. The displacement is measured
from the location after the bytes generated by RELB or RELW. Specifically,

if the target is the byte immediately following the generated displacement
whether that is 1 or 2 bytes, the generated displacemiibewl. These

directives take one operand, a formal argument that must be of specmod Cb or
Cw. RELB and RELW do not concern themselves with segment

addressability or the contents of CS.

During codemacro matching to Cb and Cw specmods, the assembler assumes
that any RELB or RELW in the codemacrdl¥ollow exactly one generated

byte and, as a result, the restriction of the displacement for dl2édo + 129
occurs. This assumption is correct for all enthcros in the built-in

instruction set. You can write cethacros for which this assumption does not
hold. For example, you can write one equivalent to several predefined
instructions, but if this is done, the wrong match can be made atamio
reference-time.

238

Syntax

Chapter 11: Codemacros
Directives within Codemacros

RFIX, RFIXM, RNFIX, RNFIXM, RWFIX
Generates WAIT or NOP

RFIX formal_or_number

RFIXM formal_or_number, formal_name
RNFIX formal_or_number

RNFIXM formal_or_number, formal_name

RWFIX

Description

formal_or_number A codemacro parameter with specifier type D or an
absolute expression that evaluates to an absolute
number.

formal_name A codemacro parameter with specifier type E, M, or X.

These closely-related directives pertain to floating-point instructions. In all
modes, they generate bytes as follows:

RFIX WAIT (9BH) followed by the first word of an ESC
(OD8H)

RFIXM WAIT (9BH) followed by a segment override byte (if
needed) followed by the first word of an ESC (OD8H)

RNFIX NOP (90H) followed by the first word of an ESC
(OD8H)

RNFIXM NOP (90H) followed by a segment override byte (if

needed) followed by the first word of an ESC (OD8H)

RWFIX WAIT (9BH)

RFIX and RNFIX have one operand; RFIXM and RNFIXM have two
operands; RWFIX has no operands. The first operand of each, except
RWFIX, is either a formal parameter with specifier D or an esgioa

evaluating to an absolute number. The least significant 3 bits of this operand
are taken as the last 3 bits of the generated ESC. Ifthe corresponding actual
parameter is relocatable, arr@r is reported when caanacros are referenced.

239

Chapter 11: Codemacros
Directives within Codemacros

The second operand of RFIXM and RNFIXM is a formal argument of
specifier E, M, or X representing a memory address. The segment override
byte is issued or not, depending on thisgmaeter; the algorithm is exactly the
same as that described under SEGFIX.

The preceding descriptions assume that the object code will be used on an
8087 chip. These directives are designed for use within floating-point
instructions. However, if the linker references 887 emulator library
instead, the WAIT and NOP instructions described are changed into
instructions to the emulator. The linker performs this function by resolving
external references generated by the R?FIX? directives. This is why, for
instance, a codemacro uses RWFIX instead of DB 9BH.

Intel provides two libraries, one of which is used as input to its linker for any

given absolute object module. One libraryis used if the code is destined for an

8087, and the other is used if the 8087 is to be emulated.

This use of built-in external references, which typically will not be of concern
to you, also means that any codemacro employing one of these directives
displays an E flag (i.e. external reference) on the output listing when
referenced. This includes all the floating-point instructions in the built-in
instruction set.

240

Chapter 11: Codemacros
Directives within Codemacros

SEGFIX

Generates Segment-Override Byte

Syntax
SEGFIX formal_name

Description
formal_name A codemacro parameter with specifier type E, M, or X.

The SEGFIX directive generates a segment-override byte, if needed (either
26H, 2EH, 36H, or 3EH). This instructs the hardware to use a different
segment register for the following instruction.

SEGFIX has one parameter which must be a formal argument name. This
argument represents a memory address and, therefore, must have one of the
specifiers (1st letter of the specmod) E, M, or X. A register (matching E)
never generates a segment override. An address expression has its segment
addressability attribute checked as follows:

» Ifthis attribute is null, an error is reported.
« Ifthe attribute is a segment register, that register is used for addressing.

» Ifthe attribute is a group, the assumed contents of the segment registers
via ASSUME are checked to see if one of them contains the group.

» Ifthe attribute is a segment, the assumed contents of the segment registers
via ASSUME are checked to see if one of them contains the segment or a
group containing the segment.

In the last two cases, the segment registers are examined in this order:

1 The register implied by the base and index attributes of the actual
parameter (DS or SS).

2 The other registers are examined in the order ES, CS, SS, DS.

The first register for which the check succeeds is used for addressing. If the
actual parameter oaot be addressed through any segment register, an error

is issued. Otherwise, once as86 has determined which segment register to use
for addressing, it determines whether that register is the default implied by the
base and index attributes. If so, no override byte is generated; if not, a segment

241

Chapter 11: Codemacros
Directives within Codemacros

override byte corresponding to the segment register used forssdudyés
generated.

242

Chapter 12: Macro String Preprocessor Introduction

12

Macro String Preprocessor .
Introduction

Introduction to the Macro String Preprocessor.

243

Chapter 12: Macro String Preprocessor Introduction
Input Source Characteristics

Note

The Macro String Preprocessor (ap86) is a character string eepdad

program which performs pre-assembly prssieg of macros in assembly
language source files. It searches the source code for mélst@od then

replaces those calls with the macrourgtvalues. The advantage of having the
macro string preprocessor is to permit frequently-used segments of code to be
used repeatedly by one or several users from a library, without having to
re-write the code for each use. You can automatically insert a section of code
into the source program by encoding a single line—the macro call.

At definition time, key constructs in the macro may be represented by formal
parameters; actual parameters are later substituted for the formal ones. ap86
handles conditional assembly, assembly-time loops, and is also capable of
recursion.

The macro preprocessor is case sensitive by default. Upper and lower case
characters are not equivalent to the preprocessor. The macro symbol
MACSYM would not be the same as macSYM, MaCSYM, or macsym. Case
sensitivity can, however, be turned off on thenomand line.

ap86 is implemented as a program separate from the assembler, thereby saving
time for those who do not use macros. It is compatible with the Intel syntax

for the 8086/186 macro languages. If you use macros irotirees code, you

must run the Macro Preprocessor to produce an output file for input to the
assembler.

Input Source Characteristics

ap86 views its input file as a sam of characters instead of a sequence of
statements. Alprocessing is character-oriented. The ends of lines are treated
as if they ended with a < line feed> . This character is called 'end-of-line’ or

< EOL>"in text that follows.

244

Chapter 12: Macro String Preprocessor Introduction
The Metacharacter "%’ And The Call Pattern

NOP

asymbl EQU 2

The Metacharacter '%’ And The Call Pattern

The macro preprocessor searches the input source one character at a time,
looking for a special character called thetacharacter. By default, this

character is the percent sign (%), but it can be dynamically changed. Until

the metacharacter is found, characters are passed to the output file without
change. When the metacharacter is found, the macro preprocessor reads and
interprets the characters following it, isolatingadl pattern. The call pattern

is interpreted as instructions to the macro preprocessor and is not passed to
the output file. However, the macro preprocessor produces an expansion of
the call pattern that is written to the output file in place of the call pattern.

The call pattern can contain other metacharacters followed by call patterns;
these will also be expanded. Expansions are stacked, analogous to nested
subroutines. When the current expansion is complete, the stack is popped, and
the next higher expansion resumes where it left off. The expansion of a call
pattern is always a string of characters which can be null (zero characters) in
some cases, but most often it is one or more characters. When the outermost
expansion is completed, the macro preprocessor goes back to copying
characters while scanning for the metacharacter.

The source code below has staients that contain macros.

DB %LEN(%SUBSTR(5 DUP (0),1,1)) ;note blank before

ADD AX,2

;%SUBSTR

The example source code is treated by the macro preprocessor in this way:

1 Everything up to the first "%"is passed to the output unchanged. The text
has no significance to the macro preprocessor.

2 The first "%"invokes the pre-defined macro function LEN, which counts
the characters in its argument. (LEN, SUBSTR, and other pre-defined
macro functions used in these examples are described in detail in the
chapter called "Pre-defined Macro Functions.")

Everything up to but not including the balancing right parenthesis (in
example, the last parenthesis) is the argument to LEN.

3 The argument to LEN contains a call to another pre-defined macro
function, SUBSTR, which extracts a substring from its first argument
according to parameters in the second and third arguments. The

245

Chapter 12: Macro String Preprocessor Introduction
Metacharacter Syntax

expansion of the outer function LEN therefore pauses while SUBSTR is
evaluated.

4 In this example, the result of SUBSTR is the single character 5. After
the evaluation, LEN resumes, in effect evaluating "% LEN(5)" (again,
notice the space in front of the 5). This produces the string "02H," which
is passed to the output.

The space between "%LEN("and "% SUBSTR"is a significant part of the LEN
argument, but is not part of the call to SUBSTR. Following "02H," ap86 puts
out the < EOL>, which is the next character following the call pattern of LEN
in the source file. Notice that < EOL> is not part of the call pattern. The
assembler, therefore, sees the following line of text:

DB 02H<EOL>

Metacharacter Syntax

The metacharacter can be followed by
e asymbol

» aleft parenthesis (

e an apostrophe’

» adecimal digit

« an asterisk * (called the literal character), that in turn must be followed by
a symbol.

No other characters are acceptable, particularly spaces and tabs. A symbol
following the metacharacter (or the metacharacter-asterisk pair) must be one
of three things:

» A pre-defined macro function.
» Acallto a previously-defined user macro.

» Areference to a previously-defined macro-expansion-time symbol or,
within a macro body, a formal argument or local symbol. The

246

Chapter 12: Macro String Preprocessor Introduction
Literal Character *

metacharacter is recognized anywhere in the source text, including within
character strings.
Getting a line such as
DB '20% inflation’
to pass through the macro preprocessor requires special handling. Getting
these strings through the macro preprocessor is discussed in the "%n and %(

(Escape and Bracket Functions) in the chapter titled "Pre-defined Macro
Functions."

Literal Character *

The literal character (*) specifies that metacharacters contained in the
arguments to a function are not expanded. The literal character is placed
between the metacharacter and the function or macro name, and spaces or
other separators cannot precede or followit. The literal character inhibits the
expansion of all user macros, symbols, and pre-defined functions. It does not
affect formal macro parameters, local symbols within macros, and the escape,
comment and bracket functions. If one of the lines of code from the previous
example were rewritten to contain the literal character before the LEN macro
name,

DB %*LEN(%SUBSTR(5 DUP (0),1,1))
then the SUBSTR call is not expanded. Instead, LEN counts the length of the

string % SUBSTR(5 DUP (0),1,1)' and returns the string "16H." Output to
the assembler would then be

DB 16H <EOL>

If the literal character preceded SUBSTR instead of LEN, it would have n
effect in this example because the argument to SUBSTR does not contai
metacharacters. Misuse of the literal character causes the macro preprocessor
to pass strings containing a metacharacter on to the assembler, where they will
usually be flagged as errors. The literal character is prohibited all together

with some functions; other functions accept it, but ignore it. The literal
character should almost always be used when defining a user-macro.

247

Chapter 12: Macro String Preprocessor Introduction

Input Parsing

Input Parsing

The macro preprocessor recognizes the operéstes on page 250. The

macro preprocessor only understands symbols in specific constructs which are
usually preceded by the metacharacter. Assembly-time user-defined symbols
(labels, etc.), the location counter, and EQUs are all unknown to the macro
preprocessor.

You must be careful that a macro call produces each < EOL> in the right
place. Readable input to the macro preprocessor frequently results in a large
number of output lines consisting only of blanks and end-of-lines. For user
convenience and assembler speed, such lines are always omitted from the
output. To create a blank line, deliberately use a blank comment line.

Output Buffering

The macro preprocessor buffers its output in an array that can hold 256
characters. When its buffer is full and another character (other than < EOL>)
is received, ap86 breaks the output line into two pieces. The break occurs at
the 256 characterdundary and theemaining text is placed on the next line of
output. This and all other lines created from the long input lihbegin

with a ‘&’ so the assembler can recognize the line as a continuation. Since the
break is made at a fixed location, it is likely that the result will cause a syntax
error in the assembler. Thus, it is best if line lengths are restricted to less than
256 characters.

Include Files

INCLUDE is an assembler control command, but the macrprpoessor will

act on INCLUDE also. INCLUDE statements cause the macrprpoessor

to temporarily stop reading source sta@ents from thewrrent file. It begins
reading source staments from the file specified by the INCLUDE. It
continues reading from the include file until it finds the end-of-file for the
include file or it finds another INCLUDE. When the preprocessor resolves all

248

Chapter 12: Macro String Preprocessor Introduction
Include Files

INCLUDES and does find the end-of-file for the include file, it then returns
to the file that contained the INCLUDE statement and again begins reading
source statments immediately after the INCLUDE statement.

Note The maximum depth that the macro preprocessor can handle nested
INCLUDE controls is to a level of eight. The restriction on the assembler
depends only upon the number of open files the operating system allows at
one time.

The syntax for the INCLUDE statement:
$INCLUDE(filename)

The '$ must be in column 1 for the preprocessor to recognize it for gsimge
The default directory for INCLUDE is always the current working directory.

Any INCLUDE starting in column 1 of a source statent, whether from a

source file or an include file, is processed by the macro preprocessor when it is
first read. An INCLUDE within a macro definition can be processed at
assembly-time or at macro-expansion-time, depending on whether the '$’
starts in column 1 in the definition. If an INCLUDE does have a '$’in column
1in the definition, then it is expanded at definition time. Otherwise,

INCLUDE is not processed at macro-expansion-time. Example:

%*DEFINE(MAC1) ($INCLUDE(filename)) ;assembly-time
%*DEFINE(MAC2) (
$INCLUDE(filename) ;macro-definition time

)
%*DEFINE(MAC3(PARM1)) ($INCLUDE(%PARM1)) ;assembly-time

%*DEFINE(MAC4(PARM1)) (
$INCLUDE(%PARML1) ;macro-definition time.

Since %PARML1 is an improper filame, this causes anrer.

However, expansions of MAC4 will be the expected:

$INCLUDE (value-of-%parm1-at-expansion-time)

This is the same as MAC3, but MAC3 does not produce an error messag

Any $INCLUDE processed at macro-expansion-time causesthainder of

its source line to be lost. If an error is detected while Esing an

INCLUDE, the error message is placed in the output file as usual and the line
containing the INCLUDE is handled as ordinary text. If INCLUDE is

249

Chapter 12: Macro
Macro Expressions

String Preprocessor Introduction

misspelled or if the following left parenthesis is missing, no
macro-expansion-time error is reported; the string is passed intact to the
assembler.

Macro Expressions

Macro expressions appear in some of the pre-defined instructions and are
particularly important to the % SET macro function.

Operators

Expressions consist of one or more operands, and zero or more operators.
The recognized operator keywords and their relative precedence are in the
following table: (Operators that appear on the same line in the table have the
same relative precedence.)

Precedence Operators

Higher HIGH, LOW
* [, MOD, SHR, SHL
Unary and Binary +, -
EQ, NE, LT, LE,GT, GE
NOT

AND

Lower OR, XOR

See Also

Parentheses can be used to override the default precedence of these operators
and are recommended for complex egsiens.

Chapter 7, beginning on page 137, for definitions of the operators.

250

Chapter 12: Macro String Preprocessor Introduction
Macro Expressions

Numbers

Numbers are stored ih/-bit form with a range of -65535 to + 65535. Note

that the sign bit is stored, therefore -1 is not the same@E535 forpurposes

of macro-time operations (although they can be the same to the assembler).
Integer constants in bases other than decimal are defined by placing a coded
descriptor after the integer. The descriptors are as follows:

« B-binary
e O -octal
e Q -octal

» D -decimal (default)

e H - hexadecimal

Symbols

Symbols must begin with a letter or one of two special characters: the question
mark (*?", or the underscore ('_).

Like assembler symbols, the second and following characters can be any letter,
digit, question mark, or underscore. Onlythe first 31 characters of a symbol
are used by the macro processor to define that symbol; any additional
characters are only for documentation purposes.

By default, the macro preprocessor is case sensitive. méans thatipper

and lower case letters are not equivalent in macro symbols. "ASYMBOL,"
according to the default, is not equivalent to "asymbol" or "ASYmBOL." Case
sensitivity, however, can be turned off on thencoand line.

A macro symbol must be preceded by the metacharacter (%) or the macro
preprocessor Wtreat it as ordinary text. The exception is a string argument
to a specific macro function.

The macro preprocessor does not recognize forward references because
makes only one pass through the source. Any symbol must be defined be
it is used. Keywords are stored separately from symbols. Synabod s can
therefore duplicate operator keyword nameswoiut conflict.

Macro symbols always have a string as a value. If the string happens to
represent a valid numeric constant (such as '01Q’or 2'), the symbol can be

251

Chapter 12: Macro String Preprocessor Introduction

Macro Expressions

See Also

used as the operand of an expression. Only macro-time symbols and 17-bit
integer constants are valid macro expression operands. The macro
preprocessor does not deal with relocatable numbers of any sort.

Page 56 for the set of characters supported by the assembler and macro
preprocessor.

Balanced Text String (baltex)

A frequently-referenced concept is the balanced-text string (‘baltex), which is
a string of characters containing balanced parentheses. Formally, baltex either
contains no parentheses, or one or more sets of balanced parenthesis, as in

‘baltex(baltex)baltex’

where each baltexis a balanced-text string (possibly null).

252

Chapter 13: Pre-Defined Macro Functions

13

Pre-Defined Macro Functions

A description of the pre-defined macro functions found in ap86. .

253

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

Pre-defined macro functions are provided as building blocks so that you may
create user-defined macros. It would be nearly impossible to duplicate many
useful operations found in the pre-defined functions with equivalent
user-defined macros.

Note A user-defined macro may be re-defined in the source program at some point
after the original user definition. Redefinition does not cause errors; it does
cause the preceding macro definition to be lost. Pre-defined macro functions,
however, may not be re-defined. It is an error to tryto do so.

Pre-Defined Macro Functions
The pre-defined macro functions listed below are recognized by the macro
preprocessor.
Table 13-1. ap86 Pre-Defined Macro Functions
%’ (comment function) %((bracket function)
%n (escape function) %DEFINE
%EQS %GES
%GTS %LES
%LTS %NES
%EVAL WEXIT
%IF %LEN
%MATCH %METACHAR
%REPEAT %SET
%SUBSTR %WHILE
Note The pre-defined macro functions %IN, %OUT, %Cl and % CO are not

supported by the ap86 macro preprocessor. These functions accept user input
to macro functions.

The pre-defined macro function % DEFINE does not appear in this chapter
because it is discussed in detail in the "User-Defined Macros" chapter.

254

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

%’ (Comment Function)

Call Pattern:
%’ ...any text... ' or end-of-line
Description: The comment function permits insertion of commentbeut
being passed on to the assembler. Everything from the quote up to a matching
closing quote or to an end-of-line is consideredraro@nt. Metacharacters
within the comment string are not expanded. In the output, the call pattern
(including the closing end-of-lin€ used) is replaced with the null string.
Example:
MOV AX,%ARG1 %' ARGL1 is the loop counter’
MOV SI,0 %’ Initialize index register
IMP $-2

%SET(symbol,02H) %’ Initialize: %SET(symbol,03H)’

DB %symbol
The second line in this example will result in an assembly-timer decause
the end-of-line terminating the koment is removed along with the comment,
so the assembler sees the two instructions

MOV SI,0 JMP $-2

without an end-cfine between them. Thedrth line shows that
metacharacters inside a comment are not expanded; the last line expands to
'DB 02H’ because the % SET’ was not executed within the comment. The
literal character (*) cannot be used with thenoment function.

%n and %((Escape and Bracket Functions)

Call Pattern:

escape function: %n[n-characters]
bracket function: %(baltex)

Escape Function
Description: n is a decimal (base-10) digit from 0 to 9 inclusive. The
expanded value of the escape function pattern is the n-characters immediately
following n itself. These will be passed to the assemblgrowit being

255

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

examined by the macro preprocessor. For example, %1%’ passes a %’ to the
output. The pattern %0’ passes no characters.

Bracket Function
Description: The expanded value of the bracket function is the "baltex" that
appears between the parenthesis. The bracket function inhibits the expansion
of all macros and functions within its argumentepthe escape function, the
comment function, and macro parameters. These are always expanded.

Escape and Bracket Functions (Generally)
Description: It is sometimes necessary to hide certain text from the macro
preprocessor, such as when a percent sign (%) is desired in the output or when
using strings involving unbalanced parentheses or commas as text. The escape
and bracket functions serve this need.

The bracket function might be more flexible than the escape function, but it
deals only with baltex, and the metacharacter is interpreted (although once a
call pattern has been detected it cannot be expanded). Examples:
%(1,2,3) ;1,2,3is passed to the output (this might
;be used as the actual parameter to a
;macro to prevent the commas from being
;interpreted as delimiters)
%330% ;30% is passed to the output
%(30%) ;error — '%)’ is not legal
%(%330%) ;%330% is evaluated, then used as
;an argument to %()
%(30%1%) ;same
%(%(30)) ;%(30) is passed to the output
DB '30%1%’' ;DB '30%’ is passed to the output because
;quotes are ignored by preprocessor

The literal character (*) is not accepted with the bracket or escape functions.

If the output of the macro is to include the escape character, you must
double-escape the output. For example, if macro MAC1 needs to output "DB
%™, you could define MACL1 as follows:

%DEFINE(MAC1) (DB "%3%1%’)

WEQS, WNES, %LTS, %LES, %GTS,%GES

Call Pattern:
%xxS(baltex1,baltex2)

256

%EQS(0,00H)

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

In the above call pattern, xxrepresents the first two characters of any of the
function names.

Description: The string relational functions all compare two strings,
character by character, left to right, and expandlogieal-valued string —1H
for TRUE, and O0H for FALSE.

The first string cannot contain arama unless the commagpsotected by
parentheses, the escape function, or the bracket function.

Comparison is on the basis of 88 character values. A blank character has

the value 20H, tab has the value 09H, and < EOL> has the value OAH (< line
feed>). The comparisonteif the first argument has the relationship to

the second indicated by the function. (EQS istrue if the two strings are equal.
GTS s true ifthe first string is "greater" than the second string.)

If two strings are of different lengths, but are identical on all characters in the
shorter string, the longer string is considered to be greater.

The literal character is allowed, but it has no effect. Metacharacters in the
argument strings are always expanded. Example:

;yields O0H (false), since comparison is

;of strings, not numeric values
%GTS(2,100H) ;yields -1H same reason as above
%GTS(c,CBA) ;yields -1H (true), since c>C (ASCII

;values), which ends comparison

Call Pattern:

%EVAL(3+3)
%EVAL(3-3)
%EVAL(-2)

%EVAL

Y%EVAL (expression)

Description: EVAL is used to evaluate an expression and it expands to a
string representing the numeric value of the expression. The expanded string
represents the value in hexadecimal. The first character of the expanded string
is always a digit 0-9, the last character is always 'H’, and the characters between
are the hexadecimal digits O-F. The expression is evaluated using 17-bit
arithmetic, as always, but the expanded value is at most 16-bits. Negative
numbers are shown in twos complement form. The expanded string can

4,5 or 6 characters in length. Examples:

;yields 06H
;yields OOH
;yields OFFFEH

257

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

%SET(S1,44) ;null (decimal value)

%SET(S2,333Q) ;null (octal value)

WEVAL(%S1+%S2) ;yields 0107H
The call pattern %*EVAL is legal, but the literal character (*) has no effect;
metacharacters in the expression are always expanded.

%EXIT

Call Pattern:
%EXIT

Description: The EXIT function allows immediate exit from the most
recently invoked % REPEAT, %WHILE, or a user-defined macro. The call
pattern % EXIT has no argument; it ends with the character T'. Some
common uses are to prevent a WHILE loop from going on forever and to
allow multiple exit points from a user macro.

This macro illustrates the classic example of recursion, the factorial function:

%*DEFINE(FACTORIAL(X))

(%IF(%X LE 1) THEN (01H %EXIT) FI %EVAL((%X)*%FACTORIAL(%X-1)))
The same result could also be accomplished by using % ELSE instead of
%EXIT. In this simple case using an % ELSE might even be clearer, but in
more complex examples the %IFs might be nested several levels deep, so
%EXIT would be much easier.

The call pattern %*EXIT is legal, but the literal character (*) has no effect.
%IF (Conditional Assembly Function)

Call Pattern:
%IF(expression) THEN (baltex1) [ELSE (baltex2)] FI

Description: The IF function enables a user to decide at macro-time whether
to assemble certain code or not. Doing this at macro-time has the advantage
that the assembler (which may require more execution time than the macro
preprocessor) sees only that code that is to be assembled.

258

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

The expanded value of %IF is the expanded value of either baltexl or baltex2
(if present), but not both. The call pattern %IF first evaluatestingeric
expression. Ifthe low bit of the 17-bit value is 1, then the expression is
considered true. Baltexl is passed to the output as the expanded value of %IF.
If the low bit of the 17-bit value is 0, then the expression is considered false

and baltex2 becomes the expanded value of %IF (if baltex2 is present). If it is
not present, the expanded value of %IF is null.

Typically, the expression will contain comparison operators (EQ, and so forth)
or string comparison macro functions (% EQS, and so forth). These always
return —1 for true and O for false, so %IF does what you would expect.
However, any numeric value is acceptable.

The baltex that is not selected is also not expanded. Any %SETs in it, for
instance, will not be executed.

The keywords THEN, ELSE, and FI are not stored as symbols, and user
symbols can duplicate these names. Since the arguments are all baltex with
parentheses as delimiters, there is no problem with ambiguity.

Call patterns (%1Fs) can be nested; each Fl (and ELSE, if present) is
considered to go with the most recently defined IF. Example:

%*DEFINE(MAC(symbol)) (
%IF (Yosymbol LT 0)
THEN (%’goes with LT if’
DB 00H
) ELSE (%'goes with LT if’
%IF (Yosymbol GT 10)
THEN (
%set(newsymbol,%symbol-10)
DB %newsymbol
) ELSE (%’goes with GT if’
DB %symbol
) FI %’'goes with GT if’
) FI %’'goes with LT if’
)

The literal character (*) is legal with %IF and has the effect of sugging

metacharacter expansion in whichever baltexis selected to become the output.
Metacharacters in the expression are always expanded.

%LEN

Call Pattern:
%LEN(baltex)

259

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

%LEN(countme)

Description: The LEN function counts the characters in its argument and
expands to a string representing the numeric value of the expression. The
expanded string represents the value in hexadecimal. The first character of the
expanded string is always a digit 0-9, the last character is always 'H’, and the
characters between are the hexadecimal digits O-F. The expression is evaluated
using 17-bit arithmetic, as always, but the expanded value is at most 16-bits.
Negative numbers are shown in twos complement form. The expanded string
can be 3, 4,5 or 6 characters. The literal character (*) is legal and prevents
the expansion of metacharacters in the baltex string. Example:

;yields O7H

%LEN(%EQS(ABC,abc)) ;depends on case sensitivity
%*LEN(%EQS(ABC,abc)) ;counts '%EQS(ABC,abc)’
;and yields ODH

%LEN() ;yields 00H

Note

Call Pattern:

Note

An <EOL> counts as one character (the line feed character). %LEN of a
SET-symbol willproduce a number between 3 and 7 inclusive. It is the number
of characters of the internal string representation of the symbol value.

The value is a full 17-bits, with a minus sign if needed (signed magnitude
representation). Thus —2 is stored-88H’ and 65534 istered as OFFFEH".
This is the only time (within a %LEN) that the value of a SET-symbol is not
really stored as a number.

%MATCH

%MATCH(namel delimiter name2) (string)

The spaces surrounding the delimiter in the syntax above are not a part of the
call pattern; they are shown only for clarity. Spaces between the first and
second pair of parentheses are acceptable. Spaces, tabs, or end-of-lines are
skipped over if they appear there.

Description: Namel and name?2 are symb@ist necessarily previously
defined) and delimiter is a single character separating them. It can be any
character that isotvalid in symbols. It could be a space, tab, comma,
end-of-line, parenthesis, or others.

260

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

MATCH divides a string into two parts at the first occurrence of the delimiter,
and assigns each part to a symbol. Its expansion is the null string. MATCH is
most commonly used in connection with loops, as described below.

MATCH searches the (expanded) string for the first occurrence of the
delimiter. When it is found, all characters in the string preceding the delimiter
are assigned as the value afmel. All characters following the delimiter are
assigned as the value cdme?2. Either value can be null. If the delimiter is not
present in string, the entire string is assignedamm&l and name?2 receives the
null string as its value. Examples:

%MATCH(NAME1,NAME2) (A,B,C) ;NAME1='A', NAME2='B,C’

%MATCH(NAMEL NAME2) (A,B,C) ;NAME1='A,B,C’, NAME2=null

%MATCH(NAMEL , NAME2) (A,B,C) ;Error — illegal spaces
;around comma (delimiter in this example)

The literal character (*) is legal in conjunction with %MATCH and inhibits
the expansion of any metacharacters in "string." Example:

%SET(sym,2)

%MATCH(VAR1,VAR2) (%sym,02H) ;VAR1=02H, VAR2=02H
%*MATCH(VAR3,VAR4)(%SYM,02H) ;VAR3=%SYM, VAR4=02H
%SET(SYM,3)

DB %VAR1 ;yields DB 02H in the output

DB %VAR3 ;yields DB 03H and %SYM is
;expanded at reference time

DB %*VAR3 ;yields DB %SYM and causes an

;assembly-time error

The last example is case dependent and would not work if case sensitivity was
enabled.

The MATCH function is often used to extract similar fields out of a string one
at a time. Suppose a string &ists of several numbers separated by spaces.
Such a string might be the expected value of a formal argument, for instance.
To generate a DB for each number:

%MATCH(TEMPVARMUNK) (%FORMALARG)
%WHILE(%LEN(%TEMPVAR) GT 0)
(%MATCH(NEXTNUM TEMPVAR) (% TEMPVAR)
DB %NEXTNUM

)
The first MATCH copies the formal argument to TEMPVAR, presuming
there are no carets (*) in %FORMALARG (this is a trick to evade the fact
that SET can assign only numeric values to a symbolpin@gassign a string).
The condition of the WHILE loop states that TEMPVAR mustis¢
non-null. The MATCH inside the loop extracts the next number from
TEMPVAR and stores the rest of the string back in TEMPVAR. The DB i
then generated and we execute the WHILE test again.

261

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

Call Pattern:

%METACHAR

%METACHAR(baltex)

Description: The METACHAR function changes the metacharacter (% by
default) to a different, user-specified character. These are the acceptable
alternative metacharacters:

@/+-#._=[]<>1""$&,=%{}~"|\"

Call Pattern:

The following characters cannot be used as a metacharacter:

the letters (A-Z, a-2)
the digits (0-9)
_ ?*() blank tab <EOL>

The new metacharacter is taken to be the first character of the expanded value
of baltex, although baltex can be any number of characters long. The new
metacharacter takes effect immediately at the first character following the

right parenthesis delimiting the call pattern of METACHAR. The literal
character *'is accepted on METACHAR, but it has no effect, as the argument
of METACHAR is always expanded.

Changing the metacharacter can have unforeseen catastrophic effects. For
example, any previously defined macros probably have the default
metacharacter (%) in the stored macro body. Thi#lynwt expand orrectly

if the metacharacter changes. The expanded value of the METACHAR
function is the null string.

%REPEAT

%REPEAT (expression) (baltex)

Description: The REPEAT function is one way to program a loop.

REPEAT evaluates the 17-bit numeric expression and then baltex is expanded
that many times. Note that the expression is expanded only once. If baltex
alters macro symbols that are involved in the expression, it does not affect
loop control. Ifthe expresion evaluates to be less than or equal to zero, baltex

262

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

is expanded zero times (the expanded value of REPEAT is the null string).
Example:

%REPEAT(5) (SHL AX,1
)

Note The < EOL> within baltex is necessary for correct expansion. Without the
<EOL>; this REPEAT would produce

SHL AX,1SHL AX,1SHL AX,1SHL AX,1SHL AX,1

%*REPEAT is acceptable. The asterisk inhibits the expansion of
metacharacters within baltex. Metacharacters in ‘expression’ are always
expanded.

%SET

Call Pattern:
%SET(name,expression)

Description: SET defines the string "name" as a symbol, whether or not it
was already defined, and gives it the value of "expression." Expression must
result in a number, but the value of namedsed as a string (like all macro
symbols). Generally, you can ignore this fact and treateas if it weretsred

as a number. Multiple SET directives can reference the same name. The
expanded value of the % SET call pattern is the null string.

The literal character (*) makes no sense with SET, since its first argument
must be a symbol and its second argument must evaluate to a number. Neither
argument can contain metacharacters after expansion. Ifthe macro
preprocessor attempts to expand %*SET jlitreport an error.

It is correct for the symbol-referencing construct to appear inside another SET
for the same symbol. Example:

%SET(username,%username+1)

This increments the value of username’ by one. However, the next example Is
incorrect:

263

Chapter 13: Pre-Defined Macro Functions
Pre-Defined Macro Functions

Call Pattern:

%SET(username,username+1)

This example generates a macro-time error because the character string
"username"is not a legal exgston operand. Symbol-referencing is discussed
in the chapter titled "User-Defined Macros."

%SUBSTR

%SUBSTR(baltex,expl,exp2)

Description: The SUBSTR function extracts a substring from its first
argument based on its second and third arguments.

In this pattern, expl and exp2 are numeric expressions. The expanded value of
the pattern is a substring of baltex. The substring begins at character number
expl and contains exp2 characters. If expl is less than or equal to 0, or greater
than the number of characters in baltex, then the expanded value is null. If
exp2 is less than or equal to 0, then the expanded value is null. If exp1l is of
such a size that the expansion value will not be null, but exp2 implies more
characters than remain in baltex, then the expanded value is all characters
from character expl to the end of baltex, inclusive. Examples:

%SUBSTR(12345678,4,2) :yields 45
%SUBSTR(12345678,-1,2) yields null
%SUBSTR(12345678,10,2) yields null
%SUBSTR(12345678,2,-1) :yields null
%SUBSTR(12345678,2,1000) :yields 2345678

Call Pattern:

The literal character (*) is accepted with SUBSTR, but is ignored.
Metacharacters in any of the arguments are always expanded.

%WHILE

%WHILE (expression) (baltex)

Description: The WHILE function programs macro-time loops. It works
similarly to the WHILE construct in high level languages.

WHILE evaluates the 17-bit numeric expression each thmeugh the loop.
If the least significant bit of the expression is 0, the expanded value of WHILE

264

Chapter 13: Pre-Defined Macro Functions
Example Problem

is the null string. If the least significant bit of the expression is 1, then baltexis
expanded and passed on as part of the expanded value of WHILE, and the
expression is evaluated again. The loop continues until thessipne

evaluates to false (least significant bit is 0).

For the loop to terminate, baltex must modify the value of esgiwa or an

EXIT function must be used. Otherwise the lodp mever exit. WHILE is

often used in conjunction with either SET or MATCH, either of which will
update a macro symbol on each pass through the loop (see the example under
MATCH).

The call pattern %*WHILE is not accepted, since preventing the expansion of
baltex would result in an infinite loop. An erroilivee reported if %*WHILE
is found.

Example Problem

This example shows the effects of an incorrect factorial macro.

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI
%EVAL(%X*%FACTORIAL(%X-1))

)

The only difference between this example and the one shown with the % EXIT
function reference is that this one is missing the pair of parentheseash

the second % X. They are necessary, because the arguments of macros are
strings, not numbers. The incorrect version above called with the actual
parameter 4 expands sussively to the following:

4*FACTORIAL(4-1)
4-1*FACTORIAL(4-1-1)
4-1-1*FACTORIAL(4-1-1-1)
01H
4-1-1*01H
02H
4-1*02H
02H

265

Chapter 13: Pre-Defined Macro Functions

Example Problem

4*02H
08H

The %FACTORIAL in the next lower calling level is evaluated before the
%EVAL in the one that called it is executed. That is as it should be and the
recursive property of this function is retained. The problem is that the normal
rules of precedence govewithin the enclosing parentheses of % EVAL. This
means that the multiplication is done to just part of the intended value of %X,
instead of the full value, at any level. The result is therefore less than it should
be.

As a general guide, it is advisable to surround any macro-time symbol with
either parentheses or %EVAL() if you expect to produce a numeric value. For
this example, one fixis to put %EVAL() around %X-1 in the call to
%FACTORIAL. This forces evaluation of the subtraction before the value is
passed to the next lower calling level. Another fixis to put parenthesesd

the second % X—as has been discussed and was done in the example for
%EXIT. This causes parentheses to be around the subtractions preceding the
multiplication sign that then force the intended order of arithmetic evaluation.
The corrected macro definition, using the % EVAL() fix, follows:

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI
%EVAL(%X*%FACTORIAL(%EVAL(%X-1)))

)

The corrected macro definition called with the sameapeater of 4 would
expand as follows:

4*FACTORIAL(3)
3*FACTORIAL(2)
2*FACTORIAL(1)
01H
2*01H
02H
3*02H
06H
4*06H
018H

266

Chapter 14: User-Defined Macros

14

User-Defined Macros

Information about defining macros, including the syntax for defining them,

and how macros are referenced.

267

Chapter 14: User-Defined Macros

User-defined macros are created by using the % DEFINE macro function.

User-defined macros can be defined in terms of themselves which means they
can invoke themselves within their own macro bodies. This ability is called
recursion. Any macro that calls itself must include a terminating condition

that causes the macro to "bottom out" eventually or the preprocessor can enter
into an infinite loop.

268

Chapter 14: User-Defined Macros

Where:

%DEFINE

If you want to define a macro, you must use the DEFINE function.

Because the syntax for DEFINE is somewhat complicated, the following figure
contains the syntax diagram for DEFINE.

.
Locul Symbol

Figure 14-1. Syntax for User-Defined Macros

% is the current metacharacter (which is usually %).

* isthe optional literal character. This character should be used with most
definitions. There are two reasons:

« It willinhibit the expansion of macro calls flagged by therent
metacharacter (usually %) within the macro body at the time of macro
definition. Instead, macro calls will be expanded at the time of macro
reference.

* You must use the literal character with any macro that has formal
parameters. Otherwise, the macrogracessor Wl attempt to evaluate
anyreferences to the formal arguments within the macro body as symbols
or other macro calls, which will result imrers.

Define is the pre-defined macro function for creating user-defined macro

269

Chapter 14: User-Defined Macros

Name is the user-defined name to be associated with the macronnbta
conflict with the predefined macro functions, but it can duplicate an earlier
user-defined macro name or symbol. In the latter case, the previous meaning
of the symbol is lost. The macro nantwald not be preceded by the current
metacharacter (usually %).

Parameter is a formal parameter name. Formal parameters, if they exist, are
replaced by actual parameters when the macro is invoked.

Note Formal parameter names are not preceded by the metacharacter when they are
being declared in the macroname arguniisit To reference a formal
parameter within the macro body, however, you must precede its name with
the metacharacter (asin % ARGUMENT_NAME for the formal parameter
ARGUMENT_NAME).

Parameter names must be distinct from one another within a macro, but they
can duplicate other formal parameter names in other macros, since they have
no existence outside the macro definition. They can also duplicate the names
of other user macros or macro functions. Ifthey do duplicate other macro
function names, then the other macros or functionaetbe used within the
macro body, since the duplicated naniknefer instead to the pameter.

Local isthe word that must precede the local paramieter

Symbol is a local symbol name. Such symbols can be used only within the
macro body. They are undefined outside of it.

The purpose of local symbols is to avoid multiply-defined symbols in the
output of the macro processor. Each time the macro is referenced, each local
symbol receives a unique two to five digit suffix. For example, if a local symbol
LABEL were defined for use within a macro, then the first macro invocation
might substitute LABELOO and the second invocation might use LABELO1.
This way, the assembler would not see a multiply-defined symbol. When
locals are initially being declared following the LOCAL keyword, they must

not be preceded by the metacharacter. However, when referencing local
symbols in the macro body, they must be preceded by the metacharacter. The
symbol LOCAL is not reserved; a user symbol or macro can have this name.

Body is a balanced-text string. It can contain references to formal arguments
and local symbols, if any, as described above. It can also include references to

270

Chapter 14: User-Defined Macros

user-defined macros (including itself), to macro-expansion-time symbols
(preceded by %", and to macro functions.

A macro should not redefine itself (%*DEFINE) within its body, however.

The expanded value of DEFINE is the null string, but the macro body is stored
internally for later use. A re-DEFINE in a macro body, then, is working at
Cross purposes.

Macro Reference

A macro is referenced by preceding its name with the metacharacter. Ifthe
macro was defined with formal arguments, the reference must include the
same number of actual parameters, enclosed in parentheses and separated by
commas. Actual parameters can be null, but the required delimiters must still
be present between them. Each actual parameter is substituted for its
corresponding formal pameter, wherever it appears in the macro body, on a
string basis.

The literal character (*) is acceptable in conjunction with references to
user-defined macros. Normally, all metacharacters in the actual parameters
are evaluated immediately when the macro reference is found and the
resulting strings are stored. They are then substituted for the formal
parameters as the macro body is copied. The literal character defers
evaluation of actual parameters until they amenfd in the macro body, and

they are re-evaluated each time they are found. Itgsiple, then, that the
values of actual parameters might change between evaluations depending on
what the macro body does.

Following are some sample macro definitions and references along with short
discussions about each. Each new macro and discussion begins with the new
%DEFINE, but an implied order of definition from first to last is understood

in order that some of the discussions make sense. Some of the macros are
intentionally incorrect.

%*DEFINE(MAC1) (DB 2)

MAC1 will have the string value "DB 2"when invoked.

%*DEFINE(MAC2(ARG1)) (DB %ARG1)

271

Chapter 14: User-Defined Macros

MAC2 is stored as 'DB %ARG1". %ARGL1 is to be evaluated at the time of
macro reference because of literal character (*) precedes DEFINE.

%*DEFINE(ERRL(ARG1)) (DB ARG1)

ERR1 shows a common error. The %'’is omitted from the formampater
in the macro body which means iillmot be recognized. The assembler will
be passed "DB ARG 1"when the macro is invoked, which is not likely to be
correct.

%*DEFINE(MAC3(ARG1)) (%MAC1
%MAC2(%ARG1))

MAC3 references the previously-defined macros MAC1 and MAC2. Since the
evaluation of metacharacters in MAC3 is deferred (with *), this example
would also work if the definitions of MAC1 or MAC2 followed that of MAC3
(aslong as they are defined before MAC3 is invoked).

%DEFINE(ERR2(ARG1)) (%MAC1
%MAC2(%ARG1))

ERR2 shows another common error—the literal character was omitted. The
metacharacters in the macro body are expanded immediately (at
macro-definition time). Since there is a reference to a formal parameter, this
cannot be done—there is no actualgraeter to substitute for it. The macro
preprocessor actually attempts to expand %ARG1 as a macro symbol or
user-macro. In some cases this might be possilthkmwadh it is not likely to

be what is expected.

%*DEFINE(ERR3(ARG1)) (%MAC1 %MAC2(%ARG1))

ERR3 shows another frequent user-errorjssing < EOL>. Since the body
of neither MAC1 nor MAC2 includes an < EOL>, ERR3 should include one
between their invocations (as MAC3 does). The invocation % ERR 3(3) will
yield "DB 2 DB 3"and cause an assembler error. If MAC1 ended with an
<EOL> or MAC2 began with an < EOL>, ERR3 would be correct.

%DEFINE(MAC4) (%MAC1
%MAC2(4))

272

Chapter 14: User-Defined Macros

MAC4 shows an acceptable use of DEFINE without *. The stored body of
MAC4 is shown in the following example, since the calls to MAC1 and MAC2
are evaluated immediately:

'DB 2
DB 4

With the definitions of MAC1 and MAC2 shown above, %MAC4 is the same
as %MAC3(4). But MAC1 and/or MAC2 might be redefined later on. In this
case, MAC3 will reference the new values, while MAC4 will not.

%*DEFINE(MAC5(ARG1)) LOCAL LABEL (
%LABEL: MOV AX,%ARG1[DI]

INC DI

LOOPNZ %LABEL)

MACS5 shows the use of a local symbol. Each invocation of MACS5 will create
a unigue assembler-time symbol from LABEL.

Note that the macro definitions above produce no output, since each DEFINE
expands to the null string. Consider the macros as being defined sequentially
without separating blank lines. The endlioks between the terminating right
parenthesis of each macro body and the following metacharacter (%) of the
next macro result in blank lines that are not output. If the macro preprocessor
did not remove blank lines, these examples would generate seven blank lines.
This behavior is typical of readable macro code. All characters between the
delimiting parentheses (including end-of-lines) are considered part of the
macro body, which in turn is part of the syntax of DEFINE. Such characters
are not considered for output.

Referencing Macro-time Symbols

Symbols are defined by the SET and MATCH functions. A symbolis
referenced by preceding its name with the metacharacter, asin

%name

Without the metacharacter, the macro preprocessor tremte"Hike any
other character string. The call pattern of the symbol ends where the na

273

Chapter 14: User-Defined Macros

ends (there is no argument in parentheses). The expanded value of this
construct is the character string that had bessigaed to it. (For instance:
'01H’; or 'STRINGVALUE’;, or the null string.)

The literal character (*) is proper with a macro-time symbol. It inhibits the
expansion of any metacharacters within the symbol value which otherwise
would be expanded. For example, suppose the value of a symbol SYM is
"%LEN(01H)." % SYM will expand to '03H’, but %*SYM will expand to
"%LEN(O01H)". Generally, the literal character should be omitted.

The literal character similarly affects formal parameters of macros within the
macro body. A formal parameter is not recognized if preceded by the literal
character. This permits giving a formal parameter the same name as a macro
function while still being able to access the function within the macro body.
Example:

%*DEFINE(MAC(LEN)) (DB %LEN
DB %*LEN(%LEN))

The first % LEN is the formal argument LEN, as is the third. The second is

not recognized as an argument because of the literal character, so it reverts to
its normal meaning as a pre-defined function. The literal character has
meaning to this particular function, so the inner %LEN is not expanded.

The literal character cannot be used with local symbols within a macro body.

274

Chapter 15: Assembler versions

15 -

Assembler versions

Information about how this version of the software differs from previous
versions.

275

Chapter 15: Assembler versions

Version 3.10

Version 3.10

New Product Numbers

The old product number for this product v@&871. The neywroduct number
is B1449. Theproduct numbers for some associated products, such as the C
cross compiler, have also changed from 64x&1dxx.

New Assembler Controls

The GEN, GENONLY, OPTIMIZE, EXTERN_CHECK, and
UNREFERENCED_EXTERNALS controls are new.

New Linker/Loader Controls
The ERROR, WARN, LISTMAP, and TYPEMERGE controls are new.

New Assembler Defaults

The defaults for the ERRORPRINT, SYMBOLS, and PRINT controls have
changed.

New Location for Man Pages
The on-line manual pages have been moved to the $HP64000/man directory.
Set your SMANPATH environment variable to include this directory.

New Linker Listing Format

The cross-reference table has been combined with the public and local symbol
tables.

276

Chapter 15: Assembler versions
Version 3.00

Version 3.00

Demo Directory Change

The directory that contains the example files,
/usr/hp64000/demo/languages/hp64871, has changed to
/usr/hp64000/demo/languages/as86. (This change does not apply to the HP
9000 Series 800 version.)

New Assembler Controls

The OPTIMIZE assembler control has been added. Use OPTIMIZE to reduce
the number of NOPs generated for forward references.

The [NOJUNREFERENCED_EXTERNALS assembler control has been
added. Unreferenced external symbols are removed by default. Use this
control to cause all external symbols, including those that are unreferenced, to
be placed into the generated object file.

The SYMBOLS assembler control now defaults to SYMBOLS instead of
NOSYMBOLS. Thus assembler listings will na@rmally contain a symbol
table.

New Assembler Operators

Four new operators have been added to the assembler. These operators are
SEGSIZE, SEGOFFSET, GRPSIZE, and GRPOFFSET. These operators
allow a program to access the size of segments or groups, the offset of the start
of a segment from a paragraph address, and the offset of a segment from a
group address.

New Linker Commands

The linker now supports two newrmonands: TYPEMERGE and
NOTYPEMERGE. These commands are used to control tleeiatrand

number of type records within the generated output file. Problems can occur
if the number of type records in input files exceeds 32k. If this occurs, an
erroneous output fileresult. The TYPEMERGE ammand allows the

linker to merge like type records so the number of type records required in the

277

Chapter 15: Assembler versions

Version 3.00

output file can be kept below this limit. Use of this command, however, will
cause the linker to run for a longer amount of time. This is necessary,
however, for very large programs.

Other Linker Changes

Modules in Incrementalliinked files will now be rported differently in the
listing. Any module within the file will be ported with two dashes (--) before
the module name. This s to indicate that the module is part of a larger
overall module. Also, incremental linking now worksiectly when used to
create a final HP64000 absolute file.

One of the duplicate err@&12 messages has been changed to becomoe e
825.

278

Chapter 16: Converting HP 6 4853 Assembly Language Programs

16

Converting HP 64853 Assembly
Language Programs

Changes that must be made to source files written for the4853 assembler
so that they can be assembled with the HP B1449 assembler.

279

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

Not everything that appears in the HP 64853 formatee files can be
translated into something that the HP B1449 assembler will recognize, but
most can. Translation is done in two ways. Some translations must be done
manually. Most translations, however, can be done by the acvt86 translation
program described in this chapter.

Note The program acvt86 automatically performs most of the transformations
described here. acvt86 is an unsupported porting tool. acvt86 is not a part of
the B144%roduct and is distributed at no cost. Hewlett-Packard makes no
warranty on its quality or fitness for a particular purpose.

The first section of this chapter discusses the acvt86 porting tooksures

that are caused by the differences between the two assemblers. The next
section describes the manual translations to macros that must be done
because the porting tool cannot perform some macro translations. The third
section gives the command syntax for acvt86. The final section is an old and
new list. This section is arranged alphabetically according to keywords in HP
64853 assembly language. It gives a side-by-side comparison between the old
and new syntax and shows you how acvt86 transforms particular HP 64853
constructs.

acvt86 Introduction

This section describes the way that acvt86 approaches the conversion process,
what it produces, and its limitations. It also describes the sequence you should
follow to translate files that contain include files. This section will give you a
better understanding of what you will have to do to complete the translation
process.

This section is not a complete description. If you need to find out how acvt86
converts a particular construct, you should write a test program and examine
the acvt86 output.

280

Note

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

The first line of an HP 6485%ogram identifies the target processor. HP
B1449 assembly languagepports only the8086/186 and 8088/188
processors. The HB1449 assembler does natpport the70108, 70116,
8089, or 80286 mioprocessors. Therefore, the following target processor
identifiers are not recognized: "70108", "70116", "8089_86", "8089_88", and
"80286".

Assembler Differences

The HP B1449 assembler is really tppograms: the preprocessor, ap86; and
the assembler, as86. The precessor implements the following features of
the old HP 64853 assembler: SET directives, REPT directives, MACRO
definitions and expansions, and IF/ELSE/ENDIF conditional assembly
directives. The assembler then completes the process by assembling the file
produced by the preprocessor. acvt86 translates these featuresin the
following way.

IF

IF <expr>
lines
ELSE
lines
ENDIF

translates to

%IF((<expr>)NE 0)
THEN

(lines)

ELSE

(lines)

FI

EQU

id EQU <expr>

translates to

281

Chapter 16: Converting HP 6 4853 Assembly Language Programs

acvt86 Introduction

id EQU <expr>

If <expr> is a constant expression, acvt86 generates % SET(id,< expr>) and
acvt86 also stores id in its symbol table. Later, when id is referenced in
preprocessor expssions, acvt86 recognizes it and translates it to %id.

MACRO

id MACRO &P1,&P2
lines
MEND

translates to

%*DEFINE(id(P1,P2))
(lines)

acvt86 also stores id in its symbol table. Later, when id is referenced, acvt86
recognizes it and translates it to %id.

REPT

REPT <expr>
next line

translates to

%REPEAT(<expr>)
(

next line

)

SET

id SET <expr>

translates to

%SET(id, <expr>)

acvt86 stores id in its symbol table. Later, when id is referenced, acvt86
recognizes it and translates it to %id.

282

Note

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

Sometimes the constant expressions in IFs or REPTs cannot be translated.
HP 64853 calculates its constant expressions using 32 bit numbers. ap86 uses
only 17 bit numbers. HP 64853 allows constant expressions to be formed
subtracting two relocatable symbols. ap86 cannot do this because it has
knowledge of the value of relocatable symbols.

External Declarations

HP 64853 allows an external identifier to be associated with a segment
register in the EXT directive. For example:

EXT ES:X1 WORD
MOV AX,X1 ;references X1 using ES

If you use X1 in certain memory reference operands, the HP 64853 assembler
will automatically generate an ES: segment override for thesictson.

The HP B1449 assembler does not have an equivalent capability. Instead, an
external identifier can be associated with a segment by placing the EXTRN
directive inside a SEGMENT/ENDS pair. The segment may then be
associated with a segment register through an ASSUME directive.

Since it would be difficult to automatically perform this kind of
rearrangement, acvt86 instead does the following:

* When an external declaration with an associated segment register is
found, acvt86 stores the identifier and segment register in its symbol table.

* When the external identifier is referenced, acvt86 will generate (when
appropriate) an explicit segment override. For example, the instructions
shown above would be translated to the following.

EXTRN X1:WORD %'ES:D: X1’
MOV AX,ES:X1 ;references X1 using ES

The preprocessor ooment %’ES:D:X1' records the information in the

original EXT directive. If, in a subsequent translation, acvt86 sees this
comment when reading a translated include file, it can update its symbol table
just as if it saw the original declaration.

283

Chapter 16: Converting HP 6 4853 Assembly Language Programs

acvt86 Introduction

Note

You should not do SET definitions, constant EQU definitions, or "EXT
segreg:id" declarations using MACRO parameters. For example:

CSWORD MACRO &P1
EXT CS:&P1 WORD
MEND

CSWORD X1

While this arrangement works perfectly well in the 88853 assembler,
acvt86 cannot tell that the variable Xilllwave the implied CS: override
quality. It may not translate references to X1 correctly.

Porting Procedure— Main Files with INCLUDE Files

Here is a procedure for translating a main file and its INCLUDE files. This
sequence gives acvt86 its most complete symbol table and allows it to do the
most accurate translation.

1 Translate the include files first. Use the -c option to specify the main file
as the context file. This allows definitions in the main program to be used
when translating the include file. Furthermore, as each include file is
translated, its definitions are available for translating subsequent include
files.

2 Make manual corrections to translated include files. Typically, this
means rewriting .IF, .GOTO, etc., directives in MACROs.

3 Translate the main file(s). Make corrections to the main file(s).

4 Assemble the main file(s) using the HP Bl1449yoeessor/assembler.
Correct preprocessor and assembly errors.

For example, here are three files: prog.S, incl, and inc2

Main File prog.S

" 8086 "

;prog.S
EXT ES:X1 WORD
INCLUDE inc1
INCLUDE inc2

284

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86 Introduction

M2 ;defined in inc2
END

Include File incl1

;incl
DISP SET 6
Include File inc2
;inc2
M2 MACRO
MOV AX,X1 ;X1 defined in prog.S

ADD AX,DISP ;DISP defined in incl
MEND

First, translate incl as follows.

$ acvt86 -c prog.Sincl > incl.h

Second, translate inc2. Because of the "-c prog.S" option and because we have
already created incl.h, acvt86 widircectly translate the referencesto X1 and
DISP.

$ acvt86 -c prog.Sinc2 > inc2.h

Finally, translate prog.S. Because inc2.h exists, acvilB6avrectly translate
the reference to macro M2.

$ acvt86 prog.S > prog.s

acvt86 Warnings, ap86 Errors, as86 Errors

To do a successful port, you must pay attention to messages from three
sources.

acvt86

acvt86 issues warnings when it detects something that may need your
attention. For example, it issues a warning when a MACRO call has more
actual parameters than it has formal parameters in the MACRO definition.
As previously explained, the two assemblers operate differently in this

285

Chapter 16: Converting HP 6 4853 Assembly Language Programs

Code Substitution

situation. Depending on how your MACRO is written, you may or may not
need to change this statement.

ap86

After translating your files, you must understand and correct preprocessor
errors. For example, errors may result from using constantssipns whose
value is too large for the 17 bit preprocessor esgiom limit.

as86

Finally, you must understand and corresB@&arors. Assembler errors have
numerous causes. For example, 6#853 allowed user labels to duplicate
instruction mnemonics (e.g. TEST). HBR449 does not allow this and
produces a syntaxerror. In this case, you should changeathe af the
offending label.

Code Substitution

acvt86 has a feature that allows HP B1449 code to coexist with HP64853 code
in an untranslated assembly source file. This feature is useful when, instead of
doing a one-time port, you want to maintain a single, untranslated source file
and then use acvt86 as necessary to obtain translated source.

acvt86 treats the comment ";€4871;" in a special way. When acvt86 sees
that comment, it does the following:

» Discards all the text before the ;sub6487Inorent. Anywarnings
generated by this text are also discarded. Note that acvt86’s symbol table
is still updatechormally if the discarded text contains certain directives.

» Writes anytext following the ;sub64871;mment to standard output
without any changes.

In the example below, we want to substitute legal HP B1449 code for the .IF
and .NOP directives that acvt86 does not translate

IF &P1.GE.O LAB ;sub64871;%IF(%P1 LT 0) THEN (
DW &P1
LAB .NOP ;Sub64871;) FI

286

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Byte ordering for BIN, DECIMAL, HEX, OCT

acvt86 willproduce the following output for the preceding text

%IF(%P1 LT 0) THEN (
DW %P1
) FI

Note acvt86 only recognizes the substitution string ;sub64871; at the beginning of
the comment field. In the example below, acvt88 net make a substitution
because comment text precedes theG48B1; string.

DW &&P1 ;indexed parameter;sub64871; DW %P1

Byte ordering for BIN, DECIMAL, HEX, OCT

These four HE4853 directives generate data with bytes that are reversed
from the normal 8086 convention. When translating, you must adjust the
value of operands to these directives to compensate for this. This appliesto
any numeric format: binary, decimal, hex, or octal. Example:

HEX

HP 64853 HP B1449
HEX ABCD DW OCDABH

Manual Macro Translations

acvt86 automatically translates simple MACRO definitions (i.e. those without
AF, .SET, .GOTO, or .NOP directives and without indexed "&&PNO"
parameters).

More complicated structures must be translated manually. Generally, this can
always be done except when .IF or .SET expressions use symbol values which
cannot be calculated at preprocessor time.

287

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Manual Macro Translations

The HP 64853 .IF, .GOTO, and .NOP conditional assembly directives must be
manually translated into the HP B1449 % IF pmecessor directives. If the
branches in your MACRO do not define a block structure, you must
rearrange the MACRO to conform to the IF/THEN/ELSE structure of ap86.

Macros branches which do loops can be translated into % REPEAT or
%WHILE structures.)

The HP 64853 .IF directive performs either numeric or string comparisons
depending on the operands being compared. Numeric comparisons must
translate into ap86 numeric expressions; string comparisons must use the
ap86 preprocessor string comparison functions.

HP 64853 allowed a null pameter either to be the null string (™) or to be
omitted entirely (except for a comma placeholder). Here is howto test for an
omitted or null macro parameter. Check for both of thessifilities in your
translated .IF directive.

HP 64853 allows MACRO pameters to be referenced by number.Bi1B49
has no equal facility. Two translation techniques can be used.

1 Use %*DEFINE to make a new identifier which has the value of the
indexed parameter.

2 Sometimes a MACRO indexes an indefinite number of parameters. This
can be handled with the %MATCH function. For example, the following
MACRO defines one word for each actual parametetofison the first
null parameter or at the end of thsd.

Macro Calls

Sometimes, a MACRO call specifies a different number of actual parameters
than formal parameters in the MACRO definition. acvt86 records the number
of formal parameters in a MACRO definition. It automatically handles the
first two of three situations described below. The third situation usually
requires a manual change.

3 Ifyou specify fewer actual parameters than there are formal parameters,
ap86 will eror and not expand the macro. To prevent this, acvt86
automatically generates additional null parameters on the macro call.

4 If you specify actual parameters and no formal parameters were declared,
ap86 does not consume the actual paranmisteand they eventually
cause a syntaxerror. To prevent this, acvt86 suppresses the actual
parametelist.

288

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Manual Macro Translations

If you specify more actual parameters than formal parameters, ap86 acts
as follows: the value of the last formal parameter is equal to the value of
its corresponding actual pameter concatenated with all the additional
actual parameters and comma delimiters. Any reference to the last fo
parameter Wi generate a different value than it did in the HP 64853
assembler. acvt86 issues a warning in this case. Nould either
eliminate the extra actual parameters or rewrite the macro to preserve its
original function.

289

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

Note

Name

Synopsis

Description

acvt86(1) Command Syntax

The program acvt86 automatically performs most of the transformations
described here. acvt86 is an unsupported porting tool. acvt86 is not a part of
the B144%roduct and is distributed at no cost. Hewlett-Packard makes no
warranty on its quality or fithess for a particular purpose.

acvt86 - converts 8086 assemphpgrams from HB4853 format to HP
B1449 format

{usr/contrib/bin/acvt86 [-dsw][-a align]
[-c context] [-h suffix][file]

acvt86 translates assembly source programs from one dialect to another. It
assumes the input file is a le@486, 8088, 80186, or 80188 assemptpgram

for the HP 64853 assembler. The output may be assembled with the HP B1449
assembler.

acvt86 does not translate "70108", "70116", "8089_86", "8089_88", or "80286"
programs that were accepted by the 64853 assembler. Programs for these
microprocessors are also not accepted by theBA#49 assembler.

acvt86 reads from standard input or tteemed file. It writes the translated
assembly to standard output. It writes warnings about functional differences
between the input and output to standard error.

acvt86 supports a one-time porting of assembly programs from one product to
another. The objective is to obtain the same (or functionally equal) bits from
the HP B1449 assembler as from the HP 64853 assembler. acvt86 changes
directives, delimiters, operators, and so on to achieve this goal. However,
because of differences between the two assemblers, this porting process
cannot be entirely automatic or trivial.

acvt86 makes two passes over its input file. The first pass builds a symbol table
of certain identifiers (MACROS, externals, etc.) that will effect the
translation; the second pass performs the translation.

290

Options

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

acvt86 may look at other files to supplement its symbol table.-€he
contextfile option incorporates the definitions frasantextfile in the present
translation. Typically, @ontextfile is a main, untranslated assembly module
while the present file is an INCLUDE file abntextfile. Whenever acvt86
encounters an INCLUDE directive (eitherdantextfile or the present
input), it attempts to open the already translated include file and read its
definitions. (See the -h suffix option for include file naming conventions.)

acvt86 has a code substitution feature. It allows HP B1449 code to coexist
with HP 64853 code in the same untranslated file. Refer to the section "Code
Substitution"” for more information.

acvt86 was implemented with lex(1) and yacc(1). The source code is available
in /usr/contrib/src/acvt86/.

-c context Scan the context file (and translated INCLUDE files
mentioned in it) for definitions to use when translating
file. This option is useful when translating INCLUDE
files. Specifying a context allows acvt86 to accurately
translate references to certain identifiers (MACROS,
externals, etc.) that were defined in the main "context"
file orits (translated) INCLUDE files.

-a align Align is one of the HP B1449 align-types of BYTE,
WORD, PARA, PAGE, INPAGE. Specify the
align-type used in segment directives for relocatable
segments. The default align-type of BYTE duplicates
the alignment behavior of the HP 64853 assembler.
However, the HP B1449 assemblerces when an
EVEN directive occurs within a BYTE aligned
segment. If EVEN directives will be used, use the -a
WORD option.

-d (differences) acvt86 writes pairs of input/output lines
only when they are different. This output is not suitable
for subsequent assembly.

-h suffix Specifies the suffix (default .h) which is added to file
names in INCLUDE directives to form the name of the
“translated" include file. If the file name in the

291

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

INCLUDE directive has a suffix (i.e. contains a period)
then suffix replaces the original suffix. Otherwise, suffix
is appended to the original file name.

For example, suppose an 683853program contained the following directive.

INCLUDE file.H

acvt86 would translate this to the following HP B1449 control.
$INCLUDE(file.h)

It would also assume that file.H had already been translated into file.h and
attempt to read file.h before continuing with the present translation.

-S (silent) Sippress warnings to standard error.
-w (warn) Include warning messages (amaoent lines) in

the standard output following the appropriate
translated line.

292

Chapter 16: Converting HP 6 4853 Assembly Language Programs
acvt86(1) Command Syntax

Files /usr/contrib/bin/acvt86

Executable file for assembly language porting tool.

/usr/contrib/src/acvt86/*

Source code files and make file for assembly language

porting tool.
See Also ap86(1), as86(1), asm(1).
Diagnostics acvt86 returns non-zero if errors occur while performing I/O operations or

while parsing the command line. Otherwise itureis zero.

Warning messages and the source lines which caused them are written to
standard error.

Bugs acvt86 performs a limited set of transformations. Errors may occur when
assembling the output. The object code from the 64853 assembly may not be
the same as from the B1449 assembly.

acvt86 may detect a syntax error reading a legab#853program. The

syntax of the HP 64853 assembly language is irregular. Occasionally, a legal
assembler statementlMbe unacceptable to the translator. acvt86 isdle a
warning when it detects a syntax error. The offendingestaht must be
translated manually.

293

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

Comparison of Keywords

This section provides a side-bigle comparison of some of the HP 64853
constructs with the HB1449 contructs. acvt86 performs most of the
conversions shown in this section.

ALIGN
HP 64853 HP B1449

label ALIGN EVEN
label:

In HP B1449 assembly language, EVEN directives causgif they appear
in segments with align-types of BYTE. Use an align-type of WORD if you
want to use the EVEN directive. Any label may appear on the following line.

ASSUME
HP 64853 HP B1449

ASSUME segreg:ORG ASSUME segreg:abs_segname

Most ASSUME directives need not be changed when moving to the HP B1449
assembler. However, when referring to absolute (for instance, ORGed)
segment, you must do things differently. Briefly, when translating the ORG
directive, you must create a named absolute segment using the SEGMENT
directive. The ASSUME directive should then refer to this segmemen

(See ORG for more information.)

COMN
HP 64853 HP B1449

label COMN <prevproc> END
<prevseg> ENDS
COMN SEGMENT BYTE COMMON
label:

294

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

Issue an ENDP to end the previous PROC, if necessary. Issue an ENDS
directive to end the previous segment, if necessary. Anylabel must appear on
the line following the directive.

DATA
HP 64853 HP B1449

label DATA <prevproc> ENDP
<prevseg> ENDS

DATA SEGMENT BYTE PUBLIC
label:

Issue an ENDP to end the previous PROC, if necessary. Issue an ENDS
directive to end the previous segment, if necessary. Anylabel must appear on
the line following the directive.

<EOF>

HP 64853 HP B1449

<EOF> <prevproc> ENDP
<prevseg> ENDS
END
<EOF>

Add an END directive to the module if not already present. Also, issue ENDP
and ENDS directives if necessary.

EQU
HP 64853 HP B1449

id EQU <expr> id EQU <expr>
%SET(id, <expr>)

295

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

If an EQU label is ever referenced ipr@processor expressioiF, REPT, or
SET), then you must define that label for the preprocessor using the %SET
directive. References to id in preprocessor esgioms must be changed to
%id.

EXPAND

The EXPAND function cannot be translated.

EXT

HP 64853 HP B1449
EXTid EXTRN id:NEAR
EXT id type EXTRN id:type

EXT segreg:id type EXTRN id:type

The HP 64853 declaration "EXT segreg:id" causes an automatic segment
override when id is used in a memory reference operand. The HP B1449
assembler does not have an equal feature. Two approaches can be used to
obtain the same code. You can either find all the references to id and add an
explicit segment override to the operand when appropriate, or, place all the
EXTRN directives with a particular associated segment register inside a
segment. In the second case, you then must make sure an ASSUME directive
is in effect for the proper segment register when the external identifiers are
used.

Label Field
HP 64853 HP B1449
label: directive label directive
label instruction label: instruction

label macroname operands label: %macroname(operands)

Colons following labels are now significant. With the HP 64853 assembler, a
colon following a label was optional. HP B1449 assemptehibits a colon

on a label for an assembler directive. HPB1449 assembler requires a colon on
a label for a blank line, an instruction, and a macro definition.

296

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

LIST
HP 64853 HP B1449
LIST $LIST
LIST n $PAGELENGTH(n) LIST
Note PAGELENGTH is a primary control. It, and other HP B1449 primary
controls, must be placed at the beginning of the file before any executable
statements.
MASK

The MASK function cannot be translated. You must find any ASC directives
which are affected and change the operands.

NAME

The NAME function, which puts a comment in the relocatable object module,
cannot be translated.

NOWARN

The NOWARN function cannot be translated.

Operator Field

HP 64853 HP B1449
AN. AND

EQ. EQ

.GE. GE

GT. GT

297

Chapter 16: Converting H
Comparison of Keywords

P 6 4853 Assembly Language Programs

LE. LE
LT LT
.NE. NE
NT. NOT
.OR. OR
.SL. SHL
.SR. SHR
#1234 1234

Remove the pound sign before literal operands.

Within a string, make the following translations.

A quote () becomes two quotes in series (").

To the macro preprocessor, the percent sign, left pareistlaad right
parenthesis are special characters. Yroautd add a preprocessor escape
sequence to percent and to unbalanced parentheses to avoid processor
errors.

HP B1449 string delimiters are different.

HP 64853 HP B1449
"string" 'string’
Astring” string’
'string’ 'string’

ORG

HP 64853 HP B1449

labe

|ORG <prevproc> ENDP
<prevseg> ENDS

298

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

abs_seg SEGMENT AT PARA_VAL
ORG OFFSET_VAL
label:

The HP 64853 ORG directive begins an absolute segment. Translate as
follows.

* Issue an ENDP to end the previous PROC, if necessary.
» Issue an ENDS to end the previous segment, if necessary.

 The upper 16 bits of the ORG exgs®on represents the segment value
and the lower 16 bits represent the offset. You must extract the
paragraph value and the offset manually because the HP B1449 does not
do 32 bit arithmetic.

» Start an absolute segment, using the AT keyword, at the paragraph value.
» Set the offset using the ORG directive.

* Anylabel must follow the ORG to retain its original value. It is not
necessary to create a new absolute segment for every ORG directive.
Several ORGed sections (with the same segment values) may be
combined. The HP B1449 ORG directive may be used to set the offset
with the absolute segment.

PROC

HP 64853 HP B1449

label PROC type <prevproc> ENDP
label PROC type

PROC FAR <prevproc> ENDP
dummy PROC FAR

Issue an ENDP to end the previous procedure if necessary.

An unlabeled PROC directive is only useful for its effect on subsequent RET
instructions. If the unlabeled PROC has type FAR, create a dummy PROC to

299

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

retain the same behavior. This dummy procedure is unnecessary if the type of
the unlabeled PROC is NEAR because HP B1449, by default, creates NEAR
return instructions when RETs appear outside of any procedure.

300

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

PROG
HP 64853 HP B1449

label PROG <prevseg> ENDS

PROG SEGMENT BYTE PUBLIC
label:

Issue an ENDS directive to end the previous segment if necessary. Any label
must appear on the line following the directive.

REAL

The REAL directive cannot be translated. REAL is not useful because the
byte order of its numbers is opposite 8686/186 convention. Use DD, DQ,
or DT to create useful real numbers.

Reserved Words
HP 64853 HP B1449

TESTEQUO TESTX EQU 0

HP B1449 assembler recognizes more reserved identifiers. HP 64853 assembly
language allowed you to define labels that were spelled the same as either
instruction mnemonics or assembler directives. Bl249 assembler does not
allow reserved word duplication. Change the spelling of identifiers that
duplicate reserved words.

SPC
HP 64853 HP B1449
SPC

The SPC function can only be translated into an equal number of empty
source lines.

301

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Comparison of Keywords

WARN

The WARN function cannot be translated.
* (Comment)

HP 64853 HP B1449

* comment ; comment

instr operand comment
instr operand ;comment

HP 64853 sometimes allowsroments to begin with an asterisk and
sometimes does not require any delimiter. HP B1449 requireswafheats
to begin with semicolon.

302

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Linking to 64853 Programs

Linking to 64853 Programs

The HP B1449 linker does not accept either HP 64000 relocatable files or
64000 link_sym files. [d86 accepts only binary OMF relocatable files.

The utility L_to_o086 will transfer global symbol definitions from an 6400
link_sym file to an HP B1449 relocatable file. Thus, one can reference
symbols produced by the HI2853 linker(or produced by |[d86) from binary
OMF modules. Using this method, only the symbol definitions are linked. The
code from the HP 6485%ogram is contained in an H000 absolute file

and must be loaded separately.

You may reference HP B1449 symbols from HP 64853 modules. Simply link
the link_sym file produced by Id86 with the H6R853 linker.

L_to_o086 uses another utility called nm64. Both are described on the
following pages.

303

Chapter 16: Converting HP 6 4853 Assembly Language Programs
Linking to 64853 Programs

Name

Synopsis

Note

See Also

Diagnostics

L to 086(1)

L_to_086 - Transfer global symbol definitions from HP 64000 link_sym file(s)
to HP B1449 relocatable file(s)

/usr/contrib/bin/L_to_086 file ...

This utility program is unsupported. It is not a part of any HP product and is
provided at no cost. Hewlett-Packard makes no warranty on its quality or
fitness for a particular purpose.

L_to_o086 takes the global symbol definitions from an HP 64000 link_sym file
and puts them into a relocatable file. These absolute symbol values may then
be used in a linking operation by the HP B1449 8086/186 linker, |d86.

L_to_o086 produces one relocatable file for each link_sym file. The output file
name is formed from theput rame by stripping any preceding path name or
.L suffixand appending .o.

The conversion is done in three steps. First, nm64 converts the link_sym file to
a printable listing. Second, awk rearranges the listing into a 8086 assembly
source file. Third, 886 assembles thewsrce into a relocatable.

nm64(1), as86(1), 1d86(1).

L_to_o86 returns 1 if there is aroonand line eror or if any input file cannot

be opened. Otherwise, it returns zero. If the input file is not ab49P0
link_sym file, then as86igenerate an assembly error message on standard
error. The relocatable fileilvbe valid but will contain no symbol definitions.

304

Chapter 16: Converting HP 6 4853 Assembly Language Programs
nmo64(1)

Name

Synopsis

HP-UX Compat ibility

Note

Description

See Also

nmo64(1)

nmo64 - print symbolic information from HP 64000 asmb_sym and link_sym
files

lusr/contrib/bin/nm64 [-t] [file] ...

Level:

Contributed Software
Origin:

Hewlett Packard - Logic Systems Division

This utility program is unsupported. It is not a part of any HP product and is
provided at no cost. Hewlett-Packard makes no warranty on its quality or
fitness for a particular purpose.

Nm64 is similar to the HP-U X utility, nm(1). It prin¢en standard output)

the symbol names, values, and relocationrter rmames for symbols contained
in HP 64000 asmb_sym (assembly symbol) and link_sym (linker symbol) files.
For the latter, it also prints the other types of records present: processor
configuration, name, and memory space.

Usually, asmb_sym files have a .A suffixand link_sym files have a .L suffix.
If no files are specified, nm64 attempts to read standard input.

If the -t option is specified, it will print lines prior to each section of the file
telling what disk address the section starts at.

File Format Reference for the HF#000-UX Microprocessor Development
Environment

305

Chapter 16: Converting HP 6 4853 Assembly Language Programs

nmo64(1)
Diagnostics Nme64 returns 1 if it cannot open the input file. Otherwise, it returns zero.
Bugs Addresses for different target processors may be stored in either one-word or

two-word quantities. Assembly symbol files have no indication of which is used
so applies a simple heuristic test to figure it out. The test could possibly fail.

Nm64 may also attempt to interpret other types of files with unpredictable
results.

306

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

17

8086/186 Instructions in
Hexadecimal Order

307

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary

00 00000000
01 00000001
02 00000010
03 00000011
04 00000100

05 00000101

06 00000110
07 00000111
08 00001000
09 00001001
0OA 00001010
0B 00001011
0C 00001100
0D 00001101

OE 00001110
OF 00001111
10 00010000

11 00010001
12 00010010
13 00010011
14 00010100
1500010101

16 00010110
17 00010111

Instruction
ADD
ADD
ADD
ADD

ADD

MODRM Byte
MOD REG R/M
MOD REG R/M
MOD REG R/M
MOD REG R/M

ADD

PUSH
POP
OR
OR
OR
OR
OR
OR

MOD REG R/M
MOD REG R/M
MOD REG R/M
MOD REG R/M

PUSH
(not used)
MOD REG R/M ADC

MOD REG R/M ADC
MOD REG R/M ADC
MOD REG R/M ADC
ADC
ADC

PUSH
POP

Parameters
EAREG
EAREG
REG,EA
REG,EA

AL,DATAS

AX,DATA16

ES

ES
EAREG
EAREG
REG,EA
REG,EA
AL,DATAS8
AX,DATA16

CS

EAREG

EAREG

REAEA

REG,EA

AL,DATAS

AX,DATA16

SS
SS

Function
BYTE ADD (REG) TO EA
WORD ADD (REG) TO EA
BYTE ADD (EA) TO REG
WORD ADD (EA) TO REG

BYTE ADD DATATO REG
AL

WORD ADD DATATO REG
AX

PUSH (ES) ON STACK
POP STACKTO REG ES
BYTE OR (REG) TO EA
WORD OR (REG) TO EA
BYTE OR (EA) TO REG
WORD OR (EA) TO REG
BYTE OR DATATO REG AL

WORD OR DATATO REG
AX

PUSH (CS) ON STACK

BYTE ADD (REG) W/
CARRY TO EA

WORD ADD (REG) W/
CARRY TO EA

BYTE ADD (EA) W/ CARRY
TO REG

WORD ADD (EA) W/
CARRY TO REG

BYTE ADD DATA
W/CARRY TO REG AL

WORD ADD DATA W/
CARRY TO REG AX

PUSH (SS) ON STACK
POP STACK TO REG SS

308

Hex Binary
18 00011000

19 00011001
1A 00011010
1B 00011011
1C 00011100
1D 00011101

1E 00011110
1F 00011111
20 00100000
21 00100001
22 00100010
23 00100011
24 00100100

2500100101
26 00100110
27 00100111
28 00101000
29 00101001
2A 00101010

2B 00101011

MODRM Byte
MOD REG R/M

MOD REG R/M
MOD REG R/M

MOD REG R/M

MOD REG R/M
MOD REG R/M
MOD REG R/M
MOD REG R/M

MOD REG R/M
MOD REG R/M
MOD REG R/M

MOD REG R/M

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Instruction

SBB

SBB

SBB

SBB

SBB

SBB

PUSH
POP
AND
AND
AND
AND

AND

AND

ES:

DAA

SUB

SUB

SUB

SUB

Parameters
EA,REG

EAREG

REG,EA

REG,EA

AL,DATAS

AX,DATA16

DS

DS

EAREG

EAREG

REG,EA

REG,EA
AL,DATAS

AX,DATA16

EAREG

EAREG

REG,EA

REG,EA

Function

BYTE SUB (REG) W/
BORROW FROM EA

WORD SUB (REG) W/
BORROW FROM EA

BYTE SUB (EA) W/
BORROW FROM REG

WORD SUB (EA) W/
BORROW FROM REG

BYTE SUB DATA W/
BORROW FROM REG AL

WORD SUB DATA W/
BORROW FROM REG AX

PUSH (DS) ON STACK
POP STACKTO REG DS
BYTE AND (REG) TO EA
WORD AND (REG) TO EA
BYTE AND (EA) TO REG
WORD AND (EA) TO REG
BYTE AND DATA TO REG
AL
WORD AND DATA TO REG
AX
SEGMENT OVERIDE W/
SEGMENT REG ES
DECIMAL ADJUST FOR
ADD

BYTE SUBTRACT (REG)
FROM EA

WORD SUBTRACT (REG)
FROM EA

BYTE SUBTRACT (EA)
FROM REG

WORD SUBTRACT (EA)
FROM REG

309

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary
2C 00101100

2D 00101101
2E 00101110
2F 00101111

30 00110000
31 00110001
3200110010
3300110011
34 00110100

3500110101
36 00110110

3700110111
38 00111000

3900111001
3A 00111010
3B 00111011
3C 00111100
3D 00111101
3E 00111110

3F 00111111

MODRM Byte

MOD REG R/M
MOD REG R/M
MOD REG R/M
MOD REG R/M

MOD REG R/M
MOD REG R/M
MOD REG R/M

MOD REG R/M

Instruction

SUB

SUB

Cs:

DAS

XOR
XOR
XOR
XOR
XOR

XOR

SS:

AAA
CMP

CMP

CMP

CMP

CMP

CMP

DS:

AAS

Parameters
AL,DATAS8

AX,DATA16

EAREG
EAREG
REG,EA
REG,EA
AL,DATAS8

AX,DATA16

EAREG

EAREG

REG,EA

REG,EA

AL,DATAS

AX,DATA16

Function

BYTE SUBTRACT DATA
FROM REG AL

WORD SUBTRACT DATA
FROM REG AX

SEGMENT OVERIDE W/
SEGMENT REG CS

DECIMAL ADJUST FOR
SUBTRACT

BYTE XOR (REG) TO EA
WORD XOR (REG) TO EA
BYTE XOR (EA) TO REG
WORD XOR (EA) TO REG

BYTE XOR DATATO REG
AL

WORD XOR DATATO REG
AX

SEGMENT OVERIDE W/
SEGMENT REG SS

A€II ADJUST FOR ADD
BYTE COMPARE (EA)
WITH (REG)
WORD COMPARE (EA)
WITH (REG)
BYTE COMPARE (REG)
WITH (EA)
WORD COMPARE (REG)
WITH (EA)
BYTE COMPARE DATA
WITH (AL)
WORD COMPARE DATA
WITH (AX)
SEGMENT OVERIDE W/
SEGMENT REG DS

ASBII ADJUST FOR
SUBTRACT

310

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

40 01000000 INC AX INCREMENT (AX)

41 01000001 INC CX INCREMENT (CX)

42 01000010 INC DX INCREMENT (DX)

43 01000011 INC BX INCREMENT (BX)

44 01000100 INC SP INCREMENT (SP)

45 01000101 INC BP INCREMENT (BP)

46 01000110 INC Sl INCREMENT (SI)

47 01000111 INC DI INCREMENT (DI)

48 01001000 DEC AX DECREMENT (AX)

49 01001001 DEC CX DECREMENT (CX)

4A 01001010 DEC DX DECREMENT (DX)

4B 01001011 DEC BX DECREMENT (BX)

4C 01001100 DEC SP DECREMENT (SP)

4D 01001101 DEC BP DECREMENT (BP)

4E 01001110 DEC SI DECREMENT (SI)

4F 01001111 DEC DI DECREMENT (DI)

50 01010000 PUSH AX PUSH (AX) ON STACK
51 01010001 PUSH CX PUSH (CX) ON STACK
52 01010010 PUSH DX PUSH (DX) ON STACK
53 01010011 PUSH BX PUSH (BX) ON STACK
54 01010100 PUSH SP PUSH (SP) ON STACK
5501010101 PUSH BP PUSH (BP) ON STACK
56 01010110 PUSH SI PUSH (SI) ON STACK
57 01010111 PUSH DI PUSH (DI) ON STACK
58 01011000 POP AX POP STACK TO REG AX
59 01011001 POP CX POP STACKTO REG CX
5A 01011010 POP DX POP STACK TO REG DX
5B 01011011 POP BX POP STACK TO REG BX
5C 01011100 POP SP POP STACK TO REG SP
5D 01011101 POP BP POP STACK TO REG BP
5E 01011110 POP Sl POP STACK TO REG SI
5F 01011111 POP DI POP STACK TO REG Dl

311

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary

60 01100000
61 01100001
62 01100010

63 01100011
64 01100100
65 01100101
66 01100110
67 01100111
68 01101000

69 01101001
6A 01101010
6B 01101011

6C 01101100
6D 01101101
6E 01101110
6F 01101111
70 01110000
71 01110001
72 01110010

73 01110011

74 01110100
7501110101

76 01110110

7701110111

MODRM Byte

MOD REG R/M

MOD REG R/M

MOD REG R/M

Instruction Parameters
PUSHA
POPA
BOUND REG,EA

(not used)

(not used)

(not used)

(not used)

(not used)
PUSH DATA16
IMUL REG,EA,

DATA16
PUSH DATAS
IMUL REG,EA,
DATAS

INS DSTS8
INS DST16
OuUTS DST8
OuUTS DST16
JO DISP8
JNO DISP8

JC/IBNAE DISP8

JNC/INB/ DISP8
JAE

JENIZ DISP8
JNE/INZ DISP8
JBE/INA DISP8
JNBE/JA DISP8

Function
PUSH ALL DATA
POP ALL DATA

CHECK INDEX IN REG
AGAINST BOUNDS AT EA

PUSH WORD DATA ON
STACK

MULTIPLY (EA) BY WORD
DATA; SIGNED

PUSH BYTE DATA ON
STACK; SIGN-EXTEND

MULTIPLY (EA) BY BYTE
DATA; SIGNED

BYTE INPUT

WORD INPUT

BYTE OUTPUT

WORD OUTPUT

JUMP ON OVERFLOW
JUMP ON NOT OVERFLOW

JUMP ON BELOW/NOT
ABOVE OR EQUAL

JUMP ON NOT
BELOW/ABOVE OR EQUAL

JUMP ON EQUAL/ZERO

JUMP ON NOT EQUAL/NOT
ZERO

JUMP ON BELOW OR
EQUAL/NOT ABOVE

JUMP ON NOT BELOW OR
EQUAL/ABOVE

312

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

7801111000 JS DISP8 JUMP ON SIGN

7901111001 JNS DISP8 JUMP ON NOT SIGN

7A 01111010 JPIIPE DISP8 JUMP ON PARITY/PARITY
EVEN

7B 01111011 INP/IIPO DISP8 JUMP ON NOT
PARITY/PARITY ODD

7C 01111100 JL/IINGE DISP8 JUMP ON LESS/NOT
GREATER OR EQUAL

7D 01111101 JNL/IGE DISP8 JUMP ON NOT
LESS/IGREATER OR EQUAL

7E 01111110 JLE/ING DISP8 JUMP ON LESS OR
EQUAL/NOT GREATER

7F 01111111 JNLENG DISP8 JUMP ON NOT LESSOR
EQUAL/GREATER

80 10000000 MOD 000 R/M ADD EA,DATAS BYTE ADD DATATO EA

80 10000000 MOD 001 R/M OR EADATAS8 BYTE OR DATATO EA

80 10000000 MOD 010 R/M ADC EA,DATAS8 BYTE ADD DATA
W/CARRY TO EA

80 10000000 MOD 011 R/M SBB EADATAS8 BYTE SUB DATA
W/BORROW FROM EA

80 10000000 MOD 100 R/M AND EADATAS8 BYTE AND DATA TO EA

80 10000000 MOD 101 R/M SUB EADATAS8 BYTE SUBTRACT DATA
FROM EA

80 10000000 MOD 110 R/M XOR EA,DATAS BYTE XOR DATATO EA

80 10000000 MOD 111 R/M CMP EADATAS8 BYTE COMPARE DATA
WITH (EA)

8110000001 MOD 000 R/M ADD EADATA16 WORD ADD DATATO EA

8110000001 MOD 001 R/M OR EADATA16 WORD OR DATATO EA

8110000001 M™MOD 010 R/M ADC EA,DATA16 WORD ADD DATA
W/CARRY TO EA

8110000001 M™MOD 011 R/M SBB EADATA16 WORD SUB DATA W/
BORROW FROM EA

8110000001 MOD 100 R/M AND EADATA16 WORD AND DATATO EA

8110000001 MOD 101 R/M SUB EADATA16 WORD SUBTRACT DATA
FROM EA

313

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary
81 10000001
81 10000001

82 10000010
82 10000010
82 10000010

82 10000010

82 10000010
82 10000010

82 10000010
82 10000010

83 10000011
83 10000011
8310000011

8310000011

83 10000011
83 10000011

83 10000011
8310000011

84 10000100
8510000101

86 10000110

MODRM Byte Instruction
MOD 110 R/IM XOR
MOD 111 R/M CMP
MOD 000 R/IM ADD
MOD 001 R/M (not used)
MOD 010 R/IM ADC
MOD 011 R/M SBB
MOD 100 R/M (not used)
MOD 101 R/M SUB
MOD 110 R/M (not used)
MOD 111 R/M CMP
MOD 000 R/IM ADD
MOD 001 R/M (not used)
MOD 010 R/M ADC
MOD 011 R/M SBB
MOD 100 R/M (not used)
MOD 101 R/M SUB
MOD 110 R/M (not used)
MOD 111 R/M CMP

MOD REG R/M TEST

MOD REG R/M TEST

MOD REG R/M XCHG

Parameters

EADATAL16
EA,DATALG

EA,DATAS

EA,DATAS8

EA,DATAS

EA,DATAS

EA,DATAS

EA,DATAS

EA,DATAS8

EA,DATAS

EA,DATAS

EA,DATAS

EAREG

EAREG

REG,EA

Function
WORD XOR DATATO EA

WORD COMPARE DATA
WITH (EA)

BYTE ADD DATATO EA

BYTE ADD DATA W/
CARRY TO EA

BYTE SUB DATA W/
BORROW FROM EA

BYTE SUBTRACT DATA
FROM EA

BYTE COMPARE DATA
WITH (EA)

WORD ADD DATATO EA

WORD ADD DATA W/
CARRY TO EA

WORD SUB DATA W/
BORROW FROM EA

WORD SUBTRACT DATA
FROM EA

WORD COMPARE DATA
WITH (EA)

BYTE TEST (EA) WITH
(REG)

WORD TEST (EA) WITH
(REG)

BYTE EXCHANGE (REG)
WITH (EA)

314

Hex Binary
87 10000111

88 10001000
89 10001001
8A 10001010
8B 10001011
8C 10001100

8C 10001100
8D 10001101

8E 10001110

8E 10001110
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
8F 10001111
90 10010000

91 10010001
9210010010
93 10010011

94 10010100
9510010101
96 10010110
97 10010111

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

MODRM Byte Instruction
MOD REG R/M XCHG

MOD REG R/M
MOD REG R/M
MOD REG R/M
MOD REG R/M
MOD OSR R/M

MOV
MOV
MOV
MOV
MOV

MOD 1-- R/M (not used)
MOD REG R/M LEA

MOD OSR R/M MOV

MOD -- R/M

MOD 000 R/M
MOD 001 R/M
MOD 010 R/M
MOD 011 R/M
MOD 100 R/M
MOD 101 R/M
MOD 110 R/M
MOD 111 R/M

(not used)
POP
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
XCHG

XCHG
XCHG
XCHG

XCHG
XCHG
XCHG
XCHG

Parameters
REG,EA

EAREG
EAREG
REG,EA
REG,EA
EA,SR

REG,EA

SR,EA

EA

AX,AX

AX,CX

AX,DX

AX,BX

AX,SP
AX,BP
AX,SI
AX,DI

Function

WORD EXCHANGE (REG)
WITH (EA)

BYTE MOVE (REG) TO EA
WORD MOVE (REG) TO E
BYTE MOVE (EA) TO REG
WORD MOVE (EA) TO REG

WORD MOVE (SEGMENT
REG SR) TO EA

LOAD EFFECTIVE
ADDRESS OF EATO REG

WORD MOVE (EA) TO
SEGMENT REG SR

POP STACKTO EA

EXCHANGE (AX) WITH

(AX)
EXCHANGE (AX) WITH

(CX)
EXCHANGE (AX) WITH

(DX)
EXCHANGE (AX) WITH

(BX)
EXCHANGE (AX) WITH (SP)
EXCHANGE (AX) WITH (BP)
EXCHANGE (AX) WITH (SI)
EXCHANGE (AX) WITH (DI)

315

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary
98 10011000

99 10011001
9A 10011010

9B 10011011
9C 10011100
9D 10011101
9E 10011110
9F 10011111

A0 10100000
A1 10100001

A2 10100010
A3 10100011

A4 10100100
A5 10100101
A6 10100110

A7 10100111
A8 10101000
A9 10101001

AA 10101010
AB 10101011
AC 10101100
AD 10101101
AE 10101110

MODRM Byte

Instruction Parameters Function
CBW BYTE CONVERT (AL) TO
WORD (AX)
CWD WORD CONVERT (AX) TO
DOUBLE WORD
CALL DISP16,SEG16 DIRECT INTER SEGMENT
CALL
WAIT WAIT FOR TEST SIGNAL
PUSHF PUSH FLAGS ON STACK
POPF POP STACK TO FLAGS
SAHF STORE (AH) INTO FLAGS
LAHF LOAD REG AH WITH
FLAGS
MOV AL,ADDR16 BYTE MOVE (ADDR) TO
REG AL
MOV AX,ADDR16 WORD MOVE (ADDR) TO
REG AX
MOV ADDR16,AL BYTE MOVE (AL) TO ADDR
MOV ADDR16,AX WORD MOVE (AX) TO
ADDR
MOVS DST8,SRC8 BYTE MOVE, STRING OP
MOVS DST16,SRC16 WORD MOVE, STRING OP
CMPS SIPTR,DIPTR COMPARE BYTE, STRING
oP
CMPS SIPTR,DIPTR COMPARE WORD, STRING
oP
TEST AL,DATAS8 BYTE TEST (AL) WITH
DATA
TEST AX,DATA16 WORD TEST (AX) WITH
DATA
STOS DST8 BYTE STORE, STRING OP
STOS DST16 WORD STORE, STRING OP
LODS SRC8 BYTE LOAD, STRING OP
LODS SRC16 WORD LOAD, STRING OP
SCAS DIPTRS BYTE SCAN, STRING OP

316

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

AF 10101111 SCAS DIPTR16 WORD SCAN, STRING OP

B0 10110000 MOV AL,DATAS BYTE MOVE DATA TO REG
AL

B1 10110001 MOV CL,DATAS BYTE MOVE DATA TO REG
CL

B2 10110010 MOV DL,DATAS BYTE MOVE DATA TO REG
DL

B3 10110011 MOV BL,DATAS BYTE MOVE DATA TO REG
BL

B4 10110100 MOV AH,DATAS8 BYTE MOVE DATA TO REG
AH

B5 10110101 MOV CH,DATAS8 BYTE MOVE DATA TO REG
CH

B6 10110110 MOV DH,DATAS BYTE MOVE DATA TO REG
DH

B7 10110111 MOV BH,DATAS BYTE MOVE DATA TO REG
BH

B8 10111000 MOV AX,DATA16 WORD MOVE DATATO
REG AX

B9 10111001 MOV CX,DATA16 WORD MOVE DATATO
REG CX

BA 10111010 MOV DX,DATA16 WORD MOVE DATATO
REG DX

BB 10111011 MOV BX,DATA16 WORD MOVE DATATO
REG BX

BC 10111100 MOV SP,DATA16 WORD MOVE DATATO
REG SP

BD 10111101 MOV BP,DATA16 WORD MOVE DATATO
REG BP

BE 10111110 MOV SI,DATA16 WORD MOVE DATATO
REG SI

BF 10111111 MOV DI,DATA16 WORD MOVE DATA TO
REG DI

C0 11000000 MOD 000 R/M ROL EA,DATAS BYTE ROTATE EA LEFT
DATA8BITS

317

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary
C0 11000000

C0 11000000
C0 11000000
C0 11000000
C0 11000000

C0 11000000
C0 11000000

C1 11000001
C1 11000001

C1 11000001

C1 11000001
C1 11000001
C1 11000001

C1 11000001
C1 11000001

C2 11000010
C3 11000011
C4 11000100

C5 11000101

MODRM Byte Instruction
MOD 001 R/M ROR
MOD 010 R/M RCL
MOD 011 R/M RCR
MOD 100 R/M SHL/SAL
MOD 101 R/M SHR
MOD 110 R/M (not used)
MOD 111 R/M SAR
MOD 000 R/M ROL
MOD 001 R/M ROR
MOD 010 R/M RCL
MOD 011 R/M RCR
MOD 100 R/M SHL/SAL
MOD 101 R/M SHR
MOD 110 R/M (not used)
MOD 111 R/M SAR

RET
RET

MOD REG R/M LES

MOD REG R/M LDS

Parameters

EA,DATAS8

EA,DATAS8

EA,DATAS

EA,DATAS8

EA,DATAS8

EA,DATAS

EA,DATAS8

EA,DATAS

EA,DATAS8

EA,DATAS

EA,DATAS8

EA,DATAS

EA,DATAS

DATA16

ESREG,
EA

DS,REG,EA

Function

BYTE ROTATE EARIGHT
DATA8 BITS

BYTE ROTATE EA LEFT
THRU CARRY DATAS8 BITS

BYTE ROTATE EARIGHT
THRU CARRY DATAS8 BITS

BYTE SHIFT EA LEFT
DATA8 BITS

BYTE SHIFT EARIGHT
DATA8 BITS

BYTE SHIFT SIGNED EA
RIGHT DATAS8 BITS

WORD ROTATE EA LEFT
DATA8 BITS

WORD ROTATE EA RIGHT
DATA8 BITS

WORD ROTATE EA LEFT
THRUCARRY DATAS
BITSCARRY DATA8 BITS

WORD ROTATE EA RIGHT
THRU CARRY DATAS8 BITS

WORD SHIFT EA LEFT
DATA8 BITS

WORD SHIFT EARIGHT
DATA8 BITS

WORD SHIFT SIGNED EA
RIGHT DATAS8 BITS

INTRA SEGMENT RETURN

INTRA SEGMENT RETURN
WORD LOAD REG AND
SEGMENT REG ES

WORD LOAD REG AND
SEGMENT REG DS

318

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

C6 11000110 MOD 000 R/M MOV EADATAS8 BYTE MOVE DATATO EA

C6 11000110 MOD 001 R/M (not used)

C6 11000110 MOD 010 R/M (not used)

C6 11000110 MOD 011 R/M (not used)

C6 11000110 MOD 100 R/M (not used) .

C6 11000110 MOD 101 R/M (not used)

C6 11000110 MOD 110 R/M (not used)

C6 11000110 MOD 111 R/M (not used)

C7 11000111 ™MOD 000 R/M MOV EADATA16 WORD MOVE DATATO EA

C711000111 MOD 001 R/M (not used)

C7 11000111 MOD 010 R/M (not used)

C7 11000111 MOD 011 R/M (not used)

C7 11000111 MOD 100 R/M (not used)

C711000111 MOD 101 R/M (not used)

C7 11000111 MOD 110 R/M (not used)

C711000111 MOD 111 R/M (not used)

C8 11001000 ENTER DATALS, PERFORM ENTER

DATAS SEQUENCE

C9 11001001 LEAVE PERFORM LEAVE
SEQUENCE

CA 11001010 RET DATALl6 INTER SEGMENT RETURN

CB 11001011 RET INTER SEGMENT RETURN

CC 11001100 INT 3 TYPE 3INTERRUPT

CD 11001101 INT TYPE TYPED INTERRUPT

CE 11001110 INTO INTERRUPT ON
OVERFLOW

CF 11001111 IRET RETURN FROM
INTERRUPT

D0 11010000 MOD 000 R/M ROL EA,L BYTE ROTATE EALEFT 1
BIT

D0 11010000 MOD 001 R/M ROR EAL BYTE ROTATE EARIGHT 1
BIT

319

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary
D0 11010000

D0 11010000

D0 11010000
D0 11010000

D0 11010000
D0 11010000

D1 11010001
D1 11010001
D1 11010001
D1 11010001

D1 11010001
D1 11010001

D1 11010001
D1 11010001

D2 11010010
D2 11010010
D2 11010010
D2 11010010

D2 11010010

MODRM Byte

MOD 010

MOD 011

MOD 100
MOD 101

MOD 110
MOD 111

MOD 000

MOD 001

MOD 010

MOD 011

MOD 100
MOD 101

MOD 110
MOD 111

MOD 000

MOD 001

MOD 010

MOD 011

MOD 100

R/M

R/M

R/M
R/M

R/M
R/M

R/M

R/M

R/M

R/M

R/M
R/M

R/M
R/M

R/M

R/M

R/M

R/M

R/M

Instruction
RCL

RCR

SHL
SHR

(not used)
SAR

ROL
ROR
RCL

RCR

SHL
SHR

(not used)
SAR

ROL
ROR
RCL

RCR

SHL

Parameters
EA,L

EA1

EA1

EA,1

EAL

EA1

EA1

EA1

EA1

EA1

EA1

EAL

EA,CL

EA,CL

EA,CL

EA,CL

EA,CL

Function

BYTE ROTATE EA LEFT
THRU CARRY 1BIT

BYTE ROTATE EARIGHT
THRU CARRY 1BIT

BYTE SHIFT EA LEFT 1 BIT

BYTE SHIFT EARIGHT 1
BIT

BYTE SHIFT SIGNED EA
RIGHT 1 BIT

WORD ROTATE EALEFT 1
BIT

WORD ROTATE EA RIGHT
1BIT

WORD ROTATE EALEFT
THRU CARRY 1BIT

WORD ROTATE EA RIGHT
THRU CARRY 1BIT

WORD SHIFT EA LEFT 1 BIT

WORD SHIFT EARIGHT 1
BIT

WORD SHIFT SIGNED EA
RIGHT 1BIT

BYTE ROTATE EA LEFT
(CL) BITS

BYTE ROTATE EA RIGHT
(CL) BITS

BYTE ROTATE EA LEFT
THRU CARRY (CL) BITS

BYTE ROTATE EA RIGHT
THRU CARRY (CL) BITS

BYTE SHIFT EA LEFT (CL)
BITS

320

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

D2 11010010 MOD 101 R/M SHR EA,CL BYTE SHIFT EA RIGHT (CL)
BITS

D2 11010010 MOD 110 R/M (not used)

D2 11010010 MOD 111 R/M SAR EA,CL BYTE SHIFT SIGNED EA
RIGHT (CL) BITS

D3 11010011 MOD 000 R/M ROL EA,CL WORD ROTATE EA LEFT
(CL) BITS

D3 11010011 MOD 001 R/M ROR EA,CL WORD ROTATE EA RIGHT
(CL) BITS

D3 11010011 MOD 010 R/M RCL EA,CL WORD ROTATE EA LEFT
THRU CARRY (CL) BITS

D3 11010011 MOD 011 R/M RCR EA,CL WORD ROTATE EA RIGHT
THRU CARRY (CL) BITS

D3 11010011 MOD 100 R/M SHL EA,CL WORD SHIFT EA LEFT (CL)
BITS

D311010011 MOD 101 R/M SHR EA,CL WORD SHIFT EARIGHT
(CL) BITS

D3 11010011 MOD 110 R/M (not used)

D3 11010011 MOD 111 R/M SAR EA,CL WORD SHIFT SIGNED EA
RIGHT (CL) BITS

D4 11010100 00001010 AAM ASII ADJUST FOR
MULTIPLY

D511010101 00001010 AAD ASI ADJUST FOR DIVIDE

D6 11010110 (not used)

D7 11010111 XLAT TABLE TRANSLATE USING (BX)

D8 11011--- MOD --- R/M ESC EA ESCAPE TO EXTERNAL
DEVICE

D8 11011000 MOD 000 R/M FADD [®rt-real ADD4-BYTE EATO ST

D8 11011000 MOD 001 R/M FMUL B®rt-real MULTIPLY ST BY4-BYTE
EA

D8 11011000 MOD 010 R/M FCOM F®rt-real COMPARH-BYTE EA
WITH ST

D8 11011000 MOD 011 R/M FCOMP h®rt-real COMPARH-BYTE EA

WITH ST AND POP

321

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary
D8 11011000

D8 11011000

D8 11011000
D8 11011000
D8 11011000
D8 11011000
D8 11011000
D8 11011000

D8 11011000
D8 11011000

D8 11011000
D8 11011000
D9 11011001
D9 11011001
D9 11011001
D9 11011001

D9 11011001
D9 11011001
D9 11011001
D9 11011001

D9 11011001
D9 11011001
D9 11011001
D9 11011001

MODRM Byte

MOD 100
MOD 101

MOD 110
MOD 111
11000 (i)
11001 (i)
11010 (i)
11011 (i)

11100 (i)
11101 (i)

11110 (i)
11111 (i)
MOD 000
MOD 001
MOD 010
MOD 011

MOD 100
MOD 101
MOD 110
MOD 111

11000 (i)
11001 (i)

R/M

R/M

R/M
R/M

R/M
R/M
R/M
R/M

R/M

R/M

R/M

R/M

11010 000
11010 001

Instruction
FSUB

FSUBR

FDIV
FDIVR
FADD
FMUL
FCOM
FCOMP

FSUB
FSUBR

FDIV
FDIVR
FLD
(not used)
FST
FSTP

FLDENV
FLDCW
FSTENV
FSTCW

FLD

FXCH

FNOP
(not used)

Parameters
hert-real

h8rt-real

IBort-real
I®rt-real
ST,ST(i)
ST,ST(i)
ST(i)
ST(i)
ST,ST(i)
ST,ST(i)
ST,ST(i)

ST,ST(i)
I®rt-real

hert-real
h8rt-real

14 BYTES
2-BYTES
14-BYTES
2-BYTES

ST(i)
ST())

Function

SUBTRACT4-BYTE EA
FROM ST

SUBTRACT ST FROM
4-BYTE EA

DIVIDE ST BY4-BYTE EA

DIVIDE4-BYTE EA BY ST
ADD ELEMENT TO ST
MULTIPLY ST BY ELEMENT
COMPARE ST(i) WITH ST

COMPARE ST(i) WITH ST
AND POP

SUBTRACT ELEMENT
FROM ST

SUBTRACT ST FROM
STACK ELEMENT

DIVIDE ST BY ELEMENT
DIVIDE ST(i) BY ST
PUSH4-BYTE EA TO ST

STORK-BYTE REAL TO EA

STORE-BYTE REAL TO
EA AND POP

LOAD 8087 ENVIRONMENT
FROM EA

LOAD CONTROL WORD
FROM EA

STORE 8087
ENVIRONMENT INTO EA

STORE CONTROL WORD
INTO EA

PUSH ST(i) ONTO ST
EXCHANGE ST AND ST(j)
STORE STIN ST

322

Hex Binary

D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001

D9 11011001
D9 11011001
D9 11011001

D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001
D9 11011001

D9 11011001
D9 11011001
D9 11011001
D9 11011001

D9 11011001

D9 11011001

MODRM Byte
11010 01-
11010 1--
11011 (i)

11100 000
11100 001

11100 0O1-
11100 100
11100 101

11100 11-
11101 000
11101 001
11101 010
11101 011
11101 100
11101 101
11101 110
11101 111
11110 000
11110 001

11110 010
11110 011
11110 100
11110 101

11110 110

11110 111

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Instruction Parameters

(not used)

(not used)
*(1)
FCHS
FABS

(not used)
FTST
FXAM

(not used)
FLD1
FLDL2T
FLDL2E
FLDPI
FLDLG2
FLDLN2
FLDZ

(not used)
F2XM1
FYL2X

FPTAN

FPATAN

FXTRACT
(not used)

FDECSTP

FINCSTP

Function

CHANGE SIGN OF ST

TAKE ABSOLUTE VALUE
OF ST

TEST ST AGAINST 0.0

XAMINE ST AND REPORT
CONDITION CODE

PUSH +1.0TO ST
PUSH log2 10 TO ST
PUSH log2e TO ST
PUSH PiTO ST
PUSH log 102 TO ST
PUSH loge 2 TO ST
PUSH ZERO TO ST

CALCULATE 2x-1

CALCULATE FUNCTION
Y*log 2 X

CALCULATE TAN OF 0 AS
A RATIO

CALCULATE ARCTAN OF O

EXTRACT EXPONENT AND
SIGNIFICAND FROM ST
VALUE

DECREMENT STACK
POINTER IN STATUS WORD

INCREMENT STACK
POINTER IN STATUS WORD

323

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

D9 11011001 11111 000 FPREM MODULO DIVISION OF ST
BY ST(1)

D9 11011001 11110 001 FYL2XP1 CALCULATE VALUE OF
Y*og2 (X + 1)

D9 11011001 11111 010 FSQRT CALCULATE SQUARE
ROOT OF ST

D9 11011001 11111 011 (not used)

D9 11011001 11111 100 FRNDINT ROUND ST TO INTEGER

D9 11011001 11111 101 FSCALE ADD ST(1) TO EXPONENT
OF ST

D911011001 11111 11- (not used)

DA 11011010 MOD 000 R/M RIADD Bort-integer ADD4-BYTE INTEGER EA
TO ST

DA 11011010 MOD 001 R/M FIMUL Bort-integer MULTIPLY ST BY4-BYTE
INTEGER EA

DA 11011010 MOD 010 R/M FICOM [®rt-integer CONVERH®-BYTE
INTEGER EA, AND
COMPARE WITH ST

DA 11011010 MOD 011 R/M FICOMP Irt-integer CONVERH®-BYTE
INTEGER EA, COMPARE
WITH ST, POP

DA 11011010 MOD 100 R/M FISUB ®rt-integer SUBTRACH-BYTE
INTEGER EAFROM ST

DA 11011010 MOD 101 R/M FISUBR f®rt-integer SUBTRACT ST FROM
4-BYTE INTEGER EA

DA 11011010 MOD 110 R/M FIDIV Bort-integer DIVIDE ST BY4-BYTE
INTEGER EA

DA 11011010 MOD 111 R/M FIDIVR Bort-integer DIVIDE4-BYTE INTEGER
EABY ST

DA 11011010 11-- --- (not used)

DB 11011011 MOD 000 R/M FILD Isort-integer

DB 11011011 MOD 001 R/M (not used)

DB 11011011 MOD 010 R/M FIST I®rt-integer STORE ROUNDED ST IN

4-BYTE INTEGER EA

324

Hex Binary
DB 11011011

DB 11011011
DB 11011011
DB 11011011
DB 11011011

DB 11011011
DB 11011011
DB 11011011
DB 11011011
DB 11011011
DB 11011011
DB 11011011
DB 11011011
DC 11011100
DC 11011100

DC 11011100
DC 11011100
DC 11011100
DC 11011100

DC 11011100
DC 11011100
DC 11011100
DC 11011100
DC 11011100
DC 11011100
DC 11011100

MODRM Byte
MOD 011 R/M

MOD 100 R/M
MOD 101 R/M
MOD 110 R/M
MOD 111 R/M

11101
1111- ---

MOD 000 R/M
MOD 001 R/M

MOD 010 R/M

MOD 011 R/M

MOD 100 R/M

MOD 101 R/M

MOD 110
MOD 111
11000 (i)
11001 (i)
11010 (i)
11011 (i)
11100 (i)

R/M
R/M

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Instruction
FISTP

(not used)
FLD
Reserved
FSTP

Reserved
FENI
FDISI
FCLEX
FINIT
Reserved
Reserved
Reserved
FADD
FMUL

FCOM
FCOMP
FSUB
FSUBR

FDIV
FDIVR
FADD
FMUL
*(2)
*(3)
FSUBR

Parameters
hert-integer

Temp-real

Temp-real

Long-real
Long-real

Long-real
Long-real
Long-real
Long-real

Long-real
Long-real
ST(i), ST
ST(i), ST

ST(), ST

Function

STORE ROUNDED ST IN
4-BYTE INTEGER EA, POP

PUSHLO-BYTE EA ONTO ST

STORE ST INTQO-BYTE .

EA, POP

ENABLE INTERRUPT
DISABLE INTERRUPTS
CLEAR EXCEPTIONS
INITIALIZE PROCESSOR

ADD 8-BYTE EATO ST

MULTIPLY ST BY 8-BYTE
EA

COMPARE ST WITH 8-BYTE
EA

COMPARE ST WITH 8-BYTE
EA

SUBTRACT 8-BYTE EA
FROM ST

SUBTRACT ST FROM
8-BYTE EA

DIVIDE ST BY 8-BYTE EA
DIVIDE 8-BYTE EA BY ST
ADD ST TO ELEMENT
MULTIPLY ELEMENT BY ST

SUBTRACT ST FROM
ELEMENT

325

Hex Binary
DC 11011100

DC 11011100
DC 11011100
DD 11011101
DD 11011101
DD 11011101
DD 11011101
DD 11011101

DD 11011101
DD 11011101
DD 11011101

DD 11011101

DD 11011101
DD 11011101
DD 11011101
DD 11011101
DE 11011110

DE 11011110
DE 11011110
DE 11011110
DE 11011110
DE 11011110

DE 11011110

11101 (i)
11110 (i)
11111 (i)
MOD 000
MOD 001
MOD 010

MOD 011
MOD 100

MOD 101
MOD 110
MOD 111

11000 (i)

11001 (i)
11010 (i)
11011 (i)

MOD 000
MOD 001
MOD 010
MOD 011
MOD 100
MOD 101

MOD 110

MODRM Byte

R/M
R/M
R/M
R/M
R/M

R/M
R/M
R/M

R/M

R/M

R/M

R/M

R/M

R/M

R/M

Instruction

FSUB

FDIVR
FDIV
FLD
Reserved
FST
FSTP
FRSTOR

Reserved
FSAVE
FSTSW

FFREE

*(4)

FST
FSTP
Reserved
FIADD

FIMUL
FICOM
FICOMP
FISUB
FISUBR

FIDIV

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Parameters

ST(i), ST

ST(i), ST
ST(i), ST
Long-real

Long-real
Long-real
94-BYTES

94-BYES
2-BYTES

ST(i)

ST(i)
ST(i)

Word-integer
Word-integer
Word-integer
Word-integer
Word-integer
Word-integer

Word-integer

Function

SUBTRACT ELEMENT
FROM ST

DIVIDE ST(i) BY ST
DIVIDE ST BY ST(i)
PUSH 8-BYTE EA ONTO ST

STORE ST INTO 8-BYTE EA
STORE ST INTO 8-BYTE EA

RESTORE 8087 STATE
FROM EA

SAVE 8087 STATE TO EA

STORE 8087 STATUS WORD
TO 2-BYTE EA

SET STACKTAG TO
"EMPTY"

STORE ST INTO ST(i)
STORE ST INTO ST(i), POP

ADD 2-BYTE INTEGER EA
TO ST

MULTIPLY ST BY 2-BYTE
INTEGER EA

COMPARE 2-BYTE EA
INTEGER WITH ST

COMPARE 2-BYTE
INTEGER EA WITH ST, POP

SUBTRACT 2-BYTE
INTEGER EAFROM ST

SUBTRACT ST FROM
2-BYTE INTEGER EA

DIVIDE ST BY 2-BYTE
INTEGER EA

326

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

DE 11011110 MOD 111 R/M FIDIVR Word-integer DIVIDE 2-BYTE INTEGER
EA BY ST

DE 11011110 11000 (i) FADDP ST(i), ST ADD ST TO ELEMENT

DE 11011110 11001 (i) FMULP ST(i), ST MULTIPLY ST BY
ELEMENT, POP

DE 11011110 11010 --- *(5)

DE 11011110 11011 000 Reserved

DE 11011110 11011 001 FCOMPP COMPARE ST WITH ST(1),
POP TWICE

DE 11011110 11011 01- Reserved

DE 11011110 11011 1-- Reserved

DE 11011110 11 100 (i) FSUBRP ST(i), ST SUBTRACT ST FROM
ELEMENT, POP

DE 11011110 11101 (i) FSUBP ST(i), ST SUBTRACT ST(i) FROM ST,
POP

DE 11011110 11 110 (i) FDIVRP ST(i), ST DIVIDE STACK ELEMENT
BY ST, POP

DE 11011110 11111 (i) FDIVP ST(i), ST DIVIDE ST BY STACK
ELEMENT, POP

DF 11011111 MOD 000 R/M FILD Word-integer CONVERT 2-BYTE EA AND

PUSH ONTO STACK
DF 11011111 MOD 001 R/M Reserved

DF 11011111 MOD 010 R/M FIST Word-integer ROUND ST AND STORE IN
2-BYTE INTEGER EA

DF 11011111 MOD 011 R/M FISTP Word-integer ROUND ST, STORE IN
2-BYTE INTEGER EA, POP

DF 11011111 MOD 100 R/M FBLD Packed decimal LOAD BCD TO ST

DF 11011111 MOD 101 R/M FILD Long-integer CONVERT 8-BYTE
INTEGER EA AND PUSH
ONTO STACK

DF 11011111 MOD 110 R/M FBSTP Packed decimal CONVERT ST, STORE IN
10-BYTE BCD EA, POP

DF 11011111 MOD 111 R/M FISTP Long-integer ROUND ST, STORE IN

8-BYTE INTEGER EA, POP
DF 11011111 11000 (i) *(6)

327

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary

DF 11011111
DF 11011111
DF 11011111
DF 11011111
E0 11100000

E1 11100001

E2 11100010
E3 11100011
E4 11100100

E5 11100101
E6 11100110
E7 11100111
E8 11101000
E9 11101001
EA 11101010
EB 11101010
EC 11101010
ED 11101010
EE 11101010
EF 11101010

F0 11110000

MODRM Byte Instruction Parameters

11001 (i) *(7)

11010 (i) *(8)

11011 (i) *(9)

11-- - Reserved
LOOPNZ/ DISP8

LOOPNE
LOOPZ/ DISP8
LOOPE

LOOP DISP8
JCXZ DISP8
IN AL,PORT
IN AX,PORT
ouT PORT,AL
ouT PORT,AX
CALL DISP16
JMP DISP16
JMP
JMP DISP8
IN AL,DX
IN AX,DX
ouT DX,AL
ouT DX,AX
LOCK

Function

LOOP (CX) TIMES WHILE
NOT ZERO/NOT EQUAL

LOOP (CX) TIMES WHILE
ZERO/EQUAL

LOOP (CX) TIMES
JUMP ON (CX)=0

BYTE INPUT FROM PORT
TO REG AL

WORD INPUT FROM PORT
TO REG AX

BYTE OUTPUT (AL) TO
PORT

WORD OUTPUT (AX) TO
PORT

DIRECT INTRA SEGMENT
CALL

DIRECT INTRA SEGMENT
JUMP

DISP16,SEG16 DIRECT INTER SEGMENT

JUMP

DIRECT INTRA SEGMENT
JUMP

BYTE INPUT FROM PORT
(DX) TO REG AL

WORD INPUT FROM PORT
(DX) TO REG AX

BYTE OUTPUT (AL) TO
PORT (DX)

WORD OUTPUT (AX) TO
PORT (DX)

BUS LOCK PREFIX

328

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

F111110001 (not used)

F2 11110010 REPNZ/REPNE REPEAT WHILE (CX) not
equalto 0 AND (ZF)=0

F311110011 REPZ/REPE REPEAT WHILE (CX) not

/IREP equalto 0 AND (ZF) =1

F4 11110100 HLT HALT

F511110101 CMC COMPLEMENT CARRY
FLAG

F6 11110110 MOD 000 R/M TEST EADATAS8 BYTE TEST (EA) WITH
DATA

F6 11110110 MOD 001 R/M (not used)

F6 11110110 MOD 010 R/M NOT EA BYTE INVERT EA

F6 11110110 MOD 011 R/M NEG EA BYTE NEGATE EA

F6 11110110 MOD 100 R/M MUL EA BYTE MULTIPLY BY (EA),
UNSIGNED

F6 11110110 MOD 101 R/M IMUL EA BYTE MULTIPLY BY (EA),
SIGNED

F6 11110110 MOD 110 R/M DIV EA BYTE DIVIDE BY (EA),
UNSIGNED

F6 11110110 MOD 111 R/M IDIV EA BYTE DIVIDE BY (EA),
SIGNED

F711110111 ™MOD 000 R/M TEST EADATA16 WORD TEST (EA) WITH
DATA

F7 11110111 MOD 001 R/M (not used)

F711110111 ™MOD 010 R/M NOT EA WORD INVERT EA

F711110111 MOD 011 R/M NEG EA WORD NEGATE EA

F711110111 ™MOD 100 R/M MUL EA WORD MULTIPLY BY (EA),
UNSIGNED

F711110111 M™MOD 101 R/M IMUL EA WORD MULTIPLY BY (EA),
SIGNED

F711110111 ™MOD 110 R/M DIV EA WORD DIVIDE BY (EA),
UNSIGNED

F7 11110111 ™MOD 111 R/M IDIV EA WORD DIVIDE BY (EA),
SIGNED

329

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Hex Binary

F811111000
F9 11111001
FA 11111010
FB 11111011
FC 11111100
FD 11111101
FE 11111110
FE 11111110
FE 11111110
FE 11111110
FE 11111110
FE 11111110
FE 11111110
FE 11111110
FF 11111111
FF 11111111
FF 11111111

FF 11111111
FF 11111111
FF 11111111

FF 11111111
FF 11111111

MODRM Byte

MOD 000
MOD 001
MOD 010
MOD 011
MOD 100
MOD 101
MOD 110
MOD 111
MOD 000
MOD 001
MOD 001

MOD 011

MOD 100

MOD 101

MOD 110
MOD 111

R/M
R/M
R/M
R/M
R/M
R/M
R/M
R/M
R/M
R/M
R/M

R/M

R/M

R/M

R/M
R/M

Instruction
CLC
STC
CLI
STI
CLD
STD

INC
DEC

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

INC
DEC
CALL

CALL
JMP
JMP

PUSH
(not used)

Parameters

EA
EA

EA
EA
EA

EA

EA

EA

EA

Function

CLEAR CARRY FLAG
SET CARRY FLAG
CLEAR INTERRUPT FLAG
SET INTERRUPT FLAG
CLEAR DIRECTION FLAG
SET DIRECTION FLAG
BYTE INCREMENT EA
BYTE DECREMENT EA

WORD INCREMENT EA
WORD DECREMENT EA

INDIRECT INTRA
SEGMENT CALL

INDIRECT INTER
SEGMENT CALL

INDIRECT INTRA
SEGMENT JUMP

INDIRECT INTER
SEGMENT JUMP

PUSH (EA) ON STACK

330

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

FLAGS REGISTER CONTAINS:
X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF): X:(AF):X:(PF):X:(CF)

*The marked encodings amdtgenerated by the language translators. If
however, the 8087 enanters one of these encodings in the instruction
stream, it Wl execute it as follows:

FSTP ST(j)
FCOM ST(i)
FCOMP ST(i)

FXCH ST(i)

FCOMP ST(i)

FFREE ST(i) and pop stack
FXCH ST(i)

FSTP ST(i)

FSTP ST(i)

O©CoOoO~NOULDWNBE

IAPX 86/88/186 Instruct ion Set Matrix

b = byte operation

d = direct

f = from CPU reg

i = immediate

ia = immed.to accum.

ib = immediate byte

id = indirect

is = immed. byte sign ext.
iw = immediate word

I = long ie. intersegment
m = memory

r = register

r/'m = EAis second byte
Sl = short intrasegment
sr = segment register

t = to CPU reg

Y = variable

w = word operation

z = zero

331

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE.

16-BIT (W= 1) 8-BIT (W= 0) SEGMENT REG
000 AX 000 AL 00 ES
001 CX 001 CL 01CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 S 110 DH
111 DI 111 BH

EAIS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BX) + (SI)
00 001 (BX) + (DI)
00 010 (BP) + (SI)
00 011 (BP) + (DI)
00 100 (SI)
00 101 (DI)

00 111 (BX)

01 000 (BX) + (SI) + DISP8
01 001 (BX) + (DI) + DISP8
01 010 (BP) + (SI) + DISP8
01011 (BP) + (DI) + DISP8
01 100 (SI) + DISP8

01101 (DI) + DISP8

01110 (BP) + DISP8

01111 (BX) + DISP8

10 000 (BX) + (SI) + DISP16

00110 DISP16 (DIRECT ADDRESS)

DS
DS
SS
SS
DS
DS
DS
DS
DS
DS
SS
SS
DS
DS
SS
DS
DS

332

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

EAIS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS) (Cont'd)

10001 (BX) + (DI) + DISP16 DS
10010 (BP) + (SI) + DISP16 ss
10011 (BP) + (DI) + DISP16 ss
10 100 (SI) + DISP16 DS
10101 (DI) + DISP16 DS
10110 (BP) + DISP16 s
10111 (BX) + DISP16 DS

11 000 REG AX /AL
11 001 REG CX /CL
11 010 REG DX /DL
11 011 REG BX /BL
11 100 REG SP / AH
11 101 REG BP /CH
11 110 REG SI /DH

11111 REG DI /BH

333

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

IAPX 86/186 Instruction Set Matrix

LO
Hi 0 1 2 3 4 5 6 7
0 ADD ADD ADD ADD ADD ADD PUSH POP
b.f.r/m w.fr/m b.t.r/m w.t.r/m b.ia w.ia ES ES
1 ADC ADC ADC ADC ADC ADC PUSH POP
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.ia w.ia SS SS
2 AND AND AND AND AND AND SEG DAA
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.ia w.ia ES
3 XOR XOR XOR XOR XOR XOR SEG AAA
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.ia w.ia SS
4 INC INC INC INC INC INC INC INC
AX CX DX BX SP BP Sl DI
5 PUSH PUSH PUSH PUSH PUSH PUSH PUSH PUSH
AX CX DX BX SP BP Sl DI
6 PUSHA | POPA | BOUND
R.R/M
7 JO JNO JB/ JNB/ JE/ JNE/ JBE/ JNBE/
JNAE JAE JZ JNZ JNA JA
8 Immed | Immed | Immed | Immed TEST TEST XCHG XCHG
b.r/m w.r/m b.r/m is.r/m b.r/m w.r/m b.r/m w.r/m
9 NOP XCHG | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG
CX DX BX SP BP Sl DI
A MOV MOV MOV MOV MOVS | MOVS CMPS CMPS
m-AL m-AX | AL -m | AX -m b w b w
B MOV MOV MOV MOV MOV MOV MOV MOV
i —» AL i -~ CL i -~ DL i - BL i -~ AH i -~C i -~ DH i - BH

334

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

IAPX 86/186 Instruction Set Matrix
LO
Hi 0 1 2 3 4 5 6 7
C Shift Shift IRET IRET LES LDS MOV MOV
b.rim.i w.r/mi (i- SP) b.ir/m | w.ir/m
D Shift Shift Shift Shift AAM AAD XLAT
b W b.v W.V
E LOOPNZ/ LOOPZ/| LOOP JCXZ IN IN ouT ouT
LOOPNE| LOOPE b w b w
F LOCK REP REPZ HLT CMC Grpl| Grp1l
b.r/m w.r/m
IAPX 86/186 Instruction Set Matrix
LO
Hi 8 9 A B C D E F
0 OR OR OR OR OR OR PUSH
b.f.r/m w.fr/m b.t.r/m w.t.r/m b.ia w.ia CS
1 SBB SBB SBB SBB SBB SBB PUSH POP
b.f.r/m w.fr/m b.t.r/m w.t.r/m b.ia w.ia DS DS
2 SUB SUB SUB SUB SUB SUB SEG DAS
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.ia w.ia CS
3 CMP CMP CMP CMP CMP CMP SEG AAS
b.f.r/m w.fr/m b.t.r/m w.t.r/m b.ia w.ia DS
4 DEC DEC DEC DEC DEC DEC DEC DEC
AX CX DX BX SP BP | DI

335

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

IAPX 86/186 Instruction Set Matrix
LO
Hi 8 9 A B C D E F
5 POP POP POP POP POP POP POP POP
AX CX DX BX SP BP SI DI
6 PUSH IMUL PUSH IMUL INS INS OUTS OUTS
iw r.iw.r/m is r.is.r/'m b w b w
7 JS JNS JP/ JNP/ JL/ JNL/ JLE/ JNLE/
JPE JPO IJNGE JGE ING JG
8 MOV MOV MOV MOV MOV LEA MOV POP
b.f.r/m w.fr/m b.t.r/m w.t.r/m sr.f.r/m sr.t.r/m r/m
9 CBW CWD CALL WAIT PUSHF POPF SAHF LAHF
i.d
A TEST TEST STOS STOS LODS LODS SCAS SCAS
b.i W.i b w b w b w
B MOV MOV MOV MOV MOV MOV MOV MOV
i - AX i oCX | i ~DX i - BX i -~ SP i -~ BP i » Sl i - DI
C ENTER | LEAVE IRET IRET INT INT INTO IRET
iw.ib I.(i-SP) | Type 3 (Any)
D ESC ESC ESC ESC ESC ESC ESC ESC
0 1 2 3 4 5 6 7
E CALL JMP JMP JMP IN IN ouT ouT
d d i.d si.d v.b V.W v.d V.W
F CLC STC CLI STI CLD STD Grp 2 Grp 2
b.r/m w.r/m

336

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

Where
mod r/m 000 001 010 011 100 101 110 111
Immed ADD OR ADC SBB AND SUB XOR CMP
Shift ROL ROR RCL RCR | SHL/SAL SHR | SHL/SA SAR
Grp1 TEST NOT NEG MUL IMUL DIV IDIV
Grp 2 INC DEC CALL CALL JMP JMP PUSH
id lid id lid

337

Chapter 17: 8086/186 Instruct ions in Hexadecimal Order

338

Chapter 18: 8086/186 Instruct ion Set Summary

18

8086/186 Instruction Set Summary

339

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments
Clock
Cycles
DATA TRANSFER
MOVE = Move:
Register to 1000100w mod reg
Register/Memory r/m 2/12
Register/Memory to 1000101w mod reg
register r/m 2/9
Immediate to 1100011w mod 000 data data if w= 1 .
register/memory r/m 12-13 | 8/16-bit
Immediate to register 1011lwreg data data if w= 1 3.4 8/16-bit
Memory to 1010000w addr-low addr-high
accumulator 9
Accumulator to 1010001w addr-low addr-high
memory 8
RegiSter/memoryto 10001110 mod Oregr/m
segment register 2/9
Segment/register t0 10001100 mod oregrim
register/memory 2/11

340

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments
Clock
Cycles
PUSH = Push: 11111111 mod 110
Memory r/m 16
Register 01010 reg 10
Segment register 000 reg 110 9
“Immediate 011010s0 data dataifs= 010
*PUSHA = Push All 01100000 36
POP = Pop:Memory 10001111 mod 000 20
r/m
Register 01011 reg 10
Segment register 000 reg 111 (reg 01) 8
*POPA = Pop All 41100001 °1
XCHG = Exchange:
Register/memory with 1900011w mod reg
register r/m L
Register with 10010 reg
accumulator 3
IN = Input from: 1110010w port
Fixed port 10

341

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments
Clock
Cycles
Variable port 1110110w 8

OUT = Output to:

Fixed port 1110011w port 9
Variable port 1110111w !

XLAT = translate 11010111
byte to AL H

LEA= Load EAT0 10001101 mod reg
register r/m 6

LDS = Load pointer 11000101 mod reg
to DS r/m (mod# 11) 18

LES = Load pointer 11900100 mod reg
to ES

r/m (mod# 11) 18
LAHF = Load AH 10011111
with flags i
SAHF = Store AH 19911110
into flags i
PUSHF = Push flags 10011100 ’

342

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

ARITHMETIC ADD

= Add:

Reg/memorywith go0000dw mod reg

register to either r/m 3/10

Immediate to 100000sw mod 000 data dataif s w- 01

register/memory r/m 4/16

Immediate to 0000010w data data ifw- 1 .

accumulator 3/4 8/16-bit

ADC = ADD with

carry:

Reg/memorywith go0100dw mod reg

register to either r/m 3/10

Immediate to 100000sw mod 010 data datais s w- 01

register/memory r/m 4/16

Immediate to 0001010w data data ifw- 1 .
accumulator 3/4 8/16-bit

INC = Increment:

Register/memory 9111111w mod 000 3/15
r/m

Register 01000 reg 3

343

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments
Clock
Cycles
SUB = Subtract:
Reg/memoryand 91010dw mod reg
register to either r/m 3/10
Immediate from 100000sw mod 101 data data ifswoL
register/memory r/m 4/16
Immediate from 0010110w data dataifw-1 .
accumulator 3/4 8/16-bit
SBB = Subtract with
borrow:
Reg/memoryand go0110dw mod reg
register to either r/m 3/10
Immediate from 100000sw mod 011 data dataifsw-01
register/memory r/m 4/16
Immediate from 0001110w data dataifw-1 .
accumulator 3/4 8/16-bit
DEC = Decrement:
Register/memory 1111111w mod 001 3/15
r/m
Register 01001 reg 3

344

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

CMP = Compare:

Register/memorywith 5511101w mod reg

register r/m 3/10

Register with 0011100w mod reg

register/memory r/m 3/10

Immediate with 100000sw mod 111 data data ffsw-01

register/memory r/m 3/10

Immediate with 0011110w data dataifw-1 .

accumulator 3/4 8/16-bit

NEG = Change sign 1171011w mod 011 3

r/m

AAA = ASClladjust 39110111

for add 8

DAA = Decimal 00100111

adjust for add 4

for subtract 7

DAS = Decimal 00101111

adjust for subtract 4

MUL = Multiply 1111011w mod 100

(unsigned): r/'m

Register-Byte 26-28

Register-Word 35-37

345

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

Memory-Byte 32-34

Memory-Word 41-43

IMUL = Integer 1111011w mod 101

multiply (signed): r/m

Register-Byte 25-28

Register-Word 34-37

Memory-Byte 31-34

Memory-Word 40-43

*IMUL = Integer 011010s1 modreg data dataifs= 0

immediate multiply r/m 22-25/29-32

(signed)

DIV = Divide 1111011w mod 110

(unsigned): r/m

Register-Byte 29

Register-Word 38

Memory-Byte 35

Memory-Word 44

IDIV = Integerdivide 1111011w mod 111

(signed): r/m

346

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

Register-Byte 44-52

Register-Word 53-61

Memory-Byte 50-58

Memory-Word 59-67

AAM = ASClladjust 11910100 00001010

for multiply 19

AAD = ASClladjust 11910101 00001010

for divide 15

CBW = Convert byte 10011000

to word 2

CWD = Convert word 10011001

to double word 4

LOGIC

Shift/Rotate

Instructions:

Register/Memoryby 1 1191000w mod TTT 2/15

r/m

Register/Memoryby 1101001w mod TTT

CL r/m 5+ m/17+n

“Register/Memory by 1100000w mod TTT count

Count r/m 5+ n/17+n

347

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments
Clock
Cycles

TTT Ingtruction

000 ROL

001 ROR

010 RCL

011 RCR

100 SHL/SAL

101 SHR

111 SAR
AND = And:
Reg/memory and 001000dw mod reg
register to either r/m 3/10
Immediate to 1000000w mod 100 data data ifw=1
register/memory r/m 4/16
Immediate to 0010010w data data ifw=1 .
accumulator 3/4 8/16-bit
TEST = And function
to flags, no result:
Register/memoryand 190o010w mod reg
register r/m 3/10
Immediate dataand 1111911w mod 000 data dataifw=1 4/10
register/memory r/m
Immediate data and 1010100w data data ifw=1 :
accumulator 3/4 8/16-bit

348

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

OR = Or:

Reg/memoryand goo010dw mod reg

register to either r/m 3/10

Immediate to 1000000w mod 001 data data if w= 1

register/memory r/m 4/16

Immediate to 0000110w data data ifw= 1 .

accumulator 3/4 8/16-bit

XOR = Exclusive or:

Reg/memory and 001100dw mod reg

register to either r/m 3/10

Immediate to 1000000w mod 110 data data ifw=1

register/memory r/m 4/16

Immediate to 0011010w data data ifw=1 :

accumulator 3/4 8/16-bit

NOT = Invert 1111011w mod 010

register/memory r/m 3

STRING

MANIPULATION

MOVS = Move 1010010w

byte/word 14

CMPS = Compare 1910011w

byte/word 22

349

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

SCAS = Scan 1010111w

byte/word 15

LODS = Load 1010110w

byte/wd to AL/AX 12

STOS = Star byte/wd 1010101w

from AL/A 10

*INS = Input byte/wd 0110110wW

from DX port 14

*OUTS = Output 0110111w

byte/wd to DX port 14

Repeated by count in

CX

MOVS - Move string 11110010 1010010w 8+ 8n

CMPS - Compare 1771001z 11010011w

string 5+ 22n

SCAS-Scanstring 1171001z 11010111w 5+ 15n

LODS - Load string 11110010 1010110w 6+ 11n

STOS - Store string 11110010 1010101w 6+ 9n

*INS = Inputstring 17710010 0110110w 8+ 8n

"OUTS = Output 11110010 0110111w

string 8+ 8n

350

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

CONTROL

TRANSFER

CALL = Call: 11101000 disp-low disp--high

Direct within segment 14

Registermemory 11117111 mod 010

indirect within sement r/m 13/19

Direct intersegment 10911010 segment offset 23

segment selector
Indirect intersegment 11111111 mod 011 (mod# 11) 38
r/m

JMP = Unconditional

jump:

Short long 11101011 disp-low 13

Direct within segment 11101001 disp-low disp-high 13

Register/memory 97131111 mod 100

indirect within segment r/m 11/17

Directintersegment 11101010 segment offset 13

segment selector

351

Chapter 18: 8086/186 Instruct ion Set Summary

above

Function Formal 186 Comments
Clock
Cycles
Indirect intersegment 17111111 mod 101 (mod# 11) 26
r/m
RET = Return from
CALL:
Within segment 11000011 16
Within segadding 17000010 data-low data-high
immed to SP
Intersegment 11001011 28
Intersegment adding 11001010 data-low data-high
immediate to SP 25
JENZ = Jumpon 41110100 disp .
equal zero 4/13 13 if IMP
less not greater or 4/13 taken
equal
less or equal not 4/13 4 if IMP
greater
below not above or 4/13 not taken
equal
below or equal not 4/13

352

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

JP/_JPE =Jumpon (31111010 disp

parity even 4113

JO = Jump on 01110000 disp

overflow 4113

JS= Jumponsign 1111000 disp 4113

JNE/INZ = Jump on 01110101 disp

not equal not zero 4/13

JNL/JGE = Jump on 01111101 disp

not less greater or 4/13

equal

JNLE/JG = Jump on 01111111 disp

not less or equal 4/13

greater

JNB/JAE = Jump on 01110011 disp

not below above or 4/13

equal

JNBE/JA = Jump on 01110111 disp

not below or equal 4/13

above

JINPJPO = Jumpon 1111011 disp

not parity odd 4/13

JNO = Jumponnot 1110001 disp

overflow 4113

JNS = Jumponnot 01111001 disp

sign 4/13

353

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments
Clock
Cycles
LOOP = Loop CX 11100010 disp
times 5/15
LOOPZ/.LOOPE = 11100001 dISp
Loop while zero equal 6/16
LOOPNZ/LOOPNE 11100000 disp JMP
= Loop while not zero 16 taken/
equal
JCXZ = Jump on CX 11100011 disp JMP not
zero 5 taken
*ENTER = Enter 11001000 data-low data-high L
Procedure
L=0 15
L=1 25
L>>1 22=16
(n-1)
LEAVE = Leave 11001001
Procedure 8
INT = Interrupt:
Type specified 11001101 type 47
Type 3 11001100 45 |
INT.taken

354

Chapter 18: 8086/186 Instruct ion Set Summary

Function Formal 186 Comments

Clock
Cycles

INTO = Interrupt on 110901110 aken

overflow 4814 ke

IRET = Interrupt 11001111 28

return

*BOUND = Detect 7100010 mod reg

value out of range r/m 33-35

PROCESSOR

CONTROL

CLC = Clear carry 11111000 2

CMC = Complement 17110101

carry ?

STC = Set carry 11111001 2

CLD = Clear directionlllllloo 2

STD = Set direction 11111101 2

CLI = Clear interrupt 11111010 2

STI= Setinterrupt 11111011 2

HLT = Halt 11110100 2

WAIT = Wait 10011011 ® rest= 9

LOCK = Buslock 117110000

prefix 2

355

Chapter 18: 8086/186 Instruct ion Set Summary

Extension Escape

r/m

(TTT LLL are opcode to processor extension)

Function Formal 186 Comments
Clock
Cycles
ESC = Processor 10011TTT mod LLL 6

356

Chapter 18: 8086/186 Instruct ion Set Summary

Footnotes

The effective Address (EA) of the memory operand is computed according to
the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

if mod = 00 then DISP = 0%, disp-low and disp-high are absent

if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is

absent

if mod = 10 then DISP = disp-high: disp-low

if r/m =
if r/m =
if r/m =
if r/m =
if r/m =
if r/m =
if r/m =

if r/m =

DISP follows 2nd byte of instruction (before data if required)

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

000 then EA = (BX) + (SI) + DISP
001 then EA = (BX) + (DI) + DISP
010 then EA = (BP) + (SI) + DISP
011 then EA = (BP) + (DI) + DISP
100 then EA = (SI) + DISP

101 then EA = (DI) + DISP

110 then EA = (BP) + DISP*

111 then EA = (BX) + DISP

SEGMENT OVERRIDE PREFIX

001 reg 110

reg is assigned according to the following:

reg

00

Segment
Register

ES

357

Chapter 18: 8086/186 Instruct ion Set Summary

01 CS
10 SS
11 DS

REG is assigned according to the following table:

16-Bit (w= 1) 8-Bit (W= 0)
000 AX 000 AL

001 CX 001 CL

010 DX 010 DL

011 BX 011 BL

100 SP 100 AH

101 BP 101 CH

110 S 110 DH

111 DI 111 BH

The physical addresses of all operands addressed by the BP register are
computed using the SS segment register. The physical addresses of the
destination operands of the string primitive operations (those addressed by
the DI register) are computed using the ES segment, which may not be
overridden.

358

Part 3

Linker/Librarian Reference

Part 3

360

Chapter 19: Linker/Loader Introduction

19

Linker/Loader Introduction

Introduction to the linking loader.

361

Chapter 19: Linker/Loader Introduction
Linking And Loading From Libraries

Note

The linking loader can be used to combine several independently assembled
relocatable object modules into a single absolute object module.

When an absolute load is performed, relocatable addresses are transformed
into absolute addresses, external references between modules are resolved,
and the final absolute address value is substituted for each external symbol
reference. The loader allows you to specify the program segment addresses,
external definitions, and assign the final load address and segment loading
order. Absolute output can be produced in either HP-OMF 86 format
absolute (default), Intel Hexadecimal Obiject file format absolute, or HP 64000
format absolute.

HP-OMF 86 format is the HP implementation of Intel Binary OMF. It
contains certain extensions to facilitate analysis and emulation. HP-OMF 86
has not been verified to be strictly compatible with Intel Binary OMF and may
not work correctly in tools or systems designed to consume Intel Binary OMF.

The linking loader can also be used to combine relocatable object modules
into a single relocatable object module suitable for later re-linking with other
modules. This option is known as incremental linking. Outpptasiuced in
HP-OMF 86 format relocatable. Certain loader commandsaigbe used

with this option: RESADD, RESNUM, GROUP, INITDATA, START and
ORDER.

Linking And Loading From Libraries

The linking loader provides the iéib/ to load object modules from a library.
The ar86 Librarian is used to create such a library. The loader will include only
those modules from a library that are necessary to resolve external references.

Linking to the 8087

This section applies to the code generated in 8086 and 80186 modes that is
intended to run on th@087 @processor.

362

Chapter 19: Linker/Loader Introduction
Linking to the 8087

Many target systems use an 808pimcessor to execute floating point
instructions. However, it is also psible to use software emulation for these

same floating point instructions. In fact, Intel has an emulator package that
includes an emulation library for the 808 a(ned en87.lib). Most floating

point instructions must be modified at link time if the emulation library code

is to be accessed instead of the 8087. To do this, the as86 assembler generates
certain external references to invoke the correct emulation function in the
software library.

If you are using an 8087, you must still resolve the external references so that
the code is not changed. Unfortunately, the external names that are used
contain a colon (%). Because the assembler does not accept this character in
user-defined symbols, the public symbols needed to resolve these externa
cannot be created in the assembler. The loader, however, does accept th
colon in loader symbols. You must define these publics in the loader
command file with the PUBLIC command. This commahdwdd look like

this:

PUBLIC M:_WST=0,M:_WT=0,M:_NST=0
PUBLIC M:_WCS=0,M:_WDS=0,M:_WES=0,M:_WSS=0
PUBLIC M:_NCS=0,M:_NDS=0,M:_NES=0,M: NSS=0

This command Wl cause the created floating point code to work as is with the
8087 oprocessor.

M:_WST, M:_WT, M:_NST, and other Floating Point
Externals

A brief explanation of these externals will help you to understand why they
exist. As can be seen from the above linker command, there are eleven
externals that can be generated.

« The "M:_WST" external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of its object code.

« The "M:_NST"external is generated for those floating point instructions
that start with a 90H byte.

* The "M:_WT"instruction is used for the FWAIT floating point
instruction. (The WAIT instruction does NOT get modified through the
mechanism described here, so it should not be used if software emulation
is desired).

363

Chapter 19: Linker/Loader Introduction

Linking to the 8087

« The "M:_WCS"external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of the instruction and a CS
segment override byte is required for the memory operand.

« The "M:_NCS"external is generated whenever a floating point instruction

is used that has a 90H byte at the start of the instruction and a CS segment

override byte is required for the memory operand.

« The "M:_WDS"external is generated whenever a floating point
instruction is used that has a 9BH byte at the start of the instruction and a
DS segment override byte is required for the memory operand.

« The "M:_NDS"external is generated whenever a floating point instruction

is used that has a 90H byte at the start of the instruction and a DS segment

override byte is required for the memory operand.

« The "M:_WES"external is generated whenever a floating point instruction
is used that has a 9BH byte at the start of the instruction and a ES
segment override byte is required for the memory operand.

« The "M:_NES"external is generated whenever a floating point instruction

is used that has a 90H byte at the start of the instruction and a ES segment

override byte is required for the memory operand.

e The "M:_WSS"external is generated whenever a floating point instruction

is used that has a 9BH byte at the start of the instruction and a SS segment

override byte is required for the memory operand.

« The "M:_NSS"external is generated whenever a floating point instruction
is used that has a 90H byte at the start of the instruction and a SS segment
override byte is required for the memory operand.

When a floating point instruction is used tinatets one of the above criteria,

a fixup is placed in the relocatable file so the floating point instruction can be
converted into an equivalent instruction for 8087 emulation libraries. The
fixups convert the floating point instructions to become interrupt instructions
that interpret floating point code. If the libraries are not being used, then the
public must have a value of 0 so the fixup does not modify the code.

If you are linking with the Intel emulation library, there is no need to define
these publics. Instead, the publics will be defined within the library such that
the floating point instructions are modified to work with the library. Modify all
programs that use the emulation libraries to call the INIT87 Intel library

364

Chapter 19: Linker/Loader Introduction
Linking to the 8087

routine. It is equally valid to use the FINIT instruction if the emulation
libraries are not being used.

365

Chapter 19: Linker/Loader Introduction
Linking to the 8087

366

Chapter 20: Linker/Loader Operation

20

Linker/Loader Operation

Description of loader operation.

367

Chapter 20: Linker/Loader Operation

Primary Functions

This chapter briefly describes the function of the loader, reviews some
concepts necessary to understanding how the loader functions, and explains
some aspects of the loader operation—for instance, how the loader goes about
locating object modules in memory when a load occurs. A later section of this
chapter explains the load procedure and touchéssoes the loader must
consider when loading modules that are very different in makeup. This
information will help you to better control and optimize the |pagdcess.

Primary Functions

Many programs are too long to be conveniently assembled as a single module.
To avoid long assembly times or to reduce the size of the assembler symbol
table, long programs can be subdivided into smaller modules, assembled
separately, and then linked together by the linking loader. After the separate
program modules are linked and loaded, the output module functions as if it
had been generated by a single assembly.

The primary functions of the linking loader are:

 Resolve external references between modules and check for undefined
references (link).

» Adjust all relocatable addresses to the proper absolute addresses (load).
» Place debug information in proper format for asslyools.

* Produce as output the final absolute object module.

Incremental Linking

A powerful and useful feature of the 1d86 is the incremental linkinlgyab
Incremental linking means that the loader paoduce a single relocatable

object module from assembled relocatable object modules, and resolve all
external references between the modules loaded. Undefined external
references to other modules can still exist in the output object module. These
are reported on the load map.

368

Chapter 20: Linker/Loader Operation
Segments and Load Addresses

Incremental linking is useful for two reasons:

» First, it enables groups of users tsibeshare relocatable object modules
for joint development of code.

» Long lists of previously-debugged object modules do not have to be linked
with those modules currently under development. Instead, one
incrementallylinked module can be created and linked with the new
modules; it is therefore unnecessary to know all the original module
names that are in the incrementdihked module.

The ORDER, GROUP, INITDATA, START, RESADD, and RESNUM
loader commands oaot be used when inemental linking.

Segments and Load Addresses

To effectively use the as86 Assembler and 1d86 Linking Loader, you must
understand the various program segments and segment load addresses. The
terms summarized below are described more completely elsewhere in this
manual.

Logical Segment

A logical segment is a progmmer-defined digion of the assembly program
that will assemble into a contigus segment of related code that is no larger
than 64K bytes. Logical divisions would be code, data, and stack segments.
The word segment, when used alone, means logical segmpragram
segment.

Base Address
The base address is the lowest address of a physical segment. All offsets within
a segment are counted from the base address.

Physical Segment

A physical segment is a contiguous block of 64K bytea@fory. Physical
segments contain the code and/or data when the program is loaded into

369

Chapter 20: Linker/Loader Operation
Segments and Load Addresses

memory. Physical segments are paragraph-aligned which means that their
base addresses are divisible by 16 (least significant hex digit equal to OH). The
base address of a physical segment is the number you ASSUME (the reference
is made through a segmergme) for a segment register in order to be able to
access memory within the segment. The loader does not check against
ASSUME values. It is your responsity to make sure they arecrect.

Absolute Segment

An absolute segment is a segment whose base address is completely known at
assembly-time. In the assembly source code, the AT keyword followed by an
address produces an absolute segment. (The loackenaond SEG can also

assign an absolute address to a relocatable segment.)

Relocatable Segment

A relocatable segment is one whose base address is not known at
assembly-time. The base address is calculated by the loader during the load
process.

Paragraph (Segment) Number

A paragraph is 16 bytes in length. A paragraph-aligned address starts at a
20-bit address that is divisible by 16 (lowest significant digit is OH). Upper

16 bits of the 20-bit address is the paragraph number. A paragraph number
lies between 0 and OFFFFH, inclusive. The base address of a segment may be
defined in terms of a paragraph number and offset. First, multiply the
paragraph number by 16. Then, add an offset from 0 to 15 to that number.
The result is a 20-bit address which can be a base address. A paragraph
number may also be the start of a physical segment.

Class

A class is a collection of segments that have had the same symbol (class name)
associated with them at assembly-time. The segments in a class are placed
adjacent to each other in memory by the loader, unless you specify otherwise
through loader cmmands. Note that adjacent does not necessarily mean
contiguous. It onlyneans that other segmentl wot be placed between

them.

370

Chapter 20: Linker/Loader Operation
Segments and Load Addresses

Group

A group is a collection of segments that are to be placed within the same
physical segment. They can therefore be addressed from a single segment
register. The segment register must contain the group base address, not the
segment base address. Unlike segments in a class, the segments in a group are
not necessarily adjacent in memory, but must lie within 64K of the base

address of the group.

Note If a group of a given @ame exists in more than one file and tises of segments
named as part of theaup is not the same in each file, the load#roneate a
group of that ame that has a segmdist that is the union of the segment lists
from the files. For instance, if file A had the following GROUP directive

datagrup GROUP datal, data2, data4
and file B has the same group, but the segrisnis different, such as

datagrup GROUP datal, data3, datab
then the loader will merge thisaup. The result would be a group "datagrup"
that contains datal, data2, data3, data4, and data5. Although datal appears
twice, it will not be duplicated in thegup.
This is, in effect, a merging of the two groligis. The resultingrpup must
still be contained within the 64Kolundary. The loader does not report that it
has merged groups.
This feature may be used to create groups whanethber segments or

externals are not known, or when it is inconvenient to create empty segments
just to include them in a grodist.

Group Base Address

If set by the loader, the base address of group is the base address of the
"lowest" segment in the group (the segment base address that is less than or
equal to all the other segment base addresses in the group.) 20:lsta
address divisible by 16. It is either set at load time by the loader or specified
explicitly with the GROUP loader command.

371

Chapter 20: Linker/Loader Operation

Complete Name

Note

Module

A module is the relocatable object code resulting from a single assembly. It
can contain pieces of one or more segments. (Each module contains at least
the default segment ??SEG.)

Provided that the segment parts are not private (non-combinable), the loader
can combine parts of a segment from different modules. When combined,
these parts make up a contiguous blocknefmory as if they were from a
contiguous piece of object code.

The default combine-type is private (non-combinable).

In order for segment parts to be other than private, they must be explicitly
declared as public, or some other combine-type, in the assembly source code.

Complete Name

The loader identifies a segment bysegment name and its class name together
The termcomplete namerefers to the segment name/class name pair. If two
segments from different assemblies have the same segment name but different
class namegor if one has a classame and the other does not), these segments
are considered to be different, unrelated entities. The loader may not

recognize a segment as being valid if it must have a class name appended to it
and the class name does not appear. This treatment is different from that of
the assembler. Each segment has a unique complete name, but more than one
segment can use the same segment name.

Segment Attributes

Each segment (or piece of a segment) has two attributes associated with it at
assembly-time: a combine-type attribute and an align-type attribute. All
segments have these attributes because if you do not specify explicit attributes,

372

Chapter 20: Linker/Loader Operation
Segment Attributes

the assembler defaults to a non-combinable combine-type and a
paragraph-aligned align-type.

Parts of the same segment (as specified by a complete name) from different
modules must have the same combine-type, or the loader issugslnTde
align-types, however, do not have to be the same.

The align-type of an absolute segment is always paragraph because of the
manner that it is defined in the assembly code.

Combine-type Attributes

The combine-type attribute specifies how different pieces of a segment will be
united by the loader. A segment piece may have a combine-type attribute of
non-combinable, public, common, stackpeemory. These attributes are
described in the next sections.

Non-combinable

The assembler defaults to non-combinable if you do not specify a

combine-type attribute. The term private is sometimes used to mean
non-combinable. If different modules contain non-combinable segments of

the same name, they are treated as separate segments and are not combined by
the loader.

Public

Public means combinable. The loader concatenates pieces of a public segment
from different modules to form a contiguous segment. The length of the
resulting segment is the sum of lengths of the combined pieces.

Common

Pieces of the common segment from different modules are overlapped. The
base address is the same for all such pieces. The length of the combined
segment is the length of the largest of the pieces. Such segments are useful as
a shared data area.

Stack

Pieces of the stack segment from different modules are concatenated such that
they end at the same address (in high memory). The length of the combined

373

Chapter 20: Linker/Loader Operation

Segment Attributes

segment is the sum of the lengths of all the pieces. Such segments are generally
used to hold the system stack.

Memory

Memory combines different segment pieces in the same manner as a common
segment, but the memory segment is placed above all other segments in
memory (unless specified otherwise by loadenewmnds). The length of the
combined memory segment is the length of the largest of those combined. If
two segments with different complete names both have the memory
combine-type attribute, only the first one encountered is treateemory;

any others are treated as common segments and an error is generated
indicating the segment that has not been treated as memory.

Align-type Attribute

The align-type attribute specifies how segment base addresses will be aligned
in memory, and, in some cases, how the parts of a segment are aligned within
the segment.

A segment can have one of five align-type attributes.

Page

The base address of a page-aligned segment must be divisible by 256 (two least
significant hexadecimal digits equal to O0H). Uninitialized bytes may be left
between the pieces of a public segment to maintain align-type.

Paragraph

The base address of a paragraph-aligned segment must be divisible by 16 (least
significant hexadecimal digit equal to OH). Uninitialized bytes may be left
between the pieces of a public segment to maintain align-type.

Word

The base address of a word-aligned segment must be even (divisible by two).
Uninitialized bytes may be left between the pieces of a public segment to
maintain alignment.

374

Chapter 20: Linker/Loader Operation
Segment Attributes

Byte

The pieces of a segment from different object modules will be placed
immediately after each other, regardless of the base address, and there will be
no memory wasted.

Inpage

The inpage segment must fit within a page (256 bytes). If the loader
determines that such a program segment cannot fit within the current page, it
begins the segment on the next page boundary. If the segment is greater than
256 bytes and will not fit within a page at all, a warninigssied. Within a

page, segment pieces are byte-aligned.

Segment Alignment

The align-types for different segment parts from different modules do not
to be the same. For this reason, two questions must be addressed.

1 Howisthe segment base address affected by conflicting alignments among
parts?

2 Howisthe alignment of the segment parts within the segment affected by
conflicting alignments among parts?

The next two sections answer these questions. They will refer to the following
example source code pieces.

Assembly source code for Module A:
DATASEG SEGMENT WORD PUBLIC ;word-aligned

DATASEG ENDS

Assembly source code for Module B:
DATASEG SEGMENT PARA PUBLIC ;paragraph-aligned

DATASEG ENDS

Alignment of Base Address

If align-types do conflict (and there is not an ALIGN command in the
command stream), the loadeithassign a base address with the most

375

Chapter 20: Linker/Loader Operation

Segment Attributes

restrictive alignment from any part of the segment. In Module A, DATASEG
has a word alignment. In Module B, the same segment has a paragraph
alignment. The loader will combine these two parts into a single segment at
load time. Ifthere is no ALIGN command tesign a different alignment, the
loader will use the most restrictive alignment carried by any of the segment
parts. The base address of the combined segment will be aligned according to
that most restrictive alignment. Of the combine-types, page alignment is the
most restrictive. The ranking, from higher to lower, is

PAGE
PARAgraph
WORD
BYTE
INPAGE

In this example, the loader would align DATASEG on a paragraph boundary.

The alignment assignment is the same regardless of the order that the modules
were loaded or the combine-types (PUBLIC, STACK, and so on) of the
segment parts.

However, if an ALIGN command appeared in the command stream, the
alignment it specified would override any alignment carried by the segment
parts. (ALIGN is, obviously, a loader command with which you may change
the alignment of a segment.) This would occur even if the alignment set by the
ALIGN command was less restrictive than the alignments carried by the
segments. To continue the example, if the loader command

* byte-alignment specified
ALIGN DATASEG=B

appeared in the command stream either before or after the modules
containing the segments were loaded, the align-type for the DATASEG
segment would be byte despite the fact that both parts carry alignments that
are more restrictive (word and paragraph).

Another loader command that affects alignment is the SEG command. SEG is
used to assign absolute addresses to relocatable segments. ArSEBa@ncb

will override both the alignment carried by a segment and the alignment
specified by the ALIGN command.

376

Note

Chapter 20: Linker/Loader Operation
Segment Attributes

Changing the alignment of a non-combinable segment can create problems.
Incorrect code might be produced because the loader cannot correctly modify
the offsets within non-combinable segments.

Alignment Within a Combined Segment

The combine-type of the segment patvesaffect how the parts of the
combined segment will be aligned within the segment.

PUBLIC Combine-type. Each part of a public segment retains the
alignment it carried with it from the assembler. Within the combined
segment, the loader aligns each segment part according to the alignment it
carries, with the exception of the first segment part. The first segment might
not retain its alignment because the loader might adjust it either to confor
the most restrictive alignment or in response to an ALIGN loadantand.

In the example given earlier, the loader would combine the segment and
the base address and parts in the following way (assume no ALIGN comm
will be used and the load order is Module A and then Module B):

The most restrictive alignment is paragraph. The entire combined segment
will be aligned on a paragraplobndary. Note that since Module A is loaded
first, it will be aligned not on a wordolndary, but on a paragraph boundary.

Module B is the next segment part to be placed. Its alignment, within the
segment, will be on a paragrapbumdary. Suppose that the segment part

from Module A is just 3 bytes in length. The loader will still move the

segment part from Module B to the next paragraph boundary. That leaves 13
bytes unused between the first and second parts. Suppose the segment part
from Module B is 10 bytes in length. The entire combined segment will be 26
bytes in length although 13 bytes are unused.

STACK Combine-type. For a stack segment, the align-type attribute applies
to the base (low) address of the combined segment. The align-type of the
pieces of the segment are ignored by the loader. They are concatenated
contiguously in memory just as a stack should be. Again referring back to the
example, if the combine-type was STACK instead of PUBLIC, the combined
segment would begin on a paragraph boundary and its combined length would
be the sum of the lengths of the parts.

377

Chapter 20: Linker/Loader Operation
Base Address Assighment

COMMON Combine-type. Since pieces ofa COMMON segment are
overlaid, the align type of any part is only used to determine the most
restrictive alignment in the absence of an ALIGN command.

MEMORY Combine-type. Since pieces of a MEMORY segment are
overlaid, the align type of any part is only used to determine the most
restrictive alignment in the absence of an ALIGN command.

NON-COMBINABLE Combine-type. Private segments are not combined.
The alignment a private segment carries from assembly is used to align the
base address unless it is changed with an ALIGN command.

Base Address Assignment

Segments are assigned spacememory in a user-controlled order. The order
can be both implicit and explicit.

Implicit order depends upon where the segments appeared in the original
source code to the assembler. The order they appeared in the source code
controls the order they appear in the object module. The order that they
appear in the object module can control the order they appear in the
output from the loader, if no other restrictions apply.

The exception is the default segment ??SEG. It appears first in the object
module unless thé or-H command line options are used with the
assembler. Then the order of the first three segments will dejpond

the first code, data, and mixed segments. This ordering is used in the
generation of HP64000 absolute files.

Implicit order also depends on the order that the modules are given to the
loader. Modules are given to the loader from the command line and from
LOAD commands in the command file. The modules specified on the
command line "precede" modules in files named in the command file.
Among modules in the files named in the command files, the modules that
the loader finds nearer to the beginning of the command file "precede" the
modules found in files later in the monand file.

Explicit order comes from the loader command ORDER, from the
ordering caused by the presence of segments made absolute either at

378

Chapter 20: Linker/Loader Operation
Base Address Assighment

assembly time or load time, and from any classes that might appear in the
load files.

If libraries are included in the load, library relocatable object modules that are
not selected for inclusion in the absolute object module do not have their
segment names examined by the loader. A description of the algorithm used to
assign base addresses follows:

1

The loader reads all its commands and all files specified in LOAD
commands, and determines what segments are present, the align-type, and
the size of each. These are placed in an internal structure in the order in
which the loader finds their names.

The loader blocks reserved memory areas and assigns base addresses for
absolute segments. Memoryreserving is done through the two loader
commands RESADD and RESNUM. Absolute segments have their
addresses specified either at assembly time with the AT keyword or at
time with the SEG command. The absolute segments are marked in t
structure as having had their base addressagreed.

A segment name can appear in a SEG command, but a SEG command
may also refer to a class name. If a class name appearsin a SEG
command, the first segment in that class that does not yet have a base
address (the first such segment whose nhame wasiatered by the

loader and was not an absolute segment or was not named in a SEG
command) is ssigned the specified base address and marked in the
structure. Other segments in such a class aressared base addresses
at this time, however.

All segments named in ORDER commands, and segments within a class
named in ORDER commands, assigned base addresses in the order in

which they were named in the commands. The loader attempts to begin
loading these segments at physical address 00000H, if possible.

There are several issues to consider in this step.

The areas of memory reserved with RESADD and RESNUM
cannot be used.

If a class is hamed in an ORDER command, it may contain
segments which have already been assigned base addresses
because they were either absolute segments or they appeared first
in the list following the order comand. If, for instance, an

ORDER command contains a segment name in the middle of the
order specification and that segment was an absolute segment, the

379

Chapter 20: Linker/Loader Operation
Base Address Assighment

loader must work around that absolute segment when placing the
class in memory. Some segments will go before the absolute
segment, some will follow it.

Since classes must be adjacent, they cannot be fitted around
reserved memory areas.

Alignment must be maintained which means the loader must
adjust base addresses so that they conform to the align-type for a
segment and/or the alignment restrictions imposed by other
segments in the same physical segment.

The first segment with a combine-type of MEMORY that does not yet

have a base address is marked and saved, but is not assigned a base address
at this time. (This segment would already have a base address only if it
appeared in an ORDER command or SEG command or it was an

absolute segment.)

Any segments remaining in the segmentisture are ssigned base

addresses beginning just above the last segment assigned in step 3. The
loader attempts to filnemory contiguously while taking into

consideration the reserved memory, absolute segments, and alignment
maintenance. The order that segments are assigned addresses is the order
that they appear in the internal structure (the order in which the loader

first found them.) Of course, if the loader finds a segment with a class

name, then it loads all the segments in the class regardless of the order

that they appear in the structure.

The memory segment marked and saved in step 4 is assigned a base
address above all addresses used so far. If this cannot be done within a
20-bit address space (the base address needed does not exist in the address
space, or the base address plus the size exceeds the address space), an
error is reported.

The base addresses of any groups as@aed, unless they were
user-specified in a GROUP loader command. If the loader setsdbp g

base address, it is the 20-bit address of the segment inadhe that is
"lowest"in memory. (Itis an address divisible by 16 and is less than or
equal to the lowest base address of any segment in the group.) Ifthe base
address has been specified bythe GROUP loader command, then the
loader error-checks against the value in the GRO URnmtand. Note

that this algorithm does nothing to ensure that the segments in a group lie
within 64K of the group base; that is your respottisip However, the

loader will rgport an error if this is not the case. One way to ensure

380

Chapter 20: Linker/Loader Operation
Base Address Assighment

segments in a groupiliie within the 64K limit is to &sign all segments
in a group the same clasame; then they i be adjacent irmemory
unless you override with SEG commands.

381

Chapter 20: Linker/Loader Operation
Base Address Assighment

382

Chapter 21: Loader Commands

21

Loader Commands

Description of the various loader commands.

383

Chapter 21: Loader Commands

Loader commands give you theilél to control the linking/loadingprocess to
a very high degree. These commands may be given to the loader in the
interactive mode or they may appear in a load command file.

The descriptions include the syntax for the commantopat slescription of
the purpose of the comand, and pssibly an example of the somand in use.

Loader Commands Introduction

The Id86 Linking Loader reads a sequence of commands in batch mode from
a command file or reads commands in the interactive mode from some other
input device such as a terminal. One of the loademeands, the LOAD
command, specifies the object modules to be loaded from files or other logical
devices along with the loader commands. The loader generates an absolute
load module suitable for loading into an actual microprocessor. The output
module is written to the output device in HP-OMF 86 format absolute, unless
the optional Intel Hexadecimal Object file format absolute or the HP 64000
format absolute is specified. The loader is also capable of producing
HP-OMF 86 format relocatable from an option known as incremental
linking. Incrementallylinked object modules can later be re-linked into
absolute formats.

All commands must begin in column 1. Command arguments can begin in
any column, but the arguments must be separated from the command by at
least one separator. Generally, separators (blanks or tabs) are allowed
anywhere, except within a symbol or a number. Exceptions are described
under the individual commands. The loader command file may have
comments placed in it. Comments are denoted by a preceding asterisk.

Command Symbols

Symbols that are command arguments follow the same rules as assembler
symbols with the exception that a colon is an accepted character in loader
symbols, although not as the first characterm@and arguments that are
numeric can be either decimal or hexadecimal. Hexadecimal constants are
terminated byan upper or lower case H (for instance, 1FH). Like the
assembler, hex numbers that begin with the hex digits A-F must have a leading
zero to avoid confusing them with symbols in certain commands.

384

Note

Chapter 21: Loader Commands

Complete Name

Some of the loader commands take segment names as arguments. If a segment
belongs to a class, you must use the segment name and class name together to
refer to the segment. The proper form is segmamae followed by a slash

followed by the class name. The segment name/class name pair is known as

the complete name. The loadal wot recognize a segment as valid if its

class name is issing. Any segmentame wthout a specified clasame is

assumed to have a null class name. A null class nanmotae explicitly

referenced, therefore SEGNAME/ without a following claase is not

acceptable.

The loader does not read all loader commands before it begins some
processing. Therefore, it canot always tell whether it has received a valid
segment name with a command that accepts one. Itsshp@to enter a
segment name that is invalid at the time it is entered, but ithdewnade
valid by later actions. If the loader completes the load and the invalid segment
name has not been resolvedissiues anrmor stating that it cannot find the
segment in question. Unfortunately, a segment name that must have a
name, and does notjllicause this eror. A segment ame with a goup name
in the place of a class namdlalso cause thisreor. Both cases are not
obvious as to whytheycaused errors so check that the comphatefor the
segment has been properly specified when this error appears.

Order of Commands

Commands may be entered in any order. The same command, with the
exception of EXIT and END, may be used more than once. (EXIT and END
both terminate the reading from the command file). f ORDER, START,
NAME, LIST and NLIST appear more than once, only the last athbenin
effect. Other commands may appear as often as required, andlthey w
executed each time.

Command Length

The maximum line length, for a command entered interactively or placed in
a command file, i254 characters.

385

Chapter 21: Loader Commands

Loader Command Descriptions

In the command descriptions in this section, square brackets ('[""]") are used
to indicate optional arguments. Square brackets containing an ellipsis
indicate that the preceding argument can be repeated zero or more times.
The following summaryists the conmands in the order of their aotence

in the remainder of this section.

COMMAND FUNCTION

ALIGN Set Alignment for a Segment

Comment (*) Specify Comment

END End Command Stream and Finish Load
ERROR Change Message Severityto ERROR
EXIT Exit Loader

FORMAT Specifies Output Format

GROUP Set Group Base Address

INITDATA Specify Initialized Data in ROM

LENGTH Set Page Length

LIST List Specified Elements

LISTABS List Specified Elements

LISTMAP Specifies Layout and Content of the Map
LOAD Load Specified Object Modules

NAME Specify Output Module Name

NLIST Do not List Specified Elements
NOERROR Change Message Severityto NOERROR
NOTYPEMERGE Do not Merge Type Information

ORDER Specify Segment Order

PUBLIC Specify Symbol Definitions

RESADD Mark Memory as Reserved

RESNUM Mark Memory as Reserved

SEG Set Segment Base Address

SEGSIZE Specify Segment Size

START Specify Starting Output Module Address
TYPEMERGE Merge Like Type Definitions

WARN Change Message Severityto WARNING
WIDTH Set Page Width

386

Chapter 21: Loader Commands
ALIGN

Syntax:

Where:

Description:

ALIGN

ALIGN segment=blank |B|P|[I|G|W

The vertical bar between arguments means "or" and implies that only one of
the sixarguments may appear.

segment is the name of a relocatable segment. Segment can be a segment
name or a complete name (segment name/class name pair). An absolute
segment is accepted syntactically, but ALIGN on an absolute segment has no
effect. The equal sign must be included, even if a blank follows.

blank keeps the align-type the same as specified in the assembler. This is the
default. Because blank is a significant character in this location, separatin
blanks are not permitted between the equal sign and the alignment
mnemonic.

B specifies BYTE alignment.

P specifies PAGE alignment.

| specifies INPAGE alignment.

G specifies PARAgraph alignment.

W specifies WORD alignment.

Each segment from an assembler-generated module carries its align-type
information. It is either the align-type specified in the assembly source code
or the default align-type of PARA (paragraph alignment). Other possible
align-types are BYTE, WORD, PAGE, and INPAGE.

At load time, you may accept the align-type the segment already has or you
may override it without re-assembling the module. The ALIGMm@nd
allows you to do either.

387

Chapter 21: Loader Commands

ALIGN

Note

Typically, you would use ALIGN to make all segments page-aligned to assist
you with debugging and then, before the final load, use ALIGN to change the
segments to byte-aligned to save memory space.

The ALIGN command can appear in the command stream either before or
after the modules containing the segment or segment pieces are loaded and it
will override the original alignment.

If an absolute segment (set at assembly-time with the AT keyword) appears in
an ALIGN directive, ALIGN isignored and the loadssues a warning. If a
relocatable segment that has its base address set with a SEG command
appears in an ALIGN directive, the SEG command overrides the ALIGN
command and the alignment specified isaged.

If a non-combinable segment appears in an ALIGMm@@nd, inorrect code
may be produced because the loader cannot modify the offsets within
non-combinable segments.

Examples:

ALIGN SEG1=B

ALIGN SEG2/CLASS1=G

ALIGN SEG3=

*pblank is argument—align-type is that
*which the segment carries from assembly

388

Chapter 21: Loader Commands
Comment (*)

Comment (*)

Syntax:
* loader comment line

The asterisk is used to indicate a comment in the command stream. The
asterisk must be entered in column 1. The loader ignores anytext on the line
until the end-of-line character is reached.

END

Syntax:
END

Description: This command initiates the final steps in the Ipadcess. After an END
command isdund in the coomand file, the loader completes the load,
produces an output object module, and returns to the host computer
operating system. If the command file does not contain an END command,
the loader stops readingrammands when it detects of an end-of-file and
initiates the final steps at that point. However, using the END command
promotes command file clarity and readdiby.

ERROR, WARN, NOERROR

Syntax:
ERROR condition{condition} ...
WARN condition{condition} ...
NOERROR condition{condition} ...

389

Chapter 21: Loader Commands

EXIT

Where:

condition One of UNREF, UNRES, OVERLAP, or a number
corresponding to the message number of the error or
warning.

UNREF refers to the undefined external reference
error. UNRES refers to the unreferenced external
warning. OVERLAP refers to the memory overlap

warning.

These commands change the way a messagmop @f messages is treated.
ERROR causes the message to be treated as an error; WARN causes the
message to be treated as a warning; NOERROR causes the message to be
treated as a non-error (that is, the error condition is ignored).

The ERROR, WARN, and NOERROR commands affect all messages which
are generated after the linker encounters timengcand. The change in

message severity remains in effect until the linker has finiphedssing. The
effect of these commandsro#ot be changed by subsequent ERROR, WARN,
or NOERROR commands.

Fatal errors and messages generated bythe ERROR, WARN, or NOERROR
command canot be overridden or modified.

Syntax:

Description:

EXIT

EXIT

EXIT terminates the loader execution without generation of aload map or
output object module.

The EXIT command can be used in the interactive mode to exit the loader
when an error occurs that requires leaving the loader to fix. In the interactive
mode, most commandarm®rs are recoverable; however, errors in the LOAD
command are generally not recoverable.

390

Chapter 21: Loader Commands
FORMAT

This command can also be used in a command file. In this case, the final load
will not take place, but the aomands up to and including the EXIT

command W be read and checked forrers. The loader ignores any
commands following the EXIT command in a command file.

FORMAT
Syntax:
FORMAT type
FORMAT modifier
FORMAT type modifier
FORMAT NOABS
Where:
type One of the following:
ASCII
HP
OMF86
modifier One of the following:
INCREMENTAL
LIMITED
LTL
Description: The FORMAT command lets you specify the output object module format.

The type option indicates which output format is to be generated by the
linker. A list of acceptable formats follows:

» ASCIl refersto the Intel Hexadecimal Object File Format
* HP refers to the HP 64000 Object Module Format (HP-OMF)
» OMF86 refers to Intel Binary OMF86 as extended by HP (HP-OMF86)

391

Chapter 21: Loader Commands

GROUP

* NOABS prevents an absolute file from being produced

If an unsupported type specifier is encountered, an error or wariiibg w
generated and the default output format wilpbbeduced.

If NOABS is specified, no object file will bgroduced; however, internal
processing vill be carried out and a map file will lproduced if requested.

Only one format type may be specified. In addition, NOABS cannot be used
with any of the modifier options. If either of these conditions occurs, an error
or warning will beissued and the FORMAT oumand vill be ignored.

The following modifiers may be used only withthe OMF86 file type. If no type
is specified, OMF86 will be assumed.

» The INCREMENTAL modifier to the FORMAT command indicates that
incremental linking is to be performed.

* The LIMITED modifier to the FORMAT command limits the ammt of
usable segment base information contained in the OMF86 data records.

* The LTL modifier to the FORMAT commarptoduces a Load-Time
Locatable object module in OMF86 format.

FORMAT cannot be specified without any options. If such a situation is
encountered, an error or warningle issued and the comand vill be
ignored.

The FORMAT command has a global effect. If multiple FORMAT
commands are enantered, a warning messagél be generated and the first
FORMAT command Vil be used.

All FORMAT commands must appear before the first LOAD command in a
command file. Any FORMAT commands appearing after the first LOAD
command Wl be flagged with an &or or warning and ignored.

Syntax:

GROUP

GROUP group=address
GROUP group=paragraph,offset

392

Where:

Description:

Chapter 21: Loader Commands
GROUP

group isthe name of arqup.

address specifies an address where the group begins. The address must be
divisible by 16, or anreor is reported. The acceptable range, given the
paragraph restriction, is from 0 to OFFFFOH.

paragraph specifies an actual value to be loaded into a segment register.
The range for this value must be within 0 to OFFFFH, inclusive, orran is
reported.

offset specifies the offset from the given paragraph. The offset must be 0 or
the loader reports an error.

This command specifies the absolute base addressmfugp.gSuch an

address always lies on a paragraph boundary (a multiple of 16). The default
group base, if there is no GROUPwmand, is calculated by the loader in the
manner explained in the "Base Address Assignment" section beginning on
page 378.

You can enter multiple GROUP commands specifying the saouwpgame,
but onlythe last one applies.

Note that the GROUP command doedassign a base address to any of the
segments in the group. If you specify the location of a group with the GROUP
command, you must ensure that all such segments lie entirely within the 64K
limit imposed on physical segments. This is accomplished with the ORDER
and SEG commands. The loadepaoets an error if this condition does not

hold for any segment in the group. Examples:

GROUP DGROUP=100H
* DGroup starts at 100H
GROUP CGROUP=7,0

* CGroup starts at 70H

393

Chapter 21: Loader Commands

INITDATA
INITDATA
Syntax:
INITDATA segment [,segment [,...]] [,address]
Where:
segment could be one of the following:
* segmentname
* segmentname/classname
* /classname
address could be one of the following:
e An address value from 0 to 1048576 FO0H-FH), inclusive, or
* A paragraph,offset pair. The paragraph and offset may range from 0 to
65535 (OFFFFH), inclusive. With either form, leading zeros are required
for hexadecimal values that start with the hex digits A-F.
Description: The INITDATA command specifies those data segments or classesilibet w

initialized in memory at run time. The INITDATA oomand optionally can
be used to specify the base address of the created logical segment(s).

Initialized data in the specified segments is placed in new segments at the
specified address. These new segments are named ?W2THNIT, wheren

is the number of required segments depending upon the amount of data
needed.

If an address is not specified, an address determined by the SEG command or
the base address assignment algorithm is used. If you have compiler libraries
from the Hewlett-Packard CC8086 C cross compileodine in the compiler
startup code copies all initialize data from the created segments into the
original segments. Likewise, there is an assembly file,
/usr/hp64000/1ib/8086/src/initdata.s, which may be used to copy the initialize
data.

394

Chapter 21: Loader Commands

LENGTH

Example:

INITDATA /data, OfffOh

The example illustrates the use of the INITDATArmand.

LENGTH
Syntax:

LENGTHn
Description: Specifies the page length of the output listing as "n" lines, where nis a

number greater than 3. The default is 60 lines per page. Example:

LENGTH 55

395

Chapter 21: Loader Commands
LIST, NLIST

LIST, NLIST

Syntax:

LIST [AB,C,D,E,,L,0O,P,Q,S,T,UV,W,X]

NLIST [A,B,C,D,E,I,L,O0,P,Q,S,T,U,V,W,X] @NCW = Note

The LIST and NLIST commands are being replaced by the FORMAT,
LISTABS, and LISTMAP commands.

Note LIST A, LIST B, and LIST | are mutually exclusive. If more than one appears
in a command stream, the first one is used to specify the output format and the
others generate warnings and are ignored. Similarly, LIST Q can only be used
with LIST B, since LIST Q makes the Intel Binary OMF produced more
compatible with older Intel tools that accept the binary format.

Where:

LIST - Creates an Intel Hexadecimal Object file format
absolute output file.

NLIST - Accepted syntactically, but has no effect. Will
not toggle LIST option for this flag.

LIST - Creates an absolute file in the HP-OMF 86
format absolute. (default)

NLIST - Accepted syntactically, but has no effect. Will
not toggle LIST option for this flag.

LIST - Creates a cross reference listing. Use of this
option could slow program execution.

NLIST - Inhibits production of a cross refererdising.
(default)

396

Chapter 21: Loader Commands
LIST, NLIST

LIST - Places public definition symbols in the output
object module. This option causes the Intel
Hexadecimal Object format absolute to be unusable in
Intel tools. (default)

NLIST - Inhibits placement of public definition symbols
in the output object module.

LIST - Causes warning messages to be generated for
anyremaining undefined external symbols during an
incremental link.

NLIST - Inhibits warning messages for any remaining
undefined external symbols during an incremental
link. (default)

LIST - Produces relocatable output object modules in
the HP-OMF 86 format relocatable that can then be
incrementally linked. (defaultis HP-OMF 86 absolut
output)

NLIST - Accepted syntactically, but has no effect. Will
not toggle LIST option for this flag.

LIST - Causes warning messages to be printed for any
unreferenced, unresolved, external references.

NLIST - Inhibits warning messages for any
unreferenced, unresolved, external references. (default)

LIST - Specifies that an output object module is to be
produced. (default)

NLIST - Inhibits production of an output module. This
is useful when checking for errors.

LIST - Places local symbols present in the input
modules in the loader symbol table. (default)

397

Chapter 21: Loader Commands

LIST, NLIST

Note

NLIST - Inhibits placement of local symbols from the
input object modules into the loader symbol table.
Useful when many modules are beingloaded and the
loader is executing more slowly due to the large
number of symbols.

Q LIST - Causes the loader to produce a "limited" form of
Intel binary OMF that is strictly compatible with the
Intel Binary OMF document.

NLIST - Causes the loader to produce HP-OMF 86
absolute, the HP extension of the Intel Binary OMF
used in high level analysis. (default)

S LIST - Writes local symbol information to the object
module. This feature is useful for debugging. Local
symbols are those placed into the object module by the
assembler that are not external definitions. This
option causes the Intel Hexadecimal Object format
absolute to be unusable in Intel tools. (default)

NLIST - Inhibits writing of the local symbol table to the
object module.

In the relocatable and absolute HP-OMF 86 output modes, line numbers and
procedure definitions present in the input files are preserved and stored in
the output file. In the Intel Hexadecimal Object file format absolute output
mode, external definitions and debug symbols are written to the output file.
Since the set of external definition symbols cannot be distinct from the debug
symbols, duplicate symbol definitions can occur in the ASCII hexadecimal
output file.

T LIST - Prints the local symbol table on the output
listing.

NLIST - Inhibits printing the local symbol table on the
list output device. (default)

398

Chapter 21: Loader Commands
LIST, NLIST

U LIST - Disables case-sensitivity for matching public and
external symbols. Converts all symbols in the file to
upper case (which may affect debugging).

NLIST - Enables case-sensitivity for matching public
and external symbols. (default)

\% LIST - Produces an expanded segment summaryin the
load map that lists the modules where the segment
parts were found.

NLIST - Inhibits production of an expanded segment
summary in the load map thists the modules where
the segment parts were found. (default)

w LIST - Enables display of warning messages to the
output listing and to the terminal. (default)

NLIST - Inhibits display of warning messages to the
output listing and to the terminal.

X LIST - Prints the public definition symbol table on the
output listing.

NLIST - Inhibits listing the public definition symbol
table on the list output device. (default)

Description: The LIST and NLIST commands are used to generatappresslistings of
the elements specified.

LIST T,X

*prints local and external definition
*symbol tables in the output listing
NLIST O

*suppresses production of

*an output object module

399

Chapter 21: Loader Commands
LISTABS

LISTABS

Syntax:

The LISTABS Li8iimBSd fuOfiNFERAALE[NOTREBRIGEE S fo the output
object module. Multiple LISTABS commands can be specified and have an
accumulative effect.

* INTERNALS causes local symbols to be written to the output file. This is
equivalent to the LIST S command. (default: INTERNALS)

 PUBLICS causes globally defined symbols to be written to the output file.
This is equivalent to the LIST D command. (default: PUBLICS)

The LISTABS command M eventually replace the LIST/NLIST D and
LIST/NLIST S commands.

LISTMAP

Syntax:

LISTMAP option[,option]...
Where:

option One of the following:

[NO]JCROSSREF

[NOJINTERNALS[/BY_NAME| INAME]

LENGTH number

[NOJMODULE

[NOJPUBLICS[/BY_ADDR| /ADDR]| /BY_NAME]| /NA
ME]

[NO]SEGMENT

[NOJVERBOSE

[NO]WARNINGS

WIDTH number

400

Note

Chapter 21: Loader Commands
LISTMAP

The LISTMAP command controls the output of certain items to the linker’s
map file.

Each of the functions of the LISTMAP command are described below:

CROSSREF causes a cross-reference listing to be output to the map file.
NOCROSSREF suppresses the generation of thésamference listing.
(default = NOCROSSREF)

INTERNALS causes a listing of theon-public (local) symbol table to be
output to the map file. NOINTERNALS suppresses the output of the
non-public symbol table. If /BY_NAME or /INAME is specified, the
symbol table is listed in ASII order. (default = NOINTERNALS)

LENGTH specifies the map file page length to a number between 5 and
255. (default = 255)

MODULE controls the output of the module summary to the map file.
(default = MODULE)

PUBLICS causes a listing of the public symbol table to be output to th
map file. NOPUBLICS suppresses the output of the public symbol ta
If 'IBY_NAME, INAME, or nothing is specified, the public symbol table i

lissted in AZ Il order. If/BY_ADDR or /ADDR is specified, the table is
listed in address order. (default = NOPUBLICS)

SEGMENT controls the output of the segment summary to the map file.
(default = SEGMENT)

VERBOSE controls the output of additional information to the segment
summary in the map file. This dph has no effect if LISTMAP
NOSEGMENT is specified.

WARNINGS controls the output of warnings to the map file. (default =
WARNINGS)

WIDTH specifies the page width as a number between 20 and 255.
(default = WIDTH 80)

LISTMAP CROSSREF was formerly known as LIST C. LISTMAP
INTERNALS was formerly known as LIST T, and LISTMAP PUBLICS was
formerly known as LIST X.

401

Chapter 21: Loader Commands
LOAD

LOAD

Syntax:
LOAD [-]Jmodule],...]

Where:
module names a file in which the object module or library resides. Any
moduleor library preceded by a minus sign will have its object modules read
until an EOF is detected. Without the minus sign present, the loader would
load only those modules from the library that were necessary to resolve
external references. The minus sign preceding a library forces all modules in
the library to be loaded.

Description: The LOAD command is used to specify one or magaii object modules to
be loaded. The command operand is the name of the file containing the object
module. Input object modules can st of relocatable modules from the
assembly process, relocatable modules fromemental linking, or libraries.

If any file name is preceded by a minus sign, it indicates that all object
modules should be read from the file. In order that external references are
handled correctly, the following order for loading libraries, along with other
kinds of object modules, should be observed.

» Libraries should be loaded after all nbloraries. From libraries, the
loader will load only those modules that are necessary to resolve
undefined external references (EXTRNS), unless the library file name is
preceded by a minus sign.

« Backward external references within a library are resolved correctly.
However, external references to a library from a file loaded after the
library has been loaded are generally not resolved correctly. Therefore,
libraries should be loaded last.

* When two libraries makes external references to each other, itis
generally necessaryto LOAD one of them twice (for example, LOAD
LIBA,LIBB,LIBA) in order to pick up all the necessary modules.

Object modules may or may not be read until the EOF. The object modules
are loaded in the order specified, with each piece of each segment being

402

Chapter 21: Loader Commands
NAME

loaded into memory at a higher address than all preceding pieces of the same
segment. Any number of LOAD commands can be used. Example:

LOAD ONE,-EACH.0

In the example, suppose that EACH.o contains two modules. This load

command W cause three modules to be loaded: the first from the éifaed
ONE.o, and the next two from the file EACH.o.

NAME
Syntax:
NAME name
Where:
name is a symbol that specifies the new name for the object module.
Description: The name command is used to give a new name to the output object module.
In the load map listing, the nevame(or current mme) isbéund next to the
heading "OUTPUT MODULE NAME:".
ORDER
Syntax:
ORDER element],...]
Where:

element could be one of the following:

403

Chapter 21: Loader Commands
ORDER

e segmentname
e segmentname/classname

» /classnameEquivalent to specifying all segment names with that class
attribute in the order their names were@ttered by the loader. All
such segments are placed as adjacent as possibieniory (allowing for
SEG commands, absolute segments, and reserved areas).

» classname—segnamel—segname2—...—segnaniiidtice the hyphen
separating each name.) The specifically named segments are moved to the
beginning of the class and ordered the way they appear in the command.
Any segments remaining in the class assignedmemory immediately
after the specified ones.

Description: The ORDER command is used to override the loader’s default order of
assigning base addresses to segments. It is useful in forcing collections of
segments addressed from the same segment register (for instance, a group) to
lie close to each other in memory.

All segments specified in the ORDER command assigaed base addresses

as follows: the first one specified begins at the lowest address possible, and
subsequent segments begin immediately after the preceding one. The loader
does not assign addresses that conflict with absolute segments, areas specified
in the RESADD/RESNUM commands, or segments specified in a SEG
command. The ORDER command does not override the base address of an
absolute segment or one assigned with SEG. If any such segment appearsin
the ORDER command, any segment following it in the ORDER command is
assigned space memory above the absolute segment.

Continuation Line. If more than one line of ordering information is needed,
use an ampersand (‘&) where the linker is expecting a comma or a hyphen. If
breaking at a comma, leave the comma on the first line. If breaking at a
hyphen, place the hyphyen on the second line.

Examples:

ORDER SEG1,SEG2,SEG3
*orders segments

ORDER SEG1/CLASS1,/CLASS2-SEG2-SEG3
*(the remaining segments in CLASS2 follow, if they exist)

404

Chapter 21: Loader Commands
PUBLIC

ORDER SEG1,CLASS1-SEG2-SEG3,&
SEG4,CLASS2&

-SEG5

*note continuation line

See Also The "Base Address Assignment" section beginning on page 378.

PUBLIC

Syntax:
PUBLIC symbol=address [,...]
PUBLIC symbol=paragraph,offset [,...]

Where:
symbol is a user-defined public symbol

address is the new 20-bit address of the symbol. The address has a range of
0to 1048575 (OFFFFH), inclusive. The symbol’s paragraph value is equal to
the address shifted right by 4. The offset of the symbol is the address modulo
16.

paragraph is a paragraph boundary number. Paragraph is multiplied by 16
and then the offset is added to it. Paragraph may range from 0 to 65535
(OFFFFH).

offset is a number in the range of 0 to 65535FKFGHH). It is added to the
multiplied paragraph number to form a 20-bit address.

Description: This command is used to define and/or change the address of a public
definition. If a symbol specified by this command is already a public
definition (from an input object module where the symbol was an argument
to the assembler PUBLIC directive), the address of the symbol is changed to
the user-specified value. If the symbol is not already defined, it is entered into
the loader symbol table along with the specified address. It will then be
available to satisfy external references from object modules. This command

405

Chapter 21: Loader Commands
RESADD, RESNUM

allows you to specify the address of some public symbols at load-time and
possibly to avoid a reassembly. All symbols used with thieweand are
considered absolute rather than relative to either a segment or a group.
Example:

PUBLIC INPUT=2FH,OUTPUT=200H

RESADD, RESNUM

Syntax:
RESADD lowaddress,highaddress
RESNUM lowaddress,number

Where:
lowaddress isthe lowest address of the reserved memory space.

highaddress is the highest address of the reserved memory space.
Highaddress must be greater than or equal to lowaddress.

number is the number of bytes, beginning at and including the low address,
to reserve. Ifthe number is 0, no area is reserved.

Description: The RESADD and RESNUM commands allow you to declare certain areas
of memory as off limits to the loader; no relocatable code is placed in these
areas. You might wish to use these commands to avoid overwriting an
operating system in low memory, for example.

If a reserved area conflicts with a previously reserved area, an absolute
segment, or a segment name in a SEG directive, the |sdess a warning
message and loading continues. If the warning is caused by the RESNUM or
RESADD command, anyon-overlapping space is reserved.

If the highaddress of the reserved area (either specified directly or computed
as lowaddress+ number-1) is greater than 104857BK6fH), allmemory
from lowaddress to this limit is marked reserved. Examples:

406

RESADD 0,1FFH

Chapter 21: Loader Commands
SEG

*this and the following are equivalent

RESNUM 0,200H

Syntax:

Where:

Description:

SEG

SEG segment=address

SEG segment=paragraph,offset
SEG /class=address

SEG /class=paragraph,offset

segment is the name of a relocatable segment. It can have a classname
attached with a slash as in segname/classname.

class isthe name of a class

address specifies that the segment will begin at the given address. The
range ofthe address must be from 0 to 104857BFKGH-H), inclusive, or an
error occurs.

paragraph will be a paragraph number ranging from 0 to 65535-(®FH),
inclusive, or an error occurs.

offset is a number ranging from 0 to 65535 @H-H), inclusive, or anreor
occurs. Base address of the segment will be 16 times the paragraph number
plus the offset.

The SEG command specifies the base address of a logical segment.

In most cases, when you use a SEG command,hould also specify an
ORDER command to control the placement of other segments that did not
appear in the SEG command.

A class name, preceded by slash, can appear in place of a segment name. In
this case, the first segment whose class attribute matches the class name is

407

Chapter 21: Loader Commands

SEG

Note

assigned the base address. Exceptions apply to absolute segments and
segments that appear explicitlyin a SEG command. They are not then eligible
to be assigned a base address with this caserconguct. Other segments

with the same class attribute are not assigned base addresses at this time.
However, the loader algorithm for assigning base addresses eventually causes
these segments to lie immediately above the first segment in the class, unless
you have entered an ORDER command.

If you enter a classname and no segments with that class attribute are ever
found, a warning isssued following the END aomand, and loading
continues.

The address specification in this command has two variations: it can use

either one numeric argument or two numeric arguments separated by a
comma. The first form indicate28-bit address, which becomes the base
address of the segment. The second form indicates a 16-bit paragraph number
followed by a 16-bit offset; the base address of the segment is 16*(paragraph
number)+ offset. For example, SEG nan#e40H and SEGame=444H,0

specify the same address. So does SEG nai#@H,40H and other

combinations.

A base address specified by the SEG command is neveded up or down

to conform with the alignment attribute carried from the assembly or reset by
an ALIGN command. Instead, the loader uses the base address that you
specified with SEG and issues a warning if an alignment conflict occurs.

If an absolute segment appears as an argument to SEG, an error is reported,
though it might not be reported until the absolute segment isread from an
object module. In this conflicting address case, the loader uses the address first
found.

Do not use SEG to place a non-combinable segment on anything other than a
paragraph boundary. Doing so can cause incorrect output code to be created
because the loader cannot properly modify the offsets within a
non-combinable segment.

Multiple SEG commands specifying the same segment name or classname can
occur, and the loader does not issueraare The last coomand, for a given
segment, applies.

408

Chapter 21: Loader Commands

SEGSIZE
See Also The "Base Address Assignment" section beginning on page 378 describes the
algorithm used to calculate load addresses when they are not explicitly
provided.
SEGSIZE
Syntax:
SEGSIZE segment=length
SEGSIZE /class=length
Where:
segment is the name of a relocatable segment. It can have a classname
attached with a slash as in segname/classname.
class isthe name of a class.
length specifies the segment length in bytes.
Description: The SEGSIZE command is used to specify the length of a segment in bytes. If

you do not use the SEGSIZE command, the length of each of the segments in
the output object module defaults to the length appropriate for the
combine-type of the segment.

Use SEGSIZE only for STACK and COMMON segments. SEGSIZE is
typically used to set the size of a stack segment.

409

Chapter 21: Loader Commands

START

Syntax:

Where:

Description:

Note

START

START CS-value,IP-value
START address

CS-value used to initialize the CS (code) segment register. The value must
be in the range 0 throud@b535 (OFFFFH).

IP-value used to initialize IP (instruction pointer). The value must be in the
range 0 througb5535 (OFFFFH).

Address Used to initialize CS and IP. CS will besigned the value of
address divided by 16 and IP will besggned address modulo 16. The address
must be in the range 0 throuB48575 (OFFFFH).

This command is used frovide the starting values for CS and IP in the
terminator record of the object module. If START is not used, then the
CS:IP value comes from the END directive initialization in the main program
module. If the END directive has a value and START is also used, then the
value specified with START overrides the value from the END directive. If no
START is used and no main module is present, then the start value defaults
to zero. Example:

START 0,100H

If the output is to be HP 64000 format absolute, the loader only allows CS:IP
pair to be loaded by using an initialization value with the END directive for
the main module. The DS and SS registers values may also have had
initialization values specified with the END directive, but the loader ignores
these values if the output is to be HP 64000 format absolute. You must have
assembly code in the program that explictly loads DS and SS when the target
format isto be HP absolute. Do not expect the START command to allow
you to get around this restriction.

410

Chapter 21: Loader Commands
TYPEMERGE

Syntax:

Description:

TYPEMERGE

TYPEMERGE [ALL | SIMPLE]
NOTYPEMERGE

The HP-OMF 86 file format is only able to store up to 32k type definitions. If
many modules are being linked, many type definitions might exist within each
of the modules. In a large executable, the 32k type limit may be exceeded,
even though the code size is small. If this limit is exceeded, the loader will
stop procssing the type information from that point on. Since this
information is useful for debugging the executable, it would be best if this
information were not lost.

To get around this problem, it is ggible to have the loader merge some of the
redundant type information so that the total number of types stored in the
resulting executable is minimal.

If the SIMPLE form ofthe TYPEMERGE is used, only the basic type
definitions used in assembly code will be merged. While this, by itself, ma
greatly reduce the number of types in the resulting executable, it may not be
enough.

The ALL form of the TYPEMERGE commandliause all redundant type
information to be removed. This form will create the smallesiwam of type
information possible for the resulting executable ailicreate less than 32k
types in all but the most exotic cases. This is the default form of the command,
when there are no modifiers to the basic command.

Either form of the TYPEMERGE commandlivause extrgprocessing time

during the loader’s execution. This is due to the extra overhead caused by the
checking for redundant types. This overhead may be necessary, however, if the
32k limit is being exceeded during normal linking.

If you do not want to spend the extra pregiag time for removing redundant
types, the NOTYPEMERGE command may be used. Since this is also the
default operating mode of the loader, you do not need to specify
NOTYPEMERGE to get this behavior. An explicit command is nhecessary
only if you want to remove some or all redundant type information.

411

Chapter 21: Loader Commands

WIDTH

typemerge simple
typemerge all

Either command must be used before apyit executables are loaded by the
loader. Ifinput has already been read in, a warning is generated and the
command is igored.

Examples:

; remove only redundant simple types
; remove all redundant types

notypemerge ; don’t merge any type information
WIDTH
Syntax:
WIDTH n
Description: The WIDTH command specifies thisting page width in number of

characters, where n is a number less than 254. Characters outside this page
width range are not printed. The default is 80 characters. Note that WIDTH
can only appear in a load command file. It does not take effect until the loader
finds it. Anyoutput that may have occurred before the WID Thmand

will be the default width. Since the WIDTH manand canot appear on the
command line, the echo of the command line and the HP header line will
always appear at their full width.

Example:

WIDTH 60

412

Chapter 22: Linker/Loader Listing Description

22

Linker/Loader Listing Description

Examples of loader operation.

413

Chapter 22: Linker/Loader Listing Description

Two-Pass Load

This chapter demonstrates the operation of the loader. It contains a load
command file and a load méipting produced by a load using amnmand file.
For reference, this chapter also includes the assembly datirgs for the
modules that are loaded.

Two-Pass Load

The loader uses a two-pass process. During the first pass, the loader
commands and object modules are checkedrfmrs. After the loader finds
an END command, a symbol table is formed.

Errors detected during the first pass of pasoeg vill be displayed on the
listing. If the loader in executed in batch mode, fatedes cause the loader to
terminate with the message "LOAD NOT COMPLETED."

If the loader is executed in the interactive mode, many errors are not fatal and
the loader commanplrocessing vill continue. The loader will ngort the

errors it encounters with a message immediately following the line in error,
and the load will end with the message "LOAD COMPLETED."

During pass two of prossing, the final absolute object modulpisduced,

along with a module summary and a segment summary. If there are any
groups present, theyilhalso appear in the segmentsmary. A local symbol
table, public symbol table, and cross reference table are listed in the load map
if you use the options specifying their output. The load map also indicates the
starting address of the load, as well as the output module name and format.

Object Module Format

The output object module can be produced in HP-OMF 86 format absolute,
Intel Hexadecimal Object file format absolute, or HP 64000 format absolute.
Optionally, an incremental format, HP-OMF 86 format relocatable, can be
produced instead of the absolute formats. These relocatable format output
modules can then be re-linked to form absolute output modules.

414

Chapter 22: Linker/Loader Listing Description
Loader Command File

Loader Command File

The following figure shows the loader command fieati.k." It contains
several of the loader commands described in earlier chapters.

* TEST PROGRAM FOR 8086/8087/80186 LINKING LOADER
*

* Note that object modules are read from the files 1d86a.0,
*1d86b.o and 1d86c.o.

*

list t,s,x,d,c,u

seg /code=500h

seg /data=80000h

order /code,comseg,/stack,/data

resadd 5A0h,5A2h

nlist p

public extraneous= 1000

load Id86a.0
list p

load Id86b.o
load 1d86¢c.o

end

Figure 22-1. The 'load.k" Loader Command File

415

Chapter 22: Linker/Loader Listing Description

Starting the Loader

Starting the Loader

The following command is used to start the Id86 linking loader with the
command file lbad.k."

$ 1d86 -cload.k -oload.x -L > load.lis

The dash c option tells Id86 to use thencoand file load.k."
The dash o option tells |[d86 to output the object fildaeslx."

The dash L option tells Id86 to output a load map listing to standard
output.

The greater than sign redirects standard output to the listintpfile [is."

The load map file later in this chapter is produced by thisneand line entry.

Loader Listings

The following pages show a sample loader listing. Note the following points
when examining the sample loader listing.

The first page of the sample listing shows the loadenncand file, the
output module name and format, and warningsroore that occur.

— For this example, the absolute object module is produced in the
default HP-OMF 86 format absolute. Object modules can also be
produced in Intel Hexadecimal Object file format absolute,
HP-OMF 86 format relocatable (incremental links), or &4@00
format absolute.

The load map file also begins on the first page. Within each summary, the
width of each field expands to fit the largest number of characters needed.
The line wraps if it is longer than the WIDTH setting.

The MODULE SUMMARY information containslesting of all
modules, the name of each segment in the modules, the class of each

416

Chapter 22: Linker/Loader Listing Description
Loader Listings

segment, the segment start address and end address, and a complete
filename (including search path ppropriate).

» The SEGMENT SUMMARY shows the segments, the class and/or group
of each segment, the segment start and end address, segment length,
segment align-type, and segment combine-type. An extra three bytesis
generated by the loader for prgseng the INITDATA conmand, because
you have no initialized data. This is shown in the segment summary as
??DATAL/??INIT.

e The LOCAL SYMBOL TABLE lists the local symbols and the modules
(and function if applicable) where theyreside. The table also shows the
segment where the symbol is found, the class of that segment, the
absolute address of the symbol, and modules where the symbol is
referenced.

* The PUBLIC SYMBOL TABLE lists the public symbols and the modules
where theyreside. The table also shows the segment where the symbol is
found, the class of that segment, the absolute address of the symbol, and
modules where the symbol is referenced.

The loader listing file follows in the next figure. Following that are the three
sample assembiler listing files.

417

Chapter 22: Linker/Loader Listing Description
Load Map Listing

Load Map Listing

Hewlett-Packard 1d86 Thu Apr 1 14:51:02 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988
Command line: 1d86 -c load.k -0 load.x -L

* TEST PROGRAM FOR 8086/8087/80188 LINKING LOADER
*

* Note that object modules are read from the files Id86a.0,

* |d86b.o and 1d86¢c.o.

*

list t,s,x,d,c,u

seg /code=500h

seg /data=80000h

order /code,comseg,/stack,/data
resadd 5A0h,5A2h

nlist p

public extraneous= 1000
load Id86a.0

list p

load |d86b.o

load 1d86¢c.o

end

OUTPUT MODULE NAME: load
OUTPUT MODULE FORMAT: OMF-86

START ADDRESS: 00050:00000 -> 00500
* ERROR (308): Undefined external(s):
SYMBOL REFERENCES

SCAN MAIN

SEGMENT SUMMARY

SEGMENT/CLASS GROUP START END LENGTH ALIGN COMBINE

ASEG1/ 00000 00025 00026 Abs seg Private
??DATAL/??INIT 00026 00028 00003 Byte Common
??SEG/ 00030 00030 00000 Para Public

CSEG1/CODE CODEGRP 00500 00547 00048 Byte Public
CSEG2/CODE CODEGRP 00548 00591 0004A Byte Public
COMSEG/ 00592 00594 00003 Byte Common
(Reserved Area) 005A0 005A2 00003

Figure 22-2. The 'load.lis" Load Map File

418

Chapter 22: Linker/Loader Listing Description
Load Map Listing

SSEG1/STACK 005A3 005B6 00014 Byte Stack
DSEG1/DATA 80000 8004F 00050 Byte Public
DSEG2/DATA 80100 8010D O0OOOE Page Private
ASEG2/ FFFFO FFFF4 00005 Abs seg Private

Hewlett-Packard 1d86 Thu Apr 1 14:51:02 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988
MODULE SUMMARY

MODULE SEGMENT/CLASS START END LENGTH

MAIN /8086/asm/lkref-list/ld86a.0
CSEG1/CODE 00500 00547 00048
SSEG1/STACK 005A3 005B6 00014
COMSEG/ 00592 00592 00001
DSEG1/DATA 80000 8004F 00050

ABSCODE /8086/asm/lkref-list/Id86b.o
DSEG2/DATA 80100 8010D 0000E
COMSEG/ 00592 00594 00003
ASEG2/ FFFFO FFFF4 00005
ASEG1/ 00000 00025 00026

READMOD /8086/asm/lkref-list/Id86c.o0
CSEG2/CODE 00548 00591 0004A
COMSEG/ 00592 00592 00001

PUBLIC SYMBOL TABLE

SYMBOL SEGMENT/CLASS ADDRESS/VALUE MODULE REFERENCES
CRLF CSEG1/CODE 0050:003D MAIN READMOD
ECHO COMSEG/ 0059:0002 MAIN

EXTRANEOUS 003E:0008

IBUFEND DSEG1/DATA 8000:0050 MAIN READMOD
IN8 CSEG1/CODE 0050:0025 MAIN READMOD
INBUF DSEG1/DATA 8000:0000 MAIN READMOD
MAINF CSEG1/CODE 0050:0000 MAIN ABSCODE
OuUT8 CSEG1/CODE 0050:0032 MAIN READMOD
READ CSEG2/CODE 0054:0008 READMOD MAIN
TABLE1 DSEG2/DATA 8010:0000 ABSCODE

LOCAL SYMBOL TABLE

SYMBOL FUNCTION SEGMENT/CLASS ADDRESS/VALUE ATTRIBUTE

MODULE ABSCODE

ABSCODE 0000:0000 ABS ADDRESS

TABLE1 ABSCODE DSEG2/DATA 8010:0000 ABS ADDRESS
TABLE2 ABSCODE DSEG2/DATA 8010:0004 ABS ADDRESS
FIN ABSCODE ASEG1/ 0000:0025 ABS ADDRESS

DT1 ABSCODE COMSEG/ 0059:0002 ABS ADDRESS

Figure 22-2. The 'load.lis" Load Map File (Cont'd)

419

Chapter 22: Linker/Loader Listing Description
Load Map Listing

DT2 ABSCODE COMSEG/ 0059:0003 ABS ADDRESS
MODULE READMOD

READMOD 0000:0000 ABS ADDRESS

READ CSEG2/CODE 0054:0008 ABS ADDRESS
READ10 READ CSEG2/CODE 0054:000E ABS ADDRESS
READ20 READ CSEG2/CODE 0054:001A ABS ADDRESS
READ30 READ CSEG2/CODE 0054:0024 ABS ADDRESS

Hewlett-Packard 1d86 Thu Apr 1 14:51:02 1993

HPB1449-19302 A.03.10 24Mar93 Un
released Copr. HP 1988

SYMBOL FUNCTION SEGMENT/CLASS ADDRESS/VALUE ATTRIBUTE
READ40 READ CSEG2/CODE 0054:002A ABS ADDRESS
READS50 READ CSEG2/CODE 0054:0033 ABS ADDRESS
READG60 READ CSEG2/CODE 0054:003B ABS ADDRESS
READ70 READ CSEG2/CODE 0054:003F ABS ADDRESS
READSO READ CSEG2/CODE 0054:0045 ABS ADDRESS
ECHO READ COMSEG/ 0059:0002 ABS ADDRESS
ASCR READ 0000:000D ABS ADDRESS

BSPA READ 0000:0008 ABS ADDRESS

BLNK READ 0000:0020 ABS ADDRESS

TAB READ 0000:0009 ABS ADDRESS

Link completed

Figure 22-2. The 'load.lis" Load Map File (Cont'd)

420

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

First Assembler Listing

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Thu
Apr 114:50:59 1993
MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -0 Id86a.0 -L Id86a.s
Line Offset Object-Bytes

1 0000 $XREF DEBUG

2 0000 NAME MAIN

3 0000 PUBLIC INBUF,IBUFEND,IN8,0UT8,CRLF,ECHO
4 0000 PUBLIC MAINF

5 0000 EXTRN READ:NEAR,SCAN:NEAR

6 0000 CODEGRP GROUP CSEG1

7 0000 ASSUME
CS:CODEGRP,DS:DSEG1,SS:SSEG1,ES:COMSEG

8 0000 :

9 0000 : DEFINE DATA AREAS AND EQU'S

10 0000 : ALTHOUGH NOT STRICTLY NECESSARY, PUTTING
THESE AREAS AFTER THE CODE

11 0000 SEGMENT RESULTS IN 15 EXTRA BYTES OF NOP'S
DUE TO FORWARD REFERENCES

12 0000 ;

13 0000 SSEG1 SEGMENT BYTE STACK 'STACK’
14 0000 20(DB 20 DUP(?)

14 0000 ?2?)

15 0014

16 0014 STAKTOP LABEL BYTE

17 0014 SSEG1 ENDS

18 0000 :

19 0000 COMSEG SEGMENT BYTE COMMON
20 0000 1(ECHO DB 1DUP (?)

20 0000 ??)

21 0001 COMSEG ENDS

22 0000

23 0000 DSEG1 SEGMENT BYTE PUBLIC 'DATA’
24 0000 80(INBUF DB 80 DUP(?)

24 0000 ??)

25 0050 IBUFEND LABEL BYTE

26 0050 DSEG1 ENDS

27 0000

28 0000 USTAT EQU 0

29 0000 UDATOUT EQU 0

30 0000 UDATINEQU 0

31 0000 TRDY EQU 1

32 0000 RRDY EQU 2

33 0000 ASLF EQU 10

34 0000 ASCR EQU 13

35 0000 BLNK EQU 20H

Figure 22-3. The 'ld86a.lis" Assembly Listing

421

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

36 0000 ;

37 0000 ; CODE STARTS HERE

38 0000 ;

39 0000 CSEG1 SEGMENT BYTE PUBLIC 'CODE’

40 0000 MAINF LABEL FAR

41 0000 B8 0000 R MAIN: MOV AX,DSEGL1; SET DS, ES and SS

SEGMENT REGISTERS

42 0003 8E D8 MOV DS,AX ; AND BX AND SP AS
POINTERS WITHIN SEGMENT

43 0005 BB 0000 R MOV BX,OFFSET INBUF

44 0008 B8 00 00 R MOV AX,SSEG1

45 000B 8E DO MOV SS,AX

46 000D BC 1400 R MOV SP,OFFSET STAKTOP
47 0010 B8 00 00 R MOV AX,COMSEG

48 0013 8ECO MOV ES,AX

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Thu
Apr 1 14:50:59 1993

MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes

49 0015 E800 00 E CALL READ

50 0018 8A 07 MAIN10: MOV AL,[BX]
51 001A 3C 20 CMP AL,BLNK

52 001C 43 INC BX

53 001D 74F9 JZ MAIN10

54 001F EB8 0000 E CALL SCAN

55 0022 43 INC BX

56 0023 EB DB JMP MAIN

57 0025 ;

58 0025 ; NAME - IN8

59 0025 ;

60 0025 ; THIS ROUTINE WILL INPUT A CHARACTER FROM
THE TERMINAL

61 0025 ;

62 0025 ; ENTRY PARAMETERS

63 0025 ; NONE

64 0025 ;

65 0025 ; EXIT PARAMETERS

66 0025 ;AL - INPUT CHARACTER
67 0025 ; DL-DITTO

68 0025 ;

69 0025 ; REGISTERS USED

70 0025 ; AL,BL,DL

71 0025 ;

72 0025 IN8 PROC

73 0025 E400 IN AL, USTAT

74 0027 2402 AND AL,RRDY

75 0029 74FA JZ IN8

76 002B E400 IN AL, UDATIN

77 002D 24 7F AND AL,127

78 002F 8A DO MOV DL,AL

79 0031 C3 RET

80 0032 IN8 ENDP

Figure 22-3. The 'ld86a.lis" Assembly Listing (Cont’d)

422

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

81 0032 ;

82 0032 ; NAME - OUT8

83 0032 ;

84 0032 ; THIS ROUTINE IS USED TO OUTPUT A CHARACTER
TO THE TERMINAL

85 0032 ;

86 0032 ; ENTRY PARAMETERS

87 0032 ; DL - CHARACTER TO OUTPUT
88 0032 ;

89 0032 ; EXIT PARAMETERS

90 0032 ;. NONE

91 0032 ;

92 0032 ; REGISTERS USED

93 0032 ; AL,BL,DL

94 0032 ;

95 0032 OuUT8 PROC

96 0032 E400 IN AL, USTAT

97 0034 2401 AND AL, TRDY

98 0036 74FA Jz OUT8

99 0038 8AC2 MOV AL,DL

100 003A EG6 00 OUT UDATOUT,AL

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 3 Thu
Apr 1 14:50:59 1993

MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes

101 003C C3 RET

102 003D OUT8 ENDP

103 003D ;

104 003D ; NAME - CRLF

105 003D ;

106 003D ; THIS ROUTINE OUTPUTS A CARRIAGE RETURN AND
LINE FEED

107 003D ;

108 003D ;

109 003D CRLF PROC

110 003D B2 0D MOV DL,ASCR
111 O003F E8 FO FF CALL OUTS8
112 0042 B20A MOV DL,ASLF
113 0044 EBEBFF CALL OUT8
114 0047 C3 RET

115 0048 CRLF ENDP

116 0048 CSEG1 ENDS

117 0000

118 0000 END MAINF

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 4 Thu
Apr 1 14:50:59 1993
MAIN HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
ASCR EQU 000D -34 110

ASLF EQU 000A -33112

Figure 22-3. The 'ld86a.lis" Assembly Listing (Cont’d)

423

Chapter 22: Linker/Loader Listing Description
First Assembler Listing

BLNK EQU 0020 -3551
CODE CLASS
CODEGRP GROUP CSEG1 67

COMSEG SEGM SIZE=0001 COMMON BYTE 7 -19 21 47

CRLF PROC CSEG1:003D NEAR -3-109 -115

CSEG1 SEGM SIZE=0048 PUBLIC BYTE CLASS 'CODE’ 6 -39 116
DATA CLASS

DSEG1 SEGM SIZE=0050 PUBLIC BYTE CLASS 'DATA’ 7 -23 26 41
ECHO PUBLIC COMSEG:0000BYTE -3-20

IBUFEND PUBLIC DSEG1:0050 BYTE -3-25

IN8 PROC CSEG1:0025 NEAR -3-7275-80

INBUF PUBLIC DSEG1:0000 BYTE -3-24 43

MAIN LABEL CSEG1:0000 NEAR -41 56

MAIN10 LABEL CSEG1:0018 NEAR -50 53

MAINF LABEL CSEG1:0000 FAR -4 -40 118

OUT8 PROC CSEG1:0032 NEAR -3-9598-102 111 113
READ EXTERN NEAR -5 49

RRDY EQU 0002 -32 74

SCAN EXTERN NEAR -554

SSEG1 SEGM SIZE=0014 STACK BYTE CLASS 'STACK’ 7 -13 17 44
STACK CLASS
STAKTOP LOCAL SSEG1:0014 BYTE -16 46

TRDY EQU 0001 -31 97
UDATIN EQU 0000 -30 76
UDATOUT EQU 0000 -29 100
USTAT EQU 0000 -28 73 96

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 22-3. The 'ld86a.lis" Assembly Listing (Cont’d)

424

Chapter 22: Linker/Loader Listing Description
Second Assembler Listing

Second Assembler Listing

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Thu
Apr 1 14:51:00 1993
ABSCODE HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -0 1d86b.o -L Id86b.s
Line Offset Object-Bytes

1 0000 $SYMBOLS

2 0000 NAME ABSCODE

3 0000 PUBLIC TABLE1

4 0000 EXTRN MAINF:FAR

5 0000 ASSUME CS:ASEG1,ES:COMSEG

6 0000

7 0000 : FORM RESET START ADDRESS

8 0000 ASEG2 SEGMENT AT OFFFFH

9 0000 EA00000000 E JMP MAINF ; START OF PROGRAM
10 0005 ASEG2 ENDS

11 0000

12 0000 DSEG2 SEGMENT PAGE 'DATA’

13 0000 OA 14 1E 00 TABLELDB 10,20,30,0

14 0004 5(TABLE2DW 5 DUP(?)

14 0004 ??7?7?)

15 000E DSEG2 ENDS

16 0000

17 0000 ASEG1 SEGMENT AT 0

18 0000 1400 DW 20

19 0002 00 00 DW 0

20 0004 1E 00 DW 30

21 0006 0000 DW 0

22 0014 ORG 20

23 0014 :

24 0014 : PROCESS INTERRUPTS (IF WE GOT THERE CS/IP
WERE STACKED ALONG THE WAY)

25 0014 :

26 0014 2680 3E 000000 R CMP ES:DT1,0 ;ES: NECESSARY
TO AVOID ERROR 3

27 001A 7409 JZ FIN

28 001C F3 A5 REP MOVSW

29 001E 26 C7 0601000100 R MOV ES:DT2,1 ; SAME HERE
30 0025 CF FIN: IRET

31 0026 ASEG1 ENDS

32 0000

33 0000 COMSEG SEGMENT BYTE COMMON

34 0000 1(DT1 DB 1 DUP(?)

Figure 22-4. The '1d86b.lis" Assembly Listing

425

Chapter 22: Linker/Loader Listing Description
Second Assembler Listing

34 0000 ?7?)

35 0001 1(DT2 DW 1DUP(?)
35 0001 ??7??)

36 0003 COMSEG ENDS

37 0000 END

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Thu
Apr 1 14:51:00 1993
ABSCODE HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Symbol Table

Label Type Value

??SEG SEGM SIZE=0000 PUBLIC PARA
ASEG1 SEGM SIZE=0026 ABSOLUTE AT 0000
ASEG2 SEGM SIZE=0005 ABSOLUTE AT FFFF
COMSEG SEGM SIZE=0003 COMMON BYTE
DATA CLASS

DSEG2 SEGM SIZE=000E PAGE CLASS 'DATA’
DT1 LOCAL COMSEG:0000 BYTE

DT2 LOCAL COMSEG:0001 WORD

FIN LABEL ASEG1:0025 NEAR

MAINF EXTERN FAR

TABLE1 PUBLIC DSEG2:0000 BYTE

TABLE2 LOCAL DSEG2:0004 WORD

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 22-4. The '1d86b.lis" Assembly Listing (Cont’d)

426

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

Third Assembler Listing

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 1 Thu
Apr 114:51:01 1993
READMOD HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cmdline - as86 -0 Id86c¢.o -L Id86¢c.s
Line Offset Object-Bytes

1 0000 $XREF DEBUG

2 0000 NAME READMOD

3 0000 PUBLIC READ

4 0000 EXTRN CRLF:NEAR

5 0000 EXTRN IN8:NEAR,OUT8:NEAR

6 0000 CODEGRP GROUP CSEG2

7 0000 DSEG1 SEGMENT BYTE PUBLIC 'DATA’ ; PLACE
INBUF, IBUFEND WITHIN

8 0000 EXTRN INBUF:BYTE,IBUFEND:BYTE ; DSEG1
SO THEY CAN BE ADDRESSED

9 0000 DSEG1 ENDS

10 0000

11 0000 ASSUME CS:CODEGRP,DS:DSEG1,ES:COMSEG
12 0000 :

13 0000 . DEFINE DATA AREA AND EQU'S

14 0000 :

15 0000 COMSEG SEGMENT BYTE COMMON

16 0000 1(ECHO DB 1 DUP(?)

16 0000 ??)

17 0001 COMSEG ENDS

18 0000 :

19 0000 ASCR EQU 13

20 0000 BSPA EQU 8

21 0000 BLNK EQU 20H

22 0000 TAB EQU O9H

23 0000 :

24 0000 : NAME - READ

25 0000 :

26 0000 . THIS ROUTINE READS IN A LINE FROM THE
TERMINAL AND

27 0000 . PLACES IT INTO THE INPUT BUFFER. THE
FOLLOWING ARE

28 0000 . SPECIAL CHARACTERS.

29 0000 © CR - END OF CURRENT LINE

30 0000 . CONTROL-X - DELETE CURRENT LINE

31 0000 : DEL - DELETE CHARACTER

32 0000 . ALL DISPLAYABLE CHARACTERS BETWEEN BLANK

Figure 22-5. The 'ld86c.lis" Assembly Listing

427

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

AND Z AND THE

33 0000 ; ABOVE SPECIAL CHARACTERS ARE RECOGNIZED BY
THIS ROUTINE AS

34 0000 ; WELL AS THE TAB. ALL OTHER CHARACTERS ARE
IGNORED. AN

35 0000 ; ATTEMPT TO INPUT MORE CHARACTERS THAN IS
ALLOWED IN THE

36 0000 ; INPUT BUFFER WILL BE INDICATED BY A
BACKSPACE.

37 0000 ;

38 0000 ; ENTRY PARAMETERS

39 0000 ; ECHO - ECHO FLAG, 0=NO ECHO

40 0000 ;

41 0000 ; EXIT PARAMETERS

42 0000 ; INBUF - CONTAINS INPUT LINE

43 0000 ;

44 0000 ; REGISTERS USED

45 0000 ; AL,BX,CL

46 0000 ;

47 0000 CSEG2 SEGMENT BYTE PUBLIC 'CODE’

48 0000 READ PROC

49 0000 BB 0000 E MOV BX,OFFSET INBUF

50 0003 B9 0000 MOV CX,0

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 2 Thu
Apr 114:51:01 1993

READMOD HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Line Offset Object-Bytes

51 0006 E8 00 00 E READ10: CALL IN8

52 0009 3C18 CMP AL24

53 000B 7505 JNZ READ20

54 000D E8 0000 E CALL CRLF

55 0010 EBEE JMP READ

56 0012 3C 0D READ20: CMP AL,ASCR

57 0014 7506 JNZ READ30

58 0016 E3EE JCXZ READI10

59 0018 C6 07 0D MOV BYTE PTR [BX],ASCR
60 001B C3 RET

61 001C 3C7F READ30: CMP AL,127

62 O001E 750B JNZ READ50

63 0020 E3 E4 JCXZ READI10

64 0022 4B READA40: DEC BX

65 0023 49 DEC CX

66 0024 B208 MOV DL,BSPA

67 0026 E8 00 00 E CALL OUTS8

68 0029 EBOC JMP SHORT READ70

69 002B 3C 09 READS50: CMP AL, TAB

70 002D 7404 JZ READG60

71 002F 3C 20 CMP AL,BLNK

72 0031 7204 JB READ70

73 0033 8807 READG60: MOV [BX],AL

74 0035 43 INC BX

75 0036 41 INC CX

76 0037 81 FB 00 00 E READ70: CMP BX,OFFSET IBUFEND
77 003B 74E5 JZ READ40

Figure 22-5. The '1d86c.lis" Assembly Listing (Cont'd)

428

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

78 003D 26 803E000000 R READ80: CMP ECHO,0

79 0043 74C1 JZ READ10
80 0045 E8 0000 E CALL OUT8
81 0048 EBBC JMP READ10
82 004A READ ENDP

83 004A CSEG2 ENDS

84 0000 ;

85 0000 END

Hewlett Packard AS86 HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988 Page 3 Thu
Apr 114:51:01 1993
READMOD HPB1449-19302 A.03.10 24Mar93 Copr. HP 1988
Cross Reference

Label Type Value References

??SEG SEGM SIZE=0000 PUBLIC PARA

ASCR EQU 000D -19 56 59

BLNK EQU 0020 2171

BSPA EQU 0008 -20 66

CODE CLASS

CODEGRP GROUP CSEG2 -611

COMSEG SEGM SIZE=0001 COMMON BYTE 11 -15 17
CRLF EXTERN NEAR -4 54

CSEG2 SEGM SIZE=004A PUBLIC BYTE CLASS 'CODE’ 6 -47 83
DATA CLASS

DSEG1 SEGM SIZE=0000 PUBLIC BYTE CLASS 'DATA’ -79 11
ECHO LOCAL COMSEG:0000BYTE -16 78

IBUFEND EXTERN DSEG1: BYTE -8 76
IN8 EXTERN NEAR -551

INBUF EXTERN DSEGI1: BYTE -8 49
OUT8 EXTERN NEAR -5 67 80

READ PROC CSEG2:0000 NEAR -3 -48 55 -82
READ10 LABEL CSEG2:0006 NEAR -51 58 63 79 81
READ20 LABEL CSEG2:0012 NEAR 53 -56
READ30 LABEL CSEG2:001C NEAR 57 -61
READ40 LABEL CSEG2:0022 NEAR -64 77

READ50 LABEL CSEGZ2:002B NEAR 62 -69
READ60 LABEL CSEG2:0033 NEAR 70 -73
READ70 LABEL CSEG2:0037 NEAR 68 72 -76
READ8O0 LABEL CSEG2:003D NEAR -78

TAB EQU 0009 -22 69

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 22-5. The '1d86c.lis" Assembly Listing (Cont'd)

429

Chapter 22: Linker/Loader Listing Description
Third Assembler Listing

430

Chapter 23: Librarian Introduction

23

Librarian Introduction

General operation of the librarian.

431

Chapter 23: Librarian
Librarian Introduction

Introduction

Librarian Introduction

The ar86 Librarian is used to build program libraries, or collections of
relocatable object modules, that reside in a single file. These libraries are the
best place to store frequently-used object modules that the linking loader can
then efficiently access and combine with newly developed assembly programs.
Efficiency is realized through reducing the number of files that must be
opened by the loader.

The word "module," when used in discussing the librarian, refersto a
relocatable object module that results from assembling a source program with
the as86 cross assembler.

Starting the Librarian

There are three ways to start the ar86 Librarian.

Command Line

You may enter librarian commands on the command line. Only certain library
commands can be used on the command line. Theyare -a, -d, -r, -e, and -L.
(They are equivalent to ADDMOD, DELETE, REPLACE, EXTRACT and
LIST, respectively.) All command line commands requifistaas an argument
and a library file name argument. These librarian commands can be entered
in any order on the command line, but the librarpnocesses the oomands

in a fixed order of -a, -d, -r, -e, and -L.

Command File

You may place librarian commands in a command file to be read in batch
mode. Any error that occurs duringnsmand fileprocessing is considered

fatal. The command that generated th®eis skipped and prossing of any
remaining commands continues. These remaining commands are checked for
errors—and executed, if psible—but a library file, if specified, is not

generated if an error was found. The librarian processememds in the
command file in the exact order in which they are specified.

432

Chapter 23: Librarian Introduction
Librarian Function

Interactive Operation

The third method enables you to enter librarian commands interactively from
the terminal. In interactive mode, most librarian commamdrs are not

fatal. When an illegal comand is entered, the librarian displays eoe
message and provides an opportunity to re-enter timenaond.

Librarian Function

When writing modular programs, communication among the various modules
is establishedhrough use of PUBLIC and EXTERNAL symbols. Public and
external symbols can be seen as a way to pass information to the functions and
receive information from the functions contained in the library modules. In
addition, the functions contain entry points in the form of PUBLIC labels that
can be used in CALL and JMP instructions. While it is necessary to know the
entry points and parametergsing mechanisms, it is not necessary to know

the name of the object module that contains the function. For instance, a
library file could contain a dozen or more functions in a single module or a
dozen or so functions in a dozen or so modules. Aslong as you know the
function entry points, it does not matter to you how the modules are
organized in the library.

The following example is a more practical illustration of using the library.

Suppose a progmmer writes a series pfogram modules caisting of a
number of mathematicabutines including a few modules that calculate
transcendental functions. These modules are then gathered into a library file
through use of the ar86 Librarian.

Sometime later, a progmmer, either the one who wrote the mathematical
routines or someone else, has a resuient to calculate an arc-tangent
function within a program being written. The pragrmer is aware of the fact
that there is an arc-tangent function in a library file, knows the name of the
entry point of the routine, knows how to pass gmaeters to the arc-tangent
function, and knows how to accept the result of the calculation.

The progammer must do only two things:

433

Chapter 23: Librarian Introduction

Librarian Function

e CALL the arc-tangent function from the program being developed,
placing the public name of the entry point into the argument field of the
CALL or JMP instruction, and

» Place the public entry point name of the arc-tangent function in the
argument field of an external reference pseudo-op in the program being
written.

Even though the progmmer does not know the name of the relocatable
object module that contains the arc-tangent function, the linking loader
includes the relocatable module containing the correct module by informing
the loader to use the required library file(s).

You do not have to specify which module contains the arc-tangent function.
The loader automatically searches the named library, looking for the entry
point name coded as the argument of the CALL statement. When the entry
point name has beeodnd, the loader identifies the module in which it
resides, and then includes the module containing the entry point name in the
current load.

The loader determines which of the library modules to load by examining the
internal list ofunresolved external references accumulated during the load
process. It then accesses the library file to determine if there is a match
between unresolved external references, and a labelme that has been
declared public in the library file modules. The loader then identifies which
modules contain the matching public symbols, and loads those modules just as
if the progammer had explicitly directed the loader to loadgheper

modules.

When the inclusion of a module in the library adds an undefined reference to
the list of undefined references, the loader will access the library again until
all external references have been satisfied or untilno more matches are
possible. All public symbols within a library must have unigamas.

434

Chapter 23: Librarian Introduction
Librarian Function

Note The librarian is always case sensitive with respect to symbol names. Two
symbols with the same characters are onlyidentical if the cases of the
characters match as well. This means that "SYMBOL" is not equivalent to
"symbol" or "SYMbol." The librarian will treat these three symbols as unique.
Trouble might arise if the loader is started with case sensitivity turned off and
then asked to load a library containing, for instance, these three symbols. The
first occurrence of that symbol, regardless of cadksatisfy the external
reference the loader is trying to resolve. However, the resolution may be to
the wrong symbol because the loader, unlike the librarian, did not consider
case. The result may not be what you intended.

435

Chapter 23: Librarian Introduction
Librarian Function

436

Chapter 24: Librarian Commands

24

Librarian Commands

Descriptions of the librarian commands.

437

Chapter 24: Librarian Commands

The librarian reads a sequence of commands from the commaumiddevice

in interactive or batch mode. The command sequence must be terminated by
the END command. Relocatable object modules are reagpasand

collected in organized libraries as specified in the commaputi file.

Command Syntax

The librarian recognizes six special characters:

* - asterisk

; - semicolon

, - comma

(- left parenthesis
) - right parenthesis
+ - plus

Use of Special Characters

The use of special characters in the command syntax s described in this
section.

The asterisk (*) and the semicolon (;), when used on a command line, cause
the librarian to ignore the rest of the line. These characters can be used to
place comments in a command sequence. The librarian dopsatess
comments; they are passed to the output file.

The comma (') separates members tisaof similar elements. The list can
contain module names or module filenames.

The left and right parentheses (), used in pairs, denote a list of similar
elements in a command. Parentheses can be usedup godule ames that
are members of a library only.

The plus sign (+) followed by a carriage return allows you to continlist a
on subsequent line(s). Care should be exercised when using line continuation.
Do not break up or interrupt a complete syntactical unit (for instance, do not

438

Chapter 24: Librarian Commands

tryto continue a filename, a module name, or a command). Ifthe
continuation character is used immediately after a command, it must be
separated from the command by at least one blank or the libranantca
recognize the command. Except as noted above, the line continuation
character can appear anywhere in a command line.

Also, blanks can be used freely within commands (between
syntactically-identifiable units). Example:

DELETE MOD1, MOD2 ;is the same as
DELETE MOD1,MOD2

Command File Comments

Comments can be included in a command file to documergrtdoessing.
These are included by use of the semicolon (;) or asterisk (*). Example:
;this is a complete line of comment
addmod modulea.o
;this is a command line comment

addmod moduleb
* this is another comment

File Names

File names appear in commands as arguments. A file name might be the name
of an existing libraryfile, a library file being created, or an object file

containing one or more modules to be archived. If an open fails on a file name
that does not have a suffix, the librarian will append a ".a"for a library file—or

a ".o0"for an object file—and again tryto open the file. Similarly, if the

librarian is writing a library to a file name that does not have a suffix, it wil
append a ".a"to the file before writing it.

The SAVE Command

The SAVE command causes the librarian to save a library with any changes
you may have made. At the same time, the SAVE command does the
equivalent ofthe CLEAR command and clears the librarian. You maythen
open or create another file without affecting or corrupting the previous work.

439

Chapter 24: Librarian Commands

Return Codes

The librarian provides operating-system specific return codes. The librarian
either completes without encountering an error, displays a message or
warning, or terminates with an error.

440

Chapter 24: Librarian Commands

Commands Summary

The following commands are described in this chapter in the order shown:

COMMAND FUNCTION
ADDLIB Add Module(s) from Another Library
ADDMOD Add Object Module(s) to Current Library
CLEAR Clear Library Session Since Last SAVE
CREATE Define New Library
DELETE Delete Module(s) from Current Library
DIRECTORY List Library Modules
END Terminate Librarian Execution
EXTRACT Copy Library Module to a File
FULLDIR Display Library or Library Module Contents
HELP Display Context-sensitive Command Syntax
LIST Display Library or Library Module Contents (Same as
FULLDIR)
OPEN Open an Existing Library
QUIT Terminate Librarian Executions
(Same as END)
REPLACE Replace Library Module
SAVE Save Contents of Current Library

441

Chapter 24: Librarian Commands

Shorthand Names

The librarian allows shortened forms of the abovam@ands. The following

list is the minimum characters that may be entered for themand to be
recognizable. However, the librarian will accept anything from the minimum
number of characters to the full command nameact. Thameans that

CR, CRE, CREA, CREAT, and CREATE are all acceptable for the create
command. (The command isuppercase here for clarity. @mands can be

in either uppercase or lowercase.) The shorthand forms of th@aods are

as follows:

COMMAND SHORTHAND
ADDLIB ADDL
ADDMOD ADDM
CLEAR CL
CREATE CR
DELETE DE
DIRECTORY DI
END EN
EXTRACT EX
FULLDIR FUL
HELP H
LIST L
OPEN OP
QUIT Q
REPLACE R
SAVE S

442

Chapter 24: Librarian Commands

Note The ar86 librarian archives modules into library files. The librarian
references modules by module names. Modules are contained in object files
created by the as86 assembler, but a modaheenmay not be the same as the
object file name because a module may be explicitly named within the
assembly code using the NAME assembler directive. It may be entirely
different than the file name. If a module is not explicitly nanteehthe
module name defaults to the assemhdyrse file rame stripped of its leading
path name and tiling suffix (including the period) if the suffix exists.

Module names are of no concern once the library has been built, but each
module name must be unique. Therefore, when trying to add modulesto a
library, it is possible to have modulame conflicts. Since the librarian will

not allow duplicate module names within a library, it may be necessary to
re-assemble the module to change its name. Merely changing the object file
nameill notchange the module name because that information is coded into
the object file.

To the librarian, module names are always case sensitive, regardless of how
the assembler was started.

In the references for the library commands, square brackets (]]) indicate
optional arguments. Square brackets containing an ellipsis denote that the
preceding argument can be repeated zero or more times.

443

Chapter 24: Librarian Commands

ADDLIB
ADDLIB

Syntax:
ADDLIB library_filename[(module_name[,...])]

Where:
library filename is the name of the library where the modules reside.
module_name is the name(s) of the relocatable object module(s) to be
added to the library currently being created or modified.

Description: The ADDLIB command is used to add one or more object modules from one

library to the library currently being created or modified.

The OPEN or CREATE command must precede the ADDLIB command, and
name the library to which the object module e added. Example:
OPEN libraryl.a

ADDLIB math.a (square,sqroot) ;math.a contains modules
;to be added to libraryl.a

ADDMOD
Syntax:
ADDMOD filename [,...]
Where:
filename is the file to be added to the library currently being created or
modified.
Description: The ADDMOD command addsreon-library file containing one or more

relocatable object modules to the library named in the OPEN or CREATE
command. The OPEN or CREATE command must precede the ADDMOD
command. Example:

444

Chapter 24: Librarian Commands
CLEAR

OPEN library2.a
ADDMOD math.mbr

CLEAR

Syntax:
CLEAR

Description: Use the CLEAR command to clear the'ient library sesion since the last
SAVE (or since entering the librarian if no SAVE has been entered since
librarian startup). Using CLEAR is equivalent to re-starting the librarian.
CREATE

Syntax:
CREATE library_name

Where:
library_ name isthe name of the library file being created. If the file name
already exists, an error occurs.

Description: Use the CREATE command to define a new library. You can create only one

library at a time. A newly-created library must be saved before a second one is
created.

In the interactive mode, if the library file name already exists, a warning is
displayed. In the command line mode, if the library file already exists, the
librarian issues anreor message. No library is created. Example:

CREATE math.a

445

Chapter 24: Librarian Commands

DELETE
DELETE

Syntax:

DELETE module_name [,...]

Where:
module_name is the name of the module to be removed from the library
currently being created or modified.

Description: The DELETE command removes one or more relocatable object modules
from the library named in the OPEN or CREATE command. Object module
names are case-sensitive. An OPEN or CREATE command must precede
DELETE.

DIRECTORY

Syntax:

DIRECTORY library_name
[(module_name [,...])] [list_filename]
Where:

library_name is the name of the library whose module names and sizes are
to be listed.

module_name is the name of a specific module in the library file whose size
is to be listed.

list_filename s the file where the directoryinformation should be written. If
the listing output file is not specified, the output defaults the standard list
device (usually the terminal).

446

Description:

Chapter 24: Librarian Commands
END

The DIRECTORY commanltists module mames and sizes of the modules in
the specified library. The sizes listed are the number of bytes requirtt¢o s
the modules on the host computer system. If you enter just the library_name,
all modules are listed; if you enter specific modubmmes, directory

information is displayed for the named modules only. You can include full file
specification (including pathname) for the desired library directory. Object
module names are case-sensitive. The directory displays on the standard
output device, or it can be directed to a file.

Syntax:

Description:

Note

END

END
QUIT

The END and QUIT commands terminate librarian comnamdessing. No
library file is implicitly saved.

Because END and QUIT do not implicitly save the library file, you must issue
a SAVE command beforiesuing an END cmmand or the library you are
working on will be lost. END will noissue a warning thatiltell you to save
your library before ending.

Syntax:

EXTRACT

EXTRACT module_name [,...]

447

Chapter 24: Librarian Commands

FULLDIR

LIST

Where:
module_name is the module to be copied from the library currently being
created or modified.

Description: The EXTRACT command copies a library module to a file outside the library.
The file name vil be the module ame with a ".0" (dot 0) appended. The file
can then be added to another library. An OPEN or CREATE command must
precede the EXTRACT command.

FULLDIR
LIST

Syntax:

FULLDIR library_name
[(module_name],...])] [list_filename]

LIST library_name
[(module_name],...])] [list_filename]

Where:
library_name is the library file whose contents are to be listed.
module_name is the name of a specific module whose conteiltbalisted.
list_filename isthe output listing fileame. If you do not enter the filename,
the output defaults to the standard list device (usually the terminal).

Description: The FULLDIR and LIST commands are used to request a full directory

display of a library’s contents including module names, their sizes, and all
public symbol definitions and external references. The sizes listed are the
number of bytes required to store the modules on the host computer system.

If you enter just the library_name, the contents of all moduleksted; if you
enter specific module_names, information is displayed for the named modules
only. Both commands perform the same operation.

448

Chapter 24: Librarian Commands
HELP

HELP
Syntax:
HELP
Description: The HELP command is used to obtailisaof conmands with thearrect
invocation syntax. HELP is context-sensitive. The commands displayed are
only those that can be legally entered at the time you type HELP.
OPEN
Syntax:
OPEN library_name
Where:
library_name is the name of the library file to be opened.
Description: The OPEN command enables an existing library to be referenced in

conjunction with succeeding commands that add modules, delete module
replace modules. Only one library can be opened at a time.

If the librarian commands require creation of a new version of the library, t
old version will be overwritten when the SAVEmmand igssued.

If the library cannot be located or opened for input, an error is reported. In
batch mode or commadgthe entry, execution is terminated.

449

Chapter 24: Librarian Commands

REPLACE

Syntax:

Where:

Description:

REPLACE

REPLACE file_name [,...]

file_name the file containing one or more modules that will replace the
module of the same name in the libramyrently being created or modified.

The REPLACE command is used to replace one or more library modules
with one or more non-library object modules with the saraenen The
replacement object modules (there may be more than one in the object file)
must have the same names as the library modules they replace. REPLACE
must be preceded by an OPEN or CREATE command.

Syntax:

Description:

Note

SAVE

SAVE

The SAVE command saves the contents of the library being created or
modified. When a SAVE commandissued, all the librarian eomands

issued since the librarywas CREATEd or OPENed are executed, the libraryis
modified accordingly, and it is written to the library file. If an old version of
the library already exists, it will be overwritten by the new version at this time.
No backup of the old library file is made. Until a SAVE commarisisised,
librarian commands are only checked for form, content, and syntax.

You must use the SAVE command to explicitly save the libraryfile. If you
END the command ssion without a SAVE, the library file is not modified
and all the changes that you specified will be lost.

450

Chapter 25: Librarian Listing Description

25

Librarian Listing Description

Example librarian command files.

451

Chapter 25: Librarian Listing Description

This chapter shows example librarian command files and librésiémgs to
illustrate themput canmand file invocation and the information that can be
produced about the library being created or modified. The asséstinlgs

for the object modules that are being archived do not appear in this chapter.

Unless a LIST command or the -L appears in the command streamrianly e
messages and commands are echoed to standard output. Ifa LIST command
is used in command file batch mode or in interactive modistirgg that gives

more information about the library can be produced. The -L option in
command line mode alguIroduces such lgsting.

The listing shows each modulame, the public and external definitions for
each module, the size of each module in bytes, and a count of the public and
external definitions for each module. After all modules are listed, the listing
gives the number of modules in the library and may report any errors that
might have occurred. THisting may also show any loadernsmands from
interactive or command file batch mode execution.

452

Chapter 25: Librarian Listing Description
Librarian Sample 1

Librarian Sample 1

In librarian sample 1, a new libratipcmdl.a, is created. Three modules
(modul.o, moduZ2.0, and modu3.0) are added to it. The contents of the library
are then listed. The librarianmonand filelibcmdl is shown in the following
figure.

cr libemdl.a
addmod modul.o
addmod modu2.0
addmod modu3.o
list libcmdl.a

Figure 25-1. The 'libcmd1" Librarian Command File

The librarian is started in batch mode with a command file in the following
way:

$ ar86 < libcmdl > libcmd1.lis

ar86 is started interactively, receives input redirected from tmemamnd file,
and produces Bsting in libcmdLl.lis by redirecting standard output. The
libemd1l.lis listing file appears in the next figure.

453

Chapter 25: Librarian Listing Description
Librarian Sample 1

Hewlett-Packard AR86 Wed Nov 2 11:05:44 1988

cr libcmdl.a
addmod modul.o
addmod modu2.0
addmod modu3.o
list libcmdl.a

Hewlett-Packard AR86 Wed Nov 2 11:05:45 1988

Library being built libcmd1l.a

Module Size
MODULE1 ... 424
wxxxxx PUBLIC DEFINITIONS *xxxxx

MODUITEN MODU1SIX
MODUININE = MODUILFIVE
weees EXTERNAL REFERENCES *#+++*

MODU1ONE MODU1TWO
MODUITHREE MODU1FOUR
MODU1SEVEN MODUIEIGHT

Public Count=4
External Count = 6

Module Size
MODULE2 ... 428
wxxxxx PUBLIC DEFINITIONS *xxxxx

MODU2SIX MODU2NINE
MODU2FIVE MODU2TEN
weeees EXTERNAL REFERENCES **+++*

MODU20NE MODU2TWO

MODU2THREE MODUZ2FOUR
MODU2SEVEN MODUZ2EIGHT

Figure 25-2. The 'libcmdl.lis" Librarian Listing

454

Public Count=4
External Count = 6

Module Size
MODULE3 ... 436
wxxxxx PUBLIC DEFINITIONS *xxxxx

MODUS3NINE = MODUSFIVE
MODUS3TEN MODU3SIX
weees EXTERNAL REFERENCES **+++*

MODU3ONE MODU3TWO
MODU3THREE MODU3FOUR
MODU3SEVEN MODUS3EIGHT
Public Count=4

External Count = 6

Module Total =3

save
end

Chapter 25

: Librarian Listing Description
Librarian Sample 1

Figure 25-2. The 'libcmdl.lis" Library Listing (Cont’d)

455

Chapter 25: Librarian Listing Description
Librarian Sample 2

Librarian Sample 2

In librarian sample 2, a new libratipcmd?2.a, is created. Four modules

(modul.o, modu2.0, modu3.0, and modu4.0) are added to it. However, one of
the modules, modu4.o0, does not exist. Two things occur because it does not. It
causes an error to be generated that says it does not exist and the library is not
created because the error occurred in batch modestirg is still produced.

It lists the modules that did exist and the information about them just as it
appears in the first sample, but it also contains a message that informs you the
library was not created.

For this sample, the librarian is started in command line batch mode in the
following way:

ar86 -L -a modul.0,modu2.0,modu3.0,modu4.o libcmd2.a > libcmd2.lis

The dash L option specifies a listing.

The dash a option directs the loader to add the file list that follows the -a.

libcmd2.ais the library to be created.
* The greater than sign redirects the listing to thdibmmd2.lis.

In addition to the errors reported in the file, a duplicate set of errors are
reported to the terminal. THisting appears in the next figure.

456

Chapter 25: Librarian Listing Description
Librarian Sample 2

WARNING: (107) file libcmd2.a does not exist
(101) unable to open file modu4.o.
ERROR: (104) file modu4.o not included.
list libemd2.a

Hewlett-Packard AR86 Wed Nov 2 11:02:57 1988

Library being built libcmd2.a

Module Size
MODULE1 ... 424
wxxxxx PUBLIC DEFINITIONS *xxxxx

MODUITEN MODU1SIX
MODUININE = MODUILFIVE
weeoes EXTERNAL REFERENCES **+++*

MODU1ONE MODU1TWO
MODUITHREE MODU1FOUR
MODU1SEVEN MODUIEIGHT

Public Count=4
External Count = 6

Module Size
MODULE2 ... 428
wxxxxx PUBLIC DEFINITIONS *xxxxx

MODU2SIX MODU2NINE
MODU2FIVE ~ MODUZ2TEN
weeees EXTERNAL REFERENCES **+++*

MODU20NE MODU2TWO
MODU2THREE MODU2FOUR
MODU2SEVEN MODUZ2EIGHT

Public Count=4
External Count = 6

Figure 25-3. The 'libcmd2.lis" Library Listing

457

Chapter 25: Librarian Listing Description
Librarian Sample 2

Module Size
MODULE3 ... 436
wxxxxx PUBLIC DEFINITIONS *xxxxx

MODUS3NINE MODUSFIVE
MODUS3TEN MODU3SIX

wxxxxx EXTERNAL REFERENCES **++*
MODU3ONE MODU3TWO
MODU3THREE MODU3FOUR
MODU3SEVEN MODUS3EIGHT
Public Count=4
External Count = 6
Module Total =3

(253) Library libcmd2.a not written.

Warnings = 1
Errors =1

Figure 25-3. The 'libcmd2.lis" Library Listing (Cont’d)

458

Part 4

Error Messages Reference

Part 4

460

Chapter 26: Error Message Formats

26

Error Message Formats

461

Chapter 26: Error Message Formats
Interactive and Non-Interactive Conditions

There are three classes of errors that may occur during assembler, macro
preprocessor, linker, or librarian execution:

Warning

Warnings announce something timaightbe a problem in the output file. This
may or may not indicate a problem with the program.

After a warning, the output files are written normally.

After a warning, as86, ap86, 1d86, and ar8@ireta code indicating "success"
so that command files and "make" operations contimrenally.

Error

Errors announce something thetwrong in the output file. For example, a
reference to an unresolved symbdl vauseproblems at run-time.

After an error, the output files are written normally. The output files are
complete and may be useful in subsequent operations.

After an error, an "error" code is returned so thamwemnd files and "make"
operations stop.

Fatal Error

A fatal error announces a condition that causes gsieg to be discontinued.
After a fatal error, the output files are incomplete and corrupt. They are not
useful for subsequent operations.

After a fatal error, an "error” code is returned so thatroand files and
"make" operations stop.

Interactive and Non-Interactive Conditions

Some conditions produce either warnings or errors, depending on whether the
tool is run in interactive or batch mode. In interactive mode, a particular
condition causes a warning because the user has a chance to reissue the
command orrectly. In batch mode, the same condition causes an error.

462

Chapter 26: Error Message Formats
Interactive and Non-Interactive Conditions

For example, suppose the ftt8.0 does not exist and thhlb.a does exist. If
we invoked the librarian in batch mode as follows:

$ ar86 -a"tt2.0"lib.a

We would see an error.

< ar86 >
(101) unable to open file tt2.0.
ERROR: (104) file tt2.0 not included.
(253) Library lib.a not written.

ar86 would terminate and return you to the system prompt.
However, in the interactive mode, if you type the following command:

ar86> addmod tt2.0

You would see a warning.

(101) unable to open file tt2.0.
WARNING: (104) file tt2.0 not included.

ar86 would then again display its commardmpt and allow you to continue.

463

Chapter 26: Error Message Formats
Interactive and Non-Interactive Conditions

464

Chapter 27: Assembler Error Messages

27

Assembler Error Messages

465

Chapter 27: Assembler Error Messages

Syntax Errors

When the assembler encounters a syntax error, it does not generate code for
the instruction or directive on the line and any of its continuation lines where
the error occurs. The error message is printed on the line belowthe error,
with a caret (*) pointing to the offending syntax.

In some cases, the assembler issues a general syrdakt®t indicates there
is something wrong at the place the caret points, but the specific nature ofthe
error is not determined.

In the event of a syntax error, the assembler does not generate code, but
continues procssing with the next stament.

500

501

502

503

504

Syntax Errors

Expecting an expression.

The assembler expected an expression, but found something different at the
location pointed to by the caret.

Expecting an OR-level expression.

The assembler expected an OR-level expression, but found something
different at the location pointed to by the caret.

OR-level expressions include all the AND-level expressions plus the OR and
XOR operators.

OR or XOR expected.

The assembler expected an OR or XOR operator, but found something
different at the location pointed to by the caret.

Expecting an AND-level expression.

The assembler expected an AND-level expression, but found something
different at the location pointed to by the caret.

AND-level expressions include all the NOT-level expressions, and the AND
operator.

AND expected.

466

Chapter 27: Assembler Error Messages
Syntax Errors

The assembler expected an AND operator, but found something different at
the location pointed to by the caret.
505 Expecting a NOT-level expression.

The assembler expected a NOT-level expression, but found something
different at the location pointed to by the caret.

506 Expecting a relational operator-level expression.

The assembler expected a relational-level expressionpbaotfsomething
different at the location pointed to by the caret.

Relational-level expressions include all binary addition-level expressions plus
the EQ, NE, LT, LE, GT, and GE operators.

507 Expecting a relational operator.

The assembler expected a relational operator, but found something different
at the location pointed to by the caret.

The relational operators are: EQ, NE, LT, LE, GT, and GE.
508 ENDS or constant definition directive expected.

The assembler expected to find an ENDS directive but found something
different at the location pointed to by the caret.

509 Expecting an addition operator.

The assembler expected an addition operator, but found something different
at the location pointed to by the caret.

The addition operators are plus (+) and minus (—).
510 Expecting a multiplication-level expression.

The assembler expected a multiplication-level expression, but found
something different at the location pointed to by the caret.

Multiplication-level expressions include all
* byte-level expressions
» MOD, SHR, SHL

» multiplication and division operators

467

Chapter 27: Assembler Error Messages

Syntax Errors

511

512

513

514

516

517

520

* base registers (BX, BP) and index registers (Sl, DI)
Expecting a multiplication operator.

The assembler expected a multiplication operator, but found something
different at the location pointed to by the caret.

The multiplication operators are MOD, SHR, SHL, and multiplication (*)
and division (/).

Expecting a valid argument to NAME.

The assembler expected a valid module name argument to the NAME
directive, but found something different at the location pointed to bythe
caret.

Byte-level expressions include all secondary-level expressions plus the HIGH
and LOW operators.

Expecting a secondary-level expression.

The assembler expected to find a secondary-level instruction but found
something different at the location pointed to by the caret. Secondary-level
expressions include all primary-level expressions, the segment override
(colon), the PTR, OFFSET, SEG, and TYPE operators.

Expecting a primary-level expression.

The assembler expected a primary-level expression, but found something
different at the location pointed to by the caret.

Primary-level expressions include all expression primitives as well as the
MASK, WIDTH, SIZE, and LENGTH operators, and the dot operator for
structures.

Expecting a symbolic name.

The assembler expected a symbolic name,dunnd something different at
the location pointed to by the caret.

Expecting an integer constant.

The assembler expected an integer constant, but found something different at
the location pointed to by the caret.

Expecting a register.

468

521

522

523

524

525

526

527

528

529

Chapter 27: Assembler Error Messages
Syntax Errors

The assembler expected a register (such as AX, BX, BP, SlI, and others) but
found something different at the location pointed to bythe caret.
Segment register expected.

The assembler expected a segment register (CS, DS, ES, or SS) but found
something different at the location pointed to by the caret.

NOTHING or segment register expected.

The assembler expected the keyword NOTHING or a segment register (CS,
DS, ES, or SS) but found something different at the location pointed to by
the caret.

Expecting an identifier or integer constant.

The assembler expected an identifier or integer constant, but found
something different at the location pointed to bythe caret.

Expecting identifier, directive, or colon.

The assembler expected an identifier, directive, or colon, but found something
different at the location pointed to by the caret.

Expecting an identifier or constant definition directive.

The assembler expected an identifier or constant definition directive (such as
DB, DW, DD, and others) but found something different at the location
pointed to by the caret.

Expecting an identifier or type.

The assembler expected an identifier or type, but found something different
at the location pointed to bythe caret.

SEGMENT expected.

The assembler expected a segment, but found something different at the
location pointed to by the caret.

PTR expected.

The assembler expected a PTR operator, but found something different
the location pointed to by the caret.

DUP expected.

469

Chapter 27: Assembler Error Messages

Syntax Errors

530

531

532

533

534

535

536

537

538

The assembler expected DUP, but found something different at the location
pointed to by the caret.

Expecting a comma.

The assembler expected a comma, bunfl something different at the
location pointed to by the caret.

Expecting a colon.

The assembler expected a colon, but found something different at the location
pointed to by the caret.

Expecting a period, left bracket, or left angle bracket.

The assembler expected a period (.), left bracket ([), or left angle bracket (),
but found something different at the location pointed to by the caret.

Expecting right bracket.

The assembler expected a right bracket, but found something different at the
location pointed to by the caret.

Expecting a left parenthesis.

The assembler expected a left parenthesis,cautd something different at
the location pointed to by the caret.

Dollar sign expected.

The assembler expected a dollar sign '$', but found something different at the
location pointed to by the caret.

Expecting comma or right angle bracket.

The assembler expected a comma or right angle bracket,obat something
different at the location pointed to by the caret.

Expecting comma or right parenthesis.

The assembler expected a comma or right paresighbut éund something
different at the location pointed to by the caret.

Expecting a left bracket.

The assembler expected a left bracket, but found something different at the
location pointed to by the caret.

470

539

540

541

543

544

545

546

547

548

549

Chapter 27: Assembler Error Messages
Syntax Errors
Expecting a right parenthesis.

The assembler expected a right parenthesisdurd something different at
the location pointed to by the caret.

Expecting a label or a statement.

The assembler expected a label or a statementohntif something different
at the location pointed to by the caret.

Expecting an instruction mnemonic.

The assembler expected an instruction mnemonic, but found something
different at the location pointed to by the caret.

Assembler general control expected.

The assembler expected a general control, but found something different at
the location pointed to by the caret.

Expecting an assembler control.

The assembler expected an assembler control, but found something different
at the location pointed to by the caret.

Constant definition directive expected.

The assembler expected a constant definition directive such as DB, DW, DD,
and others, but found something different at the location pointed to bythe
caret.

Unexpected control or directive name, or missing END directive.

An illegal primary control or directive wastdind at the location pointed to by
the caret or an END directive was not found before the end of the source file.

Expecting a string.

The assembler expected a string, but found something different at the
location pointed to by the caret.

Expecting parenthesized text.

The assembler expected a valid attribute to the SEGMENT directive, bu
found something different at the location pointed to bythe caret.

Expecting valid attribute to the SEGMENT directive.

471

Chapter 27: Assembler Error Messages

Syntax Errors

550

551

552

554

555

556

557

558

The assembler expected to find an alignment type such as BYTE, PARA,
INPAGE, and others, but found something different at the location pointed
to by the caret.

Expecting a combine type.

The assembler expected a combine type (PUBLIC, STACK, COMMON, and
others) but found something different at the location pointed to bythe caret.

Continuation line found where initial line was expected.

The assembler found the continuation character (ampersand [&]) as the
first character on a line that it was expectingpéginrather than t@ontinue
with an assembly statement.

Logical end of program already encountered.

Assembler statements, directives, or controls weued in a source file
AFTER an END directive was encountered. Dimdy legal input after an
END directive are comment lines or blank lines.

Structure or record initialization expected.

The assembler expected to encounter a left angle bracket, but found
something different at the location pointed to by the caret.

Record field initialization expected.

The assembler expected to encounter an equal sign, but found something
different at the location pointed to by the caret.

Expecting a valid member of a GROUP.

The assembler expected a valid member ofa GROUP (such as a segment
name), butdund something different at the location pointed to by the caret.

Expecting an item which can be purged.

The assembler expected an item that can be purged (such as syab@s; n
instructions, and others), but found something different at the location
pointed to by the caret.

Expecting a valid END initialization element.

The assembler expected a valid END initialization element, but found
something different at the location pointed to by the caret.

472

Chapter 27: Assembler Error Messages
Syntax Errors
559 Expecting a valid ASSUME element.

The assembler expected a valid ASSUME element, but found something
different at the location pointed to by the caret.

561 Expecting valid CODEMACRO parameter information.

The assembler expected to find valid CODEMACRO parameter information
but found something different at the location pointed to by the caret.

562 Expecting a codemacro parameter specifier.

The assembler expected to find a codemacro parameter specifieubdt f
something different at the location pointed to by the caret.

563 This statement is not valid in a codemacro definition.

The caret points to a statement that is not legal in the body of a codemacro
definition.

564 Expecting a type.

The assembler expected a Type (such as BYTE, WORD, DWORD, and
others) but found something different at the location pointed to bythe caret.

565 Unbalanced string delimiters.

A string that was opened with an apostrophe or quotation mark does not
have a closing apostrophe or quotation mark. Usually this is causatingy fa

to double occurrences of apostrophes or quotation marks that are contained
in the text of the string.

566 Syntax error.

In some cases, the assembler can determine that there is a syntaxerror, but
can't determine exactly what the error is. In these cases, this general message
is generated, with the caret indicating the point of the error.

567 Syntax error in command line options.

Control options on the command line may only be delimited with spaces, tabs,
or commas. Also, any arguments to controls must be delimited with
parentheses.

568 Unbalanced parentheses.

473

Chapter 27: Assembler Error Messages
Syntax Errors

The number of right parentheses in the line does not match the number of left
parenthesis. In complicated continued expressions, this could be due to the
following line not having its continuation character in the first column.

569 lllegal operand for unary MINUS or NOT.

Neither the unary minus nor the NOT operator can have a relocatable
operand. The operand pointed to by the caret is relocatable.

570 Expecting a unary addition-level expression.

The assembler expected to find a unary addition-level expression, but found
something different at the location pointed to bythe caret. Unary
addition-level expressions include all of the multiplication level expressions as
well as unary plus and minus.

571 Additional information encountered beyond end of statement.

After reaching what it thought was the logical end of aesteint, the
assembler found additional text at the location pointed to by the caret.

572 Expecting decimal or hexadecimal floating-point constant.

The assembler expected to find a decimal or hexadecimal floating-point
constant at the location pointed to by the caret.

573 Expecting a signed integer constant.

The assembler expected to find an integer constant with or without a leading
unary plus or minus, but found something different at the location pointed to
by the caret.

574 Expecting a SHORT-level expression.

The assembler expected to find a SHORT-level expression but found
something different at the location pointed to by the caret. SHORT-level
expressions include all of the OR-level expressions as well asthe SHORT
operator.

575 Expecting an argument to an instruction or codemacro.

The assembler expected to find an argument to an instruction emeado,
but found something different at the location pointed to by the caret.

600 lllegal or mismatched argument.

474

601

602

603

604

605

606

607

608

Chapter 27: Assembler Error Messages
Syntax Errors

The caret points to the place where the operand type is incorrect for the
instruction, or where the type doesn't match up correctly with another of the
operands in the instruction.

Anonymous memory type.

The size of the operand pointed to by the caret cannot be determined from
the operand’s expression, or from the content of other operandsin the
instruction.

lllegal type of expression.

The expression pointed to by the caret is either not allowed in the directive or
in the instruction in which it is specified, or the exggien is not a valid
expression.

lllegal type of argument in expression.

The operator that precedes or follows the sub-expression being pointed to by
the caret does not allow this type of sub-expression or one of its operands.
Certain operators (such as * or /) allow only sub-expressions that resolve to
an absolute number as an operand. Other operators only allow non-absolute
expressions when certain conditions exist (see the description of -’and
relational operators).

lllegal or duplicate memory argument.

Only one argument that references a memory location is allowed in any given
instruction.

This instruction requires at least one operand.

More than one operand had been supplied to this instruction, when onlyone
operand is allowed.

This instruction requires at least two operands.

Less than two operands (or more than two) have been supplied to this
instruction; two are required.

This instruction requires three operands.

Less than three operands have been supplied to this instruction; three a
required.

Duplicate declaration of symbolic name.

475

Chapter 27: Assembler Error Messages

Syntax Errors

609

610

611

612

613

614

615

616

617

The symbolic name, pointed to by the caret, has already been declared in a
previous statement.

Duplicate specification of module name.

This message occurs when more than one NAME directive appearsin the
source program.

Duplicate occurrence of base register in register expression.

Only one base register (BX or BP) may be used in any given register
expression.

Duplicate occurrence of index register in register expression.

Only one indexregister (Sl or DI) may be used in any given register
expression.

This symbol is not defined as a label.

The caret points to a symbol, in a directive or expression, that must be a labl.
The symbol pointed to by the caret is not a label.

This symbol is not defined as a segment or group.

The caret points to a symbol, in a directive or expression, that must be a
segment name orgup rame. The symbol pointed to by the caret is not a
segment or groupame.

This symbol is not defined as a variable.

The caret points to a symbol, in a directive or expression, that must be a
variable. The symbol pointed to by the caret is not a variable.

This symbol is not defined as a structure.

The caret points to a symbol, in a directive or expression, that must be a
structure. The symbol pointed to by the caret is not a structure.

This symbol is not defined as a structure field.

The caret points to a symbol, in a directive or expression, that must be a
structure field. The symbol pointed to by the caret is not a structure field.

This symbol is not defined as a structure or record.

476

Chapter 27: Assembler Error Messages
Syntax Errors

The caret points to a symbol, in a directive or expression, that must be a
structure or record. The symbol pointed to by the caret is not a structure or
record.

618 This symbol is not defined as a record field.

The caret points to a symbol in a directive or expression that is required to be
a record field in order to be valid. The symbol pointed to by the caret is not of
this kind.

619 This symbol is not defined as a segment.

The caret points to a symbol, in a directive or expression, that must be a
segment. The symbol pointed to by the caret is not a segment.

620 Alignment type inconsistent.

The alignment type specified in this SEGMENT directive is not the same as
one specified in a previous segment directive for the same segment.

621 Combine type inconsistent.

The combine type specified in this SEGMENT directive is not the same as
one specified in a previous segment directive for the same segment.

623 lllegal or premature termination of segment.

This error indicates improper nesting of segments orisspalling of the
segment name in either the SEGMENT or ENDS directives.

624 Segment nesting level exceeded.
Segments can be nested to a level of 16 only.
625 Missing SEGMENT directive or previous segment nesting error.

This ENDS directive has no associated SEGMENT directive, either due to
omission or to a nestingmr on its associated SEGMENT directive.

626 Expecting alignment type, combine type, or classname.

The assembler expected an alignment type, combine type, or classname,
found something different at the location pointed to by the caret.

627 Classname inconsistent.

477

Chapter 27: Assembler Error Messages

Syntax Errors

628

629

630

631

632

633

634

635

636

The classname specified in this SEGMENT directive is not the same as one
specified in a previous segment directive for the same segment.

lllegal type of symbol in this ASSUME.

This error occurs when a symbol other than a segment or group isused in an
ASSUME directive without being preceded by the SEG operator.

Initialization nest level exceeded.

When using the DUP construct in conjunction with a data directive (DB,
DW, DD, DQ, or DT), the maximum nesting level for DUPs is eight.

This symbol does not have a defined segment value, or segment not
addressable.

The symbolic name pointed to by the caret does not have a segment attribute
in the list of legal attributes.

This argument does not have a defined offset value.

The symbolic name pointed to by the caret does not have a offset attribute in
the list of accepted attributes.

This argument does not have a defined type value.

The symbolic name pointed to by the caret does not have a type attribute in
the list of accepted attributes.

This argument does not have a defined length value.

The symbolic name pointed to by the caret does not have a length attribute in
the list of accepted attributes.

This argument does not have a defined size value.

The symbolic name pointed to by the caret does not have a size attribute in
the list of accepted attributes.

This argument does not have a defined field width value.

The symbolic name pointed to by the caret does not have a field width
attribute in the list of accepted attributes.

This argument does not have a defined mask value.

478

637

638

639

641

642

643

645

648

649

Chapter 27: Assembler Error Messages
Syntax Errors

The symbolic name pointed to by the caret does not have a mask attribute in
the list of accepted attributes.
Immediate value overflow.

The immediate value is not within the proper range for its context.
Specifically, it is not within the range 0 to OFFH for DB, 0to OFFFFH for
DW or an instruction, and 0 to BFFFFFFH for all others.

This expression must be absolute.

The expression must resolve to an absolute number to be permissible in this
context.

Item cannot be addressed by segment registers.

The segment associated with the variable pointed to bythe caret is not
currently ASSUMEAd into any of the segment registers, nor has an explicit
segment override been used.

Invalid floating point constant

The floating point constant pointed to by the caret is not a valid floating point
constant. No valid floating-point value can be stored for this constant.

lllegal operand in this register expression.

Register expressions may contain a base register (BX or BP), an index register
(Sl or DI), and any expression that evaluates to an absolute value.
Expressions or symbols with relocatable results are not permitted.

Division by zero attempted.

The divisor portion of this expssion involving the division operator is itself
an expression that evaluates to an absolute number with a value of 0.

This relational operator has an invalid operand or operands.
See the description of relational operators for what operands are valid.
Hexadecimal real constants are invalid in this context.

Hexadecimal real constants are allowed only in data definition statements
EQU definitions.

lllegal floating-point stack register (0-7 allowed).

479

Chapter 27: Assembler Error Messages
Syntax Errors

A mnemonic representing an 8087 floating-point stack register was not in the
legal list of mnemonics (ST,ST(0),ST(1)ST(7)).
650 Value too large for one-byte displacement.

The number (or expssion that evaluates to an absolute number) is pointed
to bythe caret is either less than -128 or greater than 255, and himas$ ba
represented in just one byte.

651 Hex real constant size does not match with data directive.

Hexreal constants must be eight significant hex digits for the DD directive,
sixteen significant digits for the DQ directive, and twenty significant digits for
the DT directive.

653 This symbol cannot be purged.

The following kinds of symbols cannot be purged:

» keywords

* segment names (including ??SEG)

e group rames

» anyuser-defined symbol that has appeared in a PUBLIC statement
654 Symbol cannot be declared PUBLIC.

PUBLIC symbols must be variables, labels or 17-bit constants; any other
types will generate amreor.

655 This symbol cannot be a member of a group.

Only segments, externals, or variables may be used in a GROUP directive.
Only a segment may be forward referenced.

656 lllegal statement in this context.

This error is generated ifa PROCLEN directive appears outside ofa
CODEMACRO definition, a STRUC statement appears withintriectire
definition, or if a structure initialization occurs within another structure
initialization.

658 lllegal or premature termination of procedure.

480

Chapter 27: Assembler Error Messages
Syntax Errors

This error indicates improper nesting of procedure or isspelling of the
procedure ame in either the PROC or ENDP directives.

659 Procedure nesting level exceeded.
Procedures can be nested to a level of 16 only.

660 lllegal type in this context.

This error is generated if a type other than NEAR or FAR appearsin a
PROC directive, or if a type other than a standard type (e.qg. a structure or
record name) appears as the argument to the THIS operator.

661 lllegal termination of structure.

This error indicates aisspelling of thesucture rame in either the STRUC
or ENDS directives.

662 Null initialization is not allowed in this context.

Null (or default) initialization is permitted only in structure or record
initialization, not in structure or record definition or data definition
directives.

663 Invalid record field size.

A given field within a record can be no larger than 16 bits, or no smaller than
1 hit.

664 Maximum record size exceeded.
The size of a record is limited to 16 bits.
666 This variable is not defined as a record.

The caret points to a symbol, in a directive or expression, that must be a
record. The symbol pointed to by the caret is not a record.

667 Include file nesting limit exceeded.

The limit for nested include files has been exceeded. This limit is operating
system specific.

668 Cannot open include file.

481

Chapter 27: Assembler Error Messages

Syntax Errors

669

670

671

672

673

674

675

676

677

The filename specified in the preceding include control isspelled, the
associated file is not in the current directory, or the associated file cannot be
opened.

lllegal type of EQU in this context.

An example of this error is an EQU to 8086 insruction mnemonic as the
expression portion of a data definition directive, such as DB. Many other
similar conditions exist that will generate thrsa.

Too many arguments specified for this instruction.

The particular instruction pointed to by the caret does not allow as many
arguments as are specified. INC AX,BX, for example, has one too many
arguments.

This type of segment override is illegal in this context.

Certain types of expressions are not permitted to have a segment override
operator (colon operator) as part of the esgi@n. The expression pointed
to by the caret is one such expression.

lllegal value for PAGELENGTH control.
The minimum value in the PAGELENGTH control is 20 lines.
lllegal value for PAGEWIDTH control.

The legal values for the PAGEWIDTH control fall in the range of 41 to 255
columns, inclusive.

lllegal value for TITLE control.

The string for a TITLE control is limited to a length of 40 characters.
More than 64 levels of control saves.

The $SAVE control cannot be nested to a depth greater than 64.
More than 64 levels of control restores.

The $RESTORE control cannot be nested to a depth greater than 64.
This symbol is not a parameter to this codemacro.

The symbol pointed to by the caret, which is contained within a codemacro
definition, is not present in the CODEMACRO statement for threent

482

Chapter 27: Assembler Error Messages
Syntax Errors

codemacro. Therefore, the synbohnat be a paameter to thewrrent
codemacro.
678 This symbol is not defined as a codemacro parameter.

The caret points to a symbol in a directive or expression that is required to be
a codemacro parameter in order for it to be valid. The symbol pointed to by
the caret is not a codemacro parameter.

679 This codemacro parameter’s specifier is invalid in this context.

Certain directives within a codemacro definition allow only parameters that
have specific types of codemacro specifiers. The codemacro parameter
pointed to by the caret is not of the specific type needed for the directive in
which it is used.

680 lllegal range expression in codemacro parameter definition.

Either the range expression pointed to by the caret does not evaluate to an
absolute number, or it is out of range according to the codemacro specifier
with which it is associated.

681 This symbol is not a valid codemacro specifier.

The symbol pointed to by the caret is not one of the valid codemacro specmod
fields listed on page 223.

682 Duplicate definition of codemacro parameter.

The symbol pointed to by the caret has appeared more than once in the same
codemacro directive and is a duplicate definition.

683 This expression is illegal within a codemacro definition.

Null initialization expressions, DUP expressions, and dot operator
expressions that don't use a record field as their right operand are illegal
within a codemacro definition.

684 This statement is not allowed in a codemacro definition.

Only a limited number of types of statements is allowed in a codemacro
definition. For a complete list, see the chapter titledgboakros.

685 This instruction or codemacro has too many operands.

as86 limits the number of operands to 3 in atrutdion and to255in a
codemacro.

483

Chapter 27: Assembler Error Messages
Syntax Errors

6386 Duplicate use of NOSEGFIX directive in codemacro definition.
Only one NOSEGFIX directive can be used in any given codemacro
definition.

687 Duplicate use of SEGFIX directive in codemacro definition.

Only one SEGFIX directive can be used in any given codemacro definition.
688 PREFX and non-PREFX codemacros cannot have the same name.

The codemacro symbol being pointed to by the caret has been defined in
codemacro directives both with andmout the PREFX keyword. The last
definition of the codemacro is the one thdt e in effect.

689 Missing PROC directive or previous procedure nesting error.

This ENDP directive has no matching PROC directive due to an omission or
a nesting error involving its associated PROC directive.

690 This symbol has not been defined.

During Pass 1, the assembler assumes that an undefined symbol is a forward
reference. This message occurs when the symbol is still not defined in Pass 2.
The assembler generates NOPs and continues assembly. You should modify
the code to define the symbol, or the symbol will have no value.

691 CS cannot be destination register.

CS can only be changed by using an ASSUME directive, a JMP or CALL
instruction to a FAR location, and a MOV or POP has been used to load the
CS register.

692 Pass 1 estimate of instruction bytes insufficient.

The number of bytes reserved for an instruction as a result of a forward
reference in Pass 1 did not leave enough code space for the instruction in Pass
2. There are two possiblemedies:

Specify the sizes of forward-referenced variables using the PTR operator.
Use the $OPTIMIZE control.
693 This symbol is not defined as a group.

The symbol before the GRPOFFSET operator or following the GRPSIZE
operator must be a grouame. Ifitis not, then thigeor is generated.

484

Chapter 27: Assembler Error Messages
Syntax Errors
694 Shift values greater than 31.

A value for one of the shift or rotate instructions evaluated to a value that was
greater than 31. Adjust the shift value and reassemble.

695 ES cannot be overridden in this string instruction.

Certain types of string instructions (e.g. MOVS) require that their second
operand use the ES:DI combination for their reference. In such instances, the
ES register cannot be overridden. Modify the program to do such operations
through the ES register, and reassemble.

697 lllegal character in numeric constant.

An illegal character for a numeric constant wasrfd in the constant pointed
to by the caret. Remove the illegal character and reassemble.

698 lllegal DUP value.

A negative or zero repeat count value for a DUP initialization was found at
the location pointed to by the caret. Only positive repeat values are allowed.
Correct and reassemble.

699 No forward references allowed in EQU expressions.

The expression pointed to by the caret contains an as-yet undefined symbol.
Since this expression is being defined as an EQU symbol, such forward
references are not allowed. Eliminate the forward reference by moving the
definition of the as-yet undefined symbol in front of this EQU definition, and
reassemble.

701 This construct is invalid in the current assembly mode.

Certain constructs that are accepted only by a given assembly modeQ@6Q D
MOD186, MODV20) that arent accepted in theent assembly mode will
cause this error to be generated.

702 No module name specified.

No NAME directive was found in the source program. The defaaihea)
which is the basename of theusce file, vill be used.

703 This symbol was previously declared public.

The symbol pointed to by the caret previously appeared in this or another
PUBLIC directive.

485

Chapter 27: Assembler Error Messages

Syntax Errors

704

705

706

707

Note

708

709

710

711

Too many initializations specified: remainder ignored.

When re-initializing a structure or record at allocation time, this message is
generated if more initialization values were specified than there were fields in
the structure or record.

This field cannot be re-initialized: value not changed.

Structure fields with many values or a DUP essien cannot be re-initialized
at allocation time.

lllegal initialization value: not re-initialized.

An attempt was made to initialize a structure or record field with an invalid
value.

Location counter overflow.

Addition of the current instruction or data definition directive causes the
current segment’s location counter to exceed the valteFBH, i.e. the 64K
limit of a segment. The location counter is set to the value N6G%36.

This may cause previous code or data to be overwritten if this isignored.

This EQU cannot be made public.

Certain types of EQU symbols, such as those representing instructions or
address expressions, are not permitted to be declared PUBLIC.

Floating point overflow: set to infinity.

The number of bytes in a floating point value exceeds the limit of a DD (32
bytes), DT (80 bytes) or DQ (64 bytes) directive. Assembly continues; adjust
the value to fit within the limit of the Data Directive used.

Floating point underflow: set to zero.

The number of bytes in a floating point value is under the limit ofa DD (32
bytes), DT (80 bytes) or DQ (64 bytes) directive. Assembly continues; adjust
the value to fit within the limit of the Data Directive used.

BCD value exceeds 18 decimal digits.

A packed decimal value (DT) can take 18 digits only; anything over 18 is
truncated. Assembly continues; adjust the value to fit within the 18 digit limit.

486

712

716

717

718

719

720

722

724

Chapter 27: Assembler Error Messages
Syntax Errors

Integer value exceeds 64-bit limit.

This warning occurs when an integer constant used in a DQ directive has a
value outside the range 0 to FFFFFFFFFFFFFFFFbirrect the value and
reassemble.

This and future preprocessor statements will be ignored.

Meta characters have not been preprocessed; assembly continues. The
assembler does not process any lines with meta characters. Execute the macro
string preprocessor before assembling.

Segment limit exceeded for this segment.

The specified segment contains instructions and/or data that take up more
than the maximum allowable 64K bytes of space. Break the segment into
multiple segments or shrink the size of the segment, and reassemble.

Procedure not closed within this segment.

A procedure (or procedures) whose PROC directive was defined in the
segment having an ENDS directive which is currently being processed has not
yet been closed. The procedure should be closed byinsertingan ENDP
directive at some point before the ENDS directive.

Segment not closed by end of module.

One or more segments were open at the point where the assembler found the
END directive. The segments should be closed at the appropriate point
within the source file.

Procedure closed in segment other than the one it was defined in.

The ENDP directive, which closes a procedure, appears in a different segment
than the one in which the matching PROC directive appears. Make sure that
the PROC and ENDP directives reside within the same segment.

String truncated to 2 characters before integer conversion.

A string that appears anywhere other than in a DB directive must be either 1
or 2 characters long. If such a string is longer than 2 characters, it will be
truncated to 2 characters and converted to an integer.

Record field overflow: value’ modulo field width’ used.

487

Chapter 27: Assembler Error Messages

Syntax Errors

726

727

728

729

800

801

802

If a record field initialization or reinitialization expression evaluates to a
value that wont fit the specified record field, the appropriate modulo
operation is performed in order to force the value to fit.

lllegal assembly mode.
The instruction pointed to by the caret is not valid in this assembler.
Overriding string too large for field.

If a string field in a structure is reinitialized and the string is too long for the
specified field, the string is truncated and this warning message is displayed.

Source path names for debug have been truncated to 255 characters.

If the assembly module was produced by the AXLS C compiler and the full
path name for theosirce file or anyinclude file is longer thag5 characters,
the assembler wilfrincate the pathame from the left, adding anlipsis to
the name to create a total length266 characters, and emit this message.

High-level block nesting limit exceeded: some variable scoping lost.

Nesting of high-level procedure or code blocks is allowed up to a depth of 15.
Any nesting beyond this depth will result in the loss of information about
which block symbols belong to.

EVEN directive cannot be in a BYTE aligned segment.

You cannot use the EVEN directive within a segment whose alignment
attribute is BYTE. In such a segment, there is no need to force the alignment
to be on a word boundary as illwot be any more effective by doing so.
Comment out or remove thmmnecessary EVEN directive and reassemble.

CS-IP initialization required for main module.

Some register initializations were provided on the END directive; however,
this error message indicates that no initialization for the CS:IP registers was
provided. If any register initializations are provided, an initialization for
CS:IP must be provided as well. Add the appropriate initialization and
reassemble.

lllegal initialization of SS register.

It is illegal to initialize the SS register to anything other than a segment base.
In particular, group bases are not allowed. Correct the initialization on the
END directive and reassemble.

488

803

804

805

806

807

808

809

810

Chapter 27: Assembler Error Messages
Syntax Errors

Circular chain of equates.

EQU symbols in a list with a length of at least one were defined as other EQU
symbols in such a way that the last symbol in the list was defined as the first
symbol in the list. Usually, such a congt results from symbol spimg

errors, or in larger programs, widely scattered EQU definitions. Correct the
erroneous EQU definition and reassemble.

lllegal to use relocatables in DB, DQ, or DT.

If a relocatable value appears in an expression for a DB, DQ, or DT directive,
this error is generated. Remove the relocatable value and reassemble.

Variables or Labels cannot be in DB, DQ, or DT.

An expression that contains a variable or label is not allowed in a DB, DQ, or
DT directive.

lllegal to use multiple INCLUDE controls on line.

Only one INCLUDE control is allowed on any given line containing
assembler controls. Split the control line into as many lines as necessary to
obtain control lines with only one INCLUDE control per line, and
reassemble.

Inconsistent AT value given for segment.

A segment was specified in a previous SEGMENT directive with a different
absolute paragraph number than is specified in the current SEGMENT
directive. The paragraph values should be the same.

This codemacro specifier cannot have a range.

The codemacro specmod field being pointed to by the caret is not permitted
to have an associated range. Only codemacro parameters with specifiers A, D,
R, or S can have range values.

Duplicate specification of alignment type.

A segment directive can only have a single alignment type as an option. This
error is generated if more than one alignment type is detected in the seg
directive.

Duplicate specification of combine type.

489

Chapter 27: Assembler Error Messages

Syntax Errors

811

812

813

820

825

826

827

828

A segment directive can only have a single combine type as an option. This
error is generated if more than one combine type is detected in the segment
directive.

Duplicate specification of class name.

A segment was specified in a previous SEGMENT directive with a different
class name than is specified in therent SEGMENT directive. Both
SEGMENT directives should use the same clasaa

Maximum source line length exceeded.

An input source line exceedd824 characters in length. The assembler will
not accept lines longer than this length.

Maximum string length exceeded.

A string was defined that exceeded 1024 characters in length. The assembler
will not accept strings longer than this length.

Relocatable numbers not allowed in DD.

A relocatable value was used in a DD directive, which is not allowed. Only
relocatable full addresses, segment, or groames may be used in a DD
directive.

Codemacro argument cannot be addressed by the required segment register.

The codemacro requires that one of its arguments be addressahigh a
specific segment register. The current ASSUME contents for that register
does not allowthat argument to be reached, so this error is generated.

Iterated Data record offset is too large for a fixup.

Fixups to object code can only occur within the first 1024 bytes of a record. In
this instance, an iterated data record is being created that is larger than 1024
bytes and requires a fixup beyond that point. This cannot be represented in
HP-OMF86 so this error is generated.

OMF record length exceeds maximum value.

An HP-OMF86 record can only be 64K in size. Any attempt to generate more
than 64K of text in a single HP-OMF86 record will result in tiiemessage.

Codemacro instruction length exceeds 247 bytes.

490

996
997
998
999

Chapter 27: Assembler Error Messages
Syntax Errors

A single codemacro itliction can only generate up 247 bytes of object

code. Anyinstruction that generates more than that number of bytes will

result in this error message.

Internal error.

Fatal Error.

*** Eatal Internal Error: Unimplemented Semantics ***,

*kkkkkkkkk FATAL I N TER N AL ER R O R **********.

491

Chapter 27: Assembler Error Messages
Syntax Errors

492

Chapter 28: Macro String Preprocessor Error Messages

28

Macro String Preprocessor Error
Messages

493

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

The Macro Preprocessor produces numbered error messages. This chapter
explains the meaning of the numeric codes. More than one message may
appear for a given source line. Each message is printed immediately upon
detection of the error (because the macro processor is character-oriented, not
line-oriented). The usual effect is for a message to apgpdareany output

from the source line that caused the error. Macro error messages appear as
assembler comments in the outpatsce file, like this:

; ¥ ERROR 301

Error Codes and Messages

301 Undefined macro name.

The text following a metacharacter (%) is not a recognized user function
name or built-in macro function. The reference wiged, not passed to the
output file, and proasing continues with the character following tlaene.

302 lllegal call to AEXIT.

%EXIT is outside any user macros, WHILEs, or REPEATs. The callis
ignored, % EXIT is not passed to the output file, and pssiog continues.

303 lllegal expression.

A numeric expression was expected. There could be a missing % from a
macro-time symbol or a syntax error, among others. This message is produced
when ap86 is trying to evaluate an expression within EVAL, IF, WHILE,
SUBSTR or REPEAT. The function call is aborted (any output from it is

lost) and procssing continues following the call pattern of the function. This
message is also reported whenilegal character is detected in a string being
compared with %EQS (or other string comparison functions).

304 Logical Expression Error
305 Missing 'FI"

Self-explanatory. This has no effect except to produce the message. However,
the search for Fl is character-by-character, so that if FE was present when FI

494

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

was expected, the F would be removed from the output file. The E and
subsequent characters would be passed on normally.

306 Missing THEN"

Self-explanatory. The call to IF is aborted and pssitgy continues following
the first character which failed to match. Thus the THEN and ELSE clauses,
and the ELSE and FI keywords, will be treatedti@anal text and expanded
normally. As with FI, the search for THEN is character- by-character.

307 lllegal attempt to redefine macro.

A built-in function cannot be re-defined at anytime. It is natsitde to
re-define a macro formal parameter within the macro body or a macro name
within its own body.

309 Missing balanced string.

In a call to a built-in function, a required balanced-text string delimited by
parentheses is not present. This error can also be generated when the leading
left parenthesis is nobfind where expected. The function call is aborted and
scanning continues from the point at which the error was detected.

310 Missing list item.

A list item (delimited by coomas) is nssing. The function or macro call is
aborted and scanning continues from the point where the error was detected.

311 Missing delimiter.

A delimiter required when scanning of a user-defined macro or built-in
function (a comma, usually) is not present. The macro function call is aborted
and scanning continues from the point at which the error was detected.

312 Premature EOF.

The end of the input file occurred while the call to the macro was being
scanned. This usually occurs when a right parenthesis is omitted, causing the
Macro Preprocessor to scan to the end of the file searching for it. Note that
even if the closing parenthesis of a macro call is given, this enay occur if

any preceding commas aressing, since the Macro Ryeocessor searches for
delimiters one by one.

313 Macro stack overflow.

495

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

The macro context stack MSTAK has overflowed. This stack is 64 deep and
contains an entry for each symbol preceded by the metacharacter. The cause
of this error is excgsive recursion in macro calls or expansions; a likalyee

is a user-progtmmed infinite dop. When this error is encountered, the stack

is emptied and all pending output destroyed; scanning continues at the next
character in the input file. This message can also be produced to indicate that
INCLUDES were nested too deeply.

314 Nested macro error.
315 String buffer overflow.

The string buffer used in conjunction with the macro stack to save
intermediate results from nested macro calls has overflowed.

318 lllegal metacharacter.
Self-explanatory. The current metacharactenains unchanged.
319 Unbalanced right parenthesis.

During the scan of a call to a user-defined macro, an unmatched right
parenthesis was eogntered. This is frequently because ofiasing

argument (the right parenthesis terminating the macro callomslfwhen a
comma was expected). The call is aborted and scanning continues from the
point at which the error was detected.

338 Invalid symbol.

A symbol (not preceded by the metacharacter) is required in certain contexts,
such as the MATCH, DEFINE and SET functions. This symbol was not valid.

340 Literal character on SET or WHILE.

The constructs %*SET and %*WHILE make no sense and produce this
message. The *isignored, and the Macro Preprocessor attempts to expand
SET or WHILE normally.

401 Bad or missing parameter.

The parameter to a control is natrcectly formed, or a control that requires a
parameter does not have one. Typographicalre often lead to this message.

414 Unable to open include file.

496

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages
Self-explanatory.
901 Scan stack overflow.

This error indicates that the stack used for evaluating complexssipns has
overflowed. This will not occur for any exm®0on likely to be useful in
practice. Break the expression into smaller ones.

906 Macro symbol table exhausted.

The macro-time symbol table is full. This table contains symbol names plus
the string values of SET and MATCH symbols.

497

Chapter 28: Macro String Preprocessor Error Messages
Error Codes and Messages

498

Chapter 29: Loader Error Messages

20 _

Loader Error Messages

List of the loader error messages.

499

Chapter 29: Loader Error Messages

400

401

402

403

404

Warning Messages

Repeated segment name in ORDER command: [SEGMENT__ NAME].

The loader displays this message when there is an implicit or explicit
reference to the same segment name. If the reference is implicit, the duplicate
segment name is embedded in a class specified by a classname in the ORDER
command. If the reference is explicit, the duplicate segment name occurs at
least twice in the current ORDER mamand. The duplicate aeaences of

the segment name arenmred and loading continues.

SEG, ALIGN, or SEGSIZE command used on absolute segment.

The loader encountered a user-specified base address for an absolute
segment. The user-specified base address is ignored and loading continues.

ORDER command cannot be obeyed.

The loader generates this message because the placement of absolute
segments, SEG commands, and/or reserved areaiits plaement of the
segments in memory in the order specified. This message applies onlyto
segments explicitly named in the ORDER command. Segments implicitly
named (such as by specifying a classname with an ORDER command) do not
have an implied order. The order of segments will not be as specified in the
ORDER command and loading continues.

This external symbol is undefined: [SYMBOL __NAME].

The loader displays this message when it finds an external symbolin the
symbol section of a module that is undefined by the user or undefined in any
module. The undefined external symbol may or may not actually be
referenced. Loading continues.

Group is larger than 65536 bytes: [GROUP__NAME].

According to the base address assignmenmathbers of thergup specified

by GROUP__NAME do not fit within 64K bytes of one another; thusthe
segments as currently loaded cannot be addressed by a single segment register
(which is the purpose of having groups). By judicious use of @asssa in the
assembler, or SEG and ORDER commands in the loader, it mag&ielpo

to get all group elements within 64K bytes of each other. Relocation errors
may result from anyreferences to the group parts outsides886 byte

group base. Loading continues.

500

Chapter 29: Loader Error Messages

405 Group contains undefined or absolute external.

One of the input modules contains a GROUP element defineheans of

an external name. The external name is either undefined or defined as
absolute; therefore its segment base cannot be determined. Relocation errors
will result from references to the externalme, whether or not amrer is

reported. Loading continues.

406 Memory segment is not at the top of memory: [SEGMENT_ NAME].

The loader displays this message whenever more than one segment has the
memory attribute, or whenever a SEG or ORDER command causes the single
memory segment to be misplaced. Everything is loaded where assigned and
loading continues.

407 Memory overlap by segment [SEGMENT__ NAME].

The loader generates this warning when an area reserved bya RESNUM or
RESADD command, an absolute segment, or a segment specified in a SEG
directive conflicts with a previously-reserved area. The previously-reserved
area could have been reserved by the RESNUM, RESADD, or SEG directive
or by an absolute segment. Any additionally relocatable segments will not
overlap. Any additional previously-unreserved space is reserved and loading
continues.

408 No segments with classname [CLASS __NAME].

The classname displayed in the message appearsin a SEG or ORDER
command, but no segments with that classname exist. The classname is
ignored and loading continues.

409 SEGSIZE used with public or private segment: [SEGMENT_ NAME].

The SEGMENT__NAME displayed in the message is the name of the
segment altered by the SEGSIZE command. The loagees this message if
the segment does not have a combine type of STACK or COMMON.

SEGSIZE is typically used to set the size of a stack segment but you can use
it to set the length of any segment. The user-specified length is used in the
segment. There is a poséily of overlapped data. No further warning will be
given and loading continues.

410 User-specified base address does not match alignment type for segment
[SEGMENT__NAME].

501

Chapter 29: Loader Error Messages

411

412

413

414

415

The loader displays this message when the base address specified in the SEG
command does not match either the alignment carried bythe segment or with
the alignment specified by an ALIGN command. The loadeorigs the

alignment attribute and loads the segment at the user-specified base address.
Loading continues.

Inpage alignment cannot be performed for segment [SEGMENT__ NAME].

The named segment is too large to fit in a p@§6 pytes). The segment is
loaded at the next page boundary. Loading continues.

Respecification of output object module format.

In any given invocation of the linking loader, you can specify only one output
format among the following three: HP-OMF 86 format absolute, Intel
Hexadecimal Object file format absolute, or HP 64000 format absolute. You
can override the default format; however, if you explicitly request either HP
64000 absolute output or Intel Hexadecimal output on themand line or

in a LIST command, or any combination of these, the above warning message
is generated. Loading continues; the output format is left as it was first set.

The following command/option is not allowed after a LOAD command:
[OPTION__NAME].

The output format options in the LIST and NLIST commands (B, |, or H)
cannot be specified after a LOADmmand idssued. This is because the
loader’s internal data structures have been set to accommodate only the
output format in force at the time of the first LOAD command. The option
specified in the OPTION__NAME field of the error message is ignored and
loading continues.

SEGSIZE value too small for stack or common segment:
[SEGMENT__NAME].

The length chosen for the stack or common segment named inrohe e
message was too small to accommodate the length requested by a portion of
the segment. Depending upon the actual amount of stack or common space
used by the program, the length may be adequate. To alleviate this condition,
eliminate the offending SEGSIZE directive, or increase its length parameter.
The user-specified length for the segment is used. The pivgsibdata

overlap exists and no further warning will be given. Loading continues.

OMF buffer flushed: NAME command ignored; output module name is:
[MODULE__NAME].

502

416

417

418

419

Chapter 29: Loader Error Messages

This message occurs if an internal table containing class and segment gr
names is about to overflow the buffer. It has to be flushed to the output o
module before any NAME command is enatered. At that time, the
module__name W default to the mme of the loader command file, or if

there is no command file, to the first file loaded. Module_name becomes the
default module name. Loading continues.

Undefined external referenced in module.

This message is generated only when the LIST E option is selected during an
incremental link. This option specifies this warning message be generated
during an incremental link for any undefined external symbols that are
referenced. The module name displayed in the message makes a reference to
an external symbol that was neither defined by you nor defined in another
module. The name of the referenced externiidtisd along with the module

name. Linking continues. Note that this warning usually does not indicate a
problem as undefined external symbols are permitted in relocatable object
modules. However, this warning alerts you to any unresolved external symbols
that you may have thought were already resolved.

Duplicate ORDER command: previous order commands ignored.

The linker found a second or subsequent ORDEMRmand. Any

information contained in the previous ORDER command(s) is now lost, even
if the newly-found ORDER aomand containsreors. If the newly-found
ORDER command containsrers, no ORDER ammand information is

saved unless another valid ORDER commandusd later in the comand

file. Linking continues.

Null GRPDEF record referenced during relocation.

A group containing nonember segments or externals was used as the base of
a relocation operation. The base of the item being relocated rather than the
non-existent base of the group was used to perform the relocation. Linking

continues.

No object file entries for user-defined segment.

A segment name or class name has been specified in an ALIGN, INITDATA,
ORDER, SEG, or SEGSIZE command that was nahfl anywhere in the

object modules that were loaded by the linker. This error message either
means thatgur canmand file has annnecessary segment or class name
reference or you are not loading one or more of your object modules. Both of
these situations can be remedied in the command file by deleting references

503

Chapter 29: Loader Error Messages

to the displayed segment or class or byincluding LOAD commands for the
object modules containing the displayed segment or class. Linking continues.

420 No object file entries for user-defined group.

A group rame has been specified in a GROUP command that waeunod f
anywhere in the object modules that were loaded by the linker. This either
means thatgur canmand file has annnecessary groupame reference or

you are not loading one or more of your object modules. Both of these
situations can be remedied in the command file by deleting references to the
displayed group or by including LOAD wonands for the object modules
containing the displayed group. Linking continues.

421 Nonstandard debug information encountered and removed.

Debug information that is not part of the standard HP-OMF86 or Intel file
format was stripped from the file.

422 External defined in different segment than specified in reference: [SYMBOL]

An external symbol was defined to exist within a specific segment but, after
resolving the external with a public symbol, the base segment for the external
is different. In this case, the linker gives a warning so the user is aware of this
incompatibility. The best solution is to place the definition of the external
symbol within the correct segment. If this segment is not known, the external
symbol should not be defined within any segments.

423 TYPDEF record limit exceeded - types set to NULL

The HP-OMF86 file format is only able to represent 32k types. If this limit is
exceeded in the linker, this warning is generated. All type information after
the first 32k types will be lost. All of the type information qgaobably be

saved through the appropriate use of the TYPEMERGH&'moand in the
linker command file.

424 The following pathname was truncated in the OMF output: [FILENAME]

The maximum length for pathnames in OMRY5 characters. If the length of
the absolute path to the object file is greater than this limit, then the
pathname must beuncated.

425 Multiple Register Initialization for: [REGISTER]

Three registers in the 8086/186ocessor may be initialized at runtime. These
registers are CS:IP, DS, and SS. Normally, only a single input module contains

504

Chapter 29: Loader Error Messages

the register initialization information. If more than one input module
contains this information, then this error is generated and the last
initialization value is used.

505

Chapter 29: Loader Error Messages

300

301

302

303

304

305

Error Messages

Invalid name [INVALID __ TEXT].

The loader displays this message when it encouilkegal characters or too
many characters in a command. The maximum length of PUBLICs is 255
characters; the maximum length of SEGs, CLASSES, and GROUPs is 40
characters. The command that uses the name ipromessed. Loading
continues.

Invalid hexadecimal value: [HEX_VAL]

The linker expected to find a valid hexadecimal constant; instead, the text
displayed in the HEX_VAL field of the message was found. The text should
be corrected to conform to the syntax for hexadecimal constants: digits 0to 9,
letters a through for A through F, preceded by a leading zero if a letter is
used as the most significant digit, and followed by a trailing h or H.

Invalid command operand.

An operand specified for a command contains invalid characters, does not
exist, or is too large. Loading continues; the command in whichrtbe e
occurs is ignored.

Error occurred when closing a file.
Loading continues; however, the file in question may become corrupt.
Undefined external encountered as a member of group.

In the assembler, it is possible to defingaugp in terms of segments,

segments of variables, or segments of external symbols. Since external symbols
may be defined outside of any segments, the assembler does not have enough
information to decide what segment the external belongs to, so it must wait
until link time before this is decided. And if the external symbol is not defined
in any input modules, the linker is also unable to decide which segment
belongs in the group. Under these circumstances, this error message is
generated and no segment is placed in the group.

Invalid loader command: [INVALID __ COMMAND].

The command displayed in this message is not a valid loader command.
Loading continues; the erroneousramand is igored.

506

Chapter 29: Loader Error Messages

306 Invalid command syntax at or before: [COMMAND __ TEXT].
Loading continues; the command in which theeoccurs is ignored.
307 Duplicate public symbol: [DUPLICATE SYMBOL__ NAME].

The symbol name displayed in this message was defined previously in another
module. Loading continues; the first definition of this public symbol is the
one the loader uses for symbol recognition.

308 Undefined external referenced in module
[MODULE__NAME:EXTERNAL _NAME].

The module name displayed in this message makes reference to an external
symbol that was neither defined by the user nor defined in another module.
The name of the referenced externdisiged along with the moduleame.

Loading continues; zeros are substituted for the value of the external.

309 Relocation error at [ERROR__ ADDRESS].

A relocated value is too large to fit in the number of bytes allocated for it.

For example, this message occurs if a self-relative jump to a NEAR label is
outside the boundary ofl®-bit displaement. Loading continues; however,

the specific relocation is not performed and the absolute object module is not
likely to be useful.

310 Segment mismatch on combine type for segment [SEGMENT__ NAME].

The loader displays this message when different modules that contain parts of
the same segment have different combine type attributes. Loading continues;
the specified segment is NOT COMBINED.

311 Combined segment is larger than 65536 bytes.

During initial loading, a (combined) segment length exceeds the 64K
segment size. Loading continues; however, the absolute file produced is most
likely useless.

312 Unexpected character in symbol [SYMBOL__NAME].

The loader displays the name of the symbol in which an invalid character
occurs. Loading continues; the symbol containing the invalid character is not
processed.

313 Segment(s) located beyond G#FFH boundary.

507

Chapter 29: Loader Error Messages

314

315

316

317

318

319

The linked module exceeds memory requirements foBOi86/186
microprocessor. Loading continues; however, the absolute file produced is
most likely useless.

Procedure/block nesting limit exceeded.

The loader displays this message if the source program contains procedures
and functions nested to a level deeper than 15. Loading continues; however,
the loader cannot produce the proper procedure and scoping information.

Continuation line error.

The loader displays this message when it encounters incorrect syntax for
specifying a continuation line. Loading continues; however, the loader ignores
continued information until it encounters a line of code beginning with the
correct syntax.

Specified group base is not divisible by 16 [GROUP__ NAME].

A group base value specified in a GROUPhooand for the

GROUP__NAME displayed in the message is not divisible by 16, and hence
is not on a paragraph boundary. In order to fix this problem, a valisétiv

by 16 should be substituted in the GROURarand. Loading continues; no
group addresses arssigned.

RESNUM or RESADD command overlaps previously-reserved memory.

The loader generates this warning when the first part of an area previously
reserved bya RESNUM or RESADD directive, an absolute segment, or a
segment specified in a SEG directive conflicts with a reserved area.
Relocatable segments will not overlap. Loading continues; any additional
non-overlapping space is reserved.

This command not allowed with relocatable output: ignored.

The INITDATA commandlsould only be used when you are performing a
final (not incemental) link. Loading continues; the INITDATA command is
ignored.

Numeric value out of range: [BAD_VALUE]

A numeric value found in the oomand file was outside the range

(0< =value< = OFFFFH) fol6-bit values or outside the range

(0< =value< = OFFFFFH) foR0-bit values. This can be fixed byrcecting

the erroneous value in thernmand file. Linking continues. The command
containing the incorrect value is ignored.

508

329

Chapter 29: Loader Error Messages

Invalid BLKDEF record for block: [BLOCK_NAME]
Invalid unnamed BLKDEF record

An illegal BLKDEF record was seen by the linker. This record either has n
name or has aiflegal attribute. Thisor probably indicates that the file is
either corrupt or was generated by a nonsupported tool.

509

Chapter 29: Loader Error Messages

330

331

332

333

334

335

336

337

338

Fatal Error Messages

Bad Intel object record.

The byte that was read in as the first byte of an Intel OMF record was not a
valid record marker as indicated in the Intel 8086 Relocatable Object Module
Format Specification. The input file has probably been corrupted.

Invalid checksum in object record.

The object record has a checksum error; the input object file has probably
been corrupted.

Load terminated by user.
This error is generated when the EXIThuomand is en@untered.
Unable to open file [FILENAME].

The file named in this message could not be opened. Checlorfect
spelling and verify the file’s existence.

Linker Internal error # [ERROR__NU MBER].

Should this error display, contact Hewlett-Packard Customer Support.
First record is not a valid relocatable header record.

A header record is not the first record in the object module.
Unexpected end of file encountered.

The loader encountered a physical end-of-file before it read records to
indicate end-of-module.

lllegal object record length [LENGTH].

The object record exceeds 64K bytes. LENGTH is the length of the object
record in bytes.

Segment, group, or external index out of range.

An external reference is made to an external symbol that does not exist in the
object module.

510

339

340

341

342

343

344

345

Chapter 29: Loader Error Messages

Unable to open temporary file.

Disk file output error -- program aborted.

While the linker was attempting to write to a disk file, an error occurred.
Usually, this is caused by a lack of disk space. Freeing up some disk space
may help.

Disk file input error -- program aborted.
While the linker was attempting to read from a disk file, an error occurred.
Disk file seek error -- program aborted.

While the linker was attempting to seek a position in a disk file, an error
occurred.

The command line exceeds the command line length limit:

The maximum command line lengthli824 characters. If this limit is
exceeded, then the command linarat be processed.

File Overwrite condition: [TEXT].

It is possible for the creation of an output file totdegone of the input files

or another output file. For thisreason, the linker checks to see if the creation
of the output file will overwrite one of these other files. If this is the case, then
this error is generated and the linker does not proceed any further.

BLKEND record has no matching BLKDEF, or nesting limit previously
exceeded.

If the end of a procedure block (in the debug information within a module)
does not have a matching beginning, then this error is generated. The input
object file must be recreated by the assembler without any detected errors.

511

Chapter 29: Loader Error Messages

512

Chapter 30: Librarian Error Messages

30
B

Librarian Error Messages

List of the librarian error messages.

513

Chapter 30: Librarian Error Messages

100

101

102

104

106

107

108

Librarian Error Messages

Could not close file [FILENAME] to open another file.

In order to reduce prossing overhead, the librarian keeps OPENed files
open. This message is displayed if too many files are open and the librarian
unsuccessfully attempts to close a file in order to open a new one. To remedy
this situation, reduce the number of files you are working with during a given
session.

Unable to open file [FILENAME].

The librarian could not open the named file when executing an ADDMOD,
REPLACE, or OPEN command. Thisrer could be caused by either an
invalid filename specification or when the specified file does not exist. The
librarian ignores the comand that generates thiser.

Unable to close file [FILENAME].

The librarian generates this error when it encounters an operating system
error, and cannot close thamed file. This message typically is accompanied
by another error message that provides a more specific reason for not closing
the named file.

File [FILENAME] not included.

The librarian issues this message whentitneg execute the ADDMOD
command because the named filedsrapted or does not exist. This message
has a companion message that specifically states whythe named file is not
included in the library.

File [LIBRARY__NAME] exists already.

The librarian generates this message when you have used the CREATE
command, and the named libratyeently exists. The librarian displays a
warning in batch and interactive modes.

File [FILENAME] does not exist.

The librarian generates this message when you have issued an OPEN
command, and the named file does not exist. If you are creating a new library
file, you may ignore this message.

Library file [LIBRARY__NAME] not opened.

514

201

203

204

205

206

207

208

209

Chapter 30: Librarian Error Messages

Module [MODULE__NAME] not found.

The librarian could not locate the named module in the libraryto execute
DELETE, REPLACE, or EXTRACT command.

Module [MODULE__ NAME] already exists in current library

The librarian cannot execute an ADDMOD or ADDLIBemand because
the module named in the message exists in theent library. If you wish to
replace a module in the library, use the REPLACE command. The librarian
ignores the ADDMOD or ADDLIB conmand that contains a duplicate
module name.

[FILENAME] is a library file.

The librarian generates this error message when it attempts to execute an
ADDMOD or OPEN command, and the associated filename is not an object
module. The command containing threamneous file is ignored.

[FILENAME] is not a library file.

The librarian issues thismr message when it attempts to execute an
ADDLIB or OPEN command, and the associated filename is an object
module. The librarian ignores theromand containing theeneous file.

Module [MODULE__NAME] is not included in the library.

The librarian issues this message with a companion message that gives the
specific reason for not including the named module in the library. This
message describes the result: the named module is not included in the library.

Bad object record.

Either the object module has been corrupted or it is not a legal relocatable
object file. The librarian issues this message with a companion message that
names the file with the bad object record. The command associated with the
bad object record file will be ipred.

Bad library header record.

The library has a bad header record. The librarian issues this message with a
companion message that names the file with the bad header record. The
command associated with the bad library header recitirdenignored.

Duplicate symbol [SYMBOL __NAME].

515

Chapter 30: Librarian Error Messages

210

250

251

253

254

255

256

A module named in an ADDLIB, ADDMOD, or REPLACE command has
the same public definition symbol that occurs in another module. The
librarian issues this message with a companion messagerthédes

information about what action it takes. The librarian considers symbols to be
case-sensitive.

Bad object record in file [FILENAME].
The named library or module file may have beerrgpted.
Out of memory.

The librarian issues this message when there ismmigh systenmemory to
execute commandssued since the last CREATE or OPENneoand.

Failed writing library [REASON].

The librarian generates this message when it attempts to execute a SAVE
command and eeot. The message provides the reason forilityato create

a library. The librarian abandons the currerssgen affected by the SAVE
command that caused theer.

Library [LIBRARY__NAME] not written.

The librarian issues this message whenraareoccurs earlier in the sgion

that prevents the library from being saved. This message is typically
accompanied by another message that contains the reason the named library
was not created.

Failed writing module [MODULE__ NAME] to file [FILENAME].

When attempting to execute an EXTRACT command, the librarianata

write the named module from an existing library to the (new) file, which is
external to the library. A companion error message describes the reason that
the module cannot be extracted. If an error is encountered in batch mode, all
commands following the EXTRACT commandlwot be executed; however,
they will still be checked for syntactic validity.

Replacement not done.

The librarian issues this message whenritnca execute the REPLACE
command for the reason specified in the companion message.

Extraction failed.

The module named in the EXTRACT command is not extracted.

516

Chapter 30: Librarian Error Messages

257 lllegal command.

The librarian generates this message when it encounters either an incorrect
command sequence or anampect conmand syntax.

259 Quote Not terminated.

A string is missing a closing quote.
262 There is no library to be saved.

The SAVE command does not have a library to save.

517

Chapter 30: Librarian Error Messages

518

Index

% escape charact&56
_ (underscore characteBy

A suffix, 23-24
absolute expressioa29
absolute segment
loader,370
acvt86 translation too290-293
adding base and indexregister
in expressionl34
addition operator
binary,138
unary,137
ADDLIB librarian command444
ADDMOD librarian command444
ALIGN loader command387-388
align-type attribute
loader,374
alignment 37
allocating record storag&15
allocating structure storage24
AND operator,144
anonymous referencé63
with expression]35
ap86,30-31
ar86,45-48
archiver45-48
arithmetic operator 37
as8623-29
ASCII codesbh8
asmb_sym file23
assembler23-29
control general syntag95
cross reference format13-216
directive,79-126
error message465-492

519

Index

assembler (continued)
general controls]95
listing,211-216
operation52
primary controls195
statement syntag8

symbol table forma213-216
assembler controls
CASE,197

DATE, 197
DEBUG,198
EJECT,206
ERRORPRINT198
GEN, 206
general206-208
GENONLY, 206
INCLUDE, 207
INCLUDE with macro preprocessaz48
LIST, 207
MACRO, 200
MODO086,200
MOD186,201
MODV20, 201
OBJECT,202
OPTIMIZE, 202
PAGELENGTH,202
PAGEWIDTH, 203
primary,197
PRINT,203
RESTORE 207
SAVE, 208
SYMBOLS,204
TITLE, 208
TYPE,204
UNREFERENCED_EXTERNALS204
WORKFILES,205
XREF,205
assembler syntax
blank line,70
commentg9
continuation liney0

520

assembler syntax (continued)
keyword,69
label,69
operandp9
prefix, 69
symbol,59
assembling program modulés;14
assembly source translation
acvt86 tool290-293
assembly source translation
HP 64853 to HP B144279-306
ASSUME directive 86-87
assumed]63
* operator,141, 389
attribute
BASE, 74
CS ADDRESSABILITY,77
INDEX, 74
OFFSET,73
RELOCATION TYPE,75
SEGMENT,75
SEGMENT ADDRESSABILITY,76
SEGMENT RELOCATION,75
TYPE,73

balanced text strin@52
baltex,252
base address
loader,369
base address assignment
loader,378-382
BASE attribute 74
base register
in expressionl34
binary minus138
binary plus138
blank line in syntaxy0
bracket macro functior255
byte align-type
loader,375

Index

521

Index

caret,466
CASE assembler contrdl97
case sensitivity399
assembler control497
macro preprocessa244, 251
case-sensitivity?25, 31, 35, 41, 56
changes to the assemblg7r5-278
character constang/
character se§6-58
characters24
class
loader,370
class name
loader,372
CLEAR librarian command45
clearing flags24
code translation
acvt86 tool290-293
HP 64853 to HP B1442,79-306
colon
with label,62
combine-type attribute
loader,373
command file
loader listing416
command files]8, 33
command line lengtigl1l
command synta®1-48
commands
arguments to loader command84
length of with loader385
librarian,441
order in loader385
comment in syntaxy9
comment macro functior255
comments
librarian,439
loader,389
comments, linker3bs
common segment
loader,373

522

complete name385
loader,372
constantg4
character67
integer,65
real,66
continuation line in syntax0
controls,25
controls, assembler
CASE,197
DATE, 197
DEBUG,198
EJECT,206
ERRORPRINT 198
GEN, 206
generall95, 206-208
GENONLY, 206
INCLUDE, 207
LIST, 207
MACRO, 200
MODO086,200
MOD186,201
MODV20,201
OBJECT, 202
OPTIMIZE, 202
PAGELENGTH,202
PAGEWIDTH, 203
primary,195, 197
PRINT,203
RESTORE 207
SAVE, 208
SYMBOLS, 204
TITLE, 208
TYPE, 204
UNREFERENCED_EXTERNALS204
WORKFILES,205
XREF,205
CREATE librarian commandi45
creating macro269
cross reference forma13-216

Index

523

Index

cross reference tabl28
CS ADDRESSABILITY attribute?77

D data definition directive83
data object83
DATE assembler control,97
DB directive,88-93
with string,92
DD directive,88-93
DEBUG assembler contral98
debug information25
default
PROC directive109
segment82
segment registeB7
segments for memory addressihgl
DEFINE macro function269
defining macros269
definitions
external 6
PUBLIC, 6-7
storage location$
DELETE librarian commandi46
differences between processor mo@&89-210
directive
assembler79-126
ASSUME,86-87
data definition83
DB, 88-93
DB with string,92
DD, 88-93
DQ,88-93
DT, 88-93
DW, 88-93
DW, DD, DQ, DT with string92
END, 94
ENDP,109-110
ENDS (segments}18-122
ENDS (structures),23—-126
EQU,96-98
EXTRN, 100-102
GROUP,103-104

524

Index

directive (continued)
LABEL, 105-106
NAME, 107
ORG,108
PROC,109-110
program linkage84
PUBLIC,111
PURGE112-113
RECORD,114-117
SEGMENT,118-122
segmentationgl
STRUC,123-126

DIRECTORY librarian commandi46

division operator141

DQdirective,88-93

DT directive,88-93

DW directive,88-93

DW, DD, DQ, DT directive
with string,92

8086processor mode09
EBCDIC codesh8
EJECT assembler contr@06
eject page25
END directive 94
END librarian command47
END loader comman®89
ENDP directive,109-110
ENDS directive 118-122
ENDS directive (structures)23-126
EQ operatorl45
EQS macro functior257
EQU directive 96—98
EQU symbols defined4
error messages, assembig5-492
ERROR loader commandg9
error messages
formats,461-464
interactive vs. non-interactivé62—-464
librarian,513-518
loader,499-512
macro preprocesso493-498

525

Index

error messages, suppseing,25
ERRORPRINT assembler contrab8
escape macro functiog55
EVAL macro function257
example program
assembling program modulés;14
description of3-8
linking relocatable object file4,7-20
objectives of2
EXIT loader command390
EXIT macro function258
expression
absolute 129
anonymous135
base register irn,34
with EQU directive 136
external 130
generally128
group rame operand,33
index register in134
label name operand33
in macro preprocessa250-252
numeric operand,31
operandl131
operandsl162-169
operator,137
operator, arithmetid 37
operator, logicall44
operator, record,54
record field operand,32
record operand,32
register indirect134
relocatable130
segment name operarkB83
string operandl 32
structure field operand34
variable name operanti33
external definitionst
external expressioi30
external references,
checking25

526

Index

EXTRACT librarian comman47
EXTRN directive, 100-102

file format,18, 23-24, 29, 32-35, 40, 44
file names
assembler outpug4
object,17, 23
output,33
source23
symbol file,24
flags
assembler24-25
unsetting24
FORMAT loader command91
formats for error messagel§1-464
FULLDIR librarian command448
function
% ((bracket) macra@55
bracket macro255
%’ (comment) macra255
comment macra255
DEFINE macro269
EQS macro257
%n (escape) macr@b5
escape macr@bb
EVAL macro,257
EXIT macro,258
GES macro257
GTS macro257
IF macro,258
LEN, 245
LEN macro,260
LES macro257
LTS macro257
MATCH macro,260
METACHAR macro 262
NES macro257
REPEAT macro262
SET macro263
SUBSTR 245
SUBSTR macro264
WHILE macro,264

527

Index

GE operatorl45
GEN assembler contrd06
general assembler control®5, 206—-208
general control5
general syntaXg8
GENONLY assembler contra206
GES macro functiorg57
group,103-104
loader,371
mismatched groups merged¥,1
OFFSET operator with,04
override operatorl48
group base address
loader,371
GROUP directive103-104
GROUP loader command92—-393
group name
defined 64
as expression operani33
groups.26, 35-36
GT operatorl45
GTS macro function257

HELP librarian commanadi49
HIGH operator143
HP 64000 format
Sesdfile format
HP 64853rograms, linking to303-304
HP 64853 to HP B1449 translatia2,9-306

identifiers,24
IF macro function258
immediate 164
immediate value
See alsmumeric value
INCLUDE assembler contro207
with macro preprocessaz48
include file,26
incorrect macro exampl2g5
incremental linking32, 368
INDEX attribute,74

528

Index

index register
in expressionl34
INITDATA loader command394
initialization
record,115
segment registed5
structure 124
initialize data394
initialized memory38
inpage align-type
loader,375
instruction mnemonic define@?2
instruction set52
8086/186339
8086/186 in hexadecimal ord&Q7-338
assemblerl74
instruction set26
integer constang5

keyword defined60
keyword in syntaxg9

L_to_086 porting tool304
label,83
in syntax,69
LABEL directive,105-106
label name
defined 62
as expression operani3
1d86,32-44
LE operator145
LEN function,245
LEN macro function260
LENGTH loader comman®95
LENGTH operatorl151
LES macro function257
libary maintainer (ar86%5-48
librarian
command syntax38
commands441
comments439
error message513-518

529

Index

librarian (continued)
featuresy
introduction 432
sample progran}53, 456
special characterd38
use of433

librarian command
ADDLIB, 444
ADDMOD, 444

CLEAR, 445

CREATE,445

DELETE,446

DIRECTORY, 446

END, 447

EXTRACT, 447

FULLDIR, 448

HELP,449

OPEN,449

REPLACE, 450

SAVE, 450
library files, creatingl5-16
linker, 17
linker/loader32—-44
linking loader

introduction,361-366
linking to 64853rograms303—-304
linking, definition of,17-20
LIST assembler contro207
LIST loader comman®96-399
LISTABS loader commandd400
listing, assemble12
listings,9, 15, 18, 23
LISTMAP loader commandg400-401
literal (*) character247
literal character256
LOAD loader command02
load map,18

530

Index

loader,17, 361-366
absolute segmen3y0
align-type attribute374
base addres869
base address assignme3it8—382
byte align-type375
class370
class name372
combine-type attribute873
command fildisting, 416
common segmen873
complete name372
error messaged499-512
fatal error messages10
featuresiv
group,371
group base addres¥/1
incremental linking368
inpage align-type375
introduction,361-366
linking/loading from libraries362
logical segment369
memory segmenB874
merging mismatched group®/1
module,372
non-combinable segmerg73
non-fatal error messagex)6
page align-type374
paragraph numbe8;70
physical segmen869
primary functions368
public segment373
relocatable segmeri70
segment numbeB70
segments and load addres$69
stack segmenB73
symbol with,384
warning messagespo0
word align-type 374

531

Index

loader command
ALIGN, 387-388
command argumen384
command length385
command order385
* (comment),389
descriptions386
END, 389
EXIT, 390
FORMAT, 391
GROUP,392-393
INITDATA, 394
LENGTH, 395
LIST, 396—-399
LOAD, 402
NAME, 403
NLIST, 396-399
NOTYPEMERGE 411
ORDER ,403-404
PUBLIC, 405
RESADD,406
RESNUM,406
SEG,407-408
SEGSIZE 409
START,410
TYPEMERGE 411
WIDTH, 412

loader commands
ERROR,389
LISTABS, 400
LISTMAP, 400-401
NOERROR 389
WARN, 389

logical operatorl44

logical segmentg2
loader,369

LOW operator143

LT operator145

LTS macro function257

532

Index

M MACRO assembler contra200
macro example (incorrect2p5
macro function

bracket 255
comment255
DEFINE,269
EQS,257
escape255
EVAL, 257
EXIT, 258
GES,257
GTS,257
IF, 258
LEN, 245, 260
LES,257
LTS, 257
MATCH, 260
METACHAR, 262
NES,257
REPEAT,262
SET,263
string relational257
SUBSTR 245, 264
WHILE, 264
macro preprocesso3p-31, 243-252
balanced text string (balteX®52
error message493-498
INCLUDE file, 248
input parsing248
input source characteristi&}4
literal character247
metacharacter (%245
output buffering248
starting,9
symbol in,251
with expression250-252
with operators250-252
man page22
MASK operator154
MATCH macro function260
memory addressing68-169

533

Index

memory segment

loader,374
message severitggo
METACHAR macro function262
microprocessor§2

binary,138
unary,137
with base and index registdi34

mismatched groups, mergiry 1
MOD operator141
MODO086 assembler contrd2p0
MOD186 assembler contrdtp1
modifier (codemacro specmo@20
MODRM
codemacro directive34
description of MODRM bytel69
values for MODRM byte358
MODRM byte,169
module
loader,372
size, 411
MODV20 assembler contra201
multiple register initialization505
multiple segment definitior,20

N NAME directive,107
NAME loader command03
NE operatorl45
NES macro function257
nesting segment$21
NLIST loader commang96—-399
nme64 porting tool305
NOERROR loader commanag9
non-combinable segment
loader,373
NOPs, removing7
NOT operatorl145
NOTYPEMERGE loader commandl1
number
17-bit,130

534

numeric constant
other base$5

numeric value
character constang/
constantp4
as expression operant3l
immediate valuel64
integer constang5
real constant6

.0 suffix, 23, 27
OBJECT assembler contr@02
OFFSET attribute?3
OFFSET operator,49

with group,104
OMF format

Sedfile format
OPEN librarian command49
operand

in syntax,69

positioning,164

required typingl62
operating notice®75-278
operation differences, processor mo@89-210
operation of assembles?
operator

AND, 144

/,141

EQ,145

GE, 145

GT,145

HIGH, 143

LE, 145

LENGTH, 151

logical,144

LOW, 143

LT, 145

macro preprocessa250-252

MASK, 154

—, unary,137-138

MOD, 141

* 141

Index

535

Index

operator (continued)
NE, 145
NOT, 145
OFFSET 149
OR,144
+, unary137-138, 145
PTR,147
record,154
SEG,149
SHL, 142
SHORT,146
SHR,142
SIZE,152
THIS, 146
TYPE, 150
WIDTH, 155
XOR, 144
operator precedencg59
operatorsl137
OPTIMIZE assembler contro202
optimizing,27
OR operatorl44
ORDER loader commandp3—-404
order of input files33
ORG directive 108
override
group,148
segmentl148, 172
segment override checked against ASSUNE

P % (metacharacter45, 255
page align-type
loader,374
page eject25
page length27
page width27
PAGELENGTH assembler contrd02
PAGEWIDTH assembler contrad?03
paragraph number
loader,370
physical segmeng1
loader,369

536

Index

+,145
binary,138
unary,137
with base & indexregistet34
porting tool
L_to_086,304
nmo64,305
position of operand,64
pre-defined macro functio253-266
precedence
of operators159
prefixin syntax69
preprocessoi30-31
primary assembler controls95, 197
primary controls25
primary functions
loader,368
PRINT assembler contrad?03
PROC directive109-110
default,109
processor mode
80186,209
8086,209
differences209-210
V20,209
program linkageg84
program linkage directive4
program segmentatio8l
PTR operatorl47
PUBLIC directive, 111
PUBLIC loader commandai05
public segment
loader,373
PURGE directivel12-113

guoted string
as expression operant32

real constantG6

record
differences from structur&4
as expression operaniB2

537

Index

record (continued)

initialization, 115

name defined43

similarities to structureg3
RECORD directivel14-117
record field

as expression operant32

name defined43
record operatorl54
register

16-bit, 167

8-bit, 167

8087,168

assumed type,63

base 167

floating point,168

index,167

segment81, 167-168
register indirect expressioh34
relocatable expressioh30
relocatable segment

loader,370
RELOCATION TYPE attribute75
REPEAT macro functior262
REPLACE librarian command50
RESADD loader command06
RESNUM loader command06
RESTORE assembler contr@n7
ROM, 18

17-bit number130
SAVE assembler contra208
SAVE librarian command50
saving and restoring settin@8
SEG loader commandp7-408
SEG operatorl49
segment
addressabilityl 70
default,82
logical,82
maximum numberl21
nesting,121

538

Index

segment (continued)
override operatorl48
register 81
SEGMENT ADDRESSABILITY attribute76
SEGMENT attribute75
SEGMENT directive118-122
segment name
defined 64
as expression operant33
segment number, load&70
segment override,72
checked against ASSUMBEY3
segment register
default value87
initialization,95
SEGMENT RELOCATION attribute?5
segmentation
directive,81
multiple segment definitior,20
of program81
segments and load addresses
loader,369
SEGSIZE loader command09
SET macro function263
severity, messag889
sharing code between file3)
SHL operatorl42
SHORT operatorl46
SHR operatorl42
SIZE operatorl52
/ operator141
specifier (codemacro specmoép0
specmod219
stack segment
loader,373
* (comment) loader comman@89
START loader command,10
string
as expression operant3?2
with DB directive,92
with DW, DD, DQ, DT directive92

539

Index

string relational macro functio@57
STRUC directive123-126
structure

differences from recor@®4

initialization,124

name definedg3

similarities to recordg3
structure field

as expression operant34

name definedg3
SUBSTR macro functior245, 264
subtraction operator

binary,138

unary,137
suffixes,23-24, 29, 33, 45-46
supported instruction sed2
supported microprocessob,
symbol

EQU symbolsg4

group rame 64

instruction mnemoni&2

keyword,60

label,62

label with colong2

macro preprocesso251

record field name§3

record name§3

segment namé4

structure field ame 63

structure mme,63

variable 62
symbol in syntax59
symbol information26
symbol table format213-216
symbol with loader384
SYMBOLS assembler contrad?04
syntax

blank line,70

commentp9

continuation line70

keyword,69

540

Index

syntax (continued)
label,69
operandp9
prefix, 69
symbol,59

THIS operatorl46
TITLE assembler contro208
translation
acvt86 tool290-293
HP 64853 to HP B1442,7/9-306
TYPE assembler contrad?04
TYPE attribute/3
type limit, 411
TYPE operator]150
TYPEMERGE loader command]l1l

unary minus137
unary plus137
unreferenced external®3
UNREFERENCED_EXTERNALS assembler contr204
unsetting flags24
upper case
Seecase-sensitivity
user-defined macr@69
user-defined macrog67-274

V20 processor modeQ9
V20/V30 mnemonic7
variable,83
variable name

defined 62

as expression operani3
version number275-278

WARN loader command®g89
warnings, supprssing,28
WHILE macro function264
WIDTH loader command#12
WIDTH operator155
word align-type

loader,374
WORKFILES assembler contrddp5

541

Index

X XOR operatorl44
XREF assembler contrdp5

542

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met it§ighed
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau'’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or repfaeaducts which

prove to be defective.

Warranty service of this producilibe performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility onpyon HP’s prior
agreement and Buyer shall pay HRIsind trip travel expenses. In all other
cases, products must be returned to a servidéyatesignated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming insructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,

unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fithess for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other custssistance agements
are available for Hewlett-Packard products.

For any assistance, contaouy nearest Hewlett-Packard Sales and Service
Office.

	Features
	In This Book
	Contents
	Quick Start Guide
	Getting Started
	Command Syntax

	Assembler/Macro Preprocessor Reference
	Assembler Introduction
	Assembler Syntax
	Symbol and Expression Attributes
	Assembler Directives
	Expressions
	Instructions and Operands
	Assembler Controls
	Assembler Listing Description
	Codemacros
	Macro String Preprocessor Introduction
	Pre-Defined Macro Functions
	User-Defined Macros
	Assembler versions
	Converting HP 64853 Assembly Language Programs
	8086/186 Instructions in Hexadecimal Order
	8086/186 Instruction Set Summary

	Linker/Librarian Reference
	Linker/Loader Introduction
	Linker/Loader Operation
	Loader Commands
	Linker/Loader Listing Description
	Librarian Introduction
	Librarian Commands
	Librarian Listing Description

	Error Messages Reference
	Error Message Formats
	Assembler Error Messages
	Macro String Preprocessor Error Messages
	Loader Error Messages
	Librarian Error Messages

	Index
	Certification and Warranty

