
User’s Guide

Real-Time C Debugger for
Intel80386EX

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1995, 1996, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Intel386, Intel80386, Intel486, and Intel80486 are U.S. trademarks of Intel
Corporation.

MS-DOS(R) is a registered trademark of Microsoft Corporation.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products.

TrueType(TM) is a U.S. trademark of Apple Computer, Inc.

UNIX(R) is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows or MS Windows is a U.S. trademark of Microsoft Corporation.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c)
(1)(ii) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo

ii

Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version
level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition 1 B3637-97002, November 1995

Edition 2 B3637-97003, September 1996

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of
this manual on the pages before the back cover.

iii

Real-Time C Debugger — Overview

The Real-Time C Debugger is an MS Windows application that lets you debug
C language programs for embedded microprocessor systems.

The debugger controls HP 64700 emulators and analyzers either on the local
area network (LAN) or connected to a personal computer with an RS-232C
interface or the HP 64037 RS-422 interface. It takes full advantage of the
emulator’s real-time capabilities to allow effective debug of C programs while
running in real time.

The debugger is an MS Windows application

• You can display different types of debugger information in different
windows, just as you display other windows in MS Windows applications.

• You can complete a wide variety of debug-related tasks without exiting
the debugger. You can, for example, edit files or compile your programs
without exiting the debugger.

• You can cut text from the debugger windows to the clipboard, and
clipboard contents may be pasted into other windows or dialog boxes.

The debugger communicates at high speeds

• You can use the HP 64700 LAN connection or the RS-422 connection for
high-speed data transfer (including program download). These
connections give you an efficient debugging environment.

You can debug programs in C context

• You can display C language source files (optionally with intermixed
assembly language code).

• You can display program symbols.
• You can display the stack backtrace.
• You can display and edit the contents of program variables.
• You can step through programs, either by source lines or assembly

language instructions.
• You can step over functions.
• You can run programs until the current function returns.
• You can run programs up to a particular source line or assembly language

instruction.

iv

• You can set breakpoints in the program and define macros (which are
collections of debugger commands) that execute when the breakpoint is
hit. Break macros provide for effective debugging without repeated
command entry.

You can display and modify processor resources

• You can display and edit the contents of memory locations in
hexadecimal or as C variables.

• You can display and edit the contents of microprocessor registers
including on-chip peripheral registers.

• You can display and modify individual bits and fields of bit-oriented
registers.

You can trace program execution

• You can trace control flow at the C function level.
• You can trace the callers of a function.
• You can trace control flow within a function at the C statement level.
• You can trace all C statements that access a variable.
• You can trace before, and break program execution on, a C variable being

set to a specified value.
• You can make custom trace specifications.

You can debug your program while it runs continuously at full speed

• You can configure the debugger to prevent it from automatically
initiating any action that may interrupt user program execution. This
ensures that the user program executes in real time, so you can debug
your design while it runs in a real-world operating mode.

• You can inspect and modify C variables and data structures without
interrupting execution.

• You can set and clear breakpoints without interrupting execution.
• You can perform all logic analysis functions, observing C program and

variable activity, without interrupting program execution.

v

In This Book

This book documents the Real-Time C Debugger for Intel80386EX. It is
organized into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 quickly shows you how to use the debugger.

Part 2. User’s Guide

Chapter 2 shows you how to use the debugger interface.
Chapter 3 shows you how to plug the emulator into target systems.
Chapter 4 shows you how to configure the emulator.
Chapter 5 shows how to perform the tasks that you can use to debug
programs.

Part 3. Reference

Chapter 6 contains a summary of the debugger commands as they are
used in command files and break macros.
Chapter 7 describes the format for expressions used in commands.
Chapter 8 describes commands that appear in the menu bar.
Chapter 9 describes commands that appear in debugger window control
menus.
Chapter 10 describes commands that appear in popup menus.
Chapter 11 describes commands that are only available in command files
and break macros.
Chapter 12 describes error messages and provides recovery information.

Part 4. Concept Guide

Chapter 13 contains conceptual (and more detailed) information on
various topics.

Part 5. Installation Guide

Chapter 14 shows you how to install the debugger.
Chapter 15 shows you how to install or update HP 64700 firmware.

vi

Contents

Part 1 Quick Start Guide

1 Getting Started

Step 1. Start the debugger 5
Step 2. Adjust the fonts and window size 6
Step 3. Map memory for the demo program 7
Step 4. Set address translations for the demo program 9
Step 5. Load the demo program 10
Step 6. Display the source file 11
Step 7. Set a breakpoint 12
Step 8. Run the demo program 13
Step 9. Delete the breakpoint 14
Step 10. Single-step one line 14
Step 11. Single-step 10 lines 15
Step 12. Display a variable 16
Step 13. Edit a variable 17
Step 14. Monitor a variable in the WatchPoint window 18
Step 15. Run until return from current function 19
Step 16. Step over a function 19
Step 17. Run the program to a specified line 20
Step 18. Display register contents 21
Step 19. Trace a function’s callers 23
Step 20. Trace access to a variable 24
Step 21. Exit the debugger 25

vii

Part 2 User’s Guide

2 Using the Debugger Interface

How the Debugger Uses the Clipboard 31

Debugger Function Key Definitions 32

Starting and Exiting the Debugger 33

To start the debugger 33
To exit the debugger 34
To create an icon for a different emulator 34

Working with Debugger Windows 36

To open debugger windows 36
To copy window contents to the list file 37
To change the list file destination 37
To change the debugger window fonts 38
To set tab stops in the Source window 38
To set colors in the Source window 39

Using Command Files 40

To create a command file 40
To execute a command file 41
To create buttons that execute command files 42

3 Plugging the Emulator into Target Systems

Plugging the Emulator into Target Systems 44

Step 1. Turn OFF power 45
Step 2. Unplug the probe from the demo target system 45
Step 3. Plug the probe into the target system 46
Step 4. Connect the reset flying lead to the target system 47
Step 5. Turn ON power 48

Contents

viii

4 Configuring the Emulator

Configuring the Emulator 50

Setting the Hardware Options 51

To specify a CLK2 speed faster than 42 MHz 52
To enable or disable target interrupts 53
To enable or disable software breakpoints 54
To enable or disable break on writes to ROM 55
To enable or disable execution trace messages 56
To enable or disable foreground monitor traced as user 57

Selecting the Type of Monitor 58

To select the background monitor 58
To select the foreground monitor 59
To use a custom foreground monitor 60

Mapping Memory 62

To map memory 64

Selecting Address Translations 66

When address translations occur 66
Implications of address translation options 66
Performance of address translation caching 67

Setting Up the BNC Port 68

To output the trigger signal on the BNC port 68
To receive an arm condition input on the BNC port 68

Saving and Loading Configurations 69

To save the current emulator configuration 69
To load an emulator configuration 70

Setting the Real-Time Options 71

To allow or deny monitor intrusion 72
To turn polling ON or OFF 73

Contents

ix

5 Debugging Programs

Debugging Programs 76

Loading and Displaying Programs 77

To load user programs 77
To display source code only 78
To display source code mixed with assembly instructions 78
To display source files by their names 79
To specify source file directories 80
To search for function names in the source files 81
To search for addresses in the source files 81
To search for strings in the source files 82

Displaying Symbol Information 83

To display program module information 84
To display function information 84
To display external symbol information 85
To display local symbol information 86
To display global assembler symbol information 87
To display local assembler symbol information 87
To create a user-defined symbol 88
To display user-defined symbol information 89
To delete a user-defined symbol 89
To display the symbols containing the specified string 90

Stepping, Running, and Stopping the Program 91

To step a single line or instruction 91
To step over a function 92
To step multiple lines or instructions 93
To run the program until the specified line 94
To run the program until the current function return 94
To run the program from a specified address 95
To stop program execution 96
To reset the processor 96

Contents

x

Using Breakpoints and Break Macros 97

To set a breakpoint 98
To disable a breakpoint 99
To delete a single breakpoint 99
To list the breakpoints and break macros 100
To set a break macro 100
To delete a single break macro 103
To delete all breakpoints and break macros 103

Displaying and Editing Variables 104

To display a variable 104
To edit a variable 105
To monitor a variable in the WatchPoint window 106

Displaying and Editing Memory 107

To display memory 107
To edit memory 109
To copy memory to a different location 110
To copy target system memory into emulation memory 111
To modify a range of memory with a value 112
To search memory for a value or string 113

Displaying and Editing GDT, LDT, and IDT Windows 114

To display the GDT, LDT, and IDT windows 114
To edit the GDT, LDT, and IDT windows 115

Displaying and Editing I/O Locations 116

To display I/O locations 116
To edit an I/O location 117

Displaying and Editing Registers 118

To display registers 118
To edit registers 120

Contents

xi

Tracing Program Execution 121

To trace callers of a specified function 124
To trace execution within a specified function 126
To trace accesses to a specified variable 127
To trace until the command is halted 128
To stop a running trace 128
To repeat the last trace 128
To display bus cycles 129
To display absolute or relative counts 130
To display or suppress unexecuted prefetches 130
To swap instruction bytes in display of data-bus values 131

Setting Up Custom Trace Specifications 132

To set up a "Trigger Store" trace specification 133
To set up a "Find Then Trigger" trace specification 136
To set up a "Sequence" trace specification 141
To edit a trace specification 145
To trace "windows" of program execution 145
To store the current trace specification 147
To load a stored trace specification 148

Contents

xii

Part 3 Reference

6 Command File and Macro Command Summary

Command File and Macro Command Summary 152

WAIT Command Dialog Box 158

7 Expressions in Commands

Numeric Constants 161
Symbols 162
C Operators 165

8 Menu Bar Commands

Menu Bar Commands 168

File→Load Object... (ALT, F, L) 170
File→Command Log→Log File Name... (ALT, F, C, N) 172
File→Command Log→Logging ON (ALT, F, C, O) 173
File→Command Log→Logging OFF (ALT, F, C, F) 174
File→Run Cmd File... (ALT, F, R) 175
File→Load Debug... (ALT, F, D) 177
File→Save Debug... (ALT, F, S) 178
File→Load Emulator Config... (ALT, F, E) 179
File→Save Emulator Config... (ALT, F, V) 180
File→Copy Destination... (ALT, F, P) 181
File→Exit (ALT, F, X) 182
File→Exit HW Locked (ALT, F, H) 183
File Selection Dialog Boxes 184
Execution→Run (F5), (ALT, E, U) 185
Execution→Run to Cursor (ALT, E, C) 186
Execution→Run to Caller (ALT, E, T) 187
Execution→Run... (ALT, E, R) 188
Execution→Single Step (F2), (ALT, E, N) 190
Execution→Step Over (F3), (ALT, E, O) 191
Execution→Step... (ALT, E, S) 192
Execution→Break (F4), (ALT, E, B) 196
Execution→Reset (ALT, E, E) 197

Contents

xiii

Breakpoint→Set at Cursor (ALT, B, S) 198
Breakpoint→Delete at Cursor (ALT, B, D) 200
Breakpoint→Set Macro... (ALT, B, M) 201
Breakpoint→Delete Macro (ALT, B, L) 207
Breakpoint→Edit... (ALT, B, E) 208
Variable→Edit... (ALT, V, E) 214
Variable Modify Dialog Box 216
Trace→Function Caller... (ALT, T, C) 217
Trace→Function Statement... (ALT, T, S) 219
Trace→Variable Access... (ALT, T, V) 221
Trace→Edit... (ALT, T, E) 223
Trace→Trigger Store... (ALT, T, T) 224
Trace→Find Then Trigger... (ALT, T, D) 227
Trace→Sequence... (ALT, T, Q) 231
Trace→Until Halt (ALT, T, U) 235
Trace→Halt (ALT, T, H) 236
Trace→Again (F7), (ALT, T, A) 237
Condition Dialog Boxes 238
Trace Pattern Dialog Box 241
Trace Range Dialog Box 243
Sequence Number Dialog Box 245
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) 246
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) 247
RealTime→I/O Polling→ON (ALT, R, I, O) 248
RealTime→I/O Polling→OFF (ALT, R, I, F) 249
RealTime→Watchpoint Polling→ON (ALT, R, W, O) 250
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) 251
RealTime→Memory Polling→ON (ALT, R, M, O) 252
RealTime→Memory Polling→OFF (ALT, R, M, F) 253
Settings→Emulator Config→Hardware... (ALT, S, E, H) 254
Settings→Emulator Config→Memory Map... (ALT, S, E, M) 257
Settings→Emulator Config→Monitor... (ALT, S, E, O) 261
Settings→Emulator Config→Address Translation... (ALT, S, E, A) 264
Settings→Communication... (ALT, S, C) 268
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) 271
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I) 273
Settings→Font... (ALT, S, F) 274
Settings→Tabstops... (ALT, S, T) 275
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O) 276

Contents

xiv

Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F) 276
Settings→Extended→Trace Cycles→User (ALT, S, X, T, U) 277
Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M) 277
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B) 278
Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O) 279
Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F) 279
Settings→Extended→Source Path Query→ON (ALT, S, X, S, O) 280
Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F) 280
Window→Cascade (ALT, W, C) 281
Window→Tile (ALT, W, T) 281
Window→Arrange Icons (ALT, W, A) 281
Window→1-9 (ALT, W, 1-9) 282
Window→More Windows... (ALT, W, M) 283
Help→About Debugger/Emulator... (ALT, H, D) 284
Source Directory Dialog Box 285

9 Window Control Menu Commands

Window Control Menu Commands 288

Common Control Menu Commands 289

Copy→Window (ALT, -, P, W) 289
Copy→Destination... (ALT, -, P, D) 290

Button Window Commands 291

Edit... (ALT, -, E) 291

Expression Window Commands 294

Clear (ALT, -, R) 294
Evaluate... (ALT, -, E) 295

I/O Window Commands 296

Define... (ALT, -, D) 296

Memory Window Commands 298

Display→Linear (ALT, -, D, L) 298
Display→Block (ALT, -, D, B) 299

Contents

xv

Display→Byte (ALT, -, D, Y) 299
Display→16 Bit (ALT, -, D, 1) 299
Display→32 Bit (ALT, -, D, 3) 299
Search... (ALT, -, R) 300
Utilities→Copy... (ALT, -, U, C) 302
Utilities→Fill... (ALT, -, U, F) 303
Utilities→Image... (ALT, -, U, I) 304
Utilities→Load... (ALT, -, U, L) 306
Utilities→Store... (ALT, -, U, S) 307

GDT/LDT/IDT Window Commands 309

Search→Entry... (ALT, -, R, E) 309
Search→Selector... (ALT, -, R, S) 310

Register Windows’ Commands 313

Continuous Update (ALT, -, U) 313
Copy→Registers (ALT, -, P, R) 313
Register Bit Fields Dialog Box 314

Source Window Commands 316

Display→Mixed Mode (ALT, -, D, M) 316
Display→Source Only (ALT, -, D, S) 317
Display→Select Source... (ALT, -, D, L) 318
Search→String... (ALT, -, R, S) 319
Search→Function... (ALT, -, R, F) 320
Search→Address... (ALT, -, R, A) 322
Search→Current PC (ALT, -, R, C) 323
Search Directories Dialog Box 324

Symbol Window Commands 325

Display→Modules (ALT, -, D, M) 325
Display→Functions (ALT, -, D, F) 326
Display→Externals (ALT, -, D, E) 326
Display→Locals... (ALT, -, D, L) 327
Display→Asm Globals (ALT, -, D, G) 328
Display→Asm Locals... (ALT, -, D, A) 328
Display→User defined (ALT, -, D, U) 330

Contents

xvi

Copy→Window (ALT, -, P, W) 330
Copy→All (ALT, -, P, A) 331
FindString→String... (ALT, -, F, S) 331
User defined→Add... (ALT, -, U, A) 332
User defined→Delete (ALT, -, U, D) 334
User defined→Delete All (ALT, -, U, L) 334

Trace Window Commands 335

Display→Mixed Mode (ALT, -, D, M) 335
Display→Source Only (ALT, -, D, S) 336
Display→Bus Cycle Only (ALT, -, D, C) 336
Display→Count→Absolute (ALT, -, D, C, A) 337
Display→Count→Relative (ALT, -, D, C, R) 337
Trace Display→From State... (ALT -, D, F) 338
Display→Options→Suppress Prefetch (ALT, -, D, O, S) 339
Display→Options→Swap Instruction Bytes (ALT, -, D, O, I) 340
Copy→Window (ALT, -, P, W) 340
Copy→All (ALT, -, P, A) 341
Search→Trigger (ALT, -, R, T) 341
Search→State... (ALT, -, R, S) 342
Trace Spec Copy→Specification (ALT, -, T, S) 343
Trace Spec Copy→Destination... (ALT, -, T, D) 343

WatchPoint Window Commands 344

Edit... (ALT, -, E) 344

10 Window Pop-Up Commands

BackTrace Window Pop-Up Commands 349

Source at Stack Level 349

Source Window Pop-Up Commands 350

Set Breakpoint 350
Clear Breakpoint 350
Evaluate It 350
Add to Watch 351
Run to Cursor 351

Contents

xvii

11 Other Command File and Macro Commands

BEEP 355
EXIT 356
FILE CHAINCMD 357
FILE RERUN 358
NOP 359
TERMCOM 360
WAIT 362

12 Error Messages

Error Messages 364

Bad RS-232 port name 365
Bad RS-422 card I/O address 365
Could not open initialization file 365
Could not write Memory 366
Error occurred while processing Object file 367
General RS-232 communications error 368
General RS-422 communications error 368
HP 64700 locked by another user 369
HP 64700 not responding 369
Incorrect DLL version 369
Incorrect LAN Address (HP-ARPA, Windows for Workgroups) 370
Incorrect LAN Address (Novell) 371
Incorrect LAN Address (WINSOCK) 371
Internal error in communications driver 372
Internal error in Windows 372
Interrupt execution (during run to caller) 372
Interrupt execution (during step) 373
Interrupt execution (during step over) 373
Invalid transport name 374
LAN buffer pool exhausted 374
LAN communications error 375
LAN MAXSENDSIZE is too small 375
LAN socket error 375
Logical to physical address translations initially unavailable: Cannot read
descriptor tables into host memory since GDT base and limit are
unavailable 376

Contents

xviii

Object file format ERROR 376
Out of DOS Memory for LAN buffer 377
Out of Windows timer resources 378
PC is out of RAM memory 378
physical address translation failed 379
Structure Access Warning!!! 380
Timed out during communications 381

Contents

xix

Part 4 Concept Guide

13 Concepts

Concepts 386

Debugger Windows 387

The BackTrace Window 388
The Button Window 389
The Expression Window 390
The I/O Window 391
The Memory Window 393
The GDT Window 395
The LDT Window 397
The IDT Window 398
The Register Windows 399
The Source Window 400
The Status Window 403
The Symbol Window 406
The Trace Window 407
The WatchPoint Window 409

Monitor Program Options 410

Background monitor 411
Foreground monitor 411
Foreground monitor advantages and disadvantages 412

Trace Signals and Predefined Status Values 413

Understanding Intel80386EX Analysis 415

Understanding Address, Data, and Status 421

Entering Addresses as Constants 423

Overview of Intel80386EX address types 424
Explanation: why different syntax for different address types 425
Constant-address syntax 426

Contents

xx

Understanding Incompletely Specified LDT Addresses 427

Unexpected Stepping Behavior 428

Faults 428
INT instructions 429
Task gates 429
To step into a task or a fault handler 429

Contents

xxi

Part 5 Installation Guide

14 Installing the Debugger

Requirements 435

Before Installing the Debugger 436

Step 1. Connect the HP 64700 to the PC 437

To connect via RS-232 437
To connect via LAN 440
To connect via RS-422 444
If you cannot verify RS-232 communication 445
If you cannot verify LAN communication 446

Step 2. Install the debugger software 447

Step 3. Start the debugger 450

If you have RS-232 connection problems 450
If you have LAN connection problems 453
If you have LAN DLL errors 454
If you have RS-422 connection problems 455

Step 4. Check the HP 64700 system firmware version 456

Optimizing PC Performance for the Debugger 457

15 Installing/Updating HP 64700 Firmware

Step 1. Connect the HP 64700 to the PC 461
Step 2. Install the firmware update utility 463
Step 3. Run PROGFLASH to update HP 64700 firmware 466
Step 4. Verify emulator performance 468

Glossary

Index

Contents

xxii

Part 1

Quick Start Guide

A few task instructions to help you get comfortable.

1

Part 1

2

1

Getting Started

3

Getting Started

This tutorial helps you get comfortable by showing you how to perform some
measurements on a demo program. This tutorial shows you how to:

1 Start the debugger.
2 Adjust the fonts and window size.
3 Map memory for the demo program.
4 Set address translations for the demo program.
5 Load the demo program.
6 Display the source file.
7 Set a breakpoint.
8 Run the demo program.
9 Delete the breakpoint.
10 Single-step one line.
11 Single-step 10 lines.
12 Display a variable.
13 Edit a variable.
14 Monitor a variable in the WatchPoint window.
15 Run until return from current function.
16 Step over a function.
17 Run the program to a specified line.
18 Display register contents.
19 Trace a function’s callers.
20 Trace access to a variable.
21 Exit the debugger.

Demo Programs

Demo programs are included with the Real-Time C Debugger in the
C:\HP\RTC\I386EX\DEMO directory (if C:\HP\RTC\I386EX was the
installation path chosen when installing the debugger software).

Subdirectories exist for the SAMPLE demo program, which is a simple C
program that does case conversion on a couple strings, and for the ECS demo
program, which is a somewhat more complex C program for an
environmental control system.

Each of these demo program directories contains a README file that
describes the program and batch files that show you how the object files were
made.

4

This tutorial shows you how to perform some measurements on the SAMPLE
demo program.

Step 1. Start the debugger

1 Cycle power on the HP 64700-Series Card Cage to ensure that the
emulator will be in its default state when you begin this tutorial. Wait
a minute to allow time for the boot-up routine to complete.

2 Open the HP Real-Time C Debugger group box and double-click the
I80386EX debugger icon.

Or:

3 Choose the File→Run (ALT, F, R) command in the Windows Program
Manager.

4 Enter the debugger startup command,
C:\HP\RTC\I386EX\B3637B.EXE (if C:\HP\RTC\I386EX was the
installation path chosen when installing the debugger software).

5 Choose the OK button.

Chapter 1: Getting Started
Step 1. Start the debugger

5

Step 2. Adjust the fonts and window size

The first time RTC is used, a default window and font size is used. This may
not be the best for your display. You may change the font type and size with
the Settings→Font... command, and change the window size by using the
standard Windows 3.1 methods (moving the mouse to the edge of the
window and dragging the mouse to resize the window).

1 Choose the Settings→Font... (ALT, S, F) command.

2 Choose the Font, Font Style, and Size desired in the Font dialog box.

3 Choose the OK button to apply your selections, and close the Font
dialog box.

The sizes of the RTC window, as well as the sizes of the windows within RTC,
and the fonts used will be saved in the B3637B.INI file and reused when you
enter RTC the next time.

Chapter 1: Getting Started
Step 2. Adjust the fonts and window size

6

Step 3. Map memory for the demo program

By default, the emulator assumes all memory addresses are in RAM space in
your target system. If you wish to load some of your target program in
emulation memory, or identify some of your memory addresses as ROM or
Guarded, those specifications must be entered in the memory map.

The demo sample program occupies address ranges 0h-2fffh and
03ffff00h-03ffffffh. Map these address ranges in emulation RAM memory.

1 Choose the Settings→Emulator Config→Memory Map... (ALT, S, E,
M) command.

2 Enter "0" in the Start text box.

3 Tab the cursor to the End text box and enter "2fff".

4 Select "eram" in the Type option box.

5 Unselect Use target RDY and leave Use dual-ported memory
unselected.

6 Choose the Apply button.

Chapter 1: Getting Started
Step 3. Map memory for the demo program

7

7 Enter "03ffff00" in the Start text box, enter "03ffffff" in the End text
box. Select "eram" in the Type option box for this range also, and
choose the Apply button.

8 Choose the Close button.

Chapter 1: Getting Started
Step 3. Map memory for the demo program

8

Step 4. Set address translations for the demo program

1 Choose the Settings→Emulator Config→Address Translation... (ALT,
S, E, A) command.

2 Set up the Address Translation dialog box as shown in the illustration.

3 Choose the OK button.

This is the default setup for the Address Translation dialog box. It ensures
that the emulator can refer to protected-mode addresses (for setting
breakpoints) before running the demo program.

Chapter 1: Getting Started
Step 4. Set address translations for the demo program

9

Step 5. Load the demo program

1 Choose the Execution→Break (ALT, E, B) command.

2 Choose the File→Load Object... (ALT, F, L) command.

3 Choose the Browse button and select the sample program object file,
C:\HP\RTC\I386EX\DEMO\SAMPLE\SAMPLE (if C:\HP\RTC\I386EX
was the installation path chosen when installing the debugger
software).

4 Choose the OK button in the Object File Name dialog box.

5 Choose the Load button.

Chapter 1: Getting Started
Step 5. Load the demo program

10

Step 6. Display the source file

To display the sample.c source file starting from the main function:

1 If the Source window is not open, double-click on the Source window
icon to open the window. Or, choose the Window→Source
command.

2 From the Source window’s control menu, choose
Search→Function... (ALT, -, R, F) command.

3 Select "main".

4 Choose the Find button.

5 Choose the Close button.

6 From the Source window’s control menu, choose Display→Source
Only (ALT, -, D, S) command.

The window displays sample.c source file, starting from main function.

Chapter 1: Getting Started
Step 6. Display the source file

11

Step 7. Set a breakpoint

To set a breakpoint on line 34 in sample.c:

1 Cursor-select line 34 (that is, move the mouse pointer over line 34
and click the left mouse button).

2 Choose the Breakpoint→Set at Cursor (ALT, B, S) command.

Notice that line 34 is marked with "BP", which indicates a breakpoint has
been set on the line.

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

Chapter 1: Getting Started
Step 7. Set a breakpoint

12

Step 8. Run the demo program

To run the demo program from the reset address:

1 Choose the Execution→Run... (ALT, E, R) command.

2 Select the User Reset option.

3 Choose the Run button.

Notice the demo program runs until line 34. The highlighted line indicates
the current program counter.

Chapter 1: Getting Started
Step 8. Run the demo program

13

Step 9. Delete the breakpoint

To delete the breakpoint set on line 34:

1 Cursor-select line 34.

2 Choose the Breakpoint→Delete at Cursor (ALT, B, D) command.

The "BP" marker disappears in the Source window.

Step 10. Single-step one line

To single-step the demo program from the current program counter:

• Choose the Execution→Single Step (ALT, E, N) command. Or, press
the F2 key.

Notice the C statement executed and the program counter is at the "convert"
function.

Chapter 1: Getting Started
Step 9. Delete the breakpoint

14

Step 11. Single-step 10 lines

To single-step 10 consecutive executable statements from the current PC line:

1 Choose the Execution→Step... (ALT, E, S) command.

2 Select the Current PC option.

3 Enter "10" in the Count text box.

4 Choose the Step button. Notice that the step count decrements by
one as the program executes step by step. The step count stops at 0.

5 Choose the Close button.

Chapter 1: Getting Started
Step 11. Single-step 10 lines

15

Step 12. Display a variable

To display the contents of auto variable "*mes":

1 Drag "*mes" on line 60 in the Source window until it is highlighted.

2 Choose the Variable→Edit... (ALT, V, E) command.

The Variable text box displays "*mes".

Notice the Value list box displays the contents of "*mes".

Note You can only register or display an auto variable as a watchpoint while the
program counter is within the function in which the variable name is declared.

Chapter 1: Getting Started
Step 12. Display a variable

16

Step 13. Edit a variable

To edit the contents of variable "*mes":

1 In the Variable Edit dialog box, choose the Modify button.

2 Enter "41" in the Value text box.

3 Choose the OK button.

4 Notice the contents of the variable in the Value list box has changed
to "41".

Chapter 1: Getting Started
Step 13. Edit a variable

17

Step 14. Monitor a variable in the WatchPoint window

The WatchPoint window lets you define a set of variables that may be looked
at and modified often. For these types of variables, using the WatchPoint
window is more convenient than using the Variable→Edit... (ALT, V, E)
command.

To monitor the variable "*mes" in the WatchPoint window:

1 In the Variable Edit dialog box, choose the "to WP" button.

2 Choose the Close button.

3 Choose the Window→WatchPoint command.

Notice the variable "*mes" has been registered as a watchpoint.

Chapter 1: Getting Started
Step 14. Monitor a variable in the WatchPoint window

18

Step 15. Run until return from current function

To execute the program until "convert_case" (the current PC function)
returns to its caller:

• Choose the Execution→Run to Caller (ALT, E, T) command.

The program executes until the line that called "convert_case".

Step 16. Step over a function

To step over "change_status":

• Choose the Execution→Step Over (ALT, E, O) command. Or, press
the F3 key.

The "change_status" function executes, and the program counter indicates
line 55.

Chapter 1: Getting Started
Step 15. Run until return from current function

19

Step 17. Run the program to a specified line

To execute the demo program to the first line of "next_message":

1 Cursor-select line 80.

2 Choose the Execution→Run to Cursor (ALT, E, C) command.

The program executes and stops immediately before line 80.

Chapter 1: Getting Started
Step 17. Run the program to a specified line

20

Step 18. Display register contents

1 Choose the Window→Basic Registers command.

The Basic Registers window opens and displays the register contents. The
display is updated periodically.

2 To see the effects of preventing monitor intrusion (running in the
real-time mode), choose the RealTime→Monitor
Intrusion→Disallowed (ALT, R, T, D) command.

3 To run the program, choose the Execution→Run (ALT, E, U)
command. Or, press the F5 key.

Chapter 1: Getting Started
Step 18. Display register contents

21

Notice that register contents are replaced with "----" in the display. This
shows the debugger cannot update the register display. In order for the
emulator to update its register display, the emulation monitor must interrupt
target program execution to read the registers.

4 Choose the RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)
command to deselect the real-time mode. Notice that the contents of
the registers are updated periodically.

Chapter 1: Getting Started
Step 18. Display register contents

22

Step 19. Trace a function’s callers

To trace the caller of "next_message":

1 Double-click "next_message" on line 78 in the Source window.

2 Choose the Trace→Function Caller... (ALT, T, C) command.

3 Choose the OK button.

The Trace window becomes active and displays the caller as shown below.

This command stores the first statement of a function and prestores
statements that occur before the first statement (notice the state type PRE).
The prestored statements show the caller of the function. In the above
example, "next_message" is called by line 35 of "main".

Chapter 1: Getting Started
Step 19. Trace a function’s callers

23

Step 20. Trace access to a variable

1 Double-click "message_id" in the Trace window or on line 35 in the
Source window.

2 Choose the Trace→Variable Access... (ALT, T, V) command.

3 Choose the OK button.

The Trace window becomes active and displays accesses to "message_id" as
shown below.

Lines 36 and 34 precede each capture of line 35. These were the last two
lines executed before "message_id" was captured. Line 34 actually made
each call to message_id.

Chapter 1: Getting Started
Step 20. Trace access to a variable

24

Step 21. Exit the debugger

1 Choose the File→Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

Chapter 1: Getting Started
Step 21. Exit the debugger

25

26

Part 2

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a
few basic concepts.

27

Part 2

28

2

Using the Debugger Interface

29

Using the Debugger Interface

This chapter contains general information about using the debugger interface.

• How the Debugger Uses the Clipboard

• Debugger Function Key Definitions

• Starting and Exiting the Debugger

• Working with Debugger Windows

• Using Command Files

30

How the Debugger Uses the Clipboard

Whenever something is selected with the standard windows double-click, it is
placed on the clipboard. The clipboard can be pasted into selected fields by
clicking the right mouse button.

Double-clicks are also used in the Register and Memory windows to make
values active for editing. These double-clicks also copy the current value to
the clipboard, destroying anything you might have wanted to paste into the
window (for example, a symbol into the memory address field). In situations
like this, you can press the CTRL key while double-clicking to prevent the
selected value from being copied to the clipboard. This allows you to, for
example, double-click on a symbol, CTRL+double-click to activate a register
value for editing, and click the right mouse button to paste the symbol value
into the register.

Many of the Real-Time C Debugger commands and their dialog boxes open
with the clipboard contents automatically pasted in the dialog box. This
makes entering commands easy. For example, when tracing accesses to a
program variable, you can double-click on the variable name in one of the
debugger windows, choose the Trace→Variable Access... (ALT, T, V)
command, and click the OK button without having to enter or paste the
variable name in the dialog box (since it is has automatically been pasted in
the dialog box).

Chapter 2: Using the Debugger Interface
How the Debugger Uses the Clipboard

31

Debugger Function Key Definitions

F1 Accesses context sensitive help. Context sensitive help is
available for windows, dialog boxes, and menu items (with
Ctrl+F1).

F2 Executes a single source line from the current program
counter address (or a single instruction if disassembled
mnemonics are mixed with source lines in the Source
window).

F3 Same as F2 except when the source line contains a
function call (or the assembly instruction makes a
subroutine call); in these cases, the entire function (or
subroutine) is executed.

F4 Break emulator execution into the monitor. You can use
this to stop a running program or break into the monitor
from the processor reset state.

F5 Runs the program from the current program counter
address.

Shift-F4 Tiles the open debugger windows.

Shift-F5 Cascades the open debugger windows.

F7 Repeats the trace command that was entered last.

Ctrl+F7 Halts the current trace.

Chapter 2: Using the Debugger Interface
Debugger Function Key Definitions

32

Starting and Exiting the Debugger

This section shows you how:

• To start the debugger

• To exit the debugger

• To create an icon for a different emulator

To start the debugger

• Double-click the debugger icon.

Or:

1 Choose the File→Run (ALT, F, R) command in the Windows Program
Manager.

2 Enter the debugger filename, C:\HP\RTC\I386EX\B3637B.EXE (if
C:\HP\RTC\I386EX was the installation path chosen when installing
the debugger software).

3 Choose the OK button.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

33

To exit the debugger

1 Choose the File→Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

To create an icon for a different emulator

1 Open the "HP Real-Time C Debugger" group box, or make it active by
positioning the mouse in the window and clicking the left button.

2 Choose the File→New... (ALT, F, N) command in the Windows
Program Manager.

3 Select the Program Item option and choose OK.

4 In the Description text box, enter the icon description.

5 In the Command Line text box, enter the
"C:\HP\RTC\I386EX\B3637B.EXE -T<transport> -E<connectname>"
command (if C:\HP\RTC\I386EX was the installation path chosen
when installing the debugger software). The "-T" and "-E" startup
options allow you to bypass the transport and connect name
definitions in the B3637B.INI file.

<Transport> should be one of the supported transport options (for example,
HP-ARPA, RS232C, etc.).

<Connectname> should identify the emulator for the type of transport. For
example, if the HP-ARPA transport is used, <connectname> should be the
hostname or IP address of the HP 64700; if the RS232C transport is used,
<connectname> should be COM1, COM2, etc.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

34

6 In the Working Directory text box, enter the directory that contains
the debugger program (for example, C:\HP\RTC\I386EX).

7 Choose the OK button.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

35

Working with Debugger Windows

This section shows you how:

• To open debugger windows

• To copy window contents to the list file

• To change the list file destination

• To change the debugger window fonts

• To set tab stops in the Source window

• To set colors in the Source window

To open debugger windows

• Double-click the icon for the particular window.

• Or, choose the particular window from the Window→ menu.

• Or, choose the Window→More Windows... (ALT, W, M) command,
select the window to be opened from the dialog box, and choose the
OK button.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

36

To copy window contents to the list file

• From the window’s control menu, choose the Copy→Windows
(ALT, -, P, W) command.

The information shown in the window is copied to the destination list file.

You can change the name of the destination list file by choosing the
Copy→Destination... (ALT, -, P, D) command from the window’s control
menu or by choosing the File→Copy Destination... (ALT, F, P) command.

To change the list file destination

• Choose the File→Copy Destination... (ALT, F, P) command, and
select the name of the new destination list file.

• Or, from the window’s control menu, choose the
Copy→Destination... (ALT, -, P, D) command, and select the name of
the new destination list file.

Information copied from windows will be copied to the selected destination
file until the destination list file name is changed again.

List file names have the ".LST" extension.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

37

To change the debugger window fonts

1 Choose the Settings→Font (ALT, S, F) command.

2 Select the font, font style, and size. Notice that the Sample box
previews the selected font.

3 Choose the OK button.

To set tab stops in the Source window

1 Choose the Settings→Tabstops (ALT, S, T) command.

2 Enter the tab width. This width is also used for source lines in the
trace window.

3 Choose the OK button.

The tab width must be between 1 and 20.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

38

To set colors in the Source window

1 Exit the RTC interface and find the initialization file (B3637B.INI). It
should be in the directory where you installed the RTC product
(C:\HP\RTC\I386EX\, by default).

2 Edit the initialization file to find the "color" entry. You will see:

[Color]
ColorMode=ON|OFF
ColorPc=<color>
ColorSource=<color>
ColorMne=<color>

Where: <color> may be any of the following: RED, GREEN, BLUE, YELLOW,
PINK, PURPLE, AQUA, ORANGE, SLATE, or WHITE.

• The <color> entry may be in upper-case or lower-case letters.

• When ColorMode=ON, these are the default colors:

• ColorPC=GREEN
• ColorSource=RED
• ColorMne=BLUE

• The default color is black if an option is given a null value.

• The options under [Color] set colors as follows:

• ColorPc sets the color of the line of the current program counter.
• ColorSource sets the color of the line numbers of source lines.
• ColorMne sets the color of the address of all mnemonic lines.

Note If you have set ColorMode=ON while using a monochrome display, you may
see no line numbers in the Source window. Items that will be presented in
color on a color display may not be seen at all on a monochrome display.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

39

Using Command Files

This section shows you how:

• To create a command file

• To execute a command file

• To create buttons that execute command files

A command file is an ASCII text file containing one or more debugger
commands. All the commands are written in a simple format, which makes
editing easy. The debugger commands used in command files are the same
as those used with break macros. For details about the format of each
debugger command, refer to the "Reference" information.

To create a command file

1 Choose the File→Command Log→Log File Name... (ALT, F, C, N)
command.

2 Enter the command file name.

3 Choose the File→Command Log→Logging ON (ALT, F, C, O)
command.

4 Choose the commands to be stored in the command file.

5 Once the commands have been completed, choose the
File→Command Log→Logging OFF (ALT, F, C, F) command.

Command files can also be created by saving the emulator configuration.

Chapter 2: Using the Debugger Interface
Using Command Files

40

To execute a command file

1 Choose the File→Run Cmd File... (ALT, F, R) command.

2 Select the command file to be executed.

3 Choose the Execute button.

You can execute command files that have been created by logging commands.

Also, emulator configurations can be restored by executing the associated
command file.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Example Command File Being Executed

Chapter 2: Using the Debugger Interface
Using Command Files

41

To create buttons that execute command files

1 Activate the Button window by clicking on the Button window icon
or by choosing the Window→Button command.

2 From the Button window’s control menu, choose the Edit... (ALT, -,
E) command.

3 In the Command text box, enter "FILE COMMAND", a space, and the
name of the command file to be executed.

4 Enter the button label in the Name text box.

5 Choose the Add button.

6 Choose the Close button.

Once a button has been added, you can click on it to run the command file.

You can also set up buttons to execute other debugger commands.

Chapter 2: Using the Debugger Interface
Using Command Files

42

3

Plugging the Emulator into Target
Systems

43

Plugging the Emulator into Target Systems

This chapter shows you how to:

• Step 1. Turn OFF power

• Step 2. Unplug the probe from the demo target system

• Step 3. Plug the probe into the target system

• Step 4. Connect the reset flying lead to the target system

• Step 5. Turn ON power

CAUTION Possible Damage to the Emulator Probe. The emulation probe contains
devices that are susceptible to damage by static discharge. Take
precautionary measures before handling the microprocessor connector
attached to the end of the probe cable to avoid damaging the internal
components of the probe by static electricity.

HP STRONGLY recommends you use a ground strap when handling the
emulator probe. A ground strap is provided with the emulator.

There is a red LED on the probe board. If the LED is on, immediately turn off
your target system! The LED turns on when your target system has power
but the emulator does not. Permanent damage will occur if target system
power is turned on when the emulator is turned off, especially if this
condition lasts for more than one minute.

44

Step 1. Turn OFF power

CAUTION Possible Damage to the Emulator. Make sure target system power is OFF
and make sure HP 64700 power is OFF before removing or installing the
emulator probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target
system whose power is ON.

1 If the emulator is currently plugged into a different target system,
turn that target system’s power OFF.

2 Turn emulator power OFF.

Step 2. Unplug the probe from the demo target system

• If the emulator is currently connected to a different target system,
unplug the emulator probe; otherwise, disconnect the emulator probe
from the demo target system.

Chapter 3: Plugging the Emulator into Target Systems
Step 1. Turn OFF power

45

Step 3. Plug the probe into the target system

• Install the emulator probe into the target system socket. Make sure
that pin A1 of the connector aligns with pin A1 of the socket.
Damage to the emulator will result if the probe is incorrectly

installed.

You can also use the supplied PGA to PGA adapter or other PQFP adapters.
Always make sure that pin 1 and other pins of the adapters and connectors
are properly aligned; otherwise, damage to the emulator will result.

Chapter 3: Plugging the Emulator into Target Systems
Step 3. Plug the probe into the target system

46

Step 4. Connect the reset flying lead to the target
system

• The details of how to connect the reset flying lead are shown in the
HP 64789B Intel80386EX Emulator Installation/Service/Terminal
Interface User’s Guide.

The reset flying lead on the Intel80386EX emulator can be used to reset your
target system when the emulator applies reset to the processor. This is useful
if you have any hardware in your target system that needs to know when the
processor is reset (such as a circuit to generate the self-test request to the
processor).

The reset flying lead is an open-collector circuit that will go low when the
emulator applies reset (that is, you have used the "reset" command, have
reconfigured the emulator, or have given any other command that results in
the processor being reset.) It will not go low when your target system applies
reset unless the emulator is also applying reset.

You do not need to use this if the only signal your target system derives from
RESET is the "CLK" signal; the emulator will preserve the phase of CLK
between emulation-only resets.

Chapter 3: Plugging the Emulator into Target Systems
Step 4. Connect the reset flying lead to the target system

47

Step 5. Turn ON power

1 Turn emulator power ON.

2 Turn target system power ON.

Chapter 3: Plugging the Emulator into Target Systems
Step 5. Turn ON power

48

4

Configuring the Emulator

49

Configuring the Emulator

This chapter contains information about configuring the emulator.

• Setting the Hardware Options

• Selecting the Type of Monitor

• Mapping Memory

• Selecting Address Translations

• Setting Up the BNC Port

• Saving and Loading Configurations

• Setting the Real-Time Options

50

Setting the Hardware Options

This section shows you how:

• To specify a CLK2 speed faster than 42 MHz

• To enable or disable target interrupts

• To enable or disable software breakpoints

• To enable or disable break on writes to ROM

• To enable or disable execution trace messages

• To enable or disable foreground monitor traced as user

Chapter 4: Configuring the Emulator
Setting the Hardware Options

51

To specify a CLK2 speed faster than 42 MHz

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the check box beside Processor Clock is Faster
Than 42 MHz.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If the 4-Mbyte SIMMs are installed, and the CLK2 speed is greater than
42 MHz, the emulator has to force at least one wait state because the
4-MByte SIMMs are slower than the 256-KByte and 1-Mbyte SIMMs.

CLK2 is the clock input to the Intel80386EX; it is twice the speed of the
usually-quoted speed (that is, a "20 MHz Intel80386EX" has a CLK2 speed of
40 MHz).

Note that if you lock emulation memory cycles with target cycles, the target
hardware must continue to assert the READY# line until the second wait
state.

Chapter 4: Configuring the Emulator
Setting the Hardware Options

52

To enable or disable target interrupts

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the check box beside Enable Target Interrupts.

3 Choose the OK button to exit the Emulator Configuration dialog box.

When the check box is selected, the emulator responds to interrupts
generated by the target system while running in the user program or
foreground monitor. All interrupts (INT or NMI) are blocked when execution
is within the background monitor.

When the check box is deselected, the emulator ignores all interrupts
generated by the target system, all INT interrupts, and the NMI.

Chapter 4: Configuring the Emulator
Setting the Hardware Options

53

To enable or disable software breakpoints

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the check box beside Enable Software Breakpoints.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If software breakpoints are enabled, the processor will take longer to leave
the RESET state than when they are disabled.

The emulator uses the bond-out processor’s software breakpoint capability.
This requires a special bit to be set to enable recognition of the breakpoint
instruction (which is a special opcode, different from the normal execution
breakpoint opcode of 0CCH). When the processor is reset, this bit is cleared.
To make use of breakpoints, the emulation monitor must set this bit every
time the processor leaves the reset state.

Chapter 4: Configuring the Emulator
Setting the Hardware Options

54

To enable or disable break on writes to ROM

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the check box beside Enable Break on Write to
ROM.

3 Choose the OK button to exit the Emulator Configuration dialog box.

When the check box is selected, a running program breaks into the monitor
when it writes to a location mapped as ROM.

When the check box is deselected, program writes to locations mapped as
ROM do not cause breaks into the monitor.

Chapter 4: Configuring the Emulator
Setting the Hardware Options

55

To enable or disable execution trace messages

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the check box beside Enable Execution Trace
Messages.

3 Choose the OK button to exit the Emulator Configuration dialog box.

When the check box is selected, branch trace messages and task switch
messages are enabled. Every time the processor does a branch, it will emit
the target address of the branch. Each time a task switch occurs, the
emulator will emit a task switch message identifying both the old task and the
new task.

When the check box is deselected, no branch trace messages nor task switch
messages will be emitted.

Chapter 4: Configuring the Emulator
Setting the Hardware Options

56

To enable or disable foreground monitor traced as
user

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the check box beside Enable Monitor Traced as
User.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If the check box is selected when using a foreground monitor, all foreground
monitor cycles will be captured in the trace memory by the emulation-bus
analyzer. This is useful when you are having problems with an interrupt
routine and you want to trace that routine even if it occurs during execution
in the foreground monitor.

If the check box is not selected, and you have chosen
Settings→Extended→Trace Cycles→User, the analyzer will capture nothing
between the time the foreground monitor is entered and the time you begin a
run of your user program again. This prevents capture of interrupt routines
executed while in the foreground monitor. This is useful when you are trying
to conserve trace memory space to capture user program execution.

When using the background monitor, this has no effect.

See "Tracing Program Execution" in the "Debugging Programs" chapter for
useful combinations of the "Settings→Extended→Trace Cycles" command
and the Enable Foreground Monitor Traced as User selection.

Chapter 4: Configuring the Emulator
Setting the Hardware Options

57

Selecting the Type of Monitor

This section shows you how:

• To select the background monitor

• To select the foreground monitor

• To use a custom foreground monitor

Refer to "Monitor Program Options" in the "Concepts" part for a description
of emulation monitors and the advantages and disadvantages of using
background or foreground emulation monitors.

Note Select the type of monitor before mapping memory because changing the
monitor type resets the memory map.

To select the background monitor

1 Choose the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command.

2 Select the Background option.

3 Choose the OK button.

When you power up the emulator, or when you initialize it, the background
monitor program is selected by default.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

58

To select the foreground monitor

1 Choose the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command.

2 Select the Foreground option.

3 Enter the base address of the foreground monitor in the Monitor
Address text box. The address must reside on a 16-Kbyte boundary
(in other words, the address must be a multiple of 4000H) and must
be specified in hexadecimal.

4 Enter the GDT descriptor for the foreground monitor code segment.
This reserves a GDT entry to define the code segment for the monitor
when running in protected mode. The specified value must be a
multiple of 8, greater than 0 and less than the limit defined in GDTR.

5 If you wish to synchronize monitor cycles to the target system (that
is, interlock the emulation and target system READY# lines on
accesses to the monitor memory block), select the Monitor Cycles
Use Target RDY option; otherwise, deselect this option.

6 Leave the Load Custom Monitor box unselected. This tells the
emulator to use the default foreground monitor present in the
emulator firmware.

7 Choose the OK button.

8 Load the user program by choosing the File→Load Object... (ALT, F,
L) command and entering the name of the user program object file.

When you select the foreground monitor, the emulator automatically loads
the default foreground monitor program, resident in emulator firmware, into
emulation memory. The foreground monitor is reloaded every time the
emulator breaks into the monitor state from the reset state.

For more information on the foreground monitor, refer to the "Monitor
Program Options" section in the "Concepts" information.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

59

To use a custom foreground monitor

1 Edit the foreground monitor program source.

2 Assemble and link the foreground monitor program.

3 Choose the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command.

4 Select the Foreground option.

5 Enter the base address of the foreground monitor in the Monitor
Address text box. The address must reside on a 16-Kbyte boundary
(an address ending in 4000H) and must be specified in hexadecimal.

6 If you wish to synchronize monitor cycles to the target system (that
is, interlock the emulation and target system READY# lines on
accesses to the monitor memory block), select the Monitor Cycles
Use Target RDY option; otherwise, deselect this option.

7 Enter the name of the foreground monitor object file in the Monitor
File Name text box.

8 Choose the OK button.

9 Use the Settings→Emulator Config→Memory Map... (ALT, S, E, M) to
remap the user program memory areas. Selecting the foreground
monitor automatically resets the current memory map and adds a
new map term for the monitor.

10 Load the user program by choosing the File→Load Object... (ALT, F,
L) command and entering the name of the user program object file.

When customizing the foreground monitor, you must maintain the basic
communication protocol between the monitor program and the emulation
system controller.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

60

An example foreground monitor is provided with the debugger in the
\HP\RTC\I386EX\MONITOR directory (if \HP\RTC\I386EX is the directory
where the software was installed). The file is named I386EX.ASM.

The custom foreground monitor was written to be built using a Microtec
Research Inc. builder and 386 language tools.

The custom foreground monitor is saved in the emulator (until the monitor
type is changed) and reloaded every time the emulator breaks into the
monitor state from the reset state.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

61

Mapping Memory

This section shows you how:

• To map memory

By default, the emulator assumes all memory addresses are in RAM space in
your target system. If you wish to load some of your target program in
emulation memory, or identify some of your memory addresses as ROM or
Guarded, enter those specifications in the memory map.

There are two types of emulation memory: SIMMs, and dual-port memory.
256-Kbyte, 1-Mbyte, and 4-Mbyte SIMMs are supported, although the
4-Mbyte SIMMs require an additional wait state if the CLK2 speed in your
target system is greater than 42 MHz.

The dual-port memory is 8 Kbytes and is always available. (Actually, 16
Kbytes of dual-port memory are supplied with this emulator, but the other
8 Kbytes are reserved for the monitor and cannot be used for any other
purpose.) The differences between dual-port memory and SIMM memory are:

• Dual-port memory is always available, even when no SIMMs are loaded.

• Only one map term (address range) can be used with the dual-port
attribute.

• The user interface can access data stored in dual-port RAM without
interrupting any programs running on the Intel80386EX. If the processor
is executing instructions, the memory is accessed transparently by
interleaving accesses from the Intel80386EX with accesses from the
emulator. If the processor is RESET, or there is no power to the target
system, the dual-port memory can be accessed normally (transparently).
If the processor is in the HALT or SHUTDOWN state, however, dual-port
memory cannot be accessed transparently. In this case, the monitor will
be used. To prevent the monitor from being used, you can choose
Realtime→Monitor Intrusion→Disallowed (ALT, R,T, D).

Up to eight ranges of memory can be mapped, and the resolution of mapped
ranges is 256 bytes (that is, the memory ranges must begin on 256-byte
boundaries and must be at least 256 bytes in length).

Chapter 4: Configuring the Emulator
Mapping Memory

62

Note that if you have a 1-Mbyte SIMM, but you map all eight terms to
256-byte ranges (for a total of 2 Kbytes), the remaining 1022 Kbytes within
your SIMM cannot be used.

External direct memory access (DMA) to emulation memory is not permitted.

You should map all memory ranges used by your programs before loading
programs into memory.

If you use a foreground monitor, you must map its address space within your
target address space, but you will not need to provide memory hardware to
contain it. It will be contained in the 8-Kbyte dual-port memory that is
reserved for containing the monitor.

Chapter 4: Configuring the Emulator
Mapping Memory

63

To map memory

1 Choose the Settings→Emulator Config→Memory Map... (ALT, S, E,
M) command.

2 Specify the starting address in the Start text box.

3 Specify the end address in the End text box.

4 Select or deselect the Use target RDY option.

5 Select or deselect the Use dual-ported memory option.

6 Select the memory type in the Type option box.

7 Choose the Apply button.

8 Repeat steps 2 through 7 for each range to be mapped.

9 Choose the Close button to exit the Memory Map dialog box.

You can specify one of the following memory types for each map term:

eram Specifies "emulation RAM".

erom Specifies "emulation ROM".

tram Specifies "target RAM".

trom Specifies "target ROM".

guarded Specifies "guarded memory".

For non-mapped memory areas, select any of the memory types in the Other
option box.

Chapter 4: Configuring the Emulator
Mapping Memory

64

Writes to emulation ROM or to target system RAM mapped as ROM will
modify memory.

Writes to ROM will also result in a break to the monitor, if enabled in the
emulator configuration. Writes to locations mapped as guarded memory will
always result in a break to the monitor.

The Use target RDY option specifies that emulation memory accesses in the
range be synchronized to the target system RDY signal.

To delete a map term, first select it in the Map list box; then, choose the
Delete button.

Map all memory ranges used by your programs before loading programs into
memory.

Example To map addresses 0 through 7fffh as an emulation RAM, specify the mapping
term as shown below.

Choose the Apply button to register the current map term.

Then, choose the Close button to quit mapping.

Chapter 4: Configuring the Emulator
Mapping Memory

65

Selecting Address Translations

1 Choose the Settings→Emulator Config→Address Translations... (ALT, S,
E, A) command.

2 Leave Page translations required unselected unless your target system
uses paging.

3 Select the method of determining translations.

4 If you selected one of the static methods of determining translations,
select the desired Caching Option.

5 Choose the OK button to apply your selections and close the Address
Translation dialog box, or choose Apply to apply your selections and
leave the dialog box open on screen.

When address translations occur

Translations are necessary whenever a request is made to access target or
emulation memory (such as displaying memory or modifying memory), or
whenever a trace is set up.

If paging is not being used, it is not necessary to break processor execution in
order to translate a real-mode address. If paging is being used, processor
execution must be broken (because the real-mode address may be a
virtual-8086 address).

Implications of address translation options

The method used to translate addresses determines the accuracy and
intrusiveness of the emulator:

Dynamic translations cause a temporary break (from your program into the
monitor) to do a translation. This means that the translation is always
accurate for the current state of the processor and for the current GDT (if in
protected mode).

If your GDT tables change frequently, dynamic translation may be the best
option for you; however, you cannot set up the analyzer or modify and
display memory using protected-mode addresses when the processor is
RESET. You must use physical addresses in that case.

Chapter 4: Configuring the Emulator
Selecting Address Translations

66

Static translations cache the GDT and LDT tables (either from a program or
from the current tables in the processor), and use the cached values of the
tables to translate all virtual addresses. Static translations are only accurate if
the current GDT matches the cached GDT values. When using Static
translations, your program is never interrupted in order to perform a
translation. You can use protected-mode addresses while the processor is
RESET (or in real mode) to modify and display memory or set up a trace.

If page translations are needed, only the dynamic method (i.e. always request
translations from the emulator) is available. This is because page tables are
inherently dynamic and cannot be cached.

Performance of address translation caching

Selecting the appropriate address translation caching scheme will greatly
improve the response of the RTC interface. By allowing logical-to-physical
translations to be computed on the PC instead of via requests to the
emulator, the interface updates windows much quicker. Computing
translations on the host is an order of magnitude quicker than requesting the
same service from the emulator.

The Global and Local Descriptor Tables are unique to specific programs and
are often static, i.e. they don’t change while the program is running. If you
are using static tables, RTC lets you cache the tables on the host PC, thereby
reducing the requests sent to the emulator for logical-to-physical translations.

Choose Settings→Emulator Config→Address Translation... (ALT, S, E, A),
and select Static (cache translations on OK or Apply) or Static (cache
translations after every file load) in the Address Translation dialog box.

The chosen address translation method is saved in the .INI file when you exit
the emulator so the next RTC session will use the previously chosen method.
This creates a problem if a Static method was chosen along with the option of
getting the base/limit values from the loaded absolute file. When the
emulator starts up, no absolute file has been loaded so there are no valid GDT
base and limit values available. In this case, the screen displays a warning
stating that logical-to-physical translations are not initially available. Either a
file must be loaded or the method of obtaining a base GDT address changed
before translations can occur.

Chapter 4: Configuring the Emulator
Selecting Address Translations

67

Setting Up the BNC Port

This section shows you how:

• To output the trigger signal on the BNC port

• To receive an arm condition input on the BNC port

To output the trigger signal on the BNC port

• Choose the Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command enables the trigger signal from the internal analyzer to be fed
to external devices.

To receive an arm condition input on the BNC port

• Choose the Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer.

Chapter 4: Configuring the Emulator
Setting Up the BNC Port

68

Saving and Loading Configurations

This section shows you how:

• To save the current emulator configuration

• To load an emulator configuration

To save the current emulator configuration

1 Choose the File→Save Emulator Config... (ALT, F, V) command.

2 In the file selection dialog box, enter the name of the file to which the
emulator configuration will be saved.

3 Choose the OK button.

This command saves the current hardware, memory map, and monitor
settings to a command file.

Saved emulator configuration files can be loaded later by choosing the
File→Load Emulator Config... (ALT, F, E) command or by choosing the
File→Run Cmd File... (ALT, F, R) command.

See Also

File→Save Emulator Config... (ALT, F, V) in the "Menu Bar Commands"
section of the "Reference" information.

Chapter 4: Configuring the Emulator
Saving and Loading Configurations

69

To load an emulator configuration

1 Choose the File→Load Emulator Config... (ALT, F, E) command.

2 Select the name of the emulator configuration command file to load
from the file selection dialog box.

3 Choose the OK button.

This command lets you reload emulator configurations that have previously
been saved.

Emulator configurations consist of hardware, memory map, and monitor
settings.

Chapter 4: Configuring the Emulator
Saving and Loading Configurations

70

Setting the Real-Time Options

This section shows you how:

• To allow or deny monitor intrusion

• To turn polling ON or OFF

The monitor program is executed by the emulation microprocessor when
target system memory, I/O, and microprocessor registers are displayed or
edited. In addition, any address translations will cause the monitor program
to execute unless they are configured to be static (see Selecting how Address
Translations work). Also, periodic polling to update the Memory, I/O,
WatchPoint, and Register windows can cause monitor program execution.

When the user program is running and monitor intrusion is allowed, the user
program must be temporarily interrupted in order to display or edit target
system memory, display or edit registers, or update window contents.

If it is important that your program execute without these kinds of
interruptions, you should deny monitor intrusion. You can still display and
edit target system memory and microprocessor registers, but you must
specifically break emulator execution from the user program into the monitor.

When monitor intrusion is denied, polling to update window contents is
automatically turned OFF.

When monitor intrusion is allowed, you can turn OFF polling for particular
windows to lessen the number of interruptions during user program
execution.

Chapter 4: Configuring the Emulator
Setting the Real-Time Options

71

To allow or deny monitor intrusion

• To deny monitor intrusion, choose the RealTime→Monitor
Intrusion→Disallowed (ALT, R, T, D) command.

• To allow monitor intrusion, choose the RealTime→Monitor
Intrusion→Allowed (ALT, R, T, A) command.

When you deny monitor intrusion, any debugger command that may interrupt
a running user program is prevented. This ensures the user program will
execute in real time.

When you allow monitor intrusion, debugger commands that may temporarily
interrupt user program execution are allowed.

The current setting is shown by a check mark (√) next to the command.

Chapter 4: Configuring the Emulator
Setting the Real-Time Options

72

To turn polling ON or OFF

• To turn I/O window polling ON or OFF, choose the RealTime→I/O
Polling→ON (ALT, R, I, O) or RealTime→I/O Polling→OFF (ALT, R,
I, F) command.

• To turn WatchPoint window polling ON or OFF, choose the
RealTime→Watchpoint Polling→ON (ALT, R, W, O) or
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) command.

• To turn Memory window polling ON or OFF, choose the
RealTime→Memory Polling→ON (ALT, R, M, O) or
RealTime→Memory Polling→OFF (ALT, R, M, F) command.

When the user program is running and monitor intrusion is denied, polling is
automatically turned OFF.

When the user program is running and monitor intrusion is allowed, you can
turn polling OFF to reduce the number of user program interrupts made in
order to update I/O, WatchPoint, and Memory window contents.

The current settings are shown by check marks (√) next to the command.

Chapter 4: Configuring the Emulator
Setting the Real-Time Options

73

74

5

Debugging Programs

75

Debugging Programs

This chapter contains information on loading and debugging programs.

• Loading and Displaying Programs

• Displaying Symbol Information

• Stepping, Running, and Stopping the Program

• Using Breakpoints and Break Macros

• Displaying and Editing Variables

• Displaying and Editing Memory

• Displaying and Editing GDT, LDT, and IDT Windows

• Displaying and Editing I/O locations

• Displaying and Editing Registers

• Tracing Program Execution

• Setting Up Custom Trace Specifications

76

Loading and Displaying Programs

This section shows you how:

• To load user programs

• To display source code only

• To display source code mixed with assembly instructions

• To display source files by their names

• To specify source file directories

• To search for function names in the source files

• To search for addresses in the source files

• To search for strings in the source files

To load user programs

1 Choose the File→Load Object... (ALT, F, L) command.

2 Select the file to be loaded.

3 Choose the Load button to load the program.

With this command, you can load any Intel OMF object file created with
Microtec Research Inc. 80386 language tools.

Chapter 5: Debugging Programs
Loading and Displaying Programs

77

To display source code only

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display→Source
Only (ALT, -, D, S) command.

The Source window may be toggled between the C source only display and
the C source/mnemonic mixed display.

The display starts from the line containing the cursor.

The source only display shows line numbers with the source code.

To display source code mixed with assembly
instructions

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display→Mixed
Mode (ALT, -, D, M) command.

The mnemonic display contains the address, data, and disassembled
instruction mnemonics intermixed with the C source lines.

Chapter 5: Debugging Programs
Loading and Displaying Programs

78

Example C Source/Mnemonic Mode Display

To display source files by their names

1 Make the Source window the active window, and choose the
Display→Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

2 Select the desired file.

3 Choose the Select button.

4 Choose the Close button.

Note The contents of assembly language source files cannot be displayed.

Chapter 5: Debugging Programs
Loading and Displaying Programs

79

To specify source file directories

1 Make the Source window the active window, and choose the
Display→Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

2 Choose the Directory... button.

3 Enter the directory name in the Directory text box.

4 Choose the Add button.

5 Choose the Close button to close the Search Directories dialog box.

6 Choose the Close button to close the Select Source dialog box.

If the source files associated with the loaded object file are in different
directories from the object file, you must identify the directories in which the
source files can be found.

You can also specify them source file directories by setting the SRCPATH
environment variable in MS-DOS as follows:

set SRCPATH=<full path 1>;<full path 2>

Chapter 5: Debugging Programs
Loading and Displaying Programs

80

To search for function names in the source files

1 From the Source window’s control menu, choose the
Search→Function... (ALT, -, R, F) command.

2 Select the function to be searched.

3 Choose the Find button.

4 Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

To search for addresses in the source files

1 From the Source window’s control menu, choose the
Search→Address... (ALT, -, R, A) command.

2 Type or paste the address into the Address text box.

3 Choose the Find button.

4 Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

Chapter 5: Debugging Programs
Loading and Displaying Programs

81

To search for strings in the source files

1 From the Source window’s control menu, choose the
Search→String... (ALT, -, R, S) command.

2 Type or paste the string into the String text box.

3 Select whether the search should be case sensitive.

4 Select whether the search should be down (forward) or up
(backward).

5 Choose the Find Next button. Repeat this step to search for the next
occurrence of the string.

6 Choose the Cancel button to close the dialog box.

Chapter 5: Debugging Programs
Loading and Displaying Programs

82

Displaying Symbol Information

This section shows you how:

• To display program module information

• To display function information

• To display external symbol information

• To display local symbol information

• To display global assembler symbol information

• To display local assembler symbol information

• To create a user-defined symbol

• To display user-defined symbol information

• To delete a user-defined symbol

• To display the symbols containing the specified string

Chapter 5: Debugging Programs
Displaying Symbol Information

83

To display program module information

• From the Symbol window’s control menu, choose the
Display→Modules (ALT, -, D, M) command.

To display function information

• From the Symbol window’s control menu, choose the
Display→Functions (ALT, -, D, F) command.

The name, type, and address range for the functions in the program are
displayed. Refer to "Constant-address syntax" in the "Concepts" chapter to
understand the format of the addresses shown in the display.

Example Function Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

84

To display external symbol information

• From the Symbol window’s control menu, choose the
Display→Externals (ALT, -, D, E) command.

The name, type, and address of the global variables in the program are
displayed. Refer to "Constant-address syntax" in the "Concepts" chapter to
understand the format of the addresses shown in the display.

Example External Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

85

To display local symbol information

1 From the Symbol window’s control menu, choose the
Display→Locals... (ALT, -, D, L) command.

2 Type or paste the function for which the local variable information is
to displayed.

3 Choose the OK button.

The name, type, and offset from the stack frame of the local variables in the
selected function are displayed.

Example Local Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

86

To display global assembler symbol information

• From the Symbol window’s control menu, choose the Display→Asm
Globals (ALT, -, D, G) command.

The name and address for the global assembler symbols in the program are
displayed.

To display local assembler symbol information

1 From the Symbol window’s control menu, choose the Display→Asm
Locals... (ALT, -, D, A) command.

2 Type or paste the module for which the local variable information is
displayed.

3 Choose the OK button.

The name and address for the local assembler variables in the selected
module are displayed.

Chapter 5: Debugging Programs
Displaying Symbol Information

87

To create a user-defined symbol

1 From the Symbol window’s control menu, choose the User
defined→Add... (ALT, -, U, A) command.

2 Type the symbol name in the Symbol Name text box.

3 Type the address in the Address text box.

4 Choose the OK button.

User-defined symbols, just as standard symbols, can be used as address
values when entering commands.

Example To add the user-defined symbol "jmp_start":

Chapter 5: Debugging Programs
Displaying Symbol Information

88

To display user-defined symbol information

• From the Symbol window’s control menu, choose the Display→User
defined (ALT, -, D, U) command.

The command displays the name and address for the user-defined symbols.

Example User-Defined Symbol Information Display

To delete a user-defined symbol

1 From the Symbol window’s control menu, choose the Display→User
defined (ALT, -, D, U) command to display the user-defined symbols.

2 Select the user-defined symbol to be deleted.

3 From the Symbol window’s control menu, choose the User
defined→Delete (ALT, -, U, D) command.

Chapter 5: Debugging Programs
Displaying Symbol Information

89

To display the symbols containing the specified string

1 From the Symbol window’s control menu, choose the
FindString→String... (ALT, -, F, S) command.

2 Type or paste the string in the String text box. The search will be
case-sensitive.

3 Choose the OK button.

To restore the original nonselective display, redisplay the symbolic
information.

Chapter 5: Debugging Programs
Displaying Symbol Information

90

Stepping, Running, and Stopping the Program

This section shows you how:

• To step a single line or instruction

• To step over a function

• To step multiple lines or instructions

• To run the program until the specified line

• To run the program until the current function return

• To run the program from a specified address

• To stop program execution

• To reset the processor

To step a single line or instruction

• Choose the Execution→Single Step (ALT, E, N) command.

• Or, press the F2 key.

In the source display mode, this command executes the C source code line at
the current program counter address.

In the source/mnemonic mixed display mode, the command executes the
microprocessor instruction at the current program counter address.

Once the source line or instruction has executed, the next program counter
address is highlighted.

During a single-step command, multiple instructions can be executed if the
instruction being stepped causes an instruction fault or task switch. See
"Unexpected Stepping Behavior" in the "Concepts" chapter.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

91

To step over a function

• Choose the Execution→Step Over (ALT, E, O) command.

• Or, press the F3 key.

This command steps a single source line or assembly language instruction
except when the source line contains a function call or the assembly
instruction makes a subroutine call. In these cases, the entire function or
subroutine is executed.

Example

When the current program counter is at line 34, choosing the
Execution→Step Over (ALT, E, O) command steps over the "convert"
function. Once the function has been stepped over, the program counter
indicates line 35.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

92

To step multiple lines or instructions

1 Choose the Execution→Step... (ALT, E, S) command.

2 Select one of the Current PC, Start Address, or Address options.
(Enter the starting address when the Address option is selected.)

3 In the Count text box, type the number of lines to be single-stepped.

4 Choose the Execute button.

5 Choose the Close button to close the dialog box.

The Current PC option starts single-stepping from the current PC address.
The Start Address option starts single-stepping from the transfer address.
The Address option starts single-stepping from the address specified in the
text box.

In the source only display mode, the command steps the number of C source
lines specified. In the source/mnemonic mixed display mode, the command
steps the number of microprocessor instructions specified.

When the step count specified in the Count text box is 2 or greater, the count
decrements by one as each line or instruction executes. A count of 1 remains
in the Count text box. Also, in the Source window, the highlighted line that
indicates the current program counter moves for each step.

To step over functions, select the Over check box.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

93

To run the program until the specified line

1 Position the cursor in the Source window on the line that you want to
run to.

2 Choose the Execution→Run to Cursor (ALT, E, C) command.

Execution stops immediately before the cursor-selected line.

Because this command uses breakpoints, you cannot use it if you are already
using the four hardware breakpoints on the Intel80386EX and the address
you are stepping is in target ROM.

If the specified address is not reached within the number of milliseconds
specified by StepTimerLen in the B3637B.INI file, a dialog box appears,
asking you to cancel the command by choosing the Stop button. When the
Stop button is chosen, the program execution stops, the breakpoint is
deleted, and the processor transfers to the RUNNING IN USER PROGRAM
status.

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

To run the program until the current function return

• Choose the Execution→Run to Caller (ALT, E, T) command.

The Execution→Run to Caller (ALT, E, T) command executes the program
from the current program counter address up to the return from the current
function.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

94

Note The debugger cannot properly run to the function return when the current
program counter is at the first line of the function (immediately after its
entry point). Before running to the caller, use the Execution→Single Step
(ALT, E, N) command to step past the first line of the function.

To run the program from a specified address

1 Choose the Execution→Run... (ALT, E, R) command.

2 Select one of the Current PC, Start Address, User Reset, or Address
options. (Enter the address when the Address option is selected.)

3 Choose the Run button.

The Current PC option executes the program from the current program
counter address. The Start Address option executes the program from the
transfer address.

The User Reset option initiates program execution from the reset vector.
Note that this will cause your target board to reset only if you have attached
the "reset flying lead" to the appropriate spot in your target system.

The Address option executes the program from the address specified.

See Also

"Step 4. Connect the reset flying lead to the target system" in the "Plugging
the Emulator into Target Systems" chapter.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

95

To stop program execution

• Choose the Execution→Break (ALT, E, B) command, or press the F4
key.

As soon as the Execution→Break (ALT, E, B) command is chosen, the
emulator starts running in the monitor.

To reset the processor

• Choose the Execution→Reset (ALT, E, E) command.

Once the command has been completed, the processor remains reset if
monitor intrusion is disallowed. If monitor intrusion is allowed, the emulation
microprocessor may switch immediately from reset to running in monitor, for
example, to update the contents of a register window.

If a foreground monitor is selected, it will automatically be loaded when this
command is executed. This is done to make sure the foreground monitor
code is intact.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

96

Using Breakpoints and Break Macros

This section shows you how:

• To set a breakpoint

• To disable a breakpoint

• To delete a single breakpoint

• To list the breakpoints and break macros

• To set a break macro

• To delete a single break macro

• To delete all breakpoints and break macros

A breakpoint is an address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

A break macro is a breakpoint followed by any number of macro commands
(which are the same as command file commands).

You may have any number of "software breakpoints", which are set by
replacing opcodes in the program.

You may have up to four "hardware breakpoints", which are breakpoints for
code in target system ROM. Hardware breakpoints are set by requiring the
emulator to remember the breakpoint address (because breakpoint opcodes
cannot be replaced in target system ROM).

Software and hardware breakpoints can be set on executions, write
transactions, and read transactions.

All breakpoints are deleted when RTC is exited.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

97

To set a breakpoint

1 Position the cursor on the line where you wish to set a breakpoint.

2 Choose the Breakpoint→Set at Cursor (ALT, B, S) command.

When you run the program and the breakpoint is hit, execution stops
immediately before the breakpoint line. The current program counter
location is highlighted.

Example To set a breakpoint at line 56:

Note This can be done more quickly by using the pop-up menu available with the
right mouse button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

98

To disable a breakpoint

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Select the breakpoint to be disabled.

3 Choose the Enable/Disable button. Notice that "DI" appears next to
the breakpoint in the list.

4 To close the dialog box, choose the Close button.

You can reenable a breakpoint in the same manner by choosing the
Breakpoint→Edit... (ALT, B, E) command, selecting a disabled breakpoint
from the list, and choosing the Disable/Enable button.

To delete a single breakpoint

• Position the cursor on the line that has the breakpoint to be deleted,
and choose the Breakpoint→Delete at Cursor (ALT, B, D) command.

Or:

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Select the breakpoint to be deleted.

3 Choose the Delete button.

4 Choose the Close button.

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

99

To list the breakpoints and break macros

• Choose the Breakpoint→Edit... (ALT, B, E) command.

The command displays breakpoints followed by break macro commands in
parentheses.

The Breakpoint Edit dialog box also allows you to delete breakpoints and
break macros.

To set a break macro

1 Position the cursor on the line where you wish to set a break macro.

2 Choose the Breakpoint→Set Macro... (ALT, B, M) command.

3 Select the Add Macro check box in the Breakpoint Edit dialog box.

4 Specify the macro command in the Macro Command text box.

5 Choose the Set button.

6 To add another macro command, repeat steps 4 and 5.

7 To exit the Breakpoint Edit dialog box, choose the Close button.

The debugger automatically executes the specified macro commands when
the break macro line is reached.

To add macro commands after an existing macro command, position the
cursor on the macro command before choosing Breakpoint→Set Macro...
(ALT, B, M).

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

100

To add macro commands to the top of an existing break macro, position the
cursor on the line that contains the BP marker before choosing
Breakpoint→Set Macro... (ALT, B, M).

Example Position the cursor on line 62; then, choose the Breakpoint→Set Macro...
(ALT, B, M) command.

Select the Add Macro check box.

Enter "EVALUATE *mes" in the Macro Command text box.

Choose the Set button.

Enter "RUN" in the Macro Command text box.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

101

Choose the Set button.

Choose the Close button.

The break macro is displayed in the Source window as shown below.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

102

To delete a single break macro

1 Position the cursor on the line that contains the break macro to be
deleted.

2 Choose the Breakpoint→Delete Macro (ALT, B, L) command.

To delete a single macro command that is part of a break macro, position the
cursor on the macro command before choosing Breakpoint→Delete Macro
(ALT, B, L).

The Breakpoint→Edit... (ALT, B, E) dialog box allows you to delete all the
breakpoints and break macros at once by choosing the Delete All button.
Also, by selecting the Global Disable and Delete All check box, you can delete
all breakpoints and break macros and prevent creation of new breakpoints
and break macros.

To delete all breakpoints and break macros

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Choose the Delete All button.

3 Select the Global Disable and Delete All check box.

4 Choose the Close button.

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button. Also, you
can delete all breakpoints and break macros and prevent creation of new
breakpoints and break macros by selecting the Global Disable and Delete All
check box.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

103

Displaying and Editing Variables

This section shows you how:

• To display a variable

• To edit a variable

• To monitor a variable in the WatchPoint window

To display a variable

1 Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the Update button to read the contents of the variable and
display the value in the dialog box.

4 To exit the Variable dialog box, choose the Close button.

Note that you can update the contents of an auto variable only while the
program executes within the scope of the function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

104

To edit a variable

1 Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the Modify button. This opens the Variable Modify dialog
box.

4 Type the desired value in the Value text box. The value must be of
the type specified in the Type field.

5 Choose the OK button.

6 Choose the Close button.

Note that you can change the contents of an auto variable only while the
program executes within the scope of the function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

105

To monitor a variable in the WatchPoint window

1 Highlight the variable in the Source window by either double-clicking
the left mouse button or by holding the left mouse button down and
dragging the mouse pointer over the variable.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the "to WP" button.

4 Choose the Close button.

5 To open the WatchPoint window, choose the Window→WatchPoint
command.

Note that you can only monitor an auto variable in the WatchPoint window
when the program executes within the scope of the function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

106

Displaying and Editing Memory

This section shows you how:

• To display memory

• To edit memory

• To copy memory to a different location

• To copy target system memory into emulation memory

• To modify a range of memory with a value

• To search memory for a value or string

To display memory

1 Choose the RealTime→Memory Polling→ON (ALT, R, M, O)
command.

2 Choose the Window→Memory command.

3 Double-click one of the addresses.

4 Use the keyboard to enter the address of the memory locations to be
displayed.

5 Press the Enter key.

An address may be entered as a value or symbol. You can also select the
desired address by using the scroll bar.

To change the size of the data displayed, access the Memory window’s
control menu; then, choose the Display→Byte (ALT, -, D, Y), Display→16
Bits (ALT, -, D, 1), or Display→32 Bits (ALT, -, D, 3) command. When the

Chapter 5: Debugging Programs
Displaying and Editing Memory

107

Display→Byte (ALT, -, D, Y) command is chosen, ASCII values are also
displayed.

To specify whether memory is displayed in a single-column or multicolumn
format, access the Memory window’s control menu; then, choose the
Display→Linear (ALT, -, D, L) or Display→Block (ALT, -, D, B) command.
When the Display→Linear (ALT, -, D, L) command is chosen, symbolic
information associated with an address is also displayed.

The Memory window display is updated periodically. When the window
displays the contents of target system memory, user program execution is
temporarily suspended as the display is updated. To prevent program
execution from being temporarily suspended (and the Memory window from
being updated), choose the RealTime→Monitor Intrusion→Disallowed (ALT,
R, T, D) command to activate the real-time mode.

Example Memory Displayed in Byte Format

Chapter 5: Debugging Programs
Displaying and Editing Memory

108

To edit memory

Assuming the location you wish to edit has already been displayed (and
Memory window polling is turned ON):

1 Double-click the location you wish to edit.

2 Use the keyboard to enter a new value.

3 Press the Enter key. Notice that the next location is highlighted.

4 Repeat steps 2 and 3 to edit successive locations.

Editing the contents of target system memory causes user program execution
to be temporarily interrupted. You cannot modify the contents of target
memory when the emulator is running the user program and monitor
intrusion is disallowed.

Chapter 5: Debugging Programs
Displaying and Editing Memory

109

To copy memory to a different location

1 From the Memory window’s control menu, choose the
Utilities→Copy... (ALT, -, U, C) command.

2 Enter the starting address of the range to be copied in the Start text
box.

3 Enter the end address of the range to be copied in the End text box.

4 Enter the address of the destination in the Destination text box.

5 Choose the Execute button.

6 To close the Memory Copy dialog box, choose the Close button.

Chapter 5: Debugging Programs
Displaying and Editing Memory

110

To copy target system memory into emulation
memory

1 Map the address range to be copied as emulation memory.

2 Because the processor cannot read target system memory when it is
in the EMULATION RESET state, choose the Execution→Break
(ALT, E, B) command, or press the F4 key, to break execution into
the monitor.

3 From the Memory window’s control menu, choose the
Utilities→Image... (ALT, -, U, I) command.

4 Enter the starting address in the Start text box.

5 Enter the end address in the End text box.

6 Choose the Execute button.

7 To exit the Memory Image Copy dialog box, choose the Close button.

This command is used to gain access to features that are only available with
emulation memory (like breakpoints).

If you want to use more than four breakpoints in target system ROM, you may
use the Utilities→Image... command to copy the content of target system
ROM into emulation RAM. In the memory map, identify the code as being in
emulation RAM. Once the code is in emulation RAM, you can use any
number of software breakpoints in it instead of the four hardware
breakpoints.

Note that the following commands use breakpoints:

• Breakpoint→Set at Cursor (ALT, B, S)
• Breakpoint→Delete at Cursor (ALT, B, D)
• Breakpoint→Set Macro... (ALT, B, M)
• Breakpoint→Delete Macro (ALT, B, L)

Chapter 5: Debugging Programs
Displaying and Editing Memory

111

• Execution→Run to Cursor (ALT, E, C)
• Execution→Run to Caller (ALT, E, T)

Example To copy the contents of addresses 0 through 0fffh from target system
memory to the corresponding emulation memory address range:

To modify a range of memory with a value

1 From the Memory window’s control menu, choose the
Utilities→Fill... (ALT, -, U, F) command.

2 Enter the desired value in the Value text box.

3 Enter the starting address of the memory range in the Start text box.

4 Enter the end address in the End text box.

5 Select one of the Size options.

6 Choose the Execute button.

The Byte, 16 Bit, or 32 Bit size option specifies the size of the values that are
used to fill memory.

Chapter 5: Debugging Programs
Displaying and Editing Memory

112

To search memory for a value or string

1 From the Memory window’s control menu, choose the Search... (ALT,
-, R) command.

2 Enter in the Value or String text box the value or string to search for.

3 Enter the starting address in the Start text box.

4 Enter the end address in the End text box.

5 Choose the Execute button.

6 Choose the Close button.

When the specified data is found, the location at which the value or string
was found is displayed in the Memory window.

Example To search addresses 6000h through 0ffffh, for the string "This":

Chapter 5: Debugging Programs
Displaying and Editing Memory

113

Displaying and Editing GDT, LDT, and IDT
Windows

This section shows you how:

• To display the GDT, LDT, and IDT windows

• To edit the GDT, LDT, and IDT windows

To display the GDT, LDT, and IDT windows

• Choose the Window→GDT, Window→LDT, or the Window→IDT,
command.

The Window→GDT, Window→LDT, and Window→IDT commands display
the contents of the specified window.

The debugger periodically reads the GDT, LDT, and IDT locations and
displays the latest content in the selected window.

Chapter 5: Debugging Programs
Displaying and Editing GDT, LDT, and IDT Windows

114

To edit the GDT, LDT, and IDT windows

1 Choose the Window→GDT, Window→LDT, or Window→IDT
command.

2 Find the physical address associated with the value to be changed.

3 Display the Memory window with the Window→Memory command.

4 Find the same physical address in the Memory window that you
found in the GDT, LDT, or IDT window.

5 Use the keyboard to modify the content associated with the physical
address, as desired.

6 Press the Enter key. Notice that the next location is highlighted.

As long as the cursor remains in the Memory window, the GDT, LDT, or IDT
window will not show your new value. Move the cursor out of the Memory
window to see the GDT, LDT, or IDT window update to the new value.

Chapter 5: Debugging Programs
Displaying and Editing GDT, LDT, and IDT Windows

115

Displaying and Editing I/O Locations

This section shows you how:

• To display I/O locations

• To edit an I/O location

To display I/O locations

1 Choose the Window→I/O command.

2 From the I/O window’s control menu, choose the Define... (ALT, -, D)
command.

3 Enter the address in the Address text box.

4 Select whether the size of the I/O location is a Byte, 16 Bits, or 32 Bits.

5 Select whether the I/O location is in Memory or I/O space.

6 Choose the Set button.

7 Choose the Close button.

The Window→I/O command displays the contents of the specified I/O
locations.

The debugger periodically reads the I/O locations and displays the latest
status in the I/O window. To prevent the debugger from reading the I/O
locations (and updating the I/O window), choose the RealTime→I/O
Polling→OFF (ALT, R, I, F) command.

Chapter 5: Debugging Programs
Displaying and Editing I/O Locations

116

Example To display the contents of address 2000:

To edit an I/O location

1 Display the I/O value to be changed with the Window→I/O command.

2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Enter key.

To confirm the modified values, press the Enter key for every changed value.

Editing the I/O locations temporarily halts user program execution. You
cannot modify I/O locations while the user program executes in the real-time
mode or when I/O polling is turned OFF.

Chapter 5: Debugging Programs
Displaying and Editing I/O Locations

117

Displaying and Editing Registers

This section shows you how:

• To display registers

• To edit registers

To display registers

• Choose the Window→Basic Registers command.

The register values displayed in the window are periodically updated to show
you how the values change during program execution. The Status Flags
register can be displayed and modified as decoded bits by double-clicking on
its value.

When the register windows are updated, user program execution is
temporarily interrupted. To prevent the user program from being
interrupted (and the register windows from being updated), choose the
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) command to
activate the real-time mode.

Chapter 5: Debugging Programs
Displaying and Editing Registers

118

Example Register Contents Displayed in the Basic Registers Window

Chapter 5: Debugging Programs
Displaying and Editing Registers

119

To edit registers

1 Display the register contents by choosing the Window→Basic
Registers command or the Window→System Registers command.

2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Return key.

Modifying register contents temporarily interrupts program execution. You
cannot modify register contents while the user program is running and
monitor intrusion is disallowed.

Note that register values are not actually changed until the Return key is
pressed.

Double-clicking registers with flags or other bit fields opens the Register Bit
Fields dialog box which you can use to set or clear individual bit fields.

Chapter 5: Debugging Programs
Displaying and Editing Registers

120

Tracing Program Execution

This section shows you how:

• To trace callers of a specified function

• To trace execution within a specified function

• To trace accesses to a specified variable

• To trace until the command is halted

• To stop a running trace

• To repeat the last trace

• To display bus cycles

• To display absolute or relative counts

• To display or suppress unexecuted prefetches

• To swap instruction bytes in display of data-bus values

How the Analyzer Works

When you trace program execution, the analyzer captures microprocessor
address bus, data bus, and control signal values at each clock cycle. The
values captured for one clock cycle are collectively called a state. A trace is a
collection of these states stored in analyzer memory (also called trace
memory).

The trigger condition tells the analyzer when to store states in trace memory.
The trigger position specifies whether states are stored before, after, or about
the state that satisfies the trigger condition.

The store condition limits the kinds of states that are stored in trace memory.

When the states stored must satisfy a store-qualifier condition, up to two
states which satisfy the prestore condition may be stored when they occur
before the states that satisfy the store condition.

After a captured state satisfies the trigger condition, a trace becomes
complete when trace memory is filled with states that satisfy the store and
prestore conditions.

Chapter 5: Debugging Programs
Tracing Program Execution

121

See "Understanding Intel80386EX Analysis" to understand how the analyzer
works with the prefetching of the Intel80386EX, how the disassembler
decodes the bus cycles, and how to use Execution Trace Messages to resolve
questions about the exact target address of branches.

Trace Window Contents

When traces are completed, the Trace window is automatically opened to
display the trace results.

Each line in the trace shows the trace buffer state number, the type of state,
the module name and line number, the function name, the source file
information, and the time the state was captured (relative to the other states,
by default).

When bus cycles are included, the address, data, and disassembled
instruction or bus cycle status mnemonics are shown.

Tracing Monitor Cycles

When the emulator is executing monitor code, cycles are generated, but
usually not all cycles are captured by the analyzer. The Intel80386EX
emulator allows you to determine the types of monitor cycles to be captured
when using the foreground monitor, and the types of monitor cycles to be
ignored, as follows:

Default: By default, accesses by the monitor to non-monitor address space
are traced. Execution of monitor code is not traced. This means that if the
monitor reads memory to update the memory window, the trace list will show
memory reads from the accessed addresses. However, the code executed by
the monitor to read the addresses will not be shown.

Quiet: You can set up the emulator to prevent capture of states to target
addresses while executing in the monitor. This will prevent the capture of
monitor read cycles when the monitor updates the memory window, but it
may also prevent capture of useful information, too. For example, if you are
using the foreground monitor and an interrupt arrives, your interrupt code
will execute but the analyzer will not capture its execution in the trace list.

Complete: You can set up the emulator to capture all states generated by the
monitor. This will let you see the execution of the monitor in addition to its
accesses to non-monitor address space. This is generally used to help debug
a custom foreground monitor.

Chapter 5: Debugging Programs
Tracing Program Execution

122

To set up the monitor trace options:

Default:

Settings→Extended→Trace Cycles→User

Settings→Emulator Config→Hardware... then make sure the "Enable
Foreground Monitor Traced as User" box is checked.

Quiet:

Settings→Extended→Trace Cycles→User

Settings→Emulator Config→Hardware... then make sure the "Enable
Foreground Monitor Traced as User" box is not checked.

Complete:

Settings→Extended→Trace Cycles→Both

Settings→Emulator Config→Hardware... then make sure the "Enable
Foreground Monitor Traced as User" box is checked.

Chapter 5: Debugging Programs
Tracing Program Execution

123

To trace callers of a specified function

1 Double-click the function name in one of the debugger windows.

2 Choose the Trace→Function Caller... (ALT, T, C) command.

3 Choose the OK button.

This command stores the first executable statement of the specified function
and prestores statements that execute before it. The prestored statements
show the caller of the function.

To identify interrupts in program execution, trace the caller of the interrupt
process routine using the Trace→Function Caller... (ALT, T, C) command.

Chapter 5: Debugging Programs
Tracing Program Execution

124

Example To trace the caller of "next_message":

Double-click "next_message".

Choose the Trace→Function Caller... (ALT, T, C) command.

The Trace window becomes active and displays the trace results.

You can see how prefetching affects tracing by choosing the Display→Mixed
Mode (ALT, -, D, M) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

125

To trace execution within a specified function

1 Double-click the function name in the Source window.

2 Choose the Trace→Function Statement... (ALT, T, S) command.

This command traces C functions only. It does not trace execution of
assembly language subroutines.

Example To trace execution within "next_message":

Double-click "next_message."

Choose the Trace→Function Statement... (ALT, T, S) command.

The Trace window becomes active and displays the results. You can see how
prefetching affects tracing by choosing the Display→Mixed Mode (ALT, -, D,
M) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

126

To trace accesses to a specified variable

1 Double-click the global variable name in the Source window.

2 Choose the Trace→Variable Access... (ALT, T, V) command.

The command also traces access to the Assembler symbol specified by its
name and size.

Example To trace access to "message_id":

Double-click "message_id."

Choose the Trace→Variable Access... (ALT, T, V) command.

The Trace window becomes active and displays the trace results.

Chapter 5: Debugging Programs
Tracing Program Execution

127

To trace until the command is halted

1 To start the trace, choose the Trace→Until Halt (ALT, T, U)
command.

2 When you are ready to stop the trace, choose the Trace→Halt (ALT,
T, H) command.

This command is useful, for example, in tracing program execution that leads
to a processor halted state or to a break to the monitor.

To stop a running trace

• Choose the Trace→Halt (ALT, T, H) command.

The command is used to:

1 Stop the trace initiated with the Trace→Until Halt (ALT, T, U) command.
2 Force termination of the trace that cannot be completed due to absence

of the specified state.
3 Stop a trace before the trace buffer becomes full.

To repeat the last trace

• Choose the Trace→Again (ALT, T, A) command, or press the F7 key.

The Trace→Again (ALT, T, A) command traces program execution using the
last trace specification stored in the HP 64700.

Chapter 5: Debugging Programs
Tracing Program Execution

128

To display bus cycles

1 Place the cursor on the line from which you wish to display the bus
cycles.

2 From the Trace window’s control menu, choose the Display→Mixed
Mode (ALT, -, D, M) command or the Display→Bus Cycle Only (ALT,
-, D, C) command.

The Display→Mixed Mode (ALT, -, D, M) command displays each source line
followed by the bus cycles associated with it.

The Display→Bus Cycle Only (ALT, -, D, C) command displays the bus
cycles without the source lines.

The display starts from the cursor-selected line.

To hide the bus cycles, choose the Display→Source Only (ALT, -, D, S)
command from the Trace window’s control menu.

Example Bus Cycles Displayed in Trace with "Mixed Mode" selected:

Chapter 5: Debugging Programs
Tracing Program Execution

129

To display absolute or relative counts

• From the Trace window’s control menu, choose the
Display→Count→Absolute (ALT, -, D, C, A) or
Display→Count→Relative (ALT, -, D, C, R) command.

Choosing the Display→Count→Relative (ALT, -, D, C, R) command selects
the relative mode where the state-to-state time intervals are displayed.

Choosing the Display→Count→Absolute (ALT, -, D, C, A) command selects
the absolute mode where the trace time is displayed as the total time elapsed
since the analyzer has been triggered.

To display or suppress unexecuted prefetches

• From the Trace window’s control menu, choose the
Display→Options→Suppress Prefetch (ALT, -, D, O, S) command.

Unexecuted instructions appearing in a trace list can make the trace list
difficult to read and understand. Use this feature to confine the content of
the trace list to cycles that were executed during the run of the program.

When selected, a check mark will appear beside Suppress Prefetch. The
trace list will show only executed cycles.

When unselected (the default), no check mark will appear beside Suppress
Prefetch. The trace list will show all traced cycles, whether or not they were
executed.

The selection you make with the Display→Options→Suppress Prefetch
(ALT, -, D, O, S) command only affects display of unexecuted prefetches in
the trace list.

To restore the default display of all traced cycles in the Trace window, again
choose the Display→Options→Suppress Prefetch (ALT, -, D, O, S) command
from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

130

To swap instruction bytes in display of data-bus values

• From the Trace window’s control menu, choose the
Display→Options→Swap Instruction Bytes (ALT, -, D, O, I) command.

When you swap instruction bytes, the byte order of the displayed data-bus
values is reversed for instruction fetch cycles. This makes it easier to
correlate data bytes with the opcode bytes in assembler listings and/or the
Source window. A data-bus value of 40302010 swapped will be displayed as
10203040.

If Swap Instruction Bytes is checked, little endian order is selected. Bytes
are arranged in the data column in this order: D[7:0], D[15:8], D[23:16],
D[31:24].

If Swap Instruction Bytes is not checked (default), big endian order is
selected. Bytes are arranged in the data column in this order: D[31:0].

The selection you make with the Display→Options→Swap Instruction Bytes
(ALT, -, D, O, I) command only affects data-bus values corresponding to
instruction fetches (opcodes).

To restore the default order to data bytes shown for instruction fetches in the
Trace window, again choose the Display→Options→Swap Instruction Bytes
(ALT, -, D, O, I) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

131

Setting Up Custom Trace Specifications

This section shows you how:

• To set up a "Trigger Store" trace specification

• To set up a "Find Then Trigger" trace specification

• To set up a "Sequence" trace specification

• To edit a trace specification

• To trace "windows" of program execution

• To store the current trace specification

• To load a stored trace specification

Note Analyzer memory is unloaded two states at a time. If you use a storage
qualifier to capture states and state capture proceeds slowly, it’s possible that
one captured state may be stored but it cannot be displayed because another
state must be stored before the pair can be unloaded. When this happens,
you can stop the trace measurement to see all stored states. All states can be
unloaded when the trace measurement is stopped.

When Do I Use the Different Types of Trace Specifications?

When you wish to trigger the analyzer on the occurrence of one state, use the
"Trigger Store" dialog box to set up the trace specification.

When you wish to trigger the analyzer on the occurrence of one state
followed by another state, or one state followed by another state but only
when that state occurs before a third state, use the "Find Then Trigger"
dialog box to set up the trace specification.

When you wish to trigger the analyzer on a sequence of more than two states,
use the "Sequence" dialog box to set up the trace specification.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

132

To set up a "Trigger Store" trace specification

1 Choose the Trace→Trigger Store... (ALT, T, T) command.

2 Specify the trigger condition using the Address, Data, and/or Status
text boxes within the Trigger group box.

3 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option in the Trigger group box.

4 Specify the store condition using the Address, Data, and/or Status
text boxes within the Store group box.

5 Choose the OK button to set up the analyzer and start the trace.

The Trace→Trigger Store... (ALT, T, T) command opens the Trigger Store
Trace dialog box:

A group of Address, Data, and Status text boxes combine to form a state

qualifier. You can specify an address range by entering a value in the End
Address box. By selecting the NOT check box, you can specify all states
other than those identified by the address, data, and status values.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

133

Example To trace execution after the "convert_case" function:

Choose the Trace→Trigger Store... (ALT, T, T) command.

Enter "convert_case" in the Address text box in the Trigger group box.

Choose the OK button.

Example To trace execution before and after the "convert_case" function and store
only states with "write" status:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

134

Example To specify the trigger condition as any address in the range 1000h through
1fffh:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

135

To set up a "Find Then Trigger" trace specification

1 Choose the Trace→Find Then Trigger... (ALT, T, D) command.

2 Specify the sequence, which is made up of the enable, trigger store,
trigger, and store conditions.

3 Specify the restart, count, and prestore conditions.

4 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

5 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

6 Choose the OK button to set up the analyzer and start the trace.

The Trace→Find Then Trigger... (ALT, T, D) command opens the Find then
Trigger Trace dialog box:

Choosing the enable, trigger, store, count, or prestore buttons opens a
Condition dialog box that lets you select "any state," "no state," trace patterns

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

136

"a" through "h," "range," or "arm" as the condition. Patterns "a" through "h,"
"range," and "arm" are grouped into two sets, and resources within a set may
be combined using the "or" or "nor" logical operators. Resources from the two
sets may be combined using the OR or AND logical operators.

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

137

If you double-click on the range resource (bottom of the Pattern/Range list
box), the Trace Range dialog box is opened to let you select either the
Address range or the Data range option and enter the minimum and
maximum values in the range.

Example To trace execution after the "convert_case" function:

Choose the Trace→Find Then Trigger... (ALT, T, D) command.

Choose the Trigger button (default: any state).

Select "a."

Choose the OK button.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

138

Double-click "a" in the Pattern/Range list box.

Enter "convert_case" in the Address text box in the Trace Pattern dialog box.

Choose the OK button in the Trace Pattern dialog box.

Choose the OK button in the Find then Trigger Trace dialog box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

139

Example To trace about the "next_message" function when it follows the
"change_status" function and store all states after the "change_status"
function:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

140

To set up a "Sequence" trace specification

Sequence trace specifications let you trigger the analyzer on a sequence of
several captured states.

There are eight sequence levels. When a trace is started, the first sequence
level is active. You select one of the remaining sequence levels as the level
that, when entered, will trigger the analyzer. Each level lets you specify two
conditions that, when satisfied by a captured state, will cause branches to
other levels:

if (state matches primary branch condition)
 then GOTO (level associated with primary branch)
else if (state matches secondary branch condition)
 then GOTO (level associated with secondary branch)
else
 stay at current level

Note that if a state matches both the primary and secondary branch
conditions, the primary branch is taken.

Each sequence level also has a store condition that lets you specify the states
that get stored while at that level.

1 Choose the Trace→Sequence... (ALT, T, Q) command.

2 Specify the primary branch, secondary branch, and store conditions
for each sequence level you will use.

3 Specify which sequence level to trigger on. The analyzer triggers on
the entry to the specified level. Therefore, the condition that causes
a branch to the specified level actually triggers the analyzer.

4 Specify the count and prestore conditions.

5 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

141

6 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

7 Choose the OK button to set up the analyzer and start the trace.

The Trace→Sequence... (ALT, T, Q) command calls the Sequence Trace
Setting dialog box, where you make the following trace specifications:

Choosing the primary branch, secondary branch, store, count, or prestore
buttons opens a Condition dialog box that lets you select "any state," "no
state," trace patterns "a" through "h," "range," or "arm" as the condition.
Patterns "a" through "h," "range," and "arm" are grouped into two sets, and
resources within a set may be combined using the "or" or "nor" logical
operators. Resources in the two sets may be combined using the OR or AND
logical operators.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

142

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

If you double-click on the range resource at the bottom of the Pattern/Range
list box, the Trace Range dialog box is opened to let you select either the
Address range option or the Data range option and enter the minimum and
maximum values in the range.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

143

Example To specify address "convert_case" as the trigger condition:

Example To specify execution of "convert_case" and "next_message" as the trigger
sequence:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

144

To edit a trace specification

1 Choose the Trace→Edit... (ALT, T, E) command.

2 Using the Sequence Trace dialog box, edit the trace specification as
desired.

3 Choose the OK button.

You can use this command to edit trace specifications, including trace
specifications that are automatically set up. For example, you can use this
command to edit the trace specification that is set up when the
Trace→Function Caller... (ALT, T, C) command is chosen.

You can also use Trace→Trigger Store..., Trace→Find Then Trigger..., and
Trace→Sequence..., if desired. Modifications made in these dialog boxes will
be transferred directly to the Trace→Edit... dialog box.

To trace "windows" of program execution

1 Because pairs of sequence levels are used to capture window enable
and disable states both before and after the trigger, choose the
Trace→Sequence... (ALT, T, Q) command.

2 Set up the sequence levels, patterns, and other trace options (as
described below) in the Sequence Trace dialog box.

3 Choose the OK button.

When you trace "windows" of program execution, you store states that occur
between one state and another state. Storing states that occur between two
states is different from the trace specification set up by the
Trace→Statement... (ALT, T, S) command, which stores states in a function’s
range of addresses.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

145

In a typical windowing trace specification, sequence levels are paired. The
first sequence level searches for the window enable state, and no states are
stored while searching. When the window enable state is found, the second
sequence level stores the states you have qualified for storage ("any state" in
the example below) while searching for the window disable state.

If you want to store the window of code execution before and after the
trigger condition, use two sets of paired sequence levels: one window
enable/disable pair of sequence levels before the trigger, and another
disable/enable pair after the trigger, as shown below.

Notice that the order of the second sequence level pair is swapped. In
sequence level 2, if the analyzer finds the trigger condition while searching
for the window disable state, it will branch to sequence level 3 where it
continues its search for the window disable state. After this, the analyzer will
remain in sequence levels 3 and 4 until the trace memory is filled, completing
the trace.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

146

Example To trace the window of code execution between lines 46 and 51 of the sample
program, triggering on any state in the window:

Notice that the analyzer triggers on the entry to sequence level 3. The
primary branch condition in level 2 actually specifies the trigger condition.

To store the current trace specification

1 Choose the Trace→Edit... (ALT, T, E) command.

2 Choose the Save... button.

3 Specify the name of the trace specification file.

4 Choose the OK button.

You can also store trace specifications from the Trigger Store Trace, Find
Then Trigger Trace, or Sequence Trace dialog boxes.

The extension for trace specification files defaults to ".TRC".

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

147

To load a stored trace specification

1 Choose the Trace→Trigger Store... (ALT, T, T), Trace→Find Then
Trigger... (ALT, T, D), Trace→Sequence... (ALT, T, Q), or
Trace→Edit... (ALT, T, E) command.

2 Choose the Load... button.

3 Select the desired trace specification file.

4 Choose the OK button.

A "Trigger Store" trace specification file can be loaded into any of the trace
setting dialog boxes. A "Find Then Trigger" trace specification file can be
loaded into either the Find Then Trigger Trace or Sequence Trace dialog
boxes. A "Sequence" trace specification file can only be loaded into the
Sequence Trace dialog box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

148

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

149

Part 3

150

6

Command File and Macro Command
Summary

151

Command File and Macro Command Summary

This section lists the Real-Time C Debugger break macro and command file
commands, providing syntax and brief description for each of the listed
commands. For details on each command, refer to the command
descriptions.

The characters in parentheses can be ignored for shortcut entry.

Run Control Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

BRE(AK) Breaking execution
COM(E) address Run to cursor-indicated line
OVE(R) Stepping over
OVE(R) count Repeated a number of times
OVE(R) count address From specified address
OVE(R) count STA(RT) From transfer address
RES(ET) Resetting processor
RET(URN) Until return
RUN From current address
RUN address From specified address
RUN STA(RT) From transfer address
RUN RES(ET) From reset
STE(P) Stepping
STE(P) count Repeated a number of times
STE(P) count address From specified address
STE(P) count STA(RT) From transfer address

Variable and Memory Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

VARI(ABLE) variable TO data Changing value of variable
MEM(ORY) FIL(L) size addr-range value Filling memory contents
MEM(ORY) COP(Y) size addr-range address Copying memory contents
MEM(ORY) IMA(GE) size addr-range Copying target memory
MEM(ORY) LOA(D) MOT(OSREC) file_name Loading memory from a
 Motorola S-record file
MEM(ORY) LOA(D) INT(ELHEX) file_name Loading memory from an
 Intel Hexadecimal file
MEM(ORY) STO(RE) MOT(OSREC) addr-range file_name Storing memory to a
 Mororola S-record file
MEM(ORY) STO(RE) INT(ELHEX) addr-range file_name Storing memory to an Intel
 Hexadecimal file
MEM(ORY) BYT(E) Byte format display
MEM(ORY) WOR(D) 16-Bit format display
MEM(ORY) ABS(OLUTE) Single-column display
MEM(ORY) BLO(CK) Multi-column display
MEM(ORY) LON(G) 32-Bit format display
IO BYTE/WORD/LONG IOSPACE/MEMORY address TO data Editing specified I/O
 address
IO SET BYTE/WORD/LONG IOSPACE/MEMORY address Registering I/O display
IO DEL(ETE) BYTE/WORD/LONG IOSPACE/MEMORY address Deleting I/O address
WP SET address Registering watchpoint

152

WP DEL(ETE) address Deleting watchpoint
WP DEL(ETE) ALL Deleting all watchpoints

Breakpoint Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

MODE BKP(TBREAK) ON|OFF Deletes all/prevents new
 breakpoints
BM SET address command Setting break macro
BM SET breakaddress command Setting break macro
BM SET EXE(C) breakaddress command Setting execution break
 macro
BM SET ACC(ESS) BYT(E) breakaddress command Setting byte-access break
 macro
BM SET ACC(ESS) WOR(D) breakaddress command Setting word-access break
 macro
BM SET ACC(ESS) DWO(RD) breakaddress command Setting doubleword-access
 break macro
BM SET WRI(TE) BYT(E) breakaddress command Setting byte-write break
 macro
BM SET WRI(TE) WOR(D) breakaddress command Setting word-write break
 macro
BM SET WRI(TE) DWO(RD) breakaddress command Setting doubleword-write
 break macro
BM DEL(ETE) address Deleting break macro
BP SET address Setting breakpoint
BP SET EXE(C) address Setting execution breakpoint
BP SET ACC(ESS) BYT(E) address Setting byte-access
 breakpoint
BP SET ACC(ESS) WOR(D) address Setting word-access
 breakpoint
BP SET ACC(ESS) DWO(RD) address Setting doubleword-access
 breakpoint
BP SET WRI(TE) BYT(E) address Setting byte-write
 breakpoint
BP SET WRI(TE) WOR(D) address Setting word-write
 breakpoint
BP SET WRI(TE) DWO(RD) address Setting doubleword-write
 breakpoint
BP DEL(ETE) address Deleting breakpoint
BP DEL(ETE) ALL Deleting breakpoint
BP DISABLE address Disabling a breakpoint
BP ENABLE address Enabling a breakpoint
EVA(LUATE) address Expression window display
EVA(LUATE) "strings" Printing string
EVA(LUATE) CLE(AR) Clearing Expression window

Window Open/Close Command

Command Param_1 Param_2 Param_3 Param_4 Operation

DIS(PLAY) window-name Opening the named window
ICO(NIC) window-name Closing the named window

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

153

Configuration Command

Command Param_1 Param_2 Param_3 Param_4 Operation

MON(ITOR) STA(RT) Starting monitor
MON(ITOR) mon-item mon-ans Executing monitor
MON(ITOR) END Ending monitor
CON(FIG) STA(RT) Starting configuration
CON(FIG) config-item config-ans Executing configuration
CON(FIG) END Ending configuration
MAP STA(RT) Starting mapping
MAP addr-range mem_type attributes Executing mapping
MAP OTHER mem_type Mapping OTHER area
MAP END Ending mapping
ADDRTRAN STA(RT) Starting address translation
ADDRTRAN config-item config-ans Executing address
 translation
ADDRTRAN END Ending address translation
MOD(E) MNE(MONIC) ON Enabling Mnemonic display
MOD(E) MNE(MONIC) OFF Enabling Source display
MOD(E) REA(LTIME) ON Enabling real-time mode
MOD(E) REA(LTIME) OFF Disabling real-time mode
MOD(E) IOG(UARD) ON Enabling I/O guard
MOD(E) IOG(UARD) OFF Disabling I/O guard
MOD(E) DOW(NLOAD) NOE(RRABORT) Load file or memory; ignore
 errors
MOD(E) DOW(NLOAD) ERR(ABORT) Load file or memory; abort
 if error
MOD(E) MEM(ORYPOLL) ON Enabling Memory polling
MOD(E) MEM(ORYPOLL) OFF Disabling Memory polling
MOD(E) WAT(CHPOLL) ON Enabling WatchPoint polling
MOD(E) WAT(CHPOLL) OFF Disabling WatchPoint polling
MOD(E) LOG ON Enabling log file output
MOD(E) LOG OFF Disabling log file output
MOD(E) BNC INP(UT_ARM) Setting BNC input
MOD(E) BNC OUT(PUT_TRIGGER) Setting BNC output
MOD(E) SYM(BOLCASE) ON Case sensitive symbol search
MOD(E) SYM(BOLCASE) OFF Case insensitive sym. search
MOD(E) TRACECLOCK BACKGROUND Trace background cycles
MOD(E) TRACECLOCK BOTH Trace all processor cycles
MOD(E) TRACECLOCK USER Trace user program cycles
MOD(E) TRACE DISPLAY FROM <state> Trace disassembly begin
 from <state>
MOD(E) TRACE DISPLAY BYTE0/1/2/3 Trace disassembly begin
 from BYTE<no.>
MOD(E) TRACE DISPLAY USE16/USE32 Trace disassembly from
 16-bit/32-bit segment type
MOD(E) TRACE DISPLAY SWAPINSTRBYTES ON|OFF Trace display swapping
 order of instruction bytes
MOD(E) TRACE DISPLAY SUPPRESSPREFETCH ON|OFF Trace display excluding
 unexecuted prefetches
MOD(E) SOU(RCE) ASK(PATH) Prompt for source paths
MOD(E) SOU(RCE) NOA(SKPATH) Don’t prompt for source
 paths

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

154

File Command

Command Param_1 Param_2 Param_3 Param_4 Operation

FIL(E) SOU(RCE) module_name Displaying source file
FIL(E) OBJ(ECT) file_name Loading object
FIL(E) SYM(BOL) file_name Loading symbol
FIL(E) BIN(ARY) file_name Loading data
FIL(E) APPEND file_name Appending symbol
FIL(E) CHA(INCMD) file_name Chaining command files
FIL(E) COM(MAND) file_name args Executing command file
FIL(E) LOG file_name Specifying command log file
FIL(E) RER(UN) Re-executes command file
FIL(E) CON(FIG) LOA(D) file_name Loads config. from file
FIL(E) CON(FIG) STO(RE) file_name Stores configuration to file
FIL(E) ENV(IRON) LOA(D) file_name Loads environment from file
FIL(E) ENV(IRON) SAV(E) file_name Stores environment to file

Trace Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

TRA(CE) FUN(CTION) CAL(L) address Tracing function call
TRA(CE) FUN(CTION) STA(TEMENT) address Tracing statement
TRA(CE) VAR(IABLE) ACC(ESS) address Tracing access to variable
TRA(CE) STO(P) Stopping tracing
TRA(CE) ALW(AYS) Tracing until halt
TRA(CE) AGA(IN) Restarting tracing
TRA(CE) SAV(E) file_name Storing trace specification
TRA(CE) LOA(D) file_name Loading trace specification
TRA(CE) CUS(TOMIZE) Starts trace w/loaded spec.
TRA(CE) DIS(PLAY) MIX(ED) Enabling source+bus display
TRA(CE) DIS(PLAY) SOU(RCE) Enabling source display
TRA(CE) DIS(PLAY) BUS Enabling bus display
TRA(CE) DIS(PLAY) ABS(OLUTE) Displaying absolute time
TRA(CE) DIS(PLAY) REL(ATIVE) Displaying relative time
TRA(CE) COP(Y) DISPLAY Copying trace display
TRA(CE) COP(Y) ALL Copying trace results
TRA(CE) FIN(D) TRI(GGER) Centers trigger in window
TRA(CE) FIN(D) STA(TE) state_num Centers state in window
TRA(CE) COP(Y) SPE(C) Copying specification

Symbol Window Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

SYM(BOL) LIS(T) MOD(ULE) Displaying module
SYM(BOL) LIS(T) FUN(CTION) Displaying function
SYM(BOL) LIS(T) EXT(ERNAL) Displaying global symbol
SYM(BOL) LIS(T) INT(ERNAL) func_name Displaying local symbol
SYM(BOL) LIS(T) GLO(BALS) Displaying global asm symbol
SYM(BOL) LIS(T) LOC(AL) module Displaying local asm symbol
SYM(BOL) LIS(T) USE(R) Displaying user-defined
 symbol
SYM(BOL) ADD symbol_nam address Adding user-defined symbol
SYM(BOL) DEL(ETE) symbol_nam Deleting user-defined symbol
SYM(BOL) DEL(ETE) ALL Deleting all user symbols
SYM(BOL) MAT(CH) "strings" Displaying matched string
SYM(BOL) COP(Y) DIS(PLAY) Copying symbol display
SYM(BOL) COP(Y) ALL Copying all symbols

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

155

Command File Control Command

Command Param_1 Param_2 Param_3 Param_4 Operation

EXIT Exiting command file
EXIT VAR(IABLE) address value Exiting with variable cont.
EXIT REG(ISTER) regname value Exiting with register cont.
EXIT MEM(ORY) BYTE/WORD/LONG address value Exiting with memory contents
EXIT IO BYTE/WORD/LONG address value Exiting with I/O contents
WAIT MON(ITOR) Wait until MONITOR status
WAIT RUN Wait until RUN status
WAIT UNK(NOWN) Wait until UNKNOWN status
WAIT SLO(W) Wait until SLOW CLOCK status
WAIT TGT(RESET) Wait until TARGET RESET
WAIT SLE(EP) Wait until SLEEP status
WAIT GRA(NT) Wait until BUS GRANT status
WAIT NOB(US) Wait until NOBUS status
WAIT TCO(M) Wait until end of trace
WAIT THA(LT) Wait until halt
WAIT TIM(E) seconds Wait a number of seconds

Global/Local/Interrupt Descriptor Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

GDT SELECTOR value Place selector on top line
 of GDT window.
LDT SELECTOR value Place selector on top line
 of LDT window.
IDT SELECTOR value Place selector on top line
 of IDT window.
GDT ENTRY value Place entry on top line
 of GDT window.
LDT ENTRY value Place entry on top line
 of LDT window.
IDT ENTRY value Place entry on top line
 of IDT window.

Miscellaneous Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

BEE(P) Sounding beep
BUTTON label "command" Adds button to Button window
QUI(T) Exiting debugger
QUI(T) LOC(KED) Exiting debugger while
 retaining control
COP(Y) TO file_name Specifying copy destination
COP(Y) SOU(RCE) Copying Source window
COP(Y) REG(ISTER) Copying Register window
COP(Y) MEM(ORY) Copying Memory window
COP(Y) WAT(CHPOINT) Copying WatchPoint window
COP(Y) BAC(KTRACE) Copying BackTrace window
COP(Y) IO Copying I/O window
COP(Y) EXP(RESSION) Copying Expression window
COP(Y) BUT(TON) Copying Button window
CUR(SOR) address Positioning cursor
CUR(SOR) PC Finding current PC
NOP Non-operative
NOP comments Non-operative to prefix
 comment lines
SEA(RCH) STR(ING) FOR/BACK ON/OFF strings Searching string
SEA(RCH) FUN(CTION) func_name Selecting function

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

156

SEA(RCH) MEM(ORY) BYTE/WORD/LONG addr-range value Searching memory
SEA(RCH) MEM(ORY) STR(ING) "strings" Searching memory for string
TER(MCOM) ti-command Terminal Interface command

Parameters

Parameter Description Notation

address Address See "Reference."
addr-range Address range
args Arguments Replaces placeholders in command file.
attributes Can be comma-separated
 dp=dual-port mem;trdy=target RDY
breakaddress linenumber, See descriptions in this list.
 plinenum, or
 address.
case Case sensing
command Macro command Commands listed in the "Reference."
config-ans Setting See "Reference."
config-item Configuration See "Reference."
count Count Decimal notation
direction Search direction
directoryname Directory name
file_name File name
format Memory file format
func_name Function name
label Button label
linenumber Line number
mem_type Memory type
module_name Module name
mon-ans Setting See "Reference."
mon-item Configuration See "Reference."
plinenum Macro line number line number.macro number (ex. 34.1)
regname Register name
seconds Time in seconds
size Data size
space Memory or I/O space
strings String "string"
symbol_nam Symbol name
usersymbol User-defined symbol See "Reference."
value Value See "Reference."
window-name Window Name See "Reference."
 1st 3 characters

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

157

WAIT Command Dialog Box

This dialog box appears when the WAIT command is included in a command
file, break macro, or button.

Choosing the STOP button cancels the WAIT command.

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

158

7

Expressions in Commands

159

Expressions in Commands

When you enter values and addresses in commands, you can use:

• Numeric constants (hexadecimal, decimal, octal, or binary values). You
can only use Numeric constants when using the constant-address syntax.

• Symbols (identifiers).

• C operators (pointers, arrays, structures, unions, unary minus operators)
and parentheses (specifying the order of operator evaluation).

160

Numeric Constants

All numeric constants are assumed to be hexadecimal, except when the
number refers to a count; count values are assumed to be decimal. By
appending a suffix to the numeric value, you can specify its base.

The debugger expressions support the following numeric constants with or
without radix:

Hexadecimal Alphanumeric strings starting with "0x" or "0X" and
consisting of any of ’0’ through ’9’, ’A’ through ’F’, or ’a’
through ’f’ (for example: 0x12345678, 0xFFFF0000).

Alphanumeric strings starting with any of ’0’ through ’9’,
ending with ’H’ or ’h’, and consisting of any of ’0’ through
’9’, ’A’ through ’F’, or ’a’ through ’f’ (for example:
12345678H, 0FFFF0000h).

Alphanumeric strings starting with any of ’0’ through ’9’
and consisting of any of ’0’ through ’9’, ’A’ through ’F’, or ’a’
through ’f’ (for example: 12345678, 0FFFF0000).

Hexadecimal strings starting with alphabetical characters
must be preceded by 0. For example, FF40H must be
entered as 0FF40H.

Decimal Numeric strings consisting of any of ’0’ through ’9’ and
ending with ’T’ or ’t’ (for example: 128T, 1000t).

Octal Numeric strings consisting of any of ’0’ through ’7’ and
ending with ’O’ or ’o’ (not zero) (for example: 200o, 377O).

Binary Numeric strings consisting of ’0’ or ’1’ and ending with ’Y’ or
’y’ (for example: 10000000y, 11001011Y).

Don’t Care Numeric strings containing ’X’ or ’x’ values. All numeric
strings must begin with a numeric value. For example,
x1x0y must be entered as 0x1x0y.

Chapter 7: Expressions in Commands
Numeric Constants

161

Symbols

The debugger expressions support the following symbols (identifiers):

• Symbols defined in C source code.

• Symbols defined in assembly language source code.

• Symbols added with the Symbol window control menu’s User
defined→Add... (ALT, -, U, A) command.

• Line number symbols.

Symbol expressions may be in the following format (where bracketed parts
are optional):

[module_name\\]symbol_name[,format_spec]

Module Name

The module names include C/Assembler module names as follows:

Assembler
module name

(file_path)asm_file_name

C module name source_file_name
(without extension)

Symbol Name

The symbol names include symbols defined in C/Assembler source codes,
user-defined symbols, and line number symbols:

User-defined
symbols

Strings consisting of up to 256 characters including:
alphanumeric characters, _ (underscore), and ? (question
mark).

Line number
symbols

#source_file_line_number

Chapter 7: Expressions in Commands
Symbols

162

The symbol names can also include either * or & to explicitly specify the
evaluation of the symbol.

Symbol address &symbol_name

Symbol data *symbol_name

Format Specification

The format specifications define the variable display format or size for the
variable access or break tracing:

String s

Decimal d (current size), d8 (8 bit), d16 (16 bit), d32 (32 bit)

Unsigned
decimal

u (current size), u8 (8 bit), u16 (16 bit), u32 (32 bit)

Hexadecimal x (current size), x8 (8 bit), x16 (16 bit), x32 (32 bit)

Examples Some example symbol expressions are shown below:

sample\\#22,x32

Display the address of line number 22 in the module
"sample," formatted as a 32-bit hex number. This form
(with the format specification) is used in the watchpoint
window, expression window, etc.

sample\\#22

Refer to the address of line number 22 in the module
"sample." This form (without the format specification) is
used in the trace specification, memory display window,
etc.

Chapter 7: Expressions in Commands
Symbols

163

data[2].message,s

Display the structure element "message" in the third
element of the array "data" as a string.

dat →message,s

Display the structure element "message" pointed to by the
"dat" pointer as a string.

dat →message,x32

Display the structure element "message" pointed to by the
"dat" pointer as a 32-bit hex number.

sample\\data[1].status,d32

Display the structure element "status" in the second
element of the array "data" that is in the module "sample"
as a 32-bit decimal integer.

&data[0]

Refer to the address of the first element of the array "data."

*1000

Does not do anything. (It displays dashes, as an indication
of a parsing error.) Note that you cannot use constants as
an address.

Chapter 7: Expressions in Commands
Symbols

164

C Operators

The debugger expressions support the following C operators. The order of
operator evaluation can be modified using parentheses ’(’ and ’)’; however, it
basically follows C conventions:

Pointers ’*’ and ’&’

Arrays ’[’ and ’]’

Structures or unions ’.’ and "→"

Unary minus ’-’

Chapter 7: Expressions in Commands
C Operators

165

166

8

Menu Bar Commands

167

Menu Bar Commands

This chapter describes the commands that can be chosen from the menu bar.
Command descriptions are in the order they appear in the menu bar (top to
bottom, left to right).

• File→Load Object... (ALT, F, L)
• File→Command Log→Log File Name... (ALT, F, C, N)
• File→Command Log→Logging ON (ALT, F, C, O)
• File→Command Log→Logging OFF (ALT, F, C, F)
• File→Run Cmd File... (ALT, F, R)
• File→Load Debug... (ALT, F, D)
• File→Save Debug... (ALT, F, S)
• File→Load Emulator Config... (ALT, F, E)
• File→Save Emulator Config... (ALT, F, V)
• File→Copy Destination... (ALT, F, P)
• File→Exit (ALT, F, X)
• File→Exit HW Locked (ALT, F, H)
• Execution→Run (ALT, E, U)
• Execution→Run to Cursor (ALT, R C)
• Execution→Run to Caller (ALT, E, T)
• Execution→Run... (ALT, E, R)
• Execution→Single Step (ALT, E, N)
• Execution→Step Over (ALT, E, O)
• Execution→Step... (ALT, E, S)
• Execution→Break (ALT, E, B)
• Execution→Reset (ALT, E, E)
• Breakpoint→Set at Cursor (ALT, B, S)
• Breakpoint→Delete at Cursor (ALT, B, D)
• Breakpoint→Set Macro... (ALT, B, M)
• Breakpoint→Delete Macro (ALT, B, L)
• Breakpoint→Edit... (ALT, B, E)
• Variable→Edit... (ALT, V, E)
• Trace→Function Caller... (ALT, T, C)
• Trace→Function Statement... (ALT, T, S)
• Trace→Variable Access... (ALT, T, V)
• Trace→Edit... (ALT, T, E)
• Trace→Trigger Store... (ALT, T, T)

168

• Trace→Find Then Trigger... (ALT, T, D)
• Trace→Sequence... (ALT, T, Q)
• Trace→Until Halt (ALT, T, U)
• Trace→Halt (ALT, T, H)
• Trace→Again (ALT, T, A)
• RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D)
• RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)
• RealTime→I/O Polling→ON (ALT, R, I, O)
• RealTime→I/O Polling→OFF (ALT, R, I, F)
• RealTime→Watchpoint Polling→ON (ALT, R, W, O)
• RealTime→Watchpoint Polling→OFF (ALT, R, W, F)
• RealTime→Memory Polling→ON (ALT, R, M, O)
• RealTime→Memory Polling→OFF (ALT, R, M, F)
• Settings→Emulator Config→Hardware... (ALT, S, E, H)
• Settings→Emulator Config→Memory Map... (ALT, S, E, M)
• Settings→Emulator Config→Monitor... (ALT, S, E, O)
• Settings→Emulator Config→Address Translation... (ALT, S, E, A)
• Settings→Communication... (ALT, S, C)
• Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)
• Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)
• Settings→Font... (ALT, S, F)
• Settings→Tabstops... (ALT, S, T)
• Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)
• Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F)
• Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)
• Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)
• Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)
• Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O)
• Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F)
• Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)
• Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F)
• Window→Cascade (ALT, W, C)
• Window→Tile (ALT, W, T)
• Window→Arrange Icons (ALT, W, A)
• Window→1-9 <win_name> (ALT, W, 1-9)
• Window→More Windows... (ALT, W, M)
• Help→About Debugger/Emulator... (ALT, H, D)

Chapter 8: Menu Bar Commands

169

File→Load Object... (ALT, F, L)

Loads the specified object file and symbolic information into the debugger.

Program code is loaded into emulation memory or target system RAM.

Object files are typically Intel OMF386 boot-loadable format absolute files.

You can also load Motorola S-Record and Intel Hexadecimal format files;
however, no symbolic information from these files will be loaded.

Load Object File Dialog Box

Choosing the File→Load Object... (ALT, F, L) command opens the following
dialog box:

Current Shows the currently loaded object file.

File Name Specifies the object file to be loaded.

Bytes Loaded Displays the loaded data in Kbytes.

Symbols Only Loads only the symbolic information. This is used when
programs are already in memory (for example, when the
debugger is exited and re-entered without turning OFF
power to the target system or when code is in target
system ROM).

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

170

Data Only Loads program code but not symbols.

Symbols
Append

Appends the symbols from the specified object file to the
currently loaded symbols. This lets you debug code loaded
from multiple object files.

Load Starts loading the specified object file and closes the dialog
box if the load was successful. The dialog box is left open
on screen if the load was not successful.

Cancel Closes the dialog box without loading the object file.

Browse... Opens a file selection dialog box from which you can select
the object file to be loaded.

Command File Command

FIL(E) OBJ(ECT) file_name
Loads the specified object file and symbols into the debugger.

FIL(E) SYM(BOL) file_name
Loads only the symbolic information from the specified object file.

FIL(E) BIN(ARY) file_name
Loads only the program code from the specified object file.

FIL(E) APP(END) file_name
Appends the symbol information from the specified object file to the
currently loaded symbol information.

See Also

"To load user programs" in the "Loading and Displaying Programs" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

171

File→Command Log→Log File Name... (ALT, F, C, N)

Lets you name a new command log file.

The current command log file is closed and the specified command log file is
opened. The default command log file name is "log.cmd".

Command log files can be executed with the File→Run Cmd File... (ALT, F,
R) command.

The File→Command Log→Logging OFF (ALT, F, C, F) command stops the
logging of executed commands.

This command opens a file selection dialog box from which you can select the
command log file. Command log files have a ".CMD" extension.

Command File Command

FIL(E) LOG filename

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Log File Name... (ALT, F, C, N)

172

File→Command Log→Logging ON (ALT, F, C, O)

Starts command log file output.

The File→Command Log→Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command

MOD(E) LOG ON

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Logging ON (ALT, F, C, O)

173

File→Command Log→Logging OFF (ALT, F, C, F)

Stops command log file output.

The File→Command Log→Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command

MOD(E) LOG OFF

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Logging OFF (ALT, F, C, F)

174

File→Run Cmd File... (ALT, F, R)

Executes the specified command file.

Command files can be:

• Files created with the File→Command Log→Log File Name... (ALT, F, C,
N) command.

• Configuration files having .CMD extension.

Command files are stored as ASCII text files so they can be created or edited
with ASCII text editors.

Command File Execution Dialog Box

Choosing the File→Run Cmd File... (ALT, F, R) command opens the
following dialog box:

File Name Lets you enter the name of the command file to be
executed.

Chapter 8: Menu Bar Commands
File→Run Cmd File... (ALT, F, R)

175

Directory Shows the current directory and the command files in that
directory. You can select the command file name from this
list.

Parameters Lets you specify up to five parameters that replace
placeholders $1 through $5 in the command file.
Parameters must be separated by blank spaces.

Executing Shows the command being executed.

Execute Executes the command file.

Stop Stops command file execution.

Close Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
the command file name.

Command File Command

FIL(E) COM(MAND) filename args

See Also

"To execute a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Run Cmd File... (ALT, F, R)

176

File→Load Debug... (ALT, F, D)

Loads a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

Debug environment files have the extension ".ENV".

Debug environment files contain information about:

• Breakpoints.

• Variables in the WatchPoint window.

• The directory that contains the currently loaded object file.

Command File Command

FIL(E) ENV(IRONMENT) LOA(D) filename

Chapter 8: Menu Bar Commands
File→Load Debug... (ALT, F, D)

177

File→Save Debug... (ALT, F, S)

Saves a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

The following information is saved in the debug environment file:

• Breakpoints.

• Variables in the WatchPoint window.

• The directory that contains the currently loaded object file.

Command File Command

FIL(E) ENV(IRONMENT) SAV(E) filename

Chapter 8: Menu Bar Commands
File→Save Debug... (ALT, F, S)

178

File→Load Emulator Config... (ALT, F, E)

Loads a hardware configuration command file.

This command opens a file selection dialog box from which you select the
hardware configuration file.

Emulator configuration command files contain:

• Hardware configuration settings.

• Memory map configuration settings.

• Monitor configuration settings.

Command File Command

FIL(E) CON(FIGURATION) LOA(D) filename

See Also

"To load an emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
File→Load Emulator Config... (ALT, F, E)

179

File→Save Emulator Config... (ALT, F, V)

Saves the current hardware configuration to a command file.

The following information is saved in the emulator configuration file:

• Hardware configuration settings.

• Memory map configuration settings.

• Monitor configuration settings.

Command File Command

FIL(E) CON(FIGURATION) STO(RE) filename

See Also

"To save the current emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
File→Save Emulator Config... (ALT, F, V)

180

File→Copy Destination... (ALT, F, P)

Names the listing file to which debugger information may be copied.

The contents of most of the debugger windows can be copied to the
destination listing file by choosing the Copy→Window command from the
window’s control menu.

The Symbol and Trace windows’ control menus provide the Copy→All
command for copying all of the symbolic or trace information to the
destination listing file.

This command opens a file selection dialog box from which you select the
name of the output list file. Output list files have the extension ".LST".

Command File Command

COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Copy Destination... (ALT, F, P)

181

File→Exit (ALT, F, X)

Exits the debugger.

Command File Command

QUI(T)

See Also

"To exit the debugger" in the "Starting and Exiting the Debugger" section of
the "Using the Debugger Interface" chapter.

File→Exit HW Locked (ALT, F, H)

Chapter 8: Menu Bar Commands
File→Exit (ALT, F, X)

182

File→Exit HW Locked (ALT, F, H)

Exits the debugger and locks the emulator hardware.

When the emulator hardware is locked, your user name and ID are saved in
the HP 64700 and other users are prevented from accessing it.

You can restart the debugger and resume your debug session after reloading
the symbolic information with the File→Load Object... (ALT, F, L) command.

If you have any breakpoints set when you exit the debugger, you will have to
reset the breakpoints when you restart the debugger. All breakpoints are
deleted when RTC is exited.

Command File Command

QUI(T) LOC(KED)

See Also

Settings→Communication... (ALT, S, C)

Chapter 8: Menu Bar Commands
File→Exit HW Locked (ALT, F, H)

183

File Selection Dialog Boxes

File selection dialog boxes are used with several of the debugger commands.
An example of a file selection dialog box is shown below.

File Name You can select the name of the file from the list box and
edit it in the text box.

List Files
of Type

Lets you choose the filter for files shown in the File Name
list box.

Directories You can select the directory from the list box. The
selected directory is shown above the list box.

Drives Lets you select the drive name whose directories are
shown in the Directories list box.

OK Selects the named file and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Help If this button is available, it opens a help window for
viewing the associated help information.

Chapter 8: Menu Bar Commands
File Selection Dialog Boxes

184

Execution→Run (F5), (ALT, E, U)

Runs the program from the current program counter address.

Command File Command

RUN

Chapter 8: Menu Bar Commands
Execution→Run (F5), (ALT, E, U)

185

Execution→Run to Cursor (ALT, E, C)

Runs from the current program counter address up to the Source window
line that contains the cursor.

This command sets a breakpoint at the cursor-selected source line and runs
from the current program counter address; therefore, it cannot be used when
programs are in target system ROM if you already have four hardware
breakpoints.

If the cursor-selected source line is not reached within the number of
milliseconds specified by StepTimerLen in the B3637B.INI file, a dialog box
appears from which you can cancel the command. When the Stop button is
chosen, program execution stops, the breakpoint is deleted, and the
processor continues RUNNING IN USER PROGRAM.

Command File Command

COM(E) address

See Also

"To run the program until the specified line" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run to Cursor (ALT, E, C)

186

Execution→Run to Caller (ALT, E, T)

Executes the user program until the current function returns to its caller.

Because this command determines the address at which to stop execution
based on stack frame data and object file function information, the following
restrictions are imposed:

• A function cannot properly return immediately after its entry point
because the stack frame for the function has not yet been generated.
Use the Step command to single-step the function before using the
Execution→Run to Caller (ALT, E, T) command.

• An assembly language routine cannot properly return, even if it follows C
function call conventions, because there is no function information in the
object file.

• An interrupt function cannot properly return because it uses a stack in a
different fashion from standard functions.

Command File Command

RET(URN)

See Also

"To run the program until the current function return" in the "Stepping,
Running, and Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run to Caller (ALT, E, T)

187

Execution→Run... (ALT, E, R)

Executes the user program starting from the specified address.

This command sets the processor status to RUNNING IN USER PROGRAM.

Note If you try to run from an address whose symbol is START, STA, RESET, or
RES (or any upper- or lower-case variation), the debugger instead runs from
the start address or reset address, respectively, because these are the
keywords used with the RUN command. To fix this problem, use START+0,
STA+0, RESET+0, or RES+0 to force the symbol to be evaluated as an
address.

Run Dialog Box

Choosing the Execution→Run... (ALT, E, R) command opens the following
dialog box:

Current PC Specifies that the program run from the current program
counter address.

Start Address Specifies that the program run from the transfer address

defined in the object file.

Chapter 8: Menu Bar Commands
Execution→Run... (ALT, E, R)

188

User Reset The emulator resets the processor (driving the "flying lead"
low); then releases reset, causing the processor to begin
executing at the reset address (0fffffff0). Note that the
reset address is truncated to 26 bits external to the
microprocessor.

Address Lets you enter the address from which to run.

Run Initiates program execution from the specified address,
then close the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

RUN
Executes the user program from the current program counter address.

RUN STA(RT)
Executes the user program from the transfer address defined in the object
file.

RUN RES(ET)
Drives the target reset line and begins executing from the contents of
exception vector 0.

RUN address
Executes the user program from the specified address.

See Also

"To run the program from a specified address" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run... (ALT, E, R)

189

Execution→Single Step (F2), (ALT, E, N)

Executes a single instruction or source line at the current program counter
address.

A single source line is executed when in the source only display mode, unless
no source is available or an assembly language program is loaded; in these
cases, a single assembly language instruction is executed.

When in the mnemonic mixed display mode, a single assembly language
instruction is executed.

During a single-step command, multiple instructions may be executed if the
instruction being stepped causes an instruction fault or task switch.

Command File Command

STE(P)

See Also

"To step a single line or instruction" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

"Unexpected Stepping Behavior" in the "Concepts" chapter.

Execution→Step Over (ALT, E, O)
Execution→Step... (ALT, E, S)

Chapter 8: Menu Bar Commands
Execution→Single Step (F2), (ALT, E, N)

190

Execution→Step Over (F3), (ALT, E, O)

Executes a single instruction or source line at the current program counter
except when the instruction or source line makes a subroutine or function
call, in which case the entire subroutine or function is executed.

This command is the same as the Execution→Single Step (ALT, E, N)
command except when the source line contains a function call or the
assembly instruction makes a subroutine call. In these cases, the entire
function or subroutine is executed.

Note The Execution→Step Over (ALT, E, O) command may fail in single-stepping
the source lines containing such loop statements as "while", "for", or
"do while" statements.

Command File Command

OVE(R)

See Also

"To step over a function" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Step Over (F3), (ALT, E, O)

191

Execution→Step... (ALT, E, S)

Single-steps the specified number of instructions or source lines, starting
from the specified address.

Single source lines are executed when in the source only display mode,
unless no source is available or an assembly language program is loaded; in
these cases, single assembly language instructions are executed.

Note During a single-step command, multiple instructions can be executed if the
instruction being stepped causes an instruction fault or task switch. See
Unexpected Stepping Behavior in the "Concepts" chapter.

When in the mnemonic mixed display mode, single assembly language
instructions are executed.

Note If you try to step from an address whose symbol is START or STA (or any
upper- or lower-case variation), the debugger instead steps from the start
address because these are the keywords used with the STEP and OVER
commands. To fix this problem, use START+0 or STA+0 to force the symbol
to be evaluated as an address.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

192

Step Dialog Box

Choosing the Execution→Step... (ALT, E, S) command opens the following
dialog box:

Current PC Specifies that stepping start from the current program
counter address.

Start Address Specifies that stepping start from the start address or
transfer address.

Address Lets you enter the address from which to single-step.

Count Indicates the step count. The count decrements by one for
every step and stops at 1.

Over If the source line to be executed contains a function call or
the assembly language instruction to be executed contains
a subroutine call, this option specifies that the entire
function or subroutine be executed.

Follow PC If you check the Follow PC box, stepping will provide more
detail because it will follow the PC for each step, and
update the Source window after each step. Leaving this
box unchecked speeds the stepping process; the steps will
be counted, but the content of the Source window will not
be updated until stepping is completed.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

193

Step Single-steps the specified number of instructions or source
lines, starting from the specified address.

Close Closes the dialog box.

Stop Stops single-stepping.

Command File Command

STE(P) count
Single-steps the specified number of instructions or source lines, starting
from the current program counter address.

STE(P) count address
Single-steps the specified number of instructions or source lines, starting
from the specified address.

STE(P) count STA(RT)
Single-steps the specified number of instructions or source lines, starting
from the transfer address defined in the object file.

OVE(R) count
Single-steps the specified number of instructions or source lines, starting
from the current program counter address. If an instruction or source line
makes a subroutine or function call, the entire subroutine or function is
executed.

OVE(R) count address
Single-steps the specified number of instructions or source lines, starting
from the specified address. If an instruction or source line makes a
subroutine or function call, the entire subroutine or function is executed.

OVE(R) count STA(RT)
Single-steps the specified number of instructions or source lines, starting
from the transfer address defined in the object file. If an instruction or
source line makes a subroutine or function call, the entire subroutine or
function is executed.

See Also

"To step multiple lines or instructions" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

194

Execution→Single Step (ALT, E, N)
Execution→Step Over (ALT, E, O)

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

195

Execution→Break (F4), (ALT, E, B)

Stop user program execution and break into the monitor.

This command can also be used to break into the monitor when the processor
is in the EMULATION RESET status.

Once the command has been completed, the processor transfers to the
RUNNING IN MONITOR status.

Command File Command

BRE(AK)

See Also

"To stop program execution" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Break (F4), (ALT, E, B)

196

Execution→Reset (ALT, E, E)

Resets the emulation microprocessor.

If a foreground monitor is being used, it will automatically be loaded when
this command is chosen.

While the processor is in the EMULATION RESET state, no display or
modification is allowed for the contents of target system memory or registers.
Therefore, before you can display or modify target system memory or
processor registers, you must use the Execution→Break (ALT, E, B)
command to break into the monitor.

Note If RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) command is
chosen, the emulation microprocessor may switch immediately from reset to
running in monitor, for example, to update the contents of a register window.

Command File Command

RES(ET)

See Also

"To reset the processor" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Reset (ALT, E, E)

197

Breakpoint→Set at Cursor (ALT, B, S)

Sets a breakpoint at the cursor-selected address in the Source window.

The breakpoint marker "BP" appears on lines at which breakpoints are set.

When a breakpoint is hit, program execution stops immediately before
executing the instruction or source code line at which the breakpoint is set.

A set breakpoint remains active until it is deleted.

There are two types of breakpoints available: software and hardware

Software breakpoints

Software breakpoints are handled by the Intel80386EX bond-out’s interrupt
facility. When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the bond-out’s
breakpoint interrupt instruction (which is different from INT 3).

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

Also, in order to successfully set a software breakpoint, the emulator must be
able to write to the memory location specified. Therefore, software
breakpoints cannot be set in target ROM. If the emulator discovers an
attempt to put a software breakpoint in target ROM, it will automatically
attempt to use a hardware breakpoint. If you already have four hardware
breakpoints, this will fail. You can, however, copy a target ROM memory
image into emulation memory and then use a software breakpoint.

Hardware breakpoints

Hardware breakpoints use the Intel80386EX bond-out’s breakpoint facility. It
shares the debug ’breakpoint’ registers with the breakpoint registers available
to the target system, so when hardware breakpoint registers are used by the
emulator, they are unavailable for use by the target system’s software. Any
attempt by the target system software to use the hardware breakpoint will
result in a break to the monitor.

There are four hardware breakpoints for the Intel80386EX.

Chapter 8: Menu Bar Commands
Breakpoint→Set at Cursor (ALT, B, S)

198

Hardware breakpoints are used automatically when the emulator attempts to
set a breakpoint and detects that the memory value did not change (probably
because it is in ROM).

The Breakpoint→Set at Cursor (ALT, B, S) command may cause BP markers
to appear at two or more addresses. This happens when a single instruction
is associated with two or more source lines. You can select the mnemonic
display mode to verify that the breakpoint is set at a single address.

Command File Command

BP SET address

See Also

"To set a breakpoint" in the "Using Breakpoints and Break Macros" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Set at Cursor (ALT, B, S)

199

Breakpoint→Delete at Cursor (ALT, B, D)

Deletes the breakpoint set at the cursor-selected address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints). Once the breakpoint is deleted, the original
instruction is replaced.

Command File Command

BP DEL(ETE) address

See Also

"To delete a single breakpoint" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint→Edit... (ALT, B, E)

Chapter 8: Menu Bar Commands
Breakpoint→Delete at Cursor (ALT, B, D)

200

Breakpoint→Set Macro... (ALT, B, M)

Sets a break macro immediately before the cursor-selected address in the
Source window.

Break macro lines are marked with the "BP" breakpoint marker, and the
corresponding addresses or line numbers are displayed in decimal format.

When a break macro is hit, program execution stops immediately before
executing the instruction or source code line at which the break macro is set.
Then, the commands associated with the break macro are executed. When a
"RUN" command is set as the last command in the break macro, the system
executes the break macro and resumes program execution.

The break macro remains active until it is deleted with the
Breakpoint→Delete Macro (ALT, B, L) command or the Breakpoint→Edit...
(ALT, B, E) command.

Because break macros use breakpoints, they cannot be set at addresses in
target system ROM.

Additional commands can be added to existing break macros as follows:

• When a source code line or disassembled instruction is cursor-selected,
the additional command is inserted at the top of the list of commands.

• When a macro command line is cursor-selected, the additional command
is inserted immediately following the cursor-selected command.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

201

Breakpoint Edit Dialog Box

Choosing the Breakpoint→Set Macro... (ALT, B, M) command opens the
following dialog box:

Address Displays the line number or address followed by a decimal
point and the line number for the new break macro.

Type Allows you to choose the type of break macro breakpoint
(Intel80386EX has only four hardware breakpoint
registers.):

Execution (E). A break occurs when the opcode at the
address is about to be executed. A software breakpoint is
used unless the address is in target ROM. In that case, a
hardware breakpoint register is used in the Intel80386EX
processor.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

202

Execution Hardware Only (EH). A break occurs when the
opcode at the address is about to be executed. Only
hardware breakpoints are used (that is, one of the four
hardware breakpoint registers in the Intel80386EX is used
to implement the breakpoint).

Write Byte (WB). A break occurs when the byte specified
by the address is written to. This is implemented by using
one of the hardware breakpoint registers in the
Intel80386EX processor.

Write Word (WW). A break occurs when the word (16 bits)
specified by the address is written to. This is implemented
by using one of the hardware breakpoint registers in the
Intel80386EX processor.

Write Dword (WD). A break occurs when the double word
(32 bits) specified by the address is written to. This is
implemented by using one of the hardware breakpoint
registers in the Intel80386EX processor.

Read/Write Byte (RB). A break occurs when the byte
specified by the address is read from or written to. This is
implemented by using one of the hardware breakpoint
registers in the Intel80386EX processor.

Read/Write Word (RW). A break occurs when the word (16
bits) specified by the address is read from or written to.
This is implemented by using one of the hardware
breakpoint registers in the Intel80386EX processor.

Add Macro Activates the Macro Command text box.

Macro
Command

Lets you specify the macro command to be added to the
break macro.

Set Inserts the specified macro command at the location
immediately preceding the specified source line or address,
or inserts the macro command at the location immediately
following the specified break macro line.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

203

Two or more commands can be associated with a break
macro by entering the first command and choosing Set;
then entering the second command and choosing Set; and
so on. Commands execute in the order of their entry.

Global Disable
and Delete All

Disables and deletes all current breakpoints and break
macros.

Current
Breakpoints

Displays the addresses and line numbers of the current
breakpoints and break macros. Allows you to select
breakpoints or break macros to be enabled, disabled, or
deleted.

If EN precedes the entry, the breakpoint is currently
enabled.

If DI precedes the entry, the breakpoint is disabled. That is,
it is not actually inserted into the code (or the hardware
register is not enabled. See below).

If two dashes (--) precede the breakpoint, the status is
unknown (probably because you used the
"Realtime→Monitor Intrusion→Disallowed" command).

Disable/Enable Disables and enables the selected breakpoint and break
macro.

Enabled breakpoints begin with EN in the Current
Breakpoints list box and show "BP" at the start of the line
in the Source window list.

Disabled breakpoints begin with DI in the Current
Breakpoints list box and show "bp" at the start of the line in
the Source window list.

Delete Deletes the selected breakpoints or break macros from the
Current Breakpoints list box.

Delete All Deletes all breakpoints and break macros from the Current
Breakpoints list box.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

204

Close Closes the dialog box.

Command File Command

BM SET breakaddress command
Sets a break macro at the break address where a breakpoint has already been
set.

BM SET EXE(C) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
associated breakpoint will be a software breakpoint unless the breakaddress
is in target system ROM. In that case, a hardware breakpoint is set using one
of the hardware breakpoint registers in the Intel80386EX processor.

BM SET ACC(ESS) BYT(E) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the byte is read from or written to.
This is implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET ACC(ESS) WOR(D) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the word is read from or written to.
This is implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET ACC(ESS) DWO(RD) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the double word is read from or written
to. This is implemented using one of the hardware breakpoint registers in
the Intel80386EX processor.

BM SET WRI(TE) BYT(E) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the byte is written to. This is
implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET WRI(TE) WOR(D) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the word is written to. This is
implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

205

BM SET WRI(TE) DWO(RD) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the double word is written to. This is
implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

See Also

"To set a break macro" in the "Using Breakpoints and Break Macros" section
of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

206

Breakpoint→Delete Macro (ALT, B, L)

Removes the break macro set at the cursor-indicated address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints) or break macro lines.

When a source code line is cursor-selected, this command removes the
breakpoint and all the macros commands set at the line.

When a break macro line is cursor-selected, this command removes the single
macro command at the line.

Command File Command

BM DEL(ETE) address

See Also

"To delete a single break macro" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint→Edit... (ALT, B, E)

Chapter 8: Menu Bar Commands
Breakpoint→Delete Macro (ALT, B, L)

207

Breakpoint→Edit... (ALT, B, E)

This feature lets you set, list, or delete breakpoints and break macros.
Breakpoints are always globally enabled on initial entry into the RTC
interface.

Breakpoint Edit Dialog Box

Choosing the Breakpoint→Edit... (ALT, B, E) command opens the following
dialog box:

Address Lets you specify the address at which to set a breakpoint or
a break macro.

Type Allows you to choose the type of breakpoint to cause a
break into the monitor: (Note that the Intel80386EX has
only four hardware breakpoint registers.)

Execution (E). A break occurs when the opcode at the
address is about to be executed. A software breakpoint is
used unless the address is in target ROM. In that case, a
hardware breakpoint register is used in the Intel80386EX
processor.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

208

Execution Hardware Only (EH). A break occurs when the
opcode at the address is about to be executed. Only
hardware breakpoints are used (that is, one of the four
hardware breakpoint registers in the Intel80386EX is used
to implement the breakpoint).

Write Byte (WB). A break occurs when the byte specified
by the address is written to. This is implemented by using
one of the hardware breakpoint registers in the
Intel80386EX processor.

Write Word (WW). A break occurs when the word (16 bits)
specified by the address is written to. This is implemented
by using one of the hardware breakpoint registers in the
Intel80386EX processor.

Write Dword (WD). A break occurs when the double word
(32 bits) specified by the address is written to. This is
implemented by using one of the hardware breakpoint
registers in the Intel80386EX processor.

Read/Write Byte (RB). A break occurs when the byte
specified by the address is read from or written to. This is
implemented by using one of the hardware breakpoint
registers in the Intel80386EX processor.

Read/Write Word (RW). A break occurs when the word (16
bits) specified by the address is read from or written to.
This is implemented by using one of the hardware
breakpoint registers in the Intel80386EX processor.

Read/Write Dword (RD). A break occurs when the double
word (32 bits) specified by the address is read from or
written to. This is implemented by using one of the
hardware breakpoint registers in the Intel80386EX
processor.

Add Macro When selected, this specifies that a break macro should be
included with the breakpoint.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

209

Macro
Command

Lets you specify the macro to be included with the
breakpoint.

Set Sets a breakpoint with or without a break macro at the
specified address.

Global Disable
and Delete All

When selected, all existing breakpoints are deleted (not
simply disabled), and no new breakpoints can be added.

Current
Breakpoints

Displays the addresses and line numbers of the current
breakpoints and break macros. Allows you to select the
breakpoints or break macros to be enabled, disabled, or
deleted.

If EN precedes the entry, the breakpoint is currently
enabled.

If DI precedes the entry, the breakpoint is disabled. That is,
it is not actually inserted into the code (or the hardware
register is not enabled. See below).

If two dashes (--) precede the breakpoint, the status is
unknown (probably because you used the
"Realtime→Monitor Intrusion→Disallowed" command).

Disable/Enable Disables or enables the selected breakpoint or breakpoint
macro in the Current Breakpoints list box.

Enabled breakpoints begin with EN in the Current
Breakpoints list box and show "BP" at the start of the line
in the Source window list.

Disabled breakpoints begin with DI in the Current
Breakpoints list box and show "bp" at the start of the line in
the Source window list.

Delete Deletes the selected breakpoints or break macros from the
Current Breakpoints list box.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

210

Delete All Deletes all the breakpoints and break macros from the
Current Breakpoints list box.

Close Closes the dialog box.

NOTE Whenever a file is loaded (via the "File→Load Object" command), all
breakpoints will be deleted. If you want to save your breakpoints, use the
"File→Save Debug..." command.

Command File Command

MOD(E) BKP(TBREAK) ON|OFF
Globally enables or disables the breakpoint mode.

BP SET address
Sets a new breakpoint at the specified address.

BP DEL(ETE) ALL
Deletes all breakpoints.

BP DEL(ETE) address
Deletes the breakpoint at the specified address.

BP ENA(BLE) address
Enables the breakpoint previously specified at the address.

BP DIS(ABLE) address
Disables the breakpoint at the address, but does not delete it.

BP SET EXE(C) address
Sets a software breakpoint at the specified address unless the address is in
target system ROM. In that case, a hardware breakpoint is set using one of
the hardware breakpoint registers in the Intel80386EX processor.

BP SET ACC(ESS) BYT(E) address
Sets a breakpoint at the address. The breakpoint ocurs when the byte is read
from or written to. This is implemented using one of the hardware
breakpoint registers in the Intel80386EX processor.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

211

BP SET ACC(ESS) WOR(D) address
Sets a breakpoint at the address. The breakpoint occurs when the word is
read from or written to. This is implemented using one of the hardware
breakpoint registers in the Intel80386EX processor.

BP SET ACC(ESS) DWO(RD) address
Sets a breakpoint at the address. The breakpoint occurs when the double
word is read from or written to. This is implemented using one of the
hardware breakpoint registers in the Intel80386EX processor.

BP SET WRI(TE) BYT(E) address
Sets a breakpoint at the address. The breakpoint occurs when the byte is
written to. This is implemented using one of the hardware breakpoint
registers in the Intel80386EX processor.

BP SET WRI(TE) WOR(D) address
Sets a breakpoint at the address. The breakpoint occurs when the word is
written to. This is implemented using one of the hardware breakpoint
registers in the Intel80386EX processor.

BP SET WRI(TE) DWO(RD) address
Sets a breakpoint at the address. The breakpoint occurs when the double
word is written to. This is implemented using one of the hardware
breakpoint registers in the Intel80386EX processor.

BM SET breakaddress command
Sets a break macro at the break address where a breakpoint has already been
set.

BM SET EXE(C) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
associated breakpoint will be a software breakpoint unless the breakaddress
is in target system ROM. In that case, a ha:rdware breakpoint is set using one
of the hardware breakpoint registers in the Intel80386EX processor.

BM SET ACC(ESS) BYT(E) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the byte is read from or written to.
This is implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET ACC(ESS) WOR(D) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the word is read from or written to.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

212

This is implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET ACC(ESS) DWO(RD) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the double word is read from or written
to. This is implemented using one of the hardware breakpoint registers in
the Intel80386EX processor.

BM SET WRI(TE) BYT(E) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the byte is written to. This is
implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET WRI(TE) WOR(D) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the word is written to. This is
implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

BM SET WRI(TE) DWO(RD) breakaddress command
Sets a break macro along with a breakpoint at the specified address. The
breakpoint and its macro occur when the double word is written to. This is
implemented using one of the hardware breakpoint registers in the
Intel80386EX processor.

See Also

"To enable or disable software breakpoints" to understand how to enable
breakpoints and the side-effects of doing so, in the "Setting the Hardware
Options" section of the "Configuring the Emulator" chapter.

"To disable a breakpoint" and "To list the breakpoints and break macros" in
the "Using Breakpoints and Break Macros" section of the "Debugging
Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

213

Variable→Edit... (ALT, V, E)

Displays or modifies the contents of the specified variable or copies it to the
WatchPoint window.

A dynamic variable can be registered as a watchpoint when the current
program counter is in the function in which the variable is declared. If the
program counter is not in this function, the variable name is invalid and an
error results.

Variable Edit Dialog Box

Choosing the Variable→Edit... (ALT, V, E) command opens the following
dialog box:

Variable Specifies the name of the variable to be displayed or
modified. The contents of the clipboard, usually a variable
selected from another window, automatically appears in
this text box.

Type Displays the type of the specified variable.

Value Displays the contents of the specified variable.

Chapter 8: Menu Bar Commands
Variable→Edit... (ALT, V, E)

214

Update Reads and displays the contents of the variable specified in
the Variable text box.

Modify Modifies the contents of the specified variable. Choosing
this button opens the Variable Modify Dialog Box, which
lets you edit the contents of the variable.

to WP Adds the specified variable to the WatchPoint window.

Close Closes the dialog box.

Command File Command

VARI(ABLE) variable TO data
Replaces the contents of the specified variable with the specified value.

See Also

"To display a variable" and "To monitor a variable in the WatchPoint window"
in the "Displaying and Editing Variables" section of the "Debugging Programs"
chapter.

"Symbols" in the "Expressions in Commands" chapter.

Chapter 8: Menu Bar Commands
Variable→Edit... (ALT, V, E)

215

Variable Modify Dialog Box

Choosing the Modify button in the Variable Edit dialog box opens the
following dialog box, where you enter the new value and choose the OK
button to confirm the new value.

Variable Shows the variable to be edited.

Type Indicates the type of the variable displayed in the Variable
field.

Value Lets you enter the new value of the variable.

OK Replaces the contents of the specified variable with the
specified value and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

See Also

"To edit a variable" in the "Displaying and Editing Variables" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Variable Modify Dialog Box

216

Trace→Function Caller... (ALT, T, C)

Traces the caller of the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores only the execution of the function entry point and
prestores execution states that occur before the function entry point. These
prestored states correspond to the function call statements and identify the
caller of the function.

When assembly language programs are used, you can specify the assembler
symbol for a subroutine instead of a C function name, and the prestored
states will show the instructions that called the subroutine.

Function Caller Trace Dialog Box

Choosing the Trace→Function Caller... (ALT, T, C) command opens the
following dialog box:

Function Lets you enter the function whose callers you want to trace.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) FUNC(TION) CAL(L) address

Chapter 8: Menu Bar Commands
Trace→Function Caller... (ALT, T, C)

217

See Also

"To trace callers of a specified function" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Caller... (ALT, T, C)

218

Trace→Function Statement... (ALT, T, S)

Traces execution within the specified function.

The function name can be selected from the another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores execution states in the function’s address range.

Because the analyzer is set up based on function information from the object
file, this command cannot be used to trace non-C functions.

Function Statement Trace Dialog Box

Choosing the Trace→Function Statement... (ALT, T, S) command opens the
following dialog box:

Function Lets you enter the function whose execution you want to
trace.

OK Traces within the specified function and closes the dialog
box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) FUNC(TION) STA(TEMENT) address

Chapter 8: Menu Bar Commands
Trace→Function Statement... (ALT, T, S)

219

See Also

"To trace execution within a specified function" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Statement... (ALT, T, S)

220

Trace→Variable Access... (ALT, T, V)

Traces accesses to the specified variable.

The variable name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

You can specify any of the external or static variables, or the variables having
a fixed address throughout the course of program execution.

The analyzer stores only accesses within the range of the variable and
prestores execution states that occur before the access. These prestored
states correspond to the statements that access the variable.

Variable Access Dialog Box

Choosing the Trace→Variable Access... (ALT, T, V) command opens the
following dialog box:

Variable Lets you enter the variable name.

OK Traces accesses to the specified variable and closes the
dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) VAR(IABLE) ACC(ESS) address

Chapter 8: Menu Bar Commands
Trace→Variable Access... (ALT, T, V)

221

See Also

"To trace accesses to a specified variable" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Variable Access... (ALT, T, V)

222

Trace→Edit... (ALT, T, E)

Edits the trace specification of the last trace command.

This command is useful for making modifications to the last entered trace
command, even if the analyzer was set up automatically as with the
Trace→Function or Trace→Variable commands.

Trace specifications are edited with Sequence Trace Setting dialog box.

Command File Command

TRA(CE) SAV(E) filename
Stores the current trace specification to a file.

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To edit a trace specification" in the "Setting Up Custom Trace Specifications"
section of the "Debugging Programs" chapter.

Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace→Edit... (ALT, T, E)

223

Trace→Trigger Store... (ALT, T, T)

Traces program execution as specified in the Trigger Store Trace dialog box.

You can enter address, data, and status values that qualify the state(s) that,
when captured by the analyzer, will be stored in the trace buffer or will
trigger the analyzer. See "Understanding Addresss, Data, and Status" for
information and hints on setting up the A:D:S fields.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

224

Trigger Store Trace Dialog Box

Choosing the Trace→Trigger Store... (ALT, T, T) command opens the
following dialog box:

Trigger This box groups the items that make up the trigger
condition.

NOT Specifies any state that does not match the Address, Data,
and Status values.

Address Specifies the address portion of the state qualifier.

End Address Specifies the end address of an address range.

Data Specifies the data portion of the state qualifier.

Status Specifies the status portion of the state qualifier.

trigger start Specifies that states captured after the trigger condition be
stored in the trace buffer.

trigger center Specifies that states captured before and after the trigger
condition be stored in the trace buffer.

trigger end Specifies that states captured before the trigger condition
be stored in the trace buffer.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

225

Store This box groups the items that make up the store condition.

OK Starts the specified trace and closes the dialog box.

Cancel Cancels the trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace dialog box. Trace specification files
have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a "Trigger Store" trace specification" in the "Setting Up Custom
Trace Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

226

Trace→Find Then Trigger... (ALT, T, D)

Traces program execution as specified in the Find Then Trigger Trace dialog
box.

This command lets you set up a two level sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stores (in the trace buffer) the states
that satisfy the Enable Store condition while searching for a state that
satisfies the Enable condition.

2 After the Enable condition has been found, the analyzer stores the states
that satisfy the Trigger Store condition while searching for a state that
satisfies the Trigger condition.

3 After the Trigger condition has been found, the analyzer stores the states
that satisfy the Store condition.

If any state during the sequence satisfies the Restart condition, the sequence
starts over.

You can enter address, data, and status values that qualify state(s) by setting
up pattern or range resources. These patterns and range resources are used
when defining the various conditions.

A trace is complete when the trace buffer is full.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

227

Find Then Trigger Trace Dialog Box

Choosing the Trace→Find Then Trigger... (ALT, T, D) command opens the
following dialog box:

The Sequence group box specifies a two term sequential trigger condition.
It also lets you specify store conditions during the sequence.

Enable Store Qualifies the states that get stored (in the trace buffer)
while searching for a state that satisfies the enable
condition.

Enable Specifies the condition that causes a transfer to the next
sequence level.

Trigger Store Qualifies the states that get stored while the analyzer
searches for the trigger condition.

Trigger Specifies the trigger condition.

Store Qualifies the states that get stored after the trigger
condition is found.

Restart Specifies the condition that restarts the sequence.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

228

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the Store
condition will be stored after the trigger. In this case, the
states that satisfy the Enable Store and Trigger Store
conditions will not appear in the trace.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the Enable
Store and Trigger Store conditions will be stored before the
trigger. In this case, states that satisfy the Store condition
will not appear in the trace.

Break on
Trigger

When selected, this option specifies that execution break
into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern or range in the
Pattern/Range list box opens the Trace Pattern Dialog Box
or the Trace Range Dialog Box, where you specify the
desired trace pattern or range.

Clicking the Sequence, Restart, Count, or Prestore buttons
causes the Condition Dialog Boxes to be opened. This
dialog box lets you select or combine patterns or ranges to
specify the condition.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

229

OK Starts the specified trace and closes the dialog box.

Cancel Cancels trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace or Find Then Trigger Trace dialog
boxes. Trace specification files have the extension ".TRC".

Save... Opens a file selection dialog box in which you specify a
name to identify a file containing the present trace
specification.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a "Find Then Trigger" trace specification" in the "Setting Up
Custom Trace Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

230

Trace→Sequence... (ALT, T, Q)

Traces program execution as specified in the Sequence Trace dialog box.

This command lets you set up a multilevel sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stays on sequence level 1 until the
primary or secondary branch condition is found. (If a state satisfies both
primary and secondary branch conditions, the primary branch is taken.)
Once the primary or secondary branch condition is found, the analyzer
transfers to the sequence level specified by the "to" button.

2 The analyzer stays at the next sequence level until its primary or
secondary branch condition is met; then, the analyzer transfers to the
sequence level specified by the "to" button.

3 When the analyzer reaches the sequence level specified in Trigger On,
the analyzer is triggered.

4 During the above described operation, the analyzer stores the states
specified in the Store text box.

The trace is complete when the trace buffer is full.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

231

Sequence Trace Dialog Box

Choosing the Trace→Sequence... (ALT, T, Q) command opens the following
dialog box:

The Sequence group box specifies primary and secondary branch conditions
for transferring from one sequence level to another. It also specifies store
conditions for each of the eight sequence levels.

Primary Branch Specifies the condition for transferring to the sequence
level specified in the "to" text box.

Secondary
Branch

Specifies the condition for transferring to the sequence
level specified in the "to" text box. Secondary branches are
used to do things like restart the sequence if a particular
state is found.

Store Specifies the states to be stored in the trace buffer at each
sequence level.

Page Toggles the display between sequence levels 1 through 4
and levels 5 through 8.

Trigger On Specifies the sequence level whose entry triggers the
analyzer. See the Sequence Number Dialog Box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

232

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the store
conditions will be stored after the trigger.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the store
conditions will be stored before the trigger.

Break on
Trigger

When selected, this option specifies that execution break
into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern or range in the
Pattern/Range list box opens the Trace Pattern Dialog Box
or the Trace Range Dialog Box, where you specify the
desired trace pattern or range.

Clicking the Primary Branch, Secondary Branch, Store,
Count, or Prestore buttons causes the Condition Dialog
Boxes to be opened. This dialog box lets you select or
combine patterns or ranges to specify the condition.

OK Starts the specified trace and closes the dialog box.

Cancel Cancels trace setting and closes the dialog box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

233

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from any
of the trace setting dialog boxes. Trace specification files
have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting file.

See Also

"To set up a "Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

234

Trace→Until Halt (ALT, T, U)

Traces program execution until the Trace→Halt (ALT, T, H) command is
chosen.

This command is useful in tracing execution that leads to a processor halt or
a break to the background monitor. Before executing the program, choose
the Trace→Until Halt (ALT, T, U) command. Then, run the program. After
the processor has halted or broken into the background monitor, choose the
Trace→Halt (ALT, T, H) command to stop the trace. The execution that led
up to the break or halt will be displayed.

Command File Command

TRA(CE) ALW(AYS)

See Also

"To trace until the command is halted" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Until Halt (ALT, T, U)

235

Trace→Halt (ALT, T, H)

Stops a running trace.

This command stops a currently running trace whether the trace was started
with the Trace→Until Halt (ALT, T, U) command or another trace command.

As soon as the analyzer stops the trace, stored states are displayed in the
Trace window.

Command File Command

TRA(CE) STO(P)

See Also

"To stop a running trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Halt (ALT, T, H)

236

Trace→Again (F7), (ALT, T, A)

Traces program execution using the last trace specification stored in the
HP 64700.

If you haven’t entered a trace command since you started the debugger, the
last trace specification stored in the HP 64700 may be a trace specification
set up by a different user; in this case, you cannot view or edit the trace
specification.

Command File Command

TRA(CE) AGA(IN)

See Also

"To repeat the last trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Again (F7), (ALT, T, A)

237

Condition Dialog Boxes

Choosing the buttons associated with enable, trigger, primary branch,
secondary branch, store, or prestore conditions opens the following dialog
box:

Choosing the button associated with the count condition opens the following
dialog box:

no state No state meets the specified condition.

any state Any state meets the specified condition.

time The analyzer counts time for each state stored in the trace.

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

238

state This group box lets you qualify the state that will meet the
specified condition. You can qualify the state as one of the
patterns "a" through "h," the "range," or the "arm," or you
can qualify the state as a combination of the patterns,
range, or arm by using the interset or intraset operators.

a b c d e f g h The patterns that qualify states by identifying the
address, data, and/or status values.

The values for a pattern are specified by selecting one
of the patterns in the Pattern/Range list box and
entering values in the Trace Pattern Dialog Box.

range Identifies a range of address or data values.

The values for a range are specified by selecting the
range in the Pattern/Range list box and entering values
in the Trace Range Dialog Box.

not range Identifies all values not in the specified range.

arm Identifies the condition that arms (in other words,
activates) the analyzer. The analyzer can be armed by
an input signal on the BNC port.

or/nor You can combine patterns within the set1 or set2
group boxes with these logical operators.

You can create the AND and NAND operators by
selecting NOT when defining patterns and applying
DeMorgan’s law (the / character is used to represent a
logical NOT):

AND A and B = /(/A or /B) NOR
NAND /(A and B) = /A or /B OR

OR/AND You can combine patterns from the set1 and set2
group boxes with these logical operators.

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

239

Count Appearing in Trace Condition dialog boxes, this value
specifies the number of occurrences of the state that
will satisfy the condition.

OK Applies the state qualifier to the specified condition and
closes the dialog box.

Cancel Closes the dialog box.

See Also

"To set up a "Find Then Trigger" trace specification", and "To set up a
"Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

240

Trace Pattern Dialog Box

Selecting one of the patterns in the Pattern/Range list box opens the
following dialog box:

NOT Lets you specify all values other than the address, data,
and/or status values specified.

Address Lets you enter the address value for the pattern.

Data Lets you enter the data value for the pattern.

Status Lets you select the status value for the pattern.

Direct Lets you enter a status value other than one of the
predefined status values.

Clear Clears the values specified for the pattern.

OK Applies the values specified for the pattern, and closes the
dialog box.

Chapter 8: Menu Bar Commands
Trace Pattern Dialog Box

241

Cancel Closes the dialog box.

See Also

"To set up a "Find Then Trigger" trace specification", and "To set up a
"Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace Pattern Dialog Box

242

Trace Range Dialog Box

Selecting the range at the bottom of the Pattern/Range list box opens the
following dialog box:

Address Selects a range of address values.

Data Selects a range of data values.

Minimum Lets you enter the minimum value for the range.

Maximum Lets you enter the maximum value for the range.

OK Applies the values specified for the range, and closes the
dialog box.

Cancel Closes the dialog box.

Clear Clears the values specified for the range.

Chapter 8: Menu Bar Commands
Trace Range Dialog Box

243

See Also

"To set up a "Find Then Trigger" trace specification", and "To set up a
"Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace Range Dialog Box

244

Sequence Number Dialog Box

Choosing the buttons associated with "to" or Trigger On opens the following
dialog box:

1-8 These options specify the sequence level.

OK Applies the selected sequence level and closes the dialog
box.

Cancel Closes the dialog box.

See Also

"To set up a "Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Sequence Number Dialog Box

245

RealTime→Monitor Intrusion→Disallowed (ALT, R,
T, D)

Activates the real-time mode.

When the user program is running in real-time mode, no command that
would normally cause temporary suspension of program execution is allowed.
Also, the system hides:

• The Register window.

• Target system memory in the Memory window.

• Target system I/O locations in the I/O window.

• Target system memory variables in the WatchPoint window.

• Target system memory in the Source window.

While the processor is in the RUNNING REALTIME IN USER PROGRAM
state, no display or modification is allowed for the contents of target system
memory or registers. Therefore, before you can display or modify target
system memory or processor registers, you must use the Execution→Break
(ALT, E, B) command to stop user program execution and break into the
monitor.

Command File Command

MOD(E) REA(LTIME) ON

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D)

246

RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

Deactivates the real-time mode.

Commands that cause temporary breaks to the monitor during program
execution are allowed.

Command File Command

MOD(E) REA(LTIME) OFF

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

247

RealTime→I/O Polling→ON (ALT, R, I, O)

Enables access to I/O.

Command File Command

MOD(E) IOG(UARD) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→I/O Polling→ON (ALT, R, I, O)

248

RealTime→I/O Polling→OFF (ALT, R, I, F)

Disables access to I/O.

When polling is turned OFF, values in the I/O window are updated on entry to
the monitor. When monitor intrusion is not allowed during program
execution, the I/O window is not updated and contents are replaced by
dashes (-).

Command File Command

MOD(E) IOG(UARD) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→I/O Polling→OFF (ALT, R, I, F)

249

RealTime→Watchpoint Polling→ON (ALT, R, W, O)

Turns ON polling to update values displayed in the WatchPoint window.

When polling is turned ON, temporary breaks in program execution occur
when the WatchPoint window is updated.

Command File Command

MOD(E) WAT(CHPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Watchpoint Polling→ON (ALT, R, W, O)

250

RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

Turns OFF polling to update values displayed in the WatchPoint window.

When polling is turned OFF, values in the WatchPoint window are updated
on entry to the monitor. When monitor intrusion is not allowed during
program execution, the WatchPoint window is not updated and contents are
replaced by dashes (-).

Command File Command

MOD(E) WAT(CHPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

251

RealTime→Memory Polling→ON (ALT, R, M, O)

Turns ON polling to update target memory values displayed in the Memory
window.

When polling is turned ON, temporary breaks in program execution occur
when target system memory locations in the Memory window are updated.
When monitor intrusion is not allowed during program execution, the
contents of target memory locations are replaced by dashes (-).

Also, when polling is turned ON, you can modify the addresses displayed or
contents of memory locations by double-clicking on the address or value,
using the keyboard to type in the new address or value, and pressing the
Enter key.

Command File Command

MOD(E) MEM(ORYPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Memory Polling→ON (ALT, R, M, O)

252

RealTime→Memory Polling→OFF (ALT, R, M, F)

Turns OFF polling to update target memory values displayed in the Memory
window.

When polling is turned OFF, values in the Memory window are updated on
entry to the monitor.

Also, when polling is turned OFF, you cannot modify the addresses displayed
or contents of memory locations by double-clicking on the address or value.

Command File Command

MOD(E) MEM(ORYPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Memory Polling→OFF (ALT, R, M, F)

253

Settings→Emulator Config→Hardware... (ALT, S, E,
H)

Specifies the emulator configuration.

Hardware Config Dialog Box

Choosing the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command opens the following dialog box:

CLK2 Frequency
> 42 MHz

Specifies whether one wait state should be added for
accesses to memory mapped into 4-Mbyte SIMMs. Note
that CLK2 is the oscillator frequency to the Intel80386EX.
It is twice the frequency of the usually-quoted value. For
example, a "20 MHz Intel80386EX" has a CLK2 of 40 MHz.

Enable Target
Interrupts

Enables or disables target interrupts. If interrupts are
disabled, no interrupts (INT or NMI) are passed to the
processor. If enabled, interrupts are passed when
executing user code or when using the foreground monitor.
In any case, when using the background monitor,
interrupts will be ignored while in the monitor.

Enable Software
Breakpoints

Enables or disables software breakpoints. If disabled, you
cannot set any breakpoints. If enabled, you can set

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

254

software breakpoints. If software breakpoints are set, the
emulator will take a longer time to leave the RESET state
because it must break into the monitor to enable the
software breakpoints each time it leaves the RESET state.

Enable Break on
Write to ROM

Enables or disables breaks to the monitor when the user
program writes to memory mapped as ROM.

Enable
Execution
Trace
Messages

Enables or disables branch trace messages and task switch
messages:
If enabled, every time the processor does a branch, it will
emit the target address of the branch. See Understanding
Intel80386EX Analysis for more information about how to
use branch trace messages.
If enabled, any task switch will emit a task switch message
telling you what the old task was and what the new task is.

Enable
Foreground
Monitor Traced
as User

Enables or disables tracing when execution is in the
foreground monitor. When using a foreground monitor
with this selected, all foreground monitor cycles will be
captured in the trace memory by the emulation-bus
analyzer. This is useful when you are having problems with
an interrupt routine and you want to trace that routine
even if it occurs during execution in the foreground
monitor.
If this is not selected, and you have chosen
Settings→Extended→Trace Cycles→User, the analyzer
will capture nothing between the time the foreground
monitor is entered and the time you begin a run of your
user program again. This prevents capture of interrupt
routines executed while in the foreground monitor. Use
this to conserve space in the trace memory for capture of
target program execution.
When using the background monitor, this has no effect.

OK Stores the current modification and closes the dialog box.

Cancel Cancels the current modification and closes the dialog box.

Apply Loads the configuration settings into the emulator.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

255

Command File Command

CON(FIG) FAS(TCLOCK) ENA(BLE)

CON(FIG) FAS(TCLOCK) DIS(ABLE)

CON(FIG) INT(RS) ENA(BLE)

CON(FIG) INT(RS) DIS(ABLE)

CON(FIG) WRR(OM) ENA(BLE)

CON(FIG) WRR(OM) DIS(ABLE)

CON(FIG) BKP(TS) ENA(BLE)

CON(FIG) BKP(TS) DIS(ABLE)

CON(FIG) EMS(GS) ENA(BLE)

CON(FIG) EMS(GS) DIS(ABLE)

CON(FIG) MON(ACCESSES) ENA(BLE)

CON(FIG) MON(ACCESSES) DIS(ABLE)

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

CON(FIG) STA(RT)
Starts the configuration option command section.

CON(FIG) END
Ends the configuration option command section.

See Also

"Setting the Hardware Options" in the "Configuring the Emulator" chapter.

"Tracing Program Execution" in the "Debugging Programs" chapter for useful
combinations of the Settings→Extended→Trace Cycles command and the
Enable Foreground Monitor Traced as User selection.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

256

Settings→Emulator Config→Memory Map... (ALT, S,
E, M)

Maps memory ranges.

Up to eight ranges of memory can be mapped, and the resolution of mapped
ranges is 256 bytes (that is, the memory ranges must begin on 256-byte
boundaries and must be at least 256 bytes in length).

You can map ranges as emulation RAM, emulation ROM, target system RAM,
target system ROM, or as guarded memory.

Guarded memory accesses always cause emulator execution to break into the
monitor program.

Write transactions by user code to locations mapped as ROM (whether
emulation ROM or target ROM) will cause emulator execution to break into
the monitor program if you have selected "Enable Break on Write to ROM" in
the Emulator Configuration dialog box.

Writes to emulation ROM will modify memory. Writes to target RAM that has
been mapped as ROM will also modify memory.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

257

Memory Map Dialog Box

Choosing the Settings→Emulator Config→Memory Map... (ALT, S, E, M)
command opens the following dialog box:

Start Specifies the starting address of the address range to be
mapped.

End Specifies the end address of the address range to be
mapped.

Type Lets you select the memory type of the specified address
range.

Use target RDY Specifies that emulation memory accesses in the range be
synchronized to the target system RDY signal.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

258

Use dual-ported
memory

Specifies that this memory range will be placed in the 8K of
dual-ported memory. Note that you can only map one
address range to this memory. RTC can access this
memory without breaking into the monitor when the
processor is running and not in the HALT or SHUTDOWN
state. If the processor is in the HALT or SHUTDOWN
state, however, dual-port memory cannot be accessed. In
that case, the emulator will break into the monitor to read
the memory. To prevent the break into the monitor in this
case, choose Realtime→Monitor Intrusion→Disallowed.

Apply Maps the address range specified in the Define Map Term
group box.

Default Type Specifies the type of unmapped memory.

Current Map Lists currently mapped ranges.

Available Indicates the amount of emulation memory available.

Delete Deletes the address range selected in the Current Map list
box.

Delete All Deletes all of the address ranges in the Current Map list
box.

Close Closes the dialog box.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

259

Command File Command

MAP addressrange mem_type attributes
Maps the specified address range with the specified memory type. When
mapping emulation memory ranges, the attributes can be a comma-separated
list including:

dp map the address range to dual-port memory.

trdy memory accesses in the range will be synchronized to the
target system READY# signal.

MAP OTH(ER) mem_type
Specifies the type of the specified non-mapped memory area.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MAP STA(RT)
Starts the memory mapping command section.

MAP END
Ends the memory mapping command section.

See Also

"Mapping Memory" in the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

260

Settings→Emulator Config→Monitor... (ALT, S, E, O)

Selects the type of monitor program and other monitor options.

Monitor Config Dialog Box

Choosing the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command opens the following dialog box:

Monitor Type Lets you choose between a background monitor and a
foreground monitor.

Monitor
Address

Specifies the starting address of the foreground monitor
program. The address must reside on a 16-Kbyte boundary
(in other words, a multiple of 4000H) and must be
specified in hexadecimal. In order for the foreground
monitor to run in real mode, the base address must be
limited to 000fc000 hex. Higher addresses can be selected
if the target program always runs in protected mode.
However, any attempt to break before protected mode is
enabled will result in the background monitor being used
(target interrupts will be blocked).

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Monitor... (ALT, S, E, O)

261

Monitor
Selector

Selects the GDT descriptor for the foreground monitor
code segment. The foreground monitor is interruptable and
is designed to run in both real and protected modes based
on the current state of the processor. In order to run in
protected mode, a GDT entry must be reserved to define
the code segment for the monitor. The specified value
must be a multiple of 8, greater than 0 and less than the
limit defined in GDTR.

Monitor Cycles
Use Target RDY

Specifies whether monitor cycles should be synchronized
to the target system (in other words, whether the
emulation and target system READY# should be
interlocked on accesses to the monitor memory block).

Load Custom
Monitor

Specifies whether the default foreground monitor (resident
in the emulator firmware) or a custom monitor should be
used.

Monitor File
Name

When using a customized foreground monitor program, this
text box lets you enter the name of the object file. An
example foreground monitor is provided with the debugger
in the C:\HP\RTC\I386EX\MONITOR directory (if
C:\HP\RTC\I386EX was the installation path chosen when
installing the debugger software). The file is named
I386EX.ASM.

The foreground monitor is automatically loaded after each
Execution→Reset (ALT, E, E) command.

Browse... Opens a file selection dialog box from which you can select
the foreground monitor object file to be loaded.

OK Modifies the monitor configuration as specified and closes
the dialog box.

Cancel Cancels the monitor configuration and closes the dialog
box.

Apply Loads the configuration settings into the emulator.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Monitor... (ALT, S, E, O)

262

Command File Command

MON(ITOR) TYP(E) FOR(EGROUND)
Selects the foreground monitor.

MON(ITOR) TYP(E) BAC(KGROUND)
Selects the background monitor.

MON(ITOR) ADD(RESS) address
Specifies the monitor’s base address.

MON(ITOR) SEL(ECTOR) selector
Specifies the monitor’s selector.

MON(ITOR) TRD(Y) ENA(BLE)
Enables synchronization of monitor cycles to the target system (that is,
interlock the emulation and target system RDY on accesses to the monitor
memory block).

MON(ITOR) TRD(Y) DIS(ABLE)
Disables synchronization of monitor cycles to the target system.

MON(ITOR) FIL(ENAME) NON(E)
Specifies using the built-in foreground monitor.

MON(ITOR) FIL(ENAME) file_name
Names the foreground monitor object file.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MON(ITOR) STA(RT)
Starts the monitor option command section.

MON(ITOR) END
Ends the monitor option command section.

See Also

"Selecting the Type of Monitor" in the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Monitor... (ALT, S, E, O)

263

Settings→Emulator Config→Address Translation...
(ALT, S, E, A)

Choosing the Settings→Emulator Config→Address Translation... (ALT, S, E,
A) command opens the following dialog box:

Page translations
required

Specifies that paging is used by your target system;
therefore, any virtual-to-physical translation will need to
traverse the page tables.

HP strongly recommends you not use this unless your
target system uses paging because your system
performance will be improved if the page tables do not
need to be traversed every time a translation occurs.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

264

Dynamic
(always break
to determine
translations)

Specifies that the emulator will temporarily break from
execution of your target program into the monitor to do a
translation. With this selection, the translation will always
be accurate for the current state of the processor and the
current GDT (if in protected mode).

Choose "Dynamic" if your GDT tables change frequently.
The only negative aspect of making this choice is that you
cannot set up the analyzer or modify and display memory
using protected-mode addresses when the processor is
RESET or in real mode. You must use physical addresses
in these cases.

Static (cache
translations on
OK or Apply)

Specifies that cached translations will be used, and that the
source for the cache will be read from the Intel80386EX
when the OK or Apply button is pressed. The "Caching
Options", below, will be consulted to determine the
location of the GDT and page tables.

Static (cache
translations after
every file load)

Specifies that cached translations will be used, and that the
source for the cache is from an object file. When a file is
loaded, the cache will be updated. The "Caching Options",
below, will be consulted to determine the location of the
GDT and page tables within the absolute file. Note that
when this is chosen, the current translation scheme is used
until the next File→Load Object... command is given. For
example, if the mode is "dynamic" when this is chosen,
address translations will continue to be dynamic until the
next successful File→Load Object... command.

Caching Options

Use current
processor
register values

Specifies that the current register values for GDTR, CR0,
and CR3 are read, then their values are used to cache GDT
and LDT tables as well as page tables.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

265

Use GDT
base/limit stored
in absolute file

Specifies that the GDT location is stored in the absolute file
and is marked as such. Some builders provide this data
and some do not. If you try this and fail, use the next
option.

Use GDT
base/limit
specified below

Specifies that the GDT address and size will be taken from
the values in the edit boxes below:

GDT base address Specifies the base address of the GDT.
Note that this address must be a linear address (not
virtual).

GDT limit Specifies the limit of the GDT; it must be a
multiple of 8 minus 1 (bytes). For example, if there were
four entries in the GDT, the value would be 31 (01F);
(8*4)-1.

Command File Command

ADD(RTRAN) PAG(ING) ON
Specify that paging is enabled, so page tables must be traversed in order to
translate linear (and virtual) addresses to physical.

ADD(RTRAN) PAG(ING) OFF
Specify that paging is disabled.

ADD(RTRAN) MET(HOD) DYN(AMIC)
Specify that dynamic address translations should be used.

ADD(RTRAN) MET(HOD) STATICOKAY
Specify that static address translations should be used, and cache the GDT
and page tables immediately.

ADD(RTRAN) MET(HOD) STATICFILE
Specify that static address translations should be used, and cache the GDT
and page tables whenever a file is loaded into the emulator.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

266

ADD(TRAN) CAC(HE) CUR(RENT)
Specify that the current register values for GDTR, CR0 and CR3 are read, and
then their values are used to cache GDT and LDT tables as well as page
tables.

ADD(RTRAN) CAC(HE) FROMOMF
Specify that when caching the GDT, the base and limit of the GDT is to be
taken from the OMF386 file loaded into the emulator.

ADD(TRAN) CAC(HE) FROMVAL
Specify that the GDT address and size will be taken from the values specified
in "ADDRTRAN GDTBASE base" and "ADDRTRAN GDTLIMIT limit", and in
"ADDRTRAN PDBASE base" (if applicable).

ADD(RTRAN) GDTBASE base
Specify that when caching the GDT, the address of the GDT is "base".

ADD(RTRAN) GDTLIMIT limit
Specify that when caching the GDT, the limit of the GDT is "limit".

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

ADD(RTRAN) STA(RT)
Starts the address translation command section.

ADD(RTRAN) END
Ends the address translation command section.

See Also

"Selecting how Address Translations work" in the "Configuring the Emulator"
chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

267

Settings→Communication... (ALT, S, C)

Choosing this command opens the RTC Emulation Connection Dialog Box
which lets you identify and set up the communication channel between the
personal computer and the HP 64700.

RTC Emulation Connection Dialog Box

Choosing the Settings→Communication... (ALT, S, C) command opens the
following dialog box:

Current Connection Status

This part of the dialog box shows the current
communication settings.

RTC Core Version Information

Displays software version information.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

268

New Emulator Connection Setup

Transport
Selection

Lets you choose the type of connection to be made to the
HP 64700. Double-clicking causes the current connection
to be tried with the given transport. Single-clicking selects
the transport for use with the Setup button.

User Name This name tells the HP 64700 and other users who you are.
When other users attempt to access the HP 64700 while
you are using it or while it is locked, a message tells them
you’re using it.

User ID Another method of identifying yourself to the HP 64700
and other users. This is primarily useful in a mixed UNIX
and MS-DOS environment; when a UNIX user tries to
unlock an emulator, the user ID is used to look into the
/etc/passwd entry on the UNIX host for the user name.

If your HP 64700 is on the LAN, we recommend that you
change User Name and User ID so that other users can
easily tell if an emulator is in use and by whom. Also, if you
don’t change the User Name/ID from the defaults, the
File→Exit HW Locked (ALT, F, H) command has no effect
because all users are identical.

Setup Opens a transport-specific dialog box which usually allows
you to change the address and unlock the emulator

In the LAN Setup dialog boxes, enter the IP address or
network name of the HP 64700.

In the RS232C Setup dialog box, select the baud rate and
the name of the port (for example, COM1, COM2, etc.) to
which the HP 64700 is connected.

In the HP-RS422 Setup dialog box, select the baud rate and
specify the I/O address you want to use for the HP 64037
card. The I/O address must be a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict
with other cards in your PC.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

269

The Connect button in any of these Setup dialog boxes
starts the debugger with the specified communication
settings.

Close Either closes the Real-Time C Debugger, if the current
connection failed, or simply closes the dialog box.

The Real-Time C Debugger does not allow you to change connection or
transport information without leaving the debugger and reentering it.
However, any changes you make will be put in the .INI file and take effect the
next time you enter the debugger (assuming that you do not override the .INI
information on the command line).

The command line options for connection and transport (-E and -T) take
precedence over the values in the .lNI file.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

270

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B,
O)

Specifies that the analyzer trigger signal be driven on the BNC port.

Selecting the emulator BNC port for output enables the trigger signals to be
fed to external devices (for example, logic analyzers) during tracing.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

The BNC’s drivers can drive 50 ohm loads. The following is a logical diagram
of the BNC connection. The physical implementation and values of resistors
are not exact. This diagram is just to help you understand the BNC interface:

When a trace starts, it stops driving the output (so if nothing else is driving
the line, it will fall low due to the 500 ohm pull-down resistor).

When the trigger point is found, the BNC starts driving the output high. It
will stay high until the start of the next trace.

Command File Command

MOD(E) BNC OUT(PUT_TRIGGER)

Chapter 8: Menu Bar Commands
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)

271

See Also

"To output the trigger signal on the BNC port" in the "Setting Up the BNC
Port" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)

272

Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

Allows the analyzer to receive an arm signal from the BNC port.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer. The internal analyzer will arm (or enable)
on a positive edge TTL signal.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

You can use the arm condition when setting up custom trace specifications
with the Trace→Find Then Trigger... (ALT, T, D) or Trace→Sequence...
(ALT, T, Q) commands. For example, you can trigger on the arm condition
or enable the storage of states on the arm condition. The "arm" condition
may be selected in "set2" of the Trace Condition or Count Condition dialog
boxes.

The BNC port is internally terminated with about 500 ohms; if using a 50 ohm
driver, use an external 50 ohm termination (such as the HP 10100C 50 Ohm
Feedthrough Termination) to reduce bouncing and possible incorrect
triggering.

Command File Command

MOD(E) BNC INP(UT_ARM)

See Also

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) for a logical
schematic of the BNC interface.

"To receive an arm condition input on the BNC port" in the "Setting Up the
BNC Port" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

273

Settings→Font... (ALT, S, F)

Selects the fonts used in the debugger windows.

Font Dialog Box

Choosing the Settings→Font... (ALT, S, F) command opens the following
dialog box:

Font Lets you select the font to be used in the Real-Time C
Debugger interface. The "T" shaped icon indicates a
TrueType font.

Font Style Lets you select the typeface, for example, regular, bold,
italic, etc.

Size Lets you select the size of the characters.

Sample Shows you what the selected font looks like.

OK Sets the font, and closes the dialog box.

Cancel Cancels font setting, and closes the dialog box.

Chapter 8: Menu Bar Commands
Settings→Font... (ALT, S, F)

274

See Also

"To change the debugger window fonts" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Settings→Tabstops... (ALT, S, T)

Sets the number of spaces between tab stops.

Source Tab Dialog Box

Choosing the Settings→Tabstops... (ALT, S, T) command opens the following
dialog box:

Tab width in
source window
display

Enter the number of spaces between tab stops. This also
affects the tab width for source lines in the Trace window.
The number must be between 1 and 20.

OK Sets the tab stops, and closes the dialog box.

Cancel Cancels tab stop setting, and closes the dialog box.

See Also

"To set tab stops in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Settings→Tabstops... (ALT, S, T)

275

Settings→Symbols→Case Sensitive→ON (ALT, S, S,
C, O)

Symbol database search is case sensitive.

Command File Command

MOD(E) SYM(BOLCASE) ON

See Also

Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F)

Settings→Symbols→Case Sensitive→OFF (ALT, S, S,
C, F)

Symbol database search is not case sensitive.

If there are case conflicts (for example, FOO and foo), no warning is given,
and you cannot predict which symbol will be used. The symbol that is used
depends on what type of symbols FOO and foo are and how they were input
by the symbol section of the object file.

Command File Command

MOD(E) SYM(BOLCASE) OFF

See Also

Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

Chapter 8: Menu Bar Commands
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

276

Settings→Extended→Trace Cycles→User (ALT, S, X,
T, U)

Traces foreground emulation microprocessor operation.

This is the normal setting.

Command File Command

MOD(E) TRA(CECLOCK) USE(R)

See Also

Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)

Settings→Extended→Trace Cycles→Monitor (ALT, S,
X, T, M)

Traces background emulation microprocessor operation.

This is rarely a useful setting when debugging programs.

Command File Command

MOD(E) TRA(CECLOCK) BAC(KGROUND)

See Also

Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)

Chapter 8: Menu Bar Commands
Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)

277

Settings→Extended→Trace Cycles→Both (ALT, S, X,
T, B)

Traces both foreground and background emulation microprocessor operation.

Command File Command

MOD(E) TRA(CECLOCK) BOT(H)

See Also

Settings→Extended→Trace Cycles→User (ALT, S, X, T, U)
Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)

Chapter 8: Menu Bar Commands
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B)

278

Settings→Extended→Load Error Abort→ON (ALT, S,
X, L, O)

An error during an object file or memory load causes an abort.

Normally, when an error occurs during an object file or memory load, you
want the load to stop so that you can fix whatever caused the error.

Command File Command

MOD(E) DOW(NLOAD) ERR(ABORT)

See Also

Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F)

Settings→Extended→Load Error Abort→OFF (ALT,
S, X, L, F)

An error during an object file or memory load does not cause an abort.

If you expect certain errors during an object file or memory load, for
example, if part of the file is located at "guarded" memory or "target ROM,"
you can choose this command to continue loading in spite of the errors.

Command File Command

MOD(E) DOW(NLOAD) NOE(RRABORT)

See Also

Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O)

Chapter 8: Menu Bar Commands
Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O)

279

Settings→Extended→Source Path Query→ON (ALT,
S, X, S, O)

You are prompted for source file paths.

When the debugger cannot find source file information for the Source or
Trace windows, it may prompt you for source file paths, depending on the
MODE SOURCE setting.

Command File Command

MOD(E) SOU(RCE) ASK(PATH)

See Also

Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F)

Settings→Extended→Source Path Query→OFF (ALT,
S, X, S, F)

You are not prompted for source file paths.

You can turn off source path prompting, for example, to avoid annoying
dialog interactions when tracing library functions for which no source files
are available.

Command File Command

MOD(E) SOU(RCE) NOA(SKPATH)

See Also

Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)

Chapter 8: Menu Bar Commands
Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)

280

Window→Cascade (ALT, W, C)

Arranges, sizes, and overlaps windows.

Windows are sized, evenly, to be as large as possible.

Window→Tile (ALT, W, T)

Arranges and sizes windows so that none are overlapped.

Windows are sized evenly.

Window→Arrange Icons (ALT, W, A)

Rearranges icons in the Real-Time C Debugger window.

Icons are distributed evenly along the lower edge of the Real-Time C
Debugger window.

Chapter 8: Menu Bar Commands
Window→Cascade (ALT, W, C)

281

Window→1-9 (ALT, W, 1-9)

Opens the window associated with the number.

The nine most recently opened windows appear in the menu list. If the
window you wish to open is not in the list, choose the Window→More
Windows... (ALT, W, M) command.

Windows are closed just as are ordinary MS Windows, that is, by opening the
control menu and choosing Close or by pressing CTRL+F4.

For details on each of the debugger windows, refer to the "Debugger
Windows" section in the "Concepts" chapter.

Command File Command

DIS(PLAY) window-name
Opens the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers", use "REG".

ICO(NIC) window-name
Closes the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers", use "REG".

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Window→1-9 (ALT, W, 1-9)

282

Window→More Windows... (ALT, W, M)

Presents a list box from which you can select the window to be opened.

Select Window Dialog Box

Choosing the Window→More Windows... (ALT, W, M) command opens the
following dialog box:

OK Opens the window selected in the list box.

Cancel Closes the dialog box.

Command File Command

DIS(PLAY) window-name
Opens the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

ICO(NIC) window-name
Closes the specified window. Use the first three characters of the window
name, or, if the window name is "Basic Registers," use "REG."

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Window→More Windows... (ALT, W, M)

283

Help→About Debugger/Emulator... (ALT, H, D)

Provides information on the Real-Time C Debugger.

Choosing the Help→About Debugger/Emulator... (ALT, H, D) command
opens a dialog box containing the version information on the current
Real-Time C Debugger and emulator.

Chapter 8: Menu Bar Commands
Help→About Debugger/Emulator... (ALT, H, D)

284

Source Directory Dialog Box

When the source file associated with a symbol cannot be found in the current
directory, the following dialog box is opened:

Module Shows the symbol whose source file could not be found.

Directory Lets you enter the directory in which the source file
associated with the symbol may be found.

OK Adds the directory entered in the Directory text box to the
source file search path.

Cancel Closes the dialog box.

You may not wish to have this dialog box open. There is a way to prevent it
from opening. If you select Settings→Extended→Source Path Query→OFF,
this dialog box will not open. If you wish to have this dialog box open when
the source file associated with a symbol cannot be found, select
Settings→Extended→Source Path Query→ON.

Chapter 8: Menu Bar Commands
Source Directory Dialog Box

285

286

9

Window Control Menu Commands

287

Window Control Menu Commands

This chapter describes the commands that can be chosen from the control

menus in debugger windows.

• Common Control Menu Commands

• Button Window Commands

• Expression Window Commands

• I/O Window Commands

• Memory Window Commands

• GDT/LDT/IDT Window Commands

• Register Windows’ Commands

• Source Window Commands

• Symbol Window Commands

• Trace Window Commands

• WatchPoint Window Commands

288

Common Control Menu Commands

This section describes commands that appear in the control menus of most of
the debugger windows:

• Copy→Window (ALT, -, P, W)

• Copy→Destination... (ALT, -, P, D)

Copy→Window (ALT, -, P, W)

Copies the current window contents to the destination file specified with the
File→Copy Destination... (ALT, F, P) command.

Command File Command

COP(Y) BAC(KTRACE)

COP(Y) BUT(TON)

COP(Y) EXP(RESSION)

COP(Y) IO

COP(Y) MEM(ORY)

COP(Y) REG(ISTER)

COP(Y) SOU(RCE)

COP(Y) WAT(CHPOINT)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Common Control Menu Commands

289

Copy→Destination... (ALT, -, P, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command

COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Common Control Menu Commands

290

Button Window Commands

This section describes the following command:

• Edit... (ALT, -, E)

Edit... (ALT, -, E)

Lets you define and label buttons in the Button window.

You can set up buttons to execute commonly used commands or command
files.

Note that the Copy→Window command will generate a listing file that
contains a header followed by commands needed to recreate the buttons. By
removing the header, this file may be used as a command file.

Alternatively, you can log commands to a command file as you edit the
buttons (refer to "To create a command file" in the "Using Command Files"
section of the "Using the Debugger Interface" chapter). To recreate the
buttons, just run the command file that you created while editing the buttons.

Chapter 9: Window Control Menu Commands
Button Window Commands

291

Button Edit Dialog Box

Choosing the Edit... (ALT, -, E) command opens the following dialog box:

Command Specifies the command to be associated with the button.
Command syntax is described at the bottom of most help
topics under the "Command File Command" heading. Also,
look in the "Command File and Macro Command Summary"
chapter in the "Reference" part.

You can only enter a single command here; if you want a
series of commands to be executed when this button is
used, put them in a command file and use the command
"FILE COMMAND filename," where "filename" is the name
of your command file.

Name Specifies the button label to be associated with the
command.

Add Adds the button to the button window.

Button
Definitions

Lists the currently defined buttons. You can select button
definitions for deletion by clicking on them.

Chapter 9: Window Control Menu Commands
Button Window Commands

292

Delete Deletes the button definition selected in the Button
Definitions list box.

Delete All Deletes all buttons from the Button window.

Close Closes the dialog box.

Command File Command

BUTTON label "command"

See Also

"To create buttons that execute command files" in the "Using Command
Files" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Button Window Commands

293

Expression Window Commands

This section describes the following commands:

• Clear (ALT, -, R)

• Evaluate... (ALT, -, E)

Clear (ALT, -, R)

Erases the contents of the Expression window.

Command File Command

EVA(LUATE) CLE(AR)

Chapter 9: Window Control Menu Commands
Expression Window Commands

294

Evaluate... (ALT, -, E)

Evaluates expressions and displays the results in the Expression window.

Evaluate Expression Dialog Box

Choosing the Evaluate... (ALT, -, E) command opens the following dialog box:

Expression Lets you enter the expression to be evaluated.

Evaluate Makes the evaluation and places the results in the
Expression window.

Close Closes the dialog box.

Command File Command

EVA(LUATE) address

EVA(LUATE) "strings"

See Also

"Symbols" in the "Expressions in Commands" chapter.

Chapter 9: Window Control Menu Commands
Expression Window Commands

295

I/O Window Commands

This section describes the following command:

• Define... (ALT, -, D)

Define... (ALT, -, D)

Adds or deletes memory mapped I/O locations from the I/O window.

I/O Setting Dialog Box

Choosing the Edit→Definition... command opens the following dialog box:

Chapter 9: Window Control Menu Commands
I/O Window Commands

296

Address Specifies the address of the I/O location to be defined.

Size Specifies the data format of the I/O location to be defined.
You can select the Byte, 16 Bits, or 32 Bits option.

Space Specifies whether the I/O location is in memory or I/O
space.

Set Adds the specified I/O location.

I/O set Displays the information on the I/O locations that have
been set.

Delete Deletes the I/O locations selected in the I/O set list box.

Close Closes the dialog box.

Command File Command

IO BYTE/WORD/LONG IOSPACE/MEMORY address TO data
Replaces the contents of the specified I/O address with the specified value in
the specified size.

IO SET BYTE/WORD/LONG IOSPACE/MEMORY address
Registers the I/O address to be displayed in the specified size.

IO DEL(ETE) BYTE/WORD/LONG IOSPACE/MEMORY address
Deletes the I/O specified with its address and size.

See Also

"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
I/O Window Commands

297

Memory Window Commands

This section describes the following commands:

• Display→Linear (ALT, -, D, L)

• Display→Block (ALT, -, D, B)

• Display→Byte (ALT, -, D, Y)

• Display→16 Bits (ALT, -, D, 1)

• Display→32 Bits (ALT, -, D, 3)

• Search... (ALT, -, R)

• Utilities→Copy... (ALT, -, U, C)

• Utilities→Fill... (ALT, -, U, F)

• Utilities→Image... (ALT, -, U, I)

• Utilities→Load... (ALT, -, U, L)

• Utilities→Store... (ALT, -, U, S)

Display→Linear (ALT, -, D, L)

Displays memory contents in single column format.

Command File Command

MEM(ORY) ABS(OLUTE)

Chapter 9: Window Control Menu Commands
Memory Window Commands

298

Display→Block (ALT, -, D, B)

Displays memory contents in multicolumn format.

Command File Command

MEM(ORY) BLO(CK)

Display→Byte (ALT, -, D, Y)

Displays memory contents as bytes.

Command File Command

MEM(ORY) BYTE

Display→16 Bit (ALT, -, D, 1)

Displays memory contents as 16-bit values.

Command File Command

MEM(ORY) WORD

Display→32 Bit (ALT, -, D, 3)

Displays memory contents as 32-bit values.

Command File Command

MEM(ORY) LONG

Chapter 9: Window Control Menu Commands
Memory Window Commands

299

Search... (ALT, -, R)

Searches for a value or string in a range of memory.

When the value or string is found, the location is displayed in the Memory
window. Choose the Window→Memory command to open the window.

The value or string can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the contents of the
clipboard will automatically appear in the dialog box that is opened.

Search Memory Dialog Box

Choosing the Search... (ALT, -, R) command opens the following dialog box:

Value Lets you enter a value.

String Lets you enter a string.

Start Lets you enter the starting address of the memory range to
search.

End Lets you enter the end address of the memory range to
search.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Searches for the specified value or string.

Chapter 9: Window Control Menu Commands
Memory Window Commands

300

Close Closes the dialog box.

Command File Command

SEA(RCH) MEM(ORY) BYTE/WORD/LONG addr_range value

SEA(RCH) MEM(ORY) STR(ING) "string"

See Also

"To search memory for a value or string" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Memory Window Commands

301

Utilities→Copy... (ALT, -, U, C)

Copies the contents of one memory area to another.

Memory Copy Dialog Box

Choosing the Utilities→Copy... (ALT, -, U, C) command opens the following
dialog box:

Start Lets you enter the starting address of the source memory
area.

End Lets you enter the end address of the source memory area.

Destination Specifies the starting address of the destination memory
area.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Copies the memory contents.

Close Closes the dialog box.

Command File Command

MEM(ORY) COP(Y) size address_range address

Chapter 9: Window Control Menu Commands
Memory Window Commands

302

See Also

"To copy memory to a different location" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities→Fill... (ALT, -, U, F)

Fills a range of memory with a specified value.

Memory Fill Dialog Box

Choosing the Utilities→Fill... (ALT, -, U, F) command opens the following
dialog box:

Value Lets you enter the filling value.

Start Lets you enter the starting address of the memory area to
be filled.

End Lets you enter the end address of the memory area to be
filled.

Size Selects the size of the filling value. If the value specified is
larger than can fit in the size selected, the upper bits of the
value are ignored. You can select the size using the Byte,
16 Bits, or 32 Bits option buttons.

Execute Executes the command.

Chapter 9: Window Control Menu Commands
Memory Window Commands

303

Close Closes the dialog box.

Command File Command

MEM(ORY) FIL(L) size address_range data

See Also

"To modify a range of memory with a value" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities→Image... (ALT, -, U, I)

Copies the contents of a target system memory range into the corresponding
emulation memory range.

You can copy programs that are in target system ROM to emulation memory.
Once the program code is in emulation memory, you can use features like
breakpoints, run until, etc.

The address range must be mapped as emulation memory before choosing
this command.

Memory Image Dialog Box

Choosing the Utilities→Image... (ALT, -, U, I) command opens the following
dialog box:

Chapter 9: Window Control Menu Commands
Memory Window Commands

304

Start Lets you enter the starting address of the memory area.

End Lets you enter end address of the memory area.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Copies the target system memory into emulation memory.

Close Closes the dialog box.

Command File Command

MEM(ORY) IMA(GE) size address_range

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Memory Window Commands

305

Utilities→Load... (ALT, -, U, L)

Loads memory contents from a previously stored file.

Load Binary File Dialog Box

Choosing the Utilities→Load... (ALT, -, U, L) command opens the following
dialog box:

File Name Lets you enter the name of the file to load memory from.

Bytes Loaded After you choose the Import button, this box shows the
number of bytes that are loaded.

Record Format Lets you specify the format of the file from which you’re
loading memory. You can load Motorola S-Record or Intel
Hexadecimal format files.

Load Starts the memory load.

Cancel Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
the file name.

Command File Command

MEM(ORY) LOA(D) MOT(OSREC) filename

MEM(ORY) LOA(D) INT(ELHEX) filename

Chapter 9: Window Control Menu Commands
Memory Window Commands

306

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities→Store... (ALT, -, U, S)

Utilities→Store... (ALT, -, U, S)

Stores memory contents to a binary file.

Store Binary File Dialog Box

Choosing the Utilities→Store... (ALT, -, U, S) command opens the following
dialog box:

File Name Lets you enter the name of the file to which memory
contents are stored.

Bytes Stored After you choose the Export button, this box shows the
number of bytes that are stored.

Record Format Lets you specify the format of the file to which you’re
storing memory. You can select Motorola S-Record or Intel
Hexadecimal formats.

Start Lets you enter the starting address of the memory range to
be stored.

Chapter 9: Window Control Menu Commands
Memory Window Commands

307

End Lets you enter the ending address of the memory range to
be stored.

Store Starts the memory store.

Cancel Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
a file name.

Command File Command

MEM(ORY) STO(RE) MOT(OSREC) addr-range filename

MEM(ORY) STO(RE) INT(ELHEX) addr-range filename

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities→Load... (ALT, -, U, L)

Chapter 9: Window Control Menu Commands
Memory Window Commands

308

GDT/LDT/IDT Window Commands

This section describes the following commands:

• Search→Entry... (ALT, -, R, E)

• Search→Selector... (ALT, -, R, S)

Search→Entry... (ALT, -, R, E)

Displays the specified entry in the window.

When the specified entry is found, it is displayed on the top line in the GDT,
LDT, or IDT window. Choose the Window→GDT, Window→LDT, or
Window→IDT command to open the window.

Search GDT/LDT/IDT Entry Dialog Box

Choosing the Search→Entry... (ALT, -, R, E) command opens a dialog box
similar to the following:

The entry specifies the Nth entry in the table. For example, "20" specifies
entry 20 shown in the table. The first entry line is entry "0". Because each
entry is 8 bytes, the second entry starts at the 16th byte from the start of the
table and the third entry starts at the 24th byte from the start of the table.

To search for entry 20 (the 21st line) in the table, type 20 in the Entry field
and either press return or the Find button.

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

309

• Bits 15 through 3 of the selector specify the offset into the table of the
start of the entry.

• Bit 2 specifies GDT when it is zero, or LDT when it is 1.

• Bits 1-0 specify privilege level. For example, if the second entry in the
GDT is privilege level 0, its selector is 8. If it had a DPL of 3, it would be
B (hex).

Find Searches for the specified entry.

Close Closes the dialog box.

Command File Command

GDT ENTRY value

LDT ENTRY value

IDT ENTRY value

See Also

"The GDT window", "The LDT window", or the "The IDT window" in the
"Debugger Windows" section of the "Concepts" chapter.

Search→Selector... (ALT, -, R, S)

Displays the specified selector in the window.

When the specified selector is found, it is displayed on the top line in the
GDT, LDT, or IDT window. Choose the Window→GDT, Window→LDT, or
Window→IDT command to open the window.

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

310

Search GDT/LDT/IDT Selector Dialog Box

Choosing the Search→Selector... (ALT, -, R, S) command opens a dialog box
similar to the following:

To search for a selector, choose the Search→Selector... command. Then
enter the selector number (in hex) and either press return or the Find button.

• Bits 15 through 3 of the selector specify the offset into the table of the
start of the entry.

• Bit 2 specifies GDT when it is zero, or LDT when it is 1.

• Bits 1-0 specify privilege level. For example, if the second entry in the
GDT is privilege level 0, its selector is 8. If it had a DPL of 3, it would be
B (hex).

The lower three bits of the selector number are ignored on entry. For
example, selector number 30 may be used to search for selector 30, 31, 32,
or 33.

If the requested selector is within the range of the current table, it will be
positioned at the top of the window. If it is out of range, an error box will pop
up telling you it is an invalid selector.

Find Searches for the specified selector.

Close Closes the dialog box.

Command File Command

GDT SELECTOR value

LDT SELECTOR value

IDT SELECTOR value

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

311

See Also

"The GDT window", "The LDT window", or the "The IDT window" in the
"Debugger Windows" section of the "Concepts" chapter.

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

312

Register Windows’ Commands

This section describes the following commands:

• Continuous Update (ALT, -, U)

• Copy→Registers (ALT, -, P, R)

Continuous Update (ALT, -, U)

Specifies whether the Register window contents should be continuously
updated while running programs.

A check mark (√) next to the command shows that continuous update is
active.

Copy→Registers (ALT, -, P, R)

Copies the current Register window contents to the destination file specified
with the File→Copy Destination... (ALT, F, P) command.

Command File Command

COP(Y) REG(ISTER)

Chapter 9: Window Control Menu Commands
Register Windows’ Commands

313

Register Bit Fields Dialog Box

When a register has bit-fields, a dialog will pop up and the register value may
be edited by changing the whole value or by editing individual bit-fields.

When editing in the dialog box, a carriage-return is the same as choosing the
OK button. To end an edit of a field within the dialog box without quitting,
use the Tab key.

Edited Value Shows the register value that corresponds to the selections
made below. You can also change the register’s value by
modifying the value in this text box.

Original Value Shows the value of the register when the dialog box was
opened. If the register could not be read, ’XXXXXXXX’ is
displayed.

Chapter 9: Window Control Menu Commands
Register Windows’ Commands

314

OK Modifies the register as specified, and closes the dialog box.

Cancel Closes the dialog box without modifying the register.

Chapter 9: Window Control Menu Commands
Register Windows’ Commands

315

Source Window Commands

This section describes the following commands:

• Display→Mixed Mode (ALT, -, D, M)

• Display→Source Only (ALT, -, D, S)

• Display→Select Source... (ALT, -, D, L)

• Search→String... (ALT, -, R, S)

• Search→Function... (ALT, -, R, F)

• Search→Address... (ALT, -, R, A)

• Search→Current PC (ALT, -, R, C)

Display→Mixed Mode (ALT, -, D, M)

Chooses the source/mnemonic mixed display mode.

Command File Command

MOD(E) MNE(MONIC) ON

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

316

Display→Source Only (ALT, -, D, S)

Chooses the source only display mode.

Command File Command

MOD(E) MNE(MONIC) OFF

See Also

"To display source code only" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

317

Display→Select Source... (ALT, -, D, L)

Displays the contents of the specified C source file in the Source window.

This command is disabled before the object file is loaded or when no source
is available for the loaded object file.

Select Source Dialog Box

Choosing the Display→Select Source... (ALT, -, D, L) command opens the
following dialog box:

Source Files Lists C source files associated with the loaded object file.
You can select the source file to be displayed from this list.

Select Switches the Source window contents to the selected
source file.

Close Closes the dialog box.

Directory Opens the Search Directories Dialog Box from which you
can add directories to the search path.

Command File Command

FIL(E) SOU(RCE) module_name

Chapter 9: Window Control Menu Commands
Source Window Commands

318

See Also

"To display source files by their names" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search→String... (ALT, -, R, S)

Searches for, and displays, a string in the Source window.

The search starts from the current cursor position in the Source window,
may be either forward or backward, and may be case sensitive.

The string can be selected from another window (in other words, copied to
the clipboard) before choosing the command; it will automatically appear in
the dialog box that is opened.

Search String Dialog Box

Choosing the Search→String... (ALT, -, R, S) command opens the following
dialog box:

Find What Lets you enter the string.

Match Case Selects or deselects case matching.

Up Specifies that the search be from the current cursor
position backward.

Down Specifies that the search be from the current cursor
position forward.

Chapter 9: Window Control Menu Commands
Source Window Commands

319

Find Next Searches for the string.

Close Closes the dialog box.

Command File Command

SEA(RCH) STR(ING) FOR/BACK ON/OFF strings
Searches the specified string in the specified direction with the case
matching option ON or OFF.

See Also

"To search for strings in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search→Function... (ALT, -, R, F)

Searches for, and displays, a function in the Source window.

The object file and symbols must be loaded before you can choose this
command.

Note This command displays the source file based on the function information in
the object file. Depending on the structure of the function, the command
may fail in displaying the declaration of the function.

Chapter 9: Window Control Menu Commands
Source Window Commands

320

Search Function Dialog Box

Choosing the Search→Function... (ALT, -, R, F) command opens the
following dialog box:

Function Lets you select the function to search for.

Find Searches the specified function.

Close Closes the dialog box.

Command File Command

SEA(RCH) FUNC(TION) func_name

See Also

"To search for function names in the source files" in the "Loading and
Displaying Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

321

Search→Address... (ALT, -, R, A)

Searches for, and displays, an address in the Source window.

Address expressions such as function names or symbols can be selected from
another window (in other words, copied to the clipboard) before choosing
the command; the contents of the clipboard will automatically appear in the
dialog box that is opened.

Search Address Dialog Box

Choosing the Search→Address... (ALT, -, R, A) command opens the following
dialog box:

Address Lets you enter the address to search for.

Find Searches for the specified address.

Close Closes the dialog box.

Command File Command

CUR(SOR) address
When used before the COME command, this command can be used to run to
a particular address.

See Also

"To search for addresses in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

322

Search→Current PC (ALT, -, R, C)

Searches for, and displays, the location of the current program counter in the
Source window.

Command File Command

CUR(SOR) PC
This command can be used to show the current PC in the Source window.

Chapter 9: Window Control Menu Commands
Source Window Commands

323

Search Directories Dialog Box

Choosing the Directories... button in the Select Source dialog box opens the
following dialog box:

Directory Lets you enter the directory to be added to the source file
search path.

Search Source
Directories

Lists the directories in the source file search path.

Add Adds the directory entered in the Directory text box to the
source file search path.

Delete Deletes the directory in the Directory text box from the
source file search path.

Close Closes the dialog box.

See Also

"To specify source file directories" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

324

Symbol Window Commands

This section describes the following commands:

• Display→Modules (ALT, -, D, M)

• Display→Functions (ALT, -, D, F)

• Display→Externals (ALT, -, D, E)

• Display→Locals... (ALT, -, D, L)

• Display→Asm Globals (ALT, -, D, G)

• Display→Asm Locals... (ALT, -, D, A)

• Display→User defined (ALT, -, D, U)

• Copy→Window (ALT, -, P, W)

• Copy→All (ALT, -, P, A)

• FindString→String... (ALT, -, D, M)

• User defined→Add... (ALT, -, U, A)

• User defined→Delete (ALT, -, U, D)

• User defined→Delete All (ALT, -, U, L)

Display→Modules (ALT, -, D, M)

Displays the symbolic module information from the loaded object file.

Command File Command

SYM(BOL) LIS(T) MOD(ULE)

Chapter 9: Window Control Menu Commands
Symbol Window Commands

325

See Also

"To display program module information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display→Functions (ALT, -, D, F)

Displays the symbolic function information from the loaded object file.

The Symbol window displays the name, type and address range for C
functions.

Command File Command

SYM(BOL) LIS(T) FUN(CTION)

See Also

"To display function information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Display→Externals (ALT, -, D, E)

Displays the global variable information from the loaded object file.

The Symbol window displays the name, type and address for global variables.

Command File Command

SYM(BOL) LIS(T) EXT(ERNAL)

See Also

"To display external symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

326

Display→Locals... (ALT, -, D, L)

Displays the local variable information on the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name, type and offset from the frame
pointer for the local variables for the specified function.

Local Symbol Dialog Box

Choosing the Display→Locals... (ALT, -, D, L) command opens the following
dialog box:

Function Selects the function for which the local variable
information is displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) LIS(T) INT(ERNAL) function

See Also

"To display local symbol information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

327

Display→Asm Globals (ALT, -, D, G)

Displays the global Assembler symbol information from the loaded object file.

The Symbol window displays the name and address for the global assembler
symbols.

Command File Command

SYM(BOL) LIS(T) GLO(BALS)

See Also

"To display global assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display→Asm Locals... (ALT, -, D, A)

Displays the local symbol information from the specified module.

The module name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name and address for the local symbols for
the specified module.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

328

Assembler Symbol Dialog Box

Choosing the Display→Asm Locals... (ALT, -, D, A) command opens the
following dialog box:

Module Selects the module for which the local symbols are
displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) LIS(T) LOC(AL) module

See Also

"To display local assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

329

Display→User defined (ALT, -, D, U)

Displays the user-defined symbol information.

The Symbol window displays the name and address for the user-defined
symbols.

The User defined→Add... (ALT, -, D, U) command adds the user-defined
symbols.

Command File Command

SYM(BOL) LIS(T) USE(R)

See Also

"To display user-defined symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Copy→Window (ALT, -, P, W)

Copies the information currently displayed in the Symbol window to the
specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

SYM(BOL) COP(Y) DIS(PLAY)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

330

Copy→All (ALT, -, P, A)

Copies all the symbol information to the specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

SYM(BOL) COP(Y) ALL

FindString→String... (ALT, -, F, S)

Displays the symbols that contain the specified string.

This command performs a case-sensitive search.

Symbol Matches Dialog Box

Choosing the FindString→String... (ALT, -, F, S) command opens the
following dialog box:

String Specifies the string.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

331

Command File Command

SYM(BOL) MAT(CH) string

See Also

"To display the symbols containing the specified string" in the "Displaying
Symbol Information" section of the "Debugging Programs" chapter.

User defined→Add... (ALT, -, U, A)

Adds the specified user-defined symbol.

User-defined symbols may be used in debugger commands just like other
program symbols.

The symbol name must satisfy the following requirements:

• The name must begin with an alphabetical, _ (underscore), or ?
character.

• The following characters must be any of alphanumerical, _ (underscore),
or ? characters.

• The maximum number of characters is 256.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

332

User defined Symbol Dialog Box

Choosing the User defined→Add... (ALT, -, U, A) command opens the
following dialog box:

Symbol Name Specifies the symbol to be added.

Address Specifies the address of the symbol.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) ADD symbol_nam address

See Also

"To create a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

333

User defined→Delete (ALT, -, U, D)

Deletes the specified user-defined symbol.

This command deletes the user-defined symbol selected in the Symbol
window.

Command File Command

SYM(BOL) DEL(ETE) symbol_nam

See Also

"To delete a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

User defined→Delete All (ALT, -, U, L)

Deletes all the user-defined symbols.

Command File Command

SYM(BOL) DEL(ETE) ALL

Chapter 9: Window Control Menu Commands
Symbol Window Commands

334

Trace Window Commands

This section describes the following commands:

• Display→Mixed Mode (ALT, -, D, M)

• Display→Source Only (ALT, -, D, S)

• Display→Bus Cycle Only (ALT, -, D, C)

• Display→Count→Absolute (ALT, -, D, C, A)

• Display→Count→Relative (ALT, -, D, C, R)

• Display→From State... (ALT, -, D, F)

• Display→Options→Suppress Prefetch (ALT, - D, O, S)

• Display→Options→Swap Instruction Bytes (ALT, - D, O, I)

• Copy→Window (ALT, -, P, W)

• Copy→All (ALT, -, P, A)

• Search→Trigger (ALT, -, R, T)

• Search→State... (ALT, -, R, S)

• Trace Spec Copy→Specification (ALT, -, T, S)

• Trace Spec Copy→Destination... (ALT, -, T, D)

Display→Mixed Mode (ALT, -, D, M)

Chooses the source/mnemonic mixed display mode.

Command File Command

TRA(CE) DIS(PLAY) MIX(ED)

Chapter 9: Window Control Menu Commands
Trace Window Commands

335

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

Display→Source Only (ALT, -, D, S)

Selects the source only display mode.

Command File Command

TRA(CE) DIS(PLAY) SOU(RCE)

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Display→Bus Cycle Only (ALT, -, D, C)

Selects the bus cycle only display mode.

Command File Command

TRA(CE) DIS(PLAY) BUS

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

336

Display→Count→Absolute (ALT, -, D, C, A)

Selects the absolute mode (the total time elapsed since the trigger) for count
information.

Command File Command

TRA(CE) DIS(PLAY) ABS(OLUTE)

See Also

"To display absolute or relative counts" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Display→Count→Relative (ALT, -, D, C, R)

Selects the relative mode (the time interval between the current and
previous cycle) for count information.

Command File Command

TRA(CE) DIS(PLAY) REL(ATIVE)

See Also

"To display absolute or relative counts" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

337

Trace Display→From State... (ALT -, D, F)

Lets you specify a state and/or a byte within a state where you wish to begin
disassembly, as well as a segment type (16-bit or 32-bit).

Normally the disassembler begins disassembly with the first byte of the first
captured opcode fetch. Sometimes this does not result in correct
disassembly because the first byte is a continuation of a previous opcode.
When a branch-trace message is found, the disassembler will resynchronize.
However, this dialog box allows you to manually set the correct starting byte.

Trace Disassemble From... Dialog Box

Choosing the Display→From State... (ALT, -, D, F) command opens the
following dialog box:

State Lets you enter a state number (as shown in the left-most
column in the trace display) where you wish to begin
disassembly.

Byte Lets you specify the byte within the selected state where
you wish to begin disassembly.

Segment Type Lets you specify what type of segment (16-bit or 32-bit)
the code is in. You may specify this without specifying a
disassembly state.

Note that the state you specify should be a control read (instead of a data
read).

Chapter 9: Window Control Menu Commands
Trace Window Commands

338

Command File Command

MOD(E) TRA(CE) DIS(PLAY) FROM <state>

MOD(E) TRA(CE) DIS(PLAY) BYTE0/BYTE1/BYTE2/BYTE3

MOD(E) TRA(CE) DIS(PLAY) USE16/USE32

Display→Options→Suppress Prefetch (ALT, -, D, O, S)

Allows you to turn off display of unexecuted prefetches in the Trace window.
When selected (check mark beside Suppress Prefetch), unexecuted
prefetches will not be displayed in the Trace window. When unselected, all
traced activity, including unexecuted prefetches, will be displayed in the
Trace window.

Command File Command

MOD(E) TRA(CE) DIS(PLAY) SUP(PRESSPREFETCH) ON|OFF

See Also

"To display or suppress unexecuted prefetches" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

339

D Display→Options→Swap Instruction Bytes (ALT, -, D,
O, I)

Controls order of bytes displayed for data-bus values. When selected (check
mark beside "Swap Instruction Bytes"), data-bus values are displayed in little
endian byte order in the Trace window (D[0:7], D[15:8], D[23:16], D[31:24]).
When unselected (the default), data-bus values are displayed in big endian
byte order in the Trace window (D[31:0]).

This option only affects the order of bytes displayed in data-bus values
corresponding to instruction fetches (opcodes).

Command File Command

MOD(E) TRA(CE) DIS(PLAY) SWA(PINSTRBYTES) ON|OFF

See Also

"To swap instruction bytes in display of data-bus values" in the "Tracing
Program Execution" section of the "Debugging Programs" chapter.

Copy→Window (ALT, -, P, W)

Copies the information currently in the Trace window to the specified listing
file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

TRA(CE) COP(Y) DIS(PLAY)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

340

Copy→All (ALT, -, P, A)

Copies all the trace information to the specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

TRA(CE) COP(Y) ALL

Search→Trigger (ALT, -, R, T)

Positions the trigger state at the top of the Trace window.

Command File Command

TRA(CE) FIN(D) TRI(GGER)

Chapter 9: Window Control Menu Commands
Trace Window Commands

341

Search→State... (ALT, -, R, S)

Positions the specified state at the top of the Trace window.

Search Trace State Dialog Box

Choosing the Search→State... (ALT, -, R, S) command opens the following
dialog box:

State Lets you enter the trace state number to search for.

Find Searches for the specified trace state.

Close Closes the dialog box.

Command File Command

TRA(CE) FIN(D) STA(TE) state_num

Chapter 9: Window Control Menu Commands
Trace Window Commands

342

Trace Spec Copy→Specification (ALT, -, T, S)

Copies the current trace specification to the listing file.

Command File Command

TRA(CE) COP(Y) SPE(C)

Trace Spec Copy→Destination... (ALT, -, T, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command

COP(Y) TO filename

Chapter 9: Window Control Menu Commands
Trace Window Commands

343

WatchPoint Window Commands

This section describes the following command:

• Edit...

Edit... (ALT, -, E)

Registers or deletes watchpoints.

Variables can be selected from another window (in other words, copied to the
clipboard) before choosing the Edit... (ALT, -, E) command from the
WatchPoint window’s control menu, and they will automatically appear in the
dialog box that is opened.

Dynamic variables can be registered and displayed in the WatchPoint window
when the current program counter is in the function in which the variable is
declared. If the current program counter is not in the function, the variable
name is invalid and results in an error.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

344

WatchPoint Dialog Box

Choosing the Edit... (ALT, -, E) command from the WatchPoint window’s
control menu opens the following dialog box:

Variable Lets you enter the name of the variable to be registered as
a watchpoint. The contents of the clipboard, usually a
variable selected from another window, automatically
appears in this text box.

Watch Points
Set

Lists the current watchpoints and allows you to select the
watchpoint to be deleted.

Set Copies the specified variable to the WatchPoint window.

Delete Deletes the variable selected in the Watch Points Set box.

Delete All Deletes all the watchpoints.

Close Closes the dialog box.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

345

Command File Command

WP SET address
Registers the specified address as a watchpoint.

WP DEL(ETE) address
Deletes the specified watchpoint.

WP DEL(ETE) ALL
Deletes all the current watchpoints.

See Also

"To monitor a variable in the WatchPoint window" in the "Displaying and
Editing Variables" section of the "Debugging Programs" chapter.

"Symbols" in the "Expressions in Commands" chapter.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

346

10

Window Pop-Up Commands

347

Window Pop-Up Commands

This chapter describes the commands that can be chosen from the pop-up
menus in debugger windows. Pop-up menus are accessed by clicking the
right mouse button in the window.

• BackTrace Window Pop-Up Commands

• Source Window Pop-Up Commands

348

BackTrace Window Pop-Up Commands

• Source at Stack Level

Source at Stack Level

For the cursor-selected function in the BackTrace window, this command
displays the function call in the Source window.

Chapter 10: Window Pop-Up Commands
BackTrace Window Pop-Up Commands

349

Source Window Pop-Up Commands

• Set Breakpoint

• Clear Breakpoint

• Evaluate It

• Add to Watch

• Run to Cursor

Set Breakpoint

Sets a breakpoint on the line containing the cursor. Refer to the
Breakpoint→Set at Cursor (ALT, B, S) command.

Clear Breakpoint

Deletes the breakpoint on the line containing the cursor. Refer to the
Breakpoint→Delete at Cursor (ALT, B, D) command.

Evaluate It

Evaluates the clipboard contents and places the result in the Expression
window. Refer to the Evaluate... (ALT, -, E) command available from the
Expression window’s control menu.

Chapter 10: Window Pop-Up Commands
Source Window Pop-Up Commands

350

Add to Watch

Adds the selected variable (that is, the variable copied to the clipboard) to
the WatchPoint window. Refer to the Variable→Edit... (ALT, V, E) command.

Run to Cursor

Executes the program up to the Source window line containing the cursor.
Refer to the Execution→Run to Cursor (ALT, R C) command.

Chapter 10: Window Pop-Up Commands
Source Window Pop-Up Commands

351

352

11

Other Command File and Macro
Commands

353

Other Command File and Macro Commands

This chapter describes the commands that are only available in command
files, break macros, or buttons.

• BEEP

• EXIT

• FILE CHAINCMD

• FILE RERUN

• NOP

• TERMCOM

• WAIT

354

BEEP

Sounds beep during command file or break macro execution.

Command File Command

BEEP

Chapter 11: Other Command File and Macro Commands
BEEP

355

EXIT

Exits, or conditionally exits, command file execution.

Command File Command

EXIT
Exits command file execution.

EXIT VAR(IABLE) address value
Exits command file execution if the variable contains the value.

EXIT REG(ISTER) regname value
Exits command file execution if the register contains the value.

EXIT MEM(ORY) BYTE/WORD/LONG address value
Exits command file execution if the memory location contains the value.

EXIT IO BYTE/WORD address value
Exits command file execution if the I/O location contains the value.

Chapter 11: Other Command File and Macro Commands
EXIT

356

FILE CHAINCMD

Chains command file execution.

This command lets you run one command file from another nonrecursively; in
other words, control is not returned to the original command file.

By contrast, the FILE COMMAND command is recursive; if you use the FILE
COMMAND command to run one command file from another, control will be
returned to the original command file. FILE COMMAND commands can be
nested four levels deep.

Command File Command

FILE CHAINCMD filename

Chapter 11: Other Command File and Macro Commands
FILE CHAINCMD

357

FILE RERUN

Starts command file execution over again.

This command is useful for looping stimulus files or running a demo or other
command file continuously.

Command File Command

FILE RERUN

Chapter 11: Other Command File and Macro Commands
FILE RERUN

358

NOP

No operation.

This command may be used to prefix comment lines in command files.

Command File Command

NOP

NOP comments

Chapter 11: Other Command File and Macro Commands
NOP

359

TERMCOM

Sends Terminal Interface commands to the HP 64700.

The HP 64700 Card Cage contains a low-level Terminal Interface, which
allows you to control the emulator’s functions directly. You can use the
TERMCOM command to bypass the RTC Interface and send commands
directly to the low-level Terminal Interface.

There is no window in the RTC Interface where you can execute TERMCOM
commands directly. The only way to execute them with the RTC Interface is
to make them part of a command file and then run the command file from an
RTC Interface window.

You may need to start a unique target system that requires emulator
intervention that is only available through the Terminal Interface. You can
create the command file and then execute it at the appropriate time using a
command such as File→Run Cmd File..., and place the name of your
command file in the Run Command File dialog box.

The danger in using Terminal Interface commands via the TERMCOM
command is that the RTC Interface may not be updated to know the state of
the emulator. Some Terminal Interface commands can be executed by using
the TERMCOM command, and the RTC Interface will not know that they
were executed. Other Terminal Interface commands can be executed and
the RTC Interface will be updated immediately. For example:

• If you have a command in your command file that changes the setting of
RealTime→Monitor Intrusion→Disallowed/Allowed, (such as, TERMCOM
"cf rrt=en"), the RTC Interface will not know about this change and will
continue to try to operate according to the earlier setting. In this case,
the RTC Interface may try to update its displays when the emulator is set
to deny monitor access to the registers and memory.

• If you have a command in your command file that writes a value to
memory (such as, TERMCOM "00000..00fff=0"), the Memory window will
be updated immediately to show the new value, assuming you have
chosen RealTime→Monitor Intrusion→Allowed.

Chapter 11: Other Command File and Macro Commands
TERMCOM

360

Do not use the following Terminal Interface commands with the RTC
TERMCOM command:

• stty, po, xp: These commands will change the operation of the
communications channel, and are likely to hang the RTC Interface.

• echo, mac: These commands may confuse the communications
protocols in use in the channel.

• wait: The pod will enter a wait state, blocking access by the RTC
Interface.

• init, pv: These will reset the emulator and end your session.

• t: This will confuse the functions of trace status polling and unload.

Refer to your "Terminal Interface User’s Guide" for more information about
Terminal Interface commands.

Command File Command

TERMCOM "ti-command"

Chapter 11: Other Command File and Macro Commands
TERMCOM

361

WAIT

Inserts wait delays during command file execution.

Command File Command

WAI(T) MON(ITOR)
Waits until MONITOR status.

WAI(T) RUN
Waits until RUN status.

WAI(T) UNK(NOWN)
Waits until UNKNOWN status.

WAI(T) SLO(W)
Waits until SLOW CLOCK status.

WAI(T) TGT(RESET)
Waits until TARGET RESET status.

WAI(T) SLE(EP)
Waits until SLEEP status.

WAI(T) GRA(NT)
Waits until BUS GRANT status

WAI(T) NOB(US)
Waits until NOBUS status.

WAI(T) TCO(M)
Waits until the trace is complete.

WAI(T) THA(LT)
Wait until the trace is halted.

WAI(T) TIM(E) seconds
Waits for a number of seconds.

Chapter 11: Other Command File and Macro Commands
WAIT

362

12

Error Messages

363

Error Messages

This chapter helps you find details about the following error messages:

• Bad RS-232 port name
• Bad RS-422 card I/O address
• Could not open initialization file
• Could not write Memory
• Error occurred while processing Object file
• General RS-232 communications error
• General RS-422 communications error
• HP 64700 locked by another user
• HP 64700 not responding
• Incorrect DLL version
• Incorrect LAN Address (HP-ARPA, Windows for Workgroups)
• Incorrect LAN Address (Novell)
• Incorrect LAN Address (WINSOCK)
• Internal error in communications driver
• Internal error in Windows
• Interrupt execution (during run to caller)
• Interrupt execution (during step)
• Interrupt execution (during step over)
• Invalid transport name
• LAN buffer pool exhausted
• LAN communications error
• LAN MAXSENDSIZE is too small
• LAN Socket error
• Logical to physical address translations initially unavailable: Cannot read

descriptor tables into host memory since GDT base and limit are
unavailable

• Object file format ERROR
• Out of DOS Memory for LAN buffer
• Out of Windows timer resources
• PC is out of RAM memory
• physical address translation failed
• Structure Access Warning!!!
• Timed out during communications

364

Bad RS-232 port name

RS-232 port names must be of the form "COM<number>" where <number> is
a decimal number from 1 to the number of communications ports within your
PC.

Bad RS-422 card I/O address

The RS-422 card’s I/O address must be a hexadecimal number from 100H
through 3F8H whose last digit is 0 or 8 (example 100, 108, 110). Select an
I/O address that does not conflict with the other cards in your PC.

Could not open initialization file

The initialization file was not found in the same directory where the
executable file was found.

For example, if the application file is B3637B.EXE, the initialization file
B3637B.INI is expected to be found in the same directory.

To fix this problem, you may be able to find the initialization file and move it
to the same directory as the executable file, or you can create a new
initialization file from the default initialization file. For example:

COPY B3637DEF.INI Bxxxx.INI

Note that the above command is the DOS COPY command. Do not use the
ksh ’cp B3637DEF.INI Bxxxx.INI’ command. Use only the DOS ’COPY
B3637DEF.INI B3637B.INI’ command.

If you cannot find the default initialization file either, you can re-install the
debugger software.

For correct operation, make certain the B3637B.INI file has both read and
write permission.

Chapter 12: Error Messages
Bad RS-232 port name

365

Could not write Memory

You may see this error message when trying to load a file or perform any
other task that requires use of the monitor. The emulation monitor is used to
load files, which requires writing to memory. If you have chosen
RealTime→Monitor Intrusion→Disallowed the monitor will not be usable,
and Execution→Reset may prevent use of the monitor in some emulators.

Choose RealTime→Monitor Intrusion→Allowed, and Execution→Break to
ensure that the emulation monitor is running. The Status window should
show Emulator: RUNNING IN MONITOR.

With this setup, the emulator should be able to write to Memory.

If you are still unable to load a file, select "Symbols Only" in the Load Object
File dialog box and try to load the file. If Symbols Only will not load, the
problem is in your symbols.

Choose "Data Only" in the Load Object File dialog box and try to load the file.
If the symbols loaded, but the data fails to load, the problem is in your
program code.

Call your local HP representative.

Chapter 12: Error Messages
Could not write Memory

366

Error occurred while processing Object file

The following is a list of typical reasons why an error might occur while
processing an object file. There are many other possible reasons.

• Bad record in the object file.

• File is in wrong format.

• File does not follow OMF Specifications correctly.

• No memory mapped.

• Attempt to write to guarded memory.

• Emulator restricted to real-time runs. Enter the command,
"RealTime→Monitor Intrusion→Allowed".

• Emulator not executing the monitor. Enter the command,
"Execution→Break".

Another message often occurs along with this message. View the help
information for the other message, if available.

Call your local HP representative.

Chapter 12: Error Messages
Error occurred while processing Object file

367

General RS-232 communications error

In general, these messages indicate that the RS-232 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the RS232C driver line in the
selection box); if you connect with no problems the second time, you can
ignore the original message.

If you get this message other than during connection, you can try to fix the
problem by:

• Reducing the length of the RS-232 cable between the PC and the HP
64700.

• Reducing the number of tasks running under Windows.

• Reducing the baud rate (the default is 19200).

For further information, refer to the paragraph titled, "If you have RS-232
connection problems" in the Communications Help screen, or in Chapter 15,
"Installing the Debugger" in the Real-Time C Debugger User’s Guide.

General RS-422 communications error

In general, these messages indicate that the RS-422 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the HP-RS422 driver line in the
selection box); if you connect with no problems the second time, you can
ignore the original message.

If you get this message other than during connection, you can try to fix the
problem by:

• Reducing the number of tasks running under Windows.

• Reducing the baud rate (the default is 230400).

Chapter 12: Error Messages
General RS-232 communications error

368

HP 64700 locked by another user

Because it is possible to destroy another user’s measurement by choosing the
Unlock button in the error dialog box, check with the other user before
unlocking the HP 64700.

Note that if the other user is actually using an interface to the HP 64700, an
Unlock request will fail.

HP 64700 not responding

The HP 64700 has not responded within the timeout period. There are
several possible causes of this error. For example, a character could have
dropped during RS-232 communications, or some network problem could
have disrupted communications.

Usually, you must cycle power to the HP 64700 to fix this problem.

See also: The description for the error message titled, "Timed out during
communications."

Incorrect DLL version

The version of the dynamic link libraries (.DLLs) used by the Real-Time C
Debugger does not match the version of the main program (.EXE).

If you have two versions of the debugger on your system, you may see this
message when you try to execute both of them at the same time, or when you
execute one version and then the other without restarting Windows. Once
DLLs have been loaded into Windows memory, they stay there until you exit
Windows. Therefore, exit windows, restart windows, and try again.

This message will also appear if you have somehow loaded a version of the
DLLs that is different from the version of the executable. In this case, you
must reload your software.

Chapter 12: Error Messages
HP 64700 locked by another user

369

Incorrect LAN Address (HP-ARPA, Windows for
Workgroups)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of four digits separated by dots. Example:

15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the file \LANMAN.DOS\ETC\HOSTS (HP-ARPA) or
\WINDOWS\HOSTS (Windows for Workgroups) may contain entries of the
form:

system1 15.6.28.0

Note The directory of the "hosts" file may be different on your system.

If "HP Probe" or "DNR" (Domain Name Resolution) is available on your PC,
those are consulted first for a mapping between the hostname and the IP
address. If the hostname is not found by that method, or if those services are
unavailable, the local "hosts" file is consulted for the mapping.

Note that if "Probe" is available on your system but unable to resolve the
address, there will be a delay of about 15-seconds while Probe is attempting
to find the name on the network.

Chapter 12: Error Messages
Incorrect LAN Address (HP-ARPA, Windows for Workgroups)

370

Incorrect LAN Address (Novell)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of four digits separated by dots. Example:

15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the file \NET\TCP\HOSTS may contain entries of the
form:

system1 15.6.28.0

Note The directory of the "hosts" file may be different on your system. Also, all
files defined by the PATH TCP_CFG setting under "Protocol TCPIP" in the
NET.CFG files are searched.

Incorrect LAN Address (WINSOCK)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of four digits separated by dots. Example:

15.6.28.0

A hostname is a name that is related (mapped) to an IP address by a
database. For example, the hosts file may contain entries of the form:

system1 15.6.28.0

Note Because WINSOCK is a standard interface to many LAN software vendors,
you need to read your LAN vendor’s documentation before specifying the
LAN address.

Chapter 12: Error Messages
Incorrect LAN Address (Novell)

371

Internal error in communications driver

These types of errors typically occur because other applications have used up
a limited amount of some kind of global resource (such as memory or
sockets).

You usually have to reboot the PC to free the global resources used by the
communications driver.

Internal error in Windows

These types of errors typically occur because other applications have used up
a limited supply of some kind of global resource (such as memory, sockets,
tasks, or handles).

You usually have to reboot the PC to free the global resources used by
Windows.

Interrupt execution (during run to caller)

The Return dialog box appears when running to the caller of a function and
the caller is not found within the number of milliseconds specified by
StepTimerLen in the .INI file of the debugger application.

You can cancel the run to caller command by choosing the STOP button,
which causes program execution to stop, the breakpoint to be deleted, and
the processor to transfer to the RUNNING IN USER PROGRAM status.

Chapter 12: Error Messages
Internal error in communications driver

372

Interrupt execution (during step)

The Step dialog box appears when stepping a source line or assembly
instruction and the source line or instruction does not execute within the
number of milliseconds specified by StepTimerLen in the .INI file of the
debugger application.

You can cancel the step command by choosing the STOP button, which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Interrupt execution (during step over)

The Step dialog box appears when stepping over a function or subroutine and
the function or subroutine does not execute within the number of
milliseconds specified by StepTimerLen in the .INI file of the debugger
application.

You can cancel the step-over command by choosing the STOP button, which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Chapter 12: Error Messages
Interrupt execution (during step)

373

Invalid transport name

The transport name chosen does not match any of the possible transport
names (RS232C, HP-ARPA, Novell-WP, WINSOCK1.1, W4WG-TCP, or
HP-RS422).

The transport name can be specified either on the command line with the -t
option or in the .INI file:

[Port]
Transport=<transport name>

Choosing an appropriate transport in the dialog box that follows this error
message will correct the entry in the .INI file, but if the error is in the
command line option, you must modify the command line (by using the
"Properties..." command in the Program Manager).

LAN buffer pool exhausted

The LAN buffer pool is used as a temporary buffer between the time the
debugger sends data and the time the LAN actually sends it. When this pool
is exhausted, the debugger cannot send any data across the LAN.

The size of the sockets buffer pool is configured in the network installation
procedure. The size and number of LAN buffer pools can be changed by
editing your network configuration file.

Chapter 12: Error Messages
Invalid transport name

374

LAN communications error

This message may appear after any kind of LAN error.

Refer to the documentation for your LAN software for descriptions of the
types of problems that can cause LAN errors.

LAN MAXSENDSIZE is too small

This message indicates you have configured your LAN with a value or
MAXSENDSIZE that is less than 100 bytes. Note that the default is 1024
bytes.

The Real-Time C Debugger requires at least 100 bytes for this parameter.

To fix this, change the following entry in your PROTOCOL.INI file and reboot
your PC:

[SOCKETS]
MAXSENDSIZE

LAN socket error

A TCP-level error has occurred on the network. See your network
administrator.

Chapter 12: Error Messages
LAN communications error

375

Logical to physical address translations initially
unavailable: Cannot read descriptor tables into host
memory since GDT base and limit are unavailable

A static method of performing address translation has been chosen along
with the option of getting the base and limit values from the loaded absolute
file and no absolute file is currently loaded or the currently loaded absolute
file has no GDT base and limit specified.

Either load an absolute file or choose Settings→Emulator Config→Address
Translation...(ALT, S, E, A) and select a different method of obtaining a GDT
base and limit in the Address Translation dialog box.

See Also

"Performance of address translation caching" in the "Configuring the
Emulator" chapter.

Object file format ERROR

This message is typically caused by one of two conditions:

• Bad format file. Perhaps there is a bad record within the file. If you
have a file format verifier, submit your file to it to determine whether or
not all records are in the correct format.

• Unknown construct. Perhaps the construct of your file is unfamiliar to
the reader.

To respond to this error message, verify the file format, and ensure that the
reader can understand the file format in use.

If these steps do not solve the problem, call your local HP representative.

Chapter 12: Error Messages
Logical to physical address translations initially unavailable: Cannot read descriptor tables into host

376

Out of DOS Memory for LAN buffer

This means that there is not enough memory in the lower 1 Mbyte of address
space (that is, conventional memory) for the LAN driver to allocate a buffer
to communicate with the LAN TSR.

When you are in windows, and execute the DOS command "mem", you
cannot see the memory that is in the lower 1 Mbyte that is used by the
windows program. If you have the Microsoft program "heapwalker", you can
use it to see what programs have allocated space in the address range 0
through FFFFF.

To fix this, you can:

• Reduce the number of TSRs running on your PC (before Windows starts)
that use conventional memory.

• Reconfigure your network to have fewer sockets or modules loaded, or to
be configured for fewer total connections.

• Use a different memory manager to reduce your network memory usage,
such as QEMM.

Chapter 12: Error Messages
Out of DOS Memory for LAN buffer

377

Out of Windows timer resources

The debugger is not able to acquire the timer resources it needs.

There are a limited number of timer resources in Windows. You may be able
to free timer resources by closing other applications.

PC is out of RAM memory

The debugger is not able to acquire the memory it needs because other
applications are using it, or because of frgmented memory.

You may be able to free memory by closing other applications, or you might
have to reboot the PC to cause memory to be unfragmented.

Chapter 12: Error Messages
Out of Windows timer resources

378

physical address translation failed

This message occurs when you enter a symbol or address that is a virtual
address (gdt::offset, gdt:ldt:offset, or ldt::offset) and the emulator is not able
to translate it to a linear or physical address. Any of the following conditions
may cause this error:

• Dynamic address translations are being used, but the emulator is not able
to break into the monitor to read the tables. This will occur if you run
the emulator restricted to real time, or if the processor is reset. Try
using static translations.

• Dynamic address translations are being used, but the processor is in real
mode and the request was made for a protected-mode translation. Try
using static translations.

• The GDT number is larger than the gdtr.limit (for dynamic translations),
or larger than the table in the static translation table. Check your
symbol, or try reloading the static translations.

• gdt:ldt:offset was entered, but the entry number "gdt" in the GDT table
was not a pointer to an LDT.

• gdt:ldt:offset was entered, but the "ldt" was larger than the limit of the
referenced local descriptor table.

• ldt::offset was entered, but LDTR is not valid (0).
• ldt::offset was entered, but LDTR does not point to the correct local

descriptor table.

See also:

"Understanding Incompletely Specified LDT Addresses" in the "Concepts"
chapter.

Chapter 12: Error Messages
physical address translation failed

379

Structure Access Warning!!!

No field offset information found in OMF file
so field offsets computed by adding previous sizes
Structures with ’padding’ may display incorrect data!

This message occurs when loading OMF386 files containing structure types.
The emulator cannot detect offset information in an OMF386 file. If you will
be accessing fields in structures and there is padding between those fields,
the debugger will read memory as if there is no padding, producing invalid
results.

This warning alerts you to possibilities of invalid displays of fields within
structures when you have compiled your file with padding enabled, or if your
structure has contents with odd byte sizes. (You will have no problems if all
of your structure contents don’t require padding.)

Chapter 12: Error Messages
Structure Access Warning!!!

380

Timed out during communications

The HP 64700 has not responded within the timeout period. There are
various causes for this error. For example, a character could have been
dropped during RS-232 communications or some network problem could
have disrupted communications.

The timeout period for reading and writing to the HP 64700 is defined by
TimeoutSeconds in either the [RS232C], [HP-ARPA], [Novell-WP], or
[HP-RS422] section of the B3637B.INI file. For example, if you are using the
RS-232C transport:

[RS232C]
TimeoutSeconds=<seconds>

The number of seconds can be between 1 and 32767. The default is 20
seconds.

If you are using RS-232C or RS-422 transport ...

The TimeoutSeconds value is also used for connecting to the HP 64700 (as
well as for reading and writing).

If you are using HP-ARPA or Novell-WP transport ...

If there are several gateways or bridges between the PC and the emulator,
larger values of TimeoutSeconds may be reasonable.

The timeout period for connecting to the HP 64700 is defined in the
PROTOCOL.INI file.

[TCPIP_XFR]
TCPCONNTIMEOUT=<seconds>

The default connection timeout is 30 seconds.

The remainder of this discussion shows you how to overcome the problem of
"connection timed out" during large memory fill operations.

The RTC interface sends the memory fill operation to the emulator as a single
command. While the command is executing in the emulator, the emulator
cannot respond to inquiries from the interface about its status. If the
memory fill takes long enough, the connection will time out.

Chapter 12: Error Messages
Timed out during communications

381

Emulators for some microprocessors take up to one minute per megabyte to
perform a memory fill operation. Timeout default values for RTC interfaces
shipped from HP are typically 45 seconds.

First Workaround. Modify the TimeoutSeconds field (discussed above) to
increase the TimeoutSeconds value. Then exit the interface and restart it (to
ensure that the new value of TimeoutSeconds is read). You may experiment
with several values of TimeoutSeconds to find the value that allows you to do
a memory fill. The problem with this workaround is that all timeouts will take
this new longer time, and you may find this annoying when you are not doing
memory fill operations.

Second Workaround. Create a command file that contains TERMCOM
commands to write to small portions of the overall memory to be filled. For
example, suppose the following Memory window command causes the
emulator to time out, "Memory→Utilities→Fill→0 to ffff".

You might make a command file named memfill.cmd, and place the following
commands in it:

TERMCOM "m 00000..00fff=0"
TERMCOM "m 01000..01fff=0"
TERMCOM "m 02000..02fff=0"
TERMCOM "m 03000..03fff=0"
TERMCOM "m 04000..04fff=0"
TERMCOM "m 05000..05fff=0"
TERMCOM "m 06000..06fff=0"
TERMCOM "m 07000..07fff=0"
TERMCOM "m 08000..08fff=0"
TERMCOM "m 09000..09fff=0"
TERMCOM "m 0a000..0afff=0"
TERMCOM "m 0b000..0bfff=0"
TERMCOM "m 0c000..0cfff=0"
TERMCOM "m 0d000..0dfff=0"
TERMCOM "m 0e000..0efff=0"
TERMCOM "m 0f000..0ffff=0"

When you choose File→Run Cmd File→... and select your memfill.cmd file, it
will not exceed the timeout value. This is because the emulator will be able
to respond to inquiries from the interface between execution of each of the
TERMCOM commands in your command file.

Chapter 12: Error Messages
Timed out during communications

382

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

383

Part 4

384

13

Concepts

385

Concepts

This chapter describes the following topics.

• Debugger Windows

• Monitor Program Options

• Trace Signals and Predefined Status Values

• Understanding Intel80386EX Analysis

• Understanding Address, Data, and Status

• Entering Addresses as Constants

• Understanding Incompletely Specified LDT Addresses

• Unexpected Stepping Behavior

386

Debugger Windows

This section describes the following debugger windows:

• BackTrace

• Button

• Expression

• I/O

• Memory

• GDT

• LDT

• IDT

• Register

• Source

• Status

• Symbol

• Trace

• WatchPoint

Chapter 13: Concepts
Debugger Windows

387

The BackTrace Window

The BackTrace window displays the function associated with the current
program counter value and this function’s caller functions in backward order.
Applicable addresses are prefixed with module\#linenum information. The
current arguments of these functions are also displayed.

The BackTrace window is updated when program execution stops at an
occurrence of a breakpoint, break, or Step command.

Note that the return address can occur any number of bytes from the base
pointer of the stack. The OMF386 symbol file contains information used to
locate return addresses. If symbols are not available (typically for
assembly-language routines), the backtrace is shown as far as it can decode
the addresses, and then display of the backtrace stops.

The BackTrace window lets you copy text strings to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

By clicking the right mouse button in the BackTrace window, you can access
the Source at Stack Level pop-up menu command. Cursor-select a function
in the BackTrace window and choose this command to display (in the Source
window) the code that called the function. The top line of the source display
shows the source code that called the function.

See Also

"BackTrace Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

388

The Button Window

The Button window contains user-defined buttons that, when chosen,
execute debugger commands or command files.

The Button window’s control menu provides the Edit... (ALT, -, E)
command which lets you add and delete buttons from the window.

See Also

"Using Command Files" in the "Using the Debugger Interface" chapter.

"Button Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

389

The Expression Window

The Expression window displays the results of the EVALUATE commands in
command files or break macros.

When a variable name is specified with the EVALUATE command, the
Expression window displays the evaluation of the variable. When a quoted
string of ASCII characters is specified with the EVALUATE command, the
Expression window displays the string.

The Expression window’s control menu provides the Evaluate... (ALT, -, E)
command which lets you evaluate expressions and see the results in the
window.

See Also

"Expression Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

390

The I/O Window

The I/O window displays the contents of the I/O locations.

You can modify the contents of I/O locations by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The I/O window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

Chapter 13: Concepts
Debugger Windows

391

Note that if any address in the displayed range is not readable (for example,
it is beyond the segment limit in protected mode), all memory will be
displayed as dashes (--). In this case, resize the memory window to only
display the address ranges needed.

Also, do not use the memory window for reading memory-mapped I/O
devices; use the I/O window (to ensure that only the bytes necessary to read
the specific address are read).

See Also

"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

"I/O Window Commands" in the "Window Control Menu Commands" chapter.

Chapter 13: Concepts
Debugger Windows

392

The Memory Window

The Memory window displays memory contents.

The Memory window has control menu commands that let you change the
format of the memory display and the size of the locations displayed or
modified. When the absolute (single-column) format is chosen, symbols
corresponding to addresses are displayed. When data is displayed in byte
format, ASCII characters for the byte values are also displayed.

When Memory window polling is turned ON, you can modify the addresses
displayed or contents of memory locations by double-clicking on the address
or value, using the keyboard to type in the new address or value, and
pressing the Enter key.

The Memory window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

Chapter 13: Concepts
Debugger Windows

393

In contrast to the memory window, the I/O window only reads the number of
bytes specified in the Size field when it displays the data. The memory
window reads a buffer which may contain many more bytes than are
displayed. Therefore, if a memory address is surrounded by addresses you
do not want to read, use the I/O window to avoid reading the surrounding
addresses. Typically, you will want to use the I/O window when displaying
memory-mapped I/O.

See Also

"Displaying and Editing Memory" in the "Debugging Programs" chapter.

"Memory Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

394

The GDT Window

The GDT window displays the contents of the current Global Descriptor
Table. The current GDT can be found by looking at the current value of the
gdtr.b (GDT base) and gdtr.l (GDT limit) registers in the System Registers
window.

You cannot display the GDT window (or gdtr.l and gdtr.b) if the emulator is
running your target program and monitor intrusion is disallowed unless the
GDT is in dual-port memory.

If you are in real-mode (prior to entering protected mode), you cannot
display a valid GDT window until the LGDT opcode has been executed, or
you have modified the gdtr.b register.

Note that selector 0 is always the NULL selector. Referencing it in an
Intel80386EX program will always cause the Intel80386EX to generate a
General Protection Fault.

Each display line has six fields:

• Sel. The selector of the segment. This is the value loaded into a segment
descriptor (CS, DS, etc). The last two bits of the selector are the DPL of
the segment.

Chapter 13: Concepts
Debugger Windows

395

• Location. This is the physical address of this entry. This is useful when
looking at trace lists.

• Type. This decodes the type of the segment. Types include LDT (this
entry points to a Local Descriptor Table), Code segments, Data
segments, TSS blocks, and various gates.
"80286 call gates/TSS/etc" are decoded simply as the type, but the
attribute will include "16-bit".
"80386 gates/TSS/etc" are decoded simply as the type, but the attribute
will be "32-bit".

• DPL. This is the Descriptor Privilege level of the entry.

• Address/Range. This is either a starting and ending address for the entry
or a selector (depending on the type of entry). For expand-down
segments, the address range is the real address range (that is, the
wrapping is taken into account). For example, if the mapping file shows
the range as ’start=00001EE4H limit=3FFFEFFFH Expand-down’, the
Address/Range column will show the range as ’ee4..1ee3’, which is the
linear address range that will be used.

• Attributes. This decodes the attributes according to the type of entry.

The GDT window shows the descriptor table in memory, not the shadow
registers in the CPU. In order to change the shadow registers in the CPU,
you must change the GDT table in memory (using the memory window).
Break into the monitor, modify the desired segment register, and then exit
the monitor.

See Also

"Search→Entry... (ALT, -, R, E)", and "Search→Selector... (ALT, -, R, S)" in
the "GDT/LDT/IDT Window Commands" section of the "Window Control
Menu Commands" chapter.

Chapter 13: Concepts
Debugger Windows

396

The LDT Window

The LDT window displays the contents of the current Local Descriptor Table.
(The current LDT can be found by looking at the current value of the ldtr
register in the System Registers window.) It refers to an entry in the GDT,
which in turn points to the linear address of the table.

You cannot display the LDT window if the emulator is running your target
program with monitor intrusion disallowed unless the LDT is in dual-port
memory.

If you are in real-mode (prior to entering protected mode), you cannot
display valid LDT window content until the LLDT opcode has been executed,
or you have modified the ldtr register.

The selector numbers have bit 2 set (that is, the first selector is 4, not 0).
That is how the processor differentiates between a selector in the GDT and
the same selector in the LDT. Selector 4 (entry 0) is legal, but some builders
leave it empty.

See the GDT window for descriptions of each of the six fields in the display
lines.

The LDT window shows the descriptor table in memory, not the shadow
registers in the CPU. In order to change the shadow registers in the CPU,
you must change the LDT table in memory (using the memory window).
Break into the monitor, modify the desired segment register, and then exit
the monitor.

See Also

"Search→Entry... (ALT, -, R, E)", and "Search→Selector... (ALT, -, R, S)" in
the "GDT/LDT/IDT Window Commands" section of the "Window Control
Menu Commands" chapter.

Chapter 13: Concepts
Debugger Windows

397

The IDT Window

The IDT window displays the contents of the current Interrupt Descriptor
Table. The current IDT can be found by looking at the current value of the
idtr.b and idtr.l (IDT base and limit) registers in the System Registers
window.

You cannot display the IDT window if the emulator is running your target
program and monitor intrusion is disallowed unless the IDT is in dual-port
memory.

The IDT window display is only useful in protected mode.

Each line has six fields:

• Sel. The selector of the descriptor.

• Location. This is the physical address of the entry. This is useful when
looking at trace lists.

• Type. This decodes the type of the selector. Only interrupt gates, trap
gates, and task gates may be in the IDT.

• DPL. This is the Descriptor Privilege level of the entry.

• Address/Range. This is the address of the interrupt routine or task TSS.

• Attributes. This decodes the attributes according to the type of entry.

Chapter 13: Concepts
Debugger Windows

398

The name of the interrupt is displayed for the first 32 entries.

See Also

"Search→Entry... (ALT, -, R, E)", and "Search→Selector... (ALT, -, R, S)" in
the "GDT/LDT/IDT Window Commands" section of the "Window Control
Menu Commands" chapter.

The Register Windows

The Register windows display the contents of registers. There is a separate
window for each class of registers. For example, the Basic Registers are in
one class of registers.

Each register is represented by a row which holds a mnemonic name, a
current value, and a description of the register contents.

The registers may be edited by either single clicking or double-clicking on the
value. A single click puts you in a mode where the left or right arrow keys
may be used for placement of the cursor. Double-clicking puts you in one of
two modes; either a Register Bit Fields dialog pops up or the value is
highlighted. When the value is highlighted, the backspace key will erase the

Chapter 13: Concepts
Debugger Windows

399

value and a completely new value may be entered. This mode is applicable to
registers where the value is considered a single number and is not divided by
any bit-fields.

The Register window contents are updated periodically when the processor is
running the user program and monitor intrusion is allowed.

A temporary break from the user program into the monitor program must
occur in order for the debugger to update or modify register contents. If it is
important that the user program execute without these types of
interruptions, you should disallow monitor intrusion.

See Also

"Displaying and Editing Registers" in the "Debugging Programs" chapter.

"Register Window Commands" in the "Window Control Menu Commands"
chapter.

The Source Window

The Source window displays source files, optionally with disassembled
instructions intermixed.

The Source window contains a cursor whose position is used when setting or
deleting breakpoints or break macros or when running the program up to a
certain line.

The Source window lets you copy strings, usually variable or function names
to be used in commands, to the clipboard by double-clicking words or by
holding down the left mouse button and dragging the mouse pointer.

The Source window also provides commands in the control menu that let
you select whether disassembled instruction mnemonics should appear
intermixed with the C source code.

Chapter 13: Concepts
Debugger Windows

400

By clicking the right mouse button in the Source window, you can also access
pop-up menu commands.

Filename The name of the displayed source file appears at the top of
the window.

Source Lines C source code is displayed when available. Source lines are
preceded by the corresponding line numbers.

When programs are written in assembly language or when
no C source code is available, disassembled instruction
mnemonics are displayed.

The interface will only support display in either trace or
source windows of source lines numbered less than 32,000.

Disassembled
Instructions

In the Mnemonic Display mode, disassembled instruction
mnemonics are intermixed with the source lines.
Disassembled lines contain address, data, and mnemonic
information.

When symbolic information is available for the address, the
corresponding symbol line precedes the disassembled
instruction, displayed in the module_name\\symbol_name
format.

Chapter 13: Concepts
Debugger Windows

401

Current PC The line associated with the current program counter is
highlighted.

Scroll Bars For C source files, the display scrolls within the source
files. For assembly language programs or programs for
which no source code is available, the display scrolls for all
the memory space.

"BP" Marker The breakpoint marker, BP, appears at the beginning of the
breakpoint lines or break macro lines.

Break Macro
Lines

Decimal points following line numbers or addresses
indicate break macro lines.

Note When programs are stored in target system memory and the emulator is
running in real-time, source code cannot be displayed.

See Also

"Loading and Displaying Programs", "Stepping, Running, and Stopping the
Program", and "Using Breakpoints and Break Macros" in the "Debugging
Programs" chapter.

"Source Window Commands" in the "Window Control Menu Commands"
chapter.

"Source Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.

"To set colors in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 13: Concepts
Debugger Windows

402

The Status Window

The Status window shows:

• Emulator status.

• Trace status.

• Scope of the current program counter value.

• Progress of symbols being loaded from a file.

• Last five asynchronous messages from the emulator.

Emulation Processor Status Messages

EMULATION RESET
The emulation processor is being held in the reset state by the emulator.

RUNNING IN MONITOR
The emulation processor is executing the monitor program.

RUNNING IN USER PROGRAM
The emulation processor is executing the user program.

RUNNING REALTIME IN USER PROGRAM
The emulation processor is executing the user program in the real-time mode
where:

Chapter 13: Concepts
Debugger Windows

403

• Any command that would temporarily interrupt user program execution
is disabled.

• Any on-screen information that would be periodically updated by
temporarily interrupting user program execution (target system memory
or register contents, for example) is disabled.

WAITING FOR TARGET RESET
The emulation processor is waiting for a RESET signal from the target
system. User program execution starts on reception of the RESET signal.

SLOW CLOCK
No proper clock pulse is supplied from the external clock.

EMULATION RESET BY TARGET
The emulation processor is being held in a reset state by a RESET signal from
the target system.

BUS GRANT TO TARGET SYSTEM DEVICE
The bus is granted to some device in the target system.

NO BUS CYCLE
The bus cycle is too slow or no bus cycle is provided.

HALTED
The emulation processor has halted.

UNKNOWN STATE
The emulation processor is in an unknown state.

Other Emulator Status Messages

The Status window may also contain status messages other than the
emulation processor status messages described above:

BREAK POINT HIT AT module_name#line_number
The breakpoint specified in the source code line was hit and program
execution stopped at "line_number" in "module".

BREAKPOINT HIT AT address
The breakpoint specified in the assembled line was hit and program
execution stopped at "address".

Chapter 13: Concepts
Debugger Windows

404

UNDEFINED BREAKPOINT at address
The breakpoint instruction occurred at "address", but it was not inserted by a
breakpoint set command.

WRITE TO ROM BREAK
Program execution has stopped due to a write to location mapped as ROM.
These types of breaks must be enabled in the emulator configuration.

ACCESS TO GUARD BREAK
Program execution has stopped due to a write to a location mapped as
guarded memory.

TRACE TRIGGER BREAK
The analyzer trigger caused program execution to break into the monitor (as
specified by selecting the Break On Trigger option in the trace setting dialog
box).

Trace Status Messages

TRACE RUNNING
The trace has been started and trace memory has yet to be filled; this could
be because the trigger condition has not occurred or, if the trigger condition
has occurred, there have not been enough states matching the store
condition to fill trace memory. Contents of the trace buffer cannot be
displayed during the TRACE RUNNING status; you must halt the trace before
you can display the contents of the trace buffer.

TRACE HALTED
The trace was halted before the trace buffer was filled. The status indicates
that the trace was halted immediately after the emulator powerup, or that the
trace was force-terminated by the user. In the TRACE HALTED status, the
analyzer displays the contents of the trace buffer before the halt in the Trace
window.

TRACE COMPLETE
The trace completed because the trace buffer is full. The results are
displayed in the Trace window.

Chapter 13: Concepts
Debugger Windows

405

The Symbol Window

The Symbol window displays information on the following types of symbols:

• Modules
• Functions
• Global symbols
• Local symbols
• Global Assembler symbols
• Local Assembler symbols
• User-defined symbols

The Symbol window has control menu commands that let you display
various types of symbols, add or delete user-defined symbols, copy Symbol
window information, or search for symbols that contain a particular string.

The Symbol window lets you copy symbols to the clipboard by clicking the
left mouse button. The symbol information can then be pasted from the
clipboard in other commands.

Symbols are displayed with "type" and "address" values where appropriate.

See Also

"Displaying Symbol Information" in the "Debugging Programs" chapter.

"Symbol Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

406

The Trace Window

The Trace window displays trace results and shows source code lines that
correspond to the execution captured by the analyzer. Optionally, bus cycle
states can be displayed along with the source code lines.

The Trace window has control menu commands that let you display bus
cycles, specify whether count information should be shown absolute or
relative, or copy information from the window.

The Trace window opens automatically when a trace is complete.

For each line in the Trace window, the trace buffer state number, the type of
state, the module name and source file line number, the function name, the
source line, and the time count information are displayed.

The << and >> buttons let you move between the multiple frames of trace
data that are available with newer analyzers for the HP 64700.

The type of state can be a sequence level branch (SEQ), a state that satisfies
the prestore condition (PRE), or a normal state that matches the store
conditions (in which case the type field is empty).

Bus cycle states show the address and data values that have been captured
as well as the disassembled instruction or status mnemonics.

On startup, the system defaults to the source only display mode, where only
source code lines are displayed. The source/bus cycle mixed display mode
can be selected by using the Trace window control menu’s Display→Mixed

Chapter 13: Concepts
Debugger Windows

407

Mode (ALT, -, D, M) command. In the source/bus cycle mixed display mode,
each source code line is immediately followed by the corresponding bus
cycles.

The trace buffer stores bus cycles only. The system displays source lines in
the Trace window based on execution bus cycles.

See Also

"Tracing Program Execution" and "Setting Up Custom Trace Specifications"
in the "Debugging Programs" chapter.

"Trace Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

408

The WatchPoint Window

The WatchPoint window displays the contents of variables that have been
registered with the Variable→Edit... (ALT, V, E) command or with the Edit...
(ALT, -, E) command in the WatchPoint window’s control menu.

The contents of dynamic variables are displayed only when the current
program counter is in the function in which the variable is declared.

You can modify the contents of variables by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The WatchPoint window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

See Also

"Displaying and Editing Variables" in the "Debugging Programs" chapter.

"WatchPoint Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

409

Monitor Program Options

• Background monitor

• Foreground monitor

• Foreground monitor advantages and disadvantages

The emulation monitor program is a program that the emulation
microprocessor executes as directed by the HP 64700 system controller. The
emulation monitor program gives the system controller access to the target
system.

For example, when you modify target system memory, the system controller
writes a command code to a communications area and switches (breaks)
emulation processor execution into the monitor program. The monitor
program reads the command code (and any associated parameters) from the
communications area and executes the appropriate machine instructions to
modify the target system memory. After the monitor has performed its task,
emulation processor execution returns to the area where it was executing
before the break.

The emulation monitor program executes out of a separate, internal memory
system known as background memory, which is dual ported. A monitor
program executing out of background memory is known as a background
monitor program.

The foreground emulation monitor program also executes out of dual-port
memory, which is not the same 8K, dual-port memory available to your
programs. However, the foreground monitor does consume memory address
space (that is, you must reserve physical addresses to contain the foreground
monitor), and addresses consumed by the foreground monitor are not
available to use within your target system.

Emulator firmware includes both background and foreground monitor
programs and lets you select either one. You can also load and use a
customized foreground monitor program, if desired.

Chapter 13: Concepts
Monitor Program Options

410

Background monitor

The default emulator configuration selects the background monitor.

Interrupts from the target system are disabled during background monitor
execution. If your programs have strict real-time requirements for servicing
target system interrupts, you must use a foreground monitor.

DMA cycles are allowed while in the background monitor (that is, the HOLD
line will be acknowledged with the HLDA signal even while executing the
background monitor.)

Foreground monitor

A foreground monitor source file is provided with the emulator. It can be
assembled, linked, and loaded into the debugger. It is linked and loaded
separately from your program. However, you must provide:

• A physical address space of 16K that is not used for any other purpose
within your target hardware.

• An unused entry in your GDT. You do not need to put any data in this
entry. It will be filled in by the emulator prior to entering the monitor.

• If you are using paging, the foreground monitor must be located in
address space where each virtual address is the same as each physical
address (virtual address = physical address). You must have a valid page
table for the virtual address range (although the specific entries for the
foreground monitor will be filled in by the emulator prior to entering the
monitor).

Chapter 13: Concepts
Monitor Program Options

411

Foreground monitor advantages and disadvantages

Advantages

• A foreground monitor executes as part of the user program. This allows
you to enable target system interrupts during monitor program execution
for applications that have strict real-time processing requirements.

• A foreground monitor can be customized.

Disadvantages

• A foreground monitor consumes target system address space.

• In order for interrupts to be received while execution is in the monitor,
they must either have a DPL of 0 (because the monitor runs at DPL 0),
or be a task gate.

• A foreground monitor does not require target system stack space.
However, because the foreground monitor runs at DPL 0, you must
provide a privilege level 0 stack in case interrupts are serviced while the
foreground monitor is executing.

Chapter 13: Concepts
Monitor Program Options

412

Trace Signals and Predefined Status Values

This section describes how emulation-bus analyzer trace signals are assigned
to microprocessor address bus, data bus, and control signals.

See also "Understanding Address, Data, and Status", and "Understanding
Intel80386EX Analysis" for more information.

Emulation-Bus Analyzer Trace Signals

Trace
Signals Signal Name Signal Description
------- ------------------- --------------------------------------
6-31 A0-A25 Address Lines A1-A25, plus address A0
 derived from BLE# and BHE#

32-47 D0-D15 Data lines 0-15

64 Monitor/User 0 = Monitor, 1 = User program execution

65 W/R# 1 = write, 0 = read
66 D/C# 1 = data, 0 = control
67 M/IO# 1 = memory, 0 = I/O
68 BLE# 0 = byte low enable (data bits 0-7)
69 BHE# 0 = byte high enable (data bits 8-15)
70 UCS# 0 = Addr of mem or io cycle within prog addr rgn
71 LBA# 0 = proc provides internal READY# for bus trans
72 BS8# 0 = Bus Size 8 is asserted.
73 NA# 0 = Next Address (pipelining) requested
74 LOCK# 0 = lock asserted (HOLD will not be
 acknowledged)
75 SMIACT# 0 = processor is in System Management Mode
76 HLDA 1 = Hold Acknowledge in previous cycle
77 MSG 1 = branch or task trace message from processor
78 NMI 1 = nonmaskable interrupt request
79 REFRESH# 1 = Refresh bus cycle in progress

Chapter 13: Concepts
Trace Signals and Predefined Status Values

413

Predefined Status Values

Qualifier Status Bits (31-16) Description
--------- -------------------- --------------------------------
ble xxxx xxxx xxx0 xxxx BLE# (Byte Low Enable) active
bhe xxxx xxxx xx0x xxxx BHE# (Byte High Enable) active
bs8 xxxx xxx0 xxxx xxxx BS8# (Bus Size 8) active
btmsg xx1x x1xx xxxx 001x Branch Trace message
code xxxx xxxx xxxx x0xx A control access (op-code fetch, for
 example)
data xxxx xxxx xxxx x1xx A data access (memory read, for
 example)
halt xxxx xxxx xx11 101x The ’hlt’ instruction was executed
hlda xxx1 xxxx xxxx xxxx HLDA (hold acknowledge) was active
 just prior to captured state
inta xxxx x0xx xx10 000x An interrupt acknowledge cycle
io xxxx xxxx xxxx 01xx An I/O access (’out’, for example)
iord xxxx xxxx xxxx 010x An I/O read cycle
iowr xxxx xxxx xxxx 011x An I/O write cycle
lba xxxx xxxx 0xxx xxxx processor provides internal READY#
 for bus transactions
lock xxxx x0xx xxxx xxxx Lock asserted (HOLD will not be
 acknowledged)
mem xxxx xxxx xxxx 1xxx A memory access (’read’, for example)
memif xxxx xxxx xxxx 100x A memory instruction fetch (op-code
 fetch)
memrd xxxx xxxx xxxx 1x0x A memory read
memwr xxxx xxxx xxxx 111x A memory write
mon xxxx xxxx xxxx xxx0 A background monitor cycle
msg xx1x xxxx xxxx xxxx message
na xxxx xx0x xxxx xxxx NA# (pipelining) request active
nmi x1xx xxxx xxxx xxxx nonmaskable interrupt active
read xxxx xxxx xxxx xx0x A read cycle (memory or I/O)
refresh 1xxx xxxx xxxx xxxx Refresh cycle active
shut xxxx xxxx xx10 101x Processor shutdown
smiact xxxx 0xxx xxxx xxxx System Management Mode active
ttmsg xx1x x1xx xxxx 000x Task Trace message
ucs xxxx xxxx x0xx xxxx Address of cycle is in programmed
 address range
write xxxx xxxx xxxx xx1x A write cycle (memory or I/O)

Chapter 13: Concepts
Trace Signals and Predefined Status Values

414

Understanding Intel80386EX Analysis

The external address, data, and control signals of the Intel80386EX can be
difficult to understand. This section will help you understand how the
Intel80386EX works, how to interpret the trace information, and how to ask
for more precise trace information.

Instruction reads are always two bytes

The Intel80386EX always reads two bytes at a time when reading
instructions. This can be confusing when the target of a branch is at an
address that is not a multiple of two. This can also cause problems when you
want to trigger on a specific function. See Understanding Address, Data, and
Status for information on how the emulator helps you do this.

Prefetching

The Intel80386EX may read up to 12 bytes of data before it starts to execute
the first byte of data (it may fetch less, depending on the number of wait
states and the instructions being executed). Eleven of these twelve bytes of
data are "prefetched" (that is, fetched from memory before they are needed).
One implication of these prefetches is that the processor runs faster. Another
is that the order of the external bus cycles can be confusing when you see
them in a trace list.

Consider the following assembly code:
103F readloop:
103F A10000 mov ax,control
1042 3D0000 cmp ax,0
1045 74F8 je readloop

1047 try1:
1047 3D0100 cmp ax,1
104A 75189090 jne try2 ; command 1: call into ldt1romseg

Chapter 13: Concepts
Understanding Intel80386EX Analysis

415

When traced by a logic analyzer, with 0000h as the address of ’control’, these
are the bus cycles the Intel80386EX generates:
 Line addr,H 80386 Mnemonic
 ------- ------- --
 0 000103e a190H code read
 1 0001040 0000H code read
 2 0001042 003dH code read
 3 0001044 7400H code read
 4 0001046 3df8H code read
 5 0000000 0000H read mem
 6 0001048 0001H code read
 7 000104a 1875H code read
 8 000103e a190H code read
 9 0001040 0000H code read
 10 0001042 003dH code read
 11 0001044 7400H code read
 12 0001046 3df8H code read
 13 0000000 0000H read mem
 14 0001048 0001H code read

The above trace list shows several features of the Intel80386EX bus activity:

• Even though readloop begins at address 103f, the processor had to fetch
instructions starting at address 103e each time it jumped to readloop.
The Intel80386EX always reads two bytes when reading instructions.

• The processor prefetched some instructions (addresses 1042 through
1047) before executing the ’mov ax,control’ instruction at address 103f.
You can see this by seeing that the read of ’control’ (address 0) occurs at
state 5, not after state 1 where the entire opcode had been read.

• Even after ’control’ was read, the processor continued to prefetch,
reading address 104a at state 7 in the trace before recognizing it had to
jump back to address 103f.

Chapter 13: Concepts
Understanding Intel80386EX Analysis

416

Disassembly helps

Fortunately, the disassembler which is part of RTC helps you decode the
order of execution. Here is the output of the ’trace’ command, displaying
disassembled bus cycles:
 Line addr,H 80386 Mnemonic
 ------- ------- --
 0 000103e NOP
 =000103f MOV AX,0000H
 1 0001040 0000H code read
 2 0001042 CMP AX,#0000H
 3 =0001045 JZ 0000103fH
 4 =0001047 -CMP AX,#0001H
 5 0000000 0000H read mem
 6 0001048 - 0001H code read
 7 000104a -JNZ 00001064H
 8 000103e -NOP
 =000103f MOV AX,0000H
 9 0001040 0000H code read
 10 0001042 CMP AX,#0000H
 11 =0001045 JZ 0000103fH
 12 =0001047 -CMP AX,#0001H
 13 0000000 0000H read mem
 14 0001048 - 0001H code read

• The lines preceded by equals signs (=) did not appear as bus cycles.
Instead, they were emitted by the disassembler. They were obtained as
part of the preceding fetch.

• When a dash (-) is shown preceding a mnemonic, it indicates that the
associated opcode was not executed. Instead, it was obtained in an
unexecuted prefetch.

• When a multiple-byte opcode is decoded, the next address in the address
column shows the starting byte of the next opcode, not the address that
appeared on the address bus. This is convenient when using an assembly
listing to match up addresses, but you cannot trigger a trace on this
address. Only use addresses that are multiples of two when specifying a
trigger for the analyzer.

Chapter 13: Concepts
Understanding Intel80386EX Analysis

417

Execution Trace Messages help even more

In many cases, the disassembler cannot correctly determine which bytes are
unused prefetches and which are executed. The "execution trace message"
facility in this emulator helps you make the determination.

When the "Enable Execution Trace Messages" box in the Settings→ Emulator
Config→Hardware... dialog box is checked, the processor emits the target of
any branches to the analyzer (use of "Enable Execution Trace Messages" has
little or no effect on the performance of your target system.)

Consider the following code which jumps into a table based on the value in
the ax register:
0140 40 53 inc ax
0141 BA4801 54 mov dx,offset table_start
0144 01C2 55 add dx,ax
0146 FFE2 56 jmp dx
0148 40 57 table_start: inc ax
0149 42 58 entry2: inc dx
014A 41 59 entry3: inc cx
 60
014B EBFE 61 jmp $

These are the bus cycles when the above code is executed:
 Line addr,H 80386 Mnemonic
 ------- ------- --
 0 0000140 ba40H code read
 1 0000142 0148H code read
 2 0000144 c201H code read
 3 0000146 e2ffH code read
 4 0000148 4240H code read
 5 000014a eb41H code read
 6 000014c 00feH code read
 7 0000148 4240H code read
 8 000014a eb41H code read
 9 000014c 00feH code read
 10 000014e 1700H code read
 11 0000150 ff00H code read
 12 0000152 00ffH code read
 13 000014a eb41H code read

The RTC disassembler helps, but it cannot identify the exact destination of
the indirect jump, which could be the opcode at address 148, 149, 14a, or
even 14b (because they were all fetched together). There is no way to tell
without knowing the value of register AX at the start of the trace, and there is
no hint as to its starting value.

Chapter 13: Concepts
Understanding Intel80386EX Analysis

418

Line addr,H 80386 Mnemonic stat,H count,R
---- ------- ----------------------------- -------- -----------
 0 0000140 INC AX 1f09ffff -----------
 =0000141 MOV DX,#0148H
 1 0000142 0148H code read 1f09ffff 2.84uS
 2 0000144 ADD DX,AX 1f09ffff 2.84uS
 3 0000146 JMP NEAR PTR DX 1f09ffff 2.82uS
 4 0000148 -INC AX 1f09ffff 2.84uS
 =0000149 -INC DX
 5 0000148 INC AX 1f09ffff 2.84uS
 =0000149 INC DX
 6 000014a INC CX 1f09ffff 2.82uS
 =000014b JMP 0000014bH
 7 =000014d -ADD DH,CH 1f09ffff 2.84uS
 8 =000014f -ADD [BX][SI],AL 1f09ffff 2.84uS
 9 =0000151 -ADD no operand 1f09ffff 2.82uS
 10 000014a -INC CX 1f09ffff 2.84uS
 =000014b JMP 0000014bH

Note that the disassembler had no choice but to assume that the jump was to
address 148 in the above trace (the first byte fetched). By enabling
Execution Trace Messages, the disassembler can produce the following trace
list:
 Line addr,H 80386 Mnemonic
 ------- ------- --
 0 0000140 INC AX
 =0000141 MOV DX,#0148H
 1 0000140 branch trace msg, dest=00000140H
 2 0000142 0148H code read
 3 0000144 ADD DX,AX
 4 0000146 JMP NEAR PTR DX
 5 0000148 -INC AX
 =0000149 -INC DX
 6 000014a -INC CX
 =000014b -JMP 0000014bH
 7 =000014d -ADD [BX][SI],AL
 8 0000148 -INC AX
 =0000149 INC DX
 9 0000149 branch trace msg, dest=00000149H
 10 000014a INC CX
 =000014b JMP 0000014bH

In this listing, the "branch trace message" shows that the indirect jump went
to address 149. Note that the instruction at address 148 is an unused
prefetch, accurately marked by the leading dash. (By reading this trace list,
you can see that register AX must have been equal to ’0’ on entry to this
routine.)

Chapter 13: Concepts
Understanding Intel80386EX Analysis

419

Using Execution Trace Messages to observe program flow

If you enable Execution Trace Messages, and then store only cycles with the
’btmsg’ status, you can obtain a concise trace showing the exact "flow" of
your program. Only branches that are taken will appear, so you can observe
calls to your functions, returns from them, "if" statements executed, and the
number of times loops are executed. Since only the branches are stored, you
can keep a record of program activity for a very long time before filling all of
your analysis memory.

Chapter 13: Concepts
Understanding Intel80386EX Analysis

420

Understanding Address, Data, and Status

The Intel80386EX has a 16-bit data bus but allows the program to access
data contents in 8-bit and 16-bit physical accesses. It can be difficult to know
how to define a specification for the external bus on the Intel80386EX when
you want to perform a trace. The following information will help you decide
what to put in the A:D:S: fields of the analyzer in order to trigger, store, or
sequence the analyzer to capture desired information.

Code fetches

If your hardware asserts BS8# low, or the chip-select unit has programmed a
range to be BS8, the processor will do two fetches. For example, if an
instruction was at address 4000, the processor would normally do a 16-bit
read from address 4000. When BS8# is asserted, it will do an 8-bit read from
address 4000, and another 8-bit read from address 4001. This makes it
difficult to specify an address for instruction fetches. In fact, bit 0 of any
instruction address must be "don’t care". This must be specified in binary.
Otherwise, all four lower bits will be "don’t cares".

There are two cases where the emulator has been designed to know you want
to "don’t care" bit 0:

• When you specify an address and use the status "memif", the analyzer
will "don’t care" address bit 0.

• When you specify an address with a symbol, and that symbol is in a code
segment, the address will be "don’t cared" correctly. If you do not wish
this to happen, use "<symbol>+0".

Example: If address 5 contains an opcode, the analyzer must trigger on 010x binary. If
this was entered as "A: 5 S: memif", the correct trigger specification will be
entered automatically. If address 5 was the symbol "START", simply using
the symbol will also automatically generate the address pattern 010x instead
of 0101. If this was entered as "START+0", the trigger address pattern will be
0101.

Chapter 13: Concepts
Understanding Address, Data, and Status

421

Data read/write

Data values are 16-bit values (because the data bus is 16 bits wide). To
identify byte values on the data bus, use "don’t cares" (x) as shown below:

• Data at multiple of 2 (e.g. 0, 2, 4): 0xx12
• Data at multiple of 2 + 1 (e.g. 1, 3, 5): 034xx

For example, to specify a write to address byte 4031 with value 23:

Address:4031 Data:023xx Status:write

Status values identify the types of Intel80386EX bus cycles. Status values
may be ANDed together by selecting two or more in the Trace Pattern Dialog
Box, accessable via the Trace→Edit... dialog box and the Trace→Sequence...
dialog box. For example, to trigger on the occurrence of a data read
immediately following a HOLD cycle, select hlda, memrd, and data together.

If you need a combination of status values not available in the predefined list,
you may compose a binary value on bits 31 - 16 from the following
information:

Status Bits 31 - 16 Description

xxxx xxxx xxxx xxx0 0 = monitor cycle. See Note 1 below.
xxxx xxxx xxxx xx1x 1 = write. 0 = read.
xxxx xxxx xxxx x1xx 1 = data. 0 = code.
xxxx xxxx xxxx 1xxx 1 = memory. 0 = data.
xxxx xxxx xxx0 xxxx 0 = Byte Low Enable (bits 7..0) active.
xxxx xxxx xx0x xxxx 0 = Byte High Enable (bits 15..8) active.
xxxx xxxx x0xx xxxx 0 = UCS pin active.
xxxx xxxx 0xxx xxxx 0 = READY pin active.
xxxx xxx0 xxxx xxxx 0 = Bus Size 8-pin active.
xxxx xx0x xxxx xxxx 0 = NA pin (pipelining) active.
xxxx x0xx xxxx xxxx 0 = Interrupt acknowledge active.
xxxx 1xxx xxxx xxxx 1 = SMIACT pin active.
xxx0 xxxx xxxx xxxx 0 = HLDA pin active.
xx0x xxxx xxxx xxxx 0 = branch or task trace message active.
x1xx xxxx xxxx xxxx 1 = NMI pin active.
1xxx xxxx xxxx xxxx 1 = refresh cycle active.

Note 1: Also controls cycle type in the Settings→Extended→Trace menu.

Chapter 13: Concepts
Understanding Address, Data, and Status

422

Entering Addresses as Constants

This chapter contains information about entering addresses as constants
(instead of using symbols or clicking on source lines in the source display)

• Overview of Intel80386EX address types

• Explanation: why different syntax for different address types

• Constant-Address Syntax

Chapter 13: Concepts
Entering Addresses as Constants

423

Overview of Intel80386EX address types

The Intel80386EX uses several different types of addresses. This section
gives a brief definition of each type. For more information, see your
Intel80386EX programmer’s handbook.

Physical addresses

These are the addresses actually available on the address pins of the
Intel80386EX. They are used by the memory and I/O subsystems on an
80386-based system. They have 32 bits on the Intel80386DX, 26 bits on the
Intel80386EX, and 24 bits on the Intel80386CX.

Linear addresses

These are the addresses used by the hardware breakpoints on the
Intel80386EX, and are inputs into the paging hardware on the Intel80386EX.
They have 32 bits.

Virtual addresses

These are the addresses as seen by the programmer. There are three types
of virtual addresses: real-mode, protected-mode, and virtual 8086-mode.

Real-mode These addresses have a 16-bit segment and a 16-bit offset. The
linear address is calculated as: (segment * 16) + offset. After RESET, the
processor is in ’real mode’. In this mode, physical addresses are the same as
linear addresses.

Protected-mode These addresses have a 32-bit selector and a 16-bit or
32-bit offset. The linear address is calculated by using 13 bits of the selector
as an index into the GDT (Global Descriptor Table), reading a base address
from that entry in the GDT, and adding the offset.

Virtual 8086-mode These addresses have a 16-bit segment and a 16-bit
offset. The linear address is calculated as: (segment * 16) + offset. In this
mode, paging can be used so the physical address is not necessarily the same
as the linear address.

Chapter 13: Concepts
Entering Addresses as Constants

424

Explanation: why different syntax for different
address types

There are several reasons why this emulator differentiates between
real-mode addresses and protected-mode addresses:

• To reduce the use of the monitor when doing dynamic translations.
Real-mode addresses do not need to traverse any tables, but
protected-mode addresses do.

• To allow the use of protected-mode addresses while the processor is still
in real mode (e.g. it is reset). This is generally used to set up
breakpoints or to set up a trace.

• To allow clear display of real-mode addresses versus protected-mode
addresses.

Chapter 13: Concepts
Entering Addresses as Constants

425

Constant-address syntax

Physical addresses

offset offset is a 32-bit value.

Real-mode addresses

segment:offset Segment is a 16-bit value, and offset is a 16-bit value. The
linear address is calculated as: (64 * segment) + offset

Protected-mode addresses, GDT only

selector::offset Offset is 16 or 32 bits; selector is an entry into the GDT
(current or cached)

Protected-mode addresses, GDT and LDT specified

selector:ldt:offset Offset is 16 or 32 bits; selector is an entry into the GDT
(current or cached) which points to an LDT; ldt is the
entry in that LDT.

All 16 and 32-bit values are entered as numeric constants.

Protected-mode addresses, LDT only specified

selector::offset Offset is 16 or 32 bits; selector is an entry into an LDT (bit
2 is set). If this form is used, the current LDTR is assumed
to point into the correct LDT; ldt is the entry in that LDT.

See Also

"Understanding Incompletely Specified LDT Addresses," next in this chapter.

"Selecting how Address Translations work" in the "Configuring the Emulator"
chapter.

Chapter 13: Concepts
Entering Addresses as Constants

426

Understanding Incompletely Specified LDT
Addresses

Some generators of OMF format files do not provide enough debug
information in the file to completely locate symbols that are in a Local
Descriptor Table (LDT).

To completely locate a symbol’s address, the OMF generator must supply the
Global Descriptor Table (GDT) entry of the LDT, the offset of the selector in
the LDT, and the offset of the symbol from the selector’s base. Many OMF
generators provide only the LDT and the offset.

When the emulator’s RTC interface sees an incompletely specified LDT
address, it uses the current LDT. If the current LDT is the correct LDT for
the symbol, there is no problem. If, however, the current LDT is not the one
related to the symbol, you may have severe problems because the physical
address is not related to the symbol at all.

In the symbol window, you can identify the symbols that have incompletely
specified LDT addresses. They look like this:

<symbol> <LDT>::<OFFSET>

Be very careful when using such symbols.

Remember that an LDT has bit 2 set, whereas the GDT has bit 2 cleared.
Therefore, in the following example, the symbol named HELLO is a
fully-qualified LDT symbol, GOODBYTE is a fully-qualified GDT symbol, and
YOUSAY is an LDT symbol where the current LDT will be assumed:

HELLO 28:14:30
GOODBYTE 30::5
YOUSAY 14::5

Chapter 13: Concepts
Understanding Incompletely Specified LDT Addresses

427

Unexpected Stepping Behavior

The emulator uses the single-step trap feature of the i83086 processor to
single step instructions. A single-step trap happens when:

• The TF flag in the EFLAGS register is set.

• An instruction is executed with the TF flag set.

Faults

If an instruction causes a fault, the flags register is saved on the stack and the
TF flag is cleared before the fault handler is executed. Unless the fault
handler restores the value of the TF flag saved on the stack, the entire fault
handler will be executed without generating a single-step trap.

For example, if a floating-point instruction is executed on a system that does
not have an i80387 floating-point coprocessor, an instruction fault will be
generated. This type of fault is typically fielded by a floating-point emulation
library which processes the exception stack frame, decodes and emulates the
floating-point instruction, modifies the return address on the stack to point to
the next instruction, and returns from the fault handler. However, because
no instructions were executed with the trap flag set, the processor does not
generate a single-step trap. The processor will continue to execute
floating-point instructions until the first normal instruction is executed.

This does not occur when floating-point instructions are executed on an
i80387 coprocessor. Floating-point emulation libraries could be implemented
to generate a single-step trap upon return by restoring the TF flag from the
stack immediately prior to executing the IRET/IRETD instruction.

Chapter 13: Concepts
Unexpected Stepping Behavior

428

INT instructions

Like an instruction fault, the TF flag is saved on the stack and then cleared
prior to execution of the first instruction in the interrupt handler. Therefore,
on returning from the INT instruction, the processor will execute the next
instruction, and then generate the single-step fault (assuming the next
instruction is not another INT, fault, etc.).

Task gates

If the instruction is a task gate, the EFLAGS register is saved in the old TSS
and the TF flag is restored from the new TSS prior to execution of the first
instruction of the new task. Therefore, the entire task will be executed
before the single-step trap occurs.

To step into a task or a fault handler

First, set a breakpoint in the routine you want to step into. Then do a "run"
command. If you do a step as you go into the INT routine or the fault
handler, the TF flag will be restored when you return from the INT routine or
fault handler routine. This means that if you do a RUN while in the routine,
you will enter the monitor on the instruction after the routine returns.

Chapter 13: Concepts
Unexpected Stepping Behavior

429

430

Part 5

Installation Guide

Instructions for installing the product.

431

Part 5

432

14

Installing the Debugger

433

Installing the Debugger

This chapter shows you how to install the Real-Time C Debugger.

• Requirements

• Before Installing the Debugger

• Step 1. Connect the HP 64700 to the PC

• Step 2. Install the debugger software

• Step 3. Start the debugger

• Step 4. Check the HP 64700 system firmware version

• Optimizing PC Performance for the Debugger

434

Requirements

• IBM compatible or NEC PC with an 80486 microprocessor and 8
megabytes of memory.

• MS Windows 3.1, set up with 20 megabytes of swap space.

• VGA Display.

• 3 Megabytes available disk space.

• Serial port, HP 64037 RS-422 port, or Novell LAN with Lan Workplace for
DOS or Microsoft Lan Manager with HP ARPA Services.

• Revision A.04.00 or greater of HP 64700 system firmware. The last step
in this chapter shows you how to check the firmware version number.

Chapter 14: Installing the Debugger
Requirements

435

Before Installing the Debugger

• Install MS Windows according to its installation manual. The
Real-Time C Debugger must run under MS Windows in the 386
enhanced mode.

To ensure your PC is running in the 386 Enhanced Mode, double-click the
PIF Editor in the Main or Accessories window. Choose the Mode pulldown in
the PIF Editor menu bar. A check mark should be beside "386 Enhanced" in
the Mode pulldown.

• If the HP 64700 is to communicate with the PC via LAN:

Make sure the HP 64700 LAN interface is installed (see the "HP 64700 Series
Installation/Service" manual).

Install the LAN card into the PC, and install the required PC networking
software.

Obtain the Internet Address, the Gateway Address, and the Subnet Mask to
be used for the HP 64700 from your Network Administrator. These three
addresses are entered in integer dot notation (for example, 192.35.12.6).

• If the HP 64700 is to communicate with the PC via RS-422:

Install the HP 64037 RS-422 interface card into the PC. The Real-Time C
Debugger includes software that configures the RS-422 interface.

Chapter 14: Installing the Debugger
Before Installing the Debugger

436

Step 1. Connect the HP 64700 to the PC

You can connect the HP 64700 to an RS-232 serial port on the PC, the Local
Area Network that the PC is on, or an HP 64037 RS-422 interface that has
been installed in the PC.

• To connect via RS-232

• To connect via LAN

• To connect via RS-422

To connect via RS-232

1 Set the HP 64700 configuration switches for RS-232C communication.
Locate the COMM CONFIG switches on the HP 64700 rear panel, and
set them as shown below.

Notice that switches 1 through 3 are set to 001, respectively. This sets the
baud rate to 19200.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

437

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

If you want to build your own RS-232 cable, follow one of the pin-outs for HP
cables shown in the following figure.

You can also use an RS-232C printer cable, but you must set HP 64700
configuration switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

438

4 Start MS Windows in the 386 enhanced mode.

5 Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings→Communications... (ALT, S, C) command, and select:
19200 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Hardware Flow
Control, and the PC’s RS-232 interface connector. Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, "R>", "M>", or "U>".
The "->" prompt indicates the present firmware does not match the emulator
probe, or there is no probe connected). If you see the prompt, you have
verified RS-232 communication. If you do not see the prompt, refer to "If you
cannot verify RS-232 communication".

If you will be using the RS-232 connection for the debugger, exit the
Terminal program and go to "Step 2. Install the debugger software".

If you will be using the LAN connection, go to "To connect via LAN".

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

439

To connect via LAN

1 Set the HP 64700 LAN parameters.

If you’re setting the HP 64700 LAN parameters for the first time, you must
connect the HP 64700 to the PC via RS-232 before you can access the HP
64700 Terminal Interface. Follow the steps in "To connect via RS-232" and
then return here.

If you’re changing the LAN parameters of an HP 64700 that is already on the
LAN, you can use the "telnet <HP 64700 IP address>" command to access the
HP 64700 Terminal Interface.

Once the HP 64700 Terminal Interface has been accessed, display the
current LAN parameters by entering the "lan" command:

R>lan
lan -i 15.6.25.117
lan -g 15.6.24.1
lan -s 255.255.248.0 <<- HP 64700A ONLY
lan -p 6470
Ethernet Address : 08000909BBC1

The "lan -i" line shows the Internet Address (or IP address). The Internet
Address must be obtained from your Network Administrator. The value is
entered in integer dot notation. For example, 192.35.12.6 is an Internet
Address. You can change the Internet Address with the "lan -i <new IP>"
command.

The "lan -g" line shows the Gateway Address which is also an Internet
address and is entered in integer dot notation. This entry is optional and will
default to 0.0.0.0, meaning all connections are to be made on the local
network or subnet. If connections are to be made to workstations on other
networks or subnets, this address must be set to the address of the gateway
machine. The gateway address must be obtained from your Network
Administrator. You can change the Gateway Address with the "lan -g <new
gateway address>" command.

The "lan -s" line will be shown if you are using the HP 64700A, and will not be
shown if you are using the HP 64700B. If this line is not shown, the Subnet
Mask is automatically configured. If this line is shown, it shows the Subnet
Mask in integer dot notation. This entry is optional and will default to 0.0.0.0.
The default is valid only on networks that are not subnetted. (A network is

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

440

subnetted if the host portion of the Internet address is further partitioned
into a subnet portion and a host portion.) If the network is subnetted, a
subnet mask is required in order for the emulator to work correctly. The
subnet mask should be set to all "1"s in the bits that correspond to the
network and subnet portions of the Internet address and all "0"s for the host
portion. The subnet mask must be obtained from your Network
Administrator. You can change the Subnet Mask with the "lan -s <new
subnet mask>" command .

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network
Administrator states otherwise, make them the same. You can check the
PC’s subnet mask with the "lminst" command if you are using HP-ARPA. If
you are using Novell LAN WorkPlace, make sure the file \NET.CFG has the
entry "ip_netmask <subnet mask>" in the section "Protocol TCPIP".

The "lan -p" line shows the base TCP service port number. The host
computer interfaces communicate with the HP 64700 through two TCP
service ports. The default base port number is 6470. The second port has
the next higher number (default 6471). If the service port is not 6470, you
must change it with the "lan -p 6470" command.

The Internet Address and any other LAN parameters you change are stored
in nonvolatile memory and will take effect the next time the HP 64700 is
powered off and back on again.

2 Exit the Terminal or telnet program.

3 Turn OFF power to the HP 64700.

4 Connect the HP 64700 to the LAN. This connection can be made
using either the 15-pin AUI connector or the BNC connector.

DO NOT use both connectors. The LAN interface will not work with both
connected at the same time.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

441

5 Set the HP 64700 configuration switches for LAN communication.

Switch 16 must be set to one (1) indicating that a LAN connection is being
made.

Switch 15 should be zero (0) if you are connecting to the BNC connector or
set to one (1) if a 15 pin AUI connection is made.

Switch 14 should be zero (0).

Set all other switches to zero (0).

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

442

6 Turn ON power to HP 64700.

7 Verify LAN communication by using a "telnet <HP 64700 IP address>"
command. This connection will give you access to the HP 64700
Terminal Interface.

You should now be able to press the Enter key in the telnet window to see
the HP 64700’s Terminal Interface prompt (for example, "R>", "M>", "U>",
etc.). If you see the prompt, you have verified LAN communication. If you
cannot connect to the HP 64700’s IP address, refer to "If you cannot verify
LAN communication".

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

443

To connect via RS-422

Before you can connect the HP 64700 to the PC via RS-422, the HP 64037
RS-422 Interface must have already been installed into the PC.

1 Set the HP 64700 configuration switches for RS-422 communication.
Locate the COMM CONFIG switches on the HP 64700 rear panel, and
set them as shown below.

Notice that switches 1 through 3 are set to 111, respectively. This sets the
baud rate to 230400.

Notice that switch 5 is set to 1. This configures the 25-pin port for RS-422
communication.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

2 Connect the 17355M cable (which comes with the HP 64037
interface) from the PC to the HP 64700.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

444

If you cannot verify RS-232 communication

If the HP 64700 Terminal Interface prompt does not appear in the Terminal
window:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that you have properly configured the data communications
switches on the emulator and the data communications parameters on your
controlling device. You should also verify that you are using the correct
cable.

The most common type of data communications configuration problem
involves the configuration of the HP 64700 as a DCE or DTE device and the
selection of the RS-232 cable. If you are using the wrong type of cable for the
device selected, no prompt will be displayed.

When the RS-232 port is configured as a DCE device (S4 is set to 0), a
modem cable should be used to connect the HP 64700 to the host computer
of terminal. Pins 2 and 3 at one end of a modem cable are tied to pins 2 and 3
at the other end of the cable.

When the RS-232 port is configured as a DTE device (S4 is set to 1), a printer
cable should be used to connect the HP 64700 to the host computer of
terminal. Pins 2 and 3 at one end of a printer cable are swapped and tied to
pins 3 and 2, respectively, at the other end of the cable.

If you suspect that you may have the wrong type of cable, try changing the S4
setting and turning power to the HP 64700 OFF and then ON again.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

445

If you cannot verify LAN communication

Use the "telnet" command on the host computer to verify LAN
communication. After powering up the HP 64700, it takes a minute before
the HP 64700 can be recognized on the network. After a minute, try the
"telnet <internet address>" command.

• If "telnet" does not make the connection:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that the LAN cable is connected. Refer to your LAN
documentation for testing connectivity.

Make sure the HP 64700 rear panel communication configuration switches
are set correctly. Switch settings are only used to set communication
parameters in the HP 64700 when power is turned OFF and then ON.

Make sure that the HP 64700’s Internet Address is set up correctly. You
must use the RS-232 port to verify this that the Internet Address is set up
correctly. While accessing the emulator via the RS-232 port, run
performance verification on the HP 64700’s LAN interface with the "lanpv"
command.

• If "telnet" makes the connection, but no Terminal Interface prompt
(for example, R>, M>, U>, etc.) is supplied:

It’s possible that the HP 64000 software is in the process of running a
command (for example, if a repetitive command was initiated from telnet in
another window). You can use CTRL+c to interrupt the repetitive command
and get the Terminal Interface prompt.

It’s also possible for there to be a problem with the HP 64700 firmware while
the LAN interface is still up and running. In this case, you must turn OFF
power to the HP 64700 and turn it ON again.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

446

Step 2. Install the debugger software

1 If you are updating or re-installing the debugger software, you may
want to save your B3637B.INI file because it will be overwritten by
the installation process.

2 Start MS Windows in the 386 enhanced mode.

3 Insert the Intel80386EX REAL-TIME C DEBUGGER Disk 1 of 2 into
floppy disk drive A or B.

4 Choose the File→Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

447

You will be asked to enter the installation path. The default installation path
is C:\HP\RTC\I386EX. The default installation path is shown wherever files
are discussed in this manual.

You will be asked to enter your user ID. This information is important if the
HP 64700 is on the LAN and may be accessed by other users. It tells other
users who is currently using, or who has locked, the HP 64700. This
information can be modified while using the Real-Time C Debugger by
choosing the Settings→Communication... (ALT, S, C) command.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

448

You will be asked to select the type of connection to be made to the HP
64700. This information can be modified while using the Real-Time C
Debugger by choosing the Settings→Communication... (ALT, S, C) command.

When using the HP-RS422 transport, the connection name is the I/O address
you want to use for the HP 64037 card. Enter a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict with other cards
in your PC.

After you have specified the type of connection, files will be copied to your
hard disk. (The B3637B.TMP and B3637B.HLP files are larger than most of
the other files and take longer to copy.) Fill out your registration information
while waiting for the files to be copied.

If the Setup program detects that one or more of the files it needs to install
are currently in use by Windows, a dialog box informs you that Windows
must be restarted. You can either choose to restart Windows or not. If you
don’t choose to restart Windows, you can either run the _MSSETUP.BAT
batch file (in the same directory that the debugger software is installed in)
after you have exited Windows or reinstall the debugger software later when
you are able to restart Windows.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

449

Step 3. Start the debugger

1 If the "HP Real-Time C Debugger" group box is not opened, open it by
double-clicking in the icon.

2 Double-click the "I80386EX Real-Time C Debugger" icon.

If you have problems connecting to the HP 64700, refer to:

• If you have RS-232 connection problems

• If you have LAN connection problems

• If you have RS-422 connection problems

If you have RS-232 connection problems

Remember that Windows 3.1 only allows two active RS-232 connections at a
time. To be warned when you violate this restriction, choose Always Warn
in the Device Contention group box under 386 Enhanced in the Control
Panel.

Use the "Terminal" program (usually found in the Accessories windows
program group) and set up the "Communications..." settings as follows:

Baud Rate: 19200 (or whatever you have chosen for the emulator)
Data Bits: 8
Parity: None
Flow Control: Hardware
Stop Bits: 1

Chapter 14: Installing the Debugger
Step 3. Start the debugger

450

When you are connected, hit the Enter key. You should get a prompt back.
If nothing echos back, check the switch settings on the back of the emulator.

Switches 1 thru 3 set the baud rate as follows:
S1 S2 S3
0 0 0 9600
0 0 1 19200
0 1 0 2400

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially switch 16 on the
HP 64700 (which selects LAN/Serial interface).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

• If the switches are in the correct position and you still do not get a
prompt when you press return, check the following:

 Turn off power to the HP 64700 and then turn it on again. Press return to
see if you get a prompt.

Check to make sure the RS-232 cable is connected to the correct port on
your PC, and that the cable is appropriate for connecting the PC to a DCE
device. If the cable is intended to connect the PC to a DTE device, set
switch 4 to "1" (which makes the emulator a DTE device), turn OFF power to
the HP 64700, turn power ON, and try again.

Check to make sure your RS-232 cable has the RTS, CTS, DSR, DCD, and
DTR pins supported. If your PC RS-232 connection is a 9-pin male
connection, HP cable number 24542M will work (set switch 4 to 0 if you use
this cable). If your PC has a 25-pin RS-232 connector, HP cable number
13242N will work (set switch 4 to 0).

Chapter 14: Installing the Debugger
Step 3. Start the debugger

451

• If you wish to build your own RS-232 cable, refer to "To connect via
RS-232" in the paragraph titled, "Step 1. Connect the HP 64000 to the
PC" earlier in this chapter.

• When using certain RS-232 cards, connecting to an RS-232 port where
the HP 64700 is turned OFF (or not connected) will halt operation of
the PC. The only way to restore operation is to reboot the PC.
Therefore, HP recommends you always turn ON the HP 64700 before
attempting to connect via RS-232.

• If RTC reports overrun errors or simply times out, RTC may be
overrunning the serial interface. In this case, try the following:

Stop all unnecessary TSR’s and other applications to allow the processor to
service the serial interface more often.

Overrun errors may occur when the serial interface card is not sufficiently
buffered. Check to make sure your serial interface card uses the 16550AF
UART, or better. Use the DOS command, "MSD", and when the window
opens, select "COM Ports..." to see the UART chip used in your serial
interface card.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

452

If you have LAN connection problems

Try to "ping" the emulator:

ping <hostname or IP address>

If the emulator does not respond:

• Check that switch 16 on the emulator is "1" (emulator is attached to LAN,
not RS-232 or RS-422).

• Check that switch 15 on the emulator is in the correct position for your
LAN interface (either the AUI or the BNC).

Remember, if you change any switch settings on the emulator, the changes
do not take effect until you turn OFF emulator power and turn it ON again.

If the emulator still does not respond to a "ping," you need to verify the IP
address and subnet mask of the HP 64700. To do this, connect the HP 64700
to a terminal (or to the Terminal application on the PC), change the
emulator’s switch settings so it is connected to RS-232, and enter the "lan"
command. The output looks something like this:

lan -i 15.6.25.117
lan -g 15.6.24.1
lan -s 255.255.248.0
lan -p 6470
Ethernet Address : 08000909BBC1

The important outputs (as far as connecting) are:

"lan -i"; this shows the internet address is 15.6.25.117 in this case. If the
Internet address (IP) is not what you expect, you can change it with the ’lan
-i <new IP>’ command.

"lan -s"; shows the subnet mask is 255.255.248 (the upper 21 bits --
255.255.248.0 == FF.FF.F8.0). If the subnet mask is not what you expect,
you can change it with the ’lan -s <new subnet mask>’ command.

"lan -p"; shows the port is 6470. If the port is not 6470, you must change it
with the "lan -p 6470" command.

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network

Chapter 14: Installing the Debugger
Step 3. Start the debugger

453

Administrator states otherwise, make them the same. If you are using
HP-ARPA, you can check the PC’s subnet mask with the "lminst" command in
a DOS window. If you are using Novell LAN WorkPlace, make sure the file
\\NET.CFG has the entry "ip_netmask <subnet mask>" in the section
"Protocol TCPIP." If you are using Windows for Workgroups, you can check
the PC’s subnet mask by looking in the [TCPIP] section of the
PROTOCOL.INI file or by looking in the Microsoft TCP/IP Configuration
dialog box. If you are using WINSOCK, refer to your LAN software
documentation for subnet mask information.

Occasionally the emulator or the PC will "lock up" the LAN due to excessive
network traffic. If this happens, all you can do is turn OFF power to the HP
64700 or PC and turn it back ON, again. If this happens two frequently, you
can try placing a gateway between the emulator/PC and the rest of your
network.

If you have LAN DLL errors

The various LAN transport selections require the following DLLs:

HP-ARPA WSOCKETS.DLL.

Novell-WP WLIBSOCK.DLL.

W4WG-TCP WSOCKETS.DLL. (Windows for Workgroups)

WINSOCK1.1 WINSOCK.DLL.

These DLLs are included with LAN software. The required DLL must be in
your search path. This will be the case if your network software is installed.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

454

If you have RS-422 connection problems

Make sure the HP 64700 switch settings match the baud rate chosen when
attempting the connection.

Switches 1 thru 3 set the baud rate as follows:
S1 S2 S3
1 1 1 230400
1 1 0 115200
1 0 1 38400
1 0 0 57600
0 1 1 1200
0 1 0 2400
0 0 1 19200
0 0 0 9600

Switch 5 must be set to 1 to configure the HP 64700 for RS-422
communication.

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially the switch that
determines LAN/Serial interface (switch 16 on HP 64700).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

If the switches are in the correct position and you still do not get a prompt
when you hit return, try turning OFF the power to the HP 64700 and tuning it
ON again.

If you still don’t get a prompt, make sure the HP 17355M RS-422 cable is
connected to the correct port on your PC.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

455

Step 4. Check the HP 64700 system firmware
version

• Choose the Help→About Debugger/Emulator... (ALT, H, D) command.

The version information under HP 64700 Series Emulation System must show
A.04.00 or greater. If the version number is less than A.04.00, you must
update your HP 64700 system firmware as described in the
Installing/Updating HP 64700 Firmware chapter.

Chapter 14: Installing the Debugger
Step 4. Check the HP 64700 system firmware version

456

Optimizing PC Performance for the Debugger

The Real-Time C Debugger is a memory and I/O intensive Windows program.
Slow user interface performance may be caused by many things:

• Underpowered PC -- The Real-Time C Debugger requires an IBM
compatible or NEC PC with an 80486 class microprocessor, 8 megabytes
of memory, and 20 megabytes of MS Windows swap space. Because RAM
is faster than swap, performance is best when there is enough RAM to
accommodate all of the Real-Time C Debugger’s memory usage (which is
directly related to the size of your programs and the amount of debug
information in them).

• Improperly configured PC -- Windows configuration may have a very
significant effect on performance. The Windows swap file settings are
very important (see the Virtual Memory dialog box under 386 Enhanced
in the Control Panel). The larger the swap file, the better the
performance. Permanent swap has superior performance.

• Disk performance (due to Windows swap file access and Windows dialog
and string resource accesses from the debugger ".EXE" file) -- The disk
speed has a direct impact on performance of the Real-Time C Debugger.
Use of SMARTDrive or other RAM disk or caching software will improve
the performance.

Various PC performance measurement and tuning tools are commercially
available. Optimizing your PC performance will improve debugger interface
performance and, of course, all your other PC applications will benefit as well.

Chapter 14: Installing the Debugger
Optimizing PC Performance for the Debugger

457

458

15

Installing/Updating HP 64700
Firmware

459

Installing/Updating HP 64700 Firmware

This chapter shows you how to install or update HP 64700 firmware.

Note If you are using an HP 64700A, it must contain the optional Flash EPROM
memory card before you can install or update HP 64700 system firmware.
Flash EPROM memory is standard in the HP 64700B card cage.

The firmware, and the program that downloads it into the HP 64700, are
included with the debugger on floppy disks labeled HP 64700 EMUL/ANLY
FIRMWARE.

The steps to install or update HP 64700 firmware are:

• Step 1. Connect the HP 64700 to your PC

• Step 2. Install the firmware update utility

• Step 3. Run PROGFLASH to update HP 64700 firmware

• Step 4. Verify emulator performance

460

Step 1. Connect the HP 64700 to the PC

1 Set the COMM CONFIG switches for RS-232C communication. To do
this, locate the DIP switches on the HP 64700 rear panel, and set
them as shown below.

Notice that switches 12 and 13 are set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake, which is needed to make sure all characters
are processed. Switches 1, 2, and 3 are set to 0. This sets the baud rate to
9600. Switch settings are read during the HP 64700 power up routine.

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

You can also use an RS-232C printer cable, but if you do, you MUST set
COMM CONFIG switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power lamp at the lower right-hand corner of the front panel will light.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

461

4 Start MS Windows in the 386 enhanced mode.

To ensure your PC is running in the 386 Enhanced Mode, double-click the
PIF Editor in the Main or Accessories window. Choose the Mode pulldown in
the PIF Editor menu bar. A check mark should be beside "386 Enhanced" in
the Mode pulldown.

5 Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings→Communications... (ALT, S, C) command, and select:
9600 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Hardware Flow Control,
and the PC’s RS-232 interface connector to which the RS-232 cable is
attached (example: COM1). Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, p>, R>, M>, and U>.
A -> prompt indicates the present firmware does not match the emulator
probe, or there is no probe connected). If you see the prompt, you have
verified RS-232 communication. If you do not see the prompt, refer to "If you
cannot verify RS-232 communication" in Chapter 14.

6 Exit the Terminal window.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

462

Step 2. Install the firmware update utility

The firmware update utility and emulation and analysis firmware require
about 1.5 Mbytes of disk space.

1 Start MS Windows in the 386 enhanced mode.

2 Insert the HP 64700 EMUL/ANLY FIRMWARE Disk 1 of 2 into floppy
disk drive A or B.

3 Choose the File→Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\HP64700.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

463

Wait until the Setup Exit Message dialog box appears. This indicates
installation of the firmware update utility is complete.

4 After completing the installation, use the editor of your choice and
edit the C:\CONFIG.SYS file to include these lines:

BREAK=ON
FILES=20

BREAK=ON allows the system to check for two break conditions:
CTRL+Break, and CTRL+c.

FILES=20 allows 20 files to be accessed concurrently. This number must be
at LEAST 20 to allow the firmware update utility to operate properly.

5 If you installed the files in a path other than the default (C:\HP64700),
edit the C:\AUTOEXEC.BAT and C:\HP64700\BIN\FLASH.BAT files as
follows:

• Edit AUTOEXEC.BAT to set the HP64700 and HPTABLES
environment variables. For example:

SET HP64700=C:\<installation_path>
SET HPTABLES=C:\<installation_path>\TABLES

• Edit FLASH.BAT to identify the location of PROGFLAS.EXE. For
example:

C:\<installation_path>\PROGFLAS.EXE

6 Edit the <installation_path>\TABLES\64700TAB file to indicate the
communications connection you will use, as follows:

The default <installation_path>\TABLES\64700TAB file contains entries to
establish the communications connection for COM1 and COM2. The content
of this file is:

EMUL_COM1 unknown COM1 OFF 9600 NONE ON 1 8
EMUL_COM2 unknown COM2 OFF 9600 NONE ON 1 8

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

464

If you are using COM3 or COM4 port to update your firmware, you need to
edit the <installation_path>\TABLES\64700TAB file. Either add another line
or modify one of the existing lines. For example:

EMUL_COM3 my_emul COM3 OFF 9600 NONE ON 1 8
EMUL_COM4 unknown COM4 OFF 9600 NONE ON 1 8

7 Ensure the Interrupt Request Line for the selected COMx port is set
to its default value. To check the default value:

1 Choose Control Panel in the Main window.

2 Choose Ports in the Control Panel window.

3 Choose the COMx port you are using and click Settings....

4 Click Advanced... in the Settings for COMx dialog box.

5 Select the default value for the Interrupt Request Line in the Advanced
Settings for COMx dialog box. The default settings are:

 COM1 and COM3 = IRQ 4
 COM2 and COM4 = IRQ 3

8 Exit Windows and reboot your PC to activate the changes made to
the CONFIG.SYS and AUTOEXEC.BAT files (CTRL+ALT+DEL).
Installation of the firmware update utility is now complete.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

465

Step 3. Run PROGFLASH to update HP 64700
firmware

1 Start MS Windows in the 386 enhanced mode.

2 If the "HP 64700 Firmware Utility" group box is not opened, open it
by double-clicking the icon.

3 Double-click the "PROGFLASH" icon. (You can abort the
PROGFLASH command by pressing CTRL+c.)

4 Enter the number that identifies the emulator you want to update.
For example, enter "1" if you want to update the emulator identified
by the line, "1 emul_com1 my_emul."

5 Enter the number that identifies the product whose firmware you
want to update. For example, if this product is listed as number 12,
enter "12":

 Product
 1 64782
 2 E3490
 .
 .
 12 647??
 .

6 Enter "y" to enable status messages.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

466

The PROGFLASH command downloads code from files on the host computer
into Flash EPROM memory in the HP 64700. During this download, you will
see messages similar to the following:

Rebooting HP64700...with init -r

Downloading flash programming code:
’/hp64700/lib/npf.X’
Checking Hardware id code...
Erasing Flash ROM
Downloading ROM code: ’/hp64700/update/647??.X’
 Code start 280000H
 Code size 29ABAH
Finishing up...

Rebooting HP64700...
Flash programming SUCCEEDED

You can display firmware version information and verify the update by
choosing the Help→About Debugger/Emulator... (ALT, H, D) command in
the Real-Time C Debugger.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

467

Step 4. Verify emulator performance

• Do the performance verification procedure shown in the
Installation/Service/Terminal Interface User’s Guide.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 4. Verify emulator performance

468

Glossary

Defines terms that are used in the debugger help information.

analyzer An instrument that captures data on signals of interest at discreet
periods. The emulation bus analyzer captures emulator bus cycle
information synchronously with the processor’s clock signal.

arm condition A condition that enables the analyzer. The analyzer is
always armed unless you set the analyzer up to be armed by a signal received
on the BNC port; when you do this, you can identify the arm condition in the
trace specification by selecting arm in the Condition dialog boxes.

background memory A separate memory system, internal to the emulator,
out of which the background monitor executes.

background monitor program An emulation monitor program that
executes out of background memory.

break on trigger Causes emulator execution to break into the monitor
when the trigger condition is found. This is known as a hardware breakpoint,
and it lets you break on a wider variety of conditions than a software
breakpoint (which replaces an opcode with a break instruction); however,
depending on the speed of the processor, the actual break point may be
several cycles after the one that caused the trigger.

breakpoint An address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

break macro A breakpoint followed by any number of macro commands
(which are the same as command file commands).

control menu The menu that is accessed by clicking the control menu box
in the upper left corner of a window. You can also access control menus by
pressing the "ALT" and "-" keys.

469

count condition Specifies whether time or the occurrences of a particular
state are counted for each state in the trace buffer.

embedded microprocessor system The microprocessor system that the
emulator plugs into.

emulation memory Memory provided by the emulator that can be used in
place of memory in the target system.

emulation monitor A program, executed by the emulation microprocessor
(as directed by the emulation system controller), that gives the emulator
access to target system memory, microprocessor registers, and other target
system resources.

emulator An instrument that performs just like the microprocessor it
replaces, but at the same time, it gives you information about the operation of
the processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers, target
system memory, and I/O resources.

enable condition Specifies the first condition in a two-step sequential
trigger condition.

enable store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the enable condition.

foreground memory The memory system out of which user programs
execute. Foreground memory is made up of emulation memory and target
system memory.

foreground monitor program An emulation monitor program that
executes out of the same memory system as user programs. This memory
system is known as foreground memory and is made up of emulation memory
and target system memory. The emulator only allows foreground monitor
programs in emulation memory.

guarded memory Memory locations that should not be accessed by user
programs. These locations are specified when mapping memory. If the user
program accesses a location mapped as guarded memory, emulator execution
breaks into the monitor.

Glossary

470

macro Refers to a break macro, which is a breakpoint followed by any
number of macro commands (which are the same as command file
commands).

monitor A program, executed by the emulation microprocessor (as directed
by the emulation system controller), that gives the emulator access to target
system memory, microprocessor registers, and other target system resources.

object file An Intel OMF format absolute file that can be loaded into
emulation or target system memory and executed by the debugger.

pop-up menu A menu that is accessed by clicking the right mouse button in
a window.

prestore condition Specifies the states that may be stored before each
normally stored state. Up to two states may be prestored for each normally
stored state.

primary branch condition Specifies a condition that causes the analyzer
to begin searching at another level.

restart condition Specifies the condition that restarts the two-step
sequential trigger. In other words, if the restart condition occurs while the
analyzer is searching for the trigger condition, the analyzer starts looking for
the enable condition again.

secondary branch condition Specifies a condition that causes the
analyzer to begin searching at another level. If a state satisfies both the
primary and secondary branch conditions, the primary branch will be taken.

sequence levels Levels in the analyzer that let you specify a complex
sequential trigger condition. For each level, the analyzer searches for
primary and secondary branch conditions. You can specify a different store
condition for each level. The Page button toggles the display between
sequence levels 1 through 4 and sequence levels 5 through 8.

state qualifier A combination of address, data, and status values that
identifies particular states captured by the analyzer.

status values Values that identify the types of microprocessor bus cycles
recognized by the analyzer. You can include status values (along with

Glossary

471

address and data values) when specifying trigger and store conditions. The
status values defined for the Intel80386EX emulator are listed under
"Predefined Status Values" at the end of Chapter 13, "Concepts."

store condition Specifies which states get stored in the trace buffer.

In the "Find Then Trigger" trace set up, the store condition specifies the
states that get stored after the trigger.

In the "Sequence" trace set up, each sequence level has a store condition that
specifies the states that get stored while looking for the primary or secondary
branch conditions.

target system The microprocessor system that the emulator plugs into.

trace state The information captured by the analyzer on a particular
microprocessor bus cycle.

transfer address The program’s starting address defined by the software
development tools and included with the symbolic information in the object
file.

trigger The captured analyzer state about which other captured states are
stored. The trigger state specifies when the trace measurement is taken.

trigger condition Specifies the condition that causes states to be stored in
the trace buffer.

trigger position Specifies whether the state that triggered the analyzer
appear at the start, center, or end of the trace buffer. In other words, the
trigger position specifies whether states are stored after, about, or before the
trigger.

trigger store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the trigger condition.

watchpoint A variable that has been placed in the WatchPoint window
where its contents can be readily displayed and modified.

Glossary

472

Index

A A:D:S:, 421-422
abort, during object file or memory load, 279
absolute count information, displaying, 130, 337
Add to Watch command, 351
address specification for tracing, 421-422
address syntax: why different for different types, 425
address translations, 264-267

caching and performance using caching, 67
how they work, 66-67
mapping for demo program, 9

addresses
incompletely specified for LDT, 427
searching, 81, 322
when they are translated, 66-67

analysis of Intel80386EX bus cycles, 415-420
analyzer, 469-472

editing the trace specification, 145, 223
halting, 128, 236
repeating last trace, 128, 237
setting up with "Find Then Trigger", 136, 227-230
setting up with "Sequence", 141, 231-234
setting up with "Trigger Store", 133, 224-226
setup, 421-422
trace signals, 413-414
tracing until halt, 128, 235

arguments, function, 388
arm condition, 68, 136, 141, 238-240, 273, 469-472
arrays (C operators), 165
ASCII values in Memory window, 107, 393
assembly language instructions

stepping multiple, 93, 192-195
stepping single, 91, 190

473

auto variables, 104-106
AUTOEXEC.BAT file, 463-465

B background memory, 469-472
background monitor, 410-412

program, 469-472
selecting, 58, 261-263

background operation, tracing, 277-278
BackTrace window, 388

displaying source files, 349
Bad RS-232 port name, 365
Bad RS-422 card I/O address, 365
beep, sounding from command file, 355
big endian order, 131, 340
binary values, how to enter, 161
BNC port

driving the trigger signal, 271-272
output trigger signal, 68
receiving an arm condition from, 273
receiving an arm condition input, 68
setting up, 68

BP marker, 12, 14, 100, 198-207, 400
branch trace messages, 415-420

enabling, 254-256
break into monitor, 96, 196
break macros, 469-472

command summary, 152-158
deleting, 103, 207
listing, 100, 208-213
preventing new, 103
setting, 100, 201-206

break on writes to ROM, enabling or disabling, 55
Breakpoint→Delete at Cursor (ALT, B, D) command, 200
Breakpoint→Delete Macro (ALT, B, L) command, 207
Breakpoint→Edit... (ALT, B, E) command, 208-213
Breakpoint→Set at Cursor (ALT, B, S) command, 198-199
Breakpoint→Set Macro... (ALT, B, M) command, 201-206

Index

474

breakpoints, 469-472
enable, 254-256
deleting, 14, 99, 103, 200
disabling and enabling, 99
enable or disable, 54
listing, 100, 208-213
preventing new breakpoints, 103
setting, 12, 98, 198-199

bus cycles, 415-420
displaying, 129
displaying only, 336

Button window, 389
editing, 42, 291

buttons that execute command files, creating, 42

C C operators, 165
caching address translation, performance of, 67
callers (of a function), tracing, 23, 124, 217-218
chain command files, 357
Clear Breakpoint command, 350
clipboard, 31
CLK2 speeds greater than 60 MHz, 52
clock speeds greater than 60 MHz, 52
colors in the Source window, setting, 39
command files

chain, 357
command summary, 152-158
comments, 359
creating, 40, 172
executing, 41, 175-176
executing at startup, 33, 41
execution, exiting, 356
inserting wait delays, 362
locating cursor, 322
nesting, 357
parameters, 175-176
rerun, 358
sounding beep, 355
turning logging on or off, 173-174
which include Terminal Interface commands, 360-361

Index

475

command line options, 33-34, 41
commands

menu bar, 168
summary, 152-158

comments in command files, 359
communications (emulator), setting up, 268-270
CONFIG.SYS file, 463-465
configurations

emulator, 254-256
saving and loading, 69-70

connection problems
LAN, 453
RS-232, 450
RS-422, 455

Constant-Address Syntax, 423-426
Continuous Update (ALT, -, U) command, 313
control menu, 469-472
Copy→Destination... (ALT, -, P, D) command, 290
Copy→Registers (ALT, -, P, R) command, 313
Copy→Window (ALT, -, P, W) command, 289
Could not open initialization file, 365
Could not write Memory, 366
count conditions, 238-240, 469-472
count information

displaying absolute, 130, 337
displaying relative, 130, 337

CTRL key and double-clicks, 31
current PC in Source window, 323
cursor, locating cursor from command file, 322
cut and paste, 31

D data column of trace list
swap instruction bytes, 131, 340

data specification for tracing, 421-422
DCE or DTE selection and RS-232 cable, 445
debugger

arranging icons in window, 281
cascaded windows, 281
exiting, 25, 34, 182
exiting locked, 183
installing software, 447-449
opening windows, 282-283

Index

476

debugger (continued)
starting, 5, 33, 450-455
startup options, 34
tiled windows, 281
windows, opening, 36

decimal values, how to enter, 161
deleting all breakpoints, 103
demo programs, 4

loading, 10
mapping memory, 7-8
running, 13
setting address translations, 9

DeMorgan’s law, 238-240
dialog boxes

breakpoints, 208-213
file selection, 184

directories
search path, 324
source, 285

disassembler, 415-420
display fonts, changing, 6
display mode

mixed, 78
source only, 78
toggling, 316-317, 335

Display→From State... (ALT -, D, F), 338
Display→Select Source... (ALT, -, D, L) command, 318
displaying state from specific byte within a state, 338
displaying trace from specified state, 338
displays of wrong LDT address space, 427
DLL errors, 454
don’t care values, how to enter, 161
double-clicks and the CTRL key, 31
dynamic variables, 214-215, 344, 409

E edit breakpoints, 208-213
embedded microprocessor system, 469-472
emulation memory, 469-472

copying target system memory into, 111, 304
emulation microprocessor, resetting, 96, 197
emulation monitor, 469-472

programs, 410-412

Index

477

emulator, 469-472
hardware options, setting, 51
limitations, external DMA support, 64

emulator configuration, 50-57, 254-256
loading, 70, 179
saving, 69, 180

emulator probe
plugging into the target system, 46
unplugging from demo target system, 45

enable
breakpoints, 254-256
condition, 469-472
or disable software breakpoints, 54
store condition, 469-472
target interrupts, 254-256

endian order, big and little, 131, 340
entering addresses as constants, 423-426
entries, searching GDT/LDT/IDT for, 309
environment variables, 80

HP64700 , 463-465
HPTABLES, 463-465
PATH, 463-465

environment
loading, 177
saving, 178

error messages, 364
Bad RS-232 port name, 365
Bad RS-422 card I/O address, 365
Could not open initialization file, 365
Could not write Memory, 366
Error occurred while processing Object file, 367
general RS-232 communications error, 368
general RS-422 communications error, 368
HP 64700 locked by another user, 369
HP 64700 not responding, 369
Incorrect DLL version, 369
Incorrect LAN Address (HP-ARPA, Windows for Workgroups), 370
Incorrect LAN Address (Novell), 371
Incorrect LAN Address (WINSOCK), 371
Internal error in communications driver, 372
Internal error in Windows, 372

Index

478

error messages (continued)
Interrupt execution (during run to caller), 372
Interrupt execution (during step over), 373
Interrupt execution (during step), 373
Invalid transport name, 374
LAN buffer pool exhausted, 374
LAN communications error, 375
LAN MAXSENDSIZE is too small, 375
LAN socket error, 375
Logical to physical address translations initially unavailable: Cannot, 376
Object file format ERROR, 376
Out of DOS Memory for LAN buffer, 377
Out of DOS Windows timer resources, 378
PC is out of RAM memory, 378
physical address translation failed, 379
Structure Access Warning!!!, 380
Timed out during communications, 381-382

ethernet address, 440
Evaluate It command, 350
execution trace messages, 415-420

enabling or disabling, 56
execution trace messages, enabling, 254-256
execution unexpected during single stepping, 428-429
Execution→Break (F4), (ALT, E, B) command, 196
Execution→Reset (ALT, E, E) command, 197
Execution→Run (F5), (ALT, E, U) command, 185
Execution→Run to Caller (ALT, E, T) command, 187
Execution→Run to Cursor (ALT, E, C) command, 186
Execution→Run... (ALT, E, R) command, 188-189
Execution→Single Step (F2), (ALT, E, N) command, 190
Execution→Step Over (F3), (ALT, E, O) command, 191
Execution→Step... (ALT, E, S) command, 192-195
exiting command file execution, 356
Expression window, 390

clearing, 294
displaying expressions, 295

expressions, 160
displaying, 295

externals, displaying symbol information, 85, 326

Index

479

F fetches, instruction, 415-420
file selection dialog boxes, 184
File→Command Log→Log File Name... (ALT, F, C, N) command, 172
File→Command Log→Logging OFF (ALT, F, C, F) command, 174
File→Command Log→Logging ON (ALT, F, C, O) command, 173
File→Copy Destination... (ALT, F, P) command, 181
File→Exit (ALT, F, X) command, 182
File→Exit HW Locked (ALT, F, H) command, 183
File→Load Debug... (ALT, F, D) command, 177
File→Load Emulator Config... (ALT, F, E) command, 179
File→Load Object... (ALT, F, L) command, 170-171
File→Run Cmd File... (ALT, F, R) command, 175-176
File→Save Debug... (ALT, F, S) command, 178
File→Save Emulator Config... (ALT, F, V) command, 180
firmware update

connecting the HP 64700 to the PC, 461-462
installing utility, 463-465

firmware version information, 284
firmware

ensuring performance after update, 468
using PROGFLASH to update, 466-467

font
changing, 38
settings, 274
sizing, 6

foreground memory, 469-472
foreground monitor, 410-412

advantages and disadvantages, 410-412
program, 469-472
selecting, 59-60, 261-263
traced as user, enabling or disabling, 57

foreground operation, tracing, 277-278
function arguments, 388
function keys, 32
functions

displaying symbol information, 84, 326
running until return, 19, 94, 187
searching, 81, 320
stepping over, 19, 92, 191

Index

480

functions (continued)
tracing callers, 23, 124, 217-218
tracing execution within, 126, 219-220

G gateway, 453
gateway address, 440
GDT editing, 115
GDT to physical address translation, 66-67, 264-267
GDT window, 395

displaying, 114
general RS-232 communications error, 368
general RS-422 communications error, 368
getting started, 4
global assembler symbols, displaying, 87, 328
Global Descriptor Table window, 395
global symbols, displaying, 85, 326
global variables, 85, 127, 326
glossary, 469-472
ground strap, 44
guarded memory, 64, 257-260, 403, 469-472

H hardware breakpoints, 198-199, 208-213
hardware options, setting, 51
hardware requirements, 435
hardware, locking on exit, 183
help for error messages, 364
Help→About Debugger/Emulator... (ALT, H, D) command, 284
hexadecimal values, how to enter, 161
hostname, 268-270
HP 64700

connecting to the PC, 437-446
connecting via LAN, 440
connecting via RS-232, 437
connecting via RS-422, 444

HP 64700 firmware
ensuring performance after update, 468
using PROGFLASH to update, 466-467

HP 64700 firmware update
connecting the HP 64700 to the PC, 461-462
installing utility, 463-465

HP 64700 LAN port number, 453
HP 64700 locked by another user, 369

Index

481

HP 64700 not responding, 369
HP 64700 switch settings

LAN, 453
RS-232, 450
RS-422, 455

HP-ARPA LAN transport DLL, 454
HP64700 environment variable, 463-465
HPTABLES environment variable, 463-465

I I/O locations
displaying, 116
editing, 117
guarding, 248-249
specifying, 296

I/O window, 391
turning polling ON or OFF, 73

icons
arranging in debugger window, 281
for a different emulator, 34

IDT editing, 115
IDT window, 398

displaying, 114
incompletely specified LDT addresses, 427
Incorrect DLL version, 369
Incorrect LAN Address (HP-ARPA, Windows for Workgroups), 370
Incorrect LAN Address (Novell), 371
Incorrect LAN Address (WINSOCK), 371
installation path, 447-449
instruction bytes swapped in data column, 131, 340
instruction fetches, 415-420
Internal error in communications driver, 372
Internal error in Windows, 372
internals, displaying symbol information, 86, 327
Internet Address, 268-270, 440, 446
Interrupt Descriptor Table window, 398
Interrupt execution (during run to caller), 372
Interrupt execution (during step over), 373
Interrupt execution (during step), 373

Index

482

interrupts
enabling, 254-256
enabling or disabling from target system, 53
target system, 410-412

interset operators, 238-240
intraset operators, 238-240
intrusion, monitor, 72, 246-247
Invalid transport name, 374
inverse assembly with 16- or 32-bit segments assumed, 338
IP address, 453

L labels, 162-164
LAN buffer pool exhausted, 374
LAN cards, 435-436
LAN communication, 268-270, 450-455
LAN communications error, 375
LAN connection problems, 453
LAN MAXSENDSIZE is too small, 375
LAN socket error, 375
LAN, connecting HP 64700, 440
LBG flying lead, connecting, 47
LDT addresses incompletely specified, 427
LDT editing, 115
LDT to physical address translations, 66-67, 264-267
LDT window, 397

displaying, 114
levels, trace sequence, 141, 145, 231-234, 245
limitations, Symbol window, 406
line (source file), running until, 20, 94, 186
line numbers missing in Source window, 39
linear address: definition, 424
link level address, 440
list file

changing the destination, 37
copying window contents to, 37

listing files, specifying, 181, 290
little endian order, 131, 340
loading file error, 366
local assembler symbols, displaying, 87, 328
Local Descriptor Table window, 397
local symbols, displaying, 86, 327
local variables, 86-87, 327

Index

483

lock hardware on exit, 183
log (command) files, 40, 172-176
logical operators, 136, 141, 238-240
logical to physical address translations, 264-267
Logical to physical translations initially unavailable: Cannot ... unavailable, 376

M macro, 469-472
memory

abort during load, 279
copying, 110, 302
displaying, 107
editing, 109
loading from stored file, 306
mapper, resolution, 64
mapping, 62-65, 257-260
mapping for demo program, 7-8
modifying a range, 112, 303
searching for a value or string in, 113
storing to a binary file, 307
target system, copying into emulation memory, 111, 304
type, 64, 257-260

Memory window, 393
displaying 16-bit values, 299
displaying 32-bit values, 299
displaying bytes, 299
displaying multicolumn format, 299
displaying single-column format, 298
turning polling ON or OFF, 73

Menu Bar Commands, 168
messages, error, 364
microprocessor, resetting, 96, 197
mixed display mode, 78, 316, 335
monitor, 469-472

enabling trace of foreground monitor, 57
monitor intrusion, 72, 96, 246-247
monitor

programs, 410-412
selecting the type, 58-61

multiple instructions execute in single step, 428-429

Index

484

N nesting command files, 357
no-operation command, 359
noabort, during object file or memory load, 279
Novell LAN transport DLL, 454
numeric constants, 161

O Object file format ERROR, 376
object files, 469-472

abort during load, 279
loading, 77, 170-171
loading the foreground monitor, 59-60

operators
C, 165
interset, 238-240
intraset, 238-240
logical, 136, 141, 238-240

options, command line, 34
Out of DOS Memory for LAN buffer, 377
Out of Windows timer resources, 378
output line

LBG, 47
RESET, 47

overview of Intel80386EX address types, 424

P parameters, command file, 175-176
paste, cut and, 31
PATH environment variable, 463-465
path for source file search, 80, 324
paths for source files, prompting, 280
patterns, trace, 136, 141, 227-234, 238-242
PC is out of RAM memory, 378
PC

connecting HP 64700, 437-446
locating in Source window, 323

performance (PC), optimizing for the debugger, 457
performance verification after firmware update, 468
physical address translation failed, 379
physical address: definition, 424
ping command, 453
platform requirements, 435
pointers (C operators), 165
polling for debugger windows, turning ON or OFF, 73

Index

485

pop-up menus, 469-472
accessing, 348

port
BNC, 68, 238-240, 271-273
communication, 268-270

power
turning OFF, 45
turning ON, 48

prefetching, 415-420
turning off in trace, 130, 339

prestore condition, 136, 141, 227-234, 407, 469-472
primary branch condition, 141, 231-234, 469-472
probe (emulator)

plugging into the target system, 46
unplugging from demo target system, 45

processor, resetting, 96, 197
PROGFLASH firmware update utility, 466-467
program counter, 91, 95, 185, 188-189, 192-195, 399-400
program modules, displaying symbol information, 84, 325
programs

demo, 4
loading, 77, 170-171
running, 95, 185, 188-189
stopping execution, 96

Q qualifier, state, 133, 224-226

R real-time mode
disabling, 72, 247
enabling, 72, 246

real-time options, setting, 71-73
RealTime→I/O Polling→OFF (ALT, R, I, F) command, 249
RealTime→I/O Polling→ON (ALT, R, I, O) command, 248
RealTime→Memory Polling→OFF (ALT, R, M, F) command, 253
RealTime→Memory Polling→ON (ALT, R, M, O) command, 252
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) command, 247
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) command, 246
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) command, 251
RealTime→Watchpoint Polling→ON (ALT, R, W, O) command, 250
register bit fields dialog box, 314

Index

486

Register windows, 399
continuous update, 313
copying information from, 313

registers
displaying, 21-22, 118
editing, 120

relative count information, displaying, 130, 337
requirements

hardware, 435
platform, 435

rerun command files, 358
reset address, 13
RESET

flying lead, connecting, 47
output line, 47
slow to leave when using software breakpoints, 54

reset
emulator, 96, 197
emulator status, 403
running from target system, 95, 188-189

resolution, memory mapper, 64
restart condition, 136, 227-230, 469-472
restriction on number of RS-232 connections, 450
return (function), running until, 19, 94, 187
ROM, enabling or disabling breaks on writes to, 55
RS-232

cable and DCE or DTE selection, 445
connection problems, 450
connections restriction, 450
connecting HP 64700, 437

RS-422
connection problems, 455
connecting HP 64700, 444

Run to Cursor command, 351

S screen fonts, changing, 6
search path, 454
search path for source files, 80, 324
Search→Address... (ALT, -, R, A) command, 322
Search→Current PC (ALT, -, R, C) command, 323
Search→Entry... (ALT, -, R, E) command, 309

Index

487

Search→Function... (ALT, -, R, F) command, 320
Search→Selector... (ALT, -, R, S) command, 310
Search→String... (ALT, -, R, S) command, 319
Search... (ALT, -, R) command, 300
searching GDT/LDT/IDT for entries, 309
searching GDT/LDT/IDT for selector, 310
secondary branch condition, 141, 231-234, 469-472
selecting how address translations work, 66-67
selector, searching GDT/LDT/IDT for, 310
sequence levels, 245, 469-472
service ports, TCP, 440
Set Breakpoint command, 350
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I) command, 273
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) command, 271-272
Settings→Communication... (ALT, S, C) command, 268-270
Settings→Emulator Config→Address Translation... (ALT, S, E, A)
command, 264-267
Settings→Emulator Config→Hardware... (ALT, S, E, H) command, 254-256
Settings→Emulator Config→Memory Map... (ALT, S, E, M)
command, 257-260
Settings→Emulator Config→Monitor... (ALT, S, E, O) command, 261-263
Settings→Extended→Load Error Abort→OFF (ALT, S, X, L, F)
command, 279
Settings→Extended→Load Error Abort→ON (ALT, S, X, L, O) command, 279
Settings→Extended→Source Path Query→OFF (ALT, S, X, S, F)
command, 280
Settings→Extended→Source Path Query→ON (ALT, S, X, S, O)
command, 280
Settings→Extended→Trace Cycles→Both (ALT, S, X, T, B) command, 278
Settings→Extended→Trace Cycles→Monitor (ALT, S, X, T, M)
command, 277
Settings→Extended→Trace Cycles→User (ALT, S, X, T, U) command, 277
Settings→Font... (ALT, S, F) command, 274
Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F) command, 276
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O) command, 276
Settings→Tabstops... (ALT, S, T) command, 275
side effects of software breakpoints, 54
single-step one line, 14
single-stepping, unexpected behavior, 428-429

Index

488

software breakpoints, 198-199, 208-213
enable or disable, 54

software, installing debugger, 447-449
Source at Stack Level command, 349
source directory, 285
source display mode, toggling, 316-317
source file line, running until, 20, 94, 186
source files

displaying, 11, 79, 318
displaying from BackTrace window, 349
prompting for paths, 280
searching for addresses, 81, 322
searching for function names, 81, 320
searching for strings, 82, 319
specifying search directories, 80

source lines
stepping multiple, 93, 192-195
stepping single, 91, 190

source only
displaying, 78, 336
displaying in Memory window, 316-317

Source window, 400
line numbers missing, 39
locating current PC, 323
setting colors, 39
setting tabstops, 38
toggling the display mode, 316-317

SRCPATH environment variable, 80
startup options, 34
state qualifier, 133, 224-226, 469-472
static discharge, protecting the emulator against, 44
status register, editing, 314
status specification for tracing, 421-422
status values, 469-472

for making custom mnemonics, 422
predefined, 413-414

Status window, 403
step

multiple lines, 15
one line, 14
unexpected behavior, 428-429

Index

489

store, 133
store conditions, 238-240, 469-472
strings

displaying symbols containing, 90, 331
searching memory for, 113, 300
searching source files, 82, 319

Structure Access Warning!!!, 380
structures (C operators), 165
subnet mask, 440, 453
subroutines, stepping over, 191
swap instruction bytes, 131, 340
Symbol window, 406

copying information, 330-331
searching for strings, 331

symbolic addresses based on LDT specification, 427
symbols, 162-164
syntax of addresses entered as constants, 426
system setup, 436

T tab stop settings, 275
tabstops in the Source window, setting, 38
target system, 469-472
target system interrupts, 410-412

enabling or disabling, 53
target system memory, copying into emulation memory, 111, 304
task switch messages, enabling, 254-256
TCP service ports, 440
telnet, 440, 446
TERMCOM command, 360-361
Terminal Interface commands, 360-361
text, selecting, 31
Timed out during communications, 381-382
TimeoutSeconds, 381-382
too many instructions execute in single step, 428-429
top of screen commands, 168
trace display mode, toggling, 335
trace foreground monitor

enabling or disabling, 57
trace foreground/background operation, 277-278
trace list, swap instruction bytes in data column, 131, 340

Index

490

trace messages
enabling or disabling, 56

trace patterns, 136, 141, 227-234, 238-242
trace prefetch, turning OFF, 130, 339
trace range, 243-244
trace settings, 238-240
trace signals, 413-414
trace specifications, 421-422

copying, 343
editing, 145, 223
loading, 148
specifying the destination, 343
storing, 147

trace state, 469-472
searching for in Trace Window, 342

Trace window, 407
copying information, 340-341
displaying absolute count information, 337
displaying bus cycles only, 336
displaying relative count information, 337
displaying source only, 336
toggling the display mode, 335

trace, setting up a sequence, 141
Trace→Again (F7), (ALT, T, A) command, 237
Trace→Edit... (ALT, T, E) command, 223
Trace→Find Then Trigger... (ALT, T, D) command, 227-230
Trace→Function Caller... (ALT, T, C) command, 217-218
Trace→Function Statement... (ALT, T, S) command, 219-220
Trace→Halt (ALT, T, H) command, 236
Trace→Sequence... (ALT, T, Q) command, 231-234
Trace→Trigger Store... (ALT, T, T) command, 224-226
Trace→Until Halt (ALT, T, U) command, 235
Trace→Variable Access... (ALT, T, V) command, 221-222
transfer address, 93, 95, 188-189, 192-195, 469-472
translating addresses, 264-267

implications, 66-67
performance when using the cache, 67
virtual to physical failed, 379

Index

491

trigger, 133, 469-472
condition, 133, 469-472
position, 133, 469-472
state, searching for in Trace window, 341
store condition, 133, 469-472

turning off prefetches in trace list, 130, 339
tutorial, 4
type of memory, 64, 257-260

U unary minus operator, 165
unions (C operators), 165
unused prefetches, 415-420
user ID, 447-449
user programs, loading, 77
user-defined symbols

creating, 88, 332
deleting, 89, 334
displaying, 89, 330

Utilities→Copy... (ALT, -, U, C) command, 302
Utilities→Fill... (ALT, -, U, F) command, 303
Utilities→Image... (ALT, -, U, I) command, 304
Utilities→Load... (ALT, -, U, L) command, 306
Utilities→Store... (ALT, -, U, S) command, 307

V values
searching memory for, 113, 300
status, 413-414

Variable→Edit... (ALT, V, E) command, 214-215
variables

auto, 104-106
displaying, 16, 104
dynamic, 214-215, 344, 409
editing, 17, 105, 214-216
environment, 80
global, 85, 127, 326
local, 86-87, 327
monitoring in the WatchPoint window, 18, 106
tracing accesses, 24, 127, 221-222

verification of emulator performance, 468
version information, 284, 456
virtual address: definition, 424

Index

492

W WAIT command, 158
wait delays, inserting in command files, 362
watchpoint, 469-472
WatchPoint window, 409

monitoring variables in, 18, 106
turning polling ON or OFF, 73

watchpoints, editing, 344
window contents, copying to the list file, 37
Window→1-9 (ALT, W, 1-9) command, 282
Window→Arrange Icons (ALT, W, A) command, 281
Window→Cascade (ALT, W, C) command, 281
Window→More Windows... (ALT, W, M) command, 283
Window→Tile (ALT, W, T) command, 281
windows (debugger), opening, 282-283
Windows for Workgroups LAN transport DLL, 454
windows of program execution, tracing, 145
WINSOCK LAN transport DLL, 454
WINSOCK.DLL, 454
WLIBSOCK.DLL, 454
writes to ROM, enabling or disabling breaks on, 55
wrong displays of LDT-based addresses, 427
WSOCKETS.DLL, 454

Index

493

494

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of installation.
During the warranty period, HP will, at its option, either repair or replace
products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and
taxes for products returned to HP from another country. HP warrants that its
software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the instrument, or
software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases
of operation, service, and repair of this instrument. Failure to comply with
these precautions or with specific warnings elsewhere in this manual violates
safety standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be
connected to an electrical ground. The instrument is equipped with a
three-conductor ac power cable. The power cable must either be plugged
into an approved three-contact electrical outlet or used with a three-contact
to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet. The power jack and
mating plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a
definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component
replacement and internal adjustments must be made by qualified
maintenance personnel. Do not replace components with the power cable
connected. Under certain conditions, dangerous voltages may exist even with
the power cable removed. To avoid injuries, always disconnect power and
discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable
of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install
substitute parts or perform any unauthorized modification of the instrument.
Return the instrument to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous
procedures throughout this manual. Instructions contained in the warnings
must be followed.

WARNING Dangerous voltages, capable of causing death, are present in this instrument.
Use extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on
equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect
against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case
of a fault. Used with field wiring terminals to indicate the terminal which
must be connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal
common, as well as providing protection against electrical shock in case of a
fault. A terminal marked with this symbol must be connected to ground in the
manner described in the installation (operating) manual before operating the
equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or
all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure,
practice, condition or the like, which, if not correctly performed, could result
in injury or death to personnel.

	Real-Time C Debugger — Overview
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Using the Debugger Interface
	Plugging the Emulator into Target Systems
	Configuring the Emulator
	Debugging Programs

	Reference
	Command File and Macro Command Summary
	Expressions in Commands
	Menu Bar Commands
	Window Control Menu Commands
	Window Pop-Up Commands
	Other Command File and Macro Commands
	Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installing the Debugger
	Installing/Updating HP 64700 Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

