
HP 64793

H8/338/329 Emulator
PC Interface

User’s Guide

HP Part No. 64793-97001
Printed in U.S.A.
October 1992

Edition 1

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1992, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64793-97001, October 1992

Using This Manual

This manual introduces you to the following emulators as used with the
PC Interface.

HP 64793A H8/338 emulator
HP 64793B H8/329 emulator

Throughout this documentation, the following names are used to
denote the microprocessors listed in the following table of supported
microprocessors.

Model Supported Microprocesorts Reffered to as

HP 64793A (H8/338 emulator) HD6473388CP
HD6433388CP
HD6413388CP
HD6473378CP
HD6433378CP
HD6413378CP
HD6433368CP

H8/338
H8/338
H8/338
H8/337
H8/337
H8/337
H8/336

HP 64793B (H8/329 emulator) HD6473298P
HD6473298C
HD6433298P
HD6413298P
HD6433288P
HD6473278P
HD6473278C
HD6433278P
HD6413278P
HD6433268P

H8/329
H8/329
H8/329
H8/329
H8/328
H8/327
H8/327
H8/327
H8/327
H8/326

For the most part, the H8/338 and H8/329 emulators all operate the
same way. Differences between the emulators are described where
they exist. Both the H8/338 and H8/329 emulators will be referred to as
the "H8/338 emulator". In the specific instances where H8/329

emulator differs from H8/338 emulator, it will be described as the
"H8/329 emulator".

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual does not:

Show you how to use every PC Interface command and
option; the PC Interface is described in the HP 64700
Emulators PC Interface: User’s Reference.

Organization

Chapter 1 Introduction to the H8/338 Emulator. This chapter lists the H8/338
emulator features and describes how they can help you in developing
new hardware and software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 "In-Circuit" Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Chapter 4 Configuring the Emulator. You can configure the emulator to adapt
it to your specific development needs. This chapter describes the
options available when configuring the emulator and how to save and
restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics which
are not covered in the "Getting Started" chapter (for example,
coordinated measurements and storing memory).

Appendix A File Format Readers. This chapter shows you what the "Reader"
program accomplishes, and how to use it.

Notes

Contents

1 Introduction to the H8/338 Emulator

Introduction . 1-1
Purpose of the H8/338 Emulator 1-1
Features of the H8/338 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-4
Emulation Memory . 1-4
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-4
Reset Support . 1-5
Real-Time Operation . 1-5

Limitations, Restrictions . 1-5
Foreground Monitor . 1-5
Sleep and Software Standby Mode 1-5
Store Condition and Trace . 1-6
Step Command and Interrupts 1-6
RAM Enable Bit . 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Sample Program Assembly . 2-6
Linking the Sample Program 2-6

Starting Up the PC Interface . 2-7
Selecting PC Interface Commands 2-8
Emulator Status . 2-8

Modifying Configuration . 2-8
Defining the Reset Value for the Stack Pointer 2-8
Selecting your Processor . 2-8
Saving the Configuration . 2-9

Contents-1

Mapping Memory . 2-9
Which Memory Locations Should Be Mapped? 2-9

Loading Programs into Memory 2-12
File Format . 2-12
Memory Type . 2-13
Force Absolute File Read . 2-13
Absolute File Name . 2-13

Using Symbols . 2-14
Displaying Global Symbols 2-14
Displaying Local Symbols 2-15
Transfer Symbols to the Emulator 2-17

Displaying Memory in Mnemonic Format 2-18
Stepping Through the Program 2-19

Specifying a Step Count . 2-20
Modifying Memory . 2-21
Running the Program . 2-22
Searching Memory for Data . 2-23
Breaking into the Monitor . 2-23
Using Software Breakpoints . 2-24

Defining a Software Breakpoint 2-25
Displaying Software Breakpoints 2-26
Setting a Software Breakpoint 2-26
Clearing a Software Breakpoint 2-26

Using the Analyzer . 2-27
Resetting the Analysis Specification 2-27
Specifying a Simple Trigger 2-27
Starting the Trace . 2-29
Displaying the Trace . 2-29
For a Complete Description 2-31

Trace Analysis Considerations 2-32
How to Specify Trigger Condition 2-32
Store Condition And Trace 2-35
Triggering the Analyzer by Data 2-38

Using a Command File . 2-39
Resetting the Emulator . 2-41
Exiting the PC Interface . 2-42

3 Using the H8/338 Emulator In-Circuit

Installing the Target System Probe 3-2
Pin Guard . 3-2
Pin Protector (H8/329 Only) 3-3

2-Contents

Installing the Target System Probe 3-3
Pin State in Background . 3-5
Target System Interface (H8/338) 3-6
Target System Interface (H8/329) 3-8
Running the Emulator from Target Reset 3-10

4 Configuring the Emulator

Introduction . 4-1
Accessing the Emulator Configuration Options 4-2
Internal Emulator Clock . 4-3
Enable Real-Time Mode . 4-3
Enable Breaks on Writes to ROM 4-4
Enable Software Breakpoints . 4-5
Enable CMB Interaction . 4-5
Enable /NMI Input from Target 4-6
Enable / RES Input from Target 4-7
Processor Type (H8/338 emulator) 4-7
Processor Type (H8/329 emulator) 4-8
Processor Operation Mode . 4-8
Reset Value for Stack Pointer . 4-9
Storing an Emulator Configuration 4-10
Loading an Emulator Configuration 4-11

5 Using the Emulator

Introduction . 5-1
Making Coordinated Measurements 5-2

Running the Emulator at /EXECUTE 5-3
Breaking on the Analyzer Trigger 5-3

Storing Memory Contents to an Absolute File 5-5
Register Classes and Names (H8/338 Emulator) 5-6
Register Classes and Names (H8/329 Emulator) 5-11

A File Format Readers

Using the HP 64000 Reader . A-1
What the Reader Accomplishes A-1
Location of the HP 64000 Reader Program A-3
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-4
If the Reader Won’t Run . A-5
Including RHP64000 in a Make File A-6

Contents-3

Using the HP 64869 Reader . A-6
What the Reader Accomplishes A-6
Location of the HP 64869 Reader Program A-8
Using the HP 64869 Reader from MS-DOS A-8
Using the HP 64869 Reader from the PC Interface A-9
If the Reader Won’t Run . A-10
Including RD64869 in a Make File A-10

Illustrations

Figure 1-1. HP 64793 Emulator for the H8/338 Processor 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linkage Editor Subcommand File 2-6
Figure 2-3. PC Interface Display 2-7
Figure 2-4. Sample Program Load Map Listing 2-10
Figure 2-5. Memory Configuration Display 2-11
Figure 2-6. Modifying the Trace Specification 2-28
Figure 2-7. Modifying the Pattern Specification 2-29
Figure 3-1. Installing the Probe (H8/338 emulator) 3-4
Figure 3-2. Installing the Probe (H8/329 emulator) 3-5
Figure 4-1. Emulator Configuration Display 4-2
Figure 5-1. Cross Trigger Configuration 5-4

4-Contents

1

Introduction to the H8/338 Emulator

Introduction The topics in this chapter include:

Purpose of the H8/338 emulator.

Features of the H8/338 emulator.

Purpose of the
H8/338 Emulator

The H8/338 emulator is designed to replace the H8/338 microprocessor
in your target system so you can control operation of the
microprocessor in your application hardware (usually referred to as the
target system). The H8/338 emulator performs just like the H8/338
microprocessor, but is a device that allows you to control the H8/338
directly. These features allow you to easily debug software before any
hardware is available, and ease the task of integrating hardware and
software.

Introduction to the H8/338 Emulator 1-1

Figure 1-1. HP 64793 Emulator for the H8/338 Processor

1-2 Introduction to the H8/338 Emulator

Features of the
H8/338 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The HP 64793A H8/338 emulator and HP 64793B H8/329 emulators
support the microprocesors listed in the following table.

Model Supported Microprocessor

HP 64793A (H8/338 emulator) HD6473388CP (H8/338)
HD6433388CP (H8/338)
HD6413388CP (H8/338)
HD6473378CP (H8/337)
HD6433378CP (H8/337)
HD6413378CP (H8/337)
HD6433368CP (H8/336)

HP 64793B (H8/329 emulator) HD6473298P (H8/329)
HD6473298C (H8/329)
HD6433298P (H8/329)
HD6413298P (H8/329)
HD6433288P (H8/328)
HD6473278P (H8/327)
HD6473278C (H8/327)
HD6433278P (H8/327)
HD6413278P (H8/327)
HD6433268P (H8/326)

Each model provides with an emulation probe designed for its support
microprocessors. By replacing the emulation probe, the HP64893 can
support processors other than its original support processors. Contact
Hewlett-Packard to replace the emulation probe.

Introduction to the H8/338 Emulator 1-3

Clock Speeds Maximum clock speed is 10 MHz (system clock).

Emulation Memory H8/338 emulator is used with one of the following Emulation Memory
Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card

The emulator uses 4K byte of emulation memory, and the rest os
emulation memory is available for user program. You can define up to
15 memory ranges (at 128 byte boundaries and at least 128 byte in
length). You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or as
guarded memory. The emulator generates an error message when
accesses are made to guarded memory locations. You can also
configure the emulator so that writes to the memory defined as ROM
cause emulator execution to break out of target program execution.

Analysis The H8/338 emulator is used with one of the following analyzer which
allows you to trace code execution and processor activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Amalyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the H8/338 internal register contents. This
includes the ability to modify the program counter (PC) value so you
can control where the emulator starts a program run.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set the emulator/analyzer interaction so that when the analyzer
finds a specific state, emulator execution will break out of the user
program into monitor.

1-4 Introduction to the H8/338 Emulator

You can also define software breakpoints in your program. The
emulator uses one of H8/338 undefined opcodes (5770 hex) as
software breakpoint interrupt instruction. When you define a software
breakpoint, the emulator places the breakpoint interrupt instruction
(5770 hex) at the specified address; after the breakpoint interrupt
instruction causes emulator execution to break out of your program, the
emulator replaces the original opcode. Refer to the "Using Software
Breakpoints" section of "Getting Started" chapter for more information.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Real-Time Operation Real-time signifies continuous execution of your program without
interference from the emulator. (Such interference occurs when the
emulator temporarily breaks into the monitor so that it can access
register contents or target system memory.) Emulator features
performed in real time include: running and analyzer tracing. Emulator
features not performed in real time include: display or modify of target
system memory; load/dump of any target memory, display or
modification of registers, and single step.

 Limitations,
Restrictions

Foreground Monitor Foreground monitor is not supported for the H8/338 emulator.

Sleep and Software
Standby Mode

When the emulator breaks into the emulation monitor, sleep or
software standby mode is released.

Store Condition and
Trace

Disassembling of program execution in the trace list is unreliable when
the analyzer is used with store condition. Refer to the "Trace Analysis
Considerations" section in Chapter 2.

Introduction to the H8/338 Emulator 1-5

Step Command and
Interrupts

Step execution cannot be performed in the following cases.

When the emulator is in the monitor and a suspended interrupt
is existed.
When the emulator is in the monitor and a level sensed
interrupt is existed (including interrupts from internal I/O
device).

In these cases, step command will fail, and the contents of registers will
be the same as that before the issue of the step command.

RAM Enable Bit The internal RAM of H8/338 processor can be enabled/disabled by
RAME (RAM enable bit). However, once you map the internal RAM
area to emulation RAM, the emulator still accesses emulation RAM
even if the internal RAM is disabled by RAME.

1-6 Introduction to the H8/338 Emulator

2

Getting Started

Introduction This chapter leads you through a basic, step by step tutorial that shows
how to use the HP H8/338 emulator with the PC Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s examples.

Briefly describe how PC Interface commands are entered and
how emulator status is displayed.

This chapter will show you how to:

Start up the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Creat and use a command file.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/ Service manual shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the media
containing the PC Interface software. The HP 64700
Emulators PC Interface: User’s Reference manual contains
additional information on the installation and set up of the PC
Interface.

3. In addition, it is recommended, although not required, that you
read and understand the concepts of emulation presented in
the Concepts of Emulation and Analysis manual. The
Installation/Service also covers HP 64700 Series system
architecture. A brief understanding of these concepts may
help avoid questions later.

You should read the HP 64700 Emulators PC Interface:
User’s Reference manual to learn how to use the PC Interface
in general. For the most part, this manual contains
information specific to the H8/338 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in Figure 2-1. The
program is a primitive command interpreter.

Using the various features of the emulator, we will show you how to
load this program into emulation memory, execute it, monitor the
program’s operation with the analyzer, and simulate entry of different
commands by using the "Memory Modify" emulation command.

2-2 Getting Started

 .GLOBAL Init,Msgs,Cmd_Input
 .GLOBAL Msg_Dest

 .SECTION Table,DATA
Msgs
Msg_A .SDATA "THIS IS MESSAGE A"
Msg_B .SDATA "THIS IS MESSAGE B"
Msg_I .SDATA "INVALID COMMAND"
End_Msgs

 .SECTION Prog,CODE
;**
;* Set up the Stack Pointer
;**
Init MOV.W #Stack,R7
;**
;* Clear previous command
;**
Clear MOV.B #H’00,R0L
 MOV.B R0L,@Cmd_Input
;**
;* Read command input byte. If no command has been
;* entered, continue to scan for it.
;**
Scan MOV.B @Cmd_Input,R2L
 CMP.B #H’00,R2L
 BEQ Scan
;**
;* A command has been entered. Check if it is
;* command A, command B, or invalid command.
;**
Exe_Cmd CMP.B #H’41,R2L
 BEQ Cmd_A
 CMP.B #H’42,R2L
 BEQ Cmd_B
 BRA Cmd_I
;**
;* Command A is entered. R3L = the number of bytes
;* in message A. R4 = location of the message.
;* Jump to the routine which writes the message.
;**
Cmd_A MOV.B #Msg_B-Msg_A,R3L
 MOV.W #Msg_A,R4
 BRA Write_Msg
;**
;* Command B is entered.
;**
Cmd_B MOV.B #Msg_I-Msg_B,R3L
 MOV.W #Msg_B,R4
 BRA Write_Msg
;**
;* An invalid command is entered.
;**
Cmd_I MOV.B #End_Msgs-Msg_I,R3L
 MOV.W #Msg_I,R4

Figure 2-1. Sample Program Listing

Getting Started 2-3

Data Declarations

The "Table" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

Initialization

The program instruction at the Init label initializes the stack pointer.

;**
;* The destination area is cleared.
;**
Write_Msg MOV.W #Msg_Dest,R5
Clear_Old MOV.B #h’20,R6L
Clear_Loop MOV.B R0L,@R5
 ADDS.W #1,R5
 DEC.B R6L
 BNE Clear_Loop
;**
;* Message is written to the destination.
;**
 MOV.W #Msg_Dest,R5
Write_Loop MOV.B @R4+,R6L
 MOV.B R6L,@R5
 ADDS.W #1,R5
 DEC.B R3L
 BNE Write_Loop
;**
;* Go back and scan for next command.
;**
 BRA Clear

 .SECTION Data,COMMON
;**
;* Command input byte.
;**
Cmd_Input .RES.B 1
 .RES.B 1
;**
;* Destination of the command messages.
;**
Msg_Dest .RES.W H’7f
Stack
 .END Init

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Reading Input

The instruction at the Clear label clears any random data or previous
commands from the Cmd_Input byte. The Scan loop continually reads
the Cmd_Input byte to see if a command is entered (a value other than
0 hex).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution is
transferred to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution is
transferred to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
R3L with the length of the message to be displayed and register R4
with the starting location of the appropriate message. Then, execution
transfers to Write_Msg which writes the appropriate message to the
destination location, Msg_Dest.

Prior to writing the message, Clear_Old clears the destination area.
After the message is written, the program branches back to read the
next command.

Getting Started 2-5

Sample Program
Assembly

The sample program is written for and assembled with the HP 64876
H8/300 Assembler/Linkage Editor. For example, the following
command was used to assemble the sample program.

C>h83asm cmd_rds.src /debug <RETURN>
In addition to the assembler listing (cmd_rds.lis), the "cmd_rds.obj"
relocatable file is created.

Linking the Sample
Program

The sample program can be linked with following command and
generates the absolute file. The contents of "cmd_rds.k" linkage editor
subcommand file is shown in Figure 2-2.

C>h8lnk /subcommand=cmd_rds.k
<RETURN>

In addition to the linker load map listing (cmd_rds.map), the
"cmd_rds.abs" absolute file is created.

Note You need to specify "debug" command line option to both assembler
and linker command to generate local symbol information. The
"debug" option for the assembler and linker direct to include local
symbol information to the object file.

debug
input cmd_rds
start Table(1100),Prog(1000),Data(0fe80)
print cmd_rds
output cmd_rds
exit

Figure 2-2. Linkage Editor Subcommand File

2-6 Getting Started

Starting Up the PC
Interface

If you have set up the emulator device table and the HPTABLES shell
environment variable as shown in the HP 64700 Emulators PC
Interface: User’s Reference, you can start up the H8/338 PC Interface
by entering the following command from the MS-DOS prompt:

pch8338 <emulname>
where <emulname> is emul_com1 if your emulator is connected to the
COM1 port or emul_com2 if it is connected to the COM2 port. If you
edited the \hp64700\tables\64700tab file to change the emulator name,
substitute the appropriate name for <emulname> in the above
command.

In the command above, pch8338 is the command to start the PC
Interface; "<emulname>" is the logical emulator name given in the
emulator device table. (To start the version of the PC Interface that
supports external timing analysis, substitute pth8338 for pch8338 in
this command.) If this command is successful, you will see the display
shown in Figure 2-3. Otherwise, you will be given an error message
and returned to the MS-DOS prompt.

Figure 2-3. PC Interface Display

Getting Started 2-7

Selecting PC
Interface Commands

This manual will tell you to "select" commands. You can select
commands or command options by either using the left and right arrow
keys to highlight the option and press the Enter key, or you can simply
type the first letter of that option. If you select the wrong option, you
can press the ESC key to move back up the command tree.

When a command or command option is highlighted, a short message
describing that option is shown on the bottom line of the display.

Emulator Status The status of the emulator is shown on the line above the command
options. The PC Interface periodically checks the status of the
emulator and updates the status line.

Modifying
Configuration

You need to set up the emulation configuration before using the sample
program. To access the emulation configuration display, enter:

Config, General

Defining the Reset
Value for the Stack

Pointer

Even though the H8/338 emulator has a background monitor, it
requires you to define a stack pointer.

Use the arrow keys to move the cursor to the "Reset value for Stack
Pointer" field, type 0ff80 and press Enter.

The stack pointer value will be set to the stack pointer (SP) on entrance
to the emulation monitor initiated RESET state (the "Emulation reset"
status).

Selecting your
Processor

You need to select the processor you are going to emulate. Use the
arrow keys to move the cursor to the "Processor type?" field. Use the
TAB key to select the processor you are going to emulate. The default
emulator configulation select H8/338 and H8/329 processor, when you
use H8/338 and H8/329 emulator, respectively.

2-8 Getting Started

Saving the
Configuration

To save the configuration, use the Enter key to exit the field in the last
field. (The End key on Vectra keyboards moves the cursor directly to
the last field.)

Mapping Memory The H8/338 emulator contains high-speed emulation memory (no wait
states required) that can be mapped at a resolution of 128 bytes.

The memory mapper allows you to characterize memory locations. It
allows you to specify whether a certain range of memory is present in
the target system or whether you will be using emulation memory for
that address range. You can also specify whether the target system
memory is ROM or RAM, and you can specify that emulation memory
be treated as ROM or RAM. You can include function code
information with address ranges to further characterize the memory
block.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Configuring the Emulator" chapter).

The memory mapper allows you to define up to 16 different map terms.

Caution When you use the H8/338 internal ROM and RAM, you must map
memory space where internal ROM and RAM are located as each
emulation ROM and RAM.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory. A part
of linker load map listing for the sample program (cmd_rds.map) is
shown in Figure 2-4.

Getting Started 2-9

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The code area, which
contains the opcodes and operands which make up the sample program,
occupies locations 1000 hex through 104f hex. The data area, which
contains the ASCII values of the messages the program displays, is
occupies locations 1100 hex through 1130 hex. The destination area,
which contains the command input byte and the locations of the
message destination and the stack, occupies locations fe80 hex through
ff7f hex.

Two mapper terms will be specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH
 UNIT NAME
MODULE NAME

ATTRIBUTE : CODE NOSHR

Prog H’00001000 - H’0000104F H’00000050
 cmd_rds
cmd_rds

* TOTAL ADDRESS * H’00001000 - H’0000104F H’00000050

ATTRIBUTE : DATA NOSHR

Table H’00001100 - H’00001130 H’00000031
 cmd_rds
cmd_rds

* TOTAL ADDRESS * H’00001100 - H’00001130 H’00000031

ATTRIBUTE : DATA SHR

Data H’0000FE80 - H’0000FF7F H’00000100
 cmd_rds
cmd_rds

* TOTAL ADDRESS * H’0000FE80 - H’0000FF7F H’00000100

Figure 2-4. Sample Program Load Map Listing

2-10 Getting Started

To map memory for the sample program, select:

Config, Map, Modify
Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

1000..1fff
Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the erom (emulation ROM) type. Move the cursor
to the "address range" field of term 2 and enter:

0fe80..0ff7f
Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the eram (emulation RAM) type. To save your
memory map, use the Enter key to exit the field in the lower right
corner. (The End key on Vectra keyboards moves the cursor directly
to the last field.) The memory configuration display is shown in Figure
2-5.

Figure 2-5. Memory Configuration Display

Getting Started 2-11

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM. This
will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Note The memory mapper re-assigns blocks of emulation memory after the
insertion or deletion of mapper terms. For example, if you modified
the contents of fe80 hex through feff hex above, deleted term 1, and
displayed locations fe80 hex through feff hex, you would notice the
contents of those locations are not the same as they were before
deleting the mapper term.

Loading Programs
into Memory

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

File Format Enter the format of your absolute file. The emulator will accept
absolute files in the following formats:

HP 64876 absolute.
HP absolute.
Raw HP64000 absolute.
Intel hexadecimal.
Tektronix hexadecimal.
Motorola S-records.

The HP 64876 absolute file is generated with HP 64876 H8/300
Assembler/Linkage Editor. For this tutorial, choose the HP 64876
format.

2-12 Getting Started

HP 64876 Format: When you load HP 64876 format files, the PC
Interface creates files (whose base names are the same as the absolute
file) with the extensions ".HPA" and ".HPS". The ".HPA" file is in a
binary format that is compatible with the HP H8/338 firmware. The
".HPS" file is an ASCII source file which contains the symbols to
address mappings used by the PC Interface. Refer to "Using HP 64876
Format Reader" section in Appendix A for more information.

HP64000 Format: Your language tool may generate Raw HP64000
format absolute files (with extension .X, .L, .A). You can load these
files by selecting "HP64000" or "Raw HP64000" as file format. When
you select "HP64000", the PC Interface creates .HPA absolute file and
.HPS symbol database. When you select "Raw HP64000", the PC
Interface doesn’t create these files.

Memory Type The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, or both.

Since emulation memory is mapped for sample program locations, you
can enter either "emulation" or "both".

Force Absolute File
Read

This option is only available for HP 64876 and HP64000 formats. It
forces the file format readers to regenarate the emulator absolute file
(.hpa) and symbol data base (.hps) before loading the code. Normally,
these files are only regenarated whenever the file you specify (the
output of your language tools) is newer than the emulator absolute file
and symbol data base.

For more information, refer to the "Using the HP 64869 Format
Reader" section in Appendix A.

Absolute File Name For most formats, you enter the name of your absolute file in the last
field. Type cmd_rds.abs, and press Enter to start the memory load.

Getting Started 2-13

Using Symbols The following pages show you how to display global and local symbols
for the sample program. For more information on symbol display,
refer to the PC Interface Reference.

Displaying Global
Symbols

When you load HP 64876 or HP64000 format absolute files into the
emulator, the corresponding symbol database is also loaded.

The symbols database can also be loaded with the "System Symbols
Global Load" command. This command is provided for situations
where multiple absolute files are loaded into the emulator; it allows
you to load the various sets of global symbols corresponding to the
various absolute files. When global symbols are loaded into the
emulator, information about previous global symbols is lost (that is,
only one set of global symbols can be loaded at a time).

After global symbols are loaded, both global and local symbols can be
used when entering expressions. Global symbols are entered as they
appear in the source file or in the global symbols display.

To display global symbols, select:

System, Symbols, Global, Display

The symbols window automatically becomes the active window as a
result of this command. You can press <CTRL>z to zoom the
window. The resulting display follows.

2-14 Getting Started

The global symbols display has two parts. The first parts lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-sensitive. For example, if you wish to
make a measurement using the symbol Cmd_Input , you must specify
Cmd_Input . The strings cmd_input or CMD_INPUT are not valid
symbol names here.

Displaying Local
Symbols

To display local symbols, select:

System, Symbols, Local, Display

Enter the name of the module you want to specify (from the first part of
the global symbols display; in this case, cmd_rds) and press Enter.
The resulting display follows.

Getting Started 2-15

After you display local symbols with the “System Symbols Local
Display” command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the first
part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that
module becomes the default local symbol module, as with the “System
Symbols Local Display” command.

Local symbols must be from assembly modules that form the absolute
whose symbol database is currently loaded. Otherwise, no symbols will
be found (even if the named assembler symbol file exists and contains
information).

2-16 Getting Started

One thing to note: It is possible for a symbol to be local in one module
and global in another, which may result in some confusion. For
example, suppose symbol “XYZ” is a global in module A and a local
in module B and that these modules link to form the absolute file. After
you load the absolute file (and the corresponding symbol database),
entering “XYZ” in an expression refers to the symbol from module A.
Then, if you display local symbols from module B, entering “XYZ” in
an expression refers to the symbol from module B, not the global
symbol. Now, if you again want to enter “XYZ” to refer to the global
symbol from module A, you must display the local symbols from
module A (since the global symbol is also local to that module).
Loading local symbols from a third module, if it was linked with
modules A and B and did not contain an“XYZ” local symbol, would
also cause “XYZ” to refer to the global symbol from module A.

Transfer Symbols to
the Emulator

You can use the emulator’s symbol-handling capability to improve
measurement displays. You do this by transferring the symbol database
information to the emulator. To transfer the global symbol information
to the emulator, use the command:

System, Symbols, Global, Transfer

Transfer the local symbol information for all modules by entering:

System, Symbols, Local, Transfer, All

You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

Getting Started 2-17

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format. To do this, select:

Memory, Display, Mnemonic

Enter the address range "1000..1026". (You could also specify this
address range using symbols, for example, "Init..Init+26" .) The
emulation window automatically becomes the active window as a
result of this command. You can press <CTRL>z to zoom the memory
window. The resulting display follows.

If you wish to view the rest of the sample program memory
locations,you can select "Memory Display Mnemonic" command
again and enter the range "102a..104e".

2-18 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the sample
program, select:

Processor, Step, Address

Enter a step count of 1, enter the symbol Init (defined as a global in the
source file), and press Enter to step from program’s first address, 1000
hex. The executed instruction, the program counter address, and the
resulting register contents are displayed as shown in the following
listing.

Getting Started 2-19

Note You cannot display registers if the processor is reset. Use the
"Processor Break" command to cause the emulator to start executing in
the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator execution
will temporarily break to the monitor.

To continue stepping through the program, you can select:

Processor, Step, Pc
After selecting the command above, you have an opportunity to change
the previous step count. If you wish to step the same number of times,
you can press Enter to start the step.

To repeat the previous command, you can press <CTRL>r .

Specifying a Step
Count

If you wish to continue to step a number of times from the current
program counter, select:

Processor, Step, Pc
The previous step count is displayed in the "number of instructions"
field. You can enter a number from 1 through 99 to specify the number
of times to step. Type 5 into the field, and press Enter. The resulting
display follows.

2-20 Getting Started

When you specify step counts greater than 1, only the last register
contents are displayed.

Modifying Memory The preceding step commands show the sample program is executing
in the Scan loop, where it continually reads the command input byte to
check if a command has been entered. To simulate the entry of a
sample program command, you can modify the command input byte by
selecting:

Memory, Modify, Bytes
Now enter the address of the memory location to be modified, an equal
sign, and new value of that location, for example, "Cmd_Input=41".
(The Cmd_Input label was defined as a global symbol in the source
file.)

To verify that 41 hex was indeed written to Cmd_Input (fe80 hex),
select:

Memory, Display, Bytes

Getting Started 2-21

Type the address "0fe80" or the symbol Cmd_Input , and press Enter.
This command will automatically activate the memory window. The
resulting display is shown below.

You can continue to step through the program as shown earlier in this
chapter to view the instructions which are executed when an "A" (41
hex) command is entered.

Running the
Program

To start the emulator executing the sample program, select:

Processor, Go, Pc
The status line will show that the emulator is "Running user program".

2-22 Getting Started

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command "A" (41 hex) was entered above, so the
"Command A entered" message should have been written to the
Msg_Dest locations. Because you must search for hexadecimal values,
you will want to search for a sequence of characters which uniquely
identify the message, for example, " A" or 20 hex and 41 hex. To
search the destination memory location for this sequence of characters,
select:

Memory, Find
Enter the range of the memory locations to be searched, 0fe82 hex
through 0fea1 hex, and enter the data 20 hex and 41 hex. The resulting
information in the memory window shows you that the message was
indeed written as it was supposed to have been.

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and search
for " B" (20 hex and 42 hex), or you can modify the command input
byte to "C" and search for "IN" (49 hex and 4e hex).

Breaking into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor, Break
The status line shows that the emulator is "Running in monitor".

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request (dependent on the
type of instruction being executed and whether the processor is in a
hold state).

Getting Started 2-23

Using Software
Breakpoints

Software breakpoints are implemented in the H8/338 emulator by
replacing opcodes with one of undefined opcodes (5770 hex) as
software breakpoint instruction. In the following explanation, we call
this code as special instruction. In the H8/338 emulator, software
breakpoints are implemented by replacing opcodes with the special
instruction. When you set a software breakpoint, the emulator replaces
the opcode at the address specified with the special instruction. When
the emulator executes this instruction in the user program, execution
breaks to the monitor.

If the special instruction (undefined opcode, 5770 hex) was not inserted
as the result of a "Breakpoints" command (in other words, it is part of
the user program), the "Undefined software breakpoint" message is
displayed above the status line. Up to 32 software breakpoints may be
defined.

Note You must set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Note Because software breakpoints are implemented by replacing opcodes
with the undefined opcode (5770 hex), you cannot define software
breakpoints in target ROM. You can, however, use the Terminal
Interface cim command to copy target ROM into emulation memory
(see the Terminal Interface: User’s Reference manual for information
on the cim command).

2-24 Getting Started

Note Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

Defining a Software
Breakpoint

To define a breakpoint at the address of the Cmd_I label of the sample
program (102C hex), select:

Breakpoints, Add
Enter the local symbol "Cmd_I". After the breakpoint is added, the
breakpoint window becomes active and shows that the breakpoint is set.

You can add multiple breakpoints in a single command by separating
each one with a semicolon. For example, you could type
"1012;101C;1032" to set three breakpoints.

Run the program by selecting:

Processor, Go, Pc
The status line shows that the emulator is running the user program.
Modify the command input byte to an invalid command by selecting:

Memory, Modify, Bytes
Enter an invalid command, such as "Cmd_Input=75". The following
messages result:

ALERT: Software breakpoint: 0102C
STATUS: H8/338--Running in monitor

To continue program execution, select:

Processor, Go, Pc

Getting Started 2-25

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display
The resulting display shows that the breakpoint has been cleared.

Setting a Software
Breakpoint

When a breakpoint is hit, it becomes disabled. To re-enable the
software breakpoint, you can select:

Breakpoints, Set, Single
The address of the breakpoint you just added is still in the address
field; to set this breakpoint again, press Enter. As with the
"Breakpoints Add"command, the breakpoint window becomes active
and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints, Clear, Single

The address of the breakpoint set in the previous section is still in the
address field; to clear this breakpoint again, press Enter.

2-26 Getting Started

Using the Analyzer The H8/338 emulation analyzer has 48 trace signals which monitor
internal emulation lines (address, data, and status lines). Optionally,
you may have an additional 16 trace signals which monitor external
input lines. The analyzer collects data at each pulse of a clock signal,
and saves the data (a trace state) if it meets a "storage qualification"
condition.

Note Emulators which have the optional external analyzer will display the
Internal/External options after the commands in the following
examples. Select Internal to execute the examples.

Resetting the
Analysis

Specification

To be sure that the analyzer is in its default or power-up state, select:

Analysis, Trace, Reset

Specifying a Simple
Trigger

Suppose you wish to trace the states of the sample program which
follow the read of a "B" (42 hex) command from the command input
byte. To do this, you must modify the default analysis specification by
selecting:

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right arrow key
to move the cursor to the "Trigger on" field. Type "a" and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the
address of the command input byte, using either the global symbol
Cmd_Input or address 0fe80, and press Enter.

The "Data" field is now highlighted. Type 42xx and press Enter. 42 is
the value of the "B" command and the "x"s specify "don’t care" values.

Now the "Status" field is highlighted. Use the TAB key to view the
status qualifiers which may be entered.

Getting Started 2-27

H8/338 Analysis Status Qualifiers

Now the "Status" field is highlighted. Use the Tab key to view the
status qualifiers which may be entered. The status qualifiers are
defined as follows.

Select the read status and press Enter. Figure 2-6 and 2-7 shows the
resulting analysis specification. To save the new specification, use
End Enter to exit the field in the lower right corner. You’ll return to
the trace specification. Press End to move to the trriger apec field.
Press Enter to exit the trace specification.

Qualifier Status Bits (32..44) Description

backgrnd 0 xxxx xxxx xxxxB Background cycle
byte x 1xxx xxxx xx1xB Byte access
foregrnd 1 xxxx xxxx xxxxB Foreground cycle
grd x 10xx xxxx xxxxB Guarded memory access
ifetch x 1xxx xxx0 1101B Fetch from internal ROM
intack x xxx0 xxxx xxxxB Interrupt acknowledge cycle
io x 1xxx xxxx 0xxxB Internal I/O access
memory x 1xxx xxxx 1xxxB Memory access
read x 1xxx xxxx xxx1B Read cycle
word x 1xxx xxxx xx0xB Word access
write x 1xxx xxxx xxx0B Write cycle
wrrom x 1x0x xxxx xxx0B Write to ROM cycle

Figure 2-6. Modifying the Trace Specification

2-28 Getting Started

Starting the Trace To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is running.
You do not expect the trigger to be found because no commands have
been entered. Modify the command input byte to "B" by selecting:

Memory, Modify, Bytes
Enter "Cmd_Input=42". The status line now shows that the trace is
complete.

Displaying the Trace To display the trace, select:

Analysis, Display
You are now given two fields in which to specify the states to display.
Use the right arrow key to move the cursor to the "Ending state to
display" field. Type "60" into the ending state field, press Enter, and
use <CTRL>z to zoom the trace window.

Figure 2-7. Modifying the Pattern Specification

Getting Started 2-29

Note If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

Use the Home key to get the top of the trace. The resulting trace is
similar to the trace shown in the following display.

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0. The other states show
the exit from the Scan loop and the Exe_Cmd instructions.

To list the next lines of the trace, press the PgDn or Next key.

2-30 Getting Started

The resulting display shows the Cmd_B instructions and the branch to
Write_Msg and the beginning of the instructions which move the
"THIS IS MESSAGE B" message to the destination locations.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the PC Interface, refer to the HP 64700 Emulators PC Interface:
Analyzer User’s Guide.

Getting Started 2-31

Trace Analysis
Considerations

There are some points to be noticed when you use the emulation
analyzer of H8/338 emulator.

How to Specify
Trigger Condition

You need to be careful to specify the condition on which the emulation
analyzer should start the trace. Suppose you would like to start the
trace when the prpogram begins executing Exe_Cmd routine. To reset
the analysis specification:

Analysis, Trace, Reset
Select the following command and modify the analysis specification as
shown in the following displays.

Analysis, Trace, Modify

2-32 Getting Started

Start the trace and modify memory so that the program execution
jumps to the Exe_Cmd routine:

Analysis, Begin
Memory, Modify, Bytes

Enter "Cmd_Input=41".

Now display the trace:

Analysis, Display
Press Enter three times.

Getting Started 2-33

This is not what we were expecting to see. As you can see at the first
line of the trace, the address of Exe_Cmd routine appears on the
address bus during the program executing Scan loop. This made the
analyzer start trace. To avoid mis-trigger by this cause, set the trigger
condition to the second instruction of the routine you want to trace:

Analysis, Trace, Modify
Enter the pattern specification display, and modify the address
specification to "Exe_Cmd+2".

To start the trace and complete the measurement:

Analysis, B egin
Memory, Modify, Bytes

Enter "Cmd_Input=41".

Analysis, Display
Press Enter three times.

2-34 Getting Started

As you can see, the analyzer captured the execution of Exe_Cmd
routine. If you need to see the execution of the instruction at the
Exe_Cmd label, set the trigger position to "Center" when you modify
the analysis specification.

Store Condition And
Trace

When you specify store condition, disassembling of program execution
is unreliable.

Analysis, Trace, Reset
Analysis, Begin
Analysis, Display

Press Enter three times. You will see a display similar to the following.

Getting Started 2-35

The program is executing the Scan loop.

To trace only accesses to the address range Init through Init+0ffh :

Analysis, Trace, Modify
Modify the trace specification as shown in the following displays.

2-36 Getting Started

Getting Started 2-37

Start the trace and display the trace listing:

Analysis, Begin
Analysis, D isplay

Press Enter three times. You will see a display similar to the following.

As you can see, the executions of CMP.B instruction are not
disassembled. This occurs when the analyzer cannot get necessary
information because of the store condition. Be careful when you use
the analyzer with store condition.

Triggering the
Analyzer by Data

You may want to trigger the emulation analyzer when specific data
appears on the data bus. You can accomplish this by specifying "Data"
in the "Find State" field of analysis specification display.

There are some points to be noticed when you trigger the analyzer in
this way. You always need to specify the "Data" with 16 bits value
even when access to the data is performed by byte access. This is
because the analyzer is designed so that it can capture data on internal
data bus (which has 16 bits width). The following table shows the
way to specify the trigger condition by data.

2-38 Getting Started

For example, to trigger the analyzer when the processor performs word
access to data 1234 hex in internal ROM, you can use 1234h, 12xxh,
and 0xx34h as the "Data" specification.

To trigger the analyzer when the processor accesses data 12 hex in
external ROM, you can use 12xxh as "Data" specification.

Notice that you always need to specify "xx" as the lower 8 bits value to
capture byte access of the processor. Be careful to trigger the analyzer
by data.

Using a Command
File

You can use a command file to perform many functions for you,
without having to manually type each function. For example, you
might want to create a command file that maps memory, modifies
configuration and loads program into memory for the sample program.
To create such a command file:

System, Log, I nput, Enable
Enter command file name "cmd_rds.cmd", and press Enter. This sets
up a file to record all commands you execute. The commands will be
logged to the file cmd_rds.cmd in the current directory. You can then
use this file as a command file to execute these commands
automatically.

 ==
 | | Available
 Location of data | Access | "Data" Specification
 ==
 Internal ROM,RAM | word access | hhll *1
 | | hhxx *2
 | | xxll *2
 +-------------------+----------------------
 | byte access | ddxx *2
 ---------------------+-------------------+----------------------
 Others | byte access *3 | ddxx
 ==

 *1 hhll means 16 bits data
 *2 dd,hh,ll mean 8 bits data
 *3 H8/338 processor performs word access (MOV.W etc..) to
 external memory and internal I/O by two byte accesses.

Getting Started 2-39

First, to map the memory:

Config, Map, Memory
Map 1000 hex through 1fff hex to erom and fe80 hex through ff7f hex
to eram. (As shown in Figure 2-5.)

To set up the reset value for the stack pointer:

Config, General
Use the arrow keys to move the cursor to the "Reset value for Stack
Pointer" field, type 0ff80h, and press Enter.

To load the program into memory:

Memory, Load
Enter file format, memory type, and absolute file name, and press
Enter.

Now we’re finished logging commands to the file. To disable logging:

System, Log, I nput, Disable
The command file cmd_rds.cmd will no longer accept command input.
The file looks like this:

cmm
@tram
@1000H..2FFFH
@erom
@0FE00H..0FEFFH
@eram
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd
@Empty
@grd

2-40 Getting Started

You can see a @symbol in front of some lines in the file. These
represents data values, as opposed to commands.

Let’s execute the command file "cmd_rds.cmd".

System, Command_file
Enter "cmd_rds.cmd", press Enter. Watch the command file
commands execute. As you can see, the sequence of commands you
entered is automatically executed.

Resetting the
Emulator

To reset the emulator, select:

Processor, Reset, Hold
The emulator is held in a reset state (suspended) until a "Processor
Break", "Processor Go", or "Processor Step" command is entered. A
CMB execute signal will also cause the emulator to run if reset.

You can also specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state. To do this,
select:

Processor, Reset, Monitor

@Empty
@grd
@Empty
@grd
cg
@y
@n
@y
@n
@n
@y
@y
@ext
@0FF80H
ml
@HP64869
@Both
@cmd_rds.abs

Getting Started 2-41

Exiting the PC
Interface

There are two different ways to exit the PC Interface. You can exit the
PC Interface using the "locked" option which specifies that the current
configuration will be present next time you start up the PC Interface.
You can select this option as follows.

System, Exit, Locked
Symbols are lost when you use the "System Exit Locked" command;
however, you can reload them (after you reenter the PC Interface) with
the "System Symbols Global Load" command.

The other way to exit the PC Interface is with the "unlocked" option
which specifies that the default configuration will be present the next
time you start up the PC Interface. You can select this option with the
following command.

System, Exit, Unlocked

2-42 Getting Started

3

Using the H8/338 Emulator In-Circuit

When you are ready to use the H8/338 Emulator in conjunction with
actual target system hardware, there are some special considerations
you should keep in mind.

installing the emulator probe

properly configure the emulator

We will cover the first topic in this chapter. For complete details on
in-circuit emulation configuration, refer to Chapter 4.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

Caution The following precautions should be taken while using the H8/338
Emulator. Damage to the emulator circuitry may result if these
precautions are not observed.

Power Down Target System. Turn off power to the user target system
and to the H8/338 Emulator before inserting the user plug to avoid
circuit damage resulting from voltage transients or mis-insertion of the
user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The H8/338 Emulator contains
devices which are susceptible to damage by static discharge. Therefore,
operators should take precautionary measures before handling the user
plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the H8/338 Emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

Pin Guard The H8/338/329 emulator is shipped with a pin guard to prevent impact
damage to the target system probe pins. The guard should be left in
place while you are not using the emulator.

3-2 In-Circuit Emulation

H8/338 Emulator

H8/338 emulator is shipped with a non-conductive pin guard over the
target system probe.

H8/329 Emulator

H8/329 emulator is shipped with a conductive plastic pin guard over
the target system probe pins. When you do use the emulator, either for
normal emulation tasks, or to run performance verification on the
emulator, you must remove this conductive pin guard to avoid
intermittent failures due to the target system probe lines being shorted
together.

Pin Protector
(H8/329 Only)

The target system probe of the H8/329 emulator has a pin protector that
prevents damage to the probe when inserting and removing the probe
from the target system microprocessor socket. Do not use the probe
without a pin protector installed. If the target system probe is installed
on a densely populated circuit board, there may not be enough room for
the plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

Installing the Target
System Probe 1. Remove the H8/338 microprocessor from the target system

socket. Note the location of pin 1 on the processor and on the
target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket.

4.

In-Circuit Emulation 3-3

Note When you are using the H8/338 emulator, we recommend that you use
ITT CANNON "LCS-84" series 84 pin PLCC socket to make sure the
contact between emulator probe and target system microprocessor
socket.

Figure 3-1. Installing the Probe (H8/338 emulator)

3-4 In-Circuit Emulation

Pin State in
Background

While the emulator is running the background monitor, probe pins are
in the following state.

Address Bus Same as foreground

Data Bus Always high impedance otherwise you direct the
emulator to modify target memory.

AS Same as foreground

RD Same as foreground

WR Always high otherwise you direct the emulator to
modify target memory.

Others Same as foreground

Figure 3-2. Installing the Probe (H8/329 emulator)

In-Circuit Emulation 3-5

Target System
Interface (H8/338)

MD1 MD0
RES NMI
STBY

These signals are connected to 74HCT14
through 51 ohm series resister and 10K ohm
pull-up resister.

P1(7:0) P5(2:0)
P2(7:0) P6(7:0)
P3(7:0) P8(6:0)
P4(7:0) P9(6:0)

These signals are connected to H8/338
emulation processor through 51 ohm series
resister and 10K ohm pull-up resister.

3-6 In-Circuit Emulation

P97 This signal are connected to H8/338 emulation
processor and GAL20V8 through 51 ohm series
resister.

P7(7:0) These signals are connected to H8/338
emulation processor through 51 ohm series
resister.

In-Circuit Emulation 3-7

Target System
Interface (H8/329)

MD1 MD0
RES NMI
STBY

These signals are connected to 74HCT14
through 51 ohm series resister and 10K ohm
pull-up resister.

P1(7:0) P5(2:0)
P2(7:0) P6(7:0)
P3(7:0)
P4(6:0)

These signals are connected to H8/329
emulation processor through 51 ohm series
resister and 10K ohm pull-up resister.

3-8 In-Circuit Emulation

P47 This signal are connected to H8/329 emulation
processor and GAL20V8 through 51 ohm
resister.

P7(7:0) These signals are connected to H8/329
emulation processor through 51 ohm series
resister.

In-Circuit Emulation 3-9

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system /RES line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor. To specify a run from reset state, select:

Processor, Go, Reset
The status now shows that the emulator is "Awaiting target reset".

After the target system is reset, the status line message will change to
show the appropriate emulator status.

3-10 In-Circuit Emulation

4

Configuring the Emulator

Introduction The H8/338 emulator is designed to help you in all stages of target
system development. For instance, you can run the emulator
out-of-circuit when developing and debugging your target system
software and in-circuit when integrating your target system software
with hardware. You can use the emulator’s internal clock or your
target system clock. Emulation memory can be used along with your
target system memory, and it can be mapped as RAM or ROM. And,
there are many more options available.

The emulator is a flexible instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring your emulator.

This chapter will:

Show you how to access the emulator configuration options.

Describe the emulator configuration options.

Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the Emulator 4-1

Accessing the
Emulator
Configuration
Options

To enter the general configuration menu, Select:

Config, General
When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Note It is possible to use the System Terminal window to modify the
emulator configuration. However, if you do this, some PC Interface
features may no longer work properly. We recommend that you only
modify the emulator configuration by using the options presented in
the PC Interface.

Figure 4-1. Emulator Configuration Display

4-2 Configuring the Emulator

Internal Emulator
Clock?

This configuration question allows you to select the emulator’s clock
source; you can choose either the internal clock oscillator or the target
system clock. The default emulator configuration selects the internal
clock.

Yes Selects the internal clock oscillator as the emulator
clock source. The emulators’ internal clock speed
is 10 MHz(system clock).

No Selects the clock input to the emulator probe from
the target system. You must use a clock input
conforming to the specifications for the H8/338
microprocessor. The maximum clock speed is 10
MHz (system clock).

You should always select the external clock option when using the
emulator in-circuit to ensure that the emulator is properly synchronized
with your target system.

Enable Real-Time
Mode?

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

No All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

Yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "Processor
Reset", "Processor Break", "Processor Go", and
"Processor Step") are refused. For example, the
following commands are not allowed when runs are
restricted to real-time:

Configuring the Emulator 4-3

Display/modify registers.
Display/modify target system memory.
Display/modify internal I/O registers.
Load/store target system memory.

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "Processor Reset", "Processor
Break", and "Processor Step" commands; you should use caution in
executing these commands.

Enable Breaks on
Writes to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

Yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

No The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom analysis specification status option allows you to use
"write to ROM" cycles as trigger and storage qualifiers.

4-4 Configuring the Emulator

Enable Software
Breakpoints?

This question allows you to enable or disable the software breakpoints
feature. The H8/338 emulator uses undefined opcode (5770 hex) as
software breakpoint.

No The software breakpoints feature is disabled. This
is specified by the default emulator configuration,
so you must change this configuration item before
you can use software breakpoints.

Yes Allows you to use the software breakpoints feature.
When you set a software breakpoint, an undefined
opcode (5770 hex) will be placed at the address
specified. When the opcode 5770 hex is executed,
program execution will break into the monitor.

When you define (add) a breakpoint, software breakpoints are
automatically enabled.

Enable CMB
Interaction?

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated measurement.
The CMB signals READY and /EXECUTE are used to perform
multiple emulator start/stop.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

No The emulator ignores the /EXECUTE and READY
lines, and the READY line is not driven.

Yes Multiple emulator start/stop is enabled. If the

 Processor, CMB, G o,

Configuring the Emulator 4-5

command is entered, the emulator will start
executing code when a pulse on the /EXECUTE
line is received. The READY line is driven false
while the emulator is running in the monitor; it goes
true whenever execution switches to the user
program.

Note CMB interaction will also be enabled when the

 Processor, CMB, Execute

command is entered.

Enable /NMI Input
from Target?

This configuration allows you to specify whether or not the emulator
responds to /NMI(non-maskable interrupt request) signal from the
target system during foreground operation.

Yes The emulator will respond to the /NMI request from
the target system.

No The emulator will not respond to the /NMI request
from the target system.

The emulator does not accept any interrupt during background
execution. Edge sensed interrupts are suspended while running the
background monitor, and such interrupts will occur when context is
changed to foreground. Level sensed interrupts and internal interrupts
are ignored during in background operation.

4-6 Configuring the Emulator

Enable / RES
Input from Target?

This configuration allows you to specify whether or not the emulator
responds to /RES signal by the target system during foreground
operation.

While running the background monitor, the emulator ignores /RES
signal except that the emulator’s status is "Awaiting target reset".

(see the "Running the Emulation from Target Reset" section in the
"In-Circuit Emulation" chapter).

Yes The emulator will respond to /RES input during
foreground operation.

No The emulator will not respond to /RES input from
the target system.

Processor Type?
(H8/338 emulator)

This configuration defines the processor to be emulated by the H8/338
emulator.

338 When you are going to emulate H8/338
microprocessor, select this item.
(The default emulation configuration selects this.)

337 When you are going to emulate H8/337
microprocessor, select this item.

336 When you are going to emulate H8/336
microprocessor, select this item.

Configuring the Emulator 4-7

Processor Type?
(H8/329 emulator)

This configuration defines the processor to be emulated by the H8/329
emulator.

329 When you are going to emulate H8/329
microprocessor, select this item.
(The default emulation configuration selects this.)

328 When you are going to emulate H8/328
microprocessor, select this item.

327 When you are going to emulate H8/327
microprocessor, select this item.

326 When you are going to emulate H8/326
microprocessor, select this item.

Processor
Operation Mode?

This configuration defines operation mode in which the emulator
works.

ext The emulator will work using the mode setting by
the target system. The target system must supply
appropriate input to MD0 and MD1. If you are
using the emulator out of circuit when "external" is
selected, the emulator will operate in mode 3.

<mode_num> When <mode_num> is selected, the emulator will
operate in selected mode regardless of the mode
setting by the target system.

4-8 Configuring the Emulator

Valid <mode_num> are following:

<mode_num> Description

1 The emulator will operate in mode 1. (expanded
mode without internal ROM)

2 The emulator will operate in mode 2. (expanded
mode with internal ROM)

3 The emulator will operate in mode 3. (single chip
mode)

Reset Value for
Stack Pointer?

This question allows you to specify the value to which the stack pointer
(SP) will be set on entrance to the emulation monitor initiated RESET
state (the "Emulation reset" status).

The address specified in response to this question must be a 20-bit
hexadecimal even address.

You cannot set this address at the following location.

Odd address
Internal I/O register address

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not used
by user program.

Configuring the Emulator 4-9

Note We recommend that you use this method of configuring the stack
pointer and the stack page register. Without a stack pointer and a stack
page register, the emulator is unable to make the transition to the run
state, step, or perform many other emulation functions. However,
using this option does not preclude you from changing the stack
pointer value or location within your program; it just sets the initial
conditions to allow a run to begin.

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration so
that it may be re-loaded later. The following information is saved in the
emulator configuration.

Emulator configuration items.
Memory map.
Break conditions.
Trigger configuration.
Window specifications.

To store the current emulator configuration, select:

Config, Store
Enter the name of file to which the emulator configuration will be
saved.

4-10 Configuring the Emulator

Loading an
Emulator
Configuration

If you have previously stored an emulator configuration and wish to
re-load it into the emulator, select:

Config, Load

Enter the configuration file name and press Enter. The emulator will
be re-configured with the values specified in the configuration file.

Configuring the Emulator 4-11

Notes

4-12 Configuring the Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to load code into the
emulator, how to modify memory and view a register, and how to
perform a simple analyzer measurement. In this chapter, we will
discuss in more detail other features of the emulator.

This chapter shows you how to:

Making Coordinated Measurements.

Store the contents of memory into absolute files.

This chapter also discusses:

Display or Modify the H8/338 internal I/O registers.

Using the Emulator 5-1

Making
Coordinated
Measurements

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and some other
instrument connected to the BNC connector.

This section will describe coordinated measurements made from the
PC Interface which involve the emulator. These types of coordinated
measurements are:

Running the emulator on reception of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution into
the monitor.

Three signal lines on the CMB are active and serve the following
functions when enabled:

/TRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When CMB run
control interaction is enabled, all emulators are
required to break to background upon reception of a
false READY signal and will not return to
foreground until this line is known to be in a true
state.

/EXECUTE Active low. This line serves as a global interrupt
signal. Upon reception of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
typically, run the emulator or start a trace
measurement.

5-2 Using the Emulator

Running the
Emulator at
/EXECUTE

Before you can specify that the emulator run upon receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config, General

Use the arrow keys to move the cursor to the "Enable CMB
Interaction?" question, and type "y". Use the Enter key to exit out of
the lower right-hand field in the configuration display.

To specify that the emulator begin executing a program upon reception
of the /EXECUTE signal, select:

Processor, CMB, Go

At this point you may either select the current program counter, or you
may select a specific address.

The command you enter is saved and is executed when the /EXECUTE
signal becomes active. Also, you will see the message "ALERT: CMB
execute; run started".

Breaking on the
Analyzer Trigger

To cause emulator execution to break into the monitor when the
analyzer trigger condition is found, you must modify the trigger
configuration. To access the trigger configuration, select:

Config, Trigger

The trigger configuration display contains two diagrams, one for each
of the internal TRIG1 and TRIG2 signals.

Using the Emulator 5-3

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted "Analyzer"
field in the TRIG1 portion of the display, and use the Tab key to select
the "----->>" arrow which shows that the analyzer is driving TRIG1.
Next, move the cursor to the highlighted "Emulator" field and use the
Tab key to select the arrow pointing towards the emulator (<<-----);
this specifies that emulator execution will break into the monitor when
the TRIG1 signal is driven. The trigger configuration display is shown
in figure 5-1.

Note If your emulator is not configured with external analyzer, the "Timing"
cross trigger option is not displayed.

Figure 5-1. Cross Trigger Configuration

5-4 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

Memory, Store

Note The first character of the absolute file name must be a letter. You can
name the absolute file with a total of 8 alphanumeric characters, and
optionally, you can include an extension of up to 3 alphanumeric
characters.

Caution The "Memory Store" command writes over an existing file if it has the
same name that is specified with the command. You may wish to
verify beforehand that the specified filename does not already exist.

Using the Emulator 5-5

Register Classes
and Names
(H8/338 Emulator)

The following register classes and names are used with the
display/modify registers commands in H8/338 emulator.

basic (*) class

Register name Description

 pc
ccr
r0
r1
r2
r3
r4
r5
r6
r7
sp
mdcr

Program counter
Condition code register
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Stack pointer
Mode control register *1

sys class (System control registers)

Register name Description

stcr
syscr
mdcr
iscr
ier

Serial timer control register
System control register
Mode control register
IRQ sense control register *1
IRQ enable register

5-6 Using the Emulator

port class (I/O port)

Register name Description

 p1ddr
p2ddr
p3ddr
p4ddr
p5ddr
p6ddr
p8ddr
p9ddr
p1dr
p2dr
p3dr
p4dr
p5dr
p6dr
p7dr
p8dr
p9dr
p1pcr
p2pcr
p3pcr

Port 1 data direction register *2
Port 2 data direction register *2
Port 3 data direction register *2
Port 4 data direction register *2
Port 5 data direction register *2
Port 6 data direction register *2
Port 8 data direction register *2
Port 9 data direction register *2
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register *1
Port 8 data register
Port 9 data register
Port 1 input pull up MOS control register
Port 2 input pull up MOS control register
Port 3 input pull up MOS control register

frt class (16 bit free running timer)

Register name Description

 tier
frtcsr
frc
ocra
ocrb
frtcr
tocr
icra
icrb
icrc
icrd

Timer interrupt enable register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Timer control register
Timer output compare control register
Input capture register A *1
Input capture register B *1
Input capture register C *1
Input capture register D *1

Using the Emulator 5-7

tmr0 class (8 bit timer 0)

Register name Description

tcr0
tcsr0
tcora0
tcorb0
tcnt0

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

tmr1 class (8 bit timer 1)

Regsiter name Description

tcr1
tcsr1
tcora1
tcorb1
tcnt1

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

pwm0 class (PWM timer 0)

Register name Description

pwmtcr0
dtr0
pwmtcnt0

Timer control register
Duty register
Timer counter

pwm1 class (PWM timer 1)

Regsiter name Description

pwmtcr1
dtr1
pwmtcnt1

Timer control register
Duty register
Timer counter

5-8 Using the Emulator

sci0 class (Serial communication interface 0)

Register name Description

smr0
brr0
scr0
tdr0
ssr0
rdr0

Serial mode register
Bit rate register
Serial control register
Transmit data register
Serial status register
Receive data register *1

sci1 class (Serial communication interface 1)

Register name Description

smr1
brr1
scr1
tdr1
ssr1
rdr1

Serial mode register
Bit rate register
Serial control register
Transmit data register
Serial status register
Receive data register *1

adc class (A/D converter)

Register name Description

addra
addrb
addrc
addrd
adcsr
adcr

A/D data register A *1
A/D data register B *1
A/D data register C *1
A/D data register D *1
A/D control/status register
A/D control register

Using the Emulator 5-9

dac class (D/A converter)

Register name Description

dadr0
dadr1
dacr

D/A data register 0
D/A data register 1
D/A control register

NO CLASS The following register names are not included in any register class.

Register name Description

 r0h
r0l
r1h
r1l
r2h
r2l
r3h
r3l
r4h
r4l
r5h
r5l
r6h
r6l
r7h
r7l

Register 0 H
Register 0 L
Register 1 H
Register 1 L
Register 2 H
Register 2 L
Register 3 H
Register 3 L
Register 4 H
Register 4 L
Register 5 H
Register 5 L
Register 6 H
Register 6 L
Register 7 H
Register 7 L

*1 Display only
*2 Modification only

5-10 Using the Emulator

Register Classes
and Names
(H8/329 Emulator)

The following register classes and names are used with the
display/modify registers commands in H8/329 emulator.

basic (*) class

Register name Description

 pc
ccr
r0
r1
r2
r3
r4
r5
r6
r7
sp
mdcr

Program counter
Condition code register
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Stack pointer
Mode control register *1

sys class (System control registers)

Register name Description

stcr
syscr
mdcr
iscr
ier

Serial timer control register
System control register
Mode control register
IRQ sense control register *1
IRQ enable register

Using the Emulator 5-11

port class (I/O port)

Register name Description

 p1ddr
p2ddr
p3ddr
p4ddr
p5ddr
p6ddr
p7ddr
p1dr
p2dr
p3dr
p4dr
p5dr
p6dr
p7dr
p1pcr
p2pcr
p3pcr

Port 1 data direction register *2
Port 2 data direction register *2
Port 3 data direction register *2
Port 4 data direction register *2
Port 5 data direction register *2
Port 6 data direction register *2
Port 7 data direction register *2
Port 1 data register
Port 2 data register
Port 3 data register
Port 4 data register
Port 5 data register
Port 6 data register
Port 7 data register *1
Port 1 input pull up MOS control register
Port 2 input pull up MOS control register
Port 3 input pull up MOS control register

frt class (16 bit free running timer)

Register name Description

 tier
frtcsr
frc
ocra
ocrb
frtcr
tocr
icra
icrb
icrc
icrd

Timer interrupt enable register
Timer control/status register
Free running counter
Output compare register A
Output compare register B
Timer control register
Timer output compare control register
Input capture register A *1
Input capture register B *1
Input capture register C *1
Input capture register D *1

5-12 Using the Emulator

tmr0 class (8 bit timer 0)

Register name Description

tcr0
tcsr0
tcora0
tcorb0
tcnt0

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

tmr1 class (8 bit timer 1)

Regsiter name Description

tcr1
tcsr1
tcora1
tcorb1
tcnt1

Timer control register
Timer control/status register
Timer constant register A
Timer constant register B
Timer counter

sci class (Serial communication interface)

Register name Description

smr
brr
scr
tdr
ssr
rdr

Serial mode register
Bit rate register
Serial control register
Transmit data register
Serial status register
Receive data register *1

Using the Emulator 5-13

adc class (A/D converter)

Register name Description

addra
addrb
addrc
addrd
adcsr
adcr

A/D data register A *1
A/D data register B *1
A/D data register C *1
A/D data register D *1
A/D control/status register
A/D control register

NO CLASS The following register names are not included in any register class.

Register name Description

 r0h
r0l
r1h
r1l
r2h
r2l
r3h
r3l
r4h
r4l
r5h
r5l
r6h
r6l
r7h
r7l

Register 0 H
Register 0 L
Register 1 H
Register 1 L
Register 2 H
Register 2 L
Register 3 H
Register 3 L
Register 4 H
Register 4 L
Register 5 H
Register 5 L
Register 6 H
Register 6 L
Register 7 H
Register 7 L

*1 Display only
*2 Modification only

5-14 Using the Emulator

A

File Format Readers

Using the HP 64000
Reader

An HP 64000 “reader” is provided with the PC Interface. The HP
64000 Reader converts the files into two files that are usable with your
emulator. This means that you can use available language tools to
create HP 64000 absolute files, then load those files into the emulator
using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or as a
separate process. When operating the HP 64000 Reader, it may be
necessary to execute it as a separate process if there is not enough
memory on your personal computer to operate the PC Interface and HP
64000 Reader simultaneously. You can also operate the reader as part
of a “make file.”

What the Reader
Accomplishes

Using the HP 64000 files (<file.X>, <file.L>, <scr1.A>, <scr2.A>, ...)
the HP 64000 Reader will produce two new files, an “absolute” file and
an ASCII symbol file, that will be used by the PC Interface. These new
files are named: “<file>.hpa” and “<file>.hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file (<file>.hpa)
is created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools such as a “C” compiler, program
line numbers. Local symbols evaluate to a fixed (static, not stack
relative) address.

File Format Readers A-1

Note You must use the required options for your specific language tools to
include symbolic (“debug”) information in the HP 64000 symbol files.
The HP 64000 Reader will only convert symbol information present in
the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address
global_symbol2 address
...
global_symbolN address
|module_name1|# 1234 address
|module_name1|local_symbol1 address
|module_name1|local_symbol2 address
...
|module_name1|local_symbolN address

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN is a
five digit decimal line number. The addresses associated with global
and local symbols are specific to the processor for which the HP 64000
files were generated.

Note When the line number symbol is displayed in the emulator, it appears
in brackets. Therefore, the symbol “MODNAME: line 345” will be
displayed as “MODNAME:[345]” in mnemonic memory and trace list
displays.

A-2 File Format Readers

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “main.c:count” as shown below.

Module Name Variable Name You Enter:

main.c count main.c:count

main.c line number 23 main.c: line 23

You access line number symbols by entering the following on one line
in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

main.c: line 23

Location of the
HP 64000 Reader

Program

The HP 64000 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64000 Reader and PC Interface
to operate properly. The PATH is usually defined in the
“\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

File Format Readers A-3

Using the Reader
from MS-DOS

The command name for the HP 64000 Reader is RHP64000.EXE. To
execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

-q This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA” and
“TESTPROG.HPS”

RHP64000 TESTPROG.L

Using the Reader
from the PC Interface

The PC Interface has a file format option under the “Memory Load”
command. After you select HP64000 as the file format, the HP 64000
Reader will operate on the file you specify. After this completes
successfully, the PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.

2. Select “Memory Load.” The memory load menu will appear.

3. Specify the file format as “HP64000.” This will appear as the
default file format.

4. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

Using the HP 64000 file that you specify (TESTFILE.L, for example),
the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

A-4 File Format Readers

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64000 linker
symbol file creation date/time, the HP 64000 Reader recreates
them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date and time for
the HP 64000 linker symbol file, the HP 64000 Reader will
not recreate TESTFILE.HPA. The current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface.

When running the HP 64000 Reader at the MS-DOS command line
prompt, the HP 64000 Reader will always update the absolute and
symbol files.

When the HP 64000 Reader operates on a file, a status message will be
displayed indicating that it is reading an HP 64000 file. When the HP
64000 Reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

The PC Interface executes the Reader with the “-q” (quiet) option by
default.

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, you will
need to exit the PC Interface and execute the program at the MS-DOS
command prompt to create the files that are downloaded to the
emulator.

File Format Readers A-5

Including RHP64000
in a Make File

You may wish to incorporate the “RHP64000” process as the last step
in your “make file,” as a step in your construction process, to eliminate
the possibility of having to exit the PC Interface due to space
limitations describe above. If the files with “.HPA” and “.HPS”
extensions are not current, loading an HP 64000 file will automatically
create them.

Using the HP
64869 Reader

A HP 64869 format "reader" is provided with the PC Interface. The
HP 64869 Reader converts a HP 64876 format file into two files that
are usable with the HP 64736 emulator. This means you can use
available language tools to create HP 64876 format absolute files, then
load those files into the emulator using the H8/338 PC Interface.

The HP 64869 Reader can operate from within the PC Interface or as a
separate process. Operation from within the PC Interface is available if
there is enough memory on your personal computer to run the PC
Interface and HP 64869 Reader simultaneously.

You can also run the reader as part of a "make file."

What the Reader
Accomplishes

Using any HP 64876 format absolute file in the form "<file>.<ext>",
the HP 64869 Reader will produce two new files, an "absolute" file and
an ASCII symbol file, that will be used by the H8/330 PC Interface.

The Absolute File

During execution of the HP 64869 Reader, an absolute file
(<file>.HPA) is created. This absolute file is a binary memory image
which is optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.HPS) produced by the HP 64869 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools like a "C" compiler, program line
numbers. Local symbols evaluate to a fixed (static, not stack relative)
address.

A-6 File Format Readers

Note You must use the required options for you specific language tools to
include symbolic ("debug") information in the HP 64876 format
absolute file.

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 address
global_symbol2 address
...
global_symbolN address
|module_name|local_symbol1 address
|module_name|local_symbol2 address
...
|module_name|local_symbolN address
|module_name|# 1234 address

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is a
five digit decimal line number. Line numbers should appear in
ascending order in both the line number itself and its associated
address.

Note When the line number symbol is displayed in the emulator, it appears
as a bracketed number. Therefore, the symbol "modname:# 345" will
be displayed as "modname:[345]" in mnemonic memory and trace list
displays

The space preceding module names is required. Although formatted
for readability here, a single tab separates symbol and address.

File Format Readers A-7

The local symbols are scoped. When accessing the variable named
"count" in the source file module named "main.c", you would enter
"main:count". Notice that the module name of the source file "main.c"
is "main". see Table A-2.

Module Name Variable Name You Enter:

main count main:count

main line number 23 main: line 23

Location of the HP
64869 Reader

Program

The HP 64869 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64869 Reader and PC Interface
to operate properly. This is usually defined in "\autoexec.bat" file.

Using the HP 64869
Reader from MS-DOS

The command name for the HP 64869 Reader is RD64869.EXE. You
can execute the HP 64869 Reader from the command line with the
command:

C:\HP64700\BIN\RD64869 [-q]
<filename> <RETURN>

where:

[-q] specifies the "quiet" mode. This option suppresses
the display of messages.

<filename> is the name of the file containing the HP 64876
format absolute program.

The command

C:\HP64700\BIN\RD64869 TESTPROG.ABS

will therefore create the files "TESTPROG.HPA" and
"TESTPROG.HPS".

A-8 File Format Readers

Using the HP 64869
Reader from the PC

Interface

The H8/338 PC Interface has a file format option under the "Memory,
Load" command. After you select this option, the HP 64869 Reader
will operate on the file you specify. After this completes successfully,
the H8/338 PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface, follow these steps:

1. Start up the H8/338 PC Interface.

2. Select "Memory, Load". The memory load menu will appear.

3. Specify the file format as "HP64876". This will appear as the
default file format.

4. Specify a file in HP 64876 format ("TESTFILE.ABS", for
example,). The file extension can be something other than
".ABS", but cannot be ".HPA", ".HPT", or ".HPS".

Note The "<filename>.HPT" file is a temporary file used by the HP 64869
Reader to process the symbols.

Using the HP 64876 format file that you specify (TESTFILE.ABS, for
example), the PC Interface performs the following:

Checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64869 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64876 format
file creation date/time, the HP 64869 Reader recreates them.
The new absolute file, TESTFILE.HPA, is then loaded into
the emulator.

File Format Readers A-9

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date/time for the HP
64876 format file, the current absolute file, TESTFILE.HPA,
is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface. When
running the HP 64869 Reader at the MS-DOS command line prompt,
the HP 64869 Reader will always update the absolute and symbol files.

When the HP 64869 Reader operates on a file, a status message will be
displayed indicating that it is reading a HP 64876 format file. When
the HP 64869 Reader completes its processing, another message will
be displayed indicating the absolute file is being loaded.

If the Reader Won’t
Run

If your program is very large, then the PC Interface may run out of
memory while attempting to create the database file used. If this
condition occurs, you will need to exit the PC Interface and execute the
program at the command prompt to create the files that are downloaded
to the emulator.

Including RD64869 in
a Make File

You may wish to incorporate the "RD64869" process as the last step in
your "make" file, or as a step in your construction process, so as to
eliminate the possibility of having to exit the PC Interface due to space
limitations describe above. If the "-.HPA" and "-.HPS" files are not
current, the process of loading an HP 64876 format file will
automatically create them.

A-10 File Format Readers

Index

A absolute files
.HPA created by HP 64869 Reader, A-6
<file>.hpa created by HP 64000 Reader, A-1
loading, 2-12
storing, 5-5

analysis begin, 2-29
analysis display, 2-29
analysis specification

resetting the, 2-27
saving, 2-29
trigger condition, 2-27
triggering by data, 2-38

analyzer
features of, 1-4
status qualifiers, 2-28
triggering by data, 2-38
using the, 2-27

ASCII symbol file (<file>.hps), A-1
ASCII symbol files

.HPS created by HP 64869 Reader, A-6
assemblers, 2-9
assembling the getting started sample program, 2-6

B BNC connector, 5-2
break command, 2-20, 2-23, 2-41
breakpoints

software, 2-24
breaks, 1-4

guarded memory accesses, 2-9
on analyzer trigger, 5-3
software breakpoints, 1-4
write to ROM, 4-4
writes to ROM, 2-9

C cautions
filenames in the memory store command, 5-5
internal memory must be assigned as emulation memory, 2-9

Index-1

real-time dependent target system circuitry, 4-4
characterization of memory, 2-9
cim, Terminal Interface command, 2-24
clock source

external, 4-3
internal, 4-3

clock source selection, emulator configuration, 4-3
clock speed, 1-4
CMB (coordinated measurement bus), 5-2

enabling interaction, 4-5
execute signal while emulator is reset, 2-41
signals, 5-2

command file
creating and using, 2-39

commands (PC Interface), selecting, 2-8
Configuration

for sample program, 2-8
reset value for stack pointer, 2-8

configuration (emulator)
accessing, 4-2
break processor on write to ROM, 4-4
clock selection, 4-3
enable /NMI input, 4-6
enable CMB interaction, 4-5
enable software breakpoints, 4-5
honor target reset, 4-7
loading, 4-11
processor mode, 4-8
processor type, 4-7 - 4-8
restrict to real-time runs, 4-3
stack pointer, 4-9
storing, 4-10

configuration(hardware), installing the emulator, 2-2
coordinated measurements

break on analyzer trigger, 5-3
definition, 5-2
multiple emulator start/stop, 4-5
run at /EXECUTE, 5-3

count, step command, 2-20

D device table, emulator, 2-7
displaying the trace, 2-29

2-Index

E emulation analyzer, 1-4
emulation memory, 1-4

RAM and ROM, 2-9
size of, 2-9

emulator
before using, 2-2
clock speed, 1-4
device table, 2-7
features of, 1-3
memory mapper resolution, 2-9
prerequisites, 2-2
purpose of, 1-1
reset, 2-41
running from target reset, 3-10
status, 2-8
supported microprocessors, 1-3

Emulator limitations, 1-5
eram, memory characterization, 2-9
erom, memory characterization, 2-9
EXECUTE

CMB signal, 5-2
run at, 5-3

executing programs, 2-22
exiting the PC Interface, 2-42
external clock source, 4-3

F features of the emulator, 1-3
file format

HP 64876, A-6
file formats

HP64000, A-4
find data in memory, 2-23
function codes

memory mapping, 2-9

G getting started
prerequisites, 2-2

global symbols, 2-14, 2-19
grd, memory characterization, 2-9
guarded memory accesses, 2-9

H hardware installation, 2-2
HP 64000 Reader, A-1

Index-3

 using with PC Interface, A-4
HP 64000 Reader command (RHP64000.EXE), A-4
HP 64869 Reader

 using with PC Interface, A-9
HP 64869 Reader command (RD64869.EXE), A-8
HP 64876 format, 2-13

loading, 2-13
HP64000 file format, A-4
HP64000 format, 2-13
HPTABLES environment variable, 2-7

I in-circuit emulation, 4-1
installation

hardware, 2-2
software, 2-2

Installing target system probe
target system probe, 3-2

internal clock source, 4-3

L Limitations
foreground monitor, 1-5
RAME enable bit is not effective, 1-6
sleep and software standby mode, 1-5
step command and interrupts, 1-6
store condition and trace, 1-6

limitations of the emulator, 1-5
line numbers, 2-30
link the sample program, 2-6
linkers, 2-9
load map, 2-9
loading absolute files, 2-12
local symbols, 2-15, 2-25, A-3, A-8
locked, PC Interface exit option, 2-42
logging of commands, 2-39

M make file, A-1, A-6
mapping memory, 2-9
memory

displaying in mnemonic format, 2-18
emulation, 1-4
mapper resolution, 1-4
mapping, 2-9
modifying, 2-21

4-Index

re-assignment of emulation memory blocks, 2-12
searching for data, 2-23

memory characterization, 2-9
memory mapping

function codes, 2-9
ranges, maximum, 2-9

microprocessors, supported by HP 64736 emulator, 1-3

N non-maskable interrupt, 4-6
notes

"Timing" option only with external analyzer, 5-4
absolute file names for stored memory, 5-5
CMB interaction enabled on execute command, 4-6
config. option for reset stack pointer recommended, 4-10
date checking only in PC Interface, A-5, A-10
displaying complete traces, 2-30
re-assignment of emul. mem. blocks by mapper, 2-12
register command, 2-20
setting software bkpts. while running user code, 2-25
software breakpoint locations, 2-24
software breakpoints and ROM code, 2-24
terminal window to modify emul. config., 4-2
use required options to include symbols, A-2, A-7
write to ROM analyzer status, 4-4

O out-of-circuit emulation, 4-1

P PC Interface
exiting the, 2-42
HP 64000 Reader, A-4
HP 64869 Reader, A-9
selecting commands, 2-8
starting the, 2-7

pin guard
conductive pin guard for H8/329 emulator, 3-3
non-conductive pin guard for H8/338 emulator, 3-3
target system probe, 3-2

pin protector
target system probe, 3-3

predefining stack pointer, 4-9
prerequisites for getting started, 2-2
processor operation mode, 4-8

Index-5

processor type, 4-7 - 4-8
purpose of the emulator, 1-1

Q qualifiers, analyzer status, 2-28

R RAM, mapping emulation or target, 2-9
Raw HP64000 format, 2-13
reader

RD64869, A-6
READY, CMB signal, 5-2
real-time operation, 1-5
real-time runs

restricting the emulator to, 4-3
register class

H8/329, 5-11
H8/338, 5-6

register display/modify, 2-20
register name

H8/329, 5-11
H8/338, 5-6

registers, 1-4
relocatable files, 2-9
reset, 2-41
reset (emulator)

running from target reset, 3-10
reset(emulator), 1-5
resetting the analyzer specifications, 2-27
restrict to real-time runs

emulator configuration, 4-3
permissible commands, 4-3
target system dependency, 4-4

ROM
mapping emulation or target, 2-9
writes to, 2-9

run at /EXECUTE, 5-3
run from target reset, 3-10
running programs, 2-22

S s Command
step command and interrupts, 1-6

sample program, linking, 2-6
sample programs

for getting started, 2-2

6-Index

saving analysis specifications, 2-29
searching for data in memory, 2-23
selecting PC Interface commands, 2-8
simple trigger, specifying, 2-27
single-step, 1-4
software breakpoints, 1-4, 2-24

clearing, 2-26
defining (adding), 2-25
displaying, 2-26
enabling, 4-5
setting, 2-26

software installation, 2-2
specifications

See analysis specification
stack pointer

reset value, 2-8
stack pointer,defining, 4-9
starting the trace, 2-29
status (analyzer) qualifiers, 2-28
status line, 2-8
status qualifiers, H8/338, 2-28
step, 2-19

count specification, 2-20
supervisor stack pointer

required for proper operation, 4-10
symbols, 2-14

.HPS file format, A-2, A-7
global, 2-19
local, 2-25, A-2, A-7

T target reset
running from, 3-10

target system, 1-1
interface (H8/329), 3-8
interface (H8/338), 3-6

target system dependency on executing code, 4-4
Target system probe

cautions for installation, 3-2
installation, 3-2
installation procedure, 3-3
pin guard, 3-2
pin protector, 3-3

Index-7

target system RAM and ROM, 2-9
trace

analyzer signals, 2-27
description of listing, 2-30
displaying the, 2-29
starting the, 2-29
store condition and its effect, 2-35

tram, memory characterization, 2-9
TRIG1, TRIG2 internal signals, 5-3
trigger, 2-27

breaking into monitor on, 5-3
specifying a simple, 2-27

trigger state, 2-30
TRIGGER, CMB signal, 5-2
trom, memory characterization, 2-9

U undefined software breakpoint, 2-24
unlocked, PC Interface exit option, 2-42
using the HP 64000 file reader, A-1

W write to ROM break, 4-4

Z zoom, window, 2-14, 2-18

8-Index

	Using This Manual
	Contents
	Introduction to the H8/338 Emulator
	Getting Started
	Using the H8/338 Emulator In-Circuit
	Configuring the Emulator
	Using the Emulator
	File Format Readers
	Index

