
HP 64873

V-Series
Cross Assembler/
Macro Preprocessor

Reference

HP Part No. 64873-97007
Printed in U.S.A.
June 1991

Edition 3

Certification and
Warranty

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the
extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility
at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer’s facility only upon
HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service
facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to HP from another country. HP
warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse, operation

outside of the environment specifications for the product, or improper
site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1991, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and in other countries.

V20 and V30 are registered trademarks of NEC Corporation.

V25, V33, V35, V40, V50, V53, and V60 are trademarks of NEC
Corporation.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1
Edition 2

64873-97001, February 1990
64873-97004, July 1990

Edition 3 64873-97007, June 1991

Using This Manual

Your HP 64873 V-Series Cross Assembler/Linker documentation
consists of three manuals:

64873 V-Series Cross Assembler/Macro Preprocessor
Reference

64873 V-Series Cross Linker/Librarian Reference

A 64873 V-Series Cross Assembler/Linker User’s Guide

The Reference
Manuals

The two Reference manuals are in the same binder. The Reference
manuals document the basic features of the HP 64873 Cross
Assembler/Linker (assembly language, assembler syntax, directives,
macros, assembler controls, program segments, and relocation, linker
and librarian commands, and so on).

The User’s Guide The HP 64873 V-Series Cross Assembler/Linker User’s Guide contains
information on how to start the HP 64873 product on your host
computer. It also gives the command syntax and some short examples
to get you started with the product.

In this Book This documentation is written for the experienced program developer,
and assumes a working knowledge of the V-Series family of
microprocessors, and the Intel 8087 or NEC 72291 coprocessors.

Several useful and informative program examples and example
fragments have been provided to clarify the references.

This manual is intended as a reference for the features of the HP 64873
Advanced Cross Assembler/Macro Preprocessor. However, this
documentation does not describe the microprocessor itself, nor does it

teach you how to write working programs. For such information, refer
to the following source:

 NEC 70108(V20) Microprocessor User’s Manual.

NEC 70320 (V25) Microprocessor User’s Manual

NEC 70136 (V33) Microprocessor User’s Manual

For additional information call (800) 632-3531.

Manual Organization This manual is organized in two sections. The first nine chapters of
this manual describe the asv20/asv33 assembler. The last four chapters
describe the apv20/apv33 macro preprocessor. There are several
appendixes that contain information about both the assembler and
macro preprocessor including a description of the acvtv20 porting tool.
This nonsupported porting tool can help with translation of source files
from the HP 64853 dialect to the HP 64873 dialect. Another
nonsupported tool is intel2nec, which can assist in the translation of
8086 assembly source to NEC V20 assembly source. The information
in this manual consists of the following topics:

Assembler Information:

Functional description and list of features.

Assembly language syntax, character set, symbols (including
reserved words), and constants.

Symbol and expression attributes.

Alphabetical description of the assembler directives on pages
specially formatted for quick reference.

Thorough discussion of assembler expressions, operands, and
a list of the V-Series, Intel 8087, and NEC 72291 instruction
mnemonics with accepted operands.

Description of assembler control statements, including
primary and general controls.

Description of assembler listings and symbol table listings.

Macro Preprocessor Information:

Introduction to the macro preprocessor and macro functions.

Discussion of the elements of macro expressions.

Description and reference for the pre-defined apv20/apv33
macro functions. How to create user-defined macros and how
they are treated by the macro preprocessor.

Notes

Contents

1 Assembler Introduction

Introduction . 1-1
Instruction Set . 1-1
Target Microprocessors . 1-1
Assembler Operation . 1-2
File Formats . 1-2

Input File Characteristics . 1-2
Output File Characteristics . 1-3

asv20/asv33 Features . 1-3
Macro Preprocessor . 1-4

2 Assembler Syntax

Introduction . 2-1
Assembler Character Set . 2-1
Symbols . 2-2

Symbol Formation . 2-2
Keywords . 2-3
Instruction Mnemonics . 2-6
Codemacro . 2-6
Label . 2-6
Variable . 2-6
Structure Name . 2-7
Structure Field Name . 2-7
Record Name . 2-7
Record Field Name . 2-7
Segment Name . 2-7
Group Name . 2-8
EQU Symbols . 2-8

Constants . 2-8
Integer Constant . 2-8
Real Constant . 2-10
Character Constant . 2-11

Delimiters . 2-12
Assembler Statements . 2-12

Contents-1

General Syntax . 2-12
Comment . 2-13
Continuation Lines . 2-14

3 Symbol and Expression Attributes

Introduction . 3-1
TYPE . 3-2
OFFSET . 3-2
BASE . 3-3
INDEX . 3-3
SEGMENT . 3-4
SEGMENT RELOCATION . 3-4
RELOCATION TYPE . 3-4
SEGMENT ADDRESSABILITY 3-5
PS ADDRESSABILITY . 3-6

4 Assembler Directives

Introduction . 4-1
Syntax Conventions . 4-1
EXTRN . 4-2
Segmentation Directives . 4-3

Program Segmentation . 4-3
Default Segment - ??SEG . 4-4

Data Definition Directives . 4-5
Data Objects . 4-6

Program Linkage Directives . 4-6
Program Linkage . 4-7

ASGNSFR . 4-8
ASSUME . 4-10
DB, DW, DD, DS, DQ, DL, DT 4-13
END . 4-22
EQU . 4-24
EVEN . 4-28
EXTRN . 4-29

V33 Considerations . 4-32
GROUP . 4-33
LABEL . 4-36
NAME . 4-38
ORG . 4-39
PROC/ENDP . 4-40
PUBLIC . 4-43

2-Contents

PURGE . 4-44
RECORD . 4-46

Allocating Record Storage 4-48
SEGMENT/ENDS . 4-50

Multiple Definitions of a Segment 4-53
SETIDB . 4-56
STRUC/ENDS . 4-58

Allocating Structure Storage 4-59

5 Expressions

Introduction . 5-1
Reference Syntax Conventions 5-1

Expression Overview . 5-2
Absolute Expression . 5-2
Relocatable Expression . 5-3
External Expression . 5-3

Expression Operands . 5-4
Numeric Values . 5-4
Memory and Register Expressions 5-7
EQU . 5-10

Expression Operators Introduction 5-11
Arithmetic Operators . 5-11

Unary Plus, Unary Minus . 5-11
Binary Addition, Subtraction 5-12
[] Square Brackets . 5-13
. (Dot operator) . 5-14
Multiplication, Division, Modulo 5-15
SHL, SHR . 5-16
HIGH, LOW . 5-17

Logical Operators . 5-19
AND, OR, XOR . 5-19
NOT . 5-20
EQ, NE, LT, LE, GT, GE . 5-20

Memory Operators . 5-22
SHORT . 5-22
THIS . 5-22
PTR . 5-23
Segment or Group Override 5-24
OFFSET . 5-25
SEG . 5-26
TYPE . 5-27

Contents-3

LENGTH . 5-28
SIZE . 5-29

Record Operators . 5-31
MASK . 5-31
WIDTH . 5-32

Segment and Group Operators 5-33
SMOFFSET . 5-33
GROFFSET . 5-33
SMSIZE . 5-34
GRSIZE . 5-35

Operator Precedence . 5-36

6 Instructions and Operands

Introduction . 6-1
Operand . 6-1

Accepted Operands . 6-1
Operand Positioning . 6-3
Immediate Values . 6-3
Registers . 6-4
Memory Expressions and the MODRM Byte 6-8

Segment Addressability and Overrides 6-10
Addressability Checking . 6-10
Default Segments . 6-11
Segment Overrides . 6-11
Improper Uses of Segment Overrides 6-12
Segment Override Byte . 6-12
Overrides and Checking Against ASSUME 6-12
Segment Override Byte Generation 6-13
The V25 Family of Processors 6-14

The Instruction Set . 6-21
asv20 Assembler Instruction Set 6-23

7 Assembler Controls

Introduction . 7-1
General Syntax for Assembler Controls 7-2

Primary and General Controls 7-2
Controls on the Command Line 7-2
Control Conflicts . 7-3
Controls and File Names . 7-3
Control Abbreviations . 7-3
Controls and Macro Preprocessor (apv20/apv33) 7-3

4-Contents

Primary Controls . 7-4
[NO]CAPITALS . 7-4
DATE(string) . 7-4
[NO]DEBUG . 7-4
[NO]ERRORPRINT (filename) 7-5
EXTERN_CHECK . 7-5
GROUP_INFO . 7-5
[NO]HLASSYM . 7-6
[NO]MACRO(string) . 7-6
MOD087 . 7-6
MOD287 . 7-6
MOD72291 . 7-6
MODV20 . 7-6
MODV25 . 7-7
MODV33 . 7-7
[NO]OBJECT (filename) . 7-7
OPTIMIZE . 7-7
PAGELENGTH(n) . 7-8
PAGEWIDTH(n) . 7-8
[NO]PAGING . 7-8
[NO]PRINT(filename) . 7-8
[NO]SYMBOLS . 7-8
[NO]TYPE . 7-9
[NO]UNREFERENCED_EXTERNALS 7-9
WARNING . 7-9
WORKFILES(...) . 7-9
[NO]XREF . 7-9

General Controls . 7-11
EJECT . 7-11
[NO]GEN . 7-11
GENONLY . 7-11
INCLUDE(filename) . 7-11
[NO]LIST . 7-12
RESTORE . 7-12
SAVE . 7-13
TITLE(string) . 7-13

Operational Differences in the Different Modes 7-14
V20 Mode . 7-14
V25 Mode . 7-14
V33 Mode . 7-14
8087 Mode . 7-14

Contents-5

80287 Mode . 7-14

8 Assembler Listing Description

Introduction . 8-1
Assembly Listing . 8-1
Cross Reference and Symbol Table Format Description 8-5

Label . 8-6
Type . 8-6
Value . 8-7
Cross Reference . 8-8

9 Codemacros

Overview . 9-1
Referencing Codemacros . 9-1
Alphabetical Listing of the Codemacro Directives 9-2
Codemacro Directives . 9-3

CODEMACRO . 9-3
ENDM . 9-6

Codemacro Matching . 9-6
The Specmod Field . 9-8
Range Specification . 9-12

Examples: . 9-13
Codemacro Matching Examples 9-14
Expressions in Codemacros . 9-16

Syntax: . 9-16
Directives within Codemacros 9-17

DB, DD, DW . 9-18
MODRM . 9-20
Syntax . 9-20
NOSEGFIX . 9-21
Record Name Initialization 9-22
RELB, RELW . 9-23
RFIX, RFIXM, RNFIX, RNFIXM, RWFIX 9-24
SEGFIX . 9-26

10 Macro String Preprocessor Introduction

Introduction . 10-1
Input Source Characteristics . 10-2
The Metacharacter ’%’ And The Call Pattern 10-2
Metacharacter Syntax . 10-4

6-Contents

Literal Character * . 10-5
Input Parsing . 10-5
Output Buffering . 10-6
Include Files . 10-6

11 Elements Of Macro Expressions

Introduction . 11-1
Character Set . 11-2
Numbers . 11-3
Symbols . 11-3
Balanced Text String (baltex) 11-4
Expressions and Operators . 11-4

HIGH, LOW . 11-5
NOT . 11-6
Add (+), Subtract (—) . 11-6
Multiply (*), Divide (/), MOD 11-6
SHL, SHR . 11-7
AND, OR, XOR . 11-7
EQ, LE, LT, GE, GT, NE . 11-7

12 Pre-Defined Macro Functions

Introduction . 12-1
Pre-Defined Macro Functions 12-1

%’ (Comment Function) . 12-2
%n and %((Escape and Bracket Functions) 12-3
%EQS, %NES, %LTS, %LES, %GTS,%GES 12-5
%EVAL . 12-6
%EXIT . 12-6
%IF (Conditional Assembly Function) 12-7
%LEN . 12-8
%MATCH . 12-9
%METACHAR . 12-11
%REPEAT . 12-12
%SET . 12-13
%SUBSTR . 12-14
%WHILE . 12-14

Example Problem . 12-15

13 User-Defined Macros

Introduction . 13-1

Contents-7

%DEFINE . 13-2
Macro Reference . 13-4

What is Output? . 13-6
Referencing Macro-time Symbols 13-7

A Error Message Formats

Error Classes . A-1
Warning . A-1
Error . A-1
Fatal Error . A-1

B Assembler Error Messages

Introduction . B-1
Syntax Errors . B-1

C Macro String Preprocessor Error Messages

Error Codes and Messages . C-1

D ASCII Codes

E Converting HP 64853 Assembly Language Programs

Introduction . E-1
acvtv20 Introduction . E-2

Assembler Differences . E-2
IF . E-3
EQU . E-3
MACRO . E-3
REPT . E-4
SET . E-4
External Declarations . E-4
Porting Procedure— Main Files with INCLUDE Files E-6
acvtv20 Warnings, apv20 Errors, asv20 Errors E-7

Code Substitution . E-8
BIN, DECIMAL, HEX, OCT E-10

BIN . E-10
DECIMAL . E-10
HEX . E-10
OCT . E-10

V25/35 Considerations . E-11
Manual Macro Translations . E-12

8-Contents

.IF, .GOTO, and .NOP Directives E-12
Looping Structures . E-13
Numeric, String, and Null Comparisons E-13
Indexed Parameters . E-14
Macro Calls . E-15

acvtv20(1) Command Syntax E-16
Old and New List . E-20

ASCII . E-20
ALIGN . E-20
ASSUME . E-20
COMN . E-21
DATA . E-21
DBS . E-21
DDS . E-21
DWS . E-21
<EOF> . E-22
EQU . E-22
EXPAND . E-22
EXT . E-22
GLB . E-23
IF (Macro) . E-23
INCLUDE Control . E-23
LABEL Directive . E-23
Label Field . E-24
LIST . E-24
MACRO . E-24
MASK . E-25
NAME . E-25
NOLIST . E-25
NOWARN . E-25
Operator Field . E-25
ORG . E-26
PROC . E-27
PROG . E-28
REAL . E-28
Reserved Words . E-28
SPC . E-28
SKIP . E-29
TITLE . E-29
WARN . E-29
* (Comment) . E-29

Contents-9

INTEL2NEC(1) . E-30

F V-Series Instructions in Hexadecimal Order

G V-Series Instruction Set Summary

FOOTNOTES . G-21

Index

10-Contents

Illustrations

Figure 2-1. Syntax for Decimal Real Without Exponent 2-10
Figure 2-2. Syntax for Decimal Real with Exponent 2-10
Figure 4-1. "Partial" Record Definition 4-47
Figure 4-2. Structure Definition and Allocation 4-61
Figure 5-1. SHL Operator . 5-16
Figure 6-1. V20/25/33 Registers 6-5
Figure 8-1. Sample Assembler Listing 8-3
Figure 8-2. Cross Reference for Sample Listing 8-5
Figure 13-1. Syntax for User-Defined Macros 13-2

Contents-11

Tables

Table 2-1. Assembler Character Set 2-2
Table 2-2. asv20/asv33 Keywords and Instructions 2-4
Table 5-1. Binary Plus and Minus Results 5-12
Table 5-2. Operator Precedence 5-37
Table 6-1. RAM Register Bank Structure Definitions 6-15
Table 6-2. RAM and Special Function Register Mapping 6-16
Table 6-3. Operand Codes . 6-22
Table 6-4. Assembler Instruction Set 6-23
Table 9-1. Codemacro Directives 9-2
Table 9-2. Specmods and Parameter Matches 9-8
Table 9-3. Absolute Number Conversion for Registers 9-12
Table 9-4. Arguments and Actual Parameters 9-14
Table 9-5. Directives within Codemacros 9-17
Table 11-1. Macro Preprocessor Character Set 11-2
Table 11-2. Operator Precedence 11-5
Table 12-1. Predefined Macro Functions 12-2
Table D-1. ASCII Codes . D-2
Table F-1. V-Series and 8087 Instructions F-1
Table F-2. 72291 Instructions . F-31

12-Contents

1

Assembler Introduction

Introduction This chapter introduces the assembler by discussing the instruction set,
target microprocessors, input and output file formats, and other similar
information about the asv20/asv33 Advanced Cross Assembler. This
chapter is primarily a brief overview, but it does highlight some
important features of the asv20/asv33 assembler. The asv20 assembler
is very similar to the asv33 assembler, but they differ in terms of their
default targets.

Instruction Set The asv20/asv33 assembler supports NEC instruction mnemonics, op
codes, and syntax for the target microprocessors and thus is compatible
with those used in NEC software and documentation.

The supported instruction set is listed in the chapter titled "Instructions
and Operands." For further information about the instruction set, refer
to the 70108(V20) Microprocessor User’s Manual mentioned in the
"Using This Manual" section at the beginning of this manual.
References for the V25 and V33 are also noted in that section.

Target
Microprocessors

The asv20/asv33 assembler supports the NEC V20, V25, and V33 chip
families. The V20 family includes the V20, V30, V40, and V50. The
V25 family includes the V25, V35, V25+, and V35+. The V33 family
includes the V33 and V53. The asv20 assembler defaults to the V20
and 8087 instruction set, while asv33 defaults to the V33 and 72291
instruction sets.

Assembler Introduction 1-1

The asv20/asv33 assembler also translates instructions specific to the
Intel 8087 or NEC 72291 floating-point coprocessors for coprocessor
execution.

Assembler
Operation

asv20/asv33 is a two pass assembler. On the first pass, labels,
variables, and other user-defined symbols are examined and placed in
an internal symbol table. Additionally, structure definitions are stored.

On the second pass, asv20/asv33 generates the object code, resolves
symbolic addresses, and outputs the object module if the assembly was
error free. If it was not error free, then asv20/asv33 displays errors on
the output listing device and also a cumulative error count. In addition
to the object module, asv20/asv33 can also output an HP 64000 format
assembler symbol file for use in analysis tools.

The assembly listing produced during pass two contains information
pertaining to the assembled program, including opcodes, assembled
data, and the original source statements. Based on command line
options, asv20/asv33 may also output a symbol table or cross reference
table which gives further information not found in the standard
assembly listing. Refer to the chapter titled "Assembler Listing
Description" for a more complete explanation of the assembly listing
and cross reference or symbol table information.

File Formats

Input File
Characteristics

The source file input for the asv20/asv33 assembler is a text file
containing V-Series instructions, assembler directives, and assembler
controls. This file can be produced from an editor or the output file
from another component of the HP 64873 package, the apv20/apv33
macro preprocessor.

1-2 Assembler Introduction

Output File
Characteristics

HP-OMF 86

asv20/asv33 produces a relocatable output object file in HP-OMF 86
format relocatable. HP-OMF 86 format relocatable is a superset of Intel
Binary OMF relocatable. HP-OMF 86 format relocatable contains
extensions to facilitate code integration and debugging. This format has
not been verified to be strictly compatible with Intel Binary OMF
relocatable. HP-OMF 86 format relocatable files, therefore, may not
work correctly with tools or systems designed to consume Intel Binary
OMF relocatable.

HP 64000 Assembler Symbol File

asv20/asv33 can optionally produce an HP 64000 format assembler
symbol file. This file is used by analysis tools. The purpose of the
assembler symbol file is to preserve the relationship between symbolic
names that appeared in the original source file and the memory
locations that they referenced.

asv20/asv33
Features

This final section lists some of the notable features of the asv20/asv33
Advanced Cross Assembler. The asv20/asv33 assembler

 generates code for the complete NEC V20, V25, and V33
instruction set

supports Intel 8087 and NEC 72291 floating-point
coprocessor instructions

Assembler Introduction 1-3

permits repeated definition of the same or of different code,
data, and constants segments within a single source file

has high-level-language-like data structures which permit the
definition of structured data types and bit fields

supports symbolic memory references via symbol names

allows high degree of control over the assembly process
(conditional assembly, structured control, listing and output
control) through a flexible set of assembly control statements

gives detailed, well-documented error messages

produces extensive program listings that can include symbol
table/cross reference information

has a command line interface tailored to the host operating
system

as part of the HP 64873 V-Series Advanced Cross
Assembler/Linker package, is well-integrated with the HP
64906 V-Series C Advanced Cross Compiler

Macro Preprocessor The HP 64873 V-Series Advanced Cross Assembler/ Linker software
package also includes a powerful, string-oriented macro preprocessor.
The macro preprocessor adds even more flexibility to the assembler
with its features (including support for recursive macros).

1-4 Assembler Introduction

2

Assembler Syntax

Introduction Assembly language, like other programming languages, has a character
set, a vocabulary, rules of grammar, and conventions that allow for
definition of new words or elements. The rules that describe the
language are referred to as the "syntax" of the language. This chapter
describes the basic elements of assembler language:

the character set

symbols

constants

delimiters

These basic elements, in turn, are put together to form assembler
statements. This chapter also gives the general syntax of those
statements.

Input source lines over 1024 characters in length will be truncated and
an error message will be generated.

Assembler
Character Set

The assembler recognizes the characters in Table 2-1. Any other
characters, except those in a comment field, generate errors. Many of
the special characters have no previously-defined meaning except as
character constants. The characters are case sensitive by default. If
case sensitivity is turned off, then all lower case alphabetic characters
are treated as if they were upper case, unless they appear in quoted
strings.

Assembler Syntax 2-1

Symbols

Symbol Formation A symbol is a sequence of characters. The first character must be

A-Z or a-z (alphabetic)

? (question mark)

@ (commercial at sign)

_ (underscore)

The second and following characters can be any of these characters or
the numerals 0-9. Symbols can be up to 255 characters in length, but
only the first 31 characters are significant.

Symbols are used to represent arithmetic values, memory addresses, bit
arrays (masks), and so on.

Alphabetic Characters

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

Numeric Characters

 0 1 2 3 4 5 6 7 8 9

Special Characters

 blank horizontal tab > greater than
 $ dollar sign < less than * asterisk
 ’ single quote (left parenthesis , comma
) right parenthesis + plus sign @ commercial at
 - minus sign . period & ampersand
 : colon ! exclamation point ; semicolon
 " double quote = equal sign # sharp
 ? question mark % percent _ underscore
 [left bracket] right bracket \ back slash
 ‘ accent grave { left brace } right brace
 | vertical bar ~ tilde ^ caret (uparrow)
 / slash

Table 2-1. Assembler Character Set

2-2 Assembler Syntax

Examples of valid symbols:

LAB1
@mask
LOOP_NUM
L2345678901234567890123456789012345
;(entire symbol is stored, but only
31
;used for comparison)

Examples of invalid symbols:

ABORT* ;contains special character
1LAR ;begins with a numeric
PAN N ;embedded blank, symbol is PAN

Different symbols represent different kinds of data objects. In general,
only a few kinds of symbols are allowed in any particular syntactic
construct. Any of the following elements are considered to be symbols.

Keywords Keywords (also called Reserved Words) are symbols pre-defined by
the assembler which you can reference in certain acceptable
constructs. Keyword symbols are not user-definable, nor can you
create a user-defined symbol with a name that conflicts with a
keyword. Keywords include directives and register names, among
others. Keywords are not case-sensitive. The full list of assembler
keywords appears in the following table. Although the keywords in the
table are in upper case, there is no requirement that they appear in
upper case in the source code.

Assembler Syntax 2-3

??SEG
ABS
ADD4S
ADD
ADDC
ADJ4A
ADJ4S
ADJBA
ADJBS
AH
AL
AND
ASGNSFR
ASSUME
AT
AW
BC
BCWZ
BE
BGE
BGT
BH
BL
BLE
BLT
BN
BNC
BNE
BNH
BNL
BNV
BNZ
BP
BPE
BPO
BR
BRK
BRKCS

BRKEM
BRKV
BRKXA
BTCLR
BUSLOCK
BV
BW
BYTE
BZ
CALL
CH
CHKIND
CL
CLR1
CMP4S
CMP
CMPBK
CMPBKB
CMPBKW
CMPM
CMPMB
CMPMW
CODEMACRO
COMMON
CVTBD
CVTBW
CVTDB
CVTWL
CW
CY
DB
DBNZ
DBNZE
DBNZNE
DD
DEC
DH
DI

DIR
DISPOSE
DIV
DIVU
DL
DQ
DS0
DS1
DS
DT
DUP
DW
DWORD
EI
END
ENDM
ENDP
ENDS
EQ
EQU
ESC
EVEN
EXT
EXTRN
F2XM1
FABS
FACOS
FADD
FADDP
FAR
FASIN
FATAN2
FATAN
FBLD
FBSTP
FCHS
FCLEX
FCMP

FCMPA
FCMPAE
FCMPE
FCOM
FCOMP
FCOMPP
FCOS
FCTW
FCVTDL
FCVTDS
FCVTLD
FCVTLQ
FCVTLS
FCVTQL
FCVTQS
FCVTSD
FCVTSL
FCVTSQ
FDECSTP
FDIAG
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FDWORD
FENI
FEXPE
FEXPEMI
FEXPR
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL

FINCSTP
FINIT
FINT
FIP3V
FIP4V
FIST
FISTP
FISUB
FISUBR
FL0-FL7
FLD1
FLD
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FLOGE
FMOD
FMOV
FMOVCR
FMOVRT
FMUL
FMULP
FNCLEX
FNDISI
FNEG
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW
FPATAN

Table 2-2. asv20/asv33 Keywords and Instructions

2-4 Assembler Syntax

FPO1
FPO2
FPOWER
FPREM
FPTAN
FPTW
FQWORD
FR0-FR7
FREM
FRND
FRNDINT
FRPOP
FRPUSH
FRSTOR
FS0-FS7
FSAVE
FSCALE
FSIN
FSINCOS
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FSTW
FSUB
FSUBP
FSUBR
FSUBRP
FTAN
FTST
FWAIT

FXAM
FXCH
FXTRACT
FYL2X
FYL2XP1
GE
GROFFSET
GROUP
GRSIZE
GT
HALT
HIGH
IN
INC
INM
INPAGE
INS
IX
IY
LABEL
LDEA
LDM
LDMB
LDMW
LE
LENGTH
LOW
LT
MASK
MOD
MODRM
MOV
MOVBK

MOVBKB
MOVBKW
MOVSPA
MOVSPB
MUL
MULU
NAME
NE
NEAR
NEG
NIL
NOP
NOSEGFIX
NOT1
NOT
NOTHING
OFFSET
OR
ORG
OUT
OUTM
PAGE
PARA
POLL
POP
PREFX
PREPARE
PROC
PROCLEN
PS
PSW
PTR
PUBLIC

PURGE
PUSH
QWORD
RECORD
RELB
RELW
REP
REPC
REPE
REPNC
REPNE
REPNZ
REPZ
RET
RETI
RETRBI
RETXA
RFIX
RFIXM
RNFIX
RNFIXM
ROL4
ROL
ROLC
ROR4
ROR
RORC
RWFIX
SEG
SEGFIX
SEGMENT
SET1
SETIDB

SHL
SHORT
SHR
SHRA
SIZE
SMOFFSET
SMSIZE
SP
SS
ST
STM
STMB
STMW
STOP
STRUC
SUB4S
SUB
SUBC
TBYTE
TEST1
TEST
THIS
TRANS
TRANSB
TSKSW
TYPE
WIDTH
WORD
XCH
XOR

Table 2-2. asv20/asv33 Keywords and Instructions (Cont’d)

Assembler Syntax 2-5

Instruction
Mnemonics

A full set of instruction names (mnemonics) is pre-defined by the
assembler. Instruction names can be removed from the symbol table
with the PURGE directive and re-defined as something else. If you do
this, the original meaning of the instruction is lost. There are six
instructions (the operators AND, NOT, OR, SHL, SHR and XOR) that
cannot be removed. A full list of the pre-defined instruction
mnemonics, including the argument combinations acceptable for each,
appears at the end of the chapter titled "Instructions and Operands."

Codemacro A codemacro is a user-defined instruction or prefix to an instruction.
The output generated from a codemacro can be a new instruction, a
mixture of normal instructions, or just about anything that a customer
might want (some assemblers define the normal instructions through
the use of codemacros). A codemacro can be defined with the same
name as an existing instruction or it can have a completely unique
name that describes a new operation. Codemacros can be used
anywhere that a predefined instruction can be used.

Label A label is a user-defined symbol denoting the address of an instruction.
Labels can be referenced only in the BR and CALL instructions and
variations thereof. A label can be defined with the PROC directive or
with the LABEL directive, but there is a another way to define a label
that is used most often.

The most common way of defining a label is to place a name (followed
by a colon) before an instruction mnemonic, which defines it as a label.
Labels have certain attributes, but a discussion of those aspects of
labels is left to the chapter titled "Symbol and Expression Attributes."
Example:

THIS_IS_A_LABEL: MOV AW,2

Variable A variable is a user-defined symbol denoting the address of a location
to be used for data storage. Unlike many other assembly languages,
asv20/asv33 distinguishes between a label and a variable. They are
defined according to syntax and cannot be used interchangeably in
expressions or instructions. However, when the LABEL directive is
used with the keywords BYTE, WORD, DWORD, FDWORD,
QWORD, FQWORD, TBYTE, or with a variable that is a structure
name or record name, it defines a variable. When the LABEL directive
is used with the type designator NEAR or FAR, it defines a label.

2-6 Assembler Syntax

Variables have certain attributes, which are discussed in the chapter
titled "Symbol and Expression Attributes."

Structure Name A structure is a user-defined template describing the manner in which a
block of storage is to be broken up into elements. A structure template
does not have a storage area associated with it which means that a
structure name, while it is still a symbol, is not a variable. A structure
template name does not have attributes associated with it.

Structure Field Name The individual elements of the structure template are called structure
fields. Structure fields may be optionally assigned names, but again,
since the structure template does not occupy storage, the structure field
name is not a true variable. A structure field name, when a structure is
allocated using the template, can be used with the dot operator to
access an element of the structure, but the structure field name cannot
be used alone. Structure field names do not have attributes associated
with them.

Record Name A record is a user-defined template describing how a one- or two-byte
block of storage is to be broken up into bit fields. A record template
does not have a storage area associated with it which means that a
record name is not a variable. Record names do not have attributes
associated with them.

Record Field Name Each bit field describes a number of bits and has a name associated
with it. Record field names are not variables, however, and do not have
any attributes associated with them.

Segment Name A segment is a user-defined logical division of the assembly source
program. A logical segment can contain code, data, or stack
information. Logical segments have names associated with them.
These names are used to identify the logical segments to the assembler
and loader so that they will eventually be placed together in the same
physical segment in memory.

Group Name A group name identifies a collection of logical segments gathered
together because of some common factor. At load time, a group will be
placed in memory such that any segment that is a member of the group

Assembler Syntax 2-7

will be within 64k of the base of the group. Group names are also
significant to the assembler and loader.

EQU Symbols EQU symbols are names associated with other symbols or expressions
through the use of the EQU assembler directive. EQU symbols are
simply "replacement names" that can be used anywhere the symbols or
expressions they replace could be used. Unlike symbols, however,
EQU symbols are not variables and are not allocated storage.

Constants A constant is an invariant quantity that can be either an arithmetic
value or a character constant. Arithmetic values can be represented in
either integer or floating-point format.

This section describes integer constants, real constants, and character
constants.

Integer Constant Decimal (base-10) constants can be defined as a sequence of numeric
characters optionally preceded by a plus or a minus sign. If unsigned,
the value is positive by default.

Internally, the assembler performs arithmetic on 17-bit quantities. A
17-bit value is 16-bit value with the 17th bit (the leftmost bit) as a sign
bit. This value may range from -65535 to 65535 (-0FFFFH to
0FFFFH). However, integer constants are only allocated 16 bits when
the assembler stores them in the output code. The 17-bit value can be
interpreted as a signed or unsigned value and stored in one or two bytes.

A one byte constant can contain an unsigned number with a value from
0 to 255. A two byte unsigned number can range from 0 to 65535.
When a constant is negative, its equivalent twos complement
representation is generated and placed in the field specified. A 1-byte
twos complement number can range from -128 to +127. A 2-byte twos
complement number can range from -32768 to +32767. Whether or not
a number is interpreted as a twos complement or an unsigned number is
typically up to you.

Integer constants outside this range (-65535 to +65535) can appear
only in the DD, DQ and DT directives, and on the right side of an EQU

2-8 Assembler Syntax

directive. The legal range is different for each directive, as discussed in
the chapter called "Assembler Directives."

Other Bases

Constants with bases other than decimal are defined by specifying a
coded descriptor after the constant. In addition, the base may restrict or
expand the accepted digits for the constant. The following list is of the
available descriptors and their meanings and the range of acceptable
digits for each kind of constant. If no descriptor follows a constant, the
number is decimal by default.

B - a binary constant - digits must be either 0 or 1

O - an octal constant - digits are 0-7 inclusive

Q - an octal constant - digits are 0-7 inclusive

D - a decimal constant (the default if no descriptor appears) -
digits are 0-9 inclusive

H - a hexadecimal constant - digits are 0-9 inclusive and the
letters A-F (or a-f — either are allowed regardless of case
sensitivity)

Note Hexadecimal constants may not begin with the letters A-F (a-f). In
those cases, prefix the constant with a zero.

Examples of acceptable constants:

10011B ;binary constant
25 ;defaults to decimal
constant
-0FFH ;hex constant - notice
leading 0
1377Q ;octal constant
255d900h ;hex constant

Assembler Syntax 2-9

Real Constant Real constants can only appear in DD, DQ, DT and EQU directives.
There are three syntactically distinct ways of defining real numbers.

Decimal Real Without Exponent

See the following figure for the syntax diagram of decimal reals with
exponents.

E
xamples:

1.234
.1234
1234.

Decimal Real With Exponent

See the following figure for the syntax diagram for decimal reals with
exponents.

Figure 2-1. Syntax for Decimal Real Without Exponent

Figure 2-2. Syntax for Decimal Real with Exponent

2-10 Assembler Syntax

This format is interpreted to mean that the number to the left of the E is
multiplied by 10 raised to the power of the number to the right of the E.
Examples:

3.14159E-27 ;means 3.14159 * 10 -27

-1e4 ;means -10000.

Hex Real

The syntax is 8, 16, or 20 hex digits followed by the letter R (or 9, 17,
or 21 hex digits if a 0 must be prefixed to constants with leading hex
digits of A-F).

Note that no sign is permitted. This format represents the actual bit
pattern to be placed in a variable of type DWORD (8 or 9), QWORD
(16 or 17), or TBYTE (20 or 21). (Intel’s documentation describes the
bit patterns used to represent real numbers.) Examples:

40490FDBR
0c0000000r

Character Constant An ASCII character constant is specified by enclosing one or two
characters within single or double quotation marks. The constant is
encoded as a 16-bit number stored in different ways depending upon
usage.

A character string of arbitrary length can be specified with the DB
assembler directive.

A more complete discussion of character constants in contained in
several of the chapters that follow.

Assembler Syntax 2-11

Delimiters The characters "blank" and "tab" are referred to as delimiters and are
generally ignored by the assembler.

Note There must be at least one delimiter between adjacent symbols and/or
numeric constants to prevent them from being interpreted as a single
item.

Delimiters are significant in character strings. Delimiters are not
required between characters that have special meaning to the assembler
(such as [, +, =, $, and so on).

Assembler
Statements

General Syntax The basic elements just described are put together to create statements
and instructions that the assembler understands. The rules that govern
the ways that statements may be formed are called syntax rules. The
general syntax for an asv20/asv33 assembly language instruction
statement is as follows:

[label :] [prefix] keyword [operand [, ...]] [;comment]

Each field in the general syntax has one or more of the delimiters
discussed in the previous section between it and adjacent fields. Each
field has a different purpose.

Label

The label is optional and, if present, identifies or marks the offset of the
instruction. This label may be used as a destination in CALL, BR or
conditional branch instructions. Notice the colon following the label. It
must be present if the label is present.

2-12 Assembler Syntax

Prefix

The prefix, if present, causes looping with string instructions or forces
a bus lock during the instruction’s execution. New prefixes can be
defined through the use of codemacro definitions.

Keyword

Keywords can be any of the instruction mnemonics (a list of instruction
mnemonics appears at the end of the chapter titled "Instructions and
Operands"), codemacros defined by the user, or an EQU symbol set to
an instruction or codemacro name.

Operand

An operand is an argument to the instruction in the keyword field.
Commas separate multiple operands. Operands are discussed more
completely in the chapter titled "Instructions and Operands."

Comment

The comment begins with a semicolon and continues until the end of
the line. Comments are used to make "notations" about the assembly
language code so that you or others may better understand the purpose
of the code or how it works.

Comment Comments can appear after instructions, assembler directives, control
statements, macro definitions, or on lines by themselves. In fact,
comments can appear anywhere in the assembly source file as long as
they are preceded by semicolons. Comments are not processed by the
assembler, but are passed through to the assembler listing.

When a comment is on a line by itself, a leading semicolon must be the
first non-blank character (tabs are considered blank characters) on the
line. The comment follows it. The comment is considered to continue
to the end of the line.

Blank lines are also treated like comments, but they do not require
semicolons to lead them. Blank lines appear in the output listing as
blank lines. Blank lines may make the code more readable.

Assembler Syntax 2-13

Continuation Lines Some assembler statements will not fit on a single line. If a statement
will not fit on a single line, it may be continued to the next line by
beginning the next line with the ampersand (&) character. The
ampersand must be in column one of the next line. Symbols, numbers,
and strings cannot be broken across lines. It is not acceptable to use
the ampersand to continue a comment line. In most cases, an error is
likely to occur. Simply begin the new line with a semicolon to make it
another comment line. Similarly, blank lines cannot be continued with
the continuation character.

2-14 Assembler Syntax

3

Symbol and Expression Attributes

Introduction In the chapters that follow, frequent reference will be made to the
attributes of variables, labels, and expressions. In order that those
references may be understood, this chapter introduces attributes,
identifies them, and explains their uses.

Symbols and expressions have certain attributes that determine where
they may be used with an instruction and what object code will be
generated if they are used. Most attributes are only important when a
symbol or expression involves a relocatable or external value.
Absolute values will not involve most attributes since absolute values
are not modified by the loader.

There are nine possible attributes that a symbol or expression can have.
They are

TYPE

OFFSET

BASE

INDEX

SEGMENT

SEGMENT RELOCATION

RELOCATION TYPE

SEGMENT ADDRESSABILITY

PS ADDRESSABILITY

Symbol and Expression Attributes 3-1

Not all attributes will apply in all cases, however. The following
sections discuss the different attributes and how they affect symbols
and expressions.

TYPE The TYPE attribute may belong to either a variable, label, or memory
expression. The fixed types are

BYTE (1 byte)

WORD (2 bytes)

DWORD /FDWORD (4 bytes)

QWORD /FQWORD (8 bytes)

TBYTE (10 bytes)

FAR (same or different segment)

NEAR (same segment)

User-defined types are also possible and are created when a record or
structure template is defined. See the chapter titled "Assember
Directives" for more about records and structures.

It is possible for a memory expression to not have a type. Instead, the
type is determined by using the expression. These explicitly typeless
memory expressions are the so-called anonymous references.

OFFSET The OFFSET attribute for a variable, label, or memory expression is
the offset from the start of a segment or group. It is simply the number
of bytes from the start of the segment or group. If the variable or label
belongs to a noncombinable segment or if the expression was
generated from a numeric value, the offset will be absolute. If the

3-2 Symbol and Expression Attributes

variable or label belongs to a combinable segment or to a group, the
offset will be relocatable.

BASE The BASE register may be set as part of a memory reference. If a base
register is used as part of an expression, the expression is known as a
register expression, to set it apart from the simpler memory expression.

The base registers are BW and BP. Only one of these registers may be
present in a any single register expression, although an index register
may be present with the base register. If a base register is used in a
memory expression, its contents are added to the memory offset at
run-time to calculate a final offset for a memory location. If both a
base and index register are present in the memory expression, then their
values are first added together and then added to the offset to produce
the memory reference. If the memory expression does not have a
SEGMENT attribute (i.e., no variable, label, or segment override was
used as part of the expression), then a default segment register will be
used depending upon which base register appears in the register
expression. If the BW register is used, DS0 is the default segment
register. If BP is used, the default is SS. The default to SS for BP holds
even if an index register is also present in the memory expression.

INDEX The INDEX register may also be used as part of a memory reference.
If an index register is used as part of an expression, either with or
without a base register, then the expression is known as a register
expression, to set it apart from the simpler memory expression.

The valid index registers are IX and IY. Only one index register can be
present in a single register expression. It is also possible, of course,
that no index register will be used. If an index register is used in a
register expression, its contents are added, at run-time, to a memory
offset to calculate a final offset for a memory location. If both an index
and base register are used in a register expression, both registers are
added to the offset to calculate the final offset. If the memory

Symbol and Expression Attributes 3-3

expression does not have a SEGMENT attribute and no base register is
used, then the DS0 segment register is used as a default.

SEGMENT The SEGMENT attribute determines which segment a variable, label,
or memory expression belongs to. The segment attribute is the base
value of that segment. The base value is absolute if the segment has
been placed using the AT keyword. Otherwise, it is a relocatable value
until load time. (This attribute is also the value that is returned by
using the SEG operator.)

SEGMENT
RELOCATION

The SEGMENT RELOCATION attribute becomes important when a
variable, label, or memory expression belongs to a group. In contrast
to the SEGMENT attribute, this attribute determines which group the
item belongs to. The SEGMENT attribute identifies which segment
within the group the item belongs to. These two values must be known
to correctly calculate offsets for a memory expression. Normally, this
attribute is the same as the SEGMENT attribute unless the expression
contains a group override. This attribute can be ignored unless groups
are used.

RELOCATION
TYPE

The RELOCATION TYPE is determined by a combination of the type
of an expression and by operators that are applied to it. This value will
be null if the expression can be completely determined at assembly
time. This is true of offsets within non-combinable segments and for
segment bases of segments that use the AT keyword. This value will
be set, however, if the item is an offset from either a combinable
segment or a segment base for a non-located segment or group. The
possible types of relocation are:

OFFSET: This type of relocation will generate the offset of a
variable, label, or memory expression as part of the object

3-4 Symbol and Expression Attributes

code. A 16-bit offset value will be calculated by the loader
and inserted into the object code. The offset will be
calculated relative to the base of the segment or, if a group
override is used, relative to the base of the group. It is
possible to add a 17-bit value to this offset.

BASE: This type of relocation causes a 16-bit base value to be
written directly to the object code. The base will be the base
address of the segment that the variable, label, or memory
expression belongs to unless a group override is used. In that
event, the base will be the base address of the group. It is
possible to add a 17-bit value to this base.

HIGH: This type of relocation causes the upper 8-bit portion
of an offset to be written to object code. The offset is
calculated using the same rules as noted above, but only the
high byte will be written out. It is possible to add an 8-bit
value to this byte.

LOW: This type of relocation causes the lower 8-bit portion
of the offset to be written to object code. The offset is
calculated using the same rules as noted above, but only the
low byte will be written out. It is possible to add an 8-bit
value to this byte.

SEGMENT
ADDRESSABILITY

The SEGMENT ADDRESSABILITY of a memory location is
determined by the segment the memory location belongs to and by any
segment or group overrides applied. If a segment override is used to
name a specific segment register, that register is used to address the
memory location. Otherwise, the values found in the ASSUME
directives must be tested. If the segment or group is found through the
current ASSUME values, then that segment register is used to address
that memory location. If no match is found, an error is generated, since
the memory cannot be accessed.

It is possible to have a memory location that does not belong to a
segment or group. This would be true of an anonymous memory
reference, which looks like

Symbol and Expression Attributes 3-5

[BW][IX]
; base and index registers

In such a reference, the segment addressability will be determined by
using the default segment registers defined for the base and index
registers. Recall that the default segment register will be DS0 unless
the BP base register is used, in which case the default will be the SS
segment register.

PS
ADDRESSABILITY

The PS ADDRESSABILITY of a label is determined from both the
current ASSUME value for the PS register, and any segment or group
overrides that are applied to the label.

3-6 Symbol and Expression Attributes

4

Assembler Directives

Introduction This chapter describes the asv20/asv33 assembler directives. In an
assembly language program, assembler directives are written as any
other program statement might be, but directives are not translated into
equivalent machine language instructions. Instead, assembler
directives are interpreted as instructions to the assembler to control the
program assembly process itself.

In this chapter, directives are organized in alphabetical order for easy
reference. (The DB, DW, DD, DS, DQ, DL, and DT directives are
described together because of their similarity.) However, assembler
directives may also be grouped into three broad categories
—Segmentation Directives, Data Definition Directives, and Program
Linkage Directives— which identify the parts of the assembly process
the different directives are designed to affect. Segmentation Directives
help you to inform the assembler about the logical organization of your
program. Data Definition Directives control the allocation and
initialization of data, variables, and labels. Program Linkage Directives
make it possible for you to create modular assembly language
programs. The first sections of this chapter list the directives grouped
by these three categories, briefly describe their functions, and more
thoroughly discuss some concepts important to understanding how
these directives work.

Syntax
Conventions

This section gives the syntax conventions used in this chapter. Part of
the EXTRN Directive reference follows with explanations of the
different areas of the reference.

Assembler Directives 4-1

EXTRN The EXTRN directive is used to declare certain symbols as external
references.

Syntax:

Where: name is a symbol.........

segment - unknown unless

4-2 Assembler Directives

Description Symbols declared as EXTRN are not expected to be defined in the
current module (they cannot be), but are passed to the loader to be
matched against symbols declared PUBLIC in other modules. In
asv20/asv33 the EXTRN directive will specify the name of the symbol
and its associated type. The type declaration must...

Segmentation
Directives

ASSUME informs the assembler of the contents of the
segment registers.

GROUP combines several logical segments together.

SEGMENT/ENDS defines a logical segment in the assembly
language program code.

These directives control program segmentation (the dividing of the
assembly program into logical parts). To better understand program
segmentation, read the following discussion.

Program
Segmentation

The V20, V25, and V33 can directly address one megabyte of memory.
(For the V33, there is only one megabyte of memory addressable at any
specific moment.) This memory is viewed by the CPU through four
segments, known as physical segments, each containing up to 64K
bytes. The start of each segment is defined by a value, called a
paragraph number, placed in one of the four special registers known as

Assembler Directives 4-3

segment registers. A paragraph number, or boundary, is located at a
memory address which is divisible by 16 (that is, the least significant
hexadecimal digit of the address is 0H). A physical segment is said to
be active if one of the segment registers contains the base address of
the start of the segment.

The four segments are classified as the code, data, stack, and extra
segments. They are each pointed to by a separate segment register:

PS for code

DS0 for data

SS for stack

DS1 for extra

Executable instructions will be in a physical segment defined by the
value in PS. Any stack operation will occur within the segment
defined by SS. Data is generally found in the segment pointed to by
DS0, but it can also be placed in any of the other segments. The
segment accessed through the DS1 register will usually hold data also.

A logical segment is a segment as defined within a single assembly
file. The linking loader can combine this logical segment with other
segments of the same name to form a single physical segment. The
size of the physical segment is limited to 64K, so the sum of the logical
segments cannot exceed this limit. The collection of segments into a
group is another form of physical segment.

Default Segment -
??SEG

All code and data within a source file must exist within some segment.
Any code or data defined outside of segment directives within a source
file will be assigned to a segment automatically created by the
assembler. This segment is named ??SEG and exists in all object files.
The ??SEG segment is defined to be public, so it is combined with all
other ??SEG segments from other modules. It is also defined to be
paragraph aligned.

4-4 Assembler Directives

Data Definition
Directives

DB defines one byte of storage.

DW defines one word (two bytes) of storage.

DD defines one double word (four bytes) of storage.

DS defines one double word (four bytes) of storage (72291
data types).

DQ defines one quad word of storage (eight bytes - 8087
data types).

DL defines one quad word of storage (eight bytes - 72291
data types).

DT defines one tbyte (ten bytes - 8087 data types) of storage.

EQU assigns a particular value to a symbol.

EVEN aligns code or data with a word boundary.

ORG adjusts the location counter within the current segment.

PROC/ENDP assigns a label to a sequence of instructions.

PURGE causes a user-defined symbol to become undefined.

RECORD defines a record template.

STRUC/ENDS defines a structure template.

Data Definition Directives control the definition and initialization of
data and/or storage as labels, variables, records, or structures. The short
discussion on data objects that follows may help you to better
understand the data definition directives.

Data Objects The two most referenced data objects are variables and labels. With the
Data Definition Directives, you may define these and other data objects
in your program. Variables are data items, or areas of memory where

Assembler Directives 4-5

values are stored. Labels allow you to "mark" locations or sections in
your code that may be BRed to or CALLed. One use of labels is to
define "subroutine" locations in order to create structured programs.
Unlike high-level language subroutines, however, scoping of names
does not occur and you can "fall into" an embedded "subroutine."

Records and structures may also be defined by this category of
directives. Records and structures are alike in that they are
user-defined templates for storage allocation and initialization, they are
not allocated storage at definition time, the assembler "remembers"
what they look like, they can be referenced as often as you like, and
each reference generates one or more copies of storage in the format of
the template. At the time of the reference, records and structures may
optionally have certain of their definition-time default values replaced.

Records and structures are different, however, in their basic makeups.
When you define a structure, you specify how many bytes the template
covers, how the bytes will be broken up into variables, and what
default values will be placed into those bytes at allocation-time. In
contrast, a record must be a one or two byte collection of bit fields.
When defining a record, you specify how the record is to be broken up
into bit fields, and any default values to be placed in the bit fields at
allocation-time. The record size depends upon the sum of the number
of bits in all the bit fields, which means the total may not exceed 16
bits.

Program Linkage
Directives

ASGNSFR specifies which segment contains the V25 SFR
and RAM registers.

END specifies the end of an assembly module.

EXTRN specifies symbols defined in other modules.

NAME assigns a name to an assembly module.

PUBLIC specifies which symbols are public.

4-6 Assembler Directives

SETIDB specifies the memory location where the V25 SFR
and RAM registers are located.

Program Linkage Directives make it possible for you to create modular
assembly language programs. Refer to the discussion of program
linkage that follows to better understand the use of these directives.

Program Linkage asv20/asv33 supplies the necessary directives to support multi-module
programs. A program may be composed of many individual modules
that can be separately assembled or compiled. Each module may
define variables or labels that other modules may use. The Program
Linkage Directives are the mechanisms in asv20/asv33 for
communicating symbol information from module to module, for
identifying those symbols within the current module that may be used
by other modules, for stating what symbols (defined elsewhere) can be
used within the current module, and for uniquely naming different
object modules that are to be linked together. Using these directives,
you may specify a "main module," that is, a module which contains
the code that will be initially executed upon loading the program (the
address the loader will use to initialize the start address of the
program). At the same time, you may also supply initialization values
for other segment registers.

The ASGNSFR and SETIDB directives are used for linking together
multiple modules when the target processor is a member of the V25
family. These directives are used to inform the linker as to where in
memory the V25 RAM and SFR registers are to be found. Any
disagreements will result in error messages at link time.

Assembler Directives 4-7

Syntax:

ASGNSFR segmentname

Where: segmentname is the name of a segment in the assembly file.

Description: The ASGNSFR directive must be used whenever the V25 SFR or
RAM registers are to be accessed within an assembly file. This
directive informs the assembler to pass information to the linker as to
whether V25 registers were accessed in this file and which segment
they were associated with. All references to the V25 SFR or RAM
registers will result in relocatable values that are placed in the object
file. The ldv20 linker will resolve these values by comparing the start
address for the ASGNSFR segment with the SETIDB address of the
SFR and RAM registers. Any reference to the SFR or RAM registers
must be within 64k of the start address for the ASGNSFR segment.

The ASGNSFR directive allows the use of the V25 SFR and RAM
keywords within the assembler. These keywords refer to the location
of the various registers within the V25 register space. Any use of these
keywords without an accompanying ASGNSFR directive will result in
undefined values and error messages. The relocatable values generated
by these V25 keywords will have offset values ranging from 0H to
1FFH. These offsets correspond to the address of the specified register
within the V25 RAM and SFR register bank.

The ASGNSFR directive is only valid in the V25 mode. It is an error
to use it in the V20 or V33 modes. Also, the ASGNSFR directive may
only appear once within an assembly file. At link time, there can be
many modules that contain ASGNSFR directives. No errors occur as
long as these segments are placed within 64k of the SFR and RAM
registers.

ASGNSFR The ASGNSFR directive is used to inform the assembler as to
which segment contains the V25 SFR and RAM registers.

4-8 Assembler Directives

An example of using the ASGNSFR directive follows:

SFRSEG SEGMENT
SFRSEG ENDS

ASGNSFR SFRSEG

CODE SEGMENT PUBLIC
ASSUME PS:CODE, DS0:SFRSEG

:
:
MOV TM0, 80H; DS0 register used
MOV MD0, 40H; to access these
registers
:
:

CODE ENDS

In the example, the SFRSEG segment is assumed to contain the V25
RAM and SFR registers. The instructions that use the V25 keywords
will generate relocatable values that indicate an offset within the V25
RAM and SFR register bank. The ldv20 linker will check the
placement of SFRSEG, as well as the placement of the V25 RAM and
SFR register bank as specified by the SETIDB directive, to make sure
that each reference to a V25 register is within 64k of the start of the
segment. If this is not the case, a linktime error will be generated.

ASGNSFR (Cont’d)

Assembler Directives 4-9

Syntax:

ASSUME segreg:segpart [,...]
(or)
ASSUME NOTHING

Where:

segreg is one of the segment registers PS,DS0,DS1 or SS.

segpart is one of the following:

A segment name. The base address of the segment is
assumed to be in the named register. All data (or code) in the
segment is addressable through this register.
Example:

ASSUME PS:CODE, DS0:DATA

A group name (must have been previously defined). The
base address of the group is assumed to be in the named
register. All code or data in all segments in the group are
addressable through this register. Example:

ASSUME PS:CODEGRP, DS0:DATAGRP

A forward reference. Forward references with ASSUME are
only allowed for symbols which will be defined as segment
names later in the program. When the segment name is later
defined, then it may be used to address memory within the
segment. Failure to define the segment name will cause an
error to be reported.

The keyword SEG followed by the name of a
previously-defined label, variable or external symbol. The
base address of the segment containing the symbol (which
may not be known until link-time) is assumed to be in the

ASSUME The ASSUME directive is used to inform the assembler of the
contents of the segment registers.

4-10 Assembler Directives

named register. The specified symbol and any other data
known to be in the segment are addressable through the
register. (For an external symbol defined outside a segment,
no such data is known.) Example:

ASSUME PS:SEG START, DS0:SEG COUNT

The keyword NOTHING. The register is assumed to contain
garbage. The register will not be used to address any memory.
The format

ASSUME NOTHING

is also legal; this is equivalent to

ASSUME PS:NOTHING,DS0:NOTHING,DS1:NOTHING,SS:NOTHING

Description: ASSUME is used by the assembler to

determine if the code or data your program references is
addressable

decide whether a segment override byte should be generated.

Initially, the segment registers contain NOTHING (garbage) by
default. The assembler assumes the contents of each segment register
has not changed —since initialization or the last ASSUME— unless an
ASSUME for that register is encountered. ASSUME itself, however,
does not alter the value in the segment register. For example, the

ASSUME (Cont’d)

Assembler Directives 4-11

statement ’ASSUME DS0:DATA’ does not alter the contents of DS0.
You must, at some point, follow the ASSUME with a MOV instruction
to DS0 in order to access data in the DATA segment without error.

PS register initialization, since it is done by the loader, does not require
a MOV, but PS still requires an ASSUME before it may be used.

Note There is an exception to the requirement that the PS register must have
an ASSUME before it is used. When a BR instruction is used without
a current PS-ASSUME value, the default is to ASSUME the current
segment. The segment registers will not be checked. This only applies
to NEAR references, since a BR to a FAR label requires that the PS
register be updated.

ASSUME (Cont’d)

4-12 Assembler Directives

Syntax:

1 byte (Byte) initialization:
[name] DB init [,...]

2 byte (word) initialization:
[name] DW init [,...]

4 byte (dword) initialization:
[name] DD init [,...]

4 byte (fdword) initialization:
[name] DS init [,...]

8 byte (qword) initialization:
[name] DQ init [,...]

8 byte (fqword) initialization:
[name] DL init [,...]

10 byte (tbyte) initialization:
[name] DT init [,...]

(or)

[name] Dx repeatval DUP(init,[,...])
 (where x is B, W, D, S, Q, L, T)

Where:

name is a unique asv20/asv33 symbol. Its associated attributes will
be:

segment - current segment

DB, DW, DD, DS,
DQ, DL, DT

 The DB, DW, DD, DS, DQ, DL, and DT directives are used to
define variables and/or initialize memory.

Assembler Directives 4-13

offset - current location counter

type - type of data initialization unit

init may take on many possible values depending upon what type of
initialization you wish to do. Init may be any of the following:

A constant expression.

– DB - 1 byte initialization. An integer constant or an
expression which fit into 8 bits (either 0-extended or
sign-extended) when stored in twos complement format.
The range is -255 to +255. High and low relocatable
numbers (created by the HIGH and LOW operators) are
also acceptable scalars. Other relocatable numbers, such as
the offset of a variable, are not acceptable.
Examples:

DB 0
DB 65535 ;not accepted, out of range

DB -1 ;these are equivalent
DB 255 ;both generate hex FF

– DW - 2 byte initialization. A constant or expression that
evaluates to a number (either absolute or relocatable)
which must fit into 16 bits (either 0-extended or
sign-extended) when stored in twos complement format.
The range is
-65535 to +65535. Examples:

DW 0

DW 65536 ;not accepted, out of range

DW -1 ;these are equivalent
DW 65535 ;and generate hex FFFFH

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

4-14 Assembler Directives

– DD /DS - 4 byte initialization. An integer constant or an
expression that evaluates to an absolute number. The value
must fit into 16 bits (either 0-extended or sign-extended).
The range is -65535 to +65535. The 16-bit value is stored
in the lower 2 bytes in twos complement format (least
significant byte first) and the higher 2 bytes are
sign-filled. Relocatable numbers are not permitted (it is
impossible to determine how to fill the higher 2 bytes at
assembly-time).

 An integer constant in the range
-4 294 967 295 to +4 294 967 295
(from -(232+1) to +(232-1),
but not small enough to qualify for DW. Note that an
expression cannot yield a value this large; all expressions
evaluate to 17-bit numbers. The value is stored as a 32-bit
twos complement integer, low byte first.

A decimal real. The valid range is roughly
-3.4E38 to -1.2E-38, 0, 1.2E-38 to 3.4E38.

A hex real of 8 digits (or 9 digits if its leading digit is 0).

Examples of the possibilities:

DD 0 ;yields 00000000
DD 65535 ;yields FFFF0000 (low byte first)
 ;in 16-bit range
DD -1 ;yields FFFFFFFF

DD 65537 ;yields 01000100 (low byte first)
DD -65537 ;yields FFFFFEFF (low byte first)

DD 0.0 ;a decimal real
DD 3.14159 ;another decimal real

DD 0C0000000R ;a hex real

– DQ /DL - 8 byte initialization. An integer constant, or
an expression whose value resolves to a 17-bit absolute
number. The range of constants is -(264+1) to +(264-1).

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

Assembler Directives 4-15

Such integer values are stored in 64-bit twos complement
format.

A decimal real number which has an approximate legal
range of values is
 -1.7E308 to -2.3E-308, 0, 2.3E-308 to 1.7E308.

A hex real number consisting of 16 digits (or 17 digits if
its leading digit is 0).

– DT - 10 byte initialization. An integer constant, or an
expression that resolves to a 17-bit absolute number. The
range of constants is -(1018+1) to +(1018-1). All integer
values are stored in 80-bit signed-magnitude packed
decimal (BCD) format, least significant byte in the
lowest address.

A decimal real number that has an approximate range of
-1.1E4932 to -3.4E-4932, 0, 3.4E-4932 to 1.1E4932.

A hex real number consisting of 20 digits (or 21 digits if
its leading digit is 0). Examples:

DT 65535 ;generates 35550600000000000000H
 ;(low byte first)
DT -65535 ;generates 35550600000000000080H
 ;(low byte first)

The character "?" for indeterminate initialization.

– In situations where you wish to reserve storage but do not
need to initialize the area to any particular value, use
the special character "?" instead of a value. The area will
be reserved with an indeterminate value. Examples:

ABYTE DB ? ;reserve a byte
AWORD DW ? ;reserve a word (2 bytes)
ADWORD DD ? ;reserve a double word
(4 bytes)

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

4-16 Assembler Directives

AFDWORD DS ? ;reserve a double word
(4 bytes)
AQWORD DQ ? ;reserve a quad word (8
bytes)
AFQWORD DL ? ;reserve a quad word (8
bytes)
ATBYTE DT ? ;reserve a tbyte (10
bytes)

An address expression.

Note Assume registers are not checked when these directives are used with
address expressions. Therefore, the only way to get a group-relative
reference is to use a group override in the address expression.

– DW - 2 byte initialization. DW may be used with a
variable name, a label name, a group name, or a segment
name. Using DW with a variable or label name causes the
offset of a variable or label (relative to its segment or, if a
group override is used, to its group) to be stored. Using
DW with a group or segment name causes the paragraph
number of that group or segment to be stored. Examples:

DW COUNT ;COUNT is a variable or label
 ;store offset of COUNT from its segment

DW DATAGRP :COUNT ;store offset of COUNT from its
 ;group (DATAGRP)

DW CODE ;CODE is a segment or group name
 ;store the paragraph number

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

Assembler Directives 4-17

– DD /DS - 4 byte initialization. DD may be used with a
variable name, a label name, a group name, or a segment
name. Using DD with a variable or label name causes the
offset (relative to its segment or, if a group override is
used, to its group) of the variable or label to be stored in
the low order word and the segment or group base address
for the label or variable to be stored in the high order
word. Using DD with a group or segment name causes the
paragraph number of that group or segment to be stored in
the low order word. The high order word will be set to
00H. Using DD with a variable or label name is equivalent
to storing a pointer to the variable or label address.
Examples:

DD COUNT ;COUNT is a variable or label, a
 ;pointer to it is stored

is equivalent to

DW COUNT ;store offset of COUNT
DW SEG COUNT ;store COUNT’s segment

Initialize with a string.

– DB - 1 byte initialization. A string of up to 1024
characters may be specified with the DB directive. Each
character in the string, left to right, is assigned one byte of
memory, low address to high address. The string must be
enclosed within single or double quotes. A single quote
may be embedded in the string by using two consecutive
quotes. Examples:

ALPHABET DB ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
WITHQUOTE DB ’THIS AIN’’T HARD!’ ;inserting single
 ;quote in string

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

4-18 Assembler Directives

– DW, DD, DS, DQ, DL, You may use these directives to
code a string of 1 or 2 characters. Such a string is
interpreted as a 17-bit number that is stored differently
than it would be if DB were used. If two characters are
stored, the second character in the string appears in the
low byte of the storage and the first character appears in
the next higher byte of the storage. If only one character
is stored, the low byte of the storage contains the
character. With either a 1 or 2 byte string, if any bytes of
the storage remain unfilled, they are set to 00H. Using
more than 2 characters in a string results in a warning
message and only the first 2 characters are used.

– DT DT can also code a two character string, but it does it
in a way different from the other directives. DT stores the
string in BCD packed decimal format. If a single character
is stored, its decimal ASCII value is stored in the low byte
of storage. The remaining bytes are set to 00H. If two
characters are stored, however, it becomes more
complicated. It is done as follows:

The 17-bit hexadecimal number representing the string is
converted to its decimal equivalent. (The
17-bit hex number is formed by placing the ASCII hex
value of the first character of the 2 character string in the
leftmost byte of the 17-bit word and placing the ASCII
hex value of the second character in the rightmost byte of
the 17-bit word. The sign bit is zero.)

Beginning with the rightmost digit of the resulting
decimal value, the decimal representation is stored 2 digits
per byte, working from right to left in the decimal value,
until all digits are stored.

Any remaining bytes of storage are set to 00H.

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

Assembler Directives 4-19

Examples:

DB ’01’ ;generates 3031H (shown low byte first)
DW ’01’ ;generates 3130H (shown low byte first)
DW ’1’ ;generates 3100H (shown low byte first)
DD ’01’ ;generates 3130 0000H (shown low byte first)
DQ ’01’ ;generates 3130 0000 0000 0000H
 ;(shown low byte first)
DT ’01’ ;generates 3723 0100 0000 0000 0000H
 ;(shown low byte first)

Repeating value. The special construct, DUP, can initialize an area
of memory with a repeated value or a repeated list of values.

repeatval specifies the number of data initialization units
(from 1 to 65535) to be filled (bytes, words, dwords, qwords,
or tbytes depending upon whether Dx is DB, DW, DD, DS,
DQ, DL, or DT).

init (as an argument to DUP) may be a single occurrence of
the possibilities that were acceptable for init in the
non-repeating-value syntax, including another DUP, or init
may be a list of these same values. DUPs may be nested to
eight levels deep. Below are some examples:

WORD1 DB 2 DUP (?) ;two consecutive bytes form word
DD 2 DUP (’01’) ;generates 3130000031300000H
NESTEDDUP DB 3 DUP (4 DUP (5 DUP (1, 6 DUP (0))))
 ;60 occurrences of 1,6 DUP (0)

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

4-20 Assembler Directives

If an indeterminate initialization is repeated, the memory reserved by
that data directive will NOT be initialized to 0. Also, repeating a
relocatable value (such as a location in memory) will result in only the
first value being assigned correctly. So this practice is discouraged.

Description: The DB, DW, DD, DS, DQ, DL, and DT directives are used to define
variables and/or initialize memory. The descriptions of the parts of the
syntax adequately describe these directives.

The DD/DS and DQ/DL data directive pairs accept the same form of
arguments and generate the same object code. The only differences
between these forms are that the DS and DL directives are only usable
on a word boundary and cannot appear inside a segment that is BYTE
or INPAGE aligned. Errors are generated under those conditions.

The DS and DL directives may only be used when the assembler is in
the 72291 mode.

DB, DW, DD, DS,
DQ, DL, DT
(Cont’d)

Assembler Directives 4-21

Syntax:

END [regint [,...]]

Where:

regint This field defines the contents for a segment register (and the
PC and SP registers). To initialize the segment registers, the field may
include some, or all, of the following symbols:

segname is either a segment name or a group name. It
identifies the paragraph number to be loaded into the segment
register.

labelname is the name of a label defined in the module. If it is
used alone, its segment will be used to initialize the PS
register and its offset will initialize the PC. If it is used with a
segname, then just its offset will be used to initialize PC.

varname is the name a variable defined in the module. Its
offset will be used to initialize SP.

The following examples show the proper syntax for
initializing different segment registers.

PS (code) segment register initialization

END labelname ;initializes PS and PC
 ;(the segment part of the
 ;label is used for PS)
(or)
END PS:labelname ;same as ’labelname’
(or)
END PS:segname:labelname ;the segment part (paragraph
 ;number) to be loaded into
 ;PS is taken from segname

END The END directive is used to inform the assembler that the last
source statement has occurred and to specify the load module
starting address for the main module.

4-22 Assembler Directives

SS (stack) segment register initialization

END SS:segname ;SP will be initialized to be
 ;equal to the size of the
 ;segment

(or)

END SS:segname:varname ;initializes SS and SP
 ;(SP will be initialized to
 ;the offset of varname)

DS0 (data) segment register initialization

END DS0:segname ;initializes DS0

Description: An END directive is required for all assembly language programs. Any
statements that follow the END directive will not be processed.
Specifying a load address with the END directive also informs the
loader that the current module is the main program. The main program
defines the start of execution because execution begins at the address
specified with the END directive for the main program. If multiple load
modules are combined by the loader, only one module can specify a
load address and therefore be considered the main program. (The
loader issues warning messages if it encounters more than one main
program.)

The END directive may also be used to define the initial contents of the
DS0 and SS segment registers by specifying values to be placed in
these registers by the linker/loader at load-time.

Note If the code is to be targeted for HP 64000 format absolute, you may
only initialize the PS:PC register with END. Initialize the other
registers explicitly within the code.

END (Cont’d)

Assembler Directives 4-23

Syntax:

equate_symbol EQU expression

Where:

equate__symbol is a mandatory symbol defined by this statement.

expression is one of the following items:

A numeric constant or expression. The value of the
expression must be determined at assembly time. Any
symbols used in the expression must have been previously
defined. See the Description section below for more
discussion about real constants. Examples:

PI EQU 3.14159 ;real constant stored with
 ;10 byte precision
DD PI ;4 byte floating point
DQ PI ;8 byte floating point
DT PI ;10 byte floating point

E1 EQU 2 + 3 ;numeric expression
E2 EQU E1 AND 4 ;E1 previously defined
E3 EQU (E1 - E2) / 12 ;E1 and E2 previously defined

EQU The EQU directive causes the assembler to assign a particular
value to a symbol.

4-24 Assembler Directives

A variable or label name (which may be a forward
reference).

ALABEL EQU ALAB ;ALAB not defined yet
ALAB: MOV AW, 0

A register name, including ST and 72291 registers. Example:

COUNT EQU CW
POINTER EQU BW
MOV COUNT, 10 ;CW = 10
MOV POINTER, OFFSET ARRAY ;BW = offset of array
FREQ EQU ST(1)
FADD ST, FREQ

An instruction or codemacro name.

BUMP EQU INC ;instruction name
BUMP AW ;same as INC AW

A register expression. These may be single register
expressions, or they may also include a segment override.
This construct is useful when defining data items to be
accessed on the stack. Refer to the Description section for a
more information about the use of register expressions.
Examples:

STACKWORD EQU WORD PTR SS:[BP + 2]
AVAR EQU [BW + 3]
ANEXTVAR EQU DS1:[BW]

EQU (Cont’d)

Assembler Directives 4-25

Description: The EQU directive in asv20/asv33 is more powerful than the EQU
found in most other assemblers. All the various attributes of address
expressions are stored, and any missing attributes may be added later
with expression operators at the time the EQUed symbol is referenced.

Decimal real numbers are stored in a full 10-byte format to prevent a
loss of precision; they may be used in DD, DS, DQ, DL, or DT
directives later in your code. Hex real numbers, however, are stored in
as many bytes as the specification indicates; they can be used later only
in the single directive that accepts a hex real of that size.

It is possible for a symbol to appear as a forward reference before it is
defined in an EQU. When this happens, the assembler assumes that the
forward reference will resolve to a number, variable or label. If this
turns out not to be the case, an error may occur on pass 2 if the
assembler did not leave enough room for an instruction on pass 1.

Symbol chaining (defining a symbol in terms of another symbol which
is in turn defined by another symbol) can be accomplished with the
EQU directive, but the chain must eventually end as a numeric or
address expression. An error occurs if the definition ends in a register
or real number expression. Circular EQU definitions are also errors.
 Example:

A EQU B
B EQU A ;ERROR! circular
reference

A symbol defined by an EQU to an address expression consisting of
more than one symbol (for example, BYTE PTR VBL) is stored as a
variable or label, if possible. The entire EQU expression takes its
attributes from the sub-expression on the right-side of the EQU.
However, not all attributes will be set if attributes are missing from the
right-side sub-expression. If that is the case, missing attributes must be
supplied when the symbol on the left-side of the EQU is used
elsewhere in an expression.

Examples:

EQU (Cont’d)

4-26 Assembler Directives

A EQU [BW][IX][5] ;anonymous reference — type
 ;information must be supplied
 ;when A used elsewhere
B EQU WORD PTR 10 ;segment information must be
 ;supplied later

EQU (Cont’d)

Assembler Directives 4-27

Syntax:

EVEN

Description: The assembler brings about alignment by generating a NOP (90H)
instruction if the current location counter contains an odd address
value. The EVEN directive cannot be used in a byte aligned segment.
Doing so will cause an error message to be generated.

EVEN The EVEN directive causes the Location Counter to be aligned to
an even value (a word boundary).

4-28 Assembler Directives

Syntax:

EXTRN name:type [,...]

Where:

name is a symbol, declared PUBLIC (see PUBLIC directive later in
this chapter) in another module, to be defined as an external reference.
Its associate attributes are the following:

segment - unknown unless defined within a
SEGMENT/ENDS pair

offset - unknown

type - type declared in type argument

relocation type - external

type is one of the following:

The keyword BYTE, WORD, DWORD, FDWORD,
QWORD, FQWORD, or TBYTE for a variable which is
one of these types.

A structure name. Names a variable whose type is equal to
the number of bytes allocated in a preceding structure
definition.

A record name. Names a variable whose type will be either
byte or word depending on the preceding record definition.

NEAR or FAR. A label of type near or far.

 ABS. A constant (17-bit number), always of type word.

EXTRN The EXTRN directive is used to declare certain symbols as
external references.

Assembler Directives 4-29

Description: Symbols declared as EXTRN are not expected to be defined in the
current module (they cannot be), but are passed to the loader to be
matched against symbols declared PUBLIC in other modules. In
asv20/asv33, the EXTRN directive will specify the name of the symbol
and its associated type. The type declaration must agree with the type
of the symbol declared PUBLIC, but the loader does not do
type-checking. It is your responsibility to maintain type compatibility.

The type ABS is used to declare a constant. Despite the mnemonic
ABS, this number can prove to be offset relocatable or absolute when it
is resolved depending upon how it was defined as a PUBLIC symbol.
In either case, name can be used and treated like a constant value.

You must be careful in the placement of the EXTRN directive in
relation to the definition of the program segment. If you know the
segment in which the external symbol was defined as PUBLIC, place
the EXTRN directive between a SEGMENT/ENDS pair that is
identical to the SEGMENT/ENDS pair in which the object was defined
in the other module. An external symbol defined in this manner will be
addressable through the segment register containing the segment in
question. In particular, a NEAR label defined EXTRN must be defined
in segment identical to the one where it is defined PUBLIC because of
the NEAR type restrictions. Example:

EXTRN (Cont’d)

4-30 Assembler Directives

In module "A"

DATA SEGMENT WORD PUBLIC
COUNT DB 0 ;declared as byte through DB
PUBLIC COUNT
DATA ENDS

In module "B"

DATA SEGMENT WORD PUBLIC ;different module, but same
 ;segment declaration
EXTRN COUNT:BYTE ;typed as byte
DATA ENDS

If you do not know the segment in which the external
symbol is defined, or if the segment in which it is defined is
non-combinable, place the EXTRN directive outside of all
SEGMENT/ENDS pairs in your program. To address the
external symbol you must load the segment part (paragraph number) of
the symbol into a segment register using the SEG operator and then
either use an ASSUME directive to verify addressability or use a
segment override for each use of that symbol.

Note The V-Series linker does NOT verify that the definition of an external
symbol matches the definition of its resolving public symbol. It is up
to the user to make sure that external symbol definitions are placed
within the correct segment or they should NOT be placed in a segment
at all.

EXTRN (Cont’d)

Assembler Directives 4-31

Example:

MOV AW, SEG COUNT
MOV DS1, AW ;loads segment

(then)

ASSUME DS1:SEG COUNT ;verify
addressability
MOV DL, COUNT ;use symbol
(or)
MOV DL, DS1:COUNT ;use segment
override

V33 Considerations In the V33 mode, there are three forms of external symbols that do not
act the same as a normal external symbol. These externals are of the
following forms: ?jump?MODULENAME?PROCNAME,
?addr?MODULENAME, and ?pgrn?MODULENAME. The
MODULENAME refers to the module name for a V33 executable. The
PROCNAME refers to a public procedure or label within the named
module.

The ?jump?MODULENAME?PROCNAME external is a FAR
external which refers to an address to begin execution. The
?addr?MODULENAME and ?pgrn?MODULENAME are ABS
externals and represent 16-bit values that are used for initializing the
V33 page table to map the 1-megabyte address space into the V33’s
16-megabyte address space.

These externals are not resolved by the ldv33 linker, but are processed
by the HP 64875 elv33 locator tool. The definitions of these externals
are not affected by their relationship to segment definitions (that is,
they do not belong to a segment, even if they are defined within one).

EXTRN (Cont’d)

4-32 Assembler Directives

Syntax:

name GROUP segpart [,...]

Where:

name is a mandatory, unique, user-defined name for the group.

segpart is one of the following:

A segment name.

The keyword SEG followed by the name of a
previously-defined variable, label, or external symbol.
This construct refers to the segment in which the specified
symbol lies. For externals, this may not be discovered until
link-time.

An undefined symbol that must be defined later in the
program as a segment name or the assembler reports an error.

Description: At assembly-time you may specify that certain logical segments will all
go in the same physical segment so the assembler will know that all
such segments may be accessed from the same segment register. Such
a collection of segments is called a group. The ordering of the
segments in a GROUP directive will not necessarily control or
represent the ordering of the segments in memory nor are the segments
in a group necessarily adjacent in memory. GROUPing them only
implies that they should lie within the same physical segment.

The total address space covered by all segments in a group must be less
than or equal to 64K bytes. The size of the group is the equal to the
sum of the sizes of all segments in the group. The assembler does not
check whether the size of the group is greater than 64K bytes, but the
loader does.

GROUP The GROUP directive is used to specify several logical segments
that are to be placed in the same physical segment.

Assembler Directives 4-33

A group has a base address. The base address of a group refers to the
lowest memory address of any segment in that group. The loader sets
the group base address, and all segments in the group are addressable
from this same group base address.

Forward references to group names are not allowed.

One of the uses of the group name is with the ASSUME directive. If,
for example, you have defined many different data segments that you
intend to form into one physical segment when the program is located
in memory, you could combine these segments with the GROUP
directive. Since the contents of all these data segments will be
addressable through DS0 during the execution of the program, you may
use the group name in the ASSUME and to initialize DS0. For example,

DATAGRP GROUP DATA1, DATA2 ;DATA1 and DATA2 not
 ;defined yet

DATA1 SEGMENT
ABYTE DB 0
DATA1 ENDS

DATA2 SEGMENT
AWORD DW 0
DATA2 ENDS

ASSUME DS0:DATAGRP, PS:CODE ;use group name in ASSUME
CODE SEGMENT
MOV AW, DATAGRP ;AW = base address of group
MOV DS0, AW ;initialize DS0
MOV AW, AWORD ;addressable through DS0
.
.
.
CODE ENDS

GROUP (Cont’d)

4-34 Assembler Directives

Use of the OFFSET Operator With Groups

When using the OFFSET operator with a variable or label whose
segment is in a group, you must use the group name as a segment
override in an expression which references that variable or label, as in

MOV BW, OFFSET DATAGRP:COUNT

Also, if you wish to store the paragraph number of a variable or label
defined with a group, you must use a group override. Otherwise, the
paragraph number of the segment that contains the variable is stored
instead. Example:

DW SEG DATAGRP:COUNT
DD DATAGRP:COUNT

GROUP (Cont’d)

Assembler Directives 4-35

Syntax:

name LABEL type

Where:

name is a unique user-defined symbol. Its associated attributes are
the following:

segment - current segment

PS-assume - current PS-assume value (labels only)

offset - current location counter

type - as specified below

type is one of the following:

The keyword BYTE, WORD, DWORD, FDWORD,
QWORD, FQWORD, or TBYTE to create a variable
which is one of these types.

A structure name Creates a variable whose type is equal to
the number of bytes allocated in a structure definition.

A record name Creates a variable whose type will be either
byte or word depending on the record definition.

NEAR or FAR To create a label of type near or far.

LABEL The LABEL directive is used to create a name for the current
location of assembly, whether it is data or code.

4-36 Assembler Directives

Description: The LABEL directive and the idea of a "label" should not be confused.
The LABEL directive creates a label or variable at the current location
being assembled. A label is a name for a location in the code that can
be BRed to or CALLed.

The LABEL directive is used primarily to address the same data item
or same piece of code as different types. As a rule, asv20/asv33
requires that the type of a data reference match the type of the data
definition (known as strong typing), which makes this dual addressing
difficult. If you want to access a variable either as a word or as 2 bytes
depending upon the context, the following would allow you to do so:

WORDNAME LABEL WORD
LOWBYTE DB 0
HIBYTE DB 0

The LABEL directive also allows you to define two labels of different
types (for instance, both NEAR and FAR) but be careful that the right
RET is executed for the type of CALL made. The following
(potentially fatal) example illustrates this use:

AFARLABEL LABEL FAR
NEARLAB: MOV AW, BW
RET ;would be near, so some information
 ;would be left on the stack

asv20/asv33 does not, in general, permit data storage at label
locations—that makes writing self-modifying code difficult.

The FDWORD and FQWORD labels are only valid if the current offset
is word aligned, and the current segment is not BYTE or INPAGE
aligned. Errors are generated if either condition is not valid.

The FDWORD and FQWORD types may only be used when the
assembler is in the 72291 mode.

LABEL (Cont’d)

Assembler Directives 4-37

Syntax:

NAME module_name

Where:

module_name is a user-defined identifier. The name identifier can
be any length, but only the first 40 characters are meaningful.

Description: Every object module produced by asv20/asv33 has a name; if you do
not provide one, the assembler issues a warning and gives the file a
special name. The special name is the source file base name stripped
of any path and suffix. A module name is not stored as a symbol. You
can therefore duplicate a keyword or a user-defined label without
conflict. Module names are not affected by the case control. They are
always case-sensitive.

The linker does not require that modules have unique names, but it
identifies its input files by module name on its listing map. For this
reason, assign each module a unique name for clarity.

The librarian program does identify its modules by name. Every
module used as input to the librarian must have a unique name or an
error will result.

NAME The NAME directive is used to assign a name to an object module.

4-38 Assembler Directives

Syntax:

ORG expression

expression evaluates to

an absolute number (modulo 65536) that does not contain
forward references or

an offset relocatable number (modulo 65536) that is only
relocatable from the current segment. Using the offset of ’$’
(dollar sign is the special character for the current location
counter value) in a PUBLIC segment is an example of this
form of ORG.

Description: The ORG directive is used to locate code or data at a particular location
(offset) within a segment. Using ORG with an absolute segment
allows you to specify an actual memory location at which the code or
data will be located.

Note Avoid expressions of the form

ORG OFFSET ($-1000)

since this particular expression will overwrite your last 1000 bytes of
assembly (or will re-ORG high in the current segment if the expression
evaluates to a negative number). An expression with the syntax
"$+1000" will produce an error because this expression evaluates to a
label, not to a number. To achieve what is intended, the expression
"OFFSET ($+1000)" can be used.

ORG The ORG directive is used to alter the value of the Location
Counter within the current segment.

Assembler Directives 4-39

Syntax:

name PROC [type]
.
.
(instructions)
.
.
name ENDP

Where:

name is a unique user-defined symbol providing a label for the
beginning of the PROC. The name on the ENDP directive must match
that on the most recently defined PROC for which an ENDP was not
already encountered. The ENDP directive signals the end of a PROC
definition to the assembler. The attributes of the PROC name are the
following:

segment - current segment

PS-assume - current PS-assume

offset - current location of PROC directive

type - depends on type indicated

relocation type - depends on enclosing segment

type is the type of the label defined at the beginning of the PROC.
Type can be NEAR or FAR. NEAR is the default if no type is specified.

PROC/ENDP The PROC/ENDP directive pair is used to delimit a section of code
which can then be CALLed from elsewhere in the program, much
like a procedure in a high-level language.

4-40 Assembler Directives

Description: The primary use of the PROC/ENDP pair is to give a type to the RET
instruction enclosed by the pair. A RET instruction generates a NEAR
return or a FAR return depending on whether the most recently defined
PROC is NEAR or FAR. A RET or RETI outside of a PROC/ENDP
pair or inside a pair which has no type specified is, by default, of type
NEAR. Therefore, any code you wish to CALL FAR and then
successfully RET from should be enclosed in a PROC/ENDP pair
typed FAR.

Code execution begins at the instruction immediately following the
PROC Directive when PROCs are CALLed or BRed to.

Nested PROCs

When a PROC is defined inside another (nested), it does not
necessarily have the same type assigned to its RET or RETI instruction
as does the enclosing PROC. For instance, an enclosing PROC may be
typed FAR. When the next PROC occurs, it might be a NEAR. For
the duration of that PROC until the ENDP, the type of any return
instruction will be NEAR and not FAR. When the ENDP is found for
the nested PROC, however, the type reverts to the type of the enclosing
PROC, in this case FAR. Having a NEAR PROC inside a FAR PROC,
then, does not affect the enclosing PROC.

Differences Between PROCs and "Subroutines"

The code in a PROC/ENDP pair is not a procedure in the same sense as
it is in high-level languages. A few differences are of note:

In contrast to the scoping of names in block-structured
languages, all labels and variables within the PROC/ENDP
pair are not local to the "subroutine", but are global to the
entire file.

It is possible for execution to "fall into" a PROC from the
previous instruction; it is not necessary to CALL a PROC to

PROC/ENDP
(Cont’d)

Assembler Directives 4-41

execute it. Executing a RET or a RETI from a "fallen into"
PROC can cause unpredictable results.

The ENDP does not function as a return-from-procedure; it
marks the end of the PROC for the assembler. It is possible
for execution to "fall out of" a PROC through the ENDP into
the next instruction. To return from a CALL, a RET or RETI
instruction must be used.

PROC/ENDP
(Cont’d)

4-42 Assembler Directives

Syntax: PUBLIC name [,...]

Where:

name is the name of the symbol defined in the current module.

Description: Symbols designated PUBLIC will be placed in the object file and used
by the loader to resolve external references (made with the EXTRN
directive) from other modules.

PUBLIC symbols must be variables, labels or 17-bit constants defined
by using EQU; any other types will generate an error. A 17-bit constant
can be absolute or offset relocatable only; other relocation types are not
allowed.

PUBLIC The PUBLIC directive is used to specify symbols, defined in one
module, that are available to other modules at link time.

Assembler Directives 4-43

Syntax:

PURGE symbol [,...]

symbol can be any keyword or user-defined symbol, except

register names

segment names (including ??SEG).

group names

hands-off keywords (see keyword list in chapter titled
"Assembler Syntax")

any user-defined symbol that appears in a PUBLIC
statement

Description: A PURGEd symbol can be redefined following the PURGE statement.
A reference to the symbol following the PURGE statement, but before
a re-definition, is treated as a forward reference to the second
definition. If a PURGEd symbol is never redefined, references to the
symbol following the PURGE statement are considered errors
(reference to undefined symbol).

Purging symbols does not physically remove them from the symbol
table and therefore PURGE cannot be used to deal with symbol table
overflow.

If a variable or label that is defined in the current module but does not
appear in a PUBLIC or EXTRN statement (that is, a local symbol) is
purged, it will not appear in the object module. A PURGE directive,
placed just before the END statement can —in combination with the
$DEBUG assembler control statement— be used to pass on only a few
selected symbols for debugging purposes.

PURGE The PURGE directive places a flag on the specified user-defined
symbol in the symbol table so that the symbol is no longer
recognized.

4-44 Assembler Directives

Any variable, label or absolute number that was defined by an EXTRN
statement can be purged, but the symbol will still appear in the object
module as an external reference.

If a symbol is defined by an EQU to another symbol (not an
expression), a PURGE on one of the symbols can cause unexpected
results. The rule is that if a symbol in a EQU chain is PURGEd, it and
all symbols that precede it to the beginning of the chain are also
PURGEd.

Given the EQU chain that follows:

A EQU B
B EQU C
C DW 0 ;EQU chain resolving at C

The following PURGEs, which should not be considered as sequential
code but as separate lines somewhere in the assembly source program,
would have the described effects.

PURGE A ;purges only A (B and C are still defined)

PURGE B ;purges A and B (C still defined)

PURGE C ;purges A, B, and C

PURGE (Cont’d)

Assembler Directives 4-45

Syntax:

name RECORD recfieldname:nnn[=datum]
[,...]

Where:

name is a mandatory user-defined name for the record template.

recfieldname is a mandatory user-defined name for a bit field.

nnn is an integer constant, or an expression containing no forward
references, that evaluates to an absolute number. The range of nnn is
from 1 to 16, inclusive, and denotes how many bits will be in a bit
field. Bits are counted from high bit to low bit within the full byte or
word. Thus, the first bit field following the RECORD keyword is the
most significant field of the record.

datum is an optional integer constant, or an expression containing no
forward references which evaluates to an absolute number, specifying a
default value for this bit field. This value can be overridden when the
record is allocated. If no datum is present, zero is the default. If the
datum is present, it must fit into the number of bits specified (nnn),
zero-filled. For example, the legal default values for a 1-bit field are 0
and 1. Values that are either negative or too large are truncated to fit
within a given field. A warning is also generated.

Description: The RECORD directive always defines a record template of either 1 or
2 bytes in size. This definition only describes a record; it does not
allocate any memory at definition time. The total number of bits in all
bit fields within the record cannot exceed 16. When the template is
used to define an occurrence of the record, memory is allocated in
multiples of 8 bits (1 byte). If the total number of bits in a record
template is one to eight inclusive, the unit used to allocate storage

RECORD The RECORD directive defines a record template.

4-46 Assembler Directives

when the record template is used is 1 byte. If the number of bits is 9 to
16 inclusive, then allocation is 2 bytes.

You might experience some confusion in those cases where the bit
field allocation does not fill exactly 8 or 16 bits. While it is true that bit
counting begins with the most significant bit in cases where the byte or
word is completely filled, partially allocated records (the number of
bits in the bit fields do not total exactly 8 or 16 bits) will have their bit
fields right-justified in the byte or word and the remaining most
significant bits will be zero-filled. This means that the first bit in the
left-most bit field where counting begins will not be the left-most bit of
the byte or word. The following definition

REC1 RECORD R1:3=7,R2:5 ;generates 11100000B or E0H

defines an 8-bit pattern which has all 8 bits filled. Note that R2,
because it is not initialized, is set to zero by default. However, the
definition

REC2 RECORD R3:3=7,R4:3=3 ;generates 00111011B or 3BH

leaves two bits remaining in an 8-bit byte. The two three-bit bit fields
are right justified, and the remaining two bits, the two most significant
bits, are zero-filled. The following figure illustrates how, for the above
example of record template REC2, the partial record is defined by the
RECORD directive.

RECORD (Cont’d)

7 6 5 3 2 0

Zeroed Bitfield R3 Bitfield R4

Figure 4-1. "Partial" Record Definition

Assembler Directives 4-47

Similarly, the two 16-bit record definitions below illustrate what
happens to 16-bit partial records.

REC3 RECORD R5:3=7,R6:13=4095
 ;generates 1110111111111111B or 0EFFFH
REC4 RECORD R7:1=1,R8:8=127
 ;generates 0000000101111111 or 017FH

Remember, the RECORD directive only defines a template, it does not
allocate storage. To see how to allocate storage using a record
template, read the next section.

Allocating Record
Storage

After you have defined a record template, the template definition can
be used in the following syntax to allocate storage:

Syntax:

[name] recname <[[datum],] [...]>

(or)

[name] recname repeatval DUP (<[[datum],] [...]>)

Where:

name is an optional name to be declared as a variable with the
following attributes:

– segment - current segment being assembled

– offset - current location counter value

– type - total number of bytes in the record template (either
1 or 2)

recname is the name assigned to a previously-defined record
template repeatval is a 17-bit integer constant, or an
expression containing no forward references and evaluating to
a 17-bit absolute number, between 1 and 65535 inclusive.
Repeatval specifies the number of copies of the record to
allocate.

RECORD (Cont’d)

4-48 Assembler Directives

datum is an optional value to be used instead of the default
value provided in the template. All such values must be
17-bit integer constants, or expressions that evaluate to 17-bit
absolute numbers. Relocatable values are not allowed.

– The first datum replaces the default value of the first bit
field within the record, the second datum replaces the
default on the second bit field, etc. Null data items are
permitted (separated by commas) to direct the assembler
to use the default values; null data values are useful when
a default value other than the first needs to be overridden.
If a field is mmm bits wide, the least significant mmm bits
of the twos complement representation of the datum are
used. For example, if a 3-bit field is being overridden,
values of 6, -2, and 14 will all generate the 3 bits 110.
Examples (using the REC1 definition shown above):

FIRSTREC REC1 <> ;no overrides to defaults,
 ;generates 0E0H
SECNDREC REC1 <4> ;overrides R1 - generates 080H
THIRDREC REC1 <,5> ;overrides R2 - generates 0E5H
FIVERECS REC1 5 DUP (<>) ;5 copies of default record

It is allowable to nest record allocations up to 10 deep.

RECORD (Cont’d)

Assembler Directives 4-49

Syntax:

name SEGMENT [align-type][combine-type][’classname’]
.
.
.
name ENDS

Where:

name is a mandatory user-defined name that cannot conflict with any
other symbol.

align-type specifies what boundary the logical segment must be
placed on. If the align-type is not specified, PARA is the default.
Align-type may be any of the following keywords:

BYTE - byte alignment. Segment can start anywhere.

WORD - word alignment. The segment must start on an
address divisible by 2. (An address which has a least
significant bit of 0.)

PARA - an address divisible by 16. (An address which has its
least significant hexadecimal digit equal to 0H.)

PAGE - page alignment. The segment must start on an
address divisible by 256. (An address which has its two least
significant hexadecimal digits equal to 00H.)

INPAGE - inpage alignment. The entire logical segment
cannot be more than 256 bytes long; it cannot cross a page
boundary (an address divisible by 256). It will be moved to
start on an address divisible by 256 only if movement is
necessary to prevent the segment from crossing a page
boundary.

SEGMENT/ENDS The SEGMENT/ENDS directive pair is used to define a logical
segment.

4-50 Assembler Directives

combine-type specifies the way in which the linking loader
combines this segment with other logical segments of the same name to
form a physical segment in memory. If combine-type is not specified,
the logical segment will not be combined with any other logical
segment, not even one with the same name from a different module.
Combine-type can be any of the following keywords:

PUBLIC - all segments of the same name defined to be
PUBLIC will be concatenated to form a single physical
segment. The loader controls the order of concatenation. The
length of the resulting physical segment will be equal to the
sum of the lengths of the segments that have been combined.

COMMON - all segments of the same name defined to be
COMMON will be overlapped, starting at the same physical
address, to form a physical segment. The size of the resulting
physical segment will be equal to the size of the largest
segment of those overlapped.

STACK - all segments of the same name defined to be
STACK will be concatenated into a physical segment such
that the combined segment will end at a certain physical
address (overlaid against high memory) and will grow
"downward." The length of the resulting segment will be the
sum of the lengths of the combined segments. (STACK is not
a true keyword. You can define a symbol to be STACK
without conflicting with the usage in the SEGMENT
directive.)

MEMORY - all segments of the same name defined to be
MEMORY will be combined so that the first memory segment
encountered by the linker will be treated as the physical
"memory" segment. In the list of linked modules, the first
module that contains a "memory" segment will be used to
define the physical "memory" segment. It will be located at an
address above all other segments in the program. Any other

SEGMENT/ENDS
(Cont’d)

Assembler Directives 4-51

segments of the type memory that are encountered by the
linker will be treated as common with the first segment. The
length of the physical memory segment will be equal to the
length of the first memory segment encountered (Memory,
like Stack, is not a true keyword. You can define a symbol to
be MEMORY without conflicting with the usage in the
SEGMENT directive).

AT nnn - this segment will be placed at the paragraph number
specified. The expression nnn cannot contain forward
references and must evaluate to an absolute number. Absolute
segments are not aligned by the linker; the various align-type
keywords are syntactically correct when used in combination
with AT but are ignored. Note that nnn represents a
paragraph number, not an actual address; therefore if AT
0444H is specified, the segment will start at address 04440H.
A segment created with AT will be non-combinable with
segments from other modules.

’classname’ is a name that may be used to indicate that segments are
to be located near each other in memory. When assigning physical
addresses to these logical segments, the linking loader attempts to place
logical segments with the same classnames close together. However,
the classname cannot be used to combine segments such that they may
be addressed through the same segment register.

The classname must be enclosed in single quotes, as shown, or in
double quotes.

Classnames are not stored as symbols; they may duplicate symbol
names (even keywords) without conflict. If a classname is to be
assigned to a segment, assign it at the first occurrence of the segment in
the source file.

Description: The SEGMENT/ENDS directive pair is used to define a logical
segment. This segment may be combined with other segments of the
same name defined in either the same module or in other modules.

SEGMENT/ENDS
(Cont’d)

4-52 Assembler Directives

These logical segments will form the physical segments, located in
memory, that are pointed to by the segment registers. Within a source
module, each occurrence of an equivalent SEGMENT/ENDS pair (with
the same name) is viewed as being one part of a single program
segment.

Multiple Definitions
of a Segment

The assembler keeps the value of the offset from the current segment
(i.e., the most recent SEGMENT directive) in an internal location
called the location counter. The assembler saves the location counter
for each segment when it finds an ENDS for that segment, or if it finds
a new SEGMENT directive. Later, if the assembler finds another
SEGMENT directive which uses the name of that previously defined
segment, the earlier location counter is retrieved and used. For this
reason, a segment may be broken into pieces within a module, or
between modules if it is combinable, and those pieces will still be
placed in the same physical segment.

The align-type, combine-type and classname need not be included with
the second and later SEGMENT directives for a segment of the same
name. If they are absent, the assembler takes the segment’s
characteristics from the first definition. However, any keywords that
are present must match the first definition, or an error is reported. If an
absolute segment is broken into pieces and the AT keyword is used on
a SEGMENT directive for the second or later piece, the absolute base
address must match the first definition, even though the location
counter is taken from the stored value. The second part of the segment
will not start at the specified base address, but the AT value must
match. Examples of breaking a segment:

SEGMENT/ENDS
(Cont’d)

Assembler Directives 4-53

S1 SEGMENT PUBLIC
NOP ;relocatable location 0
S1 ENDS

S1 SEGMENT ;assembler uses PUBLIC attribute
ADD AW,2 ;instruction at relocatable location 1
S1 ENDS

S2 SEGMENT AT 0444H
NOP ;instruction at absolute location 04440H
S2 ENDS

S2 SEGMENT AT 0444H
NOP ;instruction at absolute location 04441H
DB 14 dup(0) ;skip 14 bytes
S2 ENDS
S2 SEGMENT AT 0445H ;an error! Must use 0444H
NOP ;instruction at absolute location 04450H
S2 ENDS

Nested or Embedded Segments

It is legal to nest SEGMENT/ENDS pairs. Each ENDS must refer to
the most recently-defined SEGMENT whose ENDS was not yet
encountered. The fact that a segment is nested inside another does not
mean that the code for the nested segment is placed inside the
enclosing segment. The code is the same as it would be if no nesting
occurred. Nesting helps you to define logical structures and makes
programming easier. Example:

S1 SEGMENT PUBLIC
NOP ;goes into S1 segment
S2 SEGMENT PUBLIC
ADD AW,2 ;goes into S2 segment
S2 ENDS
SUB AW,3 ;goes into S1, S2 is "closed"

Improper Nesting:

S1 SEGMENT PUBLIC
NOP
S2 SEGMENT PUBLIC
ADD AW,2
S1 ENDS ;ENDS does not match most recent SEGMENT
 SUB AW,3
S2 ENDS ;ENDS does not match remaining SEGMENT

SEGMENT/ENDS
(Cont’d)

4-54 Assembler Directives

Maximum Number of Segments

If you use the default HP-OMF 86 object file format, you may use an
unlimited number of segments. The HP 64000 (.A) object file format
allows only three named segments. Therefore, if you use the HP 64000
object file format (the -h command -line option), use three or fewer
relocatable segments per module.

The first relocatable segment with code will be assigned the PROG
segment. The first relocatable segment with data will be assigned the
DATA segment, if that segment is not used for PROG. The next
relocatable segment, whether it contains code or data, will be assigned
the COMN segment.

SEGMENT/ENDS
(Cont’d)

Assembler Directives 4-55

Syntax:

SETIDB [value]

Where: value is a constant numeric expression ranging from 0 to 0FFH. If the
value is not present, the expression defaults to 0FFH.

Description: The SETIDB directive is used to pass information to the ldv20 linker as
to where in memory the V25 SFR and RAM registers are to be located.
The value that is passed in to this directive indicates the upper 8 bits of
the 20-bit physical address for these registers. If no value is given with
the SETIDB directive, the default value of 0FFH is used. The V25
SFR and RAM registers starts at 0E00H bytes beyond the SETIDB
address indicated. The physical address of any register in the V25 SFR
and RAM registers can be obtained by shifting the SETIDB value to
the left by 12, adding 0E00H to that value, and then adding the offset
of the register to that value. This is, in fact the process used by the
ldv20 linker. The linker will take the relocatable value for any
references to V25 SFR and RAM registers and resolve them such that
they refer to the register’s physical location. This requires any
ASGNSFR segment to be placed within 64k of the start of the V25
registers, so the resulting segment/offset pair can reach the correct
physical address.

The SETIDB directive is optional for using the V25 SFR and RAM
registers, but it must be used if these registers are to be placed at a
location other than 0FFE00H in physical memory. The SETIDB
directive generates object code to modify the V25 IDB register to
contain the value used in this directive. The assembler also passes this
value to the ldv20 linker so it can validate that the ASGNSFR
segments are located at acceptable addresses. The object code
generated by the SETIDB directive pushes some registers to the stack,
so it should only be used after the SS and SP registers are initialized. It
should also be used before any of the V25 SFR and RAM registers are
accessed.

SETIDB The SETIDB directive indicates to the assembler and linker where
in memory the V25 SFR and RAM registers are located.

4-56 Assembler Directives

The SETIDB directive can only be used once in any single module.
Also, the ldv20 linker will check the modules that it is given so as to
verify that only one of its input modules contains a SETIDB directive.
Multiple SETIDB directives will result in a linktime error.

The SETIDB directive is only valid in the V25 mode. It is an error to
use it in the V20 or V33 modes.

An example of using the SETIDB follows:

CODE SEGMENT PUBLIC
ASSUME PS:CODE

; Initialize the Stack registers
; so the stack can be used
MOV AW, STACKSEG
MOV SS,AW
MOV SP,0FFFFH

; Change the V25 IDB register to
; point to where I want the SFR
; and RAM registers to reside.
; In this example, the V25 registers
; will be at 080E00H through
; 080FFFH.
SETIDB 080H
:

CODE ENDS

SETIDB (Cont’d)

Assembler Directives 4-57

Syntax:

name STRUC
.
.
<data directives>
.
.
name ENDS

Where:

name is a unique user-defined symbol that becomes the structure
name. The name on the ENDS must match the name on the STRUC.
Its type attribute is the following:

type - number of bytes defined in structure data directives

Description: The structure definition only describes a given structure and its
contents; it does not allocate any memory at that time. All statements
between the STRUC and ENDS directives must be one of the
following: DB, DW, DD, DS, DQ, DL, or DT directives, comment
lines, blank lines, or assembler controls. Any assembler controls that
are included within the STRUC/ENDS pair are not stored as part of the
template and therefore are not executed anew each time the structure is
referenced. Any symbols referenced in the argument field of any of the
included directives must have been previously defined. Forward
references are not allowed within a structure definition.

You will notice that the ENDS directive is also used to terminate a
SEGMENT definition. This is unambiguous, since an ENDS closing a
SEGMENT is not legal within a structure definition.

If a DB or other directive within a structure definition has a name in its
name field (which must be unique, and cannot previously have been
the object of a forward reference), this name is known as a structure

STRUC/ENDS The STRUC/ENDS directive pair is used to define a structure
template.

4-58 Assembler Directives

field. It is not the same as a variable, and it is not associated with any
particular storage location or segment. Structure names and structure
fields can be used in very few syntactic constructs. Forward references
to structure names and structure fields are not allowed.

Structure field names do have associated attributes. They follow:

offset - offset from the beginning of the structure definition

type - type of data definition directive

Allocating Structure
Storage

 After you have defined a structure template, it can be used in the
following syntax to allocate storage:

Syntax:

[name] strucname <[[datum],] [...]>
(or)
[name] strucname repeatval DUP (<[[datum],] [...]>)

Where:

name is an optional name to be declared as a variable with the
following attributes:

– segment - current segment being assembled
offset - current location counter value
type - total number of bytes in the structure template

strucname is the name assigned to a previously defined
structure template.

nnn is a 17-bit integer constant, or an expression containing
no forward references and evaluating to a 17-bit absolute
number between 1 and 65535 (inclusive); it is the number of
copies of the structure to allocate.

STRUC/ENDS
(Cont’d)

Assembler Directives 4-59

datum is an optional scalar to be used in place of the default
value provided in the template. The first datum replaces the
default value on the first data definition directive within the
structure, the second datum replaces the default on the second
data definition directive, etc.

– Null data (separated by commas) is permitted and directs
the assembler to use the default value; this is useful when
a value other than the first occurring value must to be
overridden. The legal values for these scalars are the same
as in the data definition directive to which they apply,
including the indeterminate-initialization keyword ’?’.
Note that repeated data (i.e., DUP expressions) cannot be
used as an override.

– Not every default value can be overridden. Default values
can be replaced only if the template defined just one unit
of data for the data definition directive (structure field)
that is to be overridden, or the template defined a character
string in a DB directive. These conditions mean that such
defaults as DB 1,2 and DW 10 DUP (0) cannot be
overridden.

The number of bytes used in a DB string is fixed when the structure is
defined. Such a string can be overridden only by another string. If a
longer string is used to override, it is truncated, and a warning message
is given. If a shorter string is used to override, it is filled out, using the
characters at the end of the default string.

Errors may occur upon allocation of a structure if the structure
definition used DS or DL data directives, and the allocation of the
structure occurs in either a BYTE or INPAGE aligned segment, or the
location counter is not on a word boundary.

The figure on the following page illustrates structure definition and
allocation.

STRUC/ENDS
(Cont’d)

4-60 Assembler Directives

The instruction

B1 BLUEPRINT < >

allocates storage for B1 that looks like:

15 0

F F F E

The structure definition

 BLUEPRINT STRUC
 FIRST DW 0FFFEH
 SECOND DW BUFFER
 THIRD DB 7, 5
 FOURTH DB ’A’
 FIFTH DB ?
 SIXTH DW 257
 BLUEPRINT ENDS

yields a structure template like this:

15 0

.FIRST

.SECOND

.THIRD+1 .THIRD

.FIFTH .FOURTH

.SIXTH

Figure 4-2. Structure Definition and Allocation

STRUC/ENDS
(Cont’d)

Assembler Directives 4-61

OFFSET (BUFFER)

0 5 0 7

indeterminate 4 1

0 1 0 1

The instruction

B2 BLUEPRINT <,0 . . . 255 >

allocates storage for B2 that looks like:

15 0

0 F F F E

0 0 0 0

0 5 0 7

F F 4 1

0 1 0 1

Figure 4-2. Structure Definition and Allocation (Cont’d)

STRUC/ENDS
(Cont’d)

4-62 Assembler Directives

5

Expressions

Introduction This chapter describes the syntax and semantics of expressions. The
early part of the chapter explains the kinds of expressions and discusses
expression operands. The latter part lists the different expression
operators and their uses. The end of the chapter has a table showing the
precedence ranking of the expression operators.

Reference Syntax
Conventions

The sections that include the references about the expression operators
follow certain conventions:

1. The name of the operator (or a descriptive term for the
operator) appears in the lefthand column.

2. The proper assembler syntax appears next under a heading of
"Syntax."

3. A short description follows the syntax. The description
explains the syntax and any arguments appearing in the
syntax. There may also be other information relating to the
operator itself or to using the operator.

4. Some expression operators may affect the attributes (see
chapter named "Attributes") of its operands. If that is so, a
list of attributes and their values follows the description.

5. Some short examples that use the operator may follow the
description or attributes sections.

Expressions 5-1

Expression
Overview

An expression is a simple or complex combination of operands that
may be bound by operators. Operands can be numeric values or
address expressions. Operators include conventional unary and binary
arithmetic operators (+, -, *, /, MOD, etc.), logical operators (AND,
OR, XOR, NOT), or special operators such as memory and record
operators.

Expressions have certain attributes. Attributes are discussed
thoroughly in the chapter named "Symbol and Expression Attributes."

Expressions are in turn used as operands to assembly language
instructions and assembler directives. Expressions may be absolute,
relocatable, or external.

Absolute Expression An absolute expression is one whose value is known completely at
assembly time. Assembly of absolute expressions results in object
code that does not need to be further modified by the loader. An
absolute expression will have an operand that is

a numeric constant

a constant memory expression (addresses which are known at
assembly time)

record allocation values

a record bit field offset

a segment base located during assembly time with the AT
keyword (AT is discussed in the SEGMENT/ENDS directive
in the "Assembler Directives" chapter)

an offset for a variable or label from a segment which is
non-combinable

a register name

5-2 Expressions

Relocatable
Expression

A relocatable expression contains a relocatable operand as part of the
expression. The value of a relocatable expression is not known at
assembly time and must be assigned later by the loader. Relocatable
expression values are 16-bit values unless modified by the HIGH or
LOW operators to become 8-bit values. A relocatable expression will
have an operand that is

a segment base where the segment is combinable (including
all groups, since their bases are not set until load time)

a variable or label which belongs to a combinable segment

External Expression An external expression is a relocatable expression which contains items
that are not within the module being assembled. These expressions
reference external variables, labels, or numbers. Their values must be
assigned by the loader when the module containing the referenced item
is available for relocating. External expressions, like relocatables, are
assumed to be 16-bits in size, but may be modified with the HIGH or
LOW operators to be 8-bit values. More information about external
references appears in the chapter called "Assembler Directives."

During the assembly process, the assembler uses 17-bit numbers to
perform arithmetic and other operations involving expressions. A
17-bit number is a 16-bit number with an additional sign bit. The
17-bit number is used within the assembler so that negative numbers
with large absolute values (to -65535) may be used in calculations.
When the value is coded, the sign bit is discarded and is not output,
since only 16-bit values are used in the object code.

Expressions 5-3

Expression
Operands

An expression may consist of only an operand, or an operand or
operands modified by an operator or operators. Operands are broadly
divided into two groups: numeric values and memory or register
expressions. A numeric value will be directly represented in the
assembled code. A memory or register expression is an indirect value
because the assembler is coding a reference —or reserving a space that
will be filled later— which points to a location in memory where the
actual data resides. Expressions involving the EQU directive can be
either a numeric or memory expression.

Numeric Values Numeric values result from a variety of different operands. Numeric
constants, obviously, are numeric values, but other, less clearly
numeric operands also produce numeric values. Any of the following
operands can generate numeric values:

A constant. There are several ways that an absolute number,
or constant, may be represented to the asv20/asv33 assembler.
The easiest and most straightforward way is to make the
expression operand a decimal, octal, hexadecimal, or binary
number. The various representations are as follows:

– A decimal number is a series of digits, ranging from 0 to
9, that optionally ends with the character ’D’. Decimal
numbers are base-10 and are the numbers people are most
familiar with.

– An octal number is a base-8 number represented by a
series of digits, ranging from 0 to 7, and ending with either
the character ’O’ or ’Q’.

– A hexadecimal number is a base-16 number represented
by a series of digits, ranging from 0 to 9, or by characters,
ranging from ’A’ to ’F’. These numbers must end with the
character ’H’. A hexadecimal number may not begin with
a character; in those instances, place a leading zero in
front of the hex number.

– A binary number is a base-2 number represented by a
series of digits, either 0 or 1, and ending with the character
’B’.

Examples of numeric constants:

5-4 Expressions

MOV AW, 35 ;decimal number
MOV AW, 12D ;decimal number with optional
 ;following ’D’
MOV AW, 37O ;octal number with the letter ’O’
MOV AW, 12Q ;octal number with following ’Q’
MOV AW, 12H ;hexadecimal number
MOV AW, 0A34H ;hexadecimal number with leading 0
MOV AW, 0110101B ;binary number

Quoted string. A one or two character quoted string which is
used as an expression operand will be stored as a hexadecimal
number in a two byte word. Each byte contains the ASCII
value of the character it stores. If two characters are stored in
a word, the first character is represented in the high byte of
the word and the second character is represented in the low
byte. If only a single character is stored, it is represented in
the low byte and the high byte is set to 00H. A quoted string
always evaluates to a positive 17-bit value. This method of
representing numbers is cumbersome and not very useful. It
is also much more difficult to verify that the value is correct.
Examples:

MOV AW, ’A#’ ;generates 04123H
MOV AL, HIGH ’B’ ;generates 00H

Record template. The chapter named "Assembler
Directives" discusses the record structure. A record is a series
of bit fields which may be defined within a one or two byte
structure called a template. Template definition does not
allocate storage, but specifying an occurrence of a record can
allocate memory, much like a DB (define byte) or a DW
(define word) directive might allocate memory. A record
template may also be used as an expression operand, but in
this usage no memory is allocated. Instead, the operand is
evaluated to be a positive 17-bit value and used the same as
any number.

Examples:

R1 RECORD F1:3, F2:5, F3:2 ;the RECORD directive
 ;defines record template
MOV AW, R1<> ;value is 0 since
 ;no defaults specified
 ;in template definition

Expressions 5-5

MOV AW, R1<2,14,3> ;value is 0013BH
MOV AW, R1<2,14,3> + 5 ;value is 00140H

Record field. You may also use a record field name by itself
as an expression operand. If the field name is used without a
MASK or WIDTH operator, then the assembler replaces the
field name with a number which is the shift value required to
move the lower bit of its bit field to the 0th bit position. For
example, using the record template definition above, the
value that would be replaced for F1 is 7 since there are 7 bits
of data to the right of the field F1. The shift value, combined
with the MASK operator described later in this chapter, may
be used to extract field values from a record.

Segment or group name. When used as an expression
operand, the name becomes an immediate value that is the
paragraph number for the segment or group. Since most
segments and all groups are not assigned this value by the
assembler, it will usually be relocatable. Only segments that
use the AT keyword will have a fixed paragraph number
known by the assembler. These values may be used as is —to
initialize a segment register, for instance— or used wherever a
relocatable number may be used (except with HIGH and
LOW). Examples:

MOV AW, SEG1 ;load paragraph number for segment
MOV DS0, AW ;initialize DS0 register
MOV AW, GRP1 ;load paragraph number for group

5-6 Expressions

Memory and Register
Expressions

There are several ways to reference memory in assembly source files.
Memory might be referenced with operands which are any of the
following:

Variables or labels. Variables are defined through data
directives and structure or record allocations. Labels are
defined through assembly instructions or PROC directives.
Either variables or labels may also be defined through
EXTRN statements or LABEL directives. Given the variable
and label definitions in the first three lines of the example
below, the last two lines use those definitions as memory
operands:

WMEM DW 2 ;word variable
R1 RECORD F1:3, F2:4 ;record template definition
U1 R1 <> ;byte variable, from
 ;a record allocation
L1: MOV AW, WMEM ;NEAR label, using a word
 ;variable

MOV AL, U1 ;uses byte variable as operand
BR L1 ;uses NEAR label as operand

Variable with offset. Variables used as memory operands
may have offsets added to them in order to refer to memory
locations near the memory location of the variable. The
variable with offset operand may be expressed in two ways.
Examples of both:

MOV AW, WMEM + 5 ;adds 5 to variable address
 ;accesses memory 5 bytes higher
 ;than location of variable WMEM
MOV AW, 5 + WMEM ;same result from slightly different
 ;way of expressing it
MOV AW, WMEM[5] ;same result from very different
 ;way of expressing it

Structure field. Much the same as using an added offset to a
variable, using a structure field name as part of a memory
operand allows access to memory that is near a variable.
Offset is from the variable named when storage using the
structure template was allocated. Using a structure field
name as a memory operand also changes the type of the
memory expression to that of the field. Example:

Expressions 5-7

ST1 STRUC
BFIELD DB ? ;field offset value from ST1 is 0
WFIELD DW ? ;field offset value from ST1 is 1
ST1 ENDS

MOV AW, BMEM.WFIELD ;adds 1 to offset, word type

Register indirect reference. The V20, V25, and V33
processors also allow an instruction to indirectly refer to
memory by using base and/or index registers. The contents of
these registers are added to a variable’s offset at runtime,
which means a memory address can be created that is not
known when the assembly code is written. A register
expression operand can contain one base register name, one
index register name, or one base and one index register name.
Additionally, constants may be part of the operand along with
the registers.

The valid base registers are BW and BP and the valid index
registers are IX and IY.

 Base or index registers used this way must be enclosed in
square brackets in a register expression, but there are several
different ways to represent expressions given this restriction.

– A base and index register may be added together explicitly
by using a ’+’ sign within the brackets or added implicitly
by enclosing each register name in separate, adjacent
brackets.

– A base or index register alone may have a constant added
to it or subtracted from it in the same manner. (The ’-’
sign must be used for subtraction, since adjacent brackets
are, by default, added.)

– A base and index register added together may also have a
constant added using either a ’+’ sign or adjacent brackets,
or a constant may be subtracted by using a ’-’ sign within
the brackets.

– A base and index register cannot be subtracted from one
another, however.

5-8 Expressions

Examples:

MOV AW, WMEM[BW] ;one base register,
 ;no index register

MOV AW, WMEM[BP][IX] ;these two slightly different
 ;expressions are equivalent
MOV AW, WMEM[BP+IX] ;both add one base register
 ;and one index register

MOV AW, WMEM[IX] ;no base register,
 ;one index register

MOV AW, WMEM[5][BP] ;both of these expressions use
MOV AW, WMEM[5+BP] ;an index register with a
 ;constant added

MOV AW, WMEM[BP-5] ;one base register with
 ;constant subtracted,
 ;no index register
MOV AW, WMEM[BW][IY][5] ;one base and one index
 ;register added
MOV AW, WMEM[BW+IY+5] ;with constant added also
 ;both expressions equivalent

Anonymous reference. This form of register expression
operand contains only constants and registers and does not
include a variable or label name. Because there is no variable
or label name, no segment or type information is inherent in
the expression.

This expression may be given a type and segment, using the
PTR and segment override operators. Otherwise, default
values are assumed, depending upon the instruction and the
registers that are used. If the base register BP is used, the
default segment register is SS. Otherwise, the DS0 segment
register is the default segment register.

 A default type value may be assumed if other operands to the
instruction provide enough information to limit the type of the
memory expression. Otherwise, an error is generated. For a
constant to be used as a memory reference, it must be typed
with the PTR operator so the assembler knows to treat the
value as such. Otherwise, the constant is treated as an
immediate value.

Examples:

Expressions 5-9

MOV AW, [BW] ;default is DS0 segment
MOV AW, [BP][IX] ;default is SS segment
MOV AW, DS1:[BW] ;segment is DS1
MOV AW, DS0: WORD PTR 5 ;segment is DS0
MOV AW, [BW].WFIELD ;default is DS0 segment

EQU The EQU directive, discussed in the chapter titled "Assembler
Directives," allows you to assign a value to a symbol. Some of the
possible assignments include register names, variables, memory
expressions, or constants. The symbol on the left side of the EQU
directive may be used in an expression as an operand. The result is the
same as if whatever appears on the right side of the EQU were used as
an operand instead. Examples:

E1 EQU BW ;V20 register
MOV AW, E1 ;register to register
MOV AW,BW ;same as MOV AW, E1

E2 EQU WMEM ;variable
E3 EQU BMEM[BP][IX] ;register expression
E4 EQU 037B2H ;constant
MOV AW, WMEM[E1] ;register from memory
MOV AW, E2[E1] ;register from memory
MOV AL, E3 ;register from memory
MOV AW, E4 ;immediate value into register
MOV AW, E4 / 5 ;immediate value into register

5-10 Expressions

Expression
Operators
Introduction

Operators are functions that take one or more operands and return a
new value. Operators are used to build expressions that cannot be
defined strictly as simple operands. Use operators to add numbers,
change the type of a memory expression, or to cause segment
overrides. You may use a complex expression involving operators
anywhere a simple operand may be used if the value returned by the
complex expression is equivalent to the value of the simple operand.

Arithmetic
Operators

The arithmetic operators conform to the commonly understood notions
of these operators. Arithmetic involving these operators is done using
the full 17-bit representation of the operands. Negative number results
are stored, however, in twos complement form.

Unary Plus,
Unary Minus

Syntax:

Unary Plus: + operand
Unary Minus: - operand

Description: The unary operators ’+’ and ’-’ each take a single
operand and return a single value as the result. The ’+’ operator may
be applied to an absolute or a relocatable value and the result will be an
absolute or relocatable value. The ’-’ operator may only be applied to
absolute values. The result will be the 2’s complement of the value.
These operators may be thought of as being the binary operators ’+’
and ’-’ with a lefthand operand of 0. Examples:

MOV AW, + 5 ;result is 5 or 00005H
MOV AW, - 2 ; result is -2 or 0FFFEH
MOV AW, + WMEM ;result is memory expression

Binary Addition,
Subtraction

Expressions 5-11

Syntax:

Addition: operand1 + operand2
Subtraction: operand1 - operand2

Description: The binary operators ’+’ and ’-’ each take two
operands and return a single value as the result. If memory addresses
are used, the offset from the segment base is the value used as an
operand. The types of operands that are allowed and the types of the
results are shown in the following table.

The shorthand words in the table mean the following:

ABSNUM = absolute number, constant
RELOCNUM = relocatable number (OFFSET, external ABS, SEG)
ADDR = memory address, possibly relocatable or external

Note that ADDR-ADDR is only valid if both memory addresses are
either absolute or relocatable. They must also belong to the same
segment so that their offsets are relative to the same base value. This
allows the result to be absolute. Neither address may be of an external
reference, since its offset is not known at assembly time. Examples:

EXTRN EXABS: ABS ;declared labels - variables
MEMSTART DB ?
WMEM DW 2
MEMEND DW ?

MOV AW, 5 + 15 ;result is 20 or 00014H
MOV AW, 3 - 12 ;result is -9 or 0FFF7H
MOV AW, WMEM + 5 ;result is offset of WMEM + 5

Operand 1 Operator Operand 2 Result

ABSNUM
RELOCNUM
ABSNUM
ADDR
ABSNUM
ADDR

+, -
+, -
+

+, -
+
-

ABSNUM
ABSNUM
RELOCNUM
ABSNUM
ADDR
ADDR

ABSNUM
RELOCNUM
RELOCNUM
ADDR
ADDR
ABSNUM

Table 5-1. Binary Plus and Minus Results

5-12 Expressions

MOV AW, 4 + EXABS ;result is external const + 4
MOV AW, MEMEND - MEMSTART ;result is number of bytes
 ;between MEMSTART and MEMEND

[] Square Brackets

Syntax:

address [data_or_reg]

Description: Square brackets give base and/or index attributes to an
address expression or create a new address expression. The square
brackets must occur in pairs. Such pairs cannot occur within angle
brackets. However, more than one pair of square brackets can occur in
a single expression.

The contents of the brackets are very limited. The only valid register
names that can be used are BW, BP, IX, and IY. The first two, BW
and BP, are base registers and only one of the two can be present
within an entire expression. The IX and IY registers are index registers
and, like base registers, only one of these registers can be present
within an entire expression. It is valid to have both a base register and
an index register in an expression. It is also possible to place numeric
constants within the brackets.

The above items can appear singly within square brackets, as in:

mov AW, wmem[BW][IX][5]

It is also valid to replace ’] [’ pairs with a ’+’ sign, as in:

mov AW, wmem[BW+IX+5]

The only time a minus sign is valid within square brackets is to subtract
a constant, as in:

mov AW, wmem[BW+IX-5]

Expressions 5-13

The constant expression part of the square brackets modifies the offset
value of any memory value that is also part of the expression. The base
and index registers are used to denote indirect addressing as part of an
expression. The contents of the indicated registers are added to any
memory expression offset in the expression to create a final memory
address.

A memory address is not required to be part of an expression which has
square brackets as part of itself. For example, take the following
expression:

mov AW, [BW][IX][5]

This expression represents a memory location that is 5 bytes past the
sum of the contents of the BW and IX registers at the moment of
execution for that instruction. The segment register used for this
instruction would be the DS0 register. The SS register is used if the BP
base register is part of the expression. It is also valid to specify a
different segment register through the use of a segment override, such
as:

mov AW, DS1: [BW][IX][5]
mov AW, SEG1: [BW][IX][5]
mov AW, GRP1: [BW][IX][5]

. (Dot operator)

Syntax:

address ’.’ struc_field

Description: This operand accepts an address expression as its left
operand and a structure field as its right operand. The result of the
operation is an address expression whose offset is equal to the offset
attribute of the left operand plus the offset of the structure field within
its structure template (in bytes). The type of the resulting memory
expression is the type of the structure field. All other attributes are
derived from the left operand. This operator is convenient for
addressing fields within memory that contains one or more occurrences
of a given structure. For example, suppose a structure was defined like
this:

5-14 Expressions

STRUCNAME STRUC
BYTEFLD DB 0
WORDFLD DW 5 DUP (3)
 DT 3.14159
STRINGFL DB ’DEFAULT’
STRUCNAME ENDS

The offset of BYTEFLD, WORDFLD, and STRINGFL within this
structure template are 0,1, and 21, respectively. These structure field
names can be used to reference fields within a structure in memory, as
in:

DATABLOCK STRUCNAME<>
MOV AW, DATABLOCK.WORDFLD ; WORD type
MOV CL, DATABLOCK.BYTEFLD ; BYTE type

MOV IY, OFFSET DATABLOCK
MOV AW, [IY].WORDFLD ; indirectly referencing memory

It is not valid to use the dot operator immediately after a digit, due to
the possible confusion with a real number. Instead, the operator must
be separated from the digit by parenthesis, such as:

(DATABLOCK + 2).WORDFLD ; valid
DATABLOCK + 2.WORDFLD ; illegal

Multiplication,
Division, Modulo

Syntax:

Multiplication: absval * absval
Division: absval / absval
Modulo: absval MOD absval

Description: These three operators each take two absolute values as
operands and return a single absolute value. The ’*’ operator
multiplies the two operands and returns the result. The ’/’ operator
divides the first operand by the second operand. The MOD operator
returns the value of the first operand modulo the second operand.
Modulo division discards the integer quotient and returns a value that is
only the remainder. For either straight division (’/’) or modulo
division, the righthand operand cannot have a value of 0 . Examples:

Expressions 5-15

MOV AW, 5 * 3 ;result is 15 or 0000FH
MOV AW, (-2) * 5 ;result is -10 or 0FFF6H
MOV AW, 5 / 2 ;result is 2
MOV AW, 13 MOD 3 ;result is 1

SHL, SHR

Syntax:

absval SHL shiftvalue
absval SHR shiftvalue

Description: The SHL and SHR operators shift the first operand
bitwise by the value of the second operand. Both operands must be
absolute values; the result is also absolute. The SHL operator shifts
bits to the left and SHR shifts bits to the right. Bits that are shifted to
the left beyond the leftmost bit and bits that are shifted to the right
beyond the rightmost bit are lost. Bits with a value of 0 are shifted in
to fill. The sign bit of the 17-bit value can be modified as a result of a
shift operation, since it is possible to shift 1’s into or out of the sign bit.
See the following figure for an example.

Notice that the sign bit (the leftmost bit) of the argument in the above
figure was shifted in when the shift right occurred.

Some other shifted values:

Figure 5-1. SHL Operator

5-16 Expressions

MOV AW, 5 SHL 2 ;result is 20 or 00014H
MOV AW, 13 SHR 2 ;result is 3
MOV AW, 44 SHL 11 ;result is 24576 or 06000H
MOV AW, (-54) SHR 3 ;result is 16377 or 3FF9H

HIGH, LOW

Syntax:

HIGH operand
LOW operand

Description: These operators take either an absolute value or
relocatable memory expression as an argument and return a
BYTE-sized value of the same type. HIGH returns the high byte of the
operand, LOW returns the low byte.

If the operand is a memory expression, it cannot contain index or base
register names. The value returned will be the HIGH or LOW byte of
the memory location offset. Since this value is not always known
during assembly, it may be relocatable and therefore set by the loader.

Attributes:

relocation type - high or low

Examples:

MOV AL, HIGH 01234H ;result is 012H
MOV AL, LOW 01234H ;result is 034H
MOV AH, HIGH WMEM ;result is high byte of offset
MOV AL, LOW WMEM ;result is low byte of offset

EXTRN EXTABS:ABS
MOV AL, HIGH EXTABS ;result is high byte of
 ;external number

Expressions 5-17

The following identities apply to HIGH and LOW.

High (High X) = 0H
Low (Low X) = Low X
High (Low X) = 0H
Low (High X) = High X

5-18 Expressions

Logical Operators The logical operators return values that are the result of comparing
operands. (NOT can be seen as an exception.) AND, OR, and XOR
compare the bits of their operands while EQ, NE, ...,GE all compare
the values of their operands.

AND, OR, XOR

Syntax:

absval AND absval
absval OR absval
absval XOR absval

Description: These operators each take two absolute values as
operands and return a single absolute value. If n is used to identify any
given bit of the result, bit n has its value set differently depending on
the operator used. The following rules apply:

The AND operator will set a bit n of the result to 1 if bit n of
both operands is a 1; otherwise bit n is set to 0.

The OR operator will set bit n of the result to 1 if bit n of
either operand is a 1; otherwise bit n is set to 0.

The XOR operator will set bit n of the result to 1 if bit n of
each operand is different; bit n is set to 0 if both bits are the
same.

The operations are performed on full 17-bit values. Examples:

MOV AW, 035H AND 3145H ;result is 5
MOV AW, 035H OR 3145H ;result is 3175H
MOV AW, 035H XOR 3145H ;result is 3170H

Expressions 5-19

NOT

Syntax:

NOT absval

Description: The NOT operator takes an absolute value as its
operand and returns an absolute value that is the one’s complement of
the operand. The one’s complement is derived by toggling the bits of
the operand. If bit n of the operand is 1, then bit n of the result will be
0. Similarly, if bit n of the operand is 0, bit n of the result will be 1. The
operation is performed on full 17-bit values. Examples:

MOV AW, NOT 1 ;result is 0FFFEH
MOV AW, NOT 55 ;result is 0FFC8H

EQ, NE, LT,
LE, GT, GE

Syntax:

equal: operand1 EQ operand2
not equal: operand1 NE operand2
less than: operand1 LT operand2
less than or equal: operand1 LE
operand2
greater than: operand1 GT operand2
greater than or equal: operand1 GE
operand2

Description: These operators each compare their operands and
return a value that depends upon the result of the comparison. The
result will be 0 if the comparison is false and the value will be
0FFFFH if the comparison is true. The operands must both be absolute
numbers, both be memory expressions, or both be segment base values.
Memory expressions may not contain base or index register names,
may not refer to externals, and must reside in the same segment. It is
the offset portion of the memory addresses that are compared. Offsets
and absolute values are compared using 17-bit arithmetic.

5-20 Expressions

Examples:

MOV AW, 15 GT 3 ;result is 0FFFFH
MOV AW, WMEM EQ BMEM ;result is 00000H
MOV AW, SEG WMEM EQ A ;result depends upon whether
 ;WMEM lies within segment A

Expressions 5-21

Memory Operators

SHORT

Syntax:

SHORT label

Description: The SHORT operator takes a label as its operand. The
SHORT operator assures the assembler that the label will be within 127
bytes of the current location counter. SHORT is mainly used with the
BR instruction, where a forward reference to a label can result in either
a one- byte or two-byte displacement. The SHORT operator informs
the assembler that a one-byte displacement may be used (which only
requires one byte of storage) where otherwise a two-byte displacement
would result in extra object code size. It is up to you to ensure that the
label is within 127 bytes because an error occurs if it is not. Example:

BR SHORT FWDLAB

THIS

Syntax:

THIS type

Description: The THIS operator takes a type name as an operator
and returns a memory reference of the given type. The memory
referenced will be for the current location and segment. The length of
the memory will be 1. The valid types for the operand are BYTE,
WORD, DWORD, FDWORD, QWORD, FQWORD, TBYTE, NEAR,
and FAR. The result of this operator may be used as either the
right-hand side of an EQU (in which case it acts the same as a LABEL
directive) or as a memory reference in an instruction (which would be a
rare use). Note that THIS NEAR is the same as ’$’. (Dollar sign is the
special character used to represent the location counter.) Also, use of
FDWORD or FQWORD could result in errors if the current segment is
BYTE or INPAGE aligned, if the current location counter is not on a
word boundary, or if the assembler is not in the 72291 mode.

5-22 Expressions

Attributes:

segment - current segment

offset - current location counter

type - as defined

relocation type - depends upon current segment

segment - current segment if defining variable

PS-assume - current PS assume value if defining label

Examples:

LAB2 EQU THIS FAR ;create FAR label
LAB1: NOP
DATAW EQU THIS WORD ;allow word accesses to bytes
DATABL DB 1
DATABH DB 2

PTR

Syntax:

type PTR operand

Description: The PTR operator is used to either set or change the
type of its operand. The valid types that may be used are BYTE,
WORD, DWORD, FDWORD, QWORD, FQWORD, TBYTE, NEAR,
and FAR. The resulting expression will behave as a variable, label,
memory expression, or register expression of the given type. Valid
operands depend upon the type used. For instance, it is not possible to
change the type of a register expression to a NEAR or FAR label.

Attributes:

type - as defined

Expressions 5-23

Examples:

MOV AW, WORD PTR BMEM ;access as word
BR NEAR PTR LABFAR ;use far label as NEAR
MOV AL, BYTE PTR [BP] ;typing an anonymous
 ;memory reference
MOV DS0: WORD PTR 10, AW ;absolute offset typing

Segment or Group
Override

Syntax:

operand1 : operand2

Description: The segment override changes the segment attribute of
the second operand to that of the first operand for the duration of the
instruction statement. The first operand may be

one of the segment registers (DS0, DS1, SS, or PS)

the name of a segment

the name of a group

The second operand must be a variable, label, memory expression, or
register expression. If the first operand is a segment register, then the
second operand’s segment addressability attribute is changed to that of
the segment register and no further testing is done. If the first operand
is a segment name or group name, then the ASSUME values are
checked to see if a segment register has been assumed to point to the
segment or to the group. If one is found, the segment relocation and
addressability attributes are changed to that of the matching segment
register. If one is not found, it is an error. Remember, segment
overrides only affect the current instruction; the ASSUME directive
should be used for more global overrides.

The group override is useful when referring to variables or labels that
belong to segments in the group. If no override is used, all offsets are
relative to the base of the segment that the memory belongs to. The
group override must be used to make the offset relative to the base of
the group, which is probably a different value.

5-24 Expressions

Attributes:

segment relocation - set to value of group or segment name used

segment addressability - set for variables

PS-assume - set for labels if group or segment name used

Examples:

MOV AW, DS0: WMEM ;offset from DS0, base of segment
 ;that WMEM belongs to
MOV AW, SEG1: WMEM ;offset from base of SEG1, or group
 ;that SEG1 belongs to, depending upon
 ;order of ASSUMES
MOV AW, GRP1: WMEM ;offset from base of GRP1
BR FARLAB ;offset from base of segment
BR GRP1: FARLAB ;offset from base of GRP1

OFFSET

Syntax:

OFFSET variable
OFFSET label

Description: The OFFSET operator takes a variable, label, or
memory expression as its operand and returns the offset value from
some base as the result. If no segment override appears in the operand,
the offset will be from the beginning of the segment. If a group name
is used as a segment override, then the offset will be from the group
base. Remember that no checking is done against the ASSUME values
for the registers. To get the offset from a group, an explicit group
override must be used. In either case, the result is an immediate value,
not a memory address. The value may be relocatable, depending upon
whether the operand resides in a combinable segment or in a group.
The result of an OFFSET operator occupies 2 bytes if it is a relocatable
value. Otherwise, the number of bytes depends upon the value of the
offset. Example:

MOV IX, OFFSET WMEM ;offset from segment base
MOV IX, OFFSET GRP1:WMEM ;offset from group base

Expressions 5-25

SEG

Syntax:

SEG variable
SEG label

Description: The SEG operator takes a variable, label, or memory
expression as its operand and returns a segment base as its result. The
base may be relocatable, depending upon the type of the segment or
group that the operand belongs to or on any overrides that have been
applied to the operand. The memory expression may not contain index
or base register names. Externals are allowed in the operand. The size
of a relocatable segment base is always 2 bytes unless the segment
definition used the AT keyword. In that instance, the number of bytes
may be 1 or 2, depending upon the segment location.

The SEG operator should not be used with operands that belong to a
group. Instead, a segment register should be initialized to the group
base so that all memory addresses will be offset from that base.
Otherwise, the group is not being used correctly.

Note that the SEG operator may also be used in the ASSUME
directive. See the reference about the ASSUME directive in the chapter
titled "Assembler Directives" for more discussion on how SEG may be
used with ASSUME.

Note The SEG operator will also accept a segment name or a group name as
an operator. Since segment names and group names do not have
segment attributes, SEG with a segment or group name does not
perform any function. The assembler ignores the SEG operator and
acts as if only the segment or group name were used.

Attributes:

relocation type - base

Example:

5-26 Expressions

MOV AW, SEG WMEM; load base value into AW
MOV DS0, AW; initialize DS0 register

TYPE

Syntax:

TYPE variable
TYPE label

Description: The TYPE operator takes a variable, label, structure
name, or memory expression as its operand. TYPE returns an absolute
value that represents the type of the operand.

For most operands, the result is equal to the number of bytes allocated
by a single occurrence of the operand. This value could then be used
for incrementing a pointer into a data array, for example. The following
are the returned values for variables or labels of a given type:

BYTE - returns 1

WORD - returns 2

DWORD /FDWORD - returns 4

QWORD /FQWORD - returns 8

TBYTE - returns 10

NEAR - returns -1 in two’s complement form

FAR - returns -2 in two’s complement form

record - returns number of bytes described by an occurrence
of record

structure - returns the sum of the sizes of the directives within
the structure

Expressions 5-27

Examples:

MOV AW, TYPE WMEM ;result is 2
MOV AW, TYPE LABFAR ;result is -2 in two’s
 ;complement form (FFFEH)
REC1 RECORD F1:3, F2:5 ;record definition with
 ;RECORD directive
R1 REC1 <> ;storage allocation
 ;using record template
MOV AW, TYPE REC1 ;result is 1
MOV AW, TYPE R1 ;result is 1

ST1 STRUC ;structure template
 ;definition
 DB ?
 DW ?
ST1 ENDS
SU1 ST1 <> ;storage allocation using
 ;structure template
MOV AW, TYPE ST1 ;result is 3
MOV AW, TYPE SU1 ;result is 3

LENGTH

Syntax:

LENGTH variable

Description: The LENGTH operator takes a variable as its operand.
It returns an absolute value equal to the number of units that were
defined with the variable. A unit may include several bytes allocated
by a single occurrence of a type, but it still counts as just one unit. For
instance, a single word allocation occupies two bytes, but from the
point of view of LENGTH, it is one unit (in this case one word). The
length of external symbols is always defined to be 1, regardless of how
it is defined in a different file. LENGTH does not operate on structure
or record templates. Examples:

5-28 Expressions

L1 DB 1
MOV AW, LENGTH L1 ;result in AW is 1

 L2 DW 1,2
 MOV AW, LENGTH L2 ;result in AW is 2

L3 DB 5 DUP (2)
MOV AW, LENGTH L3 ;result in AW is 5

 L4 DW 1, 4 DUP (?)
MOV AW, LENGTH L4 ;result in AW is 5

REC1 RECORD F1:3, F2:5 ;record template definition
R1 REC1 <> ;variable declared using record
 ;template
MOV AW, LENGTH R1 ;result in AW is 1

 R2 REC1 5 DUP (<>) ;another variable with record
 ;template
MOV AW, LENGTH R2 ;result in AW is 5

 ST1 STRUC ;structure template def.
 DB ?
 DW ?
ST1 ENDS
SU1 ST1 <> ;variable declared
 ;using structure template
MOV AW, LENGTH SU1 ;result in AW is 1

SIZE

Syntax:

SIZE variable

Description: The SIZE operator takes a variable, structure name,
structure field, or record name as its operand and returns an absolute
value equal to the total number of bytes defined by the operand. The
size is generally equal to the length of the operand multiplied by the
operand’s type. Examples:

Expressions 5-29

L1 DB 1
MOV AW, SIZE L1 ;result in AW is 1

L2 DW 1,2
MOV AW, SIZE L2 ;result in AW is 4

L3 DB 5 DUP (2)
MOV AW, SIZE L3 ;result in AW is 5

L4 DW 1, 4 DUP (?)
MOV AW, SIZE L4 ;result in AW is 10

REC1 RECORD F1:3, F2:5 ;record template definition
R1 REC1 <> ;storage allocation using record
 ; template
MOV AW, SIZE R1 ;result placed in AW is 1
MOV AW, SIZE REC1 ;result placed in AW is 1

ST1 STRUC ;structure template def.
 DB ?
 STF1 DW ?
ST1 ENDS
SU1 ST1 <> ;variable declared using
 ;structure template
MOV AW, SIZE ST1 ;result placed in AW is 3
MOV AW, SIZE SU1 ;result placed in AW is 3
MOV AW, SIZE STF1 ;result in AW is 2

5-30 Expressions

Record Operators Record operators are used with record structure templates and record
allocations to isolate bit fields of records and to find the actual number
of bits in a record.

MASK

Syntax:

MASK recfield

Description: The MASK operator takes a record field as its operand.
It returns an absolute number that will mask all the bits in a record
except for those that belong to the record field operand. A mask is a
number that will have 1’s for all bits within the record field and have
0’s for all other bits. It can be either a byte- or word-sized value,
depending upon the size of the record and the positioning of the field
within the record.

The MASK operator is useful when combined with the shift value (see
Expression Operands in this chapter) for a record field. Together, they
allow you to extract the value of a field. First, mask the record to
isolate the bits that belong to the field. Then, shift the field so that its
least significant bit is in the 0th bit position. The value of the result
will now be equal to the value in the record field. Example:

R1 RECORD F1:5, F2:2
U1 R1 <14,3>
:
:
MOV AL,U1 ;load record into register
AND AL,MASK F1 ;mask out extra bits with MASK
 ;operator and AND command
MOV CL, F1 ;put field shift value
 ;in register
SHR AL,CL ;shift field to lowest bit
 ;position - AL now contains
 ;value of record field

WIDTH

Syntax:

WIDTH operand

Expressions 5-31

Description: The WIDTH operator takes a record name or record
field as its operand. It returns an absolute number that is the number of
bits defined in the operand. For a record name, the value will be the
sum of the bits in the record fields, and will not include unused bits.
For a record field, the value is the number of bits within that particular
field. Examples:

R1 RECORD F1:5, F2:2
MOV AW, WIDTH R1 ;result in AW is 7
MOV AW, WIDTH F1 ;result in AW is 5

5-32 Expressions

Segment and
Group Operators

These operators return values that are only known at link-time. They
generally refer to the size or address of segments and groups within a
program.

SMOFFSET

Syntax:

SMOFFSET segmentname

Description: The SMOFFSET operator returns a value that is the
offset of the indicated segment from the next-lowest paragraph
boundary. This value is the same as the last hex-digit of the base
address for the segment. If the segment is paragraph or page aligned or
is at an absolute location, then this value will be 0. Otherwise, this
value is a relocatable value that will be known at final link time. The
value will be range from 0 to 15, but will be word-sized if it is
relocatable. Example:

A SEGMENT BYTE

; LOAD PARAGRAPH VALUE FOR SEGMENT
MOV AW, A

; LOAD OFFSET OF SEGMENT FROM NEAREST
; PARAGRAPH. TOGETHER, THEY FORM THE
; START LOCATION FOR THE SEGMENT
MOV BW, SMOFFSET A

GROFFSET

Syntax:

groupname GROFFSET segmentname

Description: The GROFFSET operator returns the offset of a
segment’s base from the start of a group that it belongs to. The
segment must be defined as part of the group or this operator will result
in an error. Since the offset within the group is not known until link
time, this operator will result in a word-sized relocatable value. The
linker will generate a value from 0 to 0FFFFH at link time, which will
the offset of the segment’s base from the start of the group. Example:

Expressions 5-33

GRGRP GROUP A,B

; POINT DS0 AT GROUP
MOV AW, GRGRP
MOV DS0, AW

; SET UP POINTER TO START
; OF SEGMENT SO LOCATIONS
; WITHIN THE SEGMENT CAN BE
; REFERENCED FROM THE GROUP
; SELECTOR
MOV IX, GRGRP GROFFSET B

SMSIZE

Syntax:

SMSIZE segmentname

Description: The SMSIZE operator returns a word-sized value that
is the size of the indicated segment. Since this size is not known
(usually) at assembly time, this operator generates a word-sized
relocatable value. The linker will generate a value from 0 to 0FFFFH
at link time. Note that the linker will return the value 0 if the group size
is 64k.

Example:

A SEGMENT PUBLIC

; LOAD SEGMENT SIZE.
; COULD BE USED TO MAKE
; SURE INDEX VALUES DON’T
; GO OUTSIDE OF A SEGMENT.
MOV AW, SMSIZE A

5-34 Expressions

GRSIZE

Syntax:

GRSIZE groupname

Description: The GRSIZE operator returns a word-sized value that
is the size of the indicated group. Since this size is not known at
assembly time, this operator generates a word-sized relocatable value.
The linker will generate a value from 0 to 0FFFFH at link time, which
will be the size of the group. Note that the linker will return the value
0 if the group size is 64k. Examples:

GRGRP GROUP A,B

MOV AW, GRSIZE GRGRP

Expressions 5-35

Operator
Precedence

Complex expressions, or expressions that contain multiple operators,
are evaluated according to operator precedence rules:

Expressions enclosed within parentheses are evaluated from
the innermost set of parenthesis to the outermost set. Within a
set of parenthesis, operators conform to the other precedence
rules below.

Excluding parentheses, sub-expressions that have operators of
higher precedence will be calculated before sub-expressions
with operators of lower precedence. For example, a multiply
operation is done before an addition operation.

Excluding parentheses, sub-expressions which have operators
of equal precedence (Operators that appear on the same line in
the table below are of equal precedence.) are evaluated
left-to-right. Left-to-right evaluation means that if two
operators of equal precedence appear in the same expression,
the operator which is closer to the leftmost end of the
expression will be evaluated before an operator closer to the
rightmost end. For instance, in the expression ’6 * 5 / 3’ the
order of evaluation is to multiply 6 by 5 and then divide by 3.
The result is 10.

The ranking of operators from higher to lower precedence is given in
the following table.

5-36 Expressions

Precedence Operators

Higher

↑

↓

Lower

(), [], <>, . ,LENGTH, SIZE, WIDTH, MASK , SMOFFSET, SMSIZE,
GROFFSET, GRSIZE

PTR, OFFSET, SEG, TYPE, THIS, Segment Override

HIGH, LOW

*, /, MOD, SHR, SHL

Unary +, -

Binary +, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

SHORT

Table 5-2. Operator Precedence

Expressions 5-37

Notes

5-38 Expressions

6

Instructions and Operands

Introduction This chapter, in the early part, thoroughly discusses the operand field
of the general assembly language statement syntax found in the
"Assembler Statements" section of the chapter titled "Assembler
Syntax." (No need to refer back to it. The syntax has been repeated at
the beginning of the next section.)The latter part of this chapter
contains a listing that specifies the recognized instructions for the
asv20/asv33 assembler and also the acceptable operand combinations
for each instruction.

Operand You may recall that the general syntax of an assembler statement is as
follows:

[label :] [prefix] keyword [operand [,...]] [;comment]

This section concentrates on the operand field of this syntax.

Accepted Operands A list of assembly language instructions and the operand combinations
acceptable for each instruction is at the end of this chapter. Each
allowable combination has a limited range of values. Any other
combination results in an error condition.

Compatible Types

In most instances, if an instruction takes more than one operand, the
operands must be of the same type. For example, it is only possible to
move a WORD-sized value into a WORD destination. A mismatch
error occurs if an instruction attempts to move a WORD into a BYTE.

Instructions and Operands 6-1

It is possible, however, to move a BYTE-sized immediate value into a
WORD-sized destination. The immediate is either stored as a WORD
or it is sign-extended during execution.

Some instructions allow operands to be of different types. It is best to
check the list of instructions at the end of the chapter for allowable
operand combinations.

Required Typing

Many instructions do require that the memory operand be typed.
Instructions that take a single operand generate different object code
depending upon the type of the operand. Or, perhaps the type of one
operand does not restrict the valid type of the other operand. The
assembler cannot decide what object code to output in these instances.
The following instructions demonstrate some unacceptable operand
combinations:

INC [BW] ;generate byte or word instruction?

ESC 5,[BW] ;5 doesn’t restrict memory

MOV [BW], 2 ;2 fits in a byte or word storage

The INC instruction accepts both BYTE and WORD memory
operands. In the above example, the assembler could not decide which
instruction to generate.

The ESC instruction also accepts BYTE and WORD memory
operands. The immediate value 5, in the example above, does not help
limit the type of the memory operand since the value is independent of
the memory type.

For the MOV instruction above, the immediate value 2 is small enough
to fit in either a BYTE or a WORD. Again, the immediate operand
does not restrict the type sufficiently.

When in doubt, type these ambiguous expressions to avoid possible
error conditions.

Anonymous References

Most instructions are able to accept operands that do not have type
information—references known as anonymous memory references.
These references do not have a variable or any type information

6-2 Instructions and Operands

associated with them, so the assembler must use other knowledge to
guess the type. The assembler may type the anonymous operand to be
the same as another operand in the instruction, or not require a type at
all. The following examples are of typing the same as another operand:

MOV AW, [BW] ;WORD since AW is a WORD-sized register

MOV [BW], AL ;BYTE since AL is a BYTE-sized register

MOV [BW], 1000 ;WORD since 1000 can’t be stored in BYTE

Assumed Type With Register

The assembler can easily guess the type of an anonymous reference if
the other operand is an V20 register. Notice in the above example when
AW and AL were used. Another example of an instruction not needing
a type (since it handles all memory operands the same) is an 8087
floating point instruction. Example:

FLDCW [BW]

Operand Positioning If an instruction takes a single operand, the operand position (other
than it must be in the proper place) is not critical. Instructions which
accept two operands generally treat the first operand as the destination
operand and the second operand as the source operand. The movement
of data is then from the second operand into the first. The instruction

MOV AW, BW

takes the contents of the BW register and places it in the AW register.
There are exceptions. Some string instructions use the first operand as
the source operand and the second operand as the destination operand.
Check the usage of the operands when in doubt. The instruction list at
the end of this chapter —and in the NEC 70116 User’s Manual—
includes information on data movement between operands.

Immediate Values Immediate values are operands in many assembly language
instructions. In most cases, the immediate value is a source operand.
This value is stored directly in the destination operand or used to
modify a value already stored elsewhere, say in a register or memory
location.

Instructions and Operands 6-3

Immediate values are not always numbers. Immediate values are also
generated in many non-obvious ways as shown in the chapter titled
"Expressions."

Range of Immediate Values

Immediate values can be absolute, relocatable, or external numbers.
The size of the value is determined by the instruction used, by the value
itself, and by what type is assumed for it.

An absolute immediate may range anywhere from -65535 to 65535
depending upon the instruction and the type of the operand. The BRK
(interrupt) instruction, for instance, can only take a value from 0 to
255 since that is the range of interrupt values for the V20. A variable of
type BYTE may take a value from -255 to 255. A variable of type
WORD may take a value from -65535 to 65535.

A relocatable or external immediate is always assumed to be a 16-bit
value unless modified with a HIGH or LOW operator.

Registers A very common operand is a processor register. A processor register is
a memory store that is internal to the V20, V25, and V33 processors,
and the 8087 or 72291 co-processors. Internal registers can be source
operands or destination operands for data. Some registers have special
tasks which restrict their uses in programs. Since some instructions
may indirectly use or modify these restricted registers, take care their
contents are not accidentally modified or misused.

The figure below shows the general purpose and special registers for
the V-Series processor. Following the figure is a more detailed
description of the various processor registers.

6-4 Instructions and Operands

DATA REGISTERS

7 0 7 0

AH (HIGH BYTE OF AW) AL (LOW BYTE OF AW)

BH (HIGH BYTE OF BW) BL (LOW BYTE OF BW)

CH (HIGH BYTE OF CW) CL (LOW BYTE OF CW)

DH (HIGH BYTE OF DW) DL (LOW BYTE OF DW)

POINTER AND INDEX REGISTERS

15 0

SP (STACK POINTER)

BP (BASE POINTER)

IX (SOURCE INDEX)

IY (DESTINATION INDEX)

SEGMENT REGISTERS

PS (CODE)

DS0 (DATA)

Figure 6-1. V20/25/33 Registers

Instructions and Operands 6-5

16-bit Registers AW, BW, CW, DW, IY, IX, SP, BP

 There are eight 16-bit (WORD-sized) general purpose registers located
on the V20, V25, and V33 processors referenced by the unique register
names AW, BW, CW, DW, IY, IX, BP and SP. AW, BW, CW, and
DW are general purpose data registers. For most instructions that allow
a register as an operand, these four registers are used. IY, IX, BW and
BP are the index and base registers.

Some instructions explicitly use certain registers. The CW register, for
instance, is used to control looping. Many string instructions use the IX
as a source pointer and IY as a destination pointer. The SP register
points to the top of stack and is modified whenever CALLs, PUSHs,
or POPs occur. Data loss can occur through a side effect of these
explicit usages. Be careful to protect the contents of these registers so
they are not accidentally modified through the use of an instruction.

8-bit Registers AL, AH, BL, BH, CL, CH, DL, DH

There are also eight 8-bit (BYTE-sized) registers. The unique names
given to them are AL, AH, BL, BH, CL, CH, DL, and DH. These
registers are not separate registers; instead they are the
byte-addressable upper and lower halves of the four 16-bit
general-purpose data registers (AW, BW, CW, and DW). AW, for
instance, is equivalent to AL+AH. (Not the value, but the register.)

The ’L’ in AL means the low byte of AW and the ’H’ in AH means the
high byte AW. If you refer to AL, the assembler understands that you
mean the low byte of AW. If you refer to AW, the assembler
understands that you mean the entire 16 bits of AW.

You may load data into these registers either as a single 16-bit quantity
or as two 8-bit quantities. The resulting value in the register is the same.

Segment Registers PS, DS0, SS, DS1

V-Series memory addresses are generated by offsetting from segment
registers. To be able to address a particular location in memory, that
address must be contained in one of the four, currently active physical
segments. Each segment has a maximum size of 64K and each has a
particular register that contains the base address (lowest memory
location) of the segment. Each segment has a different purpose:

6-6 Instructions and Operands

Executable code (program code) is located in the Code
segment and is addressable through the PS (Code Segment)
register.

Data is most often located in the Data segment (although it
can be in any of the four segments) and is addressed through
the DS0 (Data Segment) register.

The program stack is located in the Stack segment and is
addressed through the SS (Stack Segment) register.

Data often is located in the Extra segment and is addressed via
the DS1 (Extra Segment) register.

Memory Addressing A memory address is a 20-bit value
—allowing the V20, V25, and V33 to address 1 megabyte of
memory— that is calculated from the segment base address located in
one of the segment registers, and an offset supplied either by the PC
(instruction pointer), or by operands contained in the instruction itself.
To calculate the memory address, the 16-bit value in a given segment
register is first shifted to the left 4 bits. Then the offset value (either a
16-bit or 8-bit value) is added to the shifted value to generate the 20-bit
address necessary to access memory.

Segment Register Use The four segment registers have restricted
use. The only assembly instructions that may reference these registers
as operands are the MOV, PUSH, and POP instructions.

Some Assembler Directives also use the register names as part of their
syntax, but this use does not cause object code to be generated.

Other instructions indirectly reference the segment registers. CALLs
and BRs, for example, change the PS register if the branch takes
execution out of the current segment. Finally, as noted in the chapter
titled "Expressions," segment register names may be used as overrides
in memory operands.

8087 Floating Point Registers ST(0)...ST(7)

The 8087 co-processor has eight floating point stack registers. They
are referenced by the names ST(0), ST(1), ST(2), ST(3), ST(4), ST(5),

Instructions and Operands 6-7

ST(6), and ST(7). ST(0) may be referenced as just ST without the
appended (0). These registers are only used with some 8087 floating
point instructions.

They are not directly accessible to the V20, V25, and V33 processors.
Instead, 8087 instructions make the contents of these registers
available in memory. The 8087 floating point stack registers are 80
bits in size and store their values in IEEE floating point format.

72291 Floating point Registers
FR0,..,FR7,FS0,..,FS7,FL0,..,FL7,FCTW,FPTW,FSTW

The 72291 co-processor has 8 stack registers and 3 status registers.
The 8 stack registers, labeled FR0 through FR7, are each 96 bits in size
when stored. The contents of each stack register can be either a short,
32-bit floating point value (FS0 through FS7) or a long, 64-bit floating
point value (FL0 through FL7). It is invalid to mix types when
performing floating point operations. The three status registers
(FCTW, FPTW, and FSTW) store information about the current state
of the 72291 co-processor.

These registers are not directly accessible to the V33 processor.
Instead, 72291 instructions must be executed to make the contents of
these registers available in memory.

Memory Expressions
and the MODRM Byte

Memory expressions may be either simple memory references (using a
variable name by itself) or a complex expressions involving register
indirection or offsets within structures. A simple memory reference
will always take the type of the variable, so that type must either be
compatible with an instruction or it must be re-typed with the PTR
operator. Examples:

MOV AW, WMEM ;simple variable
MOV AW, [BW][IX] ;indirect anonymous
 ;memory reference
MOV AW, [BP].SFWORD ;indirect anonymous memory
 ;reference with offset
MOV AW, WMEM[BP][IY] ;indirect memory reference
MOV AW, STR1.SFWORD ;structure field reference
MOV AW, WORD PTR DMEM ;typed memory reference

Physical Address Calculation

The processor must generate a physical address for each memory
reference. The offset part of the address —the value which is added to

6-8 Instructions and Operands

the shifted segment register address— may be coded into the
instruction in one of four ways:

As a direct 16-bit offset.

As an indirect offset through a base register, BW or BP,
optionally with an added (or subtracted) 8-bit or 16-bit
displacement.

As an indirect offset through an index register, IX or IY,
optionally with an added (or subtracted) 8-bit or 16-bit
displacement.

As an indirect offset through the sum of one base register and
one index register, optionally with an added (or subtracted)
8-bit or 16-bit displacement.

MODRM Byte

The information describing how the offset is derived is stored in the
object code in a special byte called the MODRM byte. This byte has
three fields:

1. The first field describes how many bytes are required to hold
the displacement portion of the address. This field can specify
that 0, 1, or 2 bytes are required. If the value is a relocatable
or external value, two bytes are always required.

2. The second field contains a register code or part of the code
for the instruction; it is not relevant to this section.

3. The third field contains information describing what base and
index registers are used, if any, when generating the address.

The MODRM byte, along with any displacement value, determines the
offset of the memory address referenced in an instruction. Remember,
the value is just the offset of the memory address. The base from which
to offset must still be decided.

Instructions and Operands 6-9

Single Memory Expression per Instruction

Each memory expression is either a source or destination for the
instruction. Most instructions allow only a single memory expression,
since the MODRM byte can only describe one. Some string
instructions may have two memory expressions as operands, but these
instructions are special cases because the operands are only used to
check for segment addressability. Their offsets are not emitted as
object code. Instead, the IX and IY registers are used for addressing the
memory.

Segment
Addressability
and Overrides

The V20, V25, or V33 processor generates a memory address by
shifting the value from a segment register four bits to the left and then
adding an offset to the shifted value. A segment of memory, up to a
maximum of 64K bytes in size, is active only if one of the four
segment registers points to that particular piece of memory.

Note that the segment is a physical segment, a physical piece of
memory. These physical segments contain the logical segments of
your assembly language program that you identified through
SEGMENT/ENDS assembler directive pairs and other, similar means.

With the ASSUME assembler directive, you tell the assembler what
values to assume as the base locations of the currently active segments.
The ASSUME directive, then, lets you inform the assembler of the
relationship between the logical segments you have defined in the
program and the physical segments where they will eventually be
located.

Addressability
Checking

During assembly, if the assembler encounters an instruction that
generates a memory reference, the assembler checks that reference
against the value in the ASSUME for that segment. The assembler
generates an error if the location in memory cannot be accessed
through that particular segment register. The exception to checking
against the ASSUME is when a memory reference contains a specific
segment override.

NEAR and SHORT label references are also checked for addressability
through the PS segment register to assure the assembler that the label

6-10 Instructions and Operands

can be reached during execution. A segment or group name may be
used to override a label if the PS segment register value will be
different than that currently assumed.

Addressability checking is done so that the correct object code may be
generated. Unless a memory reference contains a segment override, the
instruction is not preceded by a segment override byte in the generated
object code. If no segment override byte is coded with the instruction,
then the instruction memory reference defaults to a certain segment,
depending upon the nature of the instruction.

Default Segments If a memory reference does not specifically name a segment register
through a segment override, there are default segment registers for
memory references. The PS register is the default for instruction
fetching. The DS0 segment register is the default for most memory data
references, unless BP (a base register) is specified for register
indirection. The SS segment register is the default if BP is used. Some
string instructions default to the DS1 segment register with certain
operands.

Although there are default segment registers for references, you must
still use the ASSUME directive to inform the assembler where the
bases of these segments are located; again, to specify the relationship
between logical and physical segments and to aid in addressability
checking.

Segment Overrides An instruction may override these default registers by including a
segment override in the instruction operand. There are two reasons
why a segment override might be included in a memory reference:

The memory location accessed in not located in the default
segment that would be used with a particular instruction.

The memory location accessed is located within a group in a
segment. In this instance, the base of the group must be used
for memory access, not the base of the segment.

The override holds for the duration of the instruction only. Segment
overrides do not alter the contents of segment registers or the values
specified in ASSUME directives.

Instructions and Operands 6-11

Improper Uses of
Segment Overrides

The section on default segments mentions that some string instructions
default to the DS1 register. For these string instructions, you may not
use segment overrides for string operands. You may use segment
overrides, however, for the other memory operands in those
instructions.

These and other exceptions are noted in the listing of instructions at the
end of this chapter.

Segment Override
Byte

When the assembler generates code for an instruction containing a
segment override, the assembler precedes the instruction code with a
segment override byte. (Whether it will appear or not is discussed
below.) This override byte, if present, causes a specific segment
register to be used to address that memory, regardless of which
segment the variable belongs to. In the segment override byte, specific
values are associated with specific registers. Examination of these
values can tell you which segment the override has been generated for.
The values are

PS - 2EH
DS0 - 3EH
SS - 36H
DS1 - 26H

Overrides and
Checking Against

ASSUME

If a segment name is used to override the default segment value for a
memory reference, then the ASSUME value for the override segment is
checked to see if it has been set to either

the segment named in the override, or

to a group that contains the segment named in the override.

If a group name is used, then the group name must match exactly.

Examples of segment overrides:

MOV AW, SEG1: WMEM ;matches segment or group
MOV AW, GRP1: WMEM ;matches group only

Segment Override
Byte Generation

A memory reference that includes a segment override generates a
segment override byte depending upon the outcome of the following
checks:

6-12 Instructions and Operands

1. If the memory is addressable by the default segment register
for that type of instruction and operand, then the instruction
needs no override byte.

2. If this test fails, then the segment registers are checked in the
following order: DS0, DS1, PS, and SS. If the memory
expression is addressable by one of these registers, then an
override byte is generated for that register.

3. If no register match occurs, an error is generated. The checks
are specific. If the variable used in the memory expression
was an external defined outside of a segment, it can only
match an ASSUME segment that has been set to the SEG
value of the external or to a group that includes that segment.

Instructions and Operands 6-13

The V25 Family of
Processors

The V25 Family of processors include the V25, V35, V25+, and V35+
microprocessors. These processors accept the same instruction set as
the V20 Family, but they contain some additional instructions and
peripherals. The biggest difference between the two families is that the
V25 processors have a 512-byte block of memory mapped into register
memory onboard the processors. This block of register memory
defaults to starting at 0FFE00H in memory, but can be placed
anywhere in memory by modifying the IDB register at the top of the
register block.

The 512-byte block is broken up into 2 256-byte pieces. The first
block contains 8 sets of register banks, numbered from 0 to 7. Each
register bank contains a full complement of the registers needed by the
V25 for normal operation. The existence of these register banks
allows the V25 to perform context switching with very little overhead.
This context switching is normally used during interrupts since the
switching of register banks means that the registers do not need to be
saved on stack during the processing of the interrupt. A new feature of
the V25 is the task switch. There are new instructions that allow a task
to switch register banks and begin processing at a new location in
memory. Again, the advantage of the register bank switch is that
registers do not need to be saved to stack and processing can be
resumed at the previous location by simply returning from the context
switch to the original register bank. While the various registers in the
current register bank can be accessed through the normal V20
instructions, the contents of other register banks can be accessed
through the use of memory addressing. There are 2 predefined
variables and 23 predefined structure field names that allow accessing
of these register values. The RAM and REGBANK variables refer to
the beginning of the register bank. These variables can be further
modifying by using the correct series of structure field names to
reference a specific register. For example, to get the contents of the IX
register in the 6th register bank, the following instruction could be used:

MOV AW, RAM.BK6.BIX

The structure field names are of type ’word’, so the typing of the
instruction operands is correct. Table 6-1 contains a list of the
predefined structure field names and the offset values associated with
these names.

The second piece of register memory contains the registers that control
the many peripherals that exist on the V25 processors. These registers,

6-14 Instructions and Operands

Name Type Length Offset Meaning

bk0 word 16 0 Register Bank 0

bk1 word 16 32 Register Bank 1

bk2 word 16 64 Register Bank 2

bk3 word 16 96 Register Bank 3

bk4 word 16 128 Register Bank 4

bk5 word 16 160 Register Bank 5

bk6 word 16 192 Register Bank 6

bk7 word 16 224 Register Bank 7

bvpc word 1 2 VPC register

bpsw word 1 4 PSW register

bpc word 1 6 PC register

bds0 word 1 8 DS0 register

bss word 1 10 SS register

bps word 1 12 PS register

bds1 word 1 14 DS1 register

biy word 1 16 IY register

bix word 1 18 IX register

bbp word 1 20 BP register

bsp word 1 22 SP register

bbw word 1 24 BW register

bdw word 1 26 DW register

Table 6-1. RAM Register Bank Structure Definitions

Instructions and Operands 6-15

called the Special Function Registers or SFRs, can be written to or read
from the same as if they were memory locations. The V25 BTCLR
instruction may also be used to access these memory locations directly.
There are predefined mnemonics for each Special Function Register, so
the user can reference the SFR directly instead of using a numeric
value to reference a specific register. For example, to place a value in
the Timer Interrupt Request Control register, the following instruction
could be used:

MOV TMIC0, 03H

Table 6-2 contains a list of the predefined SFR register names and the
offsets associated with these names.

The mnemonics for the RAM and SFR registers are valid only in the
V25 mode of the assembler and preclude the use of these names as
user-defined variables or codemacros in the assembly code. There are
also some other conditions upon their use, which are described in the
ASGNSFR and SETIDB sections of the "Assembler Directives"
chapter.

More information on the V25 processor can be obtained from the NEC
70320 User’s Manual.

SFR Name Type Offset Meaning

RAM byte 0E00 Register Bank

RAMBANK word 0E00 Register Bank

P0 byte 0F00 Port 0

PM0 byte 0F01 Port Mode 0

PMC0 byte 0F02 Port Mode Control 0

P1 byte 0F08 Port 1

Table 6-2. RAM and Special Function Register Mapping

6-16 Instructions and Operands

SFR Name Type Offset Meaning

PM1 byte 0F09 Port Mode 1

PMC1 byte 0F0A Port Mode Control 1

P2 byte 0F10 Port 2

PM2 byte 0F11 Port Mode 2

PMC2 byte 0F12 Port Mode Control 2

PT byte 0F38 Port T

PMT byte 0F3B Port Mode T

INTM byte 0F40 Interrupt Mode

EMS0 byte 0F44 External interrupt Macro Service 0

EMS1 byte 0F45 External interrupt Macro Service 1

EMS2 byte 0F46 External interrupt Macro Service 2

EXIC0 byte 0F4C EXternal I/O request Control 0

EXIC1 byte 0F4D EXternal I/O request Control 1

EXIC2 byte 0F4E EXternal I/O request Control 2

RXB0 byte 0F60 Receive Buffer 0

TXB0 byte 0F62 Transmit Buffer 0

SRMS0 byte 0F65 Serial Receive Macro Service 0

STMS0 byte 0F66 Serial Transmit Macro Service 0

SCM0 byte 0F68 Serial Communication Mode 0

SCC0 byte 0F69 Serial Communication Control 0

Table 6-2. RAM and Special Func. Reg. Mapping (Cont’d)

Instructions and Operands 6-17

SFR Name Type Offset Meaning

BRG0 byte 0F6A Baud Rate Generator reg 0

SCE0/SCS0 byte 0F6B Serial Communication Error/Status 0

SEIC0 byte 0F6C Serial Error I/O request Control 0

SRIC0 byte 0F6D Serial Receive I/O request Control 0

STIC0 byte 0F6E Serial Transmit I/O request Control 0

RXB1 byte 0F70 Receive Buffer 1

TXB1 byte 0F72 Transmit Buffer 1

SRMS1 byte 0F75 Serial Receive Macro Service 1

STMS1 byte 0F76 Serial Transmit Macro Service 1

SCM1 byte 0F78 Serial Communication Mode 1

SCC1 byte 0F79 Serial Communication Control 1

BRG1 byte 0F7A Baud Rate Generator reg 1

SCE1/SCS1 byte 0F7B Serial Communication Error/Status 1

SEIC1 byte 0F7C Serial Error I/O request Control 1

SRIC1 byte 0F7D Serial Receive I/O request Control 1

STIC1 byte 0F7E Serial Transmit I/O request Control 1

TM0 word 0F80 Timer Register 0

TM0L byte 0F80 Timer Register 0 Low

TM0H byte 0F81 Timer Register 0 High

MD0 word 0F82 Modulo register 0

Table 6-2. RAM and Special Func. Reg. Mapping (Cont’d)

6-18 Instructions and Operands

SFR Name Type Offset Meaning

MD0L byte 0F82 Modulo register 0 Low

MD0H byte 0F83 Modulo register 0 High

TM1 word 0F88 Timer Register 1

TM1L byte 0F88 Timer Register 1 Low

TM1H byte 0F89 Timer Register 1 High

MD1 word 0F8A Modulo register 1

MD1L byte 0F8A Modulo register 1 Low

MD1H byte 0F8B Modulo register 1 High

TMC0 byte 0F90 Timer Control 0

TMC1 byte 0F91 Timer Control 1

TMMS0 byte 0F94 Timer Macro Service 0

TMMS1 byte 0F95 Timer Macro Service 1

TMMS2 byte 0F96 Timer Macro Service 2

TMIC0 byte 0F9C Timer I/O request Control 0

TMIC1 byte 0F9D Timer I/O request Control 1

TMIC2 byte 0F9E Timer I/O request Control 2

DMAC0 byte 0FA0 DMA Control 0

DMAM0 byte 0FA1 DMA Mode 0

DMAC1 byte 0FA2 DMA Control 1

DMAM1 byte 0FA3 DMA Mode 1

Table 6-2. RAM and Special Func. Reg. Mapping (Cont’d)

Instructions and Operands 6-19

SFR Name Type Offset Meaning

DIC0 byte 0FAC DMA I/O request Control 0

DIC1 byte 0FAD DMA I/O request Control 1

SAR0L byte 0FC0 DMA source address 0 Low

SAR0M byte 0FC1 DMA source address 0 Middle

SAR0H byte 0FC2 DMA source address 0 High

DAR0L byte 0FC4 DMA destination address 0 Low

DAR0M byte 0FC5 DMA destination address 0 Middle

DAR0H byte 0FC6 DMA destination address 0 High

TC0 word 0FC8 DMA counter 0

TC0L byte 0FC8 DMA counter 0 Low

TC0H byte 0FC9 DMA counter 0 High

SAR1L byte 0FD0 DMA source address 1 Low

SAR1M byte 0FD1 DMA source address 1 Middle

SAR1H byte 0FD2 DMA source address 1 High

DAR1L byte 0FD4 DMA destination address 1 Low

DAR1M byte 0FD5 DMA destination address 1 Middle

DAR1H byte 0FD6 DMA destination address 1 High

TC1 word 0FD8 DMA counter 1

TC1L byte 0FD8 DMA counter 1 Low

TC1H byte 0FD9 DMA counter 1 High

Table 6-2. RAM and Special Func. Reg. Mapping (Cont’d)

6-20 Instructions and Operands

The Instruction Set This section contains the instruction set accepted by the asv20/asv33
assembler. All operand combinations are listed for each instruction.
Some of these instructions or operand combinations are only valid in
certain modes (such as V20 or V25). These restricted instructions are
explained in the notes at the end of the list of instructions.

The V33 Family of processors includes the V33 and V53
microprocessors. These processors have the same instruction set as the
V20 Family, with the addition of two new instructions. The two new
instructions, BRKXA and RETXA, can be used when a complete V33
system is to be built. Normally, the V33 processor addresses only the
first megabyte of memory, just like the V20 or V25. These new
instructions give the user access to the full 16-megabyte address space
of the V33. More information on the use of these instructions can be
found in the HP 64875 Extended Mode Locator User’s Guide or in the
NEC 70136 Microprocessor User’s Manual.

A special code denotes what operand patterns are allowed for each
instruction. If no operands are noted, then none are expected for that
instruction. Otherwise, each operand will have a name, indicating what
the operand does, followed by a colon and a code indicating what type
of operand is to be used. A list of these codes follows in a table. If an
operand is restricted to certain values, then these values will be listed in
parenthesis after the code. If more than one restricted value is possible,
then they will be separated by commas. Numeric ranges will be
denoted by their boundary values.

Instructions and Operands 6-21

AB
AW
CB

CD
CW
D
DB
DW
EB
ED
EW
F
I

M
MB
MW
MD
MQ
MT
RB
RW
S
SFR
T
XB

V

XW

AL only
AW only
SHORT label with current segment and within
127 bytes of current location
FAR label, offset and base
NEAR label, within current segment
17-bit immediate value
1-byte immediate value, from -255 to 255
2-byte immediate value, from -65535 to 65535
either an 8-bit register or BYTE-type memory expression
DWORD-type memory expression
either a 16-bit register or WORD-type memory expression
8087 floating point stack register
various registers: R=all registers, PSW=processor status,
CY=carry, DIR=direction flag
any type of memory expression
BYTE-type memory expression
WORD-type memory expression
DWORD-type memory expression
QWORD-type memory expression
TBYTE-type memory expression
8-bit register
16-bit register
segment register
V25 SFR register keyword
ST(0); top of 8087 floating point register stack
BYTE-type, simple memory expression;
no register indirection
72291 floating point register (FR0-FR7, FS0-FS7, FL0-FL7,
FCTW, FPTW, FSTW)
WORD-type, simple memory expression;
no register indirection

Table 6-3. Operand Codes

6-22 Instructions and Operands

asv20 Assembler
Instruction Set

ADD dst:AB,src:DB

ADD dst:AW,src:DB

ADD dst:AW,src:DW

ADD dst:EB,src:DB

ADD dst:EB,src:RB

ADD dst:EW,src:DB(-128,127)

ADD dst:EW,src:DW

ADD dst:EW,src:RW

ADD dst:RB,src:EB

ADD dst:RW,src:EW

ADD4S

ADD4S dst:M,src:M (Note 1)

ADDC dst:AB,src:DB

ADDC dst:AW,src:DB

ADDC dst:AW,src:DW

ADDC dst:EB,src:DB

ADDC dst:EB,src:RB

ADDC dst:EW,src:DB(-128,127)

ADDC dst:EW,src:DW

Table 6-4. Assembler Instruction Set

Instructions and Operands 6-23

ADDC dst:EW,src:RW

ADDC dst:RB,src:EB

ADDC dst:RW,src:EW

ADJ4A

ADJ4S

ADJBA

ADJBS

AND dst:AB,src:DB

AND dst:AW,src:DB

AND dst:AW,src:DW

AND dst:EB,src:DB

AND dst:EB,src:RB

AND dst:EW,src:DB

AND dst:EW,src:DW

AND dst:EW,src:RW

AND dst:RB,src:EB

AND dst:RW,src:EW

BC place:CB

BCWZ place:CB

BE place:CB

BGE place:CB

Table 6-4. Assembler Instruction Set (Cont’d)

6-24 Instructions and Operands

BGT place:CB

BH place:CB

BL place:CB

BLE place:CB

BLT place:CB

BN place:CB

BNC place:CB

BNE place:CB

BNH place:CB

BNL place:CB

BNV place:CB

BNZ place:CB

BP place:CB

BPE place:CB

BPO place:CB

BR place:CB

BR place:CD

BR place:CW

BR place:EW

BR place:MD

BRK itype:DB(3)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-25

BRK itype:DB

BRKCS src:RW (Note 3)

BRKEM vector:DB (Note 2)

BRKV

BRKXA vector:DB (Note 4)

BTCLR sfr:M,bit:DB(0,7),place:CB (Note 3)

BUSLOCK PREFX

BV place:CB

BZ place:CB

CALL addr:CB

CALL addr:CD

CALL addr:CW

CALL addr:ED

CALL addr:EW

CHKIND indx:RW,bptr:MD

CHKIND indx:RW,bptr:MW

CLR1 carry:I(CY)

CLR1 dst:EB,off:D(0,7)

CLR1 dst:EB,off:RB(CL)

CLR1 dst:EW,off:D(0,15)

CLR1 dst:EW,off:RB(CL)

Table 6-4. Assembler Instruction Set (Cont’d)

6-26 Instructions and Operands

CLR1 updown:I(DIR)

CMP dst:AB,src:DB

CMP dst:AW,src:DB

CMP dst:AW,src:DW

CMP dst:EB,src:DB

CMP dst:EB,src:RB

CMP dst:EW,src:DB(-128,127)

CMP dst:EW,src:DW

CMP dst:EW,src:RW

CMP dst:RB,src:EB

CMP dst:RW,src:EW

CMP4S

CMP4S dst:M,src:M (Note 1)

CMPBK IX__ptr:MB,IY__ptr:MB (Note 1)

CMPBK IX__ptr:MW,IY__ptr:MW (Note 1)

CMPBKB

CMPBKW

CMPM IY__ptr:MB (Note 1)

CMPM IY__ptr:MW (Note 1)

CMPMB

CMPMW

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-27

CVTBD

CVTBW

CVTDB

CVTWL

DBNZ place:CB

DBNZE place:CB

DBNZNE place:CB

DEC dst:EB

DEC dst:EW

DEC dst:RW

DI

DISPOSE

DIV divisor:EB

DIV divisor:EW

DIVU divisor:EB

DIVU divisor:EW

EI

ESC opcode:DB(0,63),addr:EB

ESC opcode:DB(0,63),addr:ED

ESC opcode:DB(0,63),addr:EW

EXT dst:RB,count:D(0,15)

Table 6-4. Assembler Instruction Set (Cont’d)

6-28 Instructions and Operands

EXT dst:RB,src:RB

F2XM1 (Note 5)

FABS (Note 5)

FABS dst:V(FL0),src:V(FL0,FL7) (Note 7)

FABS dst:V(FS0),src:V(FS0,FS7) (Note 7)

FACOS dst:V(FL0),src:V(FL0,FL7) (Note 7)

FACOS dst:V(FS0),src:V(FS0,FS7) (Note 7)

FADD (Note 5)

FADD dst:F,src:T (Note 5)

FADD dst:T,src:F (Note 5)

FADD dst:V(FL0),src:MQ (Note 7)

FADD dst:V(FL0),src:V(FL0,FL7) (Note 7)

FADD dst:V(FS0),src:MD (Note 7)

FADD dst:V(FS0),src:V(FS0,FS7) (Note 7)

FADD memop:MD (Note 5)

FADD memop:MQ (Note 5)

FADDP dst:F,src:T (Note 5)

FASIN dst:V(FL0),src:V(FL0,FL7) (Note 7)

FASIN dst:V(FS0),src:V(FS0,FS7) (Note 7)

FATAN dst:V(FL0),src:V(FL0,FL7) (Note 7)

FATAN dst:V(FS0),src:V(FS0,FS7) (Note 7)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-29

FATAN2 dst:V(FL0),src:V(FL0,FL7) (Note 7)

FATAN2 dst:V(FS0),src:V(FS0,FS7) (Note 7)

FBLD memop:MT (Note 5)

FBSTP memop:MT (Note 5)

FCHS (Note 5)

FCLEX (Note 5)

FCMP dst:V(FL0),src:MQ (Note 7)

FCMP dst:V(FL0),src:V(FL0,FL7) (Note 7)

FCMP dst:V(FS0),src:MD (Note 7)

FCMP dst:V(FS0),src:V(FS0,FS7) (Note 7)

FCMPA dst:V(FL0),src:MQ (Note 7)

FCMPA dst:V(FL0),src:V(FL0,FL7) (Note 7)

FCMPA dst:V(FS0),src:MD (Note 7)

FCMPA dst:V(FS0),src:V(FS0,FS7) (Note 7)

FCMPAE dst:V(FL0),src:MQ (Note 7)

FCMPAE dst:V(FL0),src:V(FL0,FL7) (Note 7)

FCMPAE dst:V(FS0),src:MD (Note 7)

FCMPAE dst:V(FS0),src:V(FS0,FS7) (Note 7)

FCMPE dst:V(FL0),src:MQ (Note 7)

FCMPE dst:V(FL0),src:V(FL0,FL7) (Note 7)

FCMPE dst:V(FS0),src:MD (Note 7)

Table 6-4. Assembler Instruction Set (Cont’d)

6-30 Instructions and Operands

FCMPE dst:V(FS0),src:V(FS0,FS7) (Note 7)

FCOM (Note 5)

FCOM fpst:F (Note 5)

FCOM memop:MD (Note 5)

FCOM memop:MQ (Note 5)

FCOMP (Note 5)

FCOMP fpst:F (Note 5)

FCOMP memop:MD (Note 5)

FCOMP memop:MQ (Note 5)

FCOMPP (Note 5)

FCOS dst:V(FL0),src:V(FL0,FL7) (Note 7)

FCOS dst:V(FS0),src:V(FS0,FS7) (Note 7)

FCVTD dst:V(FL0),src:MD (Note 7)

FCVTDS dst:V(FS0),src:MD (Note 7)

FCVTLD dst:MD,src:V(FL0) (Note 7)

FCVTLQ dst:MQ,src:V(FL0) (Note 7)

FCVTLS dst:MD,src:V(FL0) (Note 7)

FCVTLS dst:V(FS0),src:MQ (Note 7)

FCVTLS dst:V(FS0),src:V(FL0,FL7) (Note 7)

FCVTLS dst:V(FS0,FS7),src:V(FL0) (Note 7)

FCVTQL dst:V(FL0),src:MQ (Note 7)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-31

FCVTQS dst:V(FS0),src:MQ (Note 7)

FCVTSD dst:MD,src:V(FS0) (Note 7)

FCVTSL dst:MQ,src:V(FS0) (Note 7)

FCVTSL dst:V(FL0),src:MD (Note 7)

FCVTSL dst:V(FL0),src:V(FS0,FS7) (Note 7)

FCVTSL dst:V(FL0,FL7),src:V(FS0) (Note 7)

FCVTSQ dst:MQ,src:V(FS0) (Note 7)

FDECSTP (Note 5)

FDIAG (Note 7)

FDISI (Note 5)

FDIV (Note 5)

FDIV dst:F,src:T (Note 5)

FDIV dst:T,src:F (Note 5)

FDIV dst:V(FL0),src:MQ (Note 7)

FDIV dst:V(FL0),src:V(FL0,FL7) (Note 7)

FDIV dst:V(FS0),src:MD (Note 7)

FDIV dst:V(FS0),src:V(FS0,FS7) (Note 7)

FDIV memop:MD (Note 5)

FDIV memop:MQ (Note 5)

FDIVP dst:F,src:T (Note 5)

FDIVR (Note 5)

Table 6-4. Assembler Instruction Set (Cont’d)

6-32 Instructions and Operands

FDIVR dst:F,src:T (Note 5)

FDIVR dst:T,src:F (Note 5)

FDIVR memop:MD (Note 5)

FDIVR memop:MQ (Note 5)

FDIVRP dst:F,src:T (Note 5)

FENI (Note 5)

FEXPE dst:V(FL0),src:V(FL0,FL7) (Note 7)

FEXPE dst:V(FS0),src:V(FS0,FS7) (Note 7)

FEXPEM1 dst:V(FL0),src:V(FL0,FL7) (Note 7)

FEXPEM1 dst:V(FS0),src:V(FS0,FS7) (Note 7)

FFREE fpst:F (Note 5)

FIADD memop:MD (Note 5)

FIADD memop:MW (Note 5)

FICOM memop:MD (Note 5)

FICOM memop:MW (Note 5)

FICOMP memop:MD (Note 5)

FICOMP memop:MW (Note 5)

FIDIV memop:MD (Note 5)

FIDIV memop:MW (Note 5)

FIDIVR memop:MD (Note 5)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-33

FIDIVR memop:MW (Note 5)

FILD memop:MD (Note 5)

FILD memop:MQ (Note 5)

FILD memop:MW (Note 5)

FIMUL memop:MD (Note 5)

FIMUL memop:MW (Note 5)

FINCSTP (Note 5)

FINIT

FINT (Note 3)

FIP3V dst:V(FL0),src:V(FL0,FL7) (Note 7)

FIP3V dst:V(FS0),src:V(FS0,FS7) (Note 7)

FIP4V dst:V(FL0),src:V(FL0,FL7) (Note 7)

FIP4V dst:V(FS0),src:V(FS0,FS7) (Note 7)

FIST memop:MD (Note 5)

FIST memop:MW (Note 5)

FISTP memop:MD (Note 5)

FISTP memop:MQ (Note 5)

FISTP memop:MW (Note 5)

FISUB memop:MD (Note 5)

FISUB memop:MW (Note 5)

FISUBR memop:MD (Note 5)

Table 6-4. Assembler Instruction Set (Cont’d)

6-34 Instructions and Operands

FISUBR memop:MW (Note 5)

FLD fpst:F (Note 5)

FLD memop:MD (Note 5)

FLD memop:MQ (Note 5)

FLD memop:MT (Note 5)

FLD1 (Note 5)

FLDCW memop:M (Note 5)

FLDENV memop:M (Note 5)

FLDL2E (Note 5)

FLDL2T (Note 5)

FLDLG2 (Note 5)

FLDLN2 (Note 5)

FLDPI (Note 5)

FLDZ (Note 5)

FLOGE dst:V(FL0),src:V(FL0,FL7) (Note 7)

FLOGE dst:V(FS0),src:V(FS0,FS7) (Note 7)

FMOD dst:V(FL0),src:MQ (Note 7)

FMOD dst:V(FL0),src:V(FL0,FL7) (Note 7)

FMOD dst:V(FS0),src:MD (Note 7)

FMOD dst:V(FS0),src:V(FS0,FS7) (Note 7)

FMOV dst:MD,src:V(FS0) (Note 7)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-35

FMOV dst:MQ,src:V(FL0) (Note 7)

FMOV dst:V(FL0),src:MQ (Note 7)

FMOV dst:V(FL0),src:V(FL0,FL7) (Note 7)

FMOV dst:V(FL0,FL7),src:V(FL0) (Note 7)

FMOV dst:V(FS0),src:MD (Note 7)

FMOV dst:V(FS0),src:V(FS0,FS7) (Note 7)

FMOV dst:V(FS0,FS7),src:V(FS0) (Note 7)

FMOVCR dst:MD,src:V(FCTW) (Note 7)

FMOVCR dst:MD,src:V(FPTW) (Note 7)

FMOVCR dst:MD,src:V(FSTW) (Note 7)

FMOVCR dst:V(FCTW),src:MD (Note 7)

FMOVCR dst:V(FPTW),src:MD (Note 7)

FMOVCR dst:V(FSTW),src:MD (Note 7)

FMOVRT dst:M,src:V(FR0,FR7) (Note 7)

FMOVRT dst:V(FR0,FR7),dst:M (Note 7)

FMUL (Note 5)

FMUL dst:F,src:T (Note 5)

FMUL dst:T,src:F (Note 5)

FMUL dst:V(FL0),src:MQ (Note 7)

FMUL dst:V(FL0),src:V(FL0,FL7) (Note 7)

FMUL dst:V(FS0),src:MD (Note 7)

Table 6-4. Assembler Instruction Set (Cont’d)

6-36 Instructions and Operands

FMUL dst:V(FS0),src:V(FS0,FS7) (Note 7)

FMUL memop:MD (Note 5)

FMUL memop:MQ (Note 5)

FMULP dst:F,src:T (Note 5)

FNCLEX (Note 5)

FNDISI (Note 5)

FNEG dst:MD,src:V(FS0) (Note 7)

FNEG dst:MQ,src:V(FL0) (Note 7)

FNEG dst:V(FL0),src:MQ (Note 7)

FNEG dst:V(FL0),src:V(FL0,FL7) (Note 7)

FNEG dst:V(FL0,FL7),src:V(FL0) (Note 7)

FNEG dst:V(FS0),src:MD (Note 7)

FNEG dst:V(FS0),src:V(FS0,FS7) (Note 7)

FNEG dst:V(FS0,FS7),src:V(FS0) (Note 7)

FNENI (Note 5)

FNINIT (Note 5)

FNOP (Note 5)

FNSAVE memop:M (Note 5)

FNSTCW memop:M (Note 5)

FNSTENV memop:M (Note 5)

FNSTSW dst:AW (Note 6)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-37

FNSTSW memop:M (Note 5)

FPATAN (Note 5)

FPO1 opcode:D(0,511)

FPO1 opcode:D(0,63),addr:MB

FPO1 opcode:D(0,63),addr:MD

FPO1 opcode:D(0,63),addr:MQ

FPO1 opcode:D(0,63),addr:MT

FPO1 opcode:D(0,63),addr:MW

FPO2 opcode:D(0,127)

FPO2 opcode:D(0,15),addr:MB

FPO2 opcode:D(0,15),addr:MD

FPO2 opcode:D(0,15),addr:MQ

FPO2 opcode:D(0,15),addr:MT

FPO2 opcode:D(0,15),addr:MW

FPOWER dst:V(FL0),src:MQ (Note 7)

FPOWER dst:V(FL0),src:V(FL0,FL7) (Note 7)

FPOWER dst:V(FS0),src:MD (Note 7)

FPOWER dst:V(FS0),src:V(FS0,FS7) (Note 7)

FPREM (Note 5)

FPTAN (Note 5)

FREM dst:V(FL0),src:MQ (Note 7)

Table 6-4. Assembler Instruction Set (Cont’d)

6-38 Instructions and Operands

FREM dst:V(FL0),src:V(FL0,FL7) (Note 7)

FREM dst:V(FS0),src:MD (Note 7)

FREM dst:V(FS0),src:V(FS0,FS7) (Note 7)

FRND dst:V(FL0),src:V(FL0,FL7) (Note 7)

FRND dst:V(FS0),src:V(FS0,FS7) (Note 7)

FRNDINT (Note 5)

FRPOP (Note 7)

FRPUSH (Note 7)

FRSTOR memop:M (Note 5)

FSAVE memop:M (Note 5)

FSCALE (Note 5)

FSIN dst:V(FL0),src:V(FL0,FL7) (Note 7)

FSIN dst:V(FS0),src:V(FS0,FS7) (Note 7)

FSINCOS dst:V(FL0),src:V(FL0,FL7) (Note 7)

FSINCOS dst:V(FS0),src:V(FS0,FS7) (Note 7)

FSQRT (Note 5)

FSQRT dst:V(FL0),src:V(FL0,FL7) (Note 7)

FSQRT dst:V(FS0),src:V(FS0,FS7) (Note 7)

FST fpst:F (Note 5)

FST memop:MD (Note 5)

FST memop:MQ (Note 5)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-39

FSTCW memop:M (Note 5)

FSTENV memop:M (Note 5)

FSTP fpst:F (Note 5)

FSTP memop:MD (Note 5)

FSTP memop:MQ (Note 5)

FSTP memop:MT (Note 5)

FSTSW dst:AW (Note 6)

FSTSW memop:M (Note 5)

FSUB (Note 5)

FSUB dst:T,src:F (Note 5)

FSUB dst:V(FL0),src:MQ (Note 7)

FSUB dst:V(FL0),src:V(FL0,FL7) (Note 7)

FSUB dst:V(FS0),src:MD (Note 7)

FSUB dst:V(FS0),src:V(FS0,FS7) (Note 7)

FSUB dstF,src:T (Note 5)

FSUB memop:MD (Note 5)

FSUB memop:MQ (Note 5)

FSUBP dst:F,src:T (Note 5)

FSUBR (Note 5)

FSUBR dst:F,src:T (Note 5)

FSUBR dst:T,src:F (Note 5)

Table 6-4. Assembler Instruction Set (Cont’d)

6-40 Instructions and Operands

FSUBR memop:MD (Note 5)

FSUBR memop:MQ (Note 5)

FSUBRP dst:F,src:T (Note 5)

FTAN dst:V(FL0),src:V(FL0,FL7) (Note 7)

FTAN dst:V(FS0),src:V(FS0,FS7) (Note 7)

FTST (Note 5)

FWAIT (Note 5)

FXAM (Note 5)

FXCH (Note 5)

FXCH dst:V(FL0),src:V(FL0,FL7) (Note 7)

FXCH dst:V(FS0),src:V(FS0,FS7) (Note 7)

FXCH fpst:F (Note 5)

FXTRACT (Note 5)

FYL2X (Note 5)

FYL2XP1 (Note 5)

HALT

IN dst:AB,port:DB

IN dst:AB,port:RW(DW)

IN dst:AW,port:DB

IN dst:AW,port:RW(DW)

INC dst:EB

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-41

INC dst:EW

INC dst:RW

INM IY__ptr:EB,port:RW(DW) (Note 1)

INM IY__ptr:EW,port:RW(DW) (Note 1)

INS dst:RB,count:D(0,15)

INS dst:RB,src:RB

LDEA dst:RW,src:M

LDM IX__ptr:MB

LDM IX__ptr:MW

LDMB

LDMW

MOV dst:AB,src:XB

MOV dst:AW,src:XW

MOV dst:EB,src:DB

MOV dst:EB,src:RB

MOV dst:EW,src:DB

MOV dst:EW,src:DW

MOV dst:EW,src:RW

MOV dst:EW,src:S

MOV dst:I(PSW),src:RB(AH)

MOV dst:RB(AH),src:I(PSW)

Table 6-4. Assembler Instruction Set (Cont’d)

6-42 Instructions and Operands

MOV dst:RB,src:EB

MOV dst:RW,src:EW

MOV dst:S(DS1),src:EW

MOV dst:S(SS,DS0),src:EW

MOV dst:XB,src:AB

MOV dst:XW,src:AW

MOV seg:S(DS0),dst:RW,src:MD

MOV seg:S(DS1),dst:RW,src:MD

MOVBK IY__ptr:MB,IX__ptr:MB (Note 1)

MOVBK IY__ptr:MW,IX__ptr:MW (Note 1)

MOVBKB

MOVBKW

MOVSPA (Note 3)

MOVSPB src:RW (Note 3)

MUL dst:RW,src1:EW,src2:DB(-128,127)

MUL dst:RW,src1:EW,src2:DW

MUL dst:RW,src2:DB(-128,127)

MUL dst:RW,src2:DW

MUL mplier:EB

MUL mplier:EW

MULU mplier:EB

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-43

MULU mplier:EW

NEG dst:EB

NEG dst:EW

NOP

NOT dst:EB

NOT dst:EW

NOT1 carry:I(CY)

NOT1 dst:EB,off:D(0,7)

NOT1 dst:EB,off:RB(CL)

NOT1 dst:EW,off:D(0,15)

NOT1 dst:EW,off:RB(CL)

OR dst:AB,src:DB

OR dst:AW,src:DB

OR dst:AW,src:DW

OR dst:EB,src:DB

OR dst:EB,src:RB

OR dst:EW,src:DB

OR dst:EW,src:DW

OR dst:EW,src:RW

OR dst:RB,src:EB

OR dst:RW,src:EW

Table 6-4. Assembler Instruction Set (Cont’d)

6-44 Instructions and Operands

OUT port:DB,dst:AB

OUT port:DB,dst:AW

OUT port:RW(DW),dst:AB

OUT port:RW(DW),dst:AW

OUTM port:RS(DW),IX_ptr:EW

OUTM port:RW(DW),IX_ptr:EB

POLL

POP dst:EW

POP dst:I(PSW)

POP dst:I(R)

POP dst:S(DS0)

POP dst:S(SS,DS1)

PREPARE disp:D(0,0FFFFH),level:D(0,255)

PUSH src:DB(-128,127)

PUSH src:DW

PUSH src:EW

PUSH src:I(PSW)

PUSH src:I(R)

PUSH src:S

REP PREFX

REPC PREFX

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-45

REPE PREFX

REPNC PREFX

REPNE PREFX

REPNZ PREFX

REPZ PREFX

RET

RET src:DW

RETI

RETRBI (Note 3)

RETXA vector:DB (Note 4)

ROL dst:EB,count:DB(0,31)

ROL dst:EB,count:DB(1)

ROL dst:EB,count:RB(CL)

ROL dst:EW,count:DB(0,31)

ROL dst:EW,count:DB(1)

ROL dst:EW,count:RB(CL)

ROL4 dst:EB

ROLC dst:EB,count:DB(0,31)

ROLC dst:EB,count:DB(1)

ROLC dst:EB,count:RB(CL)

ROLC dst:EW,count:DB(0,31)

Table 6-4. Assembler Instruction Set (Cont’d)

6-46 Instructions and Operands

ROLC dst:EW,count:DB(1)

ROLC dst:EW,count:RB(CL)

ROR dst:EB,count:DB(0,31)

ROR dst:EB,count:DB(1)

ROR dst:EB,count:RB(CL)

ROR dst:EW,count:DB(0,31)

ROR dst:EW,count:DB(1)

ROR dst:EW,count:RB(CL)

ROR4 dst:EB

RORC dst:EB,count:DB(0,31)

RORC dst:EB,count:DB(1)

RORC dst:EB,count:RB(CL)

RORC dst:EW,count:DB(0,31)

RORC dst:EW,count:DB(1)

RORC dst:EW,count:RB(CL)

SET1 carry:I(CY)

SET1 dst:EB,off:D(0,7)

SET1 dst:EB,off:RB(CL)

SET1 dst:EW,off:D(0,15)

SET1 dst:EW,off:RB(CL)

SET1 updown:I(DIR)

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-47

SHL dst:EB,count:DB(0,31)

SHL dst:EB,count:DB(1)

SHL dst:EB,count:RB(CL)

SHL dst:EW,count:DB(0,31)

SHL dst:EW,count:DB(1)

SHL dst:EW,count:RB(CL)

SHR dst:EB,count:DB(0,31)

SHR dst:EB,count:DB(1)

SHR dst:EB,count:RB(CL)

SHR dst:EW,count:DB(0,31)

SHR dst:EW,count:DB(1)

SHR dst:EW,count:RB(CL)

SHRA dst:EB,count:DB(0,31)

SHRA dst:EB,count:DB(1)

SHRA dst:EB,count:RB(CL)

SHRA dst:EW,count:DB(0,31)

SHRA dst:EW,count:DB(1)

SHRA dst:EW,count:RB(CL)

STM IY__ptr:MB (Note 1)

STM IY__ptr:MW (Note 1)

STMB

Table 6-4. Assembler Instruction Set (Cont’d)

6-48 Instructions and Operands

STMW

STOP (Note 3)

SUB dst:AB,src:DB

SUB dst:AW,src:DB

SUB dst:AW,src:DW

SUB dst:EB,src:DB

SUB dst:EB,src:RB

SUB dst:EW,src:DB(-128,127)

SUB dst:EW,src:DW

SUB dst:EW,src:RW

SUB dst:RB,src:EB

SUB dst:RW,src:EW

SUB4S

SUB4S dst:M,src:M (Note 1)

SUBC dst:AB,src:DB

SUBC dst:AW,src:DB

SUBC dst:AW,src:DW

SUBC dst:EB,src:DB

SUBC dst:EB,src:RB

SUBC dst:EW,src:DB(-128,127)

SUBC dst:EW,src:DW

Table 6-4. Assembler Instruction Set (Cont’d)

Instructions and Operands 6-49

SUBC dst:EW,src:RW

SUBC dst:RB,src:EB

SUBC dst:RW,src:EW

TEST dst:AB,src:DB

TEST dst:AW,src:DB

TEST dst:AW,src:DW

TEST dst:EB,src:DB

TEST dst:EB,src:RB

TEST dst:EW,src:DB

TEST dst:EW,src:DW

TEST dst:EW,src:RW

TEST dst:RB,src:EB

TEST dst:RW,src:EW

TEST1 dst:EB,off:D(0,7)

TEST1 dst:EB,off:RB(CL)

TEST1 dst:EW,off:D(0,15)

TEST1 dst:EW,off:RB(CL)

TRANS

TRANS table:MB

TRANSB

TSKSW src:RW (Note 3)

Table 6-4. Assembler Instruction Set (Cont’d)

6-50 Instructions and Operands

7

Assembler Controls

Introduction Assembler controls are internal assembler switches which let you
enable and disable certain aspects of the assembly process. This
chapter describes assembler controls and control defaults.

The beginning of the chapter discusses the general syntax of assembler
controls and other topics that are true about controls in the general
sense.

The remainder of this chapter contains a list of controls, a description
of their functions, and a discussion of the differences between the two
possible processor specifications. The controls are divided into
primary and general controls.

The control references, unlike most other references in this manual, do
not list the syntax under a separate heading. Instead, the syntax is
shown directly in the control name heading in the left column. If a
[NO] appears in the heading, it indicates that the word NO can be
prefixed to a control to make it do the opposite of what the control does
normally. For example, LIST turns on the output listing, but NOLIST
turns off printing of the listing. (The -L command line option causes a
listing to be generated.)

Following the heading is the shorthand version of the command. Next
is the default setting for a given control (if one makes sense). Finally, a
short discussion of the control may be present.

Assembler Controls 7-1

General Syntax
for Assembler
Controls

The syntax of a control line in the source code is:

$control[(parameter)] [...]

The dollar sign may be preceded by tabs or blanks. Separators must be
included between adjacent controls. Examples:

$XREF
$INCLUDE(filename) DEBUG SYMBOLS
$PRINT ERRORPRINT(FILENAME)

Primary and General
Controls

Assembler controls are classified as either primary or general. Primary
control statements occur only on the first few lines of the source
program before any non-control statements (other than comments and
blank lines). Primary controls are not processed when they occur after
any statement other than a control line; their presence after any
statement other than a control line causes an error. General controls,
however, can be specified at any time in the source program. In most
instances, an error in either kind of control line causes all remaining
controls on the line to be ignored.

Controls on the
Command Line

Assembler controls may also be included on the command line when
the assembler is invoked. If a primary control is entered on both the
command line and in the first lines of the source file being assembled,
the control from the command line overrides the control in the file for
that particular assembly.

If a general control is entered on both the command line and in the file
(since general controls can appear anywhere in the file, the general
control might be far, relatively, from the beginning of the file), then
the control from the command line is in effect until the control in the
source file is found. At that point, the source file control overrides the
command line control for the rest of the assembly.

7-2 Assembler Controls

Control Conflicts If a primary control conflicts with another primary control and both are
in the source file, then the one that appears last takes effect. If the
conflict is between a control on the command line and one in the file,
then the control which appears on the command line overrides the one
in the file.

If general controls conflict (whether both in the file or one on the
command line and one in the file), then the control which appears last
will be the one to take effect. Example:

$NOLIST
$LIST ;this control is last, it will be the one
 ;to take effect

Controls and File
Names

Certain controls accept a file name as a parameter. The file name
parameters are optional, except with INCLUDE, and are ignored with
all controls except INCLUDE. The [NO] form of these controls does
not accept a file name.

Control Abbreviations Each control can be abbreviated to a two-character or three-character
equivalent; the abbreviations are listed with each control.
Abbreviations may be negated if the full name of the control can be
negated. Controls are not case-sensitive; upper-case and lower-case
letters are equivalent. Remember that their arguments may be case
sensitive, although the controls are not.

Controls and
Macro Preprocessor

(apv20/apv33)

Most controls are used only by the assembler. The INCLUDE control
acts differently, however, if the source file is processed by the macro
preprocessor before assembly. If the source file contains INCLUDE
controls and does go through the macro preprocessor, then the macro
preprocessor will expand the INCLUDEs. The output from the
preprocessor will then contain the include files and will no longer
contain the INCLUDE controls (not a problem, since they are no
longer necessary). The macro preprocessor does not act on any other
assembler controls.

Assembler Controls 7-3

Primary Controls

[NO]CAPITALS shorthand = [NO]CA, [NO]CAP
default = NO CAPITALS

Causes symbols to be case insensitive. That is, upper and lower case
letters are treated as the same character. If this control is negated, then
all lower case characters in symbols will be treated as separate from the
upper case characters. This control does not affect text within strings
(except for class names).

Note All Intel-generated OMF will contain case insensitive symbols.

DATE(string) shorthand = DA

(No default necessary.)

The DATE control has no effect. It is supplied for Intel compatibility,
and its use will not generate an error. The date printed on the listing
and placed in the object file is obtained from the operating system.

[NO]DEBUG shorthand = [NO]DB , [NO]DBG
default = DEBUG

Causes symbolic debug and type information to be placed into the
output object module. By default, only non-PURGEd variables, labels
and numbers are placed into the object module.

7-4 Assembler Controls

[NO]ERRORPRINT
(filename)

shorthand = [NO]EP , [NO]ERR
default= ERRORPRINT

This control causes error and warning information to be displayed on
standard error. The filename, if present, is ignored and is only allowed
for Intel compatibility. The noerrorprint control suppresses error and
warning messages from being displayed on standard error. The
nowarning control may be used to suppress only warning messages
while allowing error messages to be displayed.

EXTERN_CHECK shorthand = [NO]EC
default = extern_check

This control causes the use of external symbols to check that an
ASSUME register has been defined such that the external symbol can
be referenced from the ASSUME register. The noextern_check control
causes the assembler to allow any use of an external symbol without
verifying that the symbol is accessible through whatever assume
register is used to reference that symbol. This then requires the user to
make sure that segment registers are correctly set up to reference the
segment that a given external symbol belongs to.

GROUP_INFO shorthand = [NO]GI
default = group_info

This control causes the debug information emitted from the assembler
to associate group information to all symbols that belong to segments
that are members of a group. Only one group will be assigned to a
given symbol, regardless of how many groups a given segment belongs
to. The nogroup_info control will only associate group information to
labels and procedures; variables will NOT have group information
associated.

Assembler Controls 7-5

[NO]HLASSYM shorthand = [NO]HA
default = NOHLASSYM

Causes asv20/asv33 to generate low-level symbol information for static
procedures, static data, and embedded assembly code. This option is
useful when compiler-generated output is to be debugged in an
emulator. If the output is to be debugged in AxDB or AxDE, then the
negated form of this option is recommended.

[NO]MACRO(string) shorthand = [NO]MC, [NO]MAC

(No default necessary.)

Enables or disables macro assembly. Since macro processing is
accomplished by a separate program, this control has no effect in either
the assembler or the macro preprocessor. It is supplied for Intel
compatibility, and its use will not generate an error.

MOD087 default: MOD087 for asv20, MOD72291 for asv33

Causes the Intel 8087 instruction set to be available. The output for
these instructions may be linked to the Intel 8087 emulation library.

MOD287 default: MOD087 for asv20, MOD72291 for asv33

Causes the Intel 80287 instruction set to be available. This instruction
set is nearly identical to the 8087 instruction set, with the addition of
one new operand combination for FSTSW/FNSTSW.

MOD72291 default: MOD087 for asv20, MOD72291 for asv33

Causes the NEC 72291 instruction set to be available.

MODV20 shorthand = M2
default = MODV20 for asv20, MODV33 for asv33

Identifies the target microprocessor as V20. Causes V20/V30/V40/V50
instruction set to be recognized. Errors or warnings will be issued
when instructions from conflicting instruction sets are encountered.

7-6 Assembler Controls

MODV25 shorthand = M5
default = MODV20 for asv20, MODV33 for asv33

Causes V25/V25+/V35/V35+ instruction set to be recognized. The
ASGNSFR and SETIDB directives are also recognized. These
directives allow the V25 RAM and SFR keywords to be used with the
new V25 instructions or the normal V20 instructions.

MODV33 shorthand = M3
default = MODV20 for asv20, MODV33 for asv33

Causes V33 instructions to be recognized in addition to the V20
instruction set. It also allows DS and DL data directives to be used.

[NO]OBJECT
(filename)

shorthand = [NO]OJ , [NO]OBJ

default = OBJECT

Generates an output object module, but the optional file name is
ignored and only allowed for Intel compatibility. The assembler gives
the object file the same root name as the source file, with a ’.o’ (dot
lower case o) default file name extension.

OPTIMIZE shorthand = OP

This control will cause the assembler to spend extra time processing
the input file so the resulting object file has as few NOPs as possible.
These NOPs are generated when forward references are used in
expressions. The assembler does not always know how many bytes of
output will be produced for a given instruction, so it saves extra space.
If the instruction turns out to be shorter than that size, then the
assembler pads the rest of the length with NOP bytes. This control will
allow the assembler to spend time removing these NOPs when they are
generated under these conditions. Note that this control will cause the
assembler to run for a longer time than it otherwise would.

Assembler Controls 7-7

PAGELENGTH(n) shorthand = PL , LEN
default = 55 lines per page

Specifies the page length of the listing as "n" lines, where n= 20 or
more lines.

PAGEWIDTH(n) shorthand = PW , WID
default= 132 characters per line

Specifies the listing page width in number of characters, where n is a
number between 60 and 255, inclusive. Lines exceeding the current
page width are wrapped to the next line.

[NO]PAGING shorthand = [NO]PI
default= PAGING

Formats the output listing so as to have headers at the top of each page.
By default, the headers supply the assembler name, title, and the date.
If NOPAGING is specified, then the listing does not contain page
headers or page ejects (except for an initial header on the first page).
This option is only useful if a listing is produced.

[NO]PRINT(filename) shorthand = [NO]PR , [NO]PRI
default = NOPRINT

Recognized for Intel compatibility only and has no effect. An error
summary still goes to stdout and error messages go to stderr.

[NO]SYMBOLS shorthand = [NO]SB , [NO]SYM
default= SYMBOLS

Prints an alphabetically sorted symbol table with the output listing.
The listing will not contain cross-reference information.
Cross-reference information is produced with the XREF control. If
XREF is used, it will override this control and cross-reference
information will be produced. This option is only useful if a listing is
output.

7-8 Assembler Controls

[NO]TYPE shorthand = [NO]TY
default = TYPE

This control is recognized for Intel compatibility only and its use will
not have any effect. Whether type information is generated depends
upon the DEBUG control being on.

[NO]UNREFERENCED_
EXTERNALS

shorthand = [NO]UE
default = NOUNREFERENCED_EXTERNALS

 This control will cause all external symbols, including those that are
unreferenced, to appear in the generated object file. In certain cases,
these externals may be used to cause certain object files to be linked at
link time. If this control is not present or if the
NOUNREFERENCED_EXTERNALS control is used, any
unreferenced externals will be removed from the resulting object file.
This form of the control is useful when using inline functions in the
AxLS C compiler. This will prevent unnecessary routines from being
linked in that are being processed inline.

WARNING shorthand = [NO]WA
default = WARNING

This control causes warning messages to be displayed along with any
error messages that may appear on standard error. The nowarning
control suppresses the warning messages so only error information is
sent to standard error. The errorprint control overrides either form of
this control in determining whether any information is sent to standard
error or not.

WORKFILES(...) shorthand = WF , WOR

(No default necessary.)

This control has no effect. It is supplied for Intel compatibility, and its
use will not generate an error.

Assembler Controls 7-9

[NO]XREF shorthand = [NO]XR [NO]XRE
default = NOXREF

Prints a cross reference table on the output listing. If you use both the
XREF and SYMBOLS controls, a cross reference table will be
generated.

7-10 Assembler Controls

General Controls

EJECT shorthand = EJ , EJE

(No default necessary.)

Advances the listing form to the beginning of the next page and prints a
new header. This is only useful if a listing is being generated and
paging is in effect.

[NO]GEN shorthand = [NO]GE

(No default necessary.)

This control has no effect in either the assembler or macro
preprocessor. It is supplied for Intel compatibility, and its use will not
generate an error.

GENONLY shorthand = GO

(No default necessary.)

This control has no effect in either the assembler or macro
preprocessor. It is supplied for Intel compatibility, and its use will not
generate an error.

INCLUDE(filename) shorthand = IC , INC

(No default necessary.)

Indicates that the specified file should be included in the source input
before the next line of the current source file is processed. Unlike other
controls, INCLUDE must appear on a line by itself. No other controls,
or other INCLUDEs, can be on the same line.

Assembler Controls 7-11

Note Include allows you to specify a different directory than the current
working directory for include files by allowing a path name with the
file name. However, if the file in the other path also has an INCLUDE
control and that control does not have a path name as part of the file
name, then the assembler will look back into the current working
directory for the new include file. That means that if an include file in
another directory needs another file to be complete, do not expect the
assembler to pick this file up from that other directory along with the
first include file.

[NO]LIST shorthand = [NO]LI , [NO]LIS
default = LIST

Turns on assembly listing at any point in the program. If used in
combination with NOLIST, you can list a portion of the source file.
NOLIST overrides XREF and SYMBOLS. An error summary still
goes to stdout and errors still go to stderr regardless of LIST setting.

RESTORE shorthand = RS

(No default necessary.)

Restores, as the current settings, the most recently-saved settings for
LIST/NOLIST that are on the stack. This control is used mainly to
restore LIST/NOLIST settings after returning from INCLUDE files.

7-12 Assembler Controls

SAVE shorthand = SA

(No default necessary.)

Saves the current settings of LIST and NOLIST controls on a stack up
to 64 deep. This control remains in effect until explicitly changed.
SAVE is typically used with RESTORE where LIST/NOLIST settings
are saved before an INCLUDE control switches the input source to
another file. RESTORE can be used to restore the settings at the end of
the include file or upon returning from the include file.

TITLE(string) shorthand = TT , TIT
default = module name

Enables you to define a title of up to 41 characters in a page header.
Unquoted parentheses in "string" must be balanced. String may be
quoted if "unusual" characters are used in the title. The length of the
title is bound by PAGEWIDTH. If you want the title to appear on the
first page, use the TITLE control on the first source line or the
command line.

Assembler Controls 7-13

Operational
Differences in the
Different Modes

The asv20/asv33 operates in one of three modes depending upon the
choice of control: MODV20, MODV25, or MODV33.

V20 Mode The V20 Mode supports the full V20 instruction set, including
BRKEM, FPO1, and FPO2. This mode is the default for asv20.

V25 Mode The V25 Mode supports the V25/V25+/V35/V35+ instruction sets.
These instruction sets include all of the V20 instructions except
BRKEM. There are also several new instructions that are valid only in
the V25 Mode. The ASGNSFR and SETIDB directives are recognized
only in this mode. These directives allow the V25 RAM and SFR
keywords to be used with the new V25 instructions or the normal V20
instructions.

V33 Mode The V33 mode supports the full V20 instruction set, with the exception
of the BRKEM instruction, as well as the two new V33 instructions,
BRKXA and RETXA. This mode is the default for asv33.

There are also 3 separate modes for floating point instructions. These
modes are set as part of the initial defaults, but can be changed through
the use of the controls MOD087, MOD287, and MOD72291.

8087 Mode The 8087 mode supports the full Intel 8087 floating point instruction
set. This mode also generates NOPs or FWAIT instructions at the start
of most instructions in order to allow for synchronization of processors
during the execution of the floating point code. This is the default
mode for asv20.

80287 Mode The 80287 mode consists of the same instruction set as the 8087, with
the addition of one new operand combination for the
FSTSW/FNSTSW instruction. This mode does not generate the NOPs
and FWAIT bytes at the start of the instructions. Also, the FDISI,
FENI, FNDISI, and FNENI instructions do not generate any output.

7-14 Assembler Controls

These instructions may not be linked into an Intel 8087 emulation
library for execution.

Assembler Controls 7-15

Notes

7-16 Assembler Controls

8

Assembler Listing Description

Introduction This chapter contains a description of a sample assembler listing,
including a description of the optional symbol table and cross reference
format.

Assembly Listing The asv20/asv33 Assembler uses a two-pass process. During the first
pass, labels, variables and other user-defined symbols are examined
and placed in the symbol table. Additionally, structures are stored
internally.

During the second pass, the object code is generated, symbolic
addresses are resolved, and a listing and object module are produced.
Errors detected during the assembly process will be displayed on the
output listing with a cumulative error count. At the end of the assembly
process a symbol table or a cross reference table can be displayed.

The listing contains information pertaining to the assembled program,
including op codes, assembled data and the original source statements.
The listing can be used as a documentation tool by including comments
and remarks that describe the function of the particular program
segment.

A sample assembler listing is provided at the end of this chapter. Refer
to the following points to examine and understand the listing.

1. The page headings on this sample show the time and date of
the program run.

2. The column titled "Line" contains decimal numbers associated
with the listing source lines. These numbers are referred to in
the cross reference table.

Assembler Listing Description 8-1

3. The column titled "Offset" contains a value that represents the
first memory address of any object code generated by this
statement.

4. The columns under "Object-Bytes" show the object code
generated by instructions and directives in the file. Bytes are
output lowest address first.

5. To the right of the data bytes are the assembler relocation
flags. The flags are ’R’ for relocatable operand, and ’E’ for
external operand. If one operand is relocatable and the other
is external, the ’E’ flag will be displayed.

6. The original source statements are reproduced to the right of
the object-bytes field.

7. At the end of the listing the assembler prints the number of
assembler errors. The assembler substitutes NOPs when it
cannot translate a particular opcode and therefore provides
room for patching the program.

A symbol table or cross reference table can be generated at the end of
the assembly listing if the option specifying its output is used. All
user-defined symbols, in alphabetic order, along with the symbol’s
value type and attributes, are listed in the symbol table.

8-2 Assembler Listing Description

 Hewlett Packard ASV20 HP64873-19002 02.00 06Feb90 Unreleased Copr. HP 1990
Page 1 Fri Feb 16 10:48:23 1990
 SAMPLE HP64873-19002 02.00 06Feb90 Unreleased Copr. HP 1990
Cmdline - asv20 -L asmexamv20.s
Line Offset Object-Bytes
1 0000 $MODV20 XREF
2 0000 ;
3 0000 ;This small sample program is intended to show
 an example list file
4 0000 ;and to show the some instructions in V20
 mode. For a
5 0000 ;more complete list of instructions, see the
 "Instructions and Operands" chapter.
6 0000 NAME SAMPLE
7 0000 DATA SEGMENT WORD PUBLIC ’DATA’
8 0000 10(ARRAY DB 10 DUP (0)
8 0000 00)
9 000A DATA ENDS
10 0000
11 0000 CODE SEGMENT WORD PUBLIC ’CODE’
12 0000 ASSUME PS:CODE,DS0:DATA,DS1:DATA
13 0000 65 A4 REPC MOVBKB
14 0002 64 A5 REPNC MOVBKW
15 0004 0F 31 C1 INS CL,AL
16 0007 0F 39 C1 0D INS CL,13
17 000B 0F 33 C1 EXT CL,AL
18 000E 0F 3B C1 0D EXT CL,13
19 0012 0F 20 ADD4S
20 0014 0F 20 ADD4S DS1:WORD PTR ARRAY, WORD PTR ARRAY
21 0016 0F 22 SUB4S
22 0018 0F 22 SUB4S DS1:WORD PTR ARRAY, WORD PTR ARRAY
23 001A 0F 26 CMP4S
24 001C 0F 26 CMP4S DS1:WORD PTR ARRAY, WORD PTR ARRAY
25 001E 0F 28 06 00 00 R ROL4 BYTE PTR ARRAY
26 0023 0F 2A C0 ROR4 AL
27 0026 0F 10 C0 TEST1 AL,CL
28 0029 0F 11 C0 TEST1 AW,CL
29 002C 0F 18 C3 06 TEST1 BL,6
30 0030 0F 19 06 00 00 0D R TEST1 WORD PTR ARRAY,13
31 0036 0F 16 C2 NOT1 DL,CL
32 0039 0F 17 06 00 00 R NOT1 WORD PTR ARRAY,CL
33 003E 0F 1E C1 06 NOT1 CL,6
34 0042 0F 1F C3 0D NOT1 BW,13
35 0046 0F 12 C2 CLR1 DL,CL
36 0049 0F 13 C4 CLR1 SP,CL
37 004C 0F 1A C2 06 CLR1 DL,6
38 0050 0F 1B 06 00 00 0D R CLR1 WORD PTR ARRAY,13

Figure 8-1. Sample Assembler Listing

Assembler Listing Description 8-3

39 0056 0F 14 C7 SET1 BH,CL
40 0059 0F 15 C6 SET1 IX,CL
41 005C 0F 1C C3 06 SET1 BL,6
42 0060 0F 1D 06 00 00 0D R SET1 WORD PTR ARRAY,13
43 0066 0F FF 7F BRKEM 7FH
44 0069 66 2E 00 00 R FPO2 5,BYTE PTR ARRAY
45 006D 66 2E 00 00 R FPO2 5,WORD PTR ARRAY
46 0071 66 2E 00 00 R FPO2 5,DWORD PTR ARRAY
47 0075 66 2E 00 00 R FPO2 5,QWORD PTR ARRAY
48 0079 66 2E 00 00 R FPO2 5,TBYTE PTR ARRAY
49 007D CODE ENDS
50 0000 END

Figure 8-1. Sample Assembler Listing (Cont’d)

8-4 Assembler Listing Description

Cross Reference
and Symbol Table
Format
Description

By default, the assembler produces a symbol table at the end of each
listing. If you want the assembler to produce a cross reference table in
place of the symbol table, use the XREF option.

If SYMBOLS and XREF are both specified, a cross reference table is
produced. The cross reference table includes all the information
present in the symbol table, but with line references noted for each
symbol. The symbol table listing and cross reference features can be
turned on only at the beginning of a program, and once on, cannot be
turned off at a later point.

The remainder of this section describes parts of the following sample
cross reference table listing.

 Hewlett Packard ASV20 HP64873-19002 02.00 06Feb90 Unreleased Copr. HP 1990
Page 2 Fri Feb 16 10:48:23 1990
 SAMPLE HP64873-19002 02.00 06Feb90 Unreleased Copr. HP 1990
 Cross Reference

Label Type Value References
??SEG SEGM SIZE=0000 PUBLIC PARA
ARRAY LOCAL DATA:0000 BYTE -8 20 20 22 22 24 24 25 30 32 38 42 44 45 46
 47 48
CODE SEGM SIZE=007D PUBLIC WORD CLASS ’CODE’ -11 12 -49
CODE CLASS
DATA SEGM SIZE=000A PUBLIC WORD CLASS ’DATA’ -7 -9 12 12
DATA CLASS

NO ASSEMBLY ERRORS
NO ASSEMBLY WARNINGS

Figure 8-2. Cross Reference for Sample Listing

Assembler Listing Description 8-5

Label In the symbol table or cross reference listing header, the Label field
lists the symbol name.

Type The Type field describes the kind of symbol represented by the Label.
This field may be any of the following:

SEGM segment name

GROUP group name

CLASS class name

LOCAL local variable

PUBLIC public variable

EXTERN external variable or label

LABEL local far or near label

STRUC structure definition

STR_FLD structure field name

REC record definition

REC_FLD record field name

EQU equate symbol

PROC procedure name

UNDEF undefined symbol

8-6 Assembler Listing Description

Value The Value field appears to the right of the Type field and is used to
indicate attributes of the symbol. These attributes further describe
what the symbol is or where the symbol resides. The specific attributes
shown depend upon the Types above.

SEGM Size of segment (in bytes), followed by
combine type
(PUBLIC/MEMORY/STACK/COMMON),
followed by alignment
(BYTE/WORD/PARA/PAGE/INPAGE/AT
nnn), followed by classname, if present.

GROUP List of segments that belong to the group. If a
SEG EXTRN was used, then the name of the
external will be displayed.

LOCAL, PUBLIC, EXTERN, LABEL, PROC

Segment name (if known), and offset within
segment, followed by type (BYTE/WORD/
 DWORD/QWORD/TBYTE/
NEAR/FAR/ABSOLUTE).

STRUC Size of structure, followed by number of fields.

STR_FLD Offset within structure, followed by type of
field (BYTE/WORD/
 DWORD/QWORD/TBYTE).

REC Size of record, followed by number of fields,
followed by width of record in bits.

REC_FLD Bit offset within record, followed by width of
field in bits.

EQU If EQU’d to a register, the name of the register
is shown.

If EQU’d to a 17-bit value, NNNN.

If EQU’d to a real number, REAL.

Assembler Listing Description 8-7

If EQU’d to an instruction, INSTRUCTION.

If EQU’d to a memory expression,
EXPRESSION.

The UNDEF and CLASS types do not have any attributes.

Cross Reference If a cross reference is being generated in addition to the symbol listing,
then line references will appear to the right of the Value field. Each
line reference will be separated from the next by a space.

The line on which the symbol is defined will have a minus sign placed
before it. All other line numbers indicate references to the symbol. It
is possible for there to be more than one definition of a symbol (for
example, a segment). Also, purged symbols may appear more than
once in the table.

8-8 Assembler Listing Description

9

Codemacros

Overview Codemacros define V20, V25, and V33 instructions. A codemacro is a
template for generating code, with certain bits fixed and other bits that
are supplied when the codemacro is referenced (much as a record or
structure). You must define the codemacro using the CODEMACRO
directive before referencing it.

Referencing
Codemacros

Formal arguments can be defined on the call line and then referenced
in the body of the codemacro. Forward references to codemacros are
illegal.

A codemacro is referenced by using its name in the opcode field of a
source statement. You must provide actual parameters at this time,
which must match the parameters as to the sort of entity described
(number, WORD address expression, segment register, etc.). Matching
is described in detail below. If matching is successful for all
arguments, the codemacro is used to generate code. At this time, the
formal arguments in the codemacro body will be replaced with data
derived from the corresponding actual parameters.

Multiple codemacros with the same name are legal. When the name is
referenced, each of the defined codemacros is checked to determine
whether its formal arguments match the actual parameters you provide.
The first codemacro whose arguments match is used to generate code.
Multiple codemacros are checked in reverse order; the most
recently-defined codemacro is checked first. This feature permits a
single symbol to generate a variety of different code, depending on the
arguments provided. When defined, asv20/asv33 compiles the
codemacro into a compact internal form and stores it in virtual
memory.

Codemacros 9-1

Alphabetical
Listing of the
Codemacro
Directives

The following pages describe the codemacro directives. An
alphabetical listing of the directives is provided in Table 9-1.

Directive Function

CODEMACRO Enters Codemacro Definition

ENDM Terminates Codemacro Definition

Table 9-1. Codemacro Directives

9-2 Codemacros

Codemacro
Directives

CODEMACRO Enters Codemacro Definition

Syntax

CODEMACRO cmac_name [formal:specmod[range]][,formal:specmod[range]]...
 ...
ENDM

or

CODEMACRO cmac_name PREFX
 ...
ENDM

Description

cmac_name The name associated with the defined
codemacro. It may have been previously
defined as a codemacro, but not as anything
else. This name is stored as a symbol and
should not conflict with reserved words. Note
that using an instruction name in this field is
legal and results in an additional codemacro to
be searched for that name.

formal An arbitrary symbol defining a formal
argument to the codemacro. Formals are not
stored as symbols, and can duplicate keywords
or even the cmac_name without conflict.
Formals have no existence outside their
codemacro and do not appear in the symbol
table listing, although two formal parameters to
the same codemacro cannot have the same
name. A codemacro can have at most 255
formal arguments.

Codemacros 9-3

specmod A letter or pair of letters describing the actual
parameters that will match this formal
parameter.

The legal values for specmod are:

A Ab Aw
C Cb Cd Cw
D Db Dw
E Eb Ed Ew
F
G
I
M Mb Md Mq Mt Mw
R Rb Rw
S
T
X Xb Xd Xq Xt Xw

Upper- and lower-case letters are
interchangeable for these values. The
convention of one upper-case letter followed by
one lower-case letter is used in this chapter for
clarity and to avoid confusion with the
directives DB and DW. The first letter of the
specmod is referred to as the specifier and the
second letter as the modifier. The meaning of
the various specmods is described in Table 9-2.

range An optional field that follows a parameter. It
describes a range of values that limits the
acceptable modules for the parameters
matching the formal argument. The first letter
of the specmod must be A, D, G, I, R, or S.
Any other type of specmod is not permitted to
have a range field. The syntax and meaning of
range fields is further described later in this
section.

9-4 Codemacros

PREFX A keyword that can appear instead of the
formal arguments, indicating that the
codemacro name cannot take parameters.
Instead, it is used to precede another codemacro
or instruction name. At the time the codemacro
is referenced, an error is detected if another
codemacro or instruction does not follow this
one.

PREFX is associated with the codemacro name
as a whole rather than separately with each
codemacro. If one codemacro uses PREFX,
another codemacro with the same name must
also use PREFX. The last codemacro defined
controls in case of conflict. A formal argument
cannot be named PREFX.

The CODEMACRO directive lets you enter the codemacro definition
mode and specifies the formal arguments associated with the new
codemacro. The ENDM is used to terminate the codemacro definition
mode. Each CODEMACRO directive must have a corresponding
ENDM directive, and codemacro definitions cannot be nested.

Examples

CODEMACRO CMAC1 FORMAL1:Ew,FORMAL2:Db(10,20)
CODEMACRO CMAC2 FORMAL3:S
CODEMACRO CMAC3
CODEMACRO CMAC4 PREFX

Codemacros 9-5

ENDM Terminates Codemacro Definition

Syntax

ENDM

Description The ENDM directive terminates the codemacro
definition mode. Each ENDM must correspond to a CODEMACRO
directive. For more information on ENDM, see the description of the
CODEMACRO directive in the previous section.

Codemacro
Matching

This section describes the algorithm used for matching codemacro
references to possibly one of several codemacro definitions. The
assembler performs two passes on the input file.

1. During pass 1, all actual parameters are evaluated. Those
containing undefined symbols constitute a special kind, called
‘‘forward references,’’ which are treated differently from
other expressions. asv20/asv33 is much more liberal
concerning what a forward reference can match than what a
fully-evaluated expression can match. Forward references are
considered to be typeless unless type information is
specifically attached with PTR or SHORT.

2. The chain of codemacros corresponding to the instruction
mnemonic is searched, beginning with the last one defined.
asv20/asv33 looks for a codemacro with the same number of
formal arguments as there are actual parameters, such that
each actual parameter matches the corresponding formal as far
as specmod and range goes. Matching is described in this
chapter, in the section called Range Specification. The first
codemacro that matches is used as described in #3 below. If
none matches, an error is reported.

9-6 Codemacros

3. The number of bytes of object code is estimated by executing
the codemacro and discarding the generated bytes. This
estimate is used to update the location counter. By default,
forward references do not require a segment override byte
from the SEGFIX, RFIXM, and RNFIXM directives.

4. During pass 2, the codemacro chain search starts at the
beginning again. Presumably, all forward references have
now been resolved. If not, an error is issued and the absolute
number 0 is substituted for the undefined symbol, which may
in turn cause other errors. This resolution of forward
references can cause a different codemacro to be matched than
in pass 1. If none matches, an error is reported. If a
codemacro matches in pass 1, it does not necessarily have to
match in pass 2.

5. Code is generated using the matched codemacro. A different
number of bytes of code can be generated than was called for
in the estimate from pass 1. If more code is generated in pass
1 than in pass 2, the extra room allocated is filled with NOPs
(90H). If more code is generated in pass 2 than in pass 1, an
error message is issued and the entire space allocated is filled
with NOPs.

Codemacros 9-7

The Specmod
Field

The specmod field determines what actual parameters match each
formal argument. In Table 9-2, ‘‘variable’’ is an address expression
with type BYTE, WORD, DWORD, FDWORD, QWORD, FQWORD,
TBYTE, a structure name, or a record name, and ‘‘label’’ is an address
expression with type NEAR or FAR. For the purpose of matching,
forward references during pass 1 are treated as a special kind of
expression that match certain specmods. Specmods match actual
parameters as shown in Table 9-2.

Specmod Match

A AW or AL.

Ab AL.

Aw AW.

C Any label, or any forward reference of type NEAR or FAR or no_type.

Cb Any NEAR label with the same segment definition attribute as the current
assumed contents of PS via ASSUME and within the range -128 to +127
from the beginning of the code macro reference, or any forward reference
with SHORT attached.

Cd Any FAR label, or any forward reference without a type or of type FAR.

CW Any NEAR label with the same segment definition attribute as the current
assumed contents of PS via ASSUME but farther away from the
beginning of the codemacro reference than -128 to +127, or any external
NEAR label

D Any 17-bit number, or any forward reference with no type.

Table 9-2. Specmods and Parameter Matches

9-8 Codemacros

Db Any absolute number between -256 and 255, inclusive, or any number of
relocation type high or low

Dw Any absolute number not between -256 and 255 inclusive, or any number
of relocation type offset or base, or any forward reference with no type.

E Any variable, or any address expression without a type, or any register
except segment registers, or any forward reference, except for those typed
NEAR

Eb Any variable with type BYTE

Ed Any variable with type DWORD or FDWORD, or any forward reference
of type DWORD, FDWORD, or no type.

Ew Any variable with type WORD, or any 16-bit register, except segment
registers, or any forward reference of type WORD or notype.

F The 8087 floating-point stack or any element thereof: ST

G 72291 status registers (FCTW, FPTW, FSTW)

I V20 registers (R=all registers, PSW=flag word, DIR=direction flag,
CY=carry flag). A range is required.

M Any variable or any address expression without a type, or any forward
reference except those of types NEAR

Mb Any variable with type BYTE, or any forward reference of type BYTE or
no type.

Md Any variable with type DWORD or FDWORD, or any forward reference
of type DWORD, FDWORD, or no type.

Mq Any variable with type QWORD or FQWORD, or any forward reference
of type QWORD, FQWORD, or no type.

Table 9-2. Specmods and Parameter Matches (Cont’d)

Codemacros 9-9

Mt Any variable with type TBYTE, or any forward reference of type TBYTE
or no type.

Mw Any variable with type WORD, or any forward reference oftype WORD
or no type.

R Any register except segment registers.

Rb Any 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL).

Rw Any 16-bit register except segment registers (AW, BW, CW, DW, SP,
BP, IX, IY)

S Segment registers (DS1, PS, SS, DS0)

T The 8087 floating-point stack top: ST or ST(0) only.

X Any variable or any address expression without a type, whose base and
index attributes are null or any forward reference except those of types
NEAR

Xb Any variable of type BYTE whose base and index attributes are null, or
any forward reference of type BYTE or no type.

Xd Any variable of type DWORD or FDWORD whose base and index
attributes are null

Xq Any variable of type QWORD or FQWORD whose base and index
attributes are null, or any forward reference of type QWORD, FQWORD,
or no type.

Xt Any variable of type TBYTE whose base and index attributes are null, or
any forward reference of type TBYTE or no type.

Xw Any variable of type WORD whose base and index attributes are null, or
any forward reference of type WORD or no type.

Table 9-2. Specmods and Parameter Matches (Cont’d)

9-10 Codemacros

In addition, typeless address expressions such as [BW] will sometimes
match the specmods Eb, Ew, Mb, and Mw. There must be enough
information for asv20/asv33 to infer the size of the operation. This
condition is met if the codemacro has at least two formal arguments,
and one or more of the actual parameters corresponding to the other
argument(s) is not either another typeless address expression or a
number that matches Db.

For example, suppose a codemacro has ARG1:Ew,ARG2:Ew as the
formal arguments. The actual parameters [BW],AW match, since AW
implies a WORD operation; however, the actual parameters
[BW],[BW] do not match since the information to infer the size of the
operation is insufficient. This condition means that any codemacro
with a single formal parameter of specmod Eb, etc., cannot match a
typeless address expression, including several of the built-in
instructions (e.g., INC, FISUB, MUL).

A few built-in instructions (e.g., FLDENV) have the specmod M on
their single formal parameter and, therefore, will accept a typeless
address expression.

Codemacros 9-11

Range
Specification

A codemacro range is a parenthesized list of one or two expressions
separated by a comma. The syntax of a range specification is:

(value1[,value2])

Each value must be a register name or an expression evaluating to an
absolute number (i.e. not an address). Registers are converted to
absolute numbers according to Table 9-3.

Some codemacros have specific limits on the range of parameters that
can be used. This pertains to formals using specifiers A, D, I, R, or S.

When codemacros are referenced, the actual parameter is checked
against the specified range, converting actual registers according to
Table 9-3. If the range field contained a single value, the actual
parameter must match it. If the range field contained two values, the
actual parameter must be greater than or equal to the first and less than
or equal to the second. Otherwise, the actual parameter does not match.
Relocatable actual parameters and forward references never match a
formal with a range field.

Register Number

AL, AW, DS1 , CY, FCTW
CL, CW, PS , DIR, FPTW
DL, DW, SS , PSW, FSTW
BL, BW, DS0 , R
AH, SP
CH, BP
DH, IX
BH, IY

0
1
2
3
4
5
6
7

Table 9-3. Absolute Number Conversion for Registers

9-12 Codemacros

Examples:

S(0,2)
S(0)
Db(2,-1)
Db(-1,2)

Db(-1,DL)
Rw(DW)
Rb(CL)
Db(1)

Matches DS1, PS, or SS.
 Matches only DS1.
Generates error - invalid range.
Matches -1, 0, 1, or 2.
255 does not match (9-bit comparison).
Same as previous example.
Matches DW.
Matches CL.
Matches 1.

Codemacros 9-13

Codemacro
Matching
Examples

Table 9-4 shows a list of the arguments on some example codemacros
for the MOV instruction, in the order they are searched, along with
actual parameters that will match each. WORDVAR is a variable of
type WORD, and BYTEVAR is a variable of type BYTE.

Codemacro Reference Match

MOV WORDVAR,AW
MOV BYTEVAR,AL
MOV AW,WORDVAR
MOV AL,BYTEVAR
MOV SS,WORDVAR
MOV WORDVAR,PS
MOV CW,WORDVAR
MOV CL,BYTEVAR
MOV DS0:[BW],AW
MOV DS0:[BW],AL
MOV CW,1000
MOV CW,20
MOV CL,20
MOV WORDVAR,1000
MOV WORDVAR,20
MOV BYTEVAR,20

;16-bit move
;8-bit mov

;16-bit move,0 fill

;16-bit move, 0 fill

MOV dst:Xw,src:Aw
MOV dst:xb,src:Ab
MOV dst:Aw,src:Xw
MOV dst:Ab,src:Xb
MOV dst:S(SS,DS0),src:Ew
MOV dst:Ew,src:S
MOV dst:Rw,src:Ew
MOV dst:Rb,src:Eb
MOV dst:Ew,src:Rw
MOV dst:Eb,src:Rb
MOV dst:Rw,src:Dw
MOV dst:Rw,src:Db
MOV dst:Rb,,src:Db
MOV dst:Ew,src:Dw
MOV dst:Ew,src:Db
MOV dst:Eb,src:Db

Table 9-4. Arguments and Actual Parameters

9-14 Codemacros

The following is a list of some instructions that do not match the
formal argument pairs in Table 9-4.

MOV PS,WORDVAR ; PS is not between SS and DS0,
 ; and not equal to DS1.
MOV DS1,BYTEVAR ; No such 8-bit operation appears.
MOV WORDVAR,BL ; In general, 8-bit and 16-bit operands
 ; cannot mix.
MOV BL,WORDVAR ; Mixed 8- and 16-bit operands.
MOV BL,1000 ; Mixed 8- and 16-bit operands. 1000 won’t fit in BL.
MOV BYTEVAR,1000 ; Mixed 8- and 16-bit operands. 1000 won’t fit in
 ; BYTEVAR either.

Codemacros 9-15

Expressions in
Codemacros

Only a small subset of the usual expressions is available within
codemacro definitions. The following are allowed:

Absolute numbers, and expressions which evaluate to absolute
numbers. No forward references are allowed within such
expressions.

Segment registers.

Formal argument names.

Shifted formal arguments.

Syntax:

formal_name.recordfield

where

formal_name and recordfield

are symbols. This means to perform a right shift of the actual
parameter corresponding to the formal_name at the time the codemacro
is referenced, by the number of bits given by the shift count of the
recordfield. The actual parameter must be an expression that evaluates
to an absolute number. If the actual parameter is a relocatable number,
an error is reported at the time the codemacro is referenced. The
predefined ESC instruction uses this construct.

The keyword PROCLEN.

This has the value 255 if the most recently defined PROC at the time of
codemacro reference was declared FAR. It has the value 0 otherwise.
Thus, if the codemacro reference is not in a PROC, PROCLEN yields 0.

9-16 Codemacros

Directives within
Codemacros

Only a few directives are legal within a codemacro definition, and
these are listed below. Instructions are not allowed within a codemacro
definition, but assembler controls and comments are; however, the
assembler control is not considered part of the codemacro. None of
these directives are allowable outside a codemacro definition unless so
described elsewhere in this manual (e.g. DB, DW, DD, and record
names).

The following pages describe directives within codemacros. An
alphabetical listing of these directives is provided in Table 9-5.

Directive Function

DB
DD
DW
MODRM
NOSEGFIX
recordname
RELB
RELW
RFIX

RFIXM

RNFIX

RNFIXM

RWFIX
SEGFIX

Generates byte of immediate data.
Generates 4 bytes of immediate data.
Generates 2 bytes of immediate data.
Generates ModRM byte.
Checks for addressability through a certain seg register.
Generates 1 or 2 bytes using the specified record template.
Generates 1-byte displacement.
Generates 2-byte displacement.
Generates a WAIT (9BH) followed by the first 5 bits of an
ESC(0D8H).
Generates a WAIT (9BH) followed by a segment override byte (if
needed) followed by the first 5 bits of an ESC (0D8H).
Generates an NOP (90H) followed by the first 5 bits of an
ESC(0D8H).
Generates a NOP (90H) followed by a segment override byte (if
needed) followed by the first 5 bits of an ESC (0D8H).
Generates a WAIT (9BH).
Generates segment-override byte if needed.

Table 9-5. Directives within Codemacros

Codemacros 9-17

DB, DD, DW Generates N-Bytes of Immediate Data

Syntax

DB absolute_numeric_expression
DB formal_name
DB formal_name.recordfield
DD absolute_numeric_expression
DD formal_name
DD formal_name.recordfield
DW absolute_numeric_expression
DW formal_name
DW formal_name.recordfield

Description

absolute_numeric
_expression

An absolute numeric expression.

formal_name A name that is a formal parameter to the
codemacro.

formal_
name.recordfield

A name that is a formal parameter to a
codemacro but shifted according to the
recordfield.

The DB, DD, and DW directives are similar to their counterparts
outside codemacros, but their legal operands are much more restricted.

Each consecutive appearance of a DB, DW, or DD directive within a
codemacro generates one, two, or four bytes, respectively.

It is possible for a formal of specmod Dw to appear in a DB directive,
where it will not fit, which will then cause an error at the time of
codemacro reference.

9-18 Codemacros

A formal_name without a recordfield must be of specifier D for the DB
directive and must be of specifier D, C, or X for the DW and DD
directives. Specifiers C and X represent labels and variables,
respectively; their appearance in a DW or DD has the same effect as
described in the chapter Data Definition and Initialization.

A formal_name appearing with a recordfield must have specifier D.

Codemacros 9-19

MODRM Generates ModRM Byte

Syntax

MODRM formal_name2,formal_name1

or

MODRM number,formal_name1

Description

formal_name1 An effective-address parameter. It must have a
specifier of E, M, R, X, A, or S.

formal_name2 A parameter, usually a register. It must have a
specifier of D, R, A, or S.

number An expression evaluating to an absolute
number.

MODRM generates the ModRM byte, which can contain a wide
variety of information: a register involved in the instruction, the base
and index registers of an operand, the addressing mode (direct address,
relative to the current location, immediate, register), a continuation of
the opcode, etc. Most users do not need the details of this byte’s
construction. Those interested are referred to Appendix G for the
meaning of each bit in this byte for each instruction.

asv20/asv33 derives 5 bits of information from formal_name1 in a
highly packed encoded form, and 3 bits from the first parameter. If the
first operand of MODRM is a number that is either a constant or a
formal matching D, the low 3 bits are used in the generated byte. If the
first operand is a register with a matching A, R, or S, the 3 bytes to use
are taken from the numeric values corresponding to registers as
described in the section on Range Specification.

9-20 Codemacros

NOSEGFIX checks for Addressability

Syntax

NOSEGFIX segreg , formal_name

Description

segreg One of the segment registers DS1, PS, DS0, SS.

formal_name A formal argument name whose specifier is E,
M, or X (a memory parameter).

NOSEGFIX ensures that a parameter is addressable through a specific
segment register. It is used in the built-in instruction set for the string
instructions MOVBK, STM, CMPBK, CMPM, INM for which one
operand must be addressable through DS1.

NOSEGFIX checks the segment addressability attribute of the actual
parameter corresponding to the formal_name to ensure that the
parameter is addressable through the specified segment register. If the
actual parameter is a register (matching E), it is considered addressable.
If the attribute is a segment register, it must match the register on the
NOSEGFIX. If the attribute is null, it is not addressable. If the
attribute is a segment or group, asv20/asv33 checks the assumed
contents of the specified segment register through ASSUME, as it does
for SEGFIX. NOSEGFIX never generates any code. It merely
performs an error check. Note that this check is not performed at
argument matching time. It is possible for the actual parameters to
match the formal arguments of a codemacro that contains a
NOSEGFIX directive and then get an error on the NOSEGFIX, even if
another codemacro exists farther along in the codemacro chain that
would not get this error. No codemacro in the built-in instruction set
can do this.

Codemacros 9-21

Record Name
Initialization

Syntax

recordname<[expression][,expression]..
.>

Description

recordname The name of a previously-defined record.

expression One of the following:
An expression evaluating to an absolute number
A formal argument
A formal argument plus a .recordfield
Null
PROCLEN

The record initialization directive lets you control bit fields in
codemacro definitions.

Formal arguments in either construct (with or without a .recordfield)
must be of specifier D, and the corresponding actual parameter cannot
be relocatable or an error will be reported when codemacros are
expanded. The resulting byte or word is constructed just as the records
described in the chapter Data Definition and Initialization.

Each expression must evaluate to an absolute number, and only the bits
corresponding to the defined size of each .recordfield are used. Also,
the least significant bits of the expression value are used, and more
significant bits are discarded without any check. Null fields, as well as
records outside codemacros, result in the use of the default value at the
time the record was defined.

9-22 Codemacros

RELB, RELW Generates N-byte Displacement

Syntax

RELB formal_name
RELW formal_name

Description

formal_name The name of a formal parameter to the
codemacro with specmod type C.

The RELB and RELW directives generate a one- or two-byte
displacement, respectively, denoting the distance from the location of
the codemacro reference to a target which can only be a label. The
displacement is measured from the location after the bytes generated
by RELB or RELW. Specifically, if the target is the byte immediately
following the generated displacement whether that is 1 or 2 bytes, the
generated displacement will be 1. These directives take one operand, a
formal argument that must be of specmod Cb or Cw. RELB and
RELW do not concern themselves with segment addressability or the
contents of PS.

During codemacro matching to Cb and Cw specmods, the assembler
assumes that any RELB or RELW in the codemacro will follow exactly
one generated byte and, as a result, the restriction of the displacement
for Cb to -126 to +129 occurs. This assumption is correct for all
codemacros in the built-in instruction set. You can write codemacros
for which this assumption does not hold. For example, you can write
one equivalent to several predefined instructions, but if this is done, the
wrong match can be made at codemacro reference-time.

Codemacros 9-23

RFIX, RFIXM, RNFIX,
RNFIXM, RWFIX

Generates WAIT or NOP

Syntax

RFIX formal_or_number
RFIXM formal_or_number, formal_name
RNFIX formal_or_number
RNFIXM formal_or_number, formal_name
RWFIX

Description

formal_or_number A codemacro parameter with specifier type D
or an absolute expression that evaluates to an
absolute number.

formal_name A codemacro parameter with specifier type E,
M, or X.

These closely-related directives pertain to floating-point instructions.
In all modes, they generate bytes as follows:

RFIX WAIT (9BH) followed by the first word of an
ESC (0D8H)

RFIXM WAIT (9BH) followed by a segment override
byte (if needed) followed by the first word of
an ESC (0D8H)

RNFIX NOP (90H) followed by the first word of an
ESC (0D8H)

RNFIXM NOP (90H) followed by a segment override
byte (if needed) followed by the first word of
an ESC (0D8H)

RWFIX WAIT (9BH)

9-24 Codemacros

RFIX and RNFIX have one operand; RFIXM and RNFIXM have two
operands; RWFIX has no operands. The first operand of each, except
RWFIX, is either a formal parameter with specifier D or an expression
evaluating to an absolute number. The least significant 3 bits of this
operand are taken as the last 3 bits of the generated ESC. If the
corresponding actual parameter is relocatable, an error is reported
when codemacros are referenced.

The second operand of RFIXM and RNFIXM is a formal argument of
specifier E, M, or X representing a memory address. The segment
override byte is issued or not, depending on this parameter; the
algorithm is exactly the same as that described under SEGFIX.

The preceding descriptions assume that the object code will be used on
an 8087 chip. These directives are designed for use within
floating-point instructions. However, if the linker references the 8087
emulator library instead, the WAIT and NOP instructions described are
transmuted into instructions to the emulator. The linker performs this
function by resolving external references generated by the R?FIX?
directives. This is why, for instance, a codemacro uses RWFIX instead
of DB 9BH.

Intel provides two libraries, one of which is used as input to its linker
for any given absolute object module. One library is used if the code is
destined for an 8087, and the other is used if the 8087 is to be emulated.

This use of built-in external references, which typically will not be of
concern to you, also means that any codemacro employing one of these
directives displays an E flag (i.e. external reference) on the output
listing when referenced. This includes all the floating-point
instructions in the built-in instruction set.

Codemacros 9-25

SEGFIX Generates Segment-Override Byte

Syntax

SEGFIX formal_name

Description

formal_name A codemacro parameter with specifier type E,
M, or X.

The SEGFIX directive generates a segment-override byte, if needed
(either 26H, 2EH, 36H, or 3EH). This instructs the hardware to use a
different segment register for the following instruction.

SEGFIX has one parameter which must be a formal argument name.
This argument represents a memory address and, therefore, must have
one of the specifiers (1st letter of the specmod) E, M, or X. A register
(matching E) never generates a segment override. An address
expression has its segment addressability attribute checked as follows:

If this attribute is null, an error is reported.

If the attribute is a segment register, that register is used for
addressing.

If the attribute is a group, the assumed contents of the segment
registers via ASSUME are checked to see if one of them
contains the group.

If the attribute is a segment, the assumed contents of the
segment registers via ASSUME are checked to see if one of
them contains the segment or a group containing the segment.

In the last two cases, the segment registers are examined in this order:

1. The register implied by the base and index attributes of the
actual parameter (DS0 or SS).

2. The other registers are examined in the order DS1, PS, SS,
DS0.

9-26 Codemacros

The first register for which the check succeeds is used for addressing.
If the actual parameter cannot be addressed through any segment
register, an error is issued. Otherwise, once asv20/asv33 has
determined which segment register to use for addressing, it determines
whether that register is the default implied by the base and index
attributes. If so, no override byte is generated; if not, a segment
override byte corresponding to the segment register used for addressing
is generated.

Codemacros 9-27

Notes

9-28 Codemacros

10

Macro String Preprocessor Introduction

Introduction The Macro String Preprocessor (apv20/apv33) is a character string
replacement program which performs pre-assembly processing of
macros in assembly language source files. It searches the source code
for macro calls, and then replaces those calls with the macro return
values. The advantage of having the macro string preprocessor is to
permit frequently-used segments of code to be used repeatedly by one
or several users from a library, without having to re-write the code for
each use. You can automatically insert a section of code into the
source program by encoding a single line—the macro call.

At definition time, key constructs in the macro may be represented by
formal parameters; actual parameters are later substituted for the
formal ones. apv20/apv33 handles conditional assembly,
assembly-time loops, and is also capable of recursion.

Note The macro preprocessor is case sensitive by default. Upper and lower
case characters are not equivalent to the preprocessor. The macro
symbol MACSYM would not be the same as macSYM, MaCSYM, or
macsym. Case sensitivity can, however, be turned off on the
command line.

apv20/apv33 is implemented as a program separate from the assembler,
thereby saving time for those who do not use macros. It is compatible
with the NEC syntax for the V20, V25, and V33 macro languages. If
you use macros in the source code, you must run the Macro
Preprocessor to produce an output file for input to the assembler.

The two Macro Preprocessors, apv20 and apv33, are linked together,
and perform the same operations. The two versions are provided for
tool orthogonality.

Macro String Preprocessor Introduction 10-1

Input Source
Characteristics

apv20/apv33 views its input file as a stream of characters instead of a
sequence of statements. All processing is character-oriented. The ends
of lines are treated as if they ended with a <line feed>. This character is
called ’end-of-line’ or ’<EOL>’ in text that follows.

The Metacharacter
’%’ And The Call
Pattern

The macro preprocessor searches the input source one character at a
time, looking for a special character called the metacharacter. By
default, this character is the percent sign (’%’), but it can be
dynamically changed. Until the metacharacter is found, characters are
passed to the output file without change. When the metacharacter is
found, the macro preprocessor reads and interprets the characters
following it, isolating a call pattern. The call pattern is interpreted as
instructions to the macro preprocessor and is not passed to the output
file. However, the macro preprocessor produces an expansion of the
call pattern that is written to the output file in place of the call pattern.
The call pattern can contain other metacharacters followed by call
patterns; these will also be expanded. Expansions are stacked,
analogous to nested subroutines. When the current expansion is
complete, the stack is popped, and the next higher expansion resumes
where it left off. The expansion of a call pattern is always a string of
characters which can be null (zero characters) in some cases, but most
often it is one or more characters. When the outermost expansion is
completed, the macro preprocessor goes back to copying characters
while scanning for the metacharacter.

The source code below has statements that contain macros.

NOP
asymbl EQU 2
DB %LEN(%SUBSTR(5 DUP (0),1,1)) ;note blank before
 ;%SUBSTR
ADD AW,2

The example source code is treated by the macro preprocessor in this
way:

10-2 Macro String Preprocessor Introduction

1. Everything up to the first "%" is passed to the output
unchanged. The text has no significance to the macro
preprocessor.

2. The first "%" invokes the pre-defined macro function LEN,
which counts the characters in its argument. (LEN, SUBSTR,
and other pre-defined macro functions used in these examples
are described in detail in the chapter called "Pre-defined
Macro Functions.")

Everything up to but not including the balancing right
parenthesis (in this example, the last parenthesis) is the
argument to LEN.

3. The argument to LEN contains a call to another pre-defined
macro function, SUBSTR, which extracts a substring from its
first argument according to parameters in the second and third
arguments. The expansion of the outer function LEN therefore
pauses while SUBSTR is evaluated.

4. In this example, the result of SUBSTR is the single character
’5’. After the evaluation, LEN resumes, in effect evaluating
"%LEN(5)" (again, notice the space in front of the 5). This
produces the string "02H," which is passed to the output.

The space between "%LEN(" and "%SUBSTR" is a significant part of
the LEN argument, but is not part of the call to SUBSTR. Following
"02H," apv20/apv33 puts out the <EOL>, which is the next character
following the call pattern of LEN in the source file. Notice that <EOL>
is not part of the call pattern. The assembler, therefore, sees the
following line of text:

DB 02H<EOL>

Macro String Preprocessor Introduction 10-3

Metacharacter
Syntax

The metacharacter can be followed by

a symbol

a left parenthesis

an apostrophe

a decimal digit

an asterisk (called the literal character), that in turn must be
followed by a symbol.

Any other characters are not acceptable, particularly spaces and tabs.
A symbol following the metacharacter (or the metacharacter-asterisk
pair) must be one of three things:

A pre-defined macro function.

A call to a previously-defined user macro.

A reference to a previously-defined macro-expansion-time
symbol or, within a macro body, a formal argument or local
symbol. The metacharacter is recognized anywhere in the
source text, including within character strings.

Getting a line such as

DB ’20% inflation’

to pass through the macro preprocessor requires special handling.
Getting these strings through the macro preprocessor is discussed in the
"%n and %((Escape and Bracket Functions) in the chapter titled
"Pre-defined Macro Functions."

10-4 Macro String Preprocessor Introduction

Literal Character * The literal character (*) specifies that metacharacters contained in the
arguments to a function are not expanded. The literal character is
placed between the metacharacter and the function or macro name, and
spaces or other separators cannot precede or follow it. The literal
character inhibits the expansion of all user macros, symbols, and
pre-defined functions. It does not affect formal macro parameters,
local symbols within macros, and the escape, comment and bracket
functions. If one of the lines of code from the previous example were
rewritten to contain the literal character before the LEN macro name,

DB %*LEN(%SUBSTR(5 DUP (0),1,1))

then the SUBSTR call is not expanded. Instead, LEN counts the length
of the string ’%SUBSTR(5 DUP (0),1,1)’ and returns the string "16H."
Output to the assembler would then be

DB 16H <EOL>

If the literal character preceded SUBSTR instead of LEN, it would
have no effect in this example because the argument to SUBSTR does
not contain any metacharacters. Misuse of the literal character causes
the macro preprocessor to pass strings containing a metacharacter on to
the assembler, where they will usually be flagged as errors. The literal
character is prohibited all together with some functions; other
functions accept it, but ignore it. The literal character should almost
always be used when defining a user-macro.

Input Parsing The macro preprocessor recognizes only those keywords specifically
mentioned in the "Expressions and Operators" section of the chapter
titled "Elements of Macro Expressions." The macro preprocessor only
understands symbols in specific constructs which are usually preceded
by the metacharacter. Assembly-time user-defined symbols (labels,
etc.), the location counter, and EQUs are all unknown to the macro
preprocessor.

Macro String Preprocessor Introduction 10-5

You must be careful that a macro call produces each <EOL> in the
right place. Readable input to the macro preprocessor frequently
results in a large number of output lines consisting only of blanks and
end-of-lines. For user convenience and assembler speed, such lines are
always omitted from the output. To create a blank line, deliberately use
a blank comment line.

Output Buffering The macro preprocessor buffers its output in an array that can hold 256
characters. When its buffer is full and another character (other than
<EOL>) is received, apv20/apv33 breaks the output line into two
pieces. The break occurs at the 256 character boundary and the
remaining text is placed on the next line of output. This and all other
lines created from the long input line will begin with a ’&’ so the
assembler can recognize the line as a continuation. Since the break is
made at a fixed location, it is likely that the result will cause a syntax
error in the assembler. Thus, it is best if line lengths are restricted to
less than 256 characters.

Include Files INCLUDE is an assembler control command, but the macro
preprocessor will act on INCLUDE also. INCLUDE statements cause
the macro preprocessor to temporarily stop reading source statements
from the current file. It begins reading source statements from the file
specified by the INCLUDE. It continues reading from the include file
until it finds the end-of-file for the include file or it finds another
INCLUDE. When the preprocessor resolves all INCLUDEs and does
find the end-of-file for the include file, it then returns to the file that
contained the INCLUDE statement and again begins reading source
statements immediately after the INCLUDE statement.

10-6 Macro String Preprocessor Introduction

Note The maximum depth that the macro preprocessor can handle nested
INCLUDE controls is to a level of eight. The restriction on the
assembler depends only upon the number of open files the operating
system allows at one time.

Note Include allows you to specify a different directory than the current
working directory for include files by allowing a path name with the
file name. However, if the file in the other path also has an INCLUDE
control and that control does not have a path name as part of the file
name, then the macro preprocessor will look back into the current
working directory for the new include file. That means that if an
include file in another directory needs another file to be complete, do
not expect apv20/apv33 to pick this file up from that other directory
along with the first include file.

The syntax for the INCLUDE statement:

$INCLUDE(filename)

The ’$’ must be in column 1 for the preprocessor to recognize it for
processing.

Any INCLUDE starting in column 1 of a source statement, whether
from a source file or an include file, is processed by the macro
preprocessor when it is first read. An INCLUDE within a macro
definition can be processed at assembly-time or at
macro-expansion-time, depending on whether the ’$’ starts in column 1
in the definition. If an INCLUDE does have a ’$’ in column 1 in the
definition, then it is expanded at definition time. Otherwise,
INCLUDE is not processed at macro-expansion-time. Example:

Macro String Preprocessor Introduction 10-7

%*DEFINE(MAC1) ($INCLUDE(filename)) ;assembly-time
%*DEFINE(MAC2) (
$INCLUDE(filename) ;macro-definition time
)
%*DEFINE(MAC3(PARM1)) ($INCLUDE(%PARM1)) ;assembly-time
%*DEFINE(MAC4(PARM1)) (
 $INCLUDE(%PARM1) ;macro-definition time.
)

Since %PARM1 is an improper filename, this causes an error.

However, expansions of MAC4 will be the expected:

$INCLUDE(value-of-%parm1-at-expansion-time)

This is the same as MAC3, but MAC3 does not produce an error
message.

Any $INCLUDE processed at macro-expansion-time causes the
remainder of its source line to be lost. If an error is detected while
processing an INCLUDE, the error message is placed in the output file
as usual and the line containing the INCLUDE is handled as ordinary
text. If INCLUDE is misspelled or if the following left parenthesis is
missing, no macro-expansion-time error is reported; the string is
passed intact to the assembler.

10-8 Macro String Preprocessor Introduction

11

Elements Of Macro Expressions

Introduction This chapter discusses the basic elements of macro expressions. The
discussion describes the accepted character set for the macro
preprocessor, how numbers are handled, and how symbols are formed.

Some of the arithmetic and logical operators used by the assembler
may also be used in macro expressions. This chapter lists and briefly
describes them, but does not go into the detail that the earlier chapter
titled "Expressions" does. Refer to that chapter for more specific
information about these operators.

Macro expressions appear in some of the pre-defined instructions and
are particularly important to the %SET macro function.

Elements Of Macro Expressions 11-1

Character Set The macro preprocessor recognizes the characters listed in the
following table.

Alphabetic Characters

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

Numeric Characters

 0 1 2 3 4 5 6 7 8 9

Special Characters

 blank horizontal tab > greater than
 $ dollar sign < less than * asterisk
 ’ single quote (left parenthesis , comma
) right parenthesis + plus sign @ commercial at
 - minus sign . period & ampersand
 : colon ! exclamation point ; semicolon
 " double quote = equal sign # sharp
 ? question mark % percent _ underscore
 [left bracket] right bracket \ back slash
 ‘ accent grave { left brace } right brace
 | vertical bar ~ tilde ^ caret (uparrow)
 / slash

Table 11-1. Macro Preprocessor Character Set

11-2 Elements Of Macro Expressions

Numbers Numbers are stored in 17-bit form with a range of -65535 to +65535.
Note that the sign bit is stored, therefore -1 is not the same as +65535
for purposes of macro-time operations (although they can be the same
to the assembler). Integer constants in bases other than decimal are
defined by placing a coded descriptor after the integer. The descriptors
are as follows:

B - binary

O - octal

Q - octal

D - decimal (default)

H - hexadecimal

Symbols Symbols must begin with a letter or one of two special characters: the
question mark (’?’), or the underscore (’_’). The second and following
characters can be any letter, digit, question mark, or underscore. Only
the first 31 characters of a symbol are used by the macro processor to
define that symbol; any additional characters are only for
documentation purposes.

Note By default, the macro preprocessor is case sensitive. That means that
upper and lower case letters are not equivalent in macro symbols.
"ASYMBOL," according to the default, is not equivalent to "asymbol"
or "ASYmBOL." Case sensitivity, however, can be turned off on the
command line.

A macro symbol must be preceded by the metacharacter or the macro
preprocessor will treat it as ordinary text. The exception is a string
argument to a specific macro function.

Elements Of Macro Expressions 11-3

The macro preprocessor does not recognize forward references because
it makes only one pass through the source. Any symbol must be
defined before it is used. Keywords are stored separately from symbols.
Symbol names can therefore duplicate operator keyword names
without conflict.

Macro symbols always have a string as a value. If the string happens to
represent a valid numeric constant (such as ’01Q’ or ’2’), the symbol
can be used as the operand of an expression. Only macro-time symbols
and 17-bit integer constants are valid macro expression operands. The
macro preprocessor does not deal with relocatable numbers of any sort.

Balanced Text
String (baltex)

A frequently-referenced concept is the balanced-text string (’baltex’),
which is a string of characters containing balanced parentheses.
Formally, baltex either contains no parentheses, or one or more sets of
balanced parenthesis, as in

’baltex(baltex)baltex’

where each baltex is a balanced-text string (possibly null).

Expressions and
Operators

Expressions consist of one or more operands, and zero or more
operators. The recognized operator keywords and their relative
precedence are in the following table: (Operators that appear on the
same line in the table have the same relative precedence.)

11-4 Elements Of Macro Expressions

Parentheses can be used to override the default precedence of these
operators and are recommended for complex expressions.

HIGH, LOW The HIGH and LOW operators extract the respective high or low byte
from a word value. The sign bit is ignored and the twos complement
form of negative numbers is used. Examples:

Precedence Operators

Higher

↑

↓

Lower

HIGH, LOW

*, /, MOD, SHR, SHL

Unary and Binary +, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Table 11-2. Operator Precedence

Elements Of Macro Expressions 11-5

HIGH 1234H ;yields 12H
HIGH -2 ;yields 0FFH
HIGH 65534 ;yields 0FFH

The following identities apply:

HIGH (HIGH x) = 0
LOW (LOW x) = LOW x
HIGH (LOW x) = 0
LOW (HIGH x) = HIGH x

NOT The NOT operator produces the bitwise (ones) complement of the
operand as a 17-bit operation. Since the bitwise complement of
0FFFFH is 10000H (-65536) (which is not a valid 17-bit value), NOT
0FFFFH is defined to be 0.

Add (+),
Subtract (—)

The + and — operators can work on either a single operand (unary) or
on two operands (binary). A unary operation is equivalent to 0 plus or
minus the operand. Example:

-2
555+07FFH

Multiply (*),
Divide (/), MOD

Multiply, divide and MOD accept 17-bit operands and return 17-bit
results. The MOD operator yields its left operand modulo its right
operand (the remainder after a division).

11-6 Elements Of Macro Expressions

SHL, SHR The logical shift operators are full 17-bit shifts including the sign bit,
and work on the twos complement form of negative numbers. They
shift their left operand the number of bits given by their right operand,
using zero fill. For example, -2 SHR 2 is 7FFFH or +32767. It is
possible for a shift to produce the invalid 17-bit number -65536
(10000H), which is automatically converted to 0.

If the count is negative, the shift is performed in the opposite direction.
If the magnitude of the count is greater than 16, the result is 0.

AND, OR, XOR The logical operators AND, OR, and XOR perform the indicated
bitwise logical operation. They are full 17-bit operations, including the
sign bit, and work on the twos complement form of negative numbers.
Example:

-2 AND 32767 ;yields 7FFEH (32766)
-2 OR 32767 ;yields 1FFFFH (-1)
-2 XOR 32767 ;yields 18001H (-32767)

The logical operators can produce a result of 10000H
(-65536), which is converted to 0.

EQ, LE, LT,
GE, GT, NE

 The relational operators, EQ, LE, LT, GE, GT, and NE compare their
operands and return an absolute number. The return value 0 if the
comparison is false or 0FFFFH (+65535) if it is true. Example:

3 EQ 0 ;yields 0 (false)
-2 EQ 0FFFEH ;yields 0 (false - 17 bit comparison)

Elements Of Macro Expressions 11-7

Notes

11-8 Elements Of Macro Expressions

12

Pre-Defined Macro Functions

Introduction This chapter provides a description of the pre-defined macro functions
found in apv20/apv33.

Pre-defined macro functions are provided as building blocks so that
you may create user-defined macros. It would be nearly impossible to
duplicate many useful operations found in the pre-defined functions
with equivalent user-defined macros.

Note A user-defined macro may be re-defined in the source program at some
point after the original user definition. Redefinition does not cause
errors; it does cause the preceding macro definition to be lost.
Pre-defined macro functions, however, may not be re-defined. It is an
error to try to do so.

Pre-Defined Macro
Functions

The pre-defined macro functions listed below are recognized by the
macro preprocessor.

Pre-Defined Macro Functions 12-1

Note The pre-defined macro functions %IN, %OUT, %CI and %CO are not
supported by the apv20/apv33 macro preprocessor. These functions
accept user input to macro functions.
The pre-defined macro function %DEFINE does not appear in this
chapter because it is discussed in detail in the following chapter titled
"User-Defined Macros." Discussion of %DEFINE is appropriate to
that chapter because %DEFINE is used to create user-defined macros.

%’
(Comment Function)

Call Pattern:

%’ ...any text... ’ or end-of-line

Description: The comment function permits insertion of comments
without being passed on to the assembler. Everything from the quote
up to a matching closing quote or to an end-of-line is considered a
comment. Metacharacters within the comment string are not expanded.
In the output, the call pattern (including the closing end-of-line, if used)
is replaced with the null string.

%’ (comment function) %((bracket function)
%n (escape function) %DEFINE
%EQS %GES
%GTS %LES
%LTS %NES
%EVAL %EXIT
%IF %LEN
%MATCH %METACHAR
%REPEAT %SET
%SUBSTR %WHILE

Table 12-1. Predefined Macro Functions

12-2 Pre-Defined Macro Functions

Example:

MOV AW,%ARG1 %’ ARG1 is the loop counter’
MOV IX,0 %’ Initialize index register
BR $-2
%SET(symbol,02H) %’ Initialize: %SET(symbol,03H)’
DB %symbol

The second line in this example will result in an assembly-time error
because the end-of-line terminating the comment is removed along
with the comment, so the assembler sees the two instructions

MOV IX,0 BR $-2

without an end-of-line between them. The fourth line shows that
metacharacters inside a comment are not expanded; the last line
expands to ’DB 02H’ because the ’%SET’ was not executed within the
comment. The literal character (’*’) cannot be used with the comment
function.

%n and %(
(Escape and Bracket

 Functions)

Call Pattern:

escape function: %n[n-characters]
bracket function: %(baltex)

Escape Function

Description: n is a decimal (base-10) digit from 0 to 9 inclusive.
The expanded value of the escape function pattern is the n-characters
immediately following n itself. These will be passed to the assembler
without being examined by the macro preprocessor. For example,
’%1%’ passes a ’%’ to the output. The pattern ’%0’ passes no
characters.

Pre-Defined Macro Functions 12-3

Bracket Function

Description: The expanded value of the bracket function is the
"baltex" that appears between the parenthesis. The bracket function
inhibits the expansion of all macros and functions within its argument
except the escape function, the comment function, and macro
parameters. These are always expanded.

Escape and Bracket Functions (Generally)

Description: It is sometimes necessary to hide certain text from the
macro preprocessor, such as when a percent sign (%) is desired in the
output or when using strings involving unbalanced parentheses or
commas as text. The escape and bracket functions serve this need.

The bracket function might be more flexible than the escape function,
but it deals only with baltex, and the metacharacter is interpreted
(although once a call pattern has been detected it cannot be expanded).
Examples:

%(1,2,3) ;1,2,3 is passed to the output (this might
 ;be used as the actual parameter to a
 ;macro to prevent the commas from being
 ;interpreted as delimiters)
%330% ;30% is passed to the output
%(30%) ;error — ’%)’ is not legal
%(%330%) ;%330% is evaluated, then used as
 ;an argument to %()
%(30%1%) ;same
%(%(30)) ;%(30) is passed to the output
DB ’30%1%’ ;DB ’30%’ is passed to the output because
 ;quotes are ignored by preprocessor

The literal character (’*’) is not accepted with the bracket or escape
functions.

12-4 Pre-Defined Macro Functions

%EQS, %NES, %LTS,
%LES, %GTS,%GES

Call Pattern:

%xxS(baltex1,baltex2)

In the above call pattern, xx represents the first two characters of any of
the function names.

Description: The string relational functions all compare two strings,
character by character, left to right, and expand to a logical-valued
string: –1H for TRUE, and 00H for FALSE.

The first string cannot contain a comma unless the comma is protected
by parentheses, the escape function, or the bracket function.

Comparison is on the basis of ASCII character values. A blank
character has the value 20H, tab has the value 09H, and <EOL> has the
value 0AH (<line feed>). The comparison is true if the first argument
has the relationship to the second indicated by the function. (EQS is
true if the two strings are equal. GTS is true if the first string is
"greater" than or equal to the second string.)

If two strings are of different lengths, but are identical on all characters
in the shorter string, the longer string is considered to be greater.

The literal character * is allowed, but it has no effect. Metacharacters
in the argument strings are always expanded. Example:

%EQS(0,00H) ;yields 00H (false), since comparison is
 ;of strings, not numeric values
%GTS(2,100H) ;yields -1H same reason as above
%GTS(c,CBA) ;yields -1H (true), since c>C (ASCII
 ;values), which ends comparison

Pre-Defined Macro Functions 12-5

%EVAL

Call Pattern:

%EVAL(expression)

Description: EVAL is used to evaluate an expression and it expands
to a string representing the numeric value of the expression. The
expanded string represents the value in hexadecimal. The first
character of the expanded string is always a digit 0-9, the last character
is always ’H’, and the characters between are the hexadecimal digits
0-F. The expression is evaluated using 17-bit arithmetic, as always, but
the expanded value is at most 16-bits. Negative numbers are shown in
twos complement form. The expanded string can be 3, 4, 5 or 6
characters in length. Examples:

%EVAL(3+3) ;yields 06H
%EVAL(3-3) ;yields 00H
%EVAL(-2) ;yields 0FFFEH

%SET(S1,44) ;null (decimal value)
%SET(S2,333Q) ;null (octal value)
%EVAL(%S1+%S2) ;yields 0107H

The call pattern %*EVAL is legal, but the literal character (’*’) has no
effect; metacharacters in the expression are always expanded.

%EXIT

Call Pattern:

%EXIT

Description: The EXIT function allows immediate exit from the
most recently invoked %REPEAT, %WHILE, or a user-defined macro.
The call pattern %EXIT has no argument; it ends with the character
’T’. Some common uses are to prevent a WHILE loop from going on
forever and to allow multiple exit points from a user macro.

This macro illustrates the classic example of recursion, the factorial
function:

12-6 Pre-Defined Macro Functions

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI %EVAL((%X)*%FACTORIAL(%X-1)))

The same result could also be accomplished by using %ELSE instead
of %EXIT. In this simple case using an %ELSE might even be clearer,
but in more complex examples the %IFs might be nested several levels
deep, so %EXIT would be much easier.

The call pattern %*EXIT is legal, but the literal character (’*’) has no
effect.

%IF
(Conditional

Assembly Function)

Call Pattern:

%IF(expression) THEN (baltex1) [ELSE
(baltex2)] FI

Description: The IF function enables a user to decide at macro-time
whether to assemble certain code or not. Doing this at macro-time has
the advantage that the assembler (which may require more execution
time than the macro preprocessor) sees only that code that is to be
assembled.

The expanded value of %IF is the expanded value of either baltex1 or
baltex2 (if present), but not both. The call pattern %IF first evaluates
the numeric expression. If the low bit of the 17-bit value is 1, then the
expression is considered true. Baltex1 is passed to the output as the
expanded value of %IF. If the low bit of the 17-bit value is 0, then the
expression is considered false and baltex2 becomes the expanded value
of %IF (if baltex2 is present). If it is not present, the expanded value of
%IF is null.

Typically, the expression will contain comparison operators (EQ, and
so forth) or string comparison macro functions (%EQS, and so forth).
These always return –1 for true and 0 for false, so %IF does what you
would expect. However, any numeric value is acceptable.

Pre-Defined Macro Functions 12-7

The baltex that is not selected is also not expanded. Any %SETs in it,
for instance, will not be executed.

The keywords THEN, ELSE, and FI are not stored as symbols, and
user symbols can duplicate these names. Since the arguments are all
baltex with parentheses as delimiters, there is no problem with
ambiguity.

Call patterns (%IFs) can be nested; each FI (and ELSE, if present) is
considered to go with the most recently defined IF. Example:

%*DEFINE(MAC(symbol)) (
%IF (%symbol LT 0)
THEN (%’goes with LT if’
 DB 00H
) ELSE (%’goes with LT if’
 %IF (%symbol GT 10)
 THEN (
 %set(newsymbol,%symbol-10)
 DB %newsymbol
) ELSE (%’goes with GT if’
 DB %symbol
) FI %’goes with GT if’
) FI %’goes with LT if’
)

The literal character (’*’) is legal with %IF and has the effect of
suppressing metacharacter expansion in whichever baltex is selected to
become the output. Metacharacters in the expression are always
expanded.

%LEN

Call Pattern:

%LEN(baltex)

Description: The LEN function counts the characters in its argument
and expands to a string representing the numeric value of the
expression. The expanded string represents the value in hexadecimal.
The first character of the expanded string is always a digit 0-9, the last
character is always ’H’, and the characters between are the
hexadecimal digits 0-F. The expression is evaluated using 17-bit
arithmetic, as always, but the expanded value is at most 16-bits.
Negative numbers are shown in twos complement form. The expanded

12-8 Pre-Defined Macro Functions

string can be 3, 4, 5 or 6 characters. The literal character (’*’) is legal
and prevents the expansion of metacharacters in the baltex string.
Example:

%LEN(countme) ;yields 07H
%LEN(%EQS(ABC,abc)) ;depends on case sensitivity
%*LEN(%EQS(ABC,abc)) ;counts ’%EQS(ABC,abc)’
 ;and yields 0DH
%LEN() ;yields 00H

An <EOL> counts as one character (the line feed character). %LEN of
a SET-symbol will produce a number between 3 and 7 inclusive. It is
the number of characters of the internal string representation of the
symbol value.

Note The value is a full 17-bits, with a minus sign if needed (signed
magnitude representation). Thus –2 is stored as
 ’-02H’ and 65534 is stored as ’0FFFEH’. This is the only time (within
a %LEN) that the value of a SET-symbol is not really stored as a
number.

%MATCH

Call Pattern:

%MATCH(name1 delimiter name2)
(string)

Note The spaces surrounding the delimiter in the syntax above are not a part
of the call pattern; they are shown only for clarity. Spaces between the
first and second pair of parentheses are acceptable. Spaces, tabs, or
end-of-lines are skipped over if they appear there.

Description: Name1 and name2 are symbols (not necessarily
previously defined) and delimiter is a single character separating them.

Pre-Defined Macro Functions 12-9

It can be any character that is not valid in symbols. It could be a space,
tab, comma, end-of-line, parenthesis, or others.

MATCH divides a string into two parts at the first occurrence of the
delimiter, and assigns each part to a symbol. Its expansion is the null
string. MATCH is most commonly used in connection with loops, as
described below.

MATCH searches the (expanded) string for the first occurrence of the
delimiter. When it is found, all characters in the string preceding the
delimiter are assigned as the value of name1. All characters following
the delimiter are assigned as the value of name2. Either value can be
null. If the delimiter is not present in string, the entire string is
assigned to name1 and name2 receives the null string as its value.
Examples:

%MATCH(NAME1,NAME2) (A,B,C) ;NAME1=’A’, NAME2=’B,C’
%MATCH(NAME1 NAME2) (A,B,C) ;NAME1=’A,B,C’, NAME2=null
%MATCH(NAME1 , NAME2) (A,B,C) ;Error — illegal spaces
 ;around comma (delimiter in this example)

The literal character (’*’) is legal in conjunction with %MATCH and
inhibits the expansion of any metacharacters in "string." Example:

%SET(sym,2)
%MATCH(VAR1,VAR2) (%sym,02H) ;VAR1=02H, VAR2=02H
%*MATCH(VAR3,VAR4)(%SYM,02H) ;VAR3=%SYM, VAR4=02H
%SET(SYM,3)
DB %VAR1 ;yields DB 02H in the output
DB %VAR3 ;yields DB 03H and %SYM is
 ;expanded at reference time
DB %*VAR3 ;yields DB %SYM and causes an
 ;assembly-time error

The last example is case dependent and would not work if case
sensitivity was not turned off.

The MATCH function is often used to extract similar fields out of a
string one at a time. Suppose a string consists of several numbers
separated by spaces. Such a string might be the expected value of a
formal argument, for instance. To generate a DB for each number:

%MATCH(TEMPVAR^JUNK) (%FORMALARG)
%WHILE(%LEN(%TEMPVAR) GT 0)
(%MATCH(NEXTNUM TEMPVAR) (%TEMPVAR)

12-10 Pre-Defined Macro Functions

DB %NEXTNUM
)

The first MATCH copies the formal argument to TEMPVAR,
presuming there are no carets (^) in %FORMALARG (this is a trick to
evade the fact that SET can assign only numeric values to a symbol; it
cannot assign a string). The condition of the WHILE loop states that
TEMPVAR must still be non-null. The MATCH inside the loop
extracts the next number from TEMPVAR and stores the rest of the
string back in TEMPVAR. The DB is then generated and we execute
the WHILE test again.

%METACHAR

Call Pattern:

%METACHAR(baltex)

Description: The METACHAR function changes the metacharacter
(% by default) to a different, user-specified character. These are the
acceptable alternative metacharacters:

@ / + - # . __ = [] < > ! ’ " $ & , = % { } ~ ‘ | \ ^

The following characters cannot be used as a metacharacter:

the letters (A-Z, a-z)
the digits (0-9)
 _ ? * () blank tab <EOL>

The new metacharacter is taken to be the first character of the
expanded value of baltex, although baltex can be any number of
characters long. The new metacharacter takes effect immediately at the
first character following the right parenthesis delimiting the call pattern
of METACHAR. The literal character (’*’) is accepted on
METACHAR, but it has no effect, as the argument of METACHAR is
always expanded.

Changing the metacharacter can have unforeseen catastrophic effects.
For example, any previously defined macros probably have the default
metacharacter (’%’) in the stored macro body. They will not expand
correctly if the metacharacter changes. The expanded value of the
METACHAR function is the null string.

Pre-Defined Macro Functions 12-11

%REPEAT

Call Pattern:

%REPEAT (expression) (baltex)

Description: The REPEAT function is one way to program a loop.
REPEAT evaluates the 17-bit numeric expression and then baltex is
expanded that many times. Note that the expression is expanded only
once. If baltex alters macro symbols that are involved in the
expression, it does not affect loop control. If the expression evaluates
to be less than or equal to zero, baltex is expanded zero times (the
expanded value of REPEAT is the null string). Example:

%REPEAT(5) (SHL AW,1
)

Note The <EOL> within baltex is necessary for correct expansion. Without
the <EOL>; this REPEAT would produce

SHL AW,1SHL AW,1SHL AW,1SHL AW,1SHL AW,1

%*REPEAT is acceptable. The asterisk inhibits the expansion of
metacharacters within baltex. Metacharacters in ’expression’ are
always expanded.

12-12 Pre-Defined Macro Functions

%SET

Call Pattern:

%SET(name,expression)

Description: SET defines the string "name" as a symbol, whether or
not it was already defined, and gives it the value of "expression."
Expression must result in a number, but the value of name is stored as a
string (like all macro symbols). Generally, you can ignore this fact and
treat name as if it were stored as a number. Multiple SET directives can
reference the same name. The expanded value of the %SET call
pattern is the null string.

The literal character (’*’) makes no sense with SET, since its first
argument must be a symbol and its second argument must evaluate to a
number. Neither argument can contain metacharacters after expansion.
If the macro preprocessor attempts to expand %*SET, it will report an
error.

It is correct for the symbol-referencing construct to appear inside
another SET for the same symbol. Example:

%SET(username,%username+1)

This increments the value of ’username’ by one. However, the next
example is incorrect:

%SET(username,username+1)

This example generates a macro-time error because the character string
"username" is not a legal expression operand. Symbol-referencing is
discussed in the chapter titled "User-Defined Macros."

Pre-Defined Macro Functions 12-13

%SUBSTR

Call Pattern:

%SUBSTR(baltex,exp1,exp2)

Description: The SUBSTR function extracts a substring from its
first argument based on its second and third arguments.

In this pattern, exp1 and exp2 are numeric expressions. The expanded
value of the pattern is a substring of baltex. The substring begins at
character number exp1 and contains exp2 characters. If exp1 is less
than or equal to 0, or greater than the number of characters in baltex,
then the expanded value is null. If exp2 is less than or equal to 0, then
the expanded value is null. If exp1 is of such a size that the expansion
value will not be null, but exp2 implies more characters than remain in
baltex, then the expanded value is all characters from character exp1 to
the end of baltex, inclusive. Examples:

%SUBSTR(12345678,4,2) ;yields 45
%SUBSTR(12345678,-1,2) ;yields null
%SUBSTR(12345678,10,2) ;yields null
%SUBSTR(12345678,2,-1) ;yields null
%SUBSTR(12345678,2,1000) ;yields 2345678

The literal character (’*’) is accepted with SUBSTR, but is ignored.
Metacharacters in any of the arguments are always expanded.

%WHILE

Call Pattern:

%WHILE (expression) (baltex)

Description: The WHILE function programs macro-time loops. It
works similarly to the WHILE construct in high level languages.

WHILE evaluates the 17-bit numeric expression each time through the
loop. If the least significant bit of the expression is 0, the expanded
value of WHILE is the null string. If the least significant bit of the
expression is 1, then baltex is expanded and passed on as part of the
expanded value of WHILE, and the expression is evaluated again. The

12-14 Pre-Defined Macro Functions

loop continues until the expression evaluates to false (least significant
bit is 0).

For the loop to terminate, baltex must modify the value of expression
or an EXIT function must be used. Otherwise the loop will never exit.
WHILE is often used in conjunction with either SET or MATCH,
either of which will update a macro symbol on each pass through the
loop (see the example under MATCH).

The call pattern %*WHILE is not accepted, since preventing the
expansion of baltex would result in an infinite loop. An error will be
reported if %*WHILE is found.

Example Problem This example shows the effects of an incorrect factorial macro.

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI
%EVAL(%X*%FACTORIAL(%X-1))
)

The only difference between this example and the one shown with the
%EXIT function reference is that this one is missing the pair of
parentheses around the second %X. They are necessary, because the
arguments of macros are strings, not numbers. The incorrect version
above called with the actual parameter 4 expands successively to the
following:

4*FACTORIAL(4-1)
 4-1*FACTORIAL(4-1-1)
 4-1-1*FACTORIAL(4-1-1-1)
 01H
 4-1-1*01H
 02H
 4-1*02H
 02H
 4*02H
08H

The %FACTORIAL in the next lower calling level is evaluated before
the %EVAL in the one that called it is executed. That is as it should be

Pre-Defined Macro Functions 12-15

and the recursive property of this function is retained. The problem is
that the normal rules of precedence govern within the enclosing
parentheses of %EVAL. This means that the multiplication is done to
just part of the intended value of %X, instead of the full value, at any
level. The result is therefore less than it should be.

As a general guide, it is advisable to surround any macro-time symbol
with either parentheses or %EVAL() if you expect to produce a
numeric value. For this example, one fix is to put %EVAL() around
%X-1 in the call to %FACTORIAL. This forces evaluation of the
subtraction before the value is passed to the next lower calling level.
Another fix is to put parentheses around the second %X—as has been
discussed and was done in the example for %EXIT. This causes
parentheses to be around the subtractions preceding the multiplication
sign that then force the intended order of arithmetic evaluation. The
corrected macro definition, using the %EVAL() fix, follows:

%*DEFINE(FACTORIAL(X))
(%IF(%X LE 1) THEN (01H %EXIT) FI
%EVAL(%X*%FACTORIAL(%EVAL(%X-1)))
)

The corrected macro definition called with the same parameter of 4
would expand as follows:

4*FACTORIAL(3)
 3*FACTORIAL(2)
 2*FACTORIAL(1)
 01H
 2*01H
 02H
 3*02H
 06H
 4*06H
018H

12-16 Pre-Defined Macro Functions

13

User-Defined Macros

Introduction This chapter provides information about defining macros, including the
syntax for defining them, and how macros are referenced. User-defined
macros are created by using the %DEFINE macro function.

User-defined macros can be defined in terms of themselves which
means they can invoke themselves within their own macro bodies.
This ability is called recursion. Any macro that calls itself must include
a terminating condition that causes the macro to "bottom out"
eventually or the preprocessor can enter into an infinite loop.

User Defined Macros 13-1

%DEFINE If you want to define a macro, you must use the DEFINE function.

Because the syntax for DEFINE is somewhat complicated, the
following figure contains the syntax diagram for DEFINE.

Where:

% is the current metacharacter (which is usually %).

* is the optional literal character. This character should be used with
most definitions. There are two reasons:

It will inhibit the expansion of macro calls flagged by the
current metacharacter (usually %) within the macro body at
the time of macro definition. Instead, macro calls will be
expanded at the time of macro reference.

You must use the literal character with any macro that has
formal parameters. Otherwise, the macro preprocessor will
attempt to evaluate any references to the formal arguments
within the macro body as symbols or other macro calls, which
will result in errors.

Figure 13-1. Syntax for User-Defined Macros

13-2 User Defined Macros

Define is the pre-defined macro function for creating user-defined
macros.

Name is the user-defined name to be associated with the macro. It
cannot conflict with the predefined macro functions (listed in the
previous chapter), but it can duplicate an earlier user-defined macro
name or symbol. In the latter case, the previous meaning of the symbol
is lost. The macro name should not be preceded by the current
metacharacter (usually %).

Parameter is a formal parameter name. Formal parameters, if they
exist, are replaced by actual parameters when the macro is invoked.

Note Formal parameter names are not preceded by the metacharacter when
they are being declared in the macroname argument list. To reference
a formal parameter within the macro body, however, you must precede
its name with the metacharacter (as in %ARGUMENT_NAME for the
formal parameter ARGUMENT_NAME).

Parameter names must be distinct from one another within a macro, but
they can duplicate other formal parameter names in other macros, since
they have no existence outside the macro definition. They can also
duplicate the names of other user macros or macro functions. If they
do duplicate other macro function names, then the other macros or
functions cannot be used within the macro body, since the duplicated
name will refer instead to the parameter.

Local is the word that must precede the local parameter list.

Symbol is a local symbol name. Such symbols can be used only
within the macro body. They are undefined outside of it.

The purpose of local symbols is to avoid multiply-defined symbols in
the output of the macro processor. Each time the macro is referenced,
each local symbol receives a unique two to five digit suffix. For
example, if a local symbol LABEL were defined for use within a
macro, then the first macro invocation might substitute LABEL00 and
the second invocation might use LABEL01. This way, the assembler
would not see a multiply-defined symbol. When locals are initially

User Defined Macros 13-3

being declared following the LOCAL keyword, they must not be
preceded by the metacharacter. However, when referencing local
symbols in the macro body, they must be preceded by the
metacharacter. The symbol LOCAL is not reserved; a user symbol or
macro can have this name.

Body is a balanced-text string. It can contain references to formal
arguments and local symbols, if any, as described above. It can also
include references to user-defined macros (including itself), to
macro-expansion-time symbols (preceded by ’%’), and to macro
functions.

A macro should not redefine itself (%*DEFINE) within its body,
however. The expanded value of DEFINE is the null string, but the
macro body is stored internally for later use. A re-DEFINE in a macro
body, then, is working at cross purposes.

Macro Reference A macro is referenced by preceding its name with the metacharacter. If
the macro was defined with formal arguments, the reference must
include the same number of actual parameters, enclosed in parentheses
and separated by commas. Actual parameters can be null, but the
required delimiters must still be present between them. Each actual
parameter is substituted for its corresponding formal parameter,
wherever it appears in the macro body, on a string basis.

The literal character (’*’) is acceptable in conjunction with references
to user-defined macros. Normally, all metacharacters in the actual
parameters are evaluated immediately when the macro reference is
found and the resulting strings are stored. They are then substituted for
the formal parameters as the macro body is copied. The literal
character defers evaluation of actual parameters until they are found in
the macro body, and they are re-evaluated each time they are found. It
is possible, then, that the values of actual parameters might change
between evaluations depending on what the macro body does.

Following are some sample macro definitions and references along
with short discussions about each. Each new macro and discussion
begins with the new %DEFINE, but an implied order of definition from

13-4 User Defined Macros

first to last is understood in order that some of the discussions make
sense. Some of the macros are intentionally incorrect.

%*DEFINE(MAC1) (DB 2)

MAC1 will have the string value "DB 2" when invoked.

%*DEFINE(MAC2(ARG1)) (DB %ARG1)

MAC2 is stored as "DB %ARG1". %ARG1 is to be evaluated at the
time of macro reference because of literal character (’*’) precedes
DEFINE.

%*DEFINE(ERR1(ARG1)) (DB ARG1)

ERR1 shows a common error. The ’%’ is omitted from the formal
parameter in the macro body which means it will not be recognized.
The assembler will be passed "DB ARG1" when the macro is invoked,
which is not likely to be correct.

%*DEFINE(MAC3(ARG1)) (%MAC1
 %MAC2(%ARG1))

MAC3 references the previously-defined macros MAC1 and MAC2.
Since the evaluation of metacharacters in MAC3 is deferred (with *),
this example would also work if the definitions of MAC1 or MAC2
followed that of MAC3 (as long as they are defined before MAC3 is
invoked).

%DEFINE(ERR2(ARG1)) (%MAC1
 %MAC2(%ARG1))

ERR2 shows another common error—the literal character was omitted.
The metacharacters in the macro body are expanded immediately (at
macro-definition time). Since there is a reference to a formal
parameter, this cannot be done—there is no actual parameter to
substitute for it. The macro preprocessor actually attempts to expand
%ARG1 as a macro symbol or user-macro. In some cases this might
be possible, although it is not likely to be what is expected.

%*DEFINE(ERR3(ARG1)) (%MAC1
%MAC2(%ARG1))

ERR3 shows another frequent user-error, a missing <EOL>. Since the
body of neither MAC1 nor MAC2 includes an <EOL>, ERR3 should
include one between their invocations (as MAC3 does). The
invocation %ERR3(3) will yield "DB 2 DB 3" and cause an assembler

User Defined Macros 13-5

error. If MAC1 ended with an <EOL> or MAC2 began with an
<EOL>, ERR3 would be correct.

%DEFINE(MAC4) (%MAC1
 %MAC2(4))

MAC4 shows an acceptable use of DEFINE without ’*’. The stored
body of MAC4 is shown in the following example, since the calls to
MAC1 and MAC2 are evaluated immediately:

’DB 2
DB 4’

With the definitions of MAC1 and MAC2 shown above, %MAC4 is
the same as %MAC3(4). But MAC1 and/or MAC2 might be redefined
later on. In this case, MAC3 will reference the new values, while
MAC4 will not.

%*DEFINE(MAC5(ARG1)) LOCAL LABEL (
 %LABEL: MOV AW,%ARG1[IY]
 INC IY
 DBNZNE %LABEL)

MAC5 shows the use of a local symbol. Each invocation of MAC5
will create a unique assembler-time symbol from LABEL.

What is Output? Note that the macro definitions above produce no output, since each
DEFINE expands to the null string. Consider the macros as being
defined sequentially without separating blank lines. The end-of-lines
between the terminating right parenthesis of each macro body and the
following metacharacter (’%’) of the next macro result in blank lines
that are not output. If the macro preprocessor did not remove blank
lines, these examples would generate seven blank lines. This behavior
is typical of readable macro code. All characters between the
delimiting parentheses (including end-of-lines) are considered part of
the macro body, which in turn is part of the syntax of DEFINE. Such
characters are not considered for output.

13-6 User Defined Macros

Referencing
Macro-time
Symbols

Symbols are defined by the SET and MATCH functions. A symbol is
referenced by preceding its name with the metacharacter, as in

%name

Without the metacharacter, the macro preprocessor treats "name" like
any other character string. The call pattern of the symbol ends where
the name ends (there is no argument in parentheses). The expanded
value of this construct is the character string that had been assigned to
it. (For instance: ’01H’; or ’STRINGVALUE’; or the null string.)

The literal character (’*’) is proper with a macro-time symbol. It
inhibits the expansion of any metacharacters within the symbol value
which otherwise would be expanded. For example, suppose the value
of a symbol SYM is "%LEN(01H)." %SYM will expand to ’03H’, but
%*SYM will expand to "%LEN(01H)". Generally, the literal
character should be omitted.

The literal character similarly affects formal parameters of macros
within the macro body. A formal parameter is not recognized if
preceded by the literal character. This permits giving a formal
parameter the same name as a macro function while still being able to
access the function within the macro body. Example:

%*DEFINE(MAC(LEN)) (DB %LEN
 DB %*LEN(%LEN))

The first %LEN is the formal argument LEN, as is the third. The
second is not recognized as an argument because of the literal
character, so it reverts to its normal meaning as a pre-defined function.
The literal character has meaning to this particular function, so the
inner %LEN is not expanded.

The literal character cannot be used with local symbols within a macro
body.

This chapter concludes the reference for the apv20/apv33 Macro String
Preprocessor. Error messages for the macro preprocessor can be found
in the appendixes.

User Defined Macros 13-7

Notes

13-8 User Defined Macros

A

Error Message Formats

Error Classes There are three classes of errors that may occur during assembler or
macro preprocessor execution: warnings, errors, and fatal errors.

Warning Warnings announce something that might be a problem in the output
file. This may or may not indicate a problem with the program.

After a warning, the output files are written normally.

After a warning, asv20/asv33 and apv20/apv33 both return a code
indicating "success" so that command files and "make" operations
continue normally.

Error Errors announce something that is wrong in the output file. For
example, a reference to an unresolved symbol will cause problems at
run-time.

After an error, the output files are written normally. The output files are
complete and may be useful in subsequent operations.

After an error, asv20/asv33 and apv20/apv33 both return a code
indicating "error" so that command files and "make" operations stop.

Fatal Error A fatal error announces a condition that causes processing to be
discontinued. After a fatal error, the output files are incomplete and
corrupt. They are not useful for subsequent operations.

After a fatal error, asv20/asv33 and apv20/apv33 both return a code
indicating "error" so that command files and "make" operations stop.

Error Message Formats A-1

Notes

A-2 Error Message Formats

B

Assembler Error Messages

Introduction When the assembler encounters a syntax error, it does not generate
code for the instruction or directive on the line and any of its
continuation lines where the error occurs. The error message is
printed on the line below the error, with a caret (^) pointing to the
offending syntax.

In some cases, the assembler issues a general syntax error that indicates
there is something wrong at the place the caret points, but the specific
nature of the error is not determined.

In the event of a syntax error, the assembler does not generate code,
but continues processing with the next statement.

Syntax Errors

500

Expecting an expression. The assembler expected an expression,
but found something different at the location pointed to by the caret.

501

Expecting an OR-level expression. The assembler expected an
OR-level expression, but found something different at the location
pointed to by the caret.

OR-level expressions include all the AND-level expressions plus the
OR and XOR operators.

Assembler Error Messages B-1

502

OR or XOR expected. The assembler expected an OR or XOR
operator, but found something different at the location pointed to by
the caret.

503

Expecting an AND-level expression. The assembler expected an
AND-level expression, but found something different at the location
pointed to by the caret.

AND-level expressions include all the NOT-level expressions, and the
AND operator.

504

AND expected. The assembler expected an AND operator, but
found something different at the location pointed to by the caret.

505

Expecting a NOT-level expression. The assembler expected a
NOT-level expression, but found something different at the location
pointed to by the caret.

506

Expecting a relational operator-level expression.
The assembler expected a relational-level expression, but found
something different at the location pointed to by the caret.

Relational-level expressions include all binary addition-level
expressions plus the EQ, NE, LT, LE, GT, and GE operators.

B-2 Assembler Error Messages

507

Expecting a relational operator. The assembler expected a
relational operator, but found something different at the location
pointed to by the caret.

The relational operators are: EQ, NE, LT, LE, GT, and GE.

508

ENDS or constant definition directive expected.
The assembler expected to find an ENDS directive but found
something different at the location pointed to by the caret.

509

Expecting an addition operator. The assembler expected an
addition operator, but found something different at the location
pointed to by the caret.

The addition operators are plus (+) and minus (—).

510

Expecting a multiplication-level expression. The assembler
expected a multiplication-level expression, but found something
different at the location pointed to by the caret.

Multiplication-level expressions include all

byte-level expressions

MOD, SHR, SHL

multiplication and division operators

base registers (BW, BP) and index registers (IX, IY)

Assembler Error Messages B-3

511

Expecting a multiplication operator. The assembler expected a
multiplication operator, but found something different at the location
pointed to by the caret.

The multiplication operators are MOD, SHR, SHL, and multiplication
(*) and division (/).

512

Expecting a valid argument to NAME. The assembler expected a
valid module name argument to the NAME directive, but found
something different at the location pointed to by the caret.

Byte-level expressions include all secondary-level expressions plus the
HIGH and LOW operators.

513

Expecting a secondary-level expression. The assembler
expected to find a secondary-level instruction but found something
different at the location pointed to by the caret. Secondary-level
expressions include all primary-level expressions, the segment override
(colon), the PTR, OFFSET, SEG, and TYPE operators.

514

Expecting a primary-level expression. The assembler expected
a primary-level expression, but found something different at the
location pointed to by the caret.

Primary-level expressions include all expression primitives as well as
the MASK, WIDTH, SIZE, and LENGTH operators, and the dot
operator for structures.

B-4 Assembler Error Messages

516

Expecting a symbolic name. The assembler expected a symbolic
name, but found something different at the location pointed to by the
caret.

517

Expecting an integer constant. The assembler expected an
integer constant, but found something different at the location pointed
to by the caret.

520

Expecting a register. The assembler expected a register (such as
AW, BW, BP, IX, and others) but found something different at the
location pointed to by the caret.

521

Segment register expected. The assembler expected a segment
register (PS, DS0, DS1, or SS) but found something different at the
location pointed to by the caret.

522

NOTHING or segment register expected. The assembler
expected the keyword NOTHING or a segment register (PS, DS0,
DS1, or SS) but found something different at the location pointed to
by the caret.

523

Expecting an identifier or integer constant. The assembler
expected an identifier or integer constant, but found something
different at the location pointed to by the caret.

Assembler Error Messages B-5

524

Expecting identifier, directive, or colon. The assembler
expected an identifier, directive, or colon, but found something
different at the location pointed to by the caret.

525

Expecting an identifier or constant definition directive.
The assembler expected an identifier or constant definition directive
(such as DB, DW, DD, and others) but found something different at
the location pointed to by the caret.

526

Expecting an identifier or type. The assembler expected an
identifier or type, but found something different at the location
pointed to by the caret.

527

SEGMENT expected. The assembler expected a segment, but found
something different at the location pointed to by the caret.

528

PTR expected. The assembler expected a PTR operator, but found
something different at the location pointed to by the caret.

529

DUP expected. The assembler expected DUP, but found something
different at the location pointed to by the caret.

530

Expecting a comma. The assembler expected a comma, but found
something different at the location pointed to by the caret.

B-6 Assembler Error Messages

531

Expecting a colon. The assembler expected a colon, but found
something different at the location pointed to by the caret.

532

Expecting a period, left bracket, or left angle bracket. The
assembler expected a period (.), left bracket ([), or left angle bracket (),
but found something different at the location pointed to by the caret.

533

Expecting right bracket. The assembler expected a right bracket,
but found something different at the location pointed to by the caret.

534

Expecting a left parenthesis. The assembler expected a left
parenthesis, but found something different at the location pointed to
by the caret.

535

Dollar sign expected. The assembler expected a dollar sign ’$’, but
found something different at the location pointed to by the caret.

536

Expecting comma or right angle bracket. The assembler
expected a comma or right angle bracket, but found something
different at the location pointed to by the caret.

Assembler Error Messages B-7

537

Expecting comma or right parenthesis. The assembler expected
a comma or right parenthesis, but found something different at the
location pointed to by the caret.

538

Expecting a left bracket. The assembler expected a left bracket,
but found something different at the location pointed to by the caret.

539

Expecting a right parenthesis. The assembler expected a right
parenthesis, but found something different at the location pointed to by
the caret.

540

Expecting a label or a statement. The assembler expected a label
or a statement, but found something different at the location pointed
to by the caret.

541

Expecting an instruction mnemonic. The assembler expected an
instruction mnemonic, but found something different at the location
pointed to by the caret.

543

Assembler general control expected. The assembler expected a
general control, but found something different at the location pointed
to by the caret.

B-8 Assembler Error Messages

544

Expecting an assembler control. The assembler expected an
assembler control, but found something different at the location
pointed to by the caret.

545

Constant definition directive expected. The assembler expected
a constant definition directive such as DB, DW, DD, and others, but
found something different at the location pointed to by the caret.

546

Unexpected control or directive name, or missing END
directive. An illegal primary control or directive was found at the
location pointed to by the caret or an END directive was not found
before the end of the source file.

547

Expecting a string. The assembler expected a string, but found
something different at the location pointed to by the caret.

548

Expecting parenthesized text. The assembler expected a valid
attribute to the SEGMENT directive, but found something different at
the location pointed to by the caret.

549

Expecting valid attribute to the SEGMENT directive.
The assembler expected to find an alignment type such as BYTE,
PARA, INPAGE, and others, but found something different at the
location pointed to by the caret.

Assembler Error Messages B-9

550

Expecting a combine type. The assembler expected a combine
type (PUBLIC, STACK, COMMON, and others) but found something
different at the location pointed to by the caret.

551

Continuation line found where initial line was expected.
The assembler found the continuation character (ampersand [’&’]) as
the first character on a line that it was expecting to begin rather than
to continue with an assembly statement.

552

Logical end of program already encountered.
Assembler statements, directives, or controls were found in a source
file AFTER an END directive was encountered. The only legal input
after an END directive are comment lines or blank lines.

554

Structure or record initialization expected. The assembler
expected to encounter a left angle bracket, but found something
different at the location pointed to by the caret.

555

Record field initialization expected. The assembler expected to
encounter an equal sign, but found something different at the location
pointed to by the caret.

556

Expecting a valid member of a GROUP. The assembler
expected a valid member of a GROUP (such as a segment name), but
found something different at the location pointed to by the caret.

B-10 Assembler Error Messages

557

Expecting an item which can be purged. The assembler
expected an item that can be purged (such as symbolic names,
instructions, and others), but found something different at the location
pointed to by the caret.

558

Expecting a valid END initialization element. The assembler
expected a valid END initialization element, but found something
different at the location pointed to by the caret.

559

Expecting a valid ASSUME element. The assembler expected a
valid ASSUME element, but found something different at the location
pointed to by the caret.

561

Expecting valid CODEMACRO parameter information.
The assembler expected to find valid CODEMACRO parameter
information but found something different at the location pointed to by
the caret.

562

Expecting a codemacro parameter specifier. The assembler
expected to find a codemacro parameter specifier but found something
different at the location pointed to by the caret.

563

This statement is not valid in a codemacro definition.
The caret points to a statement that is not legal in the body of a
codemacro definition. Refer to the chapter titled Codemacros for a list
of valid statements.

Assembler Error Messages B-11

564

Expecting a type. The assembler expected a Type (such as BYTE,
WORD, DWORD, and others) but found something different at the
location pointed to by the caret.

565

Unbalanced string delimiters. A string that was opened with an
apostrophe or quotation mark does not have a closing apostrophe or
quotation mark. Usually this is caused by failing to double
occurrences of apostrophes or quotation marks that are contained in
the text of the string.

566

Syntax error. In some cases, the assembler can determine that there
is a syntax error, but can’t determine exactly what the error is. In
these cases, this general message is generated, with the caret indicating
the point of the error.

567

Syntax error in command line options. Control options on the
command line may only be delimited with spaces, tabs, or commas.
Also, any arguments to controls must be delimited with parentheses.

568

Unbalanced parentheses. The number of right parentheses in the
line does not match the number of left parenthesis. In complicated
continued expressions, this could be due to the following line not
having its continuation character in the first column.

569

Illegal operand for unary MINUS or NOT. Neither the unary
minus nor the NOT operator can have a relocatable operand. The
operand pointed to by the caret is relocatable.

B-12 Assembler Error Messages

570

Expecting a unary addition-level expression. The assembler
expected to find a unary addition-level expression, but found
something different at the location pointed to by the caret. Unary
addition-level expressions include all of the multiplication level
expressions as well as unary plus and minus.

571

Additional information encountered beyond end of
statement.
After reaching what it thought was the logical end of a statement, the
assembler found additional text at the location pointed to by the caret.

572

Expecting decimal or hexadecimal floating-point constant.
The assembler expected to find a decimal or hexadecimal
floating-point constant at the location pointed to by the caret.

573

Expecting a signed integer constant. The assembler expected
to find an integer constant with or without a leading unary plus or
minus, but found something different at the location pointed to by the
caret.

574

Expecting a SHORT-level expression. The assembler expected
to find a SHORT-level expression but found something different at the
location pointed to by the caret. SHORT-level expressions include all
of the OR-level expressions as well as the SHORT operator.

575

Expecting an argument to an instruction or codemacro.
The assembler expected to find an argument to an instruction or

Assembler Error Messages B-13

codemacro, but found something different at the location pointed to by
the caret.

600

Illegal or mismatched argument. The caret points to the place
where the operand type is incorrect for the instruction, or where the
type doesn’t match up correctly with another of the operands in the
instruction.

601

Anonymous memory type. The size of the operand pointed to by
the caret cannot be determined from the operand’s expression, or from
the content of other operands in the instruction.

602

Illegal type of expression. The expression pointed to by the caret
is either not allowed in the directive or in the instruction in which it is
specified, or the expression is not a valid expression.

603

Illegal type of argument in expression. The operator that
precedes or follows the sub-expression being pointed to by the caret
does not allow this type of sub-expression or one of its operands.
Certain operators (such as * or /) allow only sub-expressions that
resolve to an absolute number as an operand. Other operators only
allow non-absolute expressions when certain conditions exist (see the
description of ’-’ and relational operators).

B-14 Assembler Error Messages

604

Illegal or duplicate memory argument. Only one argument that
references a memory location is allowed in any given instruction.

605

This instruction requires at least one operand. More than one
operand had been supplied to this instruction, when only one operand
is allowed.

606

This instruction requires at least two operands. Less than two
operands (or more than two) have been supplied to this instruction;
two are required.

607

This instruction requires three operands. Less than three
operands have been supplied to this instruction; three are required.

608

Duplicate declaration of symbolic name. The symbolic name,
pointed to by the caret, has already been declared in a previous
statement.

609

Duplicate specification of module name. This message occurs
when more than one NAME directive appears in the source program.

Assembler Error Messages B-15

610

Duplicate occurrence of base register in register expression.
Only one base register (BW or BP) may be used in any given register
expression.

611

Duplicate occurrence of index register in register
expression. Only one index register (IX or IY) may be used in any
given register expression.

612

This symbol is not defined as a label. The caret points to a
symbol, in a directive or expression, that must be a labl. The symbol
pointed to by the caret is not a label.

613

This symbol is not defined as a segment or group.
The caret points to a symbol, in a directive or expression, that must be
a segment name or group name. The symbol pointed to by the caret is
not a segment or group name.

614

This symbol is not defined as a variable. The caret points to a
symbol, in a directive or expression, that must be a variable. The
symbol pointed to by the caret is not a variable.

615

This symbol is not defined as a structure. The caret points to a
symbol, in a directive or expression, that must be a structure. The
symbol pointed to by the caret is not a structure.

B-16 Assembler Error Messages

616

This symbol is not defined as a structure field. The caret
points to a symbol, in a directive or expression, that must be a
structure field. The symbol pointed to by the caret is not a structure
field.

617

This symbol is not defined as a structure or record.
The caret points to a symbol, in a directive or expression, that must be
a structure or record. The symbol pointed to by the caret is not a
structure or record.

618

This symbol is not defined as a record field. The caret points
to a symbol in a directive or expression that is required to be a record
field in order to be valid. The symbol pointed to by the caret is not of
this kind.

619

This symbol is not defined as a segment. The caret points to a
symbol, in a directive or expression, that must be a segment. The
symbol pointed to by the caret is not a segment.

620

Alignment type inconsistent. The alignment type specified in this
SEGMENT directive is not the same as one specified in a previous
segment directive for the same segment.

621

Combine type inconsistent. The combine type specified in this
SEGMENT directive is not the same as one specified in a previous
segment directive for the same segment.

Assembler Error Messages B-17

623

Illegal or premature termination of segment. This error
indicates improper nesting of segments or a misspelling of the
segment name in either the SEGMENT or ENDS directives.

624

Segment nesting level exceeded. Segments can be nested to a
level of 16 only.

625

Missing SEGMENT directive or previous segment nesting
error. This ENDS directive has no associated SEGMENT directive,
either due to omission or to a nesting error on its associated
SEGMENT directive.

626

Expecting alignment type, combine type, or classname.
The assembler expected an alignment type, combine type, or
classname, but found something different at the location pointed to by
the caret.

627

Classname inconsistent. The classname specified in this
SEGMENT directive is not the same as one specified in a previous
segment directive for the same segment.

628

Illegal type of symbol in this ASSUME. This error occurs when
a symbol other than a segment or group is used in an ASSUME
directive without being preceded by the SEG operator.

B-18 Assembler Error Messages

629

Initialization nest level exceeded. When using the DUP
construct in conjunction with a data directive (DB, DW, DD, DS, DQ,
DL, or DT), the maximum nesting level for DUPs is eight.

630

This symbol does not have a defined segment value, or
segment not addressable. The symbolic name pointed to by the
caret does not have a segment attribute in the list of legal attributes.

631

This argument does not have a defined offset value.
The symbolic name pointed to by the caret does not have a offset
attribute in the list of accepted attributes.

632

This argument does not have a defined type value.
The symbolic name pointed to by the caret does not have a type
attribute in the list of accepted attributes.

633

This argument does not have a defined length value.
The symbolic name pointed to by the caret does not have a length
attribute in the list of accepted attributes.

634

This argument does not have a defined size value.
The symbolic name pointed to by the caret does not have a size
attribute in the list of accepted attributes.

Assembler Error Messages B-19

635

This argument does not have a defined field width value.
The symbolic name pointed to by the caret does not have a field width
attribute in the list of accepted attributes.

636

This argument does not have a defined mask value.
The symbolic name pointed to by the caret does not have a mask
attribute in the list of accepted attributes.

637

Immediate value overflow. The immediate value is not within the
proper range for its context. Specifically, it is not within the range 0 to
0FFH for DB, 0 to 0FFFFH for DW or an instruction, and 0 to
0FFFFFFFFH for all others.

638

This expression must be absolute. The expression must resolve
to an absolute number to be permissible in this context.

639

Item cannot be addressed by segment registers.
The segment associated with the variable pointed to by the caret is
not currently ASSUMEd into any of the segment registers, nor has an
explicit segment override been used.

641

Invalid floating point constant The floating point constant
pointed to by the caret is not a valid floating point constant. No valid
floating-point value can be stored for this constant.

B-20 Assembler Error Messages

642

Illegal operand in this register expression.
Register expressions may contain a base register (BW or BP), an index
register (IX or IY), and any expression that evaluates to an absolute
value. Expressions or symbols with relocatable results are not
permitted.

643

Division by zero attempted. The divisor portion of this expression
involving the division operator is itself an expression that evaluates to
an absolute number with a value of 0.

645

This relational operator has an invalid operand or operands.
See the description of relational operators for what operands are valid.

648

Hexadecimal real constants are invalid in this context.
Hexadecimal real constants are allowed only in data definition
statements or EQU definitions.

649

Illegal floating-point stack register (0-7 allowed).
A mnemonic representing an 8087 floating-point stack register was
not in the legal list of mnemonics (ST,ST(0),ST(1),...,ST(7)).

650

Value too large for one-byte displacement. The number (or
expression that evaluates to an absolute number) is pointed to by the
caret is either less than -128 or greater than 255, and thus cannot be
represented in just one byte.

Assembler Error Messages B-21

651

Hex real constant size does not match with data directive.
Hex real constants must be eight significant hex digits for the DD /DS
directive, sixteen significant digits for the DQ /DL directive, and
twenty significant digits for the DT directive.

653

This symbol cannot be purged. The following kinds of symbols
cannot be purged:

keywords

segment names (including ??SEG)

group names

any user-defined symbol that has appeared in a PUBLIC
statement

654

Symbol cannot be declared PUBLIC. PUBLIC symbols must be
variables, labels or 17-bit constants; any other types will generate an
error.

655

This symbol cannot be a member of a group.
Only segments, externals, or variables may be used in a GROUP
directive. Only a segment may be forward referenced.

B-22 Assembler Error Messages

656

Illegal statement in this context. This error is generated if a
PROCLEN directive appears outside of a CODEMACRO definition,
a STRUC statement appears within a structure definition, or if a
structure initialization occurs within another structure initialization.

658

Illegal or premature termination of procedure. This error
indicates improper nesting of procedure or a misspelling of the
procedure name in either the PROC or ENDP directives.

659

Procedure nesting level exceeded. Procedures can be nested to
a level of 16 only.

660

Illegal type in this context. This error is generated if a type other
than NEAR or FAR appears in a PROC directive, or if a type other
than a standard type (e.g. a structure or record name) appears as the
argument to the THIS operator.

661

Illegal termination of structure. This error indicates a misspelling
of the structure name in either the STRUC or ENDS directives.

662

Null initialization is not allowed in this context. Null (or
default) initialization is permitted only in structure or record
initialization, not in structure or record definition or data definition
directives.

Assembler Error Messages B-23

663

Invalid record field size. A given field within a record can be no
larger than 16 bits, or no smaller than 1 bit.

664

Maximum record size exceeded. The size of a record is limited
to 16 bits.

666

This variable is not defined as a record. The caret points to a
symbol, in a directive or expression, that must be a record. The
symbol pointed to by the caret is not a record.

667

Include file nesting limit exceeded. The limit for nested include
files has been exceeded. This limit is operating system specific.

668

Cannot open include file. The filename specified in the preceding
include control is misspelled, the associated file is not in the current
directory, or the associated file cannot be opened.

669

Illegal type of EQU in this context. An example of this error is an
EQU to a V20 instruction mnemonic as the expression portion of a
data definition directive, such as DB. Many other similar conditions
exist that will generate this error.

B-24 Assembler Error Messages

670

Too many arguments specified for this instruction.
The particular instruction pointed to by the caret does not allow as
many arguments as are specified. INC AW,BW, for example, has one
too many arguments.

671

This type of segment override is illegal in this context.
 Certain types of expressions are not permitted to have a segment
override operator (colon operator) as part of the expression. The
expression pointed to by the caret is one such expression.

672

Illegal value for PAGELENGTH control. The minimum value in
the PAGELENGTH control is 20 lines.

673

Illegal value for PAGEWIDTH control. The legal values for the
PAGEWIDTH control fall in the range of 41 to 255 columns,
inclusive.

674

Illegal value for TITLE control. The string for a TITLE control is
limited to a length of 40 characters.

675

More than 64 levels of control saves. The $SAVE control
cannot be nested to a depth greater than 64.

Assembler Error Messages B-25

676

More than 64 levels of control restores. The $RESTORE
control cannot be nested to a depth greater than 64.

677

This symbol is not a parameter to this codemacro.
The symbol pointed to by the caret, which is contained within a
codemacro definition, is not present in the CODEMACRO statement
for the current codemacro. Therefore, the symbol cannot be a
parameter to the current codemacro.

678

This symbol is not defined as a codemacro parameter.
The caret points to a symbol in a directive or expression that is
required to be a codemacro parameter in order for it to be valid. The
symbol pointed to by the caret is not a codemacro parameter.

679

This codemacro parameter’s specifier is invalid in this
context. Certain directives within a codemacro definition allow
only parameters that have specific types of codemacro specifiers. The
codemacro parameter pointed to by the caret is not of the specific type
needed for the directive in which it is used.

680

Illegal range expression in codemacro parameter definition.
Either the range expression pointed to by the caret does not evaluate to
an absolute number, or it is out of range according to the codemacro
specifier with which it is associated.

B-26 Assembler Error Messages

681

This symbol is not a valid codemacro specifier. The symbol
pointed to by the caret is not one of the valid codemacro specmod
fields mentioned in the chapter titled Codemacros.

682

Duplicate definition of codemacro parameter. The symbol
pointed to by the caret has appeared more than once in the same
codemacro directive and is a duplicate definition.

683

This expression is illegal within a codemacro definition.
Null initialization expressions, DUP expressions, and dot operator
expressions that don’t use a record field as their right operand are
illegal within a codemacro definition.

684

This statement is not allowed in a codemacro definition.
Only a limited number of types of statements is allowed in a
codemacro definition. For a complete list, see the chapter titled
Codemacros.

685

This instruction or codemacro has too many operands.
asv20/asv33 limits the number of operands to 3 in an instruction and to
255 in a codemacro.

686

Duplicate use of NOSEGFIX directive in codemacro
definition. Only one NOSEGFIX directive can be used in any given
codemacro definition.

Assembler Error Messages B-27

687

Duplicate use of SEGFIX directive in codemacro definition.
Only one SEGFIX directive can be used in any given codemacro
definition.

688

PREFX and non-PREFX codemacros cannot have the same
name. The codemacro symbol being pointed to by the caret has been
defined in codemacro directives both with and without the PREFX
keyword. The last definition of the codemacro is the one that will be
in effect.

689

Missing PROC directive or previous procedure nesting error.
This ENDP directive has no matching PROC directive due to an
omission or a nesting error involving its associated PROC directive.

690

This symbol has not been defined. During Pass 1, the assembler
assumes that an undefined symbol is a forward reference. This
message occurs when the symbol is still not defined in Pass 2. The
assembler generates NOPs and continues assembly. You should
modify the code to define the symbol, or the symbol will have no
value.

691

PS cannot be destination register. PS can only be changed by
using an ASSUME directive, a BR or CALL instruction to a FAR
location, and a MOV or POP has been used to load the PS register.

B-28 Assembler Error Messages

692

Pass 1 estimate of instruction bytes insufficient. The number
of bytes reserved for an instruction as a result of a forward reference
in Pass 1 did not leave enough code space for the instruction in Pass 2.

693

This symbol is not defined as a group. The symbol before the
GROFFSET operator or following the GRSIZE operator must be a
group name. If it is not, then this error is generated.

694

Shift values greater than 31. A value for one of the shift or rotate
instructions evaluated to a value that was greater than 31. Adjust the
shift value and reassemble.

695

DS1 cannot be overridden in this string instruction. Certain
types of string instructions (e.g. MOVBK) require that their second
operand use the DS1:IY combination for their reference. In such
instances, the DS1 register cannot be overridden. Modify the program
to do such operations through the DS1 register, and reassemble.

697

Illegal character in numeric constant. An illegal character for a
numeric constant was found in the constant pointed to by the caret.
Remove the illegal character and reassemble.

Assembler Error Messages B-29

698

Illegal DUP value. A negative or zero repeat count value for a DUP
initialization was found at the location pointed to by the caret. Only
positive repeat values are allowed. Correct and reassemble.

699

No forward references allowed in EQU expressions.
The expression pointed to by the caret contains an as-yet undefined
symbol. Since this expression is being defined as an EQU symbol,
such forward references are not allowed. Eliminate the forward
reference by moving the definition of the as-yet undefined symbol in
front of this EQU definition, and reassemble.

701

This construct is invalid in the current assembly mode.
Certain constructs that are accepted only by a given assembly mode
(MODV20, MODV25, or MODV33) that aren’t accepted in the current
assembly mode will cause this error to be generated.

702

No module name specified. No NAME directive was found in the
source program. The default name, which is the basename of the
source file, will be used.

703

This symbol was previously declared public. The symbol
pointed to by the caret previously appeared in this or another PUBLIC
directive.

B-30 Assembler Error Messages

704

Too many initializations specified: remainder ignored.
When re-initializing a structure or record at allocation time, this
message is generated if more initialization values were specified than
there were fields in the structure or record.

705

This field cannot be re-initialized: value not changed.
Structure fields with many values or a DUP expression cannot be
re-initialized at allocation time.

706

Illegal initialization value: not re-initialized. An attempt was
made to initialize a structure or record field with an invalid value.

707

Location counter overflow. Addition of the current instruction or
data definition directive causes the current segment’s location counter
to exceed the value 0FFFFH, i.e. the 64k limit of a segment. The
location counter is set to the value MOD 65536.

Note This may cause previous code or data to be overwritten if this is
ignored.

708

This EQU cannot be made public. Certain types of EQU
symbols, such as those representing instructions or address
expressions, are not permitted to be declared PUBLIC.

Assembler Error Messages B-31

709

Floating point overflow: set to infinity. The number of bytes in a
floating point value exceeds the limit of a DD /DS (32 bytes), DT (80
bytes) or DQ /DL (64 bytes) directive. Assembly continues; adjust the
value to fit within the limit of the Data Directive used.

710

Floating point underflow: set to zero. The number of bytes in a
floating point value is under the limit of a DD /DS (32 bytes), DT (80
bytes) or DQ /DL (64 bytes) directive. Assembly continues; adjust the
value to fit within the limit of the Data Directive used.

711

BCD value exceeds 18 decimal digits. A packed decimal value
(DT) can take 18 digits only; anything over 18 is truncated. Assembly
continues; adjust the value to fit within the 18 digit limit.

712

Integer value exceeds 64-bit limit. This warning occurs when an
integer constant used in a DQ or DL directive has a value outside the
range 0 to FFFFFFFFFFFFFFFFH. Correct the value and reassemble.

716

This and future preprocessor statements will be ignored.
Meta characters have not been preprocessed; assembly continues. The
assembler does not process any lines with meta characters. Execute
the macro string preprocessor before assembling.

B-32 Assembler Error Messages

717

Segment limit exceeded for this segment. The specified
segment contains instructions and/or data that take up more than the
maximum allowable 64K bytes of space. Break the segment into
multiple segments or shrink the size of the segment, and reassemble.

718

Procedure not closed within this segment. A procedure (or
procedures) whose PROC directive was defined in the segment having
an ENDS directive which is currently being processed has not yet been
closed. The procedure should be closed by inserting an ENDP
directive at some point before the ENDS directive.

719

Segment not closed by end of module. One or more segments
were open at the point where the assembler found the END directive.
The segments should be closed at the appropriate point within the
source file.

720

Procedure closed in segment other than the one it was
defined in. The ENDP directive, which closes a procedure, appears
in a different segment than the one in which the matching PROC
directive appears. Make sure that the PROC and ENDP directives
reside within the same segment.

722

String truncated to 2 characters before integer conversion.
A string that appears anywhere other than in a DB directive must be
either 1 or 2 characters long. If such a string is longer than 2
characters, it will be truncated to 2 characters and converted to an
integer.

Assembler Error Messages B-33

724

Record field overflow: ’value’ modulo ’field width’ used.
If a record field initialization or reinitialization expression evaluates to
a value that won’t fit the specified record field, the appropriate modulo
operation is performed in order to force the value to fit.

726

Illegal assembly mode. The instruction pointed to by the caret is
not valid in this assembler.

727

Overriding string too large for field. If a string field in a
structure is reinitialized and the string is too long for the specified
field, the string is truncated and this warning message is displayed.

728

Source path names for debug have been truncated to 255
characters. If the assembly module was produced by the AxLS C
compiler and the full path name for the source file or any include file
is longer than 255 characters, the assembler will truncate the path
name from the left, adding an ellipsis to the name to create a total
length of 255 characters, and emit this message.

729

High-level block nesting limit exceeded: some variable
scoping lost. Nesting of high-level procedure or code blocks is
allowed up to a depth of 15. Any nesting beyond this depth will result
in the loss of information about which block symbols belong to.

800

EVEN directive cannot be in a BYTE aligned segment.
You cannot use the EVEN directive within a segment whose alignment
attribute is BYTE. In such a segment, there is no need to force the

B-34 Assembler Error Messages

alignment to be on a word boundary as it will not be any more effective
by doing so. Comment out or remove the unnecessary EVEN directive
and reassemble.

801

PS-PC initialization required for main module. Some register
initializations were provided on the END directive; however, this error
message indicates that no initialization for the PS:PC registers was
provided. If any register initializations are provided, an initialization
for PS:PC must be provided as well. Add the appropriate initialization
and reassemble.

802

Illegal initialization of SS register. It is illegal to initialize the SS
register to anything other than a segment base. In particular, group
bases are not allowed. Correct the initialization on the END directive
and reassemble.

803

Circular chain of equates. EQU symbols in a list with a length of
at least one were defined as other EQU symbols in such a way that the
last symbol in the list was defined as the first symbol in the list.
Usually, such a construct results from symbol spelling errors, or in
larger programs, widely scattered EQU definitions. Correct the
erroneous EQU definition and reassemble.

804

Illegal to use relocatables in DB, DQ, or DT. If a relocatable
value appears in an expression for a DB, DQ, DL, or DT directive, this
error is generated. Remove the relocatable value and reassemble.

Assembler Error Messages B-35

805

Variables or Labels cannot be in DB, DQ, or DT.
An expression that contains a variable or label is not allowed in a DB,
DQ, DL, or DT directive.

806

Illegal to use multiple INCLUDE controls on line. Only one
INCLUDE control is allowed on any given line containing assembler
controls. Split the control line into as many lines as necessary to
obtain control lines with only one INCLUDE control per line, and
reassemble.

807

Inconsistent AT value given for segment. A segment was
specified in a previous SEGMENT directive with a different absolute
paragraph number than is specified in the current SEGMENT
directive. The paragraph values should be the same.

808

This codemacro specifier cannot have a range.
The codemacro specmod field being pointed to by the caret is not
permitted to have an associated range. Only codemacro parameters
with specifiers A, D, G, I, R, or S can have range values.

809

Duplicate specification of alignment type. A segment directive
can only have a single alignment type as an option. This error is
generated if more than one alignment type is detected in the segment
directive.

810

Duplicate specification of combine type. A segment directive
can only have a single combine type as an option. This error is

B-36 Assembler Error Messages

generated if more than one combine type is detected in the segment
directive.

811

Duplicate specification of class name. A segment was
specified in a previous SEGMENT directive with a different class
name than is specified in the current SEGMENT directive. Both
SEGMENT directives should use the same class name.

812

Maximum source line length exceeded. An input source line
exceeded 1024 characters in length. The assembler will not accept
lines longer than this length.

813

Maximum string length exceeded. A string was defined that
exceeded 1024 characters in length. The assembler will not accept
strings longer than this length.

814

Duplicate declaration of ASGNSFR directive. Only one
ASGNSFR directive is allowed in a source file. Remove the duplicate
entry.

815

Duplicate declaration of SETIDB directive. Only one SETIDB
directive is allowed in a source file. Remove the duplicate entry.

816

SETIDB expression out of range. The SETIDB directive only
allows constant expressions in the range of 0 to 0FFH. Modify the
expression to fit within that range.

Assembler Error Messages B-37

817

assembler not in MODV25 mode The SETIDB or ASGNSFR
directives may only be used when the asv20/asv33 assembler is in
MODV25 mode. Reassemble with the MODV25 control set.

818

This codemacro specifier must have a range. The ’G’
codemacro specifier must always have a range as part of the
specification. It is not possible to match all possible registers that map
to this specification.

819

This codemacro range may only contain one argument. The
’G’ codemacro specifier may only match a single register. As such, the
range used with the specifier may only have a single register.

820

Relocatable numbers not allowed in DD. A relocatable value
was used in a DD directive, which is not allowed. Only relocatable
full addresses, segment, or group names may be used in a DD or DS
directive.

821

DS or DL directives must be on a word boundary. The DS
and DL data directives must be on a word boundary in order for 72291
floating point instructions to work correctly. It is invalid to use these
directives on an odd counter location.

822

DS or DL directives cannot be in a BYTE or INPAGE aligned
segment. The DS and DL data directives must be used in segments
that cannot be relocated to an odd address boundary. As such, it is

B-38 Assembler Error Messages

invalid to use these directives in BYTE or INPAGE aligned segments
since these segments can be placed on such a boundary.

823

FDWORD or FQWORD variables must be on a word
boundary. FDWORD and FQWORD variables must be on a word
boundary in order for 72291 floating point instructions to work
correctly. It is invalid to define these variables at an odd counter
location.

824

FDWORD or FQWORD variables cannot be in a BYTE or
INPAGE aligned segment. FDWORD and FQWORD variables
must be defined in segments that cannot be relocated to an odd address
boundary. As such, it is invalid to define these variables in BYTE or
INPAGE aligned segments since these segments can be placed on such
a boundary.

825

Codemacro argument cannot be addressed by the required
segment register. The codemacro requires that one of its
arguments be addressable through a specific segment register. The
current ASSUME contents for that register does not allow that
argument to be reached, so this error is generated.

826

Iterated Data record offset is too large for a fixup. Fixups to
object code can only occur within the first 1024 bytes of a record. In
this instance, an iterated data record is being created that is larger than
1024 bytes and requires a fixup beyond that point. This cannot be
represented in HP-OMF86 so this error is generated.

Assembler Error Messages B-39

827

OMF record length exceeds maximum value. An HP-OMF86
record can only be 64k in size. Any attempt to generate more than 64k
of text in a single HP-OMF86 record will result in this error message.

828

Codemacro instruction length exceeds 247 bytes. A single
codemacro instruction can only generate up to 247 bytes of object
code. Any instruction that generates more than that number of bytes
will result in this error message.

996

Internal error.

997

Fatal Error.

998

*** Fatal Internal Error: Unimplemented Semantics ***.

999

********** FATAL INTERNAL ERROR **********.

B-40 Assembler Error Messages

C

Macro String Preprocessor Error Messages

The Macro Preprocessor produces numbered error messages. This
appendix explains the meaning of the numeric codes. More than one
message may appear for a given source line. Each message is printed
immediately upon detection of the error (because the macro processor
is character-oriented, not line-oriented). The usual effect is for a
message to appear before any output from the source line that caused
the error. Macro error messages appear as assembler comments in the
output source file, like this:

; ***** ERROR 301

Error Codes and
Messages

301

Undefined macro name. The text following a metacharacter (%) is
not a recognized user function name or built-in macro function. The
reference is ignored, not passed to the output file, and processing
continues with the character following the name.

302

Illegal call to %EXIT. %EXIT is outside any user macros, WHILEs,
or REPEATs. The call is ignored, %EXIT is not passed to the output
file, and processing continues.

Macro String Preprocessor Error Messages C-1

303

Illegal expression. A numeric expression was expected. There
could be a missing % from a macro-time symbol or a syntax error,
among others. This message is produced when apv20/apv33 is trying
to evaluate an expression within EVAL, IF, WHILE, SUBSTR or
REPEAT. The function call is aborted (any output from it is lost) and
processing continues following the call pattern of the function. This
message is also reported when an illegal character is detected in a
string being compared with %EQS (or other string comparison
functions).

304

Logical Expression Error

305

Missing "FI". Self-explanatory. This has no effect except to produce
the message. However, the search for FI is character-by-character, so
that if FE was present when FI was expected, the F would be removed
from the output file. The E and subsequent characters would be passed
on normally.

306

Missing "THEN". Self-explanatory. The call to IF is aborted and
processing continues following the first character which failed to
match. Thus the THEN and ELSE clauses, and the ELSE and FI
keywords, will be treated as normal text and expanded normally. As
with FI, the search for THEN is character- by-character.

C-2 Macro String Preprocessor Error Messages

307

Illegal attempt to redefine macro. A built-in function cannot be
re-defined at any time. It is not possible to re-define a macro formal
parameter within the macro body or a macro name within its own body.

309

Missing balanced string. In a call to a built-in function, a required
balanced-text string delimited by parentheses is not present. This error
can also be generated when the leading left parenthesis is not found
where expected. The function call is aborted and scanning continues
from the point at which the error was detected.

310

Missing list item. A list item (delimited by commas) is missing.
The function or macro call is aborted and scanning continues from the
point where the error was detected.

311

Missing delimiter. A delimiter required when scanning of a
user-defined macro or built-in function (a comma, usually) is not
present. The macro function call is aborted and scanning continues
from the point at which the error was detected.

312

Premature EOF. The end of the input file occurred while the call to
the macro was being scanned. This usually occurs when a right
parenthesis is omitted, causing the Macro Preprocessor to scan to the
end of the file searching for it. Note that even if the closing parenthesis
of a macro call is given, this error may occur if any preceding commas
are missing, since the Macro Preprocessor searches for delimiters one
by one.

Macro String Preprocessor Error Messages C-3

313

Macro stack overflow. The macro context stack MSTAK has
overflowed. This stack is 64 deep and contains an entry for each
symbol preceded by the metacharacter. The cause of this error is
excessive recursion in macro calls or expansions; a likely source is a
user-programmed infinite loop. When this error is encountered, the
stack is emptied and all pending output destroyed; scanning continues
at the next character in the input file. This message can also be
produced to indicate that INCLUDEs were nested too deeply.

314

Nested macro error.

315

String buffer overflow. The string buffer used in conjunction with
the macro stack to save intermediate results from nested macro calls
has overflowed.

318

Illegal metacharacter. Self-explanatory. The current
metacharacter remains unchanged.

319

Unbalanced right parenthesis. During the scan of a call to a
user-defined macro, an unmatched right parenthesis was encountered.
This is frequently because of a missing argument (the right parenthesis
terminating the macro call was found when a comma was expected).
The call is aborted and scanning continues from the point at which the
error was detected.

C-4 Macro String Preprocessor Error Messages

338

Invalid symbol. A symbol (not preceded by the metacharacter) is
required in certain contexts, such as the MATCH, DEFINE and SET
functions. This symbol was not valid.

340

Literal character on SET or WHILE. The constructs %*SET and
%*WHILE make no sense and produce this message. The * is ignored,
and the Macro Preprocessor attempts to expand SET or WHILE
normally.

401

Bad or missing parameter. The parameter to a control is not
correctly formed, or a control that requires a parameter does not have
one. Typographical errors often lead to this message.

414

Unable to open include file. Self-explanatory.

901

Scan stack overflow. This error indicates that the stack used for
evaluating complex expressions has overflowed. This will not occur
for any expression likely to be useful in practice. Break the expression
into smaller ones.

906

Macro symbol table exhausted. The macro-time symbol table is
full. This table contains symbol names plus the string values of SET
and MATCH symbols.

Macro String Preprocessor Error Messages C-5

Notes

C-6 Macro String Preprocessor Error Messages

D

ASCII Codes

The Assembler will recognize the following characters. The equivalent
codes are expressed in hexadecimal notation.

ASCII Codes D-1

Char. ASCII Char. ASCII Char ASCII

blank
!
"
#
$
%
&
’
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E

Table D-1. ASCII Codes

D-2 ASCII Codes

E

Converting HP 64853 Assembly Language
Programs

Introduction This appendix documents the changes that must be made to source files
written for the HP 64853 assembler so that they can be assembled with
the HP 64873 assembler. Not everything that appears in the HP 64853
format source files can be translated into something that the HP 64873
assembler will recognize, but most can. Translation is done in two
ways. Some translations must be done manually. Most translations,
however, can be done by the acvtv20 translation program also
described in this appendix.

Note The program acvtv20 automatically performs most of the
transformations described here. acvtv20 is an unsupported porting tool.
acvtv20 is not a part of the 64873 product and is distributed at no cost.
Hewlett-Packard makes no warranty on its quality or fitness for a
particular purpose.

The first section of this appendix discusses the acvtv20 porting tool
and issues that are caused by the differences between the two
assemblers. The next section describes the manual translations to
macros that must be done because the porting tool cannot perform
some macro translations. The third section gives the command syntax
for acvtv20. The final section is an old and new list. This section is
arranged alphabetically according to keywords in HP 64853 assembly
language. It gives a side-by-side comparison between the old and new
syntax and shows you how acvtv20 transforms particular HP 64853
constructs.

Converting HP 64853 Assembly Language Programs E-1

acvtv20
Introduction

This section describes the way that acvtv20 approaches the conversion
process, what it produces, and its limitations. It also describes the
sequence you should follow to translate files that contain include files.
This section will give you a better understanding of what you will
have to do to complete the translation process.

Note The first line of an HP 64853 program identifies the target processor.
HP 64873 assembly language supports only the
70108/70116/70208/70216 and 70320/70330/70325/70335 processors.
The HP 64873 assembler does not support the 8086, 80186, 8089, or
80286 microprocessors. Therefore, the following target processor
identifiers are not recognized: "8086", "8088", "80186", "80188",
"8089_86", "8089_88", and "80286".

Assembler
Differences

The HP 64873 assembler is really two programs: the preprocessor,
apv20; and the assembler, asv20. The preprocessor implements the
following features of the old HP 64853 assembler: SET directives,
REPT directives, MACRO definitions and expansions, and
IF/ELSE/ENDIF conditional assembly directives. The assembler then
completes the process by assembling the file produced by the
preprocessor. acvtv20 translates these features in the following way.

E-2 Converting HP 64853 Assembly Language Programs

IF

IF <expr>
lines
ELSE
lines
ENDIF

translates to

%IF((<expr>)NE 0)
THEN
(lines)
ELSE
(lines)
FI

EQU

id EQU <expr>

translates to

id EQU <expr>

If <expr> is a constant expression, acvtv20 generates %SET(id,<expr>)
and acvtv20 also stores id in its symbol table. Later, when id is
referenced in preprocessor expressions, acvtv20 recognizes it and
translates it to %id.

MACRO

id MACRO &P1,&P2
lines
MEND

translates to

%*DEFINE(id(P1,P2))
(lines)

acvtv20 also stores id in its symbol table. Later, when id is referenced,
acvtv20 recognizes it and translates it to %id.

Converting HP 64853 Assembly Language Programs E-3

REPT

REPT <expr>
 next line

translates to

%REPEAT(<expr>)
(
 next line
)

SET

id SET <expr>

translates to

%SET(id, <expr>)

acvtv20 stores id in its symbol table. Later, when id is referenced,
acvtv20 recognizes it and translates it to %id.

Note Sometimes the constant expressions in IFs or REPTs cannot be
translated. HP 64853 calculates its constant expressions using 32 bit
numbers. apv20 uses only 17 bit numbers. HP 64853 allows constant
expressions to be formed by subtracting two relocatable symbols.
apv20 cannot do this because it has no knowledge of the value of
relocatable symbols.

External Declarations HP 64853 allows an external identifier to be associated with a segment
register in the EXT directive. For example:

EXT DS1:X1 WORD
MOV AW,X1 ;references X1 using DS1

If you use X1 in certain memory reference operands, the HP 64853
assembler will automatically generate an DS1: segment override for
the instruction.

E-4 Converting HP 64853 Assembly Language Programs

The HP 64873 assembler does not have an equivalent capability.
Instead, an external identifier can be associated with a segment by
placing the EXTRN directive inside a SEGMENT/ENDS pair. The
segment may then be associated with a segment register through an
ASSUME directive.

Since it would be difficult to automatically perform this kind of
rearrangement, acvtv20 instead does the following:

When an external declaration with an associated segment
register is found, acvtv20 stores the identifier and segment
register in its symbol table.

When the external identifier is referenced, acvtv20 will
generate (when appropriate) an explicit segment override. For
example, the instructions shown above would be translated to
the following.

EXTRN X1:WORD %’DS1:D:X1’
MOV AW,DS1:X1 ;references X1 using
DS1

The preprocessor comment %’DS1:D:X1’ records the information in
the original EXT directive. If, in a subsequent translation, acvtv20 sees
this comment when reading a translated include file, it can update its
symbol table just as if it saw the original declaration.

Note You should not do SET definitions, constant EQU definitions, or
"EXT segreg:id" declarations using MACRO parameters. For example:

PSWORD MACRO &P1
EXT PS:&P1 WORD
MEND
PSWORD X1

While this arrangement works perfectly well in the HP 64853
assembler, acvtv20 cannot tell that the variable X1 will have the
implied PS: override quality. It may not translate references to X1
correctly.

Converting HP 64853 Assembly Language Programs E-5

Porting Procedure—
Main Files with
INCLUDE Files

Here is a procedure for translating a main file and its INCLUDE files.
This sequence gives acvtv20 its most complete symbol table and
allows it to do the most accurate translation.

1. Translate the include files first. Use the -c option to specify
the main file as the context file. This allows definitions in the
main program to be used when translating the include file.
Furthermore, as each include file is translated, its definitions
are available for translating subsequent include files.

2. Make manual corrections to translated include files.
Typically, this means rewriting .IF, .GOTO, etc., directives in
MACROs.

3. Translate the main file(s). Make corrections to the main
file(s).

4. Assemble the main file(s) using the HP 64873
preprocessor/assembler. Correct preprocessor and assembly
errors.

For example, here are three files: prog.S, inc1, and inc2

Main File prog.S

" 70116 "
;prog.S
 EXT DS1:X1 WORD
 INCLUDE inc1
 INCLUDE inc2
 M2 ;defined in inc2
END

Include File inc1

;inc1
DISP SET 6

E-6 Converting HP 64853 Assembly Language Programs

Include File inc2

;inc2
M2 MACRO
 MOV AW,X1 ;X1 defined in prog.S
 ADD AW,DISP ;DISP defined in inc1
MEND

First, translate inc1 as follows.

$ acvtv20 -c prog.S inc1 > inc1.h

Second, translate inc2. Because of the "-c prog.S" option and because
we have already created inc1.h, acvtv20 will correctly translate the
references to X1 and DISP.

$ acvtv20 -c prog.S inc2 > inc2.h

Finally, translate prog.S. Because inc2.h exists, acvtv20 will correctly
translate the reference to macro M2.

$ acvtv20 prog.S > prog.s

acvtv20 Warnings,
 apv20 Errors,
 asv20 Errors

To do a successful port, you must pay attention to messages from three
sources.

acvtv20

acvtv20 issues warnings when it detects something that may need your
attention. For example, it issues a warning when a MACRO call has
more actual parameters than it has formal parameters in the MACRO
definition. As previously explained, the two assemblers operate
differently in this situation. Depending on how your MACRO is
written, you may or may not need to change this statement.

apv20

After translating your files, you must understand and correct
preprocessor errors. For example, errors may result from using
constant expressions whose value is too large for the 17 bit
preprocessor expression limit.

Converting HP 64853 Assembly Language Programs E-7

asv20

Finally, you must understand and correct asv20 errors. Assembler
errors have numerous causes. For example, HP 64853 allowed user
labels to duplicate instruction mnemonics (e.g. TEST). HP 64873 does
not allow this and produces a syntax error. In this case, you should
change the name of the offending label.

Code Substitution acvtv20 has a feature that allows HP 64873 code to coexist with
HP64853 code in an untranslated assembly source file. This feature is
useful when, instead of doing a one-time port, you want to maintain a
single, untranslated source file and then use acvtv20 as necessary to
obtain translated source.

acvtv20 treats the comment ";sub64873;" in a special way. When
acvtv20 sees that comment, it does the following:

Discards all the text before the ;sub64873; comment. Any
warnings generated by this text are also discarded. Note that
acvtv20’s symbol table is still updated normally if the
discarded text contains certain directives.

Writes any text following the ;sub64873; comment to
standard output without any changes.

In the example below, we want to substitute legal HP 64873 code for
the .IF and .NOP directives that acvtv20 does not translate

.IF &P1.GE.0 LAB ;sub64873;%IF(%P1
LT 0) THEN (
 DW &P1
 LAB .NOP ;sub64873;) FI

acvtv20 will produce the following output for the preceding text

%IF(%P1 LT 0) THEN (
 DW %P1
) FI

E-8 Converting HP 64853 Assembly Language Programs

Note acvtv20 only recognizes the substitution string ;sub64873; at the
beginning of the comment field. In the example below, acvtv20 will
not make a substitution because comment text precedes the ;sub64873;
string.

DW &&P1 ;indexed parameter;sub64873;
DW %P1

Converting HP 64853 Assembly Language Programs E-9

BIN, DECIMAL,
HEX, OCT

These four HP 64853 directives generate data with bytes that are
reversed from the normal V-Series convention. When translating, you
must adjust the value of operands to these directives to compensate for
this. Examples:

BIN

HP 64853 HP 64873
BIN 10110 DW 10110 0000 0000B

DECIMAL

HP 64853 HP 64873
DECIMAL 999 DW -6397

HEX

HP 64853 HP 64873
HEX ABCD DW 0CDABH

OCT

HP 64853 HP 64873
OCT 777 DW 1 774 001Q

E-10 Converting HP 64853 Assembly Language Programs

V25/35
Considerations

The HP 64853 allows the predefined Special Function Register (SFR)
names only for the ’BTCLR’ instructions, with no setup for the special
function register area. The HP 64873 allows the predefined SFR
names even for memory references. But, setup for the SFR area must
be done before using SFR names, even when only the ’BTCLR’
instructions refer to the predefined SFR names.

SFR Area Declaration

acvtv20 automatically adds the following three lines at the beginning
of the "70320" and "70330" HP 64853 programs:

SFR SEGMENT PUBLIC
SFR ENDS
ASGNSFR SFR

You can remove these, if there is no SFR name reference in the
program. Otherwise, you must make sure to locate the segment ’SFR’
within 64k of the location of the internal RAM area at link time. The
location of the internal RAM area is defined by the SETIDB directive.
For example, if you have specified the location of the internal RAM
(and SFR) area in the following way:

SFR SEGMENT PUBLIC
SFR END
ASGNSFR SFR
 :
SETIDB 12H
 :

You must locate the SFR segment at an address before 12E00H at link
time. The internal RAM and SFR registers start at that address, so any
references to these registers require the SFR segment to be within 64k
of that address.

Manual SFR-name Translation

If you have defined the SFR area in your HP 64853 programs, you
should remove the definition and modify your programs to use the
predefined SFR names.

Converting HP 64853 Assembly Language Programs E-11

Manual Macro
Translations

acvtv20 automatically translates simple MACRO definitions (i.e. those
without .IF, .SET, .GOTO, or .NOP directives and without indexed
"&&PNO" parameters). For example:

M1 MACRO &P1
 TEST &P1,AW
 BNE L1&&&&
 MOV AW,1
L1&&&&
MEND

translates to

%*DEFINE(M1(P1)) LOCAL L1 (
 TEST %P1,AW
 (BNE) %L1
 MOV AW,#1
%L1:
)

More complicated structures must be translated manually. Generally,
this can always be done except when .IF or .SET expressions use
symbol values which cannot be calculated at preprocessor time. The
following sections illustrate techniques for translating typical
structures.

.IF, .GOTO, and .NOP
Directives

The HP 64853 .IF, .GOTO, and .NOP conditional assembly directives
must be manually translated into the HP 64873 %IF preprocessor
directives. For example:

.IF &P1.LT.0 L1

.IF &P1.GT.10 L1
 MOV AW,&P1
.GOTO L2
L1 .NOP
 MOV AW,#1
L2 .NOP

translates to:

E-12 Converting HP 64853 Assembly Language Programs

%IF(%P1 GE 0 AND %P1 LE 10) THEN
(MOV AW,%P1
) ELSE
(MOV AW,1
) FI

If the branches in your MACRO do not define a block structure, you
must rearrange the MACRO to conform to the IF/THEN/ELSE
structure of apv20.

Looping Structures Macros branches which do loops can be translated into %REPEAT or
%WHILE structures. For example

COUNT .SET &CNT
 LOOP .NOP
DW &VALUE
 COUNT .SET COUNT-1
 .IF COUNT.GT.0 LOOP

translates to

%REPEAT(%CNT)
(DW %VALUE
)

Numeric, String, and
Null Comparisons

The HP 64853 .IF directive performs either numeric or string
comparisons depending on the operands being compared. Numeric
comparisons must translate into apv20 numeric expressions; string
comparisons must use the apv20 preprocessor string comparison
functions. Examples:

A numeric comparison.

HP 64853 HP 64873
.IF &P1.EQ.0 L1 %IF(%P1 NE
0) THEN

A string comparison.

HP 64853 HP 64873
.IF "&P1".EQ."0"
%IF(%NES(%P1,0)) THEN

HP 64853 allowed a null parameter either to be the null string ("") or
to be omitted entirely (except for a comma placeholder). Here is how

Converting HP 64853 Assembly Language Programs E-13

to test for an omitted or null macro parameter. Check for both of these
possibilities in your translated .IF directive. Example:

HP 64853 HP 64873
.IF &P1 .EQ. "" L1
%IF(%NES(%P1,) AND

%NES(%P1,’’)) THEN

Indexed Parameters HP 64853 allows MACRO parameters to be referenced by number. HP
64873 has no equal facility. Two translation techniques can be used.

1. Use %*DEFINE to make a new identifier which has the value
of the indexed parameter. For example:

HP 64853 HP 64873

M1 MACRO &P1,&P2 %*DEFINE(M1(P1,P2)) (
IP .SET 1 %IF(%NES(%P1,) AND %NES(%P1,’’)) THEN
 .IF &P1.EQ."" L1 (%*DEFINE(IP) (%P1)) ELSE
IP .SET 2 (%*DEFINE(IP) (%P2)) FI
L1 .NOP
 DW &&IP DW IP
 MEND)

2. Sometimes a MACRO indexes an indefinite number of
parameters. This can be handled with the %MATCH
function. For example, the following MACRO defines one
word for each actual parameter. It stops on the first null
parameter or at the end of the list.

HP 64853 HP 64873

WORDS MACRO &P1 %*DEFINE(WORDS(P1)) (
INDEX .SET 1 %MATCH(NEXT,REST) (%P1)
LOOP .IF &&INDEX.EQ."" E1 %WHILE(%NES(%NEXT,) AND %NES(%NEXT,’’))
 DW &&INDEX (DW %NEXT
INDEX .SET INDEX+1 %MATCH(NEXT,REST) (%REST)
 .GOTO LOOP)
E1 MEND)

E-14 Converting HP 64853 Assembly Language Programs

Macro Calls Sometimes, a MACRO call specifies a different number of actual
parameters than formal parameters in the MACRO definition. acvtv20
records the number of formal parameters in a MACRO definition. It
automatically handles the first two of three situations described below.
The third situation usually requires a manual change.

1. If you specify fewer actual parameters than there are formal
parameters, apv20 will error and not expand the macro. To
prevent this, acvtv20 automatically generates additional null
parameters on the macro call.

2. If you specify actual parameters and no formal parameters
were declared, apv20 does not consume the actual parameter
list and they eventually cause a syntax error. To prevent this,
acvtv20 suppresses the actual parameter list.

3. If you specify more actual parameters than formal parameters,
apv20 acts as follows: the value of the last formal parameter is
equal to the value of its corresponding actual parameter
concatenated with all the additional actual parameters and
comma delimiters. Any reference to the last formal parameter
will generate a different value than it did in the HP 64853
assembler. acvtv20 issues a warning in this case. You should
either eliminate the extra actual parameters or rewrite the
macro to preserve its original function.

Converting HP 64853 Assembly Language Programs E-15

acvtv20(1)
Command Syntax

Note The program acvtv20 automatically performs most of the
transformations described here. acvtv20 is an unsupported porting tool.
acvtv20 is not a part of the 64873 product and is distributed at no cost.
Hewlett-Packard makes no warranty on its quality or fitness for a
particular purpose.

Name

acvtv20 - converts 8086 assembly programs from HP 64853 format to
HP 64873 format

Synopsis

/usr/contrib/bin/acvtv20 [-dsw][-a
align]
 [-c context] [-h
suffix][file]

Description

acvtv20 translates assembly source programs from one dialect to
another. It assumes the input file is a legal 70108, 70116, 70320, or
70330 assembly program for the HP 64853 assembler. The output may
be assembled with the HP 64873 assembler.

acvtv20 does not translate "8086", "8088", "80186", "80188",
"8089_86", "8089_88", or "80286" programs that were accepted by
the HP 64853 assembler. Programs for these microprocessors are also
not accepted by the HP 64873 assembler.

acvtv20 reads from standard input or the named file. It writes the
translated assembly to standard output. It writes warnings about
functional differences between the input and output to standard error.

E-16 Converting HP 64853 Assembly Language Programs

acvtv20 supports a one-time porting of assembly programs from one
product to another. The objective is to obtain the same (or functionally
equal) bits from the HP 64873 assembler as from the HP 64853
assembler. acvtv20 changes directives, delimiters, operators, and so on
to achieve this goal. However, because of differences between the two
assemblers, this porting process cannot be entirely automatic or trivial.

acvtv20 makes two passes over its input file. The first pass builds a
symbol table of certain identifiers (MACROS, externals, etc.) that will
effect the translation; the second pass performs the translation.

acvtv20 may look at other files to supplement its symbol table. The -c
contextfile option incorporates the definitions from contextfile in the
present translation. Typically, a contextfile is a main, untranslated
assembly module while the present file is an INCLUDE file of
contextfile. Whenever acvtv20 encounters an INCLUDE directive
(either in contextfile or the present input), it attempts to open the
already translated include file and read its definitions. (See the -h suffix
option for include file naming conventions.)

acvtv20 has a code substitution feature. It allows HP 64873 code to
coexist with HP 64853 code in the same untranslated file. Refer to the
section "Code Substitution" for more information.

acvtv20 was implemented with lex(1) and yacc(1). The source code is
available in /usr/contrib/src/acvtv20/.

Options

-c context Scan the context file (and translated INCLUDE
files mentioned in it) for definitions to use
when translating file. This option is useful
when translating INCLUDE files. Specifying a
context allows acvtv20 to accurately translate
references to certain identifiers (MACROS,
externals, etc.) that were defined in the main
"context" file or its (translated) INCLUDE
files.

-a align Align is one of the HP 64873 align-types of
BYTE, WORD, PARA, PAGE, INPAGE.
Specify the align-type used in segment
directives for relocatable segments. The

Converting HP 64853 Assembly Language Programs E-17

default align-type of BYTE duplicates the
alignment behavior of the HP 64853 assembler.
However, the HP 64873 assembler errors when
an EVEN directive occurs within a BYTE
aligned segment. If EVEN directives will be
used, use the -a WORD option.

-d (differences) acvtv20 writes pairs of
input/output lines only when they are different.
This output is not suitable for subsequent
assembly.

-h suffix Specifies the suffix (default .h) which is added
to file names in INCLUDE directives to form
the name of the "translated" include file. If the
file name in the INCLUDE directive has a
suffix (i.e. contains a period) then suffix
replaces the original suffix. Otherwise, suffix
is appended to the original file name.

For example, suppose an HP 64853 program contained the following
directive.

INCLUDE file.H

acvtv20 would translate this to the following HP 64873 control.

$INCLUDE(file.h)

It would also assume that file.H had already been translated into file.h
and attempt to read file.h before continuing with the present
translation.

-s (silent) Suppress warnings to standard error.

-w (warn) Include warning messages (as comment
lines) in the standard output following the
appropriate translated line.

E-18 Converting HP 64853 Assembly Language Programs

Files /usr/contrib/bin/acvtv20

Executable file for assembly language porting
tool.

/usr/contrib/src/acvtv20/*

Source code files and make file for assembly
language porting tool.

See Also HP 64873 V-Series Advanced Cross Assembler/Macro Preprocessor
Reference Manual, Cross Assembler/Linker 8086/8088 Series and
70108/70116/70320, apv20(1), asv20(1), asm(1).

Diagnostics acvtv20 returns non-zero if errors occur while performing I/O
operations or while parsing the command line. Otherwise it returns
zero.

Warning messages and the source lines which caused them are written
to standard error.

Bugs acvtv20 performs a limited set of transformations. Errors may occur
when assembling the output. The object code from the 64853 assembly
may not be the same as from the 64873 assembly.

acvtv20 may detect a syntax error reading a legal HP 64853 program.
The syntax of the HP 64853 assembly language is irregular.
Occasionally, a legal assembler statement will be unacceptable to the
translator. acvtv20 will issue a warning when it detects a syntax error.
The offending statement must be translated manually.

Converting HP 64853 Assembly Language Programs E-19

Old and New List This section provides a side-by-side comparison of the HP 64853
constructs with the HP 64873 constructs. It is organized alphabetically
by the HP 64853 keywords for the most part. There are some instances
of general classifications, such as "Reserved Words" or "Operator
Field." acvtv20 performs most of the conversions shown in this section.

ASCII

HP 64853 HP 64873
ASCII ’ABC’ DB ’ABC’

ALIGN

HP 64853 HP 64873
label ALIGN EVEN
 label:

In HP 64873 assembly language, EVEN directives cause errors if they
appear in segments with align-types of BYTE. Use an align-type of
WORD if you want to use the EVEN directive. Any label may appear
on the following line.

ASSUME

HP 64853 HP 64873
ASSUME segreg:ORG ASSUME
segreg:abs_segname

Most ASSUME directives need not be changed when moving to the HP
64873 assembler. However, when referring to absolute (for instance,
ORGed) segment, you must do things differently. Briefly, when
translating the ORG directive, you must create a named absolute
segment using the SEGMENT directive. The ASSUME directive
should then refer to this segment name. (See ORG for more
information.)

E-20 Converting HP 64853 Assembly Language Programs

COMN

HP 64853 HP 64873
label COMN <prevproc> END
 <prevseg> ENDS
 COMN SEGMENT BYTE
COMMON
 label:

Issue an ENDP to end the previous PROC, if necessary. Issue an ENDS
directive to end the previous segment, if necessary. Any label must
appear on the line following the directive.

DATA

HP 64853 HP 64873HP 64873

label DATA <prevproc> ENDP
 <prevseg> ENDS
 DATA SEGMENT BYTE
PUBLIC
 label:

Issue an ENDP to end the previous PROC, if necessary. Issue an ENDS
directive to end the previous segment, if necessary. Any label must
appear on the line following the directive.

DBS

HP 64853 HP 64873
DBS <expr> DB <expr> DUP (?)

DDS

HP 64853 HP 64873
DDS <expr> DD <expr> DUP (?)

DWS

HP 64853 HP 64873

Converting HP 64853 Assembly Language Programs E-21

DWS <expr> DW <expr> DUP (?)

<EOF>

HP 64853 HP 64873
<EOF> <prevproc> ENDP
 <prevseg> ENDS
 END
 <EOF>

Add an END directive to the module if not already present. Also, issue
ENDP and ENDS directives if necessary.

EQU

HP 64853 HP 64873
id EQU <expr> id EQU <expr>
 %SET(id, <expr>)

If an EQU label is ever referenced in a preprocessor expression (IF,
REPT, or SET), then you must define that label for the preprocessor
using the %SET directive. References to id in preprocessor
expressions must be changed to %id.

EXPAND

HP 64853 HP 64873
EXPAND ;EXPAND

The EXPAND function cannot be translated.

EXT

HP 64853 HP 64873
EXT id EXTRN id:NEAR
EXT id type EXTRN id:type
EXT segreg:id type EXTRN id:type

The HP 64853 declaration "EXT segreg:id" causes an automatic
segment override when id is used in a memory reference operand. The

E-22 Converting HP 64853 Assembly Language Programs

HP 64873 assembler does not have an equal feature. Two approaches
can be used to obtain the same code. You can either find all the
references to id and add an explicit segment override to the operand
when appropriate, or, place all the EXTRN directives with a particular
associated segment register inside a segment. In the second case, you
then must make sure an ASSUME directive is in effect for the proper
segment register when the external identifiers are used.

GLB

HP 64853 HP 64873
GLB id PUBLIC id

IF (Macro)

HP 64853 HP 64873
IF <expr> %IF((<expr>) NE
0) THEN
 lines (lines
ELSE) ELSE
 lines (lines
ENDIF) FI

The constant expression in the IF directive must be calculated by the
preprocessor. All identifiers that appear in the expression must be
defined in %SET directives and referenced as %id.

INCLUDE Control

HP 64853 HP 64873
INCLUDE "file" $INCLUDE(file)

LABEL Directive

HP 64853 HP 64873
id LABEL id LABEL NEAR

Converting HP 64853 Assembly Language Programs E-23

Most LABEL directives need no changes. The exception is those
which omit the implied NEAR type.

Label Field

 HP 64853 HP 64873
 label: directive label directive

 label instruction label: instruction

 label macroname operands label: %macroname(operands)

Colons following labels are now significant. With the HP 64853
assembler, a colon following a label was optional. HP 64873
assembler prohibits a colon on a label for an assembler directive.
HP64873 assembler requires a colon on a label for a blank line, an
instruction, and a macro definition.

LIST

HP 64853 HP 64873
LIST $LIST
LIST n $PAGELENGTH(n)
LIST

Note PAGELENGTH is a primary control. It, and other HP 64873 primary
controls, must be placed at the beginning of the file before any
executable statements.

MACRO

HP 64853 HP 64873
M1 MACRO &P1 %*DEFINE(M1(P1))
(
anything &P1 anything %P1
MEND)

E-24 Converting HP 64853 Assembly Language Programs

Translate MACRO definitions and references to macro parameters as
shown.

MASK

HP 64853 HP 64873
MASK ;MASK

The MASK function cannot be translated. You must find any ASC
directives which are affected and change the operands.

NAME

HP 64853 HP 64873
NAME ;NAME

The NAME function, which puts a comment in the relocatable object
module, cannot be translated.

NOLIST

HP 64853 HP 64873
NOLIST $NOLIST

NOWARN

HP 64853 HP 64873
NOWARN ;NOWARN

The NOWARN function cannot be translated.

Operator Field

HP 64853 HP 64873
.AN. AND
.EQ. EQ
.GE. GE
.GT. GT

Converting HP 64853 Assembly Language Programs E-25

.LE. LE

.LT LT

.NE. NE

.NT. NOT

.OR. OR

.SL. SHL

.SR. SHR

HP 64853 HP 64873
#1234 1234

Remove the pound sign before literal operands.

Within a string, make the following translations.

A quote (’) becomes two quotes in series (’’).

To the macro preprocessor, the percent sign, left parenthesis,
and right parenthesis are special characters. You should add
a preprocessor escape sequence to percent and to unbalanced
parentheses to avoid processor errors.

HP 64873 string delimiters are different.

HP 64853 HP 64873
"string" ’string’
^string^ ’string’
’string’ ’string’

ORG

HP 64853 HP 64873
label ORG <prevproc> ENDP
 <prevseg> ENDS
 abs_seg SEGMENT AT
PARA_VAL
 ORG
OFFSET_VAL
 label:

E-26 Converting HP 64853 Assembly Language Programs

The HP 64853 ORG directive begins an absolute segment. Translate
as follows.

Issue an ENDP to end the previous PROC, if necessary.

Issue an ENDS to end the previous segment, if necessary.

The upper 16 bits of the ORG expression represents the
segment value and the lower 16 bits represent the offset. You
must extract the paragraph value and the offset manually
because the HP 64873 does not do 32 bit arithmetic.

Start an absolute segment, using the AT keyword, at the
paragraph value.

Set the offset using the ORG directive.

Any label must follow the ORG to retain its original value. It
is not necessary to create a new absolute segment for every
ORG directive. Several ORGed sections (with the same
segment values) may be combined. The HP 64873 ORG
directive may be used to set the offset with the absolute
segment.

PROC

HP 64853 HP 64873
label PROC type <prevproc> ENDP
 label PROC type
PROC FAR <prevproc> ENDP
 dummy PROC FAR

Issue an ENDP to end the previous procedure if necessary.

An unlabeled PROC directive is only useful for its effect on subsequent
RET instructions. If the unlabeled PROC has type FAR, create a
dummy PROC to retain the same behavior. This dummy procedure is
unnecessary if the type of the unlabeled PROC is NEAR because HP
64873, by default, creates NEAR return instructions when RETs
appear outside of any procedure.

Converting HP 64853 Assembly Language Programs E-27

PROG

HP 64853 HP 64873
label PROG <prevseg> ENDS
 PROG SEGMENT BYTE
PUBLIC
 label:

Issue an ENDS directive to end the previous segment if necessary. Any
label must appear on the line following the directive.

REAL

HP 64853 HP 64873
REAL number

The REAL directive cannot be translated. REAL is not useful because
the byte order of its numbers is opposite the V-Series convention. Use
DD, DQ, or DT to create useful real numbers.

Reserved Words

HP 64853 HP 64873
TEST EQU 0 TESTx EQU 0

HP 64873 assembler recognizes more reserved identifiers. HP 64853
assembly language allowed you to define labels that were spelled the
same as either instruction mnemonics or assembler directives. HP
64873 assembler does not allow reserved word duplication. Change the
spelling of identifiers that duplicate reserved words.

SPC

HP 64853 HP 64873
SPC

The SPC function can only be translated into an equal number of
empty source lines.

E-28 Converting HP 64853 Assembly Language Programs

SKIP

HP 64853 HP 64873
SKIP $EJECT

TITLE

HP 64853 HP 64873
TITLE ’string’ $TITLE(string)

WARN

HP 64853 HP 64873
WARN ;WARN

The WARN function cannot be translated.

* (Comment)

HP 64853 HP 64873
* comment ; comment
instr operand comment
 instr operand
;comment

HP 64853 sometimes allows comments to begin with an asterisk and
sometimes does not require any delimiter. HP 64873 requires all
comments to begin with semicolon. Blank lines do not need to begin
with a semicolon.

Converting HP 64853 Assembly Language Programs E-29

INTEL2NEC(1)

Name intel2nec - convert Intel 8086/186 assembly source into NEC V20
assembly source.

Synopsis /usr/contrib/bin/intel2nec < intel_src_file > nec_src_file

Note This utility program is unsupported. It is not a part of any HP product
and is provided at no cost. Hewlett-Packard makes no warranty on its
quality or fitness for a particular purpose.

Description Intel2nec accepts input from standard input and writes a translated
version to standard output. The input is expected to be Intel
8086/80186 assembly language. The intel2nec translator converts the
8086/80186 assembly instructions into their equivalent NEC V20
assembly instructions. The translator also converts those controls that
are defined differently. The output should be usable in the HP 64873
V-Series assembler, asv20.

The intel2nec translator is implemented using the lex(1) program. The
lex source file for the translator is shipped with the product, so the
translator can be modified as needed to meet your needs. It is,
however, fairly robust for normal use.

See Also asv20(1), ldv20(1), V-Series Assembler/Linker Reference Manual.

Diagnostics Intel2nec always returns zero.

Bugs Intel2nec also translates comment text. While this is normally
acceptable, it can create odd results.

E-30 Converting HP 64853 Assembly Language Programs

F

V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

00 00000000 MOD REG R/M ADD EA,REG BYTE ADD (REG) TO EA

01 00000001 MOD REG R/M ADD EA,REG WORD ADD (REG) TO EA

02 00000010 MOD REG R/M ADD REG,EA BYTE ADD (EA) TO REG

03 00000011 MOD REG R/M ADD REG,EA WORD ADD (EA) TO REG

04 00000100 ADD AL,DATA8 BYTE ADD DATA TO REG AL

05 00000101 ADD AW,DATA16 WORD ADD DATA TO REG
AW

06 00000110 PUSH DS1 PUSH (DS1) ON STACK

07 00000111 POP DS1 POP STACK TO REG DS1

08 00001000 MOD REG R/M OR EA,REG BYTE OR (REG) TO EA

09 00001001 MOD REG R/M OR EA,REG WORD OR (REG) TO EA

0A 00001010 MOD REG R/M OR REG,EA BYTE OR (EA) TO REG

0B 00001011 MOD REG R/M OR REG,EA WORD OR (EA) TO REG

0C 00001100 OR AL,DATA8 BYTE OR DATA TO REG AL

0D 00001101 OR AW,DATA16 WORD OR DATA TO REG AW

Table F-1. V-Series and 8087 Instructions

V-Series Instructions in Hexadecimal Order F-1

Hex Binary MODRM Byte Instruction Parameters Function

0E 00001110 PUSH PS PUSH (PS) ON STACK

0F 00001111 00010000 TEST1 EA8,CL Test bit, store result

0F 00001111 00010001 TEST1 EA16,CL Test bit, store result

0F 00001111 00010010 CLR1 EA8,CL Clear bit

0F 00001111 00010011 CLR1 EA16,CL Clear bit

0F 00001111 00010100 SET1 EA8,CL Set bit

0F 00001111 00010101 SET1 EA16,CL Set bit

0F 00001111 00010110 NOT1 EA8,CL Invert bit

0F 00001111 00010111 NOT1 EA16,CL Invert bit

0F 00001111 00011000 TEST1 EA8,DATA3 Test bit, store result

0F 00001111 00011001 TEST1 EA16,DATA4 Test bit, store result

0F 00001111 00011010 CLR1 EA8,DATA3 Clear bit

0F 00001111 00011011 CLR1 EA16,DATA4 Clear bit

0F 00001111 00011100 SET1 EA8,DATA3 Set bit

0F 00001111 00011101 SET1 EA16,DATA4 Set bit

0F 00001111 00011110 NOT1 EA8,DATA3 Invert bit

0F 00001111 00011111 NOT1 EA16,DATA4 Invert bit

0F 00001111 00100010 SUB4S Subtract Nibble String

0F 00001111 00100101 MOVSPA Move Stack Pointer

0F 00001111 00100110 CMP4S Compare Nibble String

0F 00001111 00101000 ROL4 EA8 Rotate Nibble Left

0F 00001111 00101010 ROR4 EA8 Rotate Nibble Right

F-2 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

0F 00001111 00110001 INS REG8,REG8 Insert Bit Field

0F 00001111 00110011 EXT REG8,REG8 Extract Bit Field

0F 00001111 00111001 INS REG8,IMM4 Insert Bit Field

0F 00001111 00111011 EXT REG8,IMM4 Extract Bit Field

0F 00001111 10010001 RETRBI Return From Bank Switch

0F 00001111 10010010 FINT Finish Interrupt

0F 00001111 10010100 TSKSW REG16 Perform Task Switch

0F 00001111 10010101 MOVSPB REG16 Move Stack Before Switch

0F 00001111 10011100 BTCLR SFR,DATA3,
DISP8

Branch if True and Clear

0F 00001111 10011101 BRKCS REG16 Break with Context Switch

0F 00001111 10011110 STOP Enter Stop Mode

0F 00001111 11100000 BRKXA imm8 entered extended-memory mode

0F 00001111 11110000 RETXA imm8 return from extended-memory
mode

0F 00001111 11111111 BRKEM Enter 8080 emulation mode

10 00010000 MOD REG R/M ADDC EA,REG BYTE ADD (REG) W/ CARRY
TO EA

11 00010001 MOD REG R/M ADDC EA,REG WORD ADD (REG) W/ CARRY
TO EA

12 00010010 MOD REG R/M ADDC REG,EA BYTE ADD (EA) W/ CARRY
TO REG

13 00010011 MOD REG R/M ADDC REG,EA WORD ADD (EA) W/ CARRY
TO REG

V-Series Instructions in Hexadecimal Order F-3

Hex Binary MODRM Byte Instruction Parameters Function

14 00010100 ADDC AL,DATA8 BYTE ADD DATA W/CARRY
TO REG AL

15 00010101 ADDC AW,DATA16 WORD ADD DATA W/ CARRY
TO REG AW

16 00010110 PUSH SS PUSH (SS) ON STACK

17 00010111 POP SS POP STACK TO REG SS

18 00011000 MOD REG R/M SUBC EA,REG BYTE SUB (REG) W/
BORROW FROM EA

19 00011001 MOD REG R/M SUBC EA,REG WORD SUB (REG) W/
BORROW FROM EA

1A 00011010 MOD REG R/M SUBC REG,EA BYTE SUB (EA) W/ BORROW
FROM REG

1B 00011011 MOD REG R/M SUBC REG,EA WORD SUB (EA) W/ BORROW
FROM REG

1C 00011100 SUBC AL,DATA8 BYTE SUB DATA W/
BORROW FROM REG AL

1D 00011101 SUBC AW,DATA16 WORD SUB DATA W/
BORROW FROM REG AW

1E 00011110 PUSH DS0 PUSH (DS0) ON STACK

1F 00011111 POP DS0 POP STACK TO REG DS0

20 00100000 MOD REG R/M AND EA,REG BYTE AND (REG) TO EA

21 00100001 MOD REG R/M AND EA,REG WORD AND (REG) TO EA

22 00100010 MOD REG R/M AND REG,EA BYTE AND (EA) TO REG

23 00100011 MOD REG R/M AND REG,EA WORD AND (EA) TO REG

24 00100100 AND AL,DATA8 BYTE AND DATA TO REG AL

F-4 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

25 00100101 AND AW,DATA16 WORD AND DATA TO REG
AW

26 00100110 DS1: SEGMENT OVERIDE W/
SEGMENT REG DS1

27 00100111 ADJ4A DECIMAL ADJUST FOR ADD

28 00101000 MOD REG R/M SUB EA,REG BYTE SUBTRACT (REG)
FROM EA

29 00101001 MOD REG R/M SUB EA,REG WORD SUBTRACT (REG)
FROM EA

2A 00101010 MOD REG R/M SUB REG,EA BYTE SUBTRACT (EA) FROM
REG

2B 00101011 MOD REG R/M SUB REG,EA WORD SUBTRACT (EA)
FROM REG

2C 00101100 SUB AL,DATA8 BYTE SUBTRACT DATA
FROM REG AL

2D 00101101 SUB AW,DATA16 WORD SUBTRACT DATA
FROM REG AW

2E 00101110 PS: SEGMENT OVERIDE W/
SEGMENT REG PS

2F 00101111 ADJ4S DECIMAL ADJUST FOR
SUBTRACT

30 00110000 MOD REG R/M XOR EA,REG BYTE XOR (REG) TO EA

31 00110001 MOD REG R/M XOR EA,REG WORD XOR (REG) TO EA

32 00110010 MOD REG R/M XOR REG,EA BYTE XOR (EA) TO REG

33 00110011 MOD REG R/M XOR REG,EA WORD XOR (EA) TO REG

34 00110100 XOR AL,DATA8 BYTE XOR DATA TO REG AL

V-Series Instructions in Hexadecimal Order F-5

Hex Binary MODRM Byte Instruction Parameters Function

35 00110101 XOR AW,DATA16 WORD XOR DATA TO REG
AW

36 00110110 SS: SEGMENT OVERIDE W/
SEGMENT REG SS

37 00110111 ADJBA ASCII ADJUST FOR ADD

38 00111000 MOD REG R/M CMP EA,REG BYTE COMPARE (EA) WITH
(REG)

39 00111001 MOD REG R/M CMP EA,REG WORD COMPARE (EA) WITH
(REG)

3A 00111010 MOD REG R/M CMP REG,EA BYTE COMPARE (REG) WITH
(EA)

3B 00111011 MOD REG R/M CMP REG,EA WORD COMPARE (REG)
WITH (EA)

3C 00111100 CMP AL,DATA8 BYTE COMPARE DATA WITH
(AL)

3D 00111101 CMP AW,DATA16 WORD COMPARE DATA
WITH (AW)

3E 00111110 DS0: SEGMENT OVERIDE W/
SEGMENT REG DS0

3F 00111111 ADJBS ASCII ADJUST FOR
SUBTRACT

40 01000000 INC AW INCREMENT (AW)

41 01000001 INC CW INCREMENT (CW)

42 01000010 INC DW INCREMENT (DW)

43 01000011 INC BW INCREMENT (BW)

44 01000100 INC SP INCREMENT (SP)

F-6 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

45 01000101 INC BP INCREMENT (BP)

46 01000110 INC IX INCREMENT (IX)

47 01000111 INC IY INCREMENT (IY)

48 01001000 DEC AW DECREMENT (AW)

49 01001001 DEC CW DECREMENT (CW)

4A 01001010 DEC DW DECREMENT (DW)

4B 01001011 DEC BW DECREMENT (BW)

4C 01001100 DEC SP DECREMENT (SP)

4D 01001101 DEC BP DECREMENT (BP)

4E 01001110 DEC IX DECREMENT (IX)

4F 01001111 DEC IY DECREMENT (IY)

50 01010000 PUSH AW PUSH (AW) ON STACK

51 01010001 PUSH CW PUSH (CW) ON STACK

52 01010010 PUSH DW PUSH (DW) ON STACK

53 01010011 PUSH BW PUSH (BW) ON STACK

54 01010100 PUSH SP PUSH (SP) ON STACK

55 01010101 PUSH BP PUSH (BP) ON STACK

56 01010110 PUSH IX PUSH (IX) ON STACK

57 01010111 PUSH IY PUSH (IY) ON STACK

58 01011000 POP AW POP STACK TO REG AW

59 01011001 POP CW POP STACK TO REG CW

5A 01011010 POP DW POP STACK TO REG DW

V-Series Instructions in Hexadecimal Order F-7

Hex Binary MODRM Byte Instruction Parameters Function

5B 01011011 POP BW POP STACK TO REG BW

5C 01011100 POP SP POP STACK TO REG SP

5D 01011101 POP BP POP STACK TO REG BP

5E 01011110 POP IX POP STACK TO REG IX

5F 01011111 POP IY POP STACK TO REG IY

60 01100000 PUSH R PUSH ALL DATA

61 01100001 POP R POP ALL DATA

62 01100010 MOD REG R/M CHKIND REG,EA CHECK INDEX IN REG
AGAINST BOUNDS AT EA

63 01100011 (not used)

64 01100100 (not used)

65 01100101 (not used)

66 01100110 FP02 Floating Point Instructions

67 01100111 (not used)

68 01101000 PUSH DATA16 PUSH WORD DATA ON
STACK

69 01101001 MOD REG R/M MUL REG,EA,
DATA16

MULTIPLY (EA) BY WORD
DATA; SIGNED

6A 01101010 PUSH DATA8 PUSH BYTE DATA ON
STACK; SIGN-EXTEND

6B 01101011 MOD REG R/M MUL REG,EA,
DATA8

MULTIPLY (EA) BY BYTE
DATA; SIGNED

6C 01101100 INM DST8 BYTE INPUT

6D 01101101 INM DST16 WORD INPUT

F-8 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

6E 01101110 OUTM DST8 BYTE OUTPUT

6F 01101111 OUTM DST16 WORD OUTPUT

70 01110000 BV DISP8 JUMP ON OVERFLOW

71 01110001 BNV DISP8 JUMP ON NOT OVERFLOW

72 01110010 BC/BL DISP8 JUMP ON BELOW/NOT
ABOVE OR EQUAL

73 01110011 BNC/BNL DISP8 JUMP ON NOT
BELOW/ABOVE OR EQUAL

74 01110100 BE/BZ DISP8 JUMP ON EQUAL/ZERO

75 01110101 BNE/BNZ DISP8 JUMP ON NOT EQUAL/NOT
ZERO

76 01110110 BNH DISP8 JUMP ON BELOW OR
EQUAL/NOT ABOVE

77 01110111 BH DISP8 JUMP ON NOT BELOW OR
EQUAL/ABOVE

78 01111000 BN DISP8 JUMP ON SIGN

79 01111001 BP DISP8 JUMP ON NOT SIGN

7A 01111010 BPE DISP8 JUMP ON PARITY/PARITY
EVEN

7B 01111011 BPO DISP8 JUMP ON NOT
PARITY/PARITY ODD

7C 01111100 BLT DISP8 JUMP ON LESS/NOT
GREATER OR EQUAL

7D 01111101 BGE DISP8 JUMP ON NOT
LESS/GREATER OR EQUAL

V-Series Instructions in Hexadecimal Order F-9

Hex Binary MODRM Byte Instruction Parameters Function

7E 01111110 BLE DISP8 JUMP ON LESS OR
EQUAL/NOT GREATER

7F 01111111 BGT DISP8 JUMP ON NOT LESS OR
EQUAL/GREATER

80 10000000 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA

80 10000000 MOD 001 R/M OR EA,DATA8 BYTE OR DATA TO EA

80 10000000 MOD 010 R/M ADDC EA,DATA8 BYTE ADD DATA W/CARRY
TO EA

80 10000000 MOD 011 R/M SUBC EA,DATA8 BYTE SUB DATA W/BORROW
FROM EA

80 10000000 MOD 100 R/M AND EA,DATA8 BYTE AND DATA TO EA

80 10000000 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA
FROM EA

80 10000000 MOD 110 R/M XOR EA,DATA8 BYTE XOR DATA TO EA

80 10000000 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA WITH
(EA)

81 10000001 MOD 000 R/M ADD EA,DATA16 WORD ADD DATA TO EA

81 10000001 MOD 001 R/M OR EA,DATA16 WORD OR DATA TO EA

81 10000001 MOD 010 R/M ADDC EA,DATA16 WORD ADD DATA W/CARRY
TO EA

81 10000001 MOD 011 R/M SUBC EA,DATA16 WORD SUB DATA W/
BORROW FROM EA

81 10000001 MOD 100 R/M AND EA,DATA16 WORD AND DATA TO EA

81 10000001 MOD 101 R/M SUB EA,DATA16 WORD SUBTRACT DATA
FROM EA

81 10000001 MOD 110 R/M XOR EA,DATA16 WORD XOR DATA TO EA

F-10 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

81 10000001 MOD 111 R/M CMP EA,DATA16 WORD COMPARE DATA
WITH (EA)

82 10000010 MOD 000 R/M ADD EA,DATA8 BYTE ADD DATA TO EA

82 10000010 MOD 001 R/M (not used)

82 10000010 MOD 010 R/M ADDC EA,DATA8 BYTE ADD DATA W/ CARRY
TO EA

82 10000010 MOD 011 R/M SUBC EA,DATA8 BYTE SUB DATA W/
BORROW FROM EA

82 10000010 MOD 100 R/M (not used)

82 10000010 MOD 101 R/M SUB EA,DATA8 BYTE SUBTRACT DATA
FROM EA

82 10000010 MOD 110 R/M (not used)

82 10000010 MOD 111 R/M CMP EA,DATA8 BYTE COMPARE DATA WITH
(EA)

83 10000011 MOD 000 R/M ADD EA,DATA8 WORD ADD DATA TO EA

83 10000011 MOD 001 R/M (not used)

83 10000011 MOD 010 R/M ADDC EA,DATA8 WORD ADD DATA W/ CARRY
TO EA

83 10000011 MOD 011 R/M SUBC EA,DATA8 WORD SUB DATA W/
BORROW FROM EA

83 10000011 MOD 100 R/M (not used)

83 10000011 MOD 101 R/M SUB EA,DATA8 WORD SUBTRACT DATA
FROM EA

83 10000011 MOD 110 R/M (not used)

83 10000011 MOD 111 R/M CMP EA,DATA8 WORD COMPARE DATA
WITH (EA)

V-Series Instructions in Hexadecimal Order F-11

Hex Binary MODRM Byte Instruction Parameters Function

84 10000100 MOD REG R/M TEST EA,REG BYTE TEST (EA) WITH (REG)

85 10000101 MOD REG R/M TEST EA,REG WORD TEST (EA) WITH (REG)

86 10000110 MOD REG R/M XCH REG,EA BYTE EXCHANGE (REG)
WITH (EA)

87 10000111 MOD REG R/M XCH REG,EA WORD EXCHANGE (REG)
WITH (EA)

88 10001000 MOD REG R/M MOV EA,REG BYTE MOVE (REG) TO EA

89 10001001 MOD REG R/M MOV EA,REG WORD MOVE (REG) TO EA

8A 10001010 MOD REG R/M MOV REG,EA BYTE MOVE (EA) TO REG

8B 10001011 MOD REG R/M MOV REG,EA WORD MOVE (EA) TO REG

8C 10001100 MOD 0SR R/M MOV EA,SR WORD MOVE (SEGMENT REG
SR) TO EA

8C 10001100 MOD 1-- R/M (not used)

8D 10001101 MOD REG R/M LDEA REG,EA LOAD EFFECTIVE ADDRESS
OF EA TO REG

8E 10001110 MOD 0SR R/M MOV SR,EA WORD MOVE (EA) TO
SEGMENT REG SR

8E 10001110 MOD -- R/M (not used)

8F 10001111 MOD 000 R/M POP EA POP STACK TO EA

8F 10001111 MOD 001 R/M (not used)

8F 10001111 MOD 010 R/M (not used)

8F 10001111 MOD 011 R/M (not used)

8F 10001111 MOD 100 R/M (not used)

8F 10001111 MOD 101 R/M (not used)

F-12 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

8F 10001111 MOD 110 R/M (not used)

8F 10001111 MOD 111 R/M (not used)

90 10010000 XCH AW,AW EXCHANGE (AW) WITH (AW)

91 10010001 XCH AW,CW EXCHANGE (AW) WITH (CW)

92 10010010 XCH AW,DW EXCHANGE (AW) WITH (DW)

93 10010011 XCH AW,BW EXCHANGE (AW) WITH (BW)

94 10010100 XCH AW,SP EXCHANGE (AW) WITH (SP)

95 10010101 XCH AW,BP EXCHANGE (AW) WITH (BP)

96 10010110 XCH AW,IX EXCHANGE (AW) WITH (IX)

97 10010111 XCH AW,IY EXCHANGE (AW) WITH (IY)

98 10011000 CVTBW BYTE CONVERT (AL) TO
WORD (AW)

99 10011001 CVTWL WORD CONVERT (AW) TO
DOUBLE WORD

9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT
CALL

9B 10011011 POLL WAIT FOR TEST SIGNAL

9C 10011100 PUSH PSW PUSH FLAGS ON STACK

9D 10011101 POP PSW POP STACK TO FLAGS

9E 10011110 MOV PSW,AH STORE (AH) INTO FLAGS

9F 10011111 MOV AH,PSW LOAD REG AH WITH FLAGS

A0 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO REG
AL

V-Series Instructions in Hexadecimal Order F-13

Hex Binary MODRM Byte Instruction Parameters Function

A1 10100001 MOV AW,ADDR16 WORD MOVE (ADDR) TO
REG AW

A2 10100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR

A3 10100011 MOV ADDR16,AW WORD MOVE (AW) TO ADDR

A4 10100100 MOVBK DST8,SRC8 BYTE MOVE, STRING OP

A5 10100101 MOVBK DST16,SRC16 WORD MOVE, STRING OP

A6 10100110 CMPBK IXPTR,IYPTR COMPARE BYTE, STRING OP

A7 10100111 CMPBK IXPTR,IYPTR COMPARE WORD, STRING OP

A8 10101000 TEST AL,DATA8 BYTE TEST (AL) WITH DATA

A9 10101001 TEST AW,DATA16 WORD TEST (AW) WITH
DATA

AA 10101010 STM DST8 BYTE STORE, STRING OP

AB 10101011 STM DST16 WORD STORE, STRING OP

AC 10101100 LDM SRC8 BYTE LOAD, STRING OP

AD 10101101 LDM SRC16 WORD LOAD, STRING OP

AE 10101110 CMPM IYPTR8 BYTE SCAN, STRING OP

AF 10101111 CMPM IYPTR16 WORD SCAN, STRING OP

B0 10110000 MOV AL,DATA8 BYTE MOVE DATA TO REG
AL

B1 10110001 MOV CL,DATA8 BYTE MOVE DATA TO REG
CL

B2 10110010 MOV DL,DATA8 BYTE MOVE DATA TO REG
DL

F-14 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

B3 10110011 MOV BL,DATA8 BYTE MOVE DATA TO REG
BL

B4 10110100 MOV AH,DATA8 BYTE MOVE DATA TO REG
AH

B5 10110101 MOV CH,DATA8 BYTE MOVE DATA TO REG
CH

B6 10110110 MOV DH,DATA8 BYTE MOVE DATA TO REG
DH

B7 10110111 MOV BH,DATA8 BYTE MOVE DATA TO REG
BH

B8 10111000 MOV AW,DATA16 WORD MOVE DATA TO REG
AW

B9 10111001 MOV CW,DATA16 WORD MOVE DATA TO REG
CW

BA 10111010 MOV DW,DATA16 WORD MOVE DATA TO REG
DW

BB 10111011 MOV BW,DATA16 WORD MOVE DATA TO REG
BW

BC 10111100 MOV SP,DATA16 WORD MOVE DATA TO REG
SP

BD 10111101 MOV BP,DATA16 WORD MOVE DATA TO REG
BP

BE 10111110 MOV IX,DATA16 WORD MOVE DATA TO REG
IX

BF 10111111 MOV IY,DATA16 WORD MOVE DATA TO REG
IY

C0 11000000 MOD 000 R/M ROL EA,DATA8 BYTE ROTATE EA LEFT
DATA8 BITS

V-Series Instructions in Hexadecimal Order F-15

Hex Binary MODRM Byte Instruction Parameters Function

C0 11000000 MOD 001 R/M ROR EA,DATA8 BYTE ROTATE EA RIGHT
DATA8 BITS

C0 11000000 MOD 010 R/M ROLC EA,DATA8 BYTE ROTATE EA LEFT
THRU CARRY DATA8 BITS

C0 11000000 MOD 011 R/M RORC EA,DATA8 BYTE ROTATE EA RIGHT
THRU CARRY DATA8 BITS

C0 11000000 MOD 100 R/M SHL EA,DATA8 BYTE SHIFT EA LEFT DATA8
BITS

C0 11000000 MOD 101 R/M SHR EA,DATA8 BYTE SHIFT EA RIGHT
DATA8 BITS

C0 11000000 MOD 110 R/M (not used)

C0 11000000 MOD 111 R/M SHRA EA,DATA8 BYTE SHIFT SIGNED EA
RIGHT DATA8 BITS

C1 11000001 MOD 000 R/M ROL EA,DATA8 WORD ROTATE EA LEFT
DATA8 BITS

C1 11000001 MOD 001 R/M ROR EA,DATA8 WORD ROTATE EA RIGHT
DATA8 BITS

C1 11000001 MOD 010 R/M ROLC EA,DATA8 WORD ROTATE EA LEFT
THRUCARRY DATA8
BITSCARRY DATA8 BITS

C1 11000001 MOD 011 R/M RORC EA,DATA8 WORD ROTATE EA RIGHT
THRU CARRY DATA8 BITS

C1 11000001 MOD 100 R/M SHL EA,DATA8 WORD SHIFT EA LEFT
DATA8 BITS

C1 11000001 MOD 101 R/M SHR EA,DATA8 WORD SHIFT EA RIGHT
DATA8 BITS

C1 11000001 MOD 110 R/M (not used)

F-16 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

C1 11000001 MOD 111 R/M SHRA EA,DATA8 WORD SHIFT SIGNED EA
RIGHT DATA8 BITS

C2 11000010 RET DATA16 INTRA SEGMENT RETURN

C3 11000011 RET INTRA SEGMENT RETURN

C4 11000100 MOD REG R/M MOV DS1,REG,
EA

WORD LOAD REG AND
SEGMENT REG DS1

C5 11000101 MOD REG R/M MOV DS0,REG,EA WORD LOAD REG AND
SEGMENT REG DS0

C6 11000110 MOD 000 R/M MOV EA,DATA8 BYTE MOVE DATA TO EA

C6 11000110 MOD 001 R/M (not used)

C6 11000110 MOD 010 R/M (not used)

C6 11000110 MOD 011 R/M (not used)

C6 11000110 MOD 100 R/M (not used)

C6 11000110 MOD 101 R/M (not used)

C6 11000110 MOD 110 R/M (not used)

C6 11000110 MOD 111 R/M (not used)

C7 11000111 MOD 000 R/M MOV EA,DATA16 WORD MOVE DATA TO EA

C7 11000111 MOD 001 R/M (not used)

C7 11000111 MOD 010 R/M (not used)

C7 11000111 MOD 011 R/M (not used)

C7 11000111 MOD 100 R/M (not used)

C7 11000111 MOD 101 R/M (not used)

C7 11000111 MOD 110 R/M (not used)

V-Series Instructions in Hexadecimal Order F-17

Hex Binary MODRM Byte Instruction Parameters Function

C7 11000111 MOD 111 R/M (not used)

C8 11001000 PREPARE DATA16,
DATA8

PERFORM ENTER SEQUENCE

C9 11001001 DISPOSE PERFORM LEAVE SEQUENCE

CA 11001010 RET DATA16 INTER SEGMENT RETURN

CB 11001011 RET INTER SEGMENT RETURN

CC 11001100 BRK 3 TYPE 3 INTERRUPT

CD 11001101 BRK TYPE TYPED INTERRUPT

CE 11001110 BRKV INTERRUPT ON OVERFLOW

CF 11001111 RETI RETURN FROM INTERRUPT

D0 11010000 MOD 000 R/M ROL EA,1 BYTE ROTATE EA LEFT 1 BIT

D0 11010000 MOD 001 R/M ROR EA,1 BYTE ROTATE EA RIGHT 1
BIT

D0 11010000 MOD 010 R/M ROLC EA,1 BYTE ROTATE EA LEFT
THRU CARRY 1 BIT

D0 11010000 MOD 011 R/M RORC EA,1 BYTE ROTATE EA RIGHT
THRU CARRY 1 BIT

D0 11010000 MOD 100 R/M SHL EA,1 BYTE SHIFT EA LEFT 1 BIT

D0 11010000 MOD 101 R/M SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT

D0 11010000 MOD 110 R/M (not used)

D0 11010000 MOD 111 R/M SHRA EA,1 BYTE SHIFT SIGNED EA
RIGHT 1 BIT

D1 11010001 MOD 000 R/M ROL EA,1 WORD ROTATE EA LEFT 1
BIT

F-18 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

D1 11010001 MOD 001 R/M ROR EA,1 WORD ROTATE EA RIGHT 1
BIT

D1 11010001 MOD 010 R/M ROLC EA,1 WORD ROTATE EA LEFT
THRU CARRY 1 BIT

D1 11010001 MOD 011 R/M RORC EA,1 WORD ROTATE EA RIGHT
THRU CARRY 1 BIT

D1 11010001 MOD 100 R/M SHL EA,1 WORD SHIFT EA LEFT 1 BIT

D1 11010001 MOD 101 R/M SHR EA,1 WORD SHIFT EA RIGHT 1 BIT

D1 11010001 MOD 110 R/M (not used)

D1 11010001 MOD 111 R/M SHRA EA,1 WORD SHIFT SIGNED EA
RIGHT 1 BIT

D2 11010010 MOD 000 R/M ROL EA,CL BYTE ROTATE EA LEFT (CL)
BITS

D2 11010010 MOD 001 R/M ROR EA,CL BYTE ROTATE EA RIGHT
(CL) BITS

D2 11010010 MOD 010 R/M ROLC EA,CL BYTE ROTATE EA LEFT
THRU CARRY (CL) BITS

D2 11010010 MOD 011 R/M RORC EA,CL BYTE ROTATE EA RIGHT
THRU CARRY (CL) BITS

D2 11010010 MOD 100 R/M SHL EA,CL BYTE SHIFT EA LEFT (CL)
BITS

D2 11010010 MOD 101 R/M SHR EA,CL BYTE SHIFT EA RIGHT (CL)
BITS

D2 11010010 MOD 110 R/M (not used)

D2 11010010 MOD 111 R/M SHRA EA,CL BYTE SHIFT SIGNED EA
RIGHT (CL) BITS

V-Series Instructions in Hexadecimal Order F-19

Hex Binary MODRM Byte Instruction Parameters Function

D3 11010011 MOD 000 R/M ROL EA,CL WORD ROTATE EA LEFT (CL)
BITS

D3 11010011 MOD 001 R/M ROR EA,CL WORD ROTATE EA RIGHT
(CL) BITS

D3 11010011 MOD 010 R/M ROLC EA,CL WORD ROTATE EA LEFT
THRU CARRY (CL) BITS

D3 11010011 MOD 011 R/M RORC EA,CL WORD ROTATE EA RIGHT
THRU CARRY (CL) BITS

D3 11010011 MOD 100 R/M SHL EA,CL WORD SHIFT EA LEFT (CL)
BITS

D3 11010011 MOD 101 R/M SHR EA,CL WORD SHIFT EA RIGHT (CL)
BITS

D3 11010011 MOD 110 R/M (not used)

D3 11010011 MOD 111 R/M SHRA EA,CL WORD SHIFT SIGNED EA
RIGHT (CL) BITS

D4 11010100 00001010 CVTBD ASCII ADJUST FOR
MULTIPLY

D5 11010101 00001010 CVTDB ASCII ADJUST FOR DIVIDE

D6 11010110 (not used)

D7 11010111 TRANS TABLE TRANSLATE USING (BW)

D8 11011--- MOD --- R/M ESC EA ESCAPE TO EXTERNAL
DEVICE

D8 11011000 MOD 000 R/M FADD Short-real ADD 4-BYTE EA TO ST

D8 11011000 MOD 001 R/M FMUL Short-real MULTIPLY ST BY 4-BYTE EA

D8 11011000 MOD 010 R/M FCOM Short-real COMPARE 4-BYTE EA WITH
ST

F-20 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

D8 11011000 MOD 011 R/M FCOMP Short-real COMPARE 4-BYTE EA WITH
ST AND POP

D8 11011000 MOD 100 R/M FSUB Short-real SUBTRACT 4-BYTE EA FROM
ST

D8 11011000 MOD 101 R/M FSUBR Short-real SUBTRACT ST FROM 4-BYTE
EA

D8 11011000 MOD 110 R/M FDIV Short-real DIVIDE ST BY 4-BYTE EA

D8 11011000 MOD 111 R/M FDIVR Short-real DIVIDE 4-BYTE EA BY ST

D8 11011000 1 1 000 (i) FADD ST,ST(i) ADD ELEMENT TO ST

D8 11011000 1 1 001 (i) FMUL ST,ST(i) MULTIPLY ST BY ELEMENT

D8 11011000 1 1 010 (i) FCOM ST(i) COMPARE ST(i) WITH ST

D8 11011000 1 1 011 (i) FCOMP ST(i) COMPARE ST(i) WITH ST
AND POP

D8 11011000 1 1 100 (i) FSUB ST,ST(i) SUBTRACT ELEMENT FROM
ST

D8 11011000 1 1 101 (i) FSUBR ST,ST(i) SUBTRACT ST FROM STACK
ELEMENT

D8 11011000 1 1 110 (i) FDIV ST,ST(i) DIVIDE ST BY ELEMENT

D8 11011000 1 1 111 (i) FDIVR ST,ST(i) DIVIDE ST(i) BY ST

D9 11011001 MOD 000 R/M FLD Short-real PUSH 4-BYTE EA TO ST

D9 11011001 MOD 001 R/M (not used)

D9 11011001 MOD 010 R/M FST Short-real STORE 4-BYTE REAL TO EA

D9 11011001 MOD 011 R/M FSTP Short-real STORE 4-BYTE REAL TO EA
AND POP

V-Series Instructions in Hexadecimal Order F-21

Hex Binary MODRM Byte Instruction Parameters Function

D9 11011001 MOD 100 R/M FLDENV 14 BYTES LOAD 8087 ENVIRONMENT
FROM EA

D9 11011001 MOD 101 R/M FLDCW 2-BYTES LOAD CONTROL WORD
FROM EA

D9 11011001 MOD 110 R/M FSTENV 14-BYTES STORE 8087 ENVIRONMENT
INTO EA

D9 11011001 MOD 111 R/M FSTCW 2-BYTES STORE CONTROL WORD
INTO EA

D9 11011001 1 1 000 (i) FLD ST(i) PUSH ST(i) ONTO ST

D9 11011001 1 1 001 (i) FXCH ST(i) EXCHANGE ST AND ST(i)

D9 11011001 1 1 010 000 FNOP STORE ST IN ST

D9 11011001 1 1 010 001 (not used)

D9 11011001 1 1 010 01- (not used)

D9 11011001 1 1 010 1-- (not used)

D9 11011001 1 1 011 (i) *(1)

D9 11011001 1 1 100 000 FCHS CHANGE SIGN OF ST

D9 11011001 1 1 100 001 FABS TAKE ABSOLUTE VALUE OF
ST

D9 11011001 1 1 100 01- (not used)

D9 11011001 1 1 100 100 FTST TEST ST AGAINST 0.0

D9 11011001 1 1 100 101 FXAM EXAMINE ST AND REPORT
CONDITION CODE

D9 11011001 1 1 100 11- (not used)

D9 11011001 1 1 101 000 FLD1 PUSH +1.0 TO ST

F-22 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

D9 11011001 1 1 101 001 FLDL2T PUSH log 2 10 TO ST

D9 11011001 1 1 101 010 FLDL2E PUSH log 2 e TO ST

D9 11011001 1 1 101 011 FLDPI PUSH Pi TO ST

D9 11011001 1 1 101 100 FLDLG2 PUSH log 10 2 TO ST

D9 11011001 1 1 101 101 FLDLN2 PUSH log e 2 TO ST

D9 11011001 1 1 101 110 FLDZ PUSH ZERO TO ST

D9 11011001 1 1 101 111 (not used)

D9 11011001 1 1 110 000 F2XM1 CALCULATE 2 x - 1

D9 11011001 1 1 110 001 FYL2X CALCULATE FUNCTION
Y*log 2 X

D9 11011001 1 1 110 010 FPTAN CALCULATE TAN OF 0 AS A
RATIO

D9 11011001 1 1 110 011 FPATAN CALCULATE ARCTAN OF 0

D9 11011001 1 1 110 100 FXTRACT EXTRACT EXPONENT AND
SIGNIFICAND FROM ST
VALUE

D9 11011001 1 1 110 101 (not used)

D9 11011001 1 1 110 110 FDECSTP DECREMENT STACK
POINTER IN STATUS WORD

D9 11011001 1 1 110 111 FINCSTP INCREMENT STACK
POINTER IN STATUS WORD

D9 11011001 1 1 111 000 FPREM MODULO DIVISION OF ST BY
ST(1)

D9 11011001 1 1 110 001 FYL2XP1 CALCULATE VALUE OF
Y*log 2 (X + 1)

V-Series Instructions in Hexadecimal Order F-23

Hex Binary MODRM Byte Instruction Parameters Function

D9 11011001 1 1 111 010 FSQRT CALCULATE SQUARE ROOT
OF ST

D9 11011001 1 1 111 011 (not used)

D9 11011001 1 1 111 100 FRNDINT ROUND ST TO INTEGER

D9 11011001 1 1 111 101 FSCALE ADD ST(1) TO EXPONENT OF
ST

D9 11011001 1 1 111 11- (not used)

DA 11011010 MOD 000 R/M RIADD Short-integer ADD 4-BYTE INTEGER EA TO
ST

DA 11011010 MOD 001 R/M FIMUL Short-integer MULTIPLY ST BY 4-BYTE
INTEGER EA

DA 11011010 MOD 010 R/M FICOM Short-integer CONVERT 4-BYTE INTEGER
EA, AND COMPARE WITH ST

DA 11011010 MOD 011 R/M FICOMP Short-integer CONVERT 4-BYTE INTEGER
EA, COMPARE WITH ST, POP

DA 11011010 MOD 100 R/M FISUB Short-integer SUBTRACT 4-BYTE INTEGER
EA FROM ST

DA 11011010 MOD 101 R/M FISUBR Short-integer SUBTRACT ST FROM 4-BYTE
INTEGER EA

DA 11011010 MOD 110 R/M FIDIV Short-integer DIVIDE ST BY 4-BYTE
INTEGER EA

DA 11011010 MOD 111 R/M FIDIVR Short-integer DIVIDE 4-BYTE INTEGER EA
BY ST

DA 11011010 1 1 -- --- (not used)

DB 11011011 MOD 000 R/M FILD Short-integer

DB 11011011 MOD 001 R/M (not used)

F-24 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

DB 11011011 MOD 010 R/M FIST Short-integer STORE ROUNDED ST IN
4-BYTE INTEGER EA

DB 11011011 MOD 011 R/M FISTP Short-integer STORE ROUNDED ST IN
4-BYTE INTEGER EA, POP

DB 11011011 MOD 100 R/M (not used)

DB 11011011 MOD 101 R/M FLD Temp-real PUSH 10-BYTE EA ONTO ST

DB 11011011 MOD 110 R/M Reserved

DB 11011011 MOD 111 R/M FSTP Temp-real STORE ST INTO 10-BYTE EA,
POP

DB 11011011 1 1 0-- --- Reserved

DB 11011011 1 1 100 000 FENI ENABLE INTERRUPT

DB 11011011 1 1 100 001 FDISI DISABLE INTERRUPTS

DB 11011011 1 1 100 010 FCLEX CLEAR EXCEPTIONS

DB 11011011 1 1 100 011 FINIT INITIALIZE PROCESSOR

DB 11011011 1 1 100 1-- Reserved

DB 11011011 1 1 101 --- Reserved

DB 11011011 1 1 11- --- Reserved

DC 11011100 MOD 000 R/M FADD Long-real ADD 8-BYTE EA TO ST

DC 11011100 MOD 001 R/M FMUL Long-real MULTIPLY ST BY 8-BYTE EA

DC 11011100 MOD 010 R/M FCOM Long-real COMPARE ST WITH 8-BYTE
EA

DC 11011100 MOD 011 R/M FCOMP Long-real COMPARE ST WITH 8-BYTE
EA

V-Series Instructions in Hexadecimal Order F-25

Hex Binary MODRM Byte Instruction Parameters Function

DC 11011100 MOD 100 R/M FSUB Long-real SUBTRACT 8-BYTE EA FROM
ST

DC 11011100 MOD 101 R/M FSUBR Long-real SUBTRACT ST FROM 8-BYTE
EA

DC 11011100 MOD 110 R/M FDIV Long-real DIVIDE ST BY 8-BYTE EA

DC 11011100 MOD 111 R/M FDIVR Long-real DIVIDE 8-BYTE EA BY ST

DC 11011100 1 1 000 (i) FADD ST(i), ST ADD ST TO ELEMENT

DC 11011100 1 1 001 (i) FMUL ST(i), ST MULTIPLY ELEMENT BY ST

DC 11011100 1 1 010 (i) *(2)

DC 11011100 1 1 011 (i) *(3)

DC 11011100 1 1 100 (i) FSUBR ST(i), ST SUBTRACT ST FROM
ELEMENT

DC 11011100 1 1 101 (i) FSUB ST(i), ST SUBTRACT ELEMENT FROM
ST

DC 11011100 1 1 110 (i) FDIVR ST(i), ST DIVIDE ST(i) BY ST

DC 11011100 1 1 111 (i) FDIV ST(i), ST DIVIDE ST BY ST(i)

DD 11011101 MOD 000 R/M FLD Long-real PUSH 8-BYTE EA ONTO ST

DD 11011101 MOD 001 R/M Reserved

DD 11011101 MOD 010 R/M FST Long-real STORE ST INTO 8-BYTE EA

DD 11011101 MOD 011 R/M FSTP Long-real STORE ST INTO 8-BYTE EA

DD 11011101 MOD 100 R/M FRSTOR 94-BYTES RESTORE 8087 STATE FROM
EA

DD 11011101 MOD 101 R/M Reserved

DD 11011101 MOD 110 R/M FSAVE 94-BYES SAVE 8087 STATE TO EA

F-26 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

DD 11011101 MOD 111 R/M FSTSW 2-BYTES STORE 8087 STATUS WORD
TO 2-BYTE EA

DD 11011101 1 1 000 (i) FFREE ST(i) SET STACK TAG TO "EMPTY"

DD 11011101 1 1 001 (i) *(4)

DD 11011101 1 1 010 (i) FST ST(i) STORE ST INTO ST(i)

DD 11011101 1 1 011 (i) FSTP ST(i) STORE ST INTO ST(i), POP

DD 11011101 1 1 1-- --- Reserved

DE 11011110 MOD 000 R/M FIADD Word-integer ADD 2-BYTE INTEGER EA TO
ST

DE 11011110 MOD 001 R/M FIMUL Word-integer MULTIPLY ST BY 2-BYTE
INTEGER EA

DE 11011110 MOD 010 R/M FICOM Word-integer COMPARE 2-BYTE EA
INTEGER WITH ST

DE 11011110 MOD 011 R/M FICOMP Word-integer COMPARE 2-BYTE INTEGER
EA WITH ST, POP

DE 11011110 MOD 100 R/M FISUB Word-integer SUBTRACT 2-BYTE INTEGER
EA FROM ST

DE 11011110 MOD 101 R/M FISUBR Word-integer SUBTRACT ST FROM 2-BYTE
INTEGER EA

DE 11011110 MOD 110 R/M FIDIV Word-integer DIVIDE ST BY 2-BYTE
INTEGER EA

DE 11011110 MOD 111 R/M FIDIVR Word-integer DIVIDE 2-BYTE INTEGER EA
BY ST

DE 11011110 1 1 000 (i) FADDP ST(i), ST ADD ST TO ELEMENT

DE 11011110 1 1 001 (i) FMULP ST(i), ST MULTIPLY ST BY ELEMENT,
POP

V-Series Instructions in Hexadecimal Order F-27

Hex Binary MODRM Byte Instruction Parameters Function

DE 11011110 1 1 010 --- *(5)

DE 11011110 1 1 011 000 Reserved

DE 11011110 1 1 011 001 FCOMPP COMPARE ST WITH ST(1),
POP TWICE

DE 11011110 1 1 011 01- Reserved

DE 11011110 1 1 011 1-- Reserved

DE 11011110 1 1 100 (i) FSUBRP ST(i), ST SUBTRACT ST FROM
ELEMENT, POP

DE 11011110 1 1 101 (i) FSUBP ST(i), ST SUBTRACT ST(i) FROM ST,
POP

DE 11011110 1 1 110 (i) FDIVRP ST(i), ST DIVIDE STACK ELEMENT BY
ST, POP

DE 11011110 1 1 111 (i) FDIVP ST(i), ST DIVIDE ST BY STACK
ELEMENT, POP

DF 11011111 MOD 000 R/M FILD Word-integer CONVERT 2-BYTE EA AND
PUSH ONTO STACK

DF 11011111 MOD 001 R/M Reserved

DF 11011111 MOD 010 R/M FIST Word-integer ROUND ST AND STORE IN
2-BYTE INTEGER EA

DF 11011111 MOD 011 R/M FISTP Word-integer ROUND ST, STORE IN 2-BYTE
INTEGER EA, POP

DF 11011111 MOD 100 R/M FBLD Packed decimal LOAD BCD TO ST

DF 11011111 MOD 101 R/M FILD Long-integer CONVERT 8-BYTE INTEGER
EA AND PUSH ONTO STACK

DF 11011111 MOD 110 R/M FBSTP Packed decimal CONVERT ST, STORE IN
10-BYTE BCD EA, POP

F-28 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

DF 11011111 MOD 111 R/M FISTP Long-integer ROUND ST, STORE IN 8-BYTE
INTEGER EA, POP

DF 11011111 1 1 000 (i) *(6)

DF 11011111 1 1 001 (i) *(7)

DF 11011111 1 1 010 (i) *(8)

DF 11011111 1 1 011 (i) *(9)

DF 11011111 1 1 --- --- Reserved

E0 11100000 DBNZNE DISP8 LOOP (CW) TIMES WHILE
NOT ZERO/NOT EQUAL

E1 11100001 DBNZE DISP8 LOOP (CW) TIMES WHILE
ZERO/EQUAL

E2 11100010 DBNZ DISP8 LOOP (CW) TIMES

E3 11100011 BCWZ DISP8 JUMP ON (CW)=0

E4 11100100 IN AL,PORT BYTE INPUT FROM PORT TO
REG AL

E5 11100101 IN AW,PORT WORD INPUT FROM PORT TO
REG AW

E6 11100110 OUT PORT,AL BYTE OUTPUT (AL) TO PORT

E7 11100111 OUT PORT,AW WORD OUTPUT (AW) TO
PORT

E8 11101000 CALL DISP16 DIRECT INTRA SEGMENT
CALL

E9 11101001 BR DISP16 DIRECT INTRA SEGMENT
JUMP

EA 11101010 BR DISP16,SEG16 DIRECT INTER SEGMENT
JUMP

V-Series Instructions in Hexadecimal Order F-29

Hex Binary MODRM Byte Instruction Parameters Function

EB 11101010 BR DISP8 DIRECT INTRA SEGMENT
JUMP

EC 11101010 IN AL,DW BYTE INPUT FROM PORT
(DW) TO REG AL

ED 11101010 IN AW,DW WORD INPUT FROM PORT
(DW) TO REG AW

EE 11101010 OUT DW,AL BYTE OUTPUT (AL) TO PORT
(DW)

EF 11101010 OUT DW,AW WORD OUTPUT (AW) TO
PORT (DW)

F0 11110000 BUSLOCK BUS LOCK PREFIX

F1 11110001 (not used)

F2 11110010 REPNZ/REPNE REPEAT WHILE (CW) not equal
to 0 AND (ZF) = 0

F3 11110011 REPZ/REPE/
REP

REPEAT WHILE (CW) not equal
to 0 AND (ZF) = 1

F4 11110100 HALT HALT

F5 11110101 NOT1 CY COMPLEMENT CARRY FLAG

F6 11110110 MOD 000 R/M TEST EA,DATA8 BYTE TEST (EA) WITH DATA

F6 11110110 MOD 001 R/M (not used)

F6 11110110 MOD 010 R/M NOT EA BYTE INVERT EA

F6 11110110 MOD 011 R/M NEG EA BYTE NEGATE EA

F6 11110110 MOD 100 R/M MULU EA BYTE MULTIPLY BY (EA),
UNSIGNED

F6 11110110 MOD 101 R/M MUL EA BYTE MULTIPLY BY (EA),
SIGNED

F-30 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

66 01100110 MOD REG RM FMOVRT MEM,FRn move into reg

66 01100110 11 000 RM FSIN FS0,FSn sine of short

66 01100110 11 001 RM FCOS FS0,FSn cosine of short

66 01100110 11 010 RM FTAN FS0,FSn tangent of short

66 01100110 11 011 RM FSINCOS FS0,FSn sine/cosine of short

66 01100110 11 100 RM FASIN FS0,FSn inverse sine of short

66 01100110 11 101 RM FACOS FS0,FSn inverse cosine of short

66 01100110 11 110 RM FATAN FS0,FSn inverse tangent of short

66 01100110 11 111 RM FXCH FS0,FSn exchange short regs

67 01100111 MOD REG RM FMOVRT FRn,MEM move reg contents

67 01100111 11 000 RM FSIN FL0,FLn sine of long

67 01100111 11 001 RM FCOS FL0,FLn cosine of long

67 01100111 11 010 RM FTAN FL0,FLn tangent of long

67 01100111 11 011 RM FSINCOS FL0,FLn sine/cosine of long

67 01100111 11 100 RM FASIN FL0,FLn inverse sine of long

67 01100111 11 101 RM FACOS FL0,FLn inverse cosine of long

67 01100111 11 110 RM FATAN FL0,FLn inverse tangent of long

67 01100111 11 111 RM FXCH FL0,FLn exchange long regs

D8 11011000 MOD 000 RM FMOVCR MEM32,FCTW store control word

D8 11011000 MOD 001 RM FMOVCR MEM32,FSTW store control word

Table F-2. 72291 Instructions

V-Series Instructions in Hexadecimal Order F-31

Hex Binary MODRM Byte Instruction Parameters Function

D8 11011000 MOD 010 RM FMOVCR MEM32,FPTW store control word

D8 11011000 MOD 011 RM FCVTLS VS32,FL0 convert long into short

D8 11011000 MOD 100 RM FMOV VS32,FS0 move short reg

D8 11011000 MOD 101 RM FNEG VS32,FS0 negate

D8 11011000 MOD 110 RM FCVTSD MEM32,FS0 convert short into int32

D8 11011000 MOD 111 RM FCVTLD MEM32,FL0 convert long into int32

D8 11011000 11 000 RM FIP3V FS0,FSn vector product

D8 11011000 11 001 RM FIP4V FS0,FSn vector product

D8 11011000 11 110 RM FABS FS0,FSn absolute value

D9 11011001 MOD 011 RM FCVTSL VS64,FS0 convert short into long

D9 11011001 MOD 100 RM FMOV VS64,FL0 move long reg

D9 11011001 MOD 101 RM FNEG VS64,FL0 negate

D9 11011001 MOD 110 RM FCVTSQ MEM64,FS0 convert short into int64

D9 11011001 MOD 111 RM FCVTLQ MEM64,FL0 convert long into int64

D9 11011001 11 000 RM FIP3V FL0,LSn vector product

D9 11011001 11 001 RM FIP4V FL0,LSn vector product

D9 11011001 11 110 RM FABS FL0,LSn absolute value

DA 11011010 MOD 000 RM FCMP FS0,VS32 compare short

DA 11011010 MOD 001 RM FCMPE FS0,VS32 compare short

DA 11011010 MOD 010 RM FCMPA FS0,VS32 compare absolute short

DA 11011010 MOD 011 RM FCMPAE FS0,VS32 compare absolute short

DA 11011010 11100000 FRPUSH push float stack down

F-32 V-Series Instructions in Hexadecimal Order

Hex Binary MODRM Byte Instruction Parameters Function

DA 11011010 11101000 FRPOP pop off float stack

DA 11011010 11110000 FDIAG run 72291 diagnostics

DA 11011010 11111000 FINIT initialize 72291

DB 11011011 MOD 000 RM FCMP FL0,VS64 compare long

DB 11011011 MOD 001 RM FCMPE FL0,VS64 compare long

DB 11011011 MOD 010 RM FCMPA FL0,VS64 compare absolute long

DB 11011011 MOD 011 RM FCMPAE FL0,VS64 compare absolute long

DC 11011100 MOD 000 RM FMOVCR FCTW,MEM32 load control word

DC 11011100 MOD 001 RM FMOVCR FSTW,MEM32 load control word

DC 11011100 MOD 010 RM FMOVCR FPTW,MEM32 load control word

DC 11011100 MOD 011 RM FCVTSL FL0,VS32 convert short into long

DC 11011100 MOD 100 RM FMOV FS0,VS32 move short into register

DC 11011100 MOD 101 RM FNEG FS0,VS32 negate

DC 11011100 MOD 110 RM FCVTDS FS0,MEM32 convert int32 into short

DC 11011100 MOD 110 RM FPOWER FS0,VS32 raise to a power

DC 11011100 MOD 111 RM FCVTDL FL0,MEM32 convert int32 into long

DC 11011100 11 000 RM FEXPE FS0,FSn natural exponential

DC 11011100 11 001 RM FLOGE FS0,FSn natural logarithm

DC 11011100 11 010 RM FEXPEM1 FS0,FSn natural exponential -1

DC 11011100 11 110 RM FSQRT FS0,FSn square root

DC 11011100 11 111 RM FRND FS0,FSn round to integer

DD 11011101 MOD 011 RM FCVTLS FS0,VS64 convert long into short

V-Series Instructions in Hexadecimal Order F-33

Hex Binary MODRM Byte Instruction Parameters Function

DD 11011101 MOD 100 RM FMOV FL0,VS64 move long into register

DD 11011101 MOD 101 RM FNEG FL0,VS64 negate

DD 11011101 MOD 110 RM FCVTQS FS0,MEM64 convert int64 into short

DD 11011101 MOD 110 RM FPOWER FL0,VS64 raise to a power

DD 11011101 MOD 111 RM FCVTQL FL0,MEM64 convert int64 into long

DD 11011101 11 000 RM FEXPE FL0,FLn natural exponential

DD 11011101 11 001 RM FLOGE FL0,LSn natural logarithm

DD 11011101 11 010 RM FEXPEM1 FL0,FLn natural exponential -1

DD 11011101 11 110 RM FSQRT FL0,LSn square root

DD 11011101 11 111 RM FRND FL0,LSn round to integer

DE 11011110 MOD 000 RM FADD FS0,VS32 add shorts

DE 11011110 MOD 001 RM FSUB FS0,VS32 subtract short

DE 11011110 MOD 010 RM FMUL FS0,VS32 multiply short

DE 11011110 MOD 011 RM FDIV FS0,VS32 divide short

DE 11011110 MOD 100 RM FMOD FS0,VS32 modulo function

DE 11011110 MOD 101 RM FREM FS0,VS32 remainder

DE 11011110 11 111 RM FATAN2 FS0,FSn inverse tangent of short

DF 11011111 MOD 000 RM FADD FL0,VS64 add longs

DF 11011111 MOD 001 RM FSUB FL0,VS64 subtract long

DF 11011111 MOD 010 RM FMUL FL0,VS64 multiply long

DF 11011111 MOD 011 RM FDIV FL0,VS64 divide long

DF 11011111 MOD 100 RM FMOD FL0,VS64 modulo function

F-34 V-Series Instructions in Hexadecimal Order

FLAGS REGISTER CONTAINS:

 X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

*The marked encodings are not generated by the language translators.
If however, the 8087 encounters one of these encodings in the
instruction stream, it will execute it as follows:

1. FSTP ST(i)
2. FCOM ST(i)
3. FCOMP ST(i)
4. FXCH ST(i)
5. FCOMP ST(i)
6. FFREE ST(i) and pop stack
7. FXCH ST(i)
8. FSTP ST(i)
9. FSTP ST(i)

 V-Series Instruction Set Matrix

b
d
f
i
ia
ib
id
is
iw
l
m
r
r/m
IX
sr
t
v
w
z

= byte operation
= direct
= from CPU reg
= immediate
= immed.to accum.
= immediate byte
= indirect
= immed. byte sign ext.
= immediate word
= long ie. intersegment
= memory
= register
= EA is second byte
= short intrasegment
= segment register
= to CPU reg
= variable
= word operation
= zero

V-Series Instructions in Hexadecimal Order F-35

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BW) + (IX)
00 001 (BW) + (IY)
00 010 (BP) + (IX)
00 011 (BP) + (IY)
00 100 (IX)
00 101 (IY)
00 110 DISP16 (DIRECT ADDRESS)
00 111 (BW)
01 000 (BW) + (IX) + DISP8
01 001 (BW) + (IY) + DISP8
01 010 (BP) + (IX) + DISP8
01 011 (BP) + (IY) + DISP8
01 100 (IX) + DISP8
01 101 (IY) + DISP8
01 110 (BP) + DISP8
01 111 (BW) + DISP8
10 000 (BW) + (IX) + DISP16

DS0
DS0
SS
SS

DS0
DS0
DS0
DS0
DS0
DS0
SS
SS

DS0
DS0
SS

DS0
DS0

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE.

16-BIT (W=1) 8-BIT (W=0) SEGMENT REG

000 AW
001 CW
010 DW
011 BW
100 SP
101 BP
110 IX
111 IY

000 AL
001 CL
010 DL
011 BL
100 AH
101 CH
110 DH
111 BH

00 DS1
01 PS
10 SS

11 DS0

F-36 V-Series Instructions in Hexadecimal Order

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS) (Cont’d)

10 001 (BW) + (IY) + DISP16
10 010 (BP) + (IX) + DISP16
10 011 (BP) + (IY) + DISP16
10 100 (IX) + DISP16
10 101 (IY) + DISP16
10 110 (BP) + DISP16
10 111 (BW) + DISP16
11 000 REG AW / AL
11 001 REG CW /CL
11 010 REG DW /DL
11 011 REG BW /BL
11 100 REG SP / AH
11 101 REG BP /CH
11 110 REG IX /DH
11 111 REG IY /BH

DS0
SS
SS

DS0
DS0
SS

DS0

V-Series Instructions in Hexadecimal Order F-37

V20/V25 Instruction Set Matrix

LO

Hi 0 1 2 3 4 5 6 7

0 ADD
b.f.r/m

ADD
w.f.r/m

ADD
b.t.r/m

ADD
w.t.r/m

ADD
b.ia

ADD
w.ia

PUSH
DS1

POP
DS1

1 ADDC
b.f.r/m

ADDC
w.f.r/m

ADDC
b.t.r/m

ADDC
w.t.r/m

ADDC
b.ia

ADDC
w.ia

PUSH
SS

POP
SS

2 AND
b.f.r/m

AND
w.f.r/m

AND
b.t.r/m

AND
w.t.r/m

AND
b.ia

AND
w.ia

SEG
DS1

ADJ4A

3 XOR
b.f.r/m

XOR
w.f.r/m

XOR
b.t.r/m

XOR
w.t.r/m

XOR
b.ia

XOR
w.ia

SEG
SS

ADJBA

4 INC
AW

INC
CW

INC
DW

INC
BW

INC
SP

INC
BP

INC
IX

INC
IY

5 PUSH
AW

PUSH
CW

PUSH
DW

PUSH
BW

PUSH
SP

PUSH
BP

PUSH
IX

PUSH
IY

6 PUSH R POP R CHKIND
R.R/M

7 BV BNV BL/
BC

BNL/
BNC

BE/
BZ

BNE/
BNZ

BNH BH

8 Immed
b.r/m

Immed
w.r/m

Immed
b.r/m

Immed
is.r/m

TEST
b.r/m

TEST
w.r/m

XCH
b.r/m

XCH
w.r/m

9 NOP XCH
CW

XCH
DW

XCH
BW

XCH
SP

XCH
BP

XCH
IX

XCH
IY

A MOV
m → AL

MOV
m → AW

MOV
AL → m

MOV
AW → m

MOVBK
b

MOVBK
w

CMPBK
b

CMPBK
w

F-38 V-Series Instructions in Hexadecimal Order

V20/V25 Instruction Set Matrix

LO

Hi 0 1 2 3 4 5 6 7

B MOV
i → AL

MOV
i → CL

MOV
i → DL

MOV
i → BL

MOV
i → AH

MOV
i → C

MOV
i → DH

MOV
i → BH

C Shift
b.r/m.i

Shift
w.r/mi

RETI
(i - SP)

RETI MOV DS1 MOV
DS0

MOV
b.i.r/m

MOV
w.i.r/m

D Shift
b

Shift
w

Shift
b.v

Shift
w.v

CVTBD CVTDB TRANS

E DBNZNE DBNZE DBNZ BCWZ IN
b

IN
w

OUT
b

OUT
w

F BUSLOCK REP REPZ HALT NOT1 CY Grp 1
b.r/m

Grp 1
w.r/m

V20/V25 Instruction Set Matrix

LO

Hi 8 9 A B C D E F

0 OR
b.f.r/m

OR
w.f.r/m

OR
b.t.r/m

OR
w.t.r/m

OR
b.ia

OR
w.ia

PUSH
PS

1 SUBC
b.f.r/m

SUBC
w.f.r/m

SUBC
b.t.r/m

SUBC
w.t.r/m

SUBC
b.ia

SUBC
w.ia

PUSH
DS0

POP
DS0

2 SUB
b.f.r/m

SUB
w.f.r/m

SUB
b.t.r/m

SUB
w.t.r/m

SUB
b.ia

SUB
w.ia

SEG
PS

ADJ4S

3 CMP
b.f.r/m

CMP
w.f.r/m

CMP
b.t.r/m

CMP
w.t.r/m

CMP
b.ia

CMP
w.ia

SEG
DS0

ADJBS

V-Series Instructions in Hexadecimal Order F-39

V20/V25 Instruction Set Matrix

LO

Hi 8 9 A B C D E F

4 DEC
AW

DEC
CW

DEC
DW

DEC
BW

DEC
SP

DEC
BP

DEC
IX

DEC
IY

5 POP
AW

POP
CW

POP
DW

POP
BW

POP
SP

POP
BP

POP
IX

POP
IY

6 PUSH
iw

MUL
r.iw.r/m

PUSH
is

MUL
r.is.r/m

INM
b

INM
w

OUTM
b

OUTM
w

7 BN BP BPE BPO BLT BGE BLE BGT

8 MOV
b.f.r/m

MOV
w.f.r/m

MOV
b.t.r/m

MOV
w.t.r/m

MOV
sr.f.r/m

LDEA MOV
sr.t.r/m

POP
r/m

9 CVTBW CVTWL CALL
i.d

POLL PUSH
PSW

POP PSW SAHF LAHF

A TEST
b.i

TEST
w.i

STM
b

STM
w

LDM
b

LDM
w

CMPM
b

CMPM
w

B MOV
i → AW

MOV
i → CW

MOV
i → DW

MOV
i → BW

MOV
i → SP

MOV
i → BP

MOV
i → IX

MOV
i → IY

C ENTER
iw.ib

DISPOSE RETI
I . (i - SP)

RETI
I

BRK
Type 3

BRK
(Any)

BRKV RETI

D ESC
0

ESC
1

ESC
2

ESC
3

ESC
4

ESC
5

ESC
6

ESC
7

E CALL
d

BR
d

BR
i.d

BR
si.d

IN
v.b

IN
v.w

OUT
v.d

OUT
v.w

F-40 V-Series Instructions in Hexadecimal Order

V20/V25 Instruction Set Matrix

LO

Hi 8 9 A B C D E F

F CLR1 CY STC DI EI CLR1
DIR

STD Grp 2
b.r/m

Grp 2
w.r/m

Where

mod r/m 000 001 010 011 100 101 110 111

Immed ADD OR ADDC SUBC AND SUB XOR CMP

Shift ROL ROR ROLC RORC SHL SHR SHL SHRA

Grp 1 TEST NOT NEG MULU MUL DIVU DIV

Grp 2 INC DEC CALL
id

CALL
I id

BR
id

BR
I id

PUSH

V-Series Instructions in Hexadecimal Order F-41

Notes

F-42 V-Series Instructions in Hexadecimal Order

G

V-Series Instruction Set Summary

Function Format V20
Clock
Cycles

Comments

DATA TRANSFER
MOVE = Move:

Register to
Register/Memory

1000100w mod reg r/m

2/9-13

Register/Memory to
register

1000101w mod reg r/m

2/11-15

Immediate to
register/memory

1100011w mod 000 r/m data data if w = 1

11-15 8/16-bit

Immediate to register 1011w reg data data if w = 1 4 8/16-bit

Memory to accumulator 1010000w addr-low addr-high

10-14

Accumulator to memory 1010001w addr-low addr-high

9-13

Register/memory to
segment register

10001110 mod 0 reg r/m

2/11-15

V-Series Instruction Set Summary G-1

Segment/register to
register/memory

10001100 mod 0 reg r/m

10/14

PUSH = Push: Memory 11111111 mod 110 r/m

26

Register 01010 reg 12

Segment register 000 reg 110 12

Immediate 011010s0 data data if s = 010 12

PUSH R = Push All 01100000 67

POP = Pop: Memory 10001111 mod 000 r/m 11

Register 01011 reg 12

Segment register 000 reg 111 (reg ≠ 01) 12

POP R = Pop All 01100001 75

XCH = Exchange:

Register/memory with
register

1000011w mod reg r/m

3/16-24

Register with
accumulator

10010 reg

3

Function Format V20
Clock
Cycles

Comments

G-2 V-Series Instruction Set Summary

Function Format V20
Clock
Cycles

Comments

IN = Input from:
Fixed port

1110010w port

13

Variable port 1110110w 12

OUT = Output to:

Fixed port 1110011w port 12

Variable port 1110111w 12

TRANS = translate byte
to AL

11010111

9

LDEA = Load EA to
register

10001101 mod reg r/m

4

MOV = Load pointer to
DS0

11000101 mod reg r/m

(mod ≠ 11) 26

MOV = Load pointer to
DS1

11000100 mod reg r/m

(mod ≠ 11) 26

MOV = Load AH with
PSW

10011111

2

MOV = Store AH into
PSW

10011110

3

PUSH PSW = Push flags10011100 12

V-Series Instruction Set Summary G-3

Function Format V20
Clock
Cycles

Comments

POP PSW = Pop flags 10011101 12

ARITHMETIC ADD
= Add:

Reg/memory with
register to either

000000dw mod reg r/m

2/24

Immediate to
register/memory

100000sw mod 000 r/m data data if s w - 01

2/26

Immediate to
accumulator

0000010w data data if w - 1

4 8/16-bit

ADDC = ADD with
carry:

Reg/memory with
register to either

000100dw mod reg r/m

2/24

Immediate to
register/memory

100000sw mod 010 r/m data data is s w - 01

2/26

Immediate to
accumulator

0001010w data data if w - 1

4 8/16-bit

G-4 V-Series Instruction Set Summary

Function Format V20
Clock
Cycles

Comments

INC = Increment:

Register/memory 1111111w mod 000 r/m 2/24

Register 01000 reg 2

SUB = Subtract:

Reg/memory and
register to either

001010dw mod reg r/m

2/24

Immediate from
register/memory

100000sw mod 101 r/m data data if s w 01

4/26

Immediate from
accumulator

0010110w data data if w - 1

4 8/16-bit

SUBC = Subtract with
borrow:

Reg/memory and
register to either

000110dw mod reg r/m

2/24

Immediate from
register/memory

100000sw mod 011 r/m data data if s w - 01

4/26

Immediate from
accumulator

0001110w data data if w - 1

4 8/16-bit

V-Series Instruction Set Summary G-5

Function Format V20
Clock
Cycles

Comments

DEC = Decrement:

Register/memory 1111111w mod 001 r/m 2/24

Register 01001 reg 2

CMP = Compare:

Register/memory with
register

0011101w mod reg r/m

2/15

Register with
register/memory

0011100w mod reg r/m

2/15

Immediate with
register/memory

100000sw mod 111 r/m data data if s w - 01

4/17

Immediate with
accumulator

0011110w data data if w - 1

4 8/16-bit

NEG = Change sign 1111011w mod 011 r/m 2/24

ADJBA = ASCII adjust
for add

00110111

3

ADJ4A = Decimal
adjust for add

00100111

3

ADJBS = ASCII adjust
for subtract

00111111

7

G-6 V-Series Instruction Set Summary

Function Format V20
Clock
Cycles

Comments

ADJ4S = Decimal
adjust for subtract

00101111

7

MULU = Multiply
(unsigned):

1111011w mod 100 r/m

Register-Byte 21-22

Register-Word 29-30

Memory-Byte 27-28

Memory-Word 39-40

MUL = Integer
multiply (signed):

1111011w mod 101 r/m

Register-Byte 33-39

Register-Word 41-47

Memory-Byte 39-45

Memory-Word 51-57

MUL = Integer
immediate multiply
(signed)

011010s1 mod reg r/m data data if s= 0

28-34/46-52

DIVU = Divide
(unsigned):

1111011w mod 110 r/m

V-Series Instruction Set Summary G-7

Function Format V20
Clock
Cycles

Comments

Register-Byte 19

Register-Word 25

Memory-Byte 25

Memory-Word 35

DIV = Integer divide
(signed):

1111011w mod 111 r/m

Register-Byte 29-34

Register-Word 38-43

Memory-Byte 35-40

Memory-Word 48-53

CVTBD = ASCII adjust
for multiply

11010100 00001010

15

CVTDB = ASCII adjust
for divide

11010101 00001010

7

CVTBW = Convert
byte to word

10011000

2

CVTWL = Convert
word to double word

10011001

5

G-8 V-Series Instruction Set Summary

Function Format V20
Clock
Cycles

Comments

LOGIC
Shift/Rotate
Instructions:

Register/Memory by 1 1101000w mod TTT r/m 2/24

Register/Memory by CL 1101001w mod TTT r/m

7+n/27+n

Register/Memory by
Count

1100000w mod TTT r/m count

7+n/27+n

TTT Instruction
000 ROL
001 ROR
010 ROLC
011 RORC
100 SHL
101 SHR
111 SHRA

AND = And:

Reg/memory and
register to either

001000dw mod reg r/m

2/24

Immediate to
register/memory

1000000w mod 100 r/m data data if w = 1

4/26

Immediate to
accumulator

0010010w data data if w = 1

4 8/16-bit

V-Series Instruction Set Summary G-9

Function Format V20
Clock
Cycles

Comments

TEST = And function
to flags, no result:

Register/memory and
register

1000010w mod reg r/m

2/14

Immediate data and
register/memory

1111011w mod 000 r/m data data if w = 1 4/15

Immediate data and
accumulator

1010100w data data if w = 1

4 8/16-bit

OR = Or:

Reg/memory and
register to either

000010dw mod reg r/m

2/24

Immediate to
register/memory

1000000w mod 001 r/m data data if w = 1

4/26

Immediate to
accumulator

0000110w data data if w = 1

4 8/16-bit

XOR = Exclusive or:

Reg/memory and
register to either

001100dw mod reg r/m

2/24

Immediate to
register/memory

1000000w mod 110 r/m data data if w = 1

4/26

G-10 V-Series Instruction Set Summary

Function Format V20
Clock
Cycles

Comments

Immediate to
accumulator

0011010w data data if w = 1

4 8/16-bit

NOT = Invert
register/memory

1111011w mod 010 r/m

2/24

STRING
MANIPULATION

MOVBK = Move
byte/word

1010010w

14

CMPBK = Compare
byte/word

1010011w

22

CMPM = Scan
byte/word

1010111w

15

LDM = Load byte/wd to
AL/AW

1010110w

12

STM = Star byte/wd
from AL/AW

1010101w

10

INM = Input byte/wd
from DW port

0110110w

18

OUTM = Output
byte/wd to DW port

0110111w

18

Repeated by count in
CW

V-Series Instruction Set Summary G-11

Function Format V20
Clock
Cycles

Comments

MOVBK - Move string 11110010 1010010w 11 +
(8/16)n

CMPBK - Compare
string

1111001z 11010011w

7 + 22n

CMPM = Scan string 1111001z 11010111w 7 + 14n

LDM - Load string 11110010 1010110w 7 + 13n

STM - Store string 11110010 1010101w 7 + 8n

INM = Input string 11110010 0110110w 8 + 8n

OUTM = Output string 11110010 0110111w

8 + 8n

CONTROL
TRANSFER

CALL = Call:
Direct within segment

11101000 disp-low disp--high

20

Register memory
indirect within segment

11111111 mod 010 r/m

18/31

Direct intersegment 10011010 segment offset 29

segment selector

Indirect intersegment 11111111 mod 011 r/m (mod ≠11) 47

G-12 V-Series Instruction Set Summary

BR = Unconditional
jump:

Short long 11101011 disp-low 12

Direct within segment 11101001 disp-low disp-high 12

Register/memory
indirect within segment

11111111 mod 100 r/m

11/24

Direct intersegment 11101010 segment offset 15

segment selector

Indirect intersegment 11111111 mod 101 r/m (mod ≠11) 35

RET = Return from
CALL:

Within segment 11000011 19

Within seg adding
immed to SP

11000010 data-low data-high

Intersegment 11001011 24

Function Format V20
Clock
Cycles

Comments

V-Series Instruction Set Summary G-13

Intersegment adding
immediate to SP

11001010 data-low data-high

29

BE Jump on equal zero 01110100 disp 4/14 14 if BR

BLT = Jump on less not
greater or equal

01111100 disp

4/14 taken

BLE = Jump on less or
equal not greater

01111110 disp

4/14 4 if BR

BL = Jump on below
not above or equal

01110010 disp

4/14 not taken

BNH = Jump on below
or equal not above

01110110 disp

4/14

BPE = Jump on parity
even

01111010 disp

4/14

BV = Jump on overflow 01110000 disp

4/14

BN = Jump on sign 01111000 disp 4/14

BNE = Jump on not
equal not zero

01110101 disp

4/14

BGE = Jump on not less
greater or equal

01111101 disp

4/14

Function Format V20
Clock
Cycles

Comments

G-14 V-Series Instruction Set Summary

BGT = Jump on not less
or equal greater

01111111 disp

4/14

BNL = Jump on not
below above or equal

01110011 disp

4/14

BH = Jump on not
below or equal above

01110111 disp

4/14

BPO = Jump on not
parity odd

01111011 disp

4/14

BNV = Jump on not
overflow

01110001 disp

4/14

BP = Jump on not sign 01111001 disp 4/14

DBNZ = Loop CW
times

11100010 disp

5/13

DBNZE = Loop while
zero equal

11100001 disp

5/14

DBNZNE = Loop while
not zero equal

11100000 disp

5/14
BR taken/

BCWZ = Jump on CW
zero

11100011 disp

5/13
BR not
taken

PREPARE = Enter
Procedure

11001000 data-low data-high L

Function Format V20
Clock
Cycles

Comments

V-Series Instruction Set Summary G-15

L = 0
L=1
L>>1

16
25

23+16
(n-1)

DISPOSE = Leave
Procedure

11001001

10

BRK = Interrupt:

Type specified 11001101 type 50

Type 3 11001100 50 if
INT.taken/

BRKV = Interrupt on
overflow

11001110

52
if INT.not
taken

RETI = Interrupt return 11001111

39

CHKIND = Detect
value out of range

01100010 mod reg r/m

73-76

PROCESSOR
CONTROL

CLR1 CY = Clear carry 11111000 2

Function Format V20
Clock
Cycles

Comments

G-16 V-Series Instruction Set Summary

NOT1 CY =
Complement carry

11110101

2

SET1 CY = Set carry 11111001 2

CLR1 DIR = Clear
direction

11111100 2

SET1 DIR = Set
direction

11111101 2

DI = Clear interrupt 11111010 2

EI = Set interrupt 11111011 2

HALT = Halt 11110100 2

POLL = Wait 10011011 2 if test = 0

BUSLOCK = Bus lock
prefix

11110000

2

ESC = Processor
Extension Escape

10011TTT mod LLL r/m

6

(TTT LLL are opcode to processor extension)

INS: Insert Bit Field

Reg8 and Reg8 00001111 00110001 11 reg reg 35-113

Reg8 and Imm. 00001111 00111001 11 000 mem data 75-103

Function Format V20
Clock
Cycles

Comments

V-Series Instruction Set Summary G-17

EXT: Extract Bit Field

Reg8 and Reg8 00001111 00110011 11 reg reg 34-59

Reg8 and Imm. 00001111 00111011 11 000 mem data 25-52

ADD4S: Add Nibble
String

00001111 00100000

7+19n

SUB4S: Subtract Nibble
String

00001111 00100010

7+19n

CMP4S: Compare
Nibble String

00001111 00100110

7+19n

ROL4: Rotate Left
Nibble

00001111 00101000 mod 000 r/m

25/28

ROR4: Rotate Right
Nibble

00001111 00101010 mod 000 r/m

29/33

Function Format V20
Clock
Cycles

Comments

G-18 V-Series Instruction Set Summary

TEST1: Test One Bit

Register/Memory,CL 00001111 0001000w mod 000 r/m 3/12

Register/Memory,imm. 00001111 0001100w mod 000 r/m 4/13

NOT1: Not One Bit

Register/Memory,CL 00001111 0001011w mod 000 r/m 4/18

Register/Memory,imm. 00001111 0001111w mod 000 r/m 5/19

CLR1: Clear One Bit

Register/Memory,CL 00001111 0001001w mod 000 r/m 5/14

Register/Memory,imm. 00001111 0001101w mod 000 r/m 6/15

SET1: Set One Bit

Register/Memory,CL 00001111 0001010w mod 000 r/m 4/13

Register/Memory,imm. 00001111 0001110w mod 000 r/m 5/14

BRKEM: Break for
8080 Emulation

00001111 1111111w data

50

Function Format V20
Clock
Cycles

Comments

V-Series Instruction Set Summary G-19

FINT: Finish Interrupt 00001111 10010010

2

MOVSPA: Move Stack
Pointer After Bank
Switch

00001111 00100101

16

MOVSPB: Move Stack
Pointer Before Bank
Switch

Register 00001111 10010101 11110 reg

11

BRKCS: Break with
Context Switch

Register 00001111 00101101 11001 reg

15

RETRBI: Return from
Register Bank
Switching Interrupt

00001111 10010001

12

Function Format V20
Clock
Cycles

Comments

G-20 V-Series Instruction Set Summary

FOOTNOTES The effective Address (EA) of the memory operand is computed
according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

if mod = 00 then DISP = 0*, disp-low and disp-high are absent

if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high
is absent

if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BW) + (IX) + DISP

if r/m = 001 then EA = (BW) + (IY) + DISP

if r/m = 010 then EA = (BP) + (IX) + DISP

if r/m = 011 then EA = (BP) + (IY) + DISP

if r/m = 100 then EA = (IX) + DISP

if r/m = 101 then EA = (IY) + DISP

if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BW) + DISP

DISP follows 2nd byte of instruction (before data if required)

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

SEGMENT OVERRIDE PREFIX

 001 reg 110

V-Series Instruction Set Summary G-21

reg is assigned according to the following:

reg Segment
Register

00 DS1

01 PS

10 SS

11 DS0

REG is assigned according to the following table:

16-Bit (w = 1) 8-Bit (w = 0)

000 AW 000 AL

001 CW 001 CL

010 DW 010 DL

011 BW 011 BL

100 SP 100 AH

101 BP 101 CH

110 IX 110 DH

111 IY 111 BH

The physical addresses of all operands addressed by the BP register are
computed using the SS segment register. The physical addresses of the
destination operands of the string primitive operations (those addressed
by the IY register) are computed using the DS1 segment, which may
not be overridden.

G-22 V-Series Instruction Set Summary

Index

A absolute expression,5-2
acvtv20 translation tool,E-16
adding base and index register

in expression,5-8
addition operator

binary,5-12
unary,5-11

allocating record storage,4-48
allocating structure storage,4-59
AND operator,5-19, 11-7
anonymous reference,6-2

with expression,5-9
arithmetic operator,5-11
ASCII codes,D-1
assembler

character set,2-1
control general syntax,7-2
cross reference format,8-5
directive,4-1
error messages,B-1
general controls,7-2
listing,8-1
operation,1-2
primary controls,7-2
statement syntax,2-12
symbol table format,8-5

assembler controls
CAPITALS,7-4
DATE,7-4
DEBUG,7-4
EJECT,7-11
ERRORPRINT,7-5
GEN,7-11
general,7-11
GENONLY,7-11
INCLUDE,7-11

Index-1

assembler controls (continued)
INCLUDE with macro preprocessor,10-6
LIST,7-12
MACRO,7-6
MODV20,7-7
MODV25,7-7
OBJECT,7-7
OPTIMIZE,7-7
PAGELENGTH,7-8
PAGEWIDTH,7-8
primary,7-4
PRINT,7-8
RESTORE,7-12
SAVE,7-13
SYMBOLS,7-8
TITLE,7-13
TYPE,7-9
UNREFERENCED_EXTERNALS,7-9
WORKFILES,7-9
XREF,7-10

assembler syntax
blank line,2-13
comment,2-13
continuation line,2-14
keyword,2-13
label,2-12
operand,2-13
prefix,2-13
symbol,2-2

assembly source translation
acvtv20 tool,E-16

assembly source translation
HP 64853 to HP 64873,E-1

ASSUME directive,4-10
assumed,6-3
* operator,5-15, 11-6
attribute

BASE,3-3
INDEX,3-3
OFFSET,3-2
PS ADDRESSABILITY,3-6

2-Index

attribute (continued)
RELOCATION TYPE,3-4
SEGMENT,3-4
SEGMENT ADDRESSABILITY,3-5
SEGMENT RELOCATION,3-4
TYPE,3-2

B balanced text string,11-4
baltex,11-4
BASE attribute,3-3
base register

in expression,5-8
binary minus,5-12
binary plus,5-12
blank line in syntax,2-13
bracket macro function,12-3

C CAPITALS assembler control,7-4
caret,B-1
case insensitivity

assembler controls,7-4
case sensitivity

macro preprocessor,10-1, 11-3
character constant,2-11
character set

assembler,2-1
macro preprocessor,11-2

code translation
acvtv20 tool,E-16
HP 64853 to HP 64873,E-1

colon
 with label,2-6

comment in syntax,2-13
comment macro function,12-2
constant,2-8

character,2-11
integer,2-8
real,2-10

continuation line in syntax,2-14
controls, assembler

CAPITALS,7-4
DATE,7-4

Index-3

controls, assembler (continued)
DEBUG,7-4
EJECT,7-11
ERRORPRINT,7-5
GEN,7-11
general,7-2, 7-11
GENONLY,7-11
INCLUDE,7-11
LIST,7-12
MACRO,7-6
MODV20,7-7
MODV25,7-7
OBJECT,7-7
OPTIMIZE,7-7
PAGELENGTH,7-8
PAGEWIDTH,7-8
primary,7-2, 7-4
PRINT,7-8
RESTORE,7-12
SAVE,7-13
SYMBOLS,7-8
TITLE,7-13
TYPE,7-9
UNREFERENCED_EXTERNALS,7-9
WORKFILES,7-9
XREF,7-10

creating macros,13-2
cross reference format,8-5
CS ADDRESSABILITY attribute,3-6

D data definition directive,4-5
data object,4-6
DATE assembler control,7-4
DB directive,4-13

with string,4-18
DD directive,4-13
DEBUG assembler control,7-4
default

PROC directive,4-40
segment,4-4
segment register,4-11
segments for memory addressing,6-11

4-Index

DEFINE macro function,13-2
defining macros,13-2
differences between processor modes,7-14
directive

ASGNSFR,4-8
assembler,4-1
ASSUME,4-10
data definition,4-5
DB,4-13
DB with string,4-18
DD,4-13
DL,4-13
DQ,4-13
DS,4-13
DT,4-13
DW,4-13
DW, DD, DQ, DT with string,4-19
END,4-23
ENDP,4-40
ENDS (segments),4-50
ENDS (structures),4-58
EQU,4-24
EXTRN,4-29
GROUP,4-33
LABEL,4-36
NAME,4-38
ORG,4-39
PROC,4-40
program linkage,4-7
PUBLIC,4-43
PURGE,4-44
RECORD,4-46
SEGMENT,4-50
segmentation,4-3
STRUC,4-58

directive:SETIDB,4-56
division operator,5-15
DL directive,4-13
DQdirective,4-13
DS directive,4-13
DT directive,4-13

Index-5

DW directive,4-13
DW, DD, DS, DQ, DL, DT directive

with string,4-19

E EBCDIC codes,D-1
EJECT assembler control,7-11
END directive,4-23
ENDP directive,4-40
ENDS directive,4-50
ENDS directive (structures),4-58
EQ operator,5-20, 11-7
EQS macro function,12-5
EQU directive,4-24
EQU symbols defined,2-8
error messages

assembler,B-1
error messages

formats,A-1
macro preprocessor,C-1

ERRORPRINT assembler control,7-5
escape macro function,12-3
EVAL macro function,12-6
EXIT macro function,12-6
expression

absolute,5-2
anonymous,5-9
base register in,5-8
with EQU directive,5-10
external,5-3
generally,5-2
group name operand,5-6
index register in,5-8
label name operand,5-7
in macro preprocessor,11-4
numeric operand,5-4
operand,5-4, 6-1
operator,5-11
operator, arithmetic,5-11
operator, logical,5-19
operator, record,5-31
record field operand,5-6
record operand,5-5

6-Index

expression (continued)
register indirect,5-8
relocatable,5-3
segment name operand,5-6
string operand,5-5
structure field operand,5-7
variable name operand,5-7

external expression,5-3
EXTRN directive,4-29

F formats for error messages,A-1
function

%((bracket) macro,12-3
bracket macro,12-3
%’ (comment) macro,12-2
comment macro,12-2
DEFINE macro,13-2
EQS macro,12-5
%n (escape) macro,12-3
escape macro,12-3
EVAL macro,12-6
EXIT macro,12-6
GES macro,12-5
GTS macro,12-5
IF macro,12-7
LEN,10-3
LEN macro,12-8
LES macro,12-5
LTS macro,12-5
MATCH macro,12-10
METACHAR macro,12-11
NES macro,12-5
REPEAT macro,12-12
SET macro,12-13
SUBSTR,10-3
SUBSTR macro,12-14
WHILE macro,12-14

G GE operator,5-20, 11-7
GEN assembler control,7-11
general assembler controls,7-2, 7-11
general syntax,2-12

Index-7

GENONLY assembler control,7-11
GES macro function,12-5
group,4-33

OFFSET operator with,4-35
override operator,5-24

GROUP directive,4-33
group name

defined,2-8
as expression operand,5-6

GT operator,5-20, 11-7
GTS macro function,12-5

H HIGH operator,5-17, 11-5
HP 64853 to HP 64873 translation,E-1

I IF macro function,12-7
immediate,6-3
immediate value

See also numeric value
INCLUDE assembler control,7-11

with macro preprocessor,10-6
incorrect macro example,12-15
INDEX attribute,3-3
index register

in expression,5-8
initialization

record,4-48
segment register,4-22
structure,4-59

instruction mnemonic defined,2-6
instruction set,1-1

assembler,6-21
V-Series,G-1
V-Series in hexadecimal order,F-1

integer constant,2-8

K keyword defined,2-3
keyword in syntax,2-13

L label,4-6
in syntax,2-12

LABEL directive,4-36

8-Index

label name
defined,2-6
as expression operand,5-7

LE operator,5-20, 11-7
LEN function,10-3
LEN macro function,12-8
LENGTH operator,5-28
LES macro function,12-5
LIST assembler control,7-12
listing, assembler,8-1
literal (*) character,10-5
logical operator,5-19
logical segment,4-4
LOW operator,5-17, 11-5
LT operator,5-20, 11-7
LTS macro function,12-5

M MACRO assembler control,7-6
macro example (incorrect),12-15
macro function

bracket,12-3
comment,12-2
DEFINE,13-2
EQS,12-5
escape,12-3
EVAL,12-6
EXIT,12-6
GES,12-5
GTS,12-5
IF,12-7
LEN,10-3, 12-8
LES,12-5
LTS,12-5
MATCH,12-10
METACHAR,12-11
NES,12-5
REPEAT,12-12
SET,12-13
string relational,12-5
SUBSTR,10-3, 12-14
WHILE,12-14

Index-9

macro preprocessor,10-1
balanced text string (baltex),11-4
character,11-2
error messages,C-1
INCLUDE file,10-6
input parsing,10-5
input source characteristics,10-2
literal character,10-5
metacharacter (%),10-2
number in,11-3
output buffering,10-6
symbol in,11-3
with expressions,11-4
with operators,11-4

MASK operator,5-31
MATCH macro function,12-10
memory addressing,6-7, 6-9
METACHAR macro function,12-11
microprocessors,1-1
—

binary,5-12
unary,5-11
with base and index register,5-8

MOD operator,5-15, 11-6
MODRM byte,6-8
MODV20 assembler control,7-7
MODV25 assembler control,7-7
multiple segment definition,4-53

N NAME directive,4-38
NE operator,5-20, 11-7
NES macro function,12-5
nesting segments,4-54
NOT operator,5-20, 11-6
number

macro preprocessor,11-3
17-bit,5-3

numeric constant
other bases,2-9

numeric value
character constant,2-11
constant,2-8

10-Index

numeric value (continued)
as expression operand,5-4
immediate value,6-3
integer constant,2-8
real constant,2-10

O OBJECT assembler control,7-7
OFFSET attribute,3-2
OFFSET operator,5-25

with group,4-35
operand

in syntax,2-13
positioning,6-3
required typing,6-2

operation differences, processor modes,7-14
operation of assembler,1-2
operator

AND,5-19, 11-7
/,5-15, 11-6
EQ,5-20, 11-7
GE,5-20, 11-7
GT,5-20, 11-7
HIGH,5-17, 11-5
LE,5-20, 11-7
LENGTH,5-28
logical,5-19
LOW,5-17, 11-5
LT,5-20, 11-7
macro preprocessor,11-4
MASK,5-31
—, unary,5-11 to 5-12
MOD,5-15, 11-6
*,5-15, 11-6
NE,5-20, 11-7
NOT,5-20, 11-6
OFFSET,5-25
OR,5-19, 11-7
+, unary,5-11 to 5-12, 11-6
PTR,5-23
record,5-31
SEG,5-26
SHL,5-16, 11-7

Index-11

operator (continued)
SHORT,5-22
SHR,5-16, 11-7
SIZE,5-29
THIS,5-22
TYPE,5-27
WIDTH,5-32
XOR,5-19, 11-7

operator precedence,5-36
OPTIMIZE assembler control,7-7
OR operator,5-19, 11-7
ORG directive,4-39
override

group,5-24
segment,5-24, 6-11
segment override checked against ASSUME,6-12

P % (metacharacter),10-2, 12-2 to 12-3
PAGELENGTH assembler control,7-8
PAGEWIDTH assembler control,7-8
physical segment,4-3
+,11-6

binary,5-12
unary,5-11
with base & index register,5-8

position of operand,6-3
pre-defined macro function,12-1
precedence

of operators,5-36
prefix in syntax,2-13
primary assembler controls,7-2, 7-4
PRINT assembler control,7-8
PROC directive,4-40

default,4-40
processor mode

differences,7-14
V20,7-14
V25,7-14

program linkage,4-7
program linkage directive,4-7
program segmentation,4-3
PTR operator,5-23

12-Index

PUBLIC directive,4-43
PURGE directive,4-44

Q quoted string
as expression operand,5-5

R real constant,2-10
record

differences from structure,4-6
as expression operand,5-5
initialization,4-48
name defined,2-7
similarities to structure,4-6

RECORD directive,4-46
record field

as expression operand,5-6
name defined,2-7

record operator,5-31
register

16-bit,6-6
8-bit,6-6
8087,6-8
assumed type,6-3
base,6-6
floating point,6-8
index,6-6
segment,4-4, 6-6 to 6-7

register indirect expression,5-8
relocatable expression,5-3
RELOCATION TYPE attribute,3-4
REPEAT macro function,12-12
RESTORE assembler control,7-12

S 17-bit number,5-3
SAVE assembler control,7-13
SEG operator,5-26
segment

addressability,6-10
default,4-4
logical,4-4
maximum number,4-55
nesting,4-54
override operator,5-24

Index-13

segment (continued)
register,4-4

SEGMENT ADDRESSABILITY attribute,3-5
SEGMENT attribute,3-4
SEGMENT directive,4-50
segment name

defined,2-7
as expression operand,5-6

segment override,6-11
checked against ASSUME,6-12

segment register
default value,4-11
initialization,4-22

SEGMENT RELOCATION attribute,3-4
segmentation

directive,4-3
multiple segment definition,4-53
of program,4-3

SET macro function,12-13
SETIDB directive,4-56
SGNSFR directive,4-8
SHL operator,5-16, 11-7
SHORT operator,5-22
SHR operator,5-16, 11-7
SIZE operator,5-29
/ operator,5-15, 11-6
string

as expression operand,5-5
with DB directive,4-18
with DW, DD, DQ, DT directive,4-19

string relational macro function,12-5
STRUC directive,4-58
structure

differences from record,4-6
initialization,4-59
name defined,2-7
similarities to record,4-6

structure field
as expression operand,5-7
name defined,2-7

SUBSTR macro function,10-3, 12-14

14-Index

subtraction operator
binary,5-12
unary,5-11

supported instruction set,1-1
supported microprocessors,1-1
symbol

EQU symbols,2-8
group name,2-8
instruction mnemonic,2-6
keyword,2-3
label,2-6
label with colon,2-6
macro preprocessor,11-3
record field name,2-7
record name,2-7
segment name,2-7
structure field name,2-7
structure name,2-7
variable,2-6

symbol in syntax,2-2
symbol table format,8-5
SYMBOLS assembler control,7-8
syntax

blank line,2-13
comment,2-13
continuation line,2-14
keyword,2-13
label,2-12
operand,2-13
prefix,2-13
symbol,2-2

T THIS operator,5-22
TITLE assembler control,7-13
translation

acvtv20 tool,E-16
HP 64853 to HP @#!(PRODNUM),E-1

TYPE assembler control,7-9
TYPE attribute,3-2
TYPE operator,5-27

Index-15

U unary minus,5-11
unary plus,5-11
UNREFERENCED_EXTERNALS assembler control,7-9
user-defined macro,13-2
user-defined macros,13-1

V V20 processor mode,7-14
V25 procossor mode,7-14
variable,4-6
variable name

defined,2-6
as expression operand,5-7

W WHILE macro function,12-14
WIDTH operator,5-32
WORKFILES assembler control,7-9

X XOR operator,5-19, 11-7
XREF assembler control,7-10

16-Index

