
HP 64793

H8/338/329 Emulator
Softkey Interface

User’s Guide

HP Part No. 64793-97002
Printed in U.S.A.
October 1992

Edition 1

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

 Copyright 1992, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Colorado Springs Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64793-97002, October 1992

Using This Manual

This manual introduces you to the following emulators as used with the
Softkey Interface.

HP 64793A H8/338 emulator
HP 64793B H8/329 emulator

Throughout this documentation, the following names are used to
denote the microprocessors listed in the following table of supported
microprocessors.

Model Supported Microprocesorts Reffered to as

HP 64793A (H8/338 emulator) HD6473388CP
HD6433388CP
HD6413388CP
HD6473378CP
HD6433378CP
HD6413378CP
HD6433368CP

H8/338
H8/338
H8/338
H8/337
H8/337
H8/337
H8/336

HP 64793B (H8/329 emulator) HD6473298P
HD6473298C
HD6433298P
HD6413298P
HD6433288P
HD6473278P
HD6473278C
HD6433278P
HD6413278P
HD6433268P

H8/329
H8/329
H8/329
H8/329
H8/328
H8/327
H8/327
H8/327
H8/327
H8/326

For the most part, the H8/329 and H8/338 emulators all operate the
same way. Differences between the emulators are described where they
exist. Both the H8/329 and H8/338 emulators will be referred to as the
"H8/338 emulator". In the specific instances where H8/329 emulator

differs from H8/338 emulator, it will be described as the "H8/329
emulator".

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, selecting a target system clock source.

This manual does not:

Show you how to use every Softkey Interface command and
option; the Softkey Interface is described in the Softkey
Interface Reference.

Organization

Chapter 1 Introduction. This chapter lists the H8/338 emulator features and
describes how they can help you in developing new hardware and
software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Chapter 4 Configuring the Emulator. You can configure the emulator to adapt
it to your specific development needs. This chapter describes the
options available when configuring the emulator and how to save and
restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command syntax.

bold italic Commands, options, and parts of command syntax
which may be entered by pressing softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands which
follow the "$" are entered at the HP-UX prompt.

<RETURN> The carriage return key.

Contents

1 Introduction to the H8/338 Emulator

Introduction . 1-1
Purpose of the H8/338 Emulator 1-1
Features of the H8/338 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-4
Emulation Memory . 1-4
Analysis . 1-4
Register Display and Modification 1-4
Single-Step . 1-5
Breakpoints . 1-5
Reset Support . 1-5
Real-Time Execution . 1-5

Limitations, Restrictions . 1-6
Foreground Monitor . 1-6
Monitor Break at Sleep/Standby Mode 1-6
Store Condition and Trace . 1-6
Step Command and Interrupts 1-6
RAM Enable Bit . 1-6
Software Performance Measurement 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6
Generate HP Absolute file . 2-6

Entering the Softkey Interface . 2-7
From the "pmon" User Interface 2-7
From the HP-UX Shell . 2-8
Using the Default Configuration 2-9

On-Line Help . 2-9

Contens - 1

Softkey Driven Help . 2-9
Pod Command Help . 2-10

Loading Absolute Files . 2-11
Displaying Symbols . 2-12

Global . 2-12
Local . 2-12

Displaying Memory in Mnemonic Format 2-13
Displaying Memory with Symbols 2-14
Running the Program . 2-15

From Transfer Address . 2-15
From Reset . 2-15

Displaying Memory Repetitively 2-16
Modifying Memory . 2-16
Breaking into the Monitor . 2-17
Using Software Breakpoints . 2-17

Enabling/Disabling Software Breakpoints 2-18
Setting a Software Breakpoint 2-18
Clearing a Software Breakpoint 2-20

Stepping Through the Program 2-20
Displaying Registers . 2-21
Using the Analyzer . 2-22

Specifying a Simple Trigger 2-22
Displaying the Trace . 2-23
Displaying Trace with Time Count Absolute 2-24
Changing the Trace Depth 2-25
H8/338 Analysis Status Qualifiers 2-26

Trace Analysis Considerations 2-27
How to Specify Trigger Condition 2-27
Store Condition and Trace 2-28
Triggering the Analyzer by Data 2-30
For a Complete Description 2-31

Exiting the Softkey Interface . 2-31
End Release System . 2-31
Ending to Continue Later . 2-31
Ending Locked from All Windows 2-31
Selecting the Measurement System Display or
Another Module . 2-32

3 Using the H8/338 Emulator In-Circuit

Installing the Target System Probe 3-2
Pin Guard . 3-2

2 - Contents

Pin Protector(H8/329 Only) 3-3
Installing the Target System Probe 3-3

Pin State in Background . 3-5
Target System Interface (H8/338) 3-6
Target System Interface (H8/329) 3-8
In-Circuit Configuration Options 3-10
Running the Emulator from Target Reset 3-10

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-3

Micro-processor clock source? 4-3
Enter monitor after configuration? 4-3
Restrict to real-time runs? . 4-4

Memory Configuration . 4-5
Mapping memory . 4-5

Emulator Pod Configuration . 4-7
Processor type? . 4-7
Processor operation mode? . 4-8
Enable /NMI input from the target system? 4-9
Enable /RES input from the target system? 4-9
Reset value for stack pointer? 4-9

Debug/Trace Configuration . 4-10
Break processor on write to ROM? 4-10
Trace background or foreground operation? 4-10

Simulated I/O Configuration . 4-11
Interactive Measurement Configuration 4-11
External Analyzer Configuration 4-11
Saving a Configuration . 4-12
Loading a Configuration . 4-12

5 Using the Emulator

Introduction . 5-1
Features Available via Pod Commands 5-2
Using a Command File . 5-3
Debugging C Programs . 5-4

Displaying Memory with C Sources 5-4
Displaying Trace with C Sources 5-4
Stepping C Sources . 5-5

 Limitations, Restrictions . 5-5
Foreground Monitor . 5-5

Contens - 3

Sleep and Software Stand-by Mode 5-5
Store Condition and Trace . 5-5
Step Command and Interrupts 5-6
RAM Enable Bit . 5-6
Software Performance Analysis 5-6

Storing Memory Contents to an Absolute File 5-7
Coordinated Measurements . 5-7
Register Classes and Names (H8/338 Emulator) 5-8
Register Classes and Names (H8/329 Emulator) 5-13

Illustrations

Figure 1-1. HP 64793 Emulator for the H8/338 Processor 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommoand File 2-6
Figure 2-3. Softkey Interface Display 2-8
Figure 3-1. Installing the Probe (H8/338 emulator) 3-4
Figure 3-2. Installing the Probe (H8/329 emulator) 3-5

4 - Contents

1

Introduction to the H8/338 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/338 emulator.

Features of the H8/338 emulator.

Purpose of the
H8/338 Emulator

The H8/338 emulator is designed to replace the H8/338 microprocessor
in your target system so you can control operation of the
microprocessor in your application hardware (usually referred to as the
target system). The H8/338 emulator performs just like the H8/338
microprocessor, but is a device that allows you to control the H8/338
directly. These features allow you to easily debug software before any
hardware is available, and ease the task of integrating hardware and
software.

Introduction to the H8/338 Emulator 1-1

Figure 1-1. HP 64793 Emulator for the H8/338 Processor

1-2 Introduction to the H8/338 Emulator

Features of the
H8/338 Emulator

Supported
Microprocessors

The HP 64793A H8/338 emulator and HP 64793B H8/329 emulators
support the microprocesors listed in the following table.

Model Supported Microprocessor

HP 64793A (H8/338 emulator) HD6473388CP (H8/338)
HD6433388CP (H8/338)
HD6413388CP (H8/338)
HD6473378CP (H8/337)
HD6433378CP (H8/337)
HD6413378CP (H8/337)
HD6433368CP (H8/336)

HP 64793B (H8/329 emulator) HD6473298P (H8/329)
HD6473298C (H8/329)
HD6433298P (H8/329)
HD6413298P (H8/329)
HD6433288P (H8/328)
HD6473278P (H8/327)
HD6473278C (H8/327)
HD6433278P (H8/327)
HD6413278P (H8/327)
HD6433268P (H8/326)

Each model provides with an emulation probe designed for its support
microprocessors. By replacing the emulation probe, the HP64793 can
support processors other than its original support processors. Contact
Hewlett-Packard to replace the emulation probe.

Introduction to the H8/338 Emulator 1-3

Clock Speeds Maximum clock speed is 10 MHz (system clock).

Emulation Memory The HP64793 H8/338 emulator is used with the following Emulation
Memory Card.

HP 64725A 128K byte Emulation Memory Card

The emulation memory can be configured into 128 byte blocks. A
maximum of 16 ranges can be configured as emulation RAM(eram),
emulation ROM(erom), target system RAM(tram), target system
ROM(trom), or guarded memory(grd). The H8/338 emulator will
attempt to break to the emulation monitor upon accessing guarded
memory, additionally, you cam configure the emulator to break to the
emulation monitor upon performing a write to ROM(which will stop a
runaway program).

Analysis The HP64793 H8/338 emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer

HP 64704 80-channel Emulation Bus Analyzer

HP 64706 48-channel Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Register Display and
Modification

You can display or modify the H8/338 internal register contents. This
includes the ability to modify the program counter (PC) value so you
can control where the emulator begins executing a target system
program.

1-4 Introduction to the H8/338 Emulator

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific state,
allowing you to perform post-mortem analysis of the program
execution.

You can also define software breakpoints in your program. The
emulator uses an H8/338 special code to provide software breakpoints;
This special code (5770 hexadecimal) is H8/338 undefined instruction.
When you define a software breakpoint, the emulator places the special
code at the specified address; after the special code causes emulator
execution to break out of the user program (into the monitor), the
emulator replaces the original opcode. See the "Using Software
Breakpoints" section of the "Getting Started" chapter for more
information.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real-Time Execution Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator temporarily breaks into the
monitor so that it can access register contents or target system
memory.) Emulator features performed in real time include: running
and analyzer tracing. Emulator features not performed in real time
include: display or modify target system memory; load/dump target
system memory; and display or modify registers,and single step.

Introduction to the H8/338 Emulator 1-5

Limitations,
Restrictions

Foreground Monitor Foreground Monitor is not supported for the H8/338 emulator.

Monitor Break at
Sleep/Standby Mode

When the emulator breaks into the emulation monitor, sleep or
software standby mode is released.

Store Condition and
Trace

Disassembling of program execution in the trace list may not be
accurate when the emulation analyzer is used with store condition.
Refer to chapter 2 of this manual for more information.

Step Command and
Interrupts

Step execution cannot be performed in the following cases.

When the emulator is in the monitor and a suspended interrupt
is existed.
When the emulator is in the monitor and a level sensed
interrupt is existed (including interrupts from internal I/O
device).

Refer to Chapter 5 of this manual.

RAM Enable Bit The internal RAM of H8/338 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator still accesses emulation RAM
even if the internal RAM is disabled by RAME.

Software
Performance

Measurement

Program Activity Measurement using the Software Performance
Measurement Tool (SPMT) is valid only for H8/338 internal ROM
area. (that is, 0 hex through 3fff hex.) Outside this area, the result of
Program Activity Measurement is not reliable

1-6 Introduction to the H8/338 Emulator

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial
designed to familiarize you with the use of the H8/338 emulator with
the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s example.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual for
instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also covers
HP64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
H8/338 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter. The sample
program is shipped with the Softkey Interface and may be copied from
the following location.

/usr/hp64000/demo/emul/hp64793/cmd_rds.src

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A,Msg_B, and Msg_I.

2-2 Getting Started

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "THIS IS MESSAGE A"
Msg_B .SDATA "THIS IS MESSAGE B"
Msg_I .SDATA "INVALID COMMAND"
End_Msgs

 .SECTION Prog,CODE
;**
;* Set up the Stack Pointer
;**
Init MOV.W #Stack,R7
;**
;* Clear previous command
;**
Clear MOV.B #H’00,R0L
 MOV.B R0L,@Cmd_Input
;**
;* Read command input byte. If no command has been
;* entered, continue to scan for it.
;**
Scan MOV.B @Cmd_Input,R2L
 CMP.B #H’00,R2L
 BEQ Scan
;**
;* A command has been entered. Check if it is
;* command A, command B, or invalid command.
;**
Exe_Cmd CMP.B #H’41,R2L
 BEQ Cmd_A
 CMP.B #H’42,R2L
 BEQ Cmd_B
 BRA Cmd_I
;**
;* Command A is entered. R3L= the number of bytes
;* in message A. R4 = location of the message.
;* Jump to the routine which writes the message.
;**
Cmd_A MOV.B #Msg_B-Msg_A,R3L
 MOV.W #Msg_A,R4
 BRA Write_Msg
;**
;* Command B is entered.
;**
Cmd_B MOV.B #Msg_I-Msg_B,R3L
 MOV.W #Msg_B,R4
 BRA Write_Msg
;**
;* An invalid command is entered.
;**
Cmd_I MOV.B #End_Msgs-Msg_I,R3L
 MOV.W #Msg_I,R4

Figure 2-1. Sample Program Listing

Getting Started 2-3

Initialization

The program instruction at the Init label initializes the stack pointer.

Reading Input

The instruction at the Clear label clears any random data or previous
commands from the Cmd_Input byte. The Scan loop continually
reads the Cmd_Input byte to see if a command is entered (a value
other than 0 hex).

;**
;* The destination area is cleared.
;**
Write_Msg MOV.W #Msg_Dest,R5
Clear_Old MOV.B #h’20,R6L
Clear_Loop MOV.B R0L,@R5
 ADDS.W #1,R5
 DEC.B R6L
 BNE Clear_Loop
;**
;* Message is written to the destination.
;**
 MOV.W #Msg_Dest,R5
Write_Loop MOV.B @R4+,R6L
 MOV.B R6L,@R5
 ADDS.W #1,R5
 DEC.B R3L
 BNE Write_Loop
;**
;* Go back and scan for next command.
;**
 BRA Clear

 .SECTION Data,COMMON
;**
;* Command input byte.
;**
Cmd_Input .RES.B 1
 .RES.B 1
;**
;* Destination of the command messages.
;**
Msg_Dest .RES.W H’7f
Stack
 .END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
R3L with the length of the message to be displayed and register R4
with the starting location of the appropriate message. Then, execution
transfers to Write_Msg which writes the appropriate message to the
destination location, Msg_Dest.

Prior to writing the message, Clear_Old clears the destination area.
After the message is written, the program branches back to read the
next command.

The Destination Area

The "Data" section declares memory storage for the command input
byte, the destination area, and the stack area.

Getting Started 2-5

Sample Program
Assembly

The sample program is written for and assembled with the HP 64876
H8/300 Assembler/Linkage Editor. The sample program was
assembled with the following command (which assumes that
/usr/hp64000/bin is defined in the PATH environment variable).

$ h83asm -debug cmd_rds.src <RETURN>

Linking the Sample
Program

The sample program can be linked with following command and
generates the absolute file. The contents of "cmd_rds.k" linkage editor
subcommand file is shown in figure 2-2.

$ h8lnk -subcommand= cmd_rds.k
<RETURN>

Generate HP
Absolute file

To generate HP Absolute file for the Softkey Interface, you need to use
"h83cnvhp" absolute file format converter program. The h8cnvhp
converter is provided with HP 64876 H8/300 Assembler/Linkage
Editor. To generate HP Absolute file, enter following command:

$ h83cnvhp cmd_rds <RETURN>

You will see that cmd_rds.X, cmd_rds.L, and cmd_rds.A are
generated. These are sufficient throughout this chapter.

Note You need to specify "debug" command line option to both assembler
and linker command to generate local symbol information. Otherwise,
you will see the warning message when file format converter
h83cnvhp is executed. And no local symbol file will be generated.
The "debug" option for the assembler and linker direct to include local
symbol information to the object file.

debug
input cmd_rds
start Prog(1000),Table(2000),Data(0fc00)
print cmd_rds
output cmd_rds
exit

Figure 2-2. Linkage Editor Subcommoand File

2-6 Getting Started

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>

 If you have not already created a measurement system for the H8/338
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>

After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>

To define a measurement system for the H8/338 emulator, enter:

make_sys emh8338 <RETURN>

Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it h8338
<RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named
"emh8338" and "h8338" as shown above, you can enter the emulation
system with the following command:

emh8338 default h8338 <RETURN>

Getting Started 2-7

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

 HP64793-19031 A.04.00 25Oct92
 H8/338 EMULATION SERIES 64700

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA94304-1181

 STATUS: Loaded configurationfile_____________________________________...R....

 run trace step display modify break end ---ETC--

Figure 2-3. Softkey Interface Display

2-8 Getting Started

If this command is successful, you will see a display similar to figure
2-3. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

Using the Default
Configuration

The default emulator configuration is used with the following
examples. In the case of H8/338 emulator, the address range 0 hex
through 3fff hex is mapped as emulation ROM and fd80 hex through
ff7f hex as emulation RAM. In the case of H8/325 emulator, the
address range 0 hex through 7fff hex is mapped as emulation ROM and
fb80 hex through ff7f hex as emulation RAM.

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

Getting Started 2-9

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help m’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

 ---SYSTEM COMMANDS---

 ? displays the possible help files
 help displays the possible help files
 ! fork a shell (specified by shell variable SH)
 !<shell cmd> fork a shell and execute a shell command
 cd <directory> change the working directory
 pwd print the working directory
 cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic
 pws print the working symbol
 <FILE> p1 p2 p3 ... execute a command file passing parameters p1, p2, p3

 log_commands to <FILE> logs the next sequence of commands to file <FILE>
 log_commands off discontinue logging commands
 name_of_module get the "logical" name of this module (see 64700tab)
 --More--(20%)

2-10 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. If you wish to load only that portion of the
absolute file that resides in memory mapped as emulation RAM or
ROM, use the "load emul_mem" syntax. If you wish to load only the
portion of the absolute file that resides in memory mapped as target
RAM, use the "load user_mem" syntax. If you want both emulation
and target memory to be loaded, do not specify "emul_mem" or
"user_mem". For example:

load cmd_rds <RETURN>

Normally, you will configure the emulator and map memory before
you load the absolute file; however, the default configuration is
sufficient for the sample program.

 Pod Commands
 Time Command
 10:00:00 help m

 m - display or modify processor memory space
 m <addr> - display memory at address
 m -d<dtype> <addr> - display memory at address with display option
 m <addr>..<addr> - display memory in specified address range
 m -dm <addr>..<addr> - display memory mnemonics in specified range
 m <addr>.. - display 128 byte block starting at address A
 m <addr>=<value> - modify memory at address to <value>
 m -d<dtype> <addr>=<value> - modify memory with display option
 m <addr>=<value>,<value> - modify memory to data sequence
 m <addr>..<addr>=<value>,<value> - fill range with repeating sequence
 --- VALID <dtype> MODE OPTIONS ---
 b - display size is 1 byte(s)
 w - display size is 2 byte(s)
 m - display processor mnemonics

 STATUS: H8/338--Running in monitor____________________________________........
 pod_command ’help m’

 run trace step display modify break end ---ETC--

Getting Started 2-11

Displaying
Symbols

When you load an absolute file into memory (unless you use the
"nosymbols" option), symbol information is loaded. Both global
symbols and symbols that are local to a source file can be displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol.

Local When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in
cmd_rds.src: <RETURN>

 Global symbols in cmd_rds
 Static symbols
 Symbol name ___________________ Address range ___ Segment ____________ Offset
 Cmd_Input FC00 0000
 Init 1000 0000
 Msg_Dest FC02 0002
 Msgs 2000 0000

 Filename symbols
 Filename __
 cmd_rds.src

 STATUS: H8/338--Running in monitor____________________________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

2-12 Getting Started

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example, to display the memory of the "cmd_rds" program,

display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
global symbol Init is used in the command above to specify the starting
address of the memory to be displayed.

 Symbols in cmd_rds.src:
 Static symbols
 Symbol name ___________________ Address range ___ Segment ____________ Offset
 Clear 1004 0004
 Clear_Loop 1038 0038
 Clear_Old 1036 0036
 Cmd_A 101C 001C
 Cmd_B 1024 0024
 Cmd_I 102C 002C
 Cmd_Input FC00 0000
 Data FC00 0000
 END_Msgs 00002031
 Exe_Cmd 1012 0012
 Init 1000 0000
 Msg_A 2000 0000
 Msg_B 2011 0011
 Msg_Dest FC02 0002
 Msg_I 2022 0022

 STATUS: cws: cmd_rds.src:__...R....
 display local_symbols_in cmd_rds.src:

 run trace step display modify break end ---ETC--

Getting Started 2-13

Displaying
Memory with
Symbols

You can include symbol information in memory display.

set symbols on <RETURN>

Note
The "set" command is effective only to the window which the
command is invoked. When you access the emulator from multiple
windows, you need to use the command at each window.

 Memory :mnemonic :file = cmd_rds.src:
 address data
 1000 7907FF80 MOV.W #FD80,R7
 1004 F800 MOV.B #00,R0L
 1006 6A88FE80 MOV.B R0L,@FC00
 100A 6A0AFE80 MOV.B @FC00,R2L
 100E AA00 CMP.B #00,R2L
 1010 47F8 BEQ 100A
 1012 AA41 CMP.B #41,R2L
 1014 4706 BEQ 101C
 1016 AA42 CMP.B #42,R2L
 1018 470A BEQ 1024
 101A 4010 BRA 102C
 101C FB11 MOV.B #11,R3L
 101E 79041100 MOV.W #2000,R4
 1022 400E BRA 1032
 1024 FB11 MOV.B #11,R3L
 1026 79041111 MOV.W #2011,R4

 STATUS: H8/338--Running in monitor____________________________________...R....
 display memory Init mnemonic

 run trace step display modify break end ---ETC--

2-14 Getting Started

Running the
Program

The "run" command lets you execute a program in memory. Entering
the "run" command by itself causes the emulator to begin executing at
the current program counter address. The "run from" command allows
you to specify an address at which execution is to start.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the .END
assembler directive (i.e., pseudo instruction). For example, the sample
program defines the address of the label Init as the transfer address.
The following command will cause the emulator to execute from the
address of the Init label.

run from transfer_address <RETURN>

From Reset The "run from reset" command specifies that the emulator begin
executing from target system reset (see "Running From Reset" section
in the "In-Circuit Emulation" chapter).

 Memory :mnemonic :file = cmd_rds.src:
 address label data
 1000 :Init 7907FF80 MOV.W #FD00,R7
 1004 cmd_rd:Clear F800 MOV.B #00,R0L
 1006 6A88FE80 MOV.B R0L,@:Cmd_Input
 100A cmd_rds:Scan 6A0AFE80 MOV.B @:Cmd_Input,R2L
 100E AA00 CMP.B #00,R2L
 1010 47F8 BEQ cmd_rds.src:Scan
 1012 cmd_:Exe_Cmd AA41 CMP.B #41,R2L
 1014 4706 BEQ cmd_rds.sr:Cmd_A
 1016 AA42 CMP.B #42,R2L
 1018 470A BEQ cmd_rds.sr:Cmd_B
 101A 4010 BRA cmd_rds.sr:Cmd_I
 101C cmd_rd:Cmd_A FB11 MOV.B #11,R3L
 101E 79041100 MOV.W #2000,R4
 1022 400E BRA cmd_rd:Write_Msg
 1024 cmd_rd:Cmd_B FB11 MOV.B #11,R3L
 1026 79041111 MOV.W #2011,R4

 STATUS: H8/338--Running in monitor____________________________________...R....
 set symbols on

 run trace step display modify break end ---ETC--

Getting Started 2-15

Displaying
Memory
Repetitively

You can display memory locations repetitively so that the information
on the screen is constantly updated. For example, to display the
Msg_Dest locations of the sample program repetitively (in blocked
byte format), enter the following command.

display memory Msg_Dest repetitively
blocked bytes <RETURN>

Modifying Memory The sample program simulates a primitive command interpreter.
Commands are sent to the sample program through a byte sized
memory location labeled Cmd_Input . You can use the modify
memory feature to send a command to the sample program. For
example, to enter the command "A" (41 hex), use the following
command.

modify memory Cmd_Input bytes to 41h
<RETURN>

Or:

 Memory :bytes :blocked :repetitively
 address data :hex :ascii
 FC02-09 54 48 49 53 20 49 53 20 T H I S I S
 FC0A-11 4D 45 53 53 41 47 45 20 M E S S A G E
 FC12-19 41 00 00 00 00 00 00 00 A
 FC1A-21 00 00 00 00 00 00 00 00
 FC22-29 00 00 00 00 00 00 00 00
 FC2A-31 00 00 00 00 00 00 00 00
 FC32-39 00 00 00 00 00 00 00 00
 FC3A-41 00 00 00 00 00 00 00 00
 FC42-49 00 00 00 00 00 00 00 00
 FC4A-51 00 00 00 00 00 00 00 00
 FC52-59 00 00 00 00 00 00 00 00
 FC5A-61 00 00 00 00 00 00 00 00
 FC62-69 00 00 00 00 00 00 00 00
 FC6A-71 00 00 00 00 00 00 00 00
 FC72-79 00 00 00 00 00 00 00 00
 FC7A-81 00 00 00 00 00 00 00 00

 STATUS: H8/338--Running user program__________________________________...R....
 modify memory Cmd_Input bytes to 41h

 run trace step display modify break end ---ETC--

2-16 Getting Started

modify memory Cmd_Input string to
’A’ <RETURN>

After the memory location is modified, the repetitive memory display
shows that the "Command A entered" message is written to the
destination locations.

Breaking into the
Monitor

The "break" command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

Using Software
Breakpoints

Software breakpoints are provided with an H8/338 special code; This
special code (5770 hexadecimal) is H8/338 undefined instruction.

When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the special
code.

Note You must set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Getting Started 2-17

Note Because software breakpoints are implemented by replacing opcodes
with the special code, you cannot define software breakpoints in target
ROM.

When software breakpoints are enabled and emulator detects a fetching
the special code (5770 hexadecimal), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the special code is software
breakpoints or opcode in your target program.

If it is a software breakpoint, execution breaks to the monitor,and the
special code is replaced by the original opcode. A subsequent run or
step command will execute from this address.

If the special code is opcode of your target program, execution still
breaks to the monitor, and an "Undefined software breakpoint" status
message is displayed.

When software breakpoints are disabled, the emulator replaces the
special code with the original opcode.

Up to 32 software breakpoints may be defined.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable
<RETURN>

When software breakpoints are enabled and you set a software
breakpoint, the H8/338 special code (5770 hexadecimal) will be placed
at the address specified. When the special code is executed, program
execution will break into the monitor.

Setting a Software
Breakpoint

To set a software breakpoint at the address of the Cmd_A label, enter
the following command.

2-18 Getting Started

modify software_breakpoints set
Cmd_A <RETURN>

Notice that when using local symbols in expressions, the source file in
which the local symbol is defined must be included.

After the software breakpoint has been set, enter the following
command to display memory and see if the software breakpoint was
correctly inserted.

display memory Init memonic <RETURN>

As you can see, the software breakpoint is shown in the memory
display with an asterisk.

Enter the following command to cause the emulator to continue
executing the sample program.

run <RETURN>

Now, modify the command input byte to an invalid command for the
sample program.

modify memory Cmd_Input bytes to 41h
<RETURN>

You will see the line of the software breakpoint is displayed in

 Memory :mnemonic :file = cmd_rds.src:
 address label data
 1000 :Init 7907FF80 MOV.W #FF80,R7
 1004 cmd_rd:Clear F800 MOV.B #00,R0L
 1006 6A88FE80 MOV.B R0L,@:Cmd_Input
 100A cmd_rds:Scan 6A0AFE80 MOV.B @:Cmd_Input,R2L
 100E AA00 CMP.B #00,R2L
 1010 47F8 BEQ cmd_rds.src:Scan
 1012 cmd_:Exe_Cmd AA41 CMP.B #41,R2L
 1014 4706 BEQ cmd_rds.sr:Cmd_A
 1016 AA42 CMP.B #42,R2L
 1018 470A BEQ cmd_rds.sr:Cmd_B
 101A 4010 BRA cmd_rds.sr:Cmd_I
 * 101C cmd_rd:Cmd_A 5770 Illegal Opcode
 101E 79041100 MOV.W #1100,R4
 1022 400E BRA cmd_rd:Write_Msg
 1024 cmd_rd:Cmd_B FB11 MOV.B #11,R3L
 1026 79041111 MOV.W #1111,R4

 STATUS: H8/338--Running in monitor____________________________________...R....
 display memory Init mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-19

inverse-video. The inverse-video shows that the Program Counter is
now at the address.

A message on the status line shows that the software breakpoint has
been hit. The status line also shows that the emulator is now executing
in the monitor.

When software breakpoints are hit, they become inactivated. To
reactive the breakpoint so that is "pending", you must enter the
"modify software_breakpoint set" command again.

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear
Cmd_A <RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear
<RETURN>

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. Also, you can step
from the current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, ...

You will see the inverse-video moves according to the step execution.
You can continue to step through the program just by pressing the
<RETURN> key; when a command appears on the command line, it
may be entered by pressing <RETURN>.

2-20 Getting Started

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers class, or an individual register.

display registers <RETURN>

You can use "register class" and "register name" to display registers.
Refer to the "Register Class and Name" section in Chapter 5.

When you enter the "step" command with registers displayed, the
register display is updated every time you enter the command.

step <RETURN>, <RETURN>, <RETURN>

 Registers

 Next_PC 1022
 PC 1022 SP FF80 CCR 80 <i > MDCR E7
 R0 0000 R1 0000 R2 0041 R3 0011 R4 1100 R5 FE82 R6 0020 R7 FF80

 STATUS: H8/338--Stepping complete_____________________________________...R....
 display registers

 run trace step display modify break end ---ETC--

Getting Started 2-21

Enter the following command to cause sample program execution to
continue from the current program counter.

run <RETURN>

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse
of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Specifying a Simple
Trigger

Suppose you want to trace program execution after the point at which
the sample program reads the "B" (42 hex) command from the
command input byte. To do this you would trace after the analyzer
finds a state in which a value of 42xxh is read from the Cmd_Input
byte. The following command makes this trace specification.

trace after Cmd_Input data 42xxh
status read <RETURN>

 Registers

 Next_PC 1022
 PC 1022 SP FD00 CCR 80 <i > MDCR E7
 R0 0000 R1 0000 R2 0041 R3 FE11 R4 2000 R5 FC02 R6 0020 R7 FE80

 Step_PC 1022 BRA cmd_rds.src:Write_Msg
 Next_PC 1032
 PC 1032 SP FD00 CCR 80 <i > MDCR E7
 R0 0000 R1 0000 R2 0041 R3 FE11 R4 2000 R5 FC02 R6 0020 R7 FF80

 Step_PC 1032 MOV.W #FE82,R5
 Next_PC 1036
 PC 1036 SP FF80 CCR 80 <i > MDCR E7
 R0 0000 R1 0000 R2 0041 R3 FE11 R4 2000 R5 FC02 R6 0020 R7 FF80

 STATUS: H8/338--Stepping complete_____________________________________...R....
 step

 run trace step display modify break end ---ETC--

2-22 Getting Started

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "B" with the following
command.

modify memory Cmd_Input bytes to 42h
<RETURN>

The status line now shows "Emulation trace complete".

Displaying the Trace The trace listings which follow are of program execution on the
H8/338 emulator. To display the trace, enter:

display trace <RETURN>

Line 0 (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0. The other
states show the exit from the Scan loop and the Exe_Cmd and Cmd_B
instructions. To list the next lines of the trace, press the <PGDN> or
<NEXT> key.

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 after :Cmd_Input 42FF 42 read mem byte ------------
 +001 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan 200 nS
 +002 cmd_rds.:Exe_Cmd AA41 CMP.B #41,R2L 200 nS
 +003 cmd_rds.src:Scan 6A0A 6A0A fetch mem 200 nS
 +004 :cmd_rds.s:+0014 4706 BEQ cmd_rds.sr:Cmd_A 200 nS
 +005 :cmd_rds.s:+0016 AA42 CMP.B #42,R2L 200 nS
 +006 cmd_rds.sr:Cmd_A FB11 FB11 fetch mem 200 nS
 +007 :cmd_rds.s:+0018 470A BEQ cmd_rds.sr:Cmd_B 200 nS
 +008 :cmd_rds.s:+001A 4010 4010 fetch mem 200 nS
 +009 cmd_rds.sr:Cmd_B FB11 MOV.B #11,R3L 200 nS
 +010 :cmd_rds.s:+0026 7904 MOV.W #2011,R4 200 nS
 +011 :cmd_rds.s:+0028 2011 2011 fetch mem 200 nS
 +012 :cmd_rds.s:+002A 4006 BRA cmd_rd:Write_Msg 200 nS
 +013 cmd_rds.sr:Cmd_I FB0F FB0F fetch mem 200 nS
 +014 cmd_rd:Write_Msg 7905 MOV.W #FC02,R5 200 nS

 STATUS: H8/338--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

Getting Started 2-23

The resulting display shows Cmd_B instructions, the branch to
Write_Msg and the beginning of the instructions which move the
"Entered B command " message to the destination locations.

To list the previous lines of the trace, press the <PGUP> or <PREV>
key.

Displaying Trace with
Time Count Absolute

Enter the following command to display count information absolute
from the trigger state.

display trace count absolute
<RETURN>

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols relative
 +015 :cmd_rds.s:+0034 FE82 FE82 fetch mem 200 nS
 +016 cmd_rd:Clear_Old FE20 MOV.B #20,R6L 200 nS
 +017 cmd_r:Clear_Loop 68D8 MOV.B R0L,@R5 200 nS
 +018 :cmd_rds.s:+003A 0B05 ADDS #1,R5 200 nS
 +019 :Msg_Dest 0000 00 write mem byte 200 nS
 +020 :cmd_rds.s:+003C 1A0E DEC R6L 200 nS
 +021 :cmd_rds.s:+003E 46F8 BNE cmd_r:Clear_Loop 200 nS
 +022 :cmd_rds.s:+0040 7905 7905 fetch mem 200 nS
 +023 cmd_r:Clear_Loop 68D8 MOV.B R0L,@R5 200 nS
 +024 :cmd_rds.s:+003A 0B05 ADDS #1,R5 200 nS
 +025 :cmd_rds.s:+0003 0000 00 write mem byte 200 nS
 +026 :cmd_rds.s:+003C 1A0E DEC R6L 200 nS
 +027 :cmd_rds.s:+003E 46F8 BNE cmd_r:Clear_Loop 200 nS
 +028 :cmd_rds.s:+0040 7905 7905 fetch mem 200 nS
 +029 cmd_r:Clear_Loop 68D8 MOV.B R0L,@R5 200 nS

 STATUS: H8/338--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

2-24 Getting Started

Changing the Trace
Depth

The default states displayed in the trace list is 256 states. To change
the number of states, use the "display trace depth" command.

display trace depth 512 <RETURN>

This command increases the number of states in the trace list to 512. If
you use the <NEXT> key to page down through the trace, you can see
where the program returns to the Clear instruction at state 349.

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols absolute
 after cmd_rd:Cmd_Input 42FF 42 read mem byte ------------
 +001 abs 2010 47F8 BEQ cmd_rds.src:Scan + 200 nS
 +002 cmd_rds.:Exe_Cmd AA41 CMP.B #41,R2L + 400 nS
 +003 cmd_rds.src:Scan 6A0A 6A0A fetch mem + 600 nS
 +004 abs 2014 4706 BEQ cmd_rds.sr:Cmd_A + 800 nS
 +005 abs 2016 AA42 CMP.B #42,R2L + 1.0 nS
 +006 cmd_rds.sr:Cmd_A FB11 FB11 fetch mem + 1.2 uS
 +007 abs 2018 470A BEQ cmd_rds.sr:Cmd_B + 1.4 uS
 +008 abs 201A 4010 4010 fetch mem + 1.6 uS
 +009 cmd_rds.sr:Cmd_B FB11 MOV.B #11,R3L + 1.8 uS
 +010 abs 2026 7904 MOV.W #1011,R4 + 2.0 uS
 +011 abs 2028 1011 1011 fetch mem + 2.2 uS
 +012 abs 202A 4006 BRA cmd_rd:Write_Msg + 2.4 uS
 +013 cmd_rds.sr:Cmd_I FB0F FB0F fetch mem + 2.6 uS
 +014 cmd_rd:Write_Msg 7905 MOV.W #FE02,R5 + 2.8 uS

 STATUS: H8/338--Running user program Emulation trace complete______........

 run trace step display modify break end ---ETC--

Getting Started 2-25

H8/338 Analysis
Status Qualifiers

The status qualifier "read" was used in the example trace command
used above. The following analysis status qualifiers may also be used
with the H8/338 emulator.

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols absolute
 +345 :cmd_rds.s:+004C 46F6 BNE cmd_r:Write_Loop + 72.40 uS
 +346 :cmd_rds.s:+004E 40B4 BRA cmd_rds.sr:Clear + 72.60 uS
 +347 cmd_r:Write_Loop 6C4E 6C4E fetch mem + 72.80 uS
 +348 1050 F3FF F3FF fetch mem + 73.00 uS
 +349 cmd_rds.sr:Clear F800 MOV.B #00,R0L + 73.20 uS
 +350 :cmd_rds.s:+0006 6A88 MOV.B R0L,@:Cmd_Input + 73.40 uS
 +351 :cmd_rds.s:+0008 FC00 FC00 fetch mem + 73.60 uS
 +352 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 73.80 uS
 +353 :Cmd_Input 0000 00 write mem byte + 74.00 uS
 +354 :cmd_rds.s:+000C FC00 FC00 fetch mem + 74.20 uS
 +355 :cmd_rds.s:+000E AA00 CMP.B #00,R2L + 74.40 uS
 +356 :Cmd_Input 00FF 00 read mem byte + 74.60 uS
 +357 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 74.80 uS
 +358 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 75.00 uS
 +359 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 75.20 uS

 STATUS: H8/338--Running user program Emulation trace complete______........
 display trace

 run trace step display modify break end ---ETC--

Qualifier Status Bits (32..44) Description

backgrnd 0 xxxx xxxx xxxxB Background cycle
byte x 1xxx xxxx xx1xB Byte access
foregrnd 1 xxxx xxxx xxxxB Foreground cycle
grd x 10xx xxxx xxxxB Guarded memory access
ifetch x 1xxx xxx0 1101B Fetch from internal ROM
intack x xxx0 xxxx xxxxB Interrupt acknowledge cycle
io x 1xxx xxxx 0xxxB Internal I/O access
memory x 1xxx xxxx 1xxxB Memory access
read x 1xxx xxxx xxx1B Read cycle
word x 1xxx xxxx xx0xB Word access
write x 1xxx xxxx xxx0B Write cycle
wrrom x 1x0x xxxx xxx0B Write to ROM cycle

2-26 Getting Started

Trace Analysis
Considerations

There are some points to be noticed when you use the emulation
analyzer.

How to Specify
Trigger Condition

You need to be careful to specify the condition on which the emulation
analyzer should start the trace. Suppose that you would like to start the
trace when the program begins executing Exe_Cmd routine:

trace after cmd_rds.src:Exe_Cmd
<RETURN>
modify memory Cmd_Input bytes to 41h
<RETURN>

You will see:

This is not what we were expecting to see. As you can see at the first
line of the trace list, the address of Exe_Cmd routine appears on the
address bus during the program executing Scan loop. This made the
emulation analyzer start trace. To avoid mis-trigger by this cause, set
the trigger condition to the second instruction of the routine you want
to trace:

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols absolute
 after cmd_rds.:Exe_Cmd AA41 AA41 fetch mem ------------
 +001 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 200 nS
 +002 :cmd_rds.s:+000C FE80 FE80 fetch mem + 400 nS
 +003 :cmd_rds.s:+000E AA00 CMP.B #00,R2L + 600 nS
 +004 :Cmd_Input 00FF 00 read mem byte + 800 nS
 +005 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 1.0 uS
 +006 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 1.2 uS
 +007 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 1.4 uS
 +008 :cmd_rds.s:+000C FE80 FE80 fetch mem + 1.6 uS
 +009 :cmd_rds.s:+000E AA00 CMP.B #00,R2L + 1.8 uS
 +010 :Cmd_Input 00FF 00 read mem byte + 2.0 uS
 +011 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 2.2 uS
 +012 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 2.4 uS
 +013 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 2.6 uS
 +014 :cmd_rds.s:+000C FE80 FE80 fetch mem + 2.8 uS

 STATUS: H8/338--Running user program Emulation trace complete______........
 trace after Exe_Cmd

 run trace step display modify break end ---ETC--

Getting Started 2-27

trace after cmd_rds.src:Exe_Cmd+2
<RETURN>

(Since the instruction at Exe_Cmd label is two bytes instruction, the
next instruction starts from Exe_Cmd+2.)

modify memory Cmd_Input bytes to 41h
<RETURN>

If you need to see the execution of the instruction at Exe_Cmd label,
use trace about command instead of trace after command. When you
use the trace about command, the state which triggered the analyzer
will appear in the center of the trace list.

Store Condition and
Trace

When you specify store condition with trace only command,
disassembling of program execution is unreliable.

trace <RETURN>

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols absolute
 after :cmd_rds.s:+0014 4706 BEQ cmd_rds.sr:Cmd_A ------------
 +001 :cmd_rds.s:+0016 AA42 AA42 fetch mem + 200 nS
 +002 cmd_rds.sr:Cmd_A FB11 MOV.B #11,R3L + 400 nS
 +003 :cmd_rds.s:+001E 7904 MOV.W #2000,R4 + 600 nS
 +004 :cmd_rds.s:+0020 2000 2000 fetch mem + 800 nS
 +005 :cmd_rds.s:+0022 400E BRA cmd_rd:Write_Msg + 1.0 uS
 +006 cmd_rds.sr:Cmd_B FB11 FB11 fetch mem + 1.2 uS
 +007 cmd_rd:Write_Msg 7905 MOV.W #FE82,R5 + 1.4 uS
 +008 :cmd_rds.s:+0034 FC02 FC02 fetch mem + 1.6 uS
 +009 cmd_rd:Clear_Old FE20 MOV.B #20,R6L + 1.8 uS
 +010 cmd_r:Clear_Loop 68D8 MOV.B R0L,@R5 + 2.0 uS
 +011 :cmd_rds.s:+003A 0B05 ADDS #1,R5 + 2.2 uS
 +012 :Msg_Dest 0000 00 write mem byte + 2.4 uS
 +013 :cmd_rds.s:+003C 1A0E DEC R6L + 2.6 uS
 +014 :cmd_rds.s:+003E 46F8 BNE cmd_r:Clear_Loop + 2.8 uS

 STATUS: H8/338--Running user program Emulation trace complete______........
 modify memory Cmd_Input byte to 41h

 run trace step display modify break end ---ETC--

2-28 Getting Started

The program is executing the Scan loop.

Now, trace only accesses to the address range Init through Init+0ffh .

trace only range Init thru Init+0ffh
<RETURN>

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols absolute
 after cmd_rds.:Exe_Cmd AA41 AA41 fetch mem ------------
 +001 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 200 nS
 +002 :cmd_rds.s:+000C FC00 FC00 fetch mem + 400 nS
 +003 :cmd_rds.s:+000E AA00 CMP.B #00,R2L + 600 nS
 +004 :Cmd_Input 00FF 00 read mem byte + 800 nS
 +005 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 1.0 uS
 +006 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 1.2 uS
 +007 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 1.4 uS
 +008 :cmd_rds.s:+000C FC00 FC00 fetch mem + 1.6 uS
 +009 :cmd_rds.s:+000E AA00 CMP.B #00,R2L + 1.8 uS
 +010 :Cmd_Input 00FF 00 read mem byte + 2.0 uS
 +011 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 2.2 uS
 +012 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 2.4 uS
 +013 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 2.6 uS
 +014 :cmd_rds.s:+000C FC00 FC00 fetch mem + 2.8 uS

 STATUS: H8/338--Running user program Emulation trace complete______........
 trace after Exe_Cmd

 run trace step display modify break end ---ETC--

 Trace List Offset=0
 Label: Address Data Opcode or Status time count
 Base: symbols hex mnemonic w/symbols absolute
 after cmd_rds.:Exe_Cmd AA41 AA41 fetch mem ------------
 +001 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 240 nS
 +002 :cmd_rds.s:+000C FE80 FE80 fetch mem + 400 nS
 +003 :cmd_rds.s:+000E AA00 AA00 fetch mem + 600 nS
 +004 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 1.0 uS
 +005 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 1.2 uS
 +006 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 1.4 uS
 +007 :cmd_rds.s:+000C FE80 FE80 fetch mem + 1.6 uS
 +008 :cmd_rds.s:+000E AA00 AA00 fetch mem + 1.8 uS
 +009 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 2.2 uS
 +010 cmd_rds.:Exe_Cmd AA41 AA41 fetch mem + 2.4 uS
 +011 cmd_rds.src:Scan 6A0A MOV.B @:Cmd_Input,R2L + 2.6 uS
 +012 :cmd_rds.s:+000C FE80 FE80 fetch mem + 2.8 uS
 +013 :cmd_rds.s:+000E AA00 AA00 fetch mem + 3.0 uS
 +014 :cmd_rds.s:+0010 47F8 BEQ cmd_rds.src:Scan + 3.4 uS

 STATUS: H8/338--Running user program Emulation trace complete______........
 trace only range Init thru Init+0ffh

 run trace step display modify break end ---ETC--

Getting Started 2-29

As you can see the execution of CMP.B instructions are not
disassembled. This occurs when the analyzer cannot get necessary
information for disassembling because of the store condition. Be
careful when you use the trace only command.

Triggering the
Analyzer by Data

You may want to trigger the emulation analyzer when specific data
appears on the data bus. You can accomplish this with the following
command.

trace after data <data> <RETURN>

There are some points to be noticed when you trigger the analyzer in
this way. You always need to specify the <data> with 16 bits value
even when access to the data is performed by byte access. This is
because the analyzer is designed so that it can capture data on internal
data bus (which has 16 bits width). The following table shows the
way to specify the trigger condition by data.

For example, to trigger the analyzer when the processor performs word
access to data 1234 hex in internal ROM, you can do any of the
following:

trace after data 1234h <RETURN>
trace after data 12xxh <RETURN>
trace after data 0xx34h <RETURN>

 ==
 | | Available
 Location of data | Access | <data> Specification
 ==
 Internal ROM,RAM | word access | hhll *1
 | | hhxx *2
 | | xxll *2
 +-------------------+----------------------
 | byte access | ddxx *2
 ---------------------+-------------------+----------------------
 Others | byte access *3 | ddxx
 ==

 *1 hhll means 16 bits data
 *2 dd,hh,ll mean 8 bits data
 *3 H8/338 processor performs word access (MOV.W etc..) to
 external memory and internal I/O by two byte accesses.

2-30 Getting Started

To trigger the analyzer when the processor accesses data 12 hex in
external ROM:

trace after data 12xxh <RETURN>

Notice that you always need to specify "xx" as the lower 8 bits value to
capture byte access of the processor. Be careful to trigger the analyzer
by data.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the Softkey Interface, refer to the Analyzer Softkey Interface User’s
Guide.

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the

Getting Started 2-31

emul700 command. When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display or Another
Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system
<RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

2-32 Getting Started

3

Using the H8/338 Emulator In-Circuit

When you are ready to use the H8/338 Emulator in conjunction with
actual target system hardware, there are some special considerations
you should keep in mind.

installing the emulator probe

properly configure the emulator

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to Chapter 4.

3-1 In-Circuit Emulation

Installing the
Target System
Probe

Caution The following precautions should be taken while using the H8/338
Emulator. Damage to the emulator circuitry may result if these
precautions are not observed.

Power Down Target System. Turn off power to the user target system
and to the H8/338 Emulator before inserting the user plug to avoid
circuit damage resulting from voltage transients or mis-insertion of the
user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/338 Emulator contains
devices which are susceptible to damage by static discharge. Therefore,
operators should take precautionary measures before handling the user
plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the H8/338 Emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

Pin Guard The HP 64793 emulator is shipped with a pin guard to prevent impact
damage to the target system probe pins. The guard should be left in
place while you are not using the emulator.

3-2 In-Circuit Emulation

H8/338 Emulator

HP 64793A H8/338 emulator is shipped with a non-conductive pin
guard over the target system probe.

H8/329 Emulator

HP 64793B H8/329 emulator is shipped with a conductive plastic pin
guard over the target system probe pins. When you do use the
emulator, either for normal emulation tasks, or to run performance
verification on the emulator, you must remove this conductive pin
guard to avoid intermittent failures due to the target system probe lines
being shorted together.

Pin Protector
(H8/329 Only)

The target system probe of the H8/329 emulator has a pin protector that
prevents damage to the probe when inserting and removing the probe
from the target system microprocessor socket. Do not use the probe
without a pin protector installed. If the target system probe is installed
on a densely populated circuit board, there may not be enough room for
the plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

Installing the Target
System Probe 1. Remove the H8/338 microprocessor from the target system

socket. Note the location of pin 1 on the processor and on the
target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket.

4.

3-3 In-Circuit Emulation

Note When you are using the H8/338 emulator, we recommend that you use
ITT CANNON "LCS-84" series 84 pin PLCC socket to make sure the
contact between emulator probe and target system microprocessor
socket.

Figure 3-1. Installing the Probe (H8/338 emulator)

3-4 In-Circuit Emulation

Pin State in
Background

While the emulator is running the background monitor, probe pins are
in the following state.

Address Bus Same as foreground

Data Bus Always high impedance otherwise you direct the
emulator to modify target memory.

AS Same as foreground

RD Same as foreground

WR Always high otherwise you direct the emulator to
modify target memory.

Others Same as foreground

Figure 3-2. Installing the Probe (H8/329 emulator)

3-5 In-Circuit Emulation

Target System
Interface (H8/338)

MD1 MD0
RES NMI
STBY

These signals are connected to 74HCT14
through 51 ohm series resistor and 10K ohm
pull-up resistor.

P1(7:0) P5(2:0)
P2(7:0) P6(7:0)
P3(7:0) P8(6:0)
P4(7:0) P9(6:0)

These signals are connected to H8/338
emulation processor through 51 ohm series
resistor and 10K ohm pull-up resistor.

3-6 In-Circuit Emulation

P97 This signal are connected to H8/338 emulation
processor and GAL20V8 through 51 ohm series
resistor.

P7(7:0) These signals are connected to H8/338
emulation processor through 51 ohm series
resister

3-7 In-Circuit Emulation

Target System
Interface (H8/329)

MD1 MD0
RES NMI
STBY

These signals are connected to 74HCT14
through 51 ohm series resistor and 10K ohm
pull-up resistor.

P1(7:0) P4(6:0)
P2(7:0) P5(2:0)
P3(7:0) P6(7:0)

These signals are connected to H8/329
emulation processor through 51 ohm series
resistor and 10K ohm pull-up resistor.

3-8 In-Circuit Emulation

P47 This signal are connected to H8/329 emulation
processor and GAL20V8 through 51 ohm series
resistor.

P7(7:0) These signals are connected to H8/329
emulation processor through 51 ohm series
resister

3-9 In-Circuit Emulation

In-Circuit
Configuration
Options

The H8/338 emulator provides configuration options for the following
in-circuit emulation issues.
Refer to the "Configuring the Emulator" for more information on these
configuration options.

Using the Target System Clock Source

You can configure the emulator to use the external target system clock
source.

Enabling/Disabling /NMI input from the target system

You can configure the emulator to accept the /NMI input from the
target system.

Enabling/Disabling /RES input from the target system

You can configure the emulator to accept the /RES input from the
target system.

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system /RES line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor. To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

3-10 In-Circuit Emulation

4

Configuring the Emulator

Introduction Your H8/338 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing your target system software, or you can use the
emulator in-circuit when integrating software with target system
hardware. You can use the emulator’s internal clock or the target
system clock. Emulation memory can be used in place of, or along
with, target system memory. You can execute target programs in
real-time or allow emulator execution to be diverted into the monitor
when commands request access of target system resources (target
system memory, register contents, etc).

The emulator is a flexible instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the HP 64793
emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

General Emulator Configuration:

Specifying the emulator clock source (internal/external).

Selecting monitor entry after configuration.

Restricting to real-time execution.

Configuration the Emulator 4-1

Memory Configuration:

Mapping memory.

Emulator Pod Configuration:

Selecting the microprocessor to be emulated.

Selecting the processor operation mode.

Enabling /NMI input from the target system.

Enabling /RES input from the target system.

Setting up the reset value for the stack pointer.

Debug/Trace Configuration:

Enabling breaks on writes to ROM.

Specifying tracing of foreground/background cycles.

Enabling tracing bus release cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

4-2 Configuration the Emulator

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
clock source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal clock oscillator as the emulator
clock source. The emulators’ internal clock speed
is 10 MHz(system clock).

external Selects the clock input to the emulator probe from
the target system. You must use a clock input
conforming to the specifications for the H8/338
microprocessor. The maximum clock speed is 10
MHz (system clock).

Note Changing the clock source drives the emulator into the reset state. The
emulator may later break into the monitor depending on how the
following "Enter monitor after configuration?" question is answered.

Enter monitor after
configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail.

When an external clock source is specified, this question becomes
"Enter monitor after configuration (using external clock)?" and the
default answer becomes "no".

Configuration the Emulator 4-3

yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
complete. If the reset to monitor fails, the previous
configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Restrict to real-time
runs?

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

no All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "reset",
"break", "run", and "step") are refused. For
example, the following commands are not allowed
when runs are restricted to real-time:

Display/modify registers.
Display/modify internal I/O registers.
Display/modify target system memory.
Load/store target system memory.

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

4-4 Configuration the Emulator

Memory
Configuration

The memory configuration questions allow you to select the monitor
type and to map memory. To access the memory configuration
questions, you must answer "yes" to the following question.

Modify memory configuration?

Mapping memory The emulation memory consists of 64K bytes, mappable in 128 byte
blocks. You can define up to 16 different map terms. The emulation
memory system does not introduce wait states.

The memory mapper allows you to characterize memory locations. It
allows you to specify whether a certain range of memory is present in
the target system or whether you will be using the emulation memory
for that address range. You can also specify whether the target system
memory is ROM or RAM, and you can specify that emulation memory
be treated as ROM or RAM.

The default memory mapping is shown below.

emulation ROM (erom) emulation RAM (eram)

H8/338 emulator 0 - BFFF F780 - FF7F

H8/329 emulator 0 - 7FFF FB80 - FF7F

Caution The default emulator configuration maps location 0 hex through 3fff
hex as emulation ROM and location fd80 hex through ff7f hex as
emulation RAM. This must be needed when you use the H8/338
internal ROM and RAM.

Configuration the Emulator 4-5

Blocks of memory can also be characterized as guarded memory.

Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

For example, you might be developing a system with the following
characteristics:

input port at 0f00 hex
output port at 0f100 hex
program and data from 1000 through 2fff hex

Suppose that the only thing that exists in your target system at this time
are input and output ports and some control logic; no memory is
available. you can reflect this by mapping the I/O ports to target system
memory space and the rest of memory to emulation memory space:

delete all <RETURN>
1000h thru 2fffh emulation rom
<RETURN>
0f000h thru 0f1ffh emulation ram
<RETURN>
end <RETURN>

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Note You should map all memory ranges used by your programs before
loading programs into memory. This helps safeguard against loads
which accidentally overwrite earlier loads if you follow a map/load
procedure for each memory range.

4-6 Configuration the Emulator

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Processor type? This configuration defines the microprocessor to be emulated.

H8/338 Emulator

336 When you are going to emulate H8/336
microprocessor, select this item.

337 When you are going to emulate H8/337
microprocessor, select this item.

338 When you are going to emulate H8/338
microprocessor, select this item.

H8/329 Emulator

326 When you are going to emulate H8/326
microprocessor, select this item.

327 When you are going to emulate H8/327
microprocessor, select this item.

328 When you are going to emulate H8/328
microprocessor, select this item.

329 When you are going to emulate H8/329
microprocessor, select this item.

Configuration the Emulator 4-7

Processor operation
mode?

This configuration defines operation mode in which the emulator
works.

external The emulator will work using the mode setting by
the target system. The target system must supply
appropriate input to MD0 and MD1. If you are
using the emulator out of circuit when "external" is
selected, the emulator will operate in mode 3.

When mode_1 through mode_3 is selected, the emulator will operate in
selected mode regardless of the mode setting by the target system.

Selection Description

mode_1 The emulator will operate in mode 1. (Internal
ROM is disabled)

mode_2 The emulator will operate in mode 2. (Internal
ROM is enabled)

mode_3 The emulator will operate in mode 3. (Single Chip
Mode)

4-8 Configuration the Emulator

Enable /NMI input
from the target

system?

This configuration allows you to specify whether or not the emulator
responds to /NMI (non-maskable interrupt request) signal from the
target system during foreground operation.

yes The emulator will respond to the /NMI request from
the target system.

no The emulator will not respond to the /NMI request
from the target system.

The emulator does not accept any interrupt while in background
monitor. Edge sensed interrupts are suspended while running the
background monitor, and such interrupts will occur when context is
changed to foreground. Level sensed interrupts and internal interrupts
are ignored during the background operation.

Enable /RES input
from the target

system?

This configuration allows you to specify whether or not the emulator
responds to /RES signal from the target system during foreground
operation.

While running the background monitor, the emulator ignores /RES
signal, otherwise the emulator status is "Awaiting target reset".
(see the "Running the Emulation from Target Reset" section in the
"In-Circuit Emulation" chapter).

yes The emulator will respond to /RES input during
foreground operation.

no The emulator will not respond to /RES input from
the target system.

Reset value for stack
pointer?

This question allows you to specify the value to which the stack pointer
(SP) will be set on entrance to the emulation monitor initiated RESET
state (the "Emulation reset" status).

The address specified in response to this question must be a 16-bit
hexadecimal even address outside internal I/O register area.

Configuration the Emulator 4-9

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM, and specify that the analyzer trace
foreground/background execution, and bus release cycles. To access
the trace/debug configuration questions, you must answer "yes" to the
following question.

Modify debug/trace options?

Break processor on
write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom trace command status options allow you to use
"write to ROM" cycles as trigger and storage qualifiers. For example,
you could use the following command to trace about a write to ROM:
trace about status wrrom <RETURN>

Trace background or
foreground
operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles. When background cycles are
stored in the trace, all but mnemonic lines are tagged as background
cycles.

4-10 Configuration the Emulator

foreground Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the
"Using the Emulator" chapter.

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User’s Guide.

Configuration the Emulator 4-11

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

Loading a
Configuration

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

4-12 Configuration the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into the
emulator, how to modify memory and view a register, and how to
perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter discusses:

Features available via "pod_command".

Limitations and restrictions of the emulator.

Register classes and names.

Debugging C Programs

Accessing target system devices using E clock synchronous
instruction.

This chapter shows you how to:

Store the contents of memory into absolute files.

Make coordinated measurements.

Use a command file.

Using the Emulator 5-1

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface
command>’ <RETURN>

Some of the most notable Terminal Interface features not available in
the softkey Interface are:

Copying memory.

Searching memory for strings or numeric expressions.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in
"modify configuration" will NOT reflect the HP 64700 pod’s
configuration if you change the pod’s configuration with this
command. Also, commands which affect the communications channel
should NOT be used at all. Other commands may confuse the protocol
depending upon how they are used. The following commands are not
recommended for use with "pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac -Usage may confuse the protocol in use on the channel.
wait -Do not use, will tie up the pod, blocking access.
init, pv -Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

5-2 Using the Emulator

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that loads configuration, loads
program into memory and displays memory.

To create such a command file, type "log" and press TAB key. You
will see a command line "log_commands" appears in the command
field. Next, select "to" in the softkey label, and enter the command file
name "sample.cmd". This set up a file to record all commands you
execute. The commands will be logged to the file sample.cmd in the
current directory. You can use this file as a command file to execute
these commands automatically.

Suppose that your configuration file and program are named
"cmd_rds". To load configuration:

load configuration cmd_rds <RETURN>

To load the program into memory:

load cmd_rds <RETURN>

To display memory 1000 hex through 1020 hex in mnemonic format:

display memory 1000h thru 1020h
mnemonic

Now, to disable logging, type "log" and press TAB key, select "off",
and press Enter. The command file you created looks like this:

load configuration cmd_rds
load cmd_rds
display memory 1000h thru 1020h mnemonic

If you would like to modify the command file, you can use any text
editor on your host computer.

To execute this command file, type "sample.cmd", and press Enter.

Using the Emulator 5-3

Debugging C
Programs

Softkey Interface has following functions to debug C programs.

Including C source lines in memory mnemonic display
Including C source lines in trace listing
Stepping C sources

The following section describes such features.

Displaying Memory
with C Sources

You can display memory in mnemonic format with C source lines. For
example, to display memory in mnemonic format from address _main
with source lines, enter the following commands.

display memory _main mnemonic
<RETURN>
set source on <RETURN>

You can display source lines highlighted with the following command.

set source on inverse_video on
<RETURN>

To display only source lines, use the following command.

set source only <RETURN>

Specifying Address with Line Numbers

You can specify addresses with line numbers of C source program. For
example, to set a breakpoint to line 20 of "main.c" program, enter the
following command.

modify software_breakpoints set
main.c: line 20 <RETURN>

Displaying Trace with
C Sources

You can include C source information in trace listing. You can use the
same command as the case of memory display. For example, to
display trace listing with source lines highlighted, enter the following
command.

display trace <RETURN>

5-4 Using the Emulator

set source on inverse_video on
<RETURN>

Stepping C Sources You can direct the emulator to execute a line or a number of lines at a
time. For example, to step one line from address _main, enter the
following command.

step source from _main <RETURN>

To step 1 line from the current line, enter the following command.

step source <RETURN>

You can specify the number of lines to be executed. To step 5 lines
from the current line, enter the following command.

step 5 source <RETURN>

Limitations,
Restrictions

Foreground Monitor Foreground monitor is not supported for the H8/338 emulator.

Sleep and Software
Stand-by Mode

When the emulator breaks into the monitor, the H8/338 sleep or
software stand-by mode is released and comes to normal processor
mode. If you use the "display register" command (see the "Displaying
Registers" section of the "Getting started" chapter) at the sleep or
software stand-by mode, the emulation processor mode will come to
normal mode and the emulator will fetch next program.

Store Condition and
Trace

Disassembling of program execution is unreliable when the emulation
analyzer is used with store condition (that is, trace only command).
Refer to chapter 2 of this manual.

Using the Emulator 5-5

Step Command and
Interrupts

Step execution cannot be performed in the following cases.

When the emulator is in the monitor and a suspended interrupt
is existed.
When the emulator is in the monitor and a level sensed
interrupt is existed (including interrupts from internal I/O
device).

In the above cases, you will see an error message when you attempt to
execute the step command.

The contents of registers will be the same as those before the issue of
the step command.

RAM Enable Bit The internal RAM of H8/338 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator still accesses emulation RAM
even if the internal RAM is disabled by RAME.

Software
Performance Analysis

Program activity measurement using the Software Performance
Measurement Tool (SPMT) is valid only for H8/338 internal ROM
area. Outside this area, the result of program activity measurement is
not reliable.

5-6 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory 1000h thru 1042h to
absfile <RETURN>

The command above causes the contents of memory locations 1000
hex through 1042 hex to be stored in the absolute file "absfile.X".
Notice that the ".X" extension is appended to the specified filename.

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

Using the Emulator 5-7

Register Classes
and Names
(H8/338 Emulator)

The following register classes and names are used with the
display/modify registers commands in H8/338 emulator.

BASIC (*) class

Register name Description

PC
CCR
R0
R1
R2
R3
R4
R5
R6
R7
SP
MDCR

Program counter
Condition code register
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Stack pointer
Mode control register

SYS class (System control registers)

Register name Description

STCR
SYSCR
MDCR
ISCR
IER

Serial timer control register
System control register
Mode control register
IRQ sense control register
IRQ enable register

5-8 Using the Emulator

PORT class (I/O port)

Register name Description

P1DDR
P2DDR
P3DDR
P4DDR
P5DDR
P6DDR
P8DDR
P9DDR
P1DR
P2DR
P3DR
P4DR
P5DR
P6DR
P7DR
P8DR
P9DR
P1PCT
P2PCT
P3PCT

Port 1 data direction register
Port 2 data direction register
Port 3 data direction register
Port 4 data direction register
Port 5 data direction register
Port 6 data direction register
Port 8 data direction register
Port 9 data direction register
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 8 data register
Port 9 data register
Port 1 input pull up MOS control register
Port 2 input pull up MOS control register
Port 3 input pull up MOS control register

FRT class (16 bit free running timer)

Register name Description

TIER
FRTCSR
FRC
OCRA
OCRB
FRTCR
TOCR
ICRA
ICRB
ICRC
ICRD

Timer interrupt enable register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Timer control register
Timer output compare control register
Input capture register A
Input capture register B
Input capture register C
Input capture register D

Using the Emulator 5-9

TMR0 class (8 bit timer 0)

Register name Description

TCR0
TCSR0
TCORA0
TCORB0
TCNT0

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

TMR1 class (8 bit timer 1)

Regsiter name Description

TCR1
TCSR1
TCORA1
TCORB1
TCNT1

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

PWM0 class (PWM timer 0)

Register name Description

PWMTCR0
DTR0
PWMTCNT0

Timer control register
Duty register
Timer counter

PWM1 class (PWM timer 1)

Regsiter name Description

PWMTCR1
DTR1
PWMTCNT1

Timer control register
Duty register
Timer counter

5-10 Using the Emulator

SCI0 class (Serial communication interface 0)

Register name Description

SMR0
BRR0
SCR0
TDR0
SSR0
RDR0

Serial mode register
Bit rate register
Serial control register
Transmit data register
Serial status register
Receive data register

SCI1 class (Serial communication interface 1)

Register name Description

SMR1
BRR1
SCR1
TDR1
SSR1
RDR1

Serial mode register
Bit rate register
Serial control register
Transmit data register
Serial status register
Receive data register

ADC class (A/D converter)

Register name Description

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

A/D data register A
A/D data register B
A/D data register C
A/D data register D
A/D control/status register
A/D control register

Using the Emulator 5-11

DAC class (D/A converter)

Register name Description

DADR0
DADR1
DACR

D/A data register 0
D/A data register 1
D/A control register

No class The following register names are not included in any register class.

Register name Description

R0H
R0L
R1H
R1L
R2H
R2L
R3H
R3L
R4H
R4L
R5H
R5L
R6H
R6L
R7H
R7L

Register 0 H
Register 0 L
Register 1 H
Register 1 L
Register 2 H
Register 2 L
Register 3 H
Register 3 L
Register 4 H
Register 4 L
Register 5 H
Register 5 L
Register 6 H
Register 6 L
Register 7 H
Register 7 L

5-12 Using the Emulator

Register Classes
and Names
(H8/329 Emulator)

The following register classes and names are used with the
display/modify registers commands in H8/329 emulator.

BASIC (*) class

Register name Description

PC
CCR
R0
R1
R2
R3
R4
R5
R6
R7
SP
MDCR

Program counter
Condition code register
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Stack pointer
Mode control register

SYS class (System control)

Register name Description

STCR
SYSCR
MDCR
ISCR
IER

Serial timer control register
System control register
Mode control register
IRQ sense control register
IRQ enable register

Using the Emulator 5-13

Port class (I/O port)

Register name Description

P1DDR
P2DDR
P3DDR
P4DDR
P5DDR
P6DDR
P7DDR
P1DR
P2DR
P3DR
P4DR
P5DR
P6DR
P7DR
P1PCR
P2PCR
P3PCR

Port 1 data direction register
Port 2 data direction register
Port 3 data direction register
Port 4 data direction register
Port 5 data direction register
Port 6 data direction register
Port 7 data direction register
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register
Port 1 input pull up MOS control register
Port 2 input pull up MOS control register
Port 3 input pull up MOS control register

FRT class (16 bit free running timer)

Register name Description

FRTCR
FRTCSR
FRC
OCRA
OCRB
ICR
FNCR

Timer control register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Input capture register
FRT noise-canceler control register

5-14 Using the Emulator

TMR0 class (8 bit timer 0)

Register name Description

TCR0
TCSR0
TCORA0
TCORB0
TCNT0

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

TMR1 class (8 bit timer 1)

Register name Description

TCR1
TCSR1
TCORA1
TCORB1
TCNT1

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

SCI class (Serial communication interface)

Register name Description

SMR
BRR
SCR
TDR
SSR
RDR

Serial mode register
Bit rate register
Serial control register
Transmit data register
Serial status register
Receive data register

Using the Emulator 5-15

ADC class (A/D converter)

Register name Description

ADDRA
ADDRB
ADDRC
ADDRD
ADCSR
ADCR

A/D data register A
A/D data register B
A/D data register C
A/D data register D
A/D control/status regieter
A/D control register

No Class The following register names are not included in any register class.

Register name Description

R0H
R0L
R1H
R1L
R2H
R2L
R3H
R3L
R4H
R4L
R5H
R5L
R6H
R6L
R7H
R7L

Register 0 H
Register 0 L
Register 1 H
Register 1 L
Register 2 H
Register 2 L
Register 3 H
Register 3 L
Register 4 H
Register 4 L
Register 5 H
Register 5 L
Register 6 H
Register 6 L
Register 7 H
Register 7 L

5-16 Using the Emulator

Index

A absolute file, loading, 2-11
absolute files

storing, 5-7
analyzer

configuring the external, 4-11
features of, 1-4
H8/338 status qualifiers, 2-26
triggering by data, 2-30
using the, 2-22

assembling the getting started sample program, 2-6

B background cycles
tracing, 4-10

blocked byte memory display, 2-16
breaks, 1-5

break command, 2-17
guarded memory accesses, 4-6
software breakpoints, 1-5, 2-17
write to ROM, 4-10

C C program
debugging, 5-4
displaying in mnemonic memory display, 5-4
displaying in trace listing, 5-4

caution statements
internal memory must be assigned as emulation memory, 4-6
real-time dependent target system circuitry, 4-4

characterization of memory, 4-5
clearing software breakpoints, 2-20
clock source

external, 4-3
internal, 4-3

clock speed, 1-4
command file

creating and using, 5-3
configration

select microprocessor, 4-7

Index - 1

configuration options
enable /NMI input, 4-9
honor target reset, 4-9
in-circuit, 3-10
processor mode, 4-8

convert SYSROF absolute file to HP Absolute, 2-6
converter, h8cnvhp, 2-6
coordinated measurements, 4-11, 5-7
copy memory, 5-2
coverage analysis, 5-2

D Debugging C programs, 5-4
device table file, 2-8
display command

memory mnemonic, 2-13
memory repetitively, 2-16
registers, 2-21
symbols, 2-12
trace, 2-23

E emul700, command to enter the Softkey Interface, 2-8, 2-32
emulation analyzer, 1-4, 2-22
emulation memory, 1-4

loading absolute files, 2-11
RAM and ROM characterization, 4-5
size of, 4-5

emulator
before using, 2-2
clock speed, 1-4
configuration, 4-1
device table file, 2-8
features of, 1-3
limitations, 5-5
prerequisites, 2-2
purpose of, 1-1
running from target reset, 3-10
supported microprocessors, 1-3

emulator configuration, 2-9
break processor on write to ROM, 4-10
clock selection, 4-3
loading, 4-12
monitor entry after, 4-3

2 - Index

restrict to real-time runs, 4-4
saving, 4-12
stack pointer, 4-9
trace background/foreground operation, 4-10

END assembler directive (pseudo instruction), 2-15
end command, 2-31, 4-12
exit, Softkey Interface, 2-31
external analyzer, 2-22

configuration, 4-11
external clock source, 4-3

F features of the emulator, 1-3
file extensions

.EA and .EB, configuration files, 4-12
foreground operation

tracing, 4-10

G getting started, 2-1
prerequisites, 2-2

global symbols, 2-13
displaying, 2-12

guarded memory accesses, 4-6

H h8cnvhp, converter, 2-6
hardware installation, 2-2
help

on-line, 2-9
pod command information, 2-10
softkey driven information, 2-9

I in-circuit configuration options, 3-10
installation

hardware, 2-2
software, 2-2

Installing target system probe
target system probe, 3-2

interactive measurements, 4-11
internal clock source, 4-3

L Limitations
fore ground monitor, 1-6
MOVTPE instruction to emulation memory, 1-6, 5-5
RAME enable bit is not effective, 1-6, 5-6

Index - 3

sleep mode, 1-6, 5-5
Software Performance Analysis, 1-7, 5-6
step command and interrupts, 1-6, 5-6
store condition and trace, 1-6, 5-6

limitations of the emulator, 5-5
linking the getting started sample program, 2-6
loading absolute files, 2-11
loading emulator configurations, 4-12
local symbols, 2-19
local symbols, displaying, 2-12
locked, end command option, 2-31
logging of commands, 5-3

M mapping memory, 4-5
measurement system, 2-32

creating, 2-7
initialization, 2-7

memory
characterization, 4-5
copying, 5-2
emulation, 1-4
mapper resolution, 1-4
mapping, 4-5
mnemonic display, 2-13
mnemonic display with C sources, 5-4
modifying, 2-16
repetitively display, 2-16
searching for strings or expressions, 5-2

memory mapping
maximum number of terms, 4-5
sequence of map/load commands, 4-7

microprocessors, supported by HP 64736 emulator, 1-3
mnemonic memory display, 2-13
modify command

configuration, 4-1
memory, 2-16
software breakpoints clear, 2-20
software breakpoints set, 2-18

module, 2-32
module, emulation, 2-7
monitor

breaking into, 2-17

4 - Index

N non-maskable interrupt, 4-9
nosymbols, 2-12
notes

"debug" option must need to generate local symbol information, 2-6
map memory before loading programs, 4-7
pod commands that should not be executed, 5-2
selecting internal clock forces reset, 4-3
software breakpoints not allowed in target ROM, 2-18
software breakpoints only at opcode addresses, 2-17
use the "set" command at each window, 2-14
write to ROM analyzer status, 4-10

O on-line help, 2-9

P PATH, HP-UX environment variable, 2-6 - 2-8
pin guard

conductive pin guard for H8/325 emulator, 3-3
non-conductive pin guard for H8/338 emulator, 3-3
target system probe, 3-2

pin protector
target system probe, 3-3

pmon, User Interface Software, 2-7, 2-32
pod_command, 2-10

features available with, 5-2
help information, 2-10

predefining stack pointer, 4-9
prerequisites for using the emulator, 2-2
processor operation mode, 4-8
purpose of the emulator, 1-1

R RAM
mapping emulation or target, 4-5

real-time execution, 1-5
restricting the emulator to, 4-4

register class
H8/329, 5-13
H8/338, 5-8

register display/modify, 2-21
register name

H8/329, 5-13
H8/338, 5-8

registers
classes, 2-21

Index - 5

release_system
end command option, 2-31, 4-12

repetitive display of memory, 2-16
reset (emulator)

running from target reset, 3-10
reset(emulator), 1-5
reset(emulator), running from target reset, 2-15
restrict to real-time runs

emulator configuration, 4-4
permissible commands, 4-4
target system dependency, 4-4

ROM
mapping emulation or target, 4-5
writes to, 4-6

run command, 2-15
run from target reset, 3-10

S s Command
step command and interrupts, 1-6, 5-6

sample program
description, 2-2

sample program, linking, 2-6
saving the emulator configuration, 4-12
simulated I/O, 4-11
softkey driven help information, 2-9
Softkey Interface

entering, 2-7
exiting, 2-31
on-line help, 2-9

software breakpoints, 1-5, 2-17
clearing, 2-20
enabling/disabling, 2-18
setting, 2-18

software installation, 2-2
special code

software breakpoints (H8/338), 2-17
software breakpoints(H8/338), 1-5

stack pointer,defining, 4-9
status qualifiers (H8/338), 2-26
step command, 2-20

with C program, 5-4
string delimiters, 2-10

6 - Index

symbols
in memory display, 2-14

symbols, displaying, 2-12
system overview, 2-2

T target memory
RAM and ROM characterization, 4-5

target memory, loading absolute files, 2-11
target reset

running from, 3-10
target system, 1-1

dependency on executing code, 4-4
interface (H8/325), 3-8
interface (H8/338), 3-6

Target system probe
cautions for installation, 3-2
installation, 3-2
installation procedure, 3-3
pin guard, 3-2
pin protector, 3-3

Terminal Interface, 2-10
trace

display with C source lines, 5-4
trace about, 2-28
trace, displaying the, 2-23
trace, displaying with time count absolute, 2-24
trace, reducing the trace depth, 2-25
trace, specifying trigger condition, 2-27
tracing background operation, 4-10
transfer address, running from, 2-15
trigger condition, 2-27
trigger state, 2-23
trigger, specifying, 2-22

U undefined software breakpoint, 2-18
user (target) memory, loading absolute files, 2-11

W window systems, 2-31
write to ROM break, 4-10

Index - 7

Notes

8 - Index

	Using This Manual
	Contents
	Introduction to the H8/338 Emulator
	Getting Started
	Using the H8/338 Emulator In-Circuit
	Configuring the Emulator
	Using the Emulator
	Index

