
HP 64791/2

70208H/70216H Emulator
Softkey Interface

User’s Guide

HP Part No. 6 4791-97011
Printed in U.S.A.
July 1994

Edition 4

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1991, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

V40 and V50 are trademarks of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304 U.S.A. Rights for non-DOD U.S.Government Departments
and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes and, manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3
Edition 4

64791-97002, August 1991
64791-97005, November 1991
64791-97008, December 1993
64791-97011, July 1994

Using this Manual

This manual will show you how to use the following emulators with
the Softkey Interface.:

HP 64791A 70208 emulator
 HP 64792A 70216 emulator
 HP 64791B 70208H emulator

 HP 64792B 70216H emulator

For the most part, these emulators all operate the same way.
Differences between the emulators are described where they exist.
These 70208, 70208H, 70216 and 70216H emulators will be
referred to as the "70216 emulator" in this manual where they are
alike. In the specific instances where 70208, 70208H and 70216H
emulator differs from the 70216 emulator, it will be referred as the
"70208 emulator", "70208H emulator" and "70216H emulator".

This manual will:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected
to a target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, selecting a target system
clock source, and allowing the target system to insert wait
states.

This manual will not:

Show you how to use every Softkey Interface command
and option; the Softkey Interface is described in the
Softkey Interface Reference manual.

Organization

Chapter 1 Introduction to the 70216 Emulator. This chapter briefly
introduces you to the concept of emulation and lists the basic
features of the 70216 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display
registers, step through programs, run programs, set software
breakpoints, search memory for data, and use the analyzer.

Chapter 3 "In-Circuit" Emulation . This chapter shows you how to install the
emulator probe into a target system and how to use "in-circuit"
emulation features.

Chapter 4 Configuring the Emulator. This chapter shows you how to: restrict
the emulator to real-time execution, select a target system clock
source, allow the target system to insert wait states, and select
foreground or background monitor.

Chapter 5 Using the Emulator. This chapter describes emulation topics
which are not covered in the "Getting Started" chapter.

Appendix A Using the Foreground Monitor. This appendix describes the
advantages and disadvantages of foreground and background
monitors and how to use foreground monitor.

Contents

1 Introduction to the 70216 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70216 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-4
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-5
Reset Support . 1-5
Configurable Target System Interface 1-5
Foreground or Background Emulation Monitor 1-5
Real-Time Operation . 1-6
Easy Products Upgrades . 1-6

Limitations, Restrictions . 1-7
DMA Support . 1-7
TC bit of DMA Status Register 1-7
User Interrupts . 1-7
Interrupts While Executing Step Command 1-7
Evaluation chip . 1-7

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-3

Entering the Softkey Interface . 2-5
From the "pmon" User Interface 2-5
From the HP-UX Shell . 2-6
Configure the Emulator for Examples 2-8

Contents-1

On-Line Help . 2-9
Softkey Driven Help . 2-9
Pod Command Help . 2-10

Loading Absolute Files . 2-11
Displaying Symbols . 2-12

Global . 2-12
Local . 2-13
Source Lines . 2-14

Displaying Memory in Mnemonic Format 2-15
Symbols in the Display . 2-16
Source Lines in the Display 2-17

Using Software Breakpoints . 2-18
Enabling/Disabling Software Breakpoints 2-19
Setting a Software Breakpoint 2-19

Running the Program . 2-20
From Transfer Address . 2-20
From Reset . 2-21

Stepping Through the Program 2-22
Modifying Memory . 2-23
Breaking into the Monitor . 2-24
Displaying Registers . 2-25
Stepping Through the Program 2-26
Using the Analyzer . 2-28

Specifying a Simple Trigger 2-28
Displaying the Trace . 2-29
Displaying Trace with Time Count Absolute 2-31
Displaying Trace with Compress Mode 2-32
Changing the Trace Depth 2-33
Emulator Analysis Status Qualifiers 2-33

Resetting the Emulator . 2-34
Exiting the Softkey Interface . 2-34

End Release System . 2-34
Ending to Continue Later . 2-34
Ending Locked from All Windows 2-35
Selecting the Measurement System Display
or Another Module . 2-35

2-Contents

3 "In-Circuit" Emulation

Introduction . 3-1
Prerequisites . 3-1
Installing the Target System Probe 3-2

Auxiliary Output Lines . 3-3
Installing into a PLCC Type Socket 3-5
Installing into a PGA Type Socket 3-6
In-Circuit Configuration Options 3-8
Running the Emulator from Target Reset 3-9
Target System Interface . 3-10

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration 4-4

Micro-processor Clock Source? 4-4
Enter Monitor After Configuration? 4-4
Restrict to Real-Time Runs? 4-6

Memory Configuration . 4-7
Monitor Type? . 4-7
Mapping Memory . 4-10

Emulator Pod Configuration . 4-12
Respond to DMARQ0-3 from target system in background?4-12
Use FPP on target system? 4-12
Memory display mnemonic? (70208/70208H Emulator) . . 4-13
Memory display mnemonic? (70216/70216H Emulator) . . 4-13
Dis-assembler mode? . 4-14
Segmemt algorithm ? . 4-15
Reset value for the stack pointer? 4-16
Respond to RESET from target system? 4-16
Respond to NMI from target system? 4-17
Respond to READY from target system for accessing to
emulation memory? . 4-18
Respond to HLDRQ from target system? 4-18
Target memory access size? 4-19

Debug/Trace Configuration . 4-20
Break Processor on Write to ROM? 4-20
Trace Background or Foreground Operation? 4-21
Trace Internal DMA cycles? 4-21
Trace bus cycles in HOLD state ? 4-21
Trace refresh cycles? . 4-22

Simulated I/O Configuration . 4-23

Contents-3

External Analyzer Configuration 4-23
Interactive Measurement Configuration 4-23
Saving a Configuration . 4-23
Loading a Configuration . 4-24

5 Using the Emulator

Introduction . 5-1
Register Names and Classes . 5-2

BASIC(*) class . 5-2
SIO class (70208/70216 Emulator) 5-2
SIO class (70208H/70216H Emulator) 5-3
ICU class . 5-4
TCU class . 5-4
SCU class . 5-5
DMA71 class . 5-5
DMA37 class (70208H/70216H Emulator only) 5-6

Features Available via Pod Commands 5-7
Storing Memory Contents to an Absolute File 5-8
Coordinated Measurements . 5-8

A Using the Foreground Monitor

Introduction . A-1
Comparison of Foreground and Background Monitors A-1

Background Monitors . A-2
Foreground Monitors . A-2

An Example Using the Foreground Monitor A-3
Modify EQU Statement . A-3
Assemble and Link the Monitor A-4
Modifying the Emulator Configuration A-4
Load the Program Code . A-6
Single Step and Foreground Monitors A-7

Limitations of Foreground Monitors A-8
Synchronized MeasurementsCMB A-8

4-Contents

Illustrations

Figure 1-1. HP 64792 Emulator for uPD70216 1-2
Figure 2-1. The "cmd_rds.c" Sample Program 2-4
Figure 2-2. Softkey Interface Display 2-7
Figure 3-1. Auxiliary Output Lines (70216 Emulator) 3-3
Figure 3-2. Installing into a PLCC type socket 3-5
Figure 3-3. Installing into a PGA type socket 3-7

Contents-5

Notes

6-Contents

1

Introduction to the 70216 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70216 emulator is designed to replace the 70216 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1. HP 64792 Emulator for uPD70216

1-2 Introduction

Features of the
70216 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The HP 64791/2 emulator supports the following packages of
microprocessor.

Model No. Microprocessor Package

HP 64791A uPD70208 68-pin PLCC
68-pin PGA

HP 64792A uPD70216 68-pin PLCC
68-pin PGA

HP 64791B uPD70208H 68-pin PLCC
68-pin PGA

HP 64792B uPD70216H 68-pin PLCC
68-pin PGA

The HP 64791/2 emulator probe has a 68-pin PLCC connector. When
you use 68-pin PGA type microprocessor, you must use with PLCC to
PGA adapter; refer to the "In-Circuit Emulation Topics" chapter in this
manual.

Clock Speeds The 70208 and 70216 emulator runs with an internal clock speed of
8MHz (system clock), or with target system clocks from 2 to 10 MHz.

The 70208H and 70216H emulator runs with an internal clock speed of
16 MHz (system clock) or with target system clocks from 1 to 16
MHz.

Introduction 1-3

Emulation memory The HP 70216 emulator is used with one of the following Emulation
Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card
HP 64729 2M byte Emulation Memory Card

When you use the HP 64729, You can only use 1M byte for emulation
memory.
You can define up to 16 memory ranges (at 128 byte boundaries and at
least 128 byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target system
ROM, or as guarded memory. The emulator generates an error
message when accesses are made to guarded memory locations. You
can also configure the emulator so that writes to memory defined as
ROM cause emulator execution to break out of target program
execution.

Analysis The HP 70216 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer
HP 64704 80-channel Emulation Bus Analyzer
HP 64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70216 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

1-4 Introduction

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses the BRK 3 instruction(CC hex) as software breakpoint
interrupt instruction. When you define a software breakpoint, the
emulator places the breakpoint interrupt instruction (CC hex) at the
specified address; after the breakpoint interrupt instruction causes
emulator execution to break out of your program, the emulator replaces
the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory. You can configure the
emulator so that it presents cycles to, or hides cycles from, the target
system when executing in background.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70216 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background, the emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy any processor address space.

Introduction 1-5

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A/B Card Cage. This means that you’ll be able to update
product firmware, if desired, without having to call an HP field
representative to your site.

1-6 Introduction

Limitations,
Restrictions

DMA Support Direct memory access to emulation memory by external DMA
controller is not permitted.

TC bit of DMA Status
Register

While using the uPD71071 or the uPD71037 DMA mode on the
70208H emulator, or using the uPD71037 DMA mode on the 70216H
emulator, when the emulator read the other than DST register, the TC
bit of the DST is reset. If you know the DMA Status, you have to use
the count register in the place of the TC bit.

User Interrupts If you use the background monitor, NMI and INTP1-7 from the target
system are suspended until the emulator goes into foreground operation.

Interrupts While
Executing Step

Command

While executing user program code in stepping in the foreground
monitor, interrupts are accepted if they are enabled in the foreground
monitor program. When using the background monitor the emulator
will fail to step, if the interrupts are acknowledged before stepping user
program code.

Evaluation chip Hewlett-Packard makes no warranty of the problem caused by the
70208/70208H/70216/70216H Evaluation chip in the emulator.

Introduction 1-7

Notes

1-8 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64792 emulator with the Softkey Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s examples.

This chapter will show you how to:

Start up the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual show you how to do this.

2. Installed the Softkey Interface software on your computer.
Refer to the HP 64700 Series Installation/Service manual for
instructions on installing software.

3. In addition, you should read and understand the concepts of
emulation presented in the Concepts of Emulation and
Analysis manual. The Installation/Service manual also covers
HP 64700 system architecture. A brief understanding of these
concepts may help avoid questions later.

You should read the Softkey Interface Reference manual to
learn how to use the Softkey Interface in general. For the
most part, this manual contains information specific to the
70216 emulator.

2-2 Getting Started

A Look at the Sample
Program

The sample program used in this chapter is shown in Figure 2-1.
The program continuously reads values from Cmd_Input ; when a
value other than NULL is found, the program calls the Write_Msg
function to copy a string to the Msg_Dest array.

The sample program and the associated output files, including the HP
format absolute files, have been shipped with the Softkey Interface;
copy these files to the current directory with the following command:

$ cp /usr/hp64000/demo/emul/hp64791/* .
(70208,70208H)
$ cp /usr/hp64000/demo/emul/hp64792/* .
(70216,70216H)

The file cmd_rds.X contains the absolute code of the program. The file
cmd_rds.L contains the list of global symbols. The files cmd_rds.A
contains the list of local symbols for the respective files.

The user interface provides source line referencing if line information
is present in the local symbol file.

Getting Started 2-3

 1 volatile char Cmd_Input;
 2 char Msg_Dest[0x20];
 3
 4 void Write_Msg (const char *s)
 5 {
 6 char *Dest_Ptr;
 7
 8 Dest_Ptr = Msg_Dest;
 9 while (*s != ’\0’)
 10 {
 11 *Dest_Ptr = *s;
 12 Dest_Ptr++;
 13 s++;
 14 }
 15 }
 16
 17 main ()
 18 {
 19 static char Msg_A[] = "Command A Entered ";
 20 static char Msg_B[] = "Entered B Command ";
 21 static char Msg_I[] = "Invalid Command ";
 22 char c;
 23
 24 for (;;)
 25 {
 26 Cmd_Input = ’\0’;
 27 while ((c = Cmd_Input) == ’\0’);
 28 switch (c) {
 29 case ’A’ :
 30 Write_Msg (Msg_A);
 31 break;
 32 case ’B’ :
 33 Write_Msg (Msg_B);
 34 break;
 35 default :
 36 Write_Msg (Msg_I);
 37 break;
 38 }
 39 }
 40 }

Figure 2-1. The "cmd_rds.c" Sample Program

2-4 Getting Started

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software as
directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The Softkey
Interface can be entered through the pmon User Interface Software or
from the HP-UX shell.

If you have used previous HP 64000-UX emulators (for
example, HP 64200 Series), you may be more familiar with
the pmon, msinit, and msconfig method of entering the
emulation interface.

If you wish to run the Softkey Interface in multiple windows,
you must enter from the HP-UX shell using the emul700
command. Refer to the Softkey Interface Reference manual
for more information on running in multiple windows.

From the "pmon"
User Interface

If /usr/hp64000/bin is specified in your PATH environment variable,
you can enter the pmon User Interface with the following command.

$ pmon <RETURN>
If you have not already created a measurement system for the 70216
emulator, you can do so with the following commands. First you must
initialize the measurement system with the following command.

MEAS_SYS msinit <RETURN>
After the measurement system has been initialized, enter the
configuration interface with the following command.

msconfig <RETURN>
To define a measurement system for the 70216 emulator, enter:

make_sys emv50 <RETURN>

Getting Started 2-5

Now, to add the emulator to the measurement system, enter:

add <module_number> naming_it n70216 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

end <RETURN>

If the measurement system and emulation module are named "emv50"
and "n70216" as shown above, you can enter the emulation system
with the following command:

emv50 default n70216 <RETURN>

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. Error
messages are described in the Softkey Interface Reference manual.

For more information on creating measurements systems, refer to the
Softkey Interface Reference manual.

From the HP-UX Shell If /usr/hp64000/bin is specified in your PATH environment variable,
you can also enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).
For example, the emulator name in the device table entry shown below
is "v40" for n70208, "v40h" for n70208h, "v50" for n70216 and "v50h"
for n70216h.

#-------------+---------+--------------------+----+------+------+----+----+----
| | |xpar| baud |parity|flow|stop|char
logical name|processor| physical |mode| rate | | |bits|size
(14 chars) | type | device | | | |XON | |
| | |OFF | | NONE |RTS | 2 | 8
#-------------+---------+--------------------+----+------+------+----+----+----
v40 n70208 /dev/emcom23 OFF 230400 NONE RTS 2 8
v40h n70208h /dev/emcom23 OFF 230400 NONE RTS 2 8
v50 n70216 /dev/emcom23 OFF 230400 NONE RTS 2 8
v50h n70216h /dev/emcom23 OFF 230400 NONE RTS 2 8

2-6 Getting Started

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file has
been loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. Error messages are
described in the Softkey Interface Reference manual.

 HPB3066-19309 A.05.20 11May93

 70216/70216H EMULATION SERIES 64700

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1992

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

STATUS: Loaded configuration file_____________________________________...R....

run trace step display modify break end ---ETC--

Figure 2-2. Softkey Interface Display

Getting Started 2-7

Configure the
Emulator for

Examples

To do operations described in this chapter (loading absolute program
into emulation memory, displaying memory contents, etc), you need to
configure the emulator as below. For detailed description of each
configuration options (question), refer to the "Configuring the
Emulator" chapter.

To get into the configure session of the emulator, enter the following
command.

modify configuration <RETURN>
The answer to series of questions as below.

Micro-processor clock source? internal <RETURN>

Enter monitor after configuration? yes <RETURN>

Restrict to real-time runs? no <RETURN>

Modify memory configuration? yes <RETURN>

Monitor type? background <RETURN>

Now you should be facing memory mapping screen. Three mapper
terms must be specified for the sample program.

 0h thru 0ffh emulation ram <RETURN>

 10000h thru 1ffffh emulation ram <RETURN>

 80000h thru 80fffh emulation rom <RETURN>

 end <RETURN>

Modify emulator pod configuration? no <RETURN>

Modify debug/trace options? no <RETURN>

Modify simulated I/O configuration? no <RETURN>

Modify external analyzer configuration? no <RETURN>

Modify interactive measurement specification? no <RETURN>

Configuration file name? cmd_rds <RETURN>

If you wish to save the configuration specified above, answer this
question as shown.

Now you are ready to go ahead. Above configuration is used through
out this chapter.

2-8 Getting Started

On-Line Help There are two ways to access on-line help in the Softkey Interface. The
first is by using the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface on-line
help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type either
"help" or "?" on the command line; you will notice a new set of
softkeys. By pressing one of these softkeys and <RETURN>, you can
cause information on that topic to be displayed on your screen. For
example, you can enter the following command to access "system
command" help information.

? system_commands <RETURN>

The help information is scrolled on to the screen. If there is more than
a screenful of information, you will have to press the space bar to see
the next screenful, or the <RETURN> key to see the next line, just as
you do with the HP-UX more command. After all the information on
the particular topic has been displayed (or after you press "q" to quit
scrolling through information), you are prompted to press <RETURN>
to return to the Softkey Interface.

---SYSTEM COMMANDS & COMMAND FILES---

? displays the possible help files
help displays the possible help files

! fork a shell (specified by shell variable SH)
!<shell command> fork a shell and execute a shell command

pwd print the working directory
cd <directory> change the working directory

pws print the default symbol scope
cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic

forward <UI> "command" send the command in the quoted string from this user
 interface to another one. Replace <UI> with the name
 of the other user interface as shown on the softkeys:

--More--(15%)

Getting Started 2-9

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, you can use the following commands.

display pod_command <RETURN>
pod_command ’help cf’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any Terminal
Interface command, and the output of that command is seen in the
pod_command display. The Terminal Interface help (or ?) command
may be used to provide information on any Terminal Interface
command or any of the emulator configuration options (as the example
command above shows).

Note If you want to use the Terminal Interface command by entering from
keyboard directly, you can do it after entering the following command.

pod_command keyboard

Pod Commands
 Time Command
 bgdma - enable/disable DMA cycle in background
 clk - select internal(32m/20m/116m) or external emulation clock
 fpp - enable/disable FPP support mode
 tghld - enable/disable target hold
 mne - select mnemonic for memory display
 mode - select assembler format
 mon - select foreground or background monitor
 nmi - enable/disable NMI signal from the target system
 rad - segment:offset translation method
 rdy - relationship between emulator and target ready (lk or unlk)
 rrt - enable/disable restrict to real time runs
 rsp - specify the stack after emulation reset
 rst - enable/disable RESET signal from the target system
 tdma - enable/disable DMA cycle trace
 thold - enable/disable hold acknowledge cycle trace
 trfsh - enable/disable refresh cycle trace

STATUS: n70216--Running in monitor___________________________________...R....
 pod_command "help cf"

pod_cmd set perfinit perfrun perfend bbaunld ---ETC--

2-10 Getting Started

Loading Absolute
Files

The "load" command allows you to load absolute files into emulation
or target system memory. You can load absolute files in the following
formats:

HP absolute.

Intel Object Module Format (OMF-86).

The "load" command has no special options for loading different
absolute file formats; instead, the contents of the file are examined to
determine the format being used.

If you wish to load only that portion of the absolute file that resides in
memory mapped as emulation RAM or ROM, use the "load
emul_mem" syntax. If you wish to load only the portion of the
absolute file that resides in memory mapped as target RAM, use the
"load user_mem" syntax. If you want both emulation and target
memory to be loaded, do not specify "emul_mem" or "user_mem".

To load the emulator sample program absolute file, enter the following
command:

load cmd_rds <RETURN>

Getting Started 2-11

Displaying
Symbols

If symbol information is present in the absolute file, it is loaded along
with the absolute file (unless you use the "nosymbols" syntax). Both
global symbols and symbols that are local to a program module can be
displayed.

Global To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol, the segment that
the symbol is associated with, and the offset of that symbol within the
segment.

Global symbols in cmd_rds.X
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
Write_Msg 804C:000C - 004C PROG 0000
_div_by_0_trap 8000:0088 - 00A2 PROG 0000
_exec_funcs 8046:003D - 005D PROG 0000
_exit_msg 8000:02A8 - 02D5 PROG 0000
_fp_trap 8000:013A - 0241 PROG 0000
atexit 8046:0004 - 003C PROG 0000
main 804C:004D - 00EC PROG 0041

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 1009:000C DATA 0000
Err_Handler 803F:0058 PROG 0000
MM_CHECK_L 1000:0000 DATA 0000
MM_CHECK_X 1000:0000 DATA 0000
MONITOR_MESSAGE 1000:000A DATA 0000

STATUS: n70216--Running in monitor___________________________________...R....
 display global_symbols

 run trace step display modify break end ---ETC--

2-12 Getting Started

Local When displaying local symbols, you must include the name of the
module in which the symbols are defined. For example:

display local_symbols_in cmd_rds.c: <RETURN>

As you can see, the procedure symbols and static symbols in
"cmd_rds.c" are displayed.

If there is more than a screenful of information, you can use the up
arrow, down arrow, <Next> or <Prev> keys to scroll the information
up or down on the display.

Symbols in /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
Procedure symbols
Procedure name _________________ Address range __ Segment _____________ Offset
Write_Msg 804C:000C - 004C PROG 0000
main 804C:004D - 00EC PROG 0041

Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 1009:000C DATA 0000
Msg_A 1009:002D DATA 0021
Msg_B 1009:004E DATA 0042
Msg_Dest 1009:000D DATA 0001
Msg_I 1009:006F DATA 0063
_Cmd_Input 1009:000C DATA 0000
_Msg_Dest 1009:000D DATA 0001
_Write_Msg 804C:000C PROG 0000
_main 804C:004D PROG 0041

STATUS: cws: cmd_rds.c:__...R....
 display local_symbols_in cmd_rds.c:

 run trace step display modify break end ---ETC--

Getting Started 2-13

Source Lines To display the address ranges associated with the program’s source
file, you must display the local symbols in the file. For example:

display local_symbols_in cmd_rds.c: <RETURN>

And scroll the information down on the display with up the arrow,or
<Next>key.

Symbols in /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
Symbol name ____________________ Address range __ Segment _____________ Offset

Source reference symbols
Line range _____________________ Address range __ Segment _____________ Offset
#1-#5 804C:000C - 0015 PROG 0000
#6-#8 804C:0016 - 001F PROG 000A
#9-#9 804C:0020 - 0025 PROG 0014
#10-#11 804C:0026 - 0031 PROG 001A
#12-#12 804C:0032 - 0035 PROG 0026
#13-#13 804C:0036 - 0039 PROG 002A
#14-#14 804C:003A - 0048 PROG 002E
#15-#15 804C:0049 - 004C PROG 003D
#16-#18 804C:004D - 0056 PROG 0041
#19-#24 804C:0057 PROG 004B
#25-#26 804C:0058 - 005D PROG 004C
#27-#27 804C:005E - 0076 PROG 0052
#28-#28 804C:0077 - 0099 PROG 006B

STATUS: n70216--Running in monitor___________________________________...R....
 display local_symbols_in cmd_rds.c:

 run trace step display modify break end ---ETC--

2-14 Getting Started

Displaying
Memory in
Mnemonic Format

You can display, in mnemonic format, the absolute code in memory.
For example to display the memory of the sample program,

display memory main mnemonic <RETURN>

Notice that you can use symbols when specifying expressions.
The global symbol main is used in the command above to specify the
starting address of the memory to be displayed.

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
 address data
 804C 004D C8020000 PREPARE 0002,00
 804C 0051 1E PUSH DS0
 804C 0052 B80910 MOV AW,1009
 804C 0055 8ED890 MOV DS0,AW | NOP
 804C 0058 C6060C0000 MOV 000C,00
 804C 005D 90 NOP
 804C 005E EB05 BR SHORT 00065
 804C 0060 90 NOP
 804C 0061 90 NOP
 804C 0062 90 NOP
 804C 0063 90 NOP
 804C 0064 90 NOP
 804C 0065 A00C00 MOV AL,000C
 804C 0068 90 NOP
 804C 0069 90 NOP
 804C 006A 90 NOP

STATUS: n70216--Running in monitor___________________________________...R....
 display memory main mnemonic

 run trace step display modify break end ---ETC--

Getting Started 2-15

Symbols in the
Display

The "set" command allows you to include symbols in mnemonic
memory displays and in the trace displays. For example:

set symbols on <RETURN>

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
 address label data
 804C 004D PROG|_main C8020000 PREPARE 0002,00
 804C 0051 1E PUSH DS0
 804C 0052 B80910 MOV AW,1009
 804C 0055 8ED890 MOV DS0,AW | NOP
 804C 0058 C6060C0000 MOV 000C,00
 804C 005D 90 NOP
 804C 005E EB05 BR SHORT PROG|main+00018
 804C 0060 90 NOP
 804C 0061 90 NOP
 804C 0062 90 NOP
 804C 0063 90 NOP
 804C 0064 90 NOP
 804C 0065 A00C00 MOV AL,000C
 804C 0068 90 NOP
 804C 0069 90 NOP
 804C 006A 90 NOP

STATUS: n70216--Running in monitor___________________________________...R....
 set symbols on

 run trace step display modify break end ---ETC--

2-16 Getting Started

Source Lines in the
Display

The "set" command also allows you to include source lines in
mnemonic memory displays and in the trace displays. For example:

set source on <RETURN>

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
 804C 004D PROG|_main C8020000 PREPARE 0002,00
 804C 0051 1E PUSH DS0
 804C 0052 B80910 MOV AW,1009
 804C 0055 8ED890 MOV DS0,AW | NOP
 25 {
 26 Cmd_Input = ’\0’;
 804C 0058 C6060C0000 MOV 000C,00
 804C 005D 90 NOP
 27 while ((c = Cmd_Input) == ’\0’);
 804C 005E EB05 BR SHORT PROG|main+00018
 804C 0060 90 NOP
 804C 0061 90 NOP
 804C 0062 90 NOP

STATUS: n70216--Running in monitor___________________________________...R....
 set source on

 run trace step display modify break end ---ETC--

Getting Started 2-17

Using Software
Breakpoints

Software breakpoints are handled by the the 70208/70216 single byte
interrupt facility. When you define or enable a software breakpoint to a
specified address, the emulator will replace the opcode with a BRK 3
instruction.

When the software breakpoints are enabled and the emulator detects
the breakpoint interrupt instruction (CC hex), user program breaks to
the monitor, and the original opcode will be replaced at the software
breakpoint address.

Since the system controller knows the locations of the defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction was generated by an enabled software breakpoint or by a
single-byte interrupt instruction in your target system.

If the single-byte interrupt was generated by a software brekpoint,
execution breaks to the monitor, and the brekpoint interrupt instruction
(BRK 3) is replaced by the original opcode. A subsequent run or step
command will execute from this address.

If the single-byte interrupt was geneated by a BRK 3 instruction in the
target system, execution still breaks to the monitor, and an "Undefined
software breakpoint" message is displayed.

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

2-18 Getting Started

Note Because software brekpoints are implemented by the replacing opcodes
with the breakpoint interrupt instruction (CC hex), you can not define
the software breakpoints in the target ROM.

However you can copy target ROM into the emulation memory which
does allow you to use software breakpoints. Once target ROM is
copied into the emulation memory, software breakpoints may be used
normally at the addresses in these emulation memory locations. (see
the "Target ROM Debug Topics" section of the "In-Circuit Emulation"
chapter in the Terminal Interface User’s Guide manual.)

Note You must set software breakpoints only at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software breakpoints
are disabled. To enable the software breakpoints feature, enter the
following command.

modify software_breakpoints enable <RETURN>

Setting a Software
Breakpoint

To set a software breakpoint at the address of global symbol "main" or
(or source line 17), enter the following command.

modify software_breakpoints set main
<RETURN>

or:

modify software_breakpoints set line 17
<RETURN>

Getting Started 2-19

Notice that an asterisk (*) appears next to the breakpoint address. The
asterisk shows that a software breakpoint is pending at that address.

Running the
Program

The "run" command causes the emulator to execute the user program.
Entering the "run" command by itself causes the emulator to begin
executing at the current program counter address. The "run from"
command allows you to specify an address at which execution is to
start.

From Transfer
Address

The "run from transfer_address" command specifies that the emulator
start executing at a previously defined "start address". Transfer
addresses are defined in assembly language source files with the END
assembler directive (i.e., pseudo instruction). Enter:

run from transfer_address <RETURN>

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
*804C 004D PROG|_main CC BRK 3
 804C 004E 0200 ADD AL,(BW)(IX)
 804C 0050 001EB809 ADD 09B8,BL
 804C 0054 108ED890 ADDC (BP-6F28),CL
 25 {
 26 Cmd_Input = ’\0’;
 804C 0058 C6060C0000 MOV 000C,00
 804C 005D 90 NOP
 27 while ((c = Cmd_Input) == ’\0’);
 804C 005E EB05 BR SHORT PROG|main+00018
 804C 0060 90 NOP
 804C 0061 90 NOP
 804C 0062 90 NOP

STATUS: n70216--Running in monitor___________________________________...R....
 modify software_breakpoints set line 17

 run trace step display modify break end ---ETC--

2-20 Getting Started

Notice the highlighted bar on the screen; it shows the current program
counter.

Notice also that the asterisk is no longer next to the breakpoint
address; this shows that the breakpoint has been hit and is no longer
active.

From Reset The "run from reset" command specifies that the emulator begin
executing from reset vector as actual microprocessor does.

(See "Running the Emulator From Taeget Reset" section in the
"In-Circuit Emulation" chapter).

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
>804C 004D PROG|_main C8020000 PREPARE 0002,00
 804C 0051 1E PUSH DS0
 804C 0052 B80910 MOV AW,1009
 804C 0055 8ED890 MOV DS0,AW | NOP
 25 {
 26 Cmd_Input = ’\0’;
 804C 0058 C6060C0000 MOV 000C,00
 804C 005D 90 NOP
 27 while ((c = Cmd_Input) == ’\0’);
 804C 005E EB05 BR SHORT PROG|main+00018
 804C 0060 90 NOP
 804C 0061 90 NOP
 804C 0062 90 NOP

STATUS: n70216--Running in monitor Software break: 0804c:0004d___..R....
 run from transfer_address

 run trace step display modify break end ---ETC--

Getting Started 2-21

Stepping Through
the Program

The step command allows you to step through program execution an
instruction or a number of instructions at a time. You can step though
the instructions associated with high-level program source lines. Also,
you can step from the current program counter or from a specific
address. To step through the example program from the address of the
software breakpoint set earlier, enter the following command.

step source <RETURN>

Notice that the highlighted bar (the current program counter) moves to
the instructions associated with the next source line.

Enter the "step source" command again by pressing:

<RETURN>, <RETURN>
Notice that the emulator continues to step through the program and that
the message "assembly steps taken: XXX" appears on the status line.
This happens because the "while" test remains true, and the emulator
never completes the execution of the assembly instructions associated
with that source line. To stop the "step source" command, enter:

<CTRL>-c

 Memory :mnemonic :file = /usr/hp64000/demo/emul/hp64792/cmd_rds.c:
 address label data
 16
 17 main ()
 18 {
 804C 004D PROG|_main C8020000 PREPARE 0002,00
 804C 0051 1E PUSH DS0
 804C 0052 B80910 MOV AW,1009
 804C 0055 8ED890 MOV DS0,AW | NOP
 25 {
 26 Cmd_Input = ’\0’;
804C 0058 C6060C0000 MOV 000C,00
 804C 005D 90 NOP
 27 while ((c = Cmd_Input) == ’\0’);
 804C 005E EB05 BR SHORT PROG|main+00018
 804C 0060 90 NOP
 804C 0061 90 NOP
 804C 0062 90 NOP

STATUS: n70216--Stepping complete____________________________________...R....
 step source

 run trace step display modify break end ---ETC--

2-22 Getting Started

Continue user program execution with the "run" command.

run <RETURN>

Modifying Memory The sample program is a simple command interpreter. Commands are
sent to the sample program through a "char" sized memory location,
global variable Cmd_Input . You can use the modify memory feature
to send a command to the sample program.
For example, to enter the command "A" (41H), use the following
command:

modify memory Cmd_Input bytes to 41h <RETURN>
or:

modify memory Cmd_Input strings to ’A’
<RETURN>

To verify that the program correctly copied the message "Command A
Entered" to the Msg_Dest array, display the contents of the array with
the following command:

display data Msg_Dest thru +1fh char
<RETURN>

Enter the following commands to verify that the program works for the
other possible command inputs.

modify memory Cmd_Input strings to ’B’
<RETURN>
modify memory Cmd_Input strings to ’C’
<RETURN>

Notice that the display is updated when the memory contents change
due (indirectly) to the "modify memory" command.

Getting Started 2-23

Breaking into the
Monitor

The "break" command causes emulator execution to break from the
user program to the monitor. You can continue user program
execution with the "run" command. To break emulator execution from
the sample program to the monitor, enter the following command.

break <RETURN>

 Data :update
 address label type data
 1009 000D DA|_Msg_Dest char[] Command A Entered

STATUS: n70216--Running user program_________________________________...R....
 display data Msg_Dest thru +1fh char

 run trace step display modify break end ---ETC--

2-24 Getting Started

Displaying
Registers

Enter the following command to display registers. You can display the
basic registers, or an individual register.

display registers <RETURN>

Refer to "Register Names and Classes" section in chapter 5.

Registers

Next_PC 804C:0068H
 PC 0068 SP 7EEA IX 0000 IY 004D BP 7EEE PSW F246
 PS 804C SS 1112 DS0 1009 DS1 1009 [MD ... V DIR IE BRK S Z .AC . P . C]
 AW 1000 BW 0000 CW 0001 DW 1009 1 111 . . 1 . . 1 . . . 1 1 .

STATUS: n70216--Running in monitor___________________________________...R....
 display registers

 run trace step display modify break end ---ETC--

Getting Started 2-25

Stepping Through
the Program

You can step through sample program instructions while displaying
registers. For example, entering several step commands will give you a
display similar to the following.

step <RETURN>, <RETURN>, <RETURN>, ...

Note There are a few cases in which the emulator can not step.
Step command is not accepted between each of the following
instructions and the next instruction.

1) Manipulation instructions for sreg:
 MOV sreg,reg16; MOV sreg,mem16; POP sreg.

2) Prefix instructions:
 PS:, SS:, DS0:, DS1:,
 REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ.

3) EI, RETI, DI, BUSLOCK.

2-26 Getting Started

Continue user program execution with the "run" command.

run <RETURN>

Registers

Next_PC 804C:006BH
 PC 006B SP 7EEA IX 0000 IY 004D BP 7EEE PSW F246
 PS 804C SS 1112 DS0 1009 DS1 1009 [MD ... V DIR IE BRK S Z .AC . P . C]
 AW 1000 BW 0000 CW 0001 DW 1009 1 111 . . 1 . . 1 . . . 1 1 .

Step_PC 804C:006BH MOV (BP-02),AL
Next_PC 804C:006EH
 PC 006E SP 7EEA IX 0000 IY 004D BP 7EEE PSW F246
 PS 804C SS 1112 DS0 1009 DS1 1009 [MD ... V DIR IE BRK S Z .AC . P . C]
 AW 1000 BW 0000 CW 0001 DW 1009 1 111 . . 1 . . 1 . . . 1 1 .

Step_PC 804C:006EH OR AL,AL
Next_PC 804C:0070H
 PC 0070 SP 7EEA IX 0000 IY 004D BP 7EEE PSW F246
 PS 804C SS 1112 DS0 1009 DS1 1009 [MD ... V DIR IE BRK S Z .AC . P . C]
 AW 1000 BW 0000 CW 0001 DW 1009 1 111 . . 1 . . 1 . . . 1 1 .

STATUS: n70216--Stepping complete____________________________________...R....
 step

 run trace step display modify break end ---ETC--

Getting Started 2-27

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer monitors the internal emulation lines (address, data, and
status). Optionally, you may have an additional 16 trace signals which
monitor external input lines. The analyzer collects data at each pulse
of a clock signal, and saves the data (a trace state) if it meets a "storage
qualification" condition.

Specifying a Simple
Trigger

Suppose you want to look at the execution of the sample program after
the address of the first instruction in the Write_Msg function
(cmd_rds.c : line 4). To trigger on this address, enter:

trace after line 4 <RETURN>

The message "Emulation trace started" will appear on the status line.
Now, modify the command input byte to "A" with the following
command.

modify memory Cmd_Input strings to ’A’
<RETURN>

The status line now shows "Emulation trace complete".

2-28 Getting Started

Displaying the Trace To display the trace, enter:

display trace <RETURN>

Line 0 (labeled "after") in the trace list above shows the state which
triggered the analyzer. The trigger state is always on line 0.

If there is data that does not appear on the screen, you can use
<CTRL>f and <CTRL>g to roll the display left and right. The trace
labels, shown on the second line of the display, are described earlier in
this section.

To display the remaining lines of the trace, press the <PGDN> or
<NEXT> key.

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: symbols hex mnemonic w/symbols relative
after PROG|_Write_Msg 04C8 04C8 fetch 840 nS
 ##########.../demo/emul/hp64792/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+001 PROG|_Write_Msg 0000 PREPARE 0004,00 520 nS
+002 |Write_Msg+00002 0000 0000 fetch 360 nS
+003 |Write_Msg+00004 B81E B81E fetch 880 nS
+004 |Write_Msg+00004 7EEE PUSH DS0 760 nS
+005 ct5CAAa03:+07EE0 7EEE 7EEE memory write 120 nS
+006 |Write_Msg+00005 1009 MOV AW,1009 880 nS
+007 ct5CAAa03:+07EDA 1009 1009 memory write 240 nS
+008 |Write_Msg+00006 1009 1009 fetch 880 nS

STATUS: n70216--Running user program Emulation trace complete______...R....
 display trace

 run trace step display modify break end ---ETC--

Getting Started 2-29

Displaying Trace with No Symbol

The trace listing shown above has symbol information because of the
"set symbols on" setting before in this chapter. To see the trace listing
with no symbol information, enter the following command.

set symbols off

As you can see, the analysis trace display shows the trace list without
symbol information.

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic relative
after 804CC 04C8 04C8 fetch 840 nS
 ##########.../demo/emul/hp64792/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+001 804CC 0000 PREPARE 0004,00 520 nS
+002 804CE 0000 0000 fetch 360 nS
+003 804D0 B81E B81E fetch 880 nS
+004 804D0 7EEE PUSH DS0 760 nS
+005 19000 7EEE 7EEE memory write 120 nS
+006 804D1 1009 MOV AW,1009 880 nS
+007 18FFA 1009 1009 memory write 240 nS
+008 804D2 1009 1009 fetch 880 nS

STATUS: n70216--Running user program Emulation trace complete______...R....
 set symbols off

 run trace step display modify break end ---ETC--

2-30 Getting Started

Displaying Trace with
Time Count Absolute

Enter the following command to display count information relative to
the trigger state.

display trace count absolute <RETURN>

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic absolute
after 804CC 04C8 04C8 fetch ------------
 ##########.../demo/emul/hp64792/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+001 804CC 0000 PREPARE 0004,00 + 520 nS
+002 804CE 0000 0000 fetch + 880 nS
+003 804D0 B81E B81E fetch + 1.76 uS
+004 804D0 7EEE PUSH DS0 + 2.52 uS
+005 19000 7EEE 7EEE memory write + 2.64 uS
+006 804D1 1009 MOV AW,1009 + 3.52 uS
+007 18FFA 1009 1009 memory write + 3.76 uS
+008 804D2 1009 1009 fetch + 4.64 uS

STATUS: n70216--Running user program Emulation trace complete______...R....
 display trace count absolute

 run trace step display modify break end ---ETC--

Getting Started 2-31

Displaying Trace with
Compress Mode

If you want to see more executed instructions on a display, the 70216
emulator Softkey Interface provides compress mode for analysis
display. To see trace display with compress mode, enter the following
command:

display trace compress on <RETURN>

As you can see, the analysis trace display shows the analysis trace lists
without prefetch cycles. With this command you can examine program
execution easily.

If you want to see all of cycles including fetch cycles, enter following
command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer
have captured.

Trace List Depth=512 Offset=0
Label: Address Data Opcode or Status w/ Source Lines time count
Base: hex hex mnemonic absolute
 ##########.../demo/emul/hp64792/cmd_rds.c - line 1 thru 5 ########
 volatile char Cmd_Input;
 char Msg_Dest[0x20];

 void Write_Msg (const char *s)
 {
+001 804CC 0000 PREPARE 0004,00 + 520 nS
+004 804D0 7EEE PUSH DS0 + 2.52 uS
+005 19000 7EEE 7EEE memory write + 2.64 uS
+006 804D1 1009 MOV AW,1009 + 3.52 uS
+007 18FFA 1009 1009 memory write + 3.76 uS
+010 804D4 46C7 MOV DS0,AW + 6.00 uS
 ##########.../demo/emul/hp64792/cmd_rds.c - line 6 thru 8 ########
 char *Dest_Ptr;

STATUS: n70216--Running user program Emulation trace complete______...R....
 display trace compress on

 run trace step display modify break end ---ETC--

2-32 Getting Started

Note When the analysis trace is displayed with compress mode, the time
count may not indicate correct time counts. This happens when time
count is relative. Since the compress mode feature is implemented by
eliminating prefetch cycles when displaying analysis trace, relative
time count shows incorrect value. If you are interested in the time
count, display with time count absolute. Absolute value of time count
always show correct value. Keep this note in your mind when display
the trace with compress mode.

Changing the Trace
Depth

The default states displayed in the trace list is 256 states. To reduce the
number of states, use the "display trace depth" command.

display trace depth 512 <RETURN>

Emulator Analysis
Status Qualifiers

The following analysis status qualifiers may also be used with the
70216 emulator.

 Qualifier Status Bits Description
 ----------- ------------------- -----------------------
 exec 0xxx0xxxxxxxxxxxy execute instruction
 fetch 0xxx1xxxx001x100y program fetch
 read 0xxx1xxxxxx0xx01y read
 write 0xxx1xxxxxx0xx10y write
 mem 0xxx1xxxxxx0x1xxy memory access
 intio 0xxx1xxxx00000xxy internal I/O access
 extio 0xxx1xxxx00010xxy external I/O access
 cpu 0xxx1xxxx00xxxxxy cpu cycle
 dma 0xxx1xxxx10x01xxy DMA memory access
 casdma 0xxx1xxxx1010111y cascaded DMA cycle
 refresh 0xxx1xxxx0100101y refresh cycle
 holdack 0xxx1xxxx11xxxxxy hold acknowledge
 intack 0xxx1xxxx001x000y interrupt acknowledge
 haltack 0xxx1xxxxxxx1011y halt acknowledge
 em80 0xx1xxxxxxxxxxxxy 8080 emulation mode
 native 0xx0xxxxxxxxxxxxy native mode
 ds0 0xxx1xx11xxxxxxxy ds0 use cycle
 ds1 0xxx1xx00xxxxxxxy ds1 use cycle
 ss 0xxx1xx01xxxxxxxy ss use cycle
 ps 0xxx1xx10xxxxxxxy ps use cycle
 rom 0xxx1x0xxxxxxxxxy rom access
 grd 0xxx10xxxxxxxxxxy guarded memory access
 usr 0x1xxxxxxxxxxxxxy user cycle
 mon 0x0xxxxxxxxxxxxxy monitor cycle

Getting Started 2-33

Resetting the
Emulator

To reset the emulator, enter the following command.

reset <RETURN>

Exiting the
Softkey Interface

There are several options available when exiting the Softkey Interface:
exiting and releasing the emulation system, exiting with the intent of
reentering (continuing), exiting locked from multiple emulation
windows, and exiting (locked) and selecting the measurement system
display or another module.

End Release System To exit the Softkey Interface, releasing the emulator so that other users
may use the emulator, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You may also exit the Softkey Interface without specifying any
options; this causes the emulator to be locked. When the emulator is
locked, other users are prevented from using it and the emulator
configuration is saved so that it can be restored the next time you enter
(continue) the Softkey Interface.

end <RETURN>

2-34 Getting Started

Ending Locked from
All Windows

When using the Softkey Interface from within window systems, the
"end" command with no options causes an exit only in that window.
To end locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via the
emul700 command. When you enter the Softkey Interface via pmon
and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more information
on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display
or Another Module

When you enter the Softkey Interface via pmon and MEAS_SYS, you
have the option to select the measurement system display or another
module in the measurement system when exiting the Softkey Interface.
This type of exit is also "locked"; that is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface
via the emul700 command.

Getting Started 2-35

Notes

2-36 Getting Started

3

"In-Circuit" Emulation

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulator and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation Topics 3-1

Installing the
Target System
Probe

The 70216 emulator probe has a 68-pin PLCC connector;
The 70216 emulator is shipped with a pin protector over the target
system probe. This guard is designed to prevent impact damage to the
pins and should be left in place while you are not using the emulator.

Caution DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT
IF THESE PRECAUTIONS ARE NOT OBSERVED. The
following precautions should be taken while using the 70216 emulator.

Power Down Target System. Turn off power to the user target
system and to the 70216 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The 70216 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, operators should take precautionary measures before
handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the 70216 emulator; when powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation Topics

Auxiliary Output Line One auxiliary output line, "TARGET BUFFER DISABLE ", is
provided with the 70216 emulator.

Caution DAMAGE TO THE EMULATOR PROBE WILL RESULT IF
THE AUXILIARY OUTPUT LINES ARE INCORRECTLY
INSTALLED.
When installing the auxiliary output line into the end of the emulator
probe cable, make sure that the ground pin on the auxiliary output line
(labeled with white dots) is matched with the ground receptacles in the
end of the emulator probe cable.

Figure 3-1. Auxiliary Output Lines (70216 Emulator)

In-Circuit Emulation Topics 3-3

TARGET BUFFER DISABLE ---This active-high output is used
when the co-processor memory accesses to emulation memory will be
operated. This output is used to tristate (in other words, select the high
Z output) any target system devices on the 70216 data bus. Target
system devices should be tristated because co-processor memory reads
from emulation memory will cause data to be output on the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the
following timing in the co-processor memory access cycle.

3-4 In-Circuit Emulation Topics

Installing into a
PLCC Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70216 microprocessor (PLCC type) from the
target system socket. Note the location of pin 1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Figure 3-2. Installing into a PLCC type socket

In-Circuit Emulation Topics 3-5

Installing into a
PGA Type Socket

You can use an ITT CANNON "LCS-68-12" PLCC connector to plug
into the target system socket of an PGA type. You may use this socket
with the pin protector to connect the microprocessor connector to the
target system.

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70216 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.
Store the microprocessor in a protected environment (such as
antistatic form).
Place the microprocessor connector with a PLCC-to-PGA
socket and a pin protector (see figure 3-3), attached to the end
of the probe cable, into the target system microprocessor
socket.

3-6 In-Circuit Emulation Topics

Figure 3-3. Installing into a PGA type socket

In-Circuit Emulation Topics 3-7

In-Circuit
Configuration
Options

The 70216 emulator provide configuration options for the following
in-circuit emulation issues. Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Using the Target System Clock Source

In the 70208/70216 Emulator, the default emulator configuration
selects the internal 8 MHz (system clock speed) clock as the emulator
clock source. In the 70208H/70216H Emulator, the default emulator
configuration selects the internal 16 MHz (system clock speed) clock
as the emulator clock source. You should configure the emulator to
select an external target system clock source for the "in-circuit"
emulation.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

Note When you use the i8087 coprocessor on your target system connected
to 70216 microprocessor, the i8087 can access 70216 emulation
memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70216
emulator to the i8087 coprocessor before starting emulation session.

Enabling NMI and RESET Input from the Target System

You can configure whether the emulator should accept or ignore the
NMI and RESET signals from the target system.

3-8 In-Circuit Emulation Topics

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET inputs from target system?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

In-Circuit Emulation Topics 3-9

Target System
Interface

RESET This singal is connected to 70216 through
ACT14, 51ohm and 10K ohm pull-up register.

N
MI

This singal is connected to 70216 through
ACT14, 51 ohm and 100K ohm pull-down
register.

3-10 In-Circuit Emulation Topics

AD15-AD0 These singals are connected to 70216 through
FCT245, 51 ohm and 10K ohm pull-up register.

END/TC This singal is connected to 70216 through 51
ohm and 10K ohm pull-up register.

OTHER(OUTPUT) These singals are connected to 70216 through
FCT244, 51 ohm and 10K ohm pull-up
registers.

In-Circuit Emulation Topics 3-11

Notes

3-12 In-Circuit Emulation Topics

4

Configuring the Emulator

Introduction Your 70216 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit
your needs at any stage of the development process. This chapter
describes the options available when configuring the 70216 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions are
listed below and grouped into the following classes.

Configuring the Emulator 4-1

General Emulator Configuration:

– Specifying the emulator clock source.
(Internal/external.)

– Selecting monitor entry after configuration.

– Restricting to real-time execution.

Memory Configuration:

– Selecting the emulation monitor type.

– Mapping memory.

Emulator Pod Configuration:

– Enabling responding to DMARQ0-3 from target system in
background cycles.

– Enabling using to FPP (Floating Point Processor) on target
system.

– Selecting mnemonic type for memory display.

– Selecting dis-assembler mode for assembler format.

– Selecting segment algorithm for physical run addresses.

– Specifying Reset value for the stack pointer.

– Enabling RESET inputs from target system.

– Enabling NMI inputs from target system.

– Enabling READY inputs from target system.

– Enabling HLDRQ (Hold Request) inputs from target
system.

– Selecting target memory and I/O access size.

4-2 Configuring the Emulator

Debug/Trace Configuration:

– Enabling breaks on writes to ROM.

– Specifying tracing of foreground/background cycles.

– Specifying tracing of internal DMA cycles.

– Specifying tracing of HOLD cycles.

– Specifying tracing of refresh cycles.

Simulated I/O Configuration: Simulated I/O is described in the
Simulated I/O reference manual.

External Analyzer Configuration: See the Analyzer Softkey
Interface User’s Guide.

Interactive Measurement Configuration: See the chapter on
coordinated measurements in the Softkey Interface Reference manual.

Configuring the Emulator 4-3

General Emulator
Configuration

The configuration questions described in this section involve general
emulator operation.

Micro-processor
Clock Source?

This configuration question allows you to select whether the emulator
will be clocked by the internal clock source or by a target system clock
source.

internal Selects the internal clock oscillator as the emulator
clock source. In the 70208/70216 Emulator, the
emulators’ internal clock speed is 8MHz (system
clock). In the 70208H/70216H Emulator, the
emulators’ internal clock speed is 16MHz (system
clock).

external Selects an external target system clock source, from
4 MHz up to 20 MHz can be entered in using the
70208/70216 emulator.

In using the 70208H/70216H emulator, from 2 to
32 MHz can be entered.

Note Changing the clock source drives the emulator into the reset state. If
you answer "yes" to the "Enter monitor after configuration?" question
that follows, the emulator resets (due to the clock source change) then
breaks into the monitor when the configuration is saved.

Enter Monitor After
Configuration?

This question allows you to select whether the emulator will be running
in the monitor or held in the reset state upon completion of the
emulator configuration.

How you answer this configuration question is important in some
situations. For example, when the external clock has been selected and
the target system is turned off, reset to monitor should not be selected;
otherwise, configuration will fail. When an external clock source is

4-4 Configuring the Emulator

specified, this question becomes "Enter monitor after configuration
(using external clock)?" and the default answer becomes "no".

yes When reset to monitor is selected, the emulator will
be running in the monitor after configuration is
complete. If the reset to monitor fails, the previous
configuration will be restored.

no After the configuration is complete, the emulator
will be held in the reset state.

Configuring the Emulator 4-5

Restrict to Real-Time
Runs?

The "restrict to real-time" question lets you configure the emulator so
that commands which cause the emulator to break to monitor and
return to the user program are refused.

no All commands, regardless of whether or not they
require a break to the emulation monitor, are
accepted by the emulator.

yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "reset",
"break", "run", and "step") are refused. For
example, the following commands are not allowed
when runs are restricted to real-time:

Display/modify registers.

Display/modify target system memory.

Display/modify I/O.

Caution If your target system circuitry is dependent on constant execution of
program code, you should restrict the emulator to real-time runs. This
will help insure that target system damage does not occur. However,
remember that you can still execute the "reset", "break", and "step"
commands; you should use caution in executing these commands.

4-6 Configuring the Emulator

Memory
Configuration

The memory configuration questions allows you to select the monitor
type, to select the location of the monitor, and to map memory. To
access the memory configuration questions, you must answer "yes" to
the following question.

Modify memory configuration?

Monitor Type? The monitor is a program which is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the processor
instructions which access the target system. After the monitor has
performed its task, execution returns to the user program. Monitor
program execution can take place in the "background" or "foreground"
emulator modes.

In the foreground emulator mode, the emulator operates as would the
target system processor.
In the background emulator mode, foreground execution is suspended
so that the emulation processor may be used for communication with
the system controller, typically to perform tasks which access target
system resources.

A background monitor program operates entirely in the background
emulator mode; that is, the monitor program does not execute as if it
were part of the target program. The background monitor does not take
up any processor address space and does not need to be linked to the
target program. The monitor resides in dedicated background memory.

A foreground monitor program performs its tasks in the foreground
emulator mode; that is, the monitor program executes as if it were part
of the target program. Breaks into the monitor always put the emulator
in the background mode; however, foreground monitors switch back to
the foreground mode before performing monitor functions.

Configuring the Emulator 4-7

Note All memory mapper terms are deleted when the monitor type is
changed!

background The default emulator configuration selects the
background monitor. A memory overlay is created
and the background monitor is loaded into that area.

Note While running in background monitor, the 70216 emulator ignores
target system reset.

When the background monitor is selected, the execution of the monitor
is hidden from the target system (except for background cycles). When
you select the background monitor and the current monitor type is
"foreground", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "foreground" to
"background"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

foreground When you select the foreground monitor, processor
address space is taken up. The foreground monitor
takes up 4K bytes of memory. When the
foreground monitor is selected, breaking into the
monitor still occurs in a brief background state, but
the rest of the monitor program, the saving of
registers and the dispatching of emulation
commands, is executed in foreground.

4-8 Configuring the Emulator

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

When you select the foreground monitor and the current monitor type
is "background", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this
case, you have changed the monitor type from "background" to
"foreground"). This question reminds you that the map will be reset
and allows you to confirm your decision.

no The memory map is not reset, and the monitor type
is not changed.

yes This memory map is reset due to the change in
monitor type.

2. Foreground monitor location?

You can relocate the monitor to any 4K byte boundary. The location
of a foreground monitor is important because it will occupy part of the
processor address space. Foreground monitor locations must not
overlap the locations of target system programs. When entering
monitor block addresses, you must only specify addresses on 4K byte
boundaries; otherwise, the configuration will be invalid, and the
previous configuration will be restored.

Note You should not load the foreground monitor provided with the 70216
emulator at the base address 0 or 0ff000 hex; the 70216
microprocessor’s vector table is located.

Configuring the Emulator 4-9

3. Monitor filename?

This question allows you to specify the name of the foreground
monitor program absolute file. Remember that you must assemble and
link your foreground monitor starting at the 4K byte boundary
specified for the previous "Foreground monitor location?" question.

The monitor program will loaded after you have answered all the
configuration questions.

Only the 4 kilobytes of memory reserved for the monitor are loaded at
the end of configuration; therefore, you should not link the foreground
monitor to the user program. If it is important that the symbol database
contain both monitor and user program symbols, you can create a
different absolute file in which the monitor and user program are
linked. Then, you can load this file after configuration.

Using the Foreground Monitor. When using the foreground
monitor, your program should set up a stack. The foreground monitor
assumes that there is a stack in the foreground program, and this stack
is used to save PS, PC, and PSW upon entry into the monitor.

Mapping Memory Depending on the memory model number, emulation memory consists
of 128, 512 or 1024 kilobytes, mappable in 256 byte blocks. However,
you may use 124, 508 or 1020 kilobytes of emulation memory for your
target system, because 4 kilobytes of emulation memory specified by
the "Foreground monitor location?" question is required for the
execution of the monitor. The emulation memory system does not
introduce wait states.

Note You can insert wait states on accessing emulation memory. Refer to
the "Respond to READY from the target system for accessing to
emulation memory?" section in this chapter.

4-10 Configuring the Emulator

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

When a foreground monitor selected, a 4 kilobyte block is
automatically mapped at the address specified by the "Foreground
monitor location?" question.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Break
Processor on writes to ROM?" configuration item is enabled (see the
"Debug/Trace Configuration" section which follows).

Determining the Locations to be Mapped

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory.

Configuring the Emulator 4-11

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must answer
"yes" to the following question.

Modify emulator pod configuration?

Respond to
DMARQ0-3 from

target system
in background?

This configuration allows you to specify whether or not the emulator
accepts DMARQ0-3 (DMA Request 0-3) signal generated by the target
system in background.

yes The emulator accepts DMARQ0-3 signals. When
the DMARQ0-3 are accepted, the emulator will
respond as actual microprocessor.

no The emulator ignores DMARQ0-3 signals from

target system completely in background. The 70216
emulator ignored DMA request from internal DMA
controller until the emulator goes into forground
operation.

Use FPP on target
system?

This configuration allows you to use FPP(Floating Point co-Processor)
and to specify whether the emulator will drive the target system bus
during ANY bus cycle.

yes Specifies your target system has FPP to work with
the emulator. The i8087 on your target system can
read co-processor instructions on the emulation
memory.

no Specifies target system does not have FPP. The
data bus signals are not driven to the target system
when the emulator access to the emulation memory.

 When "Yes" is selected, a special hardware mode which allows the
emulator to support a floating point co-processor is enabled. When a
floating point co-processor is present, it must monitor all address and
data that the emulation processor inputs and outputs. Because of this, it
is necessary to enable data bus drivers to the target system for all

4-12 Configuring the Emulator

emulation memory read cycles. This is normarlly done only on write
cycles, and is not done on read cycles to avoid bus contention problems
between the emulator and the target system. When this mode is
enabled, the USER output from the pod should be used to disable user
buffers that would normally to turned on when the emulator is reading
from emulation memory. Also you should also select "yes" at the
"Respond to HLDRQ from target system" configuration question for
target hold signal input.

Memory display
mnemonic?

(70208/70208H
Emulator)

This configuration specifies the type of mnemonic that are used by the
monitor program to display memory. When a command requests the
monitor to display memory, the monitor program will look at the
mnemonic type setting to determine whether uPD70208 (V40) or
iAPX88/10 (8088) mnemonic should be used.

70208 Selecting the 70208 mnemonic type specifies that
the emulator will display memory with uPD70208
(V40) mnemonic.

8088 Selecting the 8088 mnemonic type specifies that the
emulator will display memory with iAPX88/10
(8088) mnemonic.

The default emulator configuration selects the 70208 mnemonic type at
power up initialization.

Memory display
mnemonic?

(70216/70216H
Emulator)

This configuration specifies the type of mnemonic that are used by the
monitor program to display memory. When a command requests the
monitor to display memory, the monitor program will look at the
mnemonic type setting to determine whether uPD70216 (V50) or
iAPX86/10 (8086) mnemonic should be used.

70216 Selecting the 70216 mnemonic type specifies that
the emulator will display memory with uPD70216
(V50) mnemonic.

8086 Selecting the 8086 mnemonic type specifies that the
emulator will display memory with iAPX86/10
(8086) mnemonic.

Configuring the Emulator 4-13

The default emulator configuration selects the 70216 mnemonic type at
power up initialization.

Dis-assembler mode? This configuration specifies the mode of dis-assembler that are used by
the monitor program to display assembler format. When a command
requests the monitor to display memory, the monitor program will look
at the dis-assembler mode setting to determine whether
AxLS(HP64873) or OLS(HP64853) assembler format should be used.

native Selecting the native mode specifies that the
emulator will display dis-assembler with
AxLS(HP64873) assembler format.

64853 Selecting the 64853 mode specifies that the
emulator will display dis-assembler with
OLS(HP64853) assembler format.

The default emulator configuration selects the native mode at power
up initialization.

4-14 Configuring the Emulator

Segmemt algorithm ? The run and step commands allow you to enter addresses in either
logical form (segment:offset, e.g., 0F000H:0000H) or physical form
(e.g., 0F000H). When a physical address (non-segmented) is entered
with either a run or step command, the emulator must convert it to a
logical (segment:offset) address.

minseg Specifies that the physical run address is converted
such that the low 16 bits of the address become the
offset value. The physical address is right-shifted 4
bits and ANDed with 0F000H to yield the segment
value.

 logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

maxseg Specifies that the low 4 bits of the physical address
become the offset. The physical address is
right-shifted 4 bits to yield the segment value.

 logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

curseg Specifies that the value entered with either a run or
step command (0 thru 0ffff hex) becomes the offset.
In this selecting, the current segment value is not
changed.

 logical_addr = (current segment):(entered value)

If you use logical addresses other than the three methods which follow,
you must enter run and step addresses in logical form.

Configuring the Emulator 4-15

Reset value for the
stack pointer?

This question allows you to specify the value to which the stack
segment (SS) and stack pointer (SP) will be set on entrance to the
emulation monitor initiated RESET state (the "Emulation reset" status).

The address specified in response to this question must be a physical
address. The emulator convert it to a logical address (<SP>:<SS>).
When you enter "phys_addr" to this configuration, SS and SP will be
set as follows.

SS = (phys_addr >> 4) & 0xf000
SP = phys_addr & 0xffff

When you are using the foreground monitor, this address should be
defined in an emulation or target system RAM area which is not used
by user program.

Note We recommend that you use this method of configuring the stack
pointer. Without a stack pointer, the emulator is unable to make the
transition to the run state, step, or perform many other emulation
functions. However, using this option does not preclude you from
changing the stack pointer value or location within your program; it
just sets the initial conditions to allow a run to begin.

Respond to RESET
from target system?

The 70216 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to "run
from reset" command in the Softkey Interface Reference manual).
While running in background monitor, the 70216 emulator ignores
target system reset completely independent on this setting.

yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (0FFFF0 hex) as same
manner as actual microprocessor after reset is
inactivated.

no The emulator ignores reset signal from target
system completely, even while in foreground
(executing user program).

4-16 Configuring the Emulator

Respond to NMI
from target system?

This question allows you to specify whether or not the emulation
processor accepts NMI signal generated by the target system.

yes The emulator accepts NMI signal generated by the
target system. When the NMI is accepted, the
emulator calls the NMI procedure as actual
microprocessor. Therefore, you need to set up the
NMI vector table, if you want to use the NMI
interrupt.

no The emulator ignores NMI signal from target
system completely.

Note
When target NMI signal is enabled , it is in effect while the emulator is
running in the target program. while the emulator is running monitor,
NMI will be ignored until the monitor is finished.

Configuring the Emulator 4-17

Respond to READY
from target system

for accessing to
emulation memory?

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

no When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted).

yes When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested).

Respond to
HLDRQ from target

system?

This configuration allows you to specify whether or not the emulator
accepts HLDRQ (Bus Hold Request) signal generated by the target
system.

no The emulator ignores HLDRQ signal from target
system completely.

yes The emulator accepts HLDRQ signal. When the
HLDRQ is accepted, the emulator will respond as
actual microprocessor.

4-18 Configuring the Emulator

Target memory
access size?

This configuration specifies the type of microprocessor cycles that are
used by the monitor program to access target memory or I/O locations.
When a command requests the monitor to read or write to target system
memory or I/O, the monitor program will look at the access mode
setting to determine whether byte or word instructions should be used.

Bytes Selecting the byte access mode specifies that the
emulator will access target memory using upper
and lower byte cycles (one byte at a time).

Words Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at a time) at an even address.
When the emulator read or write odd number of
byte data, the emulator will read or write the last
byte data using byte cycle.
At an odd address, the emulator will access target
memory using byte cycles.

The default emulator configuration selects the byte access size at
power up initialization. Access mode specifications are saved; that is,
when a command changes the access mode, the new access mode
becomes the current default.

Configuring the Emulator 4-19

Debug/Trace
Configuration

The debug/trace configuration questions allows you to specify breaks
on writes to ROM and specify that the analyzer trace
foreground/background execution. To access the debug/trace
configuration questions, you must answer "yes" to the following
question.

Modify debug/trace options?

Break Processor on
Write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM.
The emulator will prevent the processor from actually writing to
memory mapped as emulation ROM; however, they cannot prevent
writes to target system RAM locations which are mapped as ROM,
even though the write to ROM break is enabled.

yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

no The emulator will not break to the monitor upon a
write to ROM. The emulator will not modify the
memory location if it is in emulation ROM.

Note The wrrom trace command status option allows you to use "write to
ROM" cycles as trigger and storage qualifiers. For example, you could
use the following command to trace about a write to ROM:
trace about status wrrom <RETURN>

4-20 Configuring the Emulator

Trace Background or
Foreground
Operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles.

foreground Specifies that the analyzer trace only foreground
cycles. This option is specified by the default
emulator configuration.

background Specifies that the analyzer trace only background
cycles. (This is rarely a useful setting.)

both Specifies that the analyzer trace both foreground
and background cycles. You may wish to specify
this option so that all emulation processor cycles
may be viewed in the trace display.

Trace Internal DMA
cycles?

This question allows you to specify whether or not the analyzer trace
the emulation processor’s internal DMA cycles.

yes Specifies that the analyzer will trace the internal
DMA cycles.

no Specifies that the analyzer will not trace the internal
DMA cycles.

Trace bus cycles in
HOLD state ?

This question allows you to specify whether or not the analyzer trace
the emulation processor’s bus cycles in HOLD state.

yes Specifies that the analyzer will trace bus cycle in
HOLD state.

no Specifies that the analyzer will not trace bus cycles
in HOLD state.

Configuring the Emulator 4-21

Trace refresh cycles? This question allows you to specify whether or not the analyzer trace
the emulation processor’s refresh cycles.

yes Specifies that the analyzer will trace the refresh
cycles.

no Specifies that the analyzer will not trace the refresh
cycles.

4-22 Configuring the Emulator

Simulated I/O
Configuration

The simulated I/O feature and configuration options are described in
the Simulated I/O reference manual.

External Analyzer
Configuration

The external analyzer configuration options are described in the
Analyzer Softkey Interface User’s Guide.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are described in
the chapter on coordinated measurements in the Softkey Interface
Reference manual. Examples of coordinated measurements that can be
performed between the emulator and the emulation analyzer are found
in the "Using the Emulator" chapter.

Saving a
Configuration

The last configuration question allows you to save the previous
configuration specifications in a file which can be loaded back into the
emulator at a later time.

Configuration file name? <FILE>

The name of the last configuration file is shown, or no filename is
shown if you are modifying the default emulator configuration.

If you press <RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when
you exit the Softkey Interface with the "end release_system" command.

Configuring the Emulator 4-23

When you specify a filename, the configuration will be saved to two
files; the filename specified with extensions of ".EA" and ".EB". The
file with the ".EA" extension is the "source" copy of the file, and the
file with the ".EB" extension is the "binary" or loadable copy of the file.

Ending out of emulation (with the "end" command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a "continue" file. The continue file is not
normally accessed.

Loading a
Configuration

Configuration files which have been previously saved may be loaded
with the following Softkey Interface command.

load configuration <FILE> <RETURN>
This feature is especially useful after you have exited the Softkey
Interface with the "end release_system" command; it saves you from
having to modify the default configuration and answer all the questions
again. To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

4-24 Configuring the Emulator

5

Using the Emulator

Introduction The "Getting Started" chapter shows you how to use the basic features
of the 70216 emulator. This chapter describes the more in-depth
features of the emulator.

This chapter discusses:

Register names and classes.

Features available via "pod_command".

This chapter shows you how to:

Store the contents of memory into absolute files.

Make coordinated measurements.

Using the Emulator 5-1

Register Names
and Classes

The following register names and classes are used with the
display/modify registers commands in 70216 emulator.

BASIC(*) class

Register name Description

AW, BW
CW, DW
BP, IX, IY
DS0, DS1, SS
SP, PC, PS, PSW

BASIC registers.

SIO class
(70208/70216

Emulator)

(System I/O registers)

Register name Description

OPCN
OPSEL
OPHA
DULA
IULA
TULA
SULA
WCY1
WCY2
WMB
RFC
TCKS

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register
ICU low address register
TCU low address register
SCU low address register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register
Timer clock selection register

5-2 Using the Emulator

SIO class
(70208H/70216H

Emulator)

(System I/O registers)

Register name Description

OPCN
OPSEL
OPHA
DULA
IULA
TULA
SULA
SCTL
WCY1
WCY2
WMB
RFC
SBCR
TCKS
EXWB
WSMB
WIOB
WCY3
BRC
BADR
BSEL

On-chip peripheral connection register
On-chip peripheral selection register
On-chip peripheral high address register
DMAU low address register
ICU low address register
TCU low address register
SCU low address register
System control register
Programmable wait, cycle 1 register
Programmable wait, cycle 2 register
Programmable wait, memory boundary register
Refresh control register
Stand-by control register
Timer clock selection register
Extended wait block selection register
Wait submemory block selection register
Wait I/O block selection register
Programmable wait, cycle 3 register
Boud rate counter
Bank address register
Bank select register

Using the Emulator 5-3

ICU class (Interrupt Control Unit registers)

Register name Description

IMKW
IRQ
IIS
IPOL
IPFW

IMDW
IIW1
IIW2
IIW3
IIW4

Interrupt mask word register
Interrupt request register (Read only)
Interrupt in-service register (Read only)
Interrupt polling register (Read only)
Interrupt priority and finish word register
(Write only)
Interrupt mode word register (Write only)
Interrupt initialize word 1 register (Write only)
Interrupt initialize word 2 register (Write only)
Interrupt initialize word 3 register (Write only)
Interrupt initialize word 4 register (Write only)

Caution When ipol register is displayed, interruptis are suspended until the FI
command is published.

TCU class (Timer Control Unit registers)

Register name Description

TCT0
TST0
TCT1
TST1
TCT2
TST2
TMD

Timer/counter 0 register
Timer status 0 register (Read only)
Timer/counter 1 register
Timer status 1 register (Read only)
Timer/counter 2 register
Timer status 2 register (Read only)
Timer/counter mode register (Write only)

5-4 Using the Emulator

SCU class (Serial Control Unit registers)

Register name Description

SRB
SST
STB
SCM
SMD
SIMK

Serial receive data buffer (Read only)
Serial status register (Read only)
Serial transmit data buffer (Write only)
Serial command register (Write only)
Serial mode register (Write only)
Serial interrupt mask register (Write only)

DMA71 class (DMA Control Unit registers (for uPD71071 mode))

Register name Description

DICM
DCH
DBC_DCC0
DBC_DCC1
DBC_DCC2
DBC_DCC3
DBA_DCA0
DBA_DCA1
DBA_DCA2
DBA_DCA3
DMD0
DMD1
DMD2
DMD3
DDC
DST
DMK

DMA initialize register (Write only)
DMA channel register
DMA base/current count register channel 0
DMA base/current count register channel 1
DMA base/current count register channel 2
DMA base/current count register channel 3
DMA base/current address register channel 0
DMA base/current address register channel 1
DMA base/current address register channel 2
DMA base/current address register channel 3
DMA mode control register channel 0
DMA mode control register channel 1
DMA mode control register channel 2
DMA mode control register channel 3
DMA device control register
DMA status register (Read only)
DMA mask register

Using the Emulator 5-5

DMA37 class
(70208H/70216H

Emulator only)

(DMA Control Unit register (for uPD71037mode))

Register name Description

CMD
BANK0
BANK1
BANK2
BANK3
ADR0
ADR1
ADR2
ADR3
CNT0
CNT1
CNT2
CNT3
SFRQ

SMSK

MODE
CLBP
INIT
CMSK
AMSK

DMA read status/write command register
DMA bank register channel 0
DMA bank register channel 1
DMA bank register channel 2
DMA bank register channel 3
DMA current address register channel 0
DMA current address register channel 1
DMA current address register channel 2
DMA current address register channel 3
DMA current count register channel 0
DMA current count register channel 1
DMA current count register channel 2
DMA current count register channel 3
Software DMA write request register
(Write only)
DMA write single mask register
(Write only)
DMA write mode register
DMA clear byte pointer F/F (Write only)
DMA initialize register (Write only)
DMA clear mask register (Write only)
DMA write all mask register bit (Write only)

5-6 Using the Emulator

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but not
in the Softkey Interface may be accessed via the following emulation
commands.

display pod_command <RETURN>
pod_command ’<Terminal Interface command>’
<RETURN>

Some of the most notable Terminal Interface features not available in
the softkey Interface are:

Copying memory

Searching memory for strings or numeric expressions.

Sequencing in the analyzer.

Performing coverage analysis.
Refer to your Terminal Interface documentation for information on
how to perform these tasks.

Note Be careful when using the "pod_command". The Softkey Interface,
and the configuration files in particular, assume that the configuration
of the HP 64700 pod is NOT changed except by the Softkey Interface.
Be aware that what you see in "modify configuration" will NOT reflect
the HP 64700 pod’s configuration if you change the pod’s
configuration with this command. Also, commands which affect the
communications channel should NOT be used at all. Other commands
may confuse the protocol depending upon how they are used. The
following commands are not recommended for use with
"pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac - Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.
init , pv - Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

Using the Emulator 5-7

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

store memory 800h thru 84fh to absfile
<RETURN>

The command above causes the contents of memory locations
800H-84FH to be stored in the absolute file "absfile.X". Notice that
the ".X" extension is appended to the specified filename.

Coordinated
Measurements

For information on coordinated measurements and how to use them,
refer to the "Coordinated Measurements" chapter in the Softkey
Interface Reference manual.

5-8 Using the Emulator

A

Using the Foreground Monitor

Introduction By using and modifying the optional foreground monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The foreground monitors are supplied with the emulation software and
can be found in the following path:

/usr/hp64000/monitor/*
The monitor programs named Nfmon70208.s, Nfmon70208h.s,
Nfmon70216.s, and Nfmon70216h.s are for the HP 64873 V series
AxLS Cross Assembler/Linker.

Note Use the appropriate monitor; "Nfmon70208.s" for the 70208,
"Nfmon70208h.s" for the 70208H, "Nfmon70216.s" for the 70216H
and "Nfmon70216h.s" for the 70216H emulator. "Nfmon70216.s"
foreground monitor program is used in this example. If your emulator
is for the other emulator, read this appendix by replacing
"Nfmon70216" with appropriate monitor.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Using the Foreground Monitor A-1

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region.

Usually, a background monitor will be easier to work with in starting a
new design. The monitor is immediately available upon powerup, and
you don’t have to worry about linking in the monitor code or allocating
space for the monitor to use the emulator. No assumptions are made
about the target system environment; therefore, you can test and debug
hardware before any target system code has been written. All of the
processor’s address space is available for target system use, since the
monitor memory is overlaid on processor memory, rather than
subtracted from processor memory. Processor resources such as
interrupts are not fully taken by the background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, when the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code resides in
emulator firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more complex debugging
and integration applications. A foreground monitor is a block of code
that runs in the same memory space as your program. Foreground
monitors allow the emulator to service real-time events, such as
interrupts, while executing in the monitor. For most multitasking,
interrupt intensive applications, you will need to use a foreground
monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some target systems. You must also properly configure
the emulator to use a foreground monitor (see the "Configuring the
Emulator" chapter and the examples in this appendix).

You may link the foreground monitor with your code. However, if
possible, linking the monitor separately is preferred. This allows the

A-2 Using the Foreground Monitor

monitor to be downloaded before the rest of your program. Linking
monitor programs separately is more work initially, but it should prove
worthwhile overall, since the monitor can then be loaded efficiently
during the configuration process at the beginning of a session.

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to use a foreground
monitor with the sample program from the "Getting Started" chapter.
By using the emulation analyzer, we will also show how the emulator
switches from state to state using a foreground monitor.

For this example, we will be using the foreground monitor for the HP
64873 V series AxLS Cross Assembler/Linker. We will locate the
monitor at 1000H; the sample program will be located at 10000H and
80000H.

$ cp /usr/hp64000/monitor/Nfmon70216.s .
<RETURN>

Modify EQU
Statement

To use the monitor, you must modify the EQU statement near the top
of the monitor listing to point to the base address where the monitor
will be loaded.

$ chmod 644 Nfmon70216.s <RETURN>
$ vi Nfmon70216.s <RETURN>

Modifying Location of the Foreground Monitor

In this case, we will load the monitor at 1000H, so the modified EQU
statement looks like this:

MONSEGMENT EQU 00100H

You can load the monitor at any base address on a 4K byte boundary.

Using the Foreground Monitor A-3

Note You should not load the foreground monitor provided with the 70216
emulator at the base address 0 or 0ff000 hex; the 70216
microprocessor’s vector table is located.

Assemble and Link
the Monitor

You can assemble and link the foreground monitor program with the
following commands (which assume that /usr/hp64000/bin is defined
in the PATH environment variable):

$ asv20 -Lh Nfmon70216.s > Nfmon70216.lis
<RETURN>
$ ldv20 -c Nfmon70216.k -Lh > Nfmon70216.map
<RETURN>

The "Nfmon70216.k" linker command file is shown below.

The "??DATA1/??INIT" is used in the HP 64873 V series AxLS Cross
Assembler/Linker. You should set the "??DATA1/??INIT" to the
value added the offset value (0FFDH) to the foreground monitor
address (In this example, 1000H). When you want to relocate the
foreground monitor, you should modify the "??DATA1/??INIT" value
in the linker command file for the new foreground monitor address.

If you aren’t ready to use the sample program, do that now. Refer to
the "Getting Started" chapter to copy the sample program files to the
current directory.

Modifying the
Emulator

Configuration

The following assumes you are modifying the default emulator
configuration (that is, the configuration present after initial entry into
the emulator or entry after a previous exit using "end release_system").
Enter all the default answers except those shown below.

LOAD Nfmon70216.o
SEG ??DATA1/??INIT=001ffdH
END

A-4 Using the Foreground Monitor

Modify memory configuration? yes

You must modify the memory configuration so that you can select the
foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to
foreground.

Monitor address? 1000h

Specifies that the monitor will reside in the 4K byte block from 1000H
through 1FFFH.

Monitor file name? Nfmon70216

Enter the name of the foreground monitor absolute file. This file will
be loaded at the end of configuration.

Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added. Add the additional term to map memory
for the sample program, and "end" out of the memory mapper.

0h thru 0ffh emulation ram <RETURN>
10000h thru 1ffffh emulation ram <RETURN>
80000h thru 80fffh emulation rom <RETURN>
default target ram <RETURN>
end <RETURN>

Modify emulator pod configuration? yes

You must modify the pod configurarion so that you specify the value of
the stack segment and stack pointer.

Using the Foreground Monitor A-5

Rest value for the stack pointer? 10000h

Specifies the value of the statck segment to 1000h and the value of the
stack pointer to 0000h.

Configuration file name? fmoncfg

If you wish to save the configuration specified above, answer this
question as shown.

Load the Program
Code

Now it’s time to load the sample program. You can load the sample
program with the following command:

load cmd_rds <RETURN>
Before running the sample program, you need to initialize the stack
pointer by breaking the emulator out of reset:

reset <RETURN>
break <RETURN>

Now you can run the sample program with the following command:

run from transfer_address <RETURN>

A-6 Using the Foreground Monitor

Single Step and
Foreground Monitors

To use the "step" command to step through processor instructions with
the foreground monitor listed in this chapter, you must modify the
processor’s interrupt vector table. The entry that you must modify is
the "BRK flag" interrupt vector, located at 4H thru 7H. The "BRK
flag" interrupt vector must point to the identifier UEE_BRK_FLAG in
the foreground monitor. For example, to modify the "BRK flag"
interrupt vector, enter the following commands:

load symbols Nfmon70216 <RETURN>
display local_symbols_in Nfmon70216: <RETURN>

To see the value of UEE_BRK_FLAG, press the <NEXT> key to page
down until the UEE_BRK_FLAG is displayed. You will see that the
value of UEE_BRK_FLAG is 0100:0B82 hex.
To modify the "BRK flag" interrupt vector to point to the
UEE_BRK_FLAG, enter the following command:

modify memory 4h words to 0B82H,0100H
<RETURN>

Now you can use the step feature. Enter:

load cmd_rds <RETURN>
diplay registers <RETURN>
step from transfer_address <RETURN>
step <RETURN>

When you load the foreground monitor at the different base address,
you should modify the "BRK flag" interrupt vector to point to the
identifier UEE_BRK_FLAG with the same way.

Using the Foreground Monitor A-7

Limitations of
Foreground
Monitors

Listed below are limitations or restrictions present when using a
foreground monitor.

Synchronized
MeasurementsCMB

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
select the background monitor type when configuring the emulator.

A-8 Using the Foreground Monitor

Index

A absolute files
loading 2-11
storing 5-8

algorithm, current segment 4-15
algorithm, maximum segment 4-15
algorithm, minmum segment 4-15
analyzer

configuring the external 4-23
features of 1-4
sequencing 5-7
status qualifiers 2-33

analyzer, using the 2-28
assemblers 4-11
assembling foreground monitor A-4

B background 1-5, 4-7
background cycles

tracing 4-21
background monitor 4-7 - 4-8, A-2

things to be aware of 4-8
breaks

break command 2-24
guarded memory accesses 4-11
software breakpoints 2-18
write to ROM 4-20

C caution statements
real-time dependent target system circuitry 4-6
software breakpoint cmds. while running user code 2-18

cautions
installing the target system probe 3-2

characterization of memory 4-11
clock source

external 3-8, 4-4
internal 3-8, 4-4

comparison of foreground/background monitors A-1
compress mode,trace display 2-32

Index-1

configuration
example of using foreground monitor A-4
for running example program 2-8

configuration options
accept target NMI 4-17
break processor on write to ROM 4-20
dis-assembler mode 4-14
enable READY input 4-18
foreground monitor location 4-9
honor target reset 4-16
in-circuit 3-8
mnemonic type(70208/70208H Emulator) 4-13
mnemonic type(70216/70216H Emulator) 4-13
monitor filename 4-10
monitor type 4-7
respond to DMARQ0-3 from target system in background 4-12
respond to target HLDRQ 4-18
segment algorithm 4-15
target access size 4-19
trace background/foreground operation 4-21
trace bus cycles in HOLD state 4-21
trace internal DMA cycles 4-21
trace refresh cycles 4-22
use FPP on target system 4-12

coordinated measurements 4-23, 5-8
coprocessor

access emulation memory 3-8
copy memory 5-7
coverage analysis 5-7
current segment algorithm 4-15

D device table file 2-6
display command

memory mnemonic 2-15
memory mnemonic with symbols 2-16
registers 2-25
symbols 2-12
trace 2-29
with source line 2-17

DMA 1-7
external DMA controllers 4-11
TC bit 1-7

2-Index

E emul700, command to enter the Softkey Interface 2-6, 2-35
emulation analyzer 1-4
emulation memory

access by i8087 coprocessor 3-8
loading absolute files 2-11
note on target accesses 4-11
RAM and ROM characterization 4-11
size of 4-10

emulation monitor
foreground or background 1-5

emulator
before using 2-2
configuration 4-1
configure the emulator for example 2-8
device table file 2-6
feature list 1-3
prerequisites 2-2
purpose of 1-1
running from target reset 3-8 - 3-9
supported microprocessor package 1-3

emulator configuration
break processor on write to ROM 4-20
clock selection 4-4
for example 2-8
loading 4-24
monitor entry after 4-4
restrict to real-time runs 4-6
saving 4-23
stack pointer 4-16
trace background/foreground operation 4-21
trace bus cycles in HOLD state 4-21
trace internal DMA cycles 4-21
trace refresh cycles 4-22

Emulator features
emulation memory 1-4

emulator probe
installing 3-2

END assembler directive (pseudo instruction) 2-20
end command 2-34, 4-24
Evaluation chip 1-7
exit, Softkey Interface 2-34

Index-3

external analyzer
configuration 4-23

external clock source 4-4

F file extensions
.EA and .EB, configuration files 4-24

files
cmd_rds.A 2-3
cmd_rds.L 2-3

foreground 1-5, 4-7
foreground monitor 4-7 - 4-8, A-2

assembling/linking A-4
configuration for sample program A-4
example of using A-3
location 4-9
location of shipped files A-1
monitor program 4-10
relocating A-3
single-step processor A-7
things to be aware of 4-10
using the A-1

foreground operation, tracing 4-21

G getting started 2-1
prerequisites 2-2

global symbol 2-15
global symbols

displaying 2-12
guarded memory accesses 4-11

H help
on-line 2-9
pod command information 2-10
softkey driven information 2-9

I in-circuit configuration options 3-8
in-circuit emulation 3-1
installation 2-2

software 2-2
interactive measurements 4-23
internal clock source 4-4
interrupt

accepting NMI from target system 4-17

4-Index

from target system 1-7, 3-8
while stepping 1-7

L linkers 4-11
linking foreground monitor A-4
load map 4-11
loading absolute files 2-11
loading emulator configurations 4-24
local symbols

displaying 2-13
location address

 foreground monitor 4-9, A-4
locked, end command option 2-35
logical run address, conversion from physical address 4-15

M mapping memory 4-10
maximum segment algorithm 4-15
measurement system 2-35

creating 2-5
memory

characterization 4-11
copying 5-7
mapping 4-10
mnemonic display 2-15
mnemonic display with symbols 2-16
modifying 2-23
searching for strings or expressions 5-7
with source line 2-17

microprocessor package 1-3
minmum segment algorithm 4-15
mnemonic memory display 2-15
modify command

configuration 4-1
memory 2-23
software breakpoints set 2-19

module 2-35
module, emulation 2-6
monitor

background 4-7 - 4-8, A-2
breaking into 2-24
comparison of foreground/background A-1
description 4-7

Index-5

foreground 4-7 - 4-8, A-2
foreground monitor file 4-10
foreground monitor location 4-9
selecting entry after configuration 4-4
using the foreground monitor A-1

N nosymbols 2-12
note

pod command from keyboard 2-10
notes

config. option for reset stack pointer recommended 4-16
coordinated measurements require background. monitor 4-9
mapper terms deleted when monitor type is changed 4-8
pod commands that should not be executed 5-7
selecting internal clock forces reset 4-4
software breakpoints only at opcode addresses 2-19
step not accepted 2-26
target accesses to emulation memory 4-11
use the appropriate foreground monitor program A-1
write to ROM analyzer status 4-20

O OMF-86 absolute file format 2-11
on-line help 2-9

P PATH, HP-UX environment variable 2-5 - 2-6
physical run address, conversion to logical run address 4-15
Pin guard

target system probe 3-2
pmon, User Interface Software 2-35
pod_command 2-10

features available with 5-7
help information 2-10

predefining stack pointer 4-16
prerequisites for using the emulator 2-2
program counter

mnemonic memory display 2-21

R RAM, mapping emulation or target 4-11
READY signal 4-18
READY signals on accesses to emulation memory 4-10
real-time execution

restricting the emulator to 4-6
register commands 1-4

6-Index

registers
classes 5-2
display/modify 2-25
names 5-2

release_system
end command option 2-34, 4-23 - 4-24

relocatable files 4-11
relocating foreground monitor A-3
reset (emulator)

running from target reset 2-21, 3-9
reset (reset emulator) command 2-34
RESET signal 3-8, 4-16
restrict to real-time runs

emulator configuration 4-6
permissible commands 4-6
target system dependency 4-6

ROM
mapping emulation or target 4-11
writes to 4-11

run address, conversion from physical address 4-15
run command 2-20
run from target reset 3-8 - 3-9, 4-16

S sample program
description 2-3

saving the emulator configuration 4-23
sequencer, analyzer 5-7
softkey driven help information 2-9
Softkey Interface

entering 2-5
exiting 2-34
on-line help 2-9

software breakpoint
 70216 breakpoint interrupt instruction 2-18

software breakpoints 2-18
enabling/disabling 2-19
setting 2-19

software installation 2-2
source lines

displaying 2-14
ssimilated I/O 4-23
stack pointer,defining 4-16

Index-7

stacks
using the foreground monitor 4-10

status qualifiers 2-33
step command 2-22, 2-26
string delimiters 2-10
symbols

displaying 2-12
synchronized measurement A-8
system overview 2-2

T target memory
loading absolute files 2-11
RAM and ROM characterization 4-11

target reset
running from 3-9

target reset, running from 3-8
target system

dependency on executing code 4-6
interface 3-10

Target system probe
pin guard 3-2

terminal interface 2-10, 5-7
trace, changing the trace depth 2-33
trace, displaying the 2-29
trace, displaying with time count absolute 2-31
trace,displaying with compress mode 2-32
tracing background operation 4-21
tracing bus cycles in HOLD state 4-21
tracing internal DMA cycles 4-21
tracing refresh cycles 4-22
transfer address, running from 2-20
trigger state 2-29
trigger, specifying 2-28

U UEE_BRK_FLAG, foreground monitor label A-7
user (target) memory

 loading absolute files 2-11
using the emulator 5-1

W wait states, allowing the target system to insert 4-18
window systems 2-35
write to ROM break 4-20

8-Index

	Using this Manual
	Contents
	Introduction to the 70216 Emulator
	Getting Started
	"In-Circuit" Emulation
	Configuring the Emulator
	Using the Emulator
	Using the Foreground Monitor
	Index

