
User’s Guide

HP B1476
68020/030
Debugger/Emulator

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection
with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1989-1992, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Microtec is a registered trademark of Microtec Research Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories Inc. in the
U.S.A. and other countries.

Hewlett-Packard Company
P.O . Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions set forth in subparagraph (C) (1) (ii) of
the Rights in Technical Data and Computer Software Clause in DFARS
252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

ii

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level
of the software product at the time the manual was issued. Many product
updates and fixes do not require manual changes, and manual corrections may
be done without accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual revisions.

Edition 1 B1476-97006, July 1992

Certification and Warranty

Certification and warranty information can be found at the end of this manual
on the pages before the back cover.

iii

Debugging C Programs for 68020/030
Microprocessors

The HP B1476 68020/030 Debugger/Emulator is a debugging tool for 68020
and 68030 microprocessor code. The debugger loads and executes C programs
or assembly language programs on an HP 64748 or HP 64747 emulator. The
code is executed in real time unless a specific feature of the debugger or
emulator requires halting the processor. The emulator functions as a
high-speed execution environment for the debugger.

With the Debugger, You Can ...

• Browse and edit C and C+ + source files.
• View C and C+ + functions on the stack.
• Monitor variables as the program executes.
• View assembly language code with source lines.
• View registers and stack contents.
• Step through programs by C or C+ + source lines or by assembly language

instructions.
• Stop programs upon the execution of selected instructions or upon a read

or write of selected memory locations.
• Create conditional breakpoints using macros.
• Patch C or C+ + code without recompiling.
• Collect microprocessor bus-level data as the program executes. You can

specify when data should be collected and which states get saved.
• Simulate input and output devices using your computer’s keyboard,

display, and file system.
• Save and execute command files.
• Log debugger commands and output.
• Examine the inheritance relationships of C+ + classes.
• Use the debugger, the emulator/analyzer, and the Software Performance

Analyzer together.

iv

With the Graphical Interface You Can ...

• Use the debugger under an X Window System that supports OSF/Motif
interfaces.

• Enter debugger commands using pull-down or pop-up menus.
• Set source-level breakpoints using the mouse.
• Create custom action keys for commonly used debugger commands or

command files.
• View source code, monitored data, registers, stack contents, and backtrace

information in separate windows on the debugger’s main display.
• Access on-line help information.
• Quickly enter commands using the guided syntax of the standard interface.

With the Standard Interface You Can ...

• Use the debugger with a terminal or terminal emulator.
• Quickly enter commands using guided syntax, command recall, and

command editing.
• View source code, monitored data, registers, stack contents, and backtrace

information in separate windows on the debugger’s main display.
• Define your own screens and windows in the debugger’s main display.
• Access on-line help information.

v

In This Book

This book is organized into five parts:

Part 1. Quick Start Guide

An overview of the debugger and a short lesson to get you started.

Part 2. User’s Guide

How to use the debugger to solve your problems.

Part 3. Concept Guide

Background information on X resources.

Part 4. Reference

Descriptions of what each debugger command does, details of how the
debugger works, and a list of error messages.

Part 5. Installation

How to install the debugger software on your computer.

vi

Contents

Part 1 Quick Start Guide

1 Getting Started with the Graphical Interface

The Graphical Interface at a Glance 5
Pointer and cursor shapes 5
The Debugger Window 6
Graphical Interface Conventions 8
Mouse Buttons 9
Platform Differences 10

The Quick Start Tutorial 11
The Demonstration Program 11
To prepare to run the debugger 12
To start the debugger 13
To activate display area windows 15
To run until main() 16
To scroll the Code window 17
To display a function 18
To run until a line 19
To edit the program 20
To display init_system() again 21
To set a breakpoint 21
To run until the breakpoint 22
To patch code using a macro 23
To delete a single breakpoint 25
To delete all breakpoints 25
To step through a program 26
To run until a stack level 26
To step over functions 27
To step out of a function 27
To display the value of a variable 27
To change the value of a variable 28

vii

To recall an entry buffer value 29
To display the address of a variable 30
To break on an access to a variable 31
To use the command line 32
To use a C printf command 32
To turn the command line off 33
To trace events following a procedure call 34
To see on-line help 35
To end the debugging session 36

2 Getting Started with the Standard Interface

The Standard Interface At a Glance 38

The Quick Start Tutorial 40
Before You Begin 40
The Demonstration Program 40
To copy the demonstration files 41
To start the debugger 42
To enter commands 43
To activate display area windows 43
To display main() 44
To display a subroutine 44
To set a breakpoint 45
To run the demo program 45
To step through the program 46
To step over functions 46
To delete a breakpoint 46
To display variables in their declared type 47
To display the address of a variable 47
To use a C printf command 48
To break on an access to a variable 48
To display blocks of memory 49
To monitor variables 50
To modify a variable by entering a C expression 50
To end the debugging session 51

Contents

viii

Part 2 User’s Guide

3 Entering Debugger Commands

Using Menus, the Entry Buffer, and Action Keys 59
To choose a pull-down menu item using the mouse (method 1) 59
To choose a pull-down menu item using the mouse (method 2) 60
To choose a pull-down menu item using the keyboard 61
To choose pop-up menu items 62
To use pop-up menu shortcuts 63
To place values into the entry buffer using the keyboard 63
To copy-and-paste to the entry buffer 63
To recall entry buffer values 65
To edit the entry buffer 66
To use the entry buffer 66
To copy-and-paste from the entry buffer to the command line entry area 66
To use the action keys 67
To use dialog boxes 68
To access help information 72

Using the Command Line with the Mouse 73
To turn the command line on or off 74
To enter a command 75
To edit the command line using the command line pushbuttons 76
To edit the command line using the command line pop-up menu 77
To recall commands 77
To get help about the command line 78

Using the Command Line with the Keyboard 79
To enter debugger commands from the keyboard 79
To edit the command line 81
To recall commands using the command line recall feature 81
To display the help window 82

Viewing Debugger Status 84
Debugger Status 84
Indicator Characters 85
CPU Emulated 85
Current Module 85

Contents

ix

Last Breakpoint 86
Trace Status 86
If pop-up menus don’t pop up 87

4 Loading and Executing Programs

Compiling Programs for the Debugger 90
Using a Hewlett-Packard C Cross Compiler 90
Using Microtec Language Tools 92

Loading Programs and Symbols 94
To specify the location of C source files 94
To load programs 95
To load programs only 96
To load symbols only 97
To append programs 97
To specify demand loading of symbols 98

Stepping Through and Running Programs 100
To step through programs 100
To step over functions 101
To run from the current PC address 102
To run from a start address 102
To run until a stop (break) address 103

Using Breakpoints 105
To set a memory access breakpoint 105
To set an instruction breakpoint 107
To set a breakpoint for a C+ + object instance 109
To set a breakpoint for overloaded C+ + functions 110
To set a breakpoint for C+ + functions in a class 110
To clear selected breakpoints 111
To clear all breakpoints 112
To display breakpoint information 112
To halt program execution on return to a stack level 115

Restarting Programs 116
To reset the processor 116
To reset the program counter to the starting address 116

Contents

x

To reset program variables 117

Loading a Saved CPU State 118
To load a saved CPU state 118

Using the MC68030 Memory Management Unit 120
The deMMUer 120
The emulator/analyzer interface 120
Restrictions when using the MMU 120
To enable the MMU 121

Accessing the UNIX Operating System 122
To fork a UNIX shell 122
To execute a UNIX command 123

Using the Debugger and the Emulator Interface 124
To start the emulation interface from the debugger 124

Using simulator and emulator debugger products together 125

Using the Debugger with the Branch Validator 126
To unload Branch Validator data from program memory 126

5 Viewing Code and Data

Using Symbols 130
To add a symbol to the symbol table 130
To display symbols 131
To display symbols in all modules 132
To delete a symbol from the symbol table 132

Displaying Screens 134
To display the high-level screen 136
To display the assembly level screen 136
To switch between the high-level and assembly screens 136
To display the standard I/O screen 137
To display the next screen (activate a screen) 137

Contents

xi

Displaying Windows 139
To change the active window 141
To select the alternate view of a window 142
To view information in the active window 143
To view information in the "More" lists mode 144
To copy window contents to a file 145

Displaying C Source Code 146
To display C source code 146
To find first occurrence of a string 147
To find next occurrence of a string 147

Displaying Disassembled Assembly Code 149
To display assembly code 149

Displaying Program Context 150
To set current module and function scope 150
To display current module and function 151
To display debugger status 151
To display register contents 152
To display the function calling chain (stack backtrace) 153
To display all local variables of a function at the specified stack
 (backtrace) level 157
To display the address of the C+ + object invoking a member function 158

Using Expressions 159
To calculate the value of a C expression 159
To display the value of an expression or variable 160
To display members of a structure 161
To display the members of a C+ + class 162
To display the values of all members of a C+ + object 162
To monitor variables 163
To monitor the value of a register 164
To discontinue monitoring specified variables 164
To discontinue monitoring all variables 165
To display C+ + inheritance relationships 165
To print formatted output to a window 166
To print formatted output to journal windows 166

Contents

xii

Viewing Memory Contents 168
To compare two blocks of memory 168
To search a memory block for a value 168
To examine a memory area for invalid values 169
To display memory contents 170
How Simulated I/O Works 171
Simulated I/O Connections 172
Special Simulated I/O Symbols 173
To enable simulated I/O 174
To disable simulated I/O 175
To set the keyboard I/O mode to cooked 175
To set the keyboard I/O mode to raw 175
To control blocking of reads 176
To interpret keyboard reads as EOF 176
To redirect I/O 177
To check resource usage 178
To increase file resources 179
If problems occur when using simulated I/O 181

6 Making Trace Measurements

The Trace Function 184
To start a trace using the Code pop-up menu 190
To start a trace using the command line 190
To stop a trace in progress 191
To display a trace 192
To specify trace events 193
To delete trace events 194
To specify storage qualifiers 194
To specify trigger conditions 196
To halt program execution on the occurrence of a trigger 197
To remove a storage qualification term 198
To remove a trigger term 198
To trace code execution before and after entry into a function 199
To trace data written to a variable 199
To trace data written to a variable and who wrote to the variable 200
To trace events leading up to writing a particular value in a variable 201
To execute a complex breakpoint using the trace function 202
To trace entry to and exit from modules 203
If tracing is not triggered as expected 205

Contents

xiii

7 Editing Code and Data

Editing Files 208
To edit source code from the Code window 208
To edit an arbitrary file 209
To edit a file based on an address in the entry buffer 209
To edit a file based on the current program counter 209

Patching Source Code 210
To change a variable using a C expression 210
To patch a line of code using a macro 211
To patch C source code by inserting lines 212
To patch C source code by deleting lines 212

Editing Memory Contents 214
To change the value of one memory location 214
To change the values of a block of memory interactively 214
To copy a block of memory 215
To fill a block of memory with values 216
To compare two blocks of memory 216
To re-initialize all program variables 217
To change the contents of a register 217

8 Using Macros and Command Files

Using Macros 221
To display the Macro Operations dialog box 225
To define a new macro interactively using the graphical interface 225
To use an existing macro as a template for a new macro 226
To define a macro interactively using the command line 227
To define a macro outside the debugger 228
To edit an existing macro 228
To save macros 229
To load macros 229
If macros do not load 229
To call a macro 230
To call a macro from within an expression 231
To call a macro from within a macro 231
To call a macro on execution of a breakpoint 232
To call a macro when stepping through programs 234

Contents

xiv

To stop a macro 235
To display macro source code 235
To delete a macro 236

Using Command Files 237
To record commands 238
To place comments in a command file 239
To pause the debugger 239
To stop command recording 240
To run a command file 240
To set command file error handling 241
To append commands to an existing command file 242
To record commands and results in a journal file 242
To stop command and result recording to a journal file 243
To open a file or device for read or write access 243
To close the file associated with a window number 244
To use the debugger in batch mode 245

9 Configuring the Debugger

Setting the General Debugger Options 249
To display the Debugger Options dialog box 249
To list the debugger options settings 249
To specify whether command file commands are echoed to the Journal
window 250
To set automatic alignment for breakpoints and disassembly 250
To set backtrace display of bad stack frames 251
To specify demand loading of symbols 252
To select the interpretation of numeric literals (decimal/hexadecimal) 252
To specify step speed 253

Setting the Symbolics Options 254
To display symbols in assembly code 254
To display intermixed C source and assembly code 255
To enable parameter checking in commands and macros 255

Setting the Display Options 257
To specify the Breakpoint window display behavior 257
To specify the View window display behavior 258
To specify the standard I/O window display behavior 258

Contents

xv

To display half-bright or inverse video highlights 259
To display information a screen at a time (more) 259
To specify scroll amount 260
To store timing information when tracing 260
To mask fetches while tracing 261

Modifying Display Area Windows 262
To resize or move the active window 262
To move the Status window 263
To define user screens and windows 264
To display user-defined screens 265
To erase standard I/O and user-defined window contents 265
To remove user-defined screens and windows 266

Saving and Loading the Debugger Configuration 267
To save the current debugger configuration 267
To load a startup file 268

Setting X Resources 270
To modify the debugger’s graphical interface resources 272
To use customized scheme files 276
To set up custom action keys 278
To set initial recall buffer values 279
To set up demos or tutorials 280

10 Configuring the Emulator

To start the Emulator Configuration dialog box 285
To modify a configuration section 286
To store a configuration 287
To examine the emulator configuration 288
To change the configuration directory context 288
To display the configuration context 289
To access configuration help information 289
To exit the Emulator Configuration dialog box 289
To load a configuration file 290
To create or modify a configuration file 292
If an error occurs when loading a configuration file 292
To store an emulator configuration 293

Contents

xvi

Emulator Configuration Items 294
Memory 294
Emulation Monitor 294
Break Conditions 295
Other Configuration Items 295
To enter the monitor after configuration 296
To restrict to real-time runs 297
To enable the processor cache memory 298
To enable one wait state for emulation memory 299
To change the memory configuration 299
To enable the MC68030 Memory Management Unit 300
To select and configure the MC68030 emulation monitor 301
To select and configure the emulation monitor 301
To set up specifications for the emulation monitor 302
To assign memory map terms 308
To modify the emulator pod configuration 316
To disable target system interrupts 317
To preset the interrupt stack pointer and Program Counter 317
To set the target memory access size 319
To modify the debug/trace options 320
To break the processor on a write to ROM 320
To define the software breakpoint vector 321
To trace background or foreground operation 322
To configure the analyzer clock 323
To modify the simulated I/O configuration 324
To modify the interactive measurement specification 325

Mapping The Foreground Monitor For Use With The
 MC68030 MMU 326
To modify the MMU mappings to translate the monitor address
 space 1:1 327
To modify a transparent translation register to map the monitor address
 space 1:1 328

Contents

xvii

Part 3 Concept Guide

11 X Resources and the Graphical Interface

An X resource is user-definable data 332
A resource specification is a name and a value 332
Don’t worry, there are shortcuts 333
But wait, there is trouble ahead 334
Class and instance apply to applications as well 335
Resource specifications are found in standard places 336
Loading order resolves conflicts between files 337
The app-defaults file documents the resources you can set 338
Scheme files augment other X resource files 338
You can create your own scheme files, if you choose 340
Scheme files continue the load sequence for X resources 340
You can force the debugger’s graphical interface to use certain schemes 340
Resource setting - general procedure 342

Part 4 Reference

12 Debugger Commands

How Pulldown Menus Map to the Command Line 348

How Popup Menus Map to the Command Line 351

Command Summary 353
Breakpoint Commands 353
Session Control Commands 353
Expression Commands 354
File Commands 354
Memory Commands 355
Program Commands 356
Symbol Commands 356
Trace Commands 357
Window Commands 357

Contents

xviii

Breakpt Access 358
Breakpt Clear_All 360
Breakpt Delete 361
Breakpt Instr 362
Breakpt Read 364
Breakpt Write 365
Debugger Directory 366
Debugger Execution Display_Status 367
Debugger Execution Environment FwdCmd 368
Debugger Execution Environment Load_Config 369
Debugger Execution Environment Modify_Config 370
Debugger Execution IO_System 371
Debugger Execution Load_State 374
Debugger Execution Reset_Processor 375
Debugger Host_Shell 376
Debugger Help 378
Debugger Level 379
Debugger Macro Add 380
Debugger Macro Call 383
Debugger Macro Display 384
Debugger Option Command_Echo 385
Debugger Option General 386
Debugger Option List 389
Debugger Option Symbolics 390
Debugger Option Trace 392
Debugger Option View 393
Debugger Pause 396
Debugger Quit 397
Expression C_Expression 399
Expression Display_Value 400
Expression Fprintf 403
Expression Monitor Clear_All 408
Expression Monitor Delete 409
Expression Monitor Value 410
Expression Printf 413
File Command 415
File Error_Command 416
File Journal 417
File Log 418
File Startup 420
File User_Fopen 423

Contents

xix

File Window_Close 425
Memory Assign 426
Memory Block_Operation Copy 428
Memory Block_Operation Fill 429
Memory Block_Operation Match 431
Memory Block_Operation Search 433
Memory Block_Operation Test 435
Memory Display 437
Memory Register 439
Memory Unload_BBA 441
Program Context Display 444
Program Context Expand 445
Program Context Set 446
Program Display_Source 447
Program Find_Source Next 448
Program Find_Source Occurrence 449
Program Load 451
Program Pc_Reset 454
Program Run 455
Program Step 458
Program Step Over 460
Program Step With_Macro 462
Symbol Add 463
Symbol Browse 466
Symbol Display 467
Symbol Remove 472
Trace Again 474
Trace deMMUer 475
Trace Display 477
Trace Event Clear_All 483
Trace Event Delete 484
Trace Event List 485
Trace Event Specify 486
Trace Event Used_List 490
Trace Halt 491
Trace StoreQual 492
Trace StoreQual Event 496
Trace StoreQual List 498
Trace StoreQual None 499
Trace Trigger 500
Trace Trigger Event 504

Contents

xx

Trace Trigger List 507
Trace Trigger Never 508
Window Active 509
Window Cursor 511
Window Delete 512
Window Erase 513
Window New 514
Window Resize 517
Window Screen_On 518
Window Toggle_View 519

13 Expressions and Symbols in Debugger Commands

Expression Elements 523
Operators 523
Constants 525

Symbols 530
Program Symbols 530
Debugger Symbols 531
Macro Symbols 531
Reserved Symbols 532
Line Numbers 532

Addresses 533
Code Addresses 533
Data and Assembly Level Code Addresses 533
Address Ranges 533

Keywords 535

Forming Expressions 536

Expression Strings 537

Symbolic Referencing 538
Storage Classes 538
Data Types 539
Special Casting 542
Scoping Rules 543

Contents

xxi

Referencing Symbols 543
Evaluating Symbols 547
Stack References 548

14 Reserved Symbols

15 Predefined Macros

break_info 558
byte 560
close 561
cmd_forward 562
dword 564
error 565
fgetc 566
fopen 567
key_get 568
key_stat 569
memchr 570
memclr 571
memcpy 572
memset 573
open 574
pod_command 576
read 578
reg_str 579
showversion 580
strcat 581
strchr 582
strcmp 583
strcpy 584
stricmp 585
strlen 586
strncmp 587
until 588
when 589
word 590
write 591

Contents

xxii

16 Debugger Error Messages

17 Debugger Versions

Version A.05.00 612
Graphical User Interface 612
New Product Number 612
New Reserved Symbols 612
New Predefined Macro 612
Environment Variable Expansion 613
Target Program Function Calls 613
C+ + Support 613
Simulated Interrupts Removed 613
Simulated I/O Changes 613
Support for 68030 with MMU 613

Part 5 Installation Guide

18 Installation

Installation at a Glance 618
Supplied interfaces 618
Supplied filesets 619
Emulator/Analyzer Compatibility 619

To install software on an HP 9000 system 620
Required Hardware and Software 620
Step 1. Install the software 621

To install the software on a Sun SPARCsystem 624
Required Hardware and Software 624
Step 1: Install the software 625
Step 2: Map your function keys 625

Contents

xxiii

To install the emulator hardware 627

To set up your software environment 628
To start the X server 628
To start HP VUE 629
To set environment variables 630
To find the logical name of your emulator 632
To add an emulator to the 64700tab.net file 633
To add an emulator to the /etc/hosts file 634

To verify the software installation 635
To remove software 636

Configuring Terminals for Use with the Debugger 637
To configure HP terminals or bit-mapped displays 641
To configure the DEC VT100 terminal 643
To configure the VT220 terminal 645
To set the TERM environment variable 648
To set up control sequences 649
To resize a debugger window in an X-Window larger than 24 lines
 by 80 columns 650
To resize a debugger window in a window larger than 24 lines
 by 80 columns 651

Contents

xxiv

Part 1

Quick Start Guide

Part 1

2

1

Getting Started with the Graphical
Interface

How to get started using the debugger’s graphical interface.

3

When an X Window System that supports OSF/Motif interfaces is running on
the host computer, the debugger has a graphical interface that provides
features such as pull-down and pop-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action keys and pop-up
recall buffers.

The debugger also has a standard interface for several types of terminals,
terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard. If you are using the
debugger’s standard interface, please skip to the chapter “Getting Started with
the Standard Interface”.

Some advanced commands are not well-suited to menus. Those commands
are entered through the command line. The command line allows you to enter
standard interface commands in the graphical interface.

Chapter 1: Getting Started with the Graphical Interface

4

The Graphical Interface at a Glance

Pointer and cursor shapes

Arrow

The arrow mouse pointer shows where the mouse is pointing.

Hand

The hand mouse pointer indicates that a pop-up menu is available by pressing
the right mouse button.

Hourglass

The hourglass mouse pointer means "wait." If the debugger is busy executing a
program, you may stop it by pressing < Ctrl> -C .

Text

The "I-beam" keyboard cursor shows where text entered with the keyboard will
appear in the entry buffer or in a dialog box.

Command-line

The "box" keyboard cursor on the command line shows where commands
entered with the keyboard will appear.

Chapter 1: Getting Started with the Graphical Interface

5

The Debugger Window

Menu bar

Action keys

Entry buffer

Scroll bar

Display area

Status line

Command line

Chapter 1: Getting Started with the Graphical Interface

6

Menu Bar. Provides pull-down menus from which you select commands.
When menu items are not applicable, they appear half-bright and do not
respond to mouse clicks.

Action Keys. User-defined pushbuttons. You can label these pushbuttons
and define the action to be performed. Action key labels and functions are
defined by setting X resources (see the “Configuring the Debugger” chapter).

Entry Buffer. Wherever you see "()" in a pull-down menu, the contents of the
entry buffer are used in that command. You can type values into the entry
buffer, or you can cut and paste values into the entry buffer from the display
area or from the command line entry area. You can also set up action keys to
use the contents of the entry buffer.

Display Area. This area of the screen is divided into windows which display
information such as high-level code, simulated input and output, and
breakpoints. To activate a window, click on its border.

In this manual, the word "window" usually refers to a window inside the
debugger display area.

Scroll Bar. Allows you to page or scroll up or down the information in the
active window.

Status Line. Displays the debugger status, the CPU type, the current
program module, the number of the last breakpoint, and the trace status. You
can press and hold the right mouse button to access the Status Line pop-up
menu.

Command Line. The command line area is similar to the command line in
the standard interface; however, the graphical interface lets you use the mouse
to enter and edit commands. You can turn off the command line if you only
need to use the pull-down menus.

Chapter 1: Getting Started with the Graphical Interface

7

Graphical Interface Conventions

This manual uses a shorthand notation for indicating that you should choose a
particular menu item. For example, the following instruction

Choose File→Load→Executable...

means to select the File menu, then select Load from the File menu, then
select the Executable... item from the Load menu.

Refer to the “Entering Debugger Commands” for specific information about
choosing menu items.

In this manual, the word "window" usually means a window inside the
debugger display area, rather than an X window.

Chapter 1: Getting Started with the Graphical Interface

8

Mouse Buttons

Mouse Button Descriptions

Button Name General Function

left Selects pushbuttons. Pastes from the display area
to the entry buffer.

middle Pastes from the entry buffer to the command line
text area. If you have a two-button mouse, press
both buttons together to get the "middle button."

right Click selects first item in pop-up menus. Click on
window border activates windows. Press and hold
displays menus.

command select Displays pull-down menus. May be the left button
or right button, depending on the kind of
computer you have. See “Platform Differences.”

Chapter 1: Getting Started with the Graphical Interface
Mouse Buttons

9

Platform Differences

A few mouse buttons and keyboard keys work differently between platforms.
This manual refers to those mouse button and keyboard bindings in a general
way. Refer to the following tables to find out the button names for the
computer you are using to run the debugger.

Mouse Button Bindings

Generic Button Name HP 9000 Sun SPARCsystem

command select left right

Keyboard Key Bindings

Generic Key Name HP 9000 Sun SPARCsystem

menu select extend char extend char
(diamond)

left-arrow left arrow left arrow1

right-arrow right arrow right arrow1

1These keys do not work while the cursor is in the main display area.

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

10

The Quick Start Tutorial

This tutorial gives you step-by-step instructions on how to perform a few basic
tasks using the debugger.

Perform the tasks in the sequence given; otherwise, your results may not be
the same as those shown here.

Some values displayed on your screen may vary from the values shown here.
The exercises and displays in this chapter were made using a HP 64747
40 MHz 68030/EC030 emulator. If you are using an emulator with a different
clock rate or the HP 64748 68020 emulator, the information displayed in some
windows on your screen will be different.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental
control system (ECS). The system controls the temperature and humidity of a
room requiring accurate environmental control. The program continuously
looks at flags which tell it what action to take next.

Note Some commands are printed on two lines in this chapter. When entering
these commands, type the entire command on one line.

Chapter 1: Getting Started with the Graphical Interface
Platform Differences

11

To prepare to run the debugger

1 Check that the debugger has been installed on your computer. Installation is
described in the "Installation" chapter.

2 Find the logical name of your emulator.

The emulator name emul68k is used in the examples in this chapter. If you
have given your emulator a different logical name in the HP 64700 emulator
device table /usr/hp64000/etc/64700tab.net, use your emulator name or lan
address in the examples. See the section “To find the logical name of your
emulator” in the “Installation” chapter of this manual. See the HP 64700A
Card Cage Installation/Service Manual for detailed information on installing
your emulator.

3 Find out where the debugger software is installed. If it is not installed under
"/usr/hp64000" then use "$HP64000" wherever "/usr/hp64000" is printed in this
chapter.

4 Check that "/usr/hp64000/bin" and "." are in your $PATH environment
variable. (Type "echo $PATH" to see the value of $PATH.)

5 If the debugger software is installed on a different kind of computer than the
computer you are using, edit the "platformScheme" in the
/usr/hp64000/demo/debug_env/hp64747/Xdefaults.demo or
/usr/hp64000/demo/debug_env/hp64748/Xdefaults.demo file. For example, if
you are sitting at a Sun workstation which is networked to an HP 9000 Series
300 workstation, change the platformScheme to "SunOS".

Chapter 1: Getting Started with the Graphical Interface
To prepare to run the debugger

12

To start the debugger

1 Change to the debugger demo directory:

cd /usr/hp64000/demo/debug_env/ <emulator>

where < emulator> is hp64747 for a 68030 or 68EC030 emulator, or hp64748
for a 68020 emulator.

2 Start the debugger by entering:

Startdebug emul68k

This will set some environment variables, start the debugger, load a
configuration file, and load a program for you to look at.

If the logical name of your emulator is not emul68k, then use the name of your
emulator instead of emul68k. If you do not know the name of your emulator,
see “To find the logical name of your emulator” in the “Installation” chapter
of this manual.

The Startdebug script will ask you whether it should copy the demo files to
another directory.

Or, if you have installed the emulator/analyzer and Software Performance
Analyzer interfaces, you can use the following command to start all of the
interfaces:

Startall emul68k

Note If you were debugging your own program, you would need to enter a command
like:

db68k -e emul68k -C Config -c mycmd ecs

or, for the 68030/EC030 debugger/emulator:

db68030 -e emul68k -C Config -c mycmd ecs

Chapter 1: Getting Started with the Graphical Interface
To start the debugger

13

This command starts the debugger, which executes the command file
mycmd.com and loads the absolute file ecs.x.
See the “Loading and Executing Programs” chapter for more details.

Chapter 1: Getting Started with the Graphical Interface
To start the debugger

14

To activate display area windows

Notice there are several windows in the main display area of the debugger.
The different windows contain different types of information from the
debugger. The active window has the thicker border.

1 Use the right mouse button to click on the border of the Monitor window.

Be sure to click only once (do not "double-click"). The Monitor window should
now have a thick border. Now activate the Code window:

2 Use the right mouse button to click on the border of the Code window.

If you click on the border of the active window, it will be expanded. Just click
again to show the window in its normal size.

See the “Debugging Programs” chapter for a list of other ways to activate a
window.

Chapter 1: Getting Started with the Graphical Interface
To activate display area windows

15

To run until main()

1 Click on the Run Til () action key.

The Code window now shows the main () routine.

Clicking on the Run Til () action key runs the program until the line indicated
by the contents of the entry buffer.

Locate the (): symbol. The area to the right of this symbol is the entry buffer.
When you started the demonstration program, the debugger loaded the entry
buffer with the value “main”.

Chapter 1: Getting Started with the Graphical Interface
To run until main()

16

To scroll the Code window

To see more of the program you can:

• Use the mouse to operate the vertical scroll bar:

• Use the mouse to operate the horizontal scrolling buttons:

• Use the < Page Up> and < Page Down> keys on your keyboard.

The scroll bar affects the contents of the active (highlighted) window.

You might notice that the scroll bar has a "sticky" slider which always returns
to the center of the scroll bar. This is so that you can always do local
navigation even in very large programs. Use the Disp Src () action key or the
Display→Source () pull-down menu item to move larger distances.

Chapter 1: Getting Started with the Graphical Interface
To scroll the Code w indow

17

To display a function

1 Position the cursor over the call to init_system.

2 Click the left mouse button.

This will place the string "init_system" into the entry buffer.

3 Click on the Disp Src () action key.

4 Scroll up one line to see the "init_system()" line.

You should now see the source code for the init_system() routine in the Code
window.

Chapter 1: Getting Started with the Graphical Interface
To display a function

18

To run until a line

1 Position the cursor over line 34. The hand-shaped cursor means that a pop-up
menu is available.

2 Hold down the right mouse button to display the Code window pop-up menu.
Move the mouse to Run until , then release the button.

Line 34 should now be highlighted. Notice that "init_system" now appears in
the Backtrace window at level 0, which means that the program counter is
inside the init_system() function.

Chapter 1: Getting Started with the Graphical Interface
To run until a line

19

To edit the program

This step assumes you are using an HP Advanced Cross Language System
compiler (HP B1461/HP B1478). If you are using another compiler, skip this
step.

Suppose we wanted the initial value of target_temp to be 74 instead of 73. The
debugger makes it easy to change the source code:

1 Place the cursor over the assignment to target_temp (line 33).

2 Hold the right mouse button and select Edit Source from the Code window
pop-up menu.

An editor will appear in a new X window. The default text editor is vi. You
can use a different text editor by editing the Xdefaults.demo file.

Chapter 1: Getting Started with the Graphical Interface
To edit the program

20

3 Change the "73" to "74".

4 Exit the editor.

5 Click on the Make action key.

The program will be re-compiled with the new value and reloaded into the
emulator.

To display init_system() again

• Click on the Disp Src() action key.

Since "init_system" is still in the entry buffer, the init_system() routine is
displayed.

You have now completed a edit-compile-load programming cycle.

To set a breakpoint

We want to run until just past the line that we changed.

1 Position the mouse pointer over line 42.

2 Click the right mouse button to set a breakpoint.

The breakpoint window is displayed, showing the breakpoint has been added.

An asterisk (*) appears in the first column of the Code window next to the
location of the breakpoint. Dots apppear in front of any other lines (such as
comments) associated with the breakpoint.

Chapter 1: Getting Started with the Graphical Interface
To display init_system() again

21

To run until the breakpoint

• Click on the Run Xfer action key to run the program from its transfer address.

While the program is executing, the menus and buttons are "grayed out," and
an "hourglass" mouse pointer is displayed. You cannot enter debugger
commands while the program is executing. If you need to stop an executing
program, type < Ctrl> -C with the mouse pointer in the debugger X window.

After a few moments, line 42 will be highlighted, showing that program
execution stopped there.

The Journal window shows that a break occurred and which breakpoint it was.

Chapter 1: Getting Started with the Graphical Interface
To run until the breakpoint

22

To patch code using a macro

1 Position the cursor over line 38.

2 Select Attach macro from the Code window pop-up menu.

The Macro Operations dialog box appears. The macro "patch_temp" is
already selected. Before we attach the macro, let’s examine it:

3 Click on the Edit button in the dialog box.

This macro will set current_temp to 71 each time the breakpoint is
encountered. The macro skips over the assignment in the program source
code by setting the program counter to line 39. The return value of 0 tells the
macro to stop program execution after the macro.

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

23

Debugger Macro Add int patch_temp()
{
 /* set the current_temp to be 71 degrees instead of what the code says */
 current_temp = 71;

 /* Restart execution at line # 39 -- Skips over the code too!! */
 $Memory Register @PC = #39$;

 /* Return value indicates continuation logic: 1=continue, 0=break */
 return(0);
}
.

4 Exit the editor.

5 Click on the Attach button in the dialog box.

The plus sign ("+ ") in front of line 38 indicates that a macro has been attached
to a breakpoint at that line.

6 Click on the Run Xfer action key to run the program.

Chapter 1: Getting Started with the Graphical Interface
To patch code using a macro

24

Notice that current_temp, as shown in the Monitor window, is 71, not 68.

To delete a single breakpoint

Once you set a breakpoint, program execution will break each time the
breakpoint is encountered. If you don’t want to break on a certain breakpoint
again, you must delete the breakpoint. Suppose you want to delete the
breakpoint that was previously set at line 42 in init_system.

1 Position the mouse over line 42.

2 Click the right mouse button to delete the breakpoint.

The breakpoint window shows the breakpoint has been deleted. The asterisk
in front of line 42 disappears.

To delete all breakpoints

1 Position the mouse pointer in the Breakpoint window.

2 Hold down the right mouse button to select Delete All Breakpoints from the
Breakpoint window pop-up menu.

All breakpoints are deleted.

Chapter 1: Getting Started with the Graphical Interface
To delete a single breakpoint

25

To step through a program

You can execute one source line (high-level mode) or one instruction
(assembly-level mode) at a time by stepping through the program.

• Click on the Step action key a few times.

• If you want to try using a pull-down menu, select Execution→Step→from PC a
few times.

As the debugger steps through the program, you can see the PC progress
through the source code, as shown by the inverse video line in the Code
window.

To run until a stack level

Now we need to go back to main(). You can run the program until it enters
main() by running to a stack level.

1 Position the mouse pointer over the line containing "main\main" in the
Backtrace window.

2 Select Run Until Stack Level from the Backtrace pop-up menu.

The program counter is now back in main(), on the call to proc_spec_init().

Chapter 1: Getting Started with the Graphical Interface
To step through a program

26

To step over functions

You can either step through functions or step over functions. When you step
over a function, it is executed as a single program step.

• Click on the Step Over action key.

The next line in main() is highlighted. The routine proc_spec_init() was
executed as a single program step.

To step out of a function

1 Click on the Step action key until the program counter is in update_system().

2 Click on the Step Out action key.

The program will execute until it returns from update_system().

To display the value of a variable

1 Use the left mouse button to highlight "num_checks" in the Code window.

2 Click on the C Expr () action key.

In the Journal window, the current value of the variable is displayed in its
declared type (int). Notice that this is the same as the value displayed in the
Monitor window.

Chapter 1: Getting Started with the Graphical Interface
To step over functions

27

To change the value of a variable

1 In the entry buffer, add "= 10" after "num_checks".

2 Click on the C Expr () action key.

The new value is displayed in the Journal window and in the Monitor window.

Chapter 1: Getting Started with the Graphical Interface
To change the value of a variable

28

To recall an entry buffer value

1 Click on the Recall button.

2 In the Recall dialog box, click the left mouse button on "num_checks".

3 In the Recall dialog box, click the left mouse button on OK.

The string "num_checks" is now in the entry buffer.

Chapter 1: Getting Started with the Graphical Interface
To recall an entry buffer value

29

To display the address of a variable

You can use the C address operator (&) to display the address of a program
variable.

1 Position the mouse pointer in the entry buffer.

2 Type "&" in the entry buffer so that it contains "&num_checks".

3 Click on the C Expr () action key.

The result is the address of the variable num_checks. The address is displayed
in hexadecimal format.

Chapter 1: Getting Started with the Graphical Interface
To display the address of a variable

30

To break on an access to a variable

If you started the debugger using the Startall script, skip this section. Access
breakpoints are disabled because the analyzer has been configured to use the
Trig2 trigger for other purposes.

You can also set breakpoints on a read, a write, or any access of a variable.
This helps to locate defects due to multiple functions accessing the same
variable. Suppose you want to break on the access of the variable num_checks.
("&num_checks" should still be in the entry buffer.)

1 Set the breakpoint by selecting Breakpoints→Set→Read/Write ().

2 Run the program by clicking on the Run action key.

When the program stops, the code window shows that the program stopped at
the next reference to the variable num_checks. Due to the latency of the
emulation analyzer, the processor may halt up to two instruction cycles after
the breakpoint has been detected.

Try running the program a few more times to see where it stops. (Notice that
num_checks is passed by reference to interrupt_sim. Since counter points to the
same address as num_checks, the debugger stops at references to counter.)

3 Delete the access breakpoint. Select Window→Breakpoints, place the mouse
in the Breakpoint window, press and hold the right mouse button, and choose
Delete All Breakpoints.

Chapter 1: Getting Started with the Graphical Interface
To break on an access to a variable

31

To use the command line

1 Select Settings→Command Line from the menu bar.

The command line area which appears at the bottom of the debugger window
can be used to enter complex commands using either the mouse or the
keyboard.

2 Build a command out of the command tokens which appear beneath the
command line entry area.

To use the command line with the mouse, click on the button for each
command token.

3 When the command has been built, type or select < Return> .

To use a C printf command

The command line’s Expression Printf command prints the formatted output
of the command to the Journal window using C format parameters. This
command permits type conversions, scaling, and positioning of output within
the Journal window.

• Using the command line, enter:

Expression Printf "%010d",num_checks

In this example, the value of num_checks is printed as a decimal integer with a
field width of 10, padded with zeros.

Chapter 1: Getting Started with the Graphical Interface
To use the command line

32

To turn the command line off

1 Move the mouse pointer to the Status line.

2 Hold down the shift key and click the right mouse button.

The shift-click operation selects the second item from a pop-up menu, which
in this case is Command Line On/Off.

You can turn the command line on and off from the Settings pull-down menu,
the Status pop-up menu, and the command line pop-up menu.

Chapter 1: Getting Started with the Graphical Interface
To turn the command line off

33

To trace events following a procedure call

1 Position the mouse pointer over the call to update_system() on line 102.

2 Select Trace After from the Code window pop-up menu.

3 Run the program by clicking on the Run action key.

Notice that the debugger interface is "grayed out" and that the mouse pointer
is an hourglass when the mouse is in the debugger X window. This means that
the program is executing.

4 Wait for the status line to show TRC:Cmplt , then press < Ctrl> -C in the
debugger window.

5 Select Window→Trace to see the bus states which occurred after the call to
update_system().

The trace listing will be displayed in the Trace Mode debugger window. If an
emulator/analyzer X window is active, it will display the trace listing. You can
scroll through the trace to see more bus states.

6 Press the < ESC> key twice to exit the trace display.

Chapter 1: Getting Started with the Graphical Interface
To trace events following a procedure call

34

To see on-line help

1 Select Help→General Topic ...

2 Select To Use Help, then click on the OK button.

Spend a few minutes exploring the help topics, so that you can find them when
you need them.

Chapter 1: Getting Started with the Graphical Interface
To see on-line help

35

To end the debugging session

• Use the command select mouse button to choose File→Exit→Released (all
windows, release emulator).

Or:

• Using the command line, enter:

Debugger Quit Released

The debug session is ended and your system prompt is displayed. The Released
option unlocks the emulator so that other users on your system can use it.

This completes your introduction to the 68020/030 debugger. You have used
many features of the debugger. For additional information on performing
tasks with the debugger, refer to the "User’s Guide" part of this manual. For
more detailed information on debugger commands, error messages, etc., refer
to the "Reference" part of this manual.

Chapter 1: Getting Started with the Graphical Interface
To end the debugging session

36

2

Getting Started with the Standard
Interface

How to get started using the debugger’s character-based interface.

37

The Standard Interface At a Glance

The debugger has a standard interface for several types of terminals, terminal
emulators, and bitmapped displays. When using the standard interface,
commands are entered from the keyboard.

Display area

Status line

Command line Command tokens Command look ahead

38

Display area. Can show assembly level screen, high-level screen, simulated
I/O screen, or user-defined screens. These screens contain windows that
display code, variables, the stack, registers, breakpoints, etc. You can use the
UP ARROW, DOWN ARROW, PAGE UP, and PAGE DOWN cursor keys
to scroll or page up or down the information in the active window.

Status line. Displays the debugger status, the CPU, the current program
module, the number of the last breakpoint, and the trace status.

Command line. Commands are entered on the command line at the debugger
prompt (>) and executed by pressing the < Return> key. Command tokens
are placed on the command line by typing a single letter, typically the first
uppercase letter of the token. The Tab and Shift-Tab keys allow you to move
the cursor on the command line forward or backward. The Clear line key
clears from the cursor position to the end of the line. The <Ctrl>-U key
clears the whole command line.

Command tokens. The second line under the status line shows the tokens that
you can enter at the current location in the command line.

Command look ahead. The third line under the status line shows tokens that
are available if you select the highlighted command token above.

Chapter 2: Getting Started with the Standard Interface

39

The Quick Start Tutorial

This tutorial gives you step-by-step instructions on how to perform basic tasks
using the debugger.

Perform the tasks in the sequence given; otherwise, your results may not be
the same as those shown here.

Some values displayed on your screen may vary from the values shown here.
The exercises and displays in this chapter were made using a HP 64747
40 MHz 68030/EC030 emulator. If you are using an emulator with a different
clock rate or the HP 64748 68020 emulator, the information displayed in some
windows on your screen will be different.

Before You Begin

This chapter assumes you have already installed the debugger as described in
the "Installation" chapter.

The emulator name emul68k is used in the examples in this chapter. If you
have given your emulator a different logical name in the HP 64700 emulator
device table /usr/hp64000/etc/64700tab.net, use your emulator name or lan
address in the examples. See the HP 64700A Card Cage Installation/Service
Manual for detailed information on installing your emulator.

Note Some commands are printed on two lines in this chapter. When entering
these commands, type the entire command on one line.

The Demonstration Program

The demonstration program used in this chapter is a simple environmental
control system (ECS). The system controls the temperature and humidity of a
room requiring accurate environmental control. The program continuously
looks at flags which tell it what action to take next.

Chapter 2: Getting Started with the Standard Interface

40

To copy the demonstration files

Before you can run the demonstration program, you must copy the debugger
demo files to a new subdirectory. Perform the following steps to make the
subdirectory and copy the demo files into it.

1 Make a subdirectory for the debugger demo files.

Make sure the present working directory is the one in which you wish to create
the subdirectory for the debugger demo files. Then, enter the command:

mkdir mydirectory

where mydirectory is the name of your debugger demo subdirectory.

2 Change to the debugger demo subdirectory:

cd mydirectory

3 Copy the demo files:

cp -r /usr/hp64000/demo/debug_env/ <emulator> /* .

All files that you need to run the demonstration program should now be in the
working directory.

Chapter 2: Getting Started with the Standard Interface
To copy the demonstration files

41

To start the debugger

• Start the debugger by entering:

db68k -t -e emul68k -C Config
 -c cmdfiles/debug/Cmd_dbstart ecs020

The -t option starts the debugger’s standard interface.

The -e emul68k option tells the debugger which emulator to use.

If the logical name of your emulator is not emul68k, then use the name of your
emulator or the emulator’s lan address instead of emul68k.

The -C ioconfig option tells the debugger how to set up memory mapping for
the program.

The -c cmdfiles/debug/Cmd_dbstart option tells the debugger to execute the
Cmd_dbstart.com command file.

The ecs020 argument tells the debugger to load the ecs020.x absolute file.

Note Start the 68030/EC030 debugger/emulator using the command:

db68030 -t -e emul68k -C Config
 -c cmdfiles/debug/Cmd_dbstart ecs030

This command starts execution of the debugger, which executes the command
file Cmd_dbstart.com and loads the absolute file ecs.x.

Chapter 2: Getting Started with the Standard Interface
To start the debugger

42

To enter commands

1 Type the first letter of one of the command tokens listed below the command
entry line.

2 Type the first letter of the next command token, if any.

3 Type any necessary parameters. They are indicated on the command token
line in < angle brackets> .

4 Press <Return> to enter the command.

You may edit the command you are entering. See the section “To edit the
command line” in the “Entering Debugger Commands” chapter for more
information on how to enter and edit commands.

Note
If a portion of the previous command is still visible on the command line,
press <Ctrl>-E to clear to the end of the command line before pressing
<Return> .

To activate display area windows

Notice there are several windows in the main display area of the debugger.
The different windows contain different types of information from the
debugger. The active window has the thicker border. It is in the active window
that the scroll bar and the PAGE UP and PAGE DOWN keys have an effect.
There are several ways to activate a window in the display area.

• Press the F1 function key to activate the next higher numbered window or the
F2 function key to activate the next lower numbered window.

Or:

Chapter 2: Getting Started with the Standard Interface
To enter commands

43

• Using the command line, enter the Window Active command.

Try changing the active window a few times. Activate the Code window when
you are done.

To display main()

• Enter the following command:

Program Display_Source main

Remember, to enter this command all you need to type is "P" then "D" then
"main" then <Return> .

The main() function is displayed. Use the UP ARROW key to see the
"main()" statement.

To display a subroutine

Notice that main() calls update_system().

• Enter the following command:

Program Display_Source update_system

The update_system() function is displayed. Use the UP ARROW key to see
the "update_system()" statement.

Chapter 2: Getting Started with the Standard Interface
To display main()

44

To set a breakpoint

Suppose you want to execute up to the call to update_system(). To do this you
could set a breakpoint at the statement "update_system()" and run the
program.

• Using the command line, enter:

Breakpt I nstr update_system

The breakpoint window is displayed, showing the breakpoint has been added.

An asterisk (*) appears in the first column of the Code window next to the
location of the breakpoint. The dot (.) in the first column of the previous lines
show the source lines associated with that breakpoint.

To run the demo program

• Using the command line, enter:

Program Run

The journal window shows that a break occurred and which breakpoint it was.

Notice that the source file line at which the breakpoint was set is now in
inverse video. The inverse video line shows the current program counter.
You should now be viewing the update_system() routine.

Chapter 2: Getting Started with the Standard Interface
To set a breakpoint

45

To step through the program

You can execute one source line (high-level mode) or one instruction
(assembly-level mode) at a time by stepping through the program.

• Using the command line, enter:

Program Step

You can step again by just pressing <Return> .

As the debugger steps through the program, you can see the PC progress
through the source code, as shown by the inverse video line in the Code
window.

To step over functions

You can either step through functions or step over functions. When you step
over a function, it is executed as a single program step.

• Using the command line, enter:

Program Step Over

To delete a breakpoint

Once you set a breakpoint, program execution will break each time the
breakpoint is encountered. If you don’t want to break on a certain breakpoint
again, you must delete the breakpoint. Suppose you want to delete the
breakpoint that was previously set at the statement "update_system()".

1 Run the program up to the breakpoint:

Chapter 2: Getting Started with the Standard Interface
To step through the program

46

Program Run

2 Using the command line, enter:

Breakpt Delete 1

The breakpoint window is displayed, showing the breakpoint has been deleted.

To display variables in their declared type

Whenever you specify a variable name without a C or debugger operator
prefix, it is displayed in its declared type.

• Using the command line, enter:

Expression Display_Value current_temp

In the Journal window, the current value of the variable is displayed in its
declared type (int).

To display the address of a variable

You can use the C address operator (&) to display the address of a program
variable.

• Using the command line, enter:

Expression Display_Value ¤t_temp

The result is the address of the variable current_temp. The address is displayed
in hexadecimal format.

Chapter 2: Getting Started with the Standard Interface
To display variables in their declared type

47

To use a C printf command

The Expression Printf command prints the formatted output of the command
to the Journal window using C format parameters. This command permits
type conversions, scaling, and positioning of output within the Journal window.

• Using the command line, enter:

Expression Printf "%010d",current_temp

In this example, the value of current_temp is printed as a decimal integer with a
field width of 10, padded with zeros.

The Expression Fprintf command can be used to print formatted output to a
file or user-defined window.

To break on an access to a variable

You can also set breakpoints on a read, a write, or any access of a variable.
This helps to locate defects due to multiple functions accessing the same
variable. Suppose you want to break on the access of the variable
¤t_temp.

1 Set the access breakpoint:

Breakpt Access ¤t_temp

2 Run the program:

Program Run

When the program stops (after approximately ten seconds), the code window
shows that the program stopped at the next reference to the variable
current_temp. Due to the latency of the emulation analyzer, the processor may
halt up to two instruction cycles after the breakpoint has been detected.

Chapter 2: Getting Started with the Standard Interface
To use a C printf command

48

Try running the program (just press <Return>) a few more times to see
where it stops. If the program had a pointer to the variable, it would stop
there, too.

3 Delete the access breakpoint.

Using the command line, enter:

Breakpt Delete 1

To display blocks of memory

You can display structures and arrays in memory as well as ranges of memory
locations that encompass several variables.

• Using the command line, enter:

Memory Display Byte ¤t_temp

The debugger displays a block of memory starting at the address of the
variable current_temp.

The C address operator & is used because the Memory Display command is an
assembly-level command and expects a memory address as its argument.

Chapter 2: Getting Started with the Standard Interface
To display blocks of memory

49

To monitor variables

The Expression Monitor Value command allows you to monitor a variable’s
value during execution of your program.

• Using the command line, enter:

Expression Monitor Value current_temp

The value of current_temp is now displayed in the Monitor window.

To modify a variable by entering a C expression

The Expression C_Expression command calculates the value of a C expression
or modifies a C variable if the C expression contains the assignment operator
(=). This command recognizes variable types and the assignment expression
specified behave according to the rules of C.

• Using the command line, enter:

Expression C_Expression current_temp = 99

Notice that the value of current_temp in the Monitor window has changed to
the number you entered.

Chapter 2: Getting Started with the Standard Interface
To monitor variables

50

To end the debugging session

• Enter:

Debugger Quit Released

The debug session is ended and your system prompt is displayed. The emulator
is released so that other people can use it.

This completes your introduction to the 68020/030 debugger. You have used
many features of the debugger. For additional information on performing
tasks with the debugger, refer to the "User’s Guide" part of this manual. For
more detailed information on debugger commands, error messages, and so on,
refer to the "Reference" part of this manual.

Chapter 2: Getting Started with the Standard Interface
To end the debugging session

51

Chapter 2: Getting Started with the Standard Interface
To end the debugging session

52

Part 2

User’s Guide

Part 2

54

3

Entering Debugger Commands

How to enter debugger commands using the mouse or the keyboard.

55

Entering Debugger Commands

This chapter shows you how to enter debugger commands using the graphical
interface or the standard interface. The tasks are grouped into the following
sections:

• Using menus, the entry buffer, and action keys.

• Using the command line with the mouse.

• Using the command line with the keyboard.

The graphical interface provides an easy way to enter commands using a mouse.
It lets you use pull-down and pop-up menus, point and click setting of
breakpoints, cut and paste, on-line help, customizable action keys and pop-up
recall buffers, and other advanced features. To use the graphical interface,
your computer must be running an X Window System that supports
OSF/Motif interfaces.

The debugger also has a standard interface for several types of terminals,
terminal emulators, and bitmapped displays. When using the standard
interface, commands are entered from the keyboard.

When using the graphical interface, the command line portion of the interface
gives you the option of entering commands in the same manner as they are
entered in the standard interface. If you are using the standard interface, you
can only enter commands from the keyboard using the command line.

56

Function Key Commands

You can enter commonly used commands quickly and easily by pressing the
function keys F1 through F8 on your keyboard. Function keys can be used in
the graphical interface as well as the standard interface. The following table
and figure describe the commands associated with the function keys.

If you are using the debugger on a Sun SPARCsystem, refer to the
"Installation" chapter for information on mapping function keys.

Function Key Commands

Function
Key

Menu Equivalent,
Command Line Equivalent

Description

F1 Display→Next Window,
Window Active Next

Activate the next higher numbered window.

F2 Display→Previous Window,
Window Active Previous

Activate the next lower numbered window.

F3 Settings→High Level Debug or
Settings→Assembly Level Debug,
Debugger Level

Switch between assembly-level and
high-level mode.

F4 Right click on active window border,
Window Toggle_View

Select the alternate display of the active
window.

F5 Help→Command Line...,
Debugger ? (Help)

Access on-line help.

F6 Display→Simulated I/O,
Window Screen_On Next

Access the standard I/O screen. Also access
any existing user-defined screens.

F7 Execution→Step Instruction→from PC,
Program Step

Execute one C source line (high-level
mode), or execute one microprocessor
instruction (assembly-level mode).

F8 Execution→Step Source→from PC,
Program Step Over

Execute one C source line, but treat whole
functions as a single line (high-level mode);
execute one microprocessor instruction, but
treat whole subroutines as a single
instruction.

Chapter 3: Entering Debugger Commands

57

Command Line Control Character Functions

Press the control key <Ctrl> simultaneously with the B, C, E,F, G, L, Q, R, S,
U, or \ keys to execute the operations listed in the following table. (The letter
keys may be upper- or lower-case.)

Command Line Control Character Functions

Control Function

<Ctrl> B Recall command reverse.

<Ctrl> C Abort the current command and return to debugger command mode.

<Ctrl> E Clear to end of command line.

<Ctrl> F Shift contents of active window to right.

<Ctrl> G Shift contents of active window to left.

<Ctrl> L Redraw screen.

<Ctrl> Q Resume output to screen.

<Ctrl> R Recall previous command.

<Ctrl> S Suspend output to screen.

<Ctrl> U Clear command line

<Ctrl> \ End the debug session (same as Debugger Quit Released command)

The Journal Window

The debugger displays debugger commands entered from the keyboard in the
Journal window. The Journal window also displays warning and informational
messages from the debugger and output generated by commands. This
window is available in both the high-level and assembly-level screens.

Chapter 3: Entering Debugger Commands

58

Using Menus, the Entry Buffer, and Action Keys

This section describes the tasks you perform when using the debugger’s
graphical interface to enter commands. This section describes how to:

• Choose a pull-down menu item using the mouse.

• Choose a pull-down menu item using the keyboard.

• Use the pop-up menus.

• Use action keys.

• Use the entry buffer.

• Copy and paste to the entry buffer.

• Use dialog boxes.

• Access help information.

To choose a pull-down menu item using the
mouse (method 1)

1 Position the mouse pointer over the name of the menu on the menu bar.

2 Press and hold the command select mouse button to display the menu.

3 While continuing to hold down the mouse button, move the mouse pointer to
the desired menu item. If the menu item has a cascade menu (identified by an
arrow on the right edge of the menu button), then continue to hold the mouse
button down and move the mouse pointer toward the arrow on the right edge
of the menu. The cascade menu will display. Repeat this step for the cascade
menu until you find the desired menu item.

4 Release the mouse button to select the menu choice.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

59

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some menu items have an ellipsis (“...”) as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or message box when the
menu item is chosen.

Note The command select button can be either the left or right button, depending
on the computer you are using. The “Getting Started with the Graphical
Interface” chapter has a table which explains which button to use.

To choose a pull-down menu item using the
mouse (method 2)

1 Position the mouse pointer over the menu name on the menu bar.

2 Click the command select mouse button to display the menu.

3 Move the mouse pointer to the desired menu item. If the menu item has a
cascade menu (identified by an arrow on the right edge of the menu button),
then repeat the previous step and then this step until you find the desired item.

4 Click the mouse button to select the item.

If you decide not to select a menu item, simply move the mouse pointer off of
the menu and click the mouse button.

Some menu items have an ellipsis (“...”) as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu
item is chosen.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

60

To choose a pull-down menu item using the
keyboard

• To initially display a pull-down menu, press and hold the menu select key (for
example, the “Extend char” key on a HP 9000 keyboard) and then type the
underlined character in the menu label on the menu bar. (For example, “f” for
“File”. Type the character in lower case.)

• To move right to another pull-down menu after having initially displayed a
menu, press the right-arrow key.

• To move left to another pull-down menu after having initially displayed a
menu, press the left-arrow key.

• To move down one menu item within a menu, press the down-arrow key.

• To move up one menu item within a menu, press the up-arrow key.

• To choose a menu item, type the character in the menu item label that is
underlined. Or, move to the menu item using the arrow keys and then press
the < RETURN> key on the keyboard.

• To cancel a displayed menu, press the Escape key.

The interface supports keyboard mnemonics and the use of the arrow keys to
move within or between menus. For each menu or menu item, the underlined
character in the menu or menu item label is the keyboard mnemonic
character. Notice the keyboard mnemonic is not always the first character of
the label. If a menu item has a cascade menu attached to it, then typing the
keyboard mnemonic displays the cascade menu.

Some menu items have an ellipsis (“...”) as part of the menu label. An ellipsis
indicates that the menu item will display a dialog or other box when the menu
item is chosen.

Dialog boxes support the use of the keyboard as well. To direct keyboard
input to a dialog box, you must position the mouse pointer somewhere inside
the boundaries of the dialog box. That is because the interface keyboard focus

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

61

policy is set to pointer. That just means that the window containing the mouse
pointer receives the keyboard input.

In addition to keyboard mnemonics, you can also specify keyboard
accelerators which are keyboard shortcuts for selected menu items. Refer to
the “Setting X Resources” chapter and the “Debug.Input” scheme file for
more information about setting the X resources that control defining
keyboard accelerators.

To choose pop-up menu items

1 Move the mouse pointer to the area whose pop-up menu you wish to access.
(If a pop-up menu is available, the mouse pointer changes from an arrow to a
hand.)

2 Press and hold the right mouse button.

3 After the pop-up menu appears (while continuing to hold down the mouse
button), move the mouse pointer to the desired menu item.

4 Release the mouse button to select the menu choice.

If you decide not to select a menu item, simply continue to hold the mouse
button down, move the mouse pointer off of the menu, and release the mouse
button.

Some pop-up menus which are available include:

• Display-area Windows.

• Status Line.

• Command Line.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

62

To use pop-up menu shortcuts

• To choose the first item in a pop-up menu, click the right mouse button.

• To choose the second item in a pop-up menu, hold down the < Shift> key and
click the right mouse button.

To place values into the entry buffer using the
keyboard

1 Position the mouse pointer within the text entry area. (An “I-beam” cursor
will appear.)

2 Enter the text using the keyboard.

To clear the entry buffer text area from beginning until end, press the
< Ctrl> U key combination.

To copy-and-paste to the entry buffer

• To copy and paste a "word" of text, position the mouse pointer over the word
and click the left mouse button.

• To specify the exact text to copy to the entry buffer, position the mouse
pointer over the first character to copy, then hold the left mouse button while
dragging the mouse pointer over the text. When you release the mouse
button, the highlighted text will appear in the entry buffer.

You can copy-and-paste from the display area, the status line, and from the
command line entry area.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

63

Note If you have several graphical interface windows connected to the emulator,
then a copy-and-paste action in any window causes the text to appear in all
entry buffers in all windows. That is because although there are several entry
buffers being displayed, there is actually only one entry buffer, which is shared
by all windows. You can use this to copy a symbol or an address from one
window to another window.

On a memory display or trace display, you may need to scroll the display to
show more characters of a symbol.

The interface displays absolute addresses as hex values. If you copy and paste
an address from the display to the entry buffer, you must add a trailing “h” to
make the interface interpret it as a hex value when you use the entry buffer
contents with a command.

Text pasted into the entry buffer replaces that which is currently there. You
cannot use paste to append text to text already in the entry buffer. You can
retrieve previous entry buffer values by using the Recall button.

See “To copy-and-paste from the entry buffer to the command line entry area”
for information about pasting the contents of the entry buffer into the
command line entry area.

Example To paste the symbol “update_system” into the entry buffer from the interface
display area, position the mouse pointer over the symbol and then click the
left mouse button.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

64

To recall entry buffer values

1 Position the mouse pointer over the Recall button just to the right of the entry
buffer text area, and click the mouse button to bring up the Entry Buffer
Value Selection dialog box.

2 In the dialog box, click on the string you want.

3 In the dialog box, click on the "OK" button.

The Entry Buffer Value Selection dialog box contains a list of previous values
from the entry buffer. You can also predefine entries for the Entry Buffer
Value Selection dialog box and define the maximum number of entries by
setting X resources (refer to the “Setting X Resources” chapter).

If you decide not to change the contents of the entry buffer, click on the
"Cancel" button in the dialog box.

If you want the Entry Buffer Value Selection dialog box to remain visible after
you make a selection, press "Apply" instead of "OK". You may drag the dialog
box to another location on your display so that it does not cover the debugger
window.

See the following “To use dialog boxes” section for information about using
dialog boxes.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

65

To edit the entry buffer

• To position the keyboard cursor, click the left mouse button or use the arrow
keys.

• To clear the entry buffer, type < Ctrl> -U .

• To delete characters, press the < Backspace> or < Delete char> keys.

• To delete several characters, highlight the characters to be deleted using the
left mouse button, then press the < Backspace> or < Delete char> keys.

To use the entry buffer

1 Place information into the entry buffer (see the previous “To place values into
the entry buffer using the keyboard”, “To copy-and-paste to the entry buffer”,
or “To recall entry buffer values” task descriptions).

2 Choose the menu item, or click the action key, that uses the contents of the
entry buffer.

The contents of the entry buffer will be used wherever the "()" symbol appears
in a menu item or action key.

To copy-and-paste from the entry buffer to the
command line entry area

1 Position the mouse pointer within the command line text entry area.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

66

2 If necessary, reposition the keyboard cursor to the location where you want to
paste the text.

3 If necessary, choose the insert or replace mode for the command entry area.

4 Click the middle mouse button to paste the text into the command line entry
area at the current cursor position.

Note You should paste to the command line only when the command line is
expecting an address or a string. The characters from the entry buffer will be
treated as if they were typed from the keyboard. If the command line is
expecting keyword tokens, pasting can have unexpected results. For example,
pasting "delta" into an empty command line will generate a "Debugger
Execution Load_State ta" command!

Although a paste from the display area to the entry buffer affects all displayed
entry buffers in all open windows, a paste from the entry buffer to the
command line only affects the command line of the window in which you are
currently working.

See “To copy-and-paste to the entry buffer” for information about pasting
information from the display into the entry buffer.

To use the action keys

1 If the action key uses the contents of the entry buffer, place the desired
information in the entry buffer.

2 Position the mouse pointer over the action key and click the action key.

Action keys are user-definable pushbuttons that perform interface or system
functions. Action keys can use information from the entry buffer — this
makes it possible to create action keys that are more general and flexible.

Several action keys are predefined when you first start the debugger’s
graphical interface. You can use the predefined action keys to make, load,

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

67

run, and step through the demo program. You’ll really appreciate action keys
when you define and use your own.

Action keys are defined by setting an X resource. Refer to the chapter
“Setting X Resources” for more information about creating action keys.

To use dialog boxes

1 Click on an item in the dialog box list to copy the item to the text entry area.

2 Edit the item in the text entry area (if desired).

3 Click on the “OK” pushbutton to make the selection and close the dialog box,
click on the “Apply” pushbutton to make the selection and leave the dialog
box open, or click on the “Cancel” pushbutton to cancel the selection and
close the dialog box.

The graphical interface uses a number of dialog boxes for selection and recall:

Directory Selection Selects the working directory. You can change to a
previously accessed directory, a predefined directory, or
specify a new directory.

File Selection From the working directory, you can select an existing
file name or specify a new file name.

Entry Buffer Recall You can recall a previously used entry buffer text string,
a predefined entry buffer text string, or a newly entered
entry buffer string, to the entry buffer text area.

Command Recall You can recall a previously executed command, a
predefined command, or a newly entered command, to
the command line.

The dialog boxes share some common properties:

• Most dialog boxes can be left on the screen between uses.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

68

• Dialog boxes can be moved around the screen and do not have to be
positioned over the graphical interface window.

• If you iconify the interface window, all dialog boxes are iconified along
with the main window.

Except for the File Selection dialog box, predefined entries for each dialog box
(and the maximum number of entries) are set via X resources (refer to the
“Setting X Resources” chapter).

In file names, you may use a tilde as shorthand for your home directory.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

69

Examples To use the File Selection dialog box:

The file filter selects
specific files.

A list of
filter-matching files
from the current
directory.

A list of files
previously accessed
during the
emulation session.

A single click on a
file name from
either list highlights
the file name and
copies it to the text
area. A double click
chooses the file and
closes the dialog
box.

Label informs you
what kind of file
selection you are
performing.

Text entry area. Text is
either copied here
from the recall list, or
entered directly.

Clicking this button
chooses the file name
displayed in the text
entry area and closes
the dialog box.

Entering a new file
filter and clicking this
button causes a list of
files matching the new
filter to be read from
the directory.

Clicking this button
cancels the file
selection operation
and closes the dialog
box.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

70

To use the Directory Selection dialog box:

Label informs you
of the type of list
displayed.

A single click on a
directory name
from the list
highlights the name
and copies it to the
text area. A double
click chooses the
directory and closes
the dialog box.

A list of predefined
or previously
accessed directories.

Text entry area.
Directory name is
either copied here
from the recall list, or
entered directly.

Clicking this button
chooses the directory
displayed in the text
entry area and closes
the dialog box.

Clicking this button
chooses the directory
displayed in the text
entry area, but keeps
the dialog box on the
screen instead of
closing it.

Clicking this button
cancels the directory
selection operation
and closes the dialog
box.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

71

To access help information

1 Display the Help Index by choosing Help→General Topic ... or
Help→Command Line

2 Choose a topic of interest from the Help Index.

The Help Index lists topics covering operation of the interface as well other
information about the interface. When you choose a topic from the Help
Index, the interface displays a window containing the help information. You
may leave the window on the screen while you continue using the interface.

Examples To see more information on how to use the on-line help, click on Help, then
click on General Topics ..., then click on "To Use Help", then click on the
"OK" button.

Chapter 3: Entering Debugger Commands
Using Menus, the Entry Buffer, and Action Keys

72

Using the Command Line with the Mouse

When using the graphical interface, the command line portion of the interface
gives you the option of entering commands in the same manner as they are
entered in the standard interface. Additionally, the graphical interface makes
the command tokens pushbuttons so commands may be entered using the
mouse.

If you are using the standard interface, the command line is the only way to
enter commands.

This section describes how to:

• Turn the command line off/on.

• Enter commands.

• Edit commands.

• Recall commands.

• Display the help window.

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

73

To turn the command line on or off

• To turn the command line on or off using the pull-down menu, choose
Settings→Command Line.

• To turn the command line on or off using the status line pop-up menu:
position the mouse pointer within the status line area, press and hold the right
mouse button, and choose Command Line On/Off from the menu.

• To turn the command line on or off with a single mouse click, hold the
< Shift> key and click on the status line.

• To turn the command line off using the command line entry area pop-up
menu: position the mouse pointer within the entry area, press and hold the
right mouse button, and choose Command Line On/Off from the menu.

• To turn the command line on with the keyboard: place the mouse pointer in
the display area and press any alphanumeric key.

"On" means that the command line is displayed and you can use the command
token pushbuttons, the command return and recall pushbuttons, and the
cursor pushbuttons for command line editing. "Off" means the command line
is not displayed and you can use only the pull-down and pop-up menus and the
action keys to control the interface.

The command line area begins just below the status line and continues to the
bottom of the debugger window. The status line is not part of the command
line and continues to be displayed whether the command line is on or off.

Choosing certain pull-down menu items while the command line is off causes
the command line to be turned on. That is because the menu item chosen
requires some input at the command line that cannot be supplied another way.

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

74

To enter a command

1 Build a command using the command token pushbuttons by successively
positioning the mouse pointer on a pushbutton and clicking the left mouse
button until a complete command is formed.

2 Execute the completed command by clicking the Return pushbutton (found
near the bottom of the command line in the “Command” group).

Or:

Execute the completed command using the Command Line entry area pop-up
menu: Position the mouse pointer in the command line entry area; press and
hold the right mouse button until the Command Line pop-up menu appears;
then, choose the Execute Command menu item.

You may need to combine pushbutton and keyboard entry to form a complete
command.

A complete command is a string of partial commands or command tokens.
You know a command is complete when “< return> ” appears on one of the
command token pushbuttons. The interface does not check or act on a
command, however, until the command is executed. (In contrast, commands
resulting from menu choices and action keys are supplied with the needed
carriage return as part of the command.)

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

75

To edit the command line using the command line
pushbuttons

• To clear the command line, click the Clear pushbutton.

• To clear the command line from the cursor position to the end of the line,
click the Clear to end pushbutton.

• To move to the right one command word or token, click the Forward
pushbutton.

• To move to the left one command word or token, click the Backup pushbutton.

• To insert characters at the cursor position, press the Insert char key to change
to insertion mode, and then type the characters to be inserted.

• To delete characters to the left of the cursor position, press the < Backspace>
key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

When moving by words left or right, the Forward pushbutton becomes
half-toned and unresponsive when the cursor reaches the end of the command
string. Similarly, the Backup pushbutton becomes half-toned and
unresponsive when the cursor reaches the beginning of the command.

See “To edit the command line using the mouse and the command line pop-up
menu” and “To edit the command line using the keyboard” for information
about additional editing operations you can perform.

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

76

To edit the command line using the command line
pop-up menu

• To clear the command line: position the mouse pointer within the Command
Line entry area; press and hold the right mouse button until the Command
Line pop-up menu appears; choose Clear Entire Line from the menu.

• To clear the command line from the cursor position to the end of the line:
position the mouse pointer at the place where you want the clear-to-end to
start; press and hold the right mouse button until the Command Line pop-up
menu appears; choose Clear to End of Line from the menu.

• To position the cursor at the next token or the previous token: press and hold
the right mouse button until the Command Line pop-up menu appears;
choose Forward Tab or Backward Tab from the menu.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

See “To edit the command line using the mouse and the command line
pushbuttons” and “To edit the command line using the keyboard” for
information about additional editing operations you can perform.

To recall commands

1 Click the pushbutton labeled Recall in the Command Line to display the
dialog box.

2 Choose a command from the buffer list. (You can also enter a command
directly into the text entry area of the dialog box.)

Because all command entry methods in the interface — menus, action keys,
and command line entries — are echoed to the command line entry area, the

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

77

contents of the Command Recall dialog box is not restricted to commands
entered directly into the command line entry area.

The Command Recall dialog box contains a list of interface commands
executed during the debugger session as well as any predefined commands
present at interface startup.

You can predefine entries for the Command Recall dialog box and define the
maximum number of entries by setting X resources (refer to the “Setting X
Resources” chapter).

See “To use dialog boxes” for information about using dialog boxes.

To get help about the command line

• To display the help topic explaining the operation of the command line, select
Help→General Topic ...→Command Line Operation.

• To display the command line help menu, select Help→Command Line

Chapter 3: Entering Debugger Commands
Using the Command Line with the Mouse

78

Using the Command Line with the Keyboard

Commands are entered on the command line at the debugger prompt (>) and
executed by pressing the < Return> key. Command tokens are entered by
typing a single letter, typically the first uppercase letter of the token.

The third and fourth lines of the status window display command tokens. The
third line shows the tokens that you can enter at the current location in the
command line. The fourth line shows tokens that are available if you select
the highlighted command token on the third line. The command token lines
provide you with a look ahead feature, showing you the debugger commands
available to you at any time.

This section describes how to:

• Enter commands.

• Edit commands.

• Recall commands.

• Access on-line help information.

To enter debugger commands from the keyboard

1 Build a command using direct keyboard entry by successively typing letters
corresponding to command tokens until a complete command is formed.

2 Execute a completed command using the keyboard, press the < Return> key
on the keyboard.

You can enter commands any time the cursor is displayed on the command
line. You can enter only one debugger command at a time.

Debugger commands have the following syntax:

command [qualifier...] [parameter...]

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

79

To enter a command keyword, type the first letter of the keyword. For
example, to enter the command Debugger Level Assembly, type the letters D, L,
and A. The following command will appear on the command line:

Debugger Level Assembly

Press < Return> to enter (execute) the command.

In command examples, the letter you must type is highlighted in bold type.

Note In cases where you can select from more than one keyword beginning with the
same letter, type the first uppercase letter of the desired keyword. For
example, type O to select On and F to select oFF.

Enter qualifier keywords in the same way as command keywords. Qualifiers
provide the debugger with information on how to execute the command.
Qualifiers are normally single words that immediately follow the command
name. For example, in the command:

Program Find_Source Next Backward

the qualifier Backward causes the debugger to search the file from the current
position in the file towards the beginning of the file for a specified string.

Type parameters in their entirety from the keyboard. Parameters must be
separated from the command or qualifier keyword by at least one space.
Parameters describe the object of the command and are typically C expressions
that represent values or addresses used by the command. For example, in the
command:

Expression Display_Value &system_is_running

the parameter &system_is_running specifies the address of the variable
system_is_running.

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

80

To edit the command line

• To clear the command line, press < Ctrl> U .

• To clear the command line from the cursor position to the end of the line,
press < Ctrl> E .

• To move to the right one command word, press < Tab> .

• To move left or right character-by-character, press the ← and → keys.

• To delete characters to the left of the cursor position, press the
< BACKSPACE> key.

When the cursor arrives at the beginning of a command word or token, the
softkey labels change to display the possible choices at that level of the
command.

To recall commands using the command line
recall feature

• To recall commands from the command line, press the < Ctrl> R key
combination. Continue to press < Ctrl> R to move from the most recently
executed commands backward to earlier commands.

• To move forward in the recall list, press < Ctrl> B .

The command line recall feature is available to you, but it is not as easy to use
or as flexible as the Command Recall dialog box in the graphical interface.
You must search through commands in a linear fashion instead of going
directly to the command you want in the dialog box. The depth of the recall
list is predefined and cannot be controlled by you. The recall list may contain
duplicate entries that you must scroll past and that take up room in the recall

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

81

list. Finally, you cannot predefine entries for the recall list — the list only
contains the most recent commands executed during the emulation session.

To display the help window

• Press the function key F5.

Or:

• Enter the command

Debugger ?

This command displays a menu of debugger commands, command parameters,
function keys, and other debugger features. Descriptions for each topic may be
obtained by positioning the cursor on the first letter of any topic in the help
menu and pressing the < Return> key.

The debugger’s help window is context sensitive. When you display the help
window, the cursor is located on the last command you entered before
displaying the help window. The debugger assumes you need help with this
command. Press < Return> to display information about the command.

Pressing < Return> or < Down> displays information on the next item in the
help menu. Pressing < Up> displays information about the previous item in
the help menu.

You can move the cursor to the first command of a command type
(Breakpoint, Debugger, etc.) by entering the first letter of the command type.
For example, to move to cursor to the entry for the first window command,
enter:

W

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

82

The cursor will be positioned at the Window Active command entry. Then you
can use the cursor keys to select the window command you need help with and
press < Return> to display information on that command.

Press the F5 function key one time or press the escape (< Esc>) key twice to
exit the help window. (Note that you cannot exit the graphical interface help
window this way.)

Chapter 3: Entering Debugger Commands
Using the Command Line with the Keyboard

83

Viewing Debugger Status

The status line shows you what the debugger is doing. The status line:

• Contains information about the operation being performed by the
debugger.

• Contains indicators to warn you about special conditions.

• Shows the microprocessor being emulated.

• Shows the program module associated with the current program counter.

• Shows the number of the last breakpoint that occurred.

• Shows the trace measurement status.

The status line is always present in both the graphical interface and the
standard interface.

The debugger displays the status line in the following format:

STATUS:<Status> [J][L][W] CPU MODULE: <module> BREAK #: <#> TRC:<Trc_status>
 [R]

Debugger Status

The Status entry (< Status>) on the status line shows what type of operation
the debugger is doing. The possible types of debugger operations are:

Command The debugger is accepting a debugger command.

Define The debugger is accepting a macro definition.

Execute The debugger is executing target environment instructions.
The debugger displays Execute on the status line when you
enter the Program Run command or the Program Step
command.

Include The debugger is reading commands from a command file.

InMon The debugger is executing in the monitor.

Input The debugger is reading data from an input port.

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

84

Macro The debugger is executing a macro.

Output The debugger is writing data to an output port.

Paused The debugger is in the paused state after execution of the
Debugger Pause command.

Reading The debugger is reading an executable file or a C source file
into the debugger’s memory.

Working The debugger is executing internal debugger operations.

Indicator Characters

The Warning indicator (W) indicates that the program counter is not on a C
source line boundary. The debugger displays a warning when it detects a
breakpoint, an instruction halt, or an instruction error between lines.

The Log indicator (L) indicates that commands are being logged to a log file.

The Journal indicator (J) indicates that everything appearing in the Journal
window is being written to a journal file.

The Register indicator (R) indicates that a register variable is being used, but
its lifetime is not known by the debugger. The debugger displays an R when
the variable is referenced, indicating that the values being used for this
variable may not be valid.

CPU Emulated

The CPU entry indicates which microprocessor is being emulated.

If you are using a 68030 emulator, the status line will show "68EC030" if the
MMU is not enabled, and "68030" if the MMU is enabled.

Current Module

The MODULE: entry names the current module (< module>). The current
module is the module pointed to by the program counter. If the program
counter points outside of the known code area associated with the program,
this entry displays ???????.

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

85

Last Breakpoint

The BREAK # entry indicates the number of the last breakpoint that
occurred, or (0) zero if execution was not terminated with a breakpoint.

Trace Status

The TRC:< Trc_status> entry indicates the status of the trace measurement
function. The possible values for <Trc_status> are:

AwtTrg A trace measurement is in progress, but the trigger
condition has not been detected.

BrkRWA An access breakpoint has been set and will be used as the
trigger in the next trace measurement.

Cmplt A trace measurement has completed.

DataOK The trace buffer contains valid data.

Halted The Trace Halt command was used to halt the trace.

Idle No trace measurement has been executed during the current
debug session.

Setup A trace measurement has been set up (specified), and will
start on the next program run or program step command.
This status message appears only before the first trace
measurement in a debug session.

Trgrd A trace measurement is in progress, and the trigger has
been detected.

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

86

If pop-up menus don’t pop up

When you hold the right mouse button down, a pop-up menu does not appear.
Here are some things to check:

Check that the mouse pointer is hand-shaped.

Some areas of the screen do not have pop-up menus.

Check that your mouse buttons are not being redefined by your window
manager.

If you are using mwm to redefine your mouse buttons, delete the redefinition
from your .mwmrc file.

If you are using an older window manager such as mwm, look in

/usr/hp64000/lib/X11/HP64_schemes/HP-UX/Debug.Input

Copy the line

HP64_Debug*whichButton: Button5

to your .Xdefaults file. Change the 5 to a 3.

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

87

Chapter 3: Entering Debugger Commands
Viewing Debugger Status

88

4

Loading and Executing Programs

How to load a program into the debugger and control its execution.

89

Compiling Programs for the Debugger

Using a Hewlett-Packard C Cross Compiler

Use the default compile mode when compiling your target programs for use
with the debugger. The default settings generate executable files (.x file
extension) in the HP-MRI IEEE-695 file format required by the debugger.
The default option settings force a stack frame to be built for every function
call, which is required for stack backtracing.

The “Getting Started” chapter of the 68020 C Cross Compiler User’s Guide or
the 68030 C Cross Compiler User’s Guide gives an example of how to compile a
simple program and execute it in the HP 64747A/748A environment.

Note Do not use the –h option when compiling and linking your program for the
debugger. The –h option causes the compiler to generate HP 64000 file
formats. Use the default settings which generate executable files in the
HP-MRI IEEE-695 file format required by the debugger. The debugger
extracts all symbolic information from the executable (.x) file.

Using Environment Dependent Files

The HP 64903/B1461 and HP 64907/B1478 C Cross Compilers provide
environment dependent files that support the HP 64747A/748A emulation
environment. The debugger has the same simulated I/O capabilities as the
HP 64000 Series emulators. The same environment dependent files are used
for both the debugger and emulator environments. These environment
dependent routines affect the following areas of C programming:

• program setup

• dynamic memory allocation

• program input and output

The "Environment Dependent Routines" chapter of the 68020 C Cross
Compiler Reference or the 68030 C Cross Compiler Reference describes the
environment dependent routines supplied with the compiler.

90

Using Optimizing Modes

If you use the optimizing modes (–O or –OT), function calls that do not have
automatic variables will not have stack frames. As a result, the stack backtrace
window will not contain entries for such functions. Additionally, the
optimizing modes will cause the compiler to generate code which is not easily
debugged.

Note When initially compiling a program for the debugger, you should turn off all
optimizations to avoid confusion when using the debugger. After program
flow and all basic algorithms have been debugged, you can recompile the
program with all optimizations turned on.

When you compile with all optimizations on, one or more of the following
problems may occur while using the debugger:

• Target program execution in the debugger may not appear to correctly
reflect the logical flow of the program.

• The debugger may not stop execution at a high-level breakpoint or may
stop execution at the wrong location in the program.

• The debugger may not be able to display local variables.

Forcing Variables to be Placed in Memory

The default compiler settings automatically create register variables for statics
and frequently used variables. Some debugger functions such as breakpoints
will not work with register variables. The compiler option -Wc, -F turns off
the compiler’s automatic creation of register variables, forcing the compiler to
assign these variables to memory. This enables greater functionality of some
debugger commands. After debugging your code, you can then recompile your
code without these options for greater efficiency.

Using Math Libraries

Although FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code that
will run interchangeably in both the debugger/emulator and
debugger/simulator, use the C compiler’s floating point library routines.

Chapter 4: Loading and Executing Programs
Compiling Programs for the Debugger

91

These libraries contain routines that do not use FPU instructions, thereby
allowing them to execute properly in both debugging environments.

References

The “Getting Started” chapter of the 68020 C Cross Compiler User’s Guide
gives an example of how to compile a simple program and execute it in the
debugger environment.

The “Command Syntax” chapter of the 68020 C Cross Compiler User’s Guide
gives detailed descriptions of compiler options.

The “Environment Dependent Routines” chapter of the 68020 C Cross
Compiler Reference describes the environment dependent routines supplied
with the compiler.

Using Microtec Language Tools

The debugger is designed to work with the HP Advanced Cross Language
System. However, you can also use the Microtec Research, Inc. language tools
with the debugger.

Microtec’s language tools are quite similar to the HP language tools. The
input syntax and code generated by the HP and Microtec assemblers, linkers,
and librarians are identical with few exceptions.

The language tools available from Microtec® are the mcc68k C compiler, the
ccc68k C+ + compiler, the asm68k assembler, the lnk68k linker, and the
lib68k librarian.

Using the Microtec Commands

For instructions on how to compile and assemble programs using the Microtec
language tools, refer to the Application Note for Hewlett-Packard 68xxx Product
Interfaces and Microtec Research Inc. 68xxx Language Tools. This application
note is available from your Hewlett-Packard sales representative.

Assembler Defaults

You should be aware of these differences between asm68k and as68k:

Command-line syntax. The differences are minor. See the on-line man
pages for a description of the command-line options.

Chapter 4: Loading and Executing Programs
Compiling Programs for the Debugger

92

Case sensitivity. as68k is case sensitive by default, asm68k is not. Use the
command line flag "-fcase" to make asm68k case sensitive.

Symbols in HP-MRI IEEE-695 files. The HP assembler places local
symbols in the output object file by default, asm68k does not. Use the
command line flag "-fd’ with asm68k to generate local symbols.

The HP assembler places global symbols in the debug part by default. There is
no way to do this with Microtec’s asm68k. This information is needed by
emul700/SRU to correctly scope symbols. Thus you will find that some
symbols may be incorrectly scoped when using the emulator with the Microtec
assembler.

Linker Defaults

You should be aware of these differences between lnk68k and ld68k:

Output file format. ld68k produces HP-MRI IEEE-695 by default. lnk68k
products Motorola S-Records by default. To generate an HP-MRI IEEE-695
(.x) format absolute file, use the -H command line option or -fi flag.

Local symbols. ld68k provides local symbols in absolute file by default, but
lnk68k does not. The command line flag -fi and option -H also set the d flag
which will cause lnk68k to generate local symbols.

Support files. ld68k and lnk68k have different default locations and
environment variables used to locate linker command files and libraries.

Librarian Defaults

ar68k uses .a as the default library suffix. lib68k uses .lib as the default library
suffix.

The Microtec MCC68K Compiler

mcc68k is very different from the HP compilers. Study the Microtec
documentation if you need specific information about mcc68k.

Chapter 4: Loading and Executing Programs
Compiling Programs for the Debugger

93

Loading Programs and Symbols

This section shows you how to:

• Specify the location of C source files.

• Load programs.

• Load programs only (without symbols).

• Load symbols only (without the program).

• Append programs.

• Specify demand loading of symbols.

To specify the location of C source files

• Before you start the debugger, set the HP64_DEBUG_PATH environment
variable.

The location of C source files can be defined to the debugger with the UNIX
shell variable HP64_DEBUG_PATH. If HP64_DEBUG_PATH is defined, the
debugger only searches for the files in the path(s) specified in
HP64_DEBUG_PATH, in the order in which they are listed.

The % character can be included in the path to cause the debugger to search
the location of the source files recorded in the absolute file.

If HP64_DEBUG_PATH is not defined, the debugger searches for source files
in the following sequence:

1 their location at compile time (this information is recorded in the
absolute file)

2 the current directory (if the required source files are not found in their
compile location)

Example The shell variable definition:

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

94

HP64_DEBUG_PATH=/users/proj/src:/users/proj/mysrc:%
export HP64_DEBUG_PATH

causes the debugger to search paths for C source files in the following order:

3 /users/proj/src
4 /users/proj/mysrc
5 the paths specified in the absolute file at compile time

If you use the csh shell (most Sun systems), use setenv instead of export to set
the variable.

To load programs

• When starting the debugger, enter the executable file name as the last term in
the db68k command line.

$ db68k -e emul68k <abs_file>

Or:

• Select File→Load→Executable, then use the File Selection dialog box to select
the executable file.

Or:

• Using the command line, enter:

Program Load Default <file_name>

When you load an absolute file, the debugger:

1 Removes all previous program symbols.

2 Removes all previously set breakpoints.

3 Resets the program counter (PC).

4 Loads the full symbol set.

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

95

5 Loads the new executable module.

Absolute files contain executable object code. They must have a file name
extension of .x. You do not need to specify the .x file extension when entering
the absolute file name.

Examples To load the executable file ecs.x:

$ db68k -e emul68k ecs

Or:

Program Load Default ecs

To load programs only

• Select File→Load→Program Only ..., then use the File Selection dialog box to
select the absolute file.

Or:

• Using the command line, enter:

Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and press the
< Return> key.

The code will be loaded without loading symbols or resetting the PC.

If you are re-loading a program, you may need to restore some debugger
settings; for example, you might need to re-specify variables for the Monitor
window.

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

96

To load symbols only

• Use the -I option to the db68k command when starting the debugger.

$ db68k -e emul68k -I <absolute_file> <RETURN>

Or:

• Select File→Load→Symbols Only ..., then use the File Selection dialog box to
select the absolute file.

Or:

• Using the command line, enter:

Program Load New Symbols_only No_Pc_Set <absolute_file>

Enter the name of the absolute file whose symbols are to be loaded, and press
the < Return> key.

Only symbolic information is loaded from the absolute file.

To append programs

• Using the command line, enter:

Program Load Append

Select either All, Code_Only, or Symbols_Only. Then, select either Pc_Set or
No_Pc_Set. Finally, enter the name of the absolute file to be appended, and
press the < Return> key.

All both code and symbols are loaded.

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

97

Code_Only only code from the absolute file is loaded.

Symbols_Only only symbols from the absolute file are loaded.

Pc_Set the program counter (PC) is set to the transfer address
found in the absolute file.

No_Pc_Set the program counter (PC) is not changed.

When you append a program, it is loaded without deleting the existing
program.

Examples To append the program “module2.x” to the current program without setting
the program counter:

Program Load Append All No_Pc_Set module2

To specify demand loading of symbols

• Use the -d option when starting the debugger.

The -d option turns on demand loading of symbols, loading some symbol
information on an as-needed, demand basis rather than during the initial load
of the .x file.

Symbol information for global symbols, local symbols in the source module
containing main, and local symbols in assembly modules are loaded during the
initial load of the .x file. Local symbols in C source modules other than that
module which contains main are loaded either when the user explicitly
references the module or when the program is stopped with the program
counter in the module. The primary advantage of demand load is that it lets
you load and debug programs that otherwise would not be loaded because of
very large amounts of symbol information.

There are several side effects of demand loading. The debugger command
Memory Unload_BBA is disabled. Type mismatch errors may not be detected
during the initial load of the .x file. Global symbols may have leading

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

98

underscores stripped depending on whether they were defined/referenced in a
C or assembly source module.

Examples To specify demand loading of symbols when starting the debugger:

$ db68k -e emul68k -d <RETURN>

Chapter 4: Loading and Executing Programs
Loading Programs and Symbols

99

Stepping Through and Running Programs

The various Program Run command options can be combined to make
complex run-time control commands for your program.

This section shows you how to:

• Step through programs.

• Step over functions.

• Run from the current PC address.

• Run from a start address.

• Run until a stop address.

To step through programs

• Click on the Step action key.

Or:

• Select Execution→Step→from PC.

Or:

• Using the command line, enter:

Program Step

And press the < Return> key.

Your program executes one C source line (high-level mode) or one machine
instruction (assembly-level mode) at a time from the address contained in the
program counter (PC). When the program calls a function, stepping continues
in the called function.

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

100

You can specify a starting address with the Program Step command. You can
also specify a step count to cause the debugger to step multiple lines or
instructions in your program.

Note If the debugger steps into an HP library routine, run until the stack level above
the level of the library routine. Use the Program Run Until command or the
Backtrace window pop-up menu.

The debugger updates the screen after each instruction or line is executed.
The highlighted line in the Code window (which indicates the value of the
program counter) is the location of the next line to be executed. If a
breakpoint is encountered, single-stepping is halted.

You can also use function key F7 to single-step.

To step over functions

• Click on the Step Over action key.

Or:

• Select Execution→Step Over→from PC.

Or:

• Using the command line, enter:

Program Step Over

And press the < Return> key.

The debugger steps through the program one line or one instruction at a time.
However, if the debugger encounters a C function or assembly-level JSR or
CALL instruction, it stops stepping, executes the JSR or CALL instruction,
and then continues stepping when the called subroutine returns.

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

101

You can also use function key F8 to step over functions.

To run from the current PC address

• Click on the Run action key.

Or:

• Select Execution→Run→from PC.

Or:

• Using the command line, enter:

Program Run

And press the < Return> key.

The program runs until:

• The program encounters a permanent or temporary breakpoint.
• An error occurs.
• A STOP instruction is encountered.
• You press < Ctrl> -C .
• The program terminates normally.

You can run from the current program counter address to resume program
execution after the program has been stopped.

To run from a start address

1 Enter the start address into the entry buffer.

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

102

2 Select Execution→Run→from () .

Or:

• Using the command line, enter:

Program Run From <start_addr>

Type in the start address, and press the < Return> key.

The program runs until:

• The program encounters a permanent or temporary breakpoint.
• An error occurs.
• A STOP instruction is encountered.
• You press < Ctrl> -C .
• The program terminates normally.

Running from a start address in high-level mode may cause unpredictable
results if the compiler startup routine is bypassed.

To run until a stop (break) address

1 Enter the stop address into the entry buffer.

2 Select Execution→Run→until () or click on the Run Til () action key.

Or:

• Using the command line, enter:

Program Run Until <break_addr>

Type in the stop address and, optionally, a pass count, and press the
< Return> key.

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

103

The break address (< break_address>) acts as a temporary instruction
breakpoint. It is automatically cleared when program execution is halted.

The pass count (< pass_count>) parameter specifies the number of times the
break address is executed before the program is halted. For example, a pass
count of three will cause the program to break on the fourth execution of the
break address.

Multiple break addresses are OR’ed. In other words, if you specify more than
one break address, the program runs until either address is encountered.

Note The debugger/emulator implements instruction breaks using software
breakpoints. Therefore, break addresses cannot be specified for addresses in
target ROM.

Examples To run the program until either line 20 or line 90 is encountered, whichever
occurs first.

Program Run Until #20,#90

To run from the current program counter address until the break address
update_state_of_system is encountered twice:

Program Run Until update_state_of_system %%2

The Until option in the command sets a temporary breakpoint at address
update_state_of_system. The pass count parameter %%2 specifies that the
debugger is to stop program execution on the second access to address
update_state_of_system.

Chapter 4: Loading and Executing Programs
Stepping Through and Running Programs

104

Using Breakpoints

The debugger implements access, read, and write breakpoints using analyzer
hardware.

The debugger implements instruction breakpoints using software breakpoints.

This section shows you how to:

• Set a memory access breakpoint (read, write, or either).

• Set an instruction breakpoint.

• Clear selected breakpoints.

• Clear all breakpoints.

• Display breakpoint information.

To set a memory access breakpoint

• Enter the address (which may be a symbol) in the entry buffer. Select
Breakpoints→Set and select Read, Write , or Read/Write.

Or:

• Using the command line, enter Breakpt, select the type of access to break on
(Read, Write, or Access), enter the address of the memory location, and press
the < Return> key.

The access types have the following meanings:

Read break on read accesses.

Write break on write accesses.

Access break on either read or write accesses.

Chapter 4: Loading and Executing Programs
Using Breakpoints

105

Access breakpoints cause the debugger to halt program execution each time
the target program reads from or writes to the specified memory location(s).
Memory locations can contain code or data.

The debugger uses the emulation analyzer to implement access breakpoints.
The analysis hardware has eight single break resources and one range break
resource. Each breakpoint command uses one or more of the analysis
resources.

The following commands each use one analysis break resource:

• Breakpt Access < addr>
• Breakpt Read < addr>
• Breakpt Write < addr>

The command Breakpt Access <addr>..<addr> uses the one range
break resource.

The commands Breakpt Read <addr>..<addr> or Breakpt Write
<addr>..<addr> use the analysis range resource and four analysis break
resources.

If you request more access breakpoints than there are available in the analysis
hardware, the message Breakpoint limit exceeded will be displayed on your
screen. If this happens, you must delete an existing analysis breakpoint before
you can enter a new one.

Due to the latency of the emulation analyzer, the processor will halt from 0 to
2 instruction cycles after the breakpoint is detected. Due to the processor’s
prefetch feature, it is possible for hardware breaks to occur on addresses of
instructions that are not executed.

An address can be accessed without the address appearing on the bus. In this
case, a break will not occur. Be sure to read the "Limitations to the Trace
Function" section in the introduction to the "Making Trace Measurements"
chapter.

Note The emulator user interface may specify a trace that overrides a debugger
access breakpoint. The debugger interface will set up the access breakpoint
trace when a run or step command is issued only if the analyzer is not currently
in use. Using both access breakpoints in the debugger and trace features in the
emulator is not recommended.

Chapter 4: Loading and Executing Programs
Using Breakpoints

106

Examples To cause execution to halt each time the program reads from or writes to the
variable current_temp:

Breakpt Access ¤t_temp

To cause execution to halt each time the program reads from the variable
current_temp:

Breakpt Read ¤t_temp

To cause execution to halt each time the program writes to the variable
current_temp:

Breakpt Write ¤t_temp

To set an instruction breakpoint

• Position the mouse pointer in the code window over the line at which you wish
to set a breakpoint. Either click the right mouse button, or press and hold the
right mouse button to display the Debugger Display pop-up menu and choose
Set/Clear Breakpoint from the menu.

Or:

• Enter the instruction address into the entry buffer, then select
Breakpoints→Set→Instruction () .

Or:

• Using the command line, enter:

Breakpt I nstr <addr>

Enter the address of the instruction location, and press the < Return> key.

The instruction breakpoint causes the debugger to halt program execution
each time the target program attempts to execute an instruction at the

Chapter 4: Loading and Executing Programs
Using Breakpoints

107

specified memory location(s). The debugger halts program execution before
the program executes the instruction at the breakpoint address.

If you specify a range, the debugger sets breakpoints on the first byte of each
instruction within the specified range.

Set breakpoints are marked with asterisks “*” in the code window. In the
high-level mode, dots “.” show the source lines associated with a breakpoint.

Instruction breakpoints are implemented using the emulator’s software
breakpoint capability. You can set up to 32 software breakpoints. These
breakpoints are implemented by replacing the program opcode with a BKPT
instruction. Executing the BKPT instruction causes program control to be
transferred to the emulation monitor, stopping the program.

Because a BKPT instruction must replace the instruction at a memory
location, software breakpoints can only be set in:

• Emulation RAM.
• Emulation ROM.
• Target system RAM.

Software breakpoints cannot be set in target ROM. Software breakpoints
cannot be used to detect data accesses.

Note The default setting of the debugger option Align_Bp (align breakpoint) is oFF.
Setting the option to On causes breakpoints to be aligned based on the
assembly language instructions found in memory at the time the breakpoints
are set. If multiple breakpoints exist in the same program area, their
alignment may be incorrect. Make sure the Align_Bp option is set to oFF to
prevent breakpoint alignment problems. See the “Configuring the Debugger”
chapter for more information.

Chapter 4: Loading and Executing Programs
Using Breakpoints

108

Note Setting an instruction breakpoint in a memory area mapped as emulation
ROM is allowed because the debugger can write to emulation ROM addresses.
Setting an instruction breakpoint in a memory area mapped as target ROM is
allowed if you answer no to the configuration question Break processor on
write to ROM?. The breakpoint will be recorded in the breakpoint window.
However, if the target memory area is made up of ROM chips in the specified
memory area, the BKPT instruction cannot be written to memory. Therefore,
the breakpoint will never be executed.
If you answer yes to the configuration question Break processor on write to
ROM?, you are not permitted to set breakpoints in areas mapped as target
ROM.

Examples To set an instruction breakpoint at line 82 of the current module:

Breakpt I nstr #82

To set a breakpoint for a C+ + object instance

• Use the dot or arrow operator to specify the object and the member function.

This allows you to set a breakpoint for a member function only when it is
invoked for a given object or instance.

Example To break when function cfunc is invoked by object instance cobj1, enter:

Breakpoint I nstr cobj1.cfunc

To do this the hard way, you could enter:

Breakpoint I nstr C::cfunc\@entry;when (C::cfunc\this==
&cobj1)

Chapter 4: Loading and Executing Programs
Using Breakpoints

109

To set a breakpoint for overloaded C+ +
functions

• To set a breakpoint at one of the functions when you know the argument type,
supply the argument type following the function name.

• To set a breakpoint at one of the functions when you don’t know which
argument type you want, just use the name of the function. The debugger will
list the choices with a menu in the Journal window.

Example To set a breakpoint for the function print (which is not in a class) for float
arguments, enter print (float) in the entry buffer and select
Breakpoints→Set ().

Another way to set a breakpoint for the function print is to enter print in the
entry buffer, select Breakpoints→Set (), then type the number of "print
(float);" from the menu in the Journal window.

To set a breakpoint for C+ + fu nctions in a class

• Set a breakpoint for the C+ + class.

Examples To set breakpoints for all member functions of the class classname, enter
"classname::" in the entry buffer, then select Breakpoints→Set () from the
menu bar.

Or, using the command line, enter:

Breakpoint I nstr classname::

Chapter 4: Loading and Executing Programs
Using Breakpoints

110

To clear selected breakpoints

• Position the mouse pointer in the Code window over the line at which you
wish to clear a breakpoint. Click the right mouse button.

Or:

• Position the mouse pointer in the Code window over the line at which you
wish to clear a breakpoint. Hold the right mouse button and select Set/Clear
Breakpoint.

Or:

• Position the mouse pointer in the Breakpoint window over the breakpoint you
wish to clear. Hold the right mouse button and select Delete Breakpoint.

Or:

• Enter the breakpoint number into the entry buffer, the select
Breakpoints→Delete ().

Or:

• Using the command line, enter:

Breakpt Delete <brkpt_nmbr>

Enter the breakpoint number, and press the < Return> key.

The debugger assigns a breakpoint number to each breakpoint. The debugger
uses this number to remove the breakpoint.

The < brkpt_nmbr> is the number of the breakpoint displayed in the
debugger breakpoint window. Enter a range of breakpoint numbers
(< brkpt_nmbr> ..< brkpt_nmbr>) to remove more than one breakpoint at a
time. When you delete a breakpoint, all following breakpoints are
renumbered.

Chapter 4: Loading and Executing Programs
Using Breakpoints

111

Examples To delete breakpoint number 1:

Breakpt Delete 1

To clear all breakpoints

• Select Breakpoints→Delete All.

Or:

• Select Delete All Breakpoints from the Breakpoints window pop-up menu.

Or:

• Using the command line, enter:

Breakpt Clear_All

And press the < Return> key.

To display breakpoint information

• Select Window→Breakpoints.

Or:

• Using the command line, enter:

Window Active Breakpoint

And press the < Return> key.

Chapter 4: Loading and Executing Programs
Using Breakpoints

112

The debugger displays the breakpoint window when:

• You enter a breakpoint command.
• You execute the Window Active Breakpoint command.
• You use function keys F1/F2 to activate next/previous windows.

The Breakpoint window temporarily overlays the top portion of the screen.

When made active, this window displays breakpoint information including:

• Breakpoint number.
• Breakpoint address.
• Name of the module or function containing the breakpoint (in high-level

mode).
• Module line number (in high-level mode).
• Breakpoint type.
• Command arguments entered with the breakpoint command.

The following paragraphs describe each field in the breakpoint window.

Breakpoint number

The debugger assigns a breakpoint number (#) when you execute a breakpoint
command. The debugger uses this number as a label to reference or clear each
breakpoint.

Breakpoint address

The breakpoint address (ADDRESS) shows the memory location of the
breakpoint. The debugger displays the address as a hexadecimal value.

Module/function

The module/function field (MOD/FNCT) displays either the name of the
module containing the breakpoint or the name of a function if you qualified
the breakpoint with a function name. If you specify a module name with a
breakpoint command, the name must be followed by a line number (for
example: main\#80). The field width is eight characters. The debugger
truncates field entries greater than eight characters in length to eight
characters.

Chapter 4: Loading and Executing Programs
Using Breakpoints

113

Line number

The line number entry (LINE) displays a module line number if you set a
breakpoint in a high-level module. If the compiler did not generate executable
code for the C statement at the line number specified, the debugger examines
the source code and sets a breakpoint on the next line number for which the
compiler generated executable code.

In the code window, the debugger places asterisks beside all line numbers that
are associated with breakpoints. The debugger places period symbols (.) beside
line numbers that are specified as breakpoints, but have no code associated
with them.

Breakpoint type

The breakpoint type (TYPE) describes what type of breakpoint is set:
instruction, read, write, or access. In assembly-level mode, the debugger sets
instruction breakpoints on microprocessor instruction addresses. In high-level
mode, the debugger sets instruction breakpoints on source line numbers. The
debugger flags instruction breakpoints with /A (assembly-level) or /H
(high-level). When switching between modes, these flags are useful for
differentiating between the different types of breakpoints.

Command argument

The debugger records arguments (COMMAND ARGUMENT) in the
breakpoint window as you entered them on the command line. Line numbers,
addresses, symbol names, and macro names all appear in this field. For more
information about breakpoints, see the specific breakpoint command
descriptions in the “Debugger Commands” chapter.

Chapter 4: Loading and Executing Programs
Using Breakpoints

114

To halt program execution on return to a stack
level

• Select Run Until Stack Level from the Backtrace window pop-up menu.

Or:

1 Set a stack level breakpoint.

2 Run the program.

3 If desired, delete the breakpoint that was just encountered.

Example Assume that you want to run the program until it returns to the main()
function. You can determine where to set a breakpoint on return to main by
using the stack level information in the backtrace window (you may have to
activate this window in order to see the information in it).

There is a number next to the function main() in the backtrace window. This
is the current stack level of main(). This is the address of the machine level
instruction immediately following the call to initialize_system.

Place the mouse pointer over the line in the backtrace window that lists
"main." Hold the right button and select Run Until Stack Level.

Or, using the command line and assuming main() is at stack level 1, enter:

Breakpoint I nstr @1

This command will cause program execution to stop when the program returns
to the function main. The at sign (@) is a debugger operator that causes the
debugger to interpret the number 1 as a stack level.

Executing the Breakpt Instr command causes the debugger to update and
display the Breakpoint window. The breakpoint you just entered is shown in
the Breakpoint window. Now use the appropriate commands to run the
program and delete the breakpoint.

Chapter 4: Loading and Executing Programs
Using Breakpoints

115

Restarting Programs

This section shows you how to:

• Reset the processor.

• Reset the program counter to the starting address.

• Reset program variables.

To reset the proce ssor

• Select Execution→Reset to Monitor.

Or:

• Using the command line, enter:

Debugger Execution Reset_Processor

And press the < Return> key.

Resetting the processor resets the microprocessor to its initial state and leaves
the microprocessor running in the monitor.

To reset the pr ogram counter to the starting
address

• Select Execution→Set PC to Transfer .

Or:

Chapter 4: Loading and Executing Programs
Restarting Programs

116

• Using the command line, enter:

Program Pc_Reset

And press the < Return> key.

The program counter is reset to the transfer address of your absolute file. The
next Program Run or Program Step command entered without a from address
will restart program execution at the beginning of the program.

To reset pr ogram variables

• Reload your program.

Memory is not reinitialized when you reset the processor or reset the program
counter. Therefore, program variables are not reset to their original values.
To reset program variables after resetting the processor or program counter,
reload your program.

For faster loading, you can load only the program. The debugger retains
symbol information. You do not have to reload symbol information if symbol
addresses have not changed.

For information on loading programs, refer to the previous “Loading
Programs and Symbols” section.

Chapter 4: Loading and Executing Programs
Restarting Programs

117

Loading a Saved CPU State

State files are used to save the current CPU state (memory image and register
values) of a debug session. Though state files can only be created from within
a debugger/simulator session, you can use them to restore a CPU state in
either a debugger/simulator or debugger/emulator session.

This section shows you how to:

• Load a saved CPU state.

To load a saved CPU state

1 Ensure that the emulator is configured correctly for the code you are restoring
and that debugger parameters that affect the emulator (such as breakpoints)
are set to appropriate values.

2 Load symbolic information from same absolute file that was in the simulator
when the CPU state was saved. (The debugger/simulator does not save
symbolic information.)

3 Load the save file. Using the command line, enter:

Debugger Execution Load_State

Enter the name of the file from which the CPU state should be loaded, and
press the < Return> key.

The memory contents and register values saved with the debugger/simulator
Debugger Execution Save_State command are restored from the specified
state file. If you do not specify a file name, the debugger uses the default file
db68k.sav (for 68020) or db68040.sav (for 68030).

The Debugger Execution Load_State command does not restore breakpoints,
macros, or pseudo register values. After redefining any breakpoints, macros,
and pseudo registers, you are ready to continue your debugging session.

Chapter 4: Loading and Executing Programs
Loading a Saved CPU State

118

If your program uses simulated I/O, it may not function properly on entering
the debugger/emulator because the simulated I/O initialization may not have
occurred.

Examples To restore memory contents and register values saved in save file
"session1.sav":

Debugger Execution Load_State session1

Chapter 4: Loading and Executing Programs
Loading a Saved CPU State

119

Using the MC68030 Memory Management Unit

The deMMUer

The deMMUer in the analyzer reverses the translations made by the MMU
before sending addresses to the analyzer. The debugger interface can use the
deMMUer to translate physical addresses to logical addresses.

Your HP emulator and analyzer can give you complete support for a static
memory management system, and partial support for a non-paged, dynamic
memory management system. Your HP emulator will let you run a paged,
dynamic system, but the analyzer will not be able to support features such as
symbolic addresses or source code display.

The emulator/analyzer interface

If your target system uses the MC68030 MMU, you should use the emulator’s
graphical user interface along with the debugger’s graphical user interface.

The HP B1479 MC68030 Graphical User Interface provides additional
commands to help you design and test programs which use the MMU. In
addition, the 68020/030 Graphical User Interface User’s Guide discusses MMU
programming and deMMUer operation in detail.

Restrictions when using the MMU

The following restrictions apply when using the MC68030 emulator with the
MMU turned on:

• Use a foreground monitor.

• The foreground monitor must not be write protected.

• Map the foreground monitor to address space that the MMU translates
1:1 (logical= physical).

These restrictions are necessary because the emulator must be able to find the
monitor code whether the MMU is turned on or off.

Chapter 4: Loading and Executing Programs
Using the MC68030 Memory Management Unit

120

To enable the MMU

1 Make sure that the tranlation tables are valid. These translation tables must be
set up by your target system software.

2 Enable the MMU in the emulator by answering the "Enable the MMU?"
question in the emulator configuration or by loading the translation control
register.

When you enable the MMU, the debugger status line will change from
"68EC030" to "68030."

3 Load the translation tables into the deMMUer by entering the following
command on the debugger’s command line:

Trace de MMUer Load Verbose

4 Enable the deMMUer by entering the following command on the debugger’s
command line:

Trace de MMUer Enable

After the deMMUer is loaded, any change to the MMU will make the
deMMUer out of date. If you change the MMU, remember to re-load the
deMMUer.

The target program will be interrupted while the deMMUer is being loaded.
The analyzer will produce strange results if it is making a trace while the
deMMUer is being loaded.

Chapter 4: Loading and Executing Programs
Using the MC68030 Memory Management Unit

121

Accessing the UNIX Operating System

This section shows you how to:

• Fork a UNIX shell.

• Execute a UNIX command.

To fork a UNIX shell

• Select File→Term.

A terminal emulation window will be created.

Or:

• Using the command line, enter:

Debugger Host_Shell

And press the < Return> key.

The Debugger Host_Shell command lets you temporarily leave the
debugging environment by forking a UNIX shell. The shell created is
whatever the shell variable SHELL is expanded to. In this mode, you may
enter operating system commands.

The Debugger Host_Shell command does not end the debugger session; it
suspends program operation. To return to the debugger, enter < Ctrl> -D or
type exit at the UNIX prompt, and press the < Return> key.

Chapter 4: Loading and Executing Programs
Accessing the UNIX Operating System

122

To execute a UNIX command

• Using the command line, enter:

Debugger Host_Shell

Type in the UNIX command, and press the < Return> key.

When using the graphical interface, a terminal emulation window will be
opened and the UNIX command will be executed in that window (as specified
by the “shellCommand” X resource).

When using the standard interface, stdout from the command is written to the
journal window. stderr is not captured. Commands writing to stderr will
corrupt the display. Interactive UNIX commands cannot be used in this mode.

Examples To display the current working directory, enter:

Debugger Host_Shell pwd

Chapter 4: Loading and Executing Programs
Accessing the UNIX Operating System

123

Using the Debugger and the Emulator Interface

The debugger and the emulator interface can use the emulator hardware at the
same time.

You should be aware of a few inconsistencies between the emulator and the
debugger interfaces:

• Modifying registers in one interface will not affect the register content in
the other interface. For example, modifying register D0 in the emulator
does not change the contents of D0 in the debugger interface. The PC
register is an exception to this rule.

• Loading an executable file in the debugger interface will set the program
counter to the transfer address by default. Loading an executable in the
emulator interface does not set the program counter.

To start the emulation interface from the
debugger

Proceed with your debugging session until you get to the point where you need
to use an emulator analysis feature.

• If you are using the graphical interface, choose
File→Emul700→Emulator/Analyzer.

• If you are using the standard interface, enter

Debugger Host_Shell

Then, at the operating system prompt, type:

emul700 <emulator_name>

When you are done using the emulator, enter end then exit to return to the
debugger’s standard interface.

Chapter 4: Loading and Executing Programs
Using the Debugger and the Emulator Interface

124

Using simulator and emulator debugger products
together

You can continue a debugging session started in the debugger/simulator in the
debugger/emulator by following the steps listed below:

1 In the debugger/simulator, use the Debugger Execution Save_State
command to save the current memory contents and register values.

2 Quit the simulator session using the Debugger Quit command.

3 Start the debugger/emulator.

4 Load the save file created with the Debugger Execution Save_State
command using the Debugger Execution Load_State command. This
will restore memory and processor registers to the state you saved in the
debugger/simulator.

Chapter 4: Loading and Executing Programs
Using simulator and emulator debugger products together

125

Using the Debugger with the Branch Validator

The Hewlett-Packard Branch Validator (BBA) is an interactive tool that helps
you rapidly determine which branches of a program have not been taken.
With the missed branches identified, you can modify your regression tests to
ensure software reliability.

The branch analysis information is collected by C programs that have been
compiled using the bbacpp preprocessor.

To unload Branch Validator data from program
memory

• Select File→Store→BBA Data Then choose a file name from the File
Selection dialog box.

Or:

• Using the command line, enter:

Memory Unload_BBA All

And press the < Return> key.

This command unloads branch analysis information associated with all
absolute files loaded.

The default file name is bbadump.data.

The BBA preprocessor (-b option) must be used at compile time in order for
this information to exist in program memory.

Once this information has been unloaded, it can be formatted with the BBA
report generator, bbarep (see the HP Branch Validator for AxLS C User’s
Guide).

Chapter 4: Loading and Executing Programs
Using the Debugger with the Branch Validator

126

Note The Unload_BBA command is disabled when the debugger option
Demand_Load is On. If Demand_Load is oFF but the program was loaded
with Demand_Load On, the Memory Unload_BBA command will generate a
BBA file with incomplete information. See the Debugger Option General
command description in this manual for more information on the
Demand_Load option.

Chapter 4: Loading and Executing Programs
Using the Debugger with the Branch Validator

127

Chapter 4: Loading and Executing Programs
Using the Debugger with the Branch Validator

128

5

Viewing Code and Data

How to find and display source code and memory contents.

129

Using Symbols

This section shows you how to:

• Add a symbol to the symbol table.

• Display symbols.

• Delete a symbol from the symbol table.

To add a symbol to the symbol table

• Using the command line, enter:

Symbol Add

Enter the symbol data type, the symbol name, and optionally the base address
and the initial value; then, press the < Return> key.

Two type of symbols can be added:

• Program symbols, which are identical to variables defined in a C or
assembly program. These symbols must be given base addresses.

• Debugger symbols, which may be used to aid and control the flow of the
debugger. These symbols are specified without a base address, and only
debugger commands and C expressions in macros can refer to them. They
cannot be referenced by the program in target memory.

Example To add a program symbol named EOF of type int (default) at target memory
address 9ff0h and set the memory location to value -1:

Symbol Add EOF Address 9ff0h Fill_Mem -1

Chapter 5: Viewing Code and Data
To add a symbol to the symbol table

130

To display symbols

• Select Display→Symbols→ to display information about the symbol in the
entry buffer.

Or:

• Using the command line, enter:

Symbol Display Default

Enter the symbol, module, or function name; then, press the < Return> key.

Symbols and associated information are displayed in the journal window.

When displaying a symbol in the current module, the debugger looks for the
symbol in the current module. If there is no module qualifier, all symbols with
the specified name will be displayed, including global symbols and symbols
local to the module.

The wildcard character * may be placed at the end of a symbol name to
represent zero or more characters. If used with no symbol name, * is treated
the same as \, that is, all symbols are displayed.

Examples To display the symbol ’updateSys’ in the current module:

Symbol Display Default updateSys

 Symbol Display Default updateSys
 @ecs\\updateSys : Type is High level module.
 Code section = 00001436 thru 00001C21

To display all symbols in module ’updateSys’:

Symbol Display Default updateSys\

> Symbol Display Default updateSys\
 Root is: updateSys

 @ecs\\updateSys : Type is High level module.
 Code section = 00001436 thru 00001C21
 updateSys\update_state_of_system
 : Type is Global Function returning void.

Chapter 5: Viewing Code and Data
To display symbols

131

 Address = 00001436 thru 00001513
 update_state_of\refresh
 : Type is Local int.
 Address = Frame + 8
 update_state_of\interval_complete
 : Type is Local int.
 Address = Frame + 12
 .
 .

To display symbols in all modules

• With "\" in the entry buffer, select Display→All Symbols ().

Or:

• Using the command line, enter:

Symbol Display Default \

To delete a symbol from the symbol table

• Using the command line, enter:

Symbol Remove <symb_name>

Enter the symbol, module, or function name; then, press the < Return> key.

The specified symbols are removed from the symbol table. Only program
symbols and user-defined debugger symbols can be deleted from the symbol
table.

Examples To delete symbol ’current_targets’ in function ’alter_settings’:

Symbol Remove alter_settings\current_targets

Chapter 5: Viewing Code and Data
To display symbols in all modules

132

To delete all symbols in module ’updateSys’:

Symbol Remove updateSys\

To delete all symbols in all modules:

Symbol Remove \

Chapter 5: Viewing Code and Data
To delete a symbol from the symbol table

133

Displaying Screens

A debugger screen is what you see in the display area. Each debugger screen
may contain one or more debugger windows. A debugger window is a
predefined physical area on the screen containing specific debugger
information.

The debugger has three predefined screens. Each predefined screen has a
corresponding name and number. The predefined screens and their associated
names and numbers are listed below:

Screen Name Screen Number

High-level screen
Assembly-level screen
Standard I/O screen

1
2
3

This section shows you how to:

• Display the high-level screen.

• Display the assembly level screen.

• Switch between the high-level and assembly screens.

• Display the standard I/O screen.

• Display the next screen (activate a screen).

High-Level Screen

The debugger automatically displays the high-level screen when an executable
(.x) file containing the C function main() is loaded from the UNIX command
line with the db68k command. This screen has nine windows:

• journal
• code
• monitor
• backtrace
• status
• breakpoint
• error
• help

Chapter 5: Viewing Code and Data
To delete a symbol from the symbol table

134

• view

The high-level screen displays high-level source code and stack backtrace
information including the calling sequence of functions and function nesting
levels.

Assembly-Level Screen

The debugger automatically displays the assembly-level screen when an
executable (.x) file is loaded from within the debugger or the executable file
does not contain the C source function main(). This screen has ten windows:

• journal
• code
• monitor
• register
• stack
• status
• breakpoint
• error
• help
• view

The assembly-level window displays assembly-level code and processor register
and stack information.

Standard I/O Screen

The debugger displays the standard I/O screen when your program requests
interactive input from the standard input device (stdin), or directs output to
the standard output device (stdout). It may also be displayed using the F6
function key. This screen has five windows:

• status
• breakpoint
• error
• help
• view

You can also access the standard I/O screen as a window (window No. 20).

The standard I/O window emulates a dumb terminal. It can be moved about
the display, but it can be no larger than 24 rows by 80 columns.

Chapter 5: Viewing Code and Data
To delete a symbol from the symbol table

135

To display the high-level screen

• Select Settings→High Level Debug.

Or:

• Using the command line, enter:

Window Screen_On High_Level

To display the assembly level screen

• Select Settings→Assembly Level Debug.

Or:

• Using the command line, enter:

Window Screen_On Assembly_Level

To switch between the high-level and assembly
screens

• Press the F3 function key.

Or:

Chapter 5: Viewing Code and Data
To display the high-level screen

136

• Using the command line, enter:

Debugger Level

You can also use the Window New and the Window Active commands to
display a different screen.

To display the standard I/O screen

• Press the F6 function key.

Or:

• Select Window→Simio.

Or:

• Using the command line, enter:

Window Screen_On Stdio

The standard I/O screen is displayed when your program requests interactive
input from the standard input device (keyboard) or when your program writes
information to the standard output device.

To display the next screen (activate a screen)

• Press the F6 function key.

Or:

Chapter 5: Viewing Code and Data
To display the standard I/O screen

137

• Using the command line, enter:

Window Screen_On Next

The next higher-numbered screen will be displayed. Either the high-level or
the assembly-level screen will be displayed, not both.

The debugger screens are numbered as follows:

Screen Name Screen Number

High-level screen
Assembly-level screen
Standard I/O screen
User-defined screens

1
2
3
4-256

Chapter 5: Viewing Code and Data
To display the next screen (activate a screen)

138

Displaying Windows

This section shows you how to:

• Change the active window.

• Select the alternate view of a window.

• Set the cursor position for a window.

A debugger window is a predefined physical area on the screen. The debugger
has 18 predefined windows. Each window displays information specific to its
associated name (for example, the breakpoint window displays breakpoint
information).

Each of the 18 predefined windows has a corresponding name and number.
All windows (except the log file and journal file windows, which are files) also
have an associated screen number. The following table lists the predefined
windows and their associated names and numbers.

Chapter 5: Viewing Code and Data
To display the next screen (activate a screen)

139

Window Name Window
Number

Screen
Number

journal (high–level)
code (high–level)
monitor (high–level)
backtrace
status (high–level)
journal (assembly–level)
code (assembly–level)
monitor (assembly–level)
register (assembly–level)
stack
status (assembly–level)
standard I/O
view
breakpoint
error
help
log file
journal file

1
2
3
4
5
10
11
12
13
14
15
20
24
25
26
27
28
29

1
1
1
1
1
2
2
2
2
2
2
3
1, 2, 3
1, 2, 3
1, 2, 3
1, 2, 3
none
none

The code window displays C source code in high-level mode. The code
window displays disassembled machine code in assembly-level mode. The C
source code that generated the assembly code can be interleaved with the
assembly-level code.

When disassembled code is displayed, the address and machine code of a
disassembled instruction are displayed on the left side of the window as
hexadecimal values. For instructions over 6 bytes in length, bytes 7 through n
are replaced by ellipsis (...).

The stack window displays the stack beginning at the memory location pointed
to by the debugger stack pointer @SP. This window is available only within
the assembly-level screen.

Chapter 5: Viewing Code and Data
To display the next screen (activate a screen)

140

To change the active window

• Use the command select mouse button to click on the border of the window
you wish to activate.

Or:

• Select the window you want to make active from the Window→ menu.

Or:

• Use the command line to select a window:

Window Active <window>

where < window> is the name of the window to be made active, and press the
< Return> key.

The debugger uses a highlighted or thick border for the active window. The
cursor keys, scroll bar, and function key F4 (select the alternate display) only
operate in the active window.

If you are using a terminal without graphics capabilities, the active window is
indicated by single dashes around the border (other windows all have borders
of equals signs).

The window number is displayed in the upper right border of the window.

Examples To make the high-level backtrace window active:

Window→Backtrace

Or:

Window Active High_Level Backtrace

To make the breakpoint window active:

Window Active Breakpoint

Chapter 5: Viewing Code and Data
To change the active window

141

To make user window 57 active:

Window Active User_Window 57

To select the alternate view of a window

• Click on the border of the active window with the command select mouse
button.

Or:

• Press the F4 function key.

Or:

• Using the command line, enter:

Window Toggle_View

Or:

• Using the command line, enter:

Window Toggle_View <Window>

where < Window> is the name of the window whose alternate view is to be
displayed, and press the < Return> key.

The typical default alternate view of a window is an enlarged view of the
window, letting you view more information. Repeating the command switches
between the normal view and the alternate view of the active window.

Example To display the alternate view of the assembly level code window:

Window Toggle_View Assembly Code

Chapter 5: Viewing Code and Data
To select the alternate view of a window

142

To view information in the active window

• Use the scroll bar.

Or:

• Use the cursor control keys.

Press the < Up> or < Down> cursor key to move up or down in the window
one line at a time.

Press the < Page Down> (< Next>) or < Page Up> (< Prev>) key to move
the window one-half of the window length at a time.

Press the < Home> or < End> (< Shift> < Home>) key to position the
window at the beginning or end of the information displayed in the window.

Type < Ctrl> -F or < Ctrl> -G to shift the contents of the active window to the
right or left.

The following table describes the functions of the cursor control keys in the
active window and the command line window.

Chapter 5: Viewing Code and Data
To view information in the active window

143

Key Description

→ Move to right in data field of command.
Highlight token to the right in status line window.

← Move to left in data field of command.
Highlight token to the left in status line window.

↑ Move up one line in window.

↓ Move down one line in window.

Prev Move up one half window.

Next Move down one half window.

Home Move to the top of the active window (except stack window).

End (Shift Home) Move to bottom of window (except for stack window).

Insert char Put keyboard in insert mode for editing data field of command.

Delete char Delete character within data field of command.

Undo Back tab.

The Home and End (Shift-Home) keys have additional functions when used
with the code and stack windows. The following table describes how the
Home and End (Shift-Home) keys work in these active windows.

Active Window Home Key End Key

Code Move to top of module Move to bottom of module

Stack Move to current stack pointer (SP) Move to current frame pointer (FP)

To view information in the "More" lists mode

If the "--More--" prompt is printed at the bottom of a window, the debugger is
waiting to display more than one screen of information.

Chapter 5: Viewing Code and Data
To view information in the "More" lists mode

144

• Press the space bar to display the next screen of information.

• Press the < Return> key to display the next line.

• Press "Q" to end the "More" display.

If you try to enter a command while the debugger is displaying the "--More--"
prompt, the command will not be executed until the "More" display has ended.

You can turn the "More" list mode off or on with the Settings→Debugger
Options dialog box.

For more information, see your operating system documentation on the more
command.

To copy window contents to a file

• Select File→Copy Window→.

Or:

• From the command line, enter the following commands:

File User_Fopen Append 99 File < file_name >
Expression Fprintf 99, "%w",< window_number >
File Window_Close 99

Chapter 5: Viewing Code and Data
To copy window contents to a file

145

Displaying C Source Code

This section shows you how to:

• Display the C source code.

• Find first occurrence of a string.

• Find next occurrence of a string.

To display C source code

1 Display the high-level screen (see the instructions in the previous “Displaying
Screens” section).

2 Display source code at the location in the entry buffer by selecting
Display→Source (). Or click on the Disp Src () action key.

Or, using the command line, enter:

Program Display_Source

Enter the line number or function name of the code you wish to display, and
press the < Return> key.

Examples To display the C source code at line number 1:

Program Display_Source #1

To display the C source code at function main:

Program Display_Source main

To display C+ + source code at overloaded C+ + function cfunc, you can
either give the name of the function and select the definition from a menu, or
you can specify the definition by entering the argument type:

Chapter 5: Viewing Code and Data
To display C source code

146

Program Display_Source cfunc (float)

To find first occurrence of a string

1 Display the high-level screen (see the instructions in the previous “Displaying
Screens” section).

2 Enter the string in the entry buffer.

3 Select Display→Source Find Fwd () or Display→Source Find Back ().

Or, using the command line, enter:

Program Find_Source Occurrence <Direction>

Select either Forward or Backward as the direction, enter the line number or
string you wish to find, and press the < Return> key.

Example To find the first occurrence of the string “main”:

Program Find_Source Occurrence Forward main

To find next occurrence of a string

• Select Display→Source Find Again.

Or:

Chapter 5: Viewing Code and Data
To find first occurrence of a string

147

• Using the command line, enter:

Program Find_Source Next <Direction>

Select either Forward or Backward as the direction, and press the < Return>
key.

Example To find the next occurrence of a string:

Program Find_Source Next Forward

Chapter 5: Viewing Code and Data
To find next occurrence of a string

148

Displaying Disassembled Assembly Code

Coprocessor Support

External devices must be supported by your target system. No support is
provided by the debugger/emulator.

68881/68882 Float ing-Point Unit. The debugger does not disassemble the
68881 FPU instruction set. It does not contain features that allow FPU
register display or modification.

While FPU instructions can be executed in the target system, the
debugger/simulator cannot execute these instructions. To generate code that
will run interchangeably in both the debugger/emulator and
debugger/simulator, use the C compiler’s floating point library routines.
These libraries contain routines that do not use FPU instructions, thereby
allowing them to execute properly in both debugging environments.

68851 Memory Management Unit. The debugger does not support the
68851 MMU.

To display assembly code

• Select Settings→Assembly Level Debug.

Or:

• Using the command line, enter:

Window Screen_On Assembly_Level

The Code window will show disassembled insructions.

Chapter 5: Viewing Code and Data
To display assembly code

149

Displaying Program Context

This section shows you how to:

• Set current module and function scope.

• Display current module and function.

• Display debugger status.

• Display register contents.

• Display the function calling chain (stack backtrace).

• Display all local variables of a function at the specified stack (backtrace)
level.

To set current module and function scope

• Select File→Context→Symbols ..., enter the module or function name in the
dialog box, and click on the OK pushbutton.

Or:

• Using the command line, enter:

Program Context Set

Enter the module or function name, and press the < Return> key.

The module and function scope is used by the debugger to uniquely identify
symbols. For example, several functions may have local variables with the
same names. When you use that variable name without naming the function,
the debugger assumes you mean the variable in the current module or function
scope.

Examples To select module “updateSys” as the current module:

Chapter 5: Viewing Code and Data
To set current module and function scope

150

Program Context Set updateSys

To select function “updateSys\paint_display” as the current function:

Program Context Set updateSys\paint_display

To set the program context to the module at which the program counter is
pointing:

Program Context Set

To display current module and function

• Select Display→Context. Click on the Done pushbutton when you wish to
stop displaying the information.

Or:

• Using the command line, enter:

Program Context Display

The current module, function, and line number are displayed in the journal
window.

To display debugger status

• Select Window→Status.

Or:

Chapter 5: Viewing Code and Data
To display current module and function

151

• Using the command line, enter:

Debugger Execution Display_Status

The following information is displayed in the view window (which temporarily
overlays the top portion of the screen):

• Product version.
• Current working directory.
• Current log file in use.
• Current journal file in use.
• Startup file used.

The view window is also used to display trace data and information about trace
command or event status. When trace data is displayed, a trace status
character may be displayed in front of the trace line. The following table
defines the trace status characters.

Trace List Status Characters

Character Description

* The indicated trace line is the trigger condition.

+ The indicated trace line is in the middle of a C statement,
that is, not the first assembly language statement in the C
source statement.

! The data in the trace buffer line does not match the data in
memory.

? The trace line may be a prefetch.

To display register contents

• Select Window→Registers.

Or:

Chapter 5: Viewing Code and Data
To display register contents

152

• Select Modify→Registers.

Or:

• Using the command line, enter:

Window Active Assembly Registers

The register window shows the current values of the microprocessor’s registers
and several debugger variables. The microprocessor register values are labeled
with their standard names. The debugger displays all values in hexadecimal
format unless otherwise noted.

If you are running just the debugger the Registers window is available only
within the assembly-level screen. If the emulator/analyzer graphical interface is
active, Window→Registers will display registers in the emulator window.

Note The information displayed in the register window varies with different
microprocessors. See the “Reserved Symbols” chapter for more information
about debugger variables.

To display the function calling chain (stack
backtrace)

• Select Window→Backtrace.

Or:

• Using the command line, enter:

Window Active High_Level Backtrace

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

153

The backtrace window displays the function calling chain, from the compiler
startup routine to the current function in high-level mode.

This window displays (from left to right):

• Function nesting level.
• Return address to the calling function.
• Frame status character.
• Module containing the function.
• Function name.

Function Nesting Level. The nesting level of the current function is always
0, the calling function always 1, etc.

You may reference the nesting level when setting a breakpoint. For example,
to cause the program to execute until it returns to the second nested function,
enter the command:

Program Run Until @2

Another way to execute until a stack level is reached is to choose Run Until
Stack Level in the Backtrace window pop-up menu.

Return Address. The return address field displays the return address of the
calling function.

Frame Status Character. One of several characters immediately precedes a
function name in the backtrace window. These frame status characters and
their descriptions are listed in the table below.

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

154

Character Description

Space The debugger is executing within a function.

: The program counter is at a label. Typically, this is an
assembly language function point.

* The function has been entered, but the function prolog has
not been executed. The debugger cannot locate local
symbols in the function until the prolog has been executed.

? The frame is questionable. For example, this is displayed
when a function has been stripped of debug information.

! The frame is not valid.

| The debugger is at the start of an interrupt routine.

+ The debugger is executing an interrupt routine.

Module Name. If the function is in a known module, the backtrace window
displays the module name. If the program counter is pointing to an address
that is not contained in a module known to the debugger, the module field in
the backtrace window displays a string of question marks (???????).

Function Name. If the return address of a function is inside a known
function, the debugger displays the function name. If the address is outside of
all known functions, the function field in the backtrace window will display
< unknown>. This is the case with the compiler startup module crt0, because
it is assembly code and contains no debug information.

Backtrace Information. Whenever a break occurs in program execution, the
backtrace window is updated. When updating the window, the debugger
generates backtrace information as described in the following paragraphs.
The backtrace window is displayed only in the high-level screen.

Nesting level 0. Nesting level 0 information is based solely on the
current value of the processor’s program counter (PC).
The address shown at this level is the value of the PC.
The module and function shown at this level are
selected because the value of the PC falls within their
code spaces.

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

155

Nesting level 1. When program execution breaks on an address that has
an associated public label (for example, a function entry
point), nesting level 1 information is based on the
processor SP. The debugger assumes that the SP is
pointing to the return address because the label is
assumed to be a function entry point and no stack frame
has yet been established. With no stack frame available,
the return address of the calling function is at the top of
the stack. This return address is the address at level 1.
The module and function shown are based on this
address, that is, the address falls within their code
spaces.

When program execution breaks on an address that has
no associated public label, nesting level 1 is based on
the processor’s frame pointer (register A6). In this case,
the stack location four bytes above the location pointed
to by register A6 contains the return address of the
calling function. This address is the address shown at
level 1; the module and function shown are based on
this address.

Nesting levels 2
through n.

Nesting levels 2 through n are always based on existing
stack frames. A stack frame is generated for each frame
on the stack, based on saved frame pointers. Nesting
levels are generated until backtracing of the stack
encounters a zero frame pointer. This occurs when the
stack frame associated with the compiler startup
routines crt0/crt1 is encountered.

Functions with no
stack frame.

If a function has no stack frame (due to compiling with
the -O option), the function that called it does not
appear in the backtrace window at any stack level other
than levels 0 or 1.

Assembly language
functions.

Assembly language functions that set up stack frames
appear in the backtrace window, but the information
shown is incomplete. Since high level debug
information is not present in such handwritten
functions, the stack frame appears as a questionable

Chapter 5: Viewing Code and Data
To display the function calling chain (st ack backtrace)

156

frame. Additionally, there is no function name
associated with the frame, i.e., it is displayed as
< unknown>.

To display all local variables of a function at the
specified stack (backtrace) level

• Select Disp Vars at Stack Level from the Backtrace window pop-up menu.

Or:

• Using the command line, enter:

Program Context Expand <@stack_level>

Enter the stack level preceded by an at sign (@), and press the < Return> key.

The values of the parameters passed to the function and the function’s local
variables are displayed in the Journal window.

Example To display local variables at stack level 1, position the cursor over "1." in the
Backtrace window, and hold the right mouse button. Move the mouse to Disp
Vars at Stack Level and release the button.

Or, use the command line to enter:

Program Context Expand @1

Chapter 5: Viewing Code and Data
To display all local variables of a function at the specified st ack (backtrace) level

157

To display the address of the C+ + object
invoking a member function

• Display the value of the function’s this pointer.

If the program has stopped at a function, you can find out the address of the
object which invoked the function.

The program counter must be inside the function; otherwise you may see a
"Local variable not alive" error message.

Example To see the address of the object that invoked the cfunc function in class C,
enter the following string in the entry buffer:

C::cfunc\this

then select Display→Var/Expression ().

Chapter 5: Viewing Code and Data
To display the address of the C+ + object invoking a member function

158

Using Expressions

This section shows you how to:

• Calculate the value of a C expression.

• Display the value of an expression or variable.

• Monitor variables.

• Discontinue monitoring specified variables.

• Discontinue monitoring all variables.

• Print formatted output to a window.

• Print formatted output to journal windows.

To calculate the value of a C expression

• Enter the expression in the entry buffer, then select Display→C Expression ().

Or:

• Using the command line, enter:

Expression C_Expression

Enter the C expression to be calculated, and press the < Return> key.

The value of the C expression is displayed in the journal window.

If the C expression is an assignment statement, the Expression C_Expression
command sets the value of the C variable.

Examples To calculate the value of ’time’:

Chapter 5: Viewing Code and Data
To calculate the value of a C expression

159

Expression C_Expression time
Result is: data address 000091DC {time_struct}

To calculate the value of member ’hours’ of structure ’time’:

Expression C_Expression time->hours
Result is: 4 0x04

To assign the value 1 to ’system_is_running’:

Expression C_Expression system_is_running = 1
Result is: 1 0x01

To display the value of an expression or variable

• Use the mouse to copy the expression or variable into the entry buffer, then
select Display→Var/Expression ().

Or:

• Using the command line, enter:

Expression Display_Value

Enter the expression or variable whose value is to be displayed, and press the
< Return> key.

The value of the expression or variable is displayed in the journal window.

The contents of an item, such as an array, are displayed instead of the C value
of the item which is its address.

Examples To display the value of the variable ’system_is_running’:

Expression Display_Value system_is_running
 01h

Chapter 5: Viewing Code and Data
To display the value of an expression or variable

160

To display the address of the variable ’system_is_running’:

Expression Display_Value &system_is_running
 000091F0

To display the address of the C structure ’time’:

Expression Display_Value time
000091DC

To display the values of the members of structure ’time’:

Expression Display_Value *time
hours 4
minutes 0
seconds 20

To display the name of the current program module:

Expression Display_Value @module

To display the name of the current program function:

Expression Display_Value @function

To display members of a structure

1 Copy the name of the structure into the entry buffer.

2 Add an asterisk (*) in front of the name of the structure.

3 Select Display→Var/Expression ().

If you are using the command line, use the Expression Display_Value
command.

Chapter 5: Viewing Code and Data
To display members of a structure

161

Example To display the names of the members of structure astruct, use the following
expression in the entry buffer:

*astruct

The * operator tells the debugger to display the members of the structure,
rather than the address of the structure.

To display the members of a C+ + class

• Using the command line, enter

Symbol Display Options Search_all End_Options
<class_name >\

This will display the type, size, protection, and overloading of each member of
class_name.

Example To display the members of class C, enter:

Symbol Display Options Search_all End_Options C\

To display the values of all members of a C+ +
object

• Enter the name of the C+ + object in the entry buffer and select
Display→Var/Expression ().

Or:

Chapter 5: Viewing Code and Data
To display the members of a C+ + class

162

• Using the command line, enter:

Expression Display_Value < object >

Remember, you are displaying the values in an object, so you need to run the
program to the point where the object is created. To display the members of a
class, see "To display the members of a C+ + class."

Example To display the members of object cobj in class C, enter "cobj" in the entry
buffer and select Display→Var/Expression ().

To monitor variables

• Enter the variable to be monitored in the entry buffer and click on the
Monitor () action key.

Or:

• Enter the variable to be monitored in the entry buffer and select
Display→Monitor () .

Or:

• Using the command line, enter:

Expression Monitor Value

Enter the variable to be monitored, and press the < Return> key.

The monitor window displays monitored variable expressions. This window
can be displayed in both the high-level and assembly-level screens.

Chapter 5: Viewing Code and Data
To monitor variables

163

Variables in the monitor window are updated each time the debugger stops
executing the program. (The program is not considered to be "stopped" when
a breakpoint with an attached macro is encountered.)

Example To monitor the value of variable ’current_temp’:

Expression Monitor Value current_temp

To monitor the value of a register

• Monitor a register just as you would a variable.

Example To monitor the value of register D2, enter "@D2" in the entry buffer and
select Display→Monitor () .

Or, using the command line, enter

Expression Monitor Value @D2.

To discontinue monitoring specified variables

• Select Delete Variable in the Monitor window pop-up menu.

Or:

• Using the command line, enter:

Expression Monitor Delete

Enter the number of the variable (shown in the monitor window) that should
no longer be monitored, and press the < Return> key.

Chapter 5: Viewing Code and Data
To monitor the value of a register

164

The variable is removed from the monitor window.

Example To stop monitoring variable 2 in the monitor window:

Expression Monitor Delete 2

To discontinue monitoring all variables

• Select Delete All Variables in the Monitor window pop-up menu.

Or:

• Using the command line, enter:

Expression Monitor Clear_All

All variables are removed from the monitor window.

To display C+ + inheritance relationships

• Enter the name of a C+ + class in the entry buffer, then select
Display→Symbols→Browse C+ + Class ().

Or:

• Using the command line, enter:

Symbol Browse

Enter the name of the C+ + class to be displayed, and press the < Return>
key.

Chapter 5: Viewing Code and Data
To discontinue monitoring all variables

165

To print formatted output to a window

• Using the command line, enter:

Expression Fprintf

Enter the number of the user-defined window, the format string (enclosed in
quotes), and the arguments; then, press the < Return> key.

The formatted output is written to the user-defined window. This command is
similar to the C fprintf function.

The debugger associates the log file window (window no. 28) with a log (.com)
file so that you can write output to that window using the Expression Fprintf
command. This window is not displayed. It is used only for writing to a
command file.

The debugger associates the journal file window (window no. 29) with a
journal file so that it can write journal window output to the journal (.jou) file.
Additional output may be written to the journal file by writing to window 29.

Examples To print the value of var to user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print the string in double quotes to user window 57 followed by the floating
point value of ’temperature’ with a precision of 2:

Expression Fprintf 57,"The value of ’temperature’ is:
%.2f \n",temperature

To print formatted output to journal windows

• Using the command line, enter:

Expression Printf

Chapter 5: Viewing Code and Data
To print formatted output to a window

166

Enter the format string (enclosed in quotes) and the arguments; then, press
the < Return> key.

The formatted output is written to the journal window. This command is
similar to the C printf function.

Examples To print the value of var to the journal window as a single character:

Expression Printf "%c",var

To print the string in double quotes to the journal window followed by the
floating point value of ’temperature’ with a precision of 2:

Expression Printf "The value of ’temperature’ is: %.2f
\n",temperature

Chapter 5: Viewing Code and Data
To print formatted output to journal windows

167

Viewing Memory Contents

This sections explains how to to view, compare, and search blocks of memory.

To compare two blocks of memory

• Using the command line, enter:

Memory Block_Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what
happens when a mismatch is found, enter the address range to be compared
and the starting address of the range that it is compared to; then, press the
< Return> key.

Example To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block_Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To search a memory block for a value

• Using the command line, enter:

Memory Block_Operation Search <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select
either Once or Repeatedly to specify when the search should stop, enter the

Chapter 5: Viewing Code and Data
To compare two blocks of memory

168

address range and the value that is to be searched for, and press the
< Return> key.

Example To search for the expression ’gh’ in the memory range from address 1000h
through address 10ffh and stop when the expression is found or address 10ffh
is reached:

Memory Block_Operation Search Word Once
1000h..+0xff = ’gh’

To examine a memory area for invalid values

• Using the command line, enter:

Memory Block_Operation Test <Size> <Until>

Select either Byte, Word, or Long as the size of the memory locations, select
either Once or Repeatedly to specify when the search should stop, enter the
address range and the value that should be found in the range, and press the
< Return> key.

Example To test for the expression ’gh’ in the memory range from address 1000h
through address 10ffh and stop when a word not matching the expression is
found:

Memory Block_Operation Test Word Once 1000h..+0xff =
’gh’

Chapter 5: Viewing Code and Data
To examine a memory area for invalid values

169

To display memory contents

• Select Display→Memory→.

Or:

• Using the command line, enter:

Memory Display <Format>

Select either Mnemonic, Byte, Word, or Long as the format in which memory
contents are to be displayed.

If you are using the command line, enter the starting address or the address
range of the memory whose contents are to be displayed, and press the
< Return> key.

Examples To display disassembled memory in the code window starting at the symbol
’_emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mnemonic _emeg_shutdown

To display memory in byte format in the journal window starting at the symbol
’current_humid’:

Memory Display Byte current_humid

Chapter 5: Viewing Code and Data
To display memory contents

170

Using Simulated I/O

Simulated I/O (SIMIO) lets programs use the UNIX file system, run UNIX
commands, and use the keyboard and display for input and output.

Your programs can use SIMIO by means of the I/O libraries and environment
dependent routines provided with the HP B1461/HP B1478 C Cross Compiler.
Your programs use the library functions when they open, close, read, or write
to files, etc. These simulated I/O functions are identical in both the
debugger/emulator and debugger/simulator to let you write programs that will
function correctly in both environments. Refer to the "Environment
Dependent Routines" chapter of your compiler manual for information on
using the C SIMIO libraries.

Your programs can also use SIMIO by means of user-written assembly code.
If you are developing programs that use SIMIO from assembly code, refer to
the Simulated I/O User’s Guide for a complete description of SIMIO protocol.

This chapter shows you how to:

• Enable simulated I/O.

• Disable simulated I/O.

• Set the keyboard I/O mode.

• Redirect I/O.

• Check resource usage.

• Increase file resources.

• Display the simulated I/O system report.

How Simulated I/O Works

Communication between your program running in the emulation system and
the SIMIO process takes place through contiguous single-byte length memory
locations. The first memory location is called the Control Address (CA). The
Control Address and the memory locations that follow it are called the CA
buffer.

Chapter 5: Viewing Code and Data
To display memory contents

171

Control Address buffers are less than or equal to 260 bytes in size. A
maximum of 256 bytes of information can be transferred between the debugger
and the host system at one time. Some simulated I/O commands require four
additional bytes for command parameters.

The debugger supports only one Control Address (CA) for doing SIMIO
operations. This buffer is named systemio_buf in the HP B1461/HP B1478 C
I/O libraries. Assembly code users who want to use SIMIO with the debugger
must label their Control Address as _systemio_buf (the compiler prefixes
symbols with an underscore).

Communication between a program and the simulated I/O process is a series
of requests by the program and responses by the SIMIO process:

The program places a SIMIO command in the CA buffer and then waits
for a return code to be placed in the first byte of the CA.

The SIMIO process polls the CA buffer memory. When it finds a
command, the SIMIO process executes the command. When the SIMIO
process completes the command, the first byte of the CA buffer is changed
to the command return code.

Simulated I/O Connections

The SIMIO system supports three types of I/O connections. These are:

• Keyboard and display.
• UNIX files.
• UNIX processes.

Display and Keyboard

The debugger provides a window named stdio which functions as the normal
display output for target programs. The screen can be opened for output from
target programs via SIMIO with the special name /dev/simio/display. This
name appears to be an UNIX file name. However, it is really a name reserved
by the debugger to indicate the internal screen. The keyboard is accessed by
the special name /dev/simio/keyboard.

UNIX Files

UNIX files are accessed by their names from the target program running in
the debugger in the same way they are accessed by host software. The file
operations of open, close, read, write, and seek are supported by the SIMIO

Chapter 5: Viewing Code and Data
To display memory contents

172

protocol. When opening a stream on an UNIX file, SIMIO supports the same
control parameters for file creation and blocking I/O that are available to host
programs.

UNIX Processes

UNIX processes can be run as subprocesses to the debugger with their input
and output directed to the user program. Subprocesses are controlled from the
user program by a Process Identification number (PID). This lets the user
program check specific subprocesses, send them signals, or stop them. This
subprocess facility allows user programs to take advantage of the powerful
software and execution environment of the host UNIX system. Host programs
can be used to process data for a debugger user program or to simulate
portions of the software that are not available in the user program.

Because simulated I/O lets the debugger execute UNIX commands, the
debugger can communicate with other host system I/O devices, such as
printers, plotters, modems, etc.

For more information on using UNIX processes, refer to the description of
the exec_cmd() function in the "Environment Dependent Routines" chapter of
the 68020 C Cross Compiler Reference or 68030 C Cross Compiler Reference
manual.

Special Simulated I/O Symbols

User Program Symbols

The following symbols are user program symbols that are used by the SIMIO
system to process the simulated I/O protocol:

systemio_buf This symbol indicates the start of the Control Address buffer.

Simulated I/O Reserved Symbols

The following names are reserved by the SIMIO system and cannot be used for
your file names. The SIMIO system recognizes these names and uses special
processing to direct the I/O to the proper location:

stdin This name will be replaced by the name stored in the stdin_name. This
name is set via the Stdio_Redirect command.

Chapter 5: Viewing Code and Data
To display memory contents

173

stdout This name will be replaced by the name stored in the stdout_name.
This name is set via the Stdio_Redirect command.

stderr This name will be replaced by the name stored in the stderr_name.
This name is set via the Stdio_Redirect command.

/dev/simio/keyboard This name refers to the keyboard while the product is
running interactively.

/dev/simio/display This name refers to the stdio display window while the
product is running interactively.

To enable simulated I/O

• Using the command line, enter:

Debugger Execution I O_System Enable

When SIMIO is enabled, polling for simio command begins. In the
debugger/emulator, the host computer periodically reads the memory in the
emulator or target system to detect simio commands issued by the user code.
SIMIO behavior in the debugger is identical to that described in the Simulated
I/O User’s Guide, with the exception that only one control address is supported
by the debugger. The control address must be named systemio_buf
(_systemio_buf in assembly code).

SIMIO is also enabled if the "Enable polling for simulated I/O?" emulator
configuration question was answered yes and "Simio control address 1" is
_systemio_buf.

Chapter 5: Viewing Code and Data
To enable simulated I/O

174

To disable simulated I/O

• Using the command line, enter:

Debugger Execution I O_System Disable

To set the keyboard I/O mode to cooked

• Using the command line, enter:

Debugger Execution I O_System Mode Cooked

In the Cooked mode, the keyboard input is processed. This lets you type and
then edit the line to correct errors. When the final line is composed, press the
< Return> key to enter the line. Once the line is entered, it is read by the
target program. Only the characters from the final line and the carriage return
character are passed as input. If program execution is interrupted by entering
< Ctrl> -C before the line is entered, the characters on the input line are lost.

See also "To set the keyboard I/O mode to raw"

To set the keyboard I/O mode to raw

• Using the command line, enter:

Debugger Execution I O_System Mode Raw

In the Raw mode, each character you type is sent directly to the target
program that is reading from the keyboard. Characters are not echoed as they
are typed. Any input editing, such as backspace, must be handled by the target

Chapter 5: Viewing Code and Data
To disable simulated I/O

175

program. The only special character that cannot be sent to the target program
is < Ctrl> -C which is used to interrupt the debugger’s execution of the
program.

See also "To set the keyboard I/O mode to cooked"

To control blocking of reads

• Set the O_NDELAY flag in the startup() routine.

The flag O_NDELAY is passed to the function open() to control whether or
not reads from the keyboard will block waiting for characters. When the
keyboard is functioning in COOKED mode, this flag is ignored; all reads wait
for the line to be composed and entered. When set in RAW mode, the
keyboard can be read in a blocking or non-blocking manner, based on the
value of the control flag O_NDELAY.

This flag can only be set when opening the stream; it may not be changed after
the file stream is open. This flag can be set in the compiler-supplied routine
startup(). This routine opens streams stdin, stdout, and stderr.

See also The chapter titled "Environment Dependent Routines" in the 68020 C Cross
Compiler Reference or 68030 C Cross Compiler Reference manual.

To interpret keyboard reads as EOF

• Using the command line, enter:

Debugger Execution I O_System Keyboard_EOF

Chapter 5: Viewing Code and Data
To control blocking of reads

176

This causes the debugger to interpret any further keyboard reads as being at
the end of file.

In cooked mode, pressing < Ctrl> -D is equivalent to entering the Debugger
Execution IO_System Keyboard_EOF command.

To redirect I/O

To redirect the three I/O streams and to reset your program to the startup
address, perform the following steps.

1 Redirect the three I/O streams by changing the translation names for the stdio
streams. Using the command line, enter:

Debugger Execution I O_System Stdio_Redirect
<"stdin_name","stdout_name","stderr_name">

Enter the new names for standard input, standard output, and standard error;
then, press the < Return> key.

2 Reset the program counter to the startup address. Select Execution→Set PC to
Transfer. Or, using the command line, enter:

Program Pc_Reset

When the target program starts execution from the normal compiler startup
address, the standard C startup libraries open the following three I/O streams:

• stdin
• stdout
• stderr

The debugger uses an internal table to determine where the streams should be
opened. Each of the names (stdin, stdout, and stderr) has an associated
translation name:

• stdin_name
• stdout_name
• stderr_name

Chapter 5: Viewing Code and Data
To redirect I/O

177

The translation name contains the name of a file to use when the target
requests opening of any of these stdio streams. By default, stdin_name
contains /dev/simio/keyboard (the keyboard), and translations stdout_name and
stderr_name contain /dev/simio/display (the standard I/O (stdio) screen).

These translations are used only when opening the streams. They cannot be
used to redirect the streams after they have been opened. The target program
must be rerun from the startup address to allow the stdio streams to be
reopened if the translations have been changed.

Examples To redirect the standard input file to the keyboard, the standard output file to
the display, and the standard error file to file ’/users/project/errorfile’:

Debugger Execution I O_System Stdio_Redirect
"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"

Program Pc_Reset

To redirect the standard input file to ’temp.dat’, the standard output file to
’cmdout.dat’, and the standard error file to file ’errorlog.err’:

Debugger Execution I O_System Stdio_Redirect
"temp.dat","cmdout.dat","errorlog.err"

Program Pc_Reset

To check resource usage

• Using the command line, enter:

Debugger Execution I O_System Report

The command displays the simulated I/O status, keyboard mode, and the
translation names used for stdin, stdout, and stderr.

The SIMIO system has the following default resource limitations:

Chapter 5: Viewing Code and Data
To check resource usage

178

• 40 open files
• 4 subprocesses

To increase file resources

1 Change to directory 68020 or 68030 in path /usr/hp64000/include using the cd
command.

2 Change the value of macro FOPEN_MAX from 12 to the new maximum
number of open files (the limit is 40) in file stdio.h using an editor on your
system.

3 Change to directory

/usr/hp64000/env/hp64748/src (for 68020)

or

/usr/hp64000/env/hp64747/src (for 68030/EC030)

using the cd command.

4 Recompile file startup.c using the command:

cc68020 -Ouc startup.c

Or

cc68030 -Ouc startup.c

5 Archive file startup.o using the command:

ar68k -r startup .. /env.a

or

ar68030 -r startup .. /env.a

Chapter 5: Viewing Code and Data
To increase file resources

179

You can increase the simulated I/O file limit by modifying the startup code for
your compiler. The code must be modified from the UNIX shell. The
maximum number of open SIMIO files descriptors can be increased to 40.

Caution Compiler startup files compiled with the modified stdio.h header file will run
only in the debugger environment. Emulators which do not have the debugger
interface do not support the increased number of open SIMIO file descriptors.
Call to the SIMIO function open() will fail in this environment if 12 file
descriptors have already been allocated.

Chapter 5: Viewing Code and Data
To increase file resources

180

If problems occur when using simulated I/O

If the target program stops ("hangs") while reading from the keyboard with the
O_NDELAY flag set, or if programs do not appear to be getting proper input
from the keyboard, check the keyboard mode setting.

Chapter 5: Viewing Code and Data
If problems occur when using simulated I/O

181

Chapter 5: Viewing Code and Data
If problems occur when using simulated I/O

182

6

 Making Trace Measurements

How to use the debugger to trace the execution of a program in the emulator.

Chapter 6: Making Trace Measurements

183

This chapter shows you how to:

• Start traces.

• Stop traces.

• Display traces.

• Specify trace events.

• Delete trace events.

• Specify storage qualifiers.

• Specify trigger conditions.

• Halt program execution on the occurrence of a trigger.

• Remove a storage qualification term.

• Remove a trigger term.

The Trace Function

The trace function uses the emulation analyzer in your emulator to capture
processor bus cycle information synchronously with the processor’s clock
signal. A trace is a collection of these captured states.

You can make simple trace measurements using the Code window pop-up
menu. Using this menu, you can trace states before and after a line of code is
executed.

If you need to make a simple trace measurement, skip the details which follow
and turn to "To start a trace using the Code pop-up menu."

You can make complex trace measurements using the command line Trace
command. You can tell the debugger exactly which states to store by defining
trigger events (a series of events which will start the trace) and storage
qualifications (which kinds of states to store).

If you will be making many detailed trace measurements, you should set up
your traces using the emulator user interface rather than the debugger
interface.

Chapter 6: Making Trace Measurements

184

Default Trace Specification

The default trigger condition is "never". You can make a default trace
measurement by entering the Trace Again command. When you use the
default trace condition, qualified bus cycles are collected continuously until
you halt the measurement. The trace buffer will then contain the bus states
prior to the halt.

Trace Events

Trace measurement parameters are specified as events. An event is a bus state
consisting of a combination of address, data, and status values.

Address and Data Values. Address and data values may be specified as
32-bit values or a range of of 32-bit values. You can specify a mask to mark
valid bits in addresses or data to define "don’t care" values. You can also
specify the logical "NOT" of an address or data value.

Status Values. Status values are the types of bus activities, such as:

 Read or write operations.

 Memory access size.

 Function codes.

 Cycle types.

You can also specify the logical "NOT" of a status value.

Trace Trigger

A trigger specifies the bus events that cause the debugger to make a trace
measurement. The debugger lets you trigger on the detection of a single
event, an OR’ed combination of events, or after a sequence of events are
detected. You can specify a sequence of events, the last of which is the
triggering event. You can also trigger on the Nth occurrence of an event,
where N is a number you specify with the count parameter in the Trace
Trigger Event command.

You can position the trigger event at the start of the trace buffer, centered in
the trace buffer, or at the end of the trace buffer.

Chapter 6: Making Trace Measurements

185

Storage Qualification

A storage qualifier defines which bus cycles will be stored when you make a
trace measurement. You can specify that only cycles corresponding to certain
values be stored in the trace buffer. These values can be addresses, a range of
addresses, data values, status values (the type of bus activity), or an OR’ed
combination of values. You can also specify the logical NOT of the specified
value to be the storage qualifier, that is, any condition that does not match the
specification. You can specify that the trace function store up to two
instruction fetch cycles preceding the qualified state (prestore).

Trace Resources

The trace function uses the emulation analyzer to implement its
measurements. The analyzer puts the following limitations on resources
available for trace specifications:

• One range resource.

• Eight event resources.

• Seven sequence terms.

If you enter a range value that can be expressed as a "don’t care" value (for
example, address 0x100 to 0x1ff), the debugger uses one of the eight
event resources, rather than the range resource. Complex event specifications,
such as combinations of Is and Not terms, can use multiple event resources.
Up to seven sequential events can be specified in a trigger specification.

Trace Status

The status of the trace measurement is indicated on the debugger status line
by the TRC:<Trc_status> field. The possible values for <Trc_status>
are:

AwtTrg A trace measurement is in progress, but the trigger
condition has not been detected.

BrkRWA An access breakpoint has been set and will be used as the
trigger in the next trace measurement.

Cmplt A trace measurement has completed.

Chapter 6: Making Trace Measurements

186

DataOK The trace buffer contains valid data.

Halted The Trace Halt command was used to halt the trace.

Idle No trace measurement has been executed during the current
debug session.

Setup A trace measurement has been set up (specified), and will
start on the next program run or program step command.
This status message appears only before the first trace
measurement in a debug session.

Trgrd A trace measurement is in progress, and the trigger has
been detected.

Trace status characters

When trace data is displayed, a trace status character may be displayed in front
of the trace line. The following table defines the trace status characters.

Trace List Status Characters

Character Description

* The indicated trace line is the trigger condition.

+ The indicated trace line is in the middle of a C statement,
that is, not the first assembly language statement in the C
source statement.

! The data in the trace buffer line does not match the data in
memory.

? The trace line may be a prefetch.

Access Breakpoints

If you have set access breakpoints with the Breakpt Access, Breakpt Read, or
Breakpt Write commands, the trace function will interpret the breakpoints as
trace trigger terms. When you step or run your program after setting an access
breakpoint, the trace measurement is started automatically. You cannot

Chapter 6: Making Trace Measurements

187

define a trace trigger while an access breakpoint is active. This will cause an
error condition.

Note The emulator user interface may specify a trace that overrides a debugger
access breakpoint. The debugger interface will set up the access breakpoint
trace when a run or step command is issued only if the analyzer is not currently
in use. Using both access breakpoints in the debugger and trace features in the
emulator is not recommended.

Limitations to the Trace Function

There are limitations to the trace function imposed on the debugger by the use
of a foreground monitor and when triggering on C variables and instruction
fetches.

Limitations when Using a Foreground Monitor. When you use a
foreground monitor, the trace function may capture monitor activity as well as
your target program activity.

Limitations when Triggering on C Variables. The emulator’s analysis
hardware watches bus cycles, and triggers on specified bus values. However,
bus cycles do not always map directly to C variables. This limitation takes two
forms:

The first form occurs when an access to a C variable requires multiple bus
cycles. In addition to requiring multiple bus cycles, the number of cycles and
the contents of the data bus on each cycle varies with the memory bus width,
data size, and data address alignment.

To illustrate this problem, consider a 32-bit variable foo at the odd word
address 0x1002. A write of value 0x01023fff to foo will take multiple bus
cycles. The following table shows the number of cycles and the contents of the
data bus on each cycle for the three possible memory bus widths.

Chapter 6: Making Trace Measurements

188

Bus
Cycle

Memory Bus Width

8 Bits 16 Bits 32 Bits

1
2
3
4

addr (data)
1002 (0102 0102)
1003 (0202 3f02)
1004 (3fff 3fff)
1005 (ffff ffff)

addr (data)
1002 (0102 0102))
1004 (3fff 3fff)

addr (data)
1002 (0102 0102))
1004 (3fff 3fff)

The number of cycles and the data bus values will vary depending on memory
bus width, data size, and data address alignment. You must consider these
factors when specifying triggers containing both address and data values.

The second form of problem occurs when a C variable is written, but the
address never appears on the bus. To demonstrate this problem, consider a
32-bit C variable foo at address 0x1002 and a "wild pointer" pointing to
address 0x1000 . A 32-bit write indirect through the pointer will overwrite
part of variable foo , but if the memory bus width is 32 bits, the address of foo
(0x1002) will never appear on the address bus. Similarly, a write indirect
through a wild pointer pointing to address 0x1004 will overwrite part of foo
without the address of foo appearing on the bus. This limitation can be
overcome by specifying an address range when triggering on a symbol that you
suspect is being modified by a wild pointer.

Limitations when Triggering on Instruction Fetches. Instructions located
on odd word address boundaries can be traced by specifying address values
with the mask operator. For example, if foo is located on an odd word
address boundary, the command:

Trace Trigger Address I s foo &= 0xfffffffc

will let the trace function trigger on variable foo . The mask operator can also
be specified as shown in the following command:

Trace Trigger Address Is foo &=~3

The tilde operator (~) performs the one’s complement operation in a C
expression.

The debugger will apply the appropriate mask for all instruction fetches if you
use the Debugger Option Trace Fetch_Align command.

Chapter 6: Making Trace Measurements

189

To start a trace using the Code pop-up menu

1 Position the mouse pointer over the line of code which should trigger the trace.

2 Hold down the right mouse button and select one of the Trace items from the
Code window pop-up menu.

3 When "TRC:Cmplt" appears on the status line, stop execution of the program
if it is not already halted.

4 Select Window→Trace to see the trace information.

5 Use the keyboard arrow keys or the scroll bar to scroll through the trace
information. Press < ESC> < ESC> to exit trace mode.

This will trace the execution of code near the line you selected.

You can choose any one of the following:

• Trace after will trace what happens after the selected line is executed.

• Trace before will trace what happens before the selected line is executed.

• Trace about will trace what happens before and after the selected line is
executed.

• Trace until will trace what happens before the selected line is executed.
When the selected line is reached, execution is stopped automatically.

To start a trace using the command line

A trace measurement is started on the first Program Step or Program
Run command following the specification of a trigger or storage qualifier, or
after a Trace Again command.

Chapter 6: Making Trace Measurements
To start a trace using the Code pop-up menu

190

The Trace Again command starts the trace using the last trace specification
you set up or the default trace specification if you have not set up a trace in the
current debug session. The default specification is:

Trace StoreQual None

Trace Trigger Never

The default specification causes the trace to execute continuously, storing all
bus states in the trace buffer, until you stop the trace by entering the command:

Trace Halt

If you have set up a trace specification, the trace function behavior is
determined by your specification.

The debugger must be in command mode (your target program is halted and
the word Command is displayed on the status line) in order for you to enter a
trace command.

To stop a trace in progress

• Using the command line, enter:

Trace Halt

And press the < Return> key.

If the trace trigger specification is defined to be Trace Trigger Never ,
the trace function will run continuously until you halt the trace.

If you have defined a trace trigger specification, the trace function stops
automatically when the trace trigger specification is detected and the trace
buffer is full.

Chapter 6: Making Trace Measurements
To stop a trace in progress

191

To display a trace

• Select Window→Trace.

Or:

• In the emulator/analyzer window, select Display→Trace.

Or:

• Using the command line, enter:

Trace Display

And press the < Return> key.

The default trace display shows the high-level program source lines
corresponding to the trace states and entries and exits from modules.

Display options allow you to display entry to and exit from modules, assembly
language instructions, data read and write cycles, and the raw uninterpreted
data collected by the trace function.

The Line(s) option allows you to specify a range of lines in the trace buffer
to be copied to a specified debugger window or the first state to be displayed in
the trace window.

Examples To view source lines, their corresponding assembly language instructions, and
data read and write cycles:

Trace Display Modules Source Assembly Data

To copy the raw data in lines -20 through + 20 of the trace buffer to a log file
you have opened:

Trace Display Lines -20..20 <Tab> Raw OutputTo 28

28 is the window number for the log file.

Chapter 6: Making Trace Measurements
To display a trace

192

To display the raw data starting with the trigger state in the trace window and
cause the debugger to enter trace mode:

Trace Display Lines 0 <Tab> Raw

To exit trace mode, press the < Esc> key twice. This action returns the
debugger to command mode where you can enter commands from the
keyboard.

To specify trace events

• Using the command line, enter:

Trace Event Specify <event_nmbr> <Tab>
<event_definition>

And press the < Return> key.

You use trace events as terms in the trace trigger specification and in the
storage qualification specification. The event definition can be address values,
data values, status values, or a logically AND’ed combination of the above.

Examples Address event. To define event 1 to be the address of function
update_state_of_system:

Trace Event Specify 1 <Tab> Address I s
update_state_of_system

Status event. To define event 2 to be any bus cycle corresponding to an
instruction fetch from supervisor memory space:

Trace Event Specify 2 <Tab> Status I s FnCde Supr CycTyp
Fetch

Combined address and status event. To define event 3 to be a write access of
variable current_humid:

Chapter 6: Making Trace Measurements
To specify trace events

193

Trace Event Specify 3 <Tab> Address I s
¤t_humid <Tab> Status I s Write

To delete trace events

• Using the command line, enter:

Trace Event Delete <event_nmbr>

Enter the number of the event you wish to delete, and press the < Return>
key.

If you attempt to delete an event that is assigned to a storage qualification
term or trigger term, the debugger will display an error message on your
screen. You cannot delete events that are assigned as storage qualifiers or
trigger terms. You can, however, modify these events by entering a new
specification.

Examples To delete event 2:

Trace Event Delete 2

To specify storage qualifiers

• Using the command line, enter:

Trace StoreQual Event <event_nmbr>

Enter the number of the event previously defined with the Trace Event Specify
command, and press the < Return> key.

You can specify a single event or an OR’ed combination of events in the trace
storage qualification specification.

Chapter 6: Making Trace Measurements
To delete trace events

194

If you specify the Prestore function, the trace function stores the two
instruction fetch bus cycles immediately preceding the qualified states being
stored.

Examples To store either of two events:

Trace Event Specify 1 <Tab> Address I s
update_state_of_system

Trace Event Specify 3 <Tab> Address I s
¤t_humid <Tab> Status I s Write

Trace StoreQual Event 1 <Tab> Or 3

The debugger will then store calls to function update_state_of_system or write
accesses to variable current_humid.

To store accesses to update_state_of_system along with the two bus cycles
immediately preceding the accesses:

Trace StoreQual Address I s update_state_of_system <Tab>
Prestore

The prestore operation helps you determine what instructions caused an
access to a variable or function.

Note that in the preceding example, we defined the qualifying event in the
Trace StoreQual command rather than using an event defined previously with
the Trace Event Specify command. When you define the qualifying event in
the Trace StoreQual command, you can specify only a single event. You
cannot use an OR’ed combination of events as the storage qualification
condition.

Chapter 6: Making Trace Measurements
To specify storage qualifiers

195

To specify trigger conditions

• Using the command line, enter:

Trace Trigger Event <event_nmbr>

Enter the number of the event previously defined with the Trace Event Specify
command, and press the < Return> key.

You can specify a single event, an OR’ed combination of events, a specified
number of occurrences of a single event or an OR’ed combination of events,
or a sequence of events (maximum of seven) in the trace trigger specification.
If you specify a sequence of more than seven events, the debugger will respond
with an error message indicating that the specification is too complex.

You can define the trigger event in the Trace Trigger command rather than
using an event defined previously with the Trace Event Specify command.
When you define the qualifying event in the Trace Trigger command, you can
specify only a single event. You cannot use an OR’ed combination of events, a
sequence of events, or multiple occurrences of an event as the trigger
condition.

Examples Trigger on a single event. To trigger on the occurrence of a call to function
update_state_of_system :

Trace Event Specify 1 <Tab> Address I s
update_state_of_system

Trace Trigger Event 1

Trigger on a sequence of events. To trigger on a call to function
update_state_of_system followed by a write access to variable
current_humid :

Trace Event Specify 1 <Tab> Address I s
update_state_of_system

Trace Event Specify 3 <Tab> Address I s
¤t_humid <Tab> Status I s Write

Chapter 6: Making Trace Measurements
To specify trigger conditions

196

Trace Trigger Event 1 <Tab> Then 3

Trigger on an OR’ed combination of events. To trigger on a call to function
update_state_of_system or a write access to variable current_humid :

Trace Event Specify 1 <Tab> Address I s
update_state_of_system

Trace Event Specify 3 <Tab> Address I s
¤t_humid <Tab> Status I s Write

Trace Trigger Event 1 <Tab> Or 3

Trigger on the nth occurrence of an event. To trigger on the fifth call to
function update_state_of_system :

Trace Trigger Event 1 <Tab> Count 5

To halt program execution on the occurrence of a
trigger

• Enter the keyword BrkOnTrg in your trace trigger specification to halt
program execution on occurrence of the trigger condition.

Examples To break on a write to memory location current_humid :

Trace Trigger Event 3 <Tab> BrkOnTrg PosnTrig End

When you start your program, the debugger will execute the program until the
trigger condition is detected. Then the debugger will halt the program. The
keywords PosnTrig End cause the trigger to be stored at the end of the
trace buffer, allowing you to view events leading up to the trigger.

Chapter 6: Making Trace Measurements
To halt program execution on the occurrence of a trigger

197

To remove a storage qualification term

• Using the command line, enter:

Trace StoreQual None

And press the < Return> key.

This command restores the storage qualification to its default value, that is, all
bus cycles will be stored in the trace buffer. If you specified events defined
with the Trace Event Specify command, the events are removed from the
storage qualification specification, but remain defined.

To remove a trigger term

• Using the command line, enter:

Trace Trigger Never

And press the < Return> key.

This command restores the trace trigger to its default value. Events in trigger
terms defined with the Trace Event Specify command are disabled as trigger
terms, but are not removed as events. The Trace Trigger Never command
causes the trace function to never trigger. The trace will run continuously
until you stop the trace using the Trace Halt command.

Chapter 6: Making Trace Measurements
To remove a storage qualification term

198

To trace code execution before and after entry
into a function

1 Specify the trigger condition.

Trace Trigger Address I s function_name <Tab> Status I s
FnCde Prog PosnTrig Center

2 Run the program.

3 When the trace is completed (the command line will contain the message
TRC:Cmplt), press CTRL C to halt program execution and enter command
mode.

4 Display the trace data.

To trace data written to a variable

1 Define trace event 1 to be a write access to the range of addresses
corresponding to the variable.

Trace Event Specify 1 <Tab> Address I s
&variable ..+sizeof(variable)-1 <Tab> Status I s Write

By using the sizeof operator, we can specify an address range the size of the
variable to ensure that we capture all bytes of variable .

2 Assign variable as the trigger and storage qualification terms.

Trace Trigger Event 1

Trace StoreQual Event 1

Chapter 6: Making Trace Measurements
To trace code execution before and after entry into a function

199

3 Start program execution.

4 Complete the trace.

The the TRC status on the status line will change to TRC:Trgrd to indicate
that the first write has taken place.

You may do one of two things to complete the trace:

• To see a full buffer of writes, wait until the status changes to TRC:Cmplt .

• To see the trace without waiting, press < Ctrl> -C to return to command
mode, then halt the trace by entering:

Trace Halt

5 Display the trace information.

To trace data written to a variable and who wrote
to the variable

1 Define trace event 1 to be a write access to the range of addresses
corresponding to the variable.

Trace Event Specify 1 <Tab> Address I s
&variable ..+sizeof(variable)-1 <Tab> Status I s Write

2 Assign the variable as the trigger and storage qualification terms.

Trace Trigger Event 1

Trace StoreQual Event 1 <Tab> Prestore

Note that we added the Prestore keyword to the Trace StoreQual
command. The Prestore keyword in the storage qualification definition will
cause the trace function to capture the last two fetch cycles before the write to
current_humid , enabling you to see which routine is writing to the variable.

Chapter 6: Making Trace Measurements
To trace data written to a variable and who wrote to the variable

200

3 Start program execution.

4 Complete the trace.

The the TRC status on the status line will change to TRC:Trgrd to indicate
that the first write has taken place.

You may do one of two things to complete the trace:

• To see a full buffer of writes, wait until the status changes to TRC:Cmplt .

• To see the trace without waiting, press < Ctrl> -C to return to command
mode, then halt the trace by entering:

Trace Halt

5 Halt the trace measurement.

6 Display the trace information.

To trace events leading up to writing a particular
value in a variable

To trace events leading up to writing the value 0 (zero) to the element
seconds in a structure pointed to by time , perform the following steps.

1 Define event 1 to be the write of a data value of 0 to the least-significant word
of the integer value seconds .

Trace Event Specify 1 <Tab> Address I s
&time_struct.seconds <Tab> Data Is 0 <Tab> Status I s
Write

2 Assign event 1 to be the trace trigger, and position the trigger at the end of the
trace buffer so that states leading up to the trigger will be captured.

Trace Trigger Event 1 <Tab> PosnTrig End

Chapter 6: Making Trace Measurements
To trace events leading up to writing a particular value in a variable

201

3 Disable any storage qualification terms to cause the trace function to store all
states.

Trace StoreQual None

4 Start program execution and the trace.

Program Run

5 When the trace is completed (the command line will contain the message
TRC:Cmplt), press CTRL C to halt program execution and enter command
mode.

6 Display the trace information.

To execute a complex br eakpoint using the trace
function

The trace function can be used to execute a complex breakpoint in your target
program.

Example 1 Define event 6 to be a write of value 0x3c (60 decimal) to the least-significant
word of the integer value seconds .

Trace Event Specify 6 <Tab> Address I s
&time_struct.seconds <Tab> Data I s 0x3c Status I s Write

2 Define event 7 to be a write to the least-significant word of the integer value
minutes .

Trace Event Specify 7 <Tab> Address I s
&time_struct.minutes <Tab> Status I s Write

Chapter 6: Making Trace Measurements
To execute a complex breakpoint using the trace function

202

3 Define the trace trigger as event 6 followed by event 7, and position the trigger
at the center of the trace buffer so that states leading up to the trigger and
following the trigger will be captured.

Trace Trigger Event 6 <Tab> Then 7 <Tab> BrkOnTrg
PosnTrig Center

The keyword BrkOnTrg causes the debugger to halt program execution when
the trigger condition is detected.

4 Start the trace measurement.

Program Run

The program will run until the trigger condition is detected and then halt.

5 Display the trace buffer.

Trace Display Line(s) 0 <Tab> Source Assembly Data

Note that the minutes count is updated at line 0 in the trace display. The
trigger specification has allowed us to see the program activity leading up this
event. Press the Return key or F7 function key to scroll through the data
source line by source line. Note that the highlighted line in the code window
tracks the first line displayed in the trace display. Press the F6 function key to
change the direction of tracking in the trace display.

To trace entry to and exit from modules

1 Define event 5 to be any instruction fetch with an opcode value of 4e5x where
x is a don’t care value.

Trace Event Specify 5 <Tab> Data I s 0x4e50 &= 0xfff0
<Tab> Status I s CycTyp Fetch

Chapter 6: Making Trace Measurements
To trace entry to and exit from modules

203

The don’t care condition is specified by specifying a mask in the data
specification. &= is the mask operator. This value corresponds to the LINK
and UNLK instructions.

2 Define event 5 as the trace storage qualifier.

Trace StoreQual Event 5

3 Restore the trace trigger to its default value.

Trace Trigger Never

4 Start the program and trace.

Program Run

5 Let the program run for a moment, then press CTRL C to halt program
execution and enter command mode.

6 Stop the trace measurement.

Trace Halt

7 Display the trace information.

Trace Display Modules Assembly

The display should show entries and exits of modules and the assembly code
that was captured in the trace buffer. The code should consist of only LINK
and UNLK instructions.

Note This method of viewing entries and exits of modules may not work for all code.
It will depend on how your compiler generates code and which compiler
options you choose.

Chapter 6: Making Trace Measurements
To trace entry to and exit from modules

204

If tracing is not triggered as expected

If you are using 16-bit memory, you need to make fetches appear to be on
longword boundaries. Use the command line Debugger Option Trace
Fetch_Align command to mask the fetch addresses.

Chapter 6: Making Trace Measurements
If tracing is not triggered as expected

205

Chapter 6: Making Trace Measurements
If tracing is not triggered as expected

206

7

Editing Code and Data

How to use the debugger to make permanent or temporary changes to source
code, memory contents, and registers.

Chapter 7: Editing Code and Data

207

Editing Files

The graphical interface gives you a number of context-dependent and
context-independent editing commands. From several screens, you can bring
up the source file that contains the source line or symbol you are viewing in
the display.

The interface will choose the “vi” editor as its default editor, unless you specify
another editor by setting an X resource. Refer to the chapter “Configuring
the Debugger” for more information about setting this resource.

Remember to re-compile

When you use the editor to change a source code file, you will need to
re-compile the source file. You can recompile with a click of the mouse if you
define the Make action key to compile the target program.

To edit source code from the Code window

• Place the mouse pointer over the line you want to edit. Select Edit source
from the Code window pop-up menu.

The debugger will start the editor in a new X window. The cursor in the editor
window will be on the same line of code as the mouse pointer in the Code
window.

After editing the file, you quit the edit session by the standard method for the
editor used.

You will need to re-compile the source file. You can recompile with a click of
the mouse if you define the Make action key to compile the target program.

Chapter 7: Editing Code and Data
To edit source code from the Code window

208

To edit an arbitrary file

1 Select File→Edit→File.

2 Using the file selection dialog box, enter the name of the file you wish to edit;
then, click on the OK pushbutton.

After editing the file, you quit the edit session by the standard method for the
editor used.

To edit a file b ased on an address in the e ntry
buffer

1 Place an address reference (either absolute or symbolic) in the entry buffer.

2 Select File→Edit→At () Location.

The interface determines which source file contains the code generated for the
address in the entry buffer and opens an edit session on the file.

To edit a file b ased on the current p rogram
counter

• Select File→Edit→At PC Location.

The interface determines which source file generated the address currently in
the program counter and opens an edit session on that source file. The
interface will issue an error if it cannot find a source file for the address in the
PC.

Chapter 7: Editing Code and Data
To edit an arbitrary file

209

Patching Source Code

When you change source code by editing the C source file, you need to
re-compile.

The debugger provides several ways to patch your program without
re-compiling:

• Change a variable’s value using a C expression.

• Apply a patch using a breakpoint macro.

To change a variable using a C expression

1 Enter a C expression in the entry buffer.

A good way to do this is to highlight an expression from your source code
using the left mouse button. When you release the button, the expression will
appear in the entry buffer. Now edit the expression to have the desired value.

2 Click on the C Expr () action key. Or select Display→C Expression from the
menu bar.

The value of the variable will be changed until the program modifies it. You
can continuously monitor the variable’s value if you display it in the Monitor
window (use the Monitor () action key or the Expression Monitor Value
command).

Or:

• Using the command line enter:

Expression C_Expression <expression>

Chapter 7: Editing Code and Data
To change a variable using a C expression

210

To patch a line of code using a macro

1 Set a breakpoint at the line you wish to patch.

An easy way to set the breakpoint is to click the right mouse button on the line
in the Code window.

2 Attach a macro to the breakpoint.

Choose Attach Macro ... from the Code window pop-up menu.

3 Write a macro to patch the code.

In the Macro Operations dialog box, enter the name of a new macro and click
on the Edit button.

The macro may contain any number of C expressions and debugger commands.

The last two lines of the macro should be:

$Modify Register @PC = # next_line $;
return(1)

where next_line is the number of the line after the breakpoint. Return 0
instead of 1 if you want the debugger to stop after the macro is executed.

Exit the editor as usual, then click on the Attach button in the Macro
Operations dialog box.

Now whenever the breakpoint line is encountered, the debugger will execute
the macro before the patched line is executed. The macro will execute your
patch code, then skip to the next line.

Chapter 7: Editing Code and Data
To patch a line of code using a macro

211

To patch C source code by inserting lines

1 Define a macro containing the inserted statements. The macro must provide a
return value of 1 (true) in order for the program to continue after the macro is
executed.

2 Set a breakpoint on the C line following the point where the insertion should
occur and attach the macro to the breakpoint.

3 Start your program.

The program will run until the breakpoint is encountered. The debugger will
then interpret and execute the C statements in the macro, and continue
executing the program.

To patch C source code by deleting lines

1 Write a macro that sets the program counter to point to the first line of code
beyond the lines of code that you want to delete. The macro must provide a
return value of 1 (true) in order for the program to continue after the macro is
executed.

2 Set a breakpoint on the first line to be deleted and specify the macro with that
breakpoint.

3 Start your program.

The program will run until the breakpoint is encountered. The macro will
then set the program counter to the line specified in the macro. Program
execution will then continue, skipping the program lines between the
breakpoint and line specified in the macro.

Example Consider the following code:

Chapter 7: Editing Code and Data
To patch C source code by inserting lines

212

25 count = 5;
26 for (i=0; i < MAXNUM; i++)
27 {
28 array[i]=1;
29 count=count+2;
30 k=count*i;
31 }

To delete lines 29 and 30, and insert a new line incrementing count by one, you
could write the following macro:

Debugger Macro Add patch_29()
{
 count++;
 $Expression C_Expression @PC = #31$;
 return(1);
}
.

To execute the code patch, enter the command:

Breakpt I nstr #29;patch_29()

and run your program.

Chapter 7: Editing Code and Data
To patch C source code by deleting lines

213

Editing Memory Contents

This section shows you how to:

• Change memory location values.

• Copy a block of memory.

• Fill a block of memory with values.

• Compare two blocks of memory.

• Change the contents of a register.

• Unload BBA data from program memory.

To change the value of one memory location

1 Select Modify→Memory.

Or, using the command line, enter:

Memory Assign <Size>

2 Using the command line, select either Byte, Word, or Long as the size of the
memory location, and enter the expression that assigns a value to an address,
and press the < Return> key.

To change the values of a block of memory
interactively

1 Select Modify→Memory.

Or, using the command line, enter:

Chapter 7: Editing Code and Data
To change the value of one memory location

214

Memory Assign <Size>

2 Using the command line, select either Byte, Word, or Long as the size of the
memory location, enter the address of the beginning of the block, and press
the < Return> key.

This starts the interactive memory modification mode.

3 Enter the value for the location displayed in the Journal window and press the
< Return> key.

4 To exit this mode, press the < Return> key without entering a value.

Example To display the contents of memory location 1000h and allow interactive
modification of memory contents:

Memory Assign Byte 1000h
00001000 = 0x48 72:

To copy a block of memory

1 Using the command line, enter:

Memory Block_Operation Copy

2 Enter the address range of the memory to be copied, followed by a comma.

3 Enter the starting address of the destination and press the < Return> key.

Example To copy the block of memory starting at address 1000h and ending at address
10ffh to a block of the same size starting at address 5000h:

Memory Block_Operation Copy 1000h..10ffh,5000h

Chapter 7: Editing Code and Data
To copy a block of memory

215

To fill a block of memory with values

• Using the command line, enter:

Memory Block_Operation Fill <Size>

Select either Byte, Word, or Long as the size of the memory locations, enter
the expression that assigns a value to locations in a range of addresses, and
press the < Return> key.

Example To fill memory locations 1000h through 1007h with the long pattern
61626364, 65666768:

Memory Block_Operation Fill Long 0x1000..+7=’abcdefgh’

To compare two blocks of memory

• Using the command line, enter:

Memory Block_Operation Match <Mismatch_Operation>

Select either Repeat_On_Mismatch or Stop_On_Mismatch to specify what
happens when a mismatch is found, enter the address range to be compared
and the starting address of the range that it is compared to; then, press the
< Return> key.

Example To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block_Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

Chapter 7: Editing Code and Data
To fill a block of memory with values

216

To re-initialize all program variables

• Select File→Load→Program Only ..., then use the File Selection dialog box to
select the absolute file.

Or:

• Using the command line, enter:

Program Load New Code_only No_Pc_Set <absolute_name>

Enter the name of the absolute file whose code is to be loaded, and press the
< Return> key.

The code will be loaded without loading symbols or resetting the PC.

The debugger does not save the initial values of variables. The only way to
restore the initial values is to re-load the program. After re-loading the
program, you may need to restore some debugger settings; for example, you
might need to re-specify variables for the Monitor window.

To change the contents of a register

• Select Modify→Register. This will display the Modify Register dialog box.

Or:

• Using the command line, enter:

Memory Register

On the command line, enter the name of the register and the value to which
the register’s contents should be changed, and press the < Return> key.

Registers may also be modified by using "@register" in a C_expression.

Chapter 7: Editing Code and Data
To re-initialize all program variables

217

Example To modify register values interactively:

Memory Register

The program counter (PC) is displayed in the journal window. You can
modify the PC by entering a value (10a4h in this example) at the cursor
prompt and pressing < Return> . The PC will be modified, and the next
register will be displayed:

@pc = 0x000010B8 4280: 10a4h
@sp = 0x00015DB4 89524:

Press < Return> without entering a value to exit this mode.

To set the value of register @d1 to 44h:

Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

Chapter 7: Editing Code and Data
To change the contents of a register

218

8

Using Macros and Command Files

How to use macros and command files to make debugging easier.

219

The debugger provides several ways for you to simplify tasks that you do often.

• Macros are C-like functions. You can call macros individually, attach
them to breakpoints, or automatically execute them with each program
step. Macros are especially useful for temporarily patching C code.

• Command files contain series of debugger commands. The debugger can
read a command file and execute the commands found there as if they
were entered directly into the interface command line. Command files are
useful for setting up the debugger, for executing a program to a certain
point, and for automated testing.

• Action keys are shortcut definitions or "hotkeys" which allow you to add
new commands to the graphical interface. Action keys are useful for
simplifying frequently-used commands, for making the debugger easier to
use for co-workers who do not frequently use a debugger, and for making
the debugger into a framework for demos and tutorials.

Chapter 8: Using Macros and Command Files

220

Using Macros

A macro is a C-like function consisting of debugger commands and C
statements and expressions.

Macros are most often used to:

• Patch C source code.

Often, bugs found with the debugger can be temporarily patched with C
source statements in macros. You do not have to exit the debugger, edit
the source code, recompile and link, and then reenter the debugger.
Instead, you can make a temporary patch by using breakpoint macros.

• Return values to expressions.
• Create conditional breakpoints.
• Execute commands after each program step command.
• Execute a set of commands.

Macros can:

• Have input parameters (macro arguments).
• Define macro local variables.
• Contain C statements and expressions.
• Refer to target variables and registers.
• Refer to user-defined variables.
• Have return values.
• Call other macros.
• Can be used in expressions (if they return values).
• Execute most debugger commands.

Macros cannot:

• Define global variables.
• Define static variables.
• Be recursive.
• Define other macros.
• Contain the conditional operator (expression ? expression : expression).

Macros can be called:

• By specifying the macro name in an expression.
• By calling the macro from within another macro.
• With the Debugger Macro Call command.
• With the Breakpt command.
• With the Program Step With_Macro command.

Chapter 8: Using Macros and Command Files
Using Macros

221

This section shows you how to:

• Define a macro.

• Call a macro.

• Stop a macro.

• Display macro source code.

• Patch C source code by using macros.

• Delete a macro.

Saving and re-using macros

You can define and save macros interactively during a debugger session.

Macro limits

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macro interactively, the debugger does not
respond to more than 78 characters on a line. When reading a command file,
the debugger stops recognizing characters after 255 characters have been read
on a line.

The maximum number of lines allowed in a macro depends on the complexity
of the lines. Macros with too many lines (too complex) will fail. Error 92 "Not
enough memory for expression" will be displayed.

A maximum of 40 parameters may be specified in a macro definition.

Once you have defined a macro, you can use it any time during the debugging
session, whenever that set of commands or statements is needed.

Caution The pseudoregister @cycles is not implemented in the emulation
environment. Macros written for execution in both the simulation and
emulation environments must not refer to @cycles.

Macro comments

Macros support C comments (introduced by the characters /* and terminated
with the characters */).

Chapter 8: Using Macros and Command Files
Using Macros

222

Macro arguments

You can use formal macro arguments throughout the macro definition. They
are replaced at execution time by the actual parameters present in the macro
call. The actual parameter is coerced to the corresponding formal parameter
type. If coercion is not possible, an error occurs.

You must list the macro’s arguments (if any), along with their associated types,
when you define the macro. For example, the following listing defines
arguments for the built-in macro strcpy():

Debugger Macro Add int strcpy(target, source)
char *target;
char *source;

Macro variables

Variables that are local to the macro may be created within the macro. The
definition of local variables follows the rules of C, with the exception that you
cannot define variables with initializers. Variables may be defined to have a
simple type, or they may be of type array or pointer. Derived types (such as
structures and unions), enumerated types, and typedefs are not legal within
macros.

The macro processor does not recognize the C keywords extern, auto, static,
and register. The macro processor reports an error if these C keywords are
used. Static variables are not scoped within a macro. However, symbols
created with the Symbol Add command (debugger symbols) are globally
scoped, and can be accessed from within a macro. Register variables (such as
@PC) may also be accessed from within a macro.

Target program symbols can also be accessed from within a macro. Variables
which are globally scoped within the target program can be accessed directly.
File static, function static, and automatic variables can be accessed directly
only if the current context of the debugger is the module or function in which
they are scoped. Otherwise, they require a module or function name as a
qualifier before they can be accessed. For example, assume the following
definition exists in your target program, in a file called init.c:

...
static int i; /* file static */
...
foo(int parm)
{
 static int j; /* function static */
 auto int k; /* function local */
...

Chapter 8: Using Macros and Command Files
Using Macros

223

}
...

If a macro is executed while the PC is pointing into the function foo(),
variables i, j, and k can be directly accessed. If this is not the case, i must be
accessed with a module qualifier, such as init\i. The function static j must be
accessed as init\foo\j. The automatic k can be accessed as init\foo\k if the stack
frame for foo() is alive.

Macro control flow statements

Macros support the following C control flow statements:

• If-else
• While and For
• Do-while
• Break and Continue in While, For, and Do statements.

However, macros cannot contain conditional expressions of the form:

<expression>?<expression>:<expression>

Macro return values

Macros support the C “return” statement for returning values.

If a breakpoint macro returns a nonzero value, program execution continues.
If it returns a zero value, program execution is halted. If a macro does not
return a value, it should be declared as void when it is defined.

Macros containing debugger commands

You can create macros that contain only a sequence of debugger commands.
Macros containing only debugger commands are similar to command files.
You can use these macros to set up complex initialization conditions.

You cannot use the following commands in macros:

• Program Run
• Program Step
• Program Step Over
• Debugger Host_Shell
• Debugger Macro Add
• Symbol Add
• Symbol Remove

Chapter 8: Using Macros and Command Files
Using Macros

224

• File Command
• Debugger Quit

To display the Macro Operations dialog box

• Select Breakpoints→Edit/Call Macro from the menu bar.

Or:

• Select Attach Macro from the Code window pop-up menu.

The Macro Operations dialog box allows you to call predefined macros, edit or
call existing user-defined macros, and create new macros.

To define a new macro interactively using the
graphical interface

1 Display the Macro Operations dialog box.

2 Move the mouse pointer to the Selected Macro entry area.

3 Type < Ctrl> -U to clear the Selected Macro entry area, then type the name of
the macro you wish to create.

When you press < Return> or click on the Edit button, the debugger will
display an editor window.

A "skeleton" macro will appear in the editor window.

4 Edit the macro definition.

Chapter 8: Using Macros and Command Files
Using Macros

225

When you exit the editor, save the macro under the default name. If you save it
under a different name, the macro may be lost.

See Also See "To use an existing macro as a template for a new macro" if you want to
use an existing macro as the basis for a new macro.

Example To create an macro called "test_macro", select Breakpoints→Edit/Call Macro
and enter "test_macro" in the Selected Macro area. Now press < Return> or
click on the Edit button. Edit the macro in the editor window. If you are using
the vi editor, exit using the "ZZ" command. The new macro should now appear
at the end of the Defined Macros list.

To use an existing macro as a template for a new
macro

1 Display the Macro Operations dialog box.

2 In the dialog box, select the macro you wish to use as a template.

3 Click on the Edit button.

4 In the editor, change the name of the macro.

Now you may edit the parameters and body of the macro.

When you exit the editor, the macro will be saved under the new name. The
original macro will not be changed.

Chapter 8: Using Macros and Command Files
Using Macros

226

To define a macro interactively using the
command line

1 Enter the Debugger Macro Add command followed by an optional return
type, and then a macro name. The macro name must be followed by
parentheses; the parentheses can optionally enclose macro arguments
separated by commas.

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]

2 Enter the text of the macro body.

{
 [[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]
}

3 End the macro definition with a period as the first and only character on a
line. The macro is checked for syntax errors as soon as the period is
encountered. If an error is found within a macro, the macro definition is not
saved. The macro must be completely reentered.

Your completed macro definition should have the following syntax:

Debugger Macro Add [<type>] <name> ([parm,parm,...])
[<parm_types>;]
{
 [[<C_expr>|<C_stmt>|$<debugger_cmd>$];...]
}
.

Debugger commands can be embedded in the macro by enclosing the
commands between $ characters. For example,

$Expression C_Expression @PC = #31$;

No standard C library functions are available from within a macro. However,
there are built-in macros available in the debugger that perform similar
functions (refer to the "Predefined Macros" chapter).

Chapter 8: Using Macros and Command Files
Using Macros

227

To define a macro outside the debugger

1 Using a text editor on your host system, define the macro.

2 Save the macro definition in a command file (< filename> .com).

3 Start the debugger.

4 Load the command file into the debugger using the File Command command.

As the macro is loaded into the debugger, the macro processor parses the
macro, looking for syntax errors. If the macro definition contains no errors, it
is loaded into the debugger’s symbol table.

If an error is detected, the macro processor reports the error and quits loading
the command file. The macro remains undefined.

The number of macros that you can define is limited only by the available
memory on your host computer system.

To edit an existing macro

• If you want to edit a macro attached to a breakpoint, select Edit Attached
Macro from the Code window pop-up menu.

Or:

1 Display the Macro Operations dialog box.

2 Select the macro you want to edit.

3 Click on the Edit button.

Chapter 8: Using Macros and Command Files
Using Macros

228

Remember to save the macro under the default file name when you leave the
editor (use the "ZZ" or ":wq!" command in vi).

To save macros

• Select File→Store→User-Defined Macros....

The File Selection dialog box will be displayed so that you can choose a file in
which to save the macros. The debugger will automatically add a .com
extension to the file name.

The debugger will save all of the your user-defined macros to a file.

The debugger does not provide a way to save only selected macros. If you want
to save macros in separate files, you can create the macros using a text editor.

To load macros

• Select File→Load→User-Defined Macros....

Choose the macro file to load from the File Selection dialog box.

If macros do not load

Check that the macros do not directly access local program variables.

When the debugger loads macros which access local program variables, the
debugger does not know which local scope to use to define the macro.

Chapter 8: Using Macros and Command Files
Using Macros

229

If you need to access local program variables in a macro, pass them to the
macro as parameters.

To call a macro

• Select Breakpoints→Edit/Call Macro ...→Call.

Or:

• Using the command line, enter:

Debugger Macro Call

Enter the name of the macro to be called, and press the < Return> key.

When a macro is called with the Debugger Macro Call command, its return
value is ignored. Macros are typically called in this manner for the side effects
they generate.

Example If you have the following macro definition:

Debugger Macro Add void stackchk()
{
 /* The symbols ’stack’ and ’TopOfStack’ exist in the compiler’s */
 /* environment library, and are addresses which indicate the */
 /* bottom and the top of the system stack. The symbol @sp is a */
 /* debugger reserved symbol which contains the current value of */
 /* the processor’s stack pointer. */

 $Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
 $Expression Printf "%d bytes of stack available", @sp - stack$;
}
.

the command:

Debugger Macro Call stackchk()

displays, in the journal window, the amount of stack used and the amount of
stack left.

Chapter 8: Using Macros and Command Files
Using Macros

230

To call a macro from within an expression

• Enter a macro call as part of any expression entered on the command line of
the debugger.

The debugger will evaluate the macro and use its return value when evaluating
the rest of the expression.

Example If you have the following macro definition:

Debugger Macro Add int power(x,y)
int x;
int y;
{
 int i; /* Loop counter */
 int multiplier; /* Value x is multiplied by */

 /* Multiply x by itself y -1 times */
 for (i = 1, multiplier = x; i < y;i++)
 x *= multiplier;

 /* Return x ^y */
 return x;
}
.

The command:

Expression Display_Value 33.3 + power(2,3)

will call and evaluate the macro, displaying the value 41.3 in the debugger’s
journal window.

To call a macro from within a macro

• You can call a macro from within a macro when they are part of an expression.

The following restrictions apply to calling macros from within a macro:

• The macro called must have been previously defined.

Chapter 8: Using Macros and Command Files
Using Macros

231

• The macro cannot call itself.

Example If you have the following macro definition:

Debugger Macro Add int ten_to_the(y)
int y;
{
 return power(10,y); }
.

the macro will compute 10**y by calling the previously defined macro power().

To call a macro on execution of a breakpoint

• Select Attach Macro from the Code window pop-up menu.

Or:

• When using the command line to set a breakpoint, add a semicolon (;) and the
name of the macro to the command.

When setting breakpoints, you can attach a macro to the breakpoint.
Whenever the breakpoint is encountered, the macro is executed. Depending
on the return value of the macro, program execution will either stop or
continue.

• If the macro returns zero, program execution stops at the breakpoint.

• If the macro returns a nonzero value, program execution continues at the
breakpoint.

Macros attached to breakpoints can test program or user-defined variables
before determining whether execution should break or not (by returning zero
or nonzero values, respectively).

Macro control flow statements within a breakpoint macro can alter execution
flow in the target environment based on target or debugger variable values.
You can also include C expressions in macros. By using control flow
statements and C expressions in macros, you can patch your C programs.

Chapter 8: Using Macros and Command Files
Using Macros

232

Example The following example shows how return values can be used to conditionally
control a breakpoint. The example uses the Debugger Macro Add and
Breakpt Write commands to define a breakpoint that occurs only when the
target variable days becomes greater than 31.

Debugger Macro Add int daycheck()
{
 if (days > 31)
 return 0;
 else
 return 1;
}
.
Breakpt Write &days; daycheck()

When the break occurs, the macro is executed. If days is less than or equal to
31, program execution continues. If days is greater than 31, program execution
stops.

If you have the following macro definition:

Debugger Macro Add int break_when(stopfunction, min, max)
char *stopfunction;
int min;
int max;
{
 /* Debugger symbol @function is a char pointer to the name */
 /* of the current function. Compare the current function */
 /* with the function name passed, using the built-in macro */
 /* memcmp(). */

 if (!strcmp(@function,stopfunction))
 if ((global_var > min) && (global_var <max))
 {
 $Expression Printf "global_var: %d\n", global_var$;
 return 0;
 }

 /* Not in specified function, return 1 so that program will */
 /* continue executing. */
 return 1;
}
.

the command:

Breakpt Write &global_var; break_when("foo", 256,512)

will set a write breakpoint on the global variable global_var. Whenever the
program writes to global_var, the macro break_when() is executed with the
parameters "foo", 256, and 512. The macro returns the value 1 until the value
of global_var falls between 256 and 512 because of a write to global_var in the
function foo(). The macro then returns 0, causing the program to halt.

Chapter 8: Using Macros and Command Files
Using Macros

233

To call a macro when stepping through programs

• Select Execution→Step→with Macro

Or:

• Using the command line, enter:

Program Step With_Macro

Enter the name of the macro to be called, and press the < Return> key.

You can use the Program Step With_Macro command to execute a macro
after the step occurs. Calling a macro in this manner is useful in tracking
down subtle bugs.

Example If the function foo() was corrupting automatic variables index and ch on the
stack, the following macro and commands could be used to identify the line
where the corruption was occurring:

Debugger Macro Add void auto_check()
{
 if ((index < 0 || index > 80) || (ch < 32 || ch > 126))
 {
 $Window Screen_On High_Level$;
 $Expression Printf "Autos corrupted!!!\n"$;
 $Expression Printf "index: %d ch: %c\n", index, ch$;
 }
}
.

Program Run Until foo

Program Step With_Macro auto_check()

Chapter 8: Using Macros and Command Files
Using Macros

234

To stop a macro

• Press < Ctrl> -C .

Macros can be halted during execution by pressing < Ctrl> -C .

Caution < Ctrl> -C will stop execution of a macro. Pressing < Ctrl> -C may interrupt a
code-patching macro before it completes execution. If this occurs, you cannot
restart program execution within the macro where it stopped.

To display macro source code

• Choose Edit in the Macro Operations dialog box.

Or:

• Using the command line, enter:

Debugger Macro Display <macro_name>

Enter the name of the macro you want to display, and press the < Return>
key.

This command will write the macro source to the journal window. If you want
to write the macro source to a user-defined window or to a file, you can specify
an optional user window number as the destination.

Example To write the source for macro auto_check() to user window 51:

Debugger Macro Display auto_check() ,51

Chapter 8: Using Macros and Command Files
Using Macros

235

To delete a macro

• Using the command line, enter:

Symbol Remove <macro_name>

Enter the name of the macro you want to delete, and press the < Return> key.

Use the Breakpt Delete command to remove the breakpoint that called the
macro.

Chapter 8: Using Macros and Command Files
Using Macros

236

Using Command Files

A command file is an ASCII file containing debugger commands.

You can create command files from within the interface by logging commands
to a command file as you execute the commands, or you can create or modify
command files outside the interface with an ASCII text editor.

The debugger can read a command file and execute the commands found there
as if they were entered directly into the interface command line.

Command files can also call other command files and the interface will execute
the called file like a subroutine of the calling file.

This section shows you how to:

• Record commands.

• Place comments in a command file.

• Pause the debugger.

• Stop command recording.

• Run a command file.

• Set command file error handling.

• Append commands to a command file.

• Record commands and results to a journal file.

• Stop recording commands and results to a journal file.

• Open a file or device for read or write access.

• Close the file associated with a window number.

• Use the debugger in batch mode.

Chapter 8: Using Macros and Command Files
Using Command Files

237

To record commands

• Use the -l command_file option to the db68k or db68030 command when
starting the debugger. (The debugger appends the file extension .com to
command_file.)

$ db68k -e <emulator_id> -l <command_file> <RETURN>

Or:

• Select File→Log→Record Commands. Using the file selection dialog bog,
enter the name of the file to which the commands will be saved, and click on
the OK pushbutton.

Or:

• Using the command line, enter:

File Log On

Enter the name of the file to which commands will be saved, and press the
< Return> key.

All commands, whether they are entered from the menus or the command
line, are recorded to the log file. If a command causes an error, both the
command and the error code are recorded as comments.

Example To start logging commands to file “cmdfile1.com”:

File Log On cmdfile1

Chapter 8: Using Macros and Command Files
Using Command Files

238

To place comments in a command file

• Using the command line, enter:

File Log Comment

Enter the comment that should be placed in the command file, and press the
< Return> key.

In the command file, the comment is prefixed with a semicolon (;).

When editing command files, you can also use C-style comments (introduced
by the characters /* and terminated with the characters */).

Example To place the comment “Place this comment in a command file.” in the
command file:

File Log Comment Place this comment in the command file.

To pause the debugger

• Using the command line, enter:

Debugger Pause

And press the < Return> key.

The debugger is paused until you enter the spacebar.

You can also specify that the debugger pause for a number of seconds by using
the Debugger Pause Time command.

The Debugger Pause commands are useful when executing command files.

Chapter 8: Using Macros and Command Files
Using Command Files

239

To stop command recording

• Select File→Log→Stop Command Recording.

Or:

• Using the command line, enter:

File Log o FF

And press the < Return> key.

The command file is closed.

To run a command file

• Use the -c command_file option to the db68k command when starting the
debugger. (The command_file must end with the .com extension.)

$ db68k -e <emulator_id> -c <command_file> <RETURN>

Or:

• Select File→Log→Playback. Using the file selection dialog box, enter the name
of the command file, and click on the OK pushbutton.

Or:

• Using the command line, enter:

File Command

Enter the name of the command file from which debugger commands will be
executed, and press the < Return> key.

Chapter 8: Using Macros and Command Files
Using Command Files

240

The debugger will begin executing commands found in the command file as if
those commands were entered directly into the interface. The debugger will
continue to execute commands until it reaches the end of the file or, perhaps,
until an error occurs, depending on the command file error handling mode
(see “To set command file error handling”).

To interrupt playback of a command file, press the < Ctrl> -c key combination.
(If the graphical interface is being used, the mouse pointer must be within the
interface window.)

Example To start executing command from the file “cmdfile1.com”:

File Command cmdfile1

To set command file error handling

• Using the command line, enter:

File Error_Command <Handling_Mode>

Select either Abort_Read, Continue_Read, or Quit_Debugger error handling
mode, and press the < Return> key.

When an error occurs while executing a command file:

Abort_Read causes the debugger to stop reading the command file.

Continue_Read causes the debugger to continue executing the command file
with the next command.

Quit_Debugger causes the debugger session to end.

Chapter 8: Using Macros and Command Files
Using Command Files

241

To append commands to an existing command file

• Using the command line, enter:

File Log Append

Enter the name of the file to which commands will be appended, and press the
< Return> key.

Example To append command to the file “cmdfile1.com”:

File Log Append cmdfile1

To record commands and results in a journal file

• Use the -j journal_file option to the db68k command when starting the
debugger. (The debugger appends the file extension .jou to journal_file.)

$ db68k -e <emulator_id> -j <journal_file> <RETURN>

Or:

• Select File→Log→Record Journal. Enter the name of the file to which the
commands and results will be saved, and click on the OK pushbutton.

Or:

• Using the command line, enter:

File Journal On

Enter the name of the file to which commands and results will be saved, and
press the < Return> key.

Chapter 8: Using Macros and Command Files
Using Command Files

242

Journal files are similar to command files. They contain debugger commands
entered during a debug session. Journal files also contain any output
generated by debugger commands. Journal files contain everything that is
written to the journal window during a debug session.

Example To start recording commands and results to file “journal1.jou”:

File Journal On journal1

To stop command and result recording to a
journal file

• Select File→Log→Stop Journal Recording.

Or:

• Using the command line, enter:

File Journal o FF

And press the < Return> key.

To open a file or device for read or write access

• Using the command line, enter:

File User_Fopen

Select the open option, window number, and file name; then, press the
< Return> key.

Chapter 8: Using Macros and Command Files
Using Command Files

243

After opening a file using the File User_Fopen Append or File User_Fopen
Create command, you can use the Expression Fprintf command to write
information to the file. Files opened for reading may be read from the built-in
macro fgetc(). See the "Predefined Macros" chapter of this manual for a
complete description of this macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

Example To open user window 57 and redirect any data written to window 57 to the file
’varTrace.out’:

File User_Fopen Create 57 File varTrace.out

To close the file associated with a window number

• Using the command line, enter:

File Window_Close

Enter the window number associated with the file when it was opened, and
press the < Return> key.

Example To close the file associated with user window number 57:

File Window_Close 57

Chapter 8: Using Macros and Command Files
Using Command Files

244

To use the debugger in batch mode

• Use the -b and -c command_file options to the db68k command when starting
the debugger.

When using the debugger in batch mode, stdin, stdout, and stderr are disabled.
The -b option must be accompanied by the -c option and a debugger command
file. All commands are read from the command file. No user interaction with
the debugger is allowed. In batch mode, the debugger can be executed as a
background process. This mode is commonly used for automatic testing.

Example
$ db68k -b -e <emulator> -c <command_file>

Chapter 8: Using Macros and Command Files
Using Command Files

245

Chapter 8: Using Macros and Command Files
Using Command Files

246

9

Configuring the Debugger

How to change the appearance and behavior of the debugger.

Chapter 9: Configuring the Debugger

247

Configuring the debugger

These tasks are grouped into the following sections:

• Setting the general debugger options.

• Setting the symbolics options.

• Setting the display options.

• Modifying display area windows.

• Saving and loading the debugger configuration.

• Setting X resources.

Some options can be set using either the Debugger Options dialog box or the
command line. Other options can be set only using the command line.

Chapter 9: Configuring the Debugger

248

Setting the General Debugger Options

This section describes how to:

• Display the Debugger Options dialog box.

• List the debugger options settings.

• Change debugger options settings.

To display the Debugger Options dialog box

• Select Settings→Debugger Options from the menu bar.

You can change settings in the Debugger Options dialog box by clicking on
the appropriate buttons.

To list the debugger options settings

• Select Settings→Debugger Options ...

Or:

• Using the command line, enter:

Debugger Option List

And press the < Return> key.

The following information is displayed:

> Debugger Option List
 Processor = 68EC030
 Intermixed = On
 Assem_Symbols = On

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

249

 Step_Speed = 0
 Radix = Decimal_Input, Decimal_Output
 Stdio_Window = Swap
 Check_Args = oFF
 Align_Bp = oFF
 Breakpt_Window = Swap
 More = On
 Highlight = Inverse
 Frame_Stop = oFF
 Command_Echo = oFF
 View_Window = Swap
 Demand_Load = oFF
 Amt_Scroll = 1
 Trace_Counts = Nothing
 Fetch_Align = Long

To specify whether command file commands are
echoed to the Journal window

• Using the command line, enter:

Debugger Option Command_Echo

Select On or oFF, and press the < Return> key.

On Command file commands are echoed to the Journal window.

oFF Command file commands are not echoed to the Journal
window.

To set automatic alignment for breakpoints and
disassembly

• In the Debugger Options dialog box, click on the Align Breakpoints button to
toggle alignment.

Or:

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

250

• Using the command line, enter:

Debugger Option General Align_Bp

Select On or oFF, and press the < Return> key.

On Debugger automatically aligns breakpoints or locations to
be displayed in mnemonic format to the beginning of
instructions.

oFF Breakpoints are not automatically aligned.

To set backtrace display of bad stack frames

• In the Debugger Options dialog box, click on the Frame Stop button to toggle
display of bad stack frames.

Or:

• Using the command line, enter:

Debugger Option General Frame_Stop

Select On or oFF, and press the < Return> key.

On Only consecutive valid stack frames are displayed.

oFF All stack frames, including bad frames, are displayed.

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

251

To specify demand loading of symbols

• Using the command line, enter:

Debugger Option General Demand_Load

Select On or oFF, and press the < Return> key.

On Symbol information is loaded on an as-needed basis.

oFF All symbol information is loaded.

To select the interpretation of numeric literals
(decimal/hexadecimal)

• In the Debugger Options dialog box, hold the command select mouse button
down on the button for "Input Radix" or "Output Radix". Release the button
to select "Decimal" or "Hex".

Or:

• Using the command line, enter:

Debugger Option General Radix

Select Decimal or Hex, and press the < Return> key.

If you select Hex, any number you want interpreted as decimal must be
terminated with a T (for example, specify 32 as 32T).

Binary numbers are not available when you select Hex.

Floating point and enumeration type values are not affected.

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

252

To specify step speed

• Using the command line, enter:

Debugger Option General Step_Speed <numb 0..100>

Enter the step speed number (from 0 to 100), and press the < Return> key.

Higher numbers represent slower speeds.

Chapter 9: Configuring the Debugger
Setting the General Debugger Options

253

Setting the Symbolics Options

This section shows you how to:

• Display symbols in assembly code.

• Display intermixed C source and assembly code.

• Enable parameter checking in commands and macros.

To display symbols in assembly code

• In the Debugger Options dialog box, click on the Assembly Symbols button to
toggle assembly symbol display.

Or:

• Using the command line, enter:

Debugger Option Symbolics Assem_symbols

Select On or oFF, and press the < Return> key.

On Symbols are displayed instead of addresses wherever
possible.

oFF Addresses are displayed.

Chapter 9: Configuring the Debugger
Setting the Symbolics Options

254

To display intermixed C source and assembly
code

• In the Debugger Options dialog box, click on the Intermixed Source/Assembly
button to toggle source display.

Or:

• Using the command line, enter:

Debugger Option Symbolics I ntermixed

Select On or oFF, and press the < Return> key.

On Assembly code is intermixed with C source code.

oFF Only C source code is displayed.

To enable parameter checking in commands and
macros

• In the Debugger Options dialog box, click on the Check Parameters button to
toggle parameter checking.

Or:

• Using the command line, enter:

Debugger Option Symbolics Check_Args

Select On or oFF, and press the < Return> key.

Chapter 9: Configuring the Debugger
Setting the Symbolics Options

255

On When an assignment is made, the debugger warns you if the
assignment contains a C type mismatch.

oFF The debugger does not perform any argument checking.

Chapter 9: Configuring the Debugger
Setting the Symbolics Options

256

Setting the Display Options

This section shows you how to:

• Specify the Breakpoint window display behavior.

• Specify the View window display behavior.

• Display half-bright or inverse video highlights.

• Display information a screen at a time (more).

• Specify the standard I/O window display behavior.

• Specify scroll amount.

To specify the Breakpoint window display
behavior

• In the Debugger Options dialog box, hold the command select mouse button
down on the Breakpoint Window button. Release the button to select On or
Swap.

Or:

• Using the command line, enter:

Debugger Option View Breakpt_Window

Select On or Swap, and press the < Return> key.

On The Breakpoint window is displayed at all times.

Swap The Breakpoint window is only displayed when you set or
delete a breakpoint or when you display breakpoints.

Chapter 9: Configuring the Debugger
Setting the Display Options

257

To specify the View window display behavior

• In the Debugger Options dialog box, hold the command select mouse button
down on the View Window button. Release the button to select On or Swap.

Or:

• Using the command line, enter:

Debugger Option View View_Window

Select On or Swap, and press the < Return> key.

On The View window is displayed at all times.

Swap The View window is only displayed when you activate the
View window or when you enter the Debugger Execution
Display_Status command breakpoints.

To specify the standard I/O window display
behavior

• In the Debugger Options dialog box, hold the command select mouse button
down on the Stdio Window button. Release the button to select On or Swap.

Or:

• Using the command line, enter:

Debugger Option View Stdio_Window

Select On, oFF, or Swap; then, press the < Return> key.

On The Stdio window is displayed at all times.

Chapter 9: Configuring the Debugger
Setting the Display Options

258

oFF The Stdio window is only displayed when function key F6 is
pressed or when the Window Screen_On Stdio command is
entered.

Swap The Stdio window is displayed when a program writes to it
and removed when the program returns to the command
mode.

To display half-bright or inverse video highlights

• In the Debugger Options dialog box, hold the command select mouse button
down on the Highlighting button. Release the button to select Inverse or Half
Bright.

Or:

• Using the command line, enter:

Debugger Option View Highlight

Select Half_Bright or Inverse, and press the < Return> key.

To display information a screen at a time (more)

• In the Debugger Options dialog box, hold the command select mouse button
down on the More List Mode button. Release the button to select On or Off.

Or:

Chapter 9: Configuring the Debugger
Setting the Display Options

259

• Using the command line, enter:

Debugger Option View More

Select On or oFF, and press the < Return> key.

On Information is listed one screen at a time.

oFF Information is listed all at once.

To specify scroll amount

• Using the command line, enter:

Debugger Option View Amt_Scroll <numb 0..50>

Enter the number of lines for information to be scrolled (from 0 to 50), and
press the < Return> key.

To store timing information when tracing

• In the Debugger Options dialog box, select a Trace Counts option.

Or:

• Using the command line, enter:

Debugger Option Trace Count

Select Time or Nothing and press < Return> .

Chapter 9: Configuring the Debugger
Setting the Display Options

260

Time Use half of trace memory to store timing information.

Nothing Use all of trace memory to store bus states.

To mask fetches while tracing

• In the Debugger Options dialog box, select a Fetch Mask option.

Or:

• Using the command line, enter:

Debugger Option Trace Fetch_Align

Select Byte, Word, or Long and press < Return> .

Fetch addresses will be masked so that all fetches on the selected boundary
size can trigger traces.

Chapter 9: Configuring the Debugger
Setting the Display Options

261

Modifying Display Area Windows

You can reformat display-area screens by modifying their windows. For
example, you can reformat the high-level screen by resizing and moving the
high-level Code, Monitor, Backtrace, Journal, and Breakpoint windows. You
can also resize and move the alternate view of these windows.

This section shows you how to:

• Resize or move the active window.

• Move the Status window.

• Define user screens and windows.

• Display user-defined screens.

• Erase standard I/O and user-defined window contents.

• Remove user-defined screens and windows.

To resize or move the active window

1 Using the command line, enter:

Window Resize

And press the < Return> key.

2 Type T to position the top-left corner, B to position the lower-right corner, or
M to move the window without resizing it; then, use the cursor keys to move
the window or window border. When the window is at the desired location,
press the < Return> key to save the new coordinates.

If you make a mistake while resizing the window, press CTRL C or press Esc
twice to restore the previous coordinates.

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

262

The Window Resize command is used to move or alter the size of any existing
window, except for the Status window. Use the Window New command to
move the Status window.

When you use the Window Resize command on the normal view of a window,
the normal dimensions are modified. When you use the command on the
alternate view of a window, the alternate dimensions are modified.

You can enter resize commands when any screen is displayed. However, the
debugger does not display commands on the standard I/O screen or on any
user-defined screen.

To move the Status window

The Status window cannot be moved in the graphical interface.

1 Using the command line in the standard interface, enter:

Window New

Specify window number 5 to move the high-level Status window (or window
number 15 to move the assembly level Status window), select Tab followed by
High_Level (or Assembly), enter the new coordinates for the Status window,
and press the < Return> key.

The Status window cannot be resized. The difference between the bottom row
coordinate and top row coordinate must be 3.

A high-level program must be loaded in order to move the high-level status
screen.

Be sure to move any windows that occupy the screen area to which you are
moving the Status window. Otherwise, the Status window will be hidden
behind these windows.

Examples To move the high-level Status window to the top of the display (upper left
corner at 0,0 and lower right corner at 3,78):

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

263

Window New 5 <tab> High_Level 0,0,3,78

To move the assembly-level Status window to the bottom of the display:

Window New 15 <tab> Assembly 19,0,22,78

To define user screens and windows

• Using the command line, enter:

Window New

Enter the window and screen parameters, and press the < Return> key.

The debugger lets you define your own screens and windows so that you have
flexibility in displaying debugger information.

User-defined windows must be assigned a number greater than or equal to 50,
and less than or equal to 256. Numbers below 50 are reserved for predefined
debugger screens and windows.

When you make a new window with the Window New command, the normal
view and alternate view dimensions are set identically. The debugger allocates
a buffer with enough memory to contain the entire window. Therefore, the
window with the largest dimensions (normally the alternate view) should be
defined first to allocate sufficient memory.

To display a user-defined screen, use the Window Screen_On command or
press function key F6.

Caution When making a new window on the high-level or assembly-level screens, be
careful not to enter coordinates that will result in a window that covers the
status line and command line. On a standard 80-column terminal display, a
row coordinate may be between 0 and 23. Creating a window with a bottom
row coordinate greater than 18 will cause part or all of the status and
command lines to be covered.

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

264

Examples To make a user window numbered 57 in user screen 4 with the upper-left
corner of the window at coordinates 5,5 and the lower-right corner of the
window at coordinates 18,78:

Window New 57 <tab> User_Screen 4 <tab> Bounds 5,5,18,78

If user screen 4 does not exists, the debugger automatically creates it.

To display user-defined screens

• Using the command line, enter:

Window Screen_On User_Screen <screen_nmbr>

Enter the user screen number, and press the < Return> key.

Examples To display user screen 4:

Window Screen_On User_Screen 4

To erase standard I/O and user-defined window
contents

• Using the command line, enter:

Window Erase <user_window_nmbr>

Enter the user window number (the standard I/O window number is 20) whose
contents you wish to clear, and press the < Return> key.

If you do not specify a window number or if you specify 0, the active
user-defined window is cleared. This command is useful in macros.

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

265

Examples To erase the contents of user window 57:

Window Erase 57

To remove user-defined screens and windows

• Using the command line, enter:

Window Delete <user_window_nmbr>

Enter the number of the window to be removed, and press the < Return> key.

To remove a user-defined screen, remove all windows associated with that
screen.

You cannot remove predefined debugger windows and screens.

Examples To remove a user-defined screen that has three windows (numbers 50, 55, and
73):

Window Delete 50

Window Delete 55

Window Delete 73

Chapter 9: Configuring the Debugger
Modifying Display Area Windows

266

Saving and Loading the Debugger Configuration

Information regarding debugger options and screen configurations can be
saved in a startup file. Startup files can be created only from within the
debugger.

This section shows you how to:

• Save the current debugger configuration.

• Load a startup file.

To save the current debugger configuration

• Use the menu select mouse button to choose File→Store→Startup (.rc) file
(as default). The information is saved in file “db68k.rc” (for 68020 debug
sessions) or file “db68030.rc” (for 68030 debug sessions) in the current
directory.

Or:

• Use the menu select mouse button to choose File→Store→Startup (.rc) file.
Using the file selection dialog box, enter the name of the file to which startup
information should be saved; then, click on the OK pushbutton.

Or:

• Using the command line, enter:

File Startup <startup_file>

Enter the name of the file in which the startup information should be saved,
and press the < Return> key. If you do not specify the name of the startup file,
the default value will be used.

This command also saves the window and screen settings.

Chapter 9: Configuring the Debugger
Saving and Loading the Debugger Configuration

267

When saving window and screen settings that have been customized for a
particular type of terminal, name the startup file the same as the TERM
environment variable setting. If no startup file is loaded when starting the
debugger, the debugger will automatically search for startup files named
“./$TERM.rc” (in the current directory) or “$HOME/.$TERM.rc” (in the
home directory). files.

Examples To save the current debugger state in a file called “my_state.rc”:

File Startup my_state

To save, in you home directory, window and screen settings that have been
customized for the 2392, 2392a, 2392A, hp2392, hp2392a, or hp2392A
terminal types:

File Startup ~/.2392

To load a startup file

• Use the -s startup_file option to the db68k command when starting the
debugger.

$ db68k -e <emulator_id> -s <startup_file> <RETURN>

The debugger’s startup options and window specifications are configured as
described in startup_file.

The startup_file must end with the .rc extension and can be created only from
within the debugger.

If no startup file is named, the following files are searched for in order. The
first one that exists will be used ($HOME and $TERM are UNIX
environment variables).

db68k.rc (for 68020 debug sessions) or file db68030.rc (for 68030
debug sessions) in the current directory
./$TERM.rc in the current directory
$HOME/.$TERM.rc

Chapter 9: Configuring the Debugger
Saving and Loading the Debugger Configuration

268

If no startup file is found, reasonable defaults will be used.

Examples To start the debugger and load the state saved in the startup file “my_state.rc”:

$ db68k -e emul68k -s my_state.rc <RETURN>

Chapter 9: Configuring the Debugger
Saving and Loading the Debugger Configuration

269

Setting X Resources

The debugger’s graphical interface is an X Window System application which
means it is a client in the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

An X resource controls an element of appearance or behavior in an X
application. For example, in the graphical interface, one resource controls the
text in action key pushbuttons as well as the action performed when the
pushbutton is clicked.

By modifying resource settings, you can change the appearance or behavior of
certain elements in the graphical interface.

When the graphical interface starts up, it reads resource specifications from a
set of configuration files. Resources specifications in later files override those
in earlier files. Files are read in the following order:

1 The application defaults file. For example,
/usr/lib/X11/app-defaults/HP64_Debug in HP-UX or
/usr/openwin/lib/X11/app-defaults/HP64_Debug in SunOS.

2 The $XAPPLRESDIR/HP64_Debug file. (The XAPPLRESDIR
environment variable defines a directory containing system-wide custom
application defaults.)

3 The server’s RESOURCE_MANAGER property. (The xrdb command
loads user-defined resource specifications into the
RESOURCE_MANAGER property.)

If no RESOURCE_MANAGER property exists, user defined resource
settings are read from the $HOME/.Xdefaults file.

4 The file named by the XENVIRONMENT environment variable.

If the XENVIRONMENT variable is not set, the $HOME/.Xdefaults-host
file (typically containing resource specifications for a specific remote host)
is read.

Chapter 9: Configuring the Debugger
Setting X Resources

270

5 Resource specifications included in the command line with the -xrm
option.

6 System scheme files in directory /usr/hp64000/lib/X11/HP64_schemes.

7 System-wide custom scheme files located in directory
$XAPPLRESDIR/HP64_schemes.

8 User-defined scheme files located in directory $HOME/.HP64_schemes
(note the dot in the directory name).

Scheme files group resource specifications for different displays, computing
environments, and languages.

This section shows you how to:

• Modify the debugger’s graphical interface resources.

• Use customized scheme files.

• Set up custom action keys.

• Set initial recall buffer values.

• Set up demos or tutorials.

Refer to the “X Resources and the Graphical Interface” chapter for more
detailed information.

Chapter 9: Configuring the Debugger
Setting X Resources

271

To modify the debugger’s graphical interface
resources

You can customize the appearance of an X Windows application by modifying
its X resources. The following tables describe some of the commonly modified
application resources.

Application Resources for Schemes

Resource Values Description

HP64_Debug.platformScheme HP-UX
SunOS
(custom)

Names the subdirectory for platform
specific schemes. This resource should be
set to the platform on which the X server
is running (and displaying the debugger’s
graphical interface) if it is different than
the platform where the application is
running.

HP64_Debug.colorScheme BW
Color
(custom)

Names the color scheme file.

HP64_Debug.sizeScheme Small
Large
(custom)

Names the size scheme file which defines
the fonts and the spacing used.

HP64_Debug.labelScheme Label
$LANG
(custom)

Names to use for labels and button text.
The default uses the $LANG
environment variable if it is set and if a
scheme file named Debug.$LANG exists
in one of the directories searched for
scheme files; otherwise, the default is
Label.

HP64_Debug.inputScheme Input
(custom)

Specifies mouse and keyboard operation.

Chapter 9: Configuring the Debugger
Setting X Resources

272

Commonly Modified Application Resources

Resource Values Description

HP64_Debug.enableCmdline True
False

Specifies whether the command line area
is displayed when you initially enter the
debugger’s graphical interface.

*editFile (example)
vi %s

Specifies the command used to edit files.

*editFileLine (example)
vi + %d %s

Specifies the command used to edit a file
at a certain line number.

*< proc> *actionKeysSub.keyDefs (paired list
of strings)

Specifies the text that should appear on
the action key pushbuttons and the
commands that should be executed in the
command line area when the action key is
pushed. Refer to the “To set up custom
action keys” section for more information.

*< proc> *dirSelectSub.entries (list of
strings)

Specifies the initial values that are placed
in the File→Context→Directory pop-up
recall buffer. Refer to the “To set initial
recall buffer values” section for more
information.

*< proc> *recallEntrySub.entries (list of
strings)

Specifies the initial values that are placed
in the entry buffer (labeled “():”). Refer
to the “To set initial recall buffer values”
section for more information.

Chapter 9: Configuring the Debugger
Setting X Resources

273

The following steps show you how to modify the debugger’s graphical
interface’s X resources.

1 Copy part or all of the HP64_Debug application defaults file to a temporary
file.

The HP64_Debug file contains the default definitions for the graphical
interface application’s X resources.

For example, on an HP 9000 computer you can use the following command to
copy the complete HP64_Debug file to HP64_Debug.tmp (note that the
HP64_Debug file is several hundred lines long):

cp /usr/lib/X11/app-defaults/HP64_Debug HP64_Debug.tmp

NOTE: The HP64_Debug application defaults file is re-created each time
debugger’s graphical interface software is installed or updated. You can use
the UNIX diff command to check for differences between the new
HP64_Debug application defaults file and the old application defaults file that
is saved as /usr/hp64000/lib/X11/HP64_schemes/old/HP64_Debug.

2 Modify the temporary file.

Modify the resource that defines the behavior or appearance that you wish to
change.

For example, to change the number of lines in the main display area to 36:

vi HP64_Debug.tmp

Search for the string “HP64_Debug.lines”. You should see lines similar to the
following.

!--
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines
! and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

!HP64_Debug.lines: 24
!HP64_Debug.columns: 85

Edit the line containing “HP64_Debug.lines” so that it is uncommented and is
set to the new value:

!--
! The lines and columns set the vertical and horizontal dimensions of the
! main display area in characters, respectively. Minimum values are 18 lines

Chapter 9: Configuring the Debugger
Setting X Resources

274

! and 80 columns. These minimums are silently enforced.
!
! Note: The application cannot be resized by using the window manager.

HP64_Debug.lines: 36
!HP64_Debug.columns: 85

Save your changes and exit the editor.

3 If the RESOURCE_MANAGER property exists (as is the case with HP VUE
— if you’re not sure, you can check by entering the xrdb -query command), use
the xrdb command to add the resources to the RESOURCE_MANAGER
property. For example:

xrdb -merge -nocpp HP64_Debug.tmp

Otherwise, if the RESOURCE_MANAGER property does not exist, append
the temporary file to your $HOME/.Xdefaults file. For example:

cat HP64_Debug.tmp >> $HOME/.Xdefaults

4 Remove the temporary file.

5 Start or restart the debugger’s graphical interface.

After you have completed the above steps, you must either start, or restart by
exiting and starting again, the debugger’s graphical interface.

Chapter 9: Configuring the Debugger
Setting X Resources

275

To use customized scheme files

Scheme files are used to set platform specific resources that deal with color,
fonts and sizes, mouse and keyboard operation, and labels and titles. You can
create and use customized scheme files by following these steps.

1 Create the $HOME/.HP64_schemes/< platform> directory.

For example:

mkdir $HOME/.HP64_schemes
mkdir $HOME/.HP64_schemes/HP-UX

2 Copy the scheme file to be modified to the
$HOME/.HP64_schemes/< platform> directory.

Label scheme files are not platform specific; therefore, they should be placed
in the $HOME/.HP64_schemes directory. All other scheme files should be
placed in the $HOME/.HP64_schemes/< platform> directory.

For example:

cp /usr/hp64000/lib/X11/HP64_schemes/HP-UX/Debug.Color
 $HOME/.HP64_schemes/HP-UX/Debug.MyColor

Note that if your custom scheme file has the same name as the default scheme
file, the load order requires resources in the custom file to explicitly override
resources in the default file.

3 Modify the $HOME/.HP64_schemes/< platform> /Debug.< scheme> file.

For example, you could modify the
“$HOME/.HP64_schemes/HP-UX/Debug.MyColor” file to change the
defined foreground and background colors. Also, since the scheme file name
is different than the default, you could comment out various resource settings
to cause general foreground and background color definitions to apply to the
debugger’s graphical interface. At least one resource must be defined in your
color scheme file for it to be recognized.

Chapter 9: Configuring the Debugger
Setting X Resources

276

4 If your custom scheme file has a different name than the default, you must
modify the scheme resource definitions.

The debugger’s graphical interface application defaults file contains resources
that specify which scheme files are used. If your custom scheme files are
named differently than the default scheme files, you must modify these
resource settings so that your customized scheme files are used instead of the
default scheme files.

For example, to use the “$HOME/.HP64_schemes/HP-UX/Debug.MyColor”
color scheme file you would set the “HP64_Debug.colorScheme” resource to
“MyColor”:

HP64_Debug.colorScheme: MyColor

Refer to the previous “To customize debugger’s graphical interface resources”
section for more detailed information on modifying resources.

Chapter 9: Configuring the Debugger
Setting X Resources

277

To set up custom action keys

• Modify the “actionKeysSub.keyDefs” resource.

The “actionKeysSub.keyDefs” resource defines a list of paired strings. The
first string defines the text that should appear on the action key pushbutton.
The second string defines the command that should be sent to the command
line area and executed when the action key is pushed.

A pair of parentheses (with no spaces, that is “()”) can be used in the
command definition to indicate that text from the entry buffer should replace
the parentheses when the command is executed.

Action keys that use the entry buffer should always include the entry buffer
symbol, “()”, in the action key label as a visual cue to remind you to place
information in the entry buffer before clicking the action key.

Shell commands can be executed by using the Debugger Host_Shell command.

Also, command files can be executed by using the File Command command.

Finally, an empty action ("") means to repeat the previous operation, whether
it came from a pull-down, a dialog, a pop-up, or another action key.

Examples To set up custom action keys, modify the “debug*actionKeysSub.keyDefs”
resource:

debug*actionKeysSub.keyDefs: \
 "Init Demo" "F C initDemo" \
 "Make" "D H make demo" \
 "Load Pgm" "P L D ecs" \
 "Display Source" "W A H C" \
 "Run Until ()" "P R U ()" \
 "Step" "P S" \
 "Again" ""

Refer to the previous “To modify debugger’s graphical interface resources”
section for more detailed information on modifying resources.

Chapter 9: Configuring the Debugger
Setting X Resources

278

To set initial r ecall buffer values

• Modify the “entries” resource for the particular recall buffer.

Some of the resources for the pop-up recall buffers are listed in the following
table:

Pop-up Recall Buffer Resources

Recall Pop-up Resources

Entry Buffer (): *recallEntrySub.entries

File→Context→Directory ... *dirSelectSub.entries

Modify→Register; Recall Value *modRegDB*recallSub.entries

Command Line command recall *recallCmdSub.entries

Macro Operations dialog box; Recall
Value

*macroDB_popup*recallSub.entries

Other X resources for the recall buffers are described in the supplied
application defaults file.

The window manager resource “*transientDecoration” controls the borders
around dialog box windows. The most natural setting for this resource is
“title.”

Example To set the initial values for the directory selection dialog box, modify the
“debug*dirSelectSub.entries” resource:

debug*dirSelectSub.entries: \
 "$HOME" \
 ".." \
 "/users/project1" \
 "/users/project2/code"

Refer to the previous “To modify the debugger’s graphical interface
resources” section in this chapter for more detailed information on modifying
resources.

Chapter 9: Configuring the Debugger
Setting X Resources

279

To set up demos or tutorials

You can add demos or tutorials to the debugger’s graphical interface by
modifying the resources described in the following tables.

Demo Related Component Resources

Resource Value Description

*enableDemo False
True

Specifies whether Help→Demo
appears in the pull-down menu.

*demoPopupSub.indexFile ./Xdemo/Index-topics Specifies the file containing the
list of topic and file pairs.

*demoPopup.textColumns 30 Specifies the width, in characters,
of the demo topic list pop-up.

*demoPopup.listVisibleItemCount 10 Specifies the length, in lines, of
the demo topic list pop-up.

*demoTopic About demos Specifies the default topic in the
demo pop-up selection buffer.

Chapter 9: Configuring the Debugger
Setting X Resources

280

Tutorial Related Component Resources

Resource Value Description

*enableTutorial False
True

Specifies whether
Help→Tutorial appears in the
pull-down menu.

*tutorialPopupSub.indexFile ./Xtutorial/Index-topics Specifies the file containing
the list of topic and file pairs.

*tutorialPopup.textColumns 30 Specifies the width, in
characters, of the of the
tutorial topic list pop-up.

*tutorialPopup.listVisibleItemCount 10 Specifies the length, in lines,
of the tutorial topic list
pop-up.

*tutorialTopic About tutorials Specifies the default topic in
the tutorial pop-up selection
buffer.

The mechanism for providing demos and tutorials in the graphical interface is
identical. The following steps show you how to set up demos or tutorials in
the debugger’s graphical interface.

1 Create the demo or tutorial topic files and the associated command files.

Topic files are simply ASCII text files. You can use “\I” to produce inverse
video in the text, “\U” to produce underlining in the text, and “\N” to restore
normal text.

Command files are executed when the “Press to perform demo (or tutorial)”
button (in the topic pop-up dialog) is pushed. A command file must have the
same name as the topic file with “.cmd” appended. Also, a command file must
be in the same directory as the associated topic file.

Chapter 9: Configuring the Debugger
Setting X Resources

281

2 Create the demo or tutorial index file.

Each line in the index file contains first a quoted string that is the name of the
topic which appears in the index pop-up and second the name of the file that is
raised when the topic is selected. For example:

"About demos" /users/guest/gui_demos/general
"Loading programs" /users/guest/gui_demos/loadprog
"Running programs" /users/guest/gui_demos/runprog

You can use absolute paths (for example, /users/guest/topic1), paths relative to
the directory in which the interface was started (for example, mydir/topic2), or
paths relative to the product directory (for example, ./Xdemo/general where
the product directory is something like /usr/hp64000/inst/db68k/64748A).

3 Set the “*enableDemo” or “*enableTutorial” resource to “True”.

4 Define the demo index file by setting the “*demoPopupSub.indexFile” or
“*tutorialPopupSub.indexFile” resource.

For example:

*demoPopupSub.indexFile: /users/guest/gui_demos/index

You can use absolute paths (for example, /users/guest/Index), paths relative to
the directory in which the interface was started (for example, mydir/indexfile),
or paths relative to the product directory (for example, ./Xdemo/Index-topics
where the product directory is something like
/usr/hp64000/inst/db68k/64748A).

5 If you wish to define a default topic to be selected, set the “*demoTopic” or
“*tutorialTopic” resource to the topic string.

For example:

*demoTopic: "About demos"

Refer to the previous “To customize debugger’s graphical interface resources”
section for more detailed information on modifying resources.

Chapter 9: Configuring the Debugger
Setting X Resources

282

10

Configuring the Emulator

How to configure the emulator for your target system.

283

Each target system differs in the way it uses the processor, memory, and
memory mapped I/O devices. During system development, your needs for
emulator resources may change as your target system design matures. You can
allocate emulator resources using debugger commands. This resource
allocation is called the emulator configuration.

There are three ways to configure the emulator:

• Load a configuration file into the emulator.

• Change the configuration using the Emulator Configuration dialog box.

• Change the configuration using the Debugger Execution Environment
Modify_Config command from the command line.

The Emulation Configuration dialog box is available both in the
debugger/emulator graphical interface and in the emulator/analyzer graphical
interface.

284

To start the Emulator Configuration dialog box

• Select Modify→Emulator Config... in either the debugger/emulator or
emulator/analyzer graphical interface.

The Emulator Configuration main menu and an Emultor Configuration
window are displayed. The Emulator Configuration dialog box may be left
running while you are using the debugger.

Examples The Emulator Configuration main menu is shown below.

Clicking on one of
these lines selects a
particular
configuration section.

Clicking this button
presents the questions
for the selected
configuration section.

Clicking this button
stores the current
configuration.

Clicking this button
exits the Emulator
Configuration dialog
box.

Clicking this button
presents the on-line
help.

Chapter 10: Configuring the Emulator

285

To modify a configuration section

1 Start the emulator Emulator Configuration dialog box.

2 Click on a section name in the Emulator Configuration main menu, and click
the "Modify" pushbutton.

3 Use the command line in the Emulator Configuration window to answer the
configuration questions.

Each configuration section presents a window similar to the following.

The menu bar.

Configuration help
text display area.

Emulator status and
error message line.

Command line text
entry area.

Pushbutton softkeys.

Command control
and cursor control
pushbuttons.

Chapter 10: Configuring the Emulator

286

To answer a configuration question, click the softkey pushbutton that has your
answer. Or, click on the "Return" command pushbutton to accept the answer
that is shown.

When you answer a configuration question, you are normally presented with
the next question in the section; however, there are some cases when a
carriage return is required, and you can supply it by clicking the Return
command pushbutton or by pressing the < Return> key.

At the last question of a configuration section, you are asked if you wish to
return to the main menu. You can click the "next_sec" softkey pushbutton to
access the questions in the next configuration section.

To recall a configuration question, click the RECALL softkey pushbutton. If
you do this at the starting question of a configuration section, you are asked if
you want to return to the main menu.

In order for the emulator to recognize any configuration changes, the
configuration must be stored.

To store a configuration

• When answering the configuration questions, choose File→Store... from the
pull-down menu, and use the File Selection dialog box to name the
configuration file.

• From the Emulator Configuration dialog box main menu, click on the "Store"
button, and use the File Selection dialog box to name the configuration file.

The file to which the configuration is stored becomes the current
configuration file. The emulator only recognizes configuration changes when
they are stored or loaded.

When modifying a configuration, you can choose to store your answers at any
time.

For more information on how to use dialog boxes, refer to the "To use dialog
boxes" description in the "Entering Commands" chapter.

Chapter 10: Configuring the Emulator

287

To examine the emulator configuration

1 Select Modify→Emulator Config... to display the Emulator Configuration
dialog box.

2 Click on the configuration section you wish to examine.

3 Click on the Return button or press < Return> on your keyboard to page
through the configuration questions without changing their values.

4 At the end of the configuration section, click on yes to return to the Emulator
Configuration dialog box (main menu).

5 Click on Exit Window.

This procedure allows you to examine the emulator configuration without
changing it.

If you accidentally change one of the configuration items, don’t worry. As long
as you do not click on Apply to Emulator , any changes you make will not be
saved. Just click on Yes when the debugger asks "Your changes will be
lost—Exit configuration?"

To change the configuration directory context

• When answering the configuration questions, choose File→Directory... from
the pull-down menu, and use the Directory Selection dialog box to specify the
new directory.

The directory context specifies the directory to which configuration files are
stored and from which they are loaded.

The Emulator Configuration dialog box directory context is separate from the
debugger interface directory context. Changing one does not affect the other.

Chapter 10: Configuring the Emulator

288

To display the configuration context

• When answering the configuration questions, choose Display→Context... from
the pull-down menu.

The current directory context and the current configuration files are displayed
in a window. Click the Done pushbutton when you wish to close the window.

To access configuration help information

• When answering the configuration questions, choose Help→General Topic...
from the pull-down menu.

• From the Emulator Configuration dialog box main menu, click on the "Help"
button.

To exit the Emulator Configuration dialog box

• When answering the configuration questions, choose File→Exit... from the
pull-down menu (or type < CTRL> x), and click Yes in the confirmation
dialog box.

• From the Emulator Configuration dialog box main menu, click the Exit
button, and click Yes in the confirmation dialog box.

Any modifications made to the configuration which haven’t been stored are
lost. Choosing No from the confirmation dialog box cancels the exit and keeps
the emulator Emulator Configuration dialog box running.

Chapter 10: Configuring the Emulator

289

To load a configuration file

• Use the -C command line option when starting the debugger.

Or:

• Use a default configuration file.

Or:

• Select File→Load→Emulator Config.

Or:

• Using the command line, enter

Debugger Execution Environment Load_Config

The emulation configuration file contains configuration information for the
emulator. The debugger/emulator accepts files generated by the emulation
software or by an editor. The debugger uses the .EA suffixed file (ASCII
format) to load emulator configurations.

If you do not specify a configuration file (no -C option is given) and the
emulator is locked at startup, the configuration saved when you left the
emulator locked is used. No default configuration is loaded.

If you do not specify the -C option and the emulator is not locked, the
debugger searches for a default configuration file in the following sequence:

1 configuration file default.EA in the current directory.

2 configuration file default.EA in the $HOME directory.

3 configuration file /usr/hp64000/inst/emul/64748A/userconfig.EA or
/usr/hp64000/inst/emul/64747A/userconfig.EA.

4 configuration file /usr/hp64000/inst/emul/64748A/default.EA or
/usr/hp64000/inst/emul/64747A/default.EA provided with the emulator.

Chapter 10: Configuring the Emulator

290

Note Default configuration files are also supplied with the HP 64907/B1478
68030/EC030 C compiler and HP 64903/B1461 68020 C compiler. You should
copy the appropriate default configuration file for your memory configuration
into your directory and name it default.EA. These files are located in
directories:

/usr/hp64000/env/hp64748
/usr/hp64000/env/hp64747

The file userconfig.EA is not supplied with the debugger. This file name refers
to a configuration file that you may create and put in directory
/usr/hp64000/inst/emul/64748A or
/usr/hp64000/inst/emul/64747A .

Examples The following examples show a few ways to load a configuration file:

db68k -e test -C srwcfg.EA

Run the debugger using emulator "test" and configuration file
"srwcfg.EA"

db68k -e m68020

Run the debugger using emulator "m68020" and use the default
configuration file named "default.EA" in the current working
directory.

If "default.EA" does not exist in the current directory, the debugger
searches for a default configuration file in the sequence described
previously in this chapter, in the section titled "To Configure the
Emulator".

Debugger Execution Environment Load_Config "mycnfig"

Load the emulation configuration file "mycnfig.EA" (from within
the debugger).

Chapter 10: Configuring the Emulator

291

To create or modify a configuration file

• Use the Emulator Configuration dialog box to set up the configuration, then
save the configuration using File→Store→Emul Config.

Or:

• Change the configuration using the Debugger Execution Environment
Modify_Config command from the command line.

Or:

• Edit a configuration file using a text editor.

If you use a text editor to create a configuration file, be use to give the file a
name with the file extension .EA . The .EA file extension tells the debugger
that the file is an ASCII configuration file.

If an error occurs when loading a configuration
file

• Load a different configuration file.

Or:

1 Exit the debugger.

2 Modify the configuration file using a text editor.

3 Return to the debugger

Chapter 10: Configuring the Emulator

292

Caution If you reload a configuration using the Debugger Execution
Environment Load_Config command, the contents of memory will be
changed. Even if the new configuration memory map is identical to the old
memory map, you must reload the contents of memory.

See also
The Softkey Interface User’s Guide for your emulator
68020 C Cross Compiler Reference
68030 C Cross Compiler Reference

To store an emulator configuration

• Click on the Store button in the Emulator Configuration dialog box.

You may use any legal file name.

The configuration you have created will be saved in two files, each with the
name you specify, as follows:

• < filename> .EA is an ASCII version of the configuration file that is saved
when you modify the configuration. You can make changes to this file
outside the emulation environment by using a text editor.

• < filename> .EB is a binary version of the configuration file that is created
from the .EA file. It can be loaded quickly and is used when you start the
emulator or load a configuration. If you modify the .EA file using a text
editor, be sure to delete the .EB file with the same name so that it will be
re-created and include your changes.

Chapter 10: Configuring the Emulator

293

Emulator Configuration Items

Memory

The emulator must know how your target system memory resources are
allocated. You can use emulation memory for some memory ranges. This is
useful in the early stages of target system design.

In the MC68020 emulator, if your target system runs at more than 25 MHz,
emulation memory requires one wait state (except for the 4 Kbytes of
dual-port memory, which will run at 33 MHz without wait states).

In the MC68030/EC030 emulator, emulation memory always requires one wait
state for synchronous and burst modes. If your target system runs at more than
25 MHz, target memory accesses will also require one wait state for
synchronous and burst modes.

You can choose to interlock the emulation and target system DSACK signals
(and STERM for the MC68030/EC030) for emulation memory cycles and
monitor bus cycles (foreground monitor only on the MC68030/EC030). For
emulation memory, the interlock is enabled for only the blocks that require it.

Emulation Monitor

The emulation monitor is used to implement some emulator features. For
example, display or modification of emulation or target system memory is
done by the monitor. You can choose either a foreground or background
monitor, and the base address where the monitor resides. (See the book
Concepts of Emulation and Analysis that you received with your HP emulator
for more information on foreground and background monitors.)

If you’re using the MC68020 emulator with the background monitor, the
emulator makes the background cycles visible to the target system. These
cycles appear in a 4 Kbyte range that begins with the base address you set for
the monitor. The MC68030/EC030 emulator doesn’t make background cycles
visible to the target system. For these systems, you can set a “keep-alive
address” from which the background monitor will periodically read a byte
during monitor operation.

If you select a foreground monitor, you can choose a default foreground
monitor that is resident in the emulator, or you can design a custom

Chapter 10: Configuring the Emulator
Emulator Configuration Items

294

foreground monitor to support your special target system needs. You can also
specify the interrupt priority mask to use during foreground monitor
execution.

A foreground monitor must be used when the MMU of the 68030 is enabled.
If the background monitor selected when you attempt to enable the MMU, the
foreground monitor will be selected, by default. If you have the 68030
emulator/analyzer graphical interface, you may wish to read the "Using
MC68030 Memory Management" chapter in the 68020/030 Graphical User
Interface User’s Guide.

Break Conditions

Software and hardware breakpoints allow you to terminate your program and
start the monitor.

Software breakpoints use one of the BKPT instructions (BKPT 1..7). You can
choose—via configuration—which instruction is used. The BKPT 0 instruction
is not used by the emulator.

Other Configuration Items

The emulation configuration lets you set up the emulator to restrict your
target program to real-time runs; these ignore commands that temporarily
interrupt execution of your target program. This is important for systems that
require nonstop, real-time execution of the target program.

You can disable the processor cache memory. The emulation-bus analyzer
can’t trace instructions (or data) that are fetched from the cache. This can
make trace displays difficult to interpret. When you disable the cache, all
instructions and data are fetched from the processor buses, and therefore will
appear in the trace list.

You can block target system interrupts from the processor. This can help you
troubleshoot problems with spurious interrupts or allow you to delay testing
of interrupt service routines.

An Execution→Run→From Reset command usually causes the emulation
processor to fetch its stack pointer and program counter values from the reset
vector addresses. Under certain run conditions (such as an emulator reset,
followed by a break to monitor, followed by a run command), the emulation
processor can’t fetch its stack pointer and program counter values from the

Chapter 10: Configuring the Emulator
Emulator Configuration Items

295

reset vector addresses. In the emulation configuration questions, you will
specify the appropriate values for the stack pointer and program counter so
that they can be supplied by the emulator when they can’t be fetched from the
reset vector addresses.

To enter the monitor after configuration

You can allow the emulator to remain in the reset state after you complete the
configuration process, or you can have it begin executing in the monitor.

• In the "General Items" configuration section, answer the question:

Enter monitor after configuration?

yes means that the emulator will break to the monitor (from
reset) when you finish the configuration session. (This is the
default.)

no means that the emulator will r emain reset when you finish
the configuration session.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

296

To restrict to real-time runs

The emulator uses the emulation monitor program to implement some
features, such as register displays. When the emulation processor executes the
monitor, it is not executing your target system program. This may cause
problems in target systems that need real-time program execution
(uninterrupted execution of your target system program).

• Answer the question:

Restrict to real-time runs?

yes means the emulator will stop running your target system
program only with the reset, break, run, and step
commands. Other commands that require a break to
monitor will be ignored. Also, the Display→Memory
command will be ignored if the address argument requires
access to standard emulation memory (not dual-ported) or
target system memory.

no means all commands are accepted. The emulation monitor
may be entered at any point during execution of your target
system program to perform requirements of your
commands. This is the default.

CAUTION If your target system could be damaged because the emulator isn’t running
target system code continuously, answer yes to this configuration question.

This configuration item doesn’t affect hardware breakpoints, such as: break on
write to ROM, break on analyzer trigger, or break on access to guarded
memory. It also doesn’t affect the emulator’s response to software breakpoints.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

297

To enable the processor cache memory

The MC68020 processor has a cache that stores the most recently used
instructions. The MC68030/EC030 processor has an instruction cache like the
MC68020, and additionally has a cache for recently used data. When enabled,
processor caches increase processor performance.

The emulation-bus analyzer can’t trace transactions that are completed using
the processor’s internal cache. Without these transactions, the analyzer may
show confusing trace displays, or it may fail to trigger. This happens when the
code you are tracing is a small loop where all of the instructions and operands
fit within the cache(s) and the processor registers.

• For the MC68020 emulator, answer the question:

Enable the 68020 instruction cache?

• For the MC68030/EC030 emulator, answer the question:

Enable the 68030 instruction & data cache?

no means the processor will always access external memory for
instructions and data. The analyzer will be able to capture
all bus cycles; this will improve readability of the trace list.
Processor performance will be reduced.

yes means maximum processor performance will be obtained. If
you are making analyzer trace measurements, you may need
to experiment to find suitable trigger combinations.

The emulator uses the CDIS signal according to the answer you give to this
configuration question. If you answer no, the emulator asserts CDIS to disable
the cache(s). If you answer yes, the target system is allowed to use the CDIS
signal and the cache control register (CACR) enable bit to determine when
the cache(s) are enabled.

If you would like to enable the cache(s) during execution of most of your
target program, but disable them during accesses to a specific memory block,
you can use the ci memory map attribute (available only on the
MC68030/EC030 emulator). This allows you to trace state executions within a

Chapter 10: Configuring the Emulator
Emulator Configuration Items

298

specific memory range while obtaining maximum system performance in the
remaining memory ranges. See “To assign memory map terms” later in this
chapter.

To enable one wait state for emulation memory

In the MC68020 emulator, emulation memory doesn’t require any wait states
for clock speeds under 25 MHz. One wait state is needed when the clock speed
is above 25 MHz (except for the dual-port memory, which will run at 33 MHz
without wait states).

The MC68030/EC030 emulator always requires one wait state for synchronous
and burst memory accesses to emulation memory. When the clock speed is
above 25 MHz, the emulator must add a wait state for synchronous and burst
mode accesses to target system memory.

• Answer the question:

Is speed of external clock faster than 25 MHz?

yes for clock speeds above 25 MHz. (This is the default.) This
ensures that emulation memory has enough time to respond
to the memory access. Otherwise, emulator operation will
be erratic.

no for clock speeds below 25 MHz. Emulation memory
accesses will be made without adding wait states.

To change the memory configuration

Each target system allocates memory and I/O as needed by the application. As
the system design matures, memory locations and requirements may change.
The emulator has flexible memory resources that allow you to configure the
emulator to support your needs. For example, the initial target system design

Chapter 10: Configuring the Emulator
Emulator Configuration Items

299

may not support external memory, but after a change in the application
definition, more program code might be required, needing external memory.
While the design is being changed, you can develop your program using
emulation memory to simulate target system memory.

• Answer the question:

Modify memory configuration?

yes leads you into the memory, MMU (for MC68030), and
monitor configuration questions.

no skips to the “Modify the emulator pod configuration?”
configuration question. This is the default.

To enable the MC68030 Memory Management Unit

The MC68030 MMU can manage a program that occupies a large space in
logical (virtual) memory while running it from a much smaller space in
physical memory.

• Answer the question:

Enable the MMU?

yes lets the MMU of the MC68030 control placement of
the program in physical memory space. With a valid
entry in the translation control register, the target
system will be able to enable and disable the MMU
during program execution by using the /MMUDIS
signal.

no disables the MMU in the emulation processor. The
/MMUDIS signal from the target system will be
ignored. The STATUS line will identify your emulator
as MC68EC030 after the configuration modification is
complete.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

300

To select and configure the MC 68030 emulation
monitor

If you are using the MC68020 or MC68EC030 emulator, skip to the next step.
The emulation monitor is used to perform emulation functions, such as
display and modification of emulation and target system memory. You must
use a foreground monitor when the MMU is enabled, either the foreground
monitor supplied with the emulator, or a foreground monitor of your own
design.

Make sure the foreground monitor is mapped to memory address space that
has a 1:1 translation. You can define a 1:1 translation for the monitor address
space by modifying the content of the translation tables in the emulation
processor MMU. Refer to "Mapping The Foreground Monitor For Use With
The MC68030 MMU" at the end of this chapter for instructions on how to
modify the translation tables or transparent translation registers in the
MC68030 MMU.

• Answer the question:

Monitor type (with MMU enabled)?

foreground selects the default foreground monitor that is supplied
with your emulator.

user_foreground selects a custom foreground monitor.

To select and configure the emulation monitor

If you are using an MC68030 with the MMU enabled, skip to the next step.
The emulation monitor is used to perform emulation functions such as display
and modification of emulation or target system memory.

• Answer the question:

Monitor type?

Chapter 10: Configuring the Emulator
Emulator Configuration Items

301

background selects the background monitor.

foreground selects the default foreground monitor that is built-in to
the emulator.

user_foreground allows you to load a custom emulation monitor.

To set up specifications for the emulation monitor

The background monitor overlays processor address space and doesn’t use any
processor memory resources. It is the simplest monitor to use, and is
guaranteed to be compatible with the emulator. However, interrupts are
disabled (including level 7) when the emulator is running in background.
Some target system designs fail to operate properly under this condition.
With these target systems, you will need to use a foreground monitor.

When you select a foreground monitor, the emulator maps the 4 Kbyte block
of dual-port memory for the monitor. You can’t use any portion of the
dual-port address range for any other purpose. Doing so will destroy the
monitor.

There are two selections you can make when choosing a foreground monitor.
One is the foreground monitor that is resident in the emulator. If this
monitor doesn’t meet your needs, you can modify the monitor source code
(supplied with the emulator), and save it under a different name, such as
myforeground. To select it, you will choose the user_foreground monitor.
Within the next few questions, you will tell the emulator the name you
assigned to your user_foreground monitor.

If you have trouble with emulation monitor functions, you can reload the
monitor. Simply reset the emulation processor and then issue a new run or
break command. Either the default foreground, user_foreground, or
background monitor will be loaded when the processor transitions out of
emulator reset. The monitor that will be loaded will depend on the answer
you gave to the Monitor type question earlier.

Background and foreground monitors both use the trace exception vector
(located at offset 24 in the vector table) to implement the step command.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

302

More information on emulation monitors is given in the book Concepts of
Emulation and Analysis that you received with your HP emulator.

1 Reset Map question. If you changed the monitor type, you need to answer the
question:

Reset map (change of monitor type requires map reset)?

no to discard your monitor changes and return to the
configuration question on monitor type.

yes to keep your monitor changes. The memory map is reset.

When you change monitor types, the emulation processor is reset, and you
must reset the memory map. You will have to create a new memory map later
in the configuration process. If you choose not to reset the map, the interface
will return to the “Monitor type?” question to give you an opportunity to
review your choice or make a different choice.

2 Periodic Read question. If you choose a foreground monitor, skip to question
4. If you choose the background monitor for the MC68030/EC030 (with
MMU disabled), and you would like to have it read a byte from the target
system, periodically, answer the question:

Do you want periodic read accesses while in background
monitor?

yes proceeds to the next configuration question, which allows
you to specify the address to be read.

no disables periodic background monitor reads from the target
system.

The background monitor for the MC68030/EC030 can periodically read a byte
from the target system if your system requires this service. The
MC68030/EC030 emulator does not normally drive background monitor
cycles to the target system. Some target systems need background monitor
cycles. For example, your target system may have a watchdog timer that will
time out if a specific address isn’t read periodically. Other target systems may
have a block of dynamic RAM that needs to be refreshed at regular intervals.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

303

3 Read Specifier questions. If you answered yes to the periodic read question,
answer the next two questions:

Address for read cycles?

Enter a hexadecimal address from 0 to 0ffffffffH.

Function code for read cycles?

Select a function code from the softkeys.

Whenever it is executing, the background monitor will periodically read a byte
from the location you specify with your answer to the above two questions.

4 Monitor Filename question. If you selected the background monitor, skip to
question 6. If you selected the user_foregound monitor type, you need to
answer this question:

Monitor filename?

Specify the name of the absolute file containing your custom foreground
monitor code (such as, myforeground).

5 Interrupt Priority question. If you selected the foreground or
user_foreground monitor type, you need to answer the question:

Interrupt priority level for default foreground
monitor?

or

Interrupt priority level for user foreground monitor?

Enter a number from 0 to 7 in answer to the above question. Set the interrupt
priority level low enough to allow your target system to function correctly, yet
high enough to avoid excessive interrupt processing.

The emulator uses a level 7, non-maskable interrupt to interrupt the target
system and break into the monitor. When the foreground monitor is not
executing critical code (such as monitor entry and exit), the foreground
monitor will set the interrupt priority mask to the value given as an answer to

Chapter 10: Configuring the Emulator
Emulator Configuration Items

304

this question, or to the interrupt level that was in effect before monitor entry,
whichever is greater.

This configuration item is ignored if you choose the background monitor. You
can also block all target system interrupts.

Example Suppose your target system has a disk device driver that uses interrupt level 5,
and the service routine must be run to prevent target system damage. To allow
interrupts of higher priority than level 4 to be serviced during foreground
monitor execution, enter:

Modify memory configuration? yes
Monitor type? foreground
Reset map (change of monitor type requires map reset)?
yes
Interrupt priority level for default foreground
monitor? 4
. . .

6 Base Address question. If you’re using the MC68030/EC030 emulator with
the foreground or user_foreground monitor, or the MC68020 emulator with
any monitor type, you must set the base address where the monitor will be
loaded. Answer the question:

Monitor’s base address?

Enter a hexadecimal address on a 4 Kbyte boundary (XXXXX000h).

Background monitor

When you select the background monitor, the emulator uses overlay
memory to load the monitor. This overlay memory doesn’t use any
processor memory space. You might ask, "If the emulation monitor is in
background memory, why would I care about its base address?" In most
cases, you won’t care. The reason this question is offered when you are
using the background monitor with an MC68020 emulator is to solve the
following problem, if it occurs.

In the MC68020 emulator, the address, data and control strobes are driven
to the target system during background monitor operation. Background
write cycles appear as reads to the target system. These false target system

Chapter 10: Configuring the Emulator
Emulator Configuration Items

305

reads may cause unpredictable results to some I/O and target system
memory addresses. You can relocate the background monitor (using this
configuration item) so that these read cycles won’t occur in address space
occupied by I/O or other target system hardware. For example, if your
target system hardware occupies address space from 0H through 4FFFH,
you might answer this question with 5000H.

In the MC68030/EC030 emulator, this question is not asked for the
background monitor. Bus cycles aren’t driven to the target system by the
background monitor unless you requested them in the periodic read
question, earlier.

Foreground monitor

For both the MC68020 and MC68030/EC030 emulators, this
configuration item sets the base address where the monitor is loaded.
When you select a foreground monitor, the emulator loads the foreground
monitor into the 4 Kbyte block of dual-port emulation memory. It resets
the memory map, and creates a map term at the address you specified
when you answered the "Monitor’s base address?" question. You can’t
delete or alter this map term by using the map configuration commands.
Instead, you must change the monitor configuration by modifying your
answers to the monitor configuration questions.

If you did not change the monitor type but did change the monitor base
address, you need to answer the question:

Reset map (change of monitor type requires map reset)?

as described in the Reset Map question (1) of this procedure.

7 Interlocking Signals question. If you’re using the MC68030/EC030 emulator
with the foreground or user_foreground monitor, or the MC68020 emulator
with any monitor type, you can interlock emulator and target DSACKs for
monitor cycles.

For the MC68020 emulator, answer the question:

Enable the DSack Interlock?

For the MC68030/EC030 emulator, answer the question:

Enable signal interlocking on monitor accesses?

Chapter 10: Configuring the Emulator
Emulator Configuration Items

306

yes interlocks emulator and target system cycle termination
signals for monitor accesses.

no terminates monitor accesses with only the
emulator-generated cycle termination signals.

When you enable interlocking, emulation monitor cycles aren’t terminated
until the target system DSACK (DSACK or STERM for the
MC68030/EC030) is received. The emulator will also respond to BERR
signals from the target system. If you disable interlocking, emulator-generated
signals will terminate the cycle and the target system signals will be ignored.

This configuration item only applies to the map term defined for the monitor.
For other memory ranges, refer to "To assign memory map terms."

If you enable the interlock, and the monitor is in an address range where the
target system does not return DSACK (or STERM), the emulator will stop. If
this happens, use the Execution→Reset to Monitor command to reset the
processor. Then disable the interlock.

Remember that emulation monitor bus cycles are visible to the target system
(except when you are using the MC68030/EC030 with a background monitor).
If you disable the interlock, your target system may operate erratically if it is
not prepared for the emulation monitor bus cycles.

If you did not change the monitor type nor the monitor base address, but you
did change the answer to this interlocking signals question, you will need to
answer the question:

Reset map (change of monitor type requires map reset)?

as described in the Reset Map question (1) of this procedure.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

307

To assign memory map terms

The memory map should be on screen. You need to specify the location and
type of various memory regions used by your programs and your target system.
The emulator needs this information to:

• Orient buffers for data transactions with emulation memory and the target
system.

• Reserve emulation memory blocks.

• Identify the types of the memory blocks so that configuration items such
as write to ROM break will operate correctly.

The emulation memory configuration is presented as a memory mapping
screen. The emulator has seven available map terms.

• Assign memory to a specific address range by entering

< lower> [thru < upper>] < fcode> < memory_type> < attribute> .

Parameters in the above command are defined in the following pages.

< lower> , < upper> Specifies an address range aligned with 256-byte boundaries. If you omit the
< upper> address, a 256-byte block is allocated, starting at the lower address.

To specify an address beginning on a 256-byte boundary, enter an address
ending in 00. To specify an address ending on a 256-byte boundary, enter an
address ending in FFH.

Because of the way the emulation memory system is designed, the amount of
memory used by each map term corresponds to the nearest block size
available, not the amount specified by the address range. To help you to better
understand this, the next few paragraphs decribe the physical design of
emulator memory.

There is one 4 Kbyte block of dual-ported emulation memory on the emulator
probe. (Dual-ported means the emulation controller can access memory
locations without interfering with program execution). This block can be
mapped by specifying the dp attribute after the map address and memory type
specification. If you use a foreground monitor, it will be loaded into this space
and you won’t be able to map this memory for any other purpose.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

308

If you specify an address range less than 4K with the dp attribute, all 4K is
allocated because that is the minimum block size for that memory. If you
specify a block size less than 4K and the dual-port memory is unmapped, the
emulator will use that memory to more closely match the requested address
range to the block size.

In the MC68020 emulator, the dual-port memory does not require wait states,
even when you use the emulator at 33 MHz. The dual-port memory is 16 bits
wide.

In the MC68030/EC030 emulator, the dual-port memory runs at the same
speed as target system accesses. The dual-port memory in this emulator is 32
bits wide.

In addition to the 4K of dual-port memory, there are also two memory sockets
on the probe. This memory is not dual-ported; the monitor is used to read and
write the locations when you display or modify this memory. The bus width for
this memory is 32 bits. You can install 256-Kbyte or 1-Mbyte SRAM memory
modules in these sockets.

The following table lists the possible installation combinations of memory
modules. For each installation, the “Blocks Available” indicates the minimum
amount of memory that will be allocated if you specify a map term with that
block size or less. If you need to use emulation memory, you should examine
your target system design and install memory in the way that will maximize
block usage. (See the examples.)

Chapter 10: Configuring the Emulator
Emulator Configuration Items

309

Installation Memory slot 02 Memory slot 12 Blocks Available

1 256K 256K 4-64K, 2-128K

21 256K 1M 4-64K, 2-512K

3 1M 256K 4-256K, 2-128K

4 1M 1M 4-256K, 2-512K

5 256K Empty 4-64K

6 1M Empty 4-256K

7 Empty 256K 2-128K

8 Empty 1M 2-512K

1 Installation 2 is not recommended because it does not allocate blocks as well as installation 3.
2 If you look down at the component side of the probe with the cables leading towards you, memory
slot 0 is to your left and memory slot 1 is to your right. Illustrations in the 68020/030 Graphical User
Interface User’s Guide manual identify the locations of slot 0 and slot 1.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

310

< fcode> Specifies a function code space for the memory as follows:

< fcode> Description

program Program space

data Data space

user User space

supervisor Supervisor space

user program User program space

user data User data space

supervisor program Supervisor program space

supervisor data Supervisor data space

< memory_type> Specifies the location and type of memory. The choices are as follows:

Type value Memory Assigned

emulation ram Emulation RAM

emulation rom Emulation ROM

target ram Target System RAM

target rom Target System ROM

guarded Guarded memory

< attribute> Attributes control specific functionality on a term-by-term basis. Attributes
can be the following:

dp places this block in the special 4-Kbyte block of dual-ported
emulation memory on the probe. (Dual-ported memory can
be accessed by the host controller without the emulation
monitor program, which means that your program executes
uninterrupted during the access.)

dsi causes target system and emulation DSACKs to be
interlocked. (The MC68030/EC030 emulator also interlocks
the STERM signals when you choose dsi.)

ci asserts the CIIN line to the MC68030/EC030 for all
addresses in this memory block. This prevents caching of

Chapter 10: Configuring the Emulator
Emulator Configuration Items

311

accesses to this block. This attribute is available only on the
MC68030/EC030 emulator.

If you specify the dsi attribute, the emulator waits for both the emulation
memory data to become valid and the target system DSACK to be returned
before it terminates an emulation memory cycle. This makes the bus cycle
length identical to that of your target system, so that timing will be the same. If
your target system does not return DSACK in the address range mapped to
emulation memory, don’t use the dsi attribute because the system will stop to
wait for the target DSACK. (See “To Interlock Emulator and Target DSACKs
for Monitor Cycles” for more information.) For the MC68030/EC030
emulator, the target system STERM signal is also used for cycle termination if
you specify the dsi attribute.

If you don’t specify the dsi attribute when you map a memory block, the target
DSACK and BERR signals (and STERM for the MC68030/EC030) are
ignored on accesses to that block.

If you specify the ci attribute (MC68030/EC030 emulator only), the CIIN
(cache inhibit input) line is asserted for accesses to that memory block. This
prevents instructions or data from that memory block from being loaded into
the processor cache memory. If you need to disable caching for all memory
accesses, such as when you are tracing activity in all of the address ranges,
answer no to the question “Enable the 68030 instruction and data cache”.

The attributes that are valid with a given term depend on the emulator
(MC68020 or MC68030/EC030) and what kind of memory the term applies to
(emulation or target).

In addition to the base attributes, the interface defines some combinations of
attributes for you. The following two tables list the base and combination
attributes for the two emulators, and indicate the memory type for which each
attribute is valid.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

312

MC68020 (HP 64748)

Attribute Description Emulation
Memory

Target
Memory

dp Use dual-port memory. Yes1 No

dsi Interlock DSACKs Yes No

dp_dsi Use dual-port memory and
interlock DSACKs

Yes1 No

1. Only valid for the 4K dual-port memory.

MC68030/EC030 (HP 64747)

Attribute Description Emulation
Memory

Target
Memory

dp Use dual-port memory. Yes1 No

dsi Interlock DSACKs and STERM Yes No

ci Inhibit caching Yes Yes

dp_dsi Use dual-port memory and
interlock DSACKs and STERM

Yes1 No

dp_ci Use dual-port memory and inhibit
caching

Yes1 No

dsi_ci Interlock DSACKs and STERM
and inhibit caching

Yes No

dp_dsi_ci Use dual-port memory, interlock
DSACKs and STERM, and inhibit
caching

Yes1 No

1. Only valid for the 4K dual-port memory.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

313

• Assign the memory map default by entering default < type> .

where < type> may be one of:

guarded

target rom

target ram

The default map term tells the emulator how to treat all address ranges not
otherwise covered by existing memory map terms. You may want to know
when the processor accesses a nonexistent memory location during a program
run. Use the guarded map type to do this. The emulator will break to monitor
and display a message when a guarded memory access occurs.

• Delete a particular memory map term by entering delete < term# >
where < term# > is in the range 1-7.

or

Remove all memory map terms and reset the map by typing delete all .

If you want to add a term that overlaps an address range that is already
represented by an existing term, you must either redefine or delete the existing
term.

• End the mapping session by entering end.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

314

Example Suppose you’re using the emulator in-circuit, and there is a 12-byte I/O port at
1c000 hex in your target system. You have ROM in your target system from 0
through ffff hex. Also, you want to use the dual-port emulation memory at
20000 hex:

1c000h thru 1c0ffh target ram
0 thru 0ffffh target rom
20000h thru 20fffh emulation ram dp

Remember that when you use the background monitor, the dual-port (dp)
emulation memory is available for your target programs.

The relationship between memory ranges and the block sizes of memory is
easier to understand by looking at an example. Suppose you have Installation
1 from the table of installation combinations of memory modules earlier in
this chapter. Then you enter the following map commands:

0 thru 7fffh emulation ram
20000h thru 3f000h emulation ram
40000h thru 4ffffh emulation ram
50000h thru 500ffh emulation ram
default target ram

If you haven’t used the dual-port emulation RAM, the first map term that will
fit is assigned to that memory. In this example, that is the last term you defined
(the range from 50000..500ff). The entire 4 Kbyte block is reserved though you
specified only a 256-byte range. Two 64K blocks and one 128K block are used
from the other emulation memory, leaving two 64K blocks and one 128K
block. One of the 64K blocks is used for the first map term, but 32K of that
block is unused and unavailable. The third term uses the other 64K block. The
second term uses part of the 128K block, leaving the rest unavailable.

Mapper resolution is independent of block allocation. In the above example, if
you had default guarded and your program accessed 8000h, the emulator
would do a guarded memory break.

Combinations of regular emulation memory and dual-port emulation memory
may be confusing when you look at analysis displays. Assume you have
installation 3 from the table. Suppose you reset the map, and then mapped a
range covering 260 Kbytes:

0 thru 40fffh emulation ram

Chapter 10: Configuring the Emulator
Emulator Configuration Items

315

The emulator will allocate one 256K block from the SRAM memory modules
and will use the 4-Kbyte, dual-port memory for the rest of the range. Only one
mapper term is created (without the dp attribute). This combination of SRAM
and dual-port memory affects the MC68020 emulator differently from the way
it affects the MC68030/EC030 emulator. The MC68020 dual-port memory is
16-bits wide, which means you will see a change from 32-bit to 16-bit fetches as
the processor crosses the boundary between the two memory types. The
MC68030/EC030 dual-port memory is 32 bits wide, but you may still see a
speed difference for dual-port memory accesses by the MC68030/EC030.

You can use function codes when mapping memory. For example, you might
want to map separate ranges for user and supervisor function codes:

1000 thru 1fffh supervisor emulation ram
1000 thru 1fffh user emulation ram

Then, to load programs named supprog.x and userprog.x into the supervisor
and user memory spaces, you would use the commands:

load supprog fcode s
load userprog fcode u

To modify the emulator pod configuration

You can define the way the emulator interacts with the target system interface
by modifying the emulator pod configuration.

• Answer the question:

Modify emulator pod configuration?

yes to enter the series of emulator pod configuration questions.

no to bypass the emulator pod configuration questions and
skip to the debug/trace options. (This is the default.)

Chapter 10: Configuring the Emulator
Emulator Configuration Items

316

To disable target system interrupts

You may want to disable target system interrupts if your target system
interrupt logic doesn’t work correctly or isn’t finished. You may also want to
disable these interrupts if the service routines and vectors aren’t assigned. You
may want to enable the interrupts if you’re ready to test your interrupt
handling routines.

• Answer the question:

Respond to target system interrupts?

yes to allow target system interrupts to be received by the
processor. (This is the default.)

no to block target system interrupts from the emulation
processor.

Target system interrupts are always disabled during background monitor
execution. The foreground monitor also disables interrupts during certain
critical routines, such as monitor entry and exit.

You can enable interrupts during the remainder of foreground execution. See
the section on selecting and configuring the emulation monitor earlier in this
chapter.

To preset the interrupt stack pointer and Program
Counter

Normally, if you run the emulator from reset, the processor fetches the values
at offsets 0 and 4 from the vector table and loads these values into the
interrupt stack pointer and program counter registers. It then begins running
from the program counter address value. (To run from reset, select
Execution→Run→From Reset.)

Chapter 10: Configuring the Emulator
Emulator Configuration Items

317

There are cases where the interrupt stack pointer and program counter cannot
be fetched from the reset vector table. For example, if you reset the emulator,
break to the monitor, and then run the emulator, the stack pointer and
program counter values will not be read from the normal locations. Your
answers to the following two questions will allow the emulator to supply the
needed values for the stack pointer and program counter.

1 Answer the question:

Reset value for Interrupt Stack Pointer?

Enter a 32-bit hexadecimal address for the initial value of the ISP. This value
usually should correspond to the value loaded at offset 0 of your vector table.
The default value is 1H. Since this is an invalid value, you must change it to a
valid even address.

2 Answer the question:

Reset value for Program Counter?

Enter a 32-bit hexadecimal address for the initial value of the PC. This value
usually should correspond to the value loaded at offset 4 of your vector table.
The default value is 0ffffffff hex, which is invalid. You must change it to a valid
even address.

This configuration item is provided as a convenience. You can accomplish the
same thing by using modifying registers to set the PC and ISP values while in
the monitor.

Example Assume that the memory range f00 thru fff is mapped as emulation ram and
reserved as stack space in your design. To set the interrupt stack pointer to f40
hex and the initial program counter to 400h, answer the questions as follows:

Reset value for Interrupt Stack Pointer? 0f40h
Reset value for Program Counter? 0400h

Chapter 10: Configuring the Emulator
Emulator Configuration Items

318

To set the target memory access size

When you display or modify target system memory or emulation memory that
is not dual-port, the emulator makes the MC68020 or MC68030/EC030
processor execute the monitor to read or write target memory locations. The
access mode determines whether the emulator uses byte, word, or long word
instructions for the memory accesses.

• Answer the question:

User memory access size?

bytes to have the monitor use byte data type for accesses to target
memory.

words to have the monitor use word data type for accesses to
target memory.

longs to have the monitor use long word data type for accesses to
target memory.

If you see messages advising of a mismatch between memory access size and
the amount of data supplied when you modify memory or load programs, you
may need to change your answer to this configuration question.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

319

To modify the debug/trace options

You can define certain break conditions for the emulator and choose whether
to trace only target program cycles or all program cycles.

• Answer the question:

Modify debug/trace options?

yes to access the debug/trace configuration questions.

no to accept the current debug/trace configuration and skip to
the simulated I/O configuration.

To break the processor on a write to ROM

If your program writes to a location mapped to emulation ROM, there is
probably a logic error. You can have the emulator stop execution of your
target program when this event occurs.

• Answer the question:

Break processor on write to ROM?

yes to cause the emulator to break into the monitor when a
write to emulation or target ROM is detected.

no to ignore any writes to emulation or target ROM.

The memory in the emulation or target system will be changed by processor
writes, even if that memory has been mapped as ROM.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

320

To define the software breakpoint vector

The MC68020 and MC68030/EC030 emulators use the BKPT instruction to
implement software breakpoints. The BKPT instruction has eight possible
data operands. You can choose from seven of these for the software
breakpoint function.

• Answer the question:

Vector number for software breakpoint (1..7)?

Enter a number in the range of 1 through 7 to use as the data value for the
BKPT instruction. The default setting is 7. The BKPT 0 vector cannot be used
as the software breakpoint vector.

When using the emulator in most target systems, the default (7) will work fine.
Some target systems use the processor BKPT instruction to implement certain
features, and in these systems, BKPT 7 may already have been assigned to
implement target system features. When using the emulator in these target
systems, you may want to choose a different breakpoint vector number to
implement software breakpoints in your emulator.

Regardless of the BKPT vector number you choose, the emulator will process
it, as follows:

When you define a breakpoint, the emulator saves the instruction at the
address where the breakpoint is to be set and then writes a BKPT instruction
at that address.

When the BKPT instruction is encountered during target program execution,
the processor executes a breakpoint acknowledge cycle. The emulator forces
the breakpoint to be taken, and then provides a monitor entry vector during
the breakpoint vector fetch to allow the processor to enter the emulation
monitor. The monitor replaces the BKPT instruction with the instruction that
was saved earlier, and clears the breakpoint status.

Changing this configuration item disables any active breakpoints from the
emulator breakpoint table.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

321

To trace background or foreground operation

Normally, you’ll use the emulation-bus analyzer to trace only your target
program execution. However, sometimes you may want to analyze execution of
the emulation monitor to help solve a problem with the interaction of the
target system and the emulator.

• Answer the question:

Trace background or foreground operation?

foreground to trace only target program cycles. (This includes the
foreground monitor.)

background to trace only emulation monitor cycles, and only if you are
using the background monitor.

both to trace both target program cycles and emulation
background monitor cycles.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

322

To configure the analyzer clock

The emulation-bus analyzer can capture bus cycles at data rates up to 25 MHz.
The trace state and time counters are limited to lower speeds. The MC68020
processor is set to a slow analyzer clock by default, and does not need to be
modified because the data rate is sufficiently low, even at the maximum clock
rate of 33 MHz.

By default, the MC68030/EC030 analyzer data rate is set to veryfast. This
processor has more complicated requirements due to the burst and
synchronous access modes. The analyzer can capture all types of bus cycles
correctly up to the maximum clock rate of 40 MHz, but it cannot count states
or time at those higher speeds for certain bus cycle types.

• Answer the question:

Set the analyzer speed:

slow for a data rate less than or equal to 16.67 MHz.

fast for a data rate between 16.67 and 20 MHz.

veryfast for a data rate between 20 and 25 MHz.

The worst-case situation occurs during a zero-wait state burst cycle. The data
rate for burst cycles is given by the equation:

Data Rate = Processor Clock Rate
(1 + number of wait states)

To determine the correct answer to this question in the MC68030/EC030
emulator, calculate the maximum data rate by using the above equation.
Remember that the emulator always inserts one wait state for all synchronous
and burst accesses to emulation memory, and also must insert one wait state
for synchronous and burst accesses to target memory when the external clock
is greater than or equal to 25 MHz. Then choose the data rate option
according to the data rate you calculate.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

323

The trace state and time count qualifiers are limited by the analyzer data rate
settings as follows:

Analyzer clock rate Analyzer speed
setting

Valid count qualifier
options

clock ≤ 16.67 MHz slow counting < state>
counting time

clock ≤ 20 MHz fast counting < state>

clock ≤ 25 MHz very fast counting off

Example Suppose you are running the MC68030/EC030 processor at 40 MHz. You
have answered “yes” to the configuration question “Is speed of external clock
faster than 25 MHz?” because target memory requires one wait state for
synchronous/burst accesses over 25 MHz. The resulting data rate is 20 MHz so
you answer the configuration question as follows:

Set analyzer speed: fast

Note that you can use only the nothing debugger trace option. You cannot
count time because the analyzer clock speed is too high.

To modify the simulated I/O configuration

The Softkey Interface provides a simulated I/O capability that you can use to
test certain I/O-dependent parts of your program before target system
hardware is complete.

• Answer the question:

Modify simulated I/O configuration?

yes to modify the simulated I/O configuration.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

324

no to accept the current simulated I/O configuration and skip
to the interactive measurement configuration questions.
(This is the default.)

If you answer yes to this question, you will see a series of several more
questions whose answers define the simulated I/O configuration. See the
Simulated I/O manual for details on configuring and using simulated I/O.

To modify the interactive measurement
specification

The HP 64700 Series emulators have internal trigger signals that allow you to
coordinate measurements with associated instruments. The interactive
measurement specification defines these trigger connections.

• Answer the question:

Modify interactive measurement specification?

yes to review and/or change the interactive measurement
specification.

no to bypass the interactive measurement specification and
skip to saving the configuration file.

If you answer yes to this question, you will see a series of several questions,
whose answers define the interactive measurement specification. To give
proper answers to these questions, refer to Chapter 6 in this manual. It
explains how to make coordinated measurements.

Chapter 10: Configuring the Emulator
Emulator Configuration Items

325

Mapping The Foreground Monitor For Use With
The MC68030 MMU

To use the memory management feature of the MC68030 emulator, you have
to use a foreground monitor that is mapped 1:1 (logical address = physical
address). The reason that 1:1 monitor mapping is important is that the
MC68030 MMU may be enabled or disabled at any time by your target system
during execution of your target program; whether or not the MMU is enabled,
the emulator must be able to enter the foreground monitor to provide
emulation features. There are two ways to map the address range 1:1 where
the foreground monitor is located:

• Modify the mapping tables in the MMU to maintain a 1:1 mapping of the
memory address space where the foreground monitor is located. Make
sure the mappings used for the foreground monitor are not write
protected.

• Use one of the two transparent translation registers (TT0 or TT1) to
control the block where the foreground monitor is located. You must
remember to set the Read/Write Mask bit (RWM) to 1. Transparent
translation registers can be set to translate only read accesses or only write
accesses. To use a transparent translation register to control the address
space of the foreground monitor, both read and write accesses must be
enabled (by ignoring the R/W bit).

Chapter 10: Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC 68030 MMU

326

To modify the MMU mappings to translate the
monitor address space 1:1

1 In the operating system that sets up the MMU for your target program, set
aside a 4 Kbyte address space to contain the foreground monitor.

or

2 After the operating system for your target program has set up the MMU, but
before you enable the MMU (with an appropriate TC register value), modify
the MMU translation tables to ensure that the foreground monitor resides in
logical address space that will be translated 1:1 to physical address space.

When you modify the content of any MMU mapping table, remember that the
tables are located in physical address space. You must enter your modification
commands by using physical addresses.

Select an address space to contain your foreground monitor that is higher than
the address space used for your target program and I/O. This will optimize
deMMUer resources by using them first to reverse-translate your target
address space.

If you are mapping page sizes smaller than 4 Kbytes through the MMU
mapping tables, ensure 1:1 translations for all of the pages that contain
portions of the emulation foreground monitor.

See Also "To modify the MMU mappings to translate the monitor address space 1:1" in
the emulator/analyzer manual.

Chapter 10: Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC 68030 MMU

327

To modify a transparent translation register to
map the monitor address space 1:1

• Modify the value of a transparent translation register to the base address you
specified for the foreground monitor, or the first address within the range to
be occupied by the foreground monitor.

Where transparent translation register may be TT0 or TT1, and the first
address must begin on a 4-Kbyte boundary (hexadecimal number ending in
000H).

Examples To map the foreground monitor to 1:1 address space beginning at 0800 0000H
by using TT0, configure the base address:

Monitor’s base address? 08000000h

Then set register TT0 to 08008777h. This will map 8000000..8ffffff
transparently (1:1). This is a 16M block, the smallest that can be specified in a
transparent translation register.

Chapter 10: Configuring the Emulator
Mapping The Foreground Monitor For Use With The MC 68030 MMU

328

Part 3

Concept Guide

Part 3

330

11

X Resources and the Graphical
Interface

An introduction to X resources.

331

X Resources and the Graphical Interface

This chapter helps you to understand how to set the X resources that control
the appearance and operation of the debugger’s graphical interface. This
chapter:

• Gives you an explanation of the X Window concepts surrounding resource
specification.

• Gives you an explanation of the implementation of scheme files as used by
the debugger’s graphical interface.

The debugger’s graphical interface is an X Window System application which
means it is a client in the X Window System client-server model.

The X server is a program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

An X resource is user-definable data

A resource is a user-definable piece of data that controls the operation or
appearance of an X Windows application. A resource may apply to an
application (application-specific resources) or it may apply to the objects
called widgets from which the application is constructed. That is particularly
true of standard widget resources that control the appearance of an
application. For example, most widgets have a standard resource that allows
the user to specify the font used to display text on objects like buttons, menus,
and labels.

An application-specific resource is defined by the application developer and
may control such things as the mode of operation of an application. For
example, you can use an application-specific resource for the debugger’s
graphical interface to control whether to start the interface with the command
line on or the command line off.

A resource specification is a name and a value

Each resource in an application has a name and a value. Because an X
Window System application is constructed from widgets, a resource name is

Chapter 11: X Resources and the Graphical Interface

332

closely associated with the names of the widgets that make up the application.
Each application begins with a top-level widget that is the parent of all other
widgets in the application. The name of the top-level widget is usually the
same as that of the application. This top-level widget may have a number of
widgets “beneath” it that are called children of the top-level widget. The
names for these widgets are most often chosen for their mnemonic value.
These children can also in turn have child widgets. A resource name, then, is
simply a name of a piece of data for the lowest-level widget coupled with a
string of widget names picked up from each of the widgets along the path
starting with the top-level widget and going down to the lowest-level widget.

The data name and widget names within a resource name are separated from
each other by dots. The resource name itself is terminated by a colon. A
resource value is simply the data value itself. Ignoring the widget names and
data name for the moment, a common resource for most widgets is color. A
data value for color might be “blue.”

To put this all together, a resource string for the foreground color for the
“quit” pushbutton displayed on an application called “tracker” might look like
the following:

tracker.panel.control.quit.foreground: white

Don’t worry, there are shortcuts

As you might guess, specifying resources for applications with many levels of
widgets can be difficult and error-prone. For that reason, you can use a
shortened notation. To fully understand how the notation works, however,
you must first understand about instance names and class names.

An instance name is a name given to a particular widget by an application
developer. You have already seen instance names used. The name “quit” is an
instance name for a pushbutton widget used by the developer of the “tracker”
application from the last example. An instance name makes the pushbutton
widget named “quit” unique from other pushbutton widgets in the “tracker”
application.

A class name is a general name for all widgets of a particular type. For
example, the class name for the OSF/Motif pushbutton widget is
XmPushButton. When you refer to a widget in an application by its class
name, you are referring to all widgets of that class in the application, and not
to just a particular widget.

Chapter 11: X Resources and the Graphical Interface

333

Instead of specifying the foreground color for the tracker quit button by using
a resource name made up of instance names as in the last example, you could
instead use a class name, as follows:

tracker.panel.control.XmPushbutton.foreground: white

Using class names in this way makes it easier to specify resources because it
relieves you from having to discover the names of particular widgets in an
application. A long string of instance names or class names is still a long
string of names, however. Fortunately, a wildcard helps to make the shortcut a
true shortcut. The wildcard is an asterisk ("*"). It can be used to replace any
number of class or instance names in a resource name. The last example could
now be shortened to either of the following:

tracker*XmPushButton.foreground: white

tracker*quit.foreground: white

But wait, there is trouble ahead

An X Window System application maintains a complete list of resources, and
the application knows the complete instance and class names for each
resource. Because you can specify resource values using shortened notation,
the application, when starting up, must match specified values to individual
resources. Some general rules apply:

• Either a class name or instance name from the request must match each
class or instance name in the application’s list of resources.

• Entries prefixed by a dot are more specific and therefore have precedence
over entries prefixed by an asterisk.

• Instance names are more specific and therefore have precedence over class
names.

• Matching is done from left to right. Instance or class names appearing at
the beginning of the specification have precedence over those later in the
specification.

As you can quickly see, resource matching favors specific resource names over
general resource names. General resource names, especially those involving
class names, can have unexpected and unintended effects. Consider the last
example again. The resource specification

Chapter 11: X Resources and the Graphical Interface

334

tracker*XmPushButton.foreground: white

may not only set the foreground color of the quit button on the control panel
of the application to white — it could also set the foreground colors for any
pushbutton anywhere in the application. That is because the combination of
the wildcard and the use of the class name make this resource specification
match a resource request for any pushbutton in the application.

The second of the two specifications in the example does not completely solve
the problem either. Suppose there was another button elsewhere in the
application with the instance name of “quit.” (Duplicating instance names is
correct as long as the widget paths to two different widgets of the same name
are different.) The second specification of

tracker*quit.foreground: white

could match a resource request for that button as well because the wildcard
allows the specification to match a number of different widget paths through
the application.

Resource specification is usually a matter of trial and error. The following
resource is probably specific enough to set just the foreground color for the
quit button on the control panel:

tracker*control*quit.foreground: white

To view the resources in the debugger’s graphical interface, you can choose
Help→X Resource Names and click on the “All names” button.

Class and instance apply to applications as well

Just as there are classes and instances of widgets, there are classes and
instances of X Window applications. Resource specifications can be
constructed in such a way that they apply to a whole class of applications, or
just to an instance of those applications.

The class name for the debugger graphical interface products is HP64_Debug.
The instance of the class that this debugger graphical interface falls under is
called debug. A few examples are in order.

• For a given resource (called < resource>), the following specification
applies to all debugger/emulator interface products for all processors:

Chapter 11: X Resources and the Graphical Interface

335

HP64_Debug*<resource>: <value>

• The following specification applies to all debugger/emulator products
connected to 68000 emulators:

HP64_Debug.m68000*<resource>: <value>

• Finally, the following specification applies to all debugger/emulator
graphical interfaces connected to 68000 emulators:

debug.m68000*<resource>: <value>

According to the precedence rules for resource matching, the first
specification is the most general and would be overridden by either of the
following two.

Resource specifications are found in standard places

There are a number of conventions for putting X resources in standard places
so that applications can find them and use them when starting up. The least
complicated model has the default resources for an application in a file in a
system directory and user-defined resources in a file in the user’s $HOME
directory.

The system directory for application default files is:

HP-UX /usr/lib/X11/app-defaults

SunOS /usr/openwin/lib/X11/app-defaults

The name of the default file is the same as the class name for the application
and is also called the app-defaults file (for example, HP64_Debug is the name
of the debugger’s graphical interface’s application defaults file). The name of
the file in the user’s $HOME directory is .Xdefaults. Both files contain lists of
resource specifications. The app-defaults file contains only resources for a
specific application. The .Xdefaults file usually contains resource
specifications for a number of different applications.

Also, it is possible for X resource specifications to point to scheme files in
which other X resources are specified.

Why is it necessary to have at least two files? The application developer must
supply a set of default resource values so that the application will at least

Chapter 11: X Resources and the Graphical Interface

336

execute in the absence of user-defined resources. The developer does so in the
app-defaults file. These defaults should not be changed by individual users
because doing so affects the appearance and behavior of the application for all
users of the application. Yet a user must have a location to put resources to
override the default resources so the user can customize the application
according to the user’s needs or desires. The .Xdefaults file is that place.

Loading order resolves conflicts between files

If there are two files, then which resource specification from which file
controls the resource in the application? That problem is solved by adhering
to a loading order for files. Again, in the simple form, the application first
loads the application default file and then loads the user’s .Xdefaults file. Any
resource specifications in the .Xdefaults file with exactly the same resource
name as resource specifications in the application default file replace those
from the application default file in the resource database. In that way, the
resources specified by the user override the default resources in the
application default file.

However, there are more than two places in which applications look for
resource specifications when starting up. The following is a list of the
standard places, in order, that an application looks to find resources:

1 The application default file.

The application default file for the graphical interface is called
HP64_Debug. This file is created at software installation time and placed
in the system application defaults directory.

2 $XAPPLRESDIR/< class>

This environment variable defines an alternative directory path leading to
customized class files. Useful for directing the application to system-wide
custom files.

3 RESOURCE_MANAGER property. Some X servers have a resource
property associated with the root window for the server. Resources are
added to the resource property database by using xrdb. (HP VUE is an
example.) The server can use this property to access those resources.

If no RESOURCE_MANAGER property exists, then
$HOME/.Xdefaults is read. The primary and probably best method for
creating or adding to this file is by copying part or all of the app-defaults
file into the .Xdefaults file.

Chapter 11: X Resources and the Graphical Interface

337

4 $XENVIRONMENT file. This environment variable defines a file that
contains resource specifications.

If the XENVIRONMENT variable is not set, then
$HOME/.Xdefaults-host is read.

5 Command line options

Resources can be specified on the command line by using the -xrm
command line option. The application strips these arguments out and
sets these resources before passing the rest of the command line on to the
application.

Remember, load order specifies the precedence for resource overrides. A
resource found later in the load order overrides a resource found earlier in
the load order if the resource specifications match each other.

The app-defaults file documents the resources you can set

The HP64_Debug file is complete, well-commented, and a good source of
reference for graphical interface resources. The HP64_Debug file should be
your primary source of information about setting graphical interface
resources. This file can be easily viewed from the help topic menu by choosing
Help→General Topic and selecting the “X Resources: Setting” topic.

To further assist you with setting X resources, there is also another topic on
the help menu pull-down that you should use. Choose Help→X Resource
Names to display the class and instance name for the graphical interface in a
dialog box. From the dialog box, you can also display all widget class and
instance names for all widgets that make up the debugger’s graphical interface.
In most cases, you will not need to delve that far into the widget tree, but it is
there if you choose to.

In addition to the app-defaults file, the graphical interface uses scheme files.
Resources are not duplicated between scheme files and the HP64_Debug file.
You may wish to set resources found in the scheme files as well, so you need to
understand how scheme files relate to the interface and to the other X
resource files.

Scheme files augment other X resource files

Hewlett-Packard realizes that the debugger’s graphical interface will be run in
environments made up of workstations with different display capabilities and

Chapter 11: X Resources and the Graphical Interface

338

even in environments with different types of computers (platforms) running
the X Window System. The debugger’s graphical interface, unlike many other
X applications, makes determinations about display hardware as to the
platform type, the resolution of the display, and whether the display is color or
monochrome. The interface then loads the appropriate scheme files to allow
the interface to come up in a reasonable way based on the hardware.

There are six scheme files. Their names and a brief description of the
resources they contain follows:

Debug.Label Defines the labels for the fixed text in the interface.
Such things as menu item labels and similar text are in
this file. If the $LANG environment variable is set, the
scheme file “Debug.$LANG” is loaded if it exists;
otherwise, the file “Debug.Label” is loaded.

Debug.BW Defines the color scheme for black and white displays.
This file is chosen if the display cannot produce at least
16 colors.

Debug.Color Defines the color scheme for color displays. This file is
chosen if the display can produce 16 or more colors.

Debug.Input Defines the button and key bindings for the mouse and
keyboard.

Debug.Large Defines the window dimensions and fonts for high
resolution display (1000 pixels or more vertically).

Debug.Small Defines the window dimensions and fonts for low
resolution displays (less than 1000 pixels vertically).

Debug.Label (or Debug.$LANG) resides in the directory
/usr/hp64000/lib/X11/HP64_schemes. This directory is the upper level directory
for scheme files. The other five files are in subdirectories below this one
named by platform (or operating system). For example, the HP 9000 scheme
files are in the subdirectory /usr/hp64000/lib/X11/HP64_schemes/HP-UX.

Like the app-defaults file, these scheme files are system files and should not be
modified directly.

Chapter 11: X Resources and the Graphical Interface

339

You can create your own scheme files, if you choose

The debugger’s graphical interface supports user-defined scheme files. The
interface searches two places for user-defined scheme files and loads any it
finds after loading the system scheme files. Refer to any of the scheme files
mentioned for information about where to place your own scheme files.

Scheme files continue the load sequence for X resources

Scheme files extend the load order for finding X resources. System scheme file
resources override all other resources gathered so far, and user-defined
scheme files, in turn, override the system scheme files. Continuing from the
load order list previously, the scheme files follow, in the order

6 /usr/hp64000/lib/X11/HP64_schemes/Debug.Label
/usr/hp64000/lib/X11/HP64_schemes/< platform> /Debug.< scheme>

7 $XAPPLRESDIR/HP64_schemes/Debug.Label
$XAPPLRESDIR/HP64_schemes/< platform> /Debug.< scheme>

Just as $XAPPLRESDIR can point to a system-wide app-defaults file, so
can it point to a set of system-wide scheme files.

8 $HOME/.HP64_schemes/Debug.Label
$HOME/.HP64_schemes/< platform> /Debug.< scheme>

Please note the dot (.) in the “.HP64_schemes” directory name.

You can force the debugger’s graphical interface to use
certain schemes

Five application-specific resources allow you to force the interface to use
certain schemes. The resources and what they control are as follows:

HP64_Debug.platformScheme:

Controls the platform scheme chosen by the interface. This resource is
particularly useful in mixed-platform environments where you might be
executing the interface remotely on an HP 9000 computer, but displaying
the interface on a Sun SPARCsystem computer. In this situation, you may
wish to set the resource to use the SunOS scheme so that you can use the
same key and mouse button bindings as other Sun OpenWindows
applications.

Chapter 11: X Resources and the Graphical Interface

340

The value of this resource is actually the name of a subdirectory under
/usr/hp64000/lib/X11/HP64_schemes or one of the alternative directories
for scheme files. You can create your own file and subdirectory under
/usr/hp64000/lib/X11/HP64_schemes (or alternative) and then set this
resource to choose that subdirectory instead of the standard platform
subdirectory.

Values can be: HP-UX, SunOS, or the name of a sub-directory containing
custom scheme files.

HP64_Debug.colorScheme:

Chooses the black and white or color scheme.

Values can be: Color, BW, or the name of a custom scheme file.

HP64_Debug.inputScheme:

Chooses the keyboard and mouse bindings.

Values can be: Input or the name of a custom scheme file.

HP64_Debug.sizeScheme:

Chooses the large or small scheme for fonts and sizes.

Values can be: Large, Small, or the name of a custom scheme file.

HP64_Debug.labelScheme:

Chooses a different label scheme for fixed text. Again, this resource is
affected by the $LANG variable.

Values can be: Label, $LANG (if this environment variable is set and
there is a Debug.$LANG scheme file), or the name of a custom scheme
file.

These resources are in the app-defaults file. To override these resources, set
them in your .Xdefaults file.

Again, setting X resources is a trial and error process. The scheme files used
by the debugger’s graphical interface simplify the process by collecting related
resources in specific files.

To recap the organization:

Chapter 11: X Resources and the Graphical Interface

341

• The app-defaults file contains resources that control the operation of the
interface. To override a resource in this file, copy the resource to your
.Xdefaults file and change it there.

• Resources that control the appearance of the display and keyboard and
mouse button bindings for your platform are in the scheme files. Copy the
scheme files to an appropriate place and modify the resources found in
them to change the look of the interface.

If you would rather place these resources in your .Xdefaults file,
remember the load order. Make the resource name in the .Xdefaults file
more specific or it will be overridden by the one in the scheme file.

The app-defaults file and the scheme files are your best sources of reference
for help with modifying individual resources.

Resource setting - general procedure

Application specific resources

If you plan to modify an application-specific resource, you should look in the
HP64_Debug file for information about that resource.

If the RESOURCE_MANAGER property exists (as is the case with
HP VUE), copy the complete HP64_Debug file, or just the part you are
interested in, to a temporary file. Modify the resource in your temporary file
and save the file. Then, merge the temporary file into the
RESOURCE_MANAGER property with the xrdb -merge < filename>
command.

If the RESOURCE_MANAGER property does not exist, copy the complete
HP64_Debug file, or just the part you are interested in, to your .Xdefaults file.
Modify the resource in your .Xdefaults file and save the file.

Finally, if the debugger’s graphical interface is currently executing, you must
exit and restart the interface for the change to have any effect.

General resources

If you plan to modify a general resource that could not be found in the
HP64_Debug file, look to the scheme files for information about that
resource. A general discussion of the kinds of information found in the

Chapter 11: X Resources and the Graphical Interface

342

scheme files can be found in the previous “Scheme files augment other
resources” section.

Copy the appropriate scheme file to one of the alternative directories and
make the modifications there. (If you are using $XAPPLRESDIR, make sure
the variable is set and exported.) Save the file. If the debugger’s graphical
interface is currently executing, you must exit the application and restart it to
see the results of your change.

Chapter 11: X Resources and the Graphical Interface

343

Chapter 11: X Resources and the Graphical Interface

344

Part 4

Reference

Part 4

346

12

Debugger Commands

Detailed descriptions of command line commands.

347

How Pulldown Menus Map to the Command Line

Pulldown Command Line

File→Context→Directory
File→Context→Symbols
File→Load→Emulator Config
File→Load→Executable
File→Load→Program Only
File→Load→Symbols Only
File→Load→User-Defined Macros
File→Store→Startup (.rc) file (as default)
File→Store→Startup (.rc) file
File→Store→User-Defined Macros
File→Store→BBA Data
File→Copy Window→
File→Log→Playback
File→Log→Record Commands
File→Log→Stop Command Recording
File→Log→Record Journal
File→Log→Stop Journal Recording
File→Emul700→Emulator/Analyzer (Graphic)
File→Emul700→Emulator/Analyzer (Term)
File→Edit→File
File→Edit→At () Location
File→Edit→At PC Location
File→Term
File→Exit→Window
File→Exit→Locked
File→Exit→Released

Debugger Directory Change_Working
Program Context Set
Debugger Execution Environment Load_Config
Program Load Default
Program Load New Code_Only No_Pc_Set
Program Load New Symbols_Only No_Pc_Set
File Command < filename>
File Startup
File Startup < filename>
N/A
Memory Unload_BBA < filename>
File User_Fopen Append < win> File < filename>
File Command
File Log On < filename>
File Log oFF
File Journal On
File Journal oFF
N/A
N/A
Debugger Host_Shell < editor>
Debugger Host_Shell < editor_at_line>
Debugger Host_Shell < editor_at_line>
Debugger Host_Shell
Debugger Quit Yes
Debugger Quit Locked
Debugger Quit Released

Chapter 12: Debugger Commands

348

Pulldown Command Line

Display→Context
Display→Memory→Mnemonic ()
Display→Memory→byte
Display→Memory→word
Display→Memory→long
Display→Source ()
Display→Source at PC
Display→Source Find Fwd ()
Display→Source Find Back ()
Display→Source Find Again
Display→C Expression ()
Display→Var/Expression ()
Display→Monitor Variable
Display→All symbols ()
Display→Symbols→Data & Macros ()

Display→Symbols→Functions & Labels ()

Display→Symbols→Modules ()
Display→Symbols→Browse C+ + Class ()
Display→Error Log

N/A
Memory Display Mnemonic
Memory Display Byte
Memory Display Word
Memory Display Long
Program Display_Source
Program Context Set
Program Find_Source Occurrence Forward
Program Find_Source Occurrence Backward
Program Find_Source Next
Expression C_Expression
Expression Display_Value
Expression Monitor Value
Symbol Display Default
Symbol Display Options Data¯os
End_Options
Symbol Display Options Functions&labels
End_Options
Symbol Display Options Modules End_Options
Symbol Browse
N/A

Modify→Emulator Config
Modify→C Expression ()
Modify→Memory
Modify→Memory at ()
Modify→Register

Debugger Execution Environment Modify_Config
Expression C_Expression < variable> =
Memory Assign
Memory Assign Long
Expression C_Expression @reg

Execution→Run→from PC
Execution→Run→from ()
Execution→Run→from Transfer Address
Execution→Run→from Reset

Execution→Run→until ()
Execution→Step Over→
Execution→Step→
Execution→Reset to Monitor
Execution→Set PC to Transfer

Program Run
Program Run From
Program PC_Reset - Program Run
Debugger Execution Reset_Processor
Program Run
Program Run Until
Program Step Over
Program Step
Debugger Execution Reset_Processor
Program Pc_Reset

Chapter 12: Debugger Commands

349

Pulldown Command Line

Breakpoints→Set→Instruction ()
Breakpoints→Set→Read ()
Breakpoints→Set→Write ()
Breakpoints→Set→Read/Write ()
Breakpoints→Delete ()
Breakpoints→Delete All
Breakpoints→Edit/Call Macro

Breakpt Instr
Breakpt Read
Breakpt Write
Breakpt Access
Breakpt Delete
Breakpt Clear_All
N/A

Window→ Window Active < window name>

Settings→High Level Debug
Settings→Assembly Level Debug
Settings→Debugger Options
Settings→Command Line

Debugger Level High_Level
Debugger Level Assembly
N/A
N/A

Chapter 12: Debugger Commands

350

How Popup Menus Map to the Command Line

Code window pop-pup Command Line

Set/Delete Breakpoint Breakpt Instr or Breakpt Delete
Attach Macro N/A
Edit Attached Macro N/A
Edit source N/A
Run until Program Run Until # < line_number>
Trace After Trace Trigger Address Is # < line_number> Status

Is CycTyp Fetch PosnTrig Start
Trace Before Trace Trigger Address Is # < line_number> Status

Is CycTyp Fetch PosnTrig End
Trace About Trace Trigger Address Is # < line_number> Status

Is CycTyp Fetch PosnTrig Center
Trace Until Trace Trigger Address Is # < line_number> Status

Is CycTyp Fetch BrkOnTrg PosnTrig End

Default window pop-up Command Line

Highlight/Toggle Window Window Active/ < window_name>
Window Toggle_View

Remove Window N/A

Breakpoint window pop-up Command Line

Delete Breakpoint Breakpt Delete < brkpt_nmbr>
Delete All Breakpoints Breakpt Clear_All

Monitor window pop-pup Command Line

Delete Variable Expression Monitor Delete < number>
Delete All Variables Expression Monitor Clear_All

Chapter 12: Debugger Commands

351

Backtrace window pop-up Command Line

Disp Source at Stack Level Program Context Set @< level>
Disp Vars at Stack Level Program Context Expand @< level>
Run Until Stack Level Program Run Until @< level>

Status Line Popup Command Line

Command Line On/Off N/A
Remove Temporary Message N/A

Command Line Popup Command Line

Forward Tab < Tab>
Backward Tab < Shift> -< Tab>
Execute Command < Return>
Clear to End of Line < Ctrl> -E
Clear Entire Line < Ctrl> -U
Command Line On/Off N/A

Chapter 12: Debugger Commands

352

Command Summary

Breakpoint Commands

Breakpoint commands control execution of a program.

Command Definition

Breakpt Access
Breakpt Clear_All
Breakpt Delete
Breakpt Instr
Breakpt Read
Breakpt Write

Set a breakpoint on access (read/write) of an address
Clear all breakpoints
Delete specified breakpoints
Set an instruction breakpoint
Set a breakpoint on a read from an address
Set a breakpoint on a write to an address

Session Control Commands

The session control commands select debugger operating modes, set debugger
session options, define and display macros, allow access to the host operating
system, and end debugger sessions.

Command Definition

Debugger ?
Debugger Directory
Debugger Execution Display_Status
Debugger Execution Environment
Debugger Execution IO_System
Debugger Execution Load_State
Debugger Execution Reset_Processor
Debugger Host_Shell
Debugger Level
Debugger Macro Add
Debugger Macro Call
Debugger Macro Display
Debugger Option
Debugger Pause
Debugger Quit

Access debugger on-line help
Display or change present working directory
Display current directory and files in use
Configure and control emulation environment
Control debugger simulated I/O
Restore previously saved debugger session
Simulate microprocessor reset
Enter HP-UX operating system environment
Select debugger mode (high-level or assembly)
Create a macro
Call a macro
Display macro source code
Set or list debugger options for this session
Pause debugger session
Terminate a debugging session

Chapter 12: Debugger Commands

353

Expression Commands

Expression commands calculate expression values, print formatted output to a
window, and monitor variables.

Command Definition

Expression C_Expression
Expression Display_Value
Expression Fprintf
Expression Monitor Clear_All
Expression Monitor Delete
Expression Monitor Value
Expression Printf

Calculate the value of a C expression
Display the value of an expression or variable
Print formatted output to a window
Discontinue monitoring all variables
Discontinue monitoring specified variables
Monitor variables
Print formatted output to Journal window

File Commands

File commands read and process command files, open files or devices for
writing, log debugger commands to a file, and save debugger startup
parameters.

Command Definition

File Command
File Error_Command
File Journal
File Log
File Startup
File User_Fopen
File Window_Close

Read in and process a command file
Set command file error handling
Copy Journal window output to a journal file
Record debugger commands/errors in a file
Save the default startup options
Open a file or device for read or write access
Close the file associated with a window number

Chapter 12: Debugger Commands

354

Memory Commands

Memory commands do operations on the target microprocessor’s memory.

Command Definition

Memory Assign
Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test
Memory Display
Memory Register
Memory Unload_BBA

Change the values of memory locations
Copy a memory block
Fill a memory block with values
Compare two blocks of memory
Search a memory block for a value
Examine memory area for invalid values
Display memory contents
Change the contents of a register
Unload BBA data from program memory

Chapter 12: Debugger Commands

355

Program Commands

Program commands load and execute programs, control program execution,
display source code and program variables, and set or cancel program
interrupts.

Command Definition

Program Context Set
Program Context Display
Program Context Expand

Program Display_Source
Program Find_Source Occurrence
Program Find_Source Next
Program Interrupt Add
Program Interrupt Remove
Program Load
Program Pc_Reset
Program Run
Program Step
Program Step With_Macro

Specify current module and function scope
Display all local variables of a function
Display all local variables of a function at
 the specified stack (backtrace) level
Display C source code
Find first occurrence of a string
Find next occurrence of a string
Simulate an interrupt
Cancel all pending interrupts
Load an absolute file for debugging
Reset the program starting address
Start or continue program execution
Execute a number of instructions or lines
Execute macro after each instruction step

Symbol Commands

Symbol commands add, remove, and display symbols.

Command Definition

Symbol Add
Symbol Browse
Symbol Display
Symbol Remove

Add a symbol to the symbol table
Browse C+ + class
Display symbol, type, and address
Delete a symbol from the symbol table

Chapter 12: Debugger Commands

356

Trace Commands

Trace commands let you do bus level tracing of your program activity with bus
cycle store qualification of data.

Command Definition

Trace Again
Trace Display
Trace Event Clear_All
Trace Event Delete
Trace Event List
Trace Event Specify
Trace Event Used_List
Trace Halt
Trace StoreQual
Trace StoreQual Event
Trace StoreQual List
Trace StoreQual None
Trace Trigger
Trace Trigger Event
Trace Trigger List
Trace Trigger Never

Start a trace using the last defined trigger and qualification terms
Display trace information in the View window
Clear (remove) all defined events
Delete specified events
List terms (conditions) of specified event
Define an event (combination of bus conditions)
List summary of trace events in the View window
Stop the current trace
Specify the bus conditions to be stored (captured)
Specify a previously defined event to be stored (captured)
List the current storage qualification terms
Disable current storage qualification terms (store everything)
Specify the bus conditions to be used to trigger (start) a trace
Specify a previously defined event to be used as the trigger
List the current trigger terms in the View window
Disable current trigger terms (start trace on any bus state)

Window Commands

Window commands do operations on the debugger windows.

Command Definition

Window Active
Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

Activate a window
Set the cursor position for a window
Remove a user-defined window or screen
Clear data from a window
Make a new screen or window
Change the size of a window
Activate a screen
Select the alternate display of a window

Chapter 12: Debugger Commands

357

Breakpt Access

The Breakpt Access command sets an access breakpoint at the specified
memory location (< addr>) or range (< addr> ..< addr>). The access
breakpoint halts program execution each time the target program attempts to
read from or write to the specified memory location or range. Memory
locations may contain code or data.

You can attach a macro to a breakpoint using the optional < macro_call>
parameter. See the chapter titled “Using Macros and Command files”.

Each time the debugger detects an access of the address or range, it does the
following:

1 Suspends program execution.

Sometimes execution may stop a few instructions past the instruction
causing the access. This is called "skid."

2 Executes a macro (if you attached one to the breakpoint). Depending on
the macro return value, the debugger does one of the following actions:

– If the macro return value is true (nonzero), the debugger resumes
execution with the next instruction after the instruction that
caused the read or write to the memory location. No breakpoint
information is displayed.

– If the macro return value is false (zero), the debugger returns to
command mode and displays breakpoint information.

3 Returns to command mode if no macro was attached and displays
breakpoint information.

Chapter 12: Debugger Commands
Breakpt Access

358

Interaction with trace commands

The Breakpt Access command and Trace Trigger command both require use
of emulation analyzer resources. If access breakpoints are active (indicated by
the message TRC: BrkRWA on the status line), then a Trace Trigger
command may not be entered. If a trace trigger is active, a Breakpt Access
command may not be entered.

Note If a trace is started using the emulator interface, debugger read/write/access
breakpoints will be disabled until the trace has been completed. It is
recommended not to use the debugger read/write/access breakpoints and the
emulator interface trace specification feature at the same time.

The Breakpt Access command sets up a trace with the trigger at the end of the
trace buffer, using the current storage qualification. You can display the trace
after the break occurs to see the cycles leading up to the break.

See Also
Breakpt Clear_All
Breakpt Delete
Breakpt Instr
Breakpt Read

Breakpt Write
Program Run
Program Step

Examples To set a breakpoint on accesses of addresses ’assign_vectors’ through
’assign_vectors’ + 16:

Breakpt Access &assign_vectors..+16

To set a breakpoint of access of the address of the variable ’current_temp’:

Breakpt Access ¤t_temp

To stop program execution when the value of variable system_running is set or
read as TRUE:

Breakpt Access &system_running; when (system_running==1)

The predefined macro ’when’ is executed when the breakpoint is encountered.

Chapter 12: Debugger Commands
Breakpt Access

359

Breakpt Clear_All

The Breakpt Clear_All command clears (removes) all defined breakpoints.

See Also
Breakpt Access
Breakpt Delete
Breakpt Instr
Breakpt Read

Breakpt Write
Program Run
Program Step

Examples To remove all defined breakpoints:

Breakpt Clear_all

Chapter 12: Debugger Commands
Breakpt Clear_All

360

Breakpt Delete

The Breakpt Delete command deletes (removes) one or more previously set
breakpoints. When you set a breakpoint, the debugger assigns it a breakpoint
number. Use this breakpoint number (< brkpt_nmbr>) to remove a specific
breakpoint. You can delete a group of breakpoints by specifying a range of
breakpoint numbers (< brkpt_nmbr> ..< brkpt_nmbr>). The debugger
displays the breakpoint numbers in the Breakpoint window.

When you remove a breakpoint, the Breakpoint window displays the
remaining breakpoints. Any breakpoints following the one removed are
renumbered.

See Also
Breakpt Access
Breakpt Clear_All
Breakpt Instr
Breakpt Read

Breakpt Write
Program Run
Program Step

Examples To delete breakpoint number 2:

Breakpt Delete 2

To delete breakpoint numbers 3 through 5:

Breakpt Delete 3..5

Chapter 12: Debugger Commands
Breakpt Delete

361

Breakpt Instr

The Breakpt Instr command sets an instruction breakpoint at a specified
memory location (< addr>) or range (< addr> ..< addr>). The instruction
breakpoint halts program execution each time the target program attempts to
execute an instruction at the specified memory location(s). If you specify a
range, the debugger sets breakpoints on the first byte of each instruction
within the specified range or (in high-level mode) the first instruction of each
line within the range.

If you set a breakpoint for an overloaded C+ + function, the debugger will ask
you to choose which definition of the function to use. You can also specify the
argument type of the function definition in parentheses after the function
name in the Breakpt Instr command.

Note The debugger/emulator cannot set instruction breakpoints on address
locations in target ROM.

You can attach a macro to a breakpoint using the optional < macro_call>
parameter. See the “Using Macros and Command Files” chapter.

The debugger performs the following actions when it encounters an
instruction breakpoint:

1 Suspends program execution before the program executes the instruction
at the breakpoint address.

2 Executes a macro (if you attached one when you set the breakpoint).
Depending on the macro return value, the debugger does one of the
following actions:

Chapter 12: Debugger Commands
Breakpt Instr

362

– If the macro return value is true (nonzero), the debugger resumes
execution starting at the instruction where the break occurred. No
breakpoint information is displayed.

– If the macro return value is false (zero), the debugger returns to
command mode without executing the instruction where the break
occurred and displays breakpoint information.

3 Returns to command mode without executing the instruction where the
break occurred if no macro was attached and displays breakpoint
information.

See Also
Breakpt Access
Breakpt Clear_All
Breakpt Delete
Breakpt Read

Breakpt Write
Program Run
Program Step

Examples To set an instruction breakpoint at line 82 of the current module:

Breakpt I nstr #82

To set an instruction breakpoint at line 83 of the current module only when
the system is running (using the predefined macro ’when’):

Breakpt I nstr #83; when (system_running)

To set an instruction breakpoint starting at address 10deh and ending at
address 10e4h:

Breakpt I nstr 10deh..10e4h

To set instruction breakpoints beginning on lines 15 through 25 of module
’initSystem’:

Breakpt I nstr initSystem\#15..#25

Chapter 12: Debugger Commands
Breakpt Instr

363

Breakpt Read

The Breakpt Read command sets a read breakpoint. The read breakpoint halts
program execution each time the target program attempts to read data from
the specified memory location (< addr>) or range (< addr> ..< addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

See Also Breakpt Access

Examples To set a breakpoint on reads from variable ’system_running’:

Breakpt Read &system_running

To set a read breakpoint starting at the address of variable ’current_temp’ and
ending 8 bytes after the address of ’current_temp’:

Breakpt Read ¤t_temp..+8

To stop program execution when the value of variable system_running is read
as TRUE:

Breakpt Read &system_running; when (system_running==1)

Chapter 12: Debugger Commands
Breakpt Read

364

Breakpt Write

The Breakpt Write command sets a write breakpoint. The write breakpoint
halts program execution each time the target memory attempts to write data to
the specified memory location (< addr>) or range (< addr> ..< addr>).

The Breakpt Read command behaves just like the Breakpt Access command.

See Also Breakpt Access

Examples To set a breakpoint to occur when the program writes a false value to variable
’system_is_running’:

Breakpt Write &system_running; when (system_running==00)

To set a write breakpoint starting at the address of global variable
’current_temp’ and ending 8 bytes after the address of ’current_temp’:

Breakpt Write ¤t_temp..+8

Chapter 12: Debugger Commands
Breakpt Write

365

Debugger Directory

The Debugger Directory command displays or changes the current working
directory. When you specify the Show_Working parameter, the debugger
displays the current working directory in the journal window. When you
specify the Change_Working parameter with a directory name, the debugger
makes that directory the current working directory.

Changing the working directory will change the current working directory in
all interfaces connected to the emulator.

Examples To display the current working directory:

Debugger Directory Show_Working

To change the current working directory to /users/project/sources:

Debugger Directory Change_Working /users/project/sources

Chapter 12: Debugger Commands
Debugger Directory

366

Debugger Execution Display_Status

The Debugger Execution Display_Status command activates the debugger
View window and displays the following status information:

Version of debugger
Current working directory
Current log file
Current journal file
Startup file used in current debug session
Loaded absolute files

If no files have been loaded, the absolute file will be missing from the display.
If multiple executable files have been loaded using the Program Load Append
command, they will be displayed in the View window. You may need to toggle
the window (click on the window border) to see all of the files.

Example To display product version, current working directory, and current log,
journal, startup, and absolute files in the View window:

Debugger Execution Display_Status

Chapter 12: Debugger Commands
Debugger Execution Display_Status

367

Debugger Execution Environment FwdCmd

The Debugger Execution Environment FwdCmd command enables you to
forward commands to other interfaces which are using the same emulator.

The other interfaces are:

Emul Emulator/analyzer interface. If several emulator
interfaces are sharing the emulator, the command will
be forwarded to the most recently started interface.

Perf Software Performance Analyzer.

BMS Broadcast Message Server (the Softbench Gateway).

Debug Debugger. This sends a command back to the debugger
you are using.

UI_name An interface described by a string. The command will
be forwarded to an interface specified by a debugger or
target string array (char *).

If an interface of the type specified is currently running, the < command> will
be executed there and any errors will be displayed in that interface.

See Also Predefined macro "cmd_forward".

Chapter 12: Debugger Commands
Debugger Execution Environment FwdCmd

368

Debugger Execution Environment Load_Config

The Debugger Execution Environment Load_Config command loads an
emulation configuration file for the emulator. The emulation configuration
file contains configuration information for the emulator. The
debugger/emulator accepts files generated by the emulation software or by an
editor.

Note You cannot use tilde expansion when specifying emulator configuration files
with the Debugger Execution Environment Load_Config < "config_file">
command because the configuration file name must be enclosed in quotation
marks. However, you may use shell environment variables.

See Also The "Configuring the Emulator" chapter for detailed information on the
modify configuration command.

Example To load the emulation configuration file "mycnfig" (from within the debugger):

Debugger Execution Environment Load_Config "mycnfig"

Or, if "mycnfig" is in another directory:

Debugger Execution Environment Load_Config
"$HOME/project/mycnfig"

Chapter 12: Debugger Commands
Debugger Execution Environment Load_Config

369

Debugger Execution Environment Modify_Config

The Debugger Execution Environment Modify_Config command starts a
process which allows you to modify the current emulator configuration.

See Also The “Configuring the Emulator” chapter in this manual.

Chapter 12: Debugger Commands
Debugger Execution Environment Modify_Config

370

Debugger Execution IO_System

The Debugger Execution IO_System command enables you to configure the
simulated I/O system to use the host system keyboard, display, and file system
to simulate I/O devices for your target program.

Debugger Execution IO_System Enable

The Debugger Execution IO_System Enable command enables the debugger
simulated I/O system. Remember, you also need to configure the emulator for
simulated I/O polling and addresses.

Debugger Execution IO_System Disable

The Debugger Execution IO_System Disable command disables the debugger
simulated I/O system.

Debugger Execution IO_System Stdio_Redirect

The Debugger Execution IO_System Stdio_Redirect command allows you to
define the standard I/O input (< stdin_name>), output (< stdout_name>),
and error (< stderr_name>) files/devices. These are file/device names in the

Chapter 12: Debugger Commands
Debugger Execution IO_System

371

host computer file system. Two special filenames allow you to access the
system keyboard (/dev/simio/keyboard) and the system display
(/dev/simio/display).

Debugger Execution IO_System Mode

The Debugger Execution IO_System Mode command selects how keyboard
I/O input is processed. Keyboard I/O may be either cooked or raw.

Cooked Mode. In cooked mode, the target program gets input from the
keyboard in the form of lines. Editing operations, such as backspace, line kill,
etc., on input is done by the debugger. When Return or CTRL D is entered,
the line is passed to the target program by the simulated I/O system. The
keyboard input is echoed to the screen during the editing operation. If
program execution is interrupted by entering < Ctrl> -C before the line is
entered, the characters on the input line are lost.

Raw Mode. In raw mode, each keystroke is passed from the keyboard to the
simulated I/O system with no processing. No carriage return is needed to enter
characters and no editing operations are available. In the raw mode any
character is valid, including CTRL D. No characters are echoed to the screen
upon entry. The only special character that cannot be sent to the target
program is < Ctrl> -C which is used to interrupt the debugger’s execution of
the program.

Debugger Execution IO_System Keyboard_EOF

The Debugger Execution IO_System Keyboard_EOF command causes the
keyboard to return EOF (end of file). The keyboard stream is marked as being
at EOF. Further reads from the keyboard return EOF.

Debugger Execution IO_System Report

The Debugger Execution IO_System Report command displays the status of
the simulated I/O system.

See Also The "Using Simulated I/O" section in the "Viewing Code and Data" chapter.
The "Environment-Dependent Routines" chapter in the 68020 C Cross
Compiler Reference or 68030 C Cross Compiler Reference manual.

Chapter 12: Debugger Commands
Debugger Execution IO_System

372

Examples To enable simulated I/O:

Debugger Execution I O_System Enable

To disable simulated I/O:

Debugger Execution I O_System Disable

To redirect the standard input file to the keyboard, the standard output file to
the display, and the standard error file to file ’/users/project/errorfile’:

Debugger Execution I O_System Stdio_Redirect
"/dev/simio/keyboard","/dev/simio/display",
"/users/project/errorfile"

To redirect the standard input file to ’temp.dat’, the standard output file to
’cmdout.dat’, and the standard error file to file ’errorlog.err’:

Debugger Execution I O_System Stdio_Redirect
"temp.dat","cmdout.dat","errorlog.err"

To set data input mode to cooked:

Debugger Execution I O_System Mode Cooked

Chapter 12: Debugger Commands
Debugger Execution IO_System

373

Debugger Execution Load_State

The Debugger Execution Load_State command restores the memory contents
and register values saved with the debugger/simulator Debugger Execution
Save_State command. If you do not specify a file name (< save_file>), the
debugger uses the default file db68k.sav for the 68020 and the file db68040.sav
for the 68030.

Example To restore memory contents and register values saved in save file "session1":

Debugger Execution Load_State session1

Chapter 12: Debugger Commands
Debugger Execution Load_State

374

Debugger Execution Reset_Processor

The Debugger Execution Reset_Processor command resets the
microprocessor to its initial state. It performs the following operations:

1 The program counter is loaded from exception vector 1 at location 4.

2 The interrupt stack pointer is loaded from exception vector 0 at location 0
in memory.

3 The status register is reset as follows;

– the trace bits are cleared,
– the supervisor bit is set to 1,
– the master bit is set to 0,
– the interrupt priority mask is set to level 7.

4 All other bits in the status register are set to 0.

5 The vector base register is set to 0.

6 The cache control register is set to 0.

7 Any pending interrupt or exception is cleared.

8 Registers A0-A6 and D0-D7 are set to 0.

9 The emulator breaks into the emulation monitor.

Note Memory is not reinitialized by the Debugger Execution Reset_Processor
command. Therefore, C variables are not reset to their original values. Use the
Program Load New Code_Only command to reset C variables.

See Also Program Pc_Reset

Example To reset the microprocessor:

Debugger Execution Reset_Processor

Chapter 12: Debugger Commands
Debugger Execution Reset_Processor

375

Debugger Host_Shell

The Debugger Host_Shell command enables you to temporarily leave the
debugging environment by forking an operating system shell or to execute a
single UNIX operating system command from within the debugger. The type
of shell forked is based on the shell variable SHELL. In this mode, you may
enter operating-system commands. To return to the debugger, enter CTRL D
or type exit and press the Return key.

You can execute operating system commands from within the debugger by
entering a single operating system command with the debugger Debugger
Host_Shell command. If you are using the graphical interface, the
operating system command is executed in a "cmdscript" window. Press
< Return> to close the window. If you are using the standard interface, stdout
from the command is written to the Journal window and stderr is not
captured. Commands writing to stderr will corrupt the display. Interactive
commands cannot be used in this mode.

The following options are available only in the graphical user interface:

InBrowser

Directs stderr and stdout of the command into text browser windows.

Chapter 12: Debugger Commands
Debugger Host_Shell

376

Wait

Suspends the interface until the command completes.

NoPrompt

When the command completes, the "cmdscript" window is closed
immediatelly.

See Also Debugger Quit

Examples To temporarily exit the debugger to the UNIX operating system command
mode:

Debugger Host_Shell

To write the current working directory to the journal window:

Debugger Host_Shell pwd

Chapter 12: Debugger Commands
Debugger Host_Shell

377

Debugger Help

This command displays the on-line help screen. The debugger provides on-line
help for all debugger commands, debugger command arguments, and debugger
function keys. You can access on-line help by entering the command
Debugger ? or by pressing the F5 function key.

If you are using the graphical interface, a Help dialog box will be displayed. If
you are using the standard interface, a menu will appear in the display area.

If you enter the command Debugger ? in the standard interface, the
debugger puts the cursor at the top of the topic list in the help menu. If you
press the F5 function key, the debugger puts the cursor at the entry for the
command displayed on the command line (if one is displayed). Otherwise, the
cursor is positioned at the top of the topic list. You can select topics from the
help menu in two ways:

• Use the cursor keys to move to the desired topic and press the Return
key.

• Type the first letter of the desired topic. This positions the cursor at that
topic. Then press the Return key.

Use the Return key to see more topics in alphabetical order.

To exit help in the standard interface, press the Esc (escape) key twice or
press function key F5.

Example To display the debugger help screen:

Debugger ?

Chapter 12: Debugger Commands
Debugger Help

378

Debugger Level

The Debugger Level command selects either high-level mode or
assembly-level mode for debugging. When debugging programs containing C
modules, you can switch back and forth between the two modes. If the
program contains no high-level modules accessible to the debugger, the
debugger displays an error message if you attempt to select high-level mode.

If no parameters are specified with this command, the mode is switched back
and forth between the two modes, performing the same function as the F3
function key.

Examples To select the assembly-level debug mode:

Debugger Level Assembly

To select the high-level debug mode:

Debugger Level High_Level

To switch to the alternate debug mode:

Debugger Level

Chapter 12: Debugger Commands
Debugger Level

379

Debugger Macro Add

The Debugger Macro Add command defines a macro.

The name of the macro is specified by <macro_name> . The result type of the
macro is specified by <type> . If a type is not specified, it defaults to type int.
A parenthesized list of parameters (<param_list>) may optionally follow
the macro name. Parameter names must be composed of alphanumeric
characters. A maximum of 40 parameters is allowed.

When you enter the Debugger Macro Add command, the Journal window is
automatically enlarged, and the debugger displays the macro text prompt
character (>) indicating that you can enter the macro body.

Note If the stdio screen or a user-defined screen is active when the Debugger Macro
Add command is issued, the Journal window will not become active. Keyboard
input at this point will be interpreted by the debugger as the macro definition.

To terminate the macro definition, a period (.) must be entered as the first and
only character on a line.

The macro definition consists of all lines entered after the macro name and
before the terminating period. The macro definition consists of the source
lines of the macro (the macro body) and optional formal arguments. The
syntax for the macro body is:

{macro_statement; [macro_statement;]...}

Chapter 12: Debugger Commands
Debugger Macro Add

380

The curly braces ({ }) are required punctuation. Formal arguments can be
used throughout the macro definition, and are later replaced by the actual
arguments in the macro call.

The maximum number of characters that can be entered on a line in a macro
definition is 255. When entering macros interactively, the debugger does not
respond to more than 78 characters on a line. When reading a command file,
the debugger stops recognizing characters after 255 characters have been read
on a line.

The maximum number of lines allowed in a macro depends on the complexity
of the lines. Macros with too many lines (too complex) will fail. Error 92 "Not
enough memory for expression" will be displayed.

A macro is similar to a C function. The body can contain any legal C statement
(except the SWITCH and GOTO statements). The statements IF, ELSE, DO,
WHILE, FOR, RETURN, BREAK, and CONTINUE can be used to control
program flow within a macro, just as in C. Macros have return types and can
be used in expressions.

Note Debugger commands may be used in macro definitions; they are indicated by
placing a dollar sign ($) at the beginning and the end of a command sequence.
For example, the following command sequences are legal in macro definitions:

$Program Find_Source Occurrence Forward system$;

or

$
Memory Assign Long &time=12
Program Find_Source Occurrence Forward system
$;

Macros can be executed by specifying the macro name on the command line in
a Debugger Macro Call command, in an expression, or with a breakpoint
command.

Macros can be removed using the command:

Symbol Remove <macro_name>

See Also Breakpt Access
Breakpt Instr
Breakpt Read
Breakpt Write

Chapter 12: Debugger Commands
Debugger Macro Add

381

Debugger Macro Call
Debugger Macro Display
Program Run
Symbol Remove
The “Using Macros and Command Files” chapter
The “Predefined Macros” chapter in this manual.

Example Debugger Macro Add int power(x, y)
int x;
int y;
{
 int i; /* Loop counter */
 int multiplier; /* Value x is multiplied by */

 /* Multiply x by itself y -1 times */
 for (i = 1, multiplier = x; i < y; i++)
 x *= multiplier;

 /* Return x ^y */
 return x;

}
.

Debugger Macro Add void stackchk()
{
 /* The symbols ’stack’ and ’TopOfStack’ exist in the compiler’s */
 /* environment library, and are addresses which indicate the */
 /* bottom and the top of the system stack. The symbol @sp is a */
 /* debugger reserved symbol which contains the current value of */
 /* the processor’s stack pointer. */

 $Expression Printf "%d bytes of stack used", TopOfStack - @sp$;
 $Expression Printf "%d bytes of stack available", @sp - stack$;
}
.

Chapter 12: Debugger Commands
Debugger Macro Add

382

Debugger Macro Call

The Debugger Macro Call command calls a macro previously defined by the
Debugger Macro Add command or a macro built into the debugger.

See Also Debugger Macro Add
Debugger Macro Display
Symbol Remove

Example To call the previously defined macro ’stackchk()’:

Debugger Macro Call stackchk()

Chapter 12: Debugger Commands
Debugger Macro Call

383

Debugger Macro Display

The Debugger Macro Display command displays the source code for the
named macro. If a window number is specified (< user_window_nmbr>), the
macro source is written to the file or user-defined window associated with the
number. If you do not specify a window number, the macro source is written to
the Journal window.

Macro source for built-in macros cannot be displayed.

See Also Debugger Macro Add
File Command
Symbol Display

Examples To display the source for macro ’stackchk’ in user-defined window 57:

Debugger Macro Display stackchk,57

To display the source for macro ’stackchk’ in the Journal window:

Debugger Macro Display stackchk

Chapter 12: Debugger Commands
Debugger Macro Display

384

Debugger Option Command_Echo

The Debugger Option Command_Echo command controls whether or not
commands executed from a command file are echoed (copied) to the Journal
window. If the oFF parameter is specified, only the results (if any) of a
command are copied to the Journal window. If the On parameter is specified,
both the command and its results (if any) are echoed to the Journal window.
The default setting is On.

Examples To turn OFF echo to the Journal window of commands executed from a
command file:

Debugger Option Command_Echo oFF

To turn ON echo to the Journal window of commands executed from a
command file:

Debugger Option Command_Echo On

Chapter 12: Debugger Commands
Debugger Option Command_Echo

385

Debugger Option General

The Debugger Option General command changes the default values for the
following debugger startup options for the current debugging session:

Align_Bp Aligns breakpoints with processor instruction start

Frame_Stop Controls stack walking

Demand_Load Enables/disables demand loading of symbols

Radix Interprets numbers as decimal or hex

Step_Speed Specifies the stepping speed

Use the Debugger Option List command to display the current option values.

To permanently change any option default values, first use the Debugger
Option command to change the value(s) and then use the File Startup

Chapter 12: Debugger Commands
Debugger Option General

386

command to save the new default values in a startup file. See the File Startup
command for more information.

Align_Bp

The Align_Bp option controls automatic alignment of low-level breakpoints
and automatic alignment of disassembly. If the Align_Bp option is set to On,
the debugger locates what it interprets as the starting address of all
instructions in a module (by disassembling code from the beginning of the
module). If you try to set the breakpoint at an address other than the start of
an instruction, the debugger moves the breakpoint to the beginning of the next
instruction and displays a warning. If you try to display memory mnemonically
from an address other than the start of an instruction, the debugger moves the
disassembly address to the beginning of an instruction. No Warning is
displayed. If the Align_Bp option is set to oFF, the debugger lets you set the
breakpoint at any address. The default setting is oFF.

Note If multiple breakpoints exist in the same program area and Align_Bp is set
to On, their alignment may be incorrect. Make sure the Align_Bp option is
set to oFF to prevent breakpoint alignment problems.

Frame_Stop

When you set the Frame_Stop option to On, if the debugger encounters a bad
stack frame, it displays only the valid stack frames below the bad frame in the
Backtrace window. When you set the Frame_Stop option to oFF, the debugger
displays all frames, including the bad frame. The default setting is oFF.

Demand_Load

When the Demand_Load option is set to On, the debugger loads some symbol
information on an as-needed, demand basis rather than during the initial
loading of the executable (.x) file. Symbol information for global symbols,
local symbols in the source module containing main, and local symbols in
assembly modules are loaded during the initial load of the executable file.
Local symbols in C source modules other than that module which contains
main are loaded when the debugger explicitly references the module or when
the program is stopped with the program counter set to an address in the
module. Demand loading lets you load and debug programs that you could not

Chapter 12: Debugger Commands
Debugger Option General

387

otherwise load because of very large amounts of symbol information. The
default setting for Demand_Load is oFF.

There are several side effects of demand loading. The debugger command
Memory Unload_BBA is disabled. Type mismatch errors may not be detected
during the initial load of the executable (.x) file. Global symbols may have
leading underscores stripped, depending on whether they were defined or
referenced in a C or assembly source module.

Radix

The radix option causes the debugger to interpret numeric literals, including
integers and addresses, as either decimal or hexadecimal values. By default,
numeric literals are interpreted as decimal values.

If you set Radix to hexadecimal, any number you want interpreted as decimal
must be terminated with a T (for example, specify 32 as 32T). Binary numbers
are not available when Radix is set to hexadecimal. Floating point and
enumeration type values are not affected by the radix option.

The Output parameter lets you specify whether the output of the Expression
Display_Value, Expression Monitor Value, and Program Context Expand
command is displayed in decimal or hexadecimal format.

Step Speed

The Step_Speed option specifies the stepping speed. The stepping speed can
be in the range of 0 to 100 units. Higher numbers represent slower speeds.
This option affects the Program Step command. The default value is 0.

See Also File Startup
Debugger Option List

Example To align assembly-level breakpoints at the beginning of an instruction:

Debugger Option General Align_Bp On

Chapter 12: Debugger Commands
Debugger Option General

388

Debugger Option List

The Debugger Option List command lists the current debugger option values
in the Journal window. The list will be similar to the sample list shown in the
example.

See Also Debugger Option Command_Echo
Debugger Option General
Debugger Option Symbolics
Debugger Option View

Examples To list the current debugger option settings in the Journal window:

Debugger Option List

> Debugger Option List
 Processor = 68020
 Intermixed = On
 Assem_Symbols = On
 Step_Speed = 0
 Radix = Decimal_Input, Decimal_Output
 Stdio_Window = Swap
 Check_Args = oFF
 Align_Bp = oFF
 Breakpt_Window = Swap
 More = On
 Highlight = Inverse
 Frame_Stop = oFF
 Command_Echo = oFF
 View_Window = Swap
 Demand_Load = oFF
 Amt_Scroll = 1
 Trace_Counts = True
 Fetch_Align = Byte

Chapter 12: Debugger Commands
Debugger Option List

389

Debugger Option Symbolics

The Debugger Option Symbolics command changes the default values for the
following debugger symbol options and C source line display options for the
current debugging session:

Assem_Symbols Displays symbols in assembly code

Intermixed Intermixes C source with assembly code

Check_Args Enables parameter checking in commands and macros

Use the Debugger Option List command to display the current option values.

To permanently change any option default values, first use the Debugger
Option command to change the value(s) and then use the File Startup
command to save the new default values in a startup file. See the File Startup
command for more information.

Assem_Symbols

The Assem_Symbols option causes symbols instead of memory addresses to be
displayed in the disassembled code whenever possible. Symbol names are
placed to the right of the disassembled code for immediate values. This is done
because there is no sure way of telling if the immediate value was represented
by the symbol at assembly time. This option is set to On by default.

Chapter 12: Debugger Commands
Debugger Option Symbolics

390

Intermixed

The Intermixed option intermixes C source code with the assembly code
generated for each respective C statement. This option is off by default.

Check_Args

The Check_Args option controls parameter checking in commands and
macros. If oFF is selected, the debugger does not do any argument checking. If
On is selected, the debugger warns you when an assignment is made which
contains a C type mismatch. This option is off by default.

See Also File Startup

Examples To display symbol names instead of address values in disassembled code:

Debugger Option Symbolics Assem_Symbols On

To turn OFF display of C source lines in assembly-level Code window:

Debugger Option Symbolics I ntermixed o FF

To enable debugger expression parameter checking:

Debugger Option Symbolics Check_Args On

Chapter 12: Debugger Commands
Debugger Option Symbolics

391

Debugger Option Trace

The Debugger Option Trace command changes the default behavior of
bus-level tracing.

Count

If Count is Nothing , all of the trace memory will be used to store bus states.

If Count is Time , half of the trace memory will be used to store timing
information.

The debugger interface does not display timing information. Use the
emulator/analyzer interface to display timing.

Fetch_Align

The Fetch_Align option allows you to trigger a trace on an instruction’s
address which never appears on the bus. For example, this might happen
when an instruction for a processor with a 32-bit bus lies between longword
boundaries. The Fetch_Align operation masks address values so that they
appear to occur on the boundaries appropriate for the processor’s bus width.

Defaults are Count Nothing and Fetch_Align Long. If you are using 16-bit
memory with a 68030, you should specify Fetch_Align Word.

See Also Information about "equivalent addresses" in your analyzer manual.

Chapter 12: Debugger Commands
Debugger Option Trace

392

Debugger Option View

The Debugger Option View command changes the default values for the
following debugger display options for the current debugging session:

Breakpt_Window
View_Window
Highlight
More
Stdio_Window
Amt_Scroll

Use the Debugger Option List command to display the current option values.

To permanently change any of the default values, first use the appropriate
Debugger Option command to change the value(s) and then use the File
Startup command to save the new default values in a startup file. See the File
Startup command for more information.

Chapter 12: Debugger Commands
Debugger Option View

393

Breakpt_Window

The Breakpt_Window option controls the display of the breakpoint window.

The On setting causes the Breakpoint window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
breakpoint is set or deleted.

If you specify the Swap setting, the window is not automatically displayed.
You must set or delete a breakpoint or enter the Window Active Breakpoint
command to display the window. The default setting is Swap.

View_Window

The View_Window option controls the display of the view window.

The On setting causes the View window to be displayed at all times. The
window may be hidden by other windows but will be displayed whenever a
Debugger Execution Display_Status command is executed.

If you specify the Swap setting, the window is not automatically displayed.
You must enter the Debugger Execution Display_Status command or the
Window Active View command to display the window. The default setting is
Swap.

Highlight

The Highlight option determines whether highlighted information in
debugger windows is displayed in half-bright video or inverse video. The
default is Inverse.

More

The More option controls how information resulting from a debugger
command is listed to the Journal window.

If the More option is On, information is listed one screen at a time in the
Journal window, in the same way as the more command in the Unix operating
system works.

If the More option is oFF, all information resulting from a debugger command
is written to the display at once, making it difficult to view information greater
than the number of lines available in the Journal window. The default setting
is On.

Chapter 12: Debugger Commands
Debugger Option View

394

Stdio_Window

The Stdio_Window option controls the display of the Stdio window.

The Swap setting causes the Stdio window to be displayed when a program
writes to it and to be removed when the program returns to the command
mode.

The On setting causes the Stdio window to be displayed at all times. The
window may be hidden by other windows but will be displayed when a program
is writing to it.

If the oFF setting is selected, the window is not automatically displayed. You
must press function key F6 or enter the command Window Screen_On
Stdio to display the window.

The default setting is Swap.

Amt_Scroll

The Amt_Scroll option controls the amount that the Journal and Stdio
windows are scrolled when written to. When the output reaches the bottom of
the window, the data scrolls up one line by default. You can specify a number
of lines from one to 50.

Examples To set the Swap option so that the Breakpoint window is displayed only when
the Window Active Breakpoint command is executed:

Debugger Option View Breakpt_Window Swap

To set the View_Window option so that the view window is always displayed:

Debugger Option View View_Window On

Chapter 12: Debugger Commands
Debugger Option View

395

Debugger Pause

The Debugger Pause Time command pauses the debugger for the specified
number of seconds or (if you enter the Debugger Pause command without the
Time parameter) pauses the debugger until you press the space bar,
CTRL C, or the escape key (Esc) twice.The Debugger Pause command is
useful when executing command files.

See Also File Command

Examples To pause the debugger for ten seconds:

Debugger Pause Time 10

To pause the debugger until the space bar, CTRL C, or Esc-Esc is pressed:

Debugger Pause

Chapter 12: Debugger Commands
Debugger Pause

396

Debugger Quit

The Debugger Quit command ends a debugging session without saving the
session. If you enter the command Debugger Quit Yes , the debugging
session is immediately ended.

The Debugger Quit command does not save the debugging session. Use the
File Startup command to save the current set of debugger startup options and
window parameters in a startup file.

Yes Option

The Yes option terminates only this interface to the emulator. If this is the
only interface using the emulator, the emulator will be left locked.

Locked Option

The Locked option lets you lock the emulation hardware (and a connected
target system) so that other users cannot access the hardware until it is
explicitly released.

This option will cause all interfaces connected to the emulator to disconnect.

Released Option

The Released option releases the emulation hardware to other users on the
host computer system.

This option will cause all interfaces connected to the emulator to disconnect.

See Also Debugger Host_Shell

Chapter 12: Debugger Commands
Debugger Quit

397

Examples To terminate the debugging session immediately:

Debugger Quit Yes

To terminate the debugging session and release the emulator hardware so that
other users can access it:

Debugger Quit Released

To terminate the debugging session and lock the emulator hardware so that
other users cannot access it:

Debugger Quit Locked

Chapter 12: Debugger Commands
Debugger Quit

398

Expression C_Expression

The Expression C_Expression command calculates the value of most valid C
expressions or assigns a value to a variable. The result is displayed in floating
point or in decimal, hexadecimal, and ASCII formats.

The Expression C_Expression command can be used to set C variables by
specifying a C assignment statement. This command recognizes variable types,
and the assignment expressions specified behave according to the rules of C.

Note The Expression C_Expression command cannot evaluate conditionals of the
form:

<expression>?<expression>:<expression>

Examples To calculate the value of ’time’ and display the result "data address 000091DC
{time_struct}":

Expression C_Expression time

To calculate the value of member ’hours’ of structure ’time’ and display the
result "4 0x04":

Expression C_Expression time->hours

To assign the value 1 to ’system_is_running’ and display the result "1 0x01":

Expression C_Expression system_is_running = 1

Chapter 12: Debugger Commands
Expression C_Expression

399

Expression Display_Value

The Expression Display_Value command displays expressions and their values
in the Journal window. All expressions displayed with this command are
displayed according to their type as shown in the following list:

Type Display Format

Ints
Longs
Shorts
Chars

Pointers
Enums

Arrays
Structures
Quoted String
Hex Byte
Hex Word
Hex Double Word
Float
Double

32-bit signed decimal numbers
32-bit signed decimal numbers
16-bit signed decimal numbers
8-bit characters (unsigned hexadecimal numbers if not
printable)
32-bit unsigned numbers
Name of Enumerator constant (enumerator value if
name not defined)
All elements
All members
All characters as typed, in by double quotes (" ")
8-bit hexadecimal
16-bit hexadecimal
32-bit hexadecimal
32-bit floating point
64-bit floating point

Note The contents of an item such as an array is displayed instead of the C value of
the item, which is its address.

Chapter 12: Debugger Commands
Expression Display_Value

400

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the variable flags is a
character array, the following command results in elements flags[10]
through flags[30] being displayed:

Expression Display_Value flags+10..+30

Note that the command first evaluates flags[10] to a character, and uses
this as the base of the address range. Flags[30] is also evaluated to a
character. It is used as the end of the address range.

Any expression can be type cast to display it in a different format. All values
that make up a complex type are printed. For example, if the variable count is
a long, the following statement displays it as a four-character array:

Expression Display_Value (char[4])&count

To display the contents of a character array as a string, cast the variable using
the quoted string cast, as shown in the following example:

Expression Display_Value (Q S)buf

If the type of the expression is unknown, it defaults to type byte. See the
“Expressions and Symbols in Debugger Commands” chapter for more
information about type casting.

See Also Expression Fprintf
Expression Monitor Value
Expression Printf
Memory Display

Examples To display the value of the variable ’system_is_running’: 01h

Expression Display_Value system_is_running

To display the address of the variable ’system_is_running’: 000091F0

Expression Display_Value &system_is_running

To display the address of the C structure ’time’: 000091DC

Chapter 12: Debugger Commands
Expression Display_Value

401

Expression Display_Value time

To display the values of the members of structure ’time’:
hours 4
minutes 0
seconds 20

Expression Display_Value *time

To display the name of the current program module:

Expression Display_Value @module

To display the name of the current program function:

Expression Display_Value @function

Chapter 12: Debugger Commands
Expression Display_Value

402

Expression Fprintf

The Expression Fprintf command prints formatted output to the specified
user-defined window. Formatted output may be written to a file that has been
opened by the File User_Fopen command. The Expression Fprintf command
is similar to the C fprintf function.

This command allows type conversions, scaling, and positioning of output in a
file or in a window. The window number must have been previously assigned
by a File User_Fopen or Window New command or the window number must
be the log file number (28) or journal file number (29), if opened.

The command requires a format string as the second parameter. The format
string may contain both text and argument conversion specifications.
Whenever a conversion specification is encountered, the next argument is
converted according to the specification, and the result is copied to the output
window.

The conversion specifiers are similar to those in C and have the following
format:

%[–] [digits] [.[digits]] [l] conversion_char

where:

% indicates the start of a conversion specification.

Chapter 12: Debugger Commands
Expression Fprintf

403

– indicates that the result of conversion is to be left-justified
within the field.

digits is a string of one or more decimal characters. The first digits
is a minimum field width. The field will be at least this many
characters wide, padded if necessary. The padding is
normally on the left. When ’–’ is used, padding is on the
right. The field is padded with blanks unless the first digit in
digits is a 0; then the field is padded with zeros.

. separates two digit strings and must be specified if a second
digit string is used.

digits (second occurrence) is the maximum field width. For
strings, it is the maximum number of characters to print; for
f and e notations, it is the maximum number of fractional
decimal places to print. For g notation, it is the number of
significant digits to be printed.

l indicates that a conversion character (d, x, or u)
corresponds to a long argument.

Conversion Characters

Conversion characters are listed in the following table with a detailed
description of each character.

Char Description

c The argument is converted to character format.

d The argument is converted to decimal format.

e, E The float or double argument is converted to the format
[–]d.ddde+dd , where the number of digits after the
decimal point is equal to the precision. If precision is zero,
no decimal point is printed. The default precision is 6. The
E conversion character produces a number with E instead of
e introducing the exponent. The exponent always contains
at least two digits.

Chapter 12: Debugger Commands
Expression Fprintf

404

f The double argument is converted to decimal notation in
the format [–]ddd.ddd , where the number of digits after
the decimal point is equal to the precision specification. If
the precision is not specified, it is 6 by default; if the
precision is explicitly zero, no decimal point appears. If
there is a decimal point, at least one digit appears before it.

g, G The double argument is printed in f or e notation, or in F or
E notation when G is used. The precision specifies the
number of significant digits. The notation used depends on
the value converted; e or E notation will be used only if the
exponent resulting from the conversion is less than –3 or
greater than or equal to the precision. Trailing zeros are
removed from the result; a decimal point appears only if it is
followed by a digit.

h The argument is either the debugger internal variable
@HLPC, or a high level line number preceded by the #
character. Source lines are formatted as strings according to
%s rules. (Note: See @HLPC in the "Reserved Symbols"
chapter of this manual.)

m The argument is an instruction address. The disassembled
instruction is treated as a string.

s The argument is a string. The characters from the string are
copied to the output until a NULL character is encountered
or the maximum number of characters specified have been
printed.

u The argument is converted to unsigned decimal format.

v The argument is displayed according to its type.

w The argument is is a window number. The current contents
of the window are written to the specified window.

X The argument is converted to hexadecimal. Letters are
displayed in upper case. 0x is not printed before the value.

Chapter 12: Debugger Commands
Expression Fprintf

405

x The argument is converted to hexadecimal. Letters are
displayed in lower case.

% The character % is substituted for the field. Any other
non-conversion character following a % is printed. %% is
used to generate % in the output as a literal character.

Conversion characters are case-sensitive. Values printed in E notation have
the following format:

[–]d.d...E{+|–}dd

Each d represents a decimal digit. The number is first scaled so that one digit
appears to the left of the decimal point. The number of digits in the fractional
part is six by default, or the maximum field width if specified. The sign of the
mantissa is printed only if the number is negative. The sign of the exponent is
always printed.

Values printed in F notation have the following format:

[–] d... . d...

Each d represents a decimal digit. The number of digits in the fractional part is
six by default or the maximum field width if specified. The number of digits
printed depends on the number of significant digits in the number.

Because floating point values are passed as parameters, they are converted to
double precision. Parameters must be promoted to double precision values as
a requirement of the C language. Other values passed as parameters may also
be converted.

The Expression Fprintf command uses the format string to decide how many
arguments to print. The number of conversion specifications must equal the
number of arguments. If there are too many arguments, some of them will not
be printed. If there are too few arguments, the value printed cannot be
determined.

If the argument type does not correspond to its conversion field specification,
arguments may be converted incorrectly.

See the Expression Printf command for details about conversion specifiers.

Chapter 12: Debugger Commands
Expression Fprintf

406

See Also Expression Printf
File Journal
File Log
File User_Fopen
Window New

Examples To print value of ’var’ to user window 57 as a single character:

Expression Fprintf 57,"%c",var

To print the string in double quotes to user window 57 followed by the floating
point value of ’temperature’ with a precision of 2:

Expression Fprintf 57,"The value of ’temperature’ is:
%.2f \n",temperature

To print source line 24 to user window 55:

Expression Fprintf 55,"%h",#24

To print the contents of the assembly-level stack window to user window 256:

Expression Fprintf 256,"%w",14

Chapter 12: Debugger Commands
Expression Fprintf

407

Expression Monitor Clear_All

The Expression Monitor Clear_All command stops monitoring of all
expressions being monitored with the Expression Monitor Value command
and removes all expressions from the Monitor window.

See Also Expression Fprintf
Expression Monitor Delete
Expression Monitor Value
Expression Printf
Memory Display

Examples To stop monitoring all expressions:

Expression Monitor Clear_All

Chapter 12: Debugger Commands
Expression Monitor Clear_All

408

Expression Monitor Delete

The Expression Monitor Delete command stops monitoring of specified
expressions being monitored with the Expression Monitor Value command
and removes those expressions from the Monitor window.

When an expression is monitored using the Expression Monitor Value
command, it is assigned a line number, which is displayed in the Monitor
window. These assigned line numbers are used to specify the expression or
group of expressions to be deleted (removed). All monitored expressions can
be deleted with the Expression Monitor Clear_All command.

See Also Expression Fprintf
Expression Monitor Clear_All
Expression Monitor Value
Expression Printf
Memory Display

Examples To stop monitoring expression 2 in the Monitor window:

Expression Monitor Delete 2

To stop monitoring expressions 3 through 6 in the Monitor window:

Expression Monitor Delete 3..6

Chapter 12: Debugger Commands
Expression Monitor Delete

409

Expression Monitor Value

The Expression Monitor Value command monitors the specified expressions
as the target program is executing. Expressions are updated and displayed in
the Monitor window each time the debugger stops executing the program.

Up to seventeen lines, selected by the display line range parameter
(;< display_nmbr> ..< display_nmbr>), can be displayed in the Monitor
window.

Variables located in registers are shown with a ? between their names and
values.

All expressions monitored with this command are displayed according to their
type as follows:

Type Display Format

Chapter 12: Debugger Commands
Expression Monitor Value

410

Ints
Longs
Shorts
Chars

Pointers
Enums

Arrays
Structures
Quoted String
Hex Byte
Hex Word
Hex Double Word
Float
Double

32-bit signed decimal numbers
32-bit signed decimal numbers
16-bit signed decimal numbers
8 bit characters (unsigned hexadecimal numbers if not
printable)
32-bit unsigned numbers
Name of Enumerator constant (enumerator value if
name not defined)
All elements if enough lines, else first element
All members if enough lines, else first element
Characters surrounded by double quotes (" ")
8-bit hexadecimal
16-bit hexadecimal
32-bit hexadecimal
32-bit floating point
64-bit floating point

If an expression range is displayed, each value within the range is displayed
according to the base type (if one exists). For example, if the variable flags is a
character array, the following command displays 20 characters.

Expression Monitor Value flags+10..+29

Any expression can be type cast to display its value in a different format. For
example, if the variable count is a long value, the following statement causes
count to be displayed as a four character array:

Expression Monitor Value (char[4])&count

If the type of the expression is unknown, it defaults to type byte.

Only 17 lines can be displayed in the data window. By default, a single line is
used to display monitored expressions. If an array is monitored, only the
elements that will fit on one line will be displayed. If a structure is monitored,
only the first member will be displayed. To display an entire array or structure,
a display line range may have to be specified. If all lines in the data window are
filled, you must use the Expression Monitor Delete command to delete an
expression before monitoring another one.

If you do not specify a display line range, the next available line in the data
window is selected to display the monitored variable. If you specify one line,

Chapter 12: Debugger Commands
Expression Monitor Value

411

the expression is displayed on that line. If you specify a range of lines, the
amount of data that will fit on those lines is displayed.

See Also Expression Monitor Clear_All
Expression Monitor Delete
Symbol Display

Examples To monitor the value of variable ’current_temp’:

Expression Monitor Value current_temp

To monitor the value of the three members in structure ’time’ and display
them on Monitor window lines 4 through 6:

Expression Monitor Value *time;4..6

To monitor the contents of string buf:

Expression Monitor Value (Q S)buf

Chapter 12: Debugger Commands
Expression Monitor Value

412

Expression Printf

The Expression Printf command prints formatted output to the Journal
window.

See the Expression Fprintf command for a detailed description.

See Also Expression Fprintf
File User_Fopen

Examples To print the string in double quotes to the journal window followed by the
floating point value of ’temperature’ with a precision of 2:

Expression Printf "The value of ’temperature’ is: %.2f
\n",temperature

To print source line 24 to the Journal window:

Expression Printf "%h",#24

To print the name of the current module to the Journal window:

Expression Printf "%s",@module

To print the disassembled instruction at address 2030h to the Journal window
as a string:

Chapter 12: Debugger Commands
Expression Printf

413

Expression Printf "%m", 2030h

00002030 2040 MOVEA.L D0,A0

To print the contents of the assembly-level stack window to the Journal
window:

Expression Printf "%w",14

> Expression Printf "%w",14
 00043FC8=00000690
FP->00043FC4=00043FF0
 00043FC0=000604AC
 00043FBC=00000001
SP->00043FB8=00000001

Chapter 12: Debugger Commands
Expression Printf

414

File Command

The File Command command reads the file specified by < file_name> and
executes the commands contained in the file as though they were entered from
the keyboard. Commands in the file are executed until the end of the file is
reached. Input then continues from the previous source. The previous source
can be the keyboard or another command file.

This command is commonly used to read macro definitions from a file, to set
up I/O ports, or to change window displays.

File Command commands may be nested up to 16 levels deep.

If the filename consists of alphanumeric characters, a period, or a backslash,
double quotation marks are optional. Otherwise, quotation marks must
enclose the file name. If a filename extension is not specified, the debugger
automatically appends a default extension, .com.

Command files can be executed at debugger startup using the -c option, from
the command line during a debugging session, or from a startup file.

See the File Startup command description for information about how to
automatically execute a command file when the debugger is started.

See Also File Log
File Startup
The “Using Macros and Command Files” chapter.

Example To execute command file ’varTrace.com’:

File Command varTrace

Chapter 12: Debugger Commands
File Command

415

File Error_Command

The File Error_Command command sets the command file error handling
mode. The command specifies what action the debugger takes when an error
occurs while reading a command file. Abort_Read causes the debugger to
return to the command line after an error and wait for keyboard input. This is
the default action. Continue_Read causes the debugger to continue to the next
command in the command file after an error. Quit_Debugger causes the
debugger to end the debugging session when an error occurs (as if you typed
Debugger Quit Yes).

See Also File Command
File Log

Examples To return to the command line after an error and wait for keyboard input:

File Error_Command Abort_Read

To continue to the next command in the command file after an error:

File Error_Command Continue_Read

To exit the debugger when an error occurs:

File Error_Command Quit_Debugger

Chapter 12: Debugger Commands
File Error_Command

416

File Journal

The File Journal command copies the information written to the Journal
window output into a journal file specified by < file_name> . The default
journal filename extension .jou will be appended to < filename> . The journal
file provides a history of your debugging session.

File Journal On opens a journal file for writing. If a file already exists
with the specified file name, new information is appended to the end of the
existing file.

File Journal Append opens an existing file. New information is
appended to the end of the existing file.

File Journal oFF closes the journal file.

A window number (29) is assigned to the journal file so that output can be
written to that file using the Expression Fprintf command.

See Also Expression Fprintf

Examples To make and open journal file ’debug1.jou’ for writing:

File Journal On debug1

To close the currently open journal file:

File Journal o FF

To open existing journal file ’debug1.jou’ for writing and append new
information at the end of the file:

File Journal Append debug1

Chapter 12: Debugger Commands
File Journal

417

File Log

The File Log command records user input in a command file, specified by
< file_name> . The default filename extension .com will be appended to
< filename> . The File Log command allows an interactive debugger session to
be logged as a command file which can be rerun at a later time.

File Log On opens a file for writing. If the specified file already exists, the
file is overwritten by the new data.

File Log Append reopens a logging file to allow new information to be
added to the end of the file.

File Log oFF terminates logging to the file.

File Log Comment places a string of text in the file as a comment. If a log
file is not open, File Log Comment commands are ignored by the debugger.

All successful commands are written to the log file so the file can later be used
as a command file.

Commands which are entered but not successfully completed, are written to
the .com file as comments along with their error codes.

User input is recorded in the log file until the Log oFF command is executed.

A window number (28) is assigned to the log file so that output can be written
to that file using the Expression Fprintf command.

See Also Expression Fprintf
File Error_Command

Chapter 12: Debugger Commands
File Log

418

Examples To make and open log file ’log1.com’ for writing:

File Log On log1

To close the currently open log file:

File Log o FF

To open existing log file ’log1.com’ for writing and append new information at
the end of the file:

File Log Append log1

To place the comment ’This is a comment string’ in the log file:

File Log Comment This is a comment string.

If a log file is not open, this command is ignored.

Chapter 12: Debugger Commands
File Log

419

File Startup

The File Startup command saves the current debugger startup options and
window parameters in a startup file specified by < startup_file> . When you
start a debugging session and specify the startup file with the -s option of the
db68k command, the startup options and window parameters you saved will be
the default parameters in that debugging session.

A startup file has an extension of .rc appended to the end of it. If you do not
specify a startup file name, the startup options are saved in a file named
db68k.rc. (Or db68030 for the 68030/EC030.)

You can modify default debugger startup option values with the Debugger
Option command and window parameters with the Window commands.

The following information is contained in the startup file.

Chapter 12: Debugger Commands
File Startup

420

Option Command
Parameters

Default Setting

Align_Bp
Amt_Scroll
Assem_Symbols
Breakpt_window
Check_Args
Command_Echo
Demand_Load
Exceptions
Frame_Stop
Highlight
Intermixed
More
Processor
Radix
Stdio_Window
Step_Speed
View_Window

oFF
1
On
Swap
oFF
On
On
Stop
oFF
Inverse
oFF
On
68020 or 68030/EC030
Decimal_Input, Decimal_Output
Swap
0
Swap

Window Information Window sizes, user windows, and
window locations

You can specify a command file to be executed when the debugger starts. If
you specify a command file, it executes after the debugger is started. Command
files may perform other operations at startup, such as I/O port setup and
macro definition.

See Also Debugger Option
File Command
Window New
Window Resize

Examples To save the current set of debugger startup options and window parameters in
startup file ’my_start_file.rc’:

File Startup my_start_file

Chapter 12: Debugger Commands
File Startup

421

To save the current set of debugger startup options and window parameters in
startup file ’my_start_file.rc’ and execute the command file ’initDemo.com’
whenever the debugger is started using ’my_start_file.rc’:

File Startup my_start_file , initDemo

Chapter 12: Debugger Commands
File Startup

422

File User_Fopen

The File User_Fopen command opens the file specified by < file_name> for
reading or writing and assigns a window number to it.

The File User_Fopen Append command opens an existing file for
writing, adding new information at the end of the file.

The File User_Fopen Create command creates a new file for writing.

The File User_Fopen Read command opens an existing file for reading.

After opening a file using the File User_Fopen Append or File User_Fopen
Create command, you can use the Expression Fprintf command to write
information to the file. Files opened for reading may be read from the built-in
macro fgetc(). See the "Predefined Macros" chapter of this manual for a
complete description of this macro.

The window number must be between 50 and 256 inclusive.

Use the Window Delete or the File Window_Close command to close the file.

See Also Expression Fprintf
File Window_Close
Window Delete
Window New

Chapter 12: Debugger Commands
File User_Fopen

423

Examples To open user window 57 and redirect any data written to window 57 to the file
’varTrace.out’:

File User_Fopen Create 57 File varTrace.out

To open user window 57 and append any data written to window 57 to the
existing file ’varTrace.out’:

File User_Fopen Append 57 File varTrace.out

To open file ’temp.dat’ for reading, accessing the file as user window 52:

File User_Fopen Read 52 File temp.dat

Chapter 12: Debugger Commands
File User_Fopen

424

File Window_Close

The File Window_Close command closes a device or file which was previously
opened with the File User_Fopen command. The Window Delete command
may also be used for this purpose.

See Also File User_Fopen
Window Delete

Example To close file associated with user window number 57:

File Window_Close 57

Chapter 12: Debugger Commands
File Window_Close

425

Memory Assign

Note Debugger/emulators cannot modify memory locations in target ROM

The Memory Assign command changes the contents of the memory location
specified by < addr> to the value or values defined by the expression < expr>
or expression string < expr_string>. The size of the memory elements to be
modified is specified by one of the size qualifiers (Byte, Word, or Long).

Expression strings are specified as ASCII characters enclosed in quotation
marks and/or as a list of values separated by commas. Expressions and
expression string elements will be truncated or padded as required, based on
the size qualifier.

Memory values can be entered interactively if you do not define a value on the
command line. When a value is not specified, the contents of the specified
memory locations are displayed in hexadecimal and decimal. You can change
the existing value by entering any legal expression followed by a carriage
return. The next memory location and its contents are then displayed. The
return key entered without a value will cause the command to terminate.

The Memory Assign command does not recognize variable typing. It is
intended to be used as an assembly-level memory setting routine. For example,

Chapter 12: Debugger Commands
Memory Assign

426

assume that the variable count is a long integer. If you want to set the value of
count equal to 5, the command

Memory Assign Long count=5

will not work. The command will set the memory location referenced by the
value of count equal to 5, not the contents of the variable. To set the value of
count equal to 5, use the following command:

Memory Assign Long &count=5

The Expression C_Expression command should be used to set C variables.
This command recognizes variable types and the specified expressions behave
according to the rules of C. The command:

Expression C_Expression count=5

will set count equal to 5.

See Also Expression C_Expression
Memory Register

Examples To display the contents of memory location 1000h and allow interactive
modification of memory contents:
00001000 = 0x48 72:

Memory Assign Byte 1000h

To change the contents of memory locations 2000h through 2005h to 00, 41,
00, 42, 00, 43, and change the contents of locations 2006h/2007h to the value
of ’system_is_running’:

Memory Assign Word 2000h=41h,42h,43h,system_is_running

Chapter 12: Debugger Commands
Memory Assign

427

Memory Block_Operation Copy

Note Debugger/emulators cannot copy to memory locations in target ROM.

The Memory Block_Operation Copy command copies the contents of the
memory range specified by < addr> ..< addr> to a block of the same size
starting at the memory location specified by < addr> .

See Also Memory Assign
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test

Examples To copy the block of memory starting at address 1000h and ending at address
10ffh to a block of the same size starting at address 5000h:

Memory Block_Operation Copy 1000h..10ffh,5000h

To copy the block of memory starting at the address of the structure
’current_targets’ and ending 15 bytes after this address to a block of memory
starting at the address of the structure ’default_targets’:

Memory Block_Operation Copy ¤t_targets..+0xf,
&default_targets

Chapter 12: Debugger Commands
Memory Block_Operation Copy

428

Memory Block_Operation Fill

Note Debugger/emulators cannot fill memory locations in target ROM.

The Memory Block_Operation Fill command fills the range of memory
locations specified by the address range < addr> ..< addr> with the value or
values specified by an expression < expr> or an expression string
< expr_string>. If no expression is given, the debugger fills the specified
memory locations with zeros. The specified size qualifier (Byte, Word, or
Long) determines the size of the value.

If you specify a single expression value, the debugger fills the memory area
with that value. If you enter an expression string, the debugger fills the
memory area with the specified string pattern.

An expression string is a list of values separated by commas and can include
ASCII characters enclosed in quotation marks. All expressions in an
expression string are padded or truncated to the size specified by the size
qualifiers if they do not fit the specified size evenly.

If the number of values in an expression string is less than the number of bytes
in the specified address range, the debugger repeatedly places the list of values

Chapter 12: Debugger Commands
Memory Block_Operation Fill

429

in memory until all designated memory locations are filled. If you specify more
values than can be contained in the specified address range, the debugger
ignores the excess values.

See Also Memory Assign
Memory Block_Operation Copy
Memory Block_Operation Match
Memory Block_Operation Search
Memory Block_Operation Test
Memory Register

Examples To fill memory locations 1000h through 1007h with the long pattern
61626364, 65666768:

Memory Block_Operation Fill Long 0x1000..+7=’abcdefgh’

To fill the memory area starting at location 1000h and ending at location 10ffh
with zeros:

Memory Block_Operation Fill Byte 0x1000..0x10ff

Chapter 12: Debugger Commands
Memory Block_Operation Fill

430

Memory Block_Operation Match

The Memory Block_Operation Match command compares the contents of two
blocks of memory to determine their similarities or differences. The command
compares the block of memory specified by the address range
< addr> ..< addr> with the same size block starting at < addr> .

The debugger displays differences between the two blocks of memory,
mismatched values and addresses, in the Journal window. If the contents of the
two blocks of memory are the same, the debugger displays the message
Memory blocks are the same.

The Memory Block_Operation Match Stop_On_Mismatch command halts
when a mismatch is found. If the Memory Block_Operation Match
Repeat_On_Mismatch command is selected, the comparison continues until
the end of the block.

When you execute the Memory Block_Operation Match
Stop_On_Mismatch/Repeat_On_Mismatch command without specifying an
address range, the debugger continues comparing the address range specified
in the previous Memory Block_Operation Match Stop_On_Mismatch
command starting from where it found the last mismatch.

See Also Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Search
Memory Block_Operation Test

Chapter 12: Debugger Commands
Memory Block_Operation Match

431

Examples To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop when a difference is found:

Memory Block_Operation Match Stop_On_Mismatch
1000h..10ffh,5000h

To execute the previous Memory Block_Operation Match
Stop_On_Mismatch command starting from where it found the last mismatch:

Memory Block_Operation Match Stop_On_Mismatch

To compare the block of memory starting at address 1000h and ending at
address 10ffh with a block of the same size beginning at address 5000h and
stop at the end of the memory block:

Memory Block_Operation Match Repeat_On_Mismatch
1000h..10ffh,5000h

Chapter 12: Debugger Commands
Memory Block_Operation Match

432

Memory Block_Operation Search

The Memory Block_Operation Search command searches the block of
memory specified by < addr> ..< addr> for the specified expression < expr> or
expression string< expr_string>. The size qualifier (Byte, Word, or Long)
specifies the size of an expression or each expression in an expression string. A
Memory Block_Operation Search command given without parameters
continues the search of a previous Memory Search command given with the
Once qualifier. The Repeatedly qualifier causes the search to repeat.

You can specify expression strings as ASCII characters enclosed in quotation
marks and/or as a list of values separated by commas. If the strings do not fit
the specified size evenly, all expressions in an expression string will be padded
or truncated to the size specified by the size qualifiers.

If you specify the Once qualifier, the search stops when the expression is
found. If you specify the Repeatedly qualifier, the debugger repeatedly
searches for the specified expression, displaying each match until it reaches the
end of the block or until you press CTRL C.

When you execute the Memory Block_Operation Search command with the
Once qualifier, subsequent Memory Block_Operation Search commands that
are executed without expression parameters cause the debugger to continue
searching through the originally specified address range starting from where it
found the last match. If the expression or expression string is not found in the
specified block, the debugger displays the message Not found.

Chapter 12: Debugger Commands
Memory Block_Operation Search

433

See Also Memory Display
Memory Block_Operation Copy
Memory Block_Operation Fill
Memory Block_Operation Match
Memory Block_Operation Test
Program Find First
Program Find Next

Examples To search for the expression ’gh’ in the memory range from address 1000h
through address 10ffh and stop when the expression is found or address 10ffh
is reached:

Memory Block_Operation Search Word Once
1000h..+0xff = ’gh’

To execute the previous Memory Block_Operation Search command starting
from where it found the last match:

Memory Block_Operation Search Word Once

To search for the hexadecimal value ’65666768’ in long format in the address
range 1000h through 10ffh and stop at the end of the address range:

Memory Block_Operation Search Long Repeatedly
0x1000..0x10ff=0x65666768

Chapter 12: Debugger Commands
Memory Block_Operation Search

434

Memory Block_Operation Test

The Memory Block_Operation Test command examines the specified memory
locations specified by < addr..addr> to verify that the value(s) defined by
< expr> or < expr_string> exist throughout the specified memory area. When
the debugger finds a mismatch, it displays the mismatched address and value.
The size qualifier (Byte, Word, or Long) specifies the size of an expression or
expression in a string.

If you enter a single expression value, the debugger tests the memory area for
that value. If you specify an expression string, the debugger tests the memory
area to verify that it is filled with the values found in the expression string.

You can specify expression strings either as ASCII characters enclosed in
quotation marks or as a list of values separated by commas. If they do not
evenly fit the specified size, all expressions in an expression string will be
padded with zero-valued bytes to the size specified by the size qualifier.

Once Qualifier

If you specify the Once qualifier, the test stops when a mismatch is found. If
you execute the Memory Block_Operation Test command with the Once
qualifier specified, subsequent Memory Block_Operation Test . . . Once
commands that are specified without parameters will continue testing through
the address range originally specified, beginning with the last address tested. A
Memory Block_Operation Test command given without parameters continues

Chapter 12: Debugger Commands
Memory Block_Operation Test

435

the test of a previous Memory Block_Operation test command given with the
Once qualifier, beginning with the last address tested.

Repeatedly Qualifier

If you specify the Repeatedly qualifier, the debugger continues testing the
specified value(s) for mismatches until the end of the block is reached, or until
you enter CTRL C.

Examples To test for the expression ’gh’ in the memory range from address 1000h
through address 10ffh and stop when a word not matching the expression is
found:

Memory Block_Operation Test Word Once 1000h..+0xff =
’gh’

To execute the previous Memory Block_Operation Test command starting
from where it found the last mismatch:

Memory Block_Operation Test Word Once

To test for the hexadecimal value ’65666768’ in long format in the address
range 1000h through 10ffh and stop at the end of the address range:

Memory Block_Operation Test Long Repeatedly
0x1000..0x10ff=0x65666768

Mismatched values are displayed in the Journal window.

Chapter 12: Debugger Commands
Memory Block_Operation Test

436

Memory Display

The Memory Display displays the contents of the specified memory locations.

Mnemonic Option

The Mnemonic option displays memory in assembly language mnemonics
starting at the memory location specified by < addr> . If you do not specify an
address, the debugger displays memory beginning with the address pointed to
by the program counter. This command functions only in the assembly-level
mode.

If you have executed the Debugger Options Symbolics Intermixed On
command, C source code lines will be intermixed with the assembly language
code (when applicable). If you have executed the Debugger Options Symbolics
Assem_Symbols On command, symbol references will be displayed with the
assembly language code.

The Prev, Next, Up, and Down keys may be used when the Code window is
active to display instructions with higher or lower addresses. Note that the
Prev and Up keys do not function when disassembling addresses outside of the
target program.

Chapter 12: Debugger Commands
Memory Display

437

Note If the Align_bp option is set to On, the address of the first instruction in the
assembly Code window may be incorrect after executing the Memory Display
Mnemonic command.

Byte, Word, and Long Options

The byte, word, or long qualifier option displays the contents of memory
locations specified by < addr> ..< addr> in the Journal window in both
hexadecimal and ASCII formats. The debugger represents nonprintable ASCII
characters by a period (.). The debugger displays memory contents in the size
specified by the size qualifier (Byte, Word, or Long).

If you specify an address range, the debugger displays all memory locations in
that range.

If you specify a single address, the debugger displays two lines of data.

If you do not specify any parameters, the debugger displays the next 80 bytes
(five lines) of data after the previously displayed address range.

The memory contents are displayed in the Journal window. The alternate view
of the Journal window is displayed if more than two lines are copied to the
display.

See Also Expression Display_Value
Symbol Display

Examples To display disassembled memory in the Code window starting at the symbol
’_emeg_shutdown’ (this command works only in assembly-level mode):

Memory Display Mnemonic _emeg_shutdown

To display memory in word format in the Journal window starting at the
symbol ’time’ and ending 15 bytes after ’time’:

Memory Display Word time..+0xf

Chapter 12: Debugger Commands
Memory Display

438

Memory Register

The Memory Register command changes the contents of a register, status flag,
or other processor variables such as pc or sp. The new contents are defined by
< value> .

The PC (program counter) is displayed or changed if you do not specify a
register name.

If you do not specify a value in the command, values are entered interactively.
You can enter multiple register values interactively. The debugger displays
contents of the specified register in binary, hexadecimal, or decimal, as
appropriate for the register. You can change the existing value by entering any
legal expression and pressing the Return key.

Pressing the Return key without specifying a register value terminates the
command.

All register names are preceded with an @ sign. A complete list of the
reserved words that you can use with this command is given in the "Reserved
Symbols" chapter of this manual.

See Also Memory Assign

Examples To modify register values interactively:

Memory Register

Chapter 12: Debugger Commands
Memory Register

439

The program counter (PC) is displayed in the Journal window. You can
modify the PC by entering a value (10a4h in this example) at the cursor
prompt and pressing Return. The PC will be modified, and the next register
will be displayed:

@pc = 0x000010B8 4280: 10a4h
@sp = 0x00015DB4 89524:

To set the value of register @d1 to 44h:

Memory Register @d1=0x44

To interactively change the value of register @d1:

Memory Register @d1

To set the value of the lower 32-bits of the CPU root pointer to 0x000174B4:

Memory Register @CRP_L = 0x000174B4

Chapter 12: Debugger Commands
Memory Register

440

Memory Unload_BBA

Note You must have the HP Branch Validator product for the processor you are
debugging code for installed on your system in order to use this command.

If you do not have the HP Branch Validator for your processor, the debugger
will display the following error message when you attempt to execute this
command:

error code = 141

No valid BBA spec file for <processor> processor

The Memory Unload_BBA command unloads basis branch analysis (BBA)
information from program memory. The BBA preprocessor (-b option) must
be used at compile time in order for this information to exist in program
memory. The file name bbadump.data is used as the default name of all dump
files if none is specified in the command.

Once this information has been unloaded, it can be formatted with the BBA
report generator, bbarep (see the HP Branch Validator for AxLS C User’s
Guide).

Chapter 12: Debugger Commands
Memory Unload_BBA

441

Note The Unload_BBA command is disabled when the debugger option
Demand_Load is On. If Demand_Load is oFF but the program was loaded
with Demand_Load On, the Memory Unload_BBA command will generate a
BBA file with incomplete information. See the Debugger Option General
command description in this manual for more information on the
Demand_Load option.

Memory Unload_BBA All

The Memory Unload_BBA All command unloads branch analysis information
associated with all absolute files loaded into the file bbadump.data.

This command lets you run bbarep without specifying a file name. The file
name bbadump.data is used as the default name of all dump files.

Memory Unload_BBA All To < "dump_file">

The Memory Unload_BBA All To < "dump_file"> command unloads branch
analysis information associated with all absolute files loaded into
< "dump_file"> .

Memory Unload_BBA Load_File < "load_file">

The Memory Unload_BBA Load_File command unloads only basis branch
information associated with the specified absolute file (< "load_file">) into
the file bbadump.data.

This command lets you run bbarep without specifying a file name. The file
name bbadump.data is used as the default name of all dump files.

Memory Unload_BBA Load_File < "load_file"> To < "dump_file">

The Memory Unload_BBA Load_File < "load_file"> To < "dump_file">
command unloads only basis branch information associated with the specified
absolute file (< "load_file">) into the file < "dump_file"> .

Examples To unload all branch analysis information into file "bbadump.data":

Memory Unload_BBA All

Chapter 12: Debugger Commands
Memory Unload_BBA

442

To unload all branch analysis information into file "mydata":

Memory Unload_BBA All To "mydata"

To unload branch analysis information associated with absolute file a.out.x
into file "bbadump.data":

Memory Unload_BBA Load_file "a.out"

To unload branch analysis information associated with absolute file a.out.x
into file "mydata":

Memory Unload_BBA Load_file "a.out" To "mydata"

Chapter 12: Debugger Commands
Memory Unload_BBA

443

Program Context Display

The Program Context Display command displays the current module,
function, and line number in the Journal window. The current module is the
one pointed to by the program counter.

This command will display both the view context, as set by a Program Context
Set command, and the context of the current program counter, if the two are
different.

Example To display the current module, function, and line number:

Program Context Display

Current context is: @ecs\\main\main On line 81

See “Expression Elements” section of the “Expressions and Symbols in
Debugger Commands” chapter for a description of debugger operators.

Note If the PC does not point to a valid module, an alternate context is displayed.
The alternate context is the name of the executable file that has been loaded
into the debugger.

Chapter 12: Debugger Commands
Program Context Display

444

Program Context Expand

The Program Context Expand command displays values of the parameters
passed to a function, and the local variables in a function. The values are
displayed in the Journal window.

To display a function’s calling parameters and local variables, specify the
function’s stack level preceded by an at sign (@). The Backtrace window in
high-level mode displays the function calling chain from the main program to
the current function. The debugger displays the function stack (nesting) level
beside each function name. The current function is level 0, the caller is always
1, etc.

You can use the Program Context Expand command to display the local
variables and parameters of any function shown in the backtrace window. The
calling parameters and local variables are accessible on the C run-time stack
for functions in a directly-called chain from the main program to the current
function.

See Also Expression Display_Value
Expression Monitor
Symbol Display

Example To display local variables and calling parameters of the function at stack level
2:

Program Context Expand @2

Chapter 12: Debugger Commands
Program Context Expand

445

Program Context Set

The Program Context Set command changes the default module and function
(context). The current module (the one to which the program counter is
pointing) is the default when functions are referenced without a module or
function qualifier.

The default module reverts to the current module when you invoke any
command that causes program execution, or if you execute the Program
Context Set command without a parameter.

Example To select module ’updateSys’ as the current module:

Program Context Set updateSys

Chapter 12: Debugger Commands
Program Context Set

446

Program Display_Source

The Program Display_Source command displays C source code in the Code
window beginning at the specified line or function. This command works in
high-level mode only. If you do not specify a line number or function name,
the debugger displays the line pointed to by the program counter.

You can display lines or functions in other modules by preceding them with a
module name. The Next Page , Prev Page , Up arrow, and Down arrow keys
may be used when the Code window is active to display code at higher or lower
line numbers.

This command does not change the current program context.

See Also Memory Display Mnemonic
Program Context Set
Program Find_Source

Examples To display line 82 of the current module in the Code window:

Program Display_Source #82

To display the source code for function ’update_state_of_system’ in the Code
window:

Program Display_Source update_state_of_system

To display line 25 of module updateSys:

Program Display_Source updateSys\#25

Chapter 12: Debugger Commands
Program Display_Source

447

Program Find_Source Next

The Program Find_Source Next command searches a high-level source
program for the next occurrence of the string specified in the last Program
Find_Source Occurrence command. When the debugger finds the string, it
displays the line containing the string at the top of the Code window.

If you specify Forward, the debugger searches forward through the file for the
string.

If you specify Backward, the debugger searches backward through the file for
the string.

If neither Forward nor Backward is specified, the debugger searches forward
through the file for the string.

If the debugger cannot find the specified string, it displays the message "string
not found". The screen remains unchanged.

See Also Program Find_Source Occurrence

Example To find the next forward occurrence of the string specified in the last Program
Find_Source Occurrence command:

Program Find_Source Next

Chapter 12: Debugger Commands
Program Find_Source Next

448

Program Find_Source Occurrence

The Program Find_Source Occurrence command searches a high-level source
file for the first occurrence of the specified string. If you provide a line
number, the debugger searches for the string starting at the given line number.
If you do not specify a line number, the string search starts at the top of the
Code window.

If you specify Forward, the debugger searches forward through the file for the
string.

If you specify Backward, the debugger searches backward through the file for
the string.

You must enclose strings containing nonalphanumeric characters in quotation
marks. Quotation marks are not required if the string consists of only
alphanumeric characters.

If the debugger finds an occurrence of the string, it displays the line containing
the string at the top of the Code window. If the string does not exist or the
debugger cannot find it, the debugger displays the message "string not found".
The screen remains unchanged.

You can use the Program Find_Source Next command to search for the next
occurrence of the specified string.

If you specify a line number with a module reference, the debugger displays the
source code for that module in the Code window.

See Also Program Display_Source
Program Find_Source Next

Chapter 12: Debugger Commands
Program Find_Source Occurrence

449

Examples To search forward through the current module for the string ’time’:

Program Find_Source Occurrence Forward ’time’

To search backward through the current module for the string ’time’, starting
at line 237:

Program Find_Source Occurrence Backward ’time’,#237

To search forward through the module ’main’, for the string
system_is_running, beginning at line 1:

Program Find_Source Occurrence Forward
"system_is_running", main\#1

Chapter 12: Debugger Commands
Program Find_Source Occurrence

450

Program Load

The Program Load command loads the specified executable module into the
debugger.

Default Parameter

When you specify the Default parameter, the debugger:

• removes all previous program symbols
• removes all previously set breakpoints
• resets the program counter (PC)
• loads the full symbol set
• loads the executable module

New/Append Parameters

The New parameter loads a new program, removing any old program that may
have been loaded. The New parameter optionally allows you to load the

Chapter 12: Debugger Commands
Program Load

451

program image, the program symbols, or both. The program counter can be
set from the transfer address in the load file or ignored.

The Append parameter loads another program without deleting the existing
program.

If you enter the Program Load command with the New or
Append parameter, the following qualifiers are available:

All Both the program image and program symbols to be
loaded.

Code_Only Only the program image is loaded.

Symbols_Only Only the program symbols are loaded.

Pc_Set The program counter is set from the transfer address in
the load file.

No_Pc_Set The program counter is not reset.

Using the All or Symbols_Only qualifiers along with the Pc_Set qualifier
resets static variables for a complete restart.

The optional root parameter (,<root>) allows you to specify an alternate
name for the root of the symbol tree.

The base address (&< base_addr>) allows PC relative code to be shifted upon
loading.

The section list (;< section>) enables partial loading of absolute file sections,
i.e., prog, data, const, etc. The symbols for all sections will be reloaded.

Resetting Program Variables

To reset static and global program variables after entering a Debugger
Execution Reset_Processor or Program Pc_Reset command, you must reload
your program by using the Program Load command. For faster loading, specify
Program Load New Code_Only. The debugger retains symbol information.
You do not have to reload symbol information if symbol addresses have not
changed.

The address where the object module will be loaded is specified at link time.
However, the address can be changed by specifying a new base address.

Chapter 12: Debugger Commands
Program Load

452

See Also Debugger Execution Reset_Processor
Program Pc_Reset
Debugger Option General Demand_Load

Examples To load absolute file ’ecs’, remove all existing program symbols, reset the
program counter, and load the full symbol set:

Program Load Default ecs

To load only the program image of the prog section of absolute file ’ecs’
without resetting the program counter:

Program Load New Code_Only No_Pc_Set ecs;prog

Chapter 12: Debugger Commands
Program Load

453

Program Pc_Reset

The Program Pc_Reset command resets the program counter to the transfer
address from the absolute file. This causes the next Program Run or Program
Step command to restart execution at the beginning of the program. The
command does not clear breakpoints.

See Also Debugger Execution Reset_Processor
Program Load
Program Run

Example To reset the program counter to the transfer address from the absolute file:

Program Pc_Reset

Chapter 12: Debugger Commands
Program Pc_Reset

454

Program Run

The Program Run command starts or continues target program execution. The
program runs until it encounters a permanent or temporary breakpoint, an
error, or a stop instruction, or until you press CTRL C.

The Program Run command may be used to resume execution after program
execution has been suspended.

Program Run From

The Program Run From command begins program execution at the specified
start address < start_addr> .

Using the Program Run From command to specify a starting address in
high-level mode may cause unpredictable results if the compiler startup
module is bypassed.

Chapter 12: Debugger Commands
Program Run

455

Program Run fromReset

Resets processor and then starts execution as the processor does when reset.

Program Run Until

The Program Run Until command begins program execution at the current
program counter address and breaks at the specified address.

Break Address

The break address (< break_addr>) acts as a temporary instruction
breakpoint. It is automatically cleared when program execution is halted.
Multiple break addresses are ORed. For example, the command

Program Run Until #20,#90 Return

causes the program to run until either line 20 or line 90 is encountered,
whichever occurs first.

Note
The debugger/emulator implements instruction breaks using software
breakpoints. Therefore, break addresses cannot be specified for addresses in
target ROM.

Pass Count

The pass count (< pass_count>) specifies the number of times the break
address is executed before the program is halted. For example, a pass count of
three will cause the program to break on the fourth execution of the break
address.

Macro Calls

If specified, a macro (< macro_name>) is invoked when the temporary break
occurs.

See Also Breakpt Access
Breakpt Clear_All
Breakpt Delete

Chapter 12: Debugger Commands
Program Run

456

Breakpt Instr
Breakpt Read
Breakpt Write
Program Pc_Set
Program Step

Examples To execute the target program starting at address ’main’:

Program Run From main

To begin program execution at the current program counter address and run
until line 110 of the current module:

Program Run Until #110

To begin program execution at the current program counter address, run until
the program returns to the calling function of the current function, and then
execute the macro ’read_val’:

Program Run Until @1;read_val()

Chapter 12: Debugger Commands
Program Run

457

Program Step

The Program Step command executes the specified number of instructions or
lines, beginning with the location identified with < start_addr> . In high-level
mode, single-stepping is done one C source line at a time. In assembly-level
mode, single-stepping is done one machine instruction at a time. When the
program calls a function, stepping continues in the called function.

If you do not specify a starting address, single-stepping begins at the address
contained in the program counter.

If you do not specify a step count (< step_count>), the debugger will either
step one C source line or one machine instruction.

Note If the debugger steps into an HP library routine, you can then use the Program
Run Until @1 (stack level 1) command to run to the end of the library routine.

Program Step From

The Program Step From command executes one instruction or line, beginning
with the location specified by < start_addr> . If you do not specify the optional
step count (< step_count>), the debugger executes one line or one instruction.

Chapter 12: Debugger Commands
Program Step

458

Program Step Count

The Program Step Count command executes the specified number of either
instructions or lines, starting at the location pointed to by the program
counter.

The debugger updates the screen after each instruction or line is executed. If a
breakpoint is encountered, single-stepping is halted.

You can also use function key F7 to single-step.

See Also Breakpt Instr
Program Run
Program Step Over
Program Step With_Macro

Examples To step four source lines, starting at line 39:

Program Step From #39,4

To step ten source lines (high-level mode) or ten processor instructions
(assembly-level mode), starting at the program counter address:

Program Step Count 10

To step one source line (high-level mode) or one processor instruction
(assembly-level mode), starting at the program counter address:

Program Step

Chapter 12: Debugger Commands
Program Step

459

Program Step Over

The Program Step Over command executes the number of instructions or lines
specified, but executes through function calls, that is, the called function is
executed without stepping through it. Execution begins at the specified
starting address.

When the debugger encounters a C function or assembly-level JSR
instruction, it stops stepping, executes the function or JSR, and then continues
stepping when the called subroutine returns.

In high-level mode, the debugger executes one C source line at a time. In
assembly-level mode, the debugger executes one microprocessor instruction at
a time.

If you do not specify a starting address, single-stepping begins at the address
contained in the program counter.

If you do not specify a step count (< step_count>), the debugger will either
step one C source line or one machine instruction.

Program Step Over From

The Program Step Over From command executes one instruction or line,
beginning with the location specified by < start_addr> . If you do not specify
the optional step count (< step_count>), the debugger executes one line or
one instruction.

Chapter 12: Debugger Commands
Program Step Over

460

Program Step Over Count

The Program Step Over Count command executes the specified number of
either instructions or lines, starting at the location pointed to by the program
counter. The debugger updates the screen after each instruction or line is
executed. If the debugger encounters a breakpoint, it halts single-stepping.

You can also use function key F8 to single-step over functions.

See Also Breakpt Instr
Program Run
Program Step Count
Program Step From
Program Step With_Macro

Examples To step four source lines, starting at line 39, and execute through any function
calls:

Program Step Over From #39,4

To step ten source lines (high-level mode) or ten processor instructions
(assembly-level mode), starting at the program counter address, and execute
through any function calls:

Program Step Over Count 10

To step one source line (high-level mode) or one processor instruction
(assembly-level mode), starting at the program counter address, and execute
through any function calls:

Program Step Over

Chapter 12: Debugger Commands
Program Step Over

461

Program Step With_Macro

The Program Step With_Macro command single steps through the program
and executes the specified macro (< macro_call>) after each instruction or
high-level line. Program execution continues if the macro returns a nonzero
value.

Single-stepping is done by C source line in high-level mode and by
microprocessor instruction in assembly-level mode.

See Also Program Run
Program Step From
Program Step Over

Example To step through the program one source line (high-level mode) or one
processor instruction (assembly-level mode) at a time, executing the macro
read_var after each step:

Program Step With_Macro read_var()

Chapter 12: Debugger Commands
Program Step With_Macro

462

Symbol Add

The Symbol Add command creates a symbol and adds it to the debugger
symbol table. When defining a symbol, you must declare the symbol’s name. It
may be any name not previously used.

Type

You can optionally assign any valid C data type < type> to the symbol. If you
do not assign a data type, the symbol type defaults to type int.

If the symbol type is a pointer, the initial value must be a data address. If the
type is an array, the initial value must be a string of values separated by
commas and/or enclosed in quotation marks. If fewer values are given than will
fill the array, the pattern is repeated until the entire array is filled.

When initializing symbols, the symbol type is not used. Only the size is used. If
a char array is defined, it is filled with the specified pattern in the same way as
with the Memory Block_Operation Fill command. A zero is not appended to
char arrays. The size is not determined by the string as in C. Complex values
such as floating point representation are not recognized.

Chapter 12:
Symbol Add

463

Program Symbols

Program symbols are specified with a base address (Address
< target_memory_address>). The base address references an address in target
memory. Program symbols are identical to variables defined in a C or assembly
language program. The value of a program symbol is placed in target memory.
If an initial value is specified for the program symbol, the value is loaded in the
memory location referenced by the symbol. If an initial value is not specified,
the memory location referenced by the symbol is not changed.

Debugger Symbols

Debugger symbols are specified without a base address and are not associated
with a target memory address. Debugger symbols may be used to aid and
control the flow of the debugger. They are located at a fixed location in
debugger memory. Only debugger commands and C expressions in macros can
refer to debugger symbols. They cannot be referenced by the program in target
memory.

If an initial value is specified for the debugger symbol, the value is loaded in
the memory location referenced by the symbol. If an initial value is not
specified, the memory location referenced by the symbol is set to zero.

See Also Debugger Macro Add
Symbol Display
Symbol Remove

Examples To add a program symbol of type int (default) at target memory address 9ff0h
and set the memory location to value -1:

Symbol Add EOF Address 9ff0h Fill_Mem -1

To add a debugger symbol named str1 of type char referencing an
eight-character array and fill the array with string ’abcdefgh’:

Symbol Add char str1[8] Fill_Mem ’abcdefgh’

To add a debugger symbol of type short named s1 and fill the memory location
with value 0x10203:

Symbol Add short s1 Fill_Mem 0x10203

Chapter 12:
Symbol Add

464

In this example, we assigned a value to the symbol that is too large for the
specified type. In this case, the debugger fills the memory location with the
lower bytes of the specified value. Executing the command:

Expression Printf "%x",s1

shows that the value is 203, the lower two bytes of the specified value.

Chapter 12:
Symbol Add

465

Symbol Browse

The Symbol Browse command displays the parents and children of a C+ +
class. The inheritance relationship is displayed in the Journal window.

Example To display the parents and children of the C+ + class fruit, type:

Symbol Browse fruit

Chapter 12:
Symbol Browse

466

Symbol Display

The Symbol Display command displays symbols and associated information in
the Journal window.

Chapter 12:
Symbol Display

467

To display symbols in all modules, specify a backslash as the command
argument.

Symbol Display Default \

To displays all symbols in a specified module or function, enter a module
name or function name followed by a backslash.

Symbol Display Default memset\

The wildcard character * may be placed at the end of a symbol name with any
option. The * can be used to represent zero or more characters. If used with
no symbol name, * is treated the same as \, that is, all symbols are displayed.

If you enter a symbol name without a module specification, the debugger looks
for the symbol in the current module. If there is no module qualifier, all
symbols with the specified name will be displayed, including global symbols
and symbols local to the module. Global symbols are not attached to a module.

Symbol Display Default dest

If you specify a structure name using the Types option, the debugger shows all
members in the structure and their types.

Default

If you specify Default, the debugger displays all types of symbols.

Options

The following options may be specified to display subsets of symbols.

Data¯os displays symbol name, storage class, data type, and
addresses of data and macro symbols.

Functions&labels displays symbol name, storage class, data type, return
type, and addresses of functions and labels.

Modules displays names, module type (high-level, assembly-level,
or non-loaded), and section addresses of modules.

Types displays all symbol types.

Chapter 12:
Symbol Display

468

Search_All displays symbols of all types in all roots (contexts).

Wide shows symbol names only in multicolumn (compressed)
format.

If you do not specify any options, the debugger displays all symbols.

Warnings

When you execute the Symbol Display Warnings command, the debugger
displays type mismatches. Mismatches occur when global variables are
declared with different types in different modules or global functions are
declared with different return types or argument counts in different modules.
The command displays all mismatches and the names of the modules in which
the symbols are declared.

Reserved_Symbols

If you specify Reserved_Symbols, the debugger displays processor reserved
symbols, registers, and internal debugger variables.

See Also Symbol Add
Symbol Remove

Examples To display the symbol ’updateSys’ in the current module:

Symbol Display Default updateSys

 Symbol Display Default updateSys
 @ecs\\updateSys : Type is High level module.
 Code section = 00001436 thru 00001C21

To display all symbols in module ’updateSys’:

Symbol Display Default updateSys\

> Symbol Display Default updateSys\
 Root is: updateSys

 @ecs\\updateSys : Type is High level module.
 Code section = 00001436 thru 00001C21
 updateSys\update_state_of_system
 : Type is Global Function returning void.
 Address = 00001436 thru 00001513

Chapter 12:
Symbol Display

469

 update_state_of\refresh
 : Type is Local int.
 Address = Frame + 8
 update_state_of\interval_complete
 : Type is Local int.
 Address = Frame + 12
 .
 .

To display all modules in the current symbol tree:

Symbol Display Options Modules End_Options \

 Symbol Display Options Modules End_Options \
 Root is: @ecs
 31 source and 23 assembler modules, 28 source procedures.
 Filename = ecs.x

 @ecs\\main : Type is High level module.
 Code section = 00001050 thru 00001121
 Code section = 00000100 thru 0000010B
 @ecs\\initSystem : Type is NON-LOADED module.
 Code section = 00001122 thru 00001435
 .
 .

To display all function and labels in module ’main’:

Symbol Display Options Function&labels End_Options main\

To display all reserved symbols:

Symbol Display Reserved_Symbols

To display all symbols in module systemInt in compressed format (symbol
names only):

Symbol Display Options Wide End_Options systemInt\

 Symbol Display Options Wide End_Options systemInt\
 Root is: systemInt

 systemInt\ system_interrupt function
 struct_system_clock hours minutes
 seconds struct_system_clock *
 tick_clock function argument_1 system_interrupt
 tick_clock time reg_param1
 increment

To display all data and macros found within any symbol tree (that is, search \\,
@a.out\\, @file1\\, etc.):

Chapter 12:
Symbol Display

470

Symbol Display Options Data&Macros Search_All
End_Options \

 Symbol Display Options Data¯os Search_All End_Options \
 Root is: @ecs
 31 source and 23 assembler modules, 30 source procedures.
 Filename = ecs.x

 update_state_of\refresh
 : Type is Local int.
 Address = Frame + 8
 update_state_of\interval_complete
 : Type is Local int.
 Address = Frame + 12

To display data type struct_temp_settings:

Symbol Display Options Types End_Options
struct_temp_settings\

 Symbol Display Options Types End_Options struct_temp_settings\
 Root is: struct_temp_settings

 @ecs\\struct_temp_settings
 : Type is Type definition of Structure, size
= 8.
 struct_temp_set\temp : Type is Member of type float.
 Offset = 0
 struct_temp_set\humid : Type is Member of type int.
 Offset = 4

To display any type mismatches detected in the user program during program
loading, along with the address of the symbol that has the mismatch:

Symbol Display Warnings

2 mismatches.
getOpInput\system_off: Type is Global Function returning void.
 Address = 000024AE to 000025ED
 ***1 modules mismatched ***
 Modules:’main’
updateSys\write_output_command
 : Type is Global Function returning void.
 Address = 00001944 to 0000197B
 *** 1 modules mismatched ***
 Modules: ’getOpInput’

Chapter 12:
Symbol Display

471

Symbol Remove

The Symbol Remove command removes the specified symbol from the symbol
table. Only program symbols and user-defined debugger symbols can be
deleted from the symbol table.

To delete all symbols within a named module or function, append a backslash
(\) to the module or function name (< symbol_name>).

Symbol Remove updateSys\

Entering a backslash without a module or function name deletes all symbols in
all modules.

Symbol Remove \

If you specify a symbol name without a module specification, the debugger
looks for the symbol in the current module.

If you specify more than one symbol to be deleted or if the specified symbol
has local symbols (for example, when a macro is deleted), the debugger
requests confirmation. Entering ,y after the symbol name provides automatic
confirmation of the request. This option is useful in command files.

The debugger lets you add a debugger symbol with the same name as a target
module’s local symbol or a predefined macro’s local symbol. If you do add a
debugger symbol with same name as a local symbol, you must specify the
entire symbol name with the Symbol Remove command in order to remove it.
For example, if you added the debugger symbol alter_settings when running the
demonstration program, you must enter \\alter_settings instead of alter_settings
to delete the symbol because there is a local symbol alter_settings in target
module updateSys. Otherwise the error message error # 152, Cannot delete:
more than one symbol with this name is displayed.

Chapter 12:
Symbol Remove

472

See Also Symbol Add
Symbol Display

Examples To delete symbol ’current_targets’ in function ’alter_settings’:

Symbol Remove alter_settings\current_targets

To delete all symbols in module ’updateSys’:

Symbol Remove updateSys\

To delete symbol ’alter_settings’ in module ’updateSys’:

Symbol Remove updateSys\alter_settings

In this example, the symbol being removed is a function which contains other
symbols. The debugger prompts you with the message ’This symbol has a
sub-tree. Delete with sub-tree? (Y/N)’. Enter ’Y’ to delete the symbol and its
sub-tree. If you respond with ’N’, the command is canceled.

To delete all symbols in all modules:

Symbol Remove \

Chapter 12:
Symbol Remove

473

Trace Again

The Trace Again starts a trace using the last (previous) trace specification.
The trace starts on the next program run or step command.

If no trace has been previously specified, this command is equivalent to
entering a Trace Trigger Never command, and states are collected until
you enter a Trace Halt command.

Example To start a new trace using the last trace specification:

Trace Again

Chapter 12:
Trace Again

474

Trace deMMUer

The Trace deMMUer command allows you to choose between tracing physical
addresses and tracing logical addresses.

You must enable the MMU before tracing MMU activity. The 68020/030
Graphical User Interface User’s Guide describes how to use the emulator
configuration commands and the TC register to enable the MMU.

Load

The Trace deMMUer Load command reads the MMU registers and MMU
tables, and loads the deMMUer with the appropriate information to
reverse-translate physical addresses to logical addresses.

The Verbose option shows a list of the physical addresses that can be
translated by the deMMUer.

Enable

The Trace deMMUer Enable command turns on the deMMUer. Physical
addresses on the emulation bus will be translated to logical addresses.

Disable

The Trace deMMUer Disable command turns off the deMMUer. Physical
addresses on the emulation bus will not be translated.

Chapter 12:
Trace deMMUer

475

See Also The "Using MC68030 Memory Management" chapter in the 68020/030
Graphical User Interface User’s Guide.

Examples To translate physical to logical addresses, make sure that the MMU has been
set up, then enter:

Trace de MMUer Load Verbose
Trace de MMUer Enable

To stop translating physical to logical addresses, enter:

Trace de MMUer Disable

Chapter 12:
Trace deMMUer

476

Trace Display

The Trace Display command displays trace information in the specified
window. If no window is specified, the trace output will go to the Trace Mode
window, and the debugger willl enter "trace mode."

Chapter 12:
Trace Display

477

Data may be displayed (interpreted) in several ways: from module and
function entry and exit points, to raw bus data. The default display will show
modules and source line references only.

Trace mode

In trace mode, the trace information is displayed in the View window. You
cannot enter debugger commands from the command line while in trace mode.
To return to debugger command mode, press the Esc key twice.

In trace mode, you can use the cursor keys to scroll the trace information in
the View window. Use the Next and Prev keys to page through the trace
output.

Function keys Function keys F1, F3, F4 and F5 do their normal functions
when you are in trace mode. However, F1 (Next Window) activates only the
Code or Trace Mode windows. You can use the F3 function key to switch
between the high-level and assembly-level displays in the Code window when
tracking trace data.

F2, F6, F7, and F8 have special functions when in the trace mode. Function
key F2 lets you enter a new line number to display at the top of the trace list
display. The F6 function key changes the track direction (backward or
forward) in the trace window. The F7 function key scrolls the trace list up or
down in the Trace Mode window and updates the Code window so that the
highlighted line corresponds to the new first line displayed in the Trace Mode
window. The F8 function key toggles the top line high-level module
identification on or off to allow an extra line of trace information to be
displayed. The top line high-level module identification must be on to enable
tracking.

Tracking source code The debugger gives you the capability to correlate
the data in the trace display with source code displayed in the Code window.
To view trace information in relationship to the source code, select a line in
the trace list with the cursor and then press F7 or the Return key. This
updates the Code window so that the highlighted line in the code window
corresponds to the first line displayed in the Trace Mode window. Pressing F7
or the Return key again scrolls the trace list in the Trace Mode window and
updates the Code window so that the highlighted line corresponds to the new
first line displayed in the Trace Mode window.

Press the F6 function key to change the track direction (backward or forward)
in the Trace Mode window. The trace direction is indicated on the bottom

Chapter 12:
Trace Display

478

border of the Trace Mode window (^ or v). The symbols show which direction
the search will proceed through the trace buffer to find the next high-level or
assembly code line (depending on the Code window selected). If the trace
window has no lines that correspond to code lines, the search will proceed to
the end of the trace buffer.

If you have specified storage qualifiers, the trace data may not track
sequentially with the lines in the code display.

Directing output to a specified window or file

Use the OutputTo keyword to redirect trace output to a window or file other
than the View window. The following values are valid window numbers for
trace output:

1
10
24
28
29
50 – 256

high-level Journal window
assembly-level Journal window
View window
log file
journal file
user-defined windows

Line(s) keyword

Use the Line(s) keyword to specify a range of lines to be copied from the trace
buffer to the specified window. For example, to copy lines –110 through –90
from the trace buffer to the journal file, enter the command:

Trace Display Line(s) –110..–90 <Tab> OutputTo 29

You cannot specify a line range for trace output when entering trace mode.
However, you may specify the first line to display in trace mode. For example,
to display the trace buffer starting at line -110, enter the command:

Trace Display Line(s) –110

Chapter 12:
Trace Display

479

Display qualifiers

The following display qualifiers let you select what information is written to
the output window and how the information is formatted.

Line(s) Specifies the starting line or the range of lines to display or
copy. Line 0 is the trigger cycle. You cannot specify a range
when entering trace mode.

Modules Displays names of module the trace lines are in, entering, or
re-entering. This is useful for showing general program flow.

Source Display the source lines and line numbers corresponding to
instruction fetches.

Assembly Displays assembly language instructions. Information is
displayed symbolically when possible.

Data Displays address, value, and read/write status for data
accesses. Information is displayed symbolically when
possible.

Raw Display the frame number, address, data and status for a bus
cycle with no interpretation of the data.

Displaying status information Status information is displayed
mnemonically in the trace list. The following table describes the mnemonics
that may be displayed.

Mnemonic Description

Function Code Space

User
Supv

Cycle occurred in user space
Cycle occurred in supervisor space

Prog
Data

Cycle occurred in program space
Cycle occurred in data space

Chapter 12:
Trace Display

480

FC0
FC3
FC4
CPU

Cycle used function code 0
Cycle used function code 3
Cycle used function code 4
Cycle refers to CPU space

Cycle Type

Code Fetch
DMA cycle
Read
Write
Copr

Cycle was a code fetch
Cycle was a DMA cycle
Cycle was a read cycle
Cycle was a write cycle
Cycle was a coprocessor cycle

Termination

ds8
ds16
ds32
strm

DSACK 8 bit port
DSACK 16 bit port
DSACK 32 bit port
Synchronous termination (68030/68EC030 only)

68030 MMU

tablewalk
log
phy

Tablewalk cycle for 68030 MMU
Logical address
Physical address

Other

Berr
Rtry
bgnd
Halt

Bus error cycle
Retry cycle
Background monitor cycle
Halt cycle (68020 only)

Data size

Byte
Word
Long
3byt

1 byte
2 bytes
4 bytes
3 bytes

Trace status character When trace data is displayed, a trace status
character may be displayed in front of the trace line. The following table
defines the trace status characters.

Chapter 12:
Trace Display

481

Trace List Status Characters

Character Description

* The indicated trace line is the trigger condition.

+ The indicated trace line is an assembly language statement
within a high-level statement, that is, not the first assembly
language statement in the high-level source statement.

! The data field in the trace buffer line does not match the
data in memory.

? The trace line may be a prefetch.

Examples To display source lines, their corresponding assembly language instructions,
and data read and write cycles:

Trace Display Modules Source Assembly Data

To copy the raw data in lines -20 through + 20 of the trace buffer to a log file
you have opened:

Trace Display Lines -20..20 <Tab> Raw OutputTo 28

Chapter 12:
Trace Display

482

Trace Event Clear_All

The Trace Event Clear_All command clears (removes) all specified events that
are not used by the trigger or store qualifier.

See Also Trace Event Delete

Examples To clear (remove) all defined trace events:

Trace Event Clear_All

Chapter 12:
Trace Event Clear_All

483

Trace Event Delete

The Trace Event Delete command deletes (removes) a previously defined
event specification. You cannot delete an event that is used by the trigger or
store qualifier.

See Also Trace Event Clear_All
Trace Event Specify

Examples To delete event 2:

Trace Event Delete 2

Chapter 12:
Trace Event Delete

484

Trace Event List

The Trace Event List command lists the definition of the event specified by
< event_nmbr> in the View window. The definition includes address, data,
and status. The command used to define the event is listed, as well as an
indication if the event is used by the trigger or qualifier.

See Also Trace Event Specify

Examples To list the definition of event 3 in the View window:

Trace Event List 3

Chapter 12:
Trace Event List

485

Trace Event Specify

The Trace Event Specify command defines an event (detectable bus condition
to be used for trace qualifying or triggering. The event number
(< event_nmbr>) must be a number between 1 and 30 inclusive. Bus

Chapter 12:
Trace Event Specify

486

conditions may be address values, data values, or status values. The event is
true if all of the terms defined in the event are true at the same time.

Event conditions

Three types of conditions can be specified in an event definition. The three
condition types are:

Address The value that appears on the address bus. The address term
matches an address, range of addresses, or out-of-range
addresses.

Data The value that appears on the data bus. The data term
matches a data value or range of values. The data size is that
of the data field as specified by the analyzer. This typically
matches the processor bus size.

Status The type of bus activity, for example: instruction fetch, read,
write, CPU, etc.

If you use the keyword Is , the event is defined as the specification that
follows. If you use the keyword Not , the event is defined as the logical NOT of
the specification that follows, that is, any condition that does not match the
specification. For example, if you enter the specification:

Trace Event Specify 1 <Tab> Address I s 0x10b6..0x123d

event 1 is defined to be any address in the range 0x10b6 through 0x123d. If
you enter the specification:

Trace Event Specify 1 <Tab> Address Not 0x10b6..0x123d

event 1 is defined to be any address outside the range 0x10b6 through 0x123d.

Address and data values

Address values (<addr_spec>) and data values (<data_spec>) are
specified as 32-bit values or a range of 32-bit values denoted by (..). You can
specify address values using module names, symbols, and high-level line
numbers. See the “Expressions and Symbols in Debugger Commands” chapter
for detailed information on how to specify addresses.

Chapter 12:
Trace Event Specify

487

A mask can be used to specify a range with a 32-bit value that marks valid bits
in addresses or data. For example, to specify only addresses in the range
000015xxh (where xx are "don’t care" values), you could enter the command:

Trace Event Specify 4 <Tab> A ddress I s
 0x1500 &= 0xffffff00

The &= is the bit mask operator. This range could also have been specified as
0x1500..0x15ff .

Status values

Status conditions are the types of bus activities you wish to specify. The
following keywords are used to specify the status condition:

Read specifies read operation

Write specifies write operation

Size specifies access size (byte, word, or long)

FnCde specifies function code (data or program, supervisor or user
mode)

CycTyp specifies cycle type (Fetch or CPU)

Addresses specified witha a CycTyp of Fetch will be masked to the size
specified by Debugger Option Trace Fetch_Align.

See Also Trace Event Clear_All
Trace Event Delete
Trace Event List
Debugger Option Trace Fetch_Align

Examples To define event 1 to be the address of function update_state_of_system:

Trace Event Specify 1 <Tab> Address I s
update_state_of_system

Chapter 12:
Trace Event Specify

488

To define event 2 to be any bus cycle corresponding to an instruction fetch
from supervisor memory space:

Trace Event Specify 2 <Tab> Status I s FnCde Supr CycTyp
Fetch

To define event 3 to be a write access of variable current_humid:

Trace Event Specify 3 <Tab> Address I s
¤t_humid <Tab> Status I s Write

If an 8-bit wide I/O port at 0fxxx0010h has a "data valid" bit at bit 3, you can
specify a trace event when the "data valid" bit is read by entering:

Trace Event Specify 5 <Tab> Address I s
0f0000010 &= 0xf000ffff <Tab> Data I s 0x8 &= 0xff

Chapter 12:
Trace Event Specify

489

Trace Event Used_List

The Trace Event Used_List command lists the numbers of the events that are
currently defined and whether or not the event is being used (specified in a
Trace Trigger or Trace StoreQual definition).

See Also Trace Event Specify
Trace Trigger Event
Trace StoreQual Event

Examples To list the currently defined events and their status (used or not used):

Trace Event Used_List

Chapter 12:
Trace Event Used_List

490

Trace Halt

The Trace Halt command stops (terminates) the trace currently being
executed. If a trace is not in progress, this command has no effect. After
executing this command, you can display any trace data collected.

See Also Trace Again

Examples To stop the current trace:

Trace Halt

Chapter 12:
Trace Halt

491

Trace StoreQual

The Trace StoreQual command immediately specifies the bus conditions to be
stored (captured) in the trace buffer. Bus conditions may be address values,

Chapter 12:
Trace StoreQual

492

data values, or status values. When you define a storage qualifier, you are
essentially defining an event. You can also use the Trace Event Specify
command to define an event, and then use the Trace StoreQual Event
command to use the specified event as a storage qualifier term.

Storage qualifier conditions

Three types of conditions can be specified as storage qualifiers. The three
condition types are:

Address The value that appears on the address bus

Data The value that appears on the data bus

Status The type of bus activity, for example, instruction fetch, read,
write, CPU, etc.

If you use the keyword Is , bus cycles matching the specification that follows
are stored in the trace buffer. If you use the keyword Not , the storage qualifier
is defined as the logical NOT of the specification that follows, that is, any bus
cycles that do not match the specification are stored in the trace buffer. For
example, if you enter the specification:

Trace StoreQual Address I s 0x10b6..0x123d

the storage qualifier is defined to be any address in the range 0x10b6 through
0x123d. If you enter the specification:

Trace StoreQual Address Not 0x10b6..0x123d

the storage qualifier is defined to be any address outside the range 0x10b6
through 0x123d.

Address and data values

Address values (<addr_spec>) and data values (<data_spec>) are
specified as 32-bit values or a range of 32-bit values denoted by (..). You can
specify address values using module names, symbols, and high-level line
numbers. See the “Expressions and Symbols in Debugger Commands”
chapter for detailed information on how to specify addresses.

A mask can be used to specify a range with a 32-bit value that marks valid bits
in addresses or data. For example, to store only addresses in the range

Chapter 12:
Trace StoreQual

493

0x000015xx (where xx are "don’t care" values), you could enter the
command:

Trace StoreQual Address I s
 0x1500 &= 0xffffff00

where &= is the bit mask operator.

This format is used because the C language does not have a way to represent a
don’t care literal.

Note Execute the Debugger Execution Environment Unrestricted
command before specifying an event with an address to ensure that the
analyzer interprets the chip selects properly for the address. See the
description of the Debugger Execution Environment
Unrestricted command.

Status values

Status conditions are the types of bus activities you wish to specify. The
following keywords are used to specify the status condition:

Read specifies read operation

Write specifies write operation

Size specifies access size (byte, word, or long)

FnCde specifies function code (data or program, supervisor or user
mode)

CycTyp specifies cycle type (Fetch or CPU)

Addresses specified with a CycTyp of Fetch will be masked to the size specified
by Debugger Option Trace Fetch_Align.

Chapter 12:
Trace StoreQual

494

Prestore

Specifying Prestore in your storage qualifier definition causes the trace
function to store up to two instruction fetch cycles preceding the qualified
condition being stored. This lets you view the instructions leading up to the
qualified state.

See Also Trace StoreQual Event
Trace StoreQual List
Trace StoreQual None
Debugger Option Trace Fetch_Align

Examples To store accesses to update_state_of_system along with the two bus cycles
immediately preceding the accesses.

Trace StoreQual Address I s update_state_of_system
Prestore

To store only instruction fetches with an opcode value of 4e5x where x is a
don’t care value:

Trace StoreQual Data I s 0x4e50 &= 0xfff0 <Tab> Status
I s CycTyp Fetch

The don’t care condition is specified by specifying a mask in the data
specification. &= is the mask operator. This value corresponds to the LINK
and UNLK instructions.

Chapter 12:
Trace StoreQual

495

Trace StoreQual Event

The Trace StoreQual Event command lets you specify an event or
combination of events defined with the Trace Event Specify command
as the storage qualifier.

Events

Each event that you define using the Trace Event Specify command is assigned
an event number between 1 and 30. This number (< event_nmbr>) is used to
assign an event to be a storage qualification term. The storage qualification
term can be a single event or a logically OR’ed combination of events.

Prestore

Specifying Prestore in your storage qualifier definition causes the trace
function to store up to two instruction fetch cycles preceding the qualified
condition being stored. This lets you view the instructions leading up to the
qualified state.

See Also Trace StoreQual
Trace StoreQual List
Trace StoreQual None

Examples To store only states matching event 1 defined with the Trace Event Specify
command and the last two instruction fetches preceding each of these states:

Trace StoreQual Event 1 <Tab> Prestore

Chapter 12:
Trace StoreQual Event

496

To store only states matching event 1 or event 2 defined with the Trace Event
Specify command:

Trace StoreQual Event 1 <Tab> Or 3

Chapter 12:
Trace StoreQual Event

497

Trace StoreQual List

The Trace StoreQual List command displays the current storage qualification
definition in the View window.

See Also Trace StoreQual
Trace StoreQual event

Examples To list the current storage qualification definition in the View window:

Trace StoreQual List

Chapter 12:
Trace StoreQual List

498

Trace StoreQual None

The Trace StoreQual None command causes the trace function to store all bus
cycles (no trace qualification).

See Also Trace StoreQual
Trace StoreQual event

Examples To store all bus cycles (no trace qualification):

Trace StoreQual None

Chapter 12:
Trace StoreQual None

499

Trace Trigger

Chapter 12:
Trace Trigger

500

The Trace Trigger command specifies the bus conditions to be used as the
trigger condition. Bus conditions may be address values, data values, or status
values. When you define a trigger, you are essentially defining an event. You
can also use the Trace Event Specify command to define an event, and
then use the Trace Trigger Event command to use the specified event as
the trigger event.

Trigger conditions

Three types of conditions can be specified in triggers. The three condition
types are:

Address The value that appears on the address bus

Data The value that appears on the data bus

Status The type of bus activity, for example, instruction fetch, read,
write, interrupt acknowledge, etc.

If you use the keyword Is , bus cycles matching the specification that follows
are used as the trigger event. If you use the keyword Not , the trigger is defined
as the logical NOT of the specification that follows, that is, any bus cycle that
does not match the specification is the trace trigger. For example, if you enter
the specification:

Trace Trigger Address I s 0x10b6..0x123d

the trigger is defined to be any address in the range 0x10b6 through 0x123d. If
you enter the specification:

Trace Trigger Address Not 0x10b6..0x123d

the trigger is defined to be any address outside the range 0x10b6 through
0x123d.

Address and data values

Address values (<addr_spec>) and data values (<data_spec>) are
specified as 32-bit values or a range of 32-bit values denoted by (..). You can
specify address values using module names, symbols, and high-level line
numbers. See the “Expressions and Symbols in Debugger Commands”
chapter for detailed information on how to specify addresses.

Chapter 12:
Trace Trigger

501

A mask can be used to specify a range with a 32-bit value that marks valid bits
in addresses or data. For example, to trigger only on addresses in the range
0x000015xx (where xx are "don’t care" values), you could enter the
command:

Trace Trigger Address I s
 0x1500 &= 0xffffff00

where &= is the bit mask operator.

Status values

Status conditions are the types of bus activities you wish to specify. The
following keywords are used to specify the status condition:

Read specifies read operation

Write specifies write operation

Size specifies access size (byte, word, or long)

FnCde specifies function code (data or program, supervisor or user
mode)

CycTyp specifies cycle type (Fetch or CPU)

Addresses specified witha a CycTyp of Fetch will be masked to the size
specified by Debugger Option Trace Fetch_Align.

Breaking on triggers

Enter the BrkOnTrg keyword to cause the user program to halt when the
trigger term is detected.

Trigger position

Enter the PosnTrig keyword to specify the position of the trigger condition
in the trace buffer. You can specify the trigger position to be one of the
following:

Start The trigger is at the start of the trace buffer.

Chapter 12:
Trace Trigger

502

Center The trigger is centered in the trace buffer.

End The trigger is at the end of the trace buffer.

The trigger state will always be line number 0 in the trace list.

Interaction with trace commands

The Trace Trigger, Breakpt Access, Breakpt Read, and Breakpt Write
commands all require use of emulation analyzer resources. If access
breakpoints are active (indicated by the message TRC: BrkRWA on the status
line), then a Trace Trigger command may not be entered. If a trace trigger is
active, access breakpoints may not be entered.

The Breakpt commands set up a trace with the trigger at the end of the trace
buffer, using the current storage qualification. You can display the trace after
the break occurs to see the cycles leading up to the break.

See Also Breakpt Access
Breakpt Read
Breakpt Write
Trace Trigger Event
Trace Trigger List
Trace Trigger None
Debugger Option Trace Fetch_Align

Examples To trigger the trace measurement on entry into function
update_state_of_system and position the trigger state in the center of
the trace memory buffer:

Trace Trigger Address I s update_state_of_system Status
I s FnCde Prog PosnTrig Center

To trigger the trace measurement on the occurrence of a write to variable
time_struct.seconds, and halt (break) program execution on detection of the
trigger condition:

Trace Event Specify 6 <Tab> Address I s
&time_struct.seconds <Tab> Data I s 0x3c Status I s Write
<Tab> BrkOnTrg

Chapter 12:
Trace Trigger

503

Trace Trigger Event

The Trace Trigger Event command lets you specify an event or combination of
events defined with the Trace Event Specify command as a trigger
condition. The trigger condition can be a single event, a logically OR’ed
combination of events, a specified number of occurrences of an event or
combination of events, or a sequence of the preceding conditions. The
complexity of the specification is limited by the analyzer.

Event Number

Each event that you define using the Trace Event Specify command is assigned
an event number between 1 and 30. This number (< event_nmbr>) is used to
assign an event to be a trigger term.

Chapter 12:
Trace Trigger Event

504

Keywords

Or The Or keyword lets you specify a logically OR’ed
combination of events as the trigger condition.

Count The Count keyword specifies the number of times
(<nmbr_times>) an event or OR’ed combination of
events must occur before the debugger proceeds to the next
trigger sequence term or before the trigger condition is
completed. <nmbr_times> must be a value in the range of
1 to 65535.

Then The Then keyword lets you specify a sequence of terms in
the trace specification.

BrkOnTrg The BrkOnTrg keyword causes the user program to halt
when the trigger term is detected.

PosnTrig The PosnTrig keyword is used with the Start Center, and
End keywords to specify the position of the trigger
condition in the trace buffer.

Start The Start keyword specifies the start of the trace buffer as
the trigger position.

Center The Center keyword specifies the center of the trace buffer
as the trigger position.

End The End keyword specifies the end of the trace buffer as the
trigger position.

The trigger state will always be line number 0 in the trace list.

See Also Trace Trigger
Trace Trigger List
Trace Trigger None

Examples To trigger on the occurrence of event 1 which has been previously defined with
the Trace Event Specify command:

Chapter 12:
Trace Trigger Event

505

Trace Trigger Event 1

To trigger on the occurrence of either event 1 or event 3 (events 1 and 3 must
have been previously defined with the Trace Event Specify command):

Trace Trigger Event 1 <Tab> Or 3

To trigger on the fifth occurrence of event 3 following an occurrence of event
1 (events 1 and 3 must have been previously defined with the Trace Event
Specify command):

Trace Trigger Event 1 <Tab> Then 3 <Tab> Count 5

Chapter 12:
Trace Trigger Event

506

Trace Trigger List

The Trace Trigger List command displays the current trigger definition in the
View window.

See Also Trace Trigger
Trace Trigger List
Trace Trigger None

Examples To list the current trigger definition in the View window:

Trace Trigger List

Chapter 12:
Trace Trigger List

507

Trace Trigger Never

The Trace Trigger Never command sets the trace function up to collect states
until you stop the trace using the Trace Halt command. Collection starts on
the next program run or step command.

See Also
Trace Halt

Examples To collect states continuously until the trace is stopped using the Trace Halt
command:

Trace Trigger Never

Collection starts on the next program run or step command.

Chapter 12:
Trace Trigger Never

508

Window Active

The Window Active command activates the specified window. The border of
the active window is highlighted. The Code window is active by default within
the high level and low level screens.

Chapter 12:
Window Active

509

The Next and Previous parameters specify the next higher-numbered or
lower-numbered window relative to the active window.

The cursor keys and the F4 function key only operate in the active window.

The Error, Help, and Status windows cannot be made active.

See Also Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To make the high-level Backtrace window active:

Window Active High_Level Backtrace

To make the assembly Code window active:

Window Active Assembly Code

To make user window 57 active:

Window Active User_Window 57

Chapter 12:
Window Active

510

Window Cursor

The Window Cursor command sets the cursor position in the window
specified by < user_window_nmbr> . The top left corner of the window is
represented by coordinates 0,0.

Subsequent output to the window begins at the cursor position.

Only user-defined windows and the standard I/O window (window No. 20) may
be specified with this command.

See Also Window Active
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To move the cursor to line 5, column 22 in the Stdio window:

Window Cursor 20 Position 5,22

To move the cursor to line 3, column 0 in user window 57:

Window Cursor 57 Position 3,0

Chapter 12:
Window Cursor

511

Window Delete

The Window Delete command removes a window (possibly a screen) defined
previously with the Window New command. Remove a window by entering the
window’s associated window number. If you do not specify a window number
or if you specify 0, the active window is removed.

Remove screens by removing all windows associated with that screen. For
example, if a user-defined screen has three windows and you delete all three
windows, the screen will be deleted as well. See the "Displaying Screens" and
"Displaying Windows" sections of the "Viewing Code and Data" chapter for
more information about window and screen numbers. Predefined debugger
windows and screens cannot be removed.

Files opened with the File User_Fopen command may also be closed with this
command.

See Also File User_Fopen
File Window_Close
Window Active
Window Cursor
Window Erase
Window Open
Window Resize
Window Screen_On
Window Toggle_View

Example To delete user window 57:

Window Delete 57

Chapter 12:
Window Delete

512

Window Erase

The Window Erase command clears all displayed information in the specified
window. It then places the cursor in the specified window to the 0,0 position. If
you do not specify a window number or if you specify 0, the active user-defined
window is cleared. Only user-defined windows and the standard I/O screen
(window No. 20) can be cleared. This command is primarily for use within
macros.

See Also Window Active
Window Cursor
Window Delete
Window New
Window Resize
Window Screen_On
Window Toggle_View

Examples To clear all displayed information in the Stdio window:

Window Erase 20

To clear all displayed information in user window 57:

Window Erase 57

Chapter 12:
Window Erase

513

Window New

The Window New command makes (creates) new windows and screens. It may
also be used to move existing windows to a new location within a screen.
Windows must be assigned a number between 50 and 256 inclusive. Numbers 1
through 49 are reserved for predefined debugger windows. The bounds
parameter specifies both the window size and location on the screen.

Window coordinates 0,0 correspond with the upper-left corner of the screen.

Note When making new window, be careful not to enter coordinates that will result
in a window that will cover the status line and command line.

On a standard 80-column by 24-row terminal display, a row coordinate may be
between 0 and 23. However, creating a window whose bottom row coordinate
is greater than 18 will cause part or all of the status line to be covered.

Chapter 12:
Window New

514

Command Parameters

Definition of the Window New command parameters are as follows:

Parameter Definition Range

< user_window_nmbr>
< user_screen_nmbr>
< top row>
< left col>
< bottom row>
< right col>

Window number
User_Screen
Upper row coordinate
Left column coordinate
Lower row coordinate
Right column coordinate

50 to 256 inclusive
4 to 256 inclusive
0 to N-1 inclusive
0 to N-1 inclusive
0 to N-1 inclusive
0 to N-1 inclusive

N is the number of rows or columns on your display. The value of N is dependent on display type.

Note The Window New command will fail if row or column coordinates are greater
than the screen boundary. For example, the command Window New 15
Assembly 36,1,39,80 will fail if you have an 80 column by 40 row screen. The
command Window New 15 Assembly 36,0,39,79 will work.

Alternate Window Views

To create alternate views of a user-defined window, follow the procedure
outlined below.

1 Execute the Window New command to define a window with specific size
parameters.

2 Execute the Window Toggle_View command, or press function key F4.

3 Execute the Window Resize command to redefine the previously
defined window with new size parameters. The new size parameters must
be smaller than the previously assigned parameters.

See Also Expression Fprintf
File User_Fopen
Window Active
Window Cursor
Window Delete
Window Erase
Window Resize

Chapter 12:
Window New

515

Window Screen_On
Window Toggle_View

Examples To make a new user window, number it 57, and display it in user screen 4 with
upper-left corner at coordinates 5,5 and the lower right corner at coordinates
18,78:

Window New 57 User_Screen 4 Bounds 5,5,18,78

To make a new user window, number it 55, and display it in the high-level
screen with upper-left corner at coordinates 5,5 and the lower right corner at
coordinates 10,20:

Window New 55 High_Level 5,5,10,20

To move the high level status line window to the top of the display in the
standard interface:

Window New 5 High_Level 0,0,3,78

For this command to execute, the high-level window must be displayed and the
difference between the bottom row coordinate and top row coordinate (3 – 0)
must equal three (3). You cannot move the status line if you are using the
graphical interface.

Chapter 12:
Window New

516

Window Resize

The Window Resize command lets you change the size and position of the
active window interactively. The cursor keys (left, right, up, and down arrows)
move either the top left corner, or the bottom right corner of the window.

To reposition the top left corner, press T and position the top left corner of
the window using the cursor control keys.

To reposition the lower right corner of the window, press B and use the cursor
control keys to position the lower right corner.

To move the window without resizing it press M and use the cursor control
keys to move the window on the screen.

Press the Return key to save the new coordinates.

Press CTRL C or Esc Esc to restore the previous coordinates.

If an alternate window view is selected, the size alterations are made to the
alternate view.

Note The Window Resize command can be used to alter the size of any existing
window, including the predefined debugger windows, with the exception of the
Status Line or View window. In the standard interface (but not in the
graphical interface), the Status Line window can be moved or resized using the
Window New command.

See Also Expression Fprintf
File User_Fopen
other Window commands

Chapter 12:
Window Resize

517

Window Screen_On

The Window Screen_On command displays the selected screen. You can also
use function key F6 to display a screen.

If the high level screen is displayed, the debugger is placed in the high level
mode. Likewise, when you display the assembly level screen, the debugger is
placed in the low level mode.

See Also
Window Active
Window Cursor
Window Delete
Window Erase

Window New
Window Resize
Window Toggle_View

Example To activate the Assembly-level screen and place the debugger in low level
mode:

Window Screen_On Assembly

Chapter 12:
Window Screen_On

518

Window Toggle_View

The Window Toggle_View command selects the alternate view of a window.
Typically, this is an enlarged view of the window. If you do not specify a
window number or if you specify 0, the active window is the default.

When you execute the Window Toggle_View command, the display alternates
between the two views of the window.

Chapter 12:
Window Toggle_View

519

You can also use the F4 function key to alternate views of the active window.

To create alternate views of a user-defined window, follow the procedure
outlined in the Window New command description.

See Also Window Active
Window Cursor
Window Delete
Window Erase
Window New
Window Resize
Window Screen_On

Examples To display the alternate view of the active window:

Window Toggle_View

To display the alternate view of the high-level Code window:

Window Toggle_View High_Level Code

To display the alternate view of user window 57:

Window Toggle_View User_Window 57

Chapter 12:
Window Toggle_View

520

13

Expressions and Symbols in
Debugger Commands

A description of the expressions and symbols you can use in debugger
commands.

521

Expressions and Symbols in Debugger Commands

This chapter discusses the following language elements used in debugger
commands:

• Expression elements.

• Formatting expressions.

• Symbolic referencing.

Debugger commands use standard C operators and syntax. This chapter
describes the elements of C expressions and how expressions are structured. It
also discusses memory and variable referencing.

Chapter 13: Expressions and Symbols in Debugger Commands

522

Expression Elements

Most debugger commands require simple C expressions that evaluate to a
scalar value. Simple C expressions are the same as standard algebraic
expressions. These expressions evaluate to a single scalar value. Expressions
consist of the following elements:

• operators
• constants
• program symbols
• debugger symbols
• built-in symbols
• macros
• keywords
• registers
• addresses
• address ranges
• line numbers

Debugger commands allow any legal C expression. The following paragraphs
describe elements of C expressions used in debugger commands.

Operators

The debugger supports most standard C language operators and special
debugger operators.

C Operators

C operators include arithmetic operators, relational operators, assignment
operators, and structure, union, and array operators. The following table lists
these operators in order of precedence (first line of the table is the highest
precedence).

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

523

Supported C Operators

Operators Order of Association

() [] -> .
~ ! ++ -- sizeof (type) – * &
* / %
+ –
<< >>
< <= > >=
== !=
&
^
|
&&
||
= += -= *= /= %= &= ^= |= <<= >>=
,,

Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Left to right

C+ + Operators

The debugger also supports C+ + operators: ::, ., -> , and &.

Debugger Operators

The debugger uses some characters as special debugger operators. These
debugger operators and their descriptions are listed in the following table:

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

524

Debugger Operators

Operator Description

[] References the contents of a memory location. For example:

 Expression Display_Value [0x20b0]

Identifies a line number. For example:

 Program Run Until #82

@ Identifies a stack level, reserved symbols, or symbol tree root. For example:

 Program Display_Source @2
 (stack level)
 Expression Display_Value @module
 (reserved symbol)
 Symbol Display Default @ecs\\
 (symbol tree root)

’ ’ Identifies a character constant.

" " Identifies a character string constant.

\ Qualifies a symbol reference. For example:

 Program Run Until updateSys\#20

\\ Specifies an executable file as the root of a symbol tree. The specified file must be
loaded into the debugger. For example:

 Program Context Set @ecs\\main

Constants

A constant is a fixed quantity. Constants may be integers, floating point
values, or character string constants.

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

525

Integer Constants.

An integer constant may be defined as a sequence of numeric characters
optionally preceded by a plus or minus sign. If unsigned, the debugger
assumes the value is positive.

Positive integer constants may range between 0 and 2**31-1. When a constant
is negative, its two’s complement representation is generated. Negative
integer constants may range to –2**31.

Constants can be specified as binary, decimal, or hexadecimal values. This is
done by placing a prefix or suffix descriptor before or after the constant. The
following table lists the legal prefixes or suffixes that may be specified with
integer constants to denote a specific base.

Integer Constant Prefixes and Suffixes

Constant
Type

Prefix
Descriptor

Suffix
Descriptor

Base Digit

Binary
Decimal
Hexadecimal 0x,0X

b, B
t, T
h, H

2
10
16

0-1
0-9
0-9, A-F, a-f

Hexadecimal constants starting with the letters A through F (or a through f)
must be prefixed with a zero. Otherwise, the debugger attempts to interpret
the value as a symbol name.

By default, the debugger interprets integer constants as decimal values. To
change the radix default to hexadecimal, you can use the Debugger Option
General Radix Hexadecimal command.

If you change the radix default to hexadecimal, you must terminate any
number you want interpreted as a decimal value with a T or t. (For example,
specify decimal 32 as 32T).

Note You cannot use binary numbers when the radix is hexadecimal.

The debugger truncates values larger than that which can be contained in an
element of an expression or command. The debugger extends values less than
that allowed in the element. The truncation and extension are both
implemented according to the rules of C.

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

526

The examples given in the following table show the use of prefix and suffix
descriptors.

Prefix and Suffix Descriptor Examples

Constant Decimal Mode Hexadecimal Mode

73T
0EFF1h
10b
0x2214
23C3
123

Decimal
Hexadecimal
Binary
Hexadecimal
Illegal
Decimal

Decimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal

Floating Point Constants

The debugger represents floating point constants internally in standard IEEE
binary format. All floating point calculations follow the rules of C. The
debugger treats all floating point constants as double precision values
internally.

Floating point constants specified on the debugger command line must have
the following syntax:

[sign] integer_part.[fractional_part] [exponent]

 where sign is an optional plus (+) or minus (–) sign.

integer_part consists of one or more decimal digits.

. is a decimal point.

fractional_part may be zero or more decimal digits.

exponent is an optional exponent, which is letter E (or e)
followed by an integer part.

When specifying a floating point constant, the debugger uses a more restrictive
syntax than the C language. The debugger always requires an integer part and
a decimal point.

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

527

Examples: 76.3e-1
76.3E+0
76.3E2

76.3
76.e5
76.

–0.3e1
 0.3
 0.

Character Strings and Character Constants

Character Strings. A character string is a sequence of one or more ASCII
characters enclosed in double quotation marks or two or more characters
enclosed in single quotes. If the string has more than one character,
subsequent ASCII characters are stored in consecutive bytes.

When a character string is referenced in a C expression, the debugger
substitutes an address pointer to the string in the expression.

Character Constants. A character constant is a single character enclosed in
single quotation marks.

When a character constant is referenced in a C expression, the debugger
substitutes the actual ASCII character value in the expression, not the address
of the character.

Non-printable characters. Some non-printable characters may be
embedded in both character strings and character constants enclosed in double
quotation marks (") by using the escape sequences listed in the table which
follows. Escape sequences are indicated by a backslash (\).

The backslash is interpreted as a character in character strings enclosed in
single quotation marks (’).

Any characters other than those listed in the following table are interpreted
literally if preceded by a backslash. For example, to have literal double
quotation marks in a string, enclose the string in double quotation marks and
use the escape sequence for double quotes shown above. For example:

"This is a \"string\" using embedded double quotation
marks"

To have literal single quotation marks in a character string, enclose the string
in double quotation marks. For example:

"This is a string that’s using a single embedded
quotation mark"

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

528

Non-Printable Character Escape Sequences

Sequence ASCII Name Hex Value Description

\b
\f
\n
\r
\t
\"
\\
\xnumber*

BS
FF
NL
CR
HT
"
\
––

08
0C
0A
0D
09
22
5C
xnumber

Back Space
Form Feed
New Line
Carriage Return
Horizontal Tab
Double Quote
Backslash
Hex Character Value

* \xnumber must be entered in the format \xnn where nn is a two digit hexadecimal value. For
example: \x0f , not \xf

Note The debugger automatically terminates character strings enclosed in quotation
marks with a null character. However, when you use a character string with a
Memory Assign or Memory Block_Operation (Fill, Search, or Test)
command, the debugger uses only the characters within the quotation marks
(null characters are not added).

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Elements

529

Symbols

A symbol (also called an identifier) is a name that identifies a location in
memory. It consists of a sequence of characters that identify program and
debugger variables, macros, keywords,registers, memory addresses, and line
numbers.

Symbols may be up to 40 characters in length. The first character in a symbol
must be alphabetic, an underscore (_), or an at sign (@). The characters
allowed in a symbol include upper and lower case alphabetic characters,
numeric characters, dollar signs ($), at signs (@), or underscores (_). No
other characters may be used in symbols. The debugger differentiates between
upper case and lower case characters in a symbol.

The following sections describe the different categories of symbols used by the
debugger.

Program Symbols

Program symbols are identifiers associated with a source program. They
consist of symbolic variable data names and function names that the
programmer defined when writing the source program. All symbols that were
defined in the source program can be passed to the debugger and referenced
during a debugging session. Note that preprocessor names are not symbols.

The compiler includes all program symbol information in the resulting output
object module file by default. When you load an executable file for debugging,
the debugger places all program symbols into the debugger symbol table by
default. The debugger preserves symbol types and treats the symbols
according to their type.

The debugger may be instructed to load only global symbols at load time,
loading local symbols as they are referenced. This behavior is known as
symbols on demand. Refer to the description of the Debugger Option General
Demand_Load command in the “Debugger Commands” chapter for more
information on symbols on demand.

Normally, the compiler prefixes a leading underscore to all global program
symbols. This is done to distinguish program symbols from reserved assembler
names. If the debugger has loaded all symbols, two symbols will be available;
the high-level symbol (for example, main), and its low-level

Chapter 13: Expressions and Symbols in Debugger Commands
Symbols

530

counterpart(_main). However, with symbols on demand, only the high-level
symbol is available (main).

Debugger Symbols

Debugger symbols can be added during a debugging session using the Symbol
Add command. The debugger treats debugger symbols as global symbols.
When you create a debugger symbol, you must assign it a name. You may
optionally assign it a type. An initial value may also be given to a debugger
symbol. If you do not specify an initial value, the initial value defaults to zero.

Debugger symbols are stored in the debugger’s memory and are not associated
with the processor target memory.

Macro Symbols

You can use macros to:

• Create complex user commands.
• Patch your source code temporarily.
• Display information in user-defined windows.

A macro is similar to a C function. It has a name, return type, optional
arguments, optional macro local symbols, and a sequence of statements.

There are two types of macro symbols:

• Macro names.
• Macro local symbols.

Macro Names

Macro names identify a macro. You assign macro names with the Debugger
Macro Add command.

Macro Local Symbols

Macro local symbols are local variables and parameters defined within macros.
They are declared when you create a debugger macro with the Debugger
Macro Add command. A macro local symbol can be accessed only by the
macro in which it is defined. It is created when the macro is executed. The
macro local symbol has an undefined initial value.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbols

531

Reserved Symbols

Reserved symbols are reserved words that represent processor registers, status
bits, and debugger control variables. These symbols are always recognized by
the debugger. You can use reserved symbols any time during a debugging
session. Reserved symbols have special meanings within the debugger
command language. They cannot be defined and used for other purposes. To
avoid conflict with other symbols, the names of all reserved symbols begin with
a commercial at sign (@).

See the “Reserved Symbols” chapter for a complete list of reserved symbols
and their descriptions.

Line Numbers

Line numbers can be used to refer to lines of code in your original source
program. The compiler generates line numbers by default.

Line number references must be preceded by a pound sign (#). For example:

Program Run Until #82

When you refer to a source line number, the debugger translates it to the
address of the first instruction generated by the compiler for that C statement.
If a C source line did not generate executable code, a reference to that line
number actually refers to the next line that did generate executable code.

To reference a line number that is in a module other than the current one,
precede the line number with a module name. For example:

Breakpt I nstr updateSys\#332

If supported by your compiler, you can debug multiple statements on one line.
A dot qualifier (.) identifies the sequence of a statement on the source line. A
colon qualifier (:) identifies a column number within the source line.
Hewlett-Packard cross assemblers do not support multi-statement debugging.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbols

532

Addresses

An address may be represented by any C expression that evaluates to a single
value. The C expression can contain symbols, constants, line numbers, and
operators.

Code Addresses

Code addresses refer to the executable portion of a program. In high level
mode, expressions that evaluate to a code address cannot contain numeric
constants or operators.

Data and Assembly Level Code Addresses

Data addresses refer to the data portion of a program. Data address and
assembly level code address expressions may be represented by most legal C
expressions. There are no restrictions on constants or operators.

Address Ranges

An address range is a range of memory bounded by two addresses. You specify
an address range with a starting address, two periods (..), and an ending
address. These addresses can be actual memory locations, line numbers,
symbols, or expressions that evaluate to addresses in memory.

You can also specify a byte offset as the ending address parameter. If you
specify a byte offset, the debugger adds the specified number of bytes to the
starting address and uses the resulting address as the ending address. You
must precede a byte offset with a plus sign (+).

You may specify module names before symbols and line numbers to override
the default module.

The following examples show how to specify address ranges.

To set instruction breakpoints starting at line number 80 and ending at line
number 90:

Breakpt Instr #80..#90

Chapter 13: Expressions and Symbols in Debugger Commands
Addresses

533

To display code as bytes starting at line number 82 and ending at address 10d0
(hex):

Memory Display Byte #82..0x10d0

To display code as bytes, starting at memory location tick_clock and ending at
20 bytes past tick_clock:

Memory Display Byte tick_clock..+20

Chapter 13: Expressions and Symbols in Debugger Commands
Addresses

534

Keywords

Keywords are macro conditional statements that can be used in a macro
definition. These keywords are very similar to the C language conditional
statements. You cannot redefine keywords or use them in any other context.
The debugger keywords are listed below.

IF
ELSE
FOR
WHILE
DO
BREAK
CONTINUE
RETURN

Chapter 13: Expressions and Symbols in Debugger Commands
Keywords

535

Forming Expressions

The debugger groups expressions into two classes:

• Assembly language expressions used in assembly level mode.

• Source language expressions used in either assembly level mode or high
level mode.

When you use a source language expression to express a code address in high
level mode, it can consist only of a single symbol or a single line number.
Source language expressions cannot contain numeric constants or operators.
This restriction reduces confusion when entering high level expressions.
There are no restrictions on source language expressions that evaluate to data
addresses or on assembly language expressions.

Examples of legal and illegal source language code expressions in high level
mode are shown below.

Legal # 80
main

Illegal # 80+ 3
main+ 10

With several commands, the size of an expression can be specified by size
qualifiers. The size qualifiers are explained in the “Debugger Commands”
chapter.

You may use C+ + classes in expressions.

Floating point calculations follow the rules of C. Single precision numbers are
converted to double precision, the specified operation is done, and the result
is translated back to single precision.

Note Any value can be treated as an address. For example, a character value (byte)
can be treated as an address. You should be careful when using values as
addresses.

Examples of valid expressions are shown in the following table.

Chapter 13: Expressions and Symbols in Debugger Commands
Forming Expressions

536

Valid Expressions

Expression Meaning

7
i
x+ (y*5)
default_targets[2]
assign_vectors

Line number reference (code address)
Symbol reference (value or address)
Arithmetic operation (value or address)
Array reference (value or address)
Function name reference (code address)

Expression Strings

An expression string is a list of values separated by commas. The expression
string can contain expressions and ASCII character strings enclosed in
quotation marks. For several commands, each value in an expression string
can be changed to the size specified by the size qualifiers. If you change the
size, the debugger pads elements that do not fit evenly. Examples of
expression strings are shown in the following table.

Expression String Examples

String Results

1,2,"abc"
3+ 4, time, mac1()
’1xyz123’

Values 1 and 2, and ASCII values of abc.
Value 7, value of time, results of calling the macro ’mac1’.
ASCII values.

Chapter 13: Expressions and Symbols in Debugger Commands
Expression Strings

537

Symbolic Referencing

The debugger references symbols in a different manner than the standard C
language definition. Therefore, understanding how variables are allocated and
stored in memory is important. The following sections describe symbol
storage classes and data types. These sections are followed by a discussion on:

• Referencing symbols with root, module, and function names.

• Making stack references.

In the following paragraphs, the notion of a ’module’ is synonymous with a file
in C. In fact, the module name is simply the basename of the source file with
no suffix.

Storage Classes

All variables and functions in a C source program have a storage class that
defines how the variable or function is created and accessed. The storage
classes are:

• extern (global)
• static
• automatic
• register

C preprocessor symbols are not available to the debugger. The following
paragraphs describe each storage class used in a C source program.

Extern (global)

Global variables in a C program are declared outside of a function and are
accessible to all functions. Storage for these variables is allocated only once.
Thereafter, references are made to the previously allocated space.

Global functions can be called from any other function.

Static

Static variables in a C program are allocated permanent storage and can be
local to a module or local to a function.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

538

In C, static variables local to a module can only be accessed by functions in
that module. In the debugger, static variables local to a module can be
accessed either when a function is active in that module or when the variable is
qualified by the module name in which it is defined. A static variable that is
local to a function can only be accessed by the function in which it was
declared, unless it is qualified by the module and function in which it is defined.

Static functions can only be accessed when the function is in the current
module, unless the function is qualified by the module in which it is defined.

Automatic

Automatic variables are declared inside a function and are accessible only to
that function. Storage for these variables is allocated on the stack when the
function is called and released when the function returns. Automatic variables
do not have an initial value (their values are not retained between function
calls).

You can access an automatic (local) variable when it is local to the current
function, or when its function is on the stack. Use the stack-level prefix
@< stack_level> to access an automatic variable in a function on the stack.

Register

Register variables are also declared inside a function and are accessible only to
that function. Storage for these variables is allocated in a specific hardware
register when the function is called and released when the function returns.
Register variables do not have an initial value (their values are not retained
between function calls).

A register variable is accessible when it is local to the current function, or
when its function is on the stack.

Note Breakpoints cannot be set on accesses to register variables. If you need to set
breakpoints on a variable, make sure that it is allocated on the stack by
declaring its type as automatic.

Data Types

All symbols and expressions have an associated data type. Assembly language
modules may contain variables with the types BYTE, WORD, or LONG. The

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

539

debugger treats these types as unsigned char, unsigned short int, and unsigned
long, respectively. A segment attribute indicates whether a variable was
defined in a code segment or a data segment.

Source language modules may contain any valid C language data type. The
data types for each type of module are listed in the following tables. The
ranges of values are decimal representations.

Assembly Level Data Types

Type Size Range

BYTE (unsigned char)
WORD (unsigned short int)
LONG (unsigned long)

8 bits, unsigned
16 bits, unsigned
32 bits, unsigned

0 to 255
0 to 65535
0 to 4294967295

High Level Scalar Data Types

Type Size Range

char
unsigned char
short int
unsigned short int
int
unsigned int
long
unsigned long
enum
pointer
float
double

8 bits, signed
8 bits, unsigned
16 bits, signed
16 bits, unsigned
32 bits, signed
32 bits, unsigned
32 bits, signed
32 bits, unsigned
8-32 bits, unsigned
32 bits, unsigned
32 bits
64 bits

–128 to 127
0 to 255
–32768 to 32767
0 to 65535
–2147483648 to 2147483647
0 to 4294967295
–2147483648 to 2147483647
0 to 4294967295
0 to 4294967295
0 to 4294967295
1.18x10–38 to 3.4x10+ 38
9.46x10–308 to 1.79x10+ 308

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

540

High Level Complex Data Types

Type Size

struct
union
array

Combined size of members (plus possible padding)
Size of largest member
Combined size of elements

Type Conversion

The debugger does data type conversions under the following conditions:

• When two or more operands of different types appear in an expression,
the debugger does data type conversion according to the rules of C.

• When arguments are passed to a macro function, the debugger converts
the types of the macro’s arguments to the types defined in the macro.

• When the data type of an operand is forced by type casting, the debugger
converts the data type.

• When a specific type is required by a command, the value is converted by
the debugger according to the rules of C.

Type Casting

Type casting forces the conversion of a debugger symbol or expression to a
specified data type. The debugger converts the resulting value of the
expression to the specified data type, as if the expression was assigned to a
variable of that type. The debugger does not alter the contents of the variable.

You can cast debugger symbols and expressions into different types using the
following syntax:

(typename) expression

For example, the following symbol is cast to type char:

(char) prime

The following example casts the variable expression ptr__char to type int:

(int) ptr__char

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

541

Unlike C, the debugger allows casting to an array. The following example
casts the address of the symbol int_value to an array of four chars:

(char[4]) &int_value

This type of casting to an array can be used with both the Expression
Display_Value and Expression Monitor_Value commands.

Special Casting

In addition to the standard C type casts, the following assembly level casts are
also recognized by the debugger’s expression handler.

(Q S)

This type cast coerces an expression into a quoted string. For example,
assuming the symbol int_val has a value of 0x61626364,

Expression Display_Value (Q S) &int_val

causes int_val to be displayed as "abcd". Note that the expression evaluates to
an address because the (Q S) type cast is semantically synonymous with the C
type cast (char *).

(I A)

This type cast coerces an expression into an instruction address. For example,
assuming the symbol int_val has a value of 0x400,

Breakpt I nstr (I A) int_val

sets an instruction breakpoint at address 0x400.

(H D)

This type cast coerces an expression into a long word (4 bytes) and displays the
value in hexadecimal format. For example, assuming the symbol char_val has
a value of 0x3F,

Expression Display_Value (H D) char_val

will cause char_val to be displayed as 0x0000003F.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

542

(H W)

This type cast coerces an expression into a word (2 bytes). For example,
assuming the symbol int_val has the value 0x12345678,

Expression Display_Value (H W) int_val

will cause int_val to be displayed as 0x5678.

(H B)

This type cast coerces an expression into a byte. For example, assuming the
symbol int_val has a value of 0x12345678,

Expression Display_Value (H B) int_val

will cause int_val to be displayed as 0x78.

Scoping Rules

References to symbols follow the standard scoping rules of C. For example, if
the symbol ’x’ is referenced, the debugger searches its symbol table for ’x’ using
the following priority:

• A variable local to the current macro (if any).
• A variable local to the current function (if any).
• A variable static to the current module (if any).
• A global variable or debugger symbol.

Referencing Symbols

Symbols are qualified (and therefore referenced) according to their context.
Context in the debugger is defined by a symbol tree and, if applicable, by a
module and function name.

Root Names

Within the debugger, the symbol table is represented as a hierarchical tree,
with each level representing a scoping level. There are two types of symbol
trees which exist within the debugger:

• non-program symbol tree
• program symbol tree

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

543

Non-program symbol tree. This tree is composed of non-program symbols.
Only one non-program symbol tree exists. This tree is made up of:
• debugger symbols (@pc, @sp, etc.)
• macros
• user-defined debugger symbols

The root name of this tree is \\.

Program symbol tree. The second type of symbol tree is the program
symbol tree. The debugger allows up to 30 program trees. This tree is made
up of symbols which exist in the target program. Since there may be multiple
program trees within the debugger, the root of a program tree is specified as
@absfile\\, where absfile is the name of the executable file with its suffix
stripped. For example, the root name of the program tree associated with the
executable file a.out.x would be @a_out\\.

Note Any embedded ’.’ characters in a file name are converted to underscores. This
prevents conflicts with the ’.’ structure operator. For example, the module
name of source file myfile.bar.c would be myfile_bar.

There is no method for generating a list of multiple program trees.

If two or more executable files with the same name are loaded, the debugger
appends an underscore and number to one of the files to make the root names
unambiguous. For example, loading two a.out.x files would result in the
creation of two program trees, with root names a_out and a_out_1.

Whenever the PC is pointing to the code space of a program, the root name of
the program’s symbol tree is the current root. A shorthand notation for
specifying the current root is the symbol \. For example, if the debugger is
invoked without loading an executable file, the current root would be \\, which
would be synonymous with \. However, once an executable file (a.out.x) is
loaded with the PC set to an address within the executable’s code space, the
current root becomes @a_out\\, which would be synonymous with \.

The reserved symbol "@root" points to a character string representing the
name of the current root, and the symbol "@file" points to the name of the file
containing the current PC. These may be empty strings ("") if the PC is outside
of any defined symbol database.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

544

Module Names

The C language does not contain the concept of a module. Within the context
of the debugger, a module is a scoping level which is identical to the scoping
level of a file in C. Module names (which are generated by the compiler), are
derived from source file names by removing the suffix of the source file. For
example, the module name associated with the source file myfile.c would be
myfile. Module names are used to qualify symbol references within the
program symbol tree. When used as such, they are separated from any
following function name by a \.

Note If files in two directories have the same name, they will have identical module
names. Since the debugger cannot distinguish between the two modules, all
references will resolve to the last loaded module.

Assembly level modules with multiple code sections. If assembly
language modules have more than one code section, the debugger breaks the
module down into sub-modules. For example, if the source file myfile.s had
three code sections, the modules myfile, myfile_2, and myfile_3 would appear
in the program’s symbol tree. This module separation only affects the address
ranges of the module, not the scoping, i.e. all symbols scoped under the file
myfile.s would be scoped under module myfile.

Context. Some symbol references are dependent on the current context. See
the examples in the following tables. The current context is based on the PC
and consists of the current root, current module, and current function. To
display the current context, execute the command:

Program Context Display Return

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

545

Symbolic Referencing With Explicit Roots

Example Comment

Symbol Display Default \\ Display symbols scoped under the non-program
root.

Symbol Display Default @a_out\\

Symbol Display Default \

Display symbols scoped under the program root
a_out.

Display symbols scoped under the current root.

Symbol Display Default
@a_out\\mod1

Symbol Display Default \mod1

Display symbol information for module mod1
scoped under program root a_out.

Display symbol information for module mod1
scoped under the current root.

Symbol Display Default
@a_out\\mod1\

Symbol Display Default \mod1\

Display symbols scoped under module mod1 in
program root a_out.

Display symbols scoped under module mod1 in
the current root.

Breakpt Instr @a_out\\mod1\func1

Breakpt Instr \mod1\func1

Set a breakpoint at the entry point to function
func1 in module mod1 in program root a_out.

Set a breakpoint at the entry point to function
func1 in module mod1 in the current root.

Symbol Display Default
@a_out\\mod1\func1\

Symbol Display Default
\mod1\func1\

Display symbols scoped under function func1 in
module mod1 in program root a_out.

Display symbols scoped under function func1 in
module mod1 in the current root.

Breakpt Access
@a_out\\mod1\func1\j

Breakpt Access \mod1\func1\j

Set a breakpoint on accesses of variable j scoped
under function func1 in module mod1 in
program root a_out.

Set a breakpoint on accesses of variable j scoped
under function func1 in module mod1 in the
current root.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

546

Symbolic Referencing With Explicit Roots

Example Comment

Notes:

The variable mod1 must be a module name.
The variable func1 must be a function name.
The example pairs are equivalent if the current root is a_out.

Symbolic Referencing Without Explicit Roots

Example Comment

Symbol Display Default x Display symbol information for all symbols
named x at any scoping level in any root.

Breakpt Access x Set a breakpoint at the x found using the scoping
rules described in this chapter.

Symbol Display Default x\ Display symbol information for global symbol x
in the current root and all symbols scoped under
x. x may be a variable, function, or module name.

Breakpt Instr x\#18 Set a breakpoint at line 18 of module x.

Symbol Display Default x\y Display symbol information for local variable y
in function x (or function y in module x) in the
current context.

Symbol Display Default x\y\ Display symbol information for local variable y
in function x (or function y in module x) in the
current context and for all symbols scoped under
x\y.

Breakpt Access x\y\j Set a breakpoint at local variable j in function y
in module x in the current root.

Evaluating Symbols

The debugger evaluates symbols in expressions using the rules of the C
language as follows:

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

547

• Function names and labels evaluate to addresses.

• Variables generally evaluate to the contents of the memory location at the
address of the variable (the exception is unsubscripted array names which
evaluate to addresses.)

The examples in the following table show the differences in evaluation of these
symbol types.

Symbol Evaluation Examples

Example Comment

Breakpt Instr foo The symbol foo is a function name. The
breakpoint is set at the address of foo.

Breakpt Access &i i is a variable. Therefore, the debugger evaluates
the symbol as the value of i rather than the
address of i. The & operator causes the
breakpoint to be set on the address of i.

Breakpt Access a a is an array. The breakpoint is set at the address
of the first element of the array.

Breakpt Access a[3] A breakpoint is set at the address specified in
a[3], not the address of a[3].

Breakpt Access &a[3] A breakpoint is set at the address of a[3].

Stack References

When a function is invoked in C, space is allocated on the stack for local
variables. If one function calls another function, all information is saved on
the stack to continue execution when the called function returns. The caller
function is now nested.

You can reference variables and functions on the stack implicitly or explicitly.

Implicit Stack References

The default compiler setting allocates storage for all local variables in a C
program in registers, if possible. Variables that cannot be stored in registers
are allocated storage on the stack. With the debugger, you can implicitly
reference variables on the stack as follows:

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

548

• To refer to variables on the stack in the current function, specify the name
of the variable. For example: x.

• To refer to a local variable in a nested function, specify the function name
followed by a backslash and then the name of the local variable, for
example, main\i.

Explicit Stack References

A function is allocated storage on the stack when it is executing, or when it has
called another function. To refer to functions and variables on the stack
explicitly, you must specify the function’s nesting level preceded by a
commercial at sign (@). The backtrace window in high-level mode displays
nesting level information (for example, if the current function is @0, its calling
function is @1, etc.). You may reference functions on the stack as follows:

• To refer to the address that the function will continue to execute from,
specify the function nesting level preceded by an at sign (@). For
example, the command Program Run Until @1 executes the program until
the current function returns to its caller.

• To refer explicitly to a local variable in a nested function, specify the
function nesting level followed by a backslash and then the name of the
variable. For example, the command Expression Display_Value @3\str
references the local variable ’str’ of the function at nesting level 3.

• To reference a function itself, enter the command Program Context
Expand followed by a space and then the function nesting level. For
example, the command Program Context Expand @7 displays all
information about the function at the specified level for that particular
invocation. This information includes the name of the function, the
current line number, and all local variables in the function and their
values. See the Program Context Expand command syntax description in
the "Debugger Commands" chapter for more information.

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

549

Chapter 13: Expressions and Symbols in Debugger Commands
Symbolic Referencing

550

14

Reserved Symbols

551

The symbols listed in this chapter are predefined, reserved symbols for the
68020/030 debugger/emulator. Symbols identified with an asterisk (*) are used
only with the 68030 processor. Reserved symbols cannot be deleted by the user.

Note that reserved symbols may be entered in either upper or lower case
characters.

Chapter 14: Reserved Symbols

552

Reserved Symbols

Symbol Meaning Maximum Value

@A0-A7 Address Registers 0xFFFFFFFF
@AC0 Access Control Register 0 (68EC030 only) 0xFFFFFFFF
@AC1 Access Control Register 1 (68EC030 only) 0xFFFFFFFF
@ACUSR Access Control Unit Status Register (68EC030 only) 0xFFFF
@C Carry Flag 1
@CAAR Cache Address Register 0xFFFFFFFF
@CACR Cache Control Register 0xF
@CCR Condition Codes Register 0x1F
@CRP_H* CPU Root Pointer (upper 32-bits) (68030 only) 0xFFFFFFFF
@CRP_L* CPU Root Pointer (lower 32-bits) (68030 only) 0xFFFFFFFF
@D0-D7 Data Registers 0xFFFFFFFF
@DFC Destination Function Code 7
@ENTRY Address of first executable statement in function
@FILE Name of file containing current PC,
@FUNCTION Pointer to current function name
@HLPC High-Level Program Counter(line number) 32767
@I Interrupt Mask 7
@ISP Interrupt Stack Pointer 0xFFFFFFFF
@M Master/Interrupt Flag 1
@MMUSR* MMU Status Register (68030 only) 0xEE47
@MODULE Pointer to current module name
@MSP Master Stack Pointer 0xFFFFFFFF
@N Negative Flag 1
@PC Program Counter 0xFFFFFFFF
@ROOT Name of root of symbol tree represented by PC
@S Supervisor State Flag 1
@SFC Source Function Code 0xFFFFFFFF
@SP Stack Pointer 0xFFFFFFFF
@SR Status Register 0xFFFF
@SRP_H* Supervisor Root Pointer (upper 32-bits) (68030 only)
@SRP_L* Supervisor Root Pointer (lower 32-bits) (68030 only)
@SSP Supervisor Stack Pointer 0xFFFFFFFF
@T0 Trace 0 Flag 1
@T1 Trace 1 Flag 1
@TC* Translation Control Register
@TT0* Transparent Translation Register 0 (68030 only)
@TT1* Transparent Translation Register 1 (68030 only)
@USP User Stack Pointer 0xFFFFFFFF
@V Overflow Flag 1

Chapter 14: Reserved Symbols

553

Reserved Symbols

Symbol Meaning Maximum Value

@VBR Vector Base Address 0xFFFFFFFF
@X Extend Flag 1
@Z Zero Flag 1

Chapter 14: Reserved Symbols

554

15

Predefined Macros

555

Predefined Macros

Predefined macros are provided with the debugger. These predefined macros
provide commonly used functions to help in debugging your program. The
predefined macros available for your use are listed in the “Predefined
Debugger Macros” table and are described on the following pages.

The following predefined debugger macros provide services to the SIMIO
system and internal debugger functions. They are not designed for use by the
debugger user. These names will be displayed if you check the debugger’s
predefined macro list using the Symbol Display command:

bbaunload
emul_special
hpsimio
hp_redirect
hpnosimio
hpioctl
hpeofkbd
hpioreport
hpsimlock
load_config
quit_debugger
shell_escape

556

Predefined Debugger Macros

Macro Description

break_info
byte
call
close
cmd_forward
dword
error
fgetc
fopen
key_get
key_stat
memchr
memclr
memcpy
memset
open
pod_command
read
reg_str
showversion
strcat
strchr
strcmp
strcpy
stricmp
strlen
strncmp
until
when
word
write

Display information about a breakpoint
Return a byte value at the specified address
Call target function (not implemented in this product)
Close a UNIX file
Send a command to another attached emulator interface
Return a long value at the specified address
Display error message
Reads character from file
Open a file and associate it with a user window
Get (read) a key from the keyboard
Check keyboard for availability of key
Search for character in memory
Clear memory bytes
Copy characters from memory
Set the value of characters in memory
Open a UNIX file for reading and/or writing
Pass a command to the emulator terminal interface
Read from a system file
Get the register value using the register name in the string
Show the software version number for the debugger product
Concatenate two strings
Locate first occurrence of a character in a string
Compare two strings
Copy a string
Comparison of two strings without case distinction
String length
Limited comparison of two strings
Run until expression is true
Break when expression is true
Return a word value at the specified address
Write to a system file

Chapter 15: Predefined Macros

557

break_info

Function

Return information about a breakpoint

Synopsis

int break_info (addr)
unsigned long *addr;

Description

The break_info macro returns the address and type of a breakpoint if it is
called when a breakpoint is encountered. The macro returns the 32-bit
representation of the breakpoint address used by the debugger and the
following values for breakpoint type:

-1 The cause of the breakpoint is unknown.

0 A breakpoint did not cause this macro call.

1 The breakpoint was caused by a read from the address.

2 The breakpoint was caused by a write to the address.

3 The breakpoint was caused by an access (read/write status
unknown) of the address.

4 The breakpoint was caused by an instruction breakpoint.

Diagnostics

None.

Chapter 15: Predefined Macros
break_info

558

Example

If you have the following code segment:

main()
{
 auto i,j,k;
 i = 1;
 j = 3;
 k = i + j;
}

and you execute the following command file:

Debugger Macro Add int print_info()
{
unsigned long address;
int reason;

reason = break_info(&address);
$Expression Printf "Breakpoint at %8x. Reason: %d\n",
address,reason$;
return(1);
}
.

Program Run Until main
Program Step
Breakpt Read &i;print_info()
Breakpt Write &k;print_info()
Breakpt Access &j;print_info()
Program Run

the debugger will display the breakpoint address and type value in the journal
window.

Chapter 15: Predefined Macros
break_info

559

byte

Function

Return a byte value at the specified address

Synopsis

unsigned char byte (addr)
void *addr;

Description

The byte macro returns a byte value of the memory contents at the specified
address. The value of the expression addr is computed and used as the address.

Diagnostics

The byte value of the memory contents at the specified address is returned.

Chapter 15: Predefined Macros
byte

560

close

Function

Close a UNIX file

Synopsis

int close(fildes)
int fildes;

Description

The close macro closes a UNIX file. This macro is an interface to the UNIX
system call close(2). Refer to the HP-UX Reference Manual for detailed
information.

Diagnostics

If the system call to close(2) is successful, 0 is returned. Otherwise, -1 is
returned and a system generated error message is written to the journal
window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses close().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int close_files(infile, outfile)
int infile; /* file descriptor to close */
int outfile; /* file descriptor to close */
{
 /* close input file */
 infile = close(infile);
 if (infile == -1)
 return 0; /* close failed */

 /* close output file */
 outfile = close(outfile);
 if (outfile == -1)
 return 0; /* close failed */

 return 1; /* both files were closed successfully */
}

Chapter 15: Predefined Macros
close

561

cmd_forward

Function

Send a comand to another attached emulator interface.

Synopsis

int cmd_forward (ui_id, command)
char *ui_id;
char *command;

Description

This macro sends the string command to the interface ui_id. Interface ui_id
will then interpret command as input to its command line.

This macro provides a way for the target program to send commands to an
emulator interface, as well as allowing control of all interfaces from a common
point.

The interfaces that are currently supported are:

Emul Emulator/analyzer interface. If several emulator
interfaces are sharing the emulator, the command will
be forwarded to the most recently started interface.

Perf Software Performance Analyzer.

BMS Broadcast Message Server (the Softbench Gateway).

Debug Debugger. This sends a command back to the debugger
you are using.

If an interface of the type specified is currently running, the command will be
executed there and any errors will be displayed there.

Diagnostics

A zero is returned if ui_id is not attached to the emulator. A one is returned if
ui_id is attached.

Chapter 15: Predefined Macros
cmd_forward

562

Examples

To start execution of an emulator interface command file at the beginning of
sub-program main5, enter:

Breakpoint I nstr main5; cmd_forward ("emul",
"my_command_file")

To provide a target function to send a command to a user interface, compile
the following function into your target program:

void send_command (ui, cmd)
 char *ui, *cmd;
{
 return;
}

Then set a breakpoint with a macro call:

Breakpoint I nstr send_command\@ENTRY; cmd_forward
(ui,cmd)

When execution reaches the first statement in send_command() the command
cmd will be sent to user interface ui. Execution will halt if ui was not attached,
and will continue otherwise.

Chapter 15: Predefined Macros
cmd_forward

563

dword

Function

Return a long value at the specified address

Synopsis

unsigned long dword (addr)
void *addr;

Description

The dword macro returns a LONG (4-byte) value of the memory contents at
the specified address. The value of the expression addr is computed and used
as the address.

Diagnostics

The LONG value of the memory at that address is returned.

Chapter 15: Predefined Macros
dword

564

error

Function

Display error message

Synopsis

void error(level, text, parm)
int level;
char *text;
long parm;

Description

The error() macro is used to display error messages due to errors generated
within macros. level must have a value of 1, 2, or 3. text is a string which can
contain one %d format character, where parm is the associated integer value.

level can be used to indicate the severity of the error by its value. The following
explains the values available for level, and the associated action taken by
error().

1 text is displayed in the journal window.

2 text is displayed in the journal window and the macro halts program
execution.

3 An error box pops up, text is displayed within the box, and the macro halts
program execution.

Chapter 15: Predefined Macros
error

565

fgetc

Function

Reads character from file

Synopsis

int fgetc(vp_num)
int vp_num;

Description

The macro fgetc() returns the next character in the file associated with the
window number vp_num. The window number must be a result of the File
User_Fopen command. The value -1 is returned on end of file.

Chapter 15: Predefined Macros
fgetc

566

fopen

Function

Open a file and associate it with a user window

Synopsis

int fopen(vp_num, filename, mode)
int vp_num;
char *filename;
char *mode;

Description

The macro fopen() opens a file and associates it with a user-defined window.
This macro is equivalent to the File User_Fopen debugger command. filename
is the name of the file to be opened. mode is a string that specifies the mode in
which the file is opened. Valid modes are:

"r" Open file for reading only

"w" Open file for reading and/or writing (existing file contents
are erased)

"a" Open file for appending

Diagnostics

If successful, a window number is returned. The error code -27 indicates that
the window is already open or that the window number is out of range. The
error code -101 is returned for other errors; for example, if the file to be read
does not exist.

Chapter 15: Predefined Macros
fopen

567

key_get

Function

Get a key from the keyboard

Synopsis

unsigned short key_get()

Description

The macro key_get() reads a key from the keyboard. It returns only after a key
is available. The return value is the value of the key.

Chapter 15: Predefined Macros
key_get

568

key_stat

Function

Check keyboard for availability of key

Synopsis

unsigned short key_stat()

Description

The key_stat() macro checks the keyboard to see if a key is available to read. It
returns 0 if no key is available. The first pending key is returned if any keys are
available.

Diagnostics

The value -1 is returned if the macro fails.

Chapter 15: Predefined Macros
key_stat

569

memchr

Function

Search for character in memory

Synopsis

char *memchr (str1, byte_value, count)
char *str1;
char byte_value;
unsigned count;

Description

The memchr macro locates the character byte_value in the first count bytes of
memory area str1.

Diagnostics

The memchr macro returns a pointer to the first occurrence of character
byte_value in the first count characters in memory area str1. If byte_value does
not occur, memchr returns a NULL pointer. For debugger variables, -1
(0xFFFFFFFF) is returned if byte_value does not occur.

Chapter 15: Predefined Macros
memchr

570

memclr

Function

Clear memory bytes

Synopsis

char *memclr (dest, count)
char *dest;
unsigned count;

Description

The memclr macro sets the first count bytes in memory area dest to zero.

Diagnostics

The memclr macro returns dest.

Chapter 15: Predefined Macros
memclr

571

memcpy

Function

Copy characters from memory

Synopsis

char *memcpy (dest, src, count)
char *dest,
char *src
unsigned count;

Description

The memcpy macro copies count characters from memory area src to dest.

Diagnostics

The memcpy macro returns dest.

Chapter 15: Predefined Macros
memcpy

572

memset

Function

Set the value of characters in memory

Synopsis

char *memset (dest, byte_value, count)
char *dest;
char byte_value;
unsigned count;

Description

The memset macro sets the first count characters in memory area dest to the
value of character byte_value.

Diagnostics

The memset macro returns dest.

Chapter 15: Predefined Macros
memset

573

open

Function

Open a UNIX file for reading and/or writing

Synopsis

int open(path,oflag)
char *path;
int oflag;

Description

The open() macro opens a UNIX file, returning an UNIX file descriptor. path
is the name of the file to be opened. oflag is the mode in which the file will be
opened. The possible modes may be found in the header file
/usr/include/fcntl.h. Some useful modes are:

read only
write only
read/write
no delay
append
create
truncate

0
1
2
4
8
256 (HP-UX) or 512 (SunOS)
512 (HP-UX) or 1024 (SunOS)

These modes may be combined be adding the appropriate values together.

This macro is an interface to the UNIX system call open(2). Refer to the
HP-UX Reference Manual for detailed information.

Diagnostics

If the system call to open(2) is successful, the system file descriptor is
returned. Otherwise, -1 is returned and a system generated error message is
written to the journal window of the debugger.

Chapter 15: Predefined Macros
open

574

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses open().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int open_files(infile, outfile)
char *infile; /* file to read from */
char *outfile; /* file to write to */
{
 /* open input file in read only mode */
 infile = open(infile, 0);
 if (infile == -1)
 return 0; /* open failed */

 /* create output file in read/write mode */
 outfile = open(outfile, 258);
 if (outfile == -1)
 return 0; /* open failed */

 return 1; /* both files were opened successfully */
}

Chapter 15: Predefined Macros
open

575

pod_command

Function

Send terminal interface commands to the emulator

Synopsis

int pod_command(command, response)
char *command, *response;

Description

The pod_command macro sends the string in command to the emulator, and
puts any response text in response. If multiple lines of text are returned, the
lines are separated in response with a new line (\n) character. If response is a
null pointer (0), any response is ignored.

Caution
This macro is primarily for diagnostic purposes. Use of this macro to send
terminal interface commands that change the state of the emulator or analyzer
may produce unexpected and UNSUPPORTED behavior.

Diagnostics

If the command produces no error, this macro returns a one (1). Otherwise,
the macro returns a zero (0) and the debugger displays the error or errors in
the debugger error window.

Make sure that the response string is large enough to hold any data returned
from the emulator. Responses put into debugger variables will be truncated to
the maximum length of the debugger string. The debugger will not give an
error indication.

Chapter 15: Predefined Macros
pod_command

576

Examples

To get the first 99 characters of emulator version information:

Symbol Add char resp[100]
Debugger Macro Call pod_command("ver",resp)
Expression Printf "%s",resp

To send the emulator "help" command and ignore output:

Debugger Macro Call pod_command("help",0)

To send an invalid command to the emulator:

Debugger Macro Call pod_command("silly",0)

Chapter 15: Predefined Macros
pod_command

577

read

Function

Read from a system file

Synopsis

int read(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Description

The read macro reads from a system file. This macro is an interface to the
UNIX system call read(2). Refer to the HP-UX Reference Manual for detailed
information.

Diagnostics

If the system call to read(2) is successful, the number of bytes read is returned.
Otherwise, -1 is returned and a system generated error message is written to
the journal window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses read().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int foo(infile, outfile)
int infile; /* file descriptor to read from */
int outfile; /* file descriptor to write to */
{
 char buf[80];

 while (!read(infile, buf, 80))
 write(outfile, buf, 80);
}

Chapter 15: Predefined Macros
read

578

reg_str

Function

Get register value

Synopsis

unsigned long reg_str(str1)
char *str1;

Description

The reg_str macro gets the contents of a register using a string variable
representation of its name. This is not possible using standard debugger
commands. The register value is returned by the macro.

Diagnostics

If the string does not contain a valid register name, an unknown value will be
returned and the debugger will display an error message in the debugger error
window.

Examples

To display the value of register D0:

Symbol Add char reg_name[10]
Debugger Macro Call strcpy(reg_name,"@D0")
Expression Display_Value reg_str(reg_name)

To display the value of register D1:

Expression Display_Value reg_str("@D1")

To display the value of register D1:

Expression C_Expression reg_str("@D1")

Chapter 15: Predefined Macros
reg_str

579

showversion

Function

Show the software version number for the debugger product

Synopsis

void showversion ()

Description

The showversion macro lists the software version number for your debugger
product.

Chapter 15: Predefined Macros
showversion

580

strcat

Function

Concatenate two strings

Synopsis

char *strcat (dest, src)
char *dest, *src;

Description

The strcat macro appends a string to the end of another string. The string in
src is appended to the string in dest and a pointer to dest is returned.

Diagnostics

No checking is done on the size of dest.

Chapter 15: Predefined Macros
strcat

581

strchr

Function

Locate first occurrence of a character in a string

Synopsis

char *strchr (str1, byte_value)
char *str1;
char byte_value;

Description

The strchr macro returns a pointer to the first occurrence of the character
byte_value in the string str1, if byte_value occurs in str1.

Diagnostics

If the character byte_value is not found, strchr returns a NULL pointer. For
debugger variables, -1 (0xFFFFFFFF) is returned if byte_value does not occur.

Chapter 15: Predefined Macros
strchr

582

strcmp

Function

Compare two strings

Synopsis

unsigned long strcmp (str1, str2)
char *str1,
char *str2;

Description

The strcmp macro compares strings in lexicographic order. Lexicographic
order means that characters are compared based on their internal machine
representation. For example, because an ASCII ’A’ is 41 hexadecimal and an
ASCII ’B’ is 42 hexadecimal, ’A’ is less than ’B’.

The strings str1 and str2 are compared and a result is returned according to the
following relations:

relation result

s1 < s2
s1 = s2
s1 > s2

negative integer
zero
positive integer

Diagnostics

Strings are assumed to be NULL terminated or to be within the array
boundaries. The comparison is always signed, regardless of how the string is
declared.

Chapter 15: Predefined Macros
strcmp

583

strcpy

Function

Copy a string

Synopsis

char *strcpy (dest, src)
char *dest,
char *src;

Description

The strcpy macro copies src to dest until the NULL character is moved.
(Copying from the right parameter to the left resembles an assignment
statement.) A pointer to dest is returned.

Diagnostics

No checking is done on the size of dest.

Chapter 15: Predefined Macros
strcpy

584

stricmp

Function

Comparison of two strings without case distinction

Synopsis

unsigned long stricmp (str1, str2,)
char *str1;
char *str2;

Description

The stricmp macro compares str1 with str2 without case distinction. This
means that the strings "ABC" and "abc" are considered to be identical.

The strings str1 and str2 are compared and a result is returned according to the
following relations:

relation result

s1 < s2
s1 = s2
s1 > s2

negative integer
zero
positive integer

Diagnostics

Strings are assumed to be NULL terminated or to be within the array
boundaries because the comparison is limited to the number of stated
characters. The comparison is always signed, regardless of how the string is
declared.

Chapter 15: Predefined Macros
stricmp

585

strlen

Function

String length

Synopsis

unsigned long strlen (str1)
char *str1;

Description

The strlen macro returns the length of a string. It returns the length of str1,
excluding the NULL character.

Diagnostics

If str1 is not properly terminated by a NULL character, the length returned is
invalid.

Chapter 15: Predefined Macros
strlen

586

strncmp

Function

Limited comparison of two strings

Synopsis

unsigned long strncmp (str1, str2, count)
char *str1;
char *str2;
unsigned count;

Description

The strncmp macro compares strings in lexicographic order. Lexicographic
order means that characters are compared based on their internal machine
representation. For example, because an ASCII ’A’ is 41 hexadecimal and an
ASCII ’B’ is 42 hexadecimal, ’A’ is less than ’B’.

The count in the synopsis above specifies the maximum number of characters
to be compared.

The strings str1 and str2 are compared and a result returned according to the
following relations:

relation result

s1 < s2
s1 = s2
s1 > s2

negative integer
zero
positive integer

Diagnostics

Strings are not required to be NULL terminated or to fit within the array
boundaries because the comparison is limited to the number of stated
characters. Less than count characters will be compared if the strings are
smaller than count characters. The comparison is always signed, regardless of
how the string is declared.

Chapter 15: Predefined Macros
strncmp

587

until

Function

Run until expression is true

Synopsis

char until (boolean)
int boolean;

Description

The until macro returns a zero when boolean is nonzero. The Until macro is
used with the Program Run and Program Step With_Macro commands. It
halts execution when the expression passed is true, and continues when the
expression passed is false. Any C expression resulting in a value may be used.

Example

Program Run Until #3 ,#17 ,printf ;until (i==3 || x < y)

The command above sets temporary breakpoints at line numbers 3 and 17 in
the current module and at entry to the function printf. When any one of these
locations is encountered by the executing program, the debugger will stop and
check the until conditional statements. If the variable i is equal to 3, or the
variable x is less than y, a break will occur. Otherwise, program execution
continues.

Chapter 15: Predefined Macros
until

588

when

Function

Break when expression is true

Synopsis

char when (boolean)
int boolean;

Description

The when macro returns a zero when boolean is nonzero; it returns a one
when boolean is zero. This macro is used with the Breakpt Instr command.
When used with this command, program execution will halt when the stated
expression is true, and will continue when the stated expression is false. Any C
expression resulting in a value may be used.

Example

Breakpt I nstr strcpy;when(*str==0)

This command sets a breakpoint at the entry point of the routine strcpy. Each
time the breakpoint occurs, the when macro is executed. The macro causes
program execution to stop when the byte pointed to by str is zero.

Chapter 15: Predefined Macros
when

589

word

Function

Return a word value at the specified address

Synopsis

unsigned short int word (addr)
void *addr;

Description

The word macro returns a WORD (2-byte) value of the memory at the
specified address. The value of the expression addr is computed and used as
the address.

Diagnostics

The WORD value of the memory at that address is returned.

Chapter 15: Predefined Macros
word

590

write

Function

Write to a system file

Synopsis

int write(fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Description

The write macro writes to a system file. This macro is an interface to the
UNIX system call write(2). Refer to the HP-UX Reference Manual for detailed
information.

Diagnostics

If the system call to write(2) is successful, the number of bytes written is
returned. Otherwise, -1 is returned and a system generated error message is
written to the journal window of the debugger.

Example

The following command file segment defines two global debugger symbols and
includes the definition of a user-defined macro that uses write().

Symbol Add int infile
Symbol Add int outfile

Debugger Macro Add int foo(infile, outfile)
int infile; /* file descriptor to read from */
int outfile; /* file descriptor to write to */
{
 char buf[80];

 while (!read(infile, buf, 80))
 write(outfile, buf, 80);
}

Chapter 15: Predefined Macros
write

591

Chapter 15: Predefined Macros
write

592

16

Debugger Error Messages

A list of the error messages generated by the debugger.

593

The debugger displays the error window whenever it detects a command error.
The debugger displays an error message and a pointer to the location where it
detected the error.

This chapter lists and describes the error messages and warnings issued by the
debugger. These errors are listed numerically with possible error solutions.

Chapter 16: Debugger Error Messages

594

4 Invalid characters follow command.

A command was entered with incorrect characters or with more characters
than were expected. Check the command name and re-enter the command.

5 This command is not implemented yet.

The command specified is currently not supported, but will be implemented in
a later release.

6 Unknown switch.

An attempt was made to specify a switch that does not exist. Check the
command syntax for the switches supported.

7 Argument missing, expected.

A command was entered without an argument that is required to execute the
command. Check the syntax description for the command and enter the
command again with the correct argument specification.

8 Invalid argument, expected.

The argument specified is not valid for this command. Check command syntax
and re-enter the command with a valid argument.

9 Unexpected separator encountered.

The argument separator is not valid in this context. Check the syntax and enter
the correct separator.

10 Unknown expression character.

The specified expression character is not recognized by the debugger. Check
the syntax and enter the correct expression character.

11 Missing ’) ’, ’] ’, or ’ } ’ in expression.

The matching right parentheses, right bracket, or right curly brace in the
specified expression is missing. Check the expression and add the appropriate
right delimiter.

Chapter 16: Debugger Error Messages

595

12 Missing ’ (’, ’ [’, or ’ { ’ in expression.

The matching left parentheses, left bracket, or left curly brace in the specified
expression is missing. Check the expression and add the appropriate left
delimiter.

13 Missing end quote.

The second quotation mark for a character string is missing at the end of the
line. Terminate the character string with an ending quotation mark.

14 Invalid expression element.

An expression element was specified incorrectly. The error window will display
the expression specified and place a pointer at the position where the invalid
element is located. Check the syntax description and re-enter the command.
Possible errors include: invalid value, missing operand, missing operator, and
unknown operand combination.

15 Invalid filename.

The filename specified could not be created. Valid filenames are dependent
upon your host computer system.

16 Invalid line number.

The line number specified is not valid. Line numbers must be preceded with a
pound sign (#), and must be in a valid range. This error will occur if you enter
a pound sign followed by zero or if you enter a pound sign without a number.

17 Invalid address value.

This error indicates that a value was used for an address that cannot be
interpreted as an address (for instance, a floating point number).

18 Invalid structure member.

A member name was given that is not a member of the specified structure.
Member names must be members of the specified structure.

Chapter 16: Debugger Error Messages

596

19 Invalid instruction address.

This error occurs mainly in high-level mode. In high-level mode, this error will
occur if the instruction address is not a function name or line number. Code
addresses in high-level mode may not be numeric or expressions. In
assembly-level mode, most instruction address values are legal.

20 Invalid port value.

The specified port does not exist, or the port value was not specified with the
Memory Inport Assign command. Port values must be specified with the
Memory Inport Assign command.

21 The values are not correct for this expression.

An attempt was made to use an operand type that is not allowed for this
operator. Operators must match operands according to the C language
specifications.

22 Upper bound less than lower bound.

An attempt was made to specify a lower bound that is greater than the upper
bound. The upper bound must be greater than the lower bound.

23 Upper bound missing.

An attempt was made to specify a lower bound without an upper bound. The
upper bound must be specified.

24 Function symbol ranges not allowed.

An attempt was made to specify a range from one function to another in
high-level mode. Function to line number is allowed.

25 Range not of addresses.

A print or trace command was entered, but the specified range contained a
value instead of an address. Place an ampersand (&) before the symbol name
in the range.

Chapter 16: Debugger Error Messages

597

26 Invalid screen specification.

The command entered contains a screen specification that does not
correspond to the screen where the specified window is located, or the
specified screen does not exist. The screen number should be verified.

27 Invalid window specification.

You tried to create or alter the size of a window, but the screen number,
window number, or size coordinates were illegal. See the Window Open
command for valid window specifications.

28 Invalid cast. Must use format ’(type)’.

This error indicates that type casting was attempted outside of an expression,
or without being enclosed in parentheses. Types can only be used in
expressions as casts, and must be enclosed in parentheses.

29 Unknown special key.

A key was pressed that the debugger does not recognize.

30 Start line invalid.

The starting line for the Program Find_Source command may be omitted, or
may be any valid line optionally within a module.

31 Invalid exception vector.

You tried to specify an exception vector that is invalid. In a Program Interrupt
Add command, the optional exception vector must be in the range of 0 to 255.

32 Invalid trace speed.

An attempt was made to specify a step speed with the debugger Option
General Step_Speed command that is not in the valid range. Tracing speed
ranges from 0 to 100.

33 Must be ON or OFF.

An attempt was made to specify an invalid argument with an option. Options
can be switched to ON or OFF.

Chapter 16: Debugger Error Messages

598

34 Cannot divide by zero.

An attempt was made to divide by zero within an expression of Expression
Display_Value or Expression C_Expression.

51 This command cannot be used in this mode.

A command that is not supported in the current mode was issued. The
Program Display_Source command is only supported in high-level mode, and
the Memory Display Mnemonic command is only supported in assembly-level
mode.

52 Switches cannot be used together.

Two switches of the same group were given. Only one switch per group may be
specified.

53 Invalid switch given for this command.

The specified qualifier is not associated with the specified command. Check
the command syntax and re-enter the command.

54 Value too large.

A value that is out of range was specified. Values must be in the valid range for
the command.

55 Instruction expressions are invalid in this mode.

An expression was used for a code address in high-level mode. Only a single
line number or function symbol may be used in high-level mode.

56 Module not found.

The specified module name does not exist. Specify a valid module name.

57 Line number not found.

The line number specified does not exist in the current module. If the line
number exists in a different module, the module name must be specified.

Chapter 16: Debugger Error Messages

599

58 Symbol not found.

The symbol name was entered incorrectly, or the symbol does not exist. The
symbol name may have been mistyped.

59 Macro not found.

The specified macro has not been defined, or an invalid macro name was
entered. Check the macro name, or define the macro and re-enter the macro
name.

60 File not found.

The specified file does not exist in the current directory, or in the search
directories. Check the current directory for the filename that was specified. A
typing error may have occurred.

61 Structure member not found.

The specified structure member does not exist in the specified structure.
Check the structure definition for the member that was specified. A typing
error may have occurred.

62 Numeric addresses not allowed in this mode.

An attempt was made to specify an invalid address value.

63 Line numbers from different modules.

Line numbers from different modules were specified. Only one module
specification may be given.

64 Range addresses of different types.

Not used.

65 Port input does not come from file or string.

You cannot rewind an input port that does not get its input from a file or a
string.

Chapter 16: Debugger Error Messages

600

66 Port output does not go to a file.

Only port output directed to a file may be rewound with the Memory Port
Rewind Output command.

67 This breakpoint is already set.

An attempt was made to set a breakpoint that already exists. The current
breakpoint must be deleted before it can be reset.

68 Port value not found.

A port was specified that has not been created with the Memory Inport Assign
or Memory Outport Assign command.

69 Address in range already specified as Read_Only or Guarded.

An address that was previously specified with a Memory Map Read_Only or
Memory Map Guarded command was specified. Memory Map Read_Only and
Memory Map Guarded commands can only act on Write_Read areas.

70 Arguments do not match any Read_Only or Guarded area.

The arguments specified with a Memory Map Write_Read command do not
match the corresponding Memory Map Read_Only or Memory Map Guarded
command. The arguments must match exactly. Entering a Memory Map
command without arguments gives a map of Read_Only and Guarded areas.

71 Address range contains unacceptable breakpoints.

An illegal breakpoint was specified.

72 Bad size specification for window.

An illegal size specification was given for a window. See the Window New
command for the correct size specifications.

73 Cannot repeat a cycle count of zero.

A Program Interrupt Add command qualifier cannot request that an interrupt
occur every zero cycles; this would cause an infinite loop.

Chapter 16: Debugger Error Messages

601

74 Invalid level number. Must be 1 to 7.

The Program Interrupt Add command, as well as the 68020 family of
microprocessors, permit 7 levels of interrupts.

75 Attempt to delete nonexistent breakpoint(s).

You tried to clear a breakpoint that was not previously set. Check that the
breakpoint was set, or not already cleared.

76 Symbol not available from this scope unreferenced.

You must reference the symbol with a qualified function or module name.

77 Symbol with this name already exists.

You tried to define a symbol that was previously defined. Another name
should be used.

78 Cannot create this symbol.

An error occurred when trying to create the symbol. Check that it is valid as a
symbol name.

79 Symbol is not a module.

An attempt was made to enter a symbol when a module was expected.

80 Invalid stack level.

This error indicates that a stack level was specified that is greater than the
current stack nesting.

81 Not a source procedure.

An attempt was made to enter an illegal function with the Program Context
Set command. The Program Context Set command requires either a module
name or a source procedure name.

82 Cannot delete this symbol.

Registers and predefined symbols cannot be deleted.

Chapter 16: Debugger Error Messages

602

83 Invalid processor name.

This error indicates that you specified a processor other than one supported by
your debugger. See your user’s guide for a list of supported microprocessors.

84 Breakpoint limit exceeded.

The number of breakpoints allowed has been exceeded. This breakpoint has
not been set.

91 Internal command/expression processor error.

An internal memory error has occurred.

92 Not enough memory for expression.

The expression specified requires more memory than there is available. Try
clearing breakpoints or deleting macros to obtain more memory.

93 Invalid memory/register address.

An attempt was made to read or write to inaccessible target memory. Target
memory that is protected cannot be read from or written to.

94 Source is not available for this module.

An attempt was made to access source code in an assembly language module.
Use the Debugger Level command or the F3 function key to switch to
assembly-level mode to display this module.

95 Cannot build source table.

There is not sufficient memory available to build the source table for source
display.

96 Cannot read absolute file.

An attempt was made to load a file that is not an absolute object module. The
code may need to be compiled, assembled, or linked.

Chapter 16: Debugger Error Messages

603

97 Cannot build disassembly table.

There is not sufficient memory available to build the disassembly table for
up-arrow and page-up support in the disassembler.

98 Cannot split monitor lines.

An attempt was made to monitor different elements on the same line. Only
one element per line may be monitored.

99 No empty lines available.

An attempt was made to specify a line number with the Expression Monitor
Value command, but the entire window is already filled. The number of lines
in the data window is limited to 17. Use the Expression Monitor Delete
command to delete some of the lines.

100 No available windows.

This error indicates that the numbers allocated for user-defined windows have
all been used. Some windows must be deleted before creating another
user-defined window.

101 Cannot open file.

An attempt was made to open a file that does not exist.

102 Local variable not alive.

A local variable was specified, but the function containing the variable is not
active (current or nested).

103 No source level information available.

The source file for the specified source module cannot be found.

104 A log or journal file is already open.

An attempt was made to open a new log file when one is already in use. Close
the existing log file with the File Log Off command before opening a new log
file.

Chapter 16: Debugger Error Messages

604

105 Not a color monitor.

Not used.

106 Not enough memory.

This error indicates that not enough memory was available for the specified
command.

107 Terminated when processing absolute file.

This error indicates that an invalid control value was encountered in loading
the ".x" file.

108 At start of function, no local variables yet.

This error indicates that arguments and local variables are not available to the
debugger at this time. They are available when the prolog to the function has
been executed.

109 Local already defined.

This error indicates that a local variable has been defined twice in a macro
definition. One definition of the variable must be deleted.

110 This argument not defined.

This error indicates that an argument was declared that was not defined on the
command line with the Debugger Macro Add command.

111 This macro is in use already.

Macros cannot be called recursively.

112 This is not allowed outside of a macro.

Keywords are allowed in macros only.

113 Cannot begin execution from a macro.

Program Run, Program Step With_Macro, Program Step, and Program Step
Over are not allowed from within macros. The PC may be altered with the
Memory Register @PC= command.

Chapter 16: Debugger Error Messages

605

114 This command not allowed from a macro.

Some commands are not allowed from a macro, such as Debugger Host_Shell
and Debugger Macro Add.

115 Invalid float expression, results in NAN.

A floating point expression resulted in a non-number.

116 Cannot convert float value.

Float value is too large to convert to an integer.

117 Help file unavailable.

This error indicates that the help file, "db68k.hlp", was not found.

118 Unsupported float type.

A floating point type other than 32 or 64 bit has been defined.

119 Cannot get address of register or constant.

An attempt was made to find the address of a register or constant. One
example is: Expression Display_Value &@a1.

121 Cannot open command file for reading.

This error indicates that the command file specified cannot be found.

122 Include file name too long.

This error indicates that the filename specified (including its pathname) is too
long to be handled by the debugger’s internal buffers. Limit the number of
characters in the filename specification, or move the file to the default
directory.

123 Could not read source line.

This error indicates that there was an error reading the C source file.

Chapter 16: Debugger Error Messages

606

124 Cannot create file for logging.

This error indicates that there was an error when trying to create the specified
log file or that the current directory does not have write permission.

125 Write error occurred while writing to a file.

This error indicates that the disk is probably full.

126 Cannot open startup file < startupfile> .

This error indicates that the debugger could not open the specified setup file.
The filename may have been misspelled, or the filename does not exist.

127 Invalid number of arguments for macro.

This error indicates that an incorrect number of arguments was specified in
the call or too many parameters were used in the macro definition.

128 Cannot show built-in macros.

This error indicates that predefined macros cannot be shown with the
Debugger Macro Display command. They have no text.

129 Runtime error in macro.

This error indicates that an error occurred when executing a macro.

130 Command not implemented in simulator version.

This error indicates that the command entered will not work in this version of
the debugger.

131 "option chip" not implemented in this version.

This error indicates that "option chip" will not work in this version of the
debugger.

132 Breakpoint adjusted to location.

This error indicates that the breakpoint has been moved to an address at the
start of an instruction. See the Debugger Option General Align_Bp command
syntax description in the "Debugger Commands" chapter.

Chapter 16: Debugger Error Messages

607

133 Error return from child process.

This error indicates that an error was returned when interacting with the host
system through the Debugger Host_Shell command.

134 This command cannot be executed from batch mode.

This error indicates that the command entered will not work in batch mode.

135 No search string available.

The command Program Find_Source Next was entered without previously
entering the Program Find_Source Occurrence command.

136 Cannot open file for logging; file in use for commands.

The file specified for logging is currently open and being used to read
commands from. Choose another name for the log file.

137 Cannot open file for logging; file in use for logging.

The file specified to read commands from is open and being used as a log file.
Turn off logging with the File Log OFF command or choose another name for
the command file.

141 Miscellaneous error.

All available error information is displayed on the screen. Any one of a
number of error messages may be displayed on your screen.

One possible error message is:

No valid BBA spec file for < processor> processor

You must have the HP Branch Validator product for your processor installed
on your system in order to use the Memory Unload_BBA command.

142 Miscellaneous warning.

All available warning information is displayed on the screen. Any one of a
number of warning messages may be displayed on your screen.

Chapter 16: Debugger Error Messages

608

143 Miscellaneous note.

All available information is displayed on the screen. Any one of a number of
notice messages may be displayed on your screen.

145 Too many interrupts pending.

Too many Program Interrupt commands have been given without a sufficient
number of interrupts being processed. The current limit on pending interrupts
is 16.

146 Voids have no value.

This error message is returned when certain commands are attempted on voids.

147 Invalid suboption.

This suboption does not work with this command. Refer to the "Debugger
Commands" chapter of this manual for valid suboptions for various commands.

148 Invalid option.

This option does not work with this command. Refer to the "Debugger
Commands" chapter of this manual for valid options for various commands.

149 No temporary breakpoints for the macro.

The command Program Run From < addr> ;< macro> will return this error
because a temporary breakpoint has not been specified.

150 Invalid type for this argument, expecting a target address.

The command was expecting an address. Re-enter the command with a target
memory address.

151 Invalid type for this argument, expecting a number.

The command was expecting a number. Re-enter the command with a number.

152 Cannot delete more than one symbol with this name.

Multiple symbols with the same name exist. More fully qualify the symbol to
make it unique and then retry the command.

Chapter 16: Debugger Error Messages

609

153 Cannot save into this address (not ’lvalue’).

This command can only save at an address which is an ’lvalue’. Check the
address and then retry the command.

154 Invalid type for macro argument.

This is an invalid type for the macro argument. Refer to the chapter on macros
for more information on valid types for macro arguments.

155 Stopped by user.

The execution of this command was halted by the user.

156 Not a logical expression (= = , != , < , > , < = , > = , !).

The expression entered is not a logical expression. Refer to the "Expressions
and Symbols in Debugger Commands" chapter for more information on
logical expressions and then re-enter the command.

157 Cannot create log file.

Unable to open the specified file as a journal file.

159 Interrupted during I/O.

Keyboard I/O was in cooked mode and a read from the keyboard was
interrupted.

Chapter 16: Debugger Error Messages

610

17

Debugger Versions

Information about how this version of the debugger differs from previous
versions.

611

Version A.05.00

Graphical User Interface

The debugger now has a graphical user interface. Some of the many features of
the graphical interface include:

• pull-down and pop-up menus
• user-definable action keys
• a mouse-driven command line
• improved on-line help
• powerful macro editing
• interactive emulator configuration

The debugger’s old standard interface may still be used.

New Product Number

The old product number of this debugger was HP 64372 for HP 9000 Series
300 computers. The new number is HP B1476.

New Reserved Symbols

@ENTRY is the address of the first executable statement in a function. For
example, func1\@ENTRY is the first executable statement of func1. If you set
a breakpoint at func1\@ENTRY rather than at func1, the local variables in
func1 will be active.

@ROOT is the name of the root of the symbol tree represented by the
program counter.

@FILE is the name of the file containing the current program counter (if any).

New Predefined Macro

The cmd_forward() macro allows you to send commands to other interfaces
(such as the emulator interface) which are connected to the emulator. You can
even use this macro to let your target code control the debugger.

Chapter 17: Debugger Versions

612

Environment Variable Expansion

Operating system environment variables will now be expanded when they
appear in a debugger command.

For example, "Debugger Directory Change_working $HOME/test" will now
work as expected.

Target Program Function Calls

You may now reference target program functions in C expressions.

Target and debugger variables may be passed by value, and target variables
may be passed by reference.

C+ + Support

The debugger now supports C+ + name mangling/de-mangling and
object/instance breakpoints for the Microtec Research Inc. C+ + compiler.

Simulated Interrupts Removed

The debugger/emulator no longer supports simulated interrupts.

Simulated I/O Changes

The debugger/emulator’s simulated I/O features are now compatible with the
emulation interface’s simulated I/O.

Simulated I/O now requires the setting up of simulated I/O polling and
addresses in the emulator configuration.

Support for 68030 with MMU

Previous versions of this debugger supported the 68020 and 68EC030
processors. This version adds support for the 68030 processor.

Chapter 17: Debugger Versions

613

Chapter 17: Debugger Versions

614

Part 5

Installation Guide

Part 5

616

18

Installation

How to install the debugger software on your computer.

617

Installation at a Glance

The debugger/emulator is a tool for debugging C programs for 68020/030
series microprocessors in a emulation execution environment.

Follow these steps to install the debugger/emulator:

1 Install the software on your computer.

2 Install the emulator hardware.

3 Set up your software environment to run the debugger.

4 Verify the software installation.

Supplied interfaces

When an X Window System that supports OSF/Motif interfaces is running on
the host computer, the debugger/emulator has a graphical interface that
provides pull-down and pop-up menus, point and click setting of breakpoints,
cut and paste, on-line help, customizable action keys and pop-up recall
buffers, etc.

The debugger/emulator also has a standard interface for several types of
terminals, terminal emulators, and bitmapped displays. When using the
standard interface, commands are entered from the keyboard.

The installation procedure described in this chapter shows you how to install
both debugger/emulator interfaces and verify the installation.

Chapter 18: Installation
Installation at a Glance

618

Supplied filesets

As you install the software, you will see a list of the filesets on the tape. The
filesets are identified by their HP product number.

The tape may contain several products. Usually, you will want to install all of
the products on the tape.

However, to save disk space, or for other reasons, you can choose to install
selected filesets. For example, if you plan on using the debugger/emulator’s
standard interface instead of the graphical interface, you can save about 3.5
megabytes of disk space by not installing the XUI suffixed filesets. (Also, if
you choose not to install the graphical interface, you will not have to use the
"-t" command line option to start the standard interface.)

If you are using only the 68020, you do not need the filesets for the 68030
(these filesets have the 64747 prefix). Likewise, if you are using only the 68030,
you do not need to install the filesets for the 68020 (64748 prefix).

Emulator/Analyzer Compatib ility

If you are using both the debugger’s graphical interface and the
emulator/analyzer interface, check that you have an up-to-date version of the
emulator/analyzer software. Your emulator/analyzer software should have the
same revision number as the debugger software: 5.xx.

If the emulator/analyzer software has a revision number of 4.xx or earlier, the
following restrictions apply:

• Do not run the debugger at the same time as the emulator/analyzer
window. However, you may use them nonconcurrently.

• Use the debugger interface, not the emulator/analyzer interface, to load
and modify the emulation configuration. Thus, be sure to start your
session from the debugger.

Chapter 18: Installation
Installation at a Glance

619

To install software on an HP 9000 system

Required Hardware and Software

To install and use the debugger/emulator’s graphical interface, you need:

• HP 9000 Series 300/400 computer running HP-UX version 7.03 or later,
or HP 9000 Series 700 computer running HP-UX version 8.01 or later.

To check the HP-UX operating system version, enter the uname -a
command at the HP-UX prompt. If the version number of the HP-UX
operating system is less than 7.03, you must update the operating system
to version 7.03 or higher before you can use the debugger. (Refer to the
"Updating HP-UX" chapter of the HP-UX System Administration Tasks
manual for detailed information concerning updating your system.

Motif/OSF . For HP 9000 Series 700 workstations, you must also have the
Motif 1.1 dynamic link libraries installed. They are installed by default, so
you do not have to install them specifically for this product, but you
should consult your HP-UX documentation for confirmation and more
information.

Hardware and Memory. The debugger/emulator’s graphical interface
requires workstations to have a minimum of 16 megabytes of memory.
Series 300 workstations should have a minimum performance equivalent
to that of a HP 9000/350. A color display is also highly recommended.

• Approximately 3 Mbytes of disk space.

• The emulator hardware.

• HP B1476B debugger/emulator software.

Chapter 18: Installation
To install software on an HP 9000 system

620

Step 1. Install the software

During the install process, you have some choices about how much you load
from the product media. As a general rule, you should load everything from
the media. However, to save disk space, or for other reasons, you can choose
to install selected filesets.

There are several reasons why you might want to install selected filesets:

• You are using only 68020 processor or only a 68030 processor. In this
case, you can exclude the files for the processor you will not be using.

• You were shipped the HP B1471 64000-UX Operating Environment
instead of the HP B1471 64700 Operating Environment, you were shipped
files that are not necessary to the operation of the debugger/emulator.
Excluding these files will save you about 4.5 megabytes of disk space.

• You will not be using the debugger’s graphical interface. In this case, you
should exclude the filesets that contain the graphical interface because:

– You will save about 3.5 megabytes of disk space.

– If you are using X Windows, the graphical interface is the default
interface. If you load the graphical interface, but do not use it, you
will have to use a special command line option each time you start
the standard interface.

The following sub-steps assume that you may want to exclude partitions or
filesets. Perform the following sub-steps to load the software on your system:

1 Become the root user on the system you want to update.

2 Make sure the tape’s write-protect screw points to SAFE.

3 Put the product media into the tape drive that will be the source device for the
update process.

4 Confirm that the tape drive BUSY and PROTECT lights are on.

If the PROTECT light is not on, remove the tape and make sure the tape’s
write-protect screw points to SAFE. If the BUSY light is not on, check that

Chapter 18: Installation
To install software on an HP 9000 system

621

the tape is installed correctly in the drive and that the drive is operating
correctly.

5 When the BUSY light goes off and stays off, start the update program by
entering

/etc/update

at the HP-UX prompt.

6 When the HP-UX update utility main screen appears, confirm that the source
and destination devices are correct for your system. Refer to your HP-UX
System Administration documentation if you need to modify these values.

7 Select the choice on the update menu that allows you to view the product
partitions.

Except for the debugger/emulator partition and the 64700 Operating
Environment partition, mark all other partitions with “y” to confirm that you
want these partitions loaded. (Do not mark B1471 with “y” if you marked it
with “n“ in the last step.)

The debugger/emulator partition will be named something like “68020/030
Series debugger/emulator”.

8 If you plan to install and use the debugger’s graphical interface, do the
following:

• Mark the debugger/emulator partition and the 64700 Operating
Environment partition with “y” to confirm the installation of these
partitions.

9 If you do not want to install the debugger’s graphical interface, do the following:

• View the filesets for the 64700 Operating Environment.

• Mark the XUI fileset with “n” to exclude it from installation.

• Mark all other filesets in the partition with “y” to confirm installation.

• Return to the partition screen.

Chapter 18: Installation
To install software on an HP 9000 system

622

• View the filesets in the emulator-specific partition (named something like
68020/030 Series debugger/emulator).

• Mark the XUI fileset with “n” to exclude it from installation.

• Mark all other filesets in the partition with “y” to confirm installation.

• Return to the partition screen.

10 From the partition screen, choose the update utility softkey that starts the
installation process.

Chapter 18: Installation
To install software on an HP 9000 system

623

To install the software on a Sun SPARCsystem

Required Hardware and Software

To install and use the debugger/emulator’s graphical interface, you need:

• Sun SPARCsystem computer running SunOS version 4.1 or 4.1.1 or
greater. The tape uses the QIC-24 data format.

To check the SunOS operating system version, enter the uname -a
command at the UNIX prompt. If the version number of the SunOS
operating system is less than 4.1, you must update the operating system to
version 4.1 or higher before you can use the debugger. For instructions on
updating your system, see the Sun Installing SunOS manual.

• System V software. To find out whether the System V environment is
already installed on your system, check that the directory /usr/5bin exists.
For instructions on installing System V, see the Sun Installing SunOS
manual.

• System V IPC facilities (semaphores). To find out whether the IPC
facilities are installed on your system, type ipcs. For instructions on
installing the IPC facilities, see the Sun System and Network
Administration manual.

• At least 16 megabytes of memory (for the graphical user interface).

• Color display (optional, but recommended for the graphical user
interface).

• Approximately 3 Mbytes of disk space.

• The emulator hardware.

• HP B1476B debugger/emulator software.

Chapter 18: Installation
To install the software on a Sun SPARCsystem

624

Step 1: Install the software

For instructions on how to install software on your SPARCsystem, refer to the
HP 64000-UX for SPARCsystems—Software Installation Guide.

Normally you should install all of the filesets on the tape. If you do not wish to
install the graphical interface, install everything except the XUI suffixed
filesets. This will save about 3.5 megabytes of disk space.

Step 2: Map your function keys

If you are using the character-based Standard Interface, map your function
keys by following the steps below:

1 Copy the function key definitions by typing:

cp $HP64000/etc/ttyswrc ~/.ttyswrc

This creates key mappings in the .ttyswrc file in your $HOME directory.

2 Remove or comment out the following line from your .xinitrc file:

xmodmap -e ’keysym F1 = Help’

If any of the other keys F1-F8 are remapped using xmodmap, comment out
those lines also.

3 Add the following to your .profile or .login file:

stty erase ^H
setenv KEYMAP sun

The erase character needs to be set to backspace so that the Delete key can be
used for "delete character."

Chapter 18: Installation
To install the software on a Sun SPARCsystem

625

If you want to continue using the F1 key for HELP, you can use use F2-F9 for
the Softkey Interface. All you have to do is set the KEYMAP variable. If you
use OpenWindows, type:

setenv KEYMAP sun.2-9

If you use xterm windows (the xterm window program is located in the
directory /usr/openwin/demo), type:

setenv KEYMAP xterm.2-9

Reminder: If you are using OpenWindows, add /usr/openwin/bin to the end of
the $PATH definition, and add the following line to your .profile:

setenv OPENWINHOME /usr/openwin

Chapter 18: Installation
To install the software on a Sun SPARCsystem

626

To install the emulator hardware

1 If necessary, install the emulator hardware into the HP 64700 Card Cage.

Turn to the HP 64700 Series Installation/Service Guide and follow the
instructions for installing emulator, memory, or analyzer cards in the
HP 64700 Series Cardcage. It may be that you already have installed the cards
in the cardcage or your cardcage came with cards already installed.

2 Configure the HP 64700 for the communication channel.

Turn to the HP 64700 Series Installation/Service Guide and follow the
instructions for configuring the emulator to communicate via LAN, RS-422,
or RS-232. (RS-422 and RS-232 are only supported on HP 9000 Series
300/400 machines.)

3 Connect the HP64700 to your host computer.

Turn to the HP 64700 Series Installation/Service Guide and follow the
instructions for connecting the emulator to your system. You can connect the
emulator via LAN, RS-422, or RS-232.

When you have installed the emulator hardware, continue with Step 3 of these
instructions.

Chapter 18: Installation
To install the emulator hardware

627

To set up your software environment

Follow these steps to prepare your computer to run the debugger:

1 Start the X server.

2 Set the necessary environment variables.

To start the X server

If you are not already running the X server and a window manager, do so now.
The X server is required to use the Graphical User Interface because it is an X
Windows application. A window manager is not required to execute the
interface, but, as a practical matter, you must use some sort of window
manager with the X server.

• If you are using an HP workstation, start the X server and the Motif window
manager by entering:

x11start

• If you are using a Sun workstation, enter:

/usr/openwin/bin/openwin

Consult the X Window documentation supplied with the operating system
documentation if you do not know about using X Windows and the X server.
The chapter “Using X Resources” in this book also discusses X Windows and
the X server.

Chapter 18: Installation
To set up your software environment

628

To start HP VUE

If you will be using the X server under HP VUE and have not started
HP VUE, do so now.

HP VUE differs slightly from other window managers in that it does not read
your .Xdefaults file to find resources you may want to customize. Instead, it
uses resources from the X resource database. In order to customize resources
for the Graphical User Interface under HP VUE therefore, you must either
merge a file of customized resources with the X resource database, or set an
environment variable that causes the X resource manager to read a file of
customized resources. For ease of use, choose the .Xdefaults file as your merge
file.

• To merge the file .Xdefaults with the X resource database, enter

xrdb -merge .Xdefaults

at the HP-UX prompt.

Customized resources will be merged with the X resource database and will be
available for retrieval by the Graphical User Interface.

• To enable the graphical interface to find the .Xdefaults file directly, enter the
following commands:

XENVIRONMENT=$HOME/.Xdefaults

export XENVIRONMENT

The graphical interface will be able to find and read the file in order to retrieve
customized resources.

Chapter 18: Installation
To set up your software environment

629

To set environment variables

The following instructions show you how to set these variables at the UNIX
prompt. Modify your “.profile”, “.login”, or “.vueprofile” file if you wish these
environment variables to be set when you log in.

• Set the DISPLAY environment variable.

• Set the HP64000 environment variable.

• Set the PATH environment variable to include the usr/hp64000/bin directory.

• Set the HP64_DEBUG_PATH environment variable.

For the ksh login shell (most HP systems), set a variable by entering

export <variable>=<value>

For the csh login shell (most Sun systems), set a variable by entering

setenv <variable> <value>

The DISPLAY environment variable must be set before the debugger’s
graphical interface will start. Consult the X Window documentation supplied
with the UNIX system documentation for an explanation of the DISPLAY
environment variable.

Set the HP64000 environment variable if you installed the software in a
directory other than “/usr/hp64000” (that is, if you told the installation script
to use a path other than “/”).

Also, you should modify the PATH environment variable to include the
“$HP64000/bin” directory and the HP64_DEBUG_PATH environment
variable to specify search paths. Including usr/hp64000/bin in your PATH
relieves you from prefixing HP 64700 executables with the directory path. If
HP64_DEBUG_PATH is defined, the debugger only searches for files in the
paths specified, in the order in which they are listed.

Chapter 18: Installation
To set up your software environment

630

Examples These examples use ksh syntax. If you are using csh as your login shell, then
use the setenv style instead.

If your system is named "myhost," set the display variable by typing:

export DISPLAY=myhost:0.0

If you installed the HP 64000 software in the root directory, "/", enter:

export HP64000=/usr/hp64000

export PATH=$PATH:$HP64000/bin

If you installed the software in the directory /users/team, enter:

export HP64000=/users/team/usr/hp64000

For example, to cause the debugger to first search the directory /users/proj/src,
then the directory /users/proj/mysrc, and finally the location of the source files
recorded in the absolute file:

export
HP64_DEBUG_PATH=/users/proj/src:/users/proj/mysrc:%

The % character included in the path causes the debugger to search the
location of the source files recorded in the absolute file.

Chapter 18: Installation
To set up your software environment

631

To find the logical name of your emulator

The logical name of an emulator is a label associated with a set of
communication parameters in the /usr/hp64000/etc/64700tab.net file. The
64700tab.net file is placed in the directory as part of the installation process.

1 Display the 64700tab.net file by entering
more /usr/hp64700/etc/64700tab.net at the HP-UX prompt.

2 Page through the file until you find the emulator you are going to use.

This step will require some matching of information to an emulator, but it
should not be difficult to determine which emulator you want to address.

If you find the emulator listed in the file, note its name. If the emulator is not
listed, you must modify the file (see the next page) in order for the debugger to
access the emulator.

Examples A typical entry for a 68020 emulator connected to the LAN would appear as
follows:

#---
Channel| Logical | Processor | Remainder of Information for the Channel
Type | Name | Type | (IP address for LAN connections)
#---
 lan: emul68k m68020 21.17.9.143

A typical entry for an emulator connected to an RS-422 port would appear as
follows:

#---
| | | | |Xpar|Parity|Flow|Stop|Char
Channel| Logical | Processor | Host | Physical |Mode| | |Bits|Size
Type | Name | Type | Name | Device | | |XON | |
| | | | |OFF | NONE |RTS | 2 | 8
#---
 serial: emul68k m68020 myhost /dev/emcom23 OFF NONE RTS 2 8

Chapter 18: Installation
To set up your software environment

632

To add an emulator to the 64700tab.net file

1 Make up a logical name for the emulator.

You will use this name to identify the emulator whenever you start the
debugger. The name emul68k is used as an example throughout this manual.

2 If the emulator is connected to a LAN, find out the Internet Address (IP
address) of the emulator. (You will also need the LAN address to list the
emulator in the /etc/hosts file.)

If the emulator is connected using a serial port, find out the name of the
computer to which the emulator is connected, the device file name for the
emulator, the baud rate of the serial channel, and the flow control protocol of
the serial channel.

3 Edit the /usr/hp64000/etc/64700tab.net file and add a line for the emulator.
The new line should look like one of the examples given on the previous page.

See Also The HP 64700A Card Cage Installation/Service Guide.

The 64700tab on-line manual page.

Chapter 18: Installation
To set up your software environment

633

To add an emulator to the /etc/hosts file

• If the emulator is connected via a LAN, edit the /etc/hosts file to add a line
consisting of the emulator’s Internet Address (IP Address) and name.

Chapter 18: Installation
To set up your software environment

634

To verify the software installation

A number of new filesets were installed on your system during the software
installation process. This step assumes that you chose to load the filesets for
the debugger/emulator’s graphical interface.

You can use this step to further verify that the filesets necessary to successfully
start the graphical interface have been loaded and that customize scripts have
run correctly. Of course, the update process gives you mechanisms for
verifying installation, but these checks can help to double-check the install
process.

1 Verify the existence of the HP64_Debug file in the /usr/lib/X11/app-defaults
subdirectory by entering

ls /usr/lib/X11/app-defaults/HP64_Debug

at the HP-UX prompt.

Finding this file verifies that you loaded the correct fileset and also verifies
that the customize scripts executed because this file is created from other files
during the customize process.

2 Examine /usr/lib/X11/app-defaults/HP64_Debug near the end of the file to
confirm that there are resources specific to your microprocessor.

Near the end of the file, there will be resource strings that contain references
to specific microprocessors. For example, if you installed the
debugger/emulator’s graphical interface for the 68020/030 series
microprocessors, resource name strings will have “debug*m68020” embedded
in them.

Chapter 18: Installation
To verify the software installation

635

To remove software

1 Find the fileset name of the product you wish to remove.

To see a list of the fileset names which you can remove, on an HP-UX
system type:

ls /etc/filesets

Or, on a Sun system, type:

ls $HP64000/etc/filesets

Each file in this directory contains a list of files which were installed for
that fileset.

2 Log in as root.

3 At the operating system prompt, type:

sysrm <product_number>

Sometimes you may wish to remove all of the files which were installed for a
certain product. For example, maybe you have finished a software
development project and you need to make more free space on your hard disk.

To make removing software easier, the installation script creates two files.
The first file is a list of all of the files installed for a certain product. The list is
stored by product number in the /etc/filesets directory. The second file is the
sysrm script, which is stored in the $HP64000/usr/hp64000/bin directory. The
sysrm script removes the files listed in /etc/filesets for the specified product.

Example If you wish to remove all of the files which were installed for the B1460
product, type:

sysrm B1460

Chapter 18: Installation
To verify the software installation

636

Configuring Terminals for Use with the Debugger

If you are using the debugger’s graphical interface, you do not need to read
this section.

This section shows you how to:

• Configure HP terminals or bit-mapped displays.

• Configure DEC VT100 terminals.

• Configure DEC VT220 terminals.

• Set the TERM environment variable.

• Set up control sequences.

• Resize X terminal emulation windows running the standard interface.

Supported Terminals

The following table lists the terminals and bit-mapped display devices
supported by the debugger. The environment variable TERM is the variable
which most UNIX applications (such as the debugger) use to customize the
application for a particular terminal, display or window. In /bin/sh and
/bin/ksh, the TERM variables setting may be queried by typing:

echo $TERM

The term variable is usually set by the login process (usually by /etc/profile).
See the HP-UX System Administration Task Manual for more information on
adding Peripheral Devices (terminals and modems).

The following table shows the supported configurations for:

• RS-232 terminals.

• bit-mapped displays.

• X-Window support.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

637

Supported Terminals TERM Settings1

Terminal/Driver Card RS-232 Terminal Bit Mapped Display X-Windows
(using client hpterm)

HP 2392
HP 700/92
HP 700/94
VT100
VT220
HP 700/22
HP 64020A4
HP 98544[AB]4
HP 98547A4
HP 98548A4
HP 98550A4

TERM= 2392
TERM= 70092
TERM= 70094
TERM= vt100a
TERM= vt220
TERM= vt220
TERM= 2392

TERM= 300h2

TERM= 300h2
TERM= 98548
TERM= 98550

TERM= X-hpterm3
TERM= X-hpterm3
TERM= X-hpterm3
TERM= X-hpterm3

Notes:

1 TERMINFO= /usr/hp64000/lib/terminfo.

2 On Bit Mapped Displays, you may need to set the function keys to user mode by
 holding down the shift key and then pressing the user key.

3 TERM may be set to X-hpterm, hpterm, hp2622, or 2392 (see note following this table).

4 Supported only on HP 9000 Series 300 computers.

RS-232 Terminals. RS-232 terminals interface to HP-UX by means of
HP 98626, HP 98642, or HP 98629 RS-232 interface cards.

RS-232 terminals and bit mapped displays should be added to HP-UX
according to the instructions in the HP-UX System Administration Task
Manual for adding Peripheral Devices (terminals and modems).

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

638

Note If TERM is set to 2392, the debugger attempts to draw solid lines using an
alternate character set. For HP terminals, the debugger assumes this character
set is the HP line drawing character set. The X11 command "hpterm" has the
capability to shift in and out of an alternate character set. However, it defaults
this character set to a font other than the HP line drawing font unless the line
drawing font is explicitly specified as the alternate character set when the
window is started. The alternate character set can be specified using an
hpterm command line option or an X11 resource specification. See your
HP-UX X11 documentation for more information.

Availability of fonts depend on the X11 server, not the X client program
(hpterm). Only one HP line drawing font is available with HP-UX X11
servers. This font is "line.8x16". It must be used with the primary font
"hp8.8x16" because the primary and alternate fonts must have the same
dimensions. Refer to the "hpterm" manual page for more information.

Example: The following command starts an hpterm window with a primary
font of hp8.8x16 and an alternate font of line.8x16.

hpterm -fn hp8.8x16 -fb line.8x16

Bit-Mapped Displays. Bit-mapped displays are listed by the boot up display
as ITE (Internal Terminal emulator). They are high resolution display tops
running without a window manager such as HP Windows or X Windows.
Bit-mapped displays are supported only on HP 9000 computers.

X-Windows. X Windows refers to applications running on a bit-mapped
display with X Windows managing the display top. Within X Windows, hpterm
is a good general purpose HP terminal emulator for applications which are
not specially customized for the X environment.

DEC Terminal ANSI Keypad Functions

The following figures show the ANSI keypad functions and the mapping of the
top row of function softkeys.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

639

PF1
Softkey

F1

PF2
Softkey

F2

PF3
Softkey

F3

PF4
Softkey

F4,

7
Softkey

F5

8
Softkey

F6

9
Softkey

F7

–
Softkey

F8,

4
Roll
Up

5
Next
Page

6
Insert
Char

,,
Delete
Char,

1
Roll

Down

2
Prev
Page

3
Unused

Enter
CR,

0
Command

Recall

Clear
Line

^ ,

DEC Terminal Top Row Function Keys

F6 F7 F8 F9 F10 F11
(ESC)

F12
(BS)

F13
(LF)

F14

Softkey
F1

Softkey
F2

Softkey
F3

Softkey
F4

Softkey
F4

Softkey
F5

Softkey
F6

Softkey
F7

Softkey
F8

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

640

To configure HP terminals or bit-mapped displays

1 Press the System key. (New function labels appear.)

2 Press the Config Keys key. (New function labels appear.)

3 Press the Terminal Config key.

4 Use the Tab key to select fields.

5 Choose the appropriate options for:

LocalEcho
CapsLock
SPOW(B)
InhEolWrp(C)
ReturnDef

OFF
OFF
NO
NO
cr

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

641

6 Save the configuration by pressing the SAVE CONFIG key.

All other terminal configuration options are user-definable.

Note With bit-mapped displays, you may need to set the function keys to user mode
by holding down the shift key and then pressing the user key.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

642

To configure the DEC VT100 terminal

You must configure two menus in order for the VT100 display to work
properly: SET-UP A and SET-UP B.

SET-UP A

1 Press SET-UP to enter the setup menu.

2 Press 80/132 COLUMNS to select 80 columns per line. The columns per line
must be set to 80.

3 Press SET-UP to exit SET-UP A.

SET-UP B

4 Press SET-UP to enter the setup menu, then press SETUP A/B .

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

643

5 Using the arrow keys, position the cursor at the SET-UP feature to be changed.

6 Press TOGGLE 1/0 to select the feature. Do this for the four features shown
below:

7 Press SET-UP to exit SET-UP B.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

644

To configure the VT220 terminal

There are three menus that you must set up in order for the VT220 display to
work properly:

• Display

• General

• Comm

From the power-on condition, press the SET-UP key to move into the initial
SET-UP directory.

Note To change fields within the menus, position the cursor at the desired field and
press the Enter key.

Follow these steps to set up all three menus:

1 Press the SET-UP key to enter the setup directories.

2 With the cursor at the Display field, press the Enter key.

Use the arrow keys to move the cursor to the Columns field. This must be set
for 80 columns. If 80 columns is not the selection displayed, press the Enter
key.

Position the cursor at the Auto Wrap field. This field must be set to Auto Wrap.

Position the cursor at the To Directory field. Press Enter .

3 Position the cursor at the General SET-UP field. Press Enter .

Position the cursor at the VT200 Mode field. This field must be set to VT200
Mode, 7-Bit Controls.

Position the cursor at the New L ine field. This field must be set to No New
Line.

Position the cursor at the To Directory field. Press Enter .

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

645

4 Position the cursor at the Comm SET-UP field. Press Enter .

Position the cursor at the Local Echo field. This field must be set to No Local
Echo.

5 Position the cursor at the To Directory field. Press Enter . At this point, if you
want to permanently save the selections you have made, position the cursor to
the Save field and press Enter . Otherwise, press SET-UP to exit the menus
and return to the normal operating mode.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

646

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

647

 To set the TERM environment variable

• If you are using the ksh shell, use the export command to set the TERM
environment variable.

Or:

• If you are using the csh shell, use the setenv command to set the TERM
environment variable.

Find the appropriate setting for the TERM environment variable in the
previous table.

Examples To set the TERM environment variable for a color bit-mapped display top
using the HP 98547A driver card:

export TERM=300h

To set the TERM environment variable for a HP 2392 terminal:

export TERM=2392

To define and export the TERM environment variable for the VT220 terminal:

export TERM=vt220
export TERMINFO=/usr/hp64000/lib/terminfo

To define and export the TERM environment variable for the VT100 terminal:

export TERM=vt100a
export TERMINFO=/usr/hp64000/lib/terminfo

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

648

 To set up control sequences

• Configure the stty settings in either /etc/profile or in $HOME/.profile.

The control characters for most HP applications should be set as follows. If
the control characters get changed, you can reset them by typing the
commands shown below after you have logged in to the system.

stty intr \^c (sets intr to CTRL c)

stty kill \^u (sets clear inputline to CTRL u)

stty quit \^\\ (sets quit to CTRL \)

stty eof \^d (sets end of file to CTRL d)

For the HP terminals and bit-mapped displays:

stty erase \^h (sets erase character to backspace)

For the DEC VT100 and VT220 terminals:

stty erase \^? (sets erase character to delete (DEL))

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

649

 To resize a debugger window in an X-Window
larger than 24 lines by 80 columns

The following procedure describes how to resize a debugger window in an
X-Windows larger than 24 lines by 80 columns.

1 Check to see that the LINES and COLUMNS shell environment variables are
correctly set for the window that you are working in so that the debugger
knows what the screen limits are. By default, hpterm will set the screen limits
correctly when a window is created. However, if you change its size, you
should execute the command:

eval ‘/usr/bin/X11/resize‘

from your shell. See the man page for resize(1) for details about how this
works.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

650

 To resize a debugger window in a window larger
than 24 lines by 80 columns

The following procedure describes how to resize a debugger window in a
windows larger than 24 lines by 80 columns.

1 Check to see that the stty settings for rows and columns are correct for the
window that you are working in so that the debugger knows what the screen
limits are. Do this by entering the command:

stty size

The first number given is rows, the second number is columns. By default, the
screen limits are set correctly when you change the size of the window.
However, if the values for rows and columns are not correct for your window,
you can set them by entering the stty command from your shell. For example,
the command

stty rows 40 columns 100

will define a window to be 40 rows by 100 columns.

2 Start the debugger and load an executable file.

You need an executable in order to move windows in the source-level screen.

3 Move the status windows (command line) first. Start with the high-level status
window (window number 5). For example, the command:

Window New 5 High_Level 46,0,49,79

will place the command line at the bottom of a window with 50 rows.

Then move the assembly-level status window (window number 15) to the
bottom of the window. For example:

Window New 15 Assembly 46,0,49,79

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

651

You can edit the previous command to save some typing. Remember the
following information when moving the status windows:

1 The coordinates start from (0,0) in the upper left.

2 The maximum width of the command line is 80.

3 The top_row and bottom_row coordinates must be exactly three apart.

4 Move and resize the remainder of the windows by selecting each window and
using the Window Resize command. Don’t forget to resize the alternate
view of each window. Use the Window Toggle_View command to select
the alternate view.

5 You may want to set the View options of the Stdio, View, and Breakpoint
windows to On (the windows swap by default). See the command description
for the debugger Option View command for details.

6 Save your changes by executing the File Startup command. For example,
the command:

File Startup YourNameHere

will create a startup file named YourNameHere.rc . You can then use your
custom window configuration by using the -s YourNameHere command.

The debugger will also automatically look in ./db68k.rc or
./db68030.rc for a startup file if you don’t want to use the -s command line
option.

Chapter 18: Installation
Configuring Terminals for Use with the Debugger

652

Glossary

absolute file An executable module generated by compiling, assembling, and
linking a program. Absolute files must have an extension of .x.

action key User-definable hotkeys that give you the ability to customize the
interface.

application default file A file containing default X resource specifications
for an X Window System application.

background monitor An emulation monitor program that does not execute
as part of the user program. See “emulation monitor”.

BBA The Hewlett-Packard Branch Validator. It is a software tool you can
use to analyze your testing, create more complete test suites, and measure your
level of testing.

breakpoint A location in the program at which execution should stop.

cascade menu A secondary menu that appears when you select an item
from a pull-down menu.

click To press and release a mouse button. The term comes from the fact
that pressing and releasing the buttons of most mice makes a clicking sound.

command file An ASCII file containing debugger commands.

command line An area at the bottom of the debugger window where
commands may be entered using softkeys or pushbuttons. All standard
interface commands are entered using the command line.

command token The smallest part into which a command may be
broken—usually one word. Command tokens appear as pushbuttons on the
command line.

653

concurrent usage model Describes an interface in which the user can
perform most comands at the same time that code is being executed under
emulation.

configuration file See “emulator configuration file”.

cooked keyboard I/O mode The I/O mode in which keyboard input is
processed. This lets you type and then edit the line to correct errors.

cut buffer A synonym for “entry buffer”.

dialog box Sometimes called a secondary window, the dialog box is called by
the user from the application’s main window. A dialog box contains controls
or settings, and sometimes prompts for text entry.

display area The part of the debugger window which shows windows
containing information such as high-level code and breakpoints.

double-click To press the mouse button twice, quickly.

E/A The Emulator/Analyzer window.

emul700dmn The UNIX background process which coordinates the actions
and message traffic of the major emulation interfaces.

emulation memory Memory provided by the emulator to be used in place of
target system memory.

emulation monitor A program that is executed by the emulation processor
that allows the emulation controller to access target system resources. For
example, when you display target system memory locations, the monitor
program executes the microprocessor instructions that read the target memory
locations and send their contents to the emulation controller. See also
“foreground monitor” and “background monitor”.

emulator An instrument that performs just like the microprocessor it
replaces, but at the same time, it gives you information about the operation of
the processor. An emulator gives you control over target system execution
and allows you to view or modify the contents of processor registers, target
system memory, and I/O resources.

Glossary

654

emulator configuration file A file that contains configuration settings and
memory map definitions for the emulator.

entry area A section of the command line area where commands are built.
When you use menus or softkeys, the actual command which the debugger will
execute appears in the entry area.

entry buffer The part of the graphical interface which contains "input" for
commands. The symbol for the entry buffer is "()".

foreground monitor An emulation monitor program that executes as part of
the user program. See “emulation monitor”.

graphical interface The debugger interface program that uses
graphics-oriented software such as windows, menus, and icons to make
interaction easy.

host shell A UNIX command interpreter.

iconify The act of turning a window into an icon.

journal file A file that contains commands entered during a debug session
and any output generated by the debugger. Journal files contain everything
that is written to the debugger’s journal window.

log file A command file that is created by the debugger when you record
commands.

macro A C-like function consisting of debugger commands and C statements
and expressions. Macros are most often used to patch C source code, create
conditional breakpoints, return values to expressions, or execute a set of
commands.

menu bar The row of words at the top of the graphical interface window.
Clicking on the menu bar will display a menu of debugger commands.

monitor See “emulation monitor”.

patch A small, temporary change to executable code.

Glossary

655

PITS cycle Programming In The Small cycle. The repeating process of
editing, compiling, and executing code to eliminate bugs.

pointer The symbol on your computer’s screen which shows where the mouse
is pointing. The pointer may be a hand, an arrow, or another shape.

pop-up menu A menu that pops up when you press and hold the right
mouse button. Pop-up menus are available whenever the mouse pointer
changes to a "hand-cursor".

predefined macro See also “macro”.

pull-down menu A menu that appears to "pull down" from the menu bar at
the top of the interface window.

pushbutton A graphic control that simulates a real-life pushbutton. Use the
pointer and mouse to push the button and immediately start an action.

raw keyboard I/O mode The I/O mode in which each keystroke produces a
character that is sent to the target program that is reading from the keyboard.

recall buffer A text entry field which remembers its previous value.

resource See “X resource”.

scheme file A file that contains X resource specifications for a particular
group of resources, for example, for a particular type of display, computing
environments, or language.

scroll bar A scroll bar is used to move a window so that you can see
information beyond the window’s edge.

sequential usage model Describes a user interface in which user code
execution must be stopped before the interface can perform most commands.

shell See “host shell”.

simulated I/O The debugger feature that lets user programs read input from,
and write output to, the same keyboard and display (respectively) that are used

Glossary

656

to control the debugger. Simulated I/O also lets user programs use the UNIX
file system and run UNIX commands.

simulated program interrupt User program interrupts that are simulated by
the debugger. Simulated interrupts can be one-time interrupts or periodic
interrupts.

simulator A software tool that simulates a microprocessor system for the
purpose of debugging user programs.

SPA The HP Software Performance Analyzer.

standard interface The traditional debugger interface designed for use with
several types of terminals, terminal emulators, and bitmapped displays. When
using the standard interface, commands are entered from the keyboard.

startup file A file that contains information regarding debugger options and
screen configurations.

state file A file that contains the CPU state (including register values) and a
memory image. This file is saved within a debugger session and can be loaded
at a later time to return to a particular state of execution.

status line A line which displays debugger information such as the CPU
type, the current module name, and the current debugger operation.

sticky slider A scrollbar slider which is designed for local navigation in a
large file. Moving the slider moves the contents of the active window just a
few pages at a time.

storage qualifier A bus cycle state description that causes only particular
states to be stored in the analyzer trace.

trace A collection of states captured on the emulation bus (in terms of the
emulation bus analyzer) or on the analyzer trace signals (in terms of the
external analyzer) and stored in trace memory.

trace event A bus state consisting of a combination of address, data, and
status values.

Glossary

657

trigger The captured analyzer state about which other captured states are
stored. The trigger state specifies when the trace measurement is taken.

window A window inside the debugger’s display area. See also “X window”.

working directory The current directory from which the debugger loads and
saves files.

X resource A piece of data that controls an element of appearance or
behavior in an X application.

X server A program that controls all access to input devices (typically a
mouse and a keyboard) and all output devices (typically a display screen). It is
an interface between application programs you run on your system and the
system input and output devices.

X window A window on your computer’s display. The debugger’s graphical
interface runs inside an X window. See also “window”.

Glossary

658

Index

() entry buffer, 655
/dev/simio/display reserved symbol, 174
/dev/simio/keyboard reserved symbol, 174
6400tab.net file, 632–633
68851 MMU, not supported, 149
68881 coprocessor, 149
@, 323

A absolute file, 653
absolute files, 95–96
access breakpoints, using with trace, 187
action keys, 7, 653

custom, 278
operation, 67
with command files, 278
with entry buffer, 66–67

activating windows, 15
active window

changing, 141
displaying the alternate view of, 142
viewing information in, 143–144

active window, description of, 141
add bit-mapped displays to HP-UX, 638
add configured terminals to HP-UX, 638
add symbol, 130
adding an emulator, 632–633
Address for read cycles?, 304
address operator, 30
address ranges, 533
address registers @A0-A7, 553
addresses, 533–534

assembly level code, 533
code, 533
data, 533
displaying variable, 30
logical, 475–476

659

addresses (continued)
physical, 475–476
ranges, 533

alignment
tracing instructions, 392

analysis breakpoints, 105
analyzer

configuring the clock, 323
ANSI keypad functions, 639
app-defaults directory

HP 9000 computers, 336
Sun SPARCsystem computers, 336

append programs, 97
application default file, 653
application resource

See X resource
arguments for macros, 223
assembly code

in source display, 255
assembly level code addresses, 533
assembly-level screen

description of, 135
displaying, 136

assembly-level status window
moving, 264

attribute options, 311

B background monitor, 302, 305, 653
backtrace

display of bad stack frames, 251
backtrace window

backtrace information, 155
description of, 153–156
frame status characters, 154
function name, 155
function nesting level, 154
halting at stack level, 115
module name, 155

batch mode option, 245
BBA, 653
bindings, mouse, 9–11
bit-mapped displays, 639

Index

660

bit-mapped HP displays
configuring, 641
set control sequences for, 649

blocks
comparing, 216
copying, 215
filling, 216

Branch Validator, 126
break conditions, 295
break on access to a variable, 31, 48
Break processor on write to ROM?, 320
break_info macro, 558–559
breakpoint, 653
breakpoint commands, summary of, 353
breakpoint window

address field, 113
command argument, 114
description of, 113
line number field, 114
module/function field, 113
number field (#), 113
type field, 114

breakpoints
analysis, 105
automatic alignment, 250
C+ + , 109–110
checking definitions of, 112
controlling program execution with, 105–115
deleting, 25
hardware, 105
removing, 111–112
setting, 21
software, 108
use macros with, 232

Breakpt Access command, 358–359
Breakpt Clear_All command, 360
Breakpt Delete command, 361
Breakpt Instr command, 362–363
Breakpt Read command, 364
Breakpt Write command, 365
bus width, 392

Index

661

button names, 9–11
byte macro, 560
bytes

changing, 214

C C operators, 523
C source code

displaying, 146
C+ +

breakpoints, 109–110, 362
browse command, 165, 466
classes, 466, 536
displaying class members, 162
displaying member values, 162
functions, 109–110, 146
inheritance, 466
object instance, 109
objects, 162
operators, 524
overloaded functions, 110, 362
protection, 162
this pointer, 158

cache address register @CAAR, 553
cache control register @CACR, 553
calling a macro, 221
carry flag @C, 553
cascade menu, 653
casting, special, 542
cautions

target system could be damaged, 297
change active window, 141
changing

directory context in configuration window, 288
character constants, 528
character string constants, 528
characters, non-printable, 528
check breakpoint definitions, 112
check simulated I/O resource usage, 178
class name, X applications, 335
class name, Xresource, 333
classes (C+ +)

displaying members of, 162

Index

662

clear breakpoints, 111–112
click, 653
client, X, 270, 332
close macro, 561
cmd_forward macro, 562–563
code addresses, 533
code patching

deleting C source lines from your program, 212–213
inserting lines of C code into your program, 212
patching a line, 211

color scheme, 272, 276, 339
column numbers, 532
Command (debugger status), 84
command file, 653

comments in, 239
logging commands to, start, 238
logging commands to, stop, 240
playback, 240

command file option, 240, 245
command files

description of, 237–246
echoing commands, 250

command language
address ranges, 533
addresses, 533–534
assembly level code addresses, 533
C operators, 523
C+ + operators, 524
character constants, 528
character string constants, 528
code addresses, 533
constants, 525
data addresses, 533
data types, 539
debugger operators, 524
debugger symbols, 531
description, 521–550
evaluating symbols, 547
explicit stack references, 549
expression elements, 523–529
expression strings, 537

Index

663

command lanugage (continued)
floating point constants, 527
forming expressions, 536
global (extern) storage classes, 538
hexadecimal constants, 526
identical module names, 544
identifiers, 530
implicit stack references, 548
integer constants, 526
keywords, 535
legal characters allowed in symbols, 530
line numbers, 532
local storage classes, 539
macro local symbols, 531
macro names, 531
macro symbol types, 531
macro symbols, 531
module names, 545
non-printable characters, 528
operators, 523
program symbols, 530
referencing symbols, 543
register storage classes, 539
reserved symbols, 532
root names, 543
scoping rules, 543
special casting, 542
stack references, 548
static storage classes, 538
storage classes, 538
symbol length, 530
symbolic referencing, 538–550
symbolic referencing with explicit roots, 546
symbolic referencing without explicit roots, + , 547
symbols, 530–532
type casting, 541
type conversion, 541

command line, 7, 653
command line recall operation, 81
Command Recall dialog box, operation, 77
copy-and-paste to from entry buffer, 66

Index

664

command line (continued)
editing entry area with keyboard, 81
editing entry area with pop-up menu, 77
editing entry area with pushbuttons, 76
entering commands, 75
entry area, 655
executing commands, 75
help, 78
how to display, 32
recalling commands with command line recall, 81
recalling commands with dialog box, 77
turning on or off, 74, 273

command line, description of, 79–83
Command Recall dialog box operation, 68
command select button, 9–10
command token, 653
command tokens, description of, 79
commands

editing in command line entry area, 76–77, 81
entering, 55, 57–88
entering from keyboard, 79
entering in command line, 75
executing in command line, 75
function key, 57
logging to command file, start, 238
logging to command file, stop, 240
playback from command file, 240
recalling with command line recall, 81
recalling with dialog box, 77

comments in macros, 222
communication between interfaces, 562
compare blocks of memory, 216
compile programs for the debugger, 90–93
compiler h option, effects of, 90
concurrent usage model, 654
condition codes register @CCR, 553
configuration, 248

emulator, 283, 285–328
configuration context

displaying from configuration window, 289

Index

665

configuration file, 654
creating, 292
if an error occurs while loading, 292
loading, 290
modifying, 292

configuration sections, 288
configuration, emulator

exiting the interface, 289
modifying a section, 286
starting the interface, 285
storing, 287

configure DEC terminals, 637
configure HP bit-mapped displays, 641
configure HP terminals, 641
configure the emulator, 290
configure VT100 terminal, 643
configure VT220 terminal, 645
configured terminals, adding to HP-UX, 638
configuring terminals for use with debuggers, 637–652
constants, 525

character, 528
character string, 528
floating point, 527
hexadecimal, 526
integer, 526

context
changing directory in configuration window, 288
displaying directory from configuration window, 289

control blocking of reads, 176
control character functions

list of, 58
using, 58

control program execution with breakpoints, 105–115
control sequences for HP terminals, setting up, 649
cooked mode, 654
coprocessor

68881, 149
coprocessor support, 149
copy block of memory, 215
copy demonstration files, 41
copy macros, 226

Index

666

copy window, 145
copy-and-paste

addresses, 64
from entry buffer, 66
multi-window, 64, 67
symbol width, 64
to entry buffer, 63

CPU root pointer @CRP, 553
create a configuration file, 292
current working directory, displaying, 152
cursor control key functions, 143
cursor keys

End (Shift_Home) Key Functions, 144
Home Key Functions, 144

cut buffer, 654

D data addresses, 533
data registers @D0-D7, 553
data types, 539
db68k options

-b batch mode, 245
-c command file, 240, 245
-d demand loading of symbols, 98
-I load only symbolic information, 97
-j journal file, 242
-l log commands, 238
-s startup_file, 268

debug/trace options, modifying, 320
debugger commands, summary of, 353
Debugger Directory command, 366
Debugger Execution Display_Status command, 367
Debugger Execution Environment FwdCmd command, 368
Debugger Execution Environment Load_Config command, 369
Debugger Execution Environment Modify_Config command, 370
Debugger Execution IO_System command, 371–373
Debugger Execution Load_State command, 374
Debugger Execution Reset_Processor command, 375
Debugger Help command, 378
Debugger Host_Shell command, 376–377
Debugger Level command, 379
Debugger Macro Add command, 380–382
Debugger Macro Call command, 383

Index

667

Debugger Macro Display command, 384
debugger macros, 219–246
debugger operators, 524
Debugger Option Command_Echo command, 385
Debugger Option General command, 386–388
Debugger Option List command, 389
Debugger Option Symbolics command, 390–391
Debugger Option Trace command, 392
Debugger Option View command, 393–395
debugger options dialog box, 249
Debugger Pause command, 396
Debugger Quit command, 397–398
debugger symbols, 130, 531
DEC terminals, configuring, 637
decimal, 252
default trace specification, 185
Define (debugger status), 84
define macros, 222, 225–228

interactively, 225–227
define user screens and windows, 264
delete all command, 314
delete breakpoints, 111–112
delete C source lines from your program, 212–213
delete macros, 236
delete symbol, 132–135
delete trace events, 194
deleting breakpoints

See breakpoints, deleting
demand load symbols, 98
demand loading, 252
demand loading of symbols option, 98
demonstration program description, 11, 40
demos

setting up, 280
destination function code @DFC, 553
dialog box, 68, 654

Command Recall, operation, 68, 77
Directory Selection, operation, 68, 71
Entry Buffer Recall, operation, 65, 68
File Selection, operation, 68, 70

Index

668

dialog boxes
debugger options, 249
macro operations, 225

directory (current working), displaying, 152
directory context

changing in configuration window, 288
displaying from configuration window, 289

Directory Selection dialog box operation, 68, 71
disable simulated I/O, 175
disassembly

automatic alignment, 250
display a trace, 192
display address values, 30, 47
display alternate view of a window, 142
display alternate view of the active window, 142
display area, 7, 654

lines, 274
display area windows

See windows
display assembly-level screen, 136
display blocks of memory, 49
display command line, 32
display help window, 82
display high-level screen, 136
display next screen, 137–140
display screens, 134
display source code of macros, 235
display standard I/O screen, 137
display user-defined screen, 265
display variable, 27
display variables in their declared type, 47
displaying

pull-down menus with keyboard, 61
pull-down menus with mouse, 59–60

displaying functions, 18
displays

bit-mapped, 639
configuring HP bit-mapped, 641
setting up HP bit-mapped, 649

do statement, 224

Index

669

Do you want periodic read accesses while in background monitor?, 303
double-click, 654
dword macro, 564

E E/A, 654
editing

command line entry area with keyboard, 81
command line entry area with pop-up menu, 77
command line entry area with pushbuttons, 76
copying memory, 215
file, 208–209, 273
file at address, 209, 273
file at program counter, 209
macros, 228
memory contents, 214

editing memory contents, 214
else statement, 224
emul700dmn, 654
emulation memory, 654
emulation memory installation configurations, 310
emulation monitor, 654
emulator, 124, 654

adding, 632
configuration, 283, 285–328
configuration introduction, 284
configuring, 290
enable one wait state for memory, 299
installing, 627
memory allocation, 294
modifying pod configuration, 316
monitor introduction, 294
restrict commands, 295
restrict to real-time run, 297

emulator configuration
examining, 288
exiting the Emulator Configuration dialog box, 289
modifying a configuration section, 286
starting the Emulator Configuration dialog box, 285
storing, 287

Index

670

emulator/analyzer
version requirement, 619

emulator/analyzer interface, 124
Enable signal interlocking on monitor accesses?, 306
enable simulated I/O, 174
enable the 68020 instruction cache?, 298
enable the 68030 instruction & data cache?, 298
Enable the DSack Interlock?, 306
End (Shift_Home) Key Functions, 144
end command, 314
end debugging session, 36, 51–52
enter commands from the keyboard, 79
enter debugger commands, 55, 57–88
enter monitor after configuration?, 296
entries (X resource), 279
entry area, 655
entry buffer, 7, 655

address copy-and-paste to, 64
clearing, 63
copy-and-paste from, 66
copy-and-paste to, 63
editing, 66
Entry Buffer Value Selection dialog box, operation, 65
multi-window copy-and-paste from, 67
multi-window copy-and-paste to, 64
operation, 66
recalling entries, 65
setting initial value, 279
symbol width and copy-and-paste to, 64
text entry, 63
with action keys, 66–67
with pull-down menus, 66

Entry Buffer Recall dialog box operation, 68
environment dependent files, 90
environment variable

HP64_DEBUG_PATH, 94
environment variables

TERM, setting, 648
erase information in standard I/O window, 265
erase information in user-defined window, 265
error macro, 565

Index

671

error window, description of, 594
evaluating symbols, 547
Execute (debugger status), 84
executing UNIX commands from within the debugger, 123
execution

run from current program counter address, 102
run from start address, 102
run until stop address, 103

execution (program), controlling, 100–104
exiting the debugger, 36
explicit stack references, 549
Expression C_Expression command, 399

modifying variables with, 50
using, 50

expression commands, summary of, 354
Expression Display_Value command, 400–402
expression elements, 523–529
Expression Fprintf command, 403–407
Expression Monitor Clear_all command, 408
Expression Monitor Delete command, 409
Expression Monitor Value command, 410–412

using, 50
Expression Printf command, 413–414
expression strings, 537
expressions

changing C variables, 210
expressions, forming, 536
extend flag @X, 554

F fgetc macro, 566
file

comments in command, 239
editing, 208–209
editing at address, 209
editing at program counter, 209
emulator configuration, 287
logging commands to, start, 238
logging commands to, stop, 240
playback command file, 240

File Command command, 415
file commands, summary of, 354
File Error_Command command, 416

Index

672

File Journal command, 417
File Log command, 418–419
File Selection dialog box operation, 68, 70
File Startup command, 420–422
File User_Fopen command, 423–424
File Window_Close command, 425
files

6400tab.net, 632–633
absolute, 95–96
appending, 97
command, 237–246
copying demonstration, 41
environment dependent, 90
journal, 242
log, 238
macro, 229
saving window contents, 145
source file location, 94
startup, 267
state, 118–119

fill block of memory, 216
floating point constants, 527
fopen macro, 567
foreground monitor, 294, 302, 306, 655

types, 302
foreground monitor limitations to trace, 188
foreground monitor mapping for MC68030 MMU, 326–328
fork a UNIX shell, 122
forming expressions, 536
FPU support, 149
frame status character, 154
Function code for read cycles?, 304
function key commands, 57

list of, 57
function keys, top row layout, 640
functions

breaking on call, 21
displaying, 18
stepping over, 27

functions, stepping over, 101

Index

673

H half-bright video, 259
halt program execution on access to a specified memory location, 105
halt program execution on instruction at a specified memory location, 107
hand pointer, 62
hardware

HP 9000 memory needs, 620
HP 9000 minimum performance, 620
HP 9000 system requirements, 620
SPARCsystem memory needs, 624
SPARCsystem minimum performance, 624
SPARCsystem minimums overview, 624

hardware breakpoints, 105
hardware locking, 397
help

command line, 78
help index, 72
to use, 35

help index
displaying, 72

help window
description of, 82
displaying, 82

hexadecimal, 252
hexadecimal constants, 526
high-level program counter @HLPC, 553
high-level screen

description of, 134
displaying, 136

high-level status window
moving, 263

highlighting, setting, 259
Home Key Functions, 144
Host_Shell command, 122
HP 9000

700 series Motif libraries, 620
HP-UX minimum version, 620
system requirements, 620

HP-UX
minimum version, 620

HP64_DEBUG_PATH file search path, 94

Index

674

I iconify, 655
identifier, 530
if statement, 224
implicit stack references, 548
Include (debugger status), 84
increase simulated I/O file resources, 179–180
indicator characters, 85
initialized variables

re-initializing, 217
InMon (debugger status), 84
Input (debugger status), 84
input scheme, 272, 339
insert lines of C code into your program, 212
install the emulator, 627
installation

at a glance, 618–619
SPARCsystem specific instructions, 624–626

instance name, X applications, 335
instance name, X resource, 333
instruction alignment, 392
integer constants, 526
interface, emulator configuration

exiting, 289
modifying a section, 286
starting, 285

interfaces
emulator/analyzer, 124

interpret keyboard reads as EOF, 176
interrupt mask @I, 553
Interrupt priority level for default foreground monitor?, 304
Interrupt priority level for user foreground monitor?, 304
interrupt stack pointer

presetting, 317
interrupt stack pointer @ISP, 553
inverse video, 259

graphical interface demo/tutorial files, 281
Is speed of external clock faster than 25 MHz?, 299

J J indicator character, 85
journal file, 655
journal file option, 242
journal file window, description of, 166

Index

675

journal file, displaying current, 152
journal files, 242
journal window, description of, 58

K key names, 10–11
key_get macro, 568
key_stat macro, 569
keyboard

choosing menu items, 61
keyboard I/O

control blocking, 176
cooked mode, 175
interpret keyboard reads as EOF, 176
raw mode, 175
set mode to cooked, 175
set mode to raw, 175
setting mode, 175
simulated I/O processing, 175

keyboard key names, 10–11
keywords, 535

L L indicator character, 85
label scheme, 272, 276, 339
LANG environment variable, 339
level, stack, 115
libraries

Motif for HP 9000/700, 620
line numbers, 532
lines in main display area, 274
literals

radix, 252
load programs, 95–96

using the db68k command, 95
using the program load command, 95

load symbols, 97
loading and executing programs, 89, 91–128
locking mechanism, emulation, 397
log commands options, 238
log file, 655
log file window, description of, 166
log file, displaying current, 152
log files, 238

Index

676

logging
commands to command file, start, 238
commands to command file, stop, 240

M macro, 655
Macro (debugger status), 85
macro arguments, 223
macro comments, 222
macro control flow statements

do, 224
else, 224
if, 224
while, 224

macro limits
maximum number of characters on a line, 222
maximum number of lines in a macro, 222
maximum number of parameters in a macro, 222

macro local symbols, 531
macro names, 531
macro properties, 221
macro return statements, 224
macro return values, 224
macro symbol types, 531

macro local symbols, 531
macro names, 531

macro symbols, 531
macro variables, 223
macros, 219–246

arguments, 223
calling, 221
calling from an expression, 231
calling from within macros, 231
calling on execution of a breakpoint, 232
calling with debugger macro call command, 230
calling with Program Step With_Macro command, 234
comments in, 222
containing debugger commands, 224
copying, 226
debugger, 219–246
defining, 222, 225–228
defining interactively, 225–227
defining outside the debugger, 228

Index

677

macros (continued)
deleting, 236
dialog box, 225
displaying source code of, 235
do statement, 224
editing, 228
else statement, 224
example of ’when’, 359, 363–365
if statement, 224
loading, 229
maximum number of lines in a macro, 381
parameter checking, 255
patching C source with, 211–213
predefined, 555, 557–592
properties of, 221
renaming, 226
return statement, 224
return values, 224
saving, 222, 229
simulated I/O, 556
stopping execution, 235
templates, 226
using with breakpoints, 232
variables in, 223
while statement, 224

macros containing debugger commands, 224
main(), displaying, 16
make windows active, 141
making trace measurements, 183–206
master stack pointer @MSP, 553
master/interrupt flag @M, 553
mcc68k

See Microtec
memchr macro, 570
memclr macro, 571
memcpy macro, 572
memory

change configuration, 299
changing, 214
comparing, 216
copying, 215

Index

678

memory (continued)
filling, 216

memory allocation, 294
Memory Assign command, 426–427
Memory Block_Operation Copy command, 428
Memory Block_Operation Fill command, 429–430
Memory Block_Operation Match command, 431–432
Memory Block_Operation Search command, 433–434
Memory Block_Operation Test command, 435–436
memory commands, summary of, 355
memory configurations in emulation probe, 310
Memory Display command, 437–438
Memory Management Unit, 120–121
memory map

assigning terms, 308
memory recommendations

HP 9000, 620
SPARCsystem, 624

Memory Register command, 439–440
Memory Unload_BBA command, 441–443
memset macro, 573
menu bar, 655
menus

editing command line with pop-up, 77
hand pointer means pop-up, 62
pull-down operation with keyboard, 61
pull-down operation with mouse, 59–60

Microtec
compiler, 93

middle button, 9
MMU, 85, 120–121, 295, 475–476

68851 not supported, 149
enabling in the MC68030, 300

MMU mapping tables modified for map monitor, 327
MMU Status Register @MMUSR, 553
MMU, mapping 1:1 for use with MC68030, 326–328
modify a configuration file, 292
Modify debug/trace options?, 320
Modify emulator pod configuration?, 316
Modify interactive measurement specification?, 325
modify memory configuration?, 299

Index

679

modify registers, 217–218
Modify simulated I/O configuration?, 324
modify variables, 50
module names, 545
module names, identical, 544
monitor, 655

foreground, 294
introduction, 294
select and configure for MC68030, 301

Monitor filename?, 304
monitor variables, 50
monitor window, description of, 163
Monitor’s base address?, 305
monitor, to map 1:1 for use with MC68030 MMU, 326–328
more display, 259
More prompt, 144
Motif

HP 9000/700 requirements, 620
mouse

choosing menu items, 59–60
mouse button names, 9–11
move assembly-level status window, 264
move high-level status window, 263
move status window, 263
multi-statement debugging, 532
multi-window

copy-and-paste from entry buffer, 67
copy-and-paste to entry buffer, 64

N names of modules, identical, 544
negative flag @N, 553
next screen, displaying, 137–140
non-printable characters, 528

O objects (C+ +)
displaying member values, 162

open macro, 574–575
operating system

HP-UX minimum version, 620
SunOS minimum version, 624

Index

680

operators
C, 523
C+ + , 524
debugger, 524

optimizing modes
effects of, 91
using, 91

options, 248
Output (debugger status), 85
overflow flag @V, 553
overloaded C+ + functions, 110, 146
overview

installation, 618–619

P paging (screen), 259
parameters

checking, 255
patch, 655
patching code

See code patching
patching source code, 210
Paused (debugger status), 85
PC register, 124
PITS cycle, 656
platform

HP 9000 memory needs, 620
HP 9000 minimum performance, 620
SPARCsystem memory needs, 624
SPARCsystem minimum performance, 624

platform differences, 10–11
platform scheme, 272, 340
playback

command file, 240
pod_command macro, 576–577
pointer, 656
pointer to current function @FUNCTION, 553
pointer to current module @MODULE, 553
pop-up menu, 656

Index

681

pop-up menus
command line editing with, 77
hand pointer indicates presence, 62
shortcuts, 63
using, 62

predefined macros, 555, 557–592
break_info, 558–559
byte, 560
close, 561
cmd_forward, 562–563
dword, 564
error, 565
fgetc, 566
fopen, 567
key_get, 568
key_stat, 569
memchr, 570
memclr, 571
memcpy, 572
memset, 573
open, 574–575
pod_command, 576–577
read, 578
reg_str, 579
showversion, 580
strcat, 581
strchr, 582
strcmp, 583
strcpy, 584
stricmp, 585
strlen, 586
strncmp, 587
until, 588
when, 589
word, 590
write, 591–592

predefined windows, 139
printf

using in debugger, 32
problems, simulated I/O, 181–182

Index

682

processor
block target system interrupts, 295
disable cache memory, 295
enable cache memory, 298

processor, resetting, 116
product version, displaying, 152
program commands, summary of, 356
Program Context Display command, 444
Program Context Expand command, 445
Program Context Set command, 446
program counter

presetting, 317
program counter @PC, 553
program counter address, run from current, 102
program counter, resetting, 116
Program Display_Source command

description, 447
program execution

halt on access to a specified memory location, 105
halt on an instruction at a specified memory location, 107

program execution, controlling, 100–104
Program Find_Source Next command, 448
Program Find_Source Occurrence command, 449–450
Program Load command, 451–453
Program Pc_Reset command, 454
Program Run command, 455–457
Program Step command, 458–459
program step over, 46
Program Step Over command, 460–461
Program Step With_Macro command, 462
program stepping, 26, 46
program symbols, 130, 530
program symbols, symbols on demand, 530
program variables, resetting, 117
programs

loading, 95–96
loading using the db68k command, 95
loading using the program load command, 95
restarting, 116–117
run from a specified address, 102
run from the current program counter address, 102

Index

683

protrams (continued)
run until a specified stop address, 103
running, 100–104
step through, 100

pull-down menu, 656
pull-down menus

choosing with keyboard, 61
choosing with mouse, 59–60

pushbutton, 656

Q quick start, 37, 39–52
graphical interface, 3–36

quitting the debugger, 36

R R indicator character, 85
radix

selecting, 252
raw mode, 656
re-initialize variables, 217
read macro, 578
Reading (debugger status), 85
recall buffer, 656

initial content, 279
recalling

commands with command line recall, 81
commands with dialog box, 77
entry buffer entries, 65

redirect I/O, 177
referencing symbols, 543
reformat screens, 262
reg_str macro, 579
register window, description of, 152
registers

changing, 217–218
modifying, 124

remote control of intefaces, 562
remove breakpoints, 111–112
remove user-defined screens and windows, 266
reserved symbols, 532, 551–554

/dev/simio/display, 174
/dev/simio/keyboard, 174
simulated I/O, 173

Index

684

reserved symbols (continued)
stderr, 174
stdin, 173
stdout, 174

Reset map (change of monitor type requires map reset)?, 303
reset processor, 116
reset program counter, 116
reset program variables, 117
Reset value for Interrupt Stack Pointer?, 318
Reset value for Program Counter?, 318
reset vector

reset stack pointer, 296
resize windows, 262
resize windows larger than 24 by 80, 651
resize X_windows larger than 24 by 80, 650
resource

See X resource
See X resources

resource, X, 270
Respond to target system interrupts?, 317
restart programs, 116–117
restrict to real-time runs?, 297
return statement, 224
return values in macros, 224
root names, 543
root symbol, 544
RS-232 terminals, 638
run from current program counter address, 102
run from reset, 295
run from start address, 102
run programs, 100–104
run until stop address, 103

S save file
using with emulation, 118

save window and screen settings, 267
scheme file, 656
scheme files, 271
scheme files (for X resources), 336, 338

color scheme, 272, 276, 339
custom, 276, 340
input scheme, 272, 339

Index

685

scheme files (continued)
label scheme, 272, 276, 339
platform scheme, 272, 340
size scheme, 272, 339

scoping rules, 543
screen settings, saving, 267
screens, 134

assembly-level, 135
displaying, 134
high-level, 134
predefined, 134
reformatting, 262
standard I/O, 135
working with, 134

scroll bar, 7, 17, 656
scroll display, 144
scrolling, 17

setting amount of, 260
sequential usage model, 656
server, X, 270, 332, 658
session control commands, summary of, 353
set control sequences for HP bit-mapped displays, 649
set keyboard I/O mode, 175
set keyboard mode to cooked, 175
set keyboard mode to raw, 175
set up control sequences for HP terminals, 649
set up control sequences for vt220 terminals, 649
settings, 248
shell, 655

forking, 122
showversion macro, 580
simulated I/O, 656

check resource usage, 178
communication with the debugger, 172
connections to host system, 172
control address buffers, 171
description of, 171
disabling, 175
display, 172
enabling, 174
how it works, 171

Index

686

simulated I/O (continued)
increase file resource, 179–180
keyboard, 172
keyboard I/O, 175
keyboard I/O processing, 175
macros, 556
problems, 181–182
processing, 172
redirecting I/O, 177
reserved symbols, 173
special symbols, 173
stderr, 177
stdin, 177
stdout, 177
UNIX Files, 172
UNIX processes, 173
user program symbols, 173
using, 171

simulated I/O description, 171
simulator, 657
size scheme, 272, 339
skid, 358
skipping functions, 27
slider, sticky, 657
software

installation for SPARCsystems, 624–626
software breakpoints, 108

defining the vector, 321
source code

displaying, 146
in assembly display, 255
patching, 210

source files, location of, 94
source function code @SFC, 553
SPA, 657
SPARCsystems

installing software, 624–626
minimum system requirements overview, 624
SunOS minimum version, 624

special casting, 542

Index

687

special symbols, simulated I/O, 173
specify source file location, 94
specify trace events, 193
speed setting (step), 253
stack frames

display of bad frames, 251
stack information, using, 115
stack pointer, 296
stack pointer @SP, 553
stack references

explicit, 549
implicit, 548

stack window, description of, 140
standard I/O screen

description of, 135
displaying, 137

standard I/O window, erasing information in, 265
standard interface, 657
start

logging commands to command file, 238
start a trace, 190
start address, run from, 102
start debugger, 13–14, 42
startup file, 657
startup file option, 268
startup file used, displaying, 152
startup files, 267

loading, 268
state file, 657
state files, 118–119
status

entry on status line, 84
status line, 7, 657
status line, description of, 84
status register @SR, 553
status window

moving, 263
stderr reserved symbol, 174
stdin reserved symbol, 173
stdio

displaying, 137

Index

688

stdout reserved symbol, 174
step over functions, 27, 46, 101
step speed, setting, 253
step through a program, 100
stepping, 26, 46
sticky slider, 657
stop

logging commands to command file, 240
stop a trace, 191
stop address, run from, 103
stopping the debugger, 36
storage classes

automatic, 539
global (extern), 538
local, 539
register, 539
static, 538

storage qualification, trace measurement, 186
storage qualifier, 657
storage qualifiers, specify, 194–195
strcat macro, 581
strchr macro, 582
strcmp macro, 583
strcpy macro, 584
stricmp macro, 585
strlen macro, 586
strncmp macro, 587
structures

displaying members, 161
subroutines

See functions
subwidows

activating, 15
SunOS

minimum version, 624
supervisor stack pointer @SSP, 553
supervisor state flag @S, 553
supported terminals, 637
switch between high-level and assembly-level screens, 136
switching

directory context in configuration window, 288

Index

689

Symbol Add command, 463–465
Symbol Browse command, 466
symbol commands, summary of, 356
Symbol Display command, 467–471
symbol evaluation, examples of, 548
Symbol Remove command, 472–473
symbolic information only option, 97
symbolic referencing, 538–550
symbolic referencing with explicit roots, 546
symbolic referencing without explicit roots, 547
symbols

assembly code, 254
debugger, 531
demand loading, 98, 252
displaying, 131
evaluating, 547
keywords, 535
legal characters, 530
length, 530
line numbers, 532
loading, 97

macro, 531
program, 530
referencing, 543
reserved, 532

symbols on demand, 530
symbols, reserved, 551–554
symbols,debugger, 130
symbols,program, 130
system requirements

HP 9000 overview, 620
HP-UX minimum version, 620
OSF/Motif HP 9000/700 requirements, 620
SPARCsystem overview, 624
SunOS minimum version, 624

T target program
control of emulator interfaces, 562

target system
disabling interrupts, 317
setting memory access size, 319

Index

690

template, macro, 226
TERM environment variable

setting, 648
TERM variable

description of, 637
terminal settings table, 638
terminals

adding configured terminals to HP-UX, 638
configure HP, 641
configuring DEC, 637
configuring for use with debuggers, 637–652
configuring VT100, 643
configuring VT220, 645
RS-232, 638
set control sequences for the VT102, 649
set control sequences for vt220, 649
set up control sequences for HP, 649
supported, 637
TERM settings for, 638

token, 653
trace, 657

bus width, 392
timing information, 392

trace 0 flag @T0, 553
trace 1 flag @T1, 553
Trace background or foreground operation?, 322
trace commands, summary of, 357
Trace deMMUer command, 475–476
Trace Display command, 477–482
trace event, 657
Trace Event Clear_All command, 483
Trace Event Delete command, 484
Trace Event List command, 485
Trace Event Specify command, 486–489
Trace Event Used_List command, 490
trace events, 185

address values, 185
data values, 185
delete, 194
specify, 193
status values, 185

Index

691

Trace Halt command, 491
trace limitations when triggering on C variables, 188
trace limitations when triggering on instruction fetches, 189
trace measurement

access breakpoints, 187
address and data values, 185
breakpoint interaction, 359
complex breakpoint, 202
default, 185
delete trace events, 194
disable storage qualifiers, 198
disable triggers, 198
display a trace, 192
fetch mask, 261
foreground monitor limitations, 188
halt program on occurrence of trigger, 197
limitations, 188
limitations when triggering on C variables, 188
limitations when triggering on instruction fetches, 189
remove storage qualifiers, 198
remove triggers, 198
specify storage qualifiers, 194–195
specify trace events, 193
specify triggers, 196
start a trace, 190
status indicators, 86
status values, 185
stop a trace, 191
storage qualification, 186
timing information, 260
trace code execution before and after entry into a function, 199
trace counts, 260
trace data written to variable, 199
trace events, 185
trace modules, 203–204
trace resources, 186
trace status, 186
trace trigger, 185
trace write to a variable, 201
trace writer of data, 200
what it does, 184

Index

692

trace measurements
making, 183–206

trace resources, 186
Trace Start command, 474
trace status, 86, 186
Trace StoreQual command, 492–495
Trace StoreQual Event command, 496–497
Trace StoreQual List command, 498
Trace StoreQual None command, 499
trace trigger, 185
Trace Trigger command, 500–503

and breakpoints, 359
Trace Trigger Event command, 504–506
Trace Trigger List command, 507
Trace Trigger Never command, 508
trace trigger, specify, 196
Translation Control Register @TC, 553
Transparent Translation Register 0 @TT0, 553
Transparent Translation Register 1 @TT1, 553
trigger, 658
TT0/TT1 used to map foreground monitor 1:1, 328
tutorials

setting up, 280
type casting, 541
type conversion, 541

U unknown module in backtrace window, 155
until macro, 588
use C type print commands, 32, 48
use Expression C_Expression command, 50
use Expression Monitor Value command, 50
use macros with breakpoints, 232
use simulated I/O, 171
user interfaces, 562
User memory access size?, 319
user program symbols

simulated I/O, 173
systemio_buf, 173

user stack pointer @USP, 553
user-defined macros

See macros

Index

693

user-defined screens
defining, 264
displaying, 265
removing, 266

user-defined windows
defining, 264
erasing information in, 265
removing, 266

using macros with breakpoints, 232
using simulator and emulator together, 125

V variables
breaking on access, 31
displaying, 27
displaying address of, 30
initializing, 217
modifying, 210

variables in macros, 223
variables, modifying, 50
vector base address @VBR, 554
Vector number for software breakpoint (1..7)?, 321
version (product), displaying, 152
version numbers, 619
view information in the active window, 143–144
view window, description of, 152
viewing text, 17
VT100 terminal

configuration selections for SET-UP A menu, 643
configuration selections for SET-UP B menu, 643
configuring, 643
set control sequences for, 649

VT220 terminal
configuring, 645
set control sequences for, 649

W W indicator character, 85
when macro, 589

example, 359, 363–365
while statement, 224
widget resource

See X resource
window, 658

Index

694

Window Active command, 509–510
window commands, summary of, 357
Window Cursor command, 511
Window Delete command, 512
Window Erase command, 513
Window New command, 514–516
Window Resize command, 517
Window Screen_On command, 518
window settings, saving, 267
Window Toggle_View command, 519–520
window, X, 658
windows, 139

 copying to file, 145
active, 141
backtrace, 115, 153–156
breakpoint, 113
description of, 139
displaying alternate view, 142
error, 594
help, 82
journal, 58
journal file, 166
log file, 166
making active, 141
monitor, 163
moving, 262
predefined, 139
register, 152
resizing, 262
resizing large, 651
scrolling, 17
setting behavior of, 257
stack, 140
view, 152
working with, 139

word macro, 590
words

changing, 214
Working (debugger status), 85
working directory, 658
workstation

Index

695

windows (continued)
HP 9000 memory needs, 620
HP 9000 minimum performance, 620
SPARCsystem memory needs, 624
SPARCsystem minimum performance, 624

write macro, 591–592

X X client, 270, 332
X resource, 270, 332

$XAPPLRESDIR directory, 337
$XENVIRONMENT variable, 338
.Xdefaults file, 336
/usr/hp64000/lib/X11/HP64_schemes, 339
app-defaults file, 336
application-specific, 332
class name for applications defined, 335
class name for widgets defined, 333
command line options, 338
commonly modified graphical interface resources, 272
Debug.BW, 339
Debug.Color, 339
Debug.Input, 339
Debug.Label, 339
Debug.Large, 339
Debug.Small, 339
defined, 332
general form, 333
instance name for applications defined, 335
instance name for widgets defined, 333
loading order, 337
modifying resources, generally, 272, 342
RESOURCE_MANAGER property, 337
scheme file system directory, 339
scheme files, debugger’s graphical interface, 338
scheme files, named, 339
schemes, forcing interface to use certain, 340
wildcard character, 334
xrdb, 337
xrm command line option, 338

X resources, 331–344, 658
X server, 270, 332, 658
X window, 658

Index

696

X-windows
resizing large, 650

X-windows, running on bit-mapped displays, 639

Z zero flag @Z, 554

Index

697

Index

698

Certification and W arranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the United
States National Bureau of Standards, to the extent allowed by the Bureau’s
calibration facility, and to the calibration facilities of other International
Standards Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials
and workmanship for a period of 90 days from date of installation. During the
warranty period, HP will, at its option, either repair or replace products which
prove to be defective.

Warranty service of this product will be performed at Buyer’s facility at no
charge within HP service travel areas. Outside HP service travel areas,
warranty service will be performed at Buyer’s facility only upon HP’s prior
agreement and Buyer shall pay HP’s round trip travel expenses. In all other
cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to
Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to HP from another country. HP warrants that its software
and firmware designated by HP for use with an instrument will execute its
programming instructions when properly installed on that instrument. HP
does not warrant that the operation of the instrument, or software, or
firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements
are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service
Office.

	Debugging C Programs for 68020/030 Microprocessors
	In This Book
	Contents
	Quick Start Guide
	Getting Started with the Graphical Interface
	Getting Started with the Standard Interface

	User’s Guide
	Entering Debugger Commands
	Loading and Executing Programs
	Viewing Code and Data
	Making Trace Measurements
	Editing Code and Data
	Using Macros and Command Files
	Configuring the Debugger
	Configuring the Emulator

	Concept Guide
	X Resources and the Graphical Interface

	Reference
	Debugger Commands
	Expressions and Symbols in Debugger Commands
	Reserved Symbols
	Predefined Macros
	Debugger Error Messages
	Debugger Versions

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

