
User’s Guide

Real-Time C Debugger for
80386

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines
Corporation.

Microtec is a registered trademark of Microtec Research Inc.

MS and MS-DOS are registered trademarks of Microsoft Corporation.

TrueType is a registered trademark of Apple Computer, Inc.

UNIX(R) is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Windows or MS Windows is a trademark of Microsoft Corporation.

Hewlett-Packard

P.O. Box 2197

1900 Garden of the Gods Road

Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraph (c)
(1)(ii) of the Rights in Technical Data and Computer Software Clause at
DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo

ii

Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title
page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version
level of the software product at the time the manual was issued. Many
product updates and fixes do not require manual changes, and manual
corrections may be done without accompanying product changes. Therefore,
do not expect a one-to-one correspondence between product updates and
manual revisions.

Edition 1 B3637-97000, November 1994

Safety, Certification and Warranty

Safety and certification and warranty information can be found at the end of
this manual on the pages before the back cover.

iii

Real-Time C Debugger — Overview

The Real-Time C Debugger is an MS Windows application that lets you debug
C language programs for embedded microprocessor systems.

The debugger controls HP 64700 emulators and analyzers either on the local
area network (LAN) or connected to a personal computer with an RS-232C
interface or the HP 64037 RS-422 interface. It takes full advantage of the
emulator’s real-time capabilities to allow effective debug of C programs while
running in real time.

The debugger is an MS Windows application

• You can display different types of debugger information in different
windows, just as you display other windows in MS Windows applications.

• You can complete a wide variety of debug-related tasks without exiting
the debugger. You can, for example, edit files or compile your programs
without exiting the debugger.

• You can cut text from the debugger windows to the clipboard, and
clipboard contents may be pasted into other windows or dialog boxes.

The debugger communicates at high speeds

• You can use the HP 64700 LAN connection or the RS-422 connection for
high-speed data transfer (including program download). These
connections give you an efficient debugging environment.

You can debug programs in C context

• You can display C language source files (optionally with intermixed
assembly language code).

• You can display program symbols.
• You can display the stack backtrace.
• You can display and edit the contents of program variables.
• You can step through programs, either by source lines or assembly

language instructions.
• You can step over functions.
• You can run programs until the current function returns.
• You can run programs up to a particular source line or assembly language

instruction.

iv

• You can set breakpoints in the program and define macros (which are
collections of debugger commands) that execute when the breakpoint is
hit. Break macros provide for effective debugging without repeated
command entry.

You can display and modify processor resources

• You can display and edit the contents of memory locations in
hexadecimal or as C variables.

• You can display and edit the contents of microprocessor registers
including on-chip peripheral registers.

• You can display and modify individual bits and fields of bit-oriented
registers.

You can trace program execution

• You can trace control flow at the C function level.
• You can trace the callers of a function.
• You can trace control flow within a function at the C statement level.
• You can trace all C statements that access a variable.
• You can trace before, and break program execution on, a C variable being

set to a specified value.
• You can make custom trace specifications.

You can debug your program while it runs continuously at full speed

• You can configure the debugger to prevent it from automatically
initiating any action that may interrupt user program execution. This
ensures that the user program executes in real time, so you can debug
your design while it runs in a real-world operating mode.

• You can inspect and modify C variables and data structures without
interrupting execution.

• You can set and clear breakpoints without interrupting execution.
• You can perform all logic analysis functions, observing C program and

variable activity, without interrupting program execution.

v

In This Book

This book documents the Real-Time C Debugger for i80386. It is organized
into five parts whose chapters are described below.

Part 1. Quick Start Guide

Chapter 1 quickly shows you how to use the debugger.

Part 2. User’s Guide

Chapter 2 shows you how to use the debugger interface.
Chapter 3 shows you how to plug the emulator into target systems.
Chapter 4 shows you how to configure the emulator.
Chapter 5 shows how to perform the tasks that you can use to debug
programs.

Part 3. Reference

Chapter 6 contains a summary of the debugger commands as they are
used in command files and break macros.
Chapter 7 describes the format for expressions used in commands.
Chapter 8 describes commands that appear in the menu bar.
Chapter 9 describes commands that appear in debugger window control
menus.
Chapter 10 describes commands that appear in popup menus.
Chapter 11 describes commands that are only available in command files
and break macros.
Chapter 12 describes error messages and provides recovery information.

Part 4. Concept Guide

Chapter 13 contains conceptual (and more detailed) information on
various topics.

Part 5. Installation Guide

Chapter 14 shows you how to install the debugger.
Chapter 15 shows you how to install or update HP 64700 firmware.

vi

Contents

Part 1 Quick Start Guide

1 Getting Started

Step 1. Start the debugger 5
Step 2. Adjust the fonts and window size 6
Step 3. Map memory for the demo program 7
Step 4. Set address translations for the demo program 8
Step 5. Load the demo program 9
Step 6. Display the source file 10
Step 7. Set a breakpoint 11
Step 8. Run the demo program 12
Step 9. Delete the breakpoint 13
Step 10. Single-step one line 13
Step 11. Single-step 10 lines 14
Step 12. Display a variable 15
Step 13. Edit a variable 16
Step 14. Monitor a variable in the WatchPoint window 17
Step 15. Run until return from current function 18
Step 16. Step over a function 18
Step 17. Run the program to a specified line 19
Step 18. Display register contents 20
Step 19. Trace a function’s callers 22
Step 20. Trace access to a variable 23
Step 21. Exit the debugger 24

vii

Part 2 User’s Guide

2 Using the Debugger Interface

Using the Debugger Interface 28

How the Debugger Uses the Clipboard 28
Debugger Function Key Definitions 29

Starting and Exiting the Debugger 30

To start the debugger 30
To exit the debugger 31
To create an icon for a different emulator 32

Working with Debugger Windows 33

To open debugger windows 33
To copy window contents to the list file 34
To change the list file destination 34
To change the debugger window fonts 35
To set tab stops in the Source window 35

Using Command Files 36

To create a command file 36
To execute a command file 37
To create buttons that execute command files 38

3 Plugging the Emulator into Target Systems

Plugging the Emulator into Target Systems 40

Step 1. Turn OFF power 41
Step 2. Unplug the probe from the demo target system 41
Step 3. Plug the probe into the target system 42
Step 4. Connect the reset flying lead to the target system 43
Step 5. Turn ON power 44

Contents

viii

4 Configuring the Emulator

Configuring the Emulator 46

Setting the Hardware Options 47
To specify a CLK2 speed faster than 60 MHz 48
To enable or disable target interrupts 49
To enable or disable software breakpoints 50
To enable or disable break on writes to ROM 51
To enable or disable execution trace messages 52
To enable or disable foreground monitor traced as user 53

Selecting the Type of Monitor 54

To select the background monitor 54
To select the foreground monitor 55
To use a custom foreground monitor 56

Mapping Memory 58

To map memory 60

Selecting Address Translations 62

Setting Up the BNC Port 64

To output the trigger signal on the BNC port 64
To receive an arm condition input on the BNC port 64

Saving and Loading Configurations 65

To save the current emulator configuration 65
To load an emulator configuration 66

Setting the Real-Time Options 67

To allow or deny monitor intrusion 68
To turn polling ON or OFF 69

5 Debugging Programs

Debugging Programs 72

Loading and Displaying Programs 73

To load user programs 73
To display source code only 74

Contents

ix

To display source code mixed with assembly instructions 74
To display source files by their names 75
To specify source file directories 76
To search for function names in the source files 77
To search for addresses in the source files 77
To search for strings in the source files 78

Displaying Symbol Information 79

To display program module information 80
To display function information 80
To display external symbol information 81
To display local symbol information 82
To display global assembler symbol information 83
To display local assembler symbol information 83
To create a user-defined symbol 84
To display user-defined symbol information 85
To delete a user-defined symbol 85
To display the symbols containing the specified string 86

Stepping, Running, and Stopping the Program 87

To step a single line or instruction 87
To step over a function 88
To step multiple lines or instructions 89
To run the program until the specified line 90
To run the program until the current function return 90
To run the program from a specified address 91
To stop program execution 91
To reset the processor 92

Using Breakpoints and Break Macros 93

To set a breakpoint 94
To disable a breakpoint 95
To delete a single breakpoint 95
To list the breakpoints and break macros 96
To set a break macro 96
To delete a single break macro 98

Displaying and Editing Variables 99

To display a variable 99
To edit a variable 100

Contents

x

To monitor a variable in the WatchPoint window 101

Displaying and Editing Memory 102

To display memory 102
To edit memory 104
To copy memory to a different location 105
To copy target system memory into emulation memory 106
To modify a range of memory with a value 107
To search memory for a value or string 108

Displaying and Editing GDT, LDT, and IDT Windows 109

To display the GDT, LDT, and IDT windows 109
To edit the GDT, LDT, and IDT windows 110

Displaying and Editing I/O Locations 111

To display I/O locations 111
To edit an I/O location 112

Displaying and Editing Registers 113

To display registers 113
To edit registers 115

Tracing Program Execution 116

To trace callers of a specified function 119
To trace execution within a specified function 121
To trace accesses to a specified variable 122
To trace until the command is halted 123
To stop a running trace 123
To repeat the last trace 123
To display bus cycles 124
To display accumulated or relative counts 125

Setting Up Custom Trace Specifications 126

To set up a "Trigger Store" trace specification 127
To set up a "Find Then Trigger" trace specification 130
To set up a "Sequence" trace specification 134
To edit a trace specification 139
To trace "windows" of program execution 139
To store the current trace specification 141
To load a stored trace specification 142

Contents

xi

Part 3 Reference

6 Command File and Macro Command Summary

Command File and Macro Command Summary 146

WAIT Command Dialog Box 152

7 Expressions in Commands

Expressions in Commands 154

Numeric Constants 155

Symbols 156

C Operators 159

8 Menu Bar Commands

Menu Bar Commands 162

File→Load Object... (ALT, F, L) 166
File→Command Log→Log File Name... (ALT, F, C, N) 168
File→Command Log→Logging ON (ALT, F, C, O) 169
File→Command Log→Logging OFF (ALT, F, C, F) 170
File→Run Cmd File... (ALT, F, R) 171
File→Load Debug... (ALT, F, D) 173
File→Save Debug... (ALT, F, S) 174
File→Load Emulator Config... (ALT, F, E) 175
File→Save Emulator Config... (ALT, F, V) 176
File→Copy Destination... (ALT, F, P) 177
File→Exit (ALT, F, X) 178
File→Exit HW Locked (ALT, F, H) 179
File Selection Dialog Boxes 180
Execution→Run (F5), (ALT, E, U) 181
Execution→Run to Cursor (ALT, E, C) 182
Execution→Run to Caller (ALT, E, T) 183
Execution→Run... (ALT, E, R) 184
Execution→Single Step (F2), (ALT, E, N) 186

Contents

xii

Execution→Step Over (F3), (ALT, E, O) 187
Execution→Step... (ALT, E, S) 188
Execution→Break (F4), (ALT, E, B) 191
Execution→Reset (ALT, E, E) 192
Breakpoint→Set at Cursor (ALT, B, S) 193
Breakpoint→Delete at Cursor (ALT, B, D) 195
Breakpoint→Set Macro... (ALT, B, M) 196
Breakpoint→Delete Macro (ALT, B, L) 198
Breakpoint→Edit... (ALT, B, E) 199
Variable→Edit... (ALT, V, E) 203
Variable Modify Dialog Box 205
Trace→Function Caller... (ALT, T, C) 206
Trace→Function Statement... (ALT, T, S) 208
Trace→Variable Access... (ALT, T, V) 210
Trace→Edit... (ALT, T, E) 212
Trace→Trigger Store... (ALT, T, T) 213
Trace→Find Then Trigger... (ALT, T, D) 216
Trace→Sequence... (ALT, T, Q) 220
Trace→Until Halt (ALT, T, U) 224
Trace→Halt (ALT, T, H) 225
Trace→Again (F7), (ALT, T, A) 226
Condition Dialog Boxes 227
Trace Pattern Dialog Box 230
Trace Range Dialog Box 232
Sequence Number Dialog Box 234
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) 235
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) 236
RealTime→I/O Polling→ON (ALT, R, I, O) 237
RealTime→I/O Polling→OFF (ALT, R, I, F) 238
RealTime→Watchpoint Polling→ON (ALT, R, W, O) 239
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) 240
RealTime→Memory Polling→ON (ALT, R, M, O) 241
RealTime→Memory Polling→OFF (ALT, R, M, F) 242
Assemble... (ALT, A) 243
Settings→Emulator Config→Hardware... (ALT, S, E, H) 244
Settings→Emulator Config→Memory Map... (ALT, S, E, M) 247
Settings→Emulator Config→Monitor... (ALT, S, E, O) 251
Settings→Emulator Config→Address Translations... (ALT, S, E, A) 254
Settings→Communication... (ALT, S, C) 258

Contents

xiii

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) 261
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I) 262
Settings→Font... (ALT, S, F) 263
Settings→Tabstops... (ALT, S, T) 264
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O) 265
Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F) 265
Settings→Extended Settings→Trace Cycles→User (ALT, S, X, T, U) 266
Settings→Extended Settings→Trace Cycles→Monitor
(ALT, S, X, T, M) 266
Settings→Extended Settings→Trace Cycles→Both (ALT, S, X, T, B) 267
Settings→Extended Settings→Load Error Abort→ON
(ALT, S, X, L, O) 268
Settings→Extended Settings→Load Error Abort→OFF
(ALT, S, X, L, F) 268
Settings→Extended Settings→Source Path Query→ON
(ALT, S, X, S, O) 269
Settings→Extended Settings→Source Path Query→OFF
(ALT, S, X, S, F) 269
Window→Cascade (ALT, W, C) 270
Window→Tile (ALT, W, T) 270
Window→Arrange Icons (ALT, W, A) 270
Window→1-9 (ALT, W, 1-9) 271
Window→More Windows... (ALT, W, M) 272
Help→About Debugger/Emulator... (ALT, H, D) 273
Source Directory Dialog Box 274

Contents

xiv

9 Window Control Menu Commands

Window Control Menu Commands 276

Common Control Menu Commands 277

Copy→Window (ALT, -, P, W) 277
Copy→Destination... (ALT, -, P, D) 278

Button Window Commands 279

Edit... (ALT, -, E) 279

Expression Window Commands 282

Clear (ALT, -, R) 282
Evaluate... (ALT, -, E) 283

I/O Window Commands 284

Define... (ALT, -, D) 284

Memory Window Commands 286

Display→Linear (ALT, -, D, L) 286
Display→Block (ALT, -, D, B) 287
Display→Byte (ALT, -, D, Y) 287
Display→16 Bit (ALT, -, D, 1) 287
Display→32 Bit (ALT, -, D, 3) 287
Search... (ALT, -, R) 288
Utilities→Copy... (ALT, -, U, C) 290
Utilities→Fill... (ALT, -, U, F) 291
Utilities→Image... (ALT, -, U, I) 292
Utilities→Load... (ALT, -, U, L) 294
Utilities→Store... (ALT, -, U, S) 295

GDT/LDT/IDT Window Commands 297

Search→Entry... (ALT, -, R, E) 297
Search→Selector... (ALT, -, R, S) 298

Register Windows’ Commands 300

Continuous Update (ALT, -, U) 300
Copy→Registers (ALT, -, P, R) 300

Contents

xv

Register Bit Fields Dialog Box 301

Source Window Commands 303

Display→Mixed Mode (ALT, -, D, M) 303
Display→Source Only (ALT, -, D, S) 304
Display→Select Source... (ALT, -, D, L) 305
Search→String... (ALT, -, R, S) 306
Search→Function... (ALT, -, R, F) 307
Search→Address... (ALT, -, R, A) 309
Search Directories Dialog Box 310

Symbol Window Commands 311

Display→Modules (ALT, -, D, M) 311
Display→Functions (ALT, -, D, F) 312
Display→Externals (ALT, -, D, E) 312
Display→Locals... (ALT, -, D, L) 313
Display→Asm Globals (ALT, -, D, G) 314
Display→Asm Locals... (ALT, -, D, A) 314
Display→User defined (ALT, -, D, U) 316
Copy→Window (ALT, -, P, W) 316
Copy→All (ALT, -, P, A) 317
FindString→String... (ALT, -, F, S) 317
User defined→Add... (ALT, -, U, A) 318
User defined→Delete (ALT, -, U, D) 320
User defined→Delete All (ALT, -, U, L) 320

Trace Window Commands 321

Display→Bus Cycle ON (ALT, -, D, B) 322
Display→Source Only (ALT, -, D, S) 322
Display→Count→Absolute (ALT, -, D, C, A) 323
Display→Count→Relative (ALT, -, D, C, R) 323
Trace Display→From State... (ALT -, D, F) 324
Copy→Window (ALT, -, P, W) 325
Copy→All (ALT, -, P, A) 326
Search→Trigger (ALT, -, R, T) 326
Search→State... (ALT, -, R, S) 327
Trace Spec Copy→Specification (ALT, -, T, S) 328
Trace Spec Copy→Destination... (ALT, -, T, D) 328

Contents

xvi

WatchPoint Window Commands 329

Edit... (ALT, -, E) 329

10 Window Pop-up Menu Commands

Window Pop-up Menu Commands 334

BackTrace Window Pop-up Commands 335
Source at Stack Level 335

Source Window Pop-up Commands 336

Set Breakpoint 336
Clear Breakpoint 336
Evaluate It 337
Add to Watch 337
Run to Cursor 337

11 Other Command File and Macro Commands

Other Command File and Macro Commands 340

BEEP 341
EXIT 342
FILE CHAINCMD 343
FILE RERUN 344
NOP 345
TERMCOM 346
WAIT 347

12 Error Messages

Contents

xvii

Part 4 Concept Guide

13 Concepts

Concepts 362

Debugger Windows 363

The BackTrace Window 364
The Button Window 365
The Expression Window 366
The I/O Window 367
The Memory Window 369
The GDT Window 371
The LDT Window 373
The IDT Window 374
The Register Windows 375
The Source Window 376
The Status Window 379
The Symbol Window 382
The Trace Window 383
The WatchPoint Window 385

Monitor Program Options 386

Background monitor 387
Foreground monitor 387
Foreground monitor advantages and disadvantages 388

Trace Signals and Predefined Status Values 389

Understanding 80386 Analysis 391

Understanding Address, Data, and Status 395

Entering Addresses as Constants 398

Overview of 80386 address types 399
Explanation: why different syntax for different address types 400
Constant-address syntax 401

Contents

xviii

Unexpected Stepping Behavior 402

Faults 402
INT instructions 403
Task gates 403
To step into a task or a fault handler 403

Contents

xix

Part 5 Installation Guide

14 Installing the Debugger

Installing the Debugger 408

Requirements 409

Before Installing the Debugger 410

Step 1. Connect the HP 64700 to the PC 411

To connect via RS-232 411
To connect via LAN 414
To connect via RS-422 418
If you cannot verify RS-232 communication 419
If you cannot verify LAN communication 420

Step 2. Install the debugger software 421

Step 3. Start the debugger 424

If you have RS-232 connection problems 424
If you have LAN connection problems 426
If you have LAN DLL errors 427
If you have RS-422 connection problems 428

Step 4. Check the HP 64700 system firmware version 429

Optimizing PC Performance for the Debugger 430

15 Installing/Updating HP 64700 Firmware

Installing/Updating HP 64700 Firmware 432

Step 1. Connect the HP 64700 to the PC 433
Step 2. Install the firmware update utility 435
Step 3. Run PROGFLASH to update HP 64700 firmware 437

Glossary

Index

Contents

xx

Part 1

Quick Start Guide

A few task instructions to help you get comfortable.

1

Part 1

2

1

Getting Started

3

Getting Started

This tutorial helps you get comfortable by showing you how to perform some
measurements on a demo program. This tutorial shows you how to:

1 Start the debugger.
2 Adjust the fonts and window size.
3 Map memory for the demo program.
4 Set address translations for the demo program.
5 Load the demo program.
6 Display the source file.
7 Set a breakpoint.
8 Run the demo program.
9 Delete the breakpoint.
10 Single-step one line.
11 Single-step 10 lines.
12 Display a variable.
13 Edit a variable.
14 Monitor a variable in the WatchPoint window.
15 Run until return from current function.
16 Step over a function.
17 Run the program to a specified line.
18 Display register contents.
19 Trace a function’s callers.
20 Trace access to a variable.
21 Exit the debugger.

Demo Programs

Demo programs are included with the Real-Time C Debugger in the
C:\HP\RTC\I386\DEMO directory (if C:\HP\RTC\I386 was the installation path
chosen when installing the debugger software).

Subdirectories exist for the SAMPLE demo program, which is a simple C
program that does case conversion on a couple strings, and for the ECS demo
program, which is a somewhat more complex C program for an
environmental control system.

Each of these demo program directories contains a README file that
describes the program and batch files that show you how the object files were
made.

4

This tutorial shows you how to perform some measurements on the SAMPLE
demo program.

Step 1. Start the debugger

1 Cycle power on the HP 64700-Series Card Cage to ensure that the
emulator will be in its default state when you begin this tutorial. Wait
a minute to allow time for the boot-up routine to complete.

2 Open the HP Real-Time C Debugger group box and double-click the
80386 debugger icon.

Or:

3 Choose the File→Run (ALT, F, R) command in the Windows Program
Manager.

4 Enter the debugger startup command, C:\HP\RTC\I386\B3637.EXE (if
C:\HP\RTC\I386 was the installation path chosen when installing the
debugger software).

5 Choose the OK button.

Chapter 1: Getting Started
Step 1. Start the debugger

5

Step 2. Adjust the fonts and window size

The first time RTC is used, a default window and font size is used. This may
not be the best for your display. You may change the font type and size with
the Settings→Font... command, and change the window size by using the
standard Windows 3.1 methods (moving the mouse to the edge of the
window and dragging the mouse to resize the window).

1 Choose the Settings→Font... (ALT, S, F) command.

2 Choose the Font, Font Style, and Size desired in the Font dialog box.

3 Choose the OK button to apply your selections, and close the Font
dialog box.

The sizes of the RTC window, as well as the sizes of the windows within RTC,
and the fonts used will be saved in the BXXXX.INI file and reused when you
enter RTC the next time.

Chapter 1: Getting Started
Step 2. Adjust the fonts and window size

6

Step 3. Map memory for the demo program

By default, the emulator assumes all memory addresses are in RAM space in
your target system. If you wish to load some of your target program in
emulation memory, or identify some of your memory addresses as ROM or
Guarded, those specifications must be entered in the memory map.

The demo sample program occupies address ranges 0h-2fffh and
0ffffff00h-0ffffffffh. Map these address ranges in emulation RAM memory.

1 Choose the Settings→Emulator Config→Memory Map... (ALT, S, E,
M) command.

2 Enter "0" in the Start text box.

3 Tab the cursor to the End text box and enter "2fff".

4 Select "eram" in the Type option box.

5 Unselect Use target RDY and leave Use dual-ported memory
unselected.

6 Choose the Apply button.

7 Enter "0ffffff00" in the Start text box, enter "0ffffffff" in the End text
box. Select "eram" in the Type option box for this range also, and
choose the Apply button.

8 Choose the Close button.

Chapter 1: Getting Started
Step 3. Map memory for the demo program

7

Step 4. Set address translations for the demo program

1 Choose the Settings→Emulator Config→Address Translation... (ALT,
S, E, A) command.

2 Set up the Address Translation dialog box as shown in the illustration.

3 Choose the OK button.

This is the default setup for the Address Translation dialog box. It ensures
that the emulator can refer to protected-mode addresses (for setting
breakpoints) before running the demo program.

Chapter 1: Getting Started
Step 4. Set address translations for the demo program

8

Step 5. Load the demo program

1 Choose the Execution→Break (ALT, E, B) command.

2 Choose the File→Load Object... (ALT, F, L) command.

3 Choose the Browse button and select the sample program object file,
C:\HP\RTC\I386\DEMO\SAMPLE\SAMPLE (if C:\HP\RTC\I386 was the
installation path chosen when installing the debugger software).

4 Choose the OK button in the Object File Name dialog box.

5 Choose the Load button.

Chapter 1: Getting Started
Step 5. Load the demo program

9

Step 6. Display the source file

To display the sample.c source file starting from the main function:

1 If the Source window is not open, double-click on the Source window
icon to open the window. Or, choose the Window→Source
command.

2 From the Source window’s control menu, choose
Search→Function... (ALT, -, R, F) command.

3 Select "main".

4 Choose the Find button.

5 Choose the Close button.

6 From the Source window’s control menu, choose Display→Source
Only (ALT, -, D, S) command.

The window displays sample.c source file, starting from main function.

Chapter 1: Getting Started
Step 6. Display the source file

10

Step 7. Set a breakpoint

To set a breakpoint on line 34 in sample.c:

1 Cursor-select line 34.

2 Choose the Breakpoint→Set at Cursor (ALT, B, S) command.

Notice that line 34 is marked with "BP" which indicates a breakpoint has been
set on the line.

Chapter 1: Getting Started
Step 7. Set a breakpoint

11

Step 8. Run the demo program

To run the demo program from the reset address:

1 Choose the Execution→Run... (ALT, E, R) command.

2 Select the User Reset option.

3 Choose the Run button.

Notice the demo program runs until line 34. The highlighted line indicates
the current program counter.

Chapter 1: Getting Started
Step 8. Run the demo program

12

Step 9. Delete the breakpoint

To delete the breakpoint set on line 34:

1 Cursor-select line 34.

2 Choose the Breakpoint→Delete at Cursor (ALT, B, D) command.

The "BP" marker disappears in the Source window.

Step 10. Single-step one line

To single-step the demo program from the current program counter:

• Choose the Execution→Single Step (ALT, E, N) command. Or, press
the F2 key.

Notice the C statement executed and the program counter is at the "convert"
function.

Chapter 1: Getting Started
Step 9. Delete the breakpoint

13

Step 11. Single-step 10 lines

To single-step 10 consecutive executable statements from the current PC line:

1 Choose the Execution→Step... (ALT, E, S) command.

2 Select the Current PC option.

3 Enter "10" in the Count text box.

4 Choose the Step button. Notice that the step count decrements by
one as the program executes step by step. The step count stops at 1.

5 Choose the Close button.

Chapter 1: Getting Started
Step 11. Single-step 10 lines

14

Step 12. Display a variable

To display the contents of auto variable "*mes":

1 Drag "*mes" on line 60 in the Source window until it is highlighted.

2 Choose the Variable→Edit... (ALT, V, E) command.

The Variable text box displays "*mes".

Notice the Value list box displays the contents of "*mes".

Note You can only register or display an auto variable as a watchpoint while the
program counter is within the function in which the variable name is declared.

Chapter 1: Getting Started
Step 12. Display a variable

15

Step 13. Edit a variable

To edit the contents of variable "*mes":

1 In the Variable Edit dialog box, choose the Modify button.

2 Enter "41" in the Value text box.

3 Choose the OK button.

4 Notice the contents of the variable in the Value list box has changed
to "41".

Chapter 1: Getting Started
Step 13. Edit a variable

16

Step 14. Monitor a variable in the WatchPoint window

The WatchPoint window lets you define a set of variables that may be looked
at and modified often. For these types of variables, using the WatchPoint
window is more convenient than using the Variable→Edit... (ALT, V, E)
command.

To monitor the variable "*mes" in the WatchPoint window:

1 In the Variable Edit dialog box, choose the "to WP" button.

2 Choose the Close button.

3 Choose the Window→WatchPoint command.

Notice the variable "*mes" has been registered as a watchpoint.

Chapter 1: Getting Started
Step 14. Monitor a variable in the WatchPoint window

17

Step 15. Run until return from current function

To execute the program until "convert_case" (the current PC function)
returns to its caller:

• Choose the Execution→Run to Caller (ALT, E, T) command.

The program executes until the line that called "convert_case".

Step 16. Step over a function

To step over "change_status":

• Choose the Execution→Step Over (ALT, E, O) command. Or, press
the F3 key.

The "change_status" function executes, and the program counter indicates
line 55.

Chapter 1: Getting Started
Step 15. Run until return from current function

18

Step 17. Run the program to a specified line

To execute the demo program to the first line of "next_message":

1 Cursor-select line 80.

2 Choose the Execution→Run to Cursor (ALT, E, C) command.

The program executes and stops immediately before line 80.

Chapter 1: Getting Started
Step 17. Run the program to a specified line

19

Step 18. Display register contents

1 Choose the Window→Basic Registers command.

The Basic Registers window opens and displays the register contents. The
display is updated periodically.

2 To prevent the register display from being updated, choose the
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) command.

3 To run the program, choose the Execution→Run (ALT, E, U)
command. Or, press the F5 key.

Chapter 1: Getting Started
Step 18. Display register contents

20

Notice that register contents are replaced with "----" in the display. This
shows the debugger cannot update the register display.

4 Choose the RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)
command to deselect the real-time mode. Notice that the contents of
the registers are updated periodically.

Chapter 1: Getting Started
Step 18. Display register contents

21

Step 19. Trace a function’s callers

To trace the caller of "next_message":

1 Double-click "next_message" on line 78 in the Source window.

2 Choose the Trace→Function Caller... (ALT, T, C) command.

3 Choose the OK button.

The Trace window becomes active and displays the caller as shown below.

This command stores the first statement of a function and prestores
statements that occur before the first statement (notice the state type PRE).
The prestored statements show the caller of the function. In the above
example, "next_message" is called by line 35 of "main".

Chapter 1: Getting Started
Step 19. Trace a function’s callers

22

Step 20. Trace access to a variable

To trace access to variable "message_id":

1 Double-click "message_id" in the Trace window or on line 35 in the
Source window.

2 Choose the Trace→Variable Access... (ALT, T, V) command.

3 Choose the OK button.

The Trace window becomes active and displays accesses to "message_id" as
shown below.

Line 35 displays three times because it accessed "message_id" twice for reads
and once for a write.

Chapter 1: Getting Started
Step 20. Trace access to a variable

23

Step 21. Exit the debugger

1 Choose the File→Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

Chapter 1: Getting Started
Step 21. Exit the debugger

24

Part 2

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a
few basic concepts.

25

Part 2

26

2

Using the Debugger Interface

27

Using the Debugger Interface

This chapter contains general information about using the debugger interface.

• How the Debugger Uses the Clipboard

• Debugger Function Key Definitions

• Starting and Exiting the Debugger

• Working with Debugger Windows

• Using Command Files

How the Debugger Uses the Clipboard

Whenever something is selected with the standard windows double-click, it is
placed on the clipboard. The clipboard can be pasted into selected fields by
clicking the right mouse button.

Double-clicks are also used in the Register and Memory windows to make
values active for editing. These double-clicks also copy the current value to
the clipboard, destroying anything you might have wanted to paste into the
window (for example, a symbol into the memory address field). In situations
like this, you can press the CTRL key while double-clicking to prevent the
selected value from being copied to the clipboard. This allows you to, for
example, double-click on a symbol, CTRL+double-click to activate a register
value for editing, and click the right mouse button to paste the symbol value
into the register.

Many of the Real-Time C Debugger commands and their dialog boxes open
with the clipboard contents automatically pasted in the dialog box. This
makes entering commands easy. For example, when tracing accesses to a
program variable, you can double-click on the variable name in one of the
debugger windows, choose the Trace→Variable Access... (ALT, T, V)
command, and click the OK button without having to enter or paste the
variable name in the dialog box (since it is has automatically been pasted in
the dialog box).

28

Debugger Function Key Definitions

F1 Accesses context sensitive help. Context sensitive help is
available for windows, dialog boxes, and menu items (with
Ctrl+F1).

F2 Executes a single source line from the current program
counter address (or a single instruction if disassembled
mnemonics are mixed with source lines in the Source
window).

F3 Same as F2 except when the source line contains a
function call (or the assembly instruction makes a
subroutine call); in these cases, the entire function (or
subroutine) is executed.

F4 Break emulator execution into the monitor. You can use
this to stop a running program or break into the monitor
from the processor reset state.

F5 Runs the program from the current program counter
address.

Shift-F4 Tiles the open debugger windows.

Shift-F5 Cascades the open debugger windows.

F7 Repeats the trace command that was entered last.

Ctrl+F7 Halts the current trace.

Chapter 2: Using the Debugger Interface
Using the Debugger Interface

29

Starting and Exiting the Debugger

This section shows you how:

• To start the debugger

• To exit the debugger

• To create an icon for a different emulator

To start the debugger

• Double-click the debugger icon.

Or:

1 Choose the File→Run (ALT, F, R) command in the Windows Program
Manager.

2 Enter the debugger filename, C:\HP\RTC\I386\B3637.EXE (if
C:\HP\RTC\I386 was the installation path chosen when installing the
debugger software).

3 Choose the OK button.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

30

To exit the debugger

1 Choose the File→Exit (ALT, F, X) command.

2 Choose the OK button.

This will end your Real-Time C Debugger session.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

31

To create an icon for a different emulator

1 Open the "HP Real-Time C Debugger" group box, or make it active by
positioning the mouse in the window and clicking the left button.

2 Choose the File→New... (ALT, F, N) command in the Windows
Program Manager.

3 Select the Program Item option and choose OK.

4 In the Description text box, enter the icon description.

In the Command Line text box, enter the "C:\HP\RTC\I386\B3637.EXE
-T<transport> -E<connectname>" command (if C:\HP\RTC\I386 was the
installation path chosen when installing the debugger software). The "-T"
and "-E" startup options allow you to bypass the transport and connect name
definitions in the B3637.INI file.

<Transport> should be one of the supported transport options (for example,
HP-ARPA, RS232C, etc.).

<Connectname> should identify the emulator for the type of transport. For
example, if the HP-ARPA transport is used, <connectname> should be the
hostname or IP address of the HP 64700; if the RS232C transport is used,
<connectname> should be COM1, COM2, etc.

5 In the Working Directory text box, enter the directory that contains
the debugger program (for example, C:\HP\RTC\I386).

6 Choose the OK button.

Chapter 2: Using the Debugger Interface
Starting and Exiting the Debugger

32

Working with Debugger Windows

This section shows you how:

• To open debugger windows

• To copy window contents to the list file

• To change the list file destination

• To change the debugger window fonts

• To set tabstops in the Source window

To open debugger windows

• Double-click the icon for the particular window.

• Or, choose the particular window from the Window→ menu.

• Or, choose the Window→More Windows... (ALT, W, M) command,
select the window to be opened from the dialog box, and choose the
OK button.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

33

To copy window contents to the list file

• From the window’s control menu, choose the Copy→Windows (ALT,
-, P, W) command.

The information shown in the window is copied to the destination list file.

You can change the name of the destination list file by choosing the
Copy→Destination... (ALT, -, P, D) command from the window’s control
menu or by choosing the File→Copy Destination... (ALT, F, P) command.

To change the list file destination

• Choose the File→Copy Destination... (ALT, F, P) command, and
select the name of the new destination list file.

• Or, from the window’s control menu, choose the
Copy→Destination... (ALT, -, P, D) command, and select the name of
the new destination list file.

Information copied from windows will be copied to the selected destination
file until the destination list file name is changed again.

List file names have the ".LST" extension.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

34

To change the debugger window fonts

1 Choose the Settings→Font (ALT, S, F) command.

2 Select the font, font style, and size. Notice that the Sample box
previews the selected font.

3 Choose the OK button.

To set tab stops in the Source window

1 Choose the Settings→Tabstops (ALT, S, T) command.

2 Enter the tab width. This width is also used for source lines in the
trace window.

3 Choose the OK button.

Chapter 2: Using the Debugger Interface
Working with Debugger Windows

35

Using Command Files

This section shows you how:

• To create a command file

• To execute a command file

• To create buttons that execute command files

A command file is an ASCII text file containing one or more debugger
commands. All the commands are written in a simple format, which makes
editing easy. The debugger commands used in command files are the same
as those used with break macros. For details about the format of each
debugger command, refer to the "Reference" information.

To create a command file

1 Choose the File→Command Log→Log File Name... (ALT, F, C, N)
command.

2 Enter the command file name.

3 Choose the File→Command Log→Logging ON (ALT, F, C, O)
command.

4 Choose the commands to be stored in the command file.

5 Once the commands have been completed, choose the
File→Command Log→Logging OFF (ALT, F, C, F) command.

Command files can also be created by saving the emulator configuration.

Chapter 2: Using the Debugger Interface
Using Command Files

36

To execute a command file

1 Choose the File→Run Cmd File... (ALT, F, R) command.

2 Select the command file to be executed.

3 Choose the Execute button.

You can execute command files that have been created by logging commands.

Also, emulator configurations can be restored by executing the associated
command file.

You can execute a command file when starting the debugger by using the
"-C<command_file>" command line option.

Example Command File Being Executed

Chapter 2: Using the Debugger Interface
Using Command Files

37

To create buttons that execute command files

1 Activate the Button window by clicking on the Button window icon
or by choosing the Window→Button command.

2 From the Button window’s control menu, choose the Edit... (ALT, -,
E) command.

3 In the Command text box, enter "FILE COMMAND", a space, and the
name of the command file to be executed.

4 Enter the button label in the Name text box.

5 Choose the Add button.

6 Choose the Close button.

Once a button has been added, you can click on it to run the command file.

You can also set up buttons to execute other debugger commands.

Chapter 2: Using the Debugger Interface
Using Command Files

38

3

Plugging the Emulator into Target
Systems

39

Plugging the Emulator into Target Systems

This chapter shows you how:

• Step 1. Turn OFF power

• Step 2. Unplug probe from demo target system

• Step 3. Plug the probe into the target system

• Step 4. Connect the reset flying lead to the target system

• Step 5. Turn ON power

CAUTION Possible Damage to the Emulator Probe. The emulation probe contains
devices that are susceptible to damage by static discharge. Take
precautionary measures before handling the microprocessor connector
attached to the end of the probe cable to avoid damaging the internal
components of the probe by static electricity.

HP STRONGLY recommends you use a ground strap when handling the
emulator probe. A ground strap is provided with the emulator.

There is a red LED on the probe board. If the LED is on, immediately turn off
your target system! The LED turns on when your target system has power
but the emulator does not. Permanent damage will occur if target system
power is turned on when the emulator is turned off, especially if this
condition lasts for more than one minute.

40

Step 1. Turn OFF power

CAUTION Possible Damage to the Emulator. Make sure target system power is OFF
and make sure HP 64700 power is OFF before removing or installing the
emulator probe into the target system.

Do not turn HP 64700 power OFF while the emulator is plugged into a target
system whose power is ON.

1 If the emulator is currently plugged into a different target system,
turn that target system’s power OFF.

2 Turn emulator power OFF.

Step 2. Unplug the probe from the demo target system

• If the emulator is currently connected to a different target system,
unplug the emulator probe; otherwise, disconnect the emulator probe
from the demo target system.

Chapter 3: Plugging the Emulator into Target Systems
Step 1. Turn OFF power

41

Step 3. Plug the probe into the target system

• Install the emulator probe into the target system socket. Make sure
that pin A1 of the connector aligns with pin A1 of the socket.
Damage to the emulator will result if the probe is incorrectly

installed.

You can also use the supplied PGA to PGA adapter or other PQFP adapters.
Always make sure that pin 1 and other pins of the adapters and connectors
are properly aligned; otherwise, damage to the emulator will result.

Chapter 3: Plugging the Emulator into Target Systems
Step 3. Plug the probe into the target system

42

Step 4. Connect the reset flying lead to the target
system

• The details of how to connect the reset flying lead are shown in the
HP 64789A i80386 Emulator Installation/Service/Terminal Interface
User’s Guide.

The reset flying lead on the 80386 emulator can be used to reset your target
system when the emulator applies reset to the processor. This is useful if you
have any hardware in your target system that needs to know when the
processor is reset (such as a circuit to generate the self-test request to the
processor).

The reset flying lead is an open-collector circuit that will go low when the
emulator applies reset (that is, you have used the "reset" command, have
reconfigured the emulator, or have given any other command that results in
the processor being reset.) It will not go low when your target system applies
reset unless the emulator is also applying reset.

You do not need to use this if the only signal your target system derives from
RESET is the "CLK" signal; the emulator will preserve the phase of CLK
between emulation-only resets.

Chapter 3: Plugging the Emulator into Target Systems
Step 4. Connect the reset flying lead to the target system

43

Step 5. Turn ON power

1 Turn emulator power ON.

2 Turn target system power ON.

Chapter 3: Plugging the Emulator into Target Systems
Step 5. Turn ON power

44

4

Configuring the Emulator

45

Configuring the Emulator

This chapter contains information about configuring the emulator.

• Setting the Hardware Options

• Selecting the Type of Monitor

• Mapping Memory

• Selecting Address Translations

• Setting Up the BNC Port

• Saving and Loading Configurations

• Setting the Real-Time Options

46

Setting the Hardware Options

This section shows you how:

• To specify a CLK2 speed faster than 60 MHz

• To enable or disable target interrupts

• To enable or disable software breakpoints

• To enable or disable break on writes to ROM

• To enable or disable execution trace messages

• To enable or disable foreground monitor traced as user

Chapter 4: Configuring the Emulator
Configuring the Emulator

47

To specify a CLK2 speed faster than 60 MHz

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Processor Clock is Faster Than 60 MHz check
box.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If the 4-Mbyte SIMMs are installed, and the CLK2 speed is greater than
60 MHz, the emulator has to force at least one wait state because the
4-MByte SIMMs are slower than the 256-KByte and 1-Mbyte SIMMs.

CLK2 is the clock input to the 80386; it is twice the speed of the
usually-quoted speed (that is, a "25 MHz 80386" has a CLK2 speed of 50
MHz).

Note that if you lock emulation memory cycles with target cycles, the target
hardware must continue to assert the READY# line until the second wait
state.

Chapter 4: Configuring the Emulator
Configuring the Emulator

48

To enable or disable target interrupts

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable Target Interrupts check box.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If selected, the emulator responds to interrupts generated by the target
system while running in the user program or foreground monitor. All
interrupts (INT or NMI) are blocked when execution is within the
background monitor.

If deselected, the emulator ignores all interrupts generated by the target
system, INT and NMI.

Chapter 4: Configuring the Emulator
Configuring the Emulator

49

To enable or disable software breakpoints

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect Enable Software Breakpoints check box.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If selected, the processor will take longer to leave the RESET state than
when breakpoints are disabled.

The emulator uses the bond-out processor’s software breakpoint capability.
This requires a special bit to be set to enable recognition of the breakpoint
instruction (which is a special opcode, different from the normal execution
breakpoint opcode of 0CCH). When the processor is reset, this bit is cleared.
To make use of breakpoints, the emulation monitor must set this bit every
time the processor leaves the reset state.

Chapter 4: Configuring the Emulator
Configuring the Emulator

50

To enable or disable break on writes to ROM

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable Break on Write to ROM check box.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If selected, a running program breaks into the monitor when it writes to a
location mapped as ROM.

If deselected, program writes to locations mapped as ROM do not cause
breaks into the monitor.

Chapter 4: Configuring the Emulator
Configuring the Emulator

51

To enable or disable execution trace messages

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable Execution Trace Messages check box.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If selected, branch trace messages and task switch messages are enabled.
Every time the processor does a tranch, it will emit the target address of the
branch. Each time a task switch occurs, the emulator will emit a task switch
message identifying both the old task and the new task.

If deselected, no branch trace messages nor task switch messages will be
emitted.

Chapter 4: Configuring the Emulator
Configuring the Emulator

52

To enable or disable foreground monitor traced as
user

1 Choose the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command.

2 Select or deselect the Enable Monitor Traced as User check box.

3 Choose the OK button to exit the Emulator Configuration dialog box.

If selected when using a foreground monitor, all foreground monitor cycles
will be captured in the trace memory by the emulation-bus analyzer. This is
useful when you are having problems with an interrupt routine and you want
to trace that routine even if it occurs during execution in the foreground
monitor.

If deselected and you have chosen Settings→Extended→Trace
Cycles→User, the analyzer will capture nothing between the time the
foreground monitor is entered and the time you begin a run of your user
program again. This prevents capture of interrupt routines executed while in
the foreground monitor. This is useful when you are trying to conserve trace
memory space to capture user program execution.

When using the background monitor, this has no effect.

See "Tracing Program Execution" in the "Debugging Programs" chapter for
useful combinations of the "Settings→Extended→Trace Cycles" command
and the Enable Foreground Monitor Traced as User selection.

Chapter 4: Configuring the Emulator
Configuring the Emulator

53

Selecting the Type of Monitor

This section shows you how:

• To select the background monitor

• To select the foreground monitor

• To use a custom foreground monitor

Refer to Monitor Program Options in the "Concepts" part for a description of
emulation monitors and the advantages and disadvantages of using
background or foreground emulation monitors.

Note Select the type of monitor before mapping memory because changing the
monitor type resets the memory map.

To select the background monitor

1 Choose the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command.

2 Select the Background option.

3 Choose the OK button.

When you power up the emulator, or when you initialize it, the background
monitor program is selected by default.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

54

To select the foreground monitor

1 Choose the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command.

2 Select the Foreground option.

3 Enter the base address of the foreground monitor in the Monitor
Address text box. The address must reside on a 16 Kbyte boundary
(in other words, the address must be a multiple of 4000H) and must
be specified in hexadecimal.

4 Enter the GDT descriptor for the foreground monitor code segment.
This reserves a GDT entry to define the code segment for the monitor
when running in protected mode. The specified value must be a
multiple of 8, greater than 0 and less than the limit defined in GDTR.

5 If you wish to synchronize monitor cycles to the target system (that
is, interlock the emulation and target system READY# lines on
accesses to the monitor memory block), select the Monitor Cycles
Use Target RDY option; otherwise, deselect this option.

6 Leave the Load Custom Monitor box unselected. This tells the
emulator to use the default foreground monitor present in the
emulator firmware.

7 Choose the OK button.

8 Load the user program by choosing the File→Load Object... (ALT, F,
L) command and entering the name of the user program object file.

When you select the foreground monitor, the emulator automatically loads
the default foreground monitor program, resident in emulator firmware, into
emulation memory. The foreground monitor is reloaded every time the
emulator breaks into the monitor state from the reset state.

For more information on the foreground monitor, refer to the Monitor
Program Options section in the "Concepts" information.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

55

To use a custom foreground monitor

1 Edit the foreground monitor program source.

2 Assemble and link the foreground monitor program.

3 Choose the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command.

4 Select the Foreground option.

5 Enter the base address of the foreground monitor in the Monitor
Address text box. The address must reside on a 16-Kbyte boundary
(an address ending in 4000H) and must be specified in hexadecimal.

6 If you wish to synchronize monitor cycles to the target system (that
is, interlock the emulation and target system READY# lines on
accesses to the monitor memory block), select the Monitor Cycles
Use Target RDY option; otherwise, deselect this option.

7 Enter the name of the foreground monitor object file in the Monitor
File Name text box.

8 Choose the OK button.

9 Use the Settings→Emulator Config→Memory Map... (ALT, S, E, M) to
re-map the user program memory areas. Selecting the foreground
monitor automatically resets the current memory map and adds a
new map term for the monitor.

10 Load the user program by choosing the File→Load Object... (ALT, F,
L) command and entering the name of the user program object file.

When customizing the foreground monitor, you must maintain the basic
communication protocol between the monitor program and the emulation
system controller.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

56

An example foreground monitor is provided with the debugger in the
\HP\RTC\I386\MONITOR directory (if that is the directory where the
software was installed). The file is named I386DX.ASM.

The custom foreground monitor is saved in the emulator (until the monitor
type is changed) and reloaded every time the emulator breaks into the
monitor state from the reset state.

Chapter 4: Configuring the Emulator
Selecting the Type of Monitor

57

Mapping Memory

This section shows you how:

• To map memory

Because the emulator can use target system memory or emulation memory
(or both), it is necessary to map ranges of memory so that the emulator
knows where to direct its accesses.

There are two types of emulation memory: SIMMs, and dual-port memory.
256-Kbyte, 1-Mbyte, and 4-Mbyte SIMMs are supported, although the
4-Mbyte SIMMs require an additional wait state if the CLK2 speed in your
target system is greater than 60 MHz.

The dual-port memory is 8 Kbytes and is always available (even when using a
foreground monitor). The differences between dual-port memory and SIMM
memory are:

• Dual port memory is always available, even when no SIMMs are loaded

• Only one map term (address range) can be used with the dual-port
attribute

• The user interface can access data stored in dual-port RAM without
interrupting any programs running on the 80386. If the processor is
executing instructions, the memory is access transparently by
interleaving accesses from the 80386 with accesses from the emulator. If
the processor is RESET, or there is no power to the target system, the
dual-port memory can be accessed normally (transparently). If the
processor is in the HALT or SHUTDOWN state, however, dual-port
memory cannot be accessed transparently. In that case, the monitor will
be used. To prevent the monitor from being used, choose
Realtime→Monitor Intrusion→Disallowed.

Up to eight ranges of memory can be mapped, and the resolution of mapped
ranges is 256 bytes (that is, the memory ranges must begin on 256-byte
boundaries and must be at least 256 bytes in length).

Note that the if you have a 1-Mbyte SIMM, but you map all eight terms to
256-byte segments (for a total of 2 Kbytes), the remaining 1022 Kbytes
cannot be used.

Chapter 4: Configuring the Emulator
Mapping Memory

58

External direct memory access (DMA) to emulation memory is not permitted.

You should map all memory ranges used by your programs before loading
programs into memory.

Chapter 4: Configuring the Emulator
Mapping Memory

59

To map memory

1 Choose the Settings→Emulator Config→Memory Map... (ALT, S, E,
M) command.

2 Specify the starting address in the Start text box.

3 Specify the end address in the End text box.

4 Select or deselect the Use Target RDY option.

5 Select or deselect the Use dual-ported memory option.

6 Select the memory type in the Type option box.

7 Choose the Apply button.

8 Repeat steps 2 through 7 for each range to be mapped.

9 Choose the Close button to exit the Memory Map dialog box.

You can specify one of the following memory types for each map term:

eram Specifies "emulation RAM".

erom Specifies "emulation ROM".

tram Specifies "target RAM".

trom Specifies "target ROM".

guarded Specifies "guarded memory".

For non-mapped memory areas, select any of the memory types in the Other
option box.

Chapter 4: Configuring the Emulator
Mapping Memory

60

When breaks on writes to ROM are enabled in the emulator configuration,
any access from the user program to any memory area mapped as ROM stops
the emulator.

Writes to emulation ROM will modify memory. Writes by user code to target
system memory locations that are mapped as ROM or guarded memory may
result in a break to the monitor but they are not inhibited (that is, the write
still occurs).

The Use Target RDY option specifies that emulation memory accesses in the
range be synchronized to the target system RDY signal.

To delete a map term, first select it in the Map list box; then, choose the
Delete button.

You should map all memory ranges used by your programs before loading
programs into memory.

Example To map addresses 0 through 7fffh as an emulation RAM, specify the mapping
term as shown below.

Choose the Apply button to register the current map term.

Then, choose the Close button to quit mapping.

Chapter 4: Configuring the Emulator
Mapping Memory

61

Selecting Address Translations

1 Choose the Settings→Emulator Config→Address Translations... (ALT, S,
E, A) command.

2 Leave Page translations required unselected unless your target system
uses paging.

3 Select the method of determining translations.

4 If you selected one of the static methods of determining translations,
select the desired Cacheing Option.

5 Choose the OK button to apply your selections and close the Address
Translation dialog box, or choose Apply to apply your selections and
leave the dialog box open on screen.

When address translations occur

Translations are necessary whenever a request is made to access target or
emulation memory (such as displaying memory or modifying memory), or
whenever a trace is set up.

If paging is not being used, it is not necessary to break processor execution in
order to translate a real-mode address. If paging is being used, processor
execution must be broken (because the real-mode address may be a
virtual-8086 address).

Implications of address translation options

The method used to translate addresses determines the accuracy and
intrusiveness of the emulator:

Dynamic translations cause a temporary break (from your program into the
monitor) to do a translation. This means that the translation is always
accurate for the current state of the processor and for the current GDT (if in
protected mode).

If your GDT tables change frequently, dynamic translation may be the best
option for you; however, you cannot set up the analyzer or modify and
display memory using protected-mode addresses when the processor is
RESET. You must use physical addresses in that case.

Chapter 4: Configuring the Emulator
Selecting Address Translations

62

Static translations cache the GDT and LDT tables (either from a program or
from the current tables in the processor), and use the cached values of the
tables to translate all virtual addresses. Static translations are only accurate if
the current GDT matches the cached GDT values. When using Static
translations, your program is never interrupted in order to perform a
translation. You can use protected-mode addresses while the processor is
RESET (or in real mode) to modify and display memory or set up a trace.

Page translations can also be dynamic or cached. Note that if you do not use
paging, you will obtain better performance by turning off the check box next
to "Page translations required".

Chapter 4: Configuring the Emulator
Selecting Address Translations

63

Setting Up the BNC Port

This section shows you how:

• To output the trigger signal on the BNC port

• To receive an arm condition input on the BNC port

To output the trigger signal on the BNC port

• Choose the Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command enables the trigger signal from the internal analyzer to be fed
to external devices.

To receive an arm condition input on the BNC port

• Choose the Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)
command.

The HP 64700 Series emulators have a BNC port for connection with external
devices such as logic analyzers or oscilloscopes.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer.

Chapter 4: Configuring the Emulator
Setting Up the BNC Port

64

Saving and Loading Configurations

This section shows you how:

• To save the current emulator configuration

• To load an emulator configuration

To save the current emulator configuration

1 Choose the File→Save Emulator Config... (ALT, F, V) command.

2 In the file selection dialog box, enter the name of the file to which the
emulator configuration will be saved.

3 Choose the OK button.

This command saves the current hardware, memory map, and monitor
settings to a command file.

Saved emulator configuration files can be loaded later by choosing the
File→Load Emulator Config... (ALT, F, E) command or by choosing the
File→Run Cmd File... (ALT, F, R) command.

Chapter 4: Configuring the Emulator
Saving and Loading Configurations

65

To load an emulator configuration

1 Choose the File→Load Emulator Config... (ALT, F, E) command.

2 Select the name of the emulator configuration command file to load
from the file selection dialog box.

3 Choose the OK button.

This command lets you reload emulator configurations that have previously
been saved.

Emulator configurations consist of hardware, memory map, and monitor
settings.

Chapter 4: Configuring the Emulator
Saving and Loading Configurations

66

Setting the Real-Time Options

This section shows you how:

• To allow or deny monitor intrusion

• To turn polling ON or OFF

The monitor program is executed by the emulation microprocessor when
target system memory, I/O, and microprocessor registers are displayed or
edited. In addition, any address translations will cause the monitor program
to execute unless they are configured to be static (see Selecting how Address
Translations work). Also, periodic polling to update the Memory, I/O,
WatchPoint, and Register windows can cause monitor program execution.

When the user program is running and monitor intrusion is allowed, the user
program must be temporarily interrupted in order to display or edit target
system memory, display or edit registers, or update window contents.

If it is important that your program execute without these kinds of
interruptions, you should deny monitor intrusion. You can still display and
edit target system memory and microprocessor registers, but you must
specifically break emulator execution from the user program into the monitor.

When monitor intrusion is denied, polling to update window contents is
automatically turned OFF.

When monitor intrusion is allowed, you can turn OFF polling for particular
windows to lessen the number of interruptions during user program
execution.

Chapter 4: Configuring the Emulator
Setting the Real-Time Options

67

To allow or deny monitor intrusion

• To deny monitor intrusion, choose the RealTime→Monitor
Intrusion→Disallowed (ALT, R, T, D) command.

• To allow monitor intrusion, choose the RealTime→Monitor
Intrusion→Allowed (ALT, R, T, A) command.

When you deny monitor intrusion, any debugger command that may interrupt
a running user program is prevented. This ensures the user program execute
in real time.

When you allow monitor intrusion, debugger commands that may temporarily
interrupt user program execution are allowed.

The current setting is shown by a check mark (√) next to the command.

Chapter 4: Configuring the Emulator
Setting the Real-Time Options

68

To turn polling ON or OFF

• To turn I/O window polling ON or OFF, choose the RealTime→I/O
Polling→ON (ALT, R, I, O) or RealTime→I/O Polling→OFF (ALT, R,
I, F) command.

• To turn WatchPoint window polling ON or OFF, choose the
RealTime→Watchpoint Polling→ON (ALT, R, W, O) or
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) command.

• To turn Memory window polling ON or OFF, choose the
RealTime→Memory Polling→ON (ALT, R, M, O) or
RealTime→Memory Polling→OFF (ALT, R, M, F) command.

When the user program is running and monitor intrusion is denied, polling is
automatically turned OFF.

When the user program is running and monitor intrusion is allowed, you can
turn polling OFF to reduce the number of user program interrupts made in
order to update I/O, WatchPoint, and Memory window contents.

The current settings are shown by check marks (√) next to the command.

Chapter 4: Configuring the Emulator
Setting the Real-Time Options

69

70

5

Debugging Programs

71

Debugging Programs

This chapter contains information on loading and debugging programs.

• Loading and Displaying Programs

• Displaying Symbol Information

• Stepping, Running, and Stopping the Program

• Using Breakpoints and Break Macros

• Displaying and Editing Variables

• Displaying and Editing Memory

• Displaying and Editing I/O locations

• Displaying and Editing Registers

• Tracing Program Execution

• Setting Up Custom Trace Specifications

72

Loading and Displaying Programs

This section shows you how:

• To load user programs

• To display source code only

• To display source code mixed with assembly instructions

• To display source files by their names

• To specify source file directories

• To search for function names in the source files

• To search for addresses in the source files

• To search for strings in the source files

To load user programs

1 Choose the File→Load Object... (ALT, F, L) command.

2 Select the file to be loaded.

3 Choose the Load button to load the program.

With this command, you can load any Intel OMF object file created with any
of the Microtec or HP programming tools for 80386.

Chapter 5: Debugging Programs
Loading and Displaying Programs

73

To display source code only

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display→Source
Only (ALT, -, D, S) command.

The Source window may be toggled between the C source only display and
the C source/mnemonic mixed display.

The display starts from the line containing the cursor.

The source only display shows line numbers with the source code.

To display source code mixed with assembly
instructions

1 Position the cursor on the starting line to be displayed.

2 From the Source window control menu, choose the Display→Mixed
Mode (ALT, -, D, M) command.

The mnemonic display contains the address, data, and disassembled
instruction mnemonics intermixed with the C source lines.

Chapter 5: Debugging Programs
Loading and Displaying Programs

74

Example C Source/Mnemonic Mode Display

To display source files by their names

1 Make the Source window the active window, and choose the
Display→Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

2 Select the desired file.

3 Choose the Select button.

4 Choose the Close button.

Note The contents of assembly language source files cannot be displayed.

Chapter 5: Debugging Programs
Loading and Displaying Programs

75

To specify source file directories

1 Make the Source window the active window, and choose the
Display→Select Source... (ALT, -, D, L) command from the Source
window’s control menu.

2 Choose the Directory... button.

3 Enter the directory name in the Directory text box.

4 Choose the Add button.

5 Choose the Close button to close the Search Directories dialog box.

6 Choose the Close button to close the Select Source dialog box.

If the source files associated with the loaded object file are in different
directories than the object file, you must identify the directories in which the
source files can be found.

You can also specify them source file directories by setting the SRCPATH
environment variable in MS-DOS as follows:

set SRCPATH=<full path 1>;<full path 2>

Chapter 5: Debugging Programs
Loading and Displaying Programs

76

To search for function names in the source files

1 From the Source window’s control menu, choose the
Search→Function... (ALT, -, R, F) command.

2 Select the function to be searched.

3 Choose the Find button.

4 Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

To search for addresses in the source files

1 From the Source window’s control menu, choose the
Search→Address... (ALT, -, R, A) command.

2 Type or paste the address into the Address text box.

3 Choose the Find button.

4 Choose the Close button.

Disassembled instructions are displayed in the Source window for assembly
language source files.

Chapter 5: Debugging Programs
Loading and Displaying Programs

77

To search for strings in the source files

1 From the Source window’s control menu, choose the
Search→String... (ALT, -, R, S) command.

2 Type or paste the string into the String text box.

3 Select whether the search should be case sensitive.

4 Select whether the search should be down (forward) or up
(backward).

5 Choose the Find Next button. Repeat this step to search for the next
occurrence of the string.

6 Choose the Cancel button to close the dialog box.

Chapter 5: Debugging Programs
Loading and Displaying Programs

78

Displaying Symbol Information

This section shows you how:

• To display program module information

• To display function information

• To display external symbol information

• To display local symbol information

• To display global assembler symbol information

• To display local assembler symbol information

• To create a user-defined symbol

• To display user-defined symbol information

• To delete a user-defined symbol

• To display the symbols containing the specified string

Chapter 5: Debugging Programs
Displaying Symbol Information

79

To display program module information

• From the Symbol window’s control menu, choose the
Display→Modules (ALT, -, D, M) command.

To display function information

• From the Symbol window’s control menu, choose the
Display→Functions (ALT, -, D, F) command.

The name, type, and address range for the functions in the program are
displayed.

Example Function Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

80

To display external symbol information

• From the Symbol window’s control menu, choose the
Display→Externals (ALT, -, D, E) command.

The name, type, and address of the global variables in the program are
displayed.

Example External Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

81

To display local symbol information

1 From the Symbol window’s control menu, choose the
Display→Locals... (ALT, -, D, L) command.

2 Type or paste the function for which the local variable information is
to displayed.

3 Choose the OK button.

The name, type, and offset from the stack frame of the local variables in the
selected function are displayed.

Example Local Symbol Information Display

Chapter 5: Debugging Programs
Displaying Symbol Information

82

To display global assembler symbol information

• From the Symbol window’s control menu, choose the Display→Asm
Globals (ALT, -, D, G) command.

The name and address for the global assembler symbols in the program are
displayed.

To display local assembler symbol information

1 From the Symbol window’s control menu, choose the Display→Asm
Locals... (ALT, -, D, A) command.

2 Type or paste the module for which the local variable information is
displayed.

3 Choose the OK button.

The name and address for the local assembler variables in the selected
module are displayed.

Chapter 5: Debugging Programs
Displaying Symbol Information

83

To create a user-defined symbol

1 From the Symbol window’s control menu, choose the User
defined→Add... (ALT, -, U, A) command.

2 Type the symbol name in the Symbol Name text box.

3 Type the address in the Address text box.

4 Choose the OK button.

User-defined symbols, just as standard symbols, can be used as address
values when entering commands.

Example To add the user-defined symbol "jmp_start":

Chapter 5: Debugging Programs
Displaying Symbol Information

84

To display user-defined symbol information

• From the Symbol window’s control menu, choose the Display→User
defined (ALT, -, D, U) command.

The command displays the name and address for the user-defined symbols.

Example User-Defined Symbol Information Display

To delete a user-defined symbol

1 From the Symbol window’s control menu, choose the Display→User
defined (ALT, -, D, U) command to display the user-defined symbols.

2 Select the user-defined symbol to be deleted.

3 From the Symbol window’s control menu, choose the User
defined→Delete (ALT, -, U, D) command.

Chapter 5: Debugging Programs
Displaying Symbol Information

85

To display the symbols containing the specified string

1 From the Symbol window’s control menu, choose the
FindString→String... (ALT, -, F, S) command.

2 Type or paste the string in the String text box. The search will be
case-sensitive.

3 Choose the OK button.

To restore the original nonselective display, redisplay the symbolic
information.

Chapter 5: Debugging Programs
Displaying Symbol Information

86

Stepping, Running, and Stopping the Program

This section shows you how:

• To step a single line or instruction

• To step over a function

• To step multiple lines or instructions

• To run the program until the specified line

• To run the program until the current function return

• To run the program from a specified address

• To stop program execution

• To reset the processor

To step a single line or instruction

• Choose the Execution→Single Step (ALT, E, N) command.

• Or, press the F2 key.

In the source display mode, this command executes the C source code line at
the current program counter address.

In the source/mnemonic mixed display mode, the command executes the
microprocessor instruction at the current program counter address.

Once the source line or instruction has executed, the next program counter
address highlighted.

During a single-step command, multiple instructions can be executed if the
instruction being stepped causes an instruction fault or task switch. See
"Unexpected Stepping Behavior" in the "Concepts" chapter.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

87

To step over a function

• Choose the Execution→Step Over (ALT, E, O) command.

• Or, press the F3 key.

This command steps a single source line or assembly language instruction
except when the source line contains a function call or the assembly
instruction makes a subroutine call. In these cases, the entire function or
subroutine is executed.

Example

When the current program counter is at line 34, choosing the
Execution→Step Over (ALT, E, O) command steps over the "convert"
function. Once the function has been stepped over, the program counter
indicates line 35.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

88

To step multiple lines or instructions

1 Choose the Execution→Step... (ALT, E, S) command.

2 Select one of the Current PC, Start Address, or Address options.
(Enter the starting address when the Address option is selected.)

3 In the Count text box, type the number of lines to be single-stepped.

4 Choose the Execute button.

5 Choose the Close button to close the dialog box.

The Current PC option starts single-stepping from the current PC address.
The Start Address option starts single-stepping from the transfer address.
The Address option starts single-stepping from the address specified in the
text box.

In the source only display mode, the command steps the number of C source
lines specified. In the source/mnemonic mixed display mode, the command
steps the number of microprocessor instructions specified.

When the step count specified in the Count text box is 2 or greater, the count
decrements by one as each line or instruction executes. A count of 1 remains
in the Count text box. Also, in the Source window, the highlighted line that
indicates the current program counter moves for each step.

To step over functions, select the Over check box.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

89

To run the program until the specified line

1 Position the cursor in the Source window on the line that you want to
run to.

2 Choose the Execution→Run to Cursor (ALT, E, C) command.

Execution stops immediately before the cursor-selected line.

Because this command uses breakpoints, you cannot use it if you are already
using the four hardware breakpoints on the 80386 and the address you are
stepping is in target ROM.

If the specified address is not reached within the number of milliseconds
specified by StepTimerLen in the B3637.INI file, a dialog box appears, asking
you to cancel the command by choosing the Stop button. When the Stop
button is chosen, the program execution stops, the breakpoint is deleted, and
the processor transfers to the RUNNING IN USER PROGRAM status.

To run the program until the current function return

• Choose the Execution→Run to Caller (ALT, E, T) command.

The Execution→Run to Caller (ALT, E, T) command executes the program
from the current program counter address up to the return from the current
function.

Note The debugger cannot properly run to the function return when the current
program counter is at the first line of the function (immediately after its
entry point). Before running to the caller, use the Execution→Single Step
(ALT, E, N) command to step past the first line of the function.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

90

To run the program from a specified address

1 Choose the Execution→Run... (ALT, E, R) command.

2 Select one of the Current PC, Start Address, User Reset, or Address
options. (Enter the address when the Address option is selected.)

3 Choose the Run button.

The Current PC option executes the program from the current program
counter address. The Start Address option executes the program from the
transfer address.

The User Reset option initiates program execution from the reset vector.
Note that this will cause your target board to reset only if you have attached
the "reset flying lead" to the appropriate spot in your target system.

The Address option executes the program from the address specified.

See Also

"Step 4. Connect the reset flying lead to the target system" in the "Plugging
the Emulator into Target Systems" chapter.

To stop program execution

• Choose the Execution→Break (ALT, E, B) command, or press the F4
key.

As soon as the Execution→Break (ALT, E, B) command is chosen, the
emulator starts running in the monitor.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

91

To reset the processor

• Choose the Execution→Reset (ALT, E, E) command.

Once the command has been completed, the processor remains reset if
monitor intrusion is disallowed. If monitor intrusion is allowed, the emulation
microprocessor may switch immediately from reset to running in monitor, for
example, to update the contents of a register window.

If a foreground monitor is selected, it will automatically be loaded when this
command is executed. This is done to make sure the foreground monitor
code is intact.

Chapter 5: Debugging Programs
Stepping, Running, and Stopping the Program

92

Using Breakpoints and Break Macros

This section shows you how:

• To set a breakpoint

• To disable a breakpoint

• To delete a single breakpoint

• To list the breakpoints and break macros

• To set a break macro

• To delete a single break macro

A breakpoint is an address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

A break macro is a breakpoint followed by any number of macro commands
(which are the same as command file commands).

You may have any number of "software breakpoints", which are set by
replacing opcodes in the program.

You may have up to four "hardware breakpoints", which are breakpoints for
code that is in target system ROM.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

93

To set a breakpoint

1 Position the cursor on the line where you wish to set a breakpoint.

2 Choose the Breakpoint→Set at Cursor (ALT, B, S) command.

When you run the program and the breakpoint is hit, execution stops
immediately before the breakpoint line. The current program counter
location is highlighted.

Example To set a breakpoint at line 56:

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

94

To disable a breakpoint

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Select the breakpoint to be disabled.

3 Select the Disable check box. Notice that "DI" appears next to the
breakpoint in the list.

4 To close the dialog box, choose the Close button.

You can reenable a breakpoint in the same manner by choosing the
Breakpoint→Edit... (ALT, B, E) command, selecting a disabled breakpoint
from the list, and deselecting the Disable check box.

To delete a single breakpoint

• Position the cursor on the line that has the breakpoint to be deleted,
and choose the Breakpoint→Delete at Cursor (ALT, B, D) command.

Or:

1 Choose the Breakpoint→Edit... (ALT, B, E) command.

2 Select the breakpoint to be deleted.

3 Choose the Delete button.

4 Choose the Close button.

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once with the Delete All button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

95

To list the breakpoints and break macros

• Choose the Breakpoint→Edit... (ALT, B, E) command.

The command displays break macros followed by break macro commands in
parentheses.

The Breakpoint dialog box also allows you to delete breakpoints and break
macros.

To set a break macro

1 Position the cursor on the line where you wish to set a break macro.

2 Choose the Breakpoint→Set Macro... (ALT, B, M) command.

3 Specify the macro command in the Macro Command text box.

4 Choose the Insert button.

5 To add another macro command, repeat steps 3 and 4.

6 To exit the BreakMacro Entry dialog box, choose the Close button.

The debugger automatically executes the specified macro commands when
the break macro line is reached.

To add macro commands after an existing macro command, position the
cursor on the macro command before choosing Breakpoint→Set Macro...
(ALT, B, M).

To add macro commands to the top of an existing break macro, position the
cursor on the line that contains the BP marker before choosing
Breakpoint→Set Macro... (ALT, B, M).

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

96

Example To set "EVALUATE" and "RUN" break macros:

Position the cursor on line 62; then, choose the Breakpoint→Set Macro...
(ALT, B, M) command.

Enter "EVALUATE *mes" in the Macro Command text box.

Choose the Insert button.

Enter "RUN" in the Macro Command text box.

Choose the Insert button.

Choose the Close button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

97

The break macro is displayed in the Source window as shown below.

To delete a single break macro

1 Position the cursor on the line that contains the break macro to be
deleted.

2 Choose the Breakpoint→Delete Macro (ALT, B, L) command.

To delete a single macro command that is part of a break macro, position the
cursor on the macro command before choosing Breakpoint→Delete Macro
(ALT, B, L).

The Breakpoint→Edit... (ALT, B, E) command allows you to delete all the
breakpoints and break macros at once by choosing the Delete All button.

Chapter 5: Debugging Programs
Using Breakpoints and Break Macros

98

Displaying and Editing Variables

This section shows you how:

• To display a variable

• To edit a variable

• To monitor a variable in the WatchPoint window

To display a variable

1 Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the Update button to read the contents of the variable and
display the value in the dialog box.

4 To exit the Variable dialog box, choose the Close button.

Note that you can update the contents of an auto variable only while the
program executes within the scope function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

99

To edit a variable

1 Position the mouse pointer over the variable in the Source window
and double-click the left mouse button.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the Modify button. This opens the Variable Modify dialog
box.

4 Type the desired value in the Value text box. The value must be of
the type specified in the Type field.

5 Choose the OK button.

6 Choose the Close button.

Note that you can change the contents of an auto variable only while the
program executes within the scope function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

100

To monitor a variable in the WatchPoint window

1 Highlight the variable in the Source window by either double-clicking
the left mouse button or by holding the left mouse button down and
dragging the mouse pointer over the variable.

2 Choose the Variable→Edit... (ALT, V, E) command.

3 Choose the "to WP" button.

4 Choose the Close button.

5 To open the WatchPoint window, choose the Window→WatchPoint
command.

Note that you can only monitor an auto variable in the WatchPoint window
when the program executes within the scope function.

Chapter 5: Debugging Programs
Displaying and Editing Variables

101

Displaying and Editing Memory

This section shows you how:

• To display memory

• To edit memory

• To copy memory to a different location

• To copy target system memory into emulation memory

• To modify a range of memory with a value

• To search memory for a value or string

To display memory

1 Choose the RealTime→Memory Polling→ON (ALT, R, M, O)
command.

2 Choose the Window→Memory command.

3 Double-click one of the addresses.

4 Use the keyboard to enter the address of the memory locations to be
displayed.

5 Press the Enter key.

An address may be entered as a value or symbol. You can also select the
desired address by using the scroll bar.

To change the size of the data displayed, access the Memory window’s
control menu; then, choose the Display→Byte (ALT, -, D, Y), Display→16
Bits (ALT, -, D, 1), or Display→32 Bits (ALT, -, D, 3) command. When the

Chapter 5: Debugging Programs
Displaying and Editing Memory

102

Display→Byte (ALT, -, D, Y) command is chosen, ASCII values are also
displayed.

To specify whether memory is displayed in a single-column or multicolumn
format, access the Memory window’s control menu; then, choose the
Display→Linear (ALT, -, D, L) or Display→Block (ALT, -, D, B) command.
When the Display→Linear (ALT, -, D, L) command is chosen, symbolic
information associated with an address is also displayed.

The Memory window display is updated periodically. When the window
displays the contents of target system memory, user program execution is
temporarily suspended as the display is updated. To prevent program
execution from being temporarily suspended (and the Memory window from
being updated), choose the RealTime→Monitor Intrusion→Disallowed (ALT,
R, T, D) command to activate the real-time mode.

Example Memory Displayed in Byte Format

Chapter 5: Debugging Programs
Displaying and Editing Memory

103

To edit memory

Assuming the location you wish to edit has already been displayed (and
Memory window polling is turned ON):

1 Double-click the location you wish to edit.

2 Use the keyboard to enter a new value.

3 Press the Enter key. Notice that the next location is highlighted.

4 Repeat steps 2 and 3 to edit successive locations.

Editing the contents of target system memory causes user program execution
to be temporarily interrupted. You cannot modify the contents of target
memory when the emulator is running the user program and monitor
intrusion is disallowed.

Chapter 5: Debugging Programs
Displaying and Editing Memory

104

To copy memory to a different location

1 From the Memory window’s control menu, choose the
Utilities→Copy... (ALT, -, U, C) command.

2 Enter the starting address of the range to be copied in the Start text
box.

3 Enter the end address of the range to be copied in the End text box.

4 Enter the address of the destination in the Destination text box.

5 Choose the Execute button.

6 To close the Memory Copy dialog box, choose the Close button.

Chapter 5: Debugging Programs
Displaying and Editing Memory

105

To copy target system memory into emulation
memory

1 Map the address range to be copied as emulation memory.

2 Because the processor cannot read target system memory when it is
in the EMULATION RESET state, choose the Execution→Break
(ALT, E, B) command, or press the F4 key, to break execution into
the monitor.

3 From the Memory window’s control menu, choose the
Utilities→Image... (ALT, -, U, I) command.

4 Enter the starting address in the Start text box.

5 Enter the end address in the End text box.

6 Choose the Execute button.

7 To exit the Memory Image Copy dialog box, choose the Close button.

This command is used to gain access to features that are only available with
emulation memory (like breakpoints).

If you want to have more than four breakpoints in target system ROM, you
may use the Utilities→Image... command to copy the memory and use
software breakpoints instead of the four hardware breakpoints.

Note that the following commands use breakpoints:

• Breakpoint→Set at Cursor (ALT, B, S)
• Breakpoint→Delete at Cursor (ALT, B, D)
• Breakpoint→Set Macro... (ALT, B, M)
• Breakpoint→Delete Macro (ALT, B, L)
• Execution→Run to Cursor (ALT, E, C)
• Execution→Run to Caller (ALT, E, T)

Chapter 5: Debugging Programs
Displaying and Editing Memory

106

Example To copy the contents of addresses 0 through 0fffh from target system
memory to the corresponding emulation memory address range:

To modify a range of memory with a value

1 From the Memory window’s control menu, choose the
Utilities→Fill... (ALT, -, U, F) command.

2 Enter the desired value in the Value text box.

3 Enter the starting address of the memory range in the Start text box.

4 Enter the end address in the End text box.

5 Select one of the Size options.

6 Choose the Execute button.

The Byte, 16 Bit, or 32 Bit size option specifies the size of the values that are
used to fill memory.

Chapter 5: Debugging Programs
Displaying and Editing Memory

107

To search memory for a value or string

1 From the Memory window’s control menu, choose the Search... (ALT,
-, R) command.

2 Enter in the Value or String text box the value or string to search for.

3 Enter the starting address in the Start text box.

4 Enter the end address in the End text box.

5 Choose the Execute button.

6 Choose the Close button.

When the specified data is found, the location at which the value or string
was found is displayed in the Memory window.

Example To search addresses 6000h through 0ffffh, for the string "This":

Chapter 5: Debugging Programs
Displaying and Editing Memory

108

Displaying and Editing GDT, LDT, and IDT
Windows

This section shows you how:

• To display the GDT, LDT, and IDT windows

• To edit the GDT, LDT, and IDT windows

To display the GDT, LDT, and IDT windows

• Choose the Window→GDT, Window→LDT, or the Window→IDT,
command.

The Window→GDT, Window→LDT, and Window→IDT commands display
the contents of the specified window.

The debugger periodically reads the GDT, LDT, and IDT locations and
displays the latest content in the selected window.

Chapter 5: Debugging Programs
Displaying and Editing GDT, LDT, and IDT Windows

109

To edit the GDT, LDT, and IDT windows

1 Choose the Window→GDT, Window→LDT, or Window→IDT
command.

2 Find the physical address associated with the value to be changed.

3 Display the Memory window with the Window→Memory command.

4 Find the same physical address in the Memory window that you
found in the GDT, LDT, or IDT window.

5 Use the keyboard to modify the content associated with the physical
address, as desired.

6 Press the Enter key. Notice that the next location is highlighted.

As long as the cursor remains in the Memory window, the GDT, LDT, or IDT
window will not show your new value. Move the cursor out of the Memory
window to see the GDT, LDT, or IDT window update to the new value.

Chapter 5: Debugging Programs
Displaying and Editing GDT, LDT, and IDT Windows

110

Displaying and Editing I/O Locations

This section shows you how:

• To display I/O locations

• To edit an I/O location

To display I/O locations

1 Choose the Window→I/O command.

2 From the I/O window’s control menu, choose the Define... (ALT, -, D)
command.

3 Enter the address in the Address text box.

4 Select whether the size of the I/O location is a Byte, 16 Bits, or 32 Bits.

5 Select whether the I/O location is in Memory or I/O space.

6 Choose the Set button.

7 Choose the Close button.

The Window→I/O command displays the contents of the specified I/O
locations.

The debugger periodically reads the I/O locations and displays the latest
status in the I/O window. To prevent the debugger from reading the I/O
locations (and updating the I/O window), choose the RealTime→I/O
Polling→OFF (ALT, R, I, F) command.

Chapter 5: Debugging Programs
Displaying and Editing I/O Locations

111

Example To display the contents of address 2000:

To edit an I/O location

1 Display the I/O value to be changed with the Window→I/O command.

2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Enter key.

To confirm the modified values, press the Enter key for every changed value.

Editing the I/O locations temporarily halts user program execution. You
cannot modify I/O locations while the user program executes in the real-time
mode or when I/O polling is turned OFF.

Chapter 5: Debugging Programs
Displaying and Editing I/O Locations

112

Displaying and Editing Registers

This section shows you how:

• To display registers

• To edit registers

To display registers

• Choose the Window→Basic Registers command.

The register values displayed in the window are periodically updated to show
you how the values change during program execution. The Status Flags
register can be displayed and modified as decoded bits by double-clicking on
its value.

When the register windows are updated, user program execution is
temporarily interrupted. To prevent the user program from being
interrupted (and the register windows from being updated), choose the
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) command to
activate the real-time mode.

Chapter 5: Debugging Programs
Displaying and Editing Registers

113

Example Register Contents Displayed in the Basic Registers Window

Chapter 5: Debugging Programs
Displaying and Editing Registers

114

To edit registers

1 Display the register contents by choosing the Window→Basic
Registers command or the Window→System Registers command.

2 Double-click the value to be changed.

3 Use the keyboard to enter a new value.

4 Press the Return key.

Modifying register contents temporarily interrupts program execution. You
cannot modify register contents while the user program is running and
monitor intrusion is disallowed.

Note that register values are not actually changed until the Return key is
pressed.

Double-clicking registers with flags or other bit fields opens the Register Bit
Fields dialog box which you can use to set or clear individual bit fields.

Chapter 5: Debugging Programs
Displaying and Editing Registers

115

Tracing Program Execution

This section shows you how:

• To trace callers of a specified function

• To trace execution within a specified function

• To trace accesses to a specified variable

• To trace until the command is halted

• To stop a running trace

• To repeat the last trace

• To display bus cycles

• To display accumulated or relative counts

How the Analyzer Works

When you trace program execution, the analyzer captures microprocessor
address bus, data bus, and control signal values at each clock cycle. The
values captured for one clock cycle are collectively called a state. A trace is a
collection of these states stored in analyzer memory (also called trace
memory).

The trigger condition tells the analyzer when to store states in trace memory.
The trigger position specifies whether states are stored before, after, or about
the state that satisfies the trigger condition.

The store condition limits the kinds of states that are stored in trace memory.

When the states stored must satisfy a store-qualifier condition, up to two
states which satisfy the prestore condition may be stored when they occur
before the states that satisfy the store condition.

After a captured state satisfies the trigger condition, a trace becomes
complete when trace memory is filled with states that satisfy the store and
prestore conditions.

Chapter 5: Debugging Programs
Tracing Program Execution

116

See Understanding 80386 Analysis to understand how the analyzer works
with the prefetching, of the 80386, how the disassembler decodes the bus
cycles, and how to use Execution Trace Messages to resolve questions about
the exact target address of branches.

Trace Window Contents

When traces are completed, the Trace window is automatically opened to
display the trace results.

Each line in the trace shows the trace buffer state number, the type of state,
the module name and line number, the function name, the source file
information, and the time the state was captured (relative to the other states,
by default).

When bus cycles are included, the address, data, and disassembled
instruction or bus cycle status mnemonics are shown.

Tracing Monitor Cycles

When the emulator is executing monitor code, cycles are generated, but
usually not all cycles are captured by the analyzer. The 80386 emulator
allows you to determine the types of monitor cycles to be captured when
using the foreground monitor, and the types of monitor cycles to be ignored,
as follows:

Default: By default, accesses by the monitor to non-monitor address space
are traced. Execution of monitor code is not traced. This means that if the
monitor reads memory to update the memory window, the trace list will show
memory reads from the accessed addresses. However, the code executed by
the monitor to read the addresses will not be shown.

Quiet: You can set up the emulator to prevent capture of states to target
addresses while executing in the monitor. This will prevent the capture of
monitor read cycles when the monitor updates the memory window, but it
may also prevent capture of useful information, too. For example, if you are
using the foreground monitor and an interrupt arrives, your interrupt code
will execute but the analyzer will not capture its execution in the trace list.

Complete: You can set up the emulator to capture all states generated by the
monitor. This will let you see the execution of the monitor in addition to its
accesses to non-monitor address space. This is generally used to help debug
a custom foreground monitor.

Chapter 5: Debugging Programs
Tracing Program Execution

117

To set up the monitor trace options:

Default:

Settings→Extended→Trace Cycles→User

Settings→Emulator Config→Hardware... then make sure the "Enable
Foreground Monitor Traced as User" box is checked.

Quiet:

Settings→Extended→Trace Cycles→User

Settings→Emulator Config→Hardware... then make sure the "Enable
Foreground Monitor Traced as User" box is not checked.

Complete:

Settings→Extended→Trace Cycles→Both

Settings→Emulator Config→Hardware... then make sure the "Enable
Foreground Monitor Traced as User" box is checked.

Chapter 5: Debugging Programs
Tracing Program Execution

118

To trace callers of a specified function

1 Double-click the function name in one of the debugger windows.

2 Choose the Trace→Function Caller... (ALT, T, C) command.

3 Choose the OK button.

This command stores the first executable statement of the specified function
and prestores statements that execute before it. The prestored statements
show the caller of the function.

To identify interrupts in program execution, trace the caller of the interrupt
process routine using the Trace→Function Caller... (ALT, T, C) command.

Chapter 5: Debugging Programs
Tracing Program Execution

119

Example To trace the caller of "next_message":

Double-click "next_message".

Choose the Trace→Function Caller... (ALT, T, C) command.

The Trace window becomes active and displays the trace results.

You can see how prefetching affects tracing by choosing the Display→Bus
Cycle ON (ALT, -, D, B) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

120

To trace execution within a specified function

1 Double-click the function name in the Source window.

2 Choose the Trace→Function Statement... (ALT, T, S) command.

This command traces C functions only. It does not trace execution of
assembly language subroutines.

Example To trace execution within "next_message":

Double-click "next_message."

Choose the Trace→Function Statement... (ALT, T, S) command.

The Trace window becomes active and displays the results. You can see how
prefetching affects tracing by choosing the Display→Bus Cycle ON (ALT, -,
D, B) command from the Trace window’s control menu.

Chapter 5: Debugging Programs
Tracing Program Execution

121

To trace accesses to a specified variable

1 Double-click the global variable name in the Source window.

2 Choose the Trace→Variable Access... (ALT, T, V) command.

The command also traces access to the Assembler symbol specified by its
name and size.

Example To trace access to "message_id":

Double-click "message_id."

Choose the Trace→Variable Access... (ALT, T, V) command.

The Trace window becomes active and displays the trace results.

Chapter 5: Debugging Programs
Tracing Program Execution

122

To trace until the command is halted

1 To start the trace, choose the Trace→Until Halt (ALT, T, U)
command.

2 When you are ready to stop the trace, choose the Trace→Halt (ALT,
T, H) command.

This command is useful, for example, in tracing program execution that leads
to a processor halted state or to a break to the monitor.

To stop a running trace

• Choose the Trace→Halt (ALT, T, H) command.

The command is used to:

1 Stop the trace initiated with the Trace→Until Halt (ALT, T, U) command.
2 Force termination of the trace that cannot be completed due to absence

of the specified state.
3 Stop a trace before the trace buffer becomes full.

To repeat the last trace

• Choose the Trace→Again (ALT, T, A) command, or press the F7 key.

The Trace→Again (ALT, T, A) command traces program execution using the
last trace specification stored in the HP 64700.

Chapter 5: Debugging Programs
Tracing Program Execution

123

To display bus cycles

1 Place the cursor on the line from which you wish to display the bus
cycles.

2 From the Trace window’s control menu, choose the Display→Bus
Cycle ON (ALT, -, D, B) command.

The Display→Bus Cycle ON (ALT, -, D, B) command displays the bus cycles
associated with each of the source lines.

The display starts from the cursor-selected line.

To hide the bus cycles, choose the Display→Source Only (ALT, -, D, S)
command from the Trace window’s control menu.

Example Bus Cycles Displayed in Trace

Chapter 5: Debugging Programs
Tracing Program Execution

124

To display accumulated or relative counts

• From the Trace window’s control menu, choose the
Display→Count→Absolute (ALT, -, D, C, A) or
Display→Count→Relative (ALT, -, D, C, R) command.

Choosing the Display→Count→Relative (ALT, -, D, C, R) command selects
the relative mode where the state-to-state time intervals are displayed.

Choosing the Display→Count→Absolute (ALT, -, D, C, A) command selects
the absolute mode where the trace time is displayed as the total time elapsed
since the analyzer has been triggered.

Chapter 5: Debugging Programs
Tracing Program Execution

125

Setting Up Custom Trace Specifications

This section shows you how:

• To set up a "Trigger Store" trace specification

• To set up a "Find Then Trigger" trace specification

• To set up a "Sequence" trace specification

• To edit a trace specification

• To trace "windows" of program execution

• To store the current trace specification

• To load a stored trace specification

Note Analyzer memory is unloaded two states at a time. If you use a storage
qualifier to capture states that do not occur often, it’s possible that one of
these states has been captured and stored but cannot be displayed because
another state must be stored before the pair can be unloaded. When this
happens, you can stop the trace measurement to see all stored states.

When Do I Use the Different Types of Trace Specifications?

When you wish to trigger the analyzer on the occurrence of one state, use the
"Trigger Store" dialog box to set up the trace specification.

When you wish to trigger the analyzer on the occurrence of one state
followed by another state, or one state followed by another state but only
when that state occurs before a third state, use the "Find Then Trigger"
dialog box to set up the trace specification.

When you wish to trigger the analyzer on a sequence of more than two states,
use the "Sequence" dialog box to set up the trace specification.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

126

To set up a "Trigger Store" trace specification

1 Choose the Trace→Trigger Store... (ALT, T, T) command.

2 Specify the trigger condition using the Address, Data, and/or Status
text boxes within the Trigger group box.

3 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option in the Trigger group box.

4 Specify the store condition using the Address, Data, and/or Status
text boxes within the Store group box.

5 Choose the OK button to set up the analyzer and start the trace.

The Trace→Trigger Store... (ALT, T, T) command opens the Trigger Store
Trace dialog box:

A group of Address, Data, and Status text boxes combine to form a state

qualifier. You can specify an address range by entering a value in the End
Address box. By selecting the NOT check box, you can specify all states
other than those identified by the address, data, and status values.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

127

Example To trace execution after the "convert_case" function:

Choose the Trace→Trigger Store... (ALT, T, T) command.

Enter "convert_case" in the Address text box in the Trigger group box.

Choose the OK button.

Example To trace execution before and after the "convert_case" function and store
only states with "write" status:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

128

Example To specify the trigger condition as any address in the range 1000h through
1fffh:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

129

To set up a "Find Then Trigger" trace specification

1 Choose the Trace→Find Then Trigger... (ALT, T, D) command.

2 Specify the sequence, which is made up of the enable, trigger store,
trigger, and store conditions.

3 Specify the restart, count, and prestore conditions.

4 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

5 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

6 Choose the OK button to set up the analyzer and start the trace.

The Trace→Find Then Trigger... (ALT, T, D) command opens the Find Then
Trigger Trace dialog box:

Choosing the enable, trigger, store, count, or prestore buttons opens a
Condition dialog box that lets you select "any state," "no state," trace patterns

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

130

"a" through "h," "range," or "arm" as the condition. Patterns "a" through "h,"
"range," and "arm" are grouped into two sets, and resources within a set may
be combined using the "or" or "nor" logical operators. Resources from the two
sets may be combined using the OR or AND logical operators.

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

131

If you double-click on the range resource, the Trace Range dialog box is
opened to let you select either the Address range or the Data range option
and enter the minimum and maximum values in the range.

Example To trace execution after the "convert_case" function:

Choose the Trace→Find Then Trigger... (ALT, T, D) command.

Choose the Trigger button (default: any state).

Select "a."

Choose the OK button.

Double-click "a" in the Pattern/Range list box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

132

Enter "convert_case" in the Address text box in the Trace Pattern dialog box.

Choose the OK button in the Trace Pattern dialog box.

Choose the OK button in the Find Then Trigger Trace dialog box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

133

Example To trace about the "next_message" function when it follows the
"change_status" function and store all states after the "change_status"
function:

To set up a "Sequence" trace specification

Sequence trace specifications let you trigger the analyzer on a sequence of
several captured states.

There are eight sequence levels. When a trace is started, the first sequence
level is active. You select one of the remaining sequence levels as the level
that, when entered, will trigger the analyzer. Each level lets you specify two
conditions that, when satisfied by a captured state, will cause branches to
other levels:

if (state matches primary branch condition)
 then GOTO (level associated with primary branch)
else if (state matches secondary branch condition)
 then GOTO (level associated with secondary branch)
else
 stay at current level

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

134

Note that if a state matches both the primary and secondary branch
conditions, the primary branch is taken.

Each sequence level also has a store condition that lets you specify the states
that get stored while at that level.

1 Choose the Trace→Sequence... (ALT, T, Q) command.

2 Specify the primary branch, secondary branch, and store conditions
for each sequence level you will use.

3 Specify which sequence level to trigger on. The analyzer triggers on
the entry to the specified level. Therefore, the condition that causes
a branch to the specified level actually triggers the analyzer.

4 Specify the count and prestore conditions.

5 Specify the trigger position by selecting the trigger start, trigger
center, or trigger end option.

6 If you want emulator execution to break to the monitor when the
trigger condition occurs, select the Break On Trigger check box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

135

7 Choose the OK button to set up the analyzer and start the trace.

The Trace→Sequence... (ALT, T, Q) command calls the Sequence Trace
Setting dialog box, where you make the following trace specifications:

Choosing the primary branch, secondary branch, store, count, or prestore
buttons opens a Condition dialog box that lets you select "any state," "no
state," trace patterns "a" through "h," "range," or "arm" as the condition.
Patterns "a" through "h," "range," and "arm" are grouped into two sets, and
resources within a set may be combined using the "or" or "nor" logical
operators. Resources in the two sets may be combined using the OR or AND
logical operators.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

136

The range and pattern resources are defined by double-clicking on the
resource name in the Pattern/Range list box.

If you double-click on a pattern name, the Trace Pattern dialog box is opened
to let you specify address, data, and status values. By selecting the NOT
check box, you can specify all states other than those identified by the
address, data, and status values. The Direct check box lets you specify
status values other than those that have been predefined.

If you double-click on the range resource, the Trace Range dialog box is
opened to let you select either the Address range option or the Data range
option and enter the minimum and maximum values in the range.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

137

Example To specify address "convert_case" as the trigger condition:

Example To specify execution of "convert_case" and "next_message" as the trigger
sequence:

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

138

To edit a trace specification

1 Choose the Trace→Edit... (ALT, T, E) command.

2 Using the Sequence Trace dialog box, edit the trace specification as
desired.

3 Choose the OK button.

You can use this command to edit trace specifications, including trace
specifications that are automatically set up. For example, you can use this
command to edit the trace specification that is set up when the
Trace→Function Caller... (ALT, T, C) command is chosen.

To trace "windows" of program execution

1 Because pairs of sequence levels are used to capture window enable
and disable states both before and after the trigger, choose the
Trace→Sequence... (ALT, T, Q) command.

2 Set up the sequence levels, patterns, and other trace options (as
described below) in the Sequence Trace dialog box.

3 Choose the OK button.

When you trace "windows" of program execution, you store states that occur
between one state and another state. Storing states that occur between two
states is different from the trace specification set up by the
Trace→Statement... (ALT, T, S) command which stores states in a function’s
range of addresses.

In a typical windowing trace specification, sequence levels are paired. The
first sequence level searches for the window enable state, and no states are
stored while searching. When the window enable state is found, the second

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

139

sequence level stores the states you’re interested in while searching for the
window disable state.

If you want to store the window of code execution before and after the
trigger condition, use two sets of paired sequence levels: one window
enable/disable pair of sequence levels before the trigger, and another
disable/enable pair after the trigger as shown below.

Notice that the order of the second sequence level pair is swapped. If you
find the trigger condition while searching for the window disable state, you
want the analyzer to branch to a sequence level that continues to search for
the disable state.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

140

Example To trace the window of code execution between lines 46 and 51 of the sample
program, triggering on any state in the window:

Notice that the analyzer triggers on the entry to sequence level 3. The
primary branch condition in level 2 actually specifies the trigger condition.

To store the current trace specification

1 Choose the Trace→Edit... (ALT, T, E) command.

2 Choose the Save... button.

3 Specify the name of the trace specification file.

4 Choose the OK button.

You can also store trace specifications from the Trigger Store Trace, Find
Then Trigger Trace, or Sequence Trace dialog boxes.

The extension for trace specification files defaults to ".TRC".

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

141

To load a stored trace specification

1 Choose the Trace→Trigger Store... (ALT, T, T), Trace→Find Then
Trigger... (ALT, T, D), Trace→Sequence... (ALT, T, Q), or
Trace→Edit... (ALT, T, E) command.

2 Choose the Load... button.

3 Select the desired trace specification file.

4 Choose the OK button.

A "Trigger Store" trace specification file can be loaded into any of the trace
setting dialog boxes. A "Find Then Trigger" trace specification file can be
loaded into either the Find Then Trigger Trace or Sequence Trace dialog
boxes. A "Sequence" trace specification file can only be loaded into the
Sequence Trace dialog box.

Chapter 5: Debugging Programs
Setting Up Custom Trace Specifications

142

Part 3

Reference

Descriptions of the product in a dictionary or encyclopedia format.

143

Part 3

144

6

Command File and Macro Command
Summary

145

Command File and Macro Command Summary

This section lists the Real-Time C Debugger break macro and command file
commands, providing syntax and brief description for each of the listed
commands. For details on each command, refer to the command
descriptions.

The characters in parentheses can be ignored for shortcut entry.

Run Control Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

BRE(AK) Breaking execution
COM(E) address Run to cursor-indicated line
OVE(R) Stepping over
OVE(R) count Repeated a number of times
OVE(R) count address From specified address
OVE(R) count STA(RT) From transfer address
RES(ET) Resetting processor
RET(URN) Until return
RUN From current address
RUN address From specified address
RUN STA(RT) From transfer address
RUN RES(ET) From reset
STE(P) Stepping
STE(P) count Repeated a number of times
STE(P) count address From specified address
STE(P) count STA(RT) From transfer address

Variable and Memory Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

VARI(ABLE) variable TO data Changing value of variable
MEM(ORY) FIL(L) size addr-range value Filling memory contents
MEM(ORY) COP(Y) size addr-range address Copying memory contents
MEM(ORY) IMA(GE) size addr-range Copying target memory
MEM(ORY) LOA(D) MOT(OSREC) file_name Loading memory from a
Motorola S-record file
MEM(ORY) LOA(D) INT(ELHEX) file_name Loading memory from an
Intel Hexadecimal file
MEM(ORY) STO(RE) MOT(OSREC) addr-range file_name Storing memory to a
Mororola S-record file
MEM(ORY) STO(RE) INT(ELHEX) addr-range file_name Storing memory to an Intel
Hexadecimal file
MEM(ORY) BYT(E) Byte format display
MEM(ORY) WOR(D) 16-Bit format display
MEM(ORY) ABS(OLUTE) Single-column display
MEM(ORY) BLO(CK) Multi-column display
MEM(ORY) LON(G) 32-Bit format display
IO BYTE/WORD IOSPACE/MEMORY address TO data Editing specified I/O
address
IO SET BYTE/WORD IOSPACE/MEMORY address Registering I/O display
IO DEL(ETE) BYTE/WORD IOSPACE/MEMORY address Deleting I/O address
WP SET address Registering watchpoint

146

WP DEL(ETE) address Deleting watchpoint
WP DEL(ETE) ALL Deleting all watchpoints

Breakpoint Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

BM SET address command Setting break macro
BM SET breakaddress command Setting break macro
BM SET EXE(C) breakaddress command Setting execution break
macro
BM SET ACC(ESS) BYT(E) breakaddress command Setting byte-access break
macro
BM SET ACC(ESS) WOR(D) breakaddress command Setting word-access break
macro
BM SET ACC(ESS) DWO(RD) breakaddress command Setting doubleword-access
break macro
BM SET WRI(TE) BYT(E) breakaddress command Setting byte-write break
macro
BM SET WRI(TE) WOR(D) breakaddress command Setting word-write break
macro
BM SET WRI(TE) DWO(RD) breakaddress command Setting doubleword-write
break macro
BM DEL(ETE) address Deleting break macro
BP SET address Setting breakpoint
BP SET EXE(C) address Setting execution breakpoint
BP SET ACC(ESS) BYT(E) address Setting byte-access
breakpoint
BP SET ACC(ESS) WOR(D) address Setting word-access
breakpoint
BP SET ACC(ESS) DWO(RD) address Setting doubleword-access
breakpoint
BP SET WRI(TE) BYT(E) address Setting byte-write
breakpoint
BP SET WRI(TE) WOR(D) address Setting word-write
breakpoint
BP SET WRI(TE) DWO(RD) address Setting doubleword-write
breakpoint
BP DEL(ETE) address Deleting breakpoint
BP DEL(ETE) ALL Deleting breakpoint
BP DISABLE address Disabling a breakpoint
BP ENABLE address Enabling a breakpoint
EVA(LUATE) address Expression window display
EVA(LUATE) "strings" Printing string
EVA(LUATE) CLE(AR) Clearing Expression window

Window Open/Close Command

Command Param_1 Param_2 Param_3 Param_4 Operation

DIS(PLAY) window-name Opening the named window
ICO(NIC) window-name Closing the named window

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

147

Configuration Command

Command Param_1 Param_2 Param_3 Param_4 Operation

MON(ITOR) TYPE FOREGROUND Selects foreground monitor
MON(ITOR) TYPE BACKGROUND Selects background monitor
MON(ITOR) SELECTOR selector Specifies monitor’s selector
MON(ITOR) TRDY ENA(BLE) Interlock with target RDY
MON(ITOR) TRDY DISABLE Ignore target system RDY
MON(ITOR) FIL(ENAME) NONE Use built-in foreground
monitor
MON(ITOR) FIL(ENAME) file_name Use named monitor object
file
CON(FIG) STA(RT) Starting configuration
CON(FIG) config-item config-ans Executing configuration
CON(FIG) END Ending configuration
MAP STA(RT) Starting mapping
MAP addr-range mem_type attributes Executing mapping
MAP OTHER mem_type Mapping OTHER area
MAP END Ending mapping
ADDRTRAN STA(RT) Starting address translation
ADDRTRAN config-item config-ans Executing address
translation
ADDRTRAN END Ending address translation
MOD(E) MNE(MONIC) ON Enabling Mnemonic display
MOD(E) MNE(MONIC) OFF Enabling Source display
MOD(E) REA(LTIME) ON Enabling real-time mode
MOD(E) REA(LTIME) OFF Disabling real-time mode
MOD(E) IOG(UARD) ON Enabling I/O guard
MOD(E) IOG(UARD) OFF Disabling I/O guard
MOD(E) DOW(NLOAD) NOE(RRABORT) Load file or memory; ignore
errors
MOD(E) DOW(NLOAD) ERR(ABORT) Load file or memory; abort
if error
MOD(E) MEM(ORYPOLL) ON Enabling Memory polling
MOD(E) MEM(ORYPOLL) OFF Disabling Memory polling
MOD(E) WAT(CHPOLL) ON Enabling WatchPoint polling
MOD(E) WAT(CHPOLL) OFF Disabling WatchPoint polling
MOD(E) LOG ON Enabling log file output
MOD(E) LOG OFF Disabling log file output
MOD(E) BNC INP(UT_ARM) Setting BNC input
MOD(E) BNC OUT(PUT_TRIGGER) Setting BNC output
MOD(E) SYM(BOLCASE) ON Case sensitive symbol search
MOD(E) SYM(BOLCASE) OFF Case insensitive sym. search
MOD(E) TRACECLOCK BACKGROUND Trace background cycles
MOD(E) TRACECLOCK BOTH Trace all processor cycles
MOD(E) TRACECLOCK USER Trace user program cycles
MOD(E) TRACE DISPLAY FROM <state> Trace disassembly begin
from <state>
MOD(E) TRACE DISPLAY BYTE0/1/2/3 Trace disassembly begin
from BYTE<no.>
MOD(E) TRACE DISPLAY USE16/USE32 Trace disassembly from
16-bit/32-bit segment type
MOD(E) SOU(RCE) ASK(PATH) Prompt for source paths
MOD(E) SOU(RCE) NOA(SKPATH) Don’t prompt for source
paths

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

148

File Command

Command Param_1 Param_2 Param_3 Param_4 Operation

FIL(E) SOU(RCE) module_name Displaying source file
FIL(E) OBJ(ECT) file_name Loading object
FIL(E) SYM(BOL) file_name Loading symbol
FIL(E) BIN(ARY) file_name Loading data
FIL(E) APPEND file_name Appending symbol
FIL(E) CHA(INCMD) file_name Chaining command files
FIL(E) COM(MAND) file_name args Executing command file
FIL(E) LOG file_name Specifying command log file
FIL(E) RER(UN) Re-executes command file
FIL(E) CON(FIG) LOA(D) file_name Loads config. from file
FIL(E) CON(FIG) STO(RE) file_name Stores configuration to file
FIL(E) ENV(IRON) LOA(D) file_name Loads environment from file
FIL(E) ENV(IRON) SAV(E) file_name Stores environment to file

Trace Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

TRA(CE) FUN(CTION) CAL(L) address Tracing function call
TRA(CE) FUN(CTION) STA(TEMENT) address Tracing statement
TRA(CE) VAR(IABLE) ACC(ESS) address Tracing access to variable
TRA(CE) STO(P) Stopping tracing
TRA(CE) ALW(AYS) Tracing until halt
TRA(CE) AGA(IN) Restarting tracing
TRA(CE) SAV(E) file_name Storing trace specification
TRA(CE) LOA(D) file_name Loading trace specification
TRA(CE) CUS(TOMIZE) Starts trace w/loaded spec.
TRA(CE) DIS(PLAY) SOU(RCE) Enabling source display
TRA(CE) DIS(PLAY) BUS Enabling bus display
TRA(CE) DIS(PLAY) ABS(OLUTE) Displaying absolute time
TRA(CE) DIS(PLAY) REL(ATIVE) Displaying relative time
TRA(CE) COP(Y) DISPLAY Copying trace display
TRA(CE) COP(Y) ALL Copying trace results
TRA(CE) FIN(D) TRI(GGER) Centers trigger in window
TRA(CE) FIN(D) STA(TE) state_num Centers state in window
TRA(CE) COP(Y) SPE(C) Copying specification

Symbol Window Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

SYM(BOL) LIS(T) MOD(ULE) Displaying module
SYM(BOL) LIS(T) FUN(CTION) Displaying function
SYM(BOL) LIS(T) EXT(ERNAL) Displaying global symbol
SYM(BOL) LIS(T) INT(ERNAL) func_name Displaying local symbol
SYM(BOL) LIS(T) GLO(BALS) Displaying global asm symbol
SYM(BOL) LIS(T) LOC(AL) module Displaying local asm symbol
SYM(BOL) LIS(T) USE(R) Displaying user-defined
symbol
SYM(BOL) ADD symbol_nam address Adding user-defined symbol
SYM(BOL) DEL(ETE) symbol_nam Deleting user-defined symbol
SYM(BOL) DEL(ETE) ALL Deleting all user symbols
SYM(BOL) MAT(CH) "strings" Displaying matched string
SYM(BOL) COP(Y) DIS(PLAY) Copying symbol display
SYM(BOL) COP(Y) ALL Copying all symbols

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

149

Command File Control Command

Command Param_1 Param_2 Param_3 Param_4 Operation

EXIT Exiting command file
EXIT VAR(IABLE) address value Exiting with variable cont.
EXIT REG(ISTER) regname value Exiting with register cont.
EXIT MEM(ORY) BYTE/WORD/LONG address value Exiting with memory contents
EXIT IO BYTE/WORD address value Exiting with I/O contents
WAIT MON(ITOR) Wait until MONITOR status
WAIT RUN Wait until RUN status
WAIT UNK(NOWN) Wait until UNKNOWN status
WAIT SLO(W) Wait until SLOW CLOCK status
WAIT TGT(RESET) Wait until TARGET RESET
WAIT SLE(EP) Wait until SLEEP status
WAIT GRA(NT) Wait until BUS GRANT status
WAIT NOB(US) Wait until NOBUS status
WAIT TCO(M) Wait until end of trace
WAIT THA(LT) Wait until halt
WAIT TIM(E) seconds Wait a number of seconds

Global/Local Descriptor Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

GDT SELECTOR value Obtain value of GDT selector
LDT SELECTOR value Obtain value of LDT selector
GDT ENTRY value Obtain value of GDT entry
GDT ENTRY value Obtain value of LDT entry

Miscellaneous Commands

Command Param_1 Param_2 Param_3 Param_4 Operation

ASM address label "inst_string" In-line assembler
BEE(P) Sounding beep
BUTTON label "command" Adds button to Button window
QUI(T) Exiting debugger
QUI(T) LOC(KED) Exiting debugger while
retaining control
COP(Y) TO file_name Specifying copy destination
COP(Y) SOU(RCE) Copying Source window
COP(Y) REG(ISTER) Copying Register window
COP(Y) MEM(ORY) Copying Memory window
COP(Y) WAT(CHPOINT) Copying WatchPoint window
COP(Y) BAC(KTRACE) Copying BackTrace window
COP(Y) IO Copying I/O window
COP(Y) EXP(RESSION) Copying Expression window
COP(Y) BUT(TON) Copying Button window
CUR(SOR) address Positioning cursor
NOP Non-operative
NOP comments Non-operative to prefix
comment lines
SEA(RCH) STR(ING) FOR/BACK ON/OFF strings Searching string
SEA(RCH) FUN(CTION) func_name Selecting function
SEA(RCH) MEM(ORY) BYTE/WORD/LONG addr-range value Searching memory
SEA(RCH) MEM(ORY) STR(ING) "strings" Searching memory for string
TER(MCOM) ti-command Terminal Interface command

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

150

Parameters

Parameter Description Notation

address Address See "Reference."
addr-range Address range
args Arguments Replaces placeholders in command file.
attributes Can be comma-separated
 dp=dual-port mem;trdy=target RDY
breakaddress linenumber, See descriptions in this list.
 plinenum, or
 address.
case Case sensing
command Macro command Commands listed in the "Reference."
config-ans Setting See "Reference."
config-item Configuration See "Reference."
count Count Decimal notation
direction Search direction
directoryname Directory name
file_name File name
format Memory file format
func_name Function name
label Button label
linenumber Line number
mem_type Memory type
module_name Module name
mon-ans Setting See "Reference."
mon-item Configuration See "Reference."
plinenum Macro line number line number.macro number (ex. 34.1)
regname Register name
seconds Time in seconds
size Data size
space Memory or I/O space
strings String "string"
symbol_nam Symbol name
usersymbol User-defined symbol See "Reference."
value Value See "Reference."
window-name Name of window See "Reference."

Chapter 6: Command File and Macro Command Summary
Command File and Macro Command Summary

151

WAIT Command Dialog Box

This dialog box appears when the WAIT command is included in a command
file, break macro, or button.

Choosing the STOP button cancels the WAIT command.

152

7

Expressions in Commands

153

Expressions in Commands

When you enter values and addresses in commands, you can use:

• Numeric constants (hexadecimal, decimal, octal, or binary values). You
can only use Numeric constants when using the constant-address syntax.

• Symbols (identifiers).

• C operators (pointers, arrays, structures, unions, unary minus operators)
and parentheses (specifying the order of operator evaluation).

154

Numeric Constants

All numeric constants are assumed to be hexadecimal, except when the
number refers to a count; count values are assumed to be decimal.

The debugger expressions support the following numeric constants with or
without radix:

Hexadecimal Alphanumeric strings starting with "0x" or "0X" and
consisting of any of ’0’ through ’9’, ’A’ through ’F’, or ’a’
through ’f’ (for example: 0x12345678, 0xFFFF0000).

Alphanumeric strings starting with any of ’0’ through ’9’,
ending with ’H’ or ’h’, and consisting of any of ’0’ through
’9’, ’A’ through ’F’, or ’a’ through ’f’ (for example:
12345678H, 0FFFF0000h).

Alphanumeric strings starting with any of ’0’ through ’9’
and consisting of any of ’0’ through ’9’, ’A’ through ’F’, or ’a’
through ’f’ (for example: 12345678, 0FFFF0000).

Decimal Numeric strings consisting of any of ’0’ through ’9’ and
ending with ’T’ or ’t’ (for example: 128T, 1000t).

Octal Numeric strings consisting of any of ’0’ through ’7’ and
ending with ’O’ or ’o’ (not zero) (for example: 200o, 377O).

Binary Numeric strings consisting of ’0’ or ’1’ and ending with ’Y’ or
’y’ (for example: 10000000y, 11001011Y).

Chapter 7: Expressions in Commands

155

Symbols

The debugger expressions support the following symbols (identifiers):

• Symbols defined in C source code.

• Symbols defined in assembly language source code.

• Symbols added with the Symbol window control menu’s User
defined→Add... (ALT, -, U, A) command.

• Line number symbols.

Symbol expressions may be in the following format (where bracketed parts
are optional):

[module_name\\]symbol_name[,format_spec]

Module Name

The module names include C/Assembler module names as follows:

Assembler
module name

(file_path)asm_file_name

C module name source_file_name
(without extension)

Symbol Name

The symbol names include symbols defined in C/Assembler source codes,
user-defined symbols, and line number symbols:

User-defined
symbols

Strings consisting of up to 256 characters including:
alphanumeric characters, _ (underscore), and ? (question
mark).

Line number
symbols

#source_file_line_number

The symbol names can also include either * or & to explicitly specify the
evaluation of the symbol.

Chapter 7: Expressions in Commands

156

Symbol address &symbol_name

Symbol data *symbol_name

Format Specification

The format specifications define the variable display format or size for the
variable access or break tracing:

String s

Decimal d (current size), d8 (8 bit), d16 (16 bit), d32 (32 bit)

Unsigned
decimal

u (current size), u8 (8 bit), u16 (16 bit), u32 (32 bit)

Hexadecimal x (current size), x8 (8 bit), x16 (16 bit), x32 (32 bit)

Examples Some example symbol expressions are shown below:

sample\\#22,x32

Display the address of line number 22 in the module "sample," formatted as a
32-bit hex number. This form (with the format specification) is used in the
watchpoint window, expression window, etc.

sample\\#22

Refer to the address of line number 22 in the module "sample." This form
(without the format specification) is used in the trace specification, memory
display window, etc.

data[2].message,s

Display the structure element "message" in the third element of the array
"data" as a string.

dat →message,s

Chapter 7: Expressions in Commands

157

Display the structure element "message" pointed to by the "dat" pointer as a
string.

dat →message,x32

Display the structure element "message" pointed to by the "dat" pointer as a
32-bit hex number.

sample\\data[1].status,d32

Display the structure element "status" in the second element of the array
"data" that is in the module "sample" as a 32-bit decimal integer.

&data[0]

Refer to the address of the first element of the array "data."

*1000

Does not do anything. (It displays dashes, as an indication of a parsing
error.) Note that you cannot use constants as an address.

Chapter 7: Expressions in Commands

158

C Operators

The debugger expressions support the following C operators. The order of
operator evaluation can be modified using parentheses ’(’ and ’)’; however, it
basically follows C conventions:

Pointers ’*’ and ’&’

Arrays ’[’ and ’]’

Structures or
unions

’.’ and "→"

Unary minus ’-’

Chapter 7: Expressions in Commands

159

160

8

Menu Bar Commands

161

Menu Bar Commands

This chapter describes the commands that can be chosen from the menu bar.
Command descriptions are in the order they appear in the menu bar (top to
bottom, left to right).

• File→Load Object... (ALT, F, L)

• File→Command Log→Log File Name... (ALT, F, C, N)

• File→Command Log→Logging ON (ALT, F, C, O)

• File→Command Log→Logging OFF (ALT, F, C, F)

• File→Run Cmd File... (ALT, F, R)

• File→Load Debug... (ALT, F, D)

• File→Save Debug... (ALT, F, S)

• File→Load Emulator Config... (ALT, F, E)

• File→Save Emulator Config... (ALT, F, V)

• File→Copy Destination... (ALT, F, P)

• File→Exit (ALT, F, X)

• File→Exit HW Locked (ALT, F, H)

• Execution→Run (ALT, E, U)

• Execution→Run to Cursor (ALT, R C)

• Execution→Run to Caller (ALT, E, T)

• Execution→Run... (ALT, E, R)

• Execution→Single Step (ALT, E, N)

• Execution→Step Over (ALT, E, O)

• Execution→Step... (ALT, E, S)

• Execution→Break (ALT, E, B)

162

• Execution→Reset (ALT, E, E)

• Breakpoint→Set at Cursor (ALT, B, S)

• Breakpoint→Delete at Cursor (ALT, B, D)

• Breakpoint→Set Macro... (ALT, B, M)

• Breakpoint→Delete Macro (ALT, B, L)

• Breakpoint→Edit... (ALT, B, E)

• Variable→Edit... (ALT, V, E)

• Trace→Function Caller... (ALT, T, C)

• Trace→Function Statement... (ALT, T, S)

• Trace→Variable Access... (ALT, T, V)

• Trace→Edit... (ALT, T, E)

• Trace→Trigger Store... (ALT, T, T)

• Trace→Find Then Trigger... (ALT, T, D)

• Trace→Sequence... (ALT, T, Q)

• Trace→Until Halt (ALT, T, U)

• Trace→Halt (ALT, T, H)

• Trace→Again (ALT, T, A)

• RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D)

• RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

• RealTime→I/O Polling→ON (ALT, R, I, O)

• RealTime→I/O Polling→OFF (ALT, R, I, F)

• RealTime→Watchpoint Polling→ON (ALT, R, W, O)

• RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

• RealTime→Memory Polling→ON (ALT, R, M, O)

Chapter 8: Menu Bar Commands

163

• RealTime→Memory Polling→OFF (ALT, R, M, F)

• Assemble... (ALT, A)

• Settings→Emulator Config→Hardware... (ALT, S, E, H)

• Settings→Emulator Config→Memory Map... (ALT, S, E, M)

• Settings→Emulator Config→Monitor... (ALT, S, E, O)

• Settings→Emulator Config→Address Translation... (ALT, S, E, A)

• Settings→Communication... (ALT, S, C)

• Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)

• Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

• Settings→Font... (ALT, S, F)

• Settings→Tabstops... (ALT, S, T)

• Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

• Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F)

• Settings→Extended Settings→Trace Cycles→User (ALT, S, X, T, U)

• Settings→Extended Settings→Trace Cycles→Monitor (ALT, S, X, T, M)

• Settings→Extended Settings→Trace Cycles→Both (ALT, S, X, T, B)

• Settings→Extended Settings→Load Error Abort→ON (ALT, S, X, L, O)

• Settings→Extended Settings→Load Error Abort→OFF (ALT, S, X, L, F)

• Settings→Extended Settings→Source Path Query→ON (ALT, S, X, S, O)

• Settings→Extended Settings→Source Path Query→OFF (ALT, S, X, S,
F)

• Window→Cascade (ALT, W, C)

• Window→Tile (ALT, W, T)

• Window→Arrange Icons (ALT, W, A)

Chapter 8: Menu Bar Commands

164

• Window→1-9 <win_name> (ALT, W, 1-9)

• Window→More Windows... (ALT, W, M)

• Help→About Debugger/Emulator... (ALT, H, D)

Chapter 8: Menu Bar Commands

165

File→Load Object... (ALT, F, L)

Loads the specified object file and symbolic information into the debugger.

Program code is loaded into emulation memory or target system RAM.

Object files are typically Intel OMF386 boot-loadable format absolute files.

You can also load Motorola S-Record and Intel Hexadecimal format files;
however, no symbolic information from these files will be loaded.

Load Object File Dialog Box

Choosing the File→Load Object... (ALT, F, L) command opens the following
dialog box:

Current Shows the currently loaded object file.

File Name Specifies the object file to be loaded.

Bytes Loaded Displays the loaded data in Kbytes.

Symbols Only Loads only the symbolic information. This is used when
programs are already in memory (for example, when the
debugger is exited and re-entered without turning OFF
power to the target system or when code is in target
system ROM).

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

166

Data Only Loads program code but not symbols.

Symbols
Append

Appends the symbols from the specified object file to the
currently loaded symbols. This lets you debug code loaded
from multiple object files.

Load Starts loading the specified object file and closes the dialog
box if the load was successful. The dialog box is left open
on screen if the load was not successful.

Cancel Closes the dialog box without loading the object file.

Browse... Opens a file selection dialog box from which you can select
the object file to be loaded.

Command File Command

FIL(E) OBJ(ECT) file_name
Loads the specified object file and symbols into the
debugger.

FIL(E) SYM(BOL) file_name
Loads only the symbolic information from the specified
object file.

FIL(E) BIN(ARY) file_name
Loads only the program code from the specified object
file.

FIL(E) APP(END) file_name
Appends the symbol information from the specified
object file to the currently loaded symbol information.

See Also

"To load user programs" in the "Loading and Displaying Programs" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
File→Load Object... (ALT, F, L)

167

File→Command Log→Log File Name... (ALT, F, C, N)

Lets you name a new command log file.

The current command log file is closed and the specified command log file is
opened. The default command log file name is "log.cmd".

Command log files can be executed with the File→Run Cmd File... (ALT, F,
R) command.

The File→Command Log→Logging OFF (ALT, F, C, F) command stops the
logging of executed commands.

This command opens a file selection dialog box from which you can select the
command log file. Command log files have a ".CMD" extension.

Command File Command

FIL(E) LOG filename

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Log File Name... (ALT, F, C, N)

168

File→Command Log→Logging ON (ALT, F, C, O)

Starts command log file output.

The File→Command Log→Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command

MOD(E) LOG ON

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Logging ON (ALT, F, C, O)

169

File→Command Log→Logging OFF (ALT, F, C, F)

Stops command log file output.

The File→Command Log→Log File Name... (ALT, F, C, N) command
specifies the destination file.

Command File Command

MOD(E) LOG OFF

See Also

"To create a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Command Log→Logging OFF (ALT, F, C, F)

170

File→Run Cmd File... (ALT, F, R)

Executes the specified command file.

Command files can be:

• Files created with the File→Command Log→Log File Name... (ALT, F, C,
N) command.

• Configuration files having .CMD extension.

Command files are stored as ASCII text files so they can be created or edited
with ASCII text editors.

Command File Execution Dialog Box

Choosing the File→Run Cmd File... (ALT, F, R) command opens the
following dialog box:

File Name Lets you enter the name of the command file to be
executed.

Chapter 8: Menu Bar Commands
File→Run Cmd File... (ALT, F, R)

171

Directory Shows the current directory and the command files in that
directory. You can select the command file name from this
list.

Parameters Lets you specify up to five parameters that replace
placeholders $1 through $5 in the command file.
Parameters must be separated by blank spaces.

Executing Shows the command being executed.

Execute Executes the command file.

Stop Stops command file execution.

Close Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
the command file name.

Command File Command

FIL(E) COM(MAND) filename args

See Also

"To execute a command file" in the "Using Command Files" section of the
"Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Run Cmd File... (ALT, F, R)

172

File→Load Debug... (ALT, F, D)

Loads a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

Debug environment files have the extension ".ENV".

Debug environment files contain information about:

• Breakpoints.

• Variables in the WatchPoint window.

• The directory that contains the currently loaded object file.

Command File Command

FIL(E) ENV(IRONMENT) LOA(D) filename

Chapter 8: Menu Bar Commands
File→Load Debug... (ALT, F, D)

173

File→Save Debug... (ALT, F, S)

Saves a debug environment file.

This command opens a file selection dialog box from which you select the
debug environment file.

The following information is saved in the debug environment file:

• Breakpoints.

• Variables in the WatchPoint window.

• The directory that contains the currently loaded object file.

Command File Command

FIL(E) ENV(IRONMENT) SAV(E) filename

Chapter 8: Menu Bar Commands
File→Save Debug... (ALT, F, S)

174

File→Load Emulator Config... (ALT, F, E)

Loads a hardware configuration command file.

This command opens a file selection dialog box from which you select the
hardware configuration file.

Emulator configuration command files contain:

• Hardware configuration settings.

• Memory map configuration settings.

• Monitor configuration settings.

Command File Command

FIL(E) CON(FIGURATION) LOA(D) filename

See Also

"To load an emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
File→Load Emulator Config... (ALT, F, E)

175

File→Save Emulator Config... (ALT, F, V)

Saves the current hardware configuration to a command file.

The following information is saved in the emulator configuration file:

• Hardware configuration settings.

• Memory map configuration settings.

• Monitor configuration settings.

Command File Command

FIL(E) CON(FIGURATION) STO(RE) filename

See Also

"To save the current emulator configuration" in the "Saving and Loading
Configurations" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
File→Save Emulator Config... (ALT, F, V)

176

File→Copy Destination... (ALT, F, P)

Names the listing file to which debugger information may be copied.

The contents of most of the debugger windows can be copied to the
destination listing file by choosing the Copy→Window command from the
window’s control menu.

The Symbol and Trace windows’ control menus provide the Copy→All
command for copying all of the symbolic or trace information to the
destination listing file.

This command opens a file selection dialog box from which you select the
name of the output list file. Output list files have the extension ".LST".

Command File Command

COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
File→Copy Destination... (ALT, F, P)

177

File→Exit (ALT, F, X)

Exits the debugger.

Command File Command

QUI(T)

See Also

"To exit the debugger" in the "Starting and Exiting the Debugger" section of
the "Using the Debugger Interface" chapter.

File→Exit HW Locked (ALT, F, H)

Chapter 8: Menu Bar Commands
File→Exit (ALT, F, X)

178

File→Exit HW Locked (ALT, F, H)

Exits the debugger and locks the emulator hardware.

When the emulator hardware is locked, your user name and ID are saved in
the HP 64700 and other users are prevented from accessing it.

You can restart the debugger and resume your debug session after reloading
the symbolic information with the File→Load Object... (ALT, F, L) command.

Command File Command

QUI(T) LOC(KED)

See Also

Settings→Communication... (ALT, S, C)

Chapter 8: Menu Bar Commands
File→Exit HW Locked (ALT, F, H)

179

File Selection Dialog Boxes

File selection dialog boxes are used with several of the debugger commands.
An example of a file selection dialog box is shown below.

File Name You can select the name of the file from the list box and
edit it in the text box.

List Files
of Type

Lets you choose the filter for files shown in the File Name
list box.

Directories You can select the directory from the list box. The
selected directory is shown above the list box.

Drives Lets you select the drive name whose directories are
shown in the Directories list box.

OK Selects the named file and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Help If this button is available, it opens a help window for
viewing the associated help information.

Chapter 8: Menu Bar Commands
File Selection Dialog Boxes

180

Execution→Run (F5), (ALT, E, U)

Runs the program from the current program counter address.

Command File Command

RUN

Chapter 8: Menu Bar Commands
Execution→Run (F5), (ALT, E, U)

181

Execution→Run to Cursor (ALT, E, C)

Runs from the current program counter address up to the Source window
line that contains the cursor.

This command sets a breakpoint at the cursor-selected source line and runs
from the current program counter address; therefore, it cannot be used when
programs are in target system ROM if you already have four hardware
breakpoints.

If the cursor-selected source line is not reached within the number of
milliseconds specified by StepTimerLen in the B3637.INI file, a dialog box
appears from which you can cancel the command. When the Stop button is
chosen, program execution stops, the breakpoint is deleted, and the
processor continues RUNNING IN USER PROGRAM.

Command File Command

COM(E) address

See Also

"To run the program until the specified line" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run to Cursor (ALT, E, C)

182

Execution→Run to Caller (ALT, E, T)

Executes the user program until the current function returns to its caller.

Because this command determines the address at which to stop execution
based on stack frame data and object file function information, the following
restrictions are imposed:

• A function cannot properly return immediately after its entry point
because the stack frame for the function has not yet been generated.
Use the Step command to single-step the function before using this
command.

• An assembly language routine cannot properly return, even it follows C
function call conventions, because there is no function information in the
object file.

• An interrupt function cannot properly return because it uses a stack in a
different fashion from standard functions.

Command File Command

RET(URN)

See Also

"To run the program until the current function return" in the "Stepping,
Running, and Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run to Caller (ALT, E, T)

183

Execution→Run... (ALT, E, R)

Executes the user program starting from the specified address.

This command sets the processor status to RUNNING IN USER PROGRAM.

Note If you try to run from an address whose symbol is START, STA, RESET, or
RES (or any upper- or lower-case variation), the debugger instead runs from
the start address or reset address, respectively, because these are the
keywords used with the RUN command. To fix this problem, use START+0,
STA+0, RESET+0, or RES+0 to force the symbol to be evaluated as an
address.

Run Dialog Box

Choosing the Execution→Run... (ALT, E, R) command opens the following
dialog box:

Current PC Specifies that the program run from the current program
counter address.

Start Address Specifies that the program run from the transfer address

defined in the object file.

Chapter 8: Menu Bar Commands
Execution→Run... (ALT, E, R)

184

User Reset The emulator resets the processor (driving the "flying lead"
low); then releases reset, causing the processor to begin
executing at the reset address (0fffffff0).

Address Lets you enter the address from which to run.

Run Initiates program execution from the specified address,
then close the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

RUN
Executes the user program from the current program
counter address.

RUN STA(RT)
Executes the user program from the transfer address
defined in the object file.

RUN RES(ET)
Drives the target reset line and begins executing from
the contents of exception vector 0.

RUN address
Executes the user program from the specified address.

See Also

"To run the program from a specified address" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Run... (ALT, E, R)

185

Execution→Single Step (F2), (ALT, E, N)

Executes a single instruction or source line at the current program counter
address.

A single source line is executed when in the source only display mode, unless
no source is available or an assembly language program is loaded; in these
cases, a single assembly language instruction is executed.

When in the mnemonic mixed display mode, a single assembly language
instruction is executed.

During a single-step command, multiple instructions can be executed if the
instruction being stepped causes an instruction fault or task switch.

Command File Command

STE(P)

See Also

"To step a single line or instruction" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

Execution→Step Over (ALT, E, O)
Execution→Step... (ALT, E, S)

"Unexpected Stepping Behavior" in the "Concepts" chapter.

Chapter 8: Menu Bar Commands
Execution→Single Step (F2), (ALT, E, N)

186

Execution→Step Over (F3), (ALT, E, O)

Executes a single instruction or source line at the current program counter
except when the instruction or source line makes a subroutine or function
call, in which case the entire subroutine or function is executed.

This command is the same as the Execution→Single Step (ALT, E, N)
command except when the source line contains a function call or the
assembly instruction makes a subroutine call. In these cases, the entire
function or subroutine is executed.

Note The Execution→Step Over (ALT, E, O) command may fail in single-stepping
the source lines containing such loop statements as "while", "for", or
"do while" statements.

Command File Command

OVE(R)

See Also

"To step over a function" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Step Over (F3), (ALT, E, O)

187

Execution→Step... (ALT, E, S)

Single-steps the specified number of instructions or source lines, starting
from the specified address.

Single source lines are executed when in the source only display mode,
unless no source is available or an assembly language program is loaded; in
these cases, single assembly language instructions are executed.

When in the mnemonic mixed display mode, single assembly language
instructions are executed.

Note If you try to step from an address whose symbol is START or STA (or any
upper- or lower-case variation), the debugger instead steps from the start
address because these are the keywords used with the STEP and OVER
commands. To fix this problem, use START+0 or STA+0 to force the symbol
to be evaluated as an address.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

188

Step Dialog Box

Choosing the Execution→Step... (ALT, E, S) command opens the following
dialog box:

Current PC Specifies that stepping start from the current program
counter address.

Start Address Specifies that stepping start from the start address or
transfer address.

Address Lets you enter the address from which to single-step.

Count Indicates the step count. The count decrements by one for
every step and stops at 1.

Over If the source line to be executed contains a function call or
the assembly language instruction to be executed contains
a subroutine call, this option specifies that the entire
function or subroutine be executed.

Step Single-steps the specified number of instructions or source
lines, starting from the specified address.

Close Closes the dialog box.

Stop Stops single-stepping.

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

189

Command File Command

STE(P) count
Single-steps the specified number of instructions or
source lines, starting from the current program counter
address.

STE(P) count address
Single-steps the specified number of instructions or
source lines, starting from the specified address.

STE(P) count STA(RT)
Single-steps the specified number of instructions or
source lines, starting from the transfer address
defined in the object file.

OVE(R) count
Single-steps the specified number of instructions or
source lines, starting from the current program counter
address. If an instruction or source line makes a
subroutine or function call, the entire subroutine or
function is executed.

OVE(R) count address
Single-steps the specified number of instructions or
source lines, starting from the specified address. If
an instruction or source line makes a subroutine or
function call, the entire subroutine or function is
executed.

OVE(R) count STA(RT)
Single-steps the specified number of instructions or
source lines, starting from the transfer address
defined in the object file. If an instruction or
source line makes a subroutine or function call, the
entire subroutine or function is executed.

See Also

"To step multiple lines or instructions" in the "Stepping, Running, and
Stopping" section of the "Debugging Programs" chapter.

Execution→Single Step (ALT, E, N)
Execution→Step Over (ALT, E, O)

Chapter 8: Menu Bar Commands
Execution→Step... (ALT, E, S)

190

Execution→Break (F4), (ALT, E, B)

Stop user program execution and break into the monitor.

This command can also be used to break into the monitor when the processor
is in the EMULATION RESET status.

Once the command has been completed, the processor transfers to the
RUNNING IN MONITOR status.

Command File Command

BRE(AK)

See Also

"To stop program execution" in the "Stepping, Running, and Stopping"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Break (F4), (ALT, E, B)

191

Execution→Reset (ALT, E, E)

Resets the emulation microprocessor.

If a foreground monitor is being used, it will automatically be loaded when
this command is chosen.

While the processor is in the EMULATION RESET state, no display or
modification is allowed for the contents of target system memory or registers.
Therefore, before you can display or modify target system memory or
processor registers, you must use the Execution→Break (ALT, E, B)
command to break into the monitor.

Note If RealTime→Monitor Intrusion→Allowed is selected, the emulation
microprocessor may switch immediately from reset to running in monitor.

Command File Command

RES(ET)

See Also

"To reset the processor" in the "Stepping, Running, and Stopping" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Execution→Reset (ALT, E, E)

192

Breakpoint→Set at Cursor (ALT, B, S)

Sets a breakpoint at the cursor-selected address in the Source window.

The breakpoint marker "BP" appears on lines at which breakpoints are set.

When a breakpoint is hit, program execution stops immediately before
executing the instruction or source code line at which the breakpoint is set.

A set breakpoint remains active until it is deleted.

There are two types of breakpoints available: software and hardware

Software breakpoints

Software breakpoints are handled by the 80386DX bond-out’s interrupt
facility. When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the bond-out’s
breakpoint interrupt instruction (which is different than INT 3).

Note that you must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data).

Also, in order to successfully set a software breakpoint, the emulator must be
able to write to the memory location specified. Therefore, software
breakpoints cannot be set in target ROM. If the emulator discovers an
attempt to put a software breakpoint in target ROM, it will automatically
attempt to use a hardware breakpoint. If you already have four hardware
breakpoints, this will fail. You can, however, copy a target ROM memory
image into emulation memory, then use a software breakpoint.

Hardware breakpoints

Hardware breakpoints use the 80386 bond-out’s breakpoint facility. It shares
the debug ’breakpoint’ registers with the breakpoint registers available to the
target system, so when hardware breakpoint registers are used by the
emulator, they are unavailable for use by the target system’s software. Any
attempt by the target system software to use the hardware breakpoint will
result in a break to the monitor.

There are four hardware breakpoints for the 80386.

Chapter 8: Menu Bar Commands
Breakpoint→Set at Cursor (ALT, B, S)

193

Hardware breakpoints are used automatically when the emulator attempts to
set a breakpoint and detects that the memory value did not change (probably
because it is in ROM).

The Breakpoint→Set at Cursor (ALT, B, S) command may cause BP markers
to appear at two or more addresses. This happens when a single instruction
is associated with two or more source lines. You can select the mnemonic
display mode to verify that the breakpoint is set at a single address.

Command File Command

BP SET address

See Also

"To set a breakpoint" in the "Using Breakpoints and Break Macros" section of
the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Set at Cursor (ALT, B, S)

194

Breakpoint→Delete at Cursor (ALT, B, D)

Deletes the breakpoint set at the cursor-selected address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints). Once the breakpoint is deleted, the original
instruction is replaced.

Command File Command

BP DEL(ETE) address

See Also

"To delete a single breakpoint" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint→Edit... (ALT, B, E)

Chapter 8: Menu Bar Commands
Breakpoint→Delete at Cursor (ALT, B, D)

195

Breakpoint→Set Macro... (ALT, B, M)

Sets a break macro immediately before the cursor-selected address in the
Source window.

Break macro lines are marked with the "BP" breakpoint marker, and the
corresponding addresses or line numbers are displayed in decimal format.

When a break macro is hit, program execution stops immediately before
executing the instruction or source code line at which the break macro is set.
Then, the commands associated with the break macro are executed. When a
"RUN" command is set as the last command in the break macro, the system
executes the break macro and resumes program execution.

The break macro remains active until it is deleted with the
Breakpoint→Delete Macro (ALT, B, L) command or the Breakpoint→Edit...
(ALT, B, E) command.

Additional commands can be added to existing break macros as follows:

• When a source code line or disassembled instruction is cursor-selected,
the additional command is inserted at the top of the list of commands.

• When a macro command line is cursor-selected, the additional command
is inserted immediately following the cursor-selected command.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

196

Break Macro Entry Dialog Box

Choosing the Breakpoint→Set Macro... (ALT, B, M) command opens the
following dialog box:

Macro
Command

Specifies the command to be added to the break macro.

Location Displays the specified line number or address followed by a
decimal point and the break macro line number.

Insert Inserts the specified macro command at the location
immediately preceding the specified source line or address,
or inserts the macro command at the location immediately
following the specified break macro line.

Two or more commands can be associated with a break
macro by entering the first command and choosing Insert,
then entering the second command and choosing Insert,
and so on. Commands execute in the order of their entry.

Close Closes the dialog box.

Command File Command

BM SET address command

See Also

"To set a break macro" in the "Using Breakpoints and Break Macros" section
of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Set Macro... (ALT, B, M)

197

Breakpoint→Delete Macro (ALT, B, L)

Removes the break macro set at the cursor-indicated address in the Source
window.

This command is only applicable to lines that contain "BP" markers (which
indicate set breakpoints) or break macro lines.

When a source code line is cursor-selected, this command removes the
breakpoint and all the macros commands set at the line.

When a break macro line is cursor-selected, this command removes the single
macro command at the line.

Command File Command

BM DEL(ETE) address

See Also

"To delete a single break macro" in the "Using Breakpoints and Break Macros"
section of the "Debugging Programs" chapter.

Breakpoint→Edit... (ALT, B, E)

Chapter 8: Menu Bar Commands
Breakpoint→Delete Macro (ALT, B, L)

198

Breakpoint→Edit... (ALT, B, E)

Lets you set, list, or delete breakpoints and break macros.

Breakpoint Dialog Box

Choosing the Breakpoint→Edit... (ALT, B, E) command opens the following
dialog box:

Address Lets you specify the address at which to set a breakpoint or
a break macro.

Type Allows you to choose the type of breakpoint to cause a
break into the monitor: (Note that the 80386 has only four
hardware breakpoint registers.)

Execution (E). A break occurs when the opcode at the
address is about to be executed. A software breakpoint is
used unless the address is in target ROM. In that case, a
hardware breakpoint register is used in the 80386 processor

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

199

Execution Hardware Only (EH). A break occurs when the
opcode at the address is about to be executed. Only
hardware breakpoints are used (that is, one of the four
hardware breakpoint registers in the 80386 is used to
implement the breakpoint).

Write Byte (WB). A break occurs when the byte specified
by the address is written to. This is implemented by using
one of the hardware breakpoint registers in the 80386
processor.

Write Word (WW). A break occurs when the word (16 bits)
specified by the address is written to. This is implemented
by using one of the hardware breakpoint registers in the
80386 processor.

Write Dword (WD). A break occurs when the double word
(32 bits) specified by the address is written to. This is
implemented by using one of the hardware breakpoint
registers in the 80386 processor.

Read/Write Byte (RB). A break occurs when the byte
specified by the address is read from or written to. This is
implemented by using one of the hardware breakpoint
registers in the 80386 processor.

Read/Write Word (RW). A break occurs when the word
(16 bits) specified by the address is read from or written
to. This is implemented by using one of the hardware
breakpoint registers in the 80386 processor.

Read/Write Dword (RD). A break occurs when the double
word (32 bits) specified by the address is read from or
written to. This is implemented by using one of the
hardware breakpoint registers in the 80386 processor.

Macro
command

When selected, this specifies that a break macro should be
included with the breakpoint.

Set Sets a breakpoint or a break macro at the specified address.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

200

Breakpoints
Set

Displays the addresses and line numbers of the current
breakpoints and break macros. Allows you to select the
breakpoints or break macros to be deleted. One of the
following may precede the name of the breakpoint in the
"Breakpoints Set" text box:

If EN precedes the breakpoint, the breakpoint is currently
enabled.

If DI precedes the breakpoint, the breakpoint is disabled.
That is, it is not actually inserted into the code (or the
hardware register is not enabled. See below).

If two dashes (--) precede the breakpoint, the status is
unknown (probably because you used the
"Realtime→Monitor Intrusion→Disallowed" command).

Delete Deletes the selected breakpoints or break macros from the
Breakpoints Set list box. Breakpoints or break macros are
not actually deleted until the OK button is chosen.

Delete All Deletes all the breakpoints and break macros from the
Breakpoints Set list box. Breakpoints and break macros
are not actually deleted until the OK button is chosen.

Disable Disables the selected breakpoint.

Close Closes the dialog box.

Note Whenever a file is loaded (via the "File→Load Object" command), all
breakpoints will be deleted. If you want to save your breakpoints, use the
"File→Save Debug..." command.

Command File Command

BP SET address

BP DEL(ETE) ALL

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

201

BP DEL(ETE) address

BP ENA(BLE) address

BP DIS(ABLE) address

BP SET EXE(C) address

BP SET ACC(ESS) BYT(E) address

BP SET ACC(ESS) WOR(D) address

BP SET ACC(ESS) DWO(RD) address

BP SET WRI(TE) BYT(E) address

BP SET WRI(TE) WOR(D) address

BP SET WRI(TE) DWO(RD) address

BM SET breakaddress command

BM SET EXE(C) breakaddress command

BM SET ACC(ESS) BYT(E) breakaddress command

BM SET ACC(ESS) WOR(D) breakaddress command

BM SET ACC(ESS) DWO(RD) breakaddress command

BM SET WRI(TE) BYT(E) breakaddress command

BM SET WRI(TE) WOR(D) breakaddress command

BM SET WRI(TE) DWO(RD) breakaddress command

See Also

"To enable or disable software breakpoints" to understand how to enable
breakpoints and the side-effects of doing so, in the "Setting the Hardware
Options" section of the "Configuring the Emulator" chapter.

"To disable a breakpoint" and "To list the breakpoints and break macros" in
the "Using Breakpoints and Break Macros" section of the "Debugging
Programs" chapter.

Chapter 8: Menu Bar Commands
Breakpoint→Edit... (ALT, B, E)

202

Variable→Edit... (ALT, V, E)

Displays or modifies the contents of the specified variable or copies it to the
WatchPoint window.

A dynamic variable can be registered as a watchpoint when the current
program counter is in the function in which the variable is declared. If the
program counter is not in this function, the variable name is invalid and an
error results.

Variable Edit Dialog Box

Choosing the Variable→Edit... (ALT, V, E) command opens the following
dialog box:

Variable Specifies the name of the variable to be displayed or
modified. The contents of the clipboard, usually a variable
selected from another window, automatically appears in
this text box.

Type Displays the type of the specified variable.

Value Displays the contents of the specified variable.

Chapter 8: Menu Bar Commands
Variable→Edit... (ALT, V, E)

203

Update Reads and displays the contents of the variable specified in
the Variable text box.

Modify Modifies the contents of the specified variable. Choosing
this button opens the Variable Modify Dialog Box, which
lets you edit the contents of the variable.

to WP Adds the specified variable to the WatchPoint window.

Close Closes the dialog box.

Command File Command

VARI(ABLE) variable TO data
Replaces the contents of the specified variable with
the specified value.

See Also

"To display a variable" and "To monitor a variable in the WatchPoint window"
in the "Displaying and Editing Variables" section of the "Debugging Programs"
chapter.

"Symbols" in the "Expressions in Commands" chapter.

Chapter 8: Menu Bar Commands
Variable→Edit... (ALT, V, E)

204

Variable Modify Dialog Box

Choosing the Modify button in the Variable Edit dialog box opens the
following dialog box, where you enter the new value and choose the OK
button to confirm the new value.

Variable Shows the variable to be edited.

Type Indicates the type of the variable displayed in the Variable
field.

Value Lets you enter the new value of the variable.

OK Replaces the contents of the specified variable with the
specified value and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

See Also

"To edit a variable" in the "Displaying and Editing Variables" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Variable Modify Dialog Box

205

Trace→Function Caller... (ALT, T, C)

Traces the caller of the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores only the execution of the function entry point and
prestores execution states that occur before the function entry point. These
prestored states correspond to the function call statements and identify the
caller of the function.

When assembly language programs are used, you can specify the assembler
symbol for a subroutine instead of a C function name, and the prestored
states will show the instructions that called the subroutine.

Function Caller Trace Dialog Box

Choosing the Trace→Function Caller... (ALT, T, C) command opens the
following dialog box:

Function Lets you enter the function whose callers you want to trace.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) FUNC(TION) CAL(L) address

Chapter 8: Menu Bar Commands
Trace→Function Caller... (ALT, T, C)

206

See Also

"To trace callers of a specified function" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Caller... (ALT, T, C)

207

Trace→Function Statement... (ALT, T, S)

Traces execution within the specified function.

The function name can be selected from the another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

The analyzer stores execution states in the function’s address range.

Because the analyzer is set up based on function information from the object
file, this command cannot be used to trace non-C functions.

Function Statement Trace Dialog Box

Choosing the Trace→Function Statement... (ALT, T, S) command opens the
following dialog box:

Function Lets you enter the function whose execution you want to
trace.

OK Traces within the specified function and closes the dialog
box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) FUNC(TION) STA(TEMENT) address

Chapter 8: Menu Bar Commands
Trace→Function Statement... (ALT, T, S)

208

See Also

"To trace execution within a specified function" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Function Statement... (ALT, T, S)

209

Trace→Variable Access... (ALT, T, V)

Traces accesses to the specified variable.

The variable name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; it will automatically
appear in the dialog box that is opened.

You can specify any of the external or static variables, or the variables having
a fixed address throughout the course of program execution.

The analyzer stores only accesses within the range of the variable and
prestores execution states that occur before the access. These prestored
states correspond to the statements that access the variable.

Variable Access Dialog Box

Choosing the Trace→Variable Access... (ALT, T, V) command opens the
following dialog box:

Variable Lets you enter the variable name.

OK Traces accesses to the specified variable and closes the
dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

TRA(CE) VAR(IABLE) ACC(ESS) address

Chapter 8: Menu Bar Commands
Trace→Variable Access... (ALT, T, V)

210

See Also

"To trace accesses to a specified variable" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Variable Access... (ALT, T, V)

211

Trace→Edit... (ALT, T, E)

Edits the trace specification of the last trace command.

This command is useful for making modifications to the last entered trace
command, even if the analyzer was set up automatically as with the
Trace→Function or Trace→Variable commands.

Trace specifications are edited with Sequence Trace Setting dialog box.

Command File Command

TRA(CE) SAV(E) filename
Stores the current trace specification to a file.

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting
file.

See Also

"To edit a trace specification" in the "Setting Up Custom Trace Specifications"
section of the "Debugging Programs" chapter.

Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace→Edit... (ALT, T, E)

212

Trace→Trigger Store... (ALT, T, T)

Traces program execution as specified in the Trigger Store Trace dialog box.

You can enter address, data, and status values that qualify the state(s) that,
when captured by the analyzer, will be stored in the trace buffer or will
trigger the analyzer. See Understanding Addresss, Data, and Status for
information and hints on setting up the A:D:S fields.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

213

Trigger Store Trace Dialog Box

Choosing the Trace→Trigger Store... (ALT, T, T) command opens the
following dialog box:

Trigger This box groups the items that make up the trigger
condition.

NOT Specifies any state that does not match the Address, Data,
and Status values.

Address Specifies the address portion of the state qualifier.

End Address Specifies the end address of an address range.

Data Specifies the data portion of the state qualifier.

Status Specifies the status portion of the state qualifier.

trigger start Specifies that states captured after the trigger condition be
stored in the trace buffer.

trigger center Specifies that states captured before and after the trigger
condition be stored in the trace buffer.

trigger end Specifies that states captured before the trigger condition
be stored in the trace buffer.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

214

Store This box groups the items that make up the store condition.

OK Starts the specified trace and closes the dialog box.

Cancel Cancels the trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace dialog box. Trace specification files
have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting
file.

See Also

"To set up a "Trigger Store" trace specification" in the "Setting Up Custom
Trace Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Trigger Store... (ALT, T, T)

215

Trace→Find Then Trigger... (ALT, T, D)

Traces program execution as specified in the Find Then Trigger Trace dialog
box.

This command lets you set up a two level sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stores (in the trace buffer) the states
that satisfy the Enable Store condition while searching for a state that
satisfies the Enable condition.

2 After the Enable condition has been found, the analyzer stores the states
that satisfy the Trigger Store condition while searching for a state that
satisfies the Trigger condition.

3 After the Trigger condition has been found, the analyzer stores the states
that satisfy the Store condition.

If any state during the sequence satisfies the Restart condition, the sequence
starts over.

You can enter address, data, and status values that qualify state(s) by setting
up pattern or range resources. These patterns and range resources are used
when defining the various conditions.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

216

Find Then Trigger Trace Dialog Box

Choosing the Trace→Find Then Trigger... (ALT, T, D) command opens the
following dialog box:

The Sequence group box specifies a two term sequential trigger condition.
It also lets you specify store conditions during the sequence.

Enable Store Qualifies the states that get stored (in the trace buffer)
while searching for a state that satisfies the enable
condition.

Enable Specifies the condition that causes a transfer to the next
sequence level.

Trigger Store Qualifies the states that get stored while the analyzer
searches for the trigger condition.

Trigger Specifies the trigger condition.

Store Qualifies the states that get stored after the trigger
condition is found.

Restart Specifies the condition that restarts the sequence.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

217

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the Store
condition will be stored after the trigger. In this case, the
states that satisfy the Enable Store and Trigger Store
conditions will not appear in the trace.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the Enable
Store and Trigger Store conditions will be stored before the
trigger. In this case, states that satisfy the Store condition
will not appear in the trace.

Break on Trigger When selected, this option specifies that execution break
into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern in the Pattern/Range
list box opens the Trace Pattern Dialog Box or the Trace
Range Dialog Box, where you specify the desired trace
pattern or range.

Clicking the Sequence, Restart, Count, or Prestore buttons
causes the Condition Dialog Boxes to be opened. This
dialog box lets you select or combine patterns or ranges to
specify the condition.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

218

OK Starts the specified trace and closes the dialog box.

Cancel Cancels trace setting and closes the dialog box.

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from the
Trigger Store Trace or Find Then Trigger Trace dialog
boxes. Trace specification files have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting
file.

See Also

"To set up a "Find Then Trigger" trace specification" in the "Setting Up
Custom Trace Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Find Then Trigger... (ALT, T, D)

219

Trace→Sequence... (ALT, T, Q)

Traces program execution as specified in the Sequence Trace dialog box.

This command lets you set up a multi-level sequential trace specification that
works like this:

1 Once the trace starts, the analyzer stays on sequence level 1 until the
primary or secondary branch condition is found. (If a state satisfies both
primary and secondary branch conditions, the primary branch is taken.)
Once the primary or secondary branch condition is found, the analyzer
transfers to the sequence level specified by the "to" button.

2 The analyzer stays at the next sequence level until its primary or
secondary branch condition is met; then, the analyzer transfers to the
sequence level specified by the "to" button.

3 When the analyzer reaches the sequence level specified in Trigger On,
the analyzer is triggered.

4 During the above described operation, the analyzer stores the states
specified in the Store text box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

220

Sequence Trace Dialog Box

Choosing the Trace→Sequence... (ALT, T, Q) command opens the following
dialog box:

The Sequence group box specifies two types of branch conditions for
transferring from one sequence level to another. It also specifies store
conditions for each of sequence levels 1 through 8.

Primary Branch Specifies the condition for transferring to the sequence
level specified in the "to" text box.

Secondary
Branch

Specifies the condition for transferring to the sequence
level specified in the "to" text box. Secondary branches are
used to do things like restart the sequence if a particular
state is found.

Store Specifies the states stored in the trace buffer at each
sequence level.

Page Toggles the display between sequence levels 1 through 4
and levels 5 through 8.

Trigger On Specifies the sequence level whose entry triggers the
analyzer. See the Sequence Number Dialog Box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

221

Count Specifies whether time or the occurrences of a particular
state are counted; you can also turn counts OFF. See the
Condition Dialog Boxes.

Prestore Qualifies the states that may be stored before each
normally stored state. Up to two states may be prestored
for each normally stored state. Prestored states can be
used to show from where a function is called or a variable
is accessed.

trigger start The state that satisfies trigger condition is positioned at
the start of the trace, and states that satisfy the store
conditions will be stored after the trigger.

trigger center The state that satisfies the trigger condition is positioned in
the center of the trace, and states that satisfy the store
conditions will be stored before and after the trigger.

trigger end The state that satisfies the trigger condition is positioned
at the end of the trace, and states that satisfy the store
conditions will be stored before the trigger.

Break on Trigger When selected, this option specifies that execution break
into the monitor when the analyzer is triggered.

Pattern/Range Specifies the trace patterns for the state conditions.
Double-clicking the desired pattern in the Pattern/Range
list box opens the Trace Pattern Dialog Box or the Trace
Range Dialog Box, where you specify the desired trace
pattern or range.

Clicking the Primary Branch, Secondary Branch, Store,
Count, or Prestore buttons causes the Condition Dialog
Boxes to be opened. This dialog box lets you select or
combine patterns or ranges to specify the condition.

OK Starts the specified trace and closes the dialog box.

Cancel Cancels trace setting and closes the dialog box.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

222

Clear Restores the dialog box to its default state.

Load... Opens a file selection dialog box from which you select the
name of a trace specification file previously saved from any
of the trace setting dialog boxes. Trace specification files
have the extension ".TRC".

Save... Opens a file selection dialog box from which you select the
name of the trace specification file.

Command File Command

TRA(CE) LOA(D) filename
Loads the specified trace setting file.

TRA(CE) CUS(TOMIZE)
Traces program execution using the loaded trace setting
file.

See Also

"To set up a "Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Sequence... (ALT, T, Q)

223

Trace→Until Halt (ALT, T, U)

Traces program execution until the Trace→Halt (ALT, T, H) command is
chosen.

This command is useful in tracing execution that leads to a processor halt or
a break to the background monitor. Before executing the program, choose
the Trace→Until Halt (ALT, T, U) command. Then, run the program. After
the processor has halted or broken into the background monitor, choose the
Trace→Halt (ALT, T, H) command to stop the trace. The execution that led
up to the break or halt will be displayed.

Command File Command

TRA(CE) ALW(AYS)

See Also

"To trace until the command is halted" in the "Tracing Program Execution"
section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Until Halt (ALT, T, U)

224

Trace→Halt (ALT, T, H)

Stops a running trace.

This command stops a currently running trace whether the trace was started
with the Trace→Until Halt (ALT, T, U) command or another trace command.

As soon as the analyzer stops the trace, stored states are displayed in the
Trace window.

Command File Command

TRA(CE) STO(P)

See Also

"To stop a running trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Halt (ALT, T, H)

225

Trace→Again (F7), (ALT, T, A)

Traces program execution using the last trace specification stored in the
HP 64700.

If you haven’t entered a trace command since you started the debugger, the
last trace specification stored in the HP 64700 may be a trace specification
set up by a different user; in this case, you cannot view or edit the trace
specification.

Command File Command

TRA(CE) AGA(IN)

See Also

"To repeat the last trace" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace→Again (F7), (ALT, T, A)

226

Condition Dialog Boxes

Choosing the buttons associated with enable, trigger, primary branch,
secondary branch, store, or prestore conditions opens the following dialog
box:

Choosing the button associated with the count condition opens the following
dialog box:

no state No state meets the specified condition.

any state Any state meets the specified condition.

time The analyzer counts time for each state stored in the trace.

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

227

state This group box lets you qualify the state that will meet the
specified condition. You can qualify the state as one of the
patterns "a" through "h," the "range," or the "arm," or you
can qualify the state as a combination of the patterns,
range, or arm by using the interset or intraset operators.

a b c d e f g h The patterns that qualify states by identifying the
address, data, and/or status values.

The values for a pattern are specified by selecting one
of the patterns in the Pattern/Range list box and
entering values in the Trace Pattern Dialog Box.

range Identifies a range of address or data values.

The values for a range are specified by selecting the
range in the Pattern/Range list box and entering values
in the Trace Range Dialog Box.

not range Identifies all values not in the specified range.

arm Identifies the condition that arms (in other words,
activates) the analyzer. The analyzer can be armed by
an input signal on the BNC port.

or/nor You can combine patterns within the set1 or set2
group boxes with these logical operators.

You can create the AND and NAND operators by
selecting NOT when defining patterns and applying
DeMorgan’s law (the / character is used to represent a
logical NOT):

AND A and B = /(/A or /B) NOR
NAND /(A and B) = /A or /B OR

OR/AND You can combine patterns from the set1 and set2
group boxes with these logical operators.

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

228

Count Appearing in Trace Condition dialog boxes, this value
specifies the number of occurrences of the state that
will satisfy the condition.

OK Applies the state qualifier to the specified condition and
closes the dialog box.

Cancel Closes the dialog box.

See Also

"To set up a "Find Then Trigger" trace specification", and "To set up a
"Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Condition Dialog Boxes

229

Trace Pattern Dialog Box

Selecting one of the patterns in the Pattern/Range list box opens the
following dialog box:

NOT Lets you specify all values other than the address, data,
and/or status values specified.

Address Lets you enter the address value for the pattern.

Data Lets you enter the data value for the pattern.

Status Lets you select the status value for the pattern.

Direct Lets you enter a status value other than one of the
predefined status values.

Clear Clears the values specified for the pattern.

OK Applies the values specified for the pattern, and closes the
dialog box.

Chapter 8: Menu Bar Commands
Trace Pattern Dialog Box

230

Cancel Closes the dialog box.

See Also

"To set up a "Find Then Trigger" trace specification", and "To set up a
"Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace Pattern Dialog Box

231

Trace Range Dialog Box

Selecting the range in the Pattern/Range list box opens the following dialog
box:

Address Selects a range of address values.

Data Selects a range of data values.

Minimum Lets you enter the minimum value for the range.

Maximum Lets you enter the maximum value for the range.

OK Applies the values specified for the range, and closes the
dialog box.

Cancel Closes the dialog box.

Clear Clears the values specified for the range.

See Also

"To set up a "Find Then Trigger" trace specification", and "To set up a
"Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Chapter 8: Menu Bar Commands
Trace Range Dialog Box

232

Trace→Find Then Trigger... (ALT, T, D)
Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Trace Range Dialog Box

233

Sequence Number Dialog Box

Choosing the buttons associated with "to" or Trigger On opens the following
dialog box:

1-8 These options specify the sequence level.

OK Applies the selected sequence level and closes the dialog
box.

Cancel Closes the dialog box.

See Also

"To set up a "Sequence" trace specification" in the "Setting Up Custom Trace
Specifications" section of the "Debugging Programs" chapter.

Trace→Sequence... (ALT, T, Q)

Chapter 8: Menu Bar Commands
Sequence Number Dialog Box

234

RealTime→Monitor Intrusion→Disallowed (ALT, R,
T, D)

Activates the real-time mode.

When the user program is running in real-time mode, no command that
would normally cause temporary suspension of program execution is allowed.
Also, the system hides:

• The Register window.

• Target system memory in the Memory window.

• Target system I/O locations in the I/O window.

• Target system memory variables in the WatchPoint window.

• Target system memory in the Source window.

While the processor is in the RUNNING REALTIME IN USER PROGRAM
state, no display or modification is allowed for the contents of target system
memory or registers. Therefore, before you can display or modify target
system memory or processor registers, you must use the Execution→Break
(ALT, E, B) command to stop user program execution and break into the
monitor.

Command File Command

MOD(E) REA(LTIME) ON

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D)

235

RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

Deactivates the real-time mode.

Commands that cause temporary breaks to the monitor during program
execution are allowed.

Command File Command

MOD(E) REA(LTIME) OFF

See Also

"To allow or deny monitor intrusion" in the "Setting the Real-Time Options"
section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A)

236

RealTime→I/O Polling→ON (ALT, R, I, O)

Enables access to I/O.

Command File Command

MOD(E) IOG(UARD) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→I/O Polling→ON (ALT, R, I, O)

237

RealTime→I/O Polling→OFF (ALT, R, I, F)

Disables access to I/O.

When polling is turned OFF, values in the I/O window are updated on entry to
the monitor. When monitor intrusion is not allowed during program
execution, the I/O window is not updated and contents are replaced by
dashes (-).

Command File Command

MOD(E) IOG(UARD) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→I/O Polling→OFF (ALT, R, I, F)

238

RealTime→Watchpoint Polling→ON (ALT, R, W, O)

Turns ON polling to update values displayed in the WatchPoint window.

When polling is turned ON, temporary breaks in program execution occur
when the WatchPoint window is updated.

Command File Command

MOD(E) WAT(CHPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Watchpoint Polling→ON (ALT, R, W, O)

239

RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

Turns OFF polling to update values displayed in the WatchPoint window.

When polling is turned OFF, values in the WatchPoint window are updated
on entry to the monitor. When monitor intrusion is not allowed during
program execution, the WatchPoint window is not updated and contents are
replaced by dashes (-).

Command File Command

MOD(E) WAT(CHPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Watchpoint Polling→OFF (ALT, R, W, F)

240

RealTime→Memory Polling→ON (ALT, R, M, O)

Turns ON polling to update target memory values displayed in the Memory
window.

When polling is turned ON, temporary breaks in program execution occur
when target system memory locations in the Memory window are updated.
When monitor intrusion is not allowed during program execution, the
contents of target memory locations are replaced by dashes (-).

Also, when polling is turned ON, you can modify the addresses displayed or
contents of memory locations by double-clicking on the address or value,
using the keyboard to type in the new address or value, and pressing the
Enter key.

Command File Command

MOD(E) MEM(ORYPOLL) ON

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Memory Polling→ON (ALT, R, M, O)

241

RealTime→Memory Polling→OFF (ALT, R, M, F)

Turns OFF polling to update target memory values displayed in the Memory
window.

When polling is turned OFF, values in the Memory window are updated on
entry to the monitor.

Also, when polling is turned OFF, you cannot modify the addresses displayed
or contents of memory locations by double-clicking on the address or value.

Command File Command

MOD(E) MEM(ORYPOLL) OFF

See Also

"To turn polling ON or OFF" in the "Setting the Real-Time Options" section of
the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
RealTime→Memory Polling→OFF (ALT, R, M, F)

242

Assemble... (ALT, A)

In-line assembler.

This command lets you modify programs by specifying assembly language
instructions which are assembled and loaded into program memory.

Assembler Dialog Box

Choosing the Assemble... (ALT, A) command opens the following dialog box:

Label Lets you assign a user-defined symbol to the specified
address.

Address Lets you enter the address at which the assembly language
instruction will be loaded.

Mnemonic Lets you enter the assembly language instruction to be
assembled.

Assemble Assembles the instruction in the Mnemonic text box, and
loads it into memory at the specified address.

Close Closes the dialog box.

Command File Command

ASM address label "inst_string"

Chapter 8: Menu Bar Commands
Assemble... (ALT, A)

243

Settings→Emulator Config→Hardware... (ALT, S, E,
H)

Specifies the emulator configuration.

Hardware Config Dialog Box

Choosing the Settings→Emulator Config→Hardware... (ALT, S, E, H)
command opens the following dialog box:

CLK2 Frequency
> 60 MHz

Specifies whether one wait state should be added for
accesses to memory mapped into 4-Mbyte SIMMs. Note
that CLK2 is the oscillator frequency to the 80386. It is
twice the frequency of the usually-quoted value. For
example, a "33 MHz 80386" has a CLK2 of 66 MHz.

Enable Target
Interrupts

Enables or disables target interrupts. If interrupts are
disabled, no interrupts (INT or NMI) are passed to the
processor. If enabled, interrupts are passed when
executing user code or when using the foreground monitor.
In any case, when using the background monitor,
interrupts will be ignored while in the monitor.

Enable Software
Breakpoints

Enables or disables software breakpoints. If disabled, you
cannot set any breakpoints. If enabled, you can set

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

244

software breakpoints. If software breakpoints are set, the
emulator will take a longer time to leave the RESET state
because it must break into the monitor to enable the
software breakpoints each time it leaves the RESET state.

Enable Break on
Write to ROM

Enables or disables breaks to the monitor when the user
program writes to memory mapped as ROM.

Enable
Execution
Trace
Messages

Enables or disables branch trace messages and task switch
messages:
If enabled, every time the processor does a branch, it will
emit the target address of the branch. See Understanding
80386 Analysis for more information about how to use
branch trace messages.
Also, any task switch will emit a task switch message telling
you what the old task was and what the new task is.

Enable
Foreground
Monitor Traced
as User

Enables or disables tracing when execution is in the
foreground monitor. When using a foreground monitor
with this selected, all foreground monitor cycles will be
captured in the trace memory by the emulation-bus
analyzer. This is useful when you are having problems with
an interrupt routine and you want to trace that routine
even if it occurs during execution in the foreground
monitor.
If this is not selected, and you have chosen
Settings→Extended→Trace Cycles→User, the analyzer
will capture nothing between the time the foreground
monitor is entered and the time you begin a run of your
user program again. This prevents capture of interrupt
routines executed while in the foreground monitor.
When using the background monitor, this has no effect.

OK Stores the current modification and closes the dialog box.

Cancel Cancels the current modification and closes the dialog box.

Apply Loads the configuration settings into the emulator.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

245

Command File Command

CON(FIG) FASTCLK ENABLE

CON(FIG) FASTCLK DISABLE

CON(FIG) INT(RS) ENABLE

CON(FIG) INT(RS) DISABLE

CON(FIG) WRROM ENABLE

CON(FIG) WRROM DISABLE

CON(FIG) BKPTS ENABLE

CON(FIG) BKPTS DISABLE

CON(FIG) EMSGS ENABLE

CON(FIG) EMSGS DISABLE

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

CON(FIG) STA(RT)
Starts the configuration option command section.

CON(FIG) END
Ends the configuration option command section.

See Also

"Setting the Hardware Options" in the "Configuring the Emulator" chapter.

"Tracing Program Execution" in the "Debugging Programs" chapter for useful
combinations of the Settings→Extended→Trace Cycles command and the
Enable Foreground Monitor Traced as User selection.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Hardware... (ALT, S, E, H)

246

Settings→Emulator Config→Memory Map... (ALT, S,
E, M)

Maps memory ranges.

Up to eight ranges of memory can be mapped, and the resolution of mapped
ranges is 256 bytes (that is, the memory ranges must begin on 256 byte
boundaries and must be at least 256 bytes in length).

You can map ranges as emulation RAM, emulation ROM, target system RAM,
target system ROM, or as guarded memory.

Guarded memory accesses cause emulator execution to break into the
monitor program.

Writes to locations mapped as ROM will cause emulator execution to break
into the monitor program if these breaks are enabled in the hardware
configuration.

Writes to emulation ROM will modify memory. Writes by user code to target
system memory locations that are mapped as ROM or guarded memory may
result in a break to the monitor but they are not inhibited (that is, the write
still occurs).

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

247

Memory Map Dialog Box

Choosing the Settings→Emulator Config→Memory Map... (ALT, S, E, M)
command opens the following dialog box:

Start Specifies the starting address of the address range to be
mapped.

End Specifies the end address of the address range to be
mapped.

Type Lets you select the memory type of the specified address
range.

Use Target RDY Specifies that emulation memory accesses in the range be
synchronized to the target system RDY signal.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

248

Use dual-ported
memory

Specifies that this memory range will be placed in the 8K of
dual-ported memory. Note that you can only map one
address range to this memory. RTC can access this
memory without breaking into the monitor when the
processor is running and not in the HALT or SHUTDOWN
state. If the processor is in the HALT or SHUTDOWN
state, however, dual-port memory cannot be accessed. In
that case, the emulator will break into the monitor to read
the memory. To prevent the break into the monitor in this
case, choose Realtime→Monitor Intrusion→Disallowed.

Apply Maps the address range specified in the Define Map Term
group box.

Default Type Specifies the type of unmapped memory.

Current Map Lists currently mapped ranges.

Available Indicates the amount of emulation memory available.

Delete Deletes the address range selected in the Current Map list
box.

Delete All Deletes all of the address ranges in the Current Map list
box.

Close Closes the dialog box.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

249

Command File Command

MAP addressrange mem_type attributes
Maps the specified address range with the specified
memory type. When mapping emulation memory ranges, the
attributes can be a comma-separated list including:

dp map the address range to dual-port memory.

trdy memory accesses in the range will be synchronized to the
target system READY# signal.

MAP OTH(ER) mem_type
Specifies the type of the specified non-mapped memory
area.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MAP STA(RT)
Starts the memory mapping command section.

MAP END
Ends the memory mapping command section.

See Also

"Mapping Memory" in the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Memory Map... (ALT, S, E, M)

250

Settings→Emulator Config→Monitor... (ALT, S, E, O)

Selects the type of monitor program and other monitor options.

Monitor Config Dialog Box

Choosing the Settings→Emulator Config→Monitor... (ALT, S, E, O)
command opens the following dialog box:

Monitor Type Lets you choose between a background monitor and a
foreground monitor.

Monitor
Address

Specifies the starting address of the foreground monitor
program. The address must reside on a 16-Kbyte boundary
(in other words, a multiple of 4000H) and must be
specified in hexadecimal. In order for the foreground
monitor to run in real mode, the base address must be
limited to 000fc000 hex. Higher addresses can be selected
if the target program always runs in protected mode.
However, any attempt to break before protected mode is
enabled will result in the background monitor being used
(target interrupts will be blocked).

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Monitor... (ALT, S, E, O)

251

Monitor
Selector

Selects the GDT descriptor for the foreground monitor
code segment. The foreground monitor is interruptable and
is designed to run in both real and protected modes based
on the current state of the processor. In order to run in
protected mode, a GDT entry must be reserved to define
the code segment for the monitor. The specified value
must be a multiple of 8, greater than 0 and less than the
limit defined in GDTR.

Monitor Cycles
Use Target RDY

Specifies whether monitor cycles should be synchronized
to the target system (in other words, whether the
emulation and target system READY# should be
interlocked on accesses to the monitor memory block).

Load Custom
Monitor

Specifies whether the default foreground monitor (resident
in the emulator firmware) or a custom monitor should be
used.

Monitor File
Name

When using a customized foreground monitor program, this
text box lets you enter the name of the object file. An
example foreground monitor is provided with the debugger
in the C:\HP\RTC\I386\MONITOR directory (if
C:\HP\RTC\I386 was the installation path chosen when
installing the debugger software). The file is named
I386DX.ASM.

The foreground monitor is automatically loaded after each
Execution→Reset (ALT, E, E) command.

Browse... Opens a file selection dialog box from which you can select
the foreground monitor object file to be loaded.

OK Modifies the monitor configuration as specified and closes
the dialog box.

Cancel Cancels the monitor configuration and closes the dialog
box.

Apply Loads the configuration settings into the emulator.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Monitor... (ALT, S, E, O)

252

Command File Command

MON(ITOR) TYPE FOREGROUND
Selects the foreground monitor.

MON(ITOR) TYPE BACKGROUND
Selects the background monitor.

MON(ITOR) ADD(RESS) address
Specifies the monitor’s base address.

MON(ITOR) SELECTOR selector
specifies the monitor’s selector.

MON(ITOR) TRDY ENA(BLE)
Enables synchronization of monitor cycles to the target
system (that is, interlock the emulation and target
system RDY on accesses to the monitor memory block).

MON(ITOR) TRDY DIS(ABLE)
Disables synchronization of monitor cycles to the
target system.

MON(ITOR) FIL(ENAME) NONE
Specifies using the built-in foreground monitor.

MON(ITOR) FIL(ENAME) file_name
Names the foreground monitor object file.

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

MON(ITOR) STA(RT)
Starts the monitor option command section.

MON(ITOR) END
Ends the monitor option command section.

See Also

"Selecting the Type of Monitor" in the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Monitor... (ALT, S, E, O)

253

Settings→Emulator Config→Address Translation...
(ALT, S, E, A)

Choosing the Settings→Emulator Config→Address Translations... (ALT, S, E,
A) command opens the following dialog box:

Page translations
required

Specifies that paging is used by your target system;
therefore, any virtual-to-physical translation will need to
traverse the page tables.

HP strongly recommends you not use this unless your target system uses
paging because your system performance will be improved if the page tables
do not need to be traversed every time a translation occurs.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

254

Dynamic
(always break
to determine
translations)

Specifies that the emulator will temporarily break from
execution of your target program into the monitor to do a
translation. With this selection, the translation will always
be accurate for the current state of the processor and the
current GDT (if in protected mode).

Choose "Dynamic" if your GDT tables change frequently.
The only negative aspect of making this choice is that you
cannot set up the analyzer or modify and display memory
using protected-mode addresses when the processor is
RESET or in real mode. You must use physical addresses
in these cases.

Static (cache
translations on
OK or Apply)

Specifies that cached translations will be used, and that the
source for the cache will be read from the 80386 when the
OK or Apply button is pressed. The "Cacheing Options",
below, will be consulted to determine the location of the
GDT and page tables.

Static (cache
translations after
every file load)

Specifies that cached translations will be used, and that the
source for the cache is from an object file. When a file is
loaded, the cache will be updated. The "Cacheing
Options", below, will be consulted to determine the
location of the GDT and page tables within the absolute
file. Note that when this is chosen, the current translation
scheme is used until the next File→Load Object...
command is given. For example, if the mode is "dynamic"
when this is chosen, address translations will continue to
be dynamic until the next successful File→Load Object...
command.

Cacheing Options

Use current
processor
register values

Specifies that the current register values for GDTR, CR0,
and CR3 are read, then their values are used to cache GDT
and LDT tables as well as page tables.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

255

Use GDT
base/limit stored
in absolute file

Specifies that the GDT location is stored in the absolute file
and is marked as such. Some builders provide this data
and some do not. If you try this and fail, use the next
option.

Use GDT
base/limit
specified below

Specifies that the GDT address and size will be taken from
the values in the edit boxes below:

GDT base address Specifies the base address of the GDT.
Note that this address must be a linear address (not
virtual).

GDT limit Specifies the limit of the GDT; it must be a
multiple of 8 minus 1 (bytes). For example, if there were
four entries in the GDT, the value would be 31 (01F);
(8*4)-1.

Page Directory base address Specifies the base address of
the page table. Note that this address must be a physical
address (not virtual or linear), and must be a multiple of
4K (it must end in 000, when entered in hex).

Command File Command

ADDRTRAN PAGING ON
Specify that paging is enabled, so page tables must be
traversed in order to translate linear (and virtual)
addresses to physical.

ADDRTRAN PAGING OFF
Specify that paging is disabled.

ADDRTRAN METHOD DYNAMIC
Specify that dynamic address translations should be
used.

ADDRTRAN METHOD STATICOKAY
Specify that static address translations should be
used, and cache the GDT & page tables immediately

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

256

ADDRTRAN METHOD STATICFILE
Specify that static address translations should be
used, and cache the GDT & page tables whenever a file
is loaded into the emulator.

ADDTRAN CACHE CURRENT
Specify that the current register values for GDTR, CR0
and CR3 are read, and then their values are used to
cache GDT and LDT tables as well as page tables.

ADDRTRAN CACHE FROMOMF
Specify that when cacheing the GDT, the base and limit
of the GDT is to be taken from the OMF386 file loaded
into the emulator.

ADDTRAN CACHE FROMVAL
Specify that the GDT address and size will be taken
from the values specified in "ADDRTRAN GDTBASE base"
and "ADDRTRAN GDTLIMIT limit", and in "ADDRTRAN PDBASE
base" (if applicable).

ADDRTRAN GDTBASE base
Specify that when cacheing the GDT, the address of the
GDT is "base".

ADDRTRAN GDTLIMIT limit
Specify that when cacheing the GDT, the limit of the
GDT is "limit".

ADDRTRAN PDBASE base
Specify that when cacheing the page tables, the address
of the page table is "base".

Any of the above command file commands must be preceded and followed by
the respective start and end commands:

ADDRTRAN STA(RT)
Starts the address translation command section.

ADDRTRAN END
Ends the address translation command section.

See Also

"Selecting how Address Translations work" in the "Configuring the Emulator"
chapter.

Chapter 8: Menu Bar Commands
Settings→Emulator Config→Address Translation... (ALT, S, E, A)

257

Settings→Communication... (ALT, S, C)

Choosing this command opens the RTC Emulation Connection Dialog Box
which lets you identify and set up the communication channel between the
personal computer and the HP 64700.

RTC Emulation Connection Dialog Box

Choosing the Settings→Communication... (ALT, S, C) command opens the
following dialog box:

The top part of the dialog box shows the current communication settings.

Transport
Selection

Lets you choose the type of connection to be made to the
HP 64700. Double-clicking causes the current connection
to be tried with the given transport. Single-clicking selects
the transport for use with the Setup button.

User Name This name tells the HP 64700 and other users who you are.
When other users attempt to access the HP 64700 while

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

258

you are using it or while it is locked, a message tells them
you’re using it.

User ID Another method of identifying yourself to the HP 64700
and other users. This is primarily useful in a mixed UNIX
and MS-DOS environment; when a UNIX user tries to
unlock an emulator, the user ID is used to look into the
/etc/passwd entry on the UNIX host for the user name.

If your HP 64700 is on the LAN, we recommend that you
change User Name and User ID so that other users can
easily tell if an emulator is in use and by whom. Also, if you
don’t change the User Name/ID from the defaults, the
File→Exit HW Locked (ALT, F, H) command has no effect
because all users are identical.

Setup Opens a transport-specific dialog box which usually allows
you to change the connection and unlock the emulator.

In the LAN Setup dialog boxes, enter the IP address or
network name of the HP 64700.

In the RS232C Setup dialog box, select the baud rate and
the name of the port (for example, COM1, COM2, etc.) to
which the HP 64700 is connected.

In the HP-RS422 Setup dialog box, select the baud rate and
specify the I/O address you want to use for the HP 64037
card. The I/O address must be a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict
with other cards in your PC.

The Connect button in any of these Setup dialog boxes
starts the debugger with the specified communication
settings.

Close Either closes the Real-Time C Debugger, if the current
connection failed, or simply closes the dialog box.

The Real-Time C Debugger does not allow you to change connection or
transport information without leaving the debugger and editing the command

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

259

line or the .INI file, but it does allow you to see the current connection and
transport being used.

The command line options for connection and transport (-E and -T) take
precedence over the values in the .INI file.

Chapter 8: Menu Bar Commands
Settings→Communication... (ALT, S, C)

260

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B,
O)

Specifies that the analyzer trigger signal be driven on the BNC port.

Selecting the emulator BNC port for output enables the trigger signals to be
fed to external devices (for example, logic analyzers) during tracing.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

The BNC’s drivers can drive 50 ohm loads. The following is a logical diagram
of the BNC connection. The physical implementation and values of resistors
are not exact. This diagram is just to help you understand the BNC interface:

When a trace starts, it stops driving the output (so if nothing else is driving
the line, it will fall low due to the 500 ohm pull-down resistor).

When the trigger point is found, the BNC starts driving the output high. It
will stay high until the start of the next trace.

Command File Command

MOD(E) BNC OUT(PUT_TRIGGER)

Chapter 8: Menu Bar Commands
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O)

261

See Also

"To output the trigger signal on the BNC port" in the "Setting Up the BNC
Port" section of the "Configuring the Emulator" chapter.

Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

Allows the analyzer to receive an arm signal from the BNC port.

This command allows an external trigger signal to be used as an arm (enable)
condition for the internal analyzer. The internal analyzer will arm (or enable)
on a positive edge TTL signal.

CAUTION Do not drive the BNC beyond the range of 0 to 5 volts. Doing so may cause
permanent damage to the HP 64700.

You can use the arm condition when setting up custom trace specifications
with the Trace→Find Then Trigger... (ALT, T, D) or Trace→Sequence...
(ALT, T, Q) commands. For example, you can trigger on the arm condition
or enable the storage of states on the arm condition. The "arm" condition
may be selected in "set2" of the Trace Condition or Count Condition dialog
boxes.

The BNC port is internally terminated with about 500 ohms; if using a 50 ohm
driver, use an external 50 ohm termination (such as the HP 10100C 50 Ohm
Feedthrough Termination) to reduce bouncing and possible incorrect
triggering.

Command File Command

MOD(E) BNC INP(UT_ARM)

See Also

Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) for a logical
schematic of the BNC interface.

"To receive an arm condition input on the BNC port" in the "Setting Up the
BNC Port" section of the "Configuring the Emulator" chapter.

Chapter 8: Menu Bar Commands
Settings→BNC→Input to Analyzer Arm (ALT, S, B, I)

262

Settings→Font... (ALT, S, F)

Selects the fonts used in the debugger windows.

Font Dialog Box

Choosing the Settings→Font... (ALT, S, F) command opens the following
dialog box:

Font Lets you select the font to be used in the Real-Time C
Debugger interface. The "T" shaped icon indicates a
TrueType font.

Font Style Lets you select the typeface, for example, regular, bold,
italic, etc.

Size Lets you select the size of the characters.

Sample Shows you what the selected font looks like.

OK Sets the font, and closes the dialog box.

Cancel Cancels font setting, and closes the dialog box.

Chapter 8: Menu Bar Commands
Settings→Font... (ALT, S, F)

263

See Also

"To change the debugger window fonts" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Settings→Tabstops... (ALT, S, T)

Sets the number of spaces between tab stops.

Source Tab Dialog Box

Choosing the Settings→Tabstops... (ALT, S, T) command opens the following
dialog box:

Tab width in
source window
display

Enter the number of spaces between tab stops. This also
affects the tab width for source lines in the Trace window.

OK Sets the tab stops, and closes the dialog box.

Cancel Cancels tab stop setting, and closes the dialog box.

See Also

"To set tab stops in the Source window" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Settings→Tabstops... (ALT, S, T)

264

Settings→Symbols→Case Sensitive→ON (ALT, S, S,
C, O)

Symbol database search is case sensitive.

Command File Command

MOD(E) SYM(BOLCASE) ON

See Also

Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F)

Settings→Symbols→Case Sensitive→OFF (ALT, S, S,
C, F)

Symbol database search is not case sensitive.

If there are case conflicts (for example, FOO and foo), no warning is given,
and you cannot predict which symbol will be used. The symbol that is used
depends on what type of symbols FOO and foo are and how they were input
by the symbol section of the object file.

Command File Command

MOD(E) SYM(BOLCASE) OFF

See Also

Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

Chapter 8: Menu Bar Commands
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O)

265

Settings→Extended Settings→Trace Cycles→User
(ALT, S, X, T, U)

Traces foreground emulation microprocessor operation.

This is the normal setting.

Command File Command

MOD(E) TRA(CECLOCK) USE(R)

See Also

Settings→Extended Settings→Trace Cycles→Monitor (ALT, S, X, T, M)
Settings→Extended Settings→Trace Cycles→Both (ALT, S, X, T, B)

Settings→Extended Settings→Trace Cycles→Monitor
(ALT, S, X, T, M)

Traces background emulation microprocessor operation.

This is rarely a useful setting when debugging programs.

Command File Command

MOD(E) TRA(CECLOCK) BAC(KGROUND)

See Also

Settings→Extended Settings→Trace Cycles→User (ALT, S, X, T, U)
Settings→Extended Settings→Trace Cycles→Both (ALT, S, X, T, B)

Chapter 8: Menu Bar Commands
Settings→Extended Settings→Trace Cycles→User (ALT, S, X, T, U)

266

Settings→Extended Settings→Trace Cycles→Both
(ALT, S, X, T, B)

Traces both foreground and background emulation microprocessor operation.

Command File Command

MOD(E) TRA(CECLOCK) BOT(H)

See Also

Settings→Extended Settings→Trace Cycles→User (ALT, S, X, T, U)
Settings→Extended Settings→Trace Cycles→Monitor (ALT, S, X, T, M)

Chapter 8: Menu Bar Commands
Settings→Extended Settings→Trace Cycles→Both (ALT, S, X, T, B)

267

Settings→Extended Settings→Load Error Abort→ON
(ALT, S, X, L, O)

An error during an object file or memory load causes an abort.

Normally, when an error occurs during an object file or memory load, you
want the load to stop so that you can fix whatever caused the error.

Command File Command

MOD(E) DOW(NLOAD) ERR(ABORT)

See Also

Settings→Extended Settings→Load Error Abort→OFF (ALT, S, X, L, F)

Settings→Extended Settings→Load Error
Abort→OFF (ALT, S, X, L, F)

An error during an object file or memory load does not cause an abort.

If you expect certain errors during an object file or memory load, for
example, if part of the file is located at "guarded" memory or "target ROM,"
you can choose this command to continue loading in spite of the errors.

Command File Command

MOD(E) DOW(NLOAD) NOE(RRABORT)

See Also

Settings→Extended Settings→Load Error Abort→ON (ALT, S, X, L, O)

Chapter 8: Menu Bar Commands
Settings→Extended Settings→Load Error Abort→ON (ALT, S, X, L, O)

268

Settings→Extended Settings→Source Path
Query→ON (ALT, S, X, S, O)

You are prompted for source file paths.

When the debugger cannot find source file information for the Source or
Trace windows, it may prompt you for source file paths depending on the
MODE SOURCE setting.

Command File Command

MOD(E) SOU(RCE) ASK(PATH)

See Also

Settings→Extended Settings→Source Path Query→OFF (ALT, S, X, S, F)

Settings→Extended Settings→Source Path
Query→OFF (ALT, S, X, S, F)

You are not prompted for source file paths.

You can turn off source path prompting, for example, to avoid annoying
dialog interactions when tracing library functions for which no source files
are available.

Command File Command

MOD(E) SOU(RCE) NOA(SKPATH)

See Also

Settings→Extended Settings→Source Path Query→ON (ALT, S, X, S, O)

Chapter 8: Menu Bar Commands
Settings→Extended Settings→Source Path Query→ON (ALT, S, X, S, O)

269

Window→Cascade (ALT, W, C)

Arranges, sizes, and overlaps windows.

Windows are sized, evenly, to be as large as possible.

Window→Tile (ALT, W, T)

Arranges and sizes windows so that none are overlapped.

Windows are sized evenly.

Window→Arrange Icons (ALT, W, A)

Rearranges icons in the Real-Time C Debugger window.

Icons are distributed evenly along the lower edge of the Real-Time C
Debugger window.

Chapter 8: Menu Bar Commands
Window→Cascade (ALT, W, C)

270

Window→1-9 (ALT, W, 1-9)

Opens the window associated with the number.

The nine most recently opened windows appear in the menu list. If the
window you wish to open is not on the list, choose the Window→More
Windows... (ALT, W, M) command.

Windows are closed just as are ordinary MS Windows, that is, by opening the
control menu and choosing Close or by pressing CTRL+F4.

For details on each of the debugger windows, refer to the "Debugger
Windows" section in the "Concepts" chapter.

Command File Command

DIS(PLAY) window-name
Opens the specified window. Use the first three
characters of the window name, or, if the window name
is "Basic Registers", user "REG".

ICO(NIC) window-name
Closes the specified window. Use the first three
characters of the window name, or, if the window name
is "Basic Registers", user "REG".

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Window→1-9 (ALT, W, 1-9)

271

Window→More Windows... (ALT, W, M)

Presents a list box from which you can select the window to be opened.

Select Window Dialog Box

Choosing the Window→More Windows... (ALT, W, M) command opens the
following dialog box:

OK Opens the window selected in the list box.

Cancel Closes the dialog box.

Command File Command

DIS(PLAY) window-name
Opens the specified window.

ICO(NIC) window-name
Closes the specified window.

See Also

"To open debugger windows" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 8: Menu Bar Commands
Window→More Windows... (ALT, W, M)

272

Help→About Debugger/Emulator... (ALT, H, D)

Provides information on the Real-Time C Debugger.

Choosing the Help→About Debugger/Emulator... (ALT, H, D) command
opens a dialog box containing the version information on the current
Real-Time C Debugger and emulator.

Chapter 8: Menu Bar Commands
Help→About Debugger/Emulator... (ALT, H, D)

273

Source Directory Dialog Box

When the source file associated with a symbol cannot be found in the current
directory, the following dialog box is opened:

Module Shows the symbol whose source file could not be found.

Directory Lets you enter the directory in which the source file
associated with the symbol may be found.

OK Adds the directory entered in the Directory text box to the
source file search path.

Cancel Closes the dialog box.

You may not wish to have this dialog box open. There is a way to prevent it
from opening. If you select Settings→Extended→Source Path Query→OFF,
this dialog box will not open. If you wish to have this dialog box open when
the source file associated with a symbol cannot be found, select
Settings→Extended→Source Path Query→ON.

Chapter 8: Menu Bar Commands
Source Directory Dialog Box

274

9

Window Control Menu Commands

275

Window Control Menu Commands

This chapter describes the commands that can be chosen from the control

menus in debugger windows.

• Common Control Menu Commands

• Button Window Commands

• Expression Window Commands

• I/O Window Commands

• Memory Window Commands

• GDT/LDT/IDT Window Commands

• Register Windows’ Commands

• Source Window Commands

• Symbol Window Commands

• Trace Window Commands

• WatchPoint Window Commands

276

Common Control Menu Commands

This section describes commands that appear in the control menus of most of
the debugger windows:

• Copy→Window (ALT, -, P, W)

• Copy→Destination... (ALT, -, P, D)

Copy→Window (ALT, -, P, W)

Copies the current window contents to the destination file specified with the
File→Copy Destination... (ALT, F, P) command.

Command File Command

COP(Y) BAC(KTRACE)

COP(Y) BUT(TON)

COP(Y) EXP(RESSION)

COP(Y) IO

COP(Y) MEM(ORY)

COP(Y) REG(ISTER)

COP(Y) SOU(RCE)

COP(Y) WAT(CHPOINT)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Common Control Menu Commands

277

Copy→Destination... (ALT, -, P, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command

COP(Y) TO filename

See Also

"To change the list file destination" in the "Working with Debugger Windows"
section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Common Control Menu Commands

278

Button Window Commands

This section describes the following command:

• Edit... (ALT, -, E)

Edit... (ALT, -, E)

Lets you define and label buttons in the Button window.

You can set up buttons to execute commonly used commands or command
files.

Note that the Copy→Window command will generate a listing file that
contains a header followed by commands needed to recreate the buttons. By
removing the header, this file may be used as a command file.

Alternatively, you can log commands to a command file as you edit the
buttons (refer to To create a command file in the "Using Command Files"
section of the "Using the Debugger Interface" chapter). To recreate the
buttons, just run the command file that you created while editing the buttons.

Chapter 9: Window Control Menu Commands
Button Window Commands

279

Button Edit Dialog Box

Choosing the Edit... (ALT, -, E) command opens the following dialog box:

Command Specifies the command to be associated with the button.
Command syntax is described at the bottom of most help
topics under the "Command File Command" heading. Also,
look in the Command File and Macro Command Summary
chapter in the "Reference" part.

You can only enter a single command here; if you want a
series of commands to be executed when this button is
used, put them in a command file and use the command
"FILE COMMAND filename," where "filename" is the name
of your command file.

Name Specifies the button label to be associated with the
command.

Add Adds the button to the button window.

Button
Definitions

Lists the currently defined buttons. You can select button
definitions for deletion by clicking on them.

Chapter 9: Window Control Menu Commands
Button Window Commands

280

Delete Deletes the button definition selected in the Button
Definitions list box.

Delete All Deletes all buttons from the Button window.

Close Closes the dialog box.

Command File Command

BUTTON label "command"

See Also

"To create buttons that execute command files" in the "Using Command
Files" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Button Window Commands

281

Expression Window Commands

This section describes the following commands:

• Clear (ALT, -, R)

• Evaluate... (ALT, -, E)

Clear (ALT, -, R)

Erases the contents of the Expression window.

Command File Command

EVA(LUATE) CLE(AR)

Chapter 9: Window Control Menu Commands
Expression Window Commands

282

Evaluate... (ALT, -, E)

Evaluates expressions and displays the results in the Expression window.

Evaluate Expression Dialog Box

Choosing the Evaluate... (ALT, -, E) command opens the following dialog box:

Expression Lets you enter the expression to be evaluated.

Evaluate Makes the evaluation and places the results in the
Expression window.

Close Closes the dialog box.

Command File Command

EVA(LUATE) address

EVA(LUATE) "strings"

See Also

"Symbols" in the "Expressions in Commands" chapter.

Chapter 9: Window Control Menu Commands
Expression Window Commands

283

I/O Window Commands

This section describes the following command:

• Define... (ALT, -, D)

Define... (ALT, -, D)

Adds or deletes memory mapped I/O locations from the I/O window.

I/O Setting Dialog Box

Choosing the Edit→Definition... command opens the following dialog box:

Address Specifies the address of the I/O location to be defined.

Chapter 9: Window Control Menu Commands
I/O Window Commands

284

Size Specifies the data format of the I/O location to be defined.
You can select the Byte, 16 Bits, or 32 Bits option.

Space Specifies whether the I/O location is in memory or I/O
space.

Set Adds the specified I/O location.

I/O set Displays the information on the I/O locations that have
been set.

Delete Deletes the I/O locations selected in the I/O set list box.

Close Closes the dialog box.

Command File Command

IO BYTE/WORD IOSPACE/MEMORY address TO data
Replaces the contents of the specified I/O address with
the specified value in the specified size.

IO SET BYTE/WORD IOSPACE/MEMORY address
Registers the I/O address to be displayed in the
specified size.

IO DEL(ETE) BYTE/WORD IOSPACE/MEMORY address
Deletes the I/O specified with its address and size.

See Also

"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
I/O Window Commands

285

Memory Window Commands

This section describes the following commands:

• Display→Linear (ALT, -, D, L)

• Display→Block (ALT, -, D, B)

• Display→Byte (ALT, -, D, Y)

• Display→16 Bits (ALT, -, D, 1)

• Display→32 Bits (ALT, -, D, 3)

• Search... (ALT, -, R)

• Utilities→Copy... (ALT, -, U, C)

• Utilities→Fill... (ALT, -, U, F)

• Utilities→Image... (ALT, -, U, I)

• Utilities→Load... (ALT, -, U, L)

• Utilities→Store... (ALT, -, U, S)

Display→Linear (ALT, -, D, L)

Displays memory contents in single column format.

Command File Command

MEM(ORY) ABS(OLUTE)

Chapter 9: Window Control Menu Commands
Memory Window Commands

286

Display→Block (ALT, -, D, B)

Displays memory contents in multicolumn format.

Command File Command

MEM(ORY) BLO(CK)

Display→Byte (ALT, -, D, Y)

Displays memory contents as bytes.

Command File Command

MEM(ORY) BYTE

Display→16 Bit (ALT, -, D, 1)

Displays memory contents as 16-bit values.

Command File Command

MEM(ORY) WORD

Display→32 Bit (ALT, -, D, 3)

Displays memory contents as 32-bit values.

Command File Command

MEM(ORY) LONG

Chapter 9: Window Control Menu Commands
Memory Window Commands

287

Search... (ALT, -, R)

Searches for a value or string in a range of memory.

When the value or string is found, the location is displayed in the Memory
window. Choose the Window→Memory command to open the window.

The value or string can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the contents of the
clipboard will automatically appear in the dialog box that is opened.

Search Memory Dialog Box

Choosing the Search... (ALT, -, R) command opens the following dialog box:

Value Lets you enter a value.

String Lets you enter a string.

Start Lets you enter the starting address of the memory range to
search.

End Lets you enter the end address of the memory range to
search.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Searches for the specified value or string.

Chapter 9: Window Control Menu Commands
Memory Window Commands

288

Close Closes the dialog box.

Command File Command

SEA(RCH) MEM(ORY) BYTE/WORD/LONG addr_range value

SEA(RCH) MEM(ORY) STR(ING) "string"

See Also

"To search memory for a value or string" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Memory Window Commands

289

Utilities→Copy... (ALT, -, U, C)

Copies the contents of one memory area to another.

Memory Copy Dialog Box

Choosing the Utilities→Copy... (ALT, -, U, C) command opens the following
dialog box:

Start Lets you enter the starting address of the source memory
area.

End Lets you enter the end address of the source memory area.

Destination Specifies the starting address of the destination memory
area.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Copies the memory contents.

Close Closes the dialog box.

Command File Command

MEM(ORY) COP(Y) size address_range address

Chapter 9: Window Control Menu Commands
Memory Window Commands

290

See Also

"To copy memory to a different location" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities→Fill... (ALT, -, U, F)

Fills a range of memory with a specified value.

Memory Fill Dialog Box

Choosing the Utilities→Fill... (ALT, -, U, F) command opens the following
dialog box:

Value Lets you enter the filling value.

Start Lets you enter the starting address of the memory area to
be filled.

End Lets you enter the end address of the memory area to be
filled.

Size Selects the size of the filling value. If the value specified is
larger than can fit in the size selected, the upper bits of the
value are ignored. You can select the size using the Byte,
16 Bits, or 32 Bits option buttons.

Execute Executes the command.

Chapter 9: Window Control Menu Commands
Memory Window Commands

291

Close Closes the dialog box.

Command File Command

MEM(ORY) FIL(L) size address_range data

See Also

"To modify a range of memory with a value" in the "Displaying and Editing
Memory" section of the "Debugging Programs" chapter.

Utilities→Image... (ALT, -, U, I)

Copies the contents of a target system memory range into the corresponding
emulation memory range.

You can copy programs that are in target system ROM to emulation memory.
Once the program code is in emulation memory, you can use features like
breakpoints, run until, etc.

The address range must be mapped as emulation memory before choosing
this command.

Memory Image Dialog Box

Choosing the Utilities→Image... (ALT, -, U, I) command opens the following
dialog box:

Chapter 9: Window Control Menu Commands
Memory Window Commands

292

Start Lets you enter the starting address of the memory area.

End Lets you enter end address of the memory area.

Size Selects the data size using the Byte, 16 Bits, or 32 Bits
option buttons.

Execute Copies the target system memory into emulation memory.

Close Closes the dialog box.

Command File Command

MEM(ORY) IMA(GE) size address_range

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Memory Window Commands

293

Utilities→Load... (ALT, -, U, L)

Loads memory contents from a previously stored file.

Load Binary File Dialog Box

Choosing the Utilities→Load... (ALT, -, U, L) command opens the following
dialog box:

File Name Lets you enter the name of the file to load memory from.

Bytes Loaded After you choose the Import button, this box shows the
number of bytes that are loaded.

Record Format Lets you specify the format of the file from which you’re
loading memory. You can load Motorola S-Record or Intel
Hexadecimal format files.

Load Starts the memory load.

Cancel Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
the file name.

Command File Command

MEM(ORY) LOA(D) MOT(OSREC) filename

MEM(ORY) LOA(D) INT(ELHEX) filename

Chapter 9: Window Control Menu Commands
Memory Window Commands

294

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities→Store... (ALT, -, U, S)

Utilities→Store... (ALT, -, U, S)

Stores memory contents to a binary file.

Store Binary File Dialog Box

Choosing the Utilities→Store... (ALT, -, U, S) command opens the following
dialog box:

File Name Lets you enter the name of the file to which memory
contents are stored.

Bytes Stored After you choose the Export button, this box shows the
number of bytes that are stored.

Record Format Lets you specify the format of the file to which you’re
storing memory. You can select Motorola S-Record or Intel
Hexadecimal formats.

Start Lets you enter the starting address of the memory range to
be stored.

Chapter 9: Window Control Menu Commands
Memory Window Commands

295

End Lets you enter the ending address of the memory range to
be stored.

Store Starts the memory store.

Cancel Closes the dialog box.

Browse... Opens a file selection dialog box from which you can select
a file name.

Command File Command

MEM(ORY) STO(RE) MOT(OSREC) addr-range filename

MEM(ORY) STO(RE) INT(ELHEX) addr-range filename

See Also

"To copy target system memory into emulation memory" in the "Displaying
and Editing Memory" section of the "Debugging Programs" chapter.

Utilities→Load... (ALT, -, U, L)

Chapter 9: Window Control Menu Commands
Memory Window Commands

296

GDT/LDT/IDT Window Commands

This section describes the following commands:

• Search→Entry... (ALT, -, R, E)

• Search→Selector... (ALT, -, R, S)

Search→Entry... (ALT, -, R, E)

Displays the specified entry in the window.

When the specified entry is found, it is displayed on the top line in the GDT,
LDT, or IDT window. Choose the Window→GDT, Window→LDT, or
Window→IDT command to open the window.

Search GDT/LDT/IDT Entry Dialog Box

Choosing the Search→Entry... (ALT, -, R, E) command opens a dialog box
similar to the following:

The entry specifies the Nth entry in the table. For example, "20" specifies the
twentieth entry line shown in the table. Because each entry is 8 bytes, the
second entry starts at the 16th byte from the start of the table and the third
entry starts at the 24th byte from the start of the table.

• Bits 15 through 3 of the selector specify the offset into the table of the
start of the entry.

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

297

• Bit 2 specifies GDT when it is zero, or LDT when it is 1.

• Bits 1-0 specify privilege level. For example, if the second entry in the
GDT is privilege level 0, its selector is 8. If it had a DPL of 3, it would be
B (hex).

Find Searches for the specified entry.

Close Closes the dialog box.

Command File Command

GDT ENTRY value

LDT ENTRY value

See Also

"The GDT window", "The LDT window", or the "The IDT window" in the
"Debugger Windows" section of the "Concepts" chapter.

Search→Selector... (ALT, -, R, S)

Displays the specified selector in the window.

When the specified selector is found, it is displayed on the top line in the
GDT, LDT, or IDT window. Choose the Window→GDT, Window→LDT, or
Window→IDT command to open the window.

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

298

Search GDT/LDT/IDT Selector Dialog Box

Choosing the Search→Selector... (ALT, -, R, S) command opens a dialog box
similar to the following:

To search for a selector, choose the Search→Selector... command. Then
enter the selector number (in hex) and either press return or the Find button.

The lower three bits of the selector number are ignored on entry. For
example, selector number 30 may be used to search for selector 30, 31, 32,
or 33.

If the requested selector is within the range of the current table, it will be
positioned at the top of the window. If it is out of range, an error box will pop
up telling you it is an invalid selector.

Find Searches for the specified selector.

Close Closes the dialog box.

Command File Command

GDT SELECTOR value

LDT SELECTOR value

See Also

"The GDT window", "The LDT window", or the "The IDT window" in the
"Debugger Windows" section of the "Concepts" chapter.

Chapter 9: Window Control Menu Commands
GDT/LDT/IDT Window Commands

299

Register Windows’ Commands

This section describes the following commands:

• Continuous Update (ALT, -, U)

• Copy→Registers (ALT, -, P, R)

Continuous Update (ALT, -, U)

Specifies whether the Register window contents should be continuously
updated while running programs.

A check mark (√) next to the command shows that continuous update is
active.

Copy→Registers (ALT, -, P, R)

Copies the current Register window contents to the destination file specified
with the File→Copy Destination... (ALT, F, P) command.

Command File Command

COP(Y) REG(ISTER)

Chapter 9: Window Control Menu Commands
Register Windows’ Commands

300

Register Bit Fields Dialog Box

When a register has bit-fields, a dialog will pop-up and the register value may
be edited by changing the whole value or by editing individual bit-fields.

When editing in the dialog box, a carriage-return is the same as choosing the
OK button. To end an edit of a field within the dialog box without quitting,
use the Tab key.

Edited Value Shows the register value that corresponds to the selections
made below. You can also change the register’s value by
modifying the value in this text box.

Original Value Shows the value of the register when the dialog box was
opened. If the register could not be read, ’XXXXXXXX’ is
displayed.

Chapter 9: Window Control Menu Commands
Register Windows’ Commands

301

OK Modifies the register as specified, and closes the dialog box.

Cancel Closes the dialog box without modifying the register.

Chapter 9: Window Control Menu Commands
Register Windows’ Commands

302

Source Window Commands

This section describes the following commands:

• Display→Mixed Mode (ALT, -, D, M)

• Display→Source Only (ALT, -, D, S)

• Display→Select Source... (ALT, -, D, L)

• Search→String... (ALT, -, R, S)

• Search→Function... (ALT, -, R, F)

• Search→Address... (ALT, -, R, A)

Display→Mixed Mode (ALT, -, D, M)

Chooses the source/mnemonic mixed display mode.

Command File Command

MOD(E) MNE(MONIC) ON

See Also

"To display source code mixed with assembly instructions" in the "Loading
and Displaying Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

303

Display→Source Only (ALT, -, D, S)

Chooses the source only display mode.

Command File Command

MOD(E) MNE(MONIC) OFF

See Also

"To display source code only" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

304

Display→Select Source... (ALT, -, D, L)

Displays the contents of the specified C source file in the Source window.

This command is disabled before the object file is loaded or when no source
is available for the loaded object file.

Select Source Dialog Box

Choosing the Display→Select Source... (ALT, -, D, L) command opens the
following dialog box:

Source Files Lists C source files associated with the loaded object file.
You can select the source file to be displayed from this list.

Select Switches the Source window contents to the selected
source file.

Close Closes the dialog box.

Directory Opens the Search Directories Dialog Box from which you
can add directories to the search path.

Command File Command

FIL(E) SOU(RCE) module_name

Chapter 9: Window Control Menu Commands
Source Window Commands

305

See Also

"To display source files by their names" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search→String... (ALT, -, R, S)

Searches for, and displays, a string in the Source window.

The search starts from the current cursor position in the Source window,
may be either forward or backward, and may be case sensitive.

The string can be selected from another window (in other words, copied to
the clipboard) before choosing the command; it will automatically appear in
the dialog box that is opened.

Search String Dialog Box

Choosing the Search→String... (ALT, -, R, S) command opens the following
dialog box:

Find What Lets you enter the string.

Match Case Selects or deselects case matching.

Up Specifies that the search be from the current cursor
position backward.

Down Specifies that the search be from the current cursor
position forward.

Chapter 9: Window Control Menu Commands
Source Window Commands

306

Find Next Searches for the string.

Close Closes the dialog box.

Command File Command

SEA(RCH) STR(ING) FOR/BACK ON/OFF strings
Searches the specified string in the specified
direction with the case matching option ON or OFF.

See Also

"To search for strings in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Search→Function... (ALT, -, R, F)

Searches for, and displays, a function in the Source window.

The object file and symbols must be loaded before you can choose this
command.

Note This command displays the source file based on the function information in
the object file. Depending on the structure of the function, the command
may fail in displaying the declaration of the function.

Chapter 9: Window Control Menu Commands
Source Window Commands

307

Search Function Dialog Box

Choosing the Search→Function... (ALT, -, R, F) command opens the
following dialog box:

Function Lets you select the function to search for.

Find Searches the specified function.

Close Closes the dialog box.

Command File Command

SEA(RCH) FUNC(TION) func_name

See Also

"To search for function names in the source files" in the "Loading and
Displaying Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

308

Search→Address... (ALT, -, R, A)

Searches for, and displays, an address in the Source window.

Address expressions such as function names or symbols can be selected from
another window (in other words, copied to the clipboard) before choosing
the command; the contents of the clipboard will automatically appear in the
dialog box that is opened.

Search Address Dialog Box

Choosing the Search→Address... (ALT, -, R, A) command opens the following
dialog box:

Address Lets you enter the address to search for.

Find Searches for the specified address.

Close Closes the dialog box.

Command File Command

CUR(SOR) address
When used before the COME command, this command can be
used to run to a particular address.

See Also

"To search for addresses in the source files" in the "Loading and Displaying
Programs" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

309

Search Directories Dialog Box

Choosing the Directories... button in the Select Source dialog box opens the
following dialog box:

Directory Lets you enter the directory to be added to the source file
search path.

Search Source
Directories

Lists the directories in the source file search path.

Add Adds the directory entered in the Directory text box to the
source file search path.

Delete Deletes the directory in the Directory text box from the
source file search path.

Close Closes the dialog box.

See Also

"To specify source file directories" in the "Loading and Displaying Programs"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Source Window Commands

310

Symbol Window Commands

This section describes the following commands:

• Display→Modules (ALT, -, D, M)

• Display→Functions (ALT, -, D, F)

• Display→Externals (ALT, -, D, E)

• Display→Locals... (ALT, -, D, L)

• Display→Asm Globals (ALT, -, D, G)

• Display→Asm Locals... (ALT, -, D, A)

• Display→User defined (ALT, -, D, U)

• Copy→Window (ALT, -, P, W)

• Copy→All (ALT, -, P, A)

• FindString→String... (ALT, -, D, M)

• User defined→Add... (ALT, -, U, A)

• User defined→Delete (ALT, -, U, D)

• User defined→Delete All (ALT, -, U, L)

Display→Modules (ALT, -, D, M)

Displays the symbolic module information from the loaded object file.

Command File Command

SYM(BOL) LIS(T) MOD(ULE)

Chapter 9: Window Control Menu Commands
Symbol Window Commands

311

See Also

"To display program module information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display→Functions (ALT, -, D, F)

Displays the symbolic function information from the loaded object file.

The Symbol window displays the name, type and address range for C
functions.

Command File Command

SYM(BOL) LIS(T) FUN(CTION)

See Also

"To display function information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Display→Externals (ALT, -, D, E)

Displays the global variable information from the loaded object file.

The Symbol window displays the name, type and address for global variables.

Command File Command

SYM(BOL) LIS(T) EXT(ERNAL)

See Also

"To display external symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

312

Display→Locals... (ALT, -, D, L)

Displays the local variable information on the specified function.

The function name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name, type and offset from the frame
pointer for the local variables for the specified function.

Local Symbol Dialog Box

Choosing the Display→Locals... (ALT, -, D, L) command opens the following
dialog box:

Function Selects the function for which the local variable
information is displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) LIS(T) INT(ERNAL) function

See Also

"To display local symbol information" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

313

Display→Asm Globals (ALT, -, D, G)

Displays the global Assembler symbol information from the loaded object file.

The Symbol window displays the name and address for the global assembler
symbols.

Command File Command

SYM(BOL) LIS(T) GLO(BALS)

See Also

"To display global assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Display→Asm Locals... (ALT, -, D, A)

Displays the local symbol information from the specified module.

The module name can be selected from another window (in other words,
copied to the clipboard) before choosing the command; the clipboard
contents automatically appear in the dialog box that is opened.

The Symbol window displays the name and address for the local symbols for
the specified module.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

314

Assembler Symbol Dialog Box

Choosing the Display→Asm Locals... (ALT, -, D, A) command opens the
following dialog box:

Module Selects the module for which the local symbols are
displayed.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) LIS(T) LOC(AL) module

See Also

"To display local assembler symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

315

Display→User defined (ALT, -, D, U)

Displays the user-defined symbol information.

The Symbol window displays the name and address for the user-defined
symbols.

The User defined→Add... (ALT, -, D, U) command adds the user-defined
symbols.

Command File Command

SYM(BOL) LIS(T) USE(R)

See Also

"To display user-defined symbol information" in the "Displaying Symbol
Information" section of the "Debugging Programs" chapter.

Copy→Window (ALT, -, P, W)

Copies the information currently displayed in the Symbol window to the
specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

SYM(BOL) COP(Y) DIS(PLAY)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

316

Copy→All (ALT, -, P, A)

Copies all the symbol information to the specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

SYM(BOL) COP(Y) ALL

FindString→String... (ALT, -, F, S)

Displays the symbols that contain the specified string.

This command performs a case-sensitive search.

Symbol Matches Dialog Box

Choosing the FindString→String... (ALT, -, F, S) command opens the
following dialog box:

String Specifies the string.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

317

Command File Command

SYM(BOL) MAT(CH) string

See Also

"To display the symbols containing the specified string" in the "Displaying
Symbol Information" section of the "Debugging Programs" chapter.

User defined→Add... (ALT, -, U, A)

Adds the specified user-defined symbol.

User-defined symbols may be used in debugger commands just like other
program symbols.

The symbol name must satisfy the following requirements:

• The name must begin with an alphabetical, _ (underscore), or ?
character.

• The following characters must be any of alphanumerical, _ (underscore),
or ? characters.

• The maximum number of characters is 256.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

318

User defined Symbol Dialog Box

Choosing the User defined→Add... (ALT, -, U, A) command opens the
following dialog box:

Symbol Name Specifies the symbol to be added.

Address Specifies the address of the symbol.

OK Executes the command and closes the dialog box.

Cancel Cancels the command and closes the dialog box.

Command File Command

SYM(BOL) ADD symbol_nam address

See Also

"To create a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Symbol Window Commands

319

User defined→Delete (ALT, -, U, D)

Deletes the specified user-defined symbol.

This command deletes the user-defined symbol selected in the Symbol
window.

Command File Command

SYM(BOL) DEL(ETE) symbol_nam

See Also

"To delete a user-defined symbol" in the "Displaying Symbol Information"
section of the "Debugging Programs" chapter.

User defined→Delete All (ALT, -, U, L)

Deletes all the user-defined symbols.

Command File Command

SYM(BOL) DEL(ETE) ALL

Chapter 9: Window Control Menu Commands
Symbol Window Commands

320

Trace Window Commands

This section describes the following commands:

• Display→Bus Cycle ON (ALT, -, D, B)

• Display→Source Only (ALT, -, D, S)

• Display→Count→Absolute (ALT, -, D, C, A)

• Display→Count→Relative (ALT, -, D, C, R)

• Display→From State... (ALT, -, D, F)

• Copy→Window (ALT, -, P, W)

• Copy→All (ALT, -, P, A)

• Search→Trigger (ALT, -, R, T)

• Search→State... (ALT, -, R, S)

• Trace Spec Copy→Specification (ALT, -, T, S)

• Trace Spec Copy→Destination... (ALT, -, T, D)

Chapter 9: Window Control Menu Commands
Trace Window Commands

321

Display→Bus Cycle ON (ALT, -, D, B)

Selects the bus cycle mixed display mode.

Command File Command

TRA(CE) DIS(PLAY) BUS

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Display→Source Only (ALT, -, D, S)

Selects the source only display mode.

Command File Command

TRA(CE) DIS(PLAY) SOU(RCE)

See Also

"To display bus cycles" in the "Tracing Program Execution" section of the
"Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

322

Display→Count→Absolute (ALT, -, D, C, A)

Selects the absolute mode (the total time elapsed since the trigger) for count
information.

Command File Command

TRA(CE) DIS(PLAY) ABS(OLUTE)

See Also

"To display accumulated or relative counts" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Display→Count→Relative (ALT, -, D, C, R)

Selects the relative mode (the time interval between the current and
previous cycle) for count information.

Command File Command

TRA(CE) DIS(PLAY) REL(ATIVE)

See Also

"To display accumulated or relative counts" in the "Tracing Program
Execution" section of the "Debugging Programs" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

323

Trace Display→From State... (ALT -, D, F)

Lets you specify a state and/or a byte within a state where you wish to begin
disassembly, as well as a segment type (16-bit or 32-bit).

Normally the disassembler begins disassembly with the first byte of the first
captured op-code fetch. Sometimes this does not result in correct
disassembly because the first byte is a continuation of a previous opcode.
When a branch-trace message is found, the disassembler will re-synchronize.
However, this dialog box allows you to manually set the correct starting byte.

Trace Disassemble From... Dialog Box

Choosing the Display→From State... (ALT, -, D, F) command opens the
following dialog box:

State Lets you enter a state number (as shown in the left-most
column in the trace display) where you wish to begin
disassembly.

Byte Lets you specify the byte within the selected state where
you wish to begin disassembly.

Segment Type Lets you specify what type of segment (16-bit or 32-bit)
the code is in. You may specify this without specifying a
disassembly state.

Note that the state you specify should be a control read (instead of a data
read).

Chapter 9: Window Control Menu Commands
Trace Window Commands

324

Command File Command

MODE TRACE DISPLAY FROM <state>

MODE TRACE DISPLAY BYTE0/BYTE1/BYTE2/BYTE3

MODE TRACE DISPLAY USE16/USE32

Copy→Window (ALT, -, P, W)

Copies the information currently in the Trace window to the specified listing
file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

TRA(CE) COP(Y) DIS(PLAY)

See Also

"To copy window contents to the list file" in the "Working with Debugger
Windows" section of the "Using the Debugger Interface" chapter.

Chapter 9: Window Control Menu Commands
Trace Window Commands

325

Copy→All (ALT, -, P, A)

Copies all the trace information to the specified listing file.

The listing file is specified with the File→Copy Destination... (ALT, F, P)
command.

Command File Command

TRA(CE) COP(Y) ALL

Search→Trigger (ALT, -, R, T)

Positions the trigger state at the top of the Trace window.

Command File Command

TRA(CE) FIN(D) TRI(GGER)

Chapter 9: Window Control Menu Commands
Trace Window Commands

326

Search→State... (ALT, -, R, S)

Positions the specified state at the top of the Trace window.

Search Trace State Dialog Box

Choosing the Search→State... (ALT, -, R, S) command opens the following
dialog box:

State Lets you enter the trace state number to search for.

Find Searches for the specified trace state.

Close Closes the dialog box.

Command File Command

TRA(CE) FIN(D) STA(TE) state_num

Chapter 9: Window Control Menu Commands
Trace Window Commands

327

Trace Spec Copy→Specification (ALT, -, T, S)

Copies the current trace specification to the listing file.

Command File Command

TRA(CE) COP(Y) SPE(C)

Trace Spec Copy→Destination... (ALT, -, T, D)

Names the listing file to which debugger information may be copied.

This command opens a file selection dialog box from which you can select the
listing file. Listing files have the extension ".LST".

Command File Command

COP(Y) TO filename

Chapter 9: Window Control Menu Commands
Trace Window Commands

328

WatchPoint Window Commands

This section describes the following command:

• Edit...

Edit... (ALT, -, E)

Registers or deletes watchpoints.

Variables can be selected from another window (in other words, copied to the
clipboard) before choosing the Edit... (ALT, -, E) command from the
WatchPoint window’s control menu, and they will automatically appear in the
dialog box that is opened.

Dynamic variables can be registered and displayed in the WatchPoint window
when the current program counter is in the function in which the variable is
declared. If the current program counter is not in the function, the variable
name is invalid and results in an error.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

329

WatchPoint Dialog Box

Choosing the Edit... (ALT, -, E) command from the WatchPoint window’s
control menu opens the following dialog box:

Variable Lets you enter the name of the variable to be registered as
a watchpoint. The contents of the clipboard, usually a
variable selected from another window, automatically
appears in this text box.

Watch Points
Set

Lists the current watchpoints and allows you to select the
watchpoint to be deleted.

Set Copies the specified variable to the WatchPoint window.

Delete Deletes the variable selected in the Watch Points Set box.

Delete All Deletes all the watchpoints.

Close Closes the dialog box.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

330

Command File Command

WP SET address
Registers the specified address as a watchpoint.

WP DEL(ETE) address
Deletes the specified watchpoint.

WP DEL(ETE) ALL
Deletes all the current watchpoints.

See Also

"To monitor a variable in the WatchPoint window" in the "Displaying and
Editing Variables" section of the "Debugging Programs" chapter.

"Symbols" in the "Expressions in Commands" chapter.

Chapter 9: Window Control Menu Commands
WatchPoint Window Commands

331

332

10

Window Pop-up Menu Commands

333

Window Pop-up Menu Commands

This chapter describes the commands that can be chosen from the pop-up
menus in debugger windows. Pop-up menus are accessed by clicking the
right mouse button in the window.

• BackTrace Window Pop-up Commands

• Source Window Pop-up Commands

334

BackTrace Window Pop-up Commands

• Source at Stack Level

Source at Stack Level

For the cursor-selected function in the BackTrace window, this command
displays the function call in the Source window.

Chapter 10: Window Pop-up Menu Commands
Window Pop-up Menu Commands

335

Source Window Pop-up Commands

• Set Breakpoint

• Clear Breakpoint

• Evaluate It

• Add to Watch

• Run to Cursor

Set Breakpoint

Sets a breakpoint on the line containing the cursor. Refer to the
Breakpoint→Set at Cursor (ALT, B, S) command.

Clear Breakpoint

Deletes the breakpoint on the line containing the cursor. Refer to the
Breakpoint→Delete at Cursor (ALT, B, D) command.

Chapter 10: Window Pop-up Menu Commands
Source Window Pop-up Commands

336

Evaluate It

Evaluates the clipboard contents and places the result in the Expression
window. Refer to the Evaluate... (ALT, -, E) command available from the
Expression window’s control menu.

Add to Watch

Adds the selected variable (that is, the variable copied to the clipboard) to
the WatchPoint window. Refer to the Variable→Edit... (ALT, V, E) command.

Run to Cursor

Executes the program up to the Source window line containing the cursor.
Refer to the Execution→Run to Cursor (ALT, R C) command.

Chapter 10: Window Pop-up Menu Commands
Source Window Pop-up Commands

337

338

11

Other Command File and Macro
Commands

339

Other Command File and Macro Commands

This chapter describes the commands that are only available in command
files, break macros, or buttons.

• BEEP

• EXIT

• FILE CHAINCMD

• FILE RERUN

• NOP

• TERMCOM

• WAIT

340

BEEP

Sounds beep during command file or break macro execution.

Command File Command

BEEP

Chapter 11: Other Command File and Macro Commands
BEEP

341

EXIT

Exits, or conditionally exits, command file execution.

Command File Command

EXIT
Exits command file execution.

EXIT VAR(IABLE) address value
Exits command file execution if the variable contains
the value.

EXIT REG(ISTER) regname value
Exits command file execution if the register contains
the value.

EXIT MEM(ORY) BYTE/WORD/LONG address value
Exits command file execution if the memory location
contains the value.

EXIT IO BYTE/WORD address value
Exits command file execution if the I/O location
contains the value.

Chapter 11: Other Command File and Macro Commands
EXIT

342

FILE CHAINCMD

Chains command file execution.

This command lets you run one command file from another nonrecursively; in
other words, control is not returned to the original command file.

By contrast, the FILE COMMAND command is recursive; if you use the FILE
COMMAND command to run one command file from another, control will be
returned to the original command file. FILE COMMAND commands can be
nested four levels deep.

Command File Command

FILE CHAINCMD filename

Chapter 11: Other Command File and Macro Commands
FILE CHAINCMD

343

FILE RERUN

Starts command file execution over again.

This command is useful for looping stimulus files or running a demo or other
command file continuously.

Command File Command

FILE RERUN

Chapter 11: Other Command File and Macro Commands
FILE RERUN

344

NOP

No operation.

This command may be used to prefix comment lines in command files.

Command File Command

NOP

NOP comments

Chapter 11: Other Command File and Macro Commands
NOP

345

TERMCOM

Sends Terminal Interface commands to the HP 64700.

You cannot see output from these commands. Refer to your
Installation/Service/Terminal Interface User’s Guide for more information
about these commands.

Command File Command

TERMCOM ti-command

Chapter 11: Other Command File and Macro Commands
TERMCOM

346

WAIT

Inserts wait delays during command file execution.

Command File Command

WAI(T) MON(ITOR)
Waits until MONITOR status.

WAI(T) RUN
Waits until RUN status.

WAI(T) UNK(NOWN)
Waits until UNKNOWN status.

WAI(T) SLO(W)
Waits until SLOW CLOCK status.

WAI(T) TGT(RESET)
Waits until TARGET RESET status.

WAI(T) SLE(EP)
Waits until SLEEP status.

WAI(T) GRA(NT)
Waits until BUS GRANT status

WAI(T) NOB(US)
Waits until NOBUS status.

WAI(T) TCO(M)
Waits until the trace is complete.

WAI(T) THA(LT)
Wait until the trace is halted.

WAI(T) TIM(E) seconds
Waits for a number of seconds.

Chapter 11: Other Command File and Macro Commands
WAIT

347

348

12

Error Messages

349

Error Messages

Bad RS-232 port name

RS-232 port names must be of the form "COM<number>" where <number> is
a decimal number from 1 to the number of communications ports your PC
has.

Bad RS-422 card I/O address

The RS-422 card’s I/O address must be a hexadecimal number from 100H
through 3F8H whose last digit is 0 or 8 (100, 108, 110, etc.). Select an I/O
address that does not conflict with the other cards in your PC.

General RS-232 communications error

In general, these messages indicate that the RS-232 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the RS232C driver line in the
selection box); if you connect with no problems the second time, do not
worry about the original message.

If you get this message other than during connection, you can try to fix the
problem by:

• Reducing the length of the RS-232 cable between the PC and the
HP 64700.

• Reducing the number of tasks running under Windows.

• Reducing the baud rate (the default is 19200).

General RS-422 communications error

In general, these messages indicate that the RS-422 communication has
intermittent errors. Sometimes you will get this message if you power on the
emulator, or when you try to connect to the emulator. In that case, simply
retry the connection (by double-clicking on the HP-RS422 driver line in the

350

selection box); if you connect with no problems the second time, do not
worry about the original message.

If you get this message other than during connection, you can try to fix the
problem by:

• Reducing the number of tasks running under Windows.

• Reducing the baud rate (the default is 230400).

HP 64700 locked by another user

Because it’s possible to destroy another user’s measurement by choosing the
Unlock button in the error dialog box, check with the other user before
unlocking the HP 64700.

Note that if the other user is actually using an interface to the HP 64700, an
Unlock request will fail.

HP 64700 not responding

The HP 64700 hasn’t responded within the timeout period. There are various
causes for this error. For example, a character could have been dropped
during RS-232 communications or some network problem could have
disrupted communications.

Usually, you must cycle power to the HP 64700 to fix this problem.

Incorrect DLL version

The version of the dynamic link libraries (.DLLs) used by the Real-Time C
Debugger does not match the version of the main program (.EXE).

If you have two versions of debugger on your system, this can happen when
you try to execute both of them at the same time or when you execute one
version then the other without restarting Windows. (Once DLLs have been
loaded into Windows memory, they stay there until Windows exits.)

This can also happen if you have somehow loaded different versions of the
DLLs and the executable. In this case, you must reload your software.

Chapter 12: Error Messages

351

Incorrect LAN Address (HP-ARPA, Windows for Workgroups)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of 4 digits separated by dots. Example:

15.6.28.0

A hostname is a name which is related (mapped) to an IP address by a
database. For example, the file \LANMAN.DOS\ETC\HOSTS (HP-ARPA) or
\WINDOWS\HOSTS (Windows for Workgroups) may contain entries of the
form:

system1 15.6.28.0

Note The directory of the "hosts" file may be different on your system.

If "HP Probe" or "DNR" (Domain Name Resolution) is available on your PC,
those are consulted first for a mapping between the hostname and the IP
address. If the hostname is not found by that method, or if those services are
unavailable, the local "hosts" file is consulted for the mapping.

Note that if "Probe" is available on your system but unable to resolve the
address, there will be about a 15-second delay while Probe is attempting to
find the name on the network.

Incorrect LAN Address (Novell)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of 4 digits separated by dots. Example:

15.6.28.0

A hostname is a name which is related (mapped) to an IP address by a
database. For example, the file \NET\TCP\HOSTS may contain entries of the
form:

system1 15.6.28.0

Note The directory of the "hosts" file may be different on your system. Also, all
files defined by the PATH TCP_CFG setting under "Protocol TCPIP" in the
NET.CFG files are searched.

Chapter 12: Error Messages

352

Incorrect LAN Address (WINSOCK)

A LAN address can be one of two types: an IP address, or a host name.

An IP address consists of 4 digits separated by dots. Example:

15.6.28.0

A hostname is a name which is related (mapped) to an IP address by a
database. For example, the hosts file may contain entries of the form:

system1 15.6.28.0

Note Because WINSOCK is a standard interface to many LAN software vendors,
you need to read your LAN vendor’s documentation before specifying the
LAN address.

Internal error in communications driver

These types of errors typically occur because other applications have used up
a limited amount of some kind of global resource (such as memory or
sockets).

You usually have to reboot the PC to free the global resources used by the
communications driver.

Internal error in Windows

These types of errors typically occur because other applications have used up
a limited amount of some kind of global resource (such as memory, sockets,
tasks, or handles).

You usually have to reboot the PC to free the global resources used by
Windows.

Interrupt execution (during run to caller)

The Enter dialog box appears when running to the caller of a function and
the caller is not found within the number of milliseconds specified by
StepTimerLen in the debugger application’s ".INI" file.

Chapter 12: Error Messages

353

You can cancel the run to caller command by choosing the STOP button
which causes program execution to stop, the breakpoint to be deleted, and
the processor to transfer to the RUNNING IN USER PROGRAM status.

Interrupt execution (during step)

The Step dialog box appears when stepping a source line or assembly
instruction and the source line or instruction does not execute within the
number of milliseconds specified by StepTimerLen in the debugger
application’s ".INI" file.

You can cancel the step command by choosing the STOP button which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Interrupt execution (during step over)

The Step dialog box appears when stepping over a function or subroutine and
the function or subroutine does not execute within the number of
milliseconds specified by StepTimerLen in the debugger application’s ".INI"
file.

You can cancel the step over command by choosing the STOP button which
causes program execution to stop, the breakpoint to be deleted, and the
processor to transfer to the RUNNING IN USER PROGRAM status.

Invalid transport name

The transport name chosen does not match any of the possible transport
names (RS232C, HP-ARPA, Novell-WP, or HP-RS422).

The transport name can be specified either on the command line with the -t
option or in the .INI file:

[Port]
Transport=<transport name>

Choosing an appropriate transport in the dialog box that follows this error
will correct the entry in the .INI file, but if the error is in the command line
option, you need to modify the command line (by using the "Properties..."
command in the Program Manager).

Chapter 12: Error Messages

354

LAN buffer pool exhausted

The LAN buffer pool is used as a temporary buffer between when the
debugger sends data and when the LAN actually sends it. When this pool is
exhausted, debugger cannot send any data across the LAN.

The size of the sockets buffer pool is configured in the network installation
procedure.

LAN communications error

This occurs for any kind of LAN error.

Refer to the documentation for your LAN software for descriptions of the
types of problems that can cause LAN errors.

LAN MAXSENDSIZE is too small

This means that you have configured your LAN with a value or
MAXSENDSIZE that is less than 100 bytes. Note that the default is 1024
bytes.

The Real-Time C Debugger requires at least 100 bytes for this parameter.

To fix this, change the following entry in your PROTOCOL.INI file and reboot
your PC:

[SOCKETS]
MAXSENDSIZE

LAN Socket error

A TCP-level error has occurred on the network. See your network
administrator.

No initialization (.INI) file was found

For example, if the application is Bxxxx.EXE, the Bxxxx.INI file is expected
to be found in the same directory.

To fix this problem, you can recreate the initialization file by copying
information from the default file, for example BxxxxDEF.INI, which is in the
same directory as the application. If you cannot find the default initialization
file either, you can reinstall the debugger software.

Chapter 12: Error Messages

355

Out of DOS Memory for LAN buffer

This means that there is not enough memory in the lower 1 Mbyte of address
space (that is, conventional memory) for the LAN driver to allocate a buffer
to communicate with the LAN TSR.

When you are in windows, and execute the DOS command "mem," you
cannot see the memory that is in the lower 1 Mbyte that is used by the
windows program. If you have the Microsoft program "heapwalker," you can
use it to see what programs have allocated space in the address range 0
through FFFFF.

To fix this, you can:

• Reduce the number of TSRs running on your PC (before Windows starts)
that use conventional memory.

• Reconfigure your network to have fewer sockets or modules loaded, or to
be configured for fewer total connections.

• Use a different memory manager to reduce your network memory usage,
such as QEMM.

Out of Windows timer resources

The debugger is not able to acquire the timer resources it needs.

There are a limited number of timer resources in Windows. You may be able
to free timer resources by closing other applications.

PC is out of RAM memory

The debugger is not able to acquire the memory it needs because other
applications are using it or because of fragmented memory.

You may be able to free memory by closing other applications, or you might
have to reboot the PC to cause memory to be unfragmented.

Timed out during communications

The HP 64700 hasn’t responded within the timeout period. There are various
causes for this error. For example, a character could have been dropped
during RS-232 communications or some network problem could have
disrupted communications.

Chapter 12: Error Messages

356

The timeout period for reading and writing to the HP 64700 is defined by
TimeoutSeconds in either the [RS232C], [HP-ARPA], [Novell-WP], or
[HP-RS422] section of the Bxxxx.INI file. For example, if you are using the
RS-232C transport:

[RS232C]
TimeoutSeconds=<seconds>

The number of seconds can be between 1 and 32767. The default is 20
seconds.

If you’re using RS-232C or RS-422 transport ...

The TimeoutSeconds value is also used for connecting to the HP 64700 (as
well as for reading and writing).

If you’re using HP-ARPA or Novell-WP transport ...

If there are several gateways or bridges between the PC and the emulator,
larger values of TimeoutSeconds may be reasonable.

The timeout period for connecting to the HP 64700 is defined in the
PROTOCOL.INI file.

[TCPIP_XFR]
TCPCONNTIMEOUT=<seconds>

The default connection timeout is 30 seconds.

Chapter 12: Error Messages

357

358

Part 4

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

359

Part 4

360

13

Concepts

361

Concepts

This chapter describes the following topics.

• Debugger Windows

• Monitor Program Options

• Trace Signals and Predefined Status Values

• Understanding 80386 Analysis

• Understanding Address, Data, and Status

• Entering Addresses as Constants

• Unexpected Stepping Behavior

362

Debugger Windows

This section describes the following debugger windows:

• BackTrace

• Button

• Expression

• I/O

• Memory

• GDT

• LDT

• IDT

• Register

• Source

• Status

• Symbol

• Trace

• WatchPoint

Chapter 13: Concepts
Debugger Windows

363

The BackTrace Window

The BackTrace window displays the function associated with the current
program counter value and this function’s caller functions backward. The
current arguments of these functions are also displayed.

The BackTrace window is updated when program execution stops at an
occurrence of breakpoint, break, or Step command.

Note that the return address can occur any number of bytes from the base
pointer of the stack. The OMF386 symbol file contains information used to
locate return addresses. If symbols are not available (typically for
assembly-language routines), the backtrace is shown as far as it can decode
the addresses, and then display of the backtrace stops.

The BackTrace window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

By clicking the right mouse button in the BackTrace window, you can access
the Source at Stack Level pop-up menu command. Cursor-select a function
in the BackTrace window and choose this command to display (in the Source
window) the code that called the function.

See Also

"BackTrace Window Pop-Up Commands" in the "Window Pop-Up Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

364

The Button Window

The Button window contains user-defined buttons that, when chosen,
execute debugger commands or command files.

The Button window’s control menu provides the Edit... (ALT, -, E)
command which lets you add and delete buttons from the window.

See Also

"Using Command Files" in the "Using the Debugger Interface" chapter.

"Button Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

365

The Expression Window

The Expression window displays the results of the EVALUATE commands in
command files or break macros.

When a variable name is specified with the EVALUATE command, the
Expression window displays the evaluation of the variable. When a quoted
string of ASCII characters is specified with the EVALUATE command, the
Expression window displays the string.

The Expression window’s control menu provides the Evaluate... (ALT, -, E)
command which lets you evaluate expressions and see the results in the
window.

See Also

"Expression Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

366

The I/O Window

The I/O window displays the contents of the I/O locations.

You can modify the contents of I/O locations by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The I/O window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

Chapter 13: Concepts
Debugger Windows

367

Note that if any address in the displayed range is not readable (for example,
it is beyond the segment limit in protected mode), all memory will be
displayed as dashes (--). In this case, resize the memory window to only
display the address ranges needed.

Also, do not use the memory window for reading memory-mapped I/O
devices; use the I/O window (to ensure that only the bytes necessary to read
the specific address are read).

See Also

"Displaying and Editing I/O Locations" in the "Debugging Programs" chapter.

"I/O Window Commands" in the "Window Control Menu Commands" chapter.

Chapter 13: Concepts
Debugger Windows

368

The Memory Window

The Memory window displays memory contents.

The Memory window has control menu commands that let you change the
format of the memory display and the size of the locations displayed or
modified. When the absolute (single-column) format is chosen, symbols
corresponding to addresses are displayed. When data is displayed in byte
format, ASCII characters for the byte values are also displayed.

When Memory window polling is turned ON, you can modify the addresses
displayed or contents of memory locations by double-clicking on the address
or value, using the keyboard to type in the new address or value, and
pressing the Enter key.

The Memory window contents are updated periodically when the processor is
running the user program.

If a location is in target system memory, a temporary break from the user
program into the monitor program must occur in order for the debugger to
update or modify that location’s contents. If it’s important that the user
program execute without these types of interruptions, you should disallow
monitor intrusion. Even when monitor intrusion is allowed, you can stop
temporary breaks during the window update by turning polling OFF.

Chapter 13: Concepts
Debugger Windows

369

In contrast to the memory window, the I/O window only reads the number of
bytes specified in the Size field when it displays the data. The memory
window reads a buffer which may contain many more bytes than are
displayed. Therefore, if a memory address is surrounded by addresses you
do not want to read, use the I/O window to avoid reading the surrounding
addresses. Typically, you will want to use the I/O window when displaying
memory-mapped I/O.

See Also

"Displaying and Editing Memory" in the "Debugging Programs" chapter.

"Memory Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

370

The GDT Window

The GDT window displays the contents of the current Global Descriptor
Table. The current GDT can be found by looking at the current value of the
gdtr.b (GDT base) and gdtr.l (GDT limit) registers in the System Registers
window.

You cannot display the GDT window (or gdtr.l and gdtr.b) if the emulator is
running your target program and monitor intrusion is disallowed unless the
GDT is in dual-port memory.

If you are in real-mode (prior to entering protected mode), you cannot
display a valid GDT window until the LGDT opcode has been executed, or
you have modified the gdtr.b register.

Note that selector 0 is always the NULL selector. Referencing it in an 80386
program will always cause the 80386 to generate a General Protection Fault.

Each display line has six fields:

• Sel. The selector of the segment. This is the value loaded into a segment
descriptor (CS, DS, etc). The last two bits of the selector are the DPL of
the segment.

• Location. This is the physical address of this entry. This is useful when
looking at trace lists.

Chapter 13: Concepts
Debugger Windows

371

• Type. This decodes the type of the segment. Types include LDT (this
entry points to a Local Descriptor Table), Code segments, Data
segments, TSS blocks, and various gates.
"80286 call gates/TSS/etc" are decoded simply as the type, but the
attribute will include "16-bit".
"80386 gates/TSS/etc" are decoded simply as the type, but the attribute
will be "32-bit".

• DPL. This is the Descriptor Privilege level of the entry.

• Address/Range. This is either a starting and ending address for the entry
or a selector (depending on the type of entry). For expand-down
segments, the address range is the real address range (that is, the
wrapping is taken into account). For example, if the mapping file shows
the range as ’start=00001EE4H limit=FFFFEFFFH Expand-down’, the
Address/Range column will show the range as ’ee4..1ee3’, which is the
linear address range that will be used.

• Attributes. This decodes the attributes according to the type of entry.

The GDT window shows the descriptor table in memory, not the shadow
registers in the CPU. In order to change the shadow registers in the CPU,
you must change the GDT table in memory (using the memory window).
Break into the monitor, modify the desired segment register, and then exit
the monitor.

See Also

"Searching for Entries", and "Searching for Selectors" in the "GDT/LDT/IDT
Window Commands" section of the "Debugging Programs" chapter.

Chapter 13: Concepts
Debugger Windows

372

The LDT Window

The LDT window displays the contents of the current Local Descriptor Table.
(The current LDT can be found by looking at the current value of the ldtr.b
and ldtr.l (LDT base and limit) registers in the System Registers window.)

You cannot display the LDT window if the emulator is running your target
program with monitor intrusion disallowed unless the LDT is in dual-port
memory.

If you are in real-mode (prior to entering protected mode), you cannot
display valid LDT window content until the LLDT opcode has been executed,
or you have modified the ldtr.b register.

The selector numbers have bit 2 set (that is, the first selector is 4, not 0).
That is how the processor differentiates between a selector in the GDT and
the same selector in the LDT. Selector 4 (entry 0) is legal, but some builders
leave it empty.

See the GDT window for descriptions of each of the six fields in the display
lines.

The LDT window shows the descriptor table in memory, not the shadow
registers in the CPU. In order to change the shadow registers in the CPU,
you must change the LDT table in memory (using the memory window).
Break into the monitor, modify the desired segment register, and then exit
the monitor.

See Also

"Searching for Entries", and "Searching for Selectors" in the "GDT/LDT/IDT
Window Commands" section of the "Debugging Programs" chapter.

Chapter 13: Concepts
Debugger Windows

373

The IDT Window

The IDT window displays the contents of the current Interrupt Descriptor
Table. The current IDT can be found by looking at the current value of the
idtr register in the System Registers window. It refers to an entry in the
GDT, which in turn points to the linear address of the table.

You cannot display the IDT window if the emulator is running your target
program and monitor intrusion is disallowed unless the IDT is in dual-port
memory.

The IDT window display is only useful in protected mode.

• Sel. The selector of the descriptor.

• Location. This is the physical address of the entry. This is useful when
looking at trace lists.

• Type. This decodes the type of the selector. Only interrupt gates, trap
gates, and task gates may be in the IDT.

• DPL. This is the Descriptor Privilege level of the entry.

• Address/Range. This is the address of the interrupt routine or task TSS.

• Attributes. This decodes the attributes according to the type of entry.

Chapter 13: Concepts
Debugger Windows

374

The name of the interrupt is displayed for the first 32 entries.

See Also

"Searching for Entries", and "Searching for Selectors" in the "GDT/LDT/IDT
Window Commands" section of the "Debugging Programs" chapter.

The Register Windows

The Register windows display the contents of registers. There is a separate
window for each class of registers. For example, the Basic Registers are in
one class of registers.

Each register is represented by a row which holds a mnemonic name, a
current value, and a description of the register contents.

The registers may be edited by either single clicking or double-clicking on the
value. A single click puts you in a mode where the left or right arrow keys
may be used for placement of the cursor. Double-clicking puts you in one of
two modes; either a Register Bit Fields dialog pops up or the value is
highlighted. When the value is highlighted, the backspace key will erase the
value and a completely new value may be entered. This mode is applicable to

Chapter 13: Concepts
Debugger Windows

375

registers where the value is considered a single number and is not divided by
any bit-fields.

The Register window contents are updated periodically when the processor is
running the user program and monitor intrusion is allowed.

A temporary break from the user program into the monitor program must
occur in order for the debugger to update or modify register contents. If it is
important that the user program execute without these types of
interruptions, you should disallow monitor intrusion.

See Also

"Displaying and Editing Registers" in the "Debugging Programs" chapter.

"Register Window Commands" in the "Window Control Menu Commands"
chapter.

The Source Window

The Source window displays source files, optionally with disassembled
instructions intermixed.

The Source window contains a cursor whose position is used when setting or
deleting breakpoints or break macros or when running the program up to a
certain line.

The Source window lets you copy strings, usually variable or function names
to be used in commands, to the clipboard by double-clicking words or by
holding down the left mouse button and dragging the mouse pointer.

The Source window also provides commands in the control menu that let
you select whether disassembled instruction mnemonics should appear
intermixed with the C source code.

Chapter 13: Concepts
Debugger Windows

376

By clicking the right mouse button in the Source window, you can also access
popup menu commands.

Filename The name of the displayed source file appears at the top of
the window.

Source Lines C source code is displayed when available. Source lines are
preceded by the corresponding line numbers.

When programs are written in assembly language or when
no C source code is available, disassembled instruction
mnemonics are displayed.

Disassembled
Instructions

In the Mnemonic Display mode, disassembled instruction
mnemonics are intermixed with the source lines.
Disassembled lines contain address, data, and mnemonic
information.

When symbolic information is available for the address, the
corresponding symbol line precedes the disassembled
instruction, displayed in the module_name\\symbol_name
format.

Current PC The line associated with the current program counter is
highlighted.

Chapter 13: Concepts
Debugger Windows

377

Scroll Bars For C source files, the display scrolls within the source
files. For assembly language programs or programs for
which no source code is available, the display scrolls for all
the memory space.

"BP" Marker The breakpoint marker, "BP", appears at the beginning of
the breakpoint lines or break macro lines.

Break Macro
Lines

Decimal points following line numbers or addresses
indicate break macro lines.

Note When programs are stored in target system memory and the emulator is
running in real-time, source code cannot be displayed.

See Also

"Loading and Displaying Programs", "Stepping, Running, and Stopping the
Program", and "Using Breakpoints and Break Macros" in the "Debugging
Programs" chapter.

"Source Window Commands" in the "Window Control Menu Commands"
chapter.

"Source Window Popup Commands" in the "Window Popup Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

378

The Status Window

The Status window shows the emulator status, the trace status, and the
scope of the current program counter value.

Emulation Processor Status Messages

EMULATION RESET
The emulation processor is being held in the reset
state by the emulator.

RUNNING IN MONITOR
The emulation processor is executing the monitor
program.

RUNNING IN USER PROGRAM
The emulation processor is executing the user program.

RUNNING REALTIME IN USER PROGRAM
The emulation processor is executing the user program
in the real-time mode where:

• Any command that would temporarily interrupt user program execution
is disabled.

• Any on-screen information that would be periodically updated by
temporarily interrupting user program execution (target system memory
or register contents, for example) is disabled.

Chapter 13: Concepts
Debugger Windows

379

WAITING FOR TARGET RESET
The emulation processor is waiting for a RESET signal
from the target system. User program execution starts
on reception of the RESET signal.

SLOW CLOCK
No proper clock pulse is supplied from the external
clock.

EMULATION RESET BY TARGET
The emulation processor is being held in a reset state
by a RESET signal from the target system.

BUS GRANT TO TARGET SYSTEM DEVICE
The bus is granted to some device in the target system.

NO BUS CYCLE
The bus cycle is too slow or no bus cycle is provided.

HALTED
The emulation processor has halted.

UNKNOWN STATE
The emulation processor is in an unknown state.

Other Emulator Status Messages

The Status window may also contain status messages other than the
emulation processor status messages described above:

BREAK POINT HIT AT module_name#line_number
The breakpoint specified in the source code line was
hit and program execution stopped at "line_number" in
"module".

BREAKPOINT HIT AT address
The breakpoint specified in the assembled line was hit
and program execution stopped at "address".

UNDEFINED BREAKPOINT at address
The breakpoint instruction occurred at "address", but
it was not inserted by a breakpoint set command.

WRITE TO ROM BREAK
Program execution has stopped due to a write to
location mapped as ROM. These types of breaks must be
enabled in the emulator configuration.

Chapter 13: Concepts
Debugger Windows

380

ACCESS TO GUARD BREAK
Program execution has stopped due to a write to a
location mapped as guarded memory.

TRACE TRIGGER BREAK
The analyzer trigger caused program execution to break
into the monitor (as specified by selecting the Break
On Trigger option in the trace setting dialog box).

Trace Status Messages

TRACE RUNNING
The trace has been started and trace memory has yet to
be filled; this could be because the trigger condition
has not occurred or, if the trigger condition has
occurred, there have not been enough states matching
the store condition to fill trace memory. Contents of
the trace buffer cannot be displayed during the TRACE
RUNNING status; you must halt the trace before you can
display the contents of the trace buffer.

TRACE HALTED
The trace was halted before the trace buffer was
filled. The status indicates that the trace was halted
immediately after the emulator powerup, or that the
trace was force-terminated by the user. In the TRACE
HALTED status, the analyzer displays the contents of
the trace buffer before the halt in the Trace window.

TRACE COMPLETE
The trace completed because the trace buffer is full.
The results are displayed in the Trace window.

Chapter 13: Concepts
Debugger Windows

381

The Symbol Window

The Symbol window displays information on the following types of symbols:

• Modules
• Functions
• Global symbols
• Local symbols
• Global Assembler symbols
• Local Assembler symbols
• User-defined symbols

The Symbol window has control menu commands that lets you display
various types of symbols, add or delete user-defined symbols, copy Symbol
window information, or search for symbols that contain a particular string.

The Symbol window lets you copy symbols to the clipboard by clicking the
left mouse button. The symbol information can then be pasted from the
clipboard in other commands.

Symbols are displayed with "type" and "address" values where appropriate.

See Also

"Displaying Symbol Information" in the "Debugging Programs" chapter.

"Symbol Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

382

The Trace Window

The Trace window displays trace results and shows source code lines that
correspond to the execution captured by the analyzer. Optionally, bus cycle
states can be displayed along with the source code lines.

The Trace window has control menu commands that let you display bus
cycles, specify whether count information should be accumulated or relative,
or copy information from the window.

The Trace window opens automatically when a trace is complete.

For each line in the Trace window, the trace buffer state number, the type of
state, the module name and source file line number, the function name, the
source line, and the time count information are displayed.

The << and >> buttons let you move between the multiple frames of trace
data that are available with newer analyzers for the HP 64700.

The type of state can be a sequence level branch (SEQ), a state that satisfies
the prestore condition (PRE), or a normal state that matches the store
conditions (in which case the type field is empty).

Bus cycle states show the address and data values that have been captured
as well as the disassembled instruction or status mnemonics.

On startup, the system defaults to the source only display mode, where only
source code lines are displayed. The source/bus cycle mixed display mode
can be selected by using the Trace window control menu’s Display→Bus

Chapter 13: Concepts
Debugger Windows

383

Cycle ON (ALT, -, D, B) command. In the source/bus cycle mixed display
mode, each source code line is immediately followed by the corresponding
bus cycles.

The trace buffer stores bus cycles only. The system displays source lines in
the Trace window based on execution bus cycles.

See Also

"Tracing Program Execution" and "Setting Up Custom Trace Specifications"
in the "Debugging Programs" chapter.

"Trace Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

384

The WatchPoint Window

The WatchPoint window displays the contents of variables that have been
registered with the Variable→Edit... (ALT, V, E) command or with the Edit...
(ALT, -, E) command in the WatchPoint window’s control menu.

The contents of dynamic variables are displayed only when the current
program counter is in the function in which the variable is declared.

You can modify the contents of variables by double-clicking on the value,
using the keyboard to type in the new value, and pressing the Enter key.

The WatchPoint window lets you copy text strings, to the clipboard by
double-clicking words or by holding down the left mouse button and dragging
the mouse pointer.

See Also

"Displaying and Editing Variables" in the "Debugging Programs" chapter.

"WatchPoint Window Commands" in the "Window Control Menu Commands"
chapter.

Chapter 13: Concepts
Debugger Windows

385

Monitor Program Options

• Background monitor

• Foreground monitor

• Foreground monitor advantages and disadvantages

The emulation monitor program is a program that the emulation
microprocessor executes as directed by the HP 64700 system controller. The
emulation monitor program gives the system controller access to the target
system.

For example, when you modify target system memory, the system controller
writes a command code to a communications area and switches (breaks)
emulation processor execution into the monitor program. The monitor
program reads the command code (and any associated parameters) from the
communications area and executes the appropriate machine instructions to
modify the target system memory. After the monitor has performed its task,
emulation processor execution returns to the area where it was executing
before the break.

The emulation monitor program executes out of a separate, internal memory
system known as background memory, which is dual ported. A monitor
program executing out of background memory is known as a background
monitor program.

The foreground emulation monitor program also executes out of dual-port
memory, which is not the same 8K, dual-port memory available to your
programs. However, the foreground monitor does consume memory address
space (that is, you must reserve physical addresses to contain the foreground
monitor), and addresses consumed by the foreground monitor are not
available to use within your target system.

Emulator firmware includes both background and foreground monitor
programs and lets you select either one. You can also load and use a
customized foreground monitor program, if desired.

Chapter 13: Concepts
Monitor Program Options

386

Background monitor

The default emulator configuration selects the background monitor.

Interrupts from the target system are disabled during background monitor
execution. If your programs have strict real-time requirements for servicing
target system interrupts, you must use a foreground monitor.

DMA cycles are allowed while in the background monitor (that is, the HOLD
line will be acknowledged with the HLDA signal even while executing the
background monitor.)

Foreground monitor

A foreground monitor source file is provided with the emulator. It can be
assembled, linked, and loaded into the debugger. It is linked and loaded
separately from your program. However, you must provide:

• A physical address space of 16K that is not used for any other purpose
within your target hardware.

• An unused entry in your GDT. You do not need to put any data in this
entry. It will be filled in by the emulator prior to entering the monitor.

• If you are using paging, the foreground monitor must be located in
address space where each virtual address is the same as each physical
address (virtual address = physical address). You must have a valid page
table for the virtual address range (although the specific entries for the
foreground monitor will be filled in by the emulator prior to entering the
monitor).

Chapter 13: Concepts
Monitor Program Options

387

Foreground monitor advantages and disadvantages

Advantages

• A foreground monitor executes as part of the user program. This allows
you to enable target system interrupts during monitor program execution
for applications that have strict real-time processing requirements.

• A foreground monitor can be customized.

Disadvantages

• A foreground monitor consumes target system address space.

• In order for interrupts to be received while execution is in the monitor,
they must either have a DPL of 0 (because the monitor runs at DPL 0),
or be a task gate.

• A foreground monitor does not require target system stack space.
However, because the foreground monitor runs at DPL 0, you must
provide a privilege level 0 stack in case interrupts are serviced while the
foreground monitor is executing.

Chapter 13: Concepts
Monitor Program Options

388

Trace Signals and Predefined Status Values

This section describes how emulation-bus analyzer trace signals are assigned
to microprocessor address bus, data bus, and control signals.

See also "Understanding Address, Data, and Status", and "Understanding
80386 Analysis" for more information.

Emulation-bus Analyzer Trace Signals

Trace
Signals Signal Name Signal Description
------- ------------------- --------------------------------------
0-31 A0-A31 Address Lines A2-A31, plus addresses 0-1
 derived from BE0#-BE3#

32-63 D0-D31 Data lines 0-31

64 Monitor/User 0 = Monitor, 1 = User program execution

65 W/R# 1 = write, 0 = read
66 D/C# 1 = data, 0 = control
67 M/IO# 1 = memory, 0 = I/O
68 BE0# 0 = byte 0 (data bits 0-7) enabled
69 BE1# 0 = byte 1 (data bits 8-15) enabled
70 BE2# 0 = byte 2 (data bits 16-23) enabled
71 BE3# 0 = byte 3 (data bits 24-31) enabled
72 BS16# 0 = Bus Size 16 is asserted. Ignored for
 emulation memory accesses
73 NA# 0 = Next Address (pipelining) requested
74 LOCK# 0 = lock asserted (HOLD will not be
 acknowledged)
75 PEREQ 1 = Coprocessor has data to be transferred to
 the 80386
76 BUSY# 0 = Coprocessor is busy
77 ERROR# 0 = Coprocessor error
78 INTR 1 = Interrupt Request
79 HLDA 1 = Hold Acknowledge in previous cycle

Chapter 13: Concepts
Trace Signals and Predefined Status Values

389

Predefined Status Values

Qualifier Status Bits (31-16) Description
--------- ------------------- -------------------------------------
be0 xxxx xxxx xxx0 xxxx BE0# (Byte Enable 0) active
be1 xxxx xxxx xx0x xxxx BE1# (Byte Enable 1) active
be2 xxxx xxxx x0xx xxxx BE2# (Byte Enable 2) active
be3 xxxx xxxx 0xxx xxxx BE3# (Byte Enable 3) active
bs16 xxxx xxx0 xxxx xxxx BS16# (Bus Size 16) active
btmsg xxxx x1xx xxxx 001x Branch Trace Message
busy xxx0 xxxx xxxx xxxx BUSY# (from the coprocessor) active
ctrl xxxx xxxx xxxx x0xx A control access (op-code fetch, for
 example)
data xxxx xxxx xxxx x1xx A data access (memory read, for
 example)
error xx0x xxxx xxxx xxxx ERROR# (from the coprocessor) active
halt xxxx xxxx 1011 101x The ’hlt’ instruction was executed
hlda 1xxx xxxx xxxx xxxx HLDA (hold acknowledge) was active
 just prior to captured state
 (a DMA occurred)
inta xxxx x0xx 1110 000x An interrupt acknowledge cycle
intr x1xx xxxx xxxx xxxx INTR (interrupt request) line is
 active
io xxxx xxxx xxxx 01xx An I/O access (’out’, for example)
iord xxxx xxxx xxxx 010x An I/O read cycle
iowr xxxx xxxx xxxx 011x An I/O write cycle
lock xxxx x0xx xxxx xxxx LOCK# (locked cycle)
mem xxxx xxxx xxxx 1xxx A memory access (’read’, for example)
memif xxxx xxxx xxxx 100x A memory instruction fetch
 (op-code fetch)
memrd xxxx xxxx xxxx 1x0x A memory read
memwr xxxx xxxx xxxx 111x A memory write
mon xxxx xxxx xxxx xxx0 A background monitor cycle
na xxxx xx0x xxxx xxxx NA# (pipelining) request active
pereq xxxx 1xxx xxxx xxxx PEREQ (from the coprocessor) active
read xxxx xxxx xxxx xx0x A read cycle (memory or I/O)
shut xxxx xxxx 1110 101x Processor shutdown
ttmsg xxxx x1xx xxxx 000x Task Trace message
write xxxx xxxx xxxx xx1x A write cycle (memory or I/O)

Chapter 13: Concepts
Trace Signals and Predefined Status Values

390

Understanding 80386 Analysis

The external address, data, and control signals of the 80386 can be difficult
to understand. This section will help you understand how the 80386 works,
how to interpret the trace information, and how to ask for more precise trace
information.

Instruction reads are always four bytes

The 80386 always reads four bytes at a time when reading instructions. This
can be confusing when the target of a branch is at an address that is not a
multiple of four. This can also cause problems when you want to trigger on a
specific function. See Understanding Address, Data, and Status for
information on how the emulator helps you do this.

Prefetching

The 80386 may read up to 12 bytes of data before it starts to execute the first
byte of data. Eleven of these twelve bytes of data are "prefetched" (that is,
fetched from memory before they are needed). One implication of these
prefetches is that the processor runs faster. Another is that the order of the
external bus cycles can be confusing when you see them in a trace list.

Consider the following assembly code:
103E readloop:
103E A10000 mov ax,control
1041 3D0000 cmp ax,0
1044 74F8 je readloop

1046 try1:
1046 3D0100 cmp ax,1
1049 75189090 jne try2 ; command 1: call into ldt1romseg

When traced by a logic analyzer, with 0000h as the address of ’control’, these
are the bus cycles the 80386 generates:
 Line addr,H 80386 Mnemonic
----- -------- ------------------------
 4 0000103c 00a1c08e code read
 5 00001040 00003d00 code read
 6 00001044 013df874 code read
 7 00001048 90187500 code read
 8 00000000 90180000 memory read
 9 0000104c 16000f90 code read
 10 0000103c 00a1c08e code read
 11 00001040 00003d00 code read

Chapter 13: Concepts
Understanding 80386 Analysis

391

The above trace list shows several features of the 80386 bus activity:

• Even though readloop begins at address 103e, the processor had to fetch
instructions starting at address 103c each time it jumped to readloop.
The 80386 always reads four bytes when reading instructions.

• The processor prefetched 12 bytes of instructions (addresses 1040
through 1048) before executing the ’mov ax,control’ instruction at
address 103e. You can see this by seeing that the read of ’control’
(address 0) occurs at state 8, not after state 5 where the entire opcode
had been read.

• Even after ’control’ was read, the processor continued to prefetch,
reading address 104c at state 9 in the trace before recognizing it had to
jump back to address 103e.

Disassembly helps

Fortunately, the disassembler which is part of RTC helps you decode the
order of execution. Here is the output of the ’trace’ command, displaying
disassembled bus cycles:
 4 0000103c 00a1c08e -MOV ES,AX
 =0000103e MOV AX,0000H
 5 00001041 00003d00 CMP AX,#0000H
 6 00001044 013df874 JZ 0000103EH
 =00001046 -CMP AX,#0001H
 7 00001048 90187500 - 90187500H code read
 8 00000000 xxxx0000 xxxx0000H read mem
 9 0000104c 16000f90 - 16000F90H code read
10 0000103c 00a1c08e -MOV ES,AX
 =0000103e MOV AX,0000H
11 00001041 00003d00 CMP AX,#0000H

• The lines preceded by equals signs (=) did not appear as bus cycles.
Instead, they were emitted by the disassembler. They were obtained as
part of the preceding fetch.

• When a dash (-) is shown preceding a mnemonic, it indicates that the
associated opcode was not executed. Instead, it was obtained in an
unexecuted prefetch.

• When a multiple-byte opcode is decoded, the next address in the address
column shows the starting byte of the next opcode, not the address that
appeared on the address bus. This is convenient when using an assembly
listing to match up addresses, but you cannot trigger a trace on this
address. Only use addresses that are multiples of four when specifying a
trigger for the analyzer.

Chapter 13: Concepts
Understanding 80386 Analysis

392

Execution Trace Messages help even more

In many cases, the disassembler cannot correctly determine which bytes are
unused prefetches and which are executed. The "execution trace message"
facility in this emulator helps you make the determination.

When the "Enable Execution Trace Messages" box in the Settings→ Emulator
Config→Hardware... dialog box is checked, the processor emits the target of
any branches to the analyzer (use of "Enable Execution Trace Messages" has
little or no effect on the performance of your target system.)

Consider the following code which jumps into a table based on the value in
the ax register:
0140 40 53 inc ax
0141 BA4801 54 mov dx,offset table_start
0144 01C2 55 add dx,ax
0146 FFE2 56 jmp dx
0148 40 57 table_start: inc ax
0149 42 58 entry2: inc dx
014A 41 59 entry3: inc cx
 60
014B EBFE 61 jmp $

These are the bus cycles when the above code is executed:
 Line addr,H 80386 Mnemonic
----- -------- ------------------------
 0 00000140 0148ba40H code read
 1 00000144 e2ffc201H code read
 2 00000148 eb414240H code read
 3 00000148 eb414240H code read
 4 0000014c 909090feH code read
 5 00000150 90909090H code read
 6 00000154 90909090H code read
 7 00000148 eb414240H code read
 8 0000014c 909090feH code read

The RTC disassembler helps, but it cannot identify the exact destination of
the indirect jump, which could be the opcode at address 148, 149, 14a, or
even 14b (because they were all fetched together). There is no way to tell
without knowing the value of register AX at the start of the trace, and there is
no hint as to its starting value.

Chapter 13: Concepts
Understanding 80386 Analysis

393

 0 00000140 0148ba40 INC AX
 =00000141 MOV DX,#0148H
 1 00000144 e2ffc201 ADD DX,AX
 =00000146 JMP NEAR PTR DX
 2 00000148 eb414240 - EB414240H code read
 3 00000148 eb414240 INC AX
 =00000149 INC DX
 =0000014a INC CX
 =0000014b JMP 0000014BH
 4 0000014c 909090fe - 909090FEH code read
 5 00000150 90909090 - 90909090H code read
 6 00000154 90909090 - 90909090H code read
 7 00000148 eb414240 -INC AX
 =00000149 -INC DX
 =0000014a -INC CX
 =0000014b JMP 0000014BH

Note that the disassembler had no choice but to assume that the jump was to
address 148 in the above trace (the first byte fetched). By enabling
Execution Trace Messages, the disassembler can produce the following trace
list:
 0 00000140 0148ba40 INC AX
 =00000141 MOV DX,#0148H
 1 00000144 e2ffc201 ADD DX,AX
 =00000146 JMP NEAR PTR DX
 2 00000148 eb414240 - EB414240H code read
 3 00000148 eb414240 -INC AX
 =00000149 INC DX
 =0000014a INC CX
 =0000014b JMP 0000014BH
 4 00000149 xxxx42xx branch trace msg, dest=00000149H

In this listing, the "branch trace message" shows that the indirect jump went
to address 149. Note that the instruction at address 148 is an unused
prefetch, accurately marked by the leading dash. (By reading this trace list,
you can see that register AX must have been equal to ’0’ on entry to this
routine.)

Using Execution Trace Messages to observe program flow

If you enable Execution Trace Messages, and then store only cycles with the
’btmsg’ status, you can obtain a concise trace showing the exact "flow" of
your program. Only branches that are taken will appear, so you can observe
calls to your functions, returns from them, "if" statements executed, and the
number of times loops are executed. Since only the branches are stored, you
can keep a record of program activity for a very long time before filling all of
your analysis memory.

Chapter 13: Concepts
Understanding 80386 Analysis

394

Understanding Address, Data, and Status

The 80386 has a 32-bit data bus but allows the program to access data
contents in 8-bit, 16-bit, and 32-bit segments. It can be difficult to know how
to define a specification for the external bus on the 80386 when you want to
perform a trace. The following information will help you decide what to put
in the A:D:S: fields of the analyzer in order to trigger, store, or sequence the
analyzer to capture desired information.

Code fetches

If your hardware asserts BS16# low, the processor will do two fetches: one
from address 4000, and the next from address 4002. This makes it difficult to
specify an address for instruction fetches. In fact, bit 1 of any instruction
address must be "don’t care". This must be specified in binary. Otherwise, all
four lower bits will be don’t cares.

There are two cases where the emulator has been designed to know you want
to "don’t care" bit 1:

• When you specify an address and use the status "memif", the analyzer
will "don’t care" address bit 1, and set address bit 0 to 0.

• When you specify an address with a symbol, and that symbol is in a code
segment, the address will be "don’t cared" correctly. If you do not wish
this to happen, use "<symbol>+0".

Example: If address 5 contains an op-code, the analyzer must trigger on 01x0 binary. If
this was entered as "A: 5 S: memif", the correct trigger specification will be
entered automatically. If address 5 was the symbol "START", simply using
the symbol will also automatically generate the address pattern 01x0 instead
of 0101. If this was entered as "START+0", the trigger address pattern will be
0101.

Chapter 13: Concepts
Understanding Address, Data, and Status

395

Data read/write

Data values are 32-bit values (because the data bus is 32 bits wide). To
identify byte values on the data bus, use "don’t cares" (x) as shown below:

• Data at multiple of 4 (e.g. 0, 4, 8): 0xxxxxx12
• Data at multiple of 4 + 1 (e.g. 1, 5, 9): 0xxxx34xx
• Data at multiple of 4 + 2 (e.g. 2, 6, A): 0xx56xxxx
• Data at multiple of 4 + 3 (e.g. 3, 7, B): 078xxxxxx

For example, to specify a write to address bye 4032 with value 23:

Address:4032 Data:0xx23xxxx Status:write

Take similar care for 16-bit data:

• Data at multiple of 4 (e.g. 0, 4, 8): 0xxxx3412
• Data at multiple of 4 + 1 (e.g. 1, 5, 9): 0xx5634xx
• Data at multiple of 4 + 2 (e.g. 2, 6, A): 07856xxxx
• Data at multiple of 4 + 3 (e.g. 3, 7, B) is a special problem.

The 80386 will have to generate multiple bus cycles to do the access for data
at multiple of 4 + 3. Depending on your needs, one of the following four
choices should be right for you:

• Trace only the first access: 078xxxxxx.

• Trace only the second access: 0xxxxxx9a.

• Trace both accesses in any sequence: 078xxxxxx or 0xxxxxx9a.

• Trigger only if a specific access is followed by the other. See
Trace→Sequence... (ALT, T, Q) for more information.

If 32-bit data is not 32-bit aligned, you will see problems similar to those of
the 16-bit data at a multiple of 4 + 3.

Chapter 13: Concepts
Understanding Address, Data, and Status

396

Status values identify the types of 80386 bus cycles. Status values may be
ANDed together by selecting two or more in the Trace Pattern Dialog Box,
accessable via the Trace→Edit... dialog box and the Trace→Sequence...
dialog box. For example, to trigger on the occurrence of a data read
immediately following a HOLD cycle, select hlda, memrd, and data together.

If you need a combination of status values not available in the predefined list,
you may compose a binary value from the following information:

Status Bits 31 - 16 Description

xxxx xxxx xxxx xxx0 0 = monitor cycle. See Note 1 below.
xxxx xxxx xxxx xx1x 1 = write. 0 = read.
xxxx xxxx xxxx x1xx 1 = data. 0 = code.
xxxx xxxx xxxx 1xxx 1 = memory. 0 = data.
xxxx xxxx xxx0 xxxx 0 = Byte Enable 0 (bits 7..0) active.
xxxx xxxx xx0x xxxx 0 = Byte Enable 1 (bits 15..8) active.
xxxx xxxx x0xx xxxx 0 = Byte Enable 2 (bits 23..16) active.
xxxx xxxx 0xxx xxxx 0 = Byte Enable 3 (bits 31..24) active.
xxxx xxx0 xxxx xxxx 0 = Bus Size 16-pin active.
xxxx xx0x xxxx xxxx 0 = NA pin (pipelining) active.
xxxx x0xx xxxx xxxx 0 = LOCK pin active.
xxxx 1xxx xxxx xxxx 1 = PEREQ pin active.
xxx0 xxxx xxxx xxxx 0 = BUSY pin active.
xx0x xxxx xxxx xxxx 0 = ERROR pin active.
x1xx xxxx xxxx xxxx 1 = INTR pin active.
1xxx xxxx xxxx xxxx 1 = HLDA was active before this cycle.

Note 1: Also controls cycle type in the Settings→Extended→Trace menu.

Chapter 13: Concepts
Understanding Address, Data, and Status

397

Entering Addresses as Constants

This chapter contains information about entering addresses as constants
(instead of using symbols or clicking on source lines in the source display)

• Overview of 80386 address types

• Explanation: why different syntax for different address types

• Syntax guide for constant-addresses

Chapter 13: Concepts
Entering Addresses as Constants

398

Overview of 80386 address types

The 80386 uses several different types of addresses. This section gives a brief
definition of each type. For more information, see your 80386 programmer’s
handbook.

Physical addresses

These are the addresses actually available on the address pins of the 80386.
They are used by the memory and I/O subsystems on an 80386-based system.
They have 32 bits on the 80386DX, and 24 bits on the 80386CX and 80386EX.

Linear addresses

These are the addresses used by the hardware breakpoints on the 80386, and
are inputs into the paging hardware on the 80386. They have 32 bits.

Virtual addresses

These are the addresses as seen by the programmer. There are three types
of virtual addresses: real-mode, protected-mode, and virtual 8086-mode.

Real-mode These addresses have a 16-bit segment and a 16-bit offset. The
linear address is calculated as: (segment * 64) + offset. After RESET, the
processor is in ’real mode’. In this mode, physical addresses are the same as
linear addresses.

Protected-mode These addresses have a 32-bit selector and a 16-bit or
32-bit offset. The linear address is calculated by using 13 bits of the selector
as an index into the GDT (Global Descriptor Table), reading a base address
from that entry in the GDT, and adding the offset.

Virtual 8086-mode These addresses have a 16-bit segment and a 16-bit
offset. The linear address is calculated as: (segment * 64) + offset. In this
mode, paging can be used, so the physical address is not necessarily the same
as the linear address.

Chapter 13: Concepts
Entering Addresses as Constants

399

Explanation: why different syntax for different
address types

There are several reasons why this emulator differentiates between
real-mode addresses and protected-mode addresses:

• To reduce the use of the monitor when doing dynamic translations.
Real-mode addresses do not need to traverse any tables, but
protected-mode addresses do.

• To allow the use of protected-mode addresses while the processor is still
in real mode (e.g. it is reset). This is generally used to set up
breakpoints or to set up a trace.

To allow clear display of real-mode addresses versus protected-mode
addresses.

Chapter 13: Concepts
Entering Addresses as Constants

400

Constant-address syntax

Physical addresses

offset offset is a 32-bit value.

Real-mode addresses

segment:offset Segment is a 16-bit value, and offset is a 16-bit value. The
linear address is calculated as: (64 * segment) + offset

Protected-mode addresses, GDT only

selector::offset Offset is 16 or 32 bits; selector is an entry into the GDT
(current or cached)

Protected-mode addresses, GDT and LDT specified

selector:ldt:offset Offset is 16 or 32 bits; selector is an entry into the GDT
(current or cached) which points to an LDT; ldt is the
entry in that LDT.

All 16 and 32-bit values are entered as numeric constants.

See Also

"Selecting how Address Translations work" in the "Configuring the Emulator"
chapter.

Chapter 13: Concepts
Entering Addresses as Constants

401

Unexpected Stepping Behavior

The emulator uses the single-step trap feature of the i83086 processor to
single step instructions. A single-step trap happens when:

• The TF flag in the EFLAGS register is set.

• An instruction is executed with the TF flag set.

Faults

If an instruction causes a fault, the flags register is saved on the stack and the
TF flag is cleared before the fault handler is executed. Unless the fault
handler restores the value of the TF flag saved on the stack, the entire fault
handler will be executed without generating a single-step trap.

For example, if a floating-point instruction is executed on a system that does
not have an i80387 floating-point coprocessor, an instruction fault will be
generated. This type of fault is typically fielded by a floating-point emulation
library which processes the exception stack frame, decodes and emulates the
floating-point instruction, modifies the return address on the stack to point to
the next instruction, and returns from the fault handler. However, because
no instructions were executed with the trap flag set, the processor does not
generate a single-step trap. The processor will continue to execute
floating-point instructions until the first normal instruction is executed.

This does not occur when floating-point instructions are executed on an
i80387 coprocessor. Floating-point emulation libraries could be implemented
to generate a single-step trap upon return by restoring the TF flag from the
stack immediately prior to executing the IRET/IRETD instruction.

Chapter 13: Concepts
Unexpected Stepping Behavior

402

INT instructions

Like an instruction fault, the TF flag is saved on the stack and then cleared
prior to execution of the first instruction in the interrupt handler. Therefore,
on returning from the INT instruction, the processor will execute the next
instruction, and then generate the single-step fault (assuming the next
instruction is not another INT, fault, etc.).

Task gates

If the instruction is a task gate, the EFLAGS register is saved in the old TSS
and the TF flag is restored from the new TSS prior to execution of the first
instruction of the new task. Therefore, the entire task will be executed
before the single-step trap occurs.

To step into a task or a fault handler

First, set a breakpoint in the routine you want to step into. Then do a "run"
command. If you do a step as you go into the INT routine or the fault
handler, the TF flag will be restored when you return from the INT routine or
fault handler routine. This means that if you do a RUN while in the routine,
you will enter the monitor on the instruction after the routine returns.

Chapter 13: Concepts
Unexpected Stepping Behavior

403

404

Part 5

Installation Guide

Instructions for installing the product.

405

Part 5

406

14

Installing the Debugger

407

Installing the Debugger

This chapter shows you how to install the Real-Time C Debugger.

• Requirements

• Before Installing the Debugger

• Step 1. Connect the HP 64700 to the PC

• Step 2. Install the debugger software

• Step 3. Start the debugger

• Step 4. Check the HP 64700 system firmware version

• Optimizing PC Performance for the Debugger

408

Requirements

• IBM compatible or NEC PC with an 80486 class microprocessor and 8
megabytes of memory.

• MS Windows 3.1, set up with 20 megabytes of swap space.

• VGA Display.

• 3 Megabytes available disk space.

• Serial port, HP 64037 RS-422 port, or Novell LAN with Lan Workplace for
DOS or Microsoft Lan Manager with HP ARPA Services.

• Revision A.04.00 or greater of HP 64700 system firmware. The last step
in this chapter shows you how to check the firmware version number.

Chapter 14: Installing the Debugger
Requirements

409

Before Installing the Debugger

• Install MS Windows according to its installation manual. The
Real-Time C Debugger must run under MS Windows in the 386
enhanced mode.

• If the HP 64700 is to communicate with the PC via LAN:

Make sure the HP 64700 LAN interface is installed (see the "HP 64700 Series
Installation/Service" manual).

Install the LAN card into the PC, and install the required PC networking
software.

Obtain the Internet Address, the Gateway Address, and the Subnet Mask to
be used for the HP 64700 from your Network Administrator. These three
addresses are entered in integer dot notation (for example, 192.35.12.6).

• If the HP 64700 is to communicate with the PC via RS-422:

Install the HP 64037 RS-422 interface card into the PC. The Real-Time C
Debugger includes software that configures the RS-422 interface.

Chapter 14: Installing the Debugger
Before Installing the Debugger

410

Step 1. Connect the HP 64700 to the PC

You can connect the HP 64700 to an RS-232 serial port on the PC, the Local
Area Network that the PC is on, or an HP 64037 RS-422 interface that has
been installed in the PC.

To connect via RS-232

To connect via LAN

To connect via RS-422

To connect via RS-232

1 Set the HP 64700 configuration switches for RS-232C communication.
Locate the DIP switches on the HP 64700 rear panel, and set them as
shown below.

Notice that switches 1 through 3 are set to 001, respectively. This sets the
baud rate to 19200.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

411

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

If you want to build your own RS-232 cable, follow one of the pin-outs for HP
cables shown in the following figure.

You can also use an RS-232C printer cable, but you must set HP 64700
configuration switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power light at the lower right-hand corner of the front panel will be
illuminated.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

412

4 Start MS Windows in the 386 enhanced mode.

5 Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings→Communications... (ALT, S, C) command, and select:
19200 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Xon/Xoff Flow
Control, and the PC’s RS-232 interface connector. Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, R>, M>, U>, etc.). If
you see the prompt, you have verified RS-232 communication. If you do not
see the prompt, refer to If you cannot verify RS-232 communication.

If you will be using the RS-232 connection for the debugger, exit the
Terminal program and go to Step 2. Install the debugger software.

If you will be using the LAN connection, go to To connect via LAN.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

413

To connect via LAN

1 Set the HP 64700 LAN parameters.

If you’re setting the HP 64700 LAN parameters for the first time, you must
connect the HP 64700 to the PC via RS-232 before you can access the HP
64700 Terminal Interface. Follow the steps in To connect via RS-232 and
then return here.

If you’re changing the LAN parameters of a HP 64700 that is already on the
LAN, you can use the "telnet <HP 64700 IP address>" command to access the
HP 64700 Terminal Interface.

Once the HP 64700 Terminal Interface has been accessed, display the
current LAN parameters by entering the "lan" command:

R>lan
lan -i 15.6.25.117
lan -g 15.6.24.1
lan -s 255.255.248.0
lan -p 6470
Ethernet Address : 08000909BBC1

The "lan -i" line shows the Internet Address (or IP address). The Internet
Address must be obtained from your Network Administrator. The value is
entered in integer dot notation. For example, 192.35.12.6 is an Internet
Address. You can change the Internet Address with the "lan -i <new IP>"
command.

The "lan -g" line shows the Gateway Address which is also an Internet
address and is entered in integer dot notation. This entry is optional and will
default to 0.0.0.0, meaning all connections are to be made on the local
network or subnet. If connections are to be made to workstations on other
networks or subnets, this address must be set to the address of the gateway
machine. The gateway address must be obtained from your Network
Administrator. You can change the Gateway Address with the "lan -g <new
gateway address>" command.

The "lan -s" line may or may not be shown, depending on the HP 64700
model. If this line is not shown, the Subnet Mask is automatically configured.
If this line is shown, it shows the Subnet Mask in integer dot notation. This
entry is optional and will default to 0.0.0.0. The default is valid only on
networks that are not subnetted. (A network is subnetted if the host portion

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

414

of the Internet address is further partitioned into a subnet portion and a host
portion.) If the network is subnetted, a subnet mask is required in order for
the emulator to work correctly. The subnet mask should be set to all "1"s in
the bits that correspond to the network and subnet portions of the Internet
address and all "0"s for the host portion. The subnet mask must be obtained
from your Network Administrator. You can change the Subnet Mask with the
"lan -s <new subnet mask>" command.

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via a gateway or a bridge. Unless your Network
Administrator states otherwise, make them the same. You can check the
PC’s subnet mask with the "lminst" command if you are using HP-ARPA. If
you are using Novell LAN WorkPlace, make sure the file \NET.CFG has the
entry "ip_netmask <subnet mask>" in the section "Protocol TCPIP."

The "lan -p" lines shows the base TCP service port number. The host
computer interfaces communicate with the HP 64700 through two TCP
service ports. The default base port number is 6470. The second port has
the next higher number (default 6471). If the service port is not 6470, you
must change it with the "lan -p 6470" command.

The Internet Address and any other LAN parameters you change are stored
in nonvolatile memory and will take effect the next time the HP 64700 is
powered off and back on again.

2 Exit the Terminal or telnet program.

3 Turn OFF power to the HP 64700.

4 Connect the HP 64700 to the LAN. This connection can be made
using either the 15-pin AUI connector or the BNC connector.

DO NOT use both connectors. The LAN interface will not work with both
connected at the same time.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

415

5 Set the HP 64700 configuration switches for LAN communication.

Switch 16 must be set to one (1) indicating that a LAN connection is being
made.

Switch 15 should be zero (0) if you are connecting to the BNC connector or
set to one (1) if a 15 pin AUI connection is made.

Switch 14 should be zero (0).

Set all other switches to zero (0).

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

416

6 Turn ON power to HP 64700.

7 Verify LAN communication by using a "telnet <HP 64700 IP address>"
command. This connection will give you access to the HP 64700
Terminal Interface.

You should now be able to press the Enter key in the telnet window to see
the HP 64700’s Terminal Interface prompt (for example, R>, M>, U>, etc.). If
you see the prompt, you have verified LAN communication. If you cannot
connect to the HP 64700’s IP address, refer to If you cannot verify LAN
communication.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

417

To connect via RS-422

Before you can connect the HP 64700 to the PC via RS-422, the HP 64037
RS-422 Interface must have already been installed into the PC.

1 Set the HP 64700 configuration switches for RS-422 communication.
Locate the DIP switches on the HP 64700 rear panel, and set them as
shown below.

Notice that switches 1 through 3 are set to 111, respectively. This sets the
baud rate to 230400.

Notice that switch 5 is set to 1. This configures the 25-pin port for RS-422
communication.

Notice also that switches 12 and 13 are set to 1 and 0, respectively. This sets
the RTS/CTS hardware handshake which is needed to make sure all
characters are processed.

2 Connect the 17355M cable (which comes with the HP 64037
interface) from the PC to the HP 64700.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power light at the lower right-hand corner of the front panel will be
illuminated.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

418

If you cannot verify RS-232 communication

If the HP 64700 Terminal Interface prompt does not appear in the Terminal
window:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that you have properly configured the data communications
switches on the emulator and the data communications parameters on your
controlling device. You should also verify that you are using the correct
cable.

The most common type of data communications configuration problem
involves the configuration of the HP 64700 as a DCE or DTE device and the
selection of the RS-232 cable. If you are using the wrong type of cable for the
device selected, no prompt will be displayed.

When the RS-232 port is configured as a DCE device (S4 is set to 0), a
modem cable should be used to connect the HP 64700 to the host computer
or terminal. Pins 2 and 3 at one end of a modem cable are tied to pins 2 and
3 at the other end of the cable.

When the RS-232 port is configured as a DTE device (S4 is set to 1), a printer
cable should be used to connect the HP 64700 to the host computer or
terminal. Pins 2 and 3 at one end of a printer cable are swapped and tied to
pins 3 and 2, respectively, at the other end of the cable.

If you suspect that you may have the wrong type of cable, try changing the S4
setting and turning power to the HP 64700 OFF and then ON again.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

419

If you cannot verify LAN communication

Use the "telnet" command on the host computer to verify LAN
communication. After powering up the HP 64700, it takes a minute before
the HP 64700 can be recognized on the network. After a minute, try the
"telnet <internet address>" command.

If "telnet" does not make the connection:

Make sure that you have connected the emulator to the proper power source
and that the power light is lit.

Make sure that the LAN cable is connected. Refer to your LAN
documentation for testing connectivity.

Make sure the HP 64700 rear panel communication configuration switches
are set correctly. Switch settings are only used to set communication
parameters in the HP 64700 when power is turned OFF and then ON.

Make sure that the HP 64700’s Internet Address is set up correctly. You
must use the RS-232 port to verify this that the Internet Address is set up
correctly. While accessing the emulator via the RS-232 port, run
performance verification on the HP 64700’s LAN interface with the "lanpv"
command.

If "telnet" makes the connection, but no Terminal Interface prompt (for
example, R>, M>, U>, etc.) is supplied:

It’s possible that the HP 64000 software is in the process of running a
command (for example, if a repetitive command was initiated from telnet in
another window). You can use CTRL+c to interrupt the repetitive command
and get the Terminal Interface prompt.

It’s also possible for there to be a problem with the HP 64700 firmware while
the LAN interface is still up and running. In this case, you must turn OFF
power to the HP 64700 and turn it ON again.

Chapter 14: Installing the Debugger
Step 1. Connect the HP 64700 to the PC

420

Step 2. Install the debugger software

1 If you are updating or re-installing the debugger software, you may
want to save your B3637.INI file because it will be overwritten by the
installation process.

2 Start MS Windows in the 386 enhanced mode.

3 Insert the 80386 REAL-TIME C DEBUGGER Disk 1 of 2 into floppy
disk drive A or B.

4 Choose the File→Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

421

You will be asked to enter the installation path. The default installation path
is C:\HP\RTC\I386. The default installation path is shown wherever files are
discussed in this manual.

You will be asked to enter your user ID. This information is important if the
HP 64700 is on the LAN and may be accessed by other users. It tells other
users who is currently using, or who has locked, the HP 64700. This
information can be modified while using the Real-Time C Debugger by
choosing the Settings→Communication... (ALT, S, C) command.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

422

You will be asked to select the type of connection to be made to the HP
64700. This information can be modified while using the Real-Time C
Debugger by choosing the Settings→Communication... (ALT, S, C) command.

When using the HP-RS422 transport, the connection name is the I/O address
you want to use for the HP 64037 card. Enter a hexadecimal number from
100H through 3F8H, ending in 0 or 8, that does not conflict with other cards
in your PC.

After you have specified the type of connection, files will be copied to your
hard disk. (The B3637.TMP and B3637.HLP files are larger than most of the
other files and take longer to copy.) Fill out your registration information
while waiting for the files to be copied.

If the Setup program detects that one or more of the files it needs to install
are currently in use by Windows, a dialog box informs you that Windows
must be restarted. You can either choose to restart Windows or not. If you
don’t choose to restart Windows, you can either run the _MSSETUP.BAT
batch file (in the same directory that the debugger software is installed in)
after you have exited Windows or re-install the debugger software later when
you are able to restart Windows.

Chapter 14: Installing the Debugger
Step 2. Install the debugger software

423

Step 3. Start the debugger

1 If the "HP Real-Time C Debugger" group box is not opened, open it by
double-clicking in the icon.

2 Double-click the "I80386 Real-Time C Debugger" icon.

If you have problems connecting to the HP 64700, refer to:

If you have RS-232 connection problems

If you have LAN connection problems

• If you have RS-422 connection problems

If you have RS-232 connection problems

Remember that Windows 3.1 only allows two active RS-232 connections at a
time. To be warned when you violate this restriction, choose Always Warn
in the Device Contention group box under 386 Enhanced in the Control
Panel.

Use the "Terminal" program (usually found in the Accessories windows
program group) to set up the "Communications..." settings as follows:

Baud Rate" 19200 (or whatever you have chosen for the
emulator)
Data Bits: 8
Parity: None
Flow Control: Hardware
Stop Bits: 1

Chapter 14: Installing the Debugger
Step 3. Start the debugger

424

When you are connected, press the Enter key. You should get a prompt
back. If nothing echos back, check the switch settings on the back of the
emulator:

Switches 1 thru 3 set the baud rate as follows:

S1 S2 S3
0 0 0 9600
0 0 1 19200
0 1 0 2400

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, especially switch 16 on the
HP 64700 (which selects LAN/Serial interface).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

If the switches are in the correct position and you still do not get a prompt
when you press return, check the following:

• Turn OFF power to the HP 64700 and then turn it ON again. Press
return to see if you get a prompt.

• Check to make sure the RS-232 cable is connected to the correct port on
your PC, and that the cable is appropriate for connecting the PC to a
DCE device. If the cable is intended to connect the PC to a DTE device,
set switch 4 to "1" (which makes the emulator a DTE device), turn OFF
power to the HP 64700, turn power ON, and try again.

• Check to make sure your RS-232 cable has the RTS, CTS, DSR, DCD, and
DTR pins supported. If your PC RS-232 connection is a 9-pin male
connection, HP cable number 24542M will work (set switch 4 to 0 if you
use this cable). If your PC has a 25-pin RS232 connector, HPO cable
number13242N will work (set switch 4 to 0).

When using certain RS-232 cards, connecting to an RS-232 port where the
HP 64700 is turned OFF (or not connected) will halt the PC. The only way to
restore operation is to reboot the PC. Therefore, HP recommends you always
turn ON the HP 64700 before attempting to connect via RS-232.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

425

If you have LAN connection problems

Try to "ping" the emulator:

ping <hostname or IP address>

If the emulator does not respond:

1. Check that switch 16 on the emulator is "1" (emulator is attached to LAN,
not RS-232 or RS-422).

2. Check that switch 15 on the emulator is in the correct position for your
LAN interface (either the AUI or the BNC).

(Remember: if you change any switch settings on the emulator, the changes
do not take effect until you cycle power on the emulator.)

If the emulator still does not respond to a "ping," you need to verify the IP
address and subnet mask of the HP 64700. To do this, connect the HP 64700
to a terminal (or to the Terminal application on the PC), change the
emulator’s switch settings so it is connected to RS-232, and enter the "lan"
command. The output looks something like this:

lan -i 15.6.25.117
lan -g 15.6.24.1
lan-s 255.255.248.0
lan -p 6470
Ethernet Address : 08000909BBC1

The inportant outputs (as far as connecting) are:

"lan -i"; this shows the internet address is 15.6.25.117 in this case. If the
Internet address (IP) is not what you expect, you can change it with the ’lan
-i <new IP>’ command.

"lan -s"; shows the subnet mast is 255.255.248 (the upper 21 bits --
255.255.248.0 == FF.FF.F8.0). If the subnet mask is not what you expect,
you can change it with the ’lan -s <new subnet mast>’ command.

"lan -p"; shows the port is 6470. If the port is not 6470, you must change it
with the ’lan -p 6470’ command.

Both the PC’s subnet mask and the emulator’s subnet mask must be identical
unless they communicate via gateway or a bridge. Unless your Network

Chapter 14: Installing the Debugger
Step 3. Start the debugger

426

Administrator states otherwise, make them the same. If you are using
HP-ARPA, you can check the PC’s subnet mask with the ’lminst’ command. If
you are using Novell LAN WorkPlace, make sure the file \NET.CFG has the
entry "ip_netmask <subnet mask>" in the section "Protocol TCPIP." If you
are using Windows for Workgroups, you can check the PC’s subnet mask by
looking in the [TCPIP] section of the PROTOCOL.INI file or by looking in the
Microsoft TCP/IP Configuration dialog box. If you are using WINSOCK, refer
to your LAN software documentation for subnet mask information.

Occasionally the emulator or the PC will "lock up" the LAN due to excessive
network traffic. If this happens, all you can do is turn OFF power to the
HP 64700 or PC, turn power back ON, and hope it doesn’t happen again.
Also, you could place a gateway between the emulator/PC and the rest of
your network.

If you have LAN DLL errors

The various LAN transport selections require the following DLLs:

HP-ARPA WSOCKETS.DLL.

Novell-WP WLIBSOCK.DLL.

W4WNG-TCP WSOCKETS.DLL. (Windows for Workgroups)

WINSOCK1.1 WINSOCK.DLL.

These DLLs are included with LAN software. The required DLL must be in
your search path. This will be the case if your network software is installed.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

427

If you have RS-422 connection problems

Make sure the HP 64700 switch settings match the baud rate chosen when
attempting the connection.

Switches 1 thru 3 set the baud rate as follows:

S1 S2 S3
1 1 1 230400
1 1 0 115200
1 0 1 38400
1 0 0 57600
0 1 1 1200
0 1 0 2400
0 0 1 19200
0 0 0 9600

Switch 5 must be set to 1 to configure the HP 64700 for RS-422
communication.

Switches 12 and 13 must be set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake which is needed to make sure all characters
are processed.

All other switches should be in the "0" position, expecially the switch that
determines LAN/Serial interface (switch 16 on HP 64700).

Remember that if you change any of the switch positions, you must turn OFF
power to the HP 64700 and turn it ON again before the changes will take
effect.

If the switches are in the correct position and you still do not get a prompt
when you hit return, try turning OFF the power to the HP 64700 and turning
it ON again.

If you still don’t get a prompt, make sure the HP 17355M RS-422 cable is
connected to the correct port on your PC.

Chapter 14: Installing the Debugger
Step 3. Start the debugger

428

Step 4. Check the HP 64700 system firmware
version

• Choose the Help→About Debugger/Emulator... (ALT, H, D) command.

The version information under HP 64700 Series Emulation System must show
A.04.00 or greater. If the version number is less than A.04.00, you must
update your HP 64700 system firmware as described in the
Installing/Updating HP 64700 Firmware chapter.

Chapter 14: Installing the Debugger
Step 4. Check the HP 64700 system firmware version

429

Optimizing PC Performance for the Debugger

The Real-Time C Debugger is a memory and I/O intensive Windows program.
Slow user interface performance may be caused by many things:

• Underpowered PC -- The Real-Time C Debugger requires an IBM
compatible or NEC PC with an 80486 class microprocessor, 8 megabytes
of memory, and 20 megabytes of MS Windows swap space. Because RAM
is faster than swap, performance is best when there is enough RAM to
accommodate all of the Real-Time C Debugger’s memory usage (which is
directly related to the size of your programs and the amount of debug
information in them).

• Improperly configured PC -- Windows configuration may have a very
significant effect on performance. The Windows swap file settings are
very important (see the Virtual Memory dialog box under 386 Enhanced
in the Control Panel). The larger the swap file, the better the
performance. Permanent swap has superior performance.

• Disk performance (due to Windows swap file access and Windows dialog
and string resource accesses from the debugger ".EXE" file) -- The disk
speed has a direct impact on performance of the Real-Time C Debugger.
Use of SMARTDrive or other RAM disk or caching software will improve
the performance.

Various PC performance measurement and tuning tools are commercially
available. Optimizing your PC performance will improve debugger interface
performance and, of course, all your other PC applications will benefit as well.

Chapter 14: Installing the Debugger
Optimizing PC Performance for the Debugger

430

15

Installing/Updating HP 64700
Firmware

431

Installing/Updating HP 64700 Firmware

This chapter shows you how to install or update HP 64700 firmware.

Note Your HP 64700 must contain Flash EPROM memory before you can install or
update HP 64700 system firmware.

The firmware, and the program that downloads it into the HP 64700, are
included with the debugger on floppy disks labeled HP 64700 EMULATION
AND ANALYSIS FIRMWARE.

The steps to install or update HP 64700 firmware are:

• Step 1. Connect the HP 64700 to the PC

• Step 2. Install the firmware update utility

• Step 3. Run PROGFLASH to update HP 64700 firmware

432

Step 1. Connect the HP 64700 to the PC

1 Set the HP 64700 configuration switches for RS-232C communication.
Locate the DIP switches on the HP 64700 rear panel, and set them as
shown below.

Notice that switches 12 and 13 are set to 1 and 0, respectively. This sets the
RTS/CTS hardware handshake which is needed to make sure all characters
are processed.

2 Connect an RS-232C modem cable from the PC to the HP 64700 (for
example, an HP 24542M 9-pin to 25-pin cable or an HP 13242N 25-pin
to 25-pin cable).

You can also use an RS-232C printer cable, but you MUST set HP 64700
configuration switch 4 to 1.

3 Turn ON power to the HP 64700.

The power switch is located on the lower left-hand corner of the front panel.
The power light at the lower right-hand corner of the front panel will be
illuminated.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

433

4 Start MS Windows in the 386 enhanced mode.

5 Verify RS-232 communication by using the Terminal program that is
found in the Windows "Accessories" group box.

Double-click on the "Terminal" icon to open the Terminal window. Then,
choose the Settings→Communications... (ALT, S, C) command, and select:
9600 Baud Rate, 8 Data Bits, 1 Stop Bit, Parity None, Xon/Xoff Flow Control,
and the PC’s RS-232 interface connector to which the RS-232 cable was
attached. Choose the OK button.

You should now be able to press the Enter key in the Terminal window to see
the HP 64700’s Terminal Interface prompt (for example, R>, M>, U>, etc.). If
you see the prompt, you have verified RS-232 communication. If you do not
see the prompt, refer to If you cannot verify RS-232 communication.

6 Exit the Terminal window.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 1. Connect the HP 64700 to the PC

434

Step 2. Install the firmware update utility

The firmware update utility and emulation and analysis firmware require
about 1.5 Mbytes of disk space.

1 Start MS Windows in the 386 enhanced mode.

2 Insert the HP64700 EMUL/ANLY FIRMWARE Disk 1 of 2 into floppy
disk drive A or B.

3 Choose the File→Run... (ALT, F, R) command in the Windows
Program Manager. Enter "a:\setup" (or "b:\setup" if you installed the
floppy disk into drive B) in the Command Line text box.

Then, choose the OK button. Follow the instructions on the screen.

You will be asked to enter the installation path. The default installation path
is C:\HP64700.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

435

Follow the remaining instructions to install the firmware update utility and
the HP 64700 system firmware.

4 After completing the installation, use the editor of your choice and
edit the C:\CONFIG.SYS file to include these lines:

BREAK=ON
FILES=20

BREAK=ON allows the system to check for two break conditions:
CTRL+Break, and CTRL+c.

FILES=20 allows 20 files to be accessed concurrently. This number must be
at LEAST 20 to allow the firmware update utility to operate properly.

5 If you installed the files in a path other than the default (C:\HP64700),
edit the AUTOEXEC.BAT file to set the HP64700 and HPTABLES
environment variables. For example:

SET HP64700=C:\INSTPATH
SET HPTABLES=C:\INSTPATH\TABLES

6 If you are using the COM3 or COM4 ports, you need to edit the
<installation_path>\TABLES\64700TAB file. The default file contains
entries to establish the communications connection for COM1 and
COM2. The content of this file is:

EMUL_COM1 unknown COM1 OFF 9600 NONE ON 1 8
EMUL_COM2 unknown COM2 OFF 9600 NONE ON 1 8

7 Either add another line or modify one of the existing lines. For
example:

EMUL_COM3 unknown COM3 OFF 9600 NONE ON 1 8
EMUL_COM4 unknown COM4 OFF 9600 NONE ON 1 8

Firmware update utility installation is now complete. The PC needs to be
rebooted to enable the changes made to the CONFIG.SYS and
AUTOEXEC.BAT files. To reboot, press the CTRL+ALT+DEL keys
simultaneously.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 2. Install the firmware update utility

436

Step 3. Run PROGFLASH to update HP 64700
firmware

1 Start MS Windows in the 386 enhanced mode.

2 If the "HP 64700 Firmware Utility" group box is not opened, open it
by double-clicking the icon.

3 Double-click the "PROGFLASH" icon. (You can abort the
PROGFLASH command by pressing CTRL+c.)

4 Enter the number that identifies the emulator (in other words, HP
64700) you want to update.

5 Enter the number that identifies the product whose firmware you
want to update.

6 Enter "y" to enable status messages.

The PROGFLASH command downloads code from files on the host computer
into Flash EPROM memory in the HP 64700.

You can display firmware version information and verify the update by
choosing the Help→About Debugger/Emulator... (ALT, H, D) command in
the Real-Time C Debugger.

Chapter 15: Installing/Updating HP 64700 Firmware
Step 3. Run PROGFLASH to update HP 64700 firmware

437

438

Glossary

Defines terms that are used in the debugger help information.

analyzer An instrument that captures data on signals of interest at discreet
periods. The emulation bus analyzer captures emulator bus cycle
information synchronously with the processor’s clock signal.

arm condition A condition that enables the analyzer. The analyzer is
always armed unless you set the analyzer up to be armed by a signal received
on the BNC port; when you do this, you can identify the arm condition in the
trace specification by selecting arm in the Condition dialog boxes.

background memory A separate memory system, internal to the emulator,
out of which the background monitor executes.

background monitor program An emulation monitor program that
executes out of background memory. Use of the background monitor does
not consume any processor resources; the monitor is in a separate address
space.

breakaddress A breakaddress is an address where a breakpoint has been
set. It may be an address, a line number, or a line_number.macro_number
(example 34.1).

break on trigger Causes emulator execution to break into the monitor
when the trigger condition is found. This is known as a hardware breakpoint,
and it lets you break on a wider variety of conditions than a software
breakpoint (which replaces an opcode with a break instruction); however,
depending on the speed of the processor, the actual break point may be
several cycles after the one that caused the trigger.

breakpoint An address you identify in the user program where program
execution is to stop. Breakpoints let you look at the state of the target
system at particular points in the program.

break macro A breakpoint followed by any number of macro commands
(which are the same as command file commands).

439

control menu The menu that is accessed by clicking the control menu box
in the upper left corner of a window. You can also access control menus by
pressing the "ALT" and "-" keys.

count condition Specifies whether time or the occurrences of a particular
state are counted for each state in the trace buffer.

Device Register Window This window does not appear in the Real-Time C
Debugger for the 80386.

embedded microprocessor system The microprocessor system that the
emulator plugs into.

emulation memory Memory provided by the emulator that can be used in
place of memory in the target system.

emulation monitor A program, executed by the emulation microprocessor
(as directed by the emulation system controller), that gives the emulator
access to target system memory, microprocessor registers, and other target
system resources.

emulator An instrument that performs just like the microprocessor it
replaces, but at the same time, it gives you information about the operation of
the processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers, target
system memory, and I/O resources.

enable condition Specifies the first condition in a two-step sequential
trigger condition.

enable store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the enable condition.

foreground memory The memory system out of which user (target)
programs execute. Foreground memory is made up of dual-ported memory
that resides in the emulator. Therefore, it does not use any target-system
memory, but it does use target-system memory address ranges.

Glossary

440

foreground monitor program An emulation monitor program that
executes out of the same memory system as user (target) programs. This
memory system is known as foreground memory and is made up of emulation
memory and target system memory. The emulator only allows foreground
monitor programs (not background monitor programs) in emulation memory.

guarded memory Memory locations that should not be accessed by user
programs. These locations are specified when mapping memory. If the user
program accesses a location mapped as guarded memory, emulator execution
breaks into the monitor.

macro Refers to a break macro, which is a breakpoint followed by any
number of macro commands (which are the same as command file
commands).

monitor A program, executed by the emulation microprocessor (as directed
by the emulation system controller), that gives the emulator access to target
system memory, microprocessor registers, and other target system resources.

object file An Intel OMF386 boot-loadable format absolute file that can be
loaded into emulation or target system memory and executed by the
debugger.

pop-up menu A menu that is accessed by clicking the right mouse button in
a window.

prestore condition Specifies the states that may be stored before each
normally stored state. Up to two states may be prestored for each normally
stored state.

primary branch condition Specifies a condition that causes the analyzer
to begin searching at another level.

restart condition Specifies the condition that restarts the two-step
sequential trigger. In other words, if the restart condition occurs while the
analyzer is searching for the trigger condition, the analyzer starts looking for
the enable condition again.

secondary branch condition Specifies a condition that causes the
analyzer to begin searching at another level. If a state satisfies both the
primary and secondary branch conditions, the primary branch will be taken.

Glossary

441

sequence levels Levels in the analyzer that let you specify a complex
sequential trigger condition. For each level, the analyzer searches for
primary and secondary branch conditions. You can specify a different store
condition for each level. The Page button toggles the display between
sequence levels 1 through 4 and sequence levels 5 through 8.

state qualifier A combination of address, data, and status values that
identifies particular states captured by the analyzer.

status values Values that identify the types of microprocessor bus cycles
recognized by the analyzer. You can include status values (along with
address and data values) when specifying trigger and store conditions. The
status values defined for the HP i80386 emulator are:

be0 BE0# (Byte Enable 0) active

be1 BE1# (Byte Enable 1) active

be2 BE2# (Byte Enable 2) active

be3 BE3# (Byte Enable 3) active

bs16 BS16# (Bus Size 16) active

btmsg Branch Trace Message

busy BUSY# active (from the coprocessor)

ctrl A control access (op-code fetch, for example)

data A data access (memory read, for example)

error ERROR# active (from the coprocessor)

halt The ’hlt’ instruction was executed

hlda HLDA (hold acknowledge) was active just prior to
captured state (a DMA occurred)

inta An interrupt acknowledge cycle

Glossary

442

intr INTR (interrupt request) line is active

io An I/O access (’out’, for example)

iord An I/O read cycle

iowr An I/O write cycle

lock LOCK# (locked cycle)

mem A memory access (’read’, for example)

memif A memory instruction fetch (op-code fetch)

memrd A memory read

memwr A memory write

mon A background monitor cycle

na NA# (pipelining) request active

pereq PEREQ active (from the coprocessor)

read A read cycle (memory or I/O)

shut Processor shutdown

ttmsg Task Trace message

write A write cycle (memory or I/O)

store condition Specifies which states get stored in the trace buffer.

In the "Find Then Trigger" trace set up, the store condition specifies the
states that get stored after the trigger.

In the "Sequence" trace set up, each sequence level has a store condition that
specifies the states that get stored while looking for the primary or secondary
branch conditions.

Glossary

443

target system The microprocessor system that the emulator plugs into.

trace state The information captured by the analyzer on a particular
microprocessor bus cycle.

transfer address The program’s starting address defined by the software
development tools and included with the symbolic information in the object
file.

trigger The captured analyzer state about which other captured states are
stored. The trigger state specifies when the trace measurement is taken.

trigger condition Specifies the condition that causes states to be stored in
the trace buffer.

trigger position Specifies whether the state that triggered the analyzer
appears at the start, center, or end of the trace buffer. In other words, the
trigger position specifies whether states are stored after, about, or before the
trigger.

trigger store condition Specifies which states get stored in the trace
buffer while the analyzer searches for the trigger condition.

watchpoint A variable that has been placed in the WatchPoint window
where its contents can be readily displayed and modified.

Glossary

444

Index

A abort, during object file or memory load, 268
accumulated count information, displaying, 125, 323
Add to Watch command, 337
address

specification for tracing, 395-397
syntax: why different for different types, 400
translations, 254-257
translations, mapping for demo program, 8

addresses
searching, 77, 309
when they are translated, 62-63

A:D:S:, 395-397
analysis of 80386 bus cycles, 391-394
analyzer, 439-444

editing the trace specification, 139, 212
halting, 123, 225
repeating last trace, 123, 226
setting up with "Find Then Trigger", 130, 216-219
setting up with "Sequence", 134, 220-223
setting up with "Trigger Store", 127, 213-215
setup, 395-397
trace signals, 389-390
tracing until halt, 123, 224

arguments, function, 364
arm condition, 64, 130, 134, 227-229, 262, 439-444
arrays (C operators), 159
ASCII values in Memory window, 102, 369
Assemble... (ALT, A) command, 243
assembler, in-line, 243
assembly language instructions

stepping multiple, 89, 188-190
stepping single, 87, 186
auto variables, 99-101
AUTOEXEC.BAT file, 435-436

445

B background memory, 439-444
background monitor, 386-388

program, 439-444
background monitor, selecting, 54, 251-253
background operation, tracing, 266-267
BackTrace window, 364

displaying source files, 335
baud rate

RS-232, 350
RS-422, 350

beep, sounding from command file, 341
BNC port

driving the trigger signal, 261
output trigger signal, 64
receiving an arm condition from, 262
receiving an arm condition input, 64
setting up, 64

BP marker, 11, 13, 96, 193-198, 376
branch trace messages, 391-394

enabling, 244-246
break into monitor, 91, 191
break macros, 439-444

command summary, 146-151
 deleting, 98, 198
listing, 96, 199-202
setting, 96, 196-197

break on writes to ROM, enabling or disabling, 51
Breakpoint→Delete at Cursor (ALT, B, D) command, 195
Breakpoint→Delete Macro (ALT, B, L) command, 198
Breakpoint→Edit... (ALT, B, E) command, 199-202
Breakpoint→Set at Cursor (ALT, B, S) command, 193-194
Breakpoint→Set Macro... (ALT, B, M) command, 196-197

Index

446

breakpoints, 439-444
deleting, 13, 95, 195
disabling, 95
enable or disable, 50, 244-246
hardware, 199-202
listing, 96, 199-202
setting, 11, 94, 193-194
software, 199-202
variable access, 199-202
variable modify, 199-202

bus cycles, 391-394
displaying, 124, 322

Button window, 365
editing, 38, 279

buttons that execute command files, creating, 38

C C operators, 159
cable length, RS-232, 350
callers (of a function), tracing, 22, 119, 206-207
chain command files, 343
Clear Breakpoint command, 336
clipboard, 28
CLK2 speeds greater than 60 MHz, 48
clock speeds greater than 60 MHz, 48
command files

chain, 343
command summary, 46-151
comments, 345
creating, 36, 168
executing, 37, 171-172
executing at startup, 30, 37
exiting execution, 342
inserting wait delays, 347
locating cursor, 309
nesting, 343
parameters, 171-172
rerun, 344
sounding beep, 341
turning logging on or off, 169-170

command line options, 30, 32, 37
command summary, 146-151
commands, menu bar, 162

Index

447

comments in command files, 345
communications (emulator), setting up, 258-260
CONFIG.SYS file, 435-436
configurations

emulator, 244-246
saving and loading, 65-66

Constant-Address Syntax, 398-401
Continuous Update (ALT, -, U) command, 300
control menu, 439-444
Copy→Destination... (ALT, -, P, D) command, 278
Copy→Registers (ALT, -, P, R) command, 300
Copy→Window (ALT, -, P, W) command, 277
count conditions, 227-229, 439-444
count information

displaying accumulated, 125, 323
displaying relative, 125, 323

CTRL key and double-clicks, 28
cursor, locating cursor from command file, 309
cut and paste, 28

D data specification for tracing, 395-397
DCE or DTE selection and RS-232 cable, 419
debugger

arranging icons in window, 270
cascaded windows, 270
exiting, 24, 31, 178
exiting locked, 179
installing software, 421-423
opening windows, 271-272
starting, 5, 30, 424-428
startup options, 32
tiled windows, 270
windows, opening, 33

demo programs, 4
loading, 9
mapping memory, 7-8
running, 12
setting address translations, 8

DeMorgan’s law, 227-229
dialog boxes, file selection, 180

Index

448

directories
search path, 310
source, 274

disassembler, 391-394
display mode

mixed, 74
source only, 74
toggling, 303-304

Display→From State... (ALT -, D, F), 324
Display→Select Source... (ALT, -, D, L) command, 305
displaying state from specific byte within a state, 324
displaying trace from specified state, 324
Domain Name Resolution (DNR), 352
double-clicks and the CTRL key, 28
dual-port emulation memory, 439-444
dynamic variables, 203-204, 329, 385

E embedded microprocessor system, 439-444
emulation memory, 439-444

copying target system memory into, 106, 292
emulation microprocessor, resetting, 92, 192
emulation monitor, 439-444

programs, 386-388
emulator, 439-444
emulator configuration, 46-53, 244-246
emulator configuration

loading, 66, 175
saving, 65, 176

emulator hardware options, setting, 47
emulator limitations, external DMA support, 60
emulator probe

plugging into the target system, 42
unplugging from demo target system, 41

enable
breakpoints, 244-246
condition, 439-444
or disable software breakpoints, 50
store condition, 439-444
target interrupts, 244-246

Entering addresses as constants, 398-401
entries, searching GDT/LDT/IDT for, 297

Index

449

environment variables, 76
HP64700, 435-436
HPTABLES, 435-436
PATH, 435-436

environment
loading, 173
saving, 174

ethernet address, 414
Evaluate It command, 337
execution trace messages, 391-394

enabling or disabling, 52
enabling, 244-246

execution unexpected during single stepping, 402-403
Execution→Break (F4), (ALT, E, B) command, 191
Execution→Reset (ALT, E, E) command, 192
Execution→Run (F5), (ALT, E, U) command, 181
Execution→Run to Caller (ALT, E, T) command, 183
Execution→Run to Cursor (ALT, E, C) command, 182
Execution→Run... (ALT, E, R) command, 184-185
Execution→Single Step (F2), (ALT, E, N) command, 186
Execution→Step Over (F3), (ALT, E, O) command, 187
Execution→Step... (ALT, E, S) command, 188-190
exiting command file execution, 342
Expression window, 366

clearing, 282
displaying expressions, 283

expressions, 154
displaying, 283

externals, displaying symbol information, 81, 312

F fetches, instruction, 391-394
file selection dialog boxes, 180
File→Command Log→Log File Name... (ALT, F, C, N) command, 168
File→Command Log→Logging OFF (ALT, F, C, F) command, 170
File→Command Log→Logging ON (ALT, F, C, O) command, 169
File→Copy Destination... (ALT, F, P) command, 177
File→Exit (ALT, F, X) command, 178
File→Exit HW Locked (ALT, F, H) command, 179
File→Load Debug... (ALT, F, D) command, 173
File→Load Emulator Config... (ALT, F, E) command, 175

Index

450

File→Load Object... (ALT, F, L) command, 166-167
File→Run Cmd File... (ALT, F, R) command, 171-172
File→Save Debug... (ALT, F, S) command, 174
File→Save Emulator Config... (ALT, F, V) command, 176
firmware

update utility, installing, 435-436
update, connecting the HP 64700 to the PC, 433-434
using PROGFLASH to update, 437
version information, 273

font settings, 263
changing, 35

foreground memory, 439-444
foreground monitor, 386-388

advantages and disadvantages, 386-388
program, 439-444
selecting, 55-56, 251-253
traced as user, enabling or disabling, 53

foreground operation, tracing, 266-267
function arguments, 364
function keys, 29
functions

displaying symbol information, 80, 312
running until return, 18, 90, 183
searching, 77, 307
stepping over, 18, 88, 187
tracing callers, 22, 119, 206-207
tracing execution within, 121, 208-209

G gateway address, 414
GDT editing, 110
GDT to physical address translation, 62-63, 254-257
GDT window, 371

displaying, 109
Getting Started, 4
global assembler symbols, displaying, 83, 314
Global Descriptor Table window, 371
global symbols, displaying, 81, 312
global variables, 81, 122, 312
glossary, 439-444
guarded memory, 60, 247-250, 379, 439-444

Index

451

H hardware
breakpoints, 193-194, 199-202
locking on exit, 179
options, setting, 47
requirements, 409

Help→About Debugger/Emulator... (ALT, H, D) command, 273
hostname, 258-260
hosts file, 352-353
HP 64700

connecting to the PC, 411-420
connecting via LAN, 414
connecting via RS-232, 411
connecting via RS-422, 418
environment variable, 435-436
firmware update utility, installing, 435-436
firmware update, connecting the HP 64700 to the PC, 433-434
firmware, using PROGFLASH to update, 437

HP Probe, 352
HP-ARPA LAN address, 352
HPTABLES environment variable, 435-436

I I/O locations
displaying, 111
editing, 112
guarding, 237-238
specifying, 284

I/O window, 367
turning polling ON or OFF, 69

icons
for a different emulator, 32
(debugger window), arranging, 270

IDT editing, 110
IDT window, 374

displaying, 109
in-line assembler, 243
installation path, 421-423
instruction fetches, 391-394
internals, displaying symbol information, 82, 313
Internet Address, 258-260, 414, 420
Interrupt Descriptor Table window, 374

Index

452

interrupts
enabling or disabling from target system, 49
(target system), 386-388
enabling, 244-246

interset operators, 227-229
intraset operators, 227-229
intrusion, monitor, 68, 235-236
inverse assembly with 16- or 32- bit segments assumed, 324

L labels, 156, 243
LAN

address format, 352-353
cards, 409-410
communication, 258-260, 424-428
connecting HP 64700, 414

LBG flying lead, connecting, 43
LDT editing, 110
LDT to physical address translation, 62-63
LDT to physical address translations, 254-257
LDT window, 373

displaying, 109
levels, trace sequence, 134, 139, 220-223, 234
limitations, Symbol window, 382
line (source file), running until, 19, 90, 182
linear address: definition, 399
link level address, 414
list file

changing the destination, 34
copying window contents to, 34

listing files, specifying, 177, 278
local assembler symbols, displaying, 83, 314
Local Descriptor Table window, 373
local symbols, displaying, 82, 313
local variables, 82-83, 313
lock hardware on exit, 179
log (command) files, 36, 168-172
logical operators, 130, 134, 227-229
logical to physical address translations, 254-257

Index

453

M macro, 439-444
memory

abort during load, 268
copying, 105, 290
copying target system into emulation memory, 106, 292
displaying, 102
editing, 104
loading from stored file, 294
mapper, resolution, 60
mapping, 58-61, 247-250
mapping for demo program, 7-8
modifying a range, 107, 291
searching for a value or string in, 108
storing to a binary file, 295
type, 60, 247-250

Memory window, 369
displaying 16-bit values, 287
 displaying 32-bit values, 287
displaying bytes, 287
displaying multicolumn format, 287
displaying single-column format, 286
turning polling ON or OFF, 69

Menu Bar Commands, 162
microprocessor, resetting, 92, 192
mixed display mode, 74, 303
monitor, 439-444

enabling trace of foreground monitor, 53
intrusion, 68, 235-236
programs, 386-388
selecting the type, 54-57

multiple instructions execute in single step, 402-403

N nesting command files, 343
no-operation command, 345
noabort, during object file or memory load, 268
Novell LAN address, 352
numeric constants, 155

Index

454

O object file, 439-444
abort during load, 268
loading, 73, 166-167
loading the foreground monitor, 55-56

operators
C, 159
interset, 227-229
intraset, 227-229
logical, 130, 134, 227-229

options, command line, 32
output line

LBG, 43
RESET, 43

overview of 80386 address types, 399

P parameters, command file, 171-172
paste, cut and, 28
PATH environment variable, 435-436
path for source file

prompting, 269
search, 76, 310

patterns, trace, 130, 134, 216-223, 227-231
PC, connecting HP 64700, 411-420
performance (PC), optimizing for the debugger, 430
physical address: definition, 399
platform requirements, 409
pointers (C operators), 159
polling for debugger windows, turning ON or OFF, 69
pop-up menus, 439-444

accessing, 334-335
port, BNC, 64, 227-229, 261-262
port, communication, 258-260
power

turning OFF, 41
turning ON, 44

prefetching, 391-394
prestore condition, 130, 134, 216-223, 383, 439-444
primary branch condition, 134, 220-223, 439-444

Index

455

Probe (emulator), 352
plugging into the target system, 42
unplugging from demo target system, 41

processor, resetting, 92, 192
PROGFLASH firmware update utility, 437
program counter, 87, 91, 181, 184-185, 188-190, 375-376
program modules, displaying symbol information, 80, 311
programs

demo, 4
loading, 73, 166-167
running, 91, 181, 184-185
stopping execution, 91

Q qualifier, state, 127, 213-215

R real-time mode
disabling, 68, 236
enabling, 68, 235
options, setting, 67-69

RealTime→I/O Polling→OFF (ALT, R, I, F) command, 238
RealTime→I/O Polling→ON (ALT, R, I, O) command, 237
RealTime→Memory Polling→OFF (ALT, R, M, F) command, 242
RealTime→Memory Polling→ON (ALT, R, M, O) command, 241
RealTime→Monitor Intrusion→Allowed (ALT, R, T, A) command, 236
RealTime→Monitor Intrusion→Disallowed (ALT, R, T, D) command, 235
RealTime→Watchpoint Polling→OFF (ALT, R, W, F) command, 240
RealTime→Watchpoint Polling→ON (ALT, R, W, O) command, 239
Register window, copying information from, 300
registers

displaying, 20-21, 113
editing, 115

Register windows, 375
continuous update, 300

relative count information, displaying, 125, 323
requirements

hardware, 409
platform, 409

rerun command files, 344

Index

456

reset
emulator, 92, 192
emulator status, 379
flying lead, connecting, 43
output line, 43
running from target system, 91, 184-185
slow to leave when using software breakpoints, 50

resolution, memory mapper, 60
restart condition, 130, 216-219, 439-444
return (function), running until, 18, 90, 183
ROM, enabling or disabling breaks on writes to, 51
RS-232

baud rate, 350
cable and DCE or DTE selection, 419
cable length, 350
communication error, 350
connecting HP 64700, 411

RS-422
baud rate, 350
connecting HP 64700, 418

run to caller, interrupting, 353
Run to Cursor command, 337

S search path for source files, 76, 310
Search→Address... (ALT, -, R, A) command, 309
Search→Entry... (ALT, -, R, E) command, 297
Search→Function... (ALT, -, R, F) command, 307
Search→Selector... (ALT, -, R, S) command, 298
Search→String... (ALT, -, R, S) command, 306
Search... (ALT, -, R) command, 288
searching GDT/LDT/IDT

for entries, 297
for selector, 298

secondary branch condition, 134, 220-223, 439-444
selecting how address translations work, 62-63
selector, searching GDT/LDT/IDT for, 298
sequence levels, 234, 439-444
service ports, TCP, 414
Set Breakpoint command, 336

Index

457

Settings→BNC→Input to Analyzer Arm (ALT, S, B, I) command, 262
Settings→BNC→Outputs Analyzer Trigger (ALT, S, B, O) command, 261
Settings→Communication... (ALT, S, C) command, 258-260
Settings→Emulator Config→Address Translations... (ALT, S, E, A, 254-257
Settings→Emulator Config→Hardware... (ALT, S, E, H) command, 244-246
Settings→Emulator Config→Memory Map... (ALT, S, E, M)
command, 247-250
Settings→Emulator Config→Monitor... (ALT, S, E, O) command, 251-253
Settings→Extended Settings→Load Error Abort→OFF (ALT, S, X, L, F)
command, 268
Settings→Extended Settings→Load Error Abort→ON (ALT, S, X, L, O)
command, 268
Settings→Extended Settings→Source Path Query→OFF (ALT, S, X, S, F)
command, 269
Settings→Extended Settings→Source Path Query→ON (ALT, S, X, S, O)
command, 269
Settings→Extended Settings→Trace Cycles→Both (ALT, S, X, T, B)
command, 267
Settings→Extended Settings→Trace Cycles→Monitor (ALT, S, X, T, M)
command, 266
Settings→Extended Settings→Trace Cycles→User (ALT, S, X, T, U)
command, 266
Settings→Font... (ALT, S, F) command, 263
Settings→Symbols→Case Sensitive→OFF (ALT, S, S, C, F) command, 265
Settings→Symbols→Case Sensitive→ON (ALT, S, S, C, O) command, 265
Settings→Tabstops... (ALT, S, T) command, 264
side effects of software breakpoints, 50
single-step one line, 13
single-stepping, unexpected behavior, 402-403
software breakpoints, 193-194, 199-202
software breakpoints, enable or disable, 50
software, installing debugger, 421-423
Source at Stack Level command, 335
source directory, 274
source display mode, toggling, 303-304

Index

458

source files
displaying, 10, 75, 305
displaying from BackTrace window, 335
prompting for paths, 269
searching for addresses, 77, 309
searching for function names, 77, 307
searching for strings, 78, 306
specifying search directories, 76

source lines
running until, 19, 90, 182
stepping multiple, 89, 188-190
stepping single, 87, 186

source only
displaying, 74, 322
displaying in Memory window, 303-304

Source window, 376
setting tab stops, 35
toggling the display mode, 303-304

SRCPATH environment variable, 76
startup options, 32
state qualifier, 127, 213-215, 439-444
status

register, editing, 301
specification for tracing, 395-397

status values, 439-444
for making custom mnemonics, 397
predefined, 389-390

Status window, 379
step

multiple lines, 14
one line, 13
over, interrupting, 354

store conditions, 227-229, 439-444
strings

displaying symbols containing, 86, 317
searching memory for, 108, 288
searching source files, 78, 306

structures (C operators), 159
subnet mask, 414
subroutines, stepping over, 187

Index

459

Symbol window, 382
copying information, 316-317
searching for strings, 317

symbols, 156
syntax of addresses entered as constants, 401
system setup, 410

T tab stops
settings, 264
setting in the Source window, 35

target system, 439-444
interrupts, 386-388
enabling or disabling interrupts, 49
copying memory into emulation memory, 106, 292

task switch messages, enabling, 244-246
tasks running under Windows, number of, 350
TCP service ports, 414
telnet, 414, 420
Terminal Interface commands, 346
text, selecting, 28
too many instructions execute in single step, 402-403
top of screen commands, 162
trace

foreground/background operation, 266-267
patterns, 130, 134, 216-223, 227-231
range, 232-233
settings, 227-229
signals, 389-390

trace foreground monitor
enabling or disabling, 53

trace messages
enabling or disabling, 52

trace specifications, 395-397
copying, 328
editing, 139, 212
loading, 142
specifying the destination, 328
storing, 141

trace state, 439-444
searching for in Trace Window, 327

Index

460

Trace window, 383
copying information, 325-326
displaying accumulated count information, 323
displaying bus cycles, 322
displaying relative count information, 323
displaying source only, 322

Trace→Again (F7), (ALT, T, A) command, 226
Trace→Edit... (ALT, T, E) command, 212
Trace→Find Then Trigger... (ALT, T, D) command, 216-219
Trace→Function Caller... (ALT, T, C) command, 206-207
Trace→Function Statement... (ALT, T, S) command, 208-209
Trace→Halt (ALT, T, H) command, 225
Trace→Sequence... (ALT, T, Q) command, 220-223
Trace→Trigger Store... (ALT, T, T) command, 213-215
Trace→Until Halt (ALT, T, U) command, 224
Trace→Variable Access... (ALT, T, V) command, 210-211
transfer address, 12, 89, 91, 184-185, 188-190, 439-444
translating addresses, 254-257

implications, 62-63
trigger, 439-444

condition, 439-444
position, 439-444
state, searching for in Trace window, 326
store condition, 439-444

tutorial, 4
type of memory, 60, 247-250

U unary minus operator, 159
unexpected stepping behavior, 402-403
unions (C operators), 159
unused prefetches, 391-394
user ID, 421-423
user programs, loading, 73
user-defined symbols

creating, 84, 318
deleting, 85, 320
displaying, 85, 316

Utilities→Copy... (ALT, -, U, C) command, 290
Utilities→Fill... (ALT, -, U, F) command, 291
Utilities→Image... (ALT, -, U, I) command, 292

Index

461

Utilities→Load... (ALT, -, U, L) command, 294
Utilities→Store... (ALT, -, U, S) command, 295

V values
searching memory for, 108, 288
status, 389-390

variable access breakpoints, 199-202
variable modify breakpoints, 199-202
Variable→Edit... (ALT, V, E) command, 203-204
variables

auto, 99-101
displaying, 15, 99
dynamic, 203-204, 329, 385
editing, 16, 100, 203-205
environment, 76
global, 81, 122, 312
local, 82-83, 313
monitoring in the WatchPoint window, 17, 101
tracing accesses, 23, 122, 210-211

version information, 273, 429
virtual address: definition, 399

W WAIT command, 152
wait delays, inserting in command files, 347
watchpoints, 439-444

editing, 329
WatchPoint window, 385

monitoring variables in, 17, 101
turning polling ON or OFF, 69

window contents, copying to the list file, 34
Window→1-9 (ALT, W, 1-9) command, 271
Window→Arrange Icons (ALT, W, A) command, 270
Window→Cascade (ALT, W, C) command, 270
Window→More Windows... (ALT, W, M) command, 272
Window→Tile (ALT, W, T) command, 270
windows (debugger), opening, 271-272
Windows for Workgroups LAN address, 352
windows of program execution, tracing, 139
WINSOCK LAN address, 353
writes to ROM, enabling or disabling breaks on, 51

Index

462

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of installation.
During the warranty period, HP will, at its option, either repair or replace
products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges, duties, and
taxes for products returned to HP from another country. HP warrants that its
software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the instrument, or
software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases
of operation, service, and repair of this instrument. Failure to comply with
these precautions or with specific warnings elsewhere in this manual violates
safety standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be
connected to an electrical ground. The instrument is equipped with a
three-conductor ac power cable. The power cable must either be plugged
into an approved three-contact electrical outlet or used with a three-contact
to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet. The power jack and
mating plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a
definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component
replacement and internal adjustments must be made by qualified
maintenance personnel. Do not replace components with the power cable
connected. Under certain conditions, dangerous voltages may exist even with
the power cable removed. To avoid injuries, always disconnect power and
discharge circuits before touching them.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable
of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install
substitute parts or perform any unauthorized modification of the instrument.
Return the instrument to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous
procedures throughout this manual. Instructions contained in the warnings
must be followed.

WARNING Dangerous voltages, capable of causing death, are present in this instrument.
Use extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on
equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect
against damage to the instrument.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case
of a fault. Used with field wiring terminals to indicate the terminal which
must be connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal
common, as well as providing protection against electrical shock in case of a
fault. A terminal marked with this symbol must be connected to ground in the
manner described in the installation (operating) manual before operating the
equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or
all of the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure,
practice, condition or the like, which, if not correctly performed, could result
in injury or death to personnel.

	Real-Time C Debugger — Overview
	In This Book
	Contents
	Quick Start Guide
	Getting Started

	User’s Guide
	Using the Debugger Interface
	Plugging the Emulator into Target Systems
	Configuring the Emulator
	Debugging Programs

	Reference
	Command File and Macro Command Summary
	Expressions in Commands
	Menu Bar Commands
	Window Control Menu Commands
	Window Pop-up Menu Commands
	Other Command File and Macro Commands
	Error Messages

	Concept Guide
	Concepts

	Installation Guide
	Installing the Debugger
	Installing/Updating HP 64700 Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

