
1 HP 64000 Logic Development System

HP-UX Hosted
Cross Assembler/
Linker User Definable

Operating Manual

HP Part No. 6 4851-97000
Printed in U.S.A.
June 1989

Edition 2

1Certification and Warranty

Certification Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer’s
facility only upon HP’s prior agreement and Buyer shall pay HP’s
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

1Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1984, 1985, 1989 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

1Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes and, conversely, manual corrections may be done without
accompanying product changes. Therefore, do not expect a one to
one correspondence between product updates and manual
revisions.

Edition 1
Edition 2

64851-90906 ,September 1984
64851-97000, June 1989

Using This Manual

This manual describes how to use the HP 64851S User Definable
Assembler in a HP-UX environment. Create your custom
assembler on an HP 64000 development station. After it has been
created, upload the assembler to the host mainframe. At this point,
the assembler can be used in the same way as any other assembler
in the HP-UX environment. Follow the instructions in the first
eight chapters to create the custom assembler and linker, then
follow the uploading instructions in Chapter 9.

Note Be certain to read the CAUTION on page 7-1 and "Sample Code
Defining 8080 Processor" on page 7

Notes

Contents

1 General Information (User Definable Assembler/Linker)

Introduction . 1-1
Assembler Operation . 1-3
What The User Must Define 1-4

2 Programming Rules

Introduction . 2-1
User Definable Assembler Structure 2-2

Defining the Processor . 2-2
Defining Relocatable Code Generation Formats 2-3
Internal Constants . 2-4
Predefined Symbols . 2-4

Instruction Group . 2-5
Defining the Instruction Set (INSTR_DEF) 2-5
Parsing the Instruction Set (INSTR_SET) 2-6

3 Assembler Commands, Symbols, Instructions, and Conventions

Introduction . 3-1
Assembler Directive . 3-1
Assembler Setup Commands 3-2
Predefined Symbols . 3-5
Pseudo Instructions . 3-7
Assembler Instructions . 3-8
Conventions . 3-11

4 Assembler Subroutines

Introduction . 4-1
Subroutines And Examples 4-1

Column Pointers . 4-1
ADD_LABEL . 4-3
CHECK_AUTO_DEC . 4-3
CHECK_AUTO_INC . 4-3

Contents - 1

CHECK_COMMA . 4-4
CHECK_DELIMITER . 4-4
CHECK_EOL . 4-5
CHECK_EXPR_ERROR 4-5
CHECK_PASS1_ERROR 4-5
COUNTER_UPDATE . 4-7
ERROR . 4-7
EVEN n . 4-9
EXPRESSION . 4-9
EXPRESSION_2 . 4-10
FIND_DELIMITER . 4-11
GEN_CODE . 4-11
GET_ASCII_BYTE . 4-12
GET_OPCODE . 4-12
GET_PROG_COUNTER 4-13
GET_START_CHAR . 4-13
GET_STOP_CHAR . 4-13
GET_SYMBOL . 4-14
GET_TOKEN . 4-15
NOT_DUPLICATE . 4-17
PRINT_LOCATION . 4-17
SAVE_ERROR . 4-17
SAVE_WARNING . 4-17
SCAN_REAL . 4-17
UPDATE_LABEL . 4-19
WARNING . 4-19

5 Creating An Assembler

Introduction . 5-1
Summary Of The Assembler Source Code Building Process for
8080 Processor . 5-2

Assembler Setup Commands 5-2
Defining and Parsing the Instruction Set (INSTR_DEF &
INSTR_SET) . 5-4

Tracing The User Defined Assembler Execution Sequence . 5-6

6 Linker General Information

Introduction . 6-1
Linker Operation . 6-1

2 - Contents

7 Linker Programming Rules

Linker Structure . 7-1
Linker Setup Commands . 7-3
Processor Definition . 7-4

Sample Code Defining 8080 Processor 7-4
Define Entry Points For Relocatable Routines 7-6
Linker Instructions . 7-6
Predefined Symbols . 7-9
Relocatable Format Routines 7-10

8 Creating The Linker

Introduction . 8-1
Tracing The User Defined Linker Execution Sequence . . . 8-3

9 Uploading To The Mainframe

Introduction . 9-1
Uploading Assembler Tables 9-1

Uploading Linker Tables 9-1

A User Defined Assembler Code for 8080 Processor

B User Defined Linker Code for 8080 Processor

C Summary of Assembler Subroutines

D Relocatable and Absolute File Formats

Nam Record (record Type = 1) D-2
Glb Record (record Type = 2) D-3
Dbl Record (record Type = 3) D-4
Ext Record (record Type = 4) D-5
End Record (record Type = 5) D-6
Absolute File . D-7

Contents - 3

Illustrations

Figure 1-1. User Definable Assembler/Linker Overview . . . 1-2
Figure 1-2. Assembler Functions 1-3
Figure 2-1. Assembler Building Process 2-2

Figure 4-1. Forward Referenced Symbol Code Gen. Chart . . 4-6
Figure 5-1. Creating the Assembler 5-2
Figure 5-2 Example of TRACE 2 Output 5-6
Figure 6-1. Linker Module Functions 6-2

Figure 7-1. Linker Building Process 7-2
Figure 8-1. Creating the Linker 8-2

4 - Contents

1

General Information (User Definable
Assembler/Linker)

Introduction An assembler translates mnemonic source code into object code
that will execute on a specific processor. The user definable
assembler/linker permits the instruction set and instruction format
of any processor to be defined in a source program by the user. In
addition, it can be used to modify source type HP Model 64000
Assemblers by adding or changing instructions. Assembler code for
the Model 64000 is modular and changes can also be made by
merging code in appropriate places.

Note The user definable assembler/linker cannot be used to modify
existing ABSOLUTE assembler files.

The assembler and linker both have two modules:

1. The basic assembler module that is part of the Model
64000 operating system and cannot be modified by the
user.

2. The user definable assembler module.

3. The basic linker module, which is also part of the Model
64000 operating system and cannot be modified by the user.

4. The user definable linker module.

Figure 1-1 illustrates how the user definable assembler and linker
are created and then used with target system programs for the user
processor.

General Information 1-1

Note Refer to the Assembler/L inker Reference Manual for details on the
basic assembler and linker modules. This manual supplement will
only describe the user definable assembler and linker modules.

Figure 1-1. User Definable Assembler/Linker Overview

1-2 General Information

1Assembler
Operation

HP 64000 Assemblers include a pass 1 and a pass 2. The same code
is used to generate both passes. Primary functions in pass 1 are
building the symbol table and updating the program counter. To
build the symbol table, labels and operands are identified and
stored by names and addresses or labels. Object code is generated
in pass 2, based on the symbol table.

The programmer implements the functions the user definable
assembler must perform with a set of subroutines. These
subroutines will be explained in Chapter 4 of this supplement. The
functions performed by the basic assembler module and user
definable assembler module are shown in figure 1-2.

The user defines the instruction set and predefined registers and
symbols. The standard set of pseudo instructions can be used as is,
redefined, or extra pseudo instructions peculiar to the user’s
assembly language can be added. The assembler also includes a
symbol table building method that is mostly transparent to the
user.

Figure 1-2. Assembler Functions

General Information 1-3

1What The User
Must Define

To define an assembler program, the user must provide the
following information.

1. Identify all predefined symbols for registers, stack pointers,
condition codes, etc. for the target processor.

2. Divide the instruction set into separate groups of
instructions that are parsed in the same way.

3. Identify the machine code corresponding to the
"unalterable" part of each instruction (opcode).

4. Define the parsing rules for each instruction group.

1-4 General Information

2

Programming Rules

1Introduction This chapter will explain the tasks that must be completed before
user definable assembler code can be written. The functional block
diagram in figure 2-1 illustrates the assembler building process.
Each block corresponds to a paragraph title.

1. The user processor must be defined, including all
predefined symbols for its language.

2. Instructions must be divided in groups that can be parsed
in the same way and then defined in machine code
(INSTR_DEF).

3. The parsing rules for each instruction group in step b must
be specified. This defines how to handle the instruction set
(INSTR_SET).

Programming Rules 2-1

1User Definable
Assembler
Structure

Defining the
Processor

In this first section of user definable code, setup commands define
the basic parameters of the user processor. For example, assembler
directive, word size, address size, assembler list title, print field
size, linker file identifier, constants, registers, status words, and
stack pointers. The 8080 processor will be used in the examples
shown in this manual. Some information about the processor is
included here. For more details, refer to the 8080/8085 Assembler
Supplement.

In the following examples, some of the user definable assembler
setup commands are illustrated. Chapter 3 discusses all the setup

Figure 2-1. Assembler Building Process

2-2 Programming Rules

commands. The setup commands can be in any order desired by the
programmer, except for the assembler directive, which must be the
FIRST setup command.

Example:

ASSEMBLER "8080" ;Defines the processor.
WORDSIZE = 8 ;Defines the word size.
ADDRESS_BASE = 8 ;Specifies the program counter increment.
TITLE = "8080" ;Title for the assembler list.
LOC_SIZE = 4 ;Four characters in the print field for the location
 ;counter.
LINK_FILE L8080 : XX ;Specifies linker file. XX is the USERID
 ;(1 to 6 characters).
PC_16 ;Only the lower 16 bits of the program counter are used.

Defining Relocatable
Code Generation

Formats

The relocatable code formats must also be defined at this time with
the RELOC_FMT setup command. This command can be located
anywhere in the group of setup commands. The command is used
as follows.

 RELOC_FMT < name> , SIZE = < n>

where:
 < name>

is used in conjunction with
GEN_CODE to identify the relocatable
addressing mode. GEN_CODE will be
explained in a later paragraph, Parsing
the Instruction Set.

SIZE = < n> defines the variable size being parsed
(n= 1 to 32 bits).

Examples:

RELOC_FMT HIGH_LOW, SIZE = 16 ;Relocate 16 bits.
RELOC_FMT LOW_HIGH, SIZE = 16 ;Relocate and swap bytes.
RELOC_FMT LOW_BYTE, SIZE = 8 ;Low byte, no error check.
RELOC_FMT HIGH_BYTE, SIZE = 8 ;High byte, no error check.
RELOC_FMT LOW_CHECK, SIZE = 8 ;Low byte, check for >256.
RELOC_FMT REL_8, SIZE = 8 ;Plus minus 128.
RELOC_FMT PC_REL, SIZE = 8 ;-126, +129

Programming Rules 2-3

Internal Constants Assembler internal constants are used for the programmers
convenience. In the examples below, the temporary registers
TEMP1, TEMP2, and TEMP3 are assigned a new name under
CONSTANTS to aid in program documentation. There are 40
temporary registers available to the programmer (TEMP1 to 40).

Examples:

CONSTANTS
HIGH_FLAG = TEMP 1 ;Used as a flag if HIGH keyword is found.
COUNT = TEMP2 ;Used as a temporary count.
MEM_CHECK = TEMP3 ;Used to check memory reference on MOV instructions
END

Predefined Symbols Predefined symbols can be defined to represent registers, status
words, stack pointers, etc.

Examples:

OBJ.
CODE
0006 SYMBOLS = REGISTER ;Defines the TYPE and
 ;VALUE assigned to the
0007 A = 7 ;symbols. REGISTER is
0000 B = 0 ;TYPE 6. Symbol C has
0001 C = 1 ;a VALUE of 1.
. D = 2
. E = 3
. H = 4
. L = 5
. M = 6
END

SYMBOLS = STATUS
 PSW = 6
END
SYMBOLS = STACK
 SP = 6
END
SYMBOLS = ADDR_OPER
 HIGH = 1
 LOW = 0
END

During assembler operation, values assigned to the symbols will be
used by the assembler subroutines.

2-4 Programming Rules

1Instruction Group

Defining the
Instruction Set
(INSTR_DEF)

The user must now divide the instruction set into separate groups
of instructions that are parsed in the same way. Depending on the
processor being defined, common parsing rules could include
instruction format, data format, addressing modes, etc. This allows
all instructions within a group to be handled in the same manner,
which simplifies assembler operation.

The definition of each group must start with INSTR_DEF. This is
followed by each instruction and its object code format. It is used
as follows:

INSTR_DEF [OPERAND = X] [SPACES]

initiates section of code where the instruction mnemonics are
equated to their respective machine codes. OPERAND= X and
SPACES are optional parameters and are specified on the same
line. X is the number of operands in a source statement to be cross
referenced. OPERAND= 0 turns off cross referencing for the
instruction group. DEFAULT: if OPERAND is not specified, all
operands in the source statement are cross referenced.

SPACES is a key word used by the cross-reference generator to
develop cross-reference tables. The key word "SPACES" indicates
to the cross-reference generator that spaces are permitted in the
operand field for the target processor. Note that SPACES must be
used if it applies to the target processor. Each INSTR_DEF
section is followed by an INSTR_SET section.

Example:

INSTR_DEF OPERAND=0 ;Starts instruction set
 ;definition section for
 ;no operand instructions.
 CMC = 3FH
 RIM = 20H
 .
 .
 .
 HLT = 76H

Programming Rules 2-5

Parsing the
Instruction Set
(INSTR_SET)

This next section defines the parsing rules that will perform the
object code conversion for the user processor. It must start with
INSTR_SET and terminate with the DONE instruction. The
following example illustrates the basic structure. Each instruction
group made up of INSTR_DEF and INSTR_SET must terminate
with an END instruction. An example assembler source program
with details on exactly how code is written is provided in Chapter 5.
Chapter 4 explains the user definable assembler subroutines.

Example:

INSTR_DEF OPERAND=0

 CMC = 03FH
 ..
 ..
INSTR_SET ;Starts source code parsing section.

 GEN_CODE ABS 8, OBJECT_CODE
 DONE ;Return to basic assembler module.
END ;Must terminate instruction group.

INSTR_DEF ;Starts next instruction group definition section.
 ..
 ..
 Code
 ..
 DONE
END

This continues until each instruction group for the processor is
defined.

The print formats and code generating rules are defined with the
GEN_CODE subroutine. For absolute code this is accomplished
by setting up GEN_CODE parameters that define the size of the
generated code in bits (8 or 16) and the predefined operand that
contains the binary code to be generated. The GEN_CODE
subroutine is explained in detail in Chapter 4.

Example:

GEN_CODE ABS 8, OBJECT_CODE ;The code size is 8 bits.
 ;The predefined symbol
 ;OBJECT_CODE will contain
 ;the bit pattern to be
 ;generated.

2-6 Programming Rules

For relocatable code, the GEN_CODE subroutine has a different
format and is used with the RELOC_FMT setup command
described earlier. It has the following form.

GEN_CODE < name> , VALUE[SPACE]

or (either VALUE or BOTH must be specified)

GEN_CODE < name> , BOTH[SPACE]

where:

< name> is used in conjunction with
GEN_CODE to identify the relocatable
addressing mode.

VALUE uses the contents of the predefined
symbols VALUE and relocation TYPE
to generate code.

[SPACE] inserts a space in the object code field of
the assembler listing.

BOTH uses the contents of the predefined
symbols VALUE, relocation TYPE, and
OBJECT_CODE to generate code.

Programming Rules 2-7

1Notes

2-8 Programming Rules

3

Assembler Commands, Symbols, Instructions,
and Conventions

Introduction This chapter first explains the assembler directive and the setup
commands needed to define the user processor. Predefined
symbols are identified next, followed by pseudo and assembler
instructions. An explanation of the conventions used completes the
chapter.

1Assembler
Directive

In Chapter 2, under "Defining the Processor", brief examples show
how a processor is defined. In defining a processor, the first
statement must be the assembler setup command ASSEMBLER,
followed by the assembler directive in quotes.

Example:

ASSEMBLER "8080"

After the processor is defined, target system source programs must
always begin with the assembler directive.

"8080"
source code
 "
 "
END

Commands, Symbols, Instructions, & Conventions 3-1

1Assembler Setup
Commands

Use the setup commands to define basic parameters such as
assembler directive, word size, address size, constants, registers,
status words, and stack pointers. Except for the assembler directive,
which must be first, the order of the setup commands is left to the
programmer’s discretion.

ADDRESS_BASE
 = nn

defines the process address mode; i.e.,
word or byte. Defaults to eight bits.

ASSEMBLER
 "< name> "

defines the assembler directive for the
user processor.

LINK_FILE allows the user to define the linker
module to be used during a target system
source program link operation. If an HP
system linker absolute module exists on
the Model 64000, it can be used,
providing no additional formats or no
system linker is available, a user
definable linker module must be
defined. An example of the LINK_FILE
setup command for the system linker
module and the user definable linker
module follows:

(system absolute linker module) LINK_FILE I8085_Z80 : HP
(user defined absolute linker module) LINK_FILE L8080 :
USERID

Note The user linker name (L8080 here) can be any legal file name. The
system linker module uses a lower case I identifier and is stored
under USERID HP.

LOC_SIZE = n sets up the size of the print field for the
location counter (n= 1 to 8 characters).
DEFAULT: four characters.

3-2 Commands, Symbols, Instructions, & Conventions

DOUBLE_ADDRESS defines 32-bit addresses to be passed to
the linker.

PC_16 indicates only the lower 16 bits of the
program counter will be incremented.

RELOC_FMT < name> , SIZE = < n>

< name> is used in conjunction with
GEN_CODE to identify the relocatable
addressing mode. The GEN_CODE
subroutine is explained in Chapter 4.

SIZE = < n> defines the variable size being parsed
(n= 1 to 32 bits).

RENAME_PSEUDO allows the user to rename the pseudo
provided by the Model 64000 system. It
has the following format:

RENAME_PSEUDO < new name of pseudo> = < pseudo
number>

Example:

RENAME_PSEUDO ORIGIN = 1

The list of pseudos and their associated pseudo number follow:

Note The IF pseudo cannot be renamed.

Commands, Symbols, Instructions, & Conventions 3-3

 PSEUDO PSEUDO NUMBER

 ORG 1
 PROG 2
 DATA 3
 COMN 4
 EQU 5
 EXT, EXTERNAL 6
 GLB, GLOBAL 7
 LIST 8
 SPC 9
 NAME 10
 REPT 11
 SKIP 12
 TITLE 13
 MASK 14
 END 15
 WARN 16
 NOWARN 17
 NOLIST 18
 EXPAND 19
 HEX 20
 DEC, DECIMAL 21
 OCT, OCTAL 22
 BIN, BINARY 23
 ASC, ASCII 24
 INCLUDE 25
 TRACE 26
 REAL 27
 SET 28

SYMBOLS = < name> defines user definable types. See TYPE
under Predefined Symbols.

TITLE = "< string> " defines the header line on the assembler
list output.

WORD_SIZE = nnn defines the processor word size.
Allowable range is 8 to 128 bits.
DEFAULT: eight bits.

3-4 Commands, Symbols, Instructions, & Conventions

1Predefined
Symbols

The following symbols are reserved. They have special meaning to
the basic assembler module and cannot be redefined by the user.

Note All variables and registers are 32 bits long.

ACCUMULATOR working register.

AUTO_DEC_COUNT set by CHECK_AUTO_DEC and used
by EXPRESSION.

AUTO_INC_COUNT set by CHECK_AUTO_INC and used
by EXPRESSION.

CHARACTER used by CHECK_DELIMITER,
GET_START_CHAR and
GET_STOP_CHAR to return the
character found.

CLASS returned by GET_TOKEN with an
indicator of the token type found:

0= Numeric constant
1= Undefined
2= String constant
3= Operator
4= Delimiter
5= Upper case variable
6= Undefined
7= Lower case variable
8= Undefined
9= End of line-no tokens in string
10= Decimal constant with E notation

Commands, Symbols, Instructions, & Conventions 3-5

*EXT_ID_NUMB variable returned EXPRESSION and
GET_SYMBOL with an external
variable identification number assigned
by the assembler.

*EXT_OFFSET variable returned by EXPRESSION and
GET_SYMBOL with the value of the
offset to be added to an external
operand at link time.

*For more information, refer to EXPRESSION and
GET_SYMBOL subroutines in Chapter 4.

INSTR_RESET variable reset to 0 at the beginning of
each instruction.

OBJECT_CODE register used to pass the object code to
the code generating routine.

PROGRAM_
COUNTER

variable identifying the current TYPE of
code. See TYPE 0 through 3.

RESULT variable containing the value of the
TOKEN returned by GET_TOKEN.

SAVE_PTR pointer set by EXPRESSION to save
the position of the STOP pointer at the
time EXPRESSION was invoked.

START pointer used by subroutines to control
the scanning function.

STOP pointer used by subroutines to control
the scanning function.

TOKEN_ERROR set by GET_TOKEN when an error is
found.

TYPE variable containing the type of an
evaluated expression.

3-6 Commands, Symbols, Instructions, & Conventions

0= absolute
1= program relocatable
2= data relocatable
3= common relocatable
4= external reference
5= equated to external
6> user definable types (see SYMBOLS).

VALUE variable containing the value of an
expression.

1Pseudo
Instructions

Pseudo instructions are used by most assemblers to provide for
special functions that are not part of the basic instruction set. They
are used to define storage space, equate variable names to specific
values, identify labels to variable names, etc. In some cases
nonexecutable code is generated for assembler pseudo instructions,
while in other cases, such as listing control and constant definition,
no code is generated.

All of the standard pseudo instructions explained in the
Assembler/L inker Reference Manual are available to the user. In
addition, these standard instructions can be renamed as explained
earlier in this chapter, under "Assembler Setup Commands",
RENAME_PSEUDO.

The TRACE pseudo enables the user to examine execution of user
definable assembler code. For more details and an example, refer
to" Tracing the User Definable Assembler", in Chapter 5.

Commands, Symbols, Instructions, & Conventions 3-7

1Assembler
Instructions

Use the following assembler instructions in the INSTR-SET
section to implement the instruction group parsing rules. All
arithmetic is performed in two’s complement, 32 bits wide. Be
certain to read the next section," Conventions".

ADD operand add the contents of "operand" to the
contents of the ACCUMULATOR. The
result remains in the
ACCUMULATOR.

AND operand logically ANDs the "operand" with the
contents of the ACCUMULATOR. The
result remains in the
ACCUMULATOR.

ACCUMULATOR < --
ACCUMULATOR AND operand

CALL label transfers program execution to the
subroutine at the address specified by
label.

DECREMENT
operand

decrements the "operand" by one.

DONE terminates INSTR_SET code and
transfers control to the basic assembler
module.

END indicates the end of an assembler
module. Each module must be
terminated by and END instruction.

GOTO label transfers program execution to the
address specified by label.

IF operand1 "condition"
operand2 THEN
instruction

compares operand1 with operand2
according to the specified "condition." If
"condition" is true, instruction is
executed. If not, control is transferred to

3-8 Commands, Symbols, Instructions, & Conventions

the instruction immediately after the IF
instruction.

"condition" can be:

> greater than
> equal to or greater than
< less than
< less than or equal to
= equal to
< > not equal to

Note All comparisons are unsigned.

INCREMENT operand increments the contents of "operand" by
one. operand < -- operand + 1

LOAD operand loads the ACCUMULATOR with the
contents of "operand."

ACCUMULATOR < -- operand

NOP no operation.

OR operand logically ORs the contents of "operand"
with the contents of the
ACCUMULATOR. The result remains
in the ACCUMULATOR.

ACCUMULATOR < --
ACCUMULATOR OR operand

RETURN n transfers program control to the "nth"
instruction after the CALL instruction.
If n is omitted, a return 1 is executed by
default.

Commands, Symbols, Instructions, & Conventions 3-9

SHIFT_LEFT n shifts the ACCUMULATOR contents n
bits to the left. Zeros are filled in. 0 < =
n < = 32.

SHIFT_RIGHT n shifts the ACCUMULATOR contents n
bits to the right. Zeros are filled in. 0
< = n < = 32.

STORE operand stores the contents of the
ACCUMULATOR in "operand."

operand < -- ACCUMULATOR

STORE_0 operand clears the contents of "operand."

operand < -- 0

STORE_1 operand sets bit 0 of "operand" and clears all
other bits.

operand < -- 1

SUBTRACT operand subtracts "operand" contents from
ACCUMULATOR contents and stores
results in ACCUMULATOR.

ACCUMULATOR < --
ACCUMULATOR - operand

TWOS_
COMPLEMENT

calculates the two’s complement of
ACCUMULATOR contents.

ACCUMULATOR < --
ACCUMULATOR + 1

3-10 Commands, Symbols, Instructions, & Conventions

1Conventions Observe the following conventions when programming.

Auto decrement automatic decrement function is
represented by a trailing minus sign; e.g.,
An-.

Auto increment automatic increment function is
represented by a trailing plus sign; e.g.,
An+ .

Blank line blank lines are ignored by the assembler
modules.

Comment field begins with a semicolon.

Comment line if a semicolon is in the first column, the
entire line is treated as a comment.

Delimiters legal delimiters are: space ; , $: @ ! % #
’ & ? . \ / ~ { } or end of line.

End of line a blank, semicolon, or actual end of line
are valid end of line indicators.

Hex notation the first digit in hexadecimal notation
must be a numeral 0 through 9. The
suffix H must also be present. For
example, F8 in hexadecimal is 0F8H.

Indexing specified by brackets, []; e.g., [Rn].

Label identifies a statement. Every label is
unique within a source program. A label
can be up to 110 characters long, but
only the first 15 are used for
identification.

Commands, Symbols, Instructions, & Conventions 3-11

1Notes

3-12 Commands, Symbols, Instructions, & Conventions

4

Assembler Subroutines

Introduction This chapter explains all the assembler subroutines and illustrates
their operation with one or more examples where appropriate. The
assembler subroutines are arranged alphabetically. For quick
reference, an alphabetical summary of all the subroutines appears
in Appendix C.

Back in Chapter 2, how to define and implement a user instruction
set was briefly described (see INSTR_DEF and INSTR_SET). By
the end of this current chapter, the user will have seen all the
assembler subroutines. At this point, the building process has been
explained. Chapter 5 shows how to create the assembler program;
it also lists a sample 8080 program if further clarification is needed.

1Subroutines And
Examples

Note When program control passes from the basic assembler module to
the user definable module, the START and STOP pointers are
positioned at the first character in the operand field if the delimiter
is a blank. If another delimiter is present, both pointers will be at
the delimiter.

Column Pointers There are two column pointers (START and STOP) not visible to
the programmer. Their column location can be identified with the

Assembler Subroutines 4-1

TRACE pseudo instruction. Refer to "Tracing the User Definable
Assembler" in Chapter 5 for an example. These column pointers
are initialized to the start of the operand field by the user definable
assembler and are used by the subroutines. In most cases, the
subroutines called will move the pointers as required; however,
they can be moved by the programmer using the assembler
instructions. In the subroutine examples that follow, the pointer
positions are shown to clarify the subroutine explanation. There is
an additional pointer, SAVE_PTR, used with the EXPRESSION
subroutine. SAVE_PTR saves the initial position of the STOP
pointer. It is useful for flagging errors in expression VALUES
and/or TYPES. An example of how the pointers are moved follows.

Example:

There are two operands in the source line. The first operand has
been evaluated by the EXPRESSION subroutine and the second
operand is to be evaluated next. The STOP pointer is at the first
space after operand 1 and there are one or more spaces between
the operands.

operand1 operand2
 ^
 | STOP pointer

The subroutine GET_TOKEN is used to get the next token in the
source statement (operand 2). GET_TOKEN begins at the STOP
pointer and skips to the first nonblank column. The START
pointer is placed at the beginning of the token and the STOP
pointer is placed at the first column past the token.

 | START pointer
 v••
operand1 operand2
 ^
 | STOP pointer

To use the subroutine EXPRESSION on operand 2, the STOP
pointer must be at the beginning of operand 2. The STOP pointer
is moved with the LOAD and STORE instructions. LOAD
START loads the column value of the START pointer into the
accumulator. STORE STOP stores the contents of the
accumulator in the STOP pointer.

4-2 Assembler Subroutines

LOAD START operand1 operand2
STORE STOP ^
 | START pointer
 ^
 | STOP pointer

EXPRESSION can now evaluate operand 2.

ADD_LABEL Puts a label found in the operand field in the symbol table during
pass 1. Stores VALUE and TYPE. A return 1 is executed if there is
no label. A return 2 is executed if a label is found. This allows the
user to insert symbols in the symbol table in addition to the
standard symbol table building performed by the assembler.

CHECK_AUTO_DEC Checks for auto decrement in the form of a trailing operator(s).
For example, A- or A--; the - sign(s) represents the auto decrement
operator(s). AUTO_DEC_COUNT is set to the number of trailing
operators found. In the example A--, it is set to 2. If no operators
are found, it is set to 0.

Both CHECK_AUTO_DEC and the next subroutine,
CHECK_AUTO_INC, are used in conjunction with the
EXPRESSION subroutine. If an expression can legally end in - or
+ , then these subroutines should be used.

Example:

CHECK_AUTO_DEC R10-
EXPRESSION ^
 | STOP pointer after EXPRESSION
 R10- is invoked

Note, if the subroutine is not called before EXPRESSION, then
EXPRESSION will flag the - sign as an error.

CHECK_AUTO_INC Checks for auto increment in the form of a trailing operator(s).
For example, B+ or B+ + ; the + sign represents the auto
increment operator(s). AUTO_INC_COUNT is set to the number
of trailing operators found. If no operators are found, it is set to 0.

Assembler Subroutines 4-3

CHECK_COMMA Checks the token at the STOP pointer for a comma. If a comma is
not present, a return 1 is executed and the STOP pointer is not
changed. If a comma is found, a return 2 is executed and the STOP
pointer is incremented by one.

Examples:

 | STOP pointer before CHECK_COMMA is invoked.
 v

MVI A:LABEL
 ^
 | STOP pointer after return 1.

 | STOP pointer before CHECK_COMMA is invoked.
 v

MVI A,LABEL
 ^
 | STOP pointer after return 2.

CHECK_DELIMITER Checks for a delimiter at the position indicated by the STOP
pointer. If an end of line is found (blank, semicolon, or actual end
of line), a return 1 is executed. If the character found is not a legal
delimiter, a return 2 is executed and the STOP pointer is not
altered. If a legal delimiter is found, the STOP pointer is
incremented, the delimiter is stored in CHARACTER, and a
return 3 is executed. Legal delimiters were listed under
"Conventions", in Chapter 3.

Examples:

 | STOP pointer before CHECK_DELIMITER is invoked.
 v

MVI
 ^
 | STOP pointer after return 1.

 | STOP pointer before CHECK_DELIMITER is invoked.
 v

MVI A>LABEL
 ^
 | STOP pointer after return 2.

 | STOP pointer before CHECK_DELIMITER is invoked.
 v

MVI A,LABEL
 ^
 | STOP pointer after return 3.

CHARACTER now contains ","

4-4 Assembler Subroutines

CHECK_EOL Checks for a valid end of line; i.e., a blank, a semicolon, or the
actual end of line. A return 1 is executed if a valid end of line is
found. A return 2 is executed if no valid end of line is found. The
STOP pointer is not incremented after return 1 or return 2.
Example:

 | STOP pointer before CHECK_EOL in invoked.
 v

MVI A,LABEL
 ^
 | STOP pointer after return 1 or return 2.

CHECK_EXPR_ERROR

After the EXPRESSION handler is called,
CHECK_EXPR_ERROR can determine if an error has been
flagged by EXPRESSION. If an error is found, a return 1 is
executed. If no error is found, a return 2 is executed.

Example:

EXPRESSION ;Evaluate expression.
CHECK_EXPR_ERROR ;Check for error.
GOTO ERROR_EX ;Error subroutine.
LOAD VALUE
..
..
..
ETC

CHECK_PASS1
_ERROR

A problem arises when a symbol is used in the operand field before
it is defined in the symbol table (forward reference). The missing
information can introduce an error in the program counter. For
example, if the subroutine EXPRESSION is used in pass 1 and a
symbol is not defined, the quantities in VALUE and TYPE will not
be defined. If the same symbol is defined later, the subroutine
EXPRESSION will return the appropriate VALUE and TYPE in
pass 2, but the program counter will differ between the two passes,
and a different number of bytes of code will be generated. Two
error checking routines are included in the user definable
assembler to warn the programmer of these oversights.

Assembler Subroutines 4-5

In either pass 1 or pass 2, if a symbol was not defined when the
routine is invoked, the CHECK_PASS1_ERROR routine returns
program control to the instruction immediately following the
routine call. If the symbol was defined in pass 1, program control is
passed to the second instruction following the routine call.

Whan a syntax error is found by the EXPRESSION subroutine, the
CHECK_EXPR_ERROR subroutine allows the assembler to stop
parsing. Using both error subroutines differentiates between pass 1
errors and syntax errors. The usual sequence of steps and
associated code is shown in the next example.

Figure 4-1. Forward Referenced Symbol Code Gen. Chart

4-6 Assembler Subroutines

Example:

EXPRESSION ;Get operand.
CHECK_EXPR_ERROR ;Was there a syntax error?
DONE ;Yes, terminate
CHECK_PASS1_ERROR ;Was there a pass 1 error?
GOTO OUTPUT_TWO ;Yes- two bytes address.
IF VALUE >255 GOTO OUTPUT_TWO
GEN_CODE ABS 8 VALUE ;Generate one byte of code.
DONE
OUTPUT_TWO
GEN_CODE ABS 16 VALUE ;Generate two bytes of code.
DONE
ERROR_ROUTINE
ERROR DE_ERR ;Definition error.
DONE

COUNTER_UPDATE Increments the program counter by the amount contained in
VALUE.

program_counter <-- program_counter + VALUE

ERROR An error message is displayed from the following list. For example,
ERROR IO_ERR.

Assembler Subroutines 4-7

AS_ERR
CL_ERR
DE_ERR
DS_ERR
DZ_ERR
EE_ERR
EG_ERR
EO_ERR
ES_ERR
ET_ERR
IC_ERR
ID_ERR
IE_ERR
IO_ERR
IS_ERR
IP_ERR
LR_ERR
MC_ERR
MD_ERR
ML_ERR
MM_ERR
MO_ERR
MP_ERR
MS_ERR
NI_ERR
OS_ERR
PC_ERR
PE_ERR
RC_ERR
RM_ERR
SE_ERR
TR_ERR
UC_ERR
UE_ERR
UO_ERR
UP_ERR
US_ERR

ASCII string
Conditional label
Definition error
Duplicate symbol
Division by zero
Expected end of line
External global
External overflow
Expanded source
Expression type
Illegal constant
Invalid delimiter
Illegal expression
Invalid operand
Illegal symbol
Illegal parameter
Legal range
Macro conditional
Macro definition
Macro label
Missing MEND
Missing operator
Mismatched parenthesis
Macro symbol
Nested includes
Operand syntax
Parameter call
Parameter error
Repeat call
Repeat macro
Stack error
Text replacement
Undefined conditional
Unexpected end of line
Undefined opcode
Undefined parameter
Undefined symbol

4-8 Assembler Subroutines

EVEN n Increments the program counter to an even word boundary if it is
set to an odd value. "n" sets the program counter to the next value
with "n" trailing zeros.

EXECUTE_OPCODE

Assumes that the STOP pointer is positioned at the start of a user
defined opcode. The subroutine looks up the opcode, initializes
OBJECT_CODE, and branches to the proper format in the user
defined machine code. This occurs just as if the opcode was the
first one encountered in the source statement.

Examples:

 | STOP pointer before EXECUTE_OPCODE is invoked.
 v

OPCODE MVI A,LABEL
 ^
 | STOP pointer after EXECUTE_OPCODE is invoked.

 | STOP pointer before EXECUTIVE_OPCODE is invoked.
 v

MVI A,LABEL ;Error, not a valid user defined opcode.
 ^
 | STOP pointer after EXECUTE_OPCODE is invoked.

EXPRESSION Evaluates expressions in the operand field and flags syntax errors
in these expressions. Before the subroutine is invoked, the STOP
pointer is at the beginning of the expression. After EXPRESSION
is invoked, the STOP pointer moves to the next delimiter. The
initial position of the STOP pointer is saved in SAVE_PTR as
shown in the following example. The SAVE_PTR pointer is useful
for flagging errors in expression VALUES and/or TYPES.

Example:

 | STOP pointer before EXPRESSION is invoked.
 v

MVI A,LABEL ;Error, not a valid user defined opcode.
 ^
 | STOP pointer after EXPRESSION is invoked.
 ^
 | SAVE_PTR after EXPRESSION is invoked.

Assembler Subroutines 4-9

EXPRESSION returns two predefined variables: VALUE, which
contains the value of the expression and TYPE, which contains the
type of the expression. A list of the various expression types
follows.

TYPE

0 Absolute
1 Program relocatable
2 Data relocatable
3 Common relocatable
4 External reference
5 Equated to external
>6 User definable

The EXPRESSION subroutine sets up the following parameters
used by the linker.

EXT_OFFSET - value of the offset to an external variable such as
in: EXT SAM, SAM1 EQU SAM+ 10. SAM1 is external and has
an offset of 10.

EXT_ID_NUMB- identification number assigned to each external
symbol.

EXPRESSION_2 Performs exactly like EXPRESSION except for the following two
cases:

1. When an open parenthesis is encountered immediately
following an operand token in an expression, the
evaluation will be cleanly terminated and the VALUE
(and other parameters) of the expression up to that point
will be returned. The STOP pointer will be left pointing at
the open parenthesis.

2. An initial ’*’ in an expression is considered to be identical
with ’$’ (current location counter). Note that while ’$’ can
occur anywhere in the expression, ’*’ must occur as the
first token in the expression in order not to be mistaken
for its use as the multiplication operator.

This version of EXPRESSION is primarily useful in evaluating
operand fields where an index register can be enclosed in
parenthesis.

4-10 Assembler Subroutines

FIND_DELIMITER Finds the next delimiter in the current operand field.

Example:

 | STOP pointer before FIND_DELIMITER is invoked.
 v

MVI A,LABEL
 ^
 | STOP pointer after FIND_DELIMITER is invoked.

GEN_CODE Generates absolute or relocatable object code according to the
parameters chosen. The program counter is incremented after the
code is generated by the amount specified in the GEN_CODE
instruction.

Absolute code is generated with:

GEN_CODE ABS < n> , < operand> [SPACE]

where:

<n> is the code size in bits (8 or 16)

<operand> contains the bit pattern to be generated; e.g.,
 VALUE, OBJECT_CODE, etc.

[SPACE] inserts a space in the object code field of the
 assembler listing.

Relocatable code is generated with:

GEN_CODE <name>, VALUE [SPACE]

or (either VALUE or BOTH must be specified)

GEN_CODE <name>, BOTH [SPACE]

where:

<name> is used in conjunction with GEN_CODE to identify
 the relocatable addressing mode.

VALUE uses the contents of the predefined symbols VALUE
 and relocation TYPE to generate code.

BOTH uses the contents of the predefined symbols VALUE,
 relocation TYPE, and OBJECT_CODE to generate code.

The default instruction is GEN_CODE < name> , VALUE.

Assembler Subroutines 4-11

GET_ASCII_BYTE Retrieves one ASCII character from an ASCII string within
quotation marks. The START pointer must be at the left quote and
the STOP pointer must be at the character after the right quote. A
return 1 is executed if an end-of-string is found. A return 2 is
executed when a valid character is found. The character is stored in
the ACCUMULATOR.

Note The number of characters in the string is equal to: STOP pointer
minus START pointer, minus 2. GET_TOKEN should be called
prior to GET_ASCII_BYTE. Then the START and STOP
pointers will be set so this subroutine will operate properly.

Example:

 | START pointer before GET_ASCII_BYTE is invoked.
 v

DB "ASCII string"
 ^
... | STOP pointer before GET_ASCII BYTE is invoked.
...
LOOP_BACK
 GET_ASCII_BYTE ;Get character.
 GOTO END_OF_STRING ;End-of-string found
 GEN_CODE ABS 8 ACCUMULATOR SPACE ;Generate one byte.
 GOTO LOOP_BACK ;Get another character.
END_OF_STRING
...
...

GET_OPCODE Checks for an opcode. Starts checking at the token indicated by the
STOP pointer. Used for multiple opcodes. The value of opcode is
placed in VALUE.

Example:

CMA,RLC,DAA

After parsing the CMA instruction, we need to return to the
instruction code parsing module to check for the RLC and the
DAA instructions. This is achieved by calling GET_OPCODE
after each instruction mnemonic is parsed.

4-12 Assembler Subroutines

GET_PROG_COUNTER

Returns the value of the user’s source code program counter in the
ACCUMULATOR.

ACCUMULATOR < -- PROGRAM_COUNTER

Example: (Note this is a Z80 instruction)

 | STOP pointer before EXPRESSION is invoked.
 v

JR LABEL
 ^
 | STOP pointer after EXPRESSION is invoked.

EXPRESSION ;Get LABEL address.
GET_PROG_COUNTER ;Get value of PC from ACCUMULATOR.
SUBTRACT VALUE ;Offset = PC - LABEL.

GET_START_CHAR Retrieves the character indicated by the START pointer. A return
1 is executed if an end of line is found. A return 2 is executed when
a valid character is found and placed in CHARACTER. The
START pointer is then incremented by one.

Examples:

 | START pointer before GET_START_CHAR is invoked.
 v

MVI
 ^
 | START pointer after return 1.

In this case, the START pointer was at an end of line.

 | START pointer before GET_START_CHAR is invoked.
 v

MVI A,LABEL,H
 ^
 | START pointer after return 2

CHARACTER now contains ","

GET_STOP_CHAR Retrieves the character indicated by the STOP pointer. A return 1
is executed if an end of line is found. A return 2 is executed if a
valid character is found. The character is stored in CHARACTER
and the STOP pointer is incremented by one.

Assembler Subroutines 4-13

Examples:

 | STOP pointer before GET_STOP_CHAR is invoked.
 v

MVI
 ^
 | STOP pointer after return 1.

 | STOP pointer before GET_STOP_CHAR is invoked.
 v

MVI A,LABEL,H
 ^
 | STOP pointer after return 2.

CHARACTER now contains "H"

GET_SYMBOL Checks for a symbol. Starts checking at the token indicated by the
STOP pointer. A return 1 is executed if the token is not a symbol
(label or user defined symbol) and the STOP pointer remains
unchanged. A return 2 is executed if the symbol is not in the
symbol table and the STOP pointer remains unchanged. A return 3
is executed if the symbol was identified. VALUE and TYPE
contain the value and type of the identified symbol.

Example:

 | STOP pointer before GET_SYMBOL is invoked.
 v

MVI A,LABEL
 ^
 | STOP pointer after return 3.

If the symbol (A) is identified, the routine will set up the following
parameters.

VALUE: the value assigned to the symbol.
TYPE: the type assigned to the symbol.

If the symbol is external, the routine will set up the following
parameters.

EXT_ID_NUMB: identification number assigned to each
external/global symbol.

4-14 Assembler Subroutines

EXT_OFFSET: value of the program counter offset; e.g.,
used in program counter +
displacement addressing modes (JP
$+ EXT).

Note If a return 2 is executed in pass 1, the same return will be taken in
pass 2 even though the symbol may have been defined for pass 2.

GET_TOKEN Gets the next token in the source statement. The subroutine begins
at the position of the STOP pointer and skips to the first nonblank
column. A token is identified in the source statement with the
START pointer at the beginning and the STOP pointer at the first
column past the token. Does a return 1 with CLASS containing the
class of the token and RESULT containing the value of the token
if the token is a numeric constant (CLASS= 0). A numeric constant
starts with a digit and ends with one of the following characters to
define the constant base: B- binary constant, H- hexadecimal
constant, or O or Q- octal constant. If no character is present, a
decimal constant is assumed.

 CLASS
 0 Numeric constant
 1 Undefined
 2 String constant
 3 Operator
 4 Delimiter
 5 Upper case variable
 6 Undefined
 7 Lower case variable
 8 Undefined
 9 End of line- no tokens in the string.
 10 Decimal constant with E notation.

Assembler Subroutines 4-15

Examples:

Class 0 0FFH
 ^
 | START pointer
 ^
 | STOP pointer

Class 2 "ABCD"
 ^
 | START pointer
 ^
 | STOP pointer

Class 3 +
 ^
 | START pointer
 ^
 | STOP pointer

Class 4 ,
 ^
 | START pointer
 ^
 | STOP pointer

Class 5 Symbol_or_Label
 ^
 | START pointer
 ^
 | STOP pointer

Class 7 lower_case_variable
 ^
 | START pointer
 ^
 | STOP pointer

Class 10 First GET_TOKEN 10E2
 ^
 | START pointer
 ^
 | STOP pointer
RESULT=10

Second GET_TOKEN 10E2
 ^
 | START pointer
 ^
 | STOP pointer
RESULT=2

4-16 Assembler Subroutines

NOT_DUPLICATE Can be used in conjunction with UPDATE_LABEL to prevent the
assembler from marking a label as a duplicate. Normally, all labels
are marked as a duplicate if they are used in the label field more
than once. If the user wants the capability to redefine a label and
assign it a different VALUE, this subroutine prevents the
assembler from flagging the label as an error.

PRINT_LOCATION Instructs the assembler to print the current value of the program
counter on the source listing. Normally, this function is automatic
when the subroutine GEN_CODE is called, but if an instruction
does not generate code, then this subroutine can be used.

SAVE_ERROR An error messge is displayed from the same list used for ERROR.
The SAVE_PTR pointer is used as the error message pointer in
the assembler listing and it must be correctly positioned by the
programmer.

Example:

 MVI XX,LABEL ;XX is an invalid operand
 ^
 | SAVE_PTR pointer
ERROR-IO ^ Error message in the assembler
 | listing.

SAVE_WARNING A warning message is displayed from the same list used for
ERROR. The SAVE_PTR pointer is used as the warning message
pointer in the assembler listing and it must be correctly positioned
by the programmer.

Example:

 MVI XX,LABEL ;XX is an invalid operand.
 ^
 | SAVE_PTR pointer
WARNING-IO ^ Warning message in the
 | assembler listing.

SCAN_REAL Converts real decimal numbers to binary real numbers. All
assemblers currently have a REAL pseudo instruction that
converts real decimal numbers to the IEEE standard for short or
long real binary numbers. If this is not the encoding desired,
SCAN_REAL in the User Definable Assembler can be used to

Assembler Subroutines 4-17

parse real numbers and generate them in any binary pattern.
Exponents can be up to 16 bits and mantissas can be up to 64 bits.

SCAN_REAL is called in the same manner as other User
Definable Assembler instructions and uses some of the temporary
registers (TEMP38 through TEMP40). It expects the STOP
pointer to be positioned at the beginning of a real decimal number
(refer to the explanation of the REAL pseudo in the
Assembler/L inker Reference Manual for real number syntax).

Example:

1.23E2 ;Equals 123 decimal
^
| STOP pointer

Temporary registers 38 through 40 are used to pass information to
the SCAN_REAL routine and to obtain converted data.

MANTISSA_SIZE = TEMP38 ;Pass mantissa size to
 ;SCAN_REAL.
EXPONENT = TEMP38 ;Exponent passed from
 ;SCAN_REAL.
MANTISSA_HI = TEMP39 ;Upper 32 bits of mantissa
 ;from SCAN_REAL.
MANTISSA_LO = TEMP40 ;Lower 32 bits of mantissa
 ;from SCAN_REAL.

Mantissa size (TEMP38) is initialized before the call to
SCAN_REAL to indicate the bit size of the mantissa field for
rounding purposes (maximum 64). The SCAN_REAL instruction
can then be called to convert the decimal real number. If no syntax
errors were found, then the results of the conversion will be in
TEMP38 - TEMP40. If there is an error, a return 1 is executed and
the stop pointer is not incremented. TEMP38 will hold the binary
exponent, TEMP39 the upper 32 bits, and TEMP40 the lower 32
bits of the normalized mantissa. These results can be arranged and
output in any manner. Example:

Assume that we will be converting a decimal number to a binary
real number with a 50-bit mantissa and the STOP pointer
positioned as follows.

1.23E2 ;Decimal 123
^
| STOP pointer

The code would look something like:

4-18 Assembler Subroutines

LOAD 50 ;Set mantissa size.
STORE TEMP38

SCAN_REAL ;Convert decimal number.
GOTO NOT_REAL ;Return 1- real number expected.
 ;and not found.

-- ;Return 2- real number found
 ;and converted.

Results:

TEMP38 = 00000006 ;Size of binary exponent.
TEMP39 = F6000000 ;Normalized high part of mantissa.
TEMP40 = 00000000 ;Low part of mantissa.

Note SCAN_REAL will not parse minus signs in front of decimal
numbers. Check for these before calling SCAN_REAL.

UPDATE_LABEL Allows the user to redefine the VALUE and TYPE of the label on
the current source statement. The main purpose of this subroutine
is to allow the user to assign attributes to symbols and still permit
the label to be relocatable. The lower four bits of the TYPE must
not be changed; however, the upper 28 bits can be used to assign
attributes to the label. These attributes will be carried with the
symbol and returned when the EXPRESSION or GET_SYMBOL
subroutines are used.

WARNING A warning message is displayed from the same list used for
ERROR. The START pointer is used as the warning message
pointer in the assembler listing and it must be correctly positioned
by the programmer.

Example:

 MVI XX,LABEL ;XX is an invalid operand.
 ^
 | START pointer
WARNING-IO ^ Warning message in the assembler
 | listing.

Assembler Subroutines 4-19

1Notes

4-20 Assembler Subroutines

5

Creating An Assembler

Introduction This chapter explains how to create the user definable assembler
source program after the target processor has been completely
defined. The assembler program is treated like any other source
program, except the output of the assembly process is in absolute
format, eliminating the need for a linking sequence. The program
is stored in a Model 64000 absolute file to be used to assemble any
user target program for the defined microprocessor. Figure 5-1
indicates the sequence of events that occur when creating a user
definable source program.

If further explanation is needed, a summary of the building process
using the 8080 processor starts after figure 5-1. In Appendix A, the
complete assembler code is included. Note that the source line
numbers (SN) in the summary examples match those in the
complete code in Appendix A.

Also included in this chapter is an example of the TRACE pseudo
instruction. This instruction enables the user to examine execution
of the user definable assembler program after it has been
assembled.

Creating an Assembler 5-1

1Summary Of The
Assembler Source
Code Building
Process for 8080
Processor

Assembler Setup
Commands

In defining a processor, the first statement must be the
ASSEMBLER setup command followed by the assembler directive
in quotation marks. For example:

ASSEMBLER "8080"

Figure 5-1. Creating the Assembler

5-2 Creating an Assembler

Following the assembler directive statement, the basic parameters
of the user processor are defined with the setup commands. These
parameters include such things as word size, address size,
assembler list title, print field size, linker file identifier, registers,
status words, and stack pointers. Some examples of setup
commands that may be entered after the ASSEMBLER directive
follow.

Example:

SN
1 ASSEMBLER "8080" ;Defines the processor.
.
.
9 WORD_SIZE = 8 ;Defines the word size.
10 ADDRESS_BASE = 8 ;Specifies the program
11 ;counter increment.
12 TITLE = "8080" ;Title for the assembler list.
13 LOC_SIZE = 4 ;Four characters in the print field for the
 ;location counter.
14 LINK_FILE L8080 : XX ;Specifies linker file.
 ;XX is the USERID (1 to 6 characters).
15 PC_16 ;Only the lower 16 bits
 ;of the program counter are used.
17 RELOC_FMT HIGH_LOW, SIZE=16 ;Relocate 16 bits.
18 RELOC_FMT LOW_HIGH, SIZE=16 ;Relocate and swap bytes.
19 RELOC_FMT LOW_BYTE, SIZE=8 ;Low byte, no error check.
20 RELOC_FMT HIGH_BYTE, SIZE=8 ;High byte, no error check.
21 RELOC_FMT LOW_CHECK, SIZE=8 ;Low byte, check for >256.
22 RELOC_FMT REL_8, SIZE=8 ;Plus minus 128.
23 RELOC_FMT PC_REL, SIZE=8 ;-126, +129

After the assembler setup commands have been established, the
user must identify predefined registers, stack pointers, condition
codes, etc., that are relevant to the specified processor. Using the
assembler directive listing above as a base, the additional
information about the specified microprocessor should be entered
into the program as follows:

Example:

SN
1 ASSEMBLER "8080" ;Defines the processor.
.
.
9 WORD_SIZE = 8 ;Defines the word size.
10 ADDRESS_BASE = 8 ;Specifies the program
11 ;counter increment.
12 TITLE = "8080" ;Title for the assembler list.

Creating an Assembler 5-3

13 LOC_SIZE = 4 ;Four characters in the
 ;print field for the location counter.
14 LINK_FILE L8080 : XX ;Specifies linker file.
 ;XX is the USERID (1 to 6 characters).
15 PC_16 ;Only the lower 16 bits
 ;of the program counter are used.
17 RELOC_FMT HIGH_LOW, SIZE=16 ;Relocate 16 bits.
.
.
.
25 CONSTANTS
26 HIGH_FLAG = TEMP1 ;Used as a flag if HIGH
 ;keyword is found.
27 COUNT = TEMP2 ;Used as a temporary count.
28 MEM_CHECK = TEMP3 ;Used to check memory
 ;reference on MOV instructions.
29 END

30
31 SYMBOLS = REGISTER ;Defines the TYPE and
 ;VALUE assigned to the
32 A=7 ;symbols. REGISTER is
 ;TYPE 6. Symbol C has
33 B=0 ;a VALUE of 1.
34 C=1

.

.

.
40 END

SYMBOLS = XXX_XXX ;Continue to add symbol
. ;tables, such as condition
. ;codes, where applicable
. ;for the processor.
. ;Terminate each table with
. ;END instruction.
END

Defining and Parsing
the Instruction Set

(INSTR_DEF &
INSTR_SET)

The instruction set must be divided into separate groups of
instructions that are parsed in the same way by using the command
INSTR_DEF. After INSTR_DEF, each instruction should be
listed with its object code format. Next, the command INSTR_SET
implements the instruction group parsing rules defined for the user
processor. After a group (or a single instruction if it is unique) is
defined by INSTR_DEF and INSTR_SET, the section is
terminated by assembler instruction END. Continuing with the
same sample program, implement INSTR_DEF and INSTR_SET
as follows.

5-4 Creating an Assembler

Example:

SN
1 ASSEMBLER "8080" ;Defines the processor.
.
.
9 WORD_SIZE = 8 ;Defines the word size.
10 ADDRESS_BASE = 8 ;Specifies the program
. ;counter increment.
.
17 RELOC_FMT HIGH_LOW, SIZE=16 ;Relocate 16 bits.
.
.
.
SYMBOLS = XXX_XXX ;Continue to add symbol
. ;tables, such as condition
. ;codes, where applicable
. ;for the processor.
. ;Terminate each table with
. ;END instruction.
END

55 INSTR_DEF OPERAND=0
.
.
61 CMC = 3FH ;list of no operand
. ;instructions
.
.
.
85 HLT = 76H

87 INSTR_SET
88
89 GEN_CODE ABS 8, OBJECT_CODE
90 DONE
91
92 END
.
.
.
.

Continue building INSTR_DEF/INSTR_SET tables until all
instructions for the target processor are defined. Refer to
Appendix A for complete user defined assembler code for 8080
processor.

Creating an Assembler 5-5

1Tracing The User
Defined
Assembler
Execution
Sequence

The TRACE pseudo instruction allows the user to examine the
execution of the user defined assembler program. With it, the user
can obtain a printout of the contents in the program counter,
accumulator, and VALUE and TYPE variables. TRACE 1 traces
pass 1, TRACE 2 traces pass 2, TRACE 3 traces both passes, and
TRACE 0 disables the TRACE pseudo. Figure 5-2 shows a sample
output from an 8080 source program using the TRACE 2 pseudo
instruction. Refer to Appendix A for the complete 8080 source
program.

 HEWLETT-PACKARD: 8080 ASSEMBLER

LOCATION OBJECT CODE LINE SOURCE LINE
1 8080R2 TRACE 2
3 P 00000000 0066 EXP A=00000000 V=00000007 T=0006 START=12 STOP=12
3 P 00000000 0067 IF A=00000000 V=00000007 T=0006 START=12 STOP=12
3 P 00000000 006A LOAD A=00000007 V=00000007 T=0006 START=12 STOP=12
3 P 00000000 006B LEFT A=00000038 V=00000007 T=0006 START=12 STOP=12
3 P 00000000 006C OR A=0000003E V=00000007 T=0006 START=12 STOP=12
3 P 00000000 006D ST A=0000003E V=00000007 T=0006 START=12 STOP=12
3 P 00000000 006E COMA A=0000003E V=00000007 T=0006 START=12 STOP=12
3 P 00000000 0070 CALL A=0000003E V=00000007 T=0006 START=12 STOP=13
3 P 00000000 0085 ST_0 A=0000003E V=00000007 T=0006 START=12 STOP=13
3 P 00000000 0086 SYMB A=0000003E V=00000007 T=0006 START=13 STOP=13
3 P 00000000 0087 GOTO A=0000003E V=00000007 T=0006 START=13 STOP=13
3 P 00000000 008F LOAD A=00002B6B V=00000007 T=0006 START=13 STOP=13
3 P 00000000 0090 ST A=00002B6B V=00000007 T=0006 START=13 STOP=13
3 P 00000000 0070 RET A=00002B6B V=00000007 T=0006 START=13 STOP=13
3 P 00000000 0071 EXP A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000000 0072 CODE A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000001 0073 IF A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000001 0076 CALL A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000001 0092 COMA A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000001 0076 RET A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000001 0077 IF A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000001 007A CODE A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000002 007B GOTO A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000002 0015 EOL A=00002B6B V=00000020 T=0000 START=13 STOP=16
3 P 00000002 0016 DONE A=00002B6B V=00000020 T=0000 START=13 STOP=16
0000 3E20 3 MVI A,20H
4 TRACE 0
ERRORS= 0

Figure 5-2 Example of TRACE 2 Output

5-6 Creating an Assembler

KEY: 1st column is source code line number (here 3)
 2nd column is program counter in use (here P-PROG)
 3rd column is contents of user program counter
 4th column is assembler instruction location
 5th column is assembler instruction abbreviation
 6th column is contents of accumulator
 7th column is VALUE
 8th column is TYPE
 9th column is location of START pointer
 10th column is location of STOP pointer

Figure 5-2 Example of TRACE 2 Output (cont.)

Creating an Assembler 5-7

1Notes

5-8 Creating an Assembler

6

Linker General Information

Introduction A linker combines the relocatable object files generated by the
assembler into one file, producing an absolute image that will load
and execute within a specified area of physical memory.

Note If the user already has a 64000 Assembler/Linker for the target
processor, there is no need to define a linker program. The existing
64000 linker absolute file can be used unless additional relocatable
formats are added to the assembler. It will be located in the 64000
directory under the processor name; e.g., I8085_Z80 : HP.

1Linker Operation As mentioned in Chapter 1, the user definable linker has two
modules, the basic linker module and the user definable linker
module. The functions performed by these modules are shown in
figure 6-1. It is obvious most of the linker functions are performed
by the basic linker module that is part of the operating system. The
user definable linker module tailors the basic linker module for the
target processor.

Certain operations such as performing range checks on the value of
an external variable or merging this value with the opcode part of
the instruction can only be performed by the user definable linker
module. The value of an external variable is not available to the
assembler.

Linker General Information 6-1

Figure 6-1. Linker Module Functions

6-2 Linker General Information

7

Linker Programming Rules

Linker Structure The linker structure is similar to the assembler except there are
only three sections to be defined by the user. First, the user
processor structure is defined by word size, minimum addressable
unit (byte or word), number of bits necessary to specify an address,
etc. This is accomplished with the linker setup commands. Next,
entry points for relocatable routines that will handle the
relocatable formats listed in the assembler are defined. Finally, the
routines to handle the relocatable code created by the user defined
assembler are defined with linker instructions and predefined
symbols.

The functional block diagram in figure 7-1 illustrates the linker
building process. Each block corresponds to a paragraph title.
Sample linker code for the 8080 processor will be used in the
explanations. Appendix B contains a complete listing of user
defined linker code for the 8080 processor. Note that the source
line numbers (SN) in the examples match those in the complete
listing in Appendix B.

Caution The order in which the linker table is constructed is critical to
linker operation. Parts of the table can be omitted and no errors
will be flagged. Refer to Appendix B for a complete table.

Recall that in the assembler, one of the setup commands was
ASSEMBLER "8080", which defined the user processor in the
example shown in Chapter 5. There is no directive in the linker
structure, only a general "LINK" command that identifies the file as
a linker. A virtual processor is used and the setup command in the
assembler, LINK_FILE L8080 : USERID, specifies the processor.

Linker Programming Rules 7-1

Figure 7-1. Linker Building Process

7-2 Linker Programming Rules

1Linker Setup
Commands

Use the following setup commands to define the processor
structure.

ALIGN aligns PROG, DATA, and COMMON
for each relocatable module by
incrementing the load address until:
load address AND ALIGN = 0

BASE smallest addressable unit in bits.

DIGITS0 number of digits to be displayed in pass
0 (initialization).

DIGITS2 number of digits to be displayed in pass
2 (load map)

DBLADR if set true, treats the program counter as
a 32-bit quantity. If set false, all
arithmetic operations will only affect the
lower 16 bits of the program counter.

HISHIFT number of bits the high order word has
to be shifted to perform the
internal/external address conversion.

IDOFFSET system global describing the number of
VALUE words in a symbol (see
Appendix D-DBL record).
If IDOFFSET = 2 1 word of symbol
 value
 DBLARD = false
 If IDOFFSET = 3 2 words of symbol
 value
 DBLADR - true

IND allows the linker to automatically build
indirect links in base page for processors
that allow indirect memory addressing
modes.

Linker Programming Rules 7-3

MAXL MAXH maximum address range allowed during
the initialization phase of the linker
(pass 0).
MAXL contains the least significant 16
bits. MAXH contains the most
significant 16 bits.

MULTISPACE allows programmer to use high order
address bits to describe multiple spaces.
Note, the user must mask load addresses
and symbol addresses internal to the
linker.

SWAP exchanges positions of upper and lower
bytes when absolute code is generated.

WIDTH word size in bits.

1Processor
Definition

Using the 8080 processor as an example, it is defined as follows:
Word size = 8 bits
Minimum addressable unit = 8 bits (byte)
Bits to define an address = 16

In the next section is sample code defining the 8080 processor.
Become familiar with the linker setup commands before examining
the sample code.

Sample Code
Defining 8080

Processor

The sequence of linker setup commands that must be used is
shown in the following sample source code. The sequence cannot
be altered and the number od definition words must total 32 (20H).
The pseudo instruction HEX is used to store information in the
hexadecimal format (refer to Assembler/L inker Reference Manual
for details). Note the next statement after the definition words
must be the length of the table: DEF LAST-$. LAST is the last
instruction in the table. Refer to Appendix B, where the complete
user defined linker source code for the 8080 processor is included.

7-4 Linker Programming Rules

SN
1 "LINK"
.
.
5 HEX 10 ;Number of valid constants.
 ;In lines 6 through 21 there
 ;are 16 constants (10H).
6 HEX 2 IDOFFSET ;1 word of symbol value, DBLADR is false.
7 HEX 8 WIDTH ;8-bit words.
8 HEX 8 BASE ;Byte addressable.
9 HEX 0 ALIGN ;ALIGN is 0. 8080 does not
 ;need to be word aligned.
10 HEX 5 DIGITS0 ;Number of digits to display
 ;in pass 0. Need 5H digits
 ;to put 16-bit address.
11 HEX 4 DIGITS2 ;Number of digits to display
 ;in pass 2. Need 4H digits
 ;to output 16-bit address.
12 HEX 0 DBLADR ;DBLADR is false.
13 HEX 0 SWAP ;No byte swapping.
14 HEX 0 IND ;No memory indirect addressing.
15 HEX 0 MULTISPACE ;True if multiple address spaces.
16 HEX FFFF MAXL ;Maximum legal address in
17 HEX 0 MAXH ;pass 0 is 0FFFFH.
18 HEX 0 UNDEF ;Included to keep
19 HEX 0 UNDEF ;word count
20 HEX 0 UNDEF ;correct.
21 HEX 0 HISHIFT ;Upper word need not be shifted for internal/
 ;external address conversion.
22 HEX 0 UNDEF ;Included to complete
23 HEX 0 UNDEF ;word count
24 HEX 0 UNDEF ;of 32.
25 HEX 0 UNDEF .
26 HEX 0 UNDEF .
27 HEX 0 UNDEF .
28 HEX 0 UNDEF .
29 HEX 0 UNDEF .
30 HEX 0 UNDEF .
31 HEX 0 UNDEF .
32 HEX 0 UNDEF .
33 HEX 0 UNDEF .
34 HEX 0 UNDEF .
35 HEX 0 UNDEF .
36 HEX 0 UNDEF .
37
.
.
41 DEF LAST-$;Word length location must be
 ;at 20H (See Appendix B).

Linker Programming Rules 7-5

1Define Entry
Points For
Relocatable
Routines

Back in Chapter 2, "Defining The Processor", relocatable formats
were defined with the RELOC_FMT setup command. These
formats must now be handled with the linker instructions and
predefined symbols. The first step is to define the entry points for
routines that will handle each relocatable format listed in the
assembler. It is essential that the same sequence used in the
assembler be followed. The linker instruction DEF is used to
define the entry points for the routines. The relocatable formats in
Chapter 2 are repeated here with their DEF instructions. Linker
instructions and predefined symbols are listed after this section. An
explanation of the relocatable routines then follows.

RELOC_FMT HIGH_LOW, SIZE = 16 DEF FMT0
RELOC_FMT LOW_HIGH, SIZE = 16 DEF FMT1
RELOC_FMT LOW_BYTE, SIZE = 8 DEF FMT2
RELOC_FMT HIGH_BYTE, SIZE = 8 DEF FMT3
RELOC_FMT LOW_CHECK, SIZE = 8 DEF FMT4
RELOC_FMT REL_8, SIZE = 8 DEF FMT5
RELOC_FMT PC_REL, SIZE = 8 DEF FMT6

Formats FMT0 and FMT1 will be explained for illustration. The source line numbers (SN)
match those in the complete code in Appendix B.
SN
42 DEF FMT0 ;Two-byte address, HI,LO.
43 DEF FMT1 ;Two-byte address, LO,HI.

1Linker
Instructions

Use these linker instructions to write the relocatable format
routines.

ADD op1,op2,op3 adds the contents of operand 3 to the
contents of operand 2 and returns the
result in operand 1.
op1 < -- op2 + op3

AND op1,op2,op3 logically ANDs the contents of operand
3 with the contents of operand 2 and
returns the result in operand 1.
op1 < -- op2 AND op3

7-6 Linker Programming Rules

BLDLINK creates indirect addressing links in a
predefined area of memory if IND has
been set. Finds predefined symbol LLA
and loads ADR into LLA.

CALL label transfers program control to subroutine
label. Only one level of subroutines is
allowed.

DEF expression pseudo instruction that allows the
definition of expressions typically used
with immediate op1 instructions.

DONE returns control to the basic linker
module and generates absolute code.

ERROR "..."
WARNING "..."

creates the error or warning message as
defined by the immediate ASCII string.

GOTO label transfers program control to the
instruction following the label.

IMMEDIATE op1 loads the value of the constant specified
in the next program line into operand 1.
op1 < -- constant

IOR op1,op2,op3 performs an inclusive OR function on
the contents of operand 2 and operand 3
and returns the result in operand 1.
op1 < -- op2 IOR op3

LOADBYTES n loads the n least significant bytes of
LOADWRD into the output buffer.

LOADBITS n loads the n least significant bits of
LOADWRD into the output buffer.

MOVE op1,op2 moves the contents of operand 2 into
operand 1.
op1 < -- op2

Linker Programming Rules 7-7

ONECMP op1,op2 computes the one’s complement of
operand 2 and returns the result into
operand 1.
op1 < -- op2

RETURN n returns to location n past CALL.

SEQ op1,op2 skips the next instruction if operand 1 is
equal to operand 2.

SEQZ op1 skips the next instruction if operand 1 is
equal to zero.

SGE op1,op2 skips the next instruction if operand 1 is
greater than or equal to operand 2.

SHIFTL n,op1,op2 shifts the contents of operand 2, n bits to
the left and returns the result in operand
1. n = 1 to 16.

SHIFTR n,op1,op2 shifts the contents of operand 2, n bits to
the right and returns the result in
operand 1. n = 1 to 16.

SKELETON loads the skeleton of the object code
into LOADWRD.

SNEZ op1 skips the next instruction if operand 1 is
not equal to zero.

SWAPBYTES op1,op2 interchanges the upper byte with the
lower byte in the least significant 16 bits
of operand 2 and returns the result in
the least significant 16 bits of operand 1.

SWAPWORDS op1,op2 interchanges the upper 16 bits with the
lower 16 bits of operand 2 and returns
the result in operand 1.

7-8 Linker Programming Rules

TRACE prints the values of all the linker
variables and registers plus the location
code of the TRACE instruction. Helps
debug linker code. TRACE must be
inserted in the linker source code where
required and then removed after the
debugging phase is completed.

TWOCMP op1,op2 computes the two’s complement of
operand 2 and returns the result in
operand 1.
op1 < -- op2 + 1

XOR op1,op2,op3 performs an exclusive OR function on
the contents of operand 2 and operand 3
and returns the result in operand 1.
op1 < -- op2 XOR op3

Note Operands op1,op2, and op3 must be one of the following
predefined symbols.

1Predefined
Symbols

Use these predefined symbols to write the relocatable format
routines.

ADR absolute address of variable to be tested
will be contained in ADR.

LLA links load address. Used in conjunction
with BLDLINK and IND.

LOADADR contains the value of the program
counter for the processor.

Linker Programming Rules 7-9

LOADWRD machine code word output register. The
linker will only generate absolute code
with the contents of LOADWRD.

T0 through T3 temporary registers 0 through 3.

1Relocatable
Format Routines

The entry points for the relocatable routines have been defined
with the DEF linker instruction. Now the routines must be written
using the linker instructions and predefined symbols to convert the
relocatable code to absolute code. Routines FMT0 and FMT1 will
be explained for illustration. The source line numbers (SN) match
those in the complete code in Appendix B.

SN
50 FMT0 MOVE LOADWRD,ADR ;Move the contents of ADR to LOADWRD.
51 LOADBYTES 2 ;Output two bytes of code
 ;that is in LOADWRD.
52 DONE ;End of routine.
53 FMT1 SWAPBYTES LOADWRD,ADR ;Take absolute address in
 ;ADR and store in LO HI format in LOADWRD.
54 LOADBYTES 2 ;Output two bytes of code
 ;that is in LOADWRD.
55 DONE ;End of routine.

Appendix D lists the actual relocatable and absolute record file
formats by word.

7-10 Linker Programming Rules

8

Creating The Linker

Introduction This section explains how to create the user definable linker
program after the target processor has been defined. The program
will then be stored in a Model 64000 absolute file for future use
with the target processor. The program is generated by using the
editor function of the Model 64000, following the structure defined
in the previous sections. The program file constructed using the
editor can now be assembled and linked into an absolute file just as
any other source file, except for the use of the virtual processor
"LINK". The user defined linker, now in the absolute file, will link
the relocatable object code files for the target processor. Figure 8-1
illustrates the sequence of events that should be accomplished by
the user.

Also included in this chapter is an example of the TRACE pseudo
instruction. This instruction enables the user to examine execution
of the user defined linker program.

Creating the Linker 8-1

Figure 8-1. Creating the Linker

8-2 Creating the Linker

1Tracing The User
Defined Linker
Execution
Sequence

The TRACE instruction allows examination of the user defined
linker code during execution. The instruction should not be
inserted between IMMEDIATE and DEF or just after skip
instructions. TRACE is used in the following example.

Example:

FILE: LTRACE: I8080 HEWLETT-PACKARD: USER DEFINABLE LINKER
 OBJECT
LOCATION CODE LINE SOURCE LINE

 0028 OC85 50 FMT0 MOVE LOADWRD,ADR ;LOADWRD=LOADADR
 0029 0056 51 LOADBYTES 2 ;LOAD 2 BYTES AND LOADBYTES,,
 002A 0018 52 DONE
 002B 0004 53 FMT1 TRACE
 002C 0C88 54 SWAPBYTES LOADWRD,ADR ;LOADWRD=SWAPBYTES(LOADARD)
 002D 0004 55 TRACE
 002E 0056 56 LOADBYTES 2 ;LOAD 2 BYTES AND LOADBYTES,,
 002F 0004 57 TRACE
 0030 0018 58 DONE
 0031 OC85 59 FMT2 MOVE LOADWRD,ADR ;LOADWRD=LOADADR
 0032 0036 60 LOADBYTES 1 ;LOAD 1 BYTE AND LOADBYTES,,
 0033 0018 61 DONE

The output will contain the following information.

Creating the Linker 8-3

1Notes

8-4 Creating the Linker

9

Uploading To The Mainframe

Introduction The user defined assembler and linker tables you have created will
be used by either the Model 64000 development station or the
mainframe. The following instructions will explain how to upload
the tables to the mainframe. Following these steps, your custom
assembler will be ready for use in the HP-UX environment.

1Uploading
Assembler Tables

After you have created your user defined assembler table source
and assembled it, the resulting table is in absolute format with HP
userid and a name beginning with a capital A. For example:

A directive in the UDA source ASSEMBLER "68000" would
create the assembler table A68000:HP:absolute.

To upload the assembler table to the mainframe, use the file
transfer utility of the Hosted Development System in either the
RS232 or High-Speed Link mode to the /usr/hp64000/tables
directory. For example, using RS232:

transfer -fab A68000:HP:absolute
/usr/hp64000/tables/a68000

Using high-speed link:

transfer -fha A68000:HP:absolute
/usr/hp64000/tables/a68000

Uploading Linker
Tables

After you have created your user defined linker table source and
assembled it, you should create an absolute file using the linker
with a name starting with "L" in the HP userid. The name must be

Uploading to the Mainframe 9-1

the same one used for the LINK_FILE command in the assembler
source file. For example:

L68000:HP:absolute

To upload the linker table to the mainframe, use the file transfer
utility of the Hosted Development System in either the RS232 or
High-Speed Link mode to the /usr/hp64000/tables directory. For
example, using RS232:

transfer -fab L68000:HP:absolute
/usr/hp64000/tables/l68000

Using high-speed link:

transfer -fha L68000:HP:absolute
/usr/hp64000/tables/l68000

Note For more details on uploading, refer to "Using The File Transfer
Utility" chapter in the Users Guide - Hosted Development System.

9-2 Uploading to the Mainframe

A

User Defined Assembler Code for 8080
Processor

Assembler: A8080:HP 64000 User Definable Assembler Utility

 1 ASSEMBLER "8080"
 2
 3 ;***************************************;
 4 ; ;
 5 ; 64840-10002 - 8080 Assembler ;
 6 ; ;
 7 ;***************************************;
 8
0008 9 WORD_SIZE = 8 ;8 bit processor
0008 10 ADDRESS_BASE = 8 ;byte addressing
 11
 12 TITLE = "8080 Assembler"
0004 13 LOC_SIZE = 4
 14 LINK_FILE 18085_Z80 : HP
 15 PC_16
 16
0000 17 RELOC_FMT HIGH_LOW, SIZE = 16 ;Relocate 16 bits
0001 18 RELOC_FMT LOW_HIGH, SIZE = 16 ;Relocate and swap bytes
0002 19 RELOC_FMT LOW_BYTE, SIZE = 8 ;low byte, no error check
0003 20 RELOC_FMT HIGH_BYTE, SIZE = 8 ;high byte, no error check
0004 21 RELOC_FMT LOW_CHECK, SIZE = 8 ;low byte, check for > 256
0005 22 RELOC_FMT REL_8, SIZE = 8 ;plus minus 128
0006 23 RELOC_FMT PC_REL, SIZE = 8 ;-126, +129
 24
 25 CONSTANTS
001C 26 HIGH_FLAG = TEMP1 ;Use as flag if HIGH keyword found
001E 27 COUNT = TEMP2 ;Use as a temporary count
0020 28 MEM_CHECK = TEMP3 ;Used to check memory reference on
 ;MOV instructions
 29 END
 30
0006 31 SYMBOLS = REGISTER
0007 32 A = 7
0000 33 B = 0
0001 34 C = 1
0002 35 D = 2
0003 36 E = 3

User Defined Assembler Code for 8080 Processor A-1

Assembler: A8080:HP 64000 User Definable Assembler Utility

0004 37 H = 4
0005 38 L = 5
0006 39 M = 6
 40 END
 41
0007 42 SYMBOLS = STATUS
0006 43 PSW = 6
 44 END
 45
0008 46 SYMBOLS = STACK
0006 47 SP = 6
 48 END
 49
0009 50 SYMBOLS = ADDR_OPER
0001 51 HIGH = 1
0000 52 LOW = 0
 53 END

0000 55 INSTR_DEF OPERAND = 0
 56
 57 ;**************************************;
 58 ; No operand instructions ;
 59 ;**************************************;
 60
003F 61 CMC = 03FH
0037 62 STC = 37H
002F 63 CMA = 2FH
0000 64 NOP = 0
0027 65 DAA = 27H
0007 66 RLC = 7
000F 67 RRC = 0FH
0017 68 RAL = 17H
001F 69 RAR = 1FH
00EB 70 XCHG = 0EBH
00E3 71 XTHL = 0E3H
00F9 72 SPHL = 0F9H
00E9 73 PCHL = 0E9H
00C9 74 RET = 0C9H
00D8 75 RC = 0D8H
00D0 76 RNC = 0D0H
00C8 77 RZ = 0C8H
00C0 78 RNZ = 0C0H
00F8 79 RM = 0F8H
00F0 80 RP = 0F0H
00E8 81 RPE = 0E8H
00E0 82 RPO = 0E0H
00FB 83 EI = 0FBH
00F3 84 DI = 0F3H
0076 85 HLT = 76H
 86

A-2 User Defined Assembler Code for 8080 Processor

Assembler: A8080:HP 64000 User Definable Assembler Utility

 87 INSTR_SET
 88
0001 C014 89 GEN_CODE ABS 8, OBJECT_CODE
0002 000E 90 DONE
 91
 92 END
 93
 94
 95 INSTR_DEF
 96
 97 ;*****************************;
 98 ; restart instruction ;
 99 ;*****************************;
 100
 00C7 101 RST = 0C7H
 102
 103 INSTR_SET
0004 0000 104 EXPRESSION
0005 2D0C 105 IF TYPE <> 0 THEN SAVE_ERROR IO_ERR
0008 2D0A 106 IF VALUE >7 THEN SAVE_ERROR IO_ERR
000B 050A 107 LOAD VALUE
000C 0183 108 SHIFT_LEFT 3
000D 4012 109 GOTO GEN_PRINT
 110
 111 END

 113 INSTR_DEF
 114
 115 ;********************************;
 116 : operand: reg 0-7 ;
 117 ; object code, xxRRRxxx ;
 118 ;********************************;
 119
 0004 120 INR = 4
 0005 121 DCR = 5
 122
 123 INSTR_SET
 124
000F 801B 125 CALL GET_REGISTER
0010 050A 126 LOAD VALUE
0011 0183 127 SHIFT_LEFT 3
 128 GEN_PRINT
0012 1514 129 OR OBJECT_CODE
0013 1914 130 STORE OBJECT_CODE
0014 C014 131 GEN_CODE ABS 8, OBJECT_CODE
 132 CHECK_END
0015 0014 133 CHECK_EOL
0016 000E 134 DONE
 135 EOL_ENTRY
0017 0581 136 LOAD STOP

User Defined Assembler Code for 8080 Processor A-3

Assembler: A8080:HP 64000 User Definable Assembler Utility

0018 1980 137 STORE START
0019 0061 138 ERROR EE_ERR
001A 000E 139 DONE
 140
 141 GET_REGISTER
001B 0000 142 EXPRESSION
001C 2D0C 143 IF TYPE <> REGISTER THEN SAVE_ERROR IO_ERR
001F 01C1 144 RETURN
 145 END
 146
 147
 148 INSTR_DEF
 149
 150 ;*******************************;
 151 ; operand: reg 0-7
 152 ; object_code xxxxxRRR ;
 153 ;*******************************;
 154
 0080 155 ADD = 80H
 0088 156 ADC = 88H
 0090 157 SUB = 90H
 0098 158 SBB = 98H
 00A0 159 ANA = 0A0H
 00AB 160 XRA = 0A8H
 00B0 161 ORA = 0B0H
 00B8 162 CMP = 0B8H
 163
 164 INSTR_SET
 165
0021 801B 166 CALL GET_REGISTER
0022 050A 167 LOAD VALUE
0023 4012 168 GOTO GEN_PRINT
 169
 170 END

 172 INSTR_DEF
 173
 174 ;*********************************;
 175 ; operand: rp(b or d)
 176 ; object code, xxRRxxxx ;
 177 ;*********************************;
 178
 0002 179 STAX = 2
 000A 180 LDAX = 0AH
 181
 182 INSTR_SET
 183
0025 801B 184 CALL GET_REGISTER
0026 050A 185 LOAD VALUE
0027 1002 186 AND 2

A-4 User Defined Assembler Code for 8080 Processor

Assembler: A8080:HP 64000 User Definable Assembler Utility

0028 2D16 187 IF ACCUMULATOR <> VALUE SAVE_ERROR IO_ERR
002B 0183 188 SHIFT_LEFT 3
002C 4012 189 GOTO GEN_PRINT
 190 END
 191
 192
 193 INSTR_DEF
 194
 195 ;*************************************;
 196 ; operand: rp b,d,h,sp ;
 197 ; xxRRxxxx +
 198 ;*************************************;
 199

 0009 200 DAD = 9
 0003 201 INX = 3
 000B 202 DCX = 0BH
 203
 204 INSTR_SET
 205
002E 0000 206 EXPRESSION
002F 2D0C 207 IF TYPE = STACK THEN GOTO FOUND_SP
 208 RP_ENTRY
0032 2D0C 209 IF TYPE <> REGISTER THEN GOTO SAVE_IO_ERROR
0035 2D0A 210 IF VALUE > 4 THEN GOTO SAVE_IO_ERROR
 211 FOUND_SP
0038 050A 212 LOAD VALUE
0039 1006 213 AND 6
003A 2D16 214 IF ACCUMULATOR <> VALUE THEN GOTO SAVE_IO_ERROR
003D 0183 215 SHIFT_LEFT 3
003E 4012 216 GOTO GEN_PRINT
 217
 218 SAVE_IO_ERROR
003F 008A 219 SAVE_ERROR IO_ERR
0040 4012 220 GOTO GEN_PRINT
 221
 222 END

 224 INSTR_DEF
 225
 226 ;*********************************;
 227 ; operand: rp b,d,h,psw ;
 228 ; xxRRxxxx +
 229 ;*********************************;
 230
 00C5 231 PUSH = 0C5H
 00C1 232 POP = 0C1H
 233
 234 INSTR_SET

User Defined Assembler Code for 8080 Processor A-5

Assembler: A8080:HP 64000 User Definable Assembler Utility

 235
0042 0000 236 EXPRESSION
0043 2D0C 237 IF TYPE = STATUS THEN GOTO FOUND_SP
0046 4032 238 GOTO RE_ENTRY
 239
 240 END
 241
 242
 243 INSTR_DEF
 244
 245 ;************************************;
 246 ; operand: rp b,d,h,sp , low,high ;
 247 ; xxRRxxxx ;
 248 ;************************************;
 249
 0001 250 LXI = 1
 251
 252 INSTR_SET
 253
0048 0000 254 EXPRESSION
0049 2D0C 255 IF TYPE = STACK THEN GOTO LXI_SP
004C 2D0C 256 IF TYPE <> REGISTER THEN SAVE_ERROR IO_ERR
004F 2D0A 257 IF TYPE > 4 THEN SAVE_ERROR IO_ERR
 258 LXI_SP
0052 050A 259 LOAD VALUE
0053 0183 260 SHIFT_LEFT 3
0054 1514 261 OR OBJECT_CODE
0055 1914 262 STORE OBJECT_CODE
0056 0007 263 CHECK_COMMA
0057 405F 264 GOTO INVALID_DELIM
0058 0000 265 EXPRESSION
0059 2D0C 266 IF TYPE > 5 THEN SAVE_ERROR IO_ERR
005C C014 267 GEN_CODE ABS 8, OBJECT_CODE
005D E1E1 268 GEN_CODE LOW_HIGH VALUE
005E 4015 269 GOTO CHECK_END
 270
 271 INVALID_DELIM
005F 0581 272 LOAD STOP
0060 1980 273 STORE START
0061 004A 274 ERROR IO_ERR
0062 C014 275 GEN_CODE ABS 8, OBJECT_CODE
0063 E1E1 276 GEN_CODE LOW_HIGH VALUE
0064 000E 277 DONE
 278
 279 END

 281 INSTR_DEF

A-6 User Defined Assembler Code for 8080 Processor

Assembler: A8080:HP 64000 User Definable Assembler Utility

 282 ;************************************
 283 ; operand: reg (0-7) , low or high ;
 284 ; xxRRRxxx immediate byte ;
 285 ;************************************;
 286
 0006 287 MVI = 6
 288
 289 INSTR_SET
 290
0066 0000 291 EXPRESSION
0067 2D0C 292 IF TYPE <> REGISTER THEN SAVE_ERROR IO_ERR
006A 050A 293 LOAD VALUE
006B 0183 294 SHIFT_LEFT 3
006C 1514 295 OR OBJECT_CODE
006D 1914 296 STORE OBJECT_CODE
006E 0007 297 CHECK_COMMA
006F 405F 298 GOTO INVALID_DELIM
 299 MVI_ENTRY

0070 8085 300 CALL CHECK_HIGH_LOW
0071 0000 301 EXPRESSION
0072 C014 302 GEN_CODE ABS 8, OBJECT_CODE
0073 2D0C 303 IF TYPE > 5 THEN SAVE_ERROR IO_ERR
0076 8092 304 CALL CHECK_OLD_H
0077 2D1C 305 IF HIGH_FLAG = 1 THEN GOTO GEN_HIGH
007A E0E2 306 GEN_CODE LOW_BYTE VALUE
007B 4015 307 GOTO CHECK_END
 308
 309 GEN_HIGH
007C 2D0C 310 IF TYPE = 0 THEN GOTO GEN_HIGH_ABS
007F E0E3 311 GEN_CODE HIGH_BYTE VALUE
0080 4015 312 GOTO CHECK_END
 313
 314 GEN_HIGH_ABS
0081 050A 315 LOAD VALUE
0082 0148 316 SHIFT_RIGHT 8
0083 C016 317 GEN_CODE ABS 8, ACCUMULATOR
0084 4015 318 GOTO CHECK_END
 319
 320 CHECK_HIGH_LOW
0085 1D1C 321 STORE_0 HIGH_FLAG
0086 0001 322 GET_SYMBOL
0087 408F 323 GOTO NOT_OPER
0088 408F 324 GOTO NOT_OPER
0089 2D0C 325 IF TYPE<> ADDR_OPER THEN GOTO NOT_OPER
008C 050A 326 LOAD VALUE
008D 191C 327 STORE HIGH_FLAG
008E 0005 328 GET_TOKEN
 329

User Defined Assembler Code for 8080 Processor A-7

Assembler: A8080:HP 64000 User Definable Assembler Utility

 330 NOT_OPER
008F 0580 331 LOAD START
0090 1981 332 STORE STOP
0091 01C1 333 RETURN
 334
 335 CHECK_OLD_H
0092 0007 336 CHECK_COMMA
0093 01C1 337 RETURN
0094 000A 338 GET_STOP_CHAR
0095 409B 339 GOTO H_ERROR
0096 2D0E 340 IF CHARACTER <> H THEN GOTO H-ERROR

0099 211C 341 STORE_1 HIGH_FLAG
009A 01C1 342 RETURN
 343 H_ERROF
009B 004A 344 ERROR IO_ERROR
009C 01C1 345 RETURN
 346
 347 END
 348
 349
 350 INSTR_DEF
 351
 352 ;************************************;
 353 ; operand, immediate ;
 354 ; xxxxxxxx immediate ;
 355 ;************************************;
 356
 00C6 357 ADI = 0C6H
 00CE 358 ACI = 0CEH
 00D6 359 SUI = 0D6H
 00DE 360 SBI = 0DEH
 00E6 361 ANI = 0E6H
 00EE 362 XRI = 0EEH
 00F6 363 ORI = 0F6H
 00FE 364 CPI = 0FEH
 00DB 365 IN = 0DBH
 00D3 366 OUT = 0D3H
 367
 368 INSTR_SET
 369
009E 4070 370 GOTO MVI_ENTRY
 371
 372 END
 373
 374 INSTR_DEF
 375

A-8 User Defined Assembler Code for 8080 Processor

Assembler: A8080:HP 64000 User Definable Assembler Utility

 376 ;***********************************;
 377 ; operand: reg(0-7), reg(0-7) ;
 377 ; xxDDDSSS +
 379 ;***********************************;
 380
 0040 381 MOV = 040H
 382
 383 INSTR_SET
 384
00A0 801B 385 CALL GET_REGISTER
00A1 050A 386 LOAD VALUE
00A2 1920 387 STORE MEM_CHECK
00A3 0183 388 SHIFT_LEFT 3
00A4 1514 389 OR OBJECT_CODE
00A5 0007 390 CHECK_COMMA
00A6 403F 391 GOTO SAVE_IO_ERROR
00A7 801B 392 CALL GET_REGISTER
00A8 150A 393 OR VALUE
00A9 C016 394 GEN_CODE ABS 8, ACCUMULATOR
00AA 2D20 395 IF MEM_CHECK <> 6 THEN GOTO CHECK_END
00AD 2D0A 396 IF VALUE = 6 THEN SAVE_ERROR IO_ERR
00B0 4015 397 GOTO CHECK_END
 398
 399 END

 401 INSTR_DEF
 402
 403 ;**********************************;
 404 ; operand: low, high data ;
 405 ; xxxxxxxx low, high ;
 406 ;**********************************;
 407
 0032 408 STA = 032H
 003A 409 LDA = 03AH
 00E2 410 JPO = 0E2H
 0022 411 SHLD = 022H
 002A 412 LHLD = 02AH
 00C3 413 JMP = 0C3H
 00DA 414 JC = 0DAH
 00D2 415 JNC = 0D2H
 00CA 416 JZ = 0CAH
 00C2 417 JNZ = 0C2H
 00FA 418 JM = 0FAH
 00F2 419 JP = 0F2H
 00EA 420 JPE = 0EAH
 00CD 421 CALL = 0CDH
 00DC 422 CC = 0DCH
 00D4 423 CNC = 0D4H

User Defined Assembler Code for 8080 Processor A-9

Assembler: A8080:HP 64000 User Definable Assembler Utility

 00CC 424 CZ = 0CCH
 00C4 425 CNZ = 0C4H
 00FC 426 CM = 0FCH
 00F4 427 CP = 0F4H
 00EC 428 CPE = 0ECH
 00E4 429 CPO = 0E4H
 430
 431 INSTR_SET
 432
00B2 0000 433 EXPRESSION
00B3 2D0C 434 IF TYPE > 5 THEN SAVE_ERROR ET_ERR
00B6 C014 435 GEN_CODE ABS 8, OBJECT_CODE
00B7 E1E1 436 GEN_CODE LOW_HIGH VALUE
00B8 4015 437 GOTO CHECK_END
 438
 439 END
 440
 441
 442 INSTR_DEF
 443
 444 ;*******************************;
 445 ; define storage pseudo ;
 446 ;*******************************;
 447
 0000 448 DS = 0
 449
 450 INSTR_SET
 451
00BA 0016 452 PRINT_LOCATION
00BB 0000 453 EXPRESSION
00BC 000D 454 CHECK_PASS1_ERROR
00BD 40C5 455 GOTO DS_ERROR
00BE 2D0C 456 IF TYPE = 0 THEN GOTO TYPE_OK
00C1 0086 457 SAVE_ERROR ET_ERR
00C2 4015 458 GOTO CHECK_END
 459 TYPE_OK
00C3 0013 460 COUNTER_UPDATE
00C4 4015 461 GOTO CHECK_END
 462
 463 DS_ERROR
00C5 008E 464 SAVE_ERROR DE_ERR
00C6 4015 465 GOTO CHECK_END
 466
 467 END
 468
 469
 470 INSTR_DEF
 471

A-10 User Defined Assembler Code for 8080 Processor

Assembler: A8080:HP 64000 User Definable Assembler Utility

 472 ;*******************************;
 473 ; define byte ;
 474 ;*******************************;
 475
 0000 476 DB = 0
 477
 478 INSTR_SET
 479
 480 DP_TOP
00C8 0005 481 GET_TOKEN
00C9 2D82 482 IF CLASS = 2 THEN GOTO BYTE_STRING
 483 NOT_STRING
00CC 0580 484 LOAD START
00CD 1981 485 STORE STOP
00CE 8085 486 CALL CHECK_HIGH_LOW
00CF 0000 487 EXPRESSION
00D0 2D1C 488 IF HIGH_FLAG = 1 THEN GOTO HIGH_DB
00D3 E0E2 489 GEN_CODE LOW_BYTE VALUE
00D4 40D6 490 GOTO CHECK_NEXT
 491 HIGH_DB
00D5 E0E3 492 GEN_CODE HIGH_BYTE VALUE
 493 CHECK_NEXT
00D6 0014 494 CHECK_EOL
00D7 000E 495 DONE
00D8 0007 496 CHECK_COMMA
00D9 4017 497 GOTO EOL_ENTRY
00DA 40C8 498 GOTO DB_TOP
 499
 500 BYTE_STRING
00DB 0014 501 CHECK_EOL
00DC 40E0 502 GOTO NOT_EXPR
00DD 0007 503 CHECK_COMMA
00DE 40CC 504 GOTO NOT_STRING
00DF 2981 505 DECREMENT STOP
 506 NOT_EXPR
00E0 0012 507 GET_ASCII_BYTE
00E1 40D6 508 GOTO CHECK_NEXT
00E2 114C 509 AND AND_WORD
00E3 154E 510 OR OR_WORD
00E4 C016 511 GEN_CODE ABS 8, ACCUMULATOR
00E5 40E0 512 GOTO NOT_EXPR
 513
 514 END

 516 INSTR_DEF
 517
 518 ;*******************************;
 519 ; define word ;
 520 ;*******************************;
 521

User Defined Assembler Code for 8080 Processor A-11

Assembler: A8080:HP 64000 User Definable Assembler Utility

 0000 522 DW = 0
 523
 524 INSTR_SET
 525
 526 DW_TOP
00E7 0005 527 GET_TOKEN
00E8 2D82 528 IF CLASS = 2 THEN GOTO WORD_STRING
 529 NOT_STRING1
00EB 0580 530 LOAD START
00EC 1981 531 STORE STOP
00ED 0000 532 EXPRESSION
00EE E1E1 533 GEN_CODE LOW_HIGH VALUE
 534 CHECK_NEXT1
00EF 0014 535 CHECK_EOL
00F0 000E 536 DONE
00F1 0007 537 CHECK_COMMA
00F2 4017 538 GOTO EOL_ENTRY
00F3 40E7 539 GOTO DW_TOP
 540
 541 WORD_STRING
00F4 1D1E 542 STORE_0 COUNT
00F5 0014 543 CHECK_EOL
00F6 40FA 544 GOTO NOT_EXPR1
00F7 0007 545 CHECK_COMMA
00F8 40EB 546 GOTO NOT_STRING1
00F9 2981 547 DECREMENT STOP
 548 NOT_EXPR1
00FA 0012 549 GET_ASCII_BYTE
00FB 40FF 550 GOTO DONE_STRING
00FC C016 551 GEN_CODE ASB 8, ACCUMULATOR
00FD 251E 552 INCREMENT COUNT
00FE 40FA 553 GOTO NOT_EXPR1
 554
 555 DONE_STRING
00FF 051E 556 LOAD COUNT
0100 1001 557 AND 1
0101 2D16 558 IF ACCUMULATOR = 0 THEN GOTO CHECK_NEXT1
0104 0420 559 LOAD 20H
0105 C016 560 GEN_CODE ABS 8, ACCUMULATOR
0106 40EF 561 GOTO CHECK_NEXT1
 562
 563 END

End of generation, errors = 0

Words of opcodes = 568, Words of table code = 263, Total = 831

A-12 User Defined Assembler Code for 8080 Processor

B

User Defined Linker Code for 8080 Processor

FILE: L8085_Z80:I8080 HEWLETT-PACKARD: User Definable Linker

 OBJECT
LOCATION CODE LINE SOURCE LINE

 1 "LINK"
 2 ***
 3 ******** 8080/85 Z80 LINKER TABLES *********
 4 ***
 0000 0010 5 HEX 10 NO OF VALID CONSTANTS
 0001 0002 6 HEX 0002 IDOFFSET
 0002 0008 7 HEX 0008 WIDTH
 0003 0008 8 HEX 0008 BASE
 0004 0000 9 HEX 0000 ALIGN
 0005 0005 10 HEX 0005 DIGITS0 ;#DIGITS TO DISPLAY IN PASS0
 0006 0004 11 HEX 0004 DIGITS2 ;#DIGITS TO DISPLAY IN PASS2
 ;(MAP)
 0007 0000 12 HEX 0000 DBLADR
 0008 0000 13 HEX 0000 SWAP
 0009 0000 14 HEX 0000 IND
 000A 0000 15 HEX 0000 MULTISPACE ;TRUE IFF MULTIPLE ADR SPACES
 000B FFFF 16 HEX FFFF MAXL ;MAX LEGAL ADR ENTERABLE
 ;IN PASS0
 000C 0000 17 HEX 0000 MAXH ;MAX LEGAL ADR ENTERBLE
 ;IN PASS0
 000D 0000 18 HEX 0000 UNDEFINED
 000E 0000 19 HEX 0000 UNDEFINED
 000F 0000 20 HEX 0000 UNDEFINED
 0010 0000 21 HEX 0000 HISHIFT ;SHIFT COUNT, INTERNAL TO
 ;ACTUAL ADDRESS
 0011 0000 22 HEX 0000 UNDEFINED
 0012 0000 23 HEX 0000 UNDEFINED
 0013 0000 24 HEX 0000 UNDEFINED
 0014 0000 25 HEX 0000 UNDEFINED
 0015 0000 26 HEX 0000 UNDEFINED
 0016 0000 27 HEX 0000 UNDEFINED
 0017 0000 28 HEX 0000 UNDEFINED
 0018 0000 29 HEX 0000 UNDEFINED
 0019 0000 30 HEX 0000 UNDEFINED

User Defined Linker Code for 8080 Processor B-1

FILE: L8085_Z80:I8080 HEWLETT-PACKARD: User Definable Linker

 OBJECT
LOCATION CODE LINE SOURCE LINE

 001A 0000 31 HEX 0000 UNDEFINED
 001B 0000 32 HEX 0000 UNDEFINED
 001C 0000 33 HEX 0000 UNDEFINED
 001D 0000 34 HEX 0000 UNDEFINED
 001E 0000 35 HEX 0000 UNDEFINED
 001F 0000 36 HEX 0000 UNDEFINED

 37 ;
 38 ; LIST OF RELOCATABLE FORMATS FOR THE 8080/85 AND
 39 ; Z80 ASSEMBLERS
 40
 0020 003F 41 DEF LAST-$;LENGTH WORD MUST BE AT 20H
 0021 0028 42 DEF FMT0 ;TWO BYTE ADDRESS, HI,LO
 0022 002B 43 DEF FMT1 ;TWO BYTE ADDRESS, LO,HI
 0023 002E 44 DEF FMT2 ;ONE BYTE ADDRESS, LO
 ;NO RANGE CHECK
 0024 0031 45 DEF FMT3 ;ONE BYTE ADDRESS, HI
 ;NO RANGE CHECK
 0025 0034 46 DEF FMT4 ;ONE BYTE ADDRESS, LO
 ;(0 TO 255)
 0026 003B 47 DEF FMT5 ;ONE BYTE ADDRESS, LO
 ;(-128 TO 127)
 0027 0045 48 DEF FMT6 ;ONE BYTE P_RELATIVE
 ;(-126 TO 129)
 0028 0C85 50 FMT0 MOVE LOADWRD,ADR ;LOADWRD=LOADADR
 0029 0056 51 LOADBYTES 2 ;LOAD 2 BYTES AND
 ;LOADBYTES,,
 002A 0018 52 DONE
 002B 0C88 53 FMT1 SWAPBYTES LOADWRD,ADR ;LOADWRD-SWAPBYTES
 ;(LOADADR)
 002C 0056 54 LOADBYTES 2 ;LOAD 2 BYTES AND
 ;LOADBYTES,,
 002D 0018 55 DONE
 002E 0C85 56 FMT2 MOVE LOADWRD,ADR ;LOADWRD=LOADADR
 002F 0036 57 LOADBYTES 1 ;LOAD 1 BYTE AND
 ;LOADBYTES,,
 0030 0018 58 DONE
 0031 0C88 59 FMT3 SWAPBYTES LOADWRD,ADR ;LOADWRD=SWAPBYTES
 ;(LOADADR)
 0032 0036 60 LOADBYTES 1 ;LOAD 1 BYTE AND
 ;LOADBYTES,,
 0033 0018 61 DONE
 0034 0C85 62 FMT4 MOVE LOADWRD,ADR ;MOVE THE,ADDRESS
 ;INTO LOAD WORD
 0035 0036 63 LOADBYTES 1
 0036 0012 64 IMMEDIATE T0 ;GET UPPER BOUND=256

B-2 User Defined Linker Code for 8080 Processor

FILE: L8085_Z80:I8080 HEWLETT-PACKARD: User Definable Linker

 OBJECT
LOCATION CODE LINE SOURCE LINE

 0037 0100 65 DEF 0100H
 0038 00CC 66 SGE ADR,T0 ;SKIP IF ADR IS
 ;.GE. 256
 0039 0018 67 DONE
 003A 0A79 68 GOTO ERROR 1 ;ADR OUT OF RANGE,
 ;ERROR
 003B 0C85 69 FMT5 MOVE LOADWRD,ADR ;MOVE THE,ADDRESS
 ;INTO LOAD WORD
 003C 0036 70 LOADBYTES 1
 003D 0012 71 IMMEDIATE T0 ;THE UPPER 9 BITS
 ;SHOULD BE ALL 1’S
 ;OR 0’S
 003E FF80 72 DEF 0FF80H ;MASK UPPER 9 BITS
 003F 0CC1 73 AND ADR,ADR,T0 ;LOOK AT UPPER 9 BITS
 ;OF ADR
 0040 00CF 74 SNEZ ADR ;SKIP IF UPPER 9 BITS
 ;ARE NOT ALL 0’s
 0041 0018 75 DONE
 0042 00CD 76 SEQ ADR,T0 ;SKIP IF UPPER 9 BITS
 ;ARE ALL 1’S
 0043 0A79 77 GOTO ERROR1 ;ADR OUT OF RANGE
 0044 0018 78 DONE
 0045 0A87 79 FMT6 TWOCMP LOADWRD,LOADADR
 0046 8C80 80 ADD LOADWRD,ADR,LOADWRD ;LOADWRD=ADR-LOADADR
 0047 0012 81 IMMEDIATE T0
 0048 FFFF 82 DEF 0FFFFH
 0049 0880 83 ADD LOADWRD,LOADWRD,T0 ;LOADWRD=(ADR-LOADADR)
 ;-1
 004A 0036 84 LOADBYTES 1
 004B 0052 85 IMMEDIATE T2
 004C FF80 86 DEF 0FF80H ;GET MASK OF UPPER
 ;9 BITS
 004D 4821 87 AND T1,LOADWRD,T2 ;T1=LOADWRD.AN.T2
 004E 002F 88 SNEZ T1 ;ARE THEY ALL ZEROS?
 004F 0018 89 DONE
 0050 042D 90 SEQ T1,T2 ;ARE THEY ALL ONES
 0051 0A79 91 GOTO ERROR1 ;UPPER 9 BITS NOT ALL
 ;ONES
 0052 0018 92 DONE
 0053 001C 93ERROR1 ERROR "Address out of range"
 144164
 005F 0018 94 LAST DONE

ERRORS= 0

User Defined Linker Code for 8080 Processor B-3

Note 1. The first section of the linker table must contain 32 words of
initialization.
2. The next statement must be the length of the table: DEF
LAST-$.
3. The next section is a list of addresses to formats in the linker.
This list must have as many entries as formats defined in the
assembler (see ASSEMBLER command section in sample
program listed in Chapter 5).
4. The label LAST must appear on the same line as the last DONE
instruction.

B-4 User Defined Linker Code for 8080 Processor

C

Summary of Assembler Subroutines

The assembler subroutines that were explained in Chapter 4 are
summarized here alphabetically for quick reference.

ADD_LABEL puts a label found in the operand field in
the symbol table during pass 1. Stores
VALUE and TYPE.

CHECK_AUTO_DEC checks for auto decrement in the form of
a trailing operator(s); e.g., An-.

CHECK_AUTO_INC checks for auto increment in the form of
a trailing operator(s); e.g., An+ .

CHECK_COMMA checks the token at the STOP pointer
for a comma.

CHECK_DELIMITER checks for a delimiter at the position
indicated by the STOP pointer.

CHECK_EOL checks for a valid end of line; i.e., a
blank, a semicolon, or the actual end of
line.

CHECK_EXPR_
ERROR

after the EXPRESSION handler is
called, CHECK_EXPR_ERROR can
determine if an error has been flagged by
EXPRESSION.

CHECK_PASS1_
ERROR

executes a return 1 when a symbolic
reference is not defined in pass 1 and is
defined in pass 1 and is defined in pass 2.
Executes a return 2 if the symbolic
reference is defined in both passes.

Summary of Assembler Subroutines C-1

COUNTER_UPDATE increments the program counter by the
amount contained in VALUE.

ERROR code displays an error message.

EVEN n increments the program counter to an
even word boundary if it is set to an odd
value "n" sets the program counter to the
next value with ’n’ trailing zeros.

EXECUTE_OPCODE assumes that the STOP pointer is
positioned at the start of a user defined
opcode. It will look up the opcode,
initialize OBJECT_CODE, and branch
to the proper format in the user defined
machine code, just as if the opcode was
the first one encountered in the source
statement.

EXPRESSION evaluates expressions in the operand
field and flags syntax errors in the
expressions.

FIND_DELIMITER finds the next delimiter in the present
operand field.

GEN_CODE generates absolute or relocatable object
code according to the parameters
chosen.

GET_ASCII_BYTE retrieves one ASCII character from an
ASCII string within quotation marks.

GET_OPCODE checks for an opcode. Starts checking at
the token indicated by the STOP
pointer. Used for multiple opcodes; e.g.,
CMA,INA.

C-2 Summary of Assembler Subroutines

GET_PROG_
COUNTER

returns the VALUE of the user’s source
code program counter in the
ACCUMULATOR.

GET_START_CHAR retrieves the character indicated by the
START pointer. @LABELW1 =
GET_STOP_CHAR

retrieves the character indicated by the
STOP pointer. @LABELW1 =
GET_SYMBOL

checks for a symbol. Starts checking at
the token indicated by the STOP
pointer.

GET_TOKEN gets the next token in the source
statement. The subroutine begins at the
STOP pointer and skips to the first
nonblank column. A token is identified
in the source statement with the START
pointer at the beginning and the STOP
pointer at the first column past the
token.

NOT_DUPLICATE can be used in conjunction with
UPDATE_LABEL to prevent the
assembler from marking a label as a
duplicate.

PRINT_LOCATION instructs the assembler to print the
current VALUE of the program counter
on the source listing.

SAVE_ERROR code displays an error message.

SAVE_WARNING
code

displays a warning message.

Summary of Assembler Subroutines C-3

UPDATE_LABEL allows the user to redefine the VALUE
and TYPE of the label on the current
line.

WARNING code displays a warning message.

C-4 Summary of Assembler Subroutines

D

Relocatable and Absolute File Formats

The relocatable file formats for NAM, GLB, DBL, EXT, and END
records, plus the absolute file format are included here. Note that
the maximum length of a record is 128 words.

Relocatable and Absolute File Formats D-1

1Nam Record
(record Type = 1)

D-2 Relocatable and Absolute File Formats

2Glb Record
(record Type = 2)

Relocatable and Absolute File Formats D-3

3Dbl Record
(record Type = 3)

D-4 Relocatable and Absolute File Formats

4Ext Record
(record Type = 4)

1End Record
(record Type = 5)

Relocatable and Absolute File Formats D-5

2Absolute File

D-6 Relocatable and Absolute File Formats

Index

A ACCUMULATOR, 3-5
ADD, 3-8, 7-6
ADD_LABEL, 4-3
ADDRESS_BASE, 3-2
ADR, 7-9
ALIGN, 7-3
AND, 3-8, 7-6
assembler directive, 3-1
assembler instructions, 3-8
assembler program, defining, 1-4
assembler subroutines, 4-1
assembler subroutines, summary, C-1
assembler, building process, 2-1
assembler, creating, 5-1
AUTO_DEC_COUNT, 3-5
AUTO_INC_COUNT, 3-5

B BASE, 7-3
BLDLINK, 7-7

C CALL, 3-8, 7-7
CHARACTER, 3-5
CHECK_AUTO_DEC, 4-3
CHECK_AUTO_INC, 4-3
CHECK_COMMA, 4-4
CHECK_DELIMITER, 4-4
CHECK_EOL, 4-5
CHECK_EXPR_ERROR, 4-5
CHECK_PASS1_ERROR, 4-5
CLASS, 3-5
code formats, relocatable, 2-3
column pointers, 4-1
commands, setup, 2-2, 3-2, 5-2 - 5-3, 7-3
commands, setup parameters, 5-3
constants, internal, 2-4
conventions, programming, 3-11
COUNTER_UPDATE, 4-7

Index - 1

D DBLADR, 7-3
DECREMENT, 3-8
DEF, 7-7
delimiters, 3-11
DIGITS0, 7-3
DIGITS2, 7-3
DONE, 3-8, 7-7
DOUBLE_ADDRESS, 3-3

E END, 3-8
entry points, 7-6
ERROR, 4-7, 7-7
error messages, 4-7
EVEN, 4-9
EXECUTE_OPCODE, 4-9
EXPRESSION, 4-9
expression types, 4-10
EXPRESSION_2, 4-10
EXT_ID_NUMB, 3-6
EXT_OFFSET, 3-6

F FIND_DELIMITER, 4-11

G GEN_CODE, 4-11
GEN_CODE, absolute, 2-6
GEN_CODE, relocatable, 2-7
GET_ASCII_BYTE, 4-12
GET_OPCODE, 4-12
GET_PROG_COUNTER, 4-13
GET_START_CHAR, 4-13
GET_STOP_CHAR, 4-13
GET_SYMBOL, 4-14
GET_TOKEN, 4-15
GOTO, 3-8, 7-7

H HISHIFT, 7-3

I IDOFFSET, 7-3
IF...THEN, 3-8
IMMEDIATE, 7-7
INCREMENT, 3-9
IND, 7-3
INSTR_DEF, 2-5, 5-4

2 - Index

INSTR_RESET, 3-6
INSTR_SET, 5-4
instruction set, defining, 2-5

parsing, 5-4
instruction set, parsing, 2-6
IOR, 7-7

L LINK_FILE, 3-2
linker instructions, 7-6
linker modules, 6-1
linker operation, 6-1
linker structure, 7-1
linker, creating, 8-1
LLA, 7-9
LOAD, 3-9
LOADADR, 7-9
LOADBITS, 7-7
LOADBYTES, 7-7
LOADWRD, 7-10
LOC_SIZE, 3-2

M mainframe, uploading to, 9-1
MAXL MAXH, 7-4
module, basic assembler, 1-1
module, basic linker, 1-1
module, user definable assembler, 1-1
module, user definable linker, 1-1
MOVE, 7-7
MULTISPACE, 7-4

N NOP, 3-9
NOT_DUPLICATE, 4-17

O OBJECT_CODE, 3-6
ONECMP, 7-8
OR, 3-9

P PC_16, 3-3
PRINT_LOCATION, 4-17
processor, defining, 2-2, 7-4
PROGRAM_COUNTER, 3-6
pseudo instructions, 1-3, 3-7

Index - 3

pseudo numbers
pseudo names, 3-3

R registers, temporary (38-40), 4-18
RELOC_FMT, 3-3, 7-6
RENAME_PSEUDO, 3-3
RESULT, 3-6
RETURN, 3-9, 7-8
routines, relocatable, 7-6, 7-10

S SAVE_ERROR, 4-17
SAVE_PTR, 3-6, 4-2
SAVE_WARNING, 4-17
SCAN_REAL, 4-17
SEQ, 7-8
SEQZ, 7-8
SGE, 7-8
SHIFT_LEFT, 3-10
SHIFT_RIGHT, 3-10
SHIFTL, 7-8
SHIFTR, 7-8
SIZE, 3-3
SKELETON, 7-8
SNEZ, 7-8
START, 3-6
STOP, 3-6
STORE, 3-10
STORE_0, 3-10
STORE_1, 3-10
SUBTRACT, 3-10
SWAP, 7-4
SWAPBYTES, 7-8
SWAPWORDS, 7-8
SYMBOLS, 3-4
symbols, predefined, 2-4, 3-5, 7-9

T T0...T3, 7-10
tables, assembler, 9-1
TITLE, 3-4
token classes, 4-15
token types, 3-5
TOKEN_ERROR, 3-6
TRACE, 5-6, 7-9, 8-1, 8-3

4 - Index

TWOCMP, 7-9
TWOS_COMPLEMENT, 3-10
TYPE, 3-6
type variables, 3-6

U UPDATE_LABEL, 4-19

V VALUE, 3-7

W WARNING, 4-19, 7-7
WIDTH, 7-4
WORD_SIZE, 3-4

X XOR, 7-9

Index - 5

Notes

6 - Index

	Using This Manual
	Contents
	General Information (User Definable Assembler/Linker)
	Programming Rules
	Assembler Commands, Symbols, Instructions, and Conventions
	Assembler Subroutines
	Creating An Assembler
	Linker General Information
	Linker Programming Rules
	Creating The Linker
	Uploading To The Mainframe
	User Defined Assembler Code for 8080 Processor
	User Defined Linker Code for 8080 Processor
	Summary of Assembler Subroutines
	Relocatable and Absolute File Formats
	Index

