HP 64768

70433 Emulator Softkey Interface

User's Guide

HP Part No. 64768-97005 Printed in Japan May 1995

Edition 3

Notice	Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
	Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.
	© Copyright 1993,1995 Hewlett-Packard Company.
	This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.
	HP is a trademark of Hewlett-Packard Company.
	UNIX is a registered trademark in United States and other countries, licenced exclusively through X/Open Company Limited.
	V55PI [™] is a trademark of NEC Electronics Inc.
	InterTools is a trademark of Intermetrics Microsystems Software, Inc.
	Hewlett-Packard Company P.O. Box 2197 1900 Garden of the Gods Road Colorado Springs, CO 80901-2197, U.S.A.
	RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD U.S.Government Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History	New editions are complete revisions of the manual. The date on the title page changes only when a new edition is published.						
	A software code m version level of the Many product upd manual corrections changes. Therefore one-to-one corresp revisions.	ay be printed before the date; this in e software product at the time the m ates and fixes do not require manua s may be done without accompanyin e, do not expect a sondence between product updates a	ndicates the aanual was issued. I changes and, ng product and manual				
	Edition 1 64768-97001, March 1993						
	Edition 2	Edition 2 64768-97003, October 1993					
	Edition 3	64768-97005, May 1995					

Using this Manual

This manual shows you how to use the following emulators with the Softkey Interface.

■ HP 64768 70433 emulator

This manual:

- Shows you how to use emulation commands by executing them on a sample program and describing their results.
- Shows you how to use the emulator in-circuit (connected to a target system).
- Shows you how to configure the emulator for your development needs. Topics include: restricting the emulator to real-time execution, selecting a target system clock source, and allowing the target system to insert wait states.

This manual does not:

 Show you how to use every Softkey Interface command and option; the Softkey Interface is described in the Softkey Interface Reference manual.

For the most part, the HP 647680A and HP 64768B emulators all operate the same way. Differences of between the emulators are described where they exist. Both the HP 64768A and HP 64768B emulators will be referred to as the "HP 64768 emulator" or "70433 emulator".

Organization

Chapter 1	Introduction to the 64768 Emulator. This chapter briefly introduces you to the concept of emulation and lists the basic features of the 64768 emulator.
Chapter 2	Getting Started. This chapter shows you how to use emulation commands by executing them on a sample program. This chapter describes the sample program and how to: load programs into the emulator, map memory, display and modify memory, display registers, step through program, run programs, set software breakpoins, search memory for data, and use the analyzer.
Chapter 3	"In-Circuit" Emulation. This chapter shows you how to install the emulator probe into a target system and how to use "in-circuit" emulation features.
Chapter 4	Configuring the Emulator. This chapter shows you how to: restrict the emulator to real-time execution, select a target system clock source, allow the target system to insert wait states, and select foreground or background monitor.
Chapter 5	Using the Emulator. This chapter describes emulation topics which are not covered in the "Getting Started" chapter.
Appendix A	Using the Foreground. This appendix describes the advantages and disadvantages of foreground and background monitors and how to use foreground monitor.
Appendix B	Using the Format Converter. This appendix describes the usage of the file format converter.

Conventions	Example commands throughout the manual use the following conventions:					
	bold	Commands, options, and parts of command syntax.				
	bold italic	Commands, options, and parts of command syntax which may be entered by pressing softkey.				
	normal	User specified parts of a command.				
	\$	Represents the HP-UX prompt. Commands which follow the "\$" are entered at the HP-UX prompt.				
	<return></return>	The carriage return key.				

Notes

Contents

1 Introduction to the 64768 Emulator

2

Introduction
Purpose of the Emulator
Features of the HP 64768 Emulator
Supported Microprocessors
Clock Speeds
Emulation memory
Analysis
Registers
Single-Step
Breakpoints
Reset Support
Configurable Target System Interface
Foreground or Background Emulation Monitor 1-4
Real-Time Operation
Easy Products Upgrades
Limitations, Restrictions
Reset, Hold Request While in Background Monitor 1-6
User Interrupts While in Background Monitor 1-6
Interrupts While Executing Step Command
Unbreaking into the Monitor
CLKOUT enable bit
DMA Support
Accessing SFR
Accessing Reserved Area of I/O Space 1-7
Evaluation Chip
Getting Started

Introduction	 •									2-1
Before You Begin	 •									2-2
Prerequisites	 									2-2
A Look at the Demo Program										2-2
Compiling the Demo Program										2-7
Linking the Demo Program .	 •									2-7

Contents-1

Generate HP Absolute file	. 2-7
Entering the Softkey Interface	. 2-8
From the "pmon" User Interface	. 2-8
From the HP-UX Shell	. 2-9
Configure the Emulator for Examples	2-10
On-Line Help	2-11
Softkey Driven Help	2-11
Pod Command Help	2-12
Loading Absolute Files	2-13
Displaying Symbols	2-14
Global	2-14
Local	2-15
Source Lines	2-16
Displaying Memory in Mnemonic Format	2-17
Display Memory with Symbols	2-18
Display Memory with Source Code	2-19
Running the Program	2-20
From Transfer Address	2-20
From Reset	2-20
Displaying Memory	2-20
Using Symbolic Addresses	2-20
Modifying Memory	2-21
Breaking into the Monitor	2-22
Using Software Breakpoints	2-23
Enabling/Disabling Software Breakpoints	2-24
Setting a Software Breakpoint	2-24
Displaying Software Breakpoints	2-25
Clearing a Software Breakpoint	2-27
Displaying Registers	2-27
Stepping Through the Program	2-28
Using the Analyzer	2-30
Source Line Referencing	2-30
Specifying a Simple Trigger	2-30
Display the Trace	2-31
Displaying Trace with No Symbol	2-32
Displaying Trace with Time Count Absolute	2-33
Displaying Trace with Compress Mode	2-34
Reducing the Trace Depth	2-34
Using the Storage Qualifier	2-35
Trigger the Analyzer at an Instruction Execution State	2-36
Emulator Analysis Status Qualifiers	2-37

2-Contents

For a Complete Description 2	37
	57
Resetting the Emulator	38
Exiting the Softkey Interface	38
End Release System	38
Ending to Continue Later	38
Ending Locked from All Windows	38
Selecting the Measurement System Display	
or Another Module	39

3 In-Circuit Emulation Topics

Introduction
Prerequisites
Installing the Emulator Probe into a Target System
Pin Protector
Conductive Pin Guard
Installing into a PGA Type Socket
Installing into a QFP Type Socket
In-Circuit Configuration Options
Running the Emulator from Target Reset
Pin State in Background 3-8
Target System Interface

4 Configuring the Emulator

Introduction
General Emulator Configuration
Micro-processor Clock Source?
Enter Monitor After Configuration?
Restrict to Real-Time Runs?
Memory Configuration
Monitor Type?
Mapping Memory
Emulator Pod Configuration
Date bus size?
Memory display mnemonic?
Segment Algorithm?
Reset value for the stack segment?
Reset value for the stack pointer?
Respond RESET from target system?
Respond NMI from target system?
Respond READY from target system?
Respond to HLDRQ from target system 4-14

Contents-3

Target memory access size 4-	15
Debug/Trace Configuration	16
Break Processor on Write to ROM?	16
Trace Background or Foreground Operation? 4-	17
Trace Internal DMA cycles?	17
Trace refresh cycles?	17
Simulated I/O Configuration	18
Interactive Measurement Configuration	18
Saving a Configuration 4-	18
Loading a Configuration	19

5 Using the Emulator

Introduction
REGISTER CLASS and NAME
Hardware Breakpoints 5-10
Loading Program Option
Displaying Memory Option 5-11
Analyzer Topic
Features Available via Pod Commands 5-14
Accessing Internal RAM/SFR 5-15
Storing Memory Contents to an Absolute File
Coordinated Measurements

A Using the Foreground Monitor

Comparison of Foreground and Background Monitors
Background Monitors
Foreground Monitors
An Example Using the Foreground Monitor
Modify EQU Statement
Assemble and Link the Monitor
Modifying the Emulator Configuration
Load the Program Code
Tracing from Reset to Break
Tracing from Monitor to User Program
Tracing from User Program to Break
Single Step and Foreground Monitors
Software Breakpoint and Foreground Monitor
Limitations of Foreground Monitors
Synchronized MeasurementsCMB
Instruction Using BRK flag
Stepping

	Break from Halt/Stop state A-12
В	Using the Format Converter
	How to use the ConverterB-1Restrictions and ConsiderationsB-2

Illustrations

Figure 1-1 HP 64768 Emulator for uPD70433	-2
Figure 2-2 Linker Command File for "skdemo.lc"	-7
Figure 2-3 Softkey Interface Display	.9
Figure 3-1 Installing into a 70433 PGA type socket	-5

Contents-5

Notes

6-Contents

Introduction to the 64768 Emulator

Introduction	The topics in this chapter include:	
	 Purpose of the emulator 	
	■ Features of the emulator	
	 Limitations and Restrictions of the emulator 	
Purpose of the Emulator	The 64768 emulator is designed to replace the 70433 microprocessor in your target system to help you debug/integrate target system software and hardware. The emulator performs just like the processor which it replaces, but at the same time, it gives you information about the bus cycle operation of the processor. The emulator gives you control over target system execution and allows you to view or modify the contents of processor registers, target system memory, and I/O resources.	

Introduction 1-1

1

Figure 1-1 HP 64768 Emulator for uPD70433

1-2 Introduction

Features of the HP 64768 Emulator	This section introduces you to the features of the emulator. The chapters which follow show you how to use these features.	
Supported Microprocessors	The 132-pin PGA type of 70433 microprocessor is supported. The HP 64768 emulator probe has a 132-pin PGA connector. When you use 120-pin QFP type microprocessor, you must use with PGA to QFP adapter; refer to the "In-Circuit Emulation Topics "chapter in this manual.	
Clock Speeds	The HP 64768A emulator runs with an internal clock speed of 12.5MHz (system clock), or with target system clocks from 4 to 25 MHz.	
	The HP 64768B emulator runs with an internal clock speed of 12.5MHz (system clock), or with target system clocks from 4 to 32 MHz.	
Emulation memory	 The HP 64768 emulator is used with one of the following Emulation Memory Cards. HP 64726 128K byte Emulation Memory Card HP 64727 512K byte Emulation Memory Card HP 64728 1M byte Emulation Memory Card 	
	You can define up to 16 memory ranges (at 256 byte boundaries and at least 256 byte in length). The monitor occupies 2K bytes leaving 126K,510K,1022K bytes of emulation memory which you may use.You can characterize memory ranges as emulation RAM, emulation ROM, target system RAM, target system ROM, or guarded memory. The emulator generates an error message when accesses are made to guarded memory locations. You can also configure the emulator so that writes to memory defined as ROM cause emulator execution to break out of target program execution.	

Introduction 1-3

Analysis	 The HP 64768 emulator is used with one of the following analyzers which allows you to trace code execution and processor activity. HP 64704 80-channel Emulation Bus Analyzer HP 64703 64-channel Emulation Bus Analyzer and 16-channel State/Timing Analyzer
	The Emulation Bus Analyzer monitors the emulation processor using an internal analysis bus. The HP 64703 64-channel Emulation Bus Analyzer and 16-channel State/Timing Analyzer allows you to probe up to 16 different lines in your target system.
Registers	You can display or modify the 70433 internal register contents.
Single-Step	You can direct the emulation processor to execute a single instruction or a specified number of instructions.
Breakpoints	You can set up the emulator/analyzer interaction so that when the analyzer finds a specific state, emulator execution will break to the emulation monitor.
	You can also define software breakpoints in your program. The emulator uses the 70433 BRK 3 instruction to provide software breakpoint. When you define a software breakpoint, the emulator places a BRK 3 instruction at the specified address; after the BRK 3 instruction causes emulator execution to break out of your program, the emulator replaces BRK 3 with the original opcode.
Reset Support	The emulator can be reset from the emulation system under your control, or your target system can reset the emulation processor.
Configurable Target System Interface	You can configure the emulator so that it honors target system wait requests when accessing emulation memory.
Foreground or Background Emulation Monitor	The emulation monitor is a program that is executed by the emulation processor. It allows the emulation controller to access target system resources. For example, when you display target system memory, it is the monitor program that executes 70433 instructions which read the

1-4 Introduction

	target memory locations and send their contents to the emulation controller.	
	The monitor program can execute in foreground, the mode in which the emulator operates as would the target processor. The foreground monitor occupies processor address space and executes as if it were part of the target program.	
	The monitor program can also execute in background. User program execution is suspended so that emulation processor can be used to access target system resources. The background monitor does not occupy any processor address space.	
Real-Time Operation	Real-time operation signifies continuous execution of your program without interference from the emulator. (Such interference occurs when the emulator temporarily breaks to the monitor so that it can access register contents or target system memory or I/O.)	
	You can restrict the emulator to real-time execution. When the emulator is executing your program under the real-time restriction, commands which display/modify registers, display/modify target system memory or I/O, or single-step are not allowed.	
Easy Products Upgrades	Because the HP 64700 Series development tools (emulator, analyzer, LAN board) contain programmable parts, it is possible to reprogram the firmware and some of the hardware without disassembling the HP 64700A Card Cage. This means that you'll be able to update product firmware, if desired, without having to call an HP field representative to your site.	

Limitations, Restrictions

Reset, Hold Request While in Background Monitor	If you use background monitor, RESET and HLDRQ from target system are ignored while in monitor.	
User Interrupts While in Background Monitor	If you use the background monitor, NMI and INTP0-5 from target system are suspended until the emulator goes into foreground operation. Other interrupts are ignored.	
Interrupts While Executing Step Command	While stepping user program with the foreground monitor used, interrupts are accepted if they are enabled in the foreground monitor program.	
	While stepping user program with the background monitor used, interrupts are ignored.	
Note 📫	You should not use step command in case the interrupt handler's punctuality is critical.	
Unbreaking into the Monitor	The emulator can not break into the monitor if the microprocessor is in hold state. The emulator will break into the monitor after hold state because break request is suspended.	
	The emulator can not break into the monitor if the microprocessor is in reset state by RESET signal from target system.	
CLKOUT enable bit	CLKOUT signal can be enabled/disabled by ENCLK bit, which is bit 5 of PRC register. You must not clear ENCLK bit(ENCLK bit is "1" in	

1-6 Introduction

	reset). The emulator will not work properly if CLKOUT signal is disabled
DMA Support	Direct memory access to emulation memory by external DMA controller is not permitted.
Accessing SFR	When you access SFR(Special Function Registers), you must use reg commands. If you access SFR with m commands, you will access to the actual memory you mapped(as target system ROM or RAM, emulation ROM or RAM).
Accessing Reserved Area of I/O Space	When you access reserved area of I/O space(0FF80h-0FFFFh) with "io" commands in the background monitor, the emulator operates exceptionally. When you display reserved area of I/O space, theemulator displays "FFh" . When you modify reserved area of I/Ospace, the emulator does not modify value.
Evaluation Chip	Hewlett-Packard makes no warranty of the problem caused by the Evaluation chip in the emulator.

Notes

1-8 Introduction

Getting Started

Introduction

This chapter will lead you through a basic, step by step tutorial that shows how to use the HP 64768 emulator (for the 70433 microprocessor) with the Softkey Interface.

This chapter will:

 Tell you what must be done before you can use the emulator as shown in the tutorial examples.

• Describe the demo program used for this chapter's examples. This chapter will show you how to:

- Start up the Softkey Interface.
- Load programs into emulation and target system memory.
- Enter emulation commands to view execution of the demo program.

Before You Begin

Prerequisites	Before beginning the tutorial presented in this chapter, you must have completed the following tasks:
	1. Connected the emulator to your computer. The HP 64700 Series Installation/Service manual show you how to do this.
	 Installed the Softkey Interface software on your computer. Refer to the HP 64700 Series Installation/Service manual for instructions on installing software.
	3. In addition, you should read and understand the concepts of emulation presented in the Concepts of Emulation and Analysis manual. The Installation/Service manual also covers HP 64700 system architecture. A brief understanding of these concepts may help avoid questions later.
	You should read the Softkey Interface Reference manual to learn how to use the Softkey Interface in general. For the most part, this manual contains information specific to the 70433 emulator.
A Look at the Demo Program	The demo program is listed in "C" and assembly in Figure 2-1. The demo program is skdemo consisting of source program skdemo.c.

Where is the skdemo Software?

The demo program is shipped with the Softkey Interface and may be copied from the following directory.

/usr/hp64000/demo/emul/hp64768

2-2 Getting Started

What Does the Program Do?

The program is designed to go into a continuous loop checking for a new command (NEW_CMD). The while loop skips the "if" statement because semaphore is assigned the value of NO_CMD ('f') and is never equal to NEW_CMD ('t'). Also, the switch statement's expression never matches the cases CMD_A, CMD_B, or CMD_C because the switch statement evaluates the value (cmd_code) which is initially assigned the value of NO_CMD ('f').

As you progress through this tutorial, you will make the appropriate changes to the data in memory to make this program step through each branch of the program. When semaphore signals a new command (NEW_CMD):

- 1. Semaphore is assigned the value of CMD_STARTED ('s'),
- 2. The status "Command received ", is displayed.
- 3. The switch statement is executed. If a command has NOT been specified in cmd_code, the default command result "Invalid command entered" is displayed.

Symbolic Constants

Symbolic constants can be used in different parts of the program to make the program run, step, break, trace, or define memory ranges. The symbols are truncated to 15 characters. Symbolic names (local and global) are labeled:

Static Local Symbols

main
cmd_code
command_A
command_C
command_R
semaphore

Static Global Symbols

_cmd_loop	_main
_strcpy	

cmd_code

The switch statement evaluates the value of cmd_code with the cases within it. You will change the cmd_code (to 'A', 'B', or 'C') to match each of the cases as you progress through the steps in this manual. As you enter into each branch of the switch statement:

- If case CMD_A is satisfied, the cmd_result (Command 'A' entered) is displayed.
- If case CMD_B is satisfied, the cmd_result (Command 'B' entered) is displayed.
- If case CMD_C is satisfied, the cmd_result (Command 'C' entered) is displayed.
- When the case statement is completed, semaphore equals the value of CMD_FINISHED ('f').

semaphore

Semaphore is assigned the value of NO_CMD (0H). You will change the value of "semaphore" to NEW_CMD ('t') to satisfy the "if" statement. This variable is used to synchronize commands.

2-4 Getting Started

```
/* "NEC V55PI DEMONSTRATION PROGRAM" */
/* "skdemo.c" */
#include <rcopy.h>
/* DEFINES */
#define TRUE
                                         1
0
#define FALSE
                                         ′f′
#define NO_CMD
                                         't'
#define NEW_CMD
                                         ′s′
#define CMD_STARTED
                                         'f'
#define CMD_FINISHED
#define CMD_A
                                         'A'
#define CMD_B
                                         'B'
#define CMD_C
                                         ′C′
extern void my_rompseg();
static unsigned char status
                                      [] = "
                                                                               ";
static unsigned char cmd_result [] = "
                                                                               ";
static unsigned char semaphore = NO_CMD;
static unsigned char cmd_code = NO_CMD;
static unsigned char await_comd [] = "Awaiting command
static unsigned char no_command [] = "No command entered
                                                                           ";
                                                                          ";
static unsigned char command_R [] = "Command received
static unsigned char command_A [] = "Command 'A' entered
                                                                          ";
                                                                          ";
static unsigned char command_B [] = "Command 'B' entered
static unsigned char command_C [] = "Command 'C' entered
                                                                          ";
                                                                          ";
static unsigned char command_I [] = "Invalid Command entered";
main()
{
     /* To display symbolically:
                                                                               * /
    /* display local_symbol_in skdemo.c:
/* display memory status thru cmd_code repeatively bytes
                                                                               *'/
                                                                               * /
     rcopy(my_rompseg);
     strcpy (status,await_comd);
     /* initialize control variables */
     semaphore = NO_CMD;
     cmd_code = NO_CMD;
     strcpy (cmd_result,no_command);
     /* Call command loop function */
```

Figure 2-1 C Source skdemo.c (Cont'd)

cmd_loop ();

```
}
   /* main_prog */
cmd_loop (t)
{
    /* Stay in endless loop, checking for a new command
/* When a new command is detected, it is executed
/* New command can be entered using the following:
                                                                                    */
*/
*/
                                                                                    */
*/
*/
*/
     /* Place the value 'B' in cmd_code memory location
/* modify memory cmd_code bytes to 'B'
     /* Place the value 't' in semaphore to indecate NEW_CMD
/* modify memory semaphore bytes to 't'
/* Display the result in cmd_result
     /* display memory cmd_result blocked bytes
     while (TRUE){
          if (semaphore == NEW_CMD) {
    semaphore = CMD_STARTED;
                strcpy (status, command_R);
                switch (cmd_code){
                     case CMD_A :
                          strcpy (cmd_result, command_A);
                          break;
                     case CMD_B :
                          strcpy (cmd_result, command_B);
                          break;
                     case CMD_C :
                          strcpy (cmd_result, command_C);
                          break;
                     default :
                         strcpy (cmd_result, command_I);
                }
                     /* switch */
               semaphore = CMD_FINISHED;
          /* if (semaphore == NEW_CMD) body */
/* while (TRUE) loop */
}
     /* FUNCTION cmd_loop */
```

Figure 2-1 C Source skdemo.c (Cont'd)

2-6 Getting Started

Compiling the Demo
ProgramThe demo program is written for and compiled/linked with the
InterTools V20 Family C Compiler and Linking Locator. The demo
program was compiled with the following command.

\$ cv55 skdemo.c
-S /usr/local/itools/rtlibs/inc -d -do -sd
<RETURN>

Linking the Demo Program

The following command was used to generate the absolute file. The "skdemo.lc" linker command file is shown in figure 2-2.

\$ llink skdemo.ol -o skdemo.ab -c skdemo.lc -b _my_rompseg -rc stsep -L /usr/local/itools/rtlibs/cv55s/lm/libcv55s <RETURN>

LOCATE	({code}	:	#80000);
LOCATE	({constant}	:	#80500);
LOCATE	({stsep}	:	#10000);
LOCATE	({data}	:	#15000);

Figure 2-2 Linker Command File for "skdemo.lc"

Generate HP To g Absolute file "v55 prov

To generate HP absolute file for the Softkey Interface, you need to use "**v55cnv**" absolute file format converter. The v55cnv converter is provided with the Softkey Interface. To generate HP absolute file, enter the following command:

\$ v55cnv skdemo <RETURN>

You will see that skdemo.X, skdemo.L, and skdemo.A are generated. The file skdemo.X contains the absolute code of the program. The file skdemo.L contains the list of global symbols. The files *skdemo.A* contains the list of local symbols for the respective files.

Note

The required executable files are included in the following directory. /usr/hp64000/demo/emul/hp64768

Entering the Softkey Interface	If you have installed your emulator and Softkey Interface software as directed in the HP 64700 Series Emulators Softkey Interface Installation Notice, you are ready to enter the interface. The Softkey Interface can be entered through the pmon User Interface Software or from the HP-UX shell.
From the "pmon" User Interface	If /usr/hp64000/bin is specified in your PATH environment variable, you can enter the pmon User Interface with the following command.
	\$ pmon <return> If you have not already created a measurement system for the 70433 emulator, you can do so with the following commands. First you must initialize the measurement system with the following command.</return>
	MEAS_SYS msinit <return> After the measurement system has been initialized, enter the configuration interface with the following command.</return>
	msconfig <return> To define a measurement system for the 70433 emulator, enter:</return>
	make_sys emv55 <return> Now, to add the emulator to the measurement system, enter:</return>
	add <module_number> naming_it n70433 <return> Enter the following command to exit the measurement system configuration interface.</return></module_number>
	end <return> If the measurement system and emulation module are named "emv55" and "n70433" as shown above, you can enter the emulation session with the following command:</return>
	emv55 default n70433 <return> If this command is successful, you will see a display similar to figure 2-3. The status message shows that the default configuration file has been loaded. If the command is not successful, you will be given an error message and returned to the pmon User Interface. Error messages are described in the <i>Softkey Interface Reference</i> manual.</return>
	For more information on creating measurements systems, refer to the <i>Softkey Interface Reference</i> manual.

2-8 Getting Started

HPB3067-19301 A.05.00 11Nov92 Unreleased V55 SOFTKEY USER INTERFACE				
A Hewlett-Packard Software Product Copyright Hewlett-Packard Co. 1992				
All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under copyright laws.				
RESTRICTED RIGHTS LEGEND				
Use , duplication , or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1) (II) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013. HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181				
STATUS: Starting new sessionR				
run trace step display modify break endETC				

Figure 2-3 Softkey Interface Display

From the HP-UX Shell

If **/usr/hp64000/bin** is specified in your PATH environment variable, you can also enter the Softkey Interface with the following command.

\$ emul700 -uskemul <emul_name> <RETURN>
The "emul_name" in the command above is the logical emulator name
given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

# # # logical name # (14 chars) #	processor type	physical device	xpar mode	baud rate	parity NONE	flow XON RTS	stop bits 2	char size 8
# v55PI	n70433	/dev/emulcom23	OFF	9600	NONE	XON	2	8

If this command is successful, you will see a display similar to figure 2-3. The status message shows that the default configuration file has been loaded. If the command is not successful, you will be given an error message and returned to the HP-UX prompt. Error messages are described in the Softkey Interface Reference manual.

Configure the Emulator for Examples

To do operations described in this chapter (loading absolute program into emulation memory, displaying memory contents, etc), you need to configure the emulator as below. For detailed description of each configuration option (question), refer to the "Configuring the Emulator" chapter.

To get into the configuration session of the emulator, enter the following command.

modify configuration <RETURN>

Answer to the series of questions as below.

Micro-processor clock source? **internal** <RETURN> Enter monitor after configuration? **yes** <RETURN> Restrict to real-time runs? **no** <RETURN> Modify memory configuration? **yes** <RETURN> Monitor type? **background** <RETURN>

> Now you should be facing memory mapping screen. The address ranges 0h thru 1f6ffh and fff00h thru fffffh are mapped as emulation RAM by default. Three mapper terms must be specified for the demo program. Enter the following lines to map the program code area as emulation ROM, data area as emulation RAM.

delete all <RETURN>

0h thru 0ffh emulation ram <RETURN>
10000h thru 1ffffh emulation ram <RETURN>
80000h thru 80fffh emulation rom <RETURN>
0fff00h thru 0fffff emulation rom <RETURN>
end <RETURN>
Modify emulator pod configuration? no

Modify debug/trace options? **no** <RETURN> Modify simulated I/O configuration? **no** <RETURN> Modify interactive measurement specification? **no** <RETURN>

If you wish to save the configuration specified above, answer this question as shown.

Configuration file name? skdemo <RETURN>

Now you are ready to go ahead. Above configuration is used through out this chapter.

2-10 Getting Started

On-Line Help	There are two ways to access on-line help in the Softkey Interface. The first is by using the Softkey Interface help facility. The second method allows you to access the firmware resident Terminal Interface on-line help information.
Softkey Driven Help	To access the Softkey Interface on-line help information, type either "help" or "?" on the command line; you will notice a new set of softkeys. By pressing one of these softkeys and <return>, you can cause information on that topic to be displayed on your screen. For example, you can enter the following command to access "system command" help information.</return>
	? system_commands <return></return>

```
---SYSTEM COMMANDS & COMMAND FILES---
?
                            displays the possible help files
help
                            displays the possible help files
                            fork a shell (specified by shell variable SH)
! <hell command>
                           fork a shell and execute a shell command
                            print the working directory
pwd
cd <directory>
                            change the working directory
pws
                            print the default symbol scope
cws <YMB>
                            change the working symbol - the working symbol also
                            gets updated when displaying local symbols and
                            displaying memory mnemonic
forward <UI> "command"
                            send the command in the quoted string from this user
                            interface to another one. Replace with the name
of the other user interface as shown on the softkeys:
-More--(15%)
```

The help information is scrolled on to the screen. If there is more than a screenful of information, you will have to press the space bar to see the next screenful, or the <RETURN> key to see the next line, just as you do with the HP-UX **more** command. After all the information on the particular topic has been displayed (or after you press "q" to quit scrolling through information), you are prompted to press <RETURN> to return to the Softkey Interface.

Pod Command Help

To access the emulator's firmware resident Terminal Interface help information, you can use the following commands.

display pod_command <RETURN>
pod_command 'help cf' <RETURN>

The command enclosed in string delimiters (", ', or ^) is any Terminal Interface command, and the output of that command is seen in the pod_command display. The Terminal Interface help (or ?) command may be used to provide information on any Terminal Interface command or any of the emulator configuration options (as the example command above shows).

Note

If you want to use the Terminal Interface command by entering from keyboard directly, you can do it after entering the following command. pod_command keyboard

Pod Commands Command Time 14:42:14 help cf cf - display or set emulation configuration cf - display current settings for all config items cf <item> - display current setting for specified <item> cf <item>=<value> - set new <value> for specified <item> cf <item> <item>=<value> <item> - set and display can be combined elp cf <item> - display long help for specified help cf <item> -- VALID CONFIGURATION <item> NAMES -clk- select clock source dsize - select data bus width hold - en/dis HLDRQ input from the target system - select mnemonic for inverse assembly mne - select foreground or background monitor mon - en/dis NMI from the target system nmi - select run address translation method rad n70433--Running in monitor_ STATUS: ...R.... pod_command 'help cf' ---*ETC*-trace display modify break end run step

2-12 Getting Started

Loading Absolute Files	The "load" command allows you to load absolute files into emulation or target system memory. If you wish to load only that portion of the absolute file that resides in memory mapped as emulation RAM or ROM, use the "load emul_mem" syntax. If you wish to load only the portion of the absolute file that resides in memory mapped as target RAM, use the "load user_mem" syntax. If you want both emulation and target memory to be loaded, do not specify "emul_mem" or "user_mem". For example: load skdemo <return></return>	
Note	When loading a program if the status line shows	
	"ERROR: No absolute file, No database: skdemo	
	, you may NOT be in the directory that your program is in. To find out what directory you are in, enter:	
	! pwd <return> The "!" allows you to use an HP-UX shell command. To move into the correct directory, enter:</return>	
	cd <directory path=""> <return></return></directory>	
	You can also specify the pathname where your program resides. For example, you could enter:	

load /usr/hp64000/demo/emul/hp64768/skdemo
<RETURN>

Displaying SymbolsWhen you load an absolute file into memory (un "nosymbols" syntax), symbol information is also symbols and symbols that are local to a source file		When you load an absolute file into memory (unless you use the "nosymbols" syntax), symbol information is also loaded. Both global symbols and symbols that are local to a source file can be displayed.
	Global	To display global symbols, enter the following command.
		display global_symbols <return></return>
		Listed are address ranges associated with a symbol, the segment that the symbol is associated with, and the offset of that symbol within the segment.

Global symbols in skdemo.X Static symbols Symbol name	Address range Segment 1500:002C 1500:0040 8000:00C2 8000:015B 8000:0110 8020:0081 1500:008E 8000:0072 8020:0029 8010:00CB	Offset 0000 0000 0000 0000 0000 0000 0000 0
_stderr stdin	1500:008A 1500:0082	0000
_stdout _strcpy	1500:0086 8010:00FA	0000
STATUS: n70433Running in display global_symbols	n monitor	R
run trace step o	display modify break end	dETC

2-14 Getting Started
Local When displaying local symbols, you must include the name of the source file in which the symbols are defined. For example,

display local_symbols_in skdemo.c: <RETURN>

As you can see, the procedure symbols and static symbols in "skdemo.c" are displayed.

To list the next symbols, press the <PGDN> or <Next> key. the source reference symbols in "skdemo.c" will be displayed.

Listed are: address ranges associated with a symbol, the segment that the symbol is associated with, and the offset of that symbol within the segment.

Symbols in skdemo.c:			
Static symbols			
Symbol name	Address range	Segment	Offset
await_comd	1000:0090		0090
cmd_code	1000:00A8		00A8
cmd_loop	8020:0081		0058
cmd_result	1000:00AC		00AC
command_A	1000:0048		0048
command_B	1000:0030		0030
command_C	1000:0018		0018
command_I	1000:0000		0000
command_R	1000:0060		0060
main	8020:0029		0000
no_command	1000:0078		0078
semaphore	1000:00AA		00AA
status	1000:00C8		00C8
Source reference symbols			
STATUS: cws: skdemo.c: display local_symbols_in	skdemo.c:		R
run trace step	display m	odify break	endETC

Source Lines To display the address ranges associated with the program's source file, you must display the local symbols in the file. For example:

display local_symbols_in skdemo.c: <RETURN>

And scroll the information down on the display with up arrow, or <Next> key.

Symbols in Source refe	skdemo.c: erence symbo	ols					
Line range			Address	range Seg	ment		_ Offset
#1-#34			8020:0029 -	002C			0000
#35-#40			8020:002D -	0037			0004
#41-#42			8020:0038 -	004F			000F
#43-#46			8020:0050 -	0058			0027
#47-#47			8020:0059 -	0061			0030
#48-#48			8020:0062 -	0079			0039
#49-#51			8020:007A -	0080			0051
#52-#56			8020:0081 -	0084			0058
#57-#70			8020:0147				011E
#71-#71			8020:0085 -	008F			005C
#72-#72			8020:0090 -	0098			0067
#73-#73			8020:0099 -	00B0			0070
#74-#74			8020:0123 -	013B			OOFA
#75-#76			8020:00B4 -	00CB			008B
#77-#77			8020:00CC -	OOCE			00A3
STATUS: r	n70433Runn	ning i in sk	n monitor				R
dispid, ioc	501_5y5015_		40.00.00				
run t	trace st	ep	display	modify	break	end	ETC

2-16 Getting Started

Displaying Memory in Mnemonic Format

You can display, in mnemonic format, the absolute code in memory. For example to display the memory of the demo program,

display memory main **mnemonic** <RETURN>

Memory :mn	emonic :file	= skdemo.c:				
8020 0029	C8000000	PREPARE 0000 00				
8020 002D	680508	PUSH 0805				
8020 0030	680000	PUSH 0000				
8020 0033	9ACB001080	CALL FAR PTR 8010	B			
8020 0038	0F363E1000	MOV DS3, IY, DWORD	PTR 0010			
8020 003D	0F76	PUSH DS3/VPC				
8020 003F	57	PUSH IY				
8020 0040	0F3E160000	MOV DS2,DW,DWORD	PTR 0000			
8020 0045	OF7E	PUSH DS2				
8020 0047	52	PUSH DW				
8020 0048	9AFA001080	CALL FAR PTR 801	۳A			
8020 004D	83C404	ADD SP,04				
8020 0050	0F363E0800	MOV DS3, IY, DWORD	PTR 0008			
8020 0055	D6C60566	MOV DS3:BYTE PTR	[IY],66			
8020 0059	OF3E1E0C00	MOV DS2, BW, DWORD	PTR 000C			
8020 005E	63C60766	MOV DS2:BYTE PTR	[BW],66			
STATUS: n7 display memo	0433Runnin ry main mnem	g in monitor onic				R
run tr	ace step	display	modify	break	end	ETC

Notice that you can use symbols when specifying expressions. The global symbol **main** is used in the command above to specify the starting address of the memory to be displayed.

Display Memory with Symbols

If you want to see symbol information with displaying memory in mnemonic format, the emulator Softkey Interface provides "set symbols" command. To see symbol information, enter the following command.

set symbols on <RETURN>

Memory :mnemonic :file = skdemo.c:	
8020 0029 : main C8000000	PREPARE 0000,00R 8020 002D
680508 PUSH 0805	
8020 0030 680000	PUSH 0000
8020 0033 9ACB001080	CALL FAR PTR :_rcopy
8020 0038 0F363E1000	MOV DS3,IY,DWORD PTR 0010
8020 003D 0F76	PUSH DS3/VPC
8020 003F 57	PUSH IY
8020 0040 OF3E160000	MOV DS2,DW,DWORD PTR 0000
8020 0045 OF7E	PUSH DS2
8020 0047 52	PUSH DW
8020 0048 9AFA001080	CALL FAR PTR :_strcpy
8020 004D 83C404	ADD SP,04
8020 0050 0F363E0800	MOV DS3,IY,DWORD PTR 0008
8020 0055 D6C60566	MOV DS3:BYTE PTR [IY],66
8020 0059 OF3E1E0C00	MOV DS2, BW, DWORD PTR 000C
8020 005E 63C60766	MOV DS2:BYTE PTR [BW],66
STATUS: n70433Running in monitor	R
set symbols on	
run trace step display	modify break endETC

As you can see, the memory display shows symbol information.

2-18 Getting Started

Display Memory with Source Code

If you want to reference the source line information with displaying memory in mnemonic format, the emulator Softkey Interface provides "set source" command. To reference the source line information in inverse video, enter the following command:

set source on inverse_video on <RETURN>

Memory :n address	<pre>inemonic :file = skdemo.c: label</pre>			
1	/* "NEC V55PI DEMONSTRA	ION PROGRAM" */		
2	/* "SKdemo.c" */			
3	#include <rcopy.n></rcopy.n>			
4				
5	/ DEFINES /	1		
6	#define TRUE	1		
.7	#define FALSE	0		
8	#define NO_CMD	'±'		
9	#define NEW_CMD	't'		
10	#define CMD_STARTED	's'		
11	#define CMD_FINISHED	′£′		
12	#define CMD_A	'A'		
13	#define CMD_B	'B'		
14	#define CMD_C	'C'		
15				
16	<pre>extern void_rompseg();</pre>			
STATUS: r	170433Running in monitor			R
set source	on inverse_video on			
run t	race step display	modify br	eak end	ETC

To see the memory without source line referencing, enter the following command:

set source off <RETURN>

Running the Program	The "run" command lets you execute a program in memory. Entering the "run" command by itself causes the emulator to begin executing at the current program counter address. The "run from" command allows you to specify an address at which execution is to start.
From Transfer Address	The "run from transfer_address" command specifies that the emulator start executing at a previously defined "start address". Transfer addresses are defined in assembly language source files with the END assembler directive (i.e., pseudo instruction). Enter: run from transfer_address <return></return>
From Reset	The "run from reset" command specifies that the emulator begin executing from reset vector as actual microprocessor does. (See "Running From Reset" section in the "In-Circuit Emulation" chapter).
Displaying Memory	The demo program "skdemo.c" alters memory upon user commands. User commands are entered by modifying the memory locations cmd_code and semaphore .
Using Symbolic Addresses	In the following display, the memory range is displayed using symbolic addresses status and cmd_code.
	The memory display window is periodically updated. For example, enter the following command: display memory cmd_code thru status+1fh blocked bytes <return></return>
	This command string is used to specify the range of memory from cmd_code to status+1fh .

2-20 Getting Started

Memory addi	y :bytes	:bloc	ked	updat: he:	e x								as	cii			
1000	00A8-AF	66	00	66	00	4E	бF	20	63	f		f		N	0		С
1000	00B0-B7	6F	6D	6D	61	6E	64	20	65	0	m	m	a	n	d		e
1000	00B8-BF	бE	74	65	72	65	64	20	20	n	t	е	r	е	d		
1000	00C0-C7	20	20	20	00	20	20	20	00								
1000	00C8-CF	41	77	61	69	74	69	6E	67	A	W	а	i	t	i	n	g
1000	00D0-D7	20	63	6F	6D	6D	61	6E	64		С	0	m	m	а	n	d
1000	00D8-DF	20	20	20	20	20	20	20	00								•
1000	00E0-E7	20	20	20	00	00	00	00	00				•	·	·	·	•
STATUS	n70433	3––Run	ning	user	progr	am											R
display	y memory o	cmd_co	de tl	hru st	atus+	-1fh	block	ed b	ytes								
201120	t 200 00	-	ton	diam	1			ad i fr	bwo	o le		_	~~d				ETC.
run	Lrace	S	сер	aisp	таў		m	oalty	bre	ак		e	ana		_		-EIC

Modifying Memory

This demo program simulates a primitive command interpreter. In the program, the command code memory location is set to a desired value (initially 66H, ascii character "f"). Memory locations **semaphore** and **cmd_code** correspond to memory address 1009:0044 hex and 1009:0045 hex respectivity.

You can use the modify memory command to send commands to the sample program. For example, to enter the command 't' at address 1009:0044 and enter command 'A' at address 1009:0045: use the following commands.

modify memory cmd_code string to 'A' <RETURN>
modify memory semaphore string to 't'
<RETURN>

After the memory location are modified, the memory display shows the following

Memory :bytes address	:blocked data	update: hex				:ascii	
1000 00A8-AF 1000 00B0-B7	41 00 61 6E	66 00 64 20	43 6 27 4	6F 6D 41 27	6D A 20 a 1	.f.C nd '	omm A ′
1000 00B8-BF	65 6E	74 65	72 6	65 64	20 e 1	nte r	e d
1000 00C0-C7 1000 00C8-CF	20 20 43 6F	6D 6D	61 6	20 20 6E 64	20 C (omma	nd.
1000 00D0-D7 1000 00D8-DF	72 65 20 20	63 65 20 20	69 7 20 2	76 65 20 20	64 r (00	ece i	ved
1000 00E0-E7	20 20	20 00	00 0	00 00	00		
STATUS: n7043 modify memory s	3Running emaphore	g user prog string to	ram 't'				R
run trace	step	display		modify	break	end	ETC

Breaking into the Monitor

The "break" command allows you to divert emulator execution from the user program to the monitor. You can continue user program execution with the "run" command. To break emulator execution from the demo program to the monitor, enter the following command.

break <RETURN>

Notice that the current address is pointed out with inverse video in displaying memory when the execution breaks to the monitor.

2-22 Getting Started

Using Software Breakpoints	Software breakpoints are handled by the 70433 BRK 3 instruction. When you define or enable a software breakpoint, the emulator will replace the opcode at the software breakpoint address with a breakpoint interrupt instruction(BRK 3).
Caution 👘	Software breakpoints should not be set, cleared, enabled, or disabled while the emulator is running user code. If any of these commands are entered while the emulator is running user code and the emulator is executing code in the area where the breakpoint is being modified, program execution may be unreliable.
Note	You must only set software breakpoints at memory locations which contain instruction opcodes (not operands or data). If a software breakpoint is set at a memory location which is not an instruction opcode, the software breakpoint instruction will never be executed. Further, your program won't work correctly.
Note	NMI will be ignored, when software breakpoint and NMI occur at the same time.
Note	Because software breakpoints are implemented by replacing opcodes with the breakpoint interrupt instruction, you cannot define software breakpoints in target ROM. Them you can use software breakpoints.

	When software breakpoints are enabled and the emulator detects the BRK 3 interrupt instruction, it generates a break into the monitor. Since the system controller knows the locations of defined software breakpoints, it can determine whether the BRK 3 instruction in your target program.
	If the BRK 3 interrupt was generated by a software breakpoint, execution breaks to the monitor, and the breakpoint interrupt instruction(BRK 3) is replaced by original opcode. A subsequent run or step command will execute from this address.
	If the BRK 3 interrupt was generated by a BRK 3 interrupt instruction in the target program, execution still breaks to the monitor, and an "undefined breakpoint" status message is displayed. To continue program execution, you must run or step from the target program's breakpoint interrupt vector address.
Enabling/Disabling Software Breakpoints	When you initially enter the Softkey Interface, software breakpoints are disabled. To enable the software breakpoints feature, enter the following command. modify software_breakpoints enable <return></return>
	When software breakpoints are enabled and you set a software breakpoint, the 70433 breakpoint interrupt instruction (BRK 3) will be placed at the address specified. When the breakpoint interrupt instruction is executed, program execution will break into the monitor.
Setting a Software Breakpoint	To set a software breakpoint at line 68 of "skdemo.c", enter the following command.
	modify software_breakpoints set line 70 <return></return>
	To see the address where the software breakpoint has been set, enter the following command:
	display memory line 70 <i>mnemonic</i> <return> set source on inverse_video off <return></return></return>

2-24 Getting Started

Memory :mnemonic :file = skdemo.c:		
address label data		
/0 if (semaphore ==	NEW_CMD) {	
* 8020 0085 CC	BRK 3	
8020 0086 363E0800	OR DS0:BYTE PTR [BW][IX],AL	
8020 008A D6803D74	CMP DS3:BYTE PTR [IY],74	
8020 008E 7575	BNE/Z :itoo/skdemo.c:+000DC	
71 semaphore = 0	CMD_STARTED;	
8020 0090 OF3E1E0800	MOV DS2, BW, DWORD PTR 0008	
8020 0095 63C60773	MOV DS2:BYTE PTR [BW],73	
72 strcpy (statu	us, command R);	
8020 0099 0F36161800	MOV DS3, DW, DWORD PTR 0018	
8020 009E 0F76	PUSH DS3/VPC	
8020 00A0 52	PUSH DW	
8020 00A1 0F363E0000	MOV DS3.IY.DWORD PTR 0000	
8020 00A6 0F76	PUSH DS3/VPC	
8020 00A8 57	PUSH TY	
8020 0010 9353001080	CALL FAR DTR : strony	
SOZO SORS SAFAGOIGO	CALL FAR TIRStrepy	
STATUS: n70433Running in monitor	p	
set source on inverse wideo off		
set source on inverse_video off		
run trado didular	modify brook and FTC	
run crace step display	mourry preak endEIC	

The asterisk (*) in left side of the address lists points out that the software breakpoint has been set. The opcode at the software breakpoint address was replaced to the software breakpoint instruction (BRK 3).

Displaying Software To display software breakpoints, enter the following command. **Breakpoints**

display software_breakpoints <RETURN>

Software addres 8020 00	breakpoint s 85	s :ena label skdemc	bled .c:		line	70	status pending
STATUS: display s	n70433R oftware_br	unning eakpoin	in monitor ts	 			R
run	trace	step	display	modify	break	en	dETC

The software breakpoints display shows that the breakpoint is pending. When breakpoints are hit they become inactivated. To reactivate the breakpoint so that is "pending", you must reenter the "modify software_breakpoints set" command.

After the software breakpoint has been set, enter the following command to cause the emulator to continue executing the demo program.

run <RETURN>

A message on the status line shows that the software breakpoint has been hit. The status line also shows that the emulator is now executing in the monitor.

The software breakpoint address is pointed out with inverse video in displaying memory in mnemonic format. To see the software breakpoint with memory, enter the following command.

display memory line 70 **mnemonic** <RETURN>

Notice that the original opcode was replaced at the address that the software breakpoint has been set.

2-26 Getting Started

Clearing a Software Breakpoint To remove software breakpoint defined above, enter the following command. modify software_breakpoints clear line 70 <RETURN> modify software_breakpoints clear line 70 The breakpoint is removed from the list, and the original opcode is restored if the breakpoint was pending. To clear all software breakpoints, you can enter the following command.

modify software_breakpoints clear <RETURN>

Displaying Registers

Enter the following command to display registers. You can display the basic registers, or an individual register.

display registers <RETURN>

Registers		
Next_PC 8020:0085H PSW F083 [s PC 0085 SP 0FF4 PS 8020 SS 1500 D AW 0041 BW 00AC	c] IX 0000 IY 00AA DS0 1500 DS1 0000 CW 0000 DW 0000	BP 0FF4 DS2 0100 DS3 0100
STATUS: n70433Runn display registers	ning in monitor	Software break: 08020:00085R
run trace st	tep display	modify break endETC

Note

To display or modify SFR(Special Function Register), you must use "display/modify register" commands.

Refer to "REGISTER CLASS and NAME" section in "Using the Emulator" chapter .

Stepping Through the Program

The step command allows you to step through program execution an instruction or a number of instructions at a time. Also, you can step from the current program counter or from a specific address. To step through the example program from the address of the software breakpoint set earlier, enter the following command.

step <RETURN>, <RETURN>, <RETURN>, ...

You will see the inverse-video moves according to the step execution. You can continue to step through the program just by pressing the <RETURN> key; when a command appears on the command line, it may be entered by pressing <RETURN>.

Registers Step_PC 8020:0085H MOV DS3, IY, DWORD PTR 0008 Next_PC 8020:008AH PSW F083 [s с] SP 0FF4
 SP 0FF4
 IX 0000
 IY 00AA
 BP 0FF4

 SS 1500
 DS0 1500
 DS1 0000
 DS2 0100
 PC 008A PS 8020 DS3 0100 AW 0041 BW 00AC CW 0000 DW 0000 Step_PC 8020:008AH CMP DS3:BYTE PTR [IY],74 Next_PC 8020:008EH PSW F083 с] s PC 008E SP 0FF4 IX 0000 IY OOAA BP OFF4 DS0 1500 DS1 0000 DS2 0100 PS 8020 SS 1500 DS3 0100 AW 0041 BW 00AC CW 0000 DW 0000 STATUS: n70433--Stepping complete_ ...R.... step

2-28 Getting Started

	You can step program execution by source lines, enter: step source <return> Source line stepping is implemented by single stepping assembly instructions until the next PC is outside of the address range of the current source line. When source line stepping is attempted on assembly code, stepping will complete when a source line is found. To terminate stepping type <ctrl>-C.</ctrl></return>
Note	 There are cases in which the emulator can not step. Step command is not accepted between each of the following instructions and the next instruction. 1) Instructions that manipulate sreg or xsreg: MOV sreg,reg16, MOV sreg,mem16, POP sreg, MOV xsreg,reg, MOV xsreg, mem16, POP xsreg. 2) Prefix instructions: PS:, SS:, DS0:, DS1:, DS2:, DS3:, IRAM, REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ, BUSLOCK. 3) EI, DI,RETI, RETRBI. 4) POP PSW. 5) FINT. 6) BRKCS, BRK 3, BRK imm8, BRKV(V=1), CHKIND(mem32>reg16 or (mem32+2)<reg16), fp-op,="" fp-op,mem;,="" fpo1="" fpo2="" li="" movspa.<="" movspb,="" tsksw,=""> 7) RSTWDT. 8) The first instruction of interrupt processing routine. </reg16),>

Enter the following command to cause sample program execution to continue from the current program counter.

run <RETURN>

Using the Analyzer	HP 64700 emulators contain an emulation analyzer. The emulation analyzer monitors the internal emulation lines (address, data, and status). Optionally, you may have an additional 16 trace signals which monitor external input lines. The analyzer collects data at each pulse of a clock signal, and saves the data (a trace state) if it meets a "storage qualification" condition.
Source Line Referencing	A trace may be taken and displayed using source line referencing. Also, lines of the source program can be displayed with the trace list where the trace occurred.
	To display the trace with source code in inverse video, enter the following command:
	set source on inverse_video on <return></return>
Specifying a Simple Trigger	Suppose you want you trace program execution after the point at which the sample program read the byte value 74H('t') from the address semaphore. The following command make this trace specification.
	trace after semaphore data 0xx74h status read <return></return>
	Note that the analyzer is to search for a lower byte read of 74H because the address is even.
	The STATUS message shows "Emulation trace started."
	When the memory location (semaphore) is modified, the trace is completed, and the STATUS message shows "Emulation trace complete." The program acts upon the case statement where cmd_code was changed in memory to 'A'. Enter the following command:
	modify memory semaphore string to 't' <return></return>

Display the Trace

The trace listings which following are of program execution on the 70433 emulator. To see the trace list, enter the following command:

Trace	List	Offset	et=0
Label:	Address	Data	Opcode or Status w/ Source Lines time count
Base:	symbols	hex	mnemonic w/symbols relative
after	skdemo:semaphore	FF74	xx74 read mem 2.6 uS
+001	:skdemo.:+000065	FF74	BNE/Z :itoo/skdemo.c:+000DC 320 nS
+002	:skdemo.:+000067	3E0F	3EOF fetch 1.6 uS
+003	:skdemo.:+000069	081E	081E fetch 1.9 uS
	#########skdemo.c	- line	71 ####################################
	semapho	ore = CMD	D_STARTED;
+004	:skdemo.:+000067	081E	MOV DS2,BW,DWORD PTR 0008 320 nS
+005	:skdemo.:+00006B	6300	6300 fetch 3.5 uS
+006	:skdemo.:+00006D	07C6	07C6 fetch 1.9 uS
+007	015008	00AA	00AA read mem 1.9 uS
+008	:skdemo.:+00006F	0F73	0F73 fetch 1.9 uS
+009	01500A	0100	0100 read mem 1.9 uS
+010	:skdemo.:+00006C	0100	MOV DS2:BYTE PTR [BW],73 320 nS
+011	skdemo:semaphore	0073	xx73 write mem 3.5 uS
+012	:skdemo.:+000071	1636	1636 fetch 1.9 uS
STATUS	: n70433Running	g user pro	rogram Emulation trace completeR
displa	y trace		
run	trace step	display	ay modify break endETC

display trace <RETURN>

The trace list shows the trace after line (semaphore = CMD_STARTED).

To list the next lines of the trace, press the <PGDN> or <NEXT> key.

Displaying Trace with No Symbol

The trace listing shown above has symbol information because of the "**set symbols on**" setting before in this chapter. To see the trace listing with no symbol information, enter the following command.

set symbols off <RETURN>

Trace L	ist		Offset=0		
Label:	Address	Data	Opcode or Status w/ Source Lines t	ime cou	int
Base:	hex	hex	mnemonic	relativ	7e
after	0100AA	FF74	xx74 read mem	2.6	uS
+001	08028E	FF74	BNE/Z 80305	320	nS
+002	080290	3E0F	3EOF fetch	1.6	uS
+003	080292	081E	081E fetch	1.9	uS
#	#########	skdemo.c	- line 71 ###################################	#######	+###
		semapho	re = CMD_STARTED;		
+004	080290	081E	MOV DS2,BW,DWORD PTR 0008	320	nS
+005	080294	6300	6300 fetch	3.5	uS
+006	080296	07C6	07C6 fetch	1.9	uS
+007	015008	00AA	00AA read mem	1.9	uS
+008	080298	0F73	0F73 fetch	1.9	uS
+009	01500A	0100	0100 read mem	1.9	uS
+010	080295	0100	MOV DS2:BYTE PTR [BW],73	320	nS
+011	0100AA	0073	xx73 write mem	3.5	uS
+012	08029A	1636	1636 fetch	1.9	uS
STATUS:	n70433	Running	user program Emulation trace complete	R.	•••
set sym	bols off				
run	trace	step	display modify break end	ETC]

As you can see, the analysis trace display shows the trace list without symbol information.

2-32 Getting Started

Displaying Trace with Time Count Absolute

Enter the following command to display count information relative to the trigger state.

display trace count absolute <RETURN>

Trace L	ist		Offset=0			
Label:	Address	Data	Opcode or Status w/ Source Lines	t	ime cou	int
Base:	hex	hex	mnemonic		absolut	e
after	0100AA	FF74	xx74 read mem			
+001	08028E	FF74	BNE/Z 80305	+	320	nS
+002	080290	3E0F	3EOF fetch	+	1.9	uS
+003	080292	081E	081E fetch	+	3.8	uS
#	#########	skdemo.c	- line 71 ###################################	####	#######	###
		semapho	re = CMD_STARTED;			
+004	080290	081E	MOV DS2, BW, DWORD PTR 0008	+	4.16	uS
+005	080294	6300	6300 fetch	+	7.68	uS
+006	080296	07C6	07C6 fetch	+	9.60	uS
+007	015008	00AA	00AA read mem	+	11.5	uS
+008	080298	0F73	0F73 fetch	+	13.4	uS
+009	01500A	0100	0100 read mem	+	15.4	uS
+010	080295	0100	MOV DS2:BYTE PTR [BW],73	+	15.7	uS
+011	0100AA	0073	xx73 write mem	+	19.2	uS
+012	08029A	1636	1636 fetch	+	21.1	uS
STATUS:	n70433-	-Running	user program Emulation trace complete	·	R.	
display	r trace cou	int abso	lute			
				-		
run	trace	step	display modify break er	ıd	ETC	!

If you want to see the relative time of the each states, enter the following command.

display trace count relative <RETURN>

Displaying Trace with Compress Mode

If you want to see more executed instructions on a display, the 70433 emulator Softkey Interface provides compress mode for analysis display. To see trace display with compress mode, enter the following command:

display trace compress on <RETURN>

Trace I	List		Offset=0				
Label:	Address	Data	Opcode or	Status w/ So	urce Lines	time cou	ınt
Base:	hex	hex		mnemonic		relativ	<i>r</i> e
after	0100AA	FF74	xx74 read u	nem		2.6	uS
+001	08028E	FF74	BNE/Z 80305			320	nS
+	+#########	skdemo.c	- line 71 #	#############	###########	****	####
		semapho	ore = CMD_START	ED;			
+004	080290	081E	MOV DS2, BW, DW	ORD PTR 0008		3.8	uS
+007	015008	00AA	00AA read u	nem		7.36	uS
+009	01500A	0100	0100 read 1	nem		3.8	uS
+010	080295	0100	MOV DS2:BYTE	PTR [BW],73		320	nS
+011	0100AA	0073	xx73 write	mem		3.5	uS
+	+#########	skdemo.c	- line 72 #:	#############	###########	****	+###
		strcpy	(status, comman	nd_R);			
+013	080299	1636	MOV DS3,DW,DW	ORD PTR 0018		2.6	uS
+015	015018	0060	0060 read 1	nem		5.12	uS
+017	01501A	0100	0100 read 1	nem		3.8	uS
+019	08029E	0F52	PUSH DS3/VPC			2.2	uS
STATUS:	n70433	Running	g user program	Emulation	trace comple	eteR.	
display	/ trace co	mpress c	on				
		_					
run	trace	step	display	modify	break	endETC	2

As you can see, the analysis trace display shows the analysis trace lists without fetch cycles. With this command you can examine program execution easily.

If you want to see all of cycles including fetch cycles, enter following command:

display trace compress off <RETURN>

The trace display shows you all of the cycles the emulation analyzer have captured.

Reducing the Trace Depth

The default states displayed in the trace list is 256 states. To increase the number of states, use the "display trace depth" command.

display trace depth 512 <RETURN>

2-34 Getting Started

Using the Storage Qualifier

You can use storage qualifier to trace only states with specific conditions. Suppose that you would like to trace only states which write the message to the cmd_result area. To accomplish this, you can use the "**trace only**" command like following.

trace after cmd_result only range cmd_result
thru +1fh status write <RETURN>

Only write accesses to address *cmd_result* through *cmd_result+1fh* will be stored in the trace buffer.

Modify the command input byte with the following command.

modify memory semaphore string to 't'
<RETURN>

Trace L	ist		Offset	t=0					
Label:	Address	Data	Opco	ode or	Status w/ S	ource Lines	5	time cou	nt
Base:	hex	hex			mnemonic			relativ	e
after	0100AC	0043	xx43	write	mem				
+001	0100AD	6F00	бFxx	write	mem			57.60	uS
+002	0100AE	006D	ххбD	write	mem			57.60	uS
+003	0100AF	6D00	бDxx	write	mem			55.68	uS
+004	0100B0	0061	xx61	write	mem			57.60	uS
+005	0100B1	6E00	бExx	write	mem			55.68	uS
+006	0100B2	0064	xx64	write	mem			55.68	uS
+007	0100B3	2000	20xx	write	mem			58.88	uS
+008	0100B4	0027	xx27	write	mem			57.60	uS
+009	0100B5	4100	41xx	write	mem			55.04	uS
+010	0100B6	0027	xx27	write	mem			57.60	uS
+011	0100B7	2000	20xx	write	mem			55.04	uS
+012	0100B8	0065	xx65	write	mem			57.60	uS
+013	0100B9	6E00	бExx	write	mem			55.04	uS
+014	0100BA	0074	xx74	write	mem			57.60	uS
STATUS:	n70433-	-Running	user pro	ogram	Emulation	trace star	ted	R.	• • •
modify	memory sen	naphore st	ring to	o 't'					
run	trace	step	displa	Y	modify	break	end	ETC	

The display shows that the message bytes are written to the location **cmd_result**. You will find the status line still shows "Emulation trace started" because the analyzer trace buffer is not filled up. As the length of resulting message consists of 24 bytes, only 24 states are stored in the trace buffer. If you want to stop the trace, enter the following command.

stop_trace <RETURN>

The status line will shows "Emulation trace halted".

Trigger the Analyzer at an Instruction Execution State

The emulator analyzer can capture states of instruction execution. If you want to trigger the analyzer when an instruction at a desired address is executed, you should not set up the analyzer trigger condition to detect only the address. If you do so, the analyzer will be also triggered in case that the address is accessed to fetch the instruction, or read the data from address. You should use the "**exec**" status qualifier.Suppose that you want to trace the states of the execution after the instruction at *line 83* of the *skdemo.c* file, enter the following command. The *line 83* of the file *skdemo.c* is executed when the memory location "cmd_code" is set 'C' and "semaphore" is set 't'.

trace after line 83 **status exec** <RETURN>

The message "Emulation trace started" will appear on the status line. To trigger the analyzer, enter the following commands.

modify memory cmd_code string to 'C' <RETURN>
modify memory semaphore string to 't'
<RETURN>

The status line now shows "Emulation trace complete".

Trace L	ist		Offset	et=0	
Label:	Address	Data	Opco	code or Status w/ Source Lines time count	
Base:	hex	hex		mnemonic relative	
after	0802EA	243E	INSTRUCT	CTIONopcode unavailable	
+001	0802EE	0F00	0F00	fetch 1.6 uS	
+002	0802F0	5776	5776	fetch 1.9 uS	
+003	015024	0018	0018	read mem 1.9 uS	
+004	0802F2	3E0F	3E0F	fetch 1.9 uS	
+005	015026	0100	0100	read mem 3.8 uS	
+006	0802EF	0100	PUSH DS3	33/VPC 320 nS	
+007	0802F4	0416	0416	fetch 1.6 uS	
+008	0802F1	0416	PUSH IY	7 320 nS	
+009	015FF2	0100	0100	write mem 1.6 uS	
+010	0802F2	0100	MOV DS2,	2,DW,DWORD PTR 0004 640 nS	
+011	015FF0	0018	0018	write mem 1.3 uS	
+012	0802F6	0F00	0F00	fetch 3.8 uS	
+013	0802F8	527E	527E	fetch 1.9 uS	
+014	015004	00AC	00AC	read mem 1.9 uS	
STATUS: modify	n70433- memory ser	Running maphore st	user pro tring to	cogram Emulation trace completeR	
run	trace	step	display	ay modify break endETC	

The emulator has disassemble capability in trace listing. When the emulator disassembles instructions in stored trace information, the fetch cycles of each instruction are required. When you displayed the results of analyzer trace, some lines which include "INSTRUCTION--opcode

2-36 Getting Started

unavailable" message were displayed. Each line was instruction execution cycle at the address in the left side of the displayed because the fetch states for the instructions were not stored by the analyzer.

To display complete disassembles in the trace listing, you should modify location of trigger state in trace list, referred to as the "trigger position", to "**about**" instead of "**after**".

Emulator Analysis Status Qualifiers

The following analysis status qualifiers may also be used with the 70433 emulator.

For a Complete Description

For a complete description of using the HP 64700 Series analyzer with the Softkey Interface, refer to the *Analyzer Softkey Interface User's Guide*.

Qualifier	<u>Status bits</u>	Description
bg	0xxxxxxxxxxxxxxx0xy	background
cpu	0x0000xx01xxx1xxxxy	cpu cycle
dma	0xx0000xx11xxx1xxxxy	DMA memory access
exec	0xxxx01xxxxxxxxxxxy	execute instruction
fetch	0xx0000xx10xxx1xxxxy	program fetch
fg	0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	foreground
grd	0xxxx00xxxxxx1x0xxy	guarded memory access
halt	0xx11xxxxxxxx1xxxxy	halt
hold	0xxxxxxxxxxx0xxxxy	hold acknowledge
int	0xxxx10xxxxxxxxxxxy	interrupt acknowledge
io	0xx0000xx01x001xxxxy	I/O access
mem	0x10000xxxxxx1xxxxy	memory access
memio	0xx00000111xxx1xxxxy	memory to io
memsfr	0xx00000011xxx1xxxxy	memory to sfr
ms	01x0000xx01xxx1xxxxy	macro service
read	0xx0000xxx10xx1xxxxy	read
refresh	0xx0000xx001xx1xxxxy	refresh cycle
sfr	0xx0000xx01x111xxxxy	sfr access
stop	0xx10xxxxxxxx1xxxxy	stop
write	0xx0000xxx11xx1xxxxy	write
wrrom	0xxxx00xxxxxx10xxxy	write to rom

Resetting the Emulator	To reset the emulator, enter the following command.
	reset <return></return>
Exiting the Softkey Interface	There are several options available when exiting the Softkey Interface: exiting and releasing the emulation system, exiting with the intent of reentering (continuing), exiting locked from multiple emulation windows, and exiting (locked) and selecting the measurement system display or another module.
End Release System	To exit the Softkey Interface, releasing the emulator so that other users may use the emulator, enter the following command. end release_system <return></return>
Ending to Continue Later	You may also exit the Softkey Interface without specifying any options; this causes the emulator to be locked. When the emulator is locked, other users are prevented from using it and the emulator configuration is saved so that it can be restored the next time you enter (continue) the Softkey Interface. end <return></return>
Ending Locked from All Windows	When using the Softkey Interface from within window systems, the "end" command with no options causes an exit only in that window. To end locked from all windows, enter the following command. end locked <return></return>
	This option only appears when you enter the Softkey Interface via the emul700 command. When you enter the Softkey Interface via pmon and MEAS_SYS , only one window is permitted. Refer to the <i>Softkey Interface Reference</i> manual for more information on using the Softkey Interface with window systems.

2-38 Getting Started

Selecting the Measurement System Display or Another Module

When you enter the Softkey Interface via **pmon** and **MEAS_SYS**, you have the option to select the measurement system display or another module in the measurement system when exiting the Softkey Interface. This type of exit is also "locked"; that is, you can continue the emulation session later. For example, to exit and select the measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you have entered the Softkey Interface via the **emul700** command.

Notes

In-Circuit Emulation Topics

Introduction The emulator is in-circuit when it is plugged into the target system. This chapter covers topics which relate to in-circuit emulation. This chapter will: • Describe the issues concerning the installation of the emulator probe into target systems. • Show you how to install the emulator probe. • Show you how to use features related to in-circuit emulation. Prerequisites Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Before to the

Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the Concepts of Emulation and Analysis manual and the "Getting Started" chapter of this manual.

In-Circuit Emulation Topics 3-1

3

Installing the Emulator Probe into a Target System	The 70433 emulator probe has a 132-pin PGA connector; The emulator probe is also provided with a conductive pin protector to protect the delicate gold-plated pins of the probe connector from damage due to impact. Since the protector is non-conductive, you may run performance verification with no adverse effects when the emulator is out-of-circuit.
Caution	Protect against static discharge. The emulator probe contains devices that are susceptible to damage by static discharge. Therefore, precautionary measures should be taken before handling the microprocessor connector attached to the end of the probe cable to avoid damaging the internal components of the probe by static electricity.
Caution	Make sure target system power is OFF. Do not install the emulator probe into the target system microprocessor socket with power applied to the target system. The emulator may be damaged if target system power is not removed before probe installation.
Caution	Make sure pin 1 of probe connector is aligned with pin 1 of the socket. When installing the emulation probe, be sure that probe is inserted into the processor socket so that pin 1 of the connector aligns with pin 1 of the socket. Damage to the emulator probe will result if the probe is incorrectly installed.

3-2 In-Circuit Emulation Topics

Caution	Protect your target system CMOS components. If you target system contains any CMOS components, turn ON the target system first, then turn ON the emulator. Likewise, turn OFF your emulator first, then turn OFF the target system.
Pin Protector	The target system probe has a pin protector that prevents damage to the prove when inserting and removing the probe from the target system microprocessor socket. Do not use the probe without a pin protector installed. If the target system probe is installed on a densely populated circuit board, there may not be enough room to accommodate the plastic shoulders of the probe socket. If this occurs, another pin protector may be stacked onto the existing pin protector.
Conductive Pin Guard	HP emulators are shipped with a conductive plastic or conductive foam pin guard over the target system probe pins. This guard is designed to prevent impact damage to the pins and should be left in place while you are not using the emulator. However, when you do use the emulator,

Caution

together.

Always use the pin protectors and guards as described above. Failure to use these devices may result in damage to the target system probe pins. Replacing the target system probe is expensive; the entire probe and cable assembly must be replaced because of the wiring technology employed.

either for normal emulation tasks, or to run performance verification on the emulator, you must remove this conductive pin guard to avoid intermittent failures due to the target system probe lines being shorted

In-Circuit Emulation Topics 3-3

Installing into a PGA Type Socket

To connect the microprocessor connector to the target system, proceeded with the following instructions.

- Remove the 70433 microprocessor (PGA type) from the target system socket. Note the location of pin A1 on the microprocessor and on the target system socket.
- Store the microprocessor in a protected environment (such as antistatic form).
- Install the microprocessor connector into the target system microprocessor socket.

DO NOT use the microprocessor connector without using a pin protector. The pin protector is provided to prevent damage to the microprocessor connector when connecting and removing the microprocessor connector from the target system PGA socket.

Installing into a QFP Type Socket

Caution

To connect the 70433 emulator microprocessor connector to the NEC EV-9200GD-120 socket on the target system, use the NEC EV-95001GD-120 adapter.

3-4 In-Circuit Emulation Topics

Figure 3-1 Installing into a 70433 PGA type socket

In-Circuit Emulation Topics 3-5

In-Circuit Configuration Options

The 70136 emulator provide configuration options for the following in-circuit emulation issues. Refer to the chapter on "Configuring the Emulator" for more information on these configuration options.

Using the Target System Clock Source

The default emulator configuration selects the internal 12.5 MHz (system clock speed) clock as the emulator clock source. You should configure the emulator to select an external target system clock source for the "in-circuit" emulation.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation. However, the emulator may optionally respond to the target system ready line while emulation memory is being accessed.

Enabling NMI, HLDRQ and RESET Input from the Target System

You can configure whether the emulator should accept or ignore the NMI, HLDRQ and RESET signals from the target system.

Running the Emulator from Target Reset

You can specify that the emulator begins executing from target system reset. When the target system RESET line becomes active and then inactive, the emulator will start reset sequence (operation) as actual microprocessor.

At First, you must specify the emulator responds to RESET signal by the target system (see the "Enable RESET inputs from target system?" configuration in "Configuring the Emulator" chapter of this manual).

3-6 In-Circuit Emulation Topics

To specify a run from target system reset, enter the follwing command: run from reset <RESET>

The status now shows that the emulator is "Awaiting target reset". After the target system is reset, the status line message will change to show the appropriate emulator status.

Note

In the "Awaiting target reset" status(T>), you can not break into the monitor. If you enter "r rst" in out-of-circuit or in the configuration that emulator does not accepted target system reset(cf rst=dis), you must reset the emulator.

The 70433 emulator supports power on reset. If you want program to be executed by power on reset, execute the following process.

1) Enter "reset"

2) Turn OFF your target system

3) Enter "run from reset"

4) Turn ON your target system

Note

When you enter "r from reset", you will see c> system prompt if you use external clock. This status is the same as "Awaiting target reset" status.

In-Circuit Emulation Topics 3-7

Pin State in Background

While the emulator is running in the background monitor, probe pins are in the following state.

Address Bus	Same as foreground
Data Bus	Always high impedance otherwise you direct the emulator to access target memory. When accessing target memory, I/O by background monitor, same as foreground.
ASTB	Same as foreground.
DEX	Same as foreground
WRL, WRH	Always high level. Except when accessing target memory, I/O by background monitor, same as foreground.
RD	Same as foreground except for emulation memory write. When accessing emulation memory, low.
Other	Same as foreground

3-8 In-Circuit Emulation Topics

Target System Interface

P1(0:6) **HLDRQ** These signals are connected to 74ACT14 through 51 ohm series register and 100K ohm pull-down register.

P6(0:3)

These signals are connected to 70433 emulation processor and FET Switch through 1K ohm register.

P0(0:7) P2(0:5) P3(0:6) P4(0:7) P5(0:2) P7(0:7) P8(0:1) These signals are connected to 70433 emulation processor through 51 ohm register and 10K ohm pull-up register.

In-Circuit Emulation Topics 3-9

RESET

This signal is connected to 74ACT14 through 51 ohm register and 10K ohm pull-up register.

Other signals

These signals are connected to 74FCT245 or 74FCT244 through 51 ohm register and 10K ohm pull-up register.

3-10 In-Circuit Emulation Topics
Configuring the Emulator

Introduction

The 64768 emulator can be used in all stages of target system development. For instance, you can run the emulator out-of-circuit when developing target system software, or you can use the emulator in-circuit when integrating software with target system hardware. Emulation memory can be used in place of, or along with, target system memory. You can use the emulator's internal clock or the target system clock. You can execute target programs in real-time or allow emulator execution to be diverted into the monitor when commands request access of target system resources (target system memory, register contents, etc.)

The emulator is a flexible instrument and it may be configured to suit your needs at any stage of the development process. This chapter describes the options available when configuring the 7330 emulator.

The configuration options are accessed with the following command.

modify configuration <RETURN>

After entering the command above, you will be asked questions regarding the emulator configuration. The configuration questions are listed below and grouped into the following classes.

Configuring the Emulator 4-1

4

General Emulator Configuration:

- Specifying the emulator clock source. (Internal/external.)
- Selecting monitor entry after configuration.
- Restricting to real-time execution.

Memory Configuration:

- Selecting the emulation monitor type.
- Specifying the monitor location.
- Mapping memory.

Emulator Pod Configuration:

- Selecting Date bus size.
- Selecting mnemonic type for memory display.
- Selecting algorithm for physical run addresses.
- Specifying Reset value for the stack segment.
- Specifying Reset value for the stack pointer.
- Enabling RESET inputs from target system.
- Enabling NMI inputs from target system.
- Enabling READY inputs from target system.
- Enabling HLDRQ inputs from target system.
- Selecting target memory access size.

Debug/Trace Configuration:

- Enabling breaks on writes to ROM.
- Specifying tracing of foreground/background cycles.
- Specifying tracing of internal DMA cycles.

4-2 Configuring the Emulator

- Specifying tracing of refresh cycles.

Simulated I/O Configuration: Simulated I/O is described in the *Simulated I/O reference manual*.

External Analyzer Configuration: See the *Analyzer Softkey Interface User's Guide.*

Interactive Measurement Configuration: See the chapter on coordinated measurements in the *Softkey Interface Reference* manual.

General Emulator Configuration	The configuration questions described in this section involve general emulator operation.	
Micro-processor Clock Source?	This configura will be clocke source.	ation question allows you to select whether the emulator d by the internal clock source or by a target system clock
	internal	Selects the internal clock oscillator as the emulator clock source. The emulators' internal clock speed is 12.5 MHz (system clock).
	external	Selects an external target system clock source. In the case of HP 64768A, the emulator runs with target system clock from 4 to 25 MHz. And, in the case of HP 64768A, the emulator runs with target system clock from 4 to 25 MHz. And,
Note	Changing the you answer "y that follows, the breaks into the	clock source drives the emulator into the reset state. If res" to the "Enter monitor after configuration?" question he emulator resets (due to the clock source change) then e monitor when the configuration is saved.
Enter Monitor After Configuration?	This question in the monitor emulator confi	allows you to select whether the emulator will be running or held in the reset state upon completion of the iguration.
	How you answ situations. Fo the target syste otherwise, cor specified, this (using externa	ver this configuration question is important in some r example, when the external clock has been selected and em is turned off, reset to monitor should not be selected; ifiguration will fail. When an external clock source is question becomes "Enter monitor after configuration l clock)?" and the default answer becomes "no".

4-4 Configuring the Emulator

	yes	When reset to monitor is selected, the emulator will be running in the monitor after configuration is completed. If the reset to monitor fails, the previous configuration will be restored.
	no	After the configuration is complete, the emulator will be held in the reset state.
estrict to Real-Time Runs?	This configuration should take place i to cause breaks to	allows to you specify whether program execution in real-time or whether commands should be allowed the monitor during program execution.
	no	All commands, regardless of whether or not they require a break to the emulation monitor, are accepted by the emulator.
	yes	When runs are restricted to real-time and the emulator is running the user program, all commands that cause a break (except "reset", "break", "run", and "step") are refused. For example, the following commands are not allowed when runs are restricted to real-time:
	∎ D	Display/modify registers.
	∎ D	Display/modify target system memory.
	■ D	Display/modify I/O.
Caution	If your target syste program code, you will help insure tha remember that you commands; you sh	em circuitry is dependent on constant execution of a should restrict the emulator to real-time runs. This at target system damage does not occur. However, a can still execute the "reset", "break", and "step" would use caution in executing these commands.

Configuring the Emulator 4-5

Re

Memory Configuration	The memory configuration questions allows you to select the monitor type, to select the location of the monitor, and to map memory. To access the memory configuration questions, you must answer "yes" to the following question. Modify memory configuration?
Monitor Type?	The monitor is a program which is executed by the emulation processor. It allows the emulation system controller to access target system resources. For example, when you enter a command that requires access to target system resources (display target memory, for example), the system controller writes a command code to a communications area and breaks the execution of the emulation processor into the monitor. The monitor program then reads the command from the communications area and executes the processor instructions which access the target system. After the monitor has performed its task, execution returns to the user program. Monitor program execution can take place in the "background" or "foreground" emulator modes.
	In the <i>foreground</i> emulator mode, the emulator operates as would the target system processor. In the <i>background</i> emulator mode, foreground execution is suspended so that the emulation processor may be used for communication with the system controller, typically to perform tasks which access target system resources.
	A <i>background monitor</i> program operates entirely in the background emulator mode; that is, the monitor program does not execute as if it were part of the target program. The background monitor does not take up any processor address space and does not need to be linked to the target program. The monitor resides in dedicated background memory.
	A <i>foreground monitor</i> program performs its tasks in the foreground emulator mode; that is, the monitor program executes as if it were part of the target program. Breaks into the monitor always put the emulator in the background mode; however, foreground monitors switch back to the foreground mode before performing monitor functions.

Note		All memory ma changed!	All memory mapper terms are deleted when the monitor type is changed!		
		background	The default emulator configuration selects the background monitor. A memory overlay is created and the background monitor is loaded into that area.		
Note	u	While running target system re	in background monitor, the 64768 emulator ignores		

When the background monitor is selected, the execution of the monitor is hidden from the target system (except for background cycles). When you select the background monitor and the current monitor type is "foreground", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this case, you have changed the monitor type from "foreground" to "background"). This question reminds you that the map will be reset and allows you to confirm your decision.

no	The memory map is not reset, and the monitor type is not changed.
yes	This memory map is reset due to the change in monitor type.

foreground When you select the foreground monitor, processor address space is taken up. The foreground monitor takes up 2K bytes of memory. When the foreground monitor is selected, breaking into the monitor still occurs in a brief background state, but the rest of the monitor program, the saving of registers and the dispatching of emulation commands, is executed in foreground.

Note

You must **not** use the foreground monitor if you wish to perform coordinated measurements.

When you select the foreground monitor and the current monitor type is "background", you are asked the next question.

1. Reset map (change of monitor type requires map reset)?

This question will be asked if you change the monitor type (in this case, you have changed the monitor type from "background" to "foreground"). This question reminds you that the map will be reset and allows you to confirm your decision.

no	The memory map is not reset, and the monitor type is not changed.
yes	This memory map is reset due to the change in monitor type.

2. Foreground monitor location?

You can relocate the monitor to any 2K byte boundary. The location of a foreground monitor is important because it will occupy part of the processor address space. Foreground monitor locations must not overlap the locations of target system programs. When entering monitor block addresses, you must only specify addresses on 2K byte boundaries; otherwise, the configuration will be invalid, and the previous configuration will be restored.

4-8 Configuring the Emulator

Note

You should not load the foreground monitor provided with the 70433 emulator at the base address 0 or 0ff800 hex; because the 70433 microprocessor's vector table and SFR are located respectively.

3. Monitor filename?

This question allows you to specify the name of the foreground monitor program absolute file. Remember that you must assemble and link your foreground monitor starting at the 2K byte boundary specified for the previous "Foreground monitor location?" question.

The monitor program will loaded after you have answered all the configuration questions.

Only the 2k bytes of memory reserved for the monitor are loaded at the end of configuration; therefore, you should not link the foreground monitor to the user program. If it is important that the symbol database contain both monitor and user program symbols, you can create a different absolute file in which the monitor and user program are linked. Then, you can load this file after configuration.

Using the Foreground Monitor. When using the foreground monitor, your program should set up a stack. The foreground monitor assumes that there is a stack in the foreground program, and this stack is used to save PS, PC, and PSW upon entry into the monitor.

Mapping Memory The emulation memory consists of 128k, 512k or 1M bytes, mappable in 256 byte blocks. However, you may use 126k,510k or 1022k bytes of emulation memory for your target system, because 2k bytes of emulation memory is occupied by the monitor. The emulation memory system does not introduce wait states.

You can insert wait states on accessing emulation memory. Refer to the "Enable READY input from the target system?" section in this chapter.

The memory mapper allows you to characterize memory locations. It allows you specify whether a certain range of memory is present in the target system or whether you will be using emulation memory for that address range. You can also specify whether the target system memory is ROM or RAM, and you can specify that emulation memory be treated as ROM or RAM.

When a foreground monitor selected, a 2k byte block is automatically mapped at the address specified by the "Foreground monitor location?" question.

Note

Target system accesses to emulation memory are not allowed. Target system devices that take control of the bus (for example, DMA controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory. Guarded memory accesses will generate "break to monitor" requests. Writes to ROM will generate "break to monitor" requests if the "Enable breaks on writes to ROM?" configuration item is enabled (see the "Debug/Trace Configuration" section which follows).

Determining the Locations to be Mapped

Typically, assemblers generate relocatable files and linkers combine relocatable files to form the absolute file. The linker load map listing will show what locations your program will occupy in memory.

NC

4-10 Configuring the Emulator

Emulator Pod Configuration	To access the emulator pod configuration questions, you must answer "yes" to the following question.	
	Modify emulator p	ood configuration?
Date bus size?	This configuration specifies which the data bus size microprocessor operates with 8bit or 16bit.	
	16	Selecting 16bit data bus size specifies that the microprocessor operates with 16bit data bus size.
	8	Selecting 8bit data bus size specifies that the microprocessor operates with 8bit data bus size.
Note	The 64768 emulate instead of D8/16 si system is ignored.	or operates in accordance with this configuration ignal from target system. D/8/16 signal from target
Note	Changing the data you answer "yes" t the emulator resets the monitor when	bus size drives the emulator into the reset state. If to the "Enter monitor after configuration?" question, s (due to the data bus size change) then breaks into the configuration is saved.
Memory display mnemonic?	This configuration specifies the type of mnemonic that are used by the monitor program to display memory. When a command requests the monitor to display memory, the monitor program will look at the mnemonic type setting to determine whether uPD70433(V55PI) or iAPX86/10(8086) mnemonic should be used.	
	70433	Selecting the 70433 mnemonic type specifies that the emulator will display memory in uPD70433(V55PI) mnemonic.

	8086	Selecting the 8086 mnemonic type specifies that the emulator will display memory in iAPX86(8086) mnemonic.
	The default emul power up initializ	ator configuration selects the 70433 mnemonic type at zation.
Note	The instruction th with uPD70433 r	nat is not include iAPX86/10 mnemonic is displayed nnemonic even if you specify this item is 8086 .
Segment Algorithm?	1? The run and step commands allow you to enter addresses in eit logical form (segment:offset, e.g., 0F000H:0000H) or physical (e.g., 0F0000H). When a physical address (non-segmented) is with either a run or step command, the emulator must convert logical (segment:offset) address.	
	minseg	Specifies that the physical run address is converted such that the low 16 bits of the address become the offset value. The physical address is right-shifted 4 bits and ANDed with 0F000H to yield the segment value.
logical_addr = ((phys_addr =	>> 4) & Oxf000):	(phys_addr & 0xfff)
	maxseg	Specifies that the low 4 bits of the physical address become the offset. The physical address is right-shifted 4 bits to yield the segment value.
logical_addr = (phys_addr =	>> 4):(phys_addr	& Oxf)
	curseg	Specifies that the value entered with either a run or step command (0 thru 0ffff hex) becomes the offset. In this selecting, the current segment value is not changed.
logical_addr = (current seg	ment):(entered v	alue)
	If you use logical	addresses other than the three methods which above,

you must enter run and step addresses in logical form.

4-12 Configuring the Emulator

Reset value for the stack segment?	This question allows you to specify the stack segment(SS) after the emulation reset. This configuration is useful only if foreground monitor is used.		
Reset value for the stack pointer?	This question allows you to specify the stack pointer(SP) after the emulation reset. This configuration is useful only if foreground monitor is used.		
Note	When you are using the foreground monitor, the stack address should be defined in an emulation memory or target system RAM area which is not used by target program.		
Respond RESET from target system?	The 64768 emulator can respond or ignore target system reset while running in user program or waiting for target system reset (refer to "run from reset" command in the <i>Softkey Interface Reference</i> manual). While running in background monitor, the 64768 emulator ignores target system reset completely independent on this setting.		
	yes	Specify that, this is a default configuration, make the emulator to respond to reset from target system. In this configuration, emulator will accept reset and execute from reset vector (0FFFF0 hex) as same manner as actual microprocessor after reset is inactivated.	
	no	The emulator ignores reset signal from target system completely, even while in foreground (executing user program).	
Respond NMI from target system?	This question allows you to specify whether or not the emulation processor accepts NMI signal generated by the target system.		
	yes	The emulator accepts NMI signal generated by the target system. When the NMI is accepted, the emulator calls the NMI procedure as actual microprocessor. Therefore, you need to set up the	

		NMI vector table, if you want to use the NMI interrupt.
	no	The emulator ignores NMI signal from target system completely.
Note	When target NMI running the target monitor, NMI wil foreground operat	signal is enabled, it is in effect while the emulator is program. While the emulator is running background l be suspended until the emulator goes into tion.
Respond READY from target system?	High-speed emula However, the emu ready line while e	ation memory provides no-wait-state operation. Ilator may optionally respond to the target system mulation memory is being accessed.
	yes	When the ready relationship is locked to the target system, emulation memory accesses honor ready signals from the target system (wait states are inserted if requested).
	no	When the ready relationship is not locked to the target system, emulation memory accesses ignore ready signals from the target system (no wait states are inserted).
Respond to HLDRQ from target system	This configuration accepts HLDRQ(system.	n allows you to specify whether or not the emulator Bus Hold Request) signal generated by the target
	yes	The emulator accepts HLDRQ signal. When the HLDRQ is accepted, the emulator will respond as actual microprocessor.
	no	The emulator ignore HLDRQ signal from target system completely.

4-14 Configuring the Emulator

Target memory
access sizeThis configuration specifies the type of microprocessor cycles that are
used by the monitor program to access target memory or I/O locations.
When a command requests the monitor to read or write to target system
memory or I/O, the monitor program will look at the access mode

Words Selecting the word access mode specifies that the emulator will access target memory using word cycles (one word at a time) at an even address. At an odd address, the emulator will access target memory using byte cycles.

setting to determine whether byte or word instructions should be used.

Bytes Selecting the byte access mode specifies that the emulator will access target memory using upper and lower byte cycles (one byte at a time).

The default emulator configuration selects the **byte** access size at power up initialization. Access mode specifications are saved; that is, when a command changes the access mode, the new access mode becomes the current default.

Debug/Trace Configuration	The debug/trace on writes to ROM specify that the a access the debug to the following	configuration questions allows you to specify breaks M, enable/disable the software breakpoints feature, and malyzer trace foreground/background execution. To /trace configuration questions, you must answer "yes" question.
	Modify debug/tra	ace options?
Break Processor on Write to ROM?	This question allows you to specify that the emulator break to the monitor upon attempts to write to memory space mapped as ROM. The emulator will prevent the processor from actually writing to memory mapped as emulation ROM; however, they cannot prevent writes to target system RAM locations which are mapped as ROM, even though the write to ROM break is enabled.	
	yes	Causes the emulator to break into the emulation monitor whenever the user program attempts to write to a memory region mapped as ROM.
	no	The emulator will not break to the monitor upon a write to ROM. The emulator will not modify the memory location if it is in emulation ROM.
Note K	The wrrom trace ROM" cycles as use the following	e command status option allows you to use "write to trigger and storage qualifiers. For example, you could g command to trace about a write to ROM:

trace about status wrrom <RETURN>

4-16 Configuring the Emulator

Trace Background or Foreground Operation?	This question allows you to specify whether the analyzer trace only foreground emulation processor cycles, only background cycles, or both foreground or background cycles.	
	foreground	Specifies that the analyzer trace only foreground cycles. This option is specified by the default emulator configuration.
	background	Specifies that the analyzer trace only background cycles. (This is rarely a useful setting.)
	both	Specifies that the analyzer trace both foreground and background cycles. You may wish to specify this option so that all emulation processor cycles may be viewed in the trace display.
Trace Internal DMA cycles?	This question allows you to specify whether or not the analyzer trace the 70433 emulation processor's internal DMA cycles.	
	yes	Specifies that the analyzer will trace the 70433 internal DMA cycles.
	no	Specifies that the analyzer will not trace the 70433 internal DMA cycles.
Trace refresh cycles?	This question allows you to specify whether or not the analyzer trace the 64768 emulation processor's refresh cycles.	
	no	Specifies that the analyzer will not trace the 70433 refresh cycles.
	yes	Specifies that the analyzer will trace the 70433 refresh cycles.

Simulated I/O Configuration	The simulated I/O feature and configuration options are described in the <i>Simulated I/O reference</i> manual.
Interactive Measurement Configuration	The interactive measurement configuration questions are described in the chapter on coordinated measurements in the <i>Softkey Interface</i> <i>Reference</i> manual. Examples of coordinated measurements that can be performed between the emulator and the emulation analyzer are found in the "Using the Emulator" chapter.
Saving a Configuration	The last configuration question allows you to save the previous configuration specifications in a file which can be loaded back into the emulator at a later time. Configuration file name? <file></file>
	The name of the last configuration file is shown, or no filename is shown if you are modifying the default emulator configuration.
	If you press <return> without specifying a filename, the configuration is saved to a temporary file. This file is deleted when you exit the Softkey Interface with the "end release_system" command.</return>
	When you specify a filename, the configuration will be saved to a file; the filename specified with extensions of ".EA" The file with the ".EA" extension is the "source" copy of the file.
	Ending out of emulation (with the "end" command) saves the current configuration, including the name of the most recently loaded configuration file, into a "continue" file. The continue file is not normally accessed.

4-18 Configuring the Emulator

Loading a Configuration

Configuration files which have been previously saved may be loaded with the following Softkey Interface command.

load configuration <FILE> <RETURN>

This feature is especially useful after you have exited the Softkey Interface with the "end release_system" command; it saves you from having to modify the default configuration and answer all the questions again. To reload the current configuration, you can enter the following command.

load configuration <RETURN>

Notes

4-20 Configuring the Emulator

Using the Emulator

Introduction

The "Getting Started" chapter shows you how to use the basic This chapter discuss:

- Register names and classes.
- Hardware breakpoint
- Features available via "pod_command".

This chapter shows you how to:

- Access internal RAM/SFR.
- Store the contents of memory into absolute files.
- Make coordinated measurements.

REGISTER CLASS and NAME

Summary 70433 register designator. All available register class names and register names are listed below.

<REG_CLASS>

<REG_NAME> Description

*(All basic registers)

AW, BWBASIC registers.CW, DWBP, IX, IYDS0, DS1,DS2, DS3SS, SPPC, PS, PSW

5-2 Using the Emulator

PORT(Port registers)

P0	Port 0	
P1	Port 1	(Read Only)
P2	Port 2	
P3	Port 3	
P4	Port 4	
P5	Port 5	
P6	Port 6	(Read Only)
P7	Port 7	
P8	Port 8	
PM0	Port 0 mode	
PM2	Port 2 mode	
PM3	Port 3 mode	
PM4	Port 4 mode	
PM5	Port 5 mode	
PM7	Port 7 mode	
PM8	Port 8 mode	
PMC2	Port 2 mode control	
PMC3	Port 3 mode control	
PMC4	Port 4 mode control	
PMC5	Port 5 mode control	
PMC7	Port 7 mode control	
PMC8	Port 8 mode control	
PRDC	Port read control	

ROP(Real-time Output port registers)

RTPC	Real-time output port control
RTPD	Real-time output port display
P7L	Port 7 buffer(Low)
P7H	Port 7 buffer(high)
RTP	Real-time output port

Using the Emulator 5-3

TIME(Timer registers)

TM0	Timer 0	
TM1	Timer 1	
TM2	Timer 2	
TM3	Timer 3	
СТ00	Timer capture 00	
CT01	Timer capture 01	
СТ00	Timer capture 10	
CT10	Timer capture 11	
CM00	Timer compare 00	
CM01	Timer compare 01	
CM10	Timer compare 10	
CM11	Timer compare 11	
CM20	Timer compare 20	
CM21	Timer compare 21	
CM22	Timer compare 22	
CM23	Timer compare 23	
CM30	Timer compare 30	
CM31	Timer compare 31	
TMC	Timer control	
ТОС	Timer output control	
STC	Software timer counter	(Read Only)
STMC	Software timer counter compare	
PWMII(PWM	uint registers)	

PWMU(PWM uint registers)

PWM	PWM
PMWC	PWM control

5-4 Using the Emulator

DMA(DMA registers)

DMAM0	DMA mode 0
DMAM1	DMA mode 1
DMAC0	DMA control 0
DMAC1	DMA control 1
TC0	Terminal counter 0
TC1	Terminal counter 1
TCM0	Terminal counter modulo 0
TCM1	Terminal counter modulo 1
MAR0	DMA memory address 0
MAR1	DMA memory address 1
UDC0	DMA up/down counter 0
UDC1	DMA up/down counter 1
DCM0	DMA compare 0
DCM1	DMA compare 1
DPTC0	DMA read/write pointer 0
DPTC1	DMA read/write pointer 1
DMAS	DMA status
PI(Parallel I/F registers)	

PI(Parallel I/F registers)

PAB	Parallel interface buffer
PAC0	Parallel interface control 1
PAC1	Parallel interface control 2
PAS	Parallel interface status
PAI0	Parallel interface acknowledge interval 0
	(Write Only)
PAI1	Parallel interface acknowledge interval 1
	(Write Only)

Using the Emulator 5-5

AD(Analog-Digital conversion registers)

ADM	A/D convertor mode	
ADCR0	A/D conversion result 0	(Read Only)
ADCR1	A/D conversion result 1	(Read Only)
ADCR2	A/D conversion result 2	(Read Only)
ADCR3	A/D conversion result 3	(Read Only)

UART(UART registers)

ASP	Protocol select	
UARTM0	UART mode 0	
UARTM1	UART mode 1	
UARTS0	UART status 0	
UARTS1	UART status 1	
RXB0	Receive buffer 0	(Read Only)
RXB1	Receive buffer 1	(Read Only)
TXB0	UART Transfer buffer 0	(Write Only)
TXB1	UART Transfer buffer 1	(Write Only)
PRS0	Prescaler 0	
PRS1	Prescaler 1	
RXBRG0	Receive baud rate generator 0	
RXBRG1	Receive baud rate generator 1	
TXBRG0	Transfer baud rate generator 0	
TXBRG1	Transfer baud rate generator 1	

5-6 Using the Emulator

CSI(Clocked serial I/F registers)

ASP	Protocol select
CSIM0	Clocked serial interface mode 0
CSIM1	Clocked serial interface mode 1
SBIC0	SBI control 0
SBIC1	SBI control 1
RXB0	Receive buffer 0
RXB1	Receive buffer 1
SIO0	Clocked serial I/O shift 0
SIO1	Clocked serial I/O shift 1
PRS0	Receive baud rate generator 0
PRS1	Receive baud rate generator 1
TXBRG0	Transfer baud rate generator 0
TXBRG1	Transfer baud rate generator 1

PROC(Processor status registers)

STBC	Standby control
PRC	Processor control
PWC0	Programmable wait control 0
PWC1	Programmable wait control 1
RFM	Refresh mode
MBC	Memory block control
WDM	Watchdog timer mode

Using the Emulator 5-7

(Write Only) (Write Only) INTC(Interrupt control registers)

IMC	Interrupt mode control
MKO	Interrupt mode control
MK1	Interrupt mask flag 1
	Interrupt mask mag 1
IC07	Interrupt demand control 10
	Interrupt demand control 10
	Interrupt demand control 11
	Interrupt demand control 12
ICI3	Interrupt demand control 13
IC14	Interrupt demand control 14
IC16	Interrupt demand control 16
IC17	Interrupt demand control 17
IC18	Interrupt demand control 18
IC19	Interrupt demand control 19
IC20	Interrupt demand control 20
IC21	Interrupt demand control 21
IC22	Interrupt demand control 22
IC23	Interrupt demand control 23
IC24	Interrupt demand control 24
IC25	Interrupt demand control 25
IC26	Interrupt demand control 26
IC27	Interrupt demand control 27
IC28	Interrupt demand control 28
IC29	Interrupt demand control 29
IC30	Interrupt demand control 30
IC31	Interrupt demand control 31
IC32	Interrupt demand control 37
IC36	Interrupt demand control 36
IC30 IC37	Interrupt demand control 37
	In acruice priority
ISFK	In-service priority
	External interrupt mode

(Read Only)

5-8 Using the Emulator

BANK (register bank)

PS_ <n></n>	ps of register bank <n></n>
PC_ <n></n>	pc of register bank <n></n>
PSW_ <n></n>	psw of register bank <n></n>
AW_ <n></n>	aw of register bank <n></n>
BW_ <n></n>	bw of register bank <n></n>
CW_ <n></n>	cw of register bank <n></n>
DW_ <n></n>	dw of register bank <n></n>
SP_ <n></n>	sp of register bank <n></n>
BP_ <n></n>	bp of register bank <n></n>
IX_ <n></n>	ix of register bank <n></n>
IY_ <n></n>	iy of register bank <n></n>
DS0_ <n></n>	ds0 of register bank <n></n>
DS1_ <n></n>	ds1 of register bank <n></n>
DS2_ <n></n>	ds2 of register bank <n></n>
VPC_ <n></n>	vpc of register bank <n></n>
SS_ <n></n>	ss of register bank <n></n>

Hardware Breakpoints	The analyzer may generate a break request to the emulation processor. To break when the analyzer trigger condition is satisfied, use the "break_on_trigger" trace option. Additionally, you can see the program states before the breakpoint in trace listing. Specify the trigger position at the end of trace listing by using "before" option.		
	When the trigger condition is found. the emulator execution will break into the emulation monitor. Then you can also see the trace listing mentioned above, enter the following commands. trace before <qualifier> break_on_trigger <return></return></qualifier>		
	Without the trigger condition, the trigger will never occur and will never break.		
Loading Program Option	You can load program any memory space with "offset_by" option. When using this option, you must specify "nosymbols" option at same time. This option is effective, when you use V Series AxLS Assembler/Linker and V Series AxLS C Compiler, and load the file at extended memory space.		
Loading Program Option	You can load program any memory space with "offset_by" option. When using this option, you must specify "nosymbols" option at same time. This option is effective, when you use V Series AxLS Assembler/Linker and V Series AxLS C Compiler, and load the file at extended memory space. To load program any memory space, enter following command: load <file_name> nosymbols offset_by <offset_addr></offset_addr></file_name>		
Loading Program Option	<pre>You can load program any memory space with "offset_by" option. When using this option, you must specify "nosymbols" option at same time. This option is effective, when you use V Series AxLS Assembler/Linker and V Series AxLS C Compiler, and load the file at extended memory space. To load program any memory space, enter following command: load <file_name> nosymbols offset_by <offset_addr> <file_name> is the HP Absolute file(with .X suffix). <offset_addr> is the value of offset address. You can load program at address that is added offset address. For example, when you generate program to be loaded at address 5000h and specify 10000h as offset address, the program is loaded at address 15000h.</offset_addr></file_name></offset_addr></file_name></pre>		

5-10 Using the Emulator

Displaying Memory Option

You can refer symbols in operand by using "with_data_segment" option. This option is available when direct addressing mode is used in the program and is effective when data segment register(DS0 or DS1) does not be often changed in the program.

Suppose you generate the following program. In the following program, direct addressing mode is used and data segment register DS0 does not be changed.

3000		COMN Stk COMN	SEGMENT ENDS	PARA CO DW LABEL	MMON 'COMN' 6FH DUP (?) WORD
2000 2002 2004 2006 2008 2008	4141 4242 4343 ???? ???? ????	DATA SOU_A SOU_B SOU_C DES_A DES_B DES_C DATA	SEGMENT	PARA PU DW DW DW DW DW DW	BLIC 'DATA' 'AA' 'BB' 'CCC' ? ? ?
		CODE ASSUME	SEGMENT PS:CODE	PARA PU ,DS0:DAT	BLIC 'CODE' A,SS:COMN
1000 1003 1005 1007	B80002 8ED8 8ED0 BCDE00	Init:		MOV MOV MOV MOV	AW,DATA DS0,AW SS,AW SP,OFFSET Stk
100A 100E 1012 1016 101A	8B1E0000 891E0600 8B1E0200 891E0800 8B1E0400	Loop:		MOV MOV MOV MOV MOV	BW,[0000H] [0006],BW BW,[0002H] [0008],BW BW,[0004H] [0008H] BW
1022 1024 1027 102A 102D	33C0 A30600 A30800 A30A00 EBDB	Clear:		MOV XOR MOV MOV BR	[000AH], BW AW, AW [0006], AW [0008], AW [000AH], AW Loop
		CODE END	ENDS Init		

Using the Emulator 5-11

To display memory in mnemonic format, enter following commands.

display memory Init mnemonic <RETURN>
set symbols on <RETURN>

Memory	:mne	emonic :file =	sample.asm:					
addr	ess	label	data					
0100	0000	:Init	B80002	MOV	AW,0200			
0100	0003		8ED8	MOV	DS0,AW			
0100	0005		8ED0	MOV	SS,AW			
0100	0007		BCDE00	MOV	SP,00DE			
0100	A000	sample.:Loop	8B1E0000	MOV	BW, WORD PT	'R 0000		
0100	000E		891E0600	MOV	WORD PTR 0	006,BW		
0100	0012		8B1E0200	MOV	BW,WORD PT	'R 0002		
0100	0016		891E0800	MOV	WORD PTR 0	008,BW		
0100	001A		8B1E0400	MOV	BW, WORD PT	'R 0004		
0100	001E		891E0A00	MOV	WORD PTR 0	00A,BW		
0100	0022	sample:Clear	33C0	XOR	AW,AW			
0100	0024	-	A30600	MOV	WORD PTR 0	006,AW		
0100	0027		A30800	MOV	WORD PTR 0	WA,800		
0100	002A		A30A00	MOV	WORD PTR 0	00A,AW		
0100	002D		EBDB	BR S	HORT /samp	le.asm:Lo	qoc	
0100	002F		00D4	ADD	AH, DL		-	
STATUS:	n7()433Running	in monitor					R
set sym	bols d	on						
run	tra	ace step	display		modify	break	end	ETC

As you can see, you can not see symbols in operand because direct addressing mode is used.

In this case, you can see symbols in operand by specifying data segment value by "with_data_segment" option. Enter following command.

display memory Init mnemonic
with_data_segment 200h <RETURN>

5-12 Using the Emulator

Memory :mn	emonic :file =	sample.asm:		
address	label	data :da	ta segment = 0200	
0100 0000	:Init	B80002	MOV AW,0200	
0100 0003		8ED8	MOV DS0,AW	
0100 0005		8ED0	MOV SS,AW	
0100 0007		BCDE00	MOV SP,00DE	
0100 000A	sample.:Loop	8B1E0000	MOV BW,WORD PTR :SOU_A	
0100 000E		891E0600	MOV WORD PTR :DES_A,BW	
0100 0012		8B1E0200	MOV BW,WORD PTR :SOU_B	
0100 0016		891E0800	MOV WORD PTR :DES_B,BW	
0100 001A		8B1E0400	MOV BW,WORD PTR :SOU_C	
0100 001E		891E0A00	MOV WORD PTR :DES_C,BW	
0100 0022	sample:Clear	33C0	XOR AW,AW	
0100 0024		A30600	MOV WORD PTR :DES_A,AW	
0100 0027		A30800	MOV WORD PTR :DES_B,AW	
0100 002A		A30A00	MOV WORD PTR :DES_C,AW	
0100 002D		EBDB	BR SHORT /sample.asm:Loop	
0100 002F		00D4	ADD AH,DL	
STATUS: n7	0433Running	in monitor		R
display memo	ry Init mnemon	ic with_data	_segment 200h	
run tr	ace step	display	modify break end	ETC

As you can see, the symbols in operand are displayed. This data segment value is available until you specify another data segment value or "with_dada_segment none" option.

Analyzer Topic	The analyzer captures the data bus of the 70433 microprocessor. When you specify a data in the analyzer trigger condition or store condition, the ways of the analyzer data specification differ according to the data size.			
	To trigger the analyzer when the 70744 microprocessor accesses the word data 1234H at address 1000H in 8bit data bus size. the data bus activity of the cycles will be as follows.			
Sequencer level Address bus 1 1000H 2 1001H	Data bus xx34 xx12			
	In this case, you need to use the analyzer sequential trigger canabilities			

In this case, you need to use the analyzer sequential trigger capabilities. We do not describe the detail about the sequential trigger feature. Only how to trigger the analyzer at this example is described. To specify the condition, enter:

Using the Emulator 5-13

	<pre>trace find_sequence 1000h data 0xx34h restart status exec trigger after 1001h data 0xx12h <return> The "restart" condition is specified to restart sequencer when any states except for "exec" state are generated between sequencer level 1 and 2.</return></pre>
Features Available via Pod Commands	Several emulation features available in the Terminal Interface but not in the Softkey Interface may be accessed via the following emulation commands.
	display pod_command <return> <i>pod_command</i> '<terminal command="" interface="">' <return></return></terminal></return>
	Some of the most notable Terminal Interface features not available in the Softkey Interface are:
_	 Copying memory
	 Searching memory for strings or numeric expressions.
	 Sequencing in the analyzer.
	 Performing coverage analysis.
	Refer to your Terminal Interface documentation for information on

how to perform these tasks.

5-14 Using the Emulator

Note

Be careful when using the "pod_command". The Softkey Interface, and the configuration files in particular, assume that the configuration of the HP 64700 pod is NOT changed except by the Softkey Interface. Be aware that what you see in "modify configuration" will NOT reflect the HP 64700 pod's configuration if you change the pod's configuration with this command. Also, commands which affect the communications channel should NOT be used at all. Other commands may confuse the protocol depending upon how they are used. The following commands are not recommended for use with "pod_command":

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac - Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.
init, pv - Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

Accessing Internal RAM/SFR

If you access to the 70433 microprocessor's internal RAM, you can use the "display or modify memory" commands and the "display or modify register(s)" commands. When you designate address, you must use the "**fcode iram**" option. To specify an address, add this option just before an address expression. Enter the following commands:

display memory fcode iram <ADDRESS> **blocked words** <RETURN>

or

display register BANK<N> <RETURN>

If you wish to access register in the current register bank, you must use the "display or modify register(s)" commands. Otherwise you will destroy the monitor program.

After you use the "**fcode iram**" option, you can access to the 70433 microprocessor's internal RAM without using "**fcode iram**" option until you use the "**fcode none**" option.

Using the Emulator 5-15

When you access SFR(Special Function Registers) of the 70433 microprocessor, you must use the "display or modify register(s)" commands. You can access SFR regardless of memory mapping.

Storing Memory
Contents to an
Absolute FileThe "Getting Started" chapter shows you how to load absolute files into
emulation or target system memory. You can also store emulation or
target system memory to an absolute file with the following command.store memory 800hthru 84fhtoabsfile<RETURN>The command above causes the contents of memory locations
800H-84FH to be stored in the absolute file "absfile.X". Notice that the
".X" extension is appended to the specified filename.

Coordinated Measurements

For information on coordinated measurements and how to use them, refer to the "Coordinated Measurements" chapter in the *Softkey Interface Reference* manual.

5-16 Using the Emulator
Using the Foreground Monitor

By using and modifying the optional foreground monitor, you can provide an emulation environment which is customized to the needs of a particular target system.

The foreground monitors are supplied with the emulation software and can be found in the following path:

/usr/hp64000/monitor/

The monitor program is named **fmon70433.s.**

Comparison of Foreground and Background Monitors	An emulation monitor is required to service certain requests for information about the target system and the emulation processor. For example, when you request a register display, the emulation processor is forced into the monitor. The monitor code has the processor dump its registers into certain emulation memory locations, which can then be read by the emulator system controller without further interference.	
Background Monitors	A <i>background monitor</i> is an emulation monitor which overlays the processor's memory space with a separate memory region.	
	Usually, a background monitor is easier to work with. The monitor is immediately available upon powerup, and you don't have to worry about linking in the monitor code or allocating space for the monitor. No assumptions are made about the target system environment; therefore, you can test and debug hardware before any target system code has been written. All of the processor's address space is available for target system use, since the monitor memory is overlaid on processor memory, rather than subtracted from processor memory.	

Processor resources such as interrupts are not fully taken by the background monitor.

However, all background monitors sacrifice some level of support for the target system. For example, when the emulation processor enters the monitor code to display registers, it will not respond to target system interrupt requests. This may pose serious problems for complex applications that rely on the microprocessor for real-time, non-intrusive support. Also, the background monitor code resides in emulator firmware and can't be modified to handle special conditions.

Foreground Monitors A *foreground monitor* may be required for more interrupt intensive applications. A foreground monitor is a block of code that runs in the same memory space as your program. Foreground monitors allow the emulator to service real-time events, such as interrupts, while executing in the monitor. For most multitasking, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as servicing target system interrupts. However, the foreground monitor does use part of the processor's address space, which may cause problems in some applications. You must also properly configure the emulator to use a foreground monitor (see the "Configuring the Emulator" chapter and the examples in this appendix).

You may link the foreground monitor with your code. However, if possible, linking the monitor separately is preferred. This allows the monitor to be downloaded before the rest of your program. Linking monitor programs separately is more work initially, but it should prove worthwhile overall, since the monitor can then be loaded efficiently during the configuration process at the beginning of a session.

A-2 Using the Foreground Monitor

An Example Using the Foreground Monitor	In the following example, we will illustrate how to use a foreground monitor with the demo program from the "Getting Started" chapter. By using the emulation analyzer, we will also show how the emulator switches from state to state using a foreground monitor.		
	For this example, we will locate the monitor at 1000H; the demo program will be located at 10000H and 80000H.		
	<pre>\$ cp /usr/hp64000/monitor/fmon70433.s <return></return></pre>		
Modify EQU Statement	To use the monitor, you must modify the EQU statement near the top of the monitor listing to point to the base address where the monitor will be loaded.		
	\$ chmod 644 fmon70433.s <return> \$ vi fmon70433.s <return></return></return>		
	Modifying Location of the Foreground Monitor		
	In this case, we will load the monitor at 1000H, so the modified EQU statement looks like this:		
MONSEGMENT EQU 00100H	You can load the monitor at any base address on a 2K byte boundary.		
Note	You should not load the foreground monitor provided with the 64768 emulator at the base address 0 or 0ff800 hex; the 70433 microprocessor's vector table or SFR are located respectively.		

Assemble and Link the Monitor You can assemble, link as with the following comm

You can assemble, link and convert the foreground monitor program with the following commands :

\$ asmv55pi fmon70433.s <RETURN>
\$ llink fmon70433.ol -o fmon70433.ab <RETURN>
\$ v55cov fmon70433

If you haven't already assembled and linked the demo program, do that now. Refer to the "Getting Started" chapter for instructions on assembling and linking the demo program.

Modifying the Emulator Configuration The following assumes you are modifying the default emulator configuration (that is, the configuration present after initial entry into the emulator or entry after a previous exit using "end release_system"). Enter all the default answers except those shown below.

Modify memory configuration? yes

You must modify the memory configuration so that you can select the foreground monitor and map memory.

Monitor type? foreground

Specifies that you will be using a foreground monitor program.

Reset map (change of monitor type requires map reset)? yes

You must answer this question as shown to change the monitor type to foreground.

Monitor address? 1000h

Specifies that the monitor will reside in the 2K byte block from 1000H through 17FFH.

Monitor file name? fmon70433

Enter the name of the foreground monitor absolute file. This file will be loaded at the end of configuration.

A-4 Using the Foreground Monitor

Mapping Memory for the Example

When you specify a foreground monitor and enter the monitor address, all existing memory mapper terms are deleted and a term for the monitor block will be added. Add the additional term to map memory for the demo program, and "end" out of the memory mapper.

Oh thru Offh emulation ram <RETURN> 10000h thru 1ffffh emulation ram <RETURN> 80000h thru 80fffh emulation rom <RETURN> default target ram <RETURN> end <RETURN>

Modify pod configuration? yes

You must answer this question as shown to access and modify the question below.

Reset value for the stack segment? 1000h Reset value for the stack pointer? 0f000h

When you use foreground monitor, the stack address should be defined in emulation memory or a target system RAM because the foreground monitor program use the user stack pointer.

Modify debug/trace options? yes

You must answer this question as shown to access and modify the question below.

Trace background or foreground operation? both

Later in this chapter, trace examples show transitions from reset into the foreground monitor, from the monitor to the user program, and from the user program back into the monitor. Since the foreground monitor is actually entered via a few cycles in the emulator's built-in background monitor, we need to be able to view the background states. Answering this configuration question as shown allows both foreground and background emulation processor cycles to appear in the trace.

Configuration file name? fmoncfg

If you wish to save the configuration specified above, answer this question as shown.

Load the ProgramNow it's time to load the demo program. You can load the demo
program with the following command:

load skdemo <RETURN>

Tracing from Reset to Break

We want to see the monitor's transition from the reset state to running in the foreground monitor. First, put the emulator into its reset state with the command:

reset <RETURN>

The 64768 emulator breaks to the foreground monitor via a few background cycles. You can see the transition between reset and foreground monitor execution. Enter following command.

trace <RETURN>

After entering the command above, the "Emulation trace started" message appears on the status line. Enter the following command to break into the monitor.

break <RETURN>

The status line now shows that the emulator is "Running in monitor" and that the "Emulation trace complete". Enter the following command to display the trace.

display trace <RETURN>

A-6 Using the Foreground Monitor

Trace List Offset=0							
Label:	Address	Data		Opcode or Sta	itus	time cou	unt
Base:	hex	hex		mnemonic		relativ	ve
after	0FFFF2	0007	0007	fetch	BGM		
+001	000020	0000	0000	write mem	BGM	1.9	uS
+002	000022	FFFF	FFFF	write mem	BGM	1.9	uS
+003	000024	F002	F002	write mem	BGM	1.9	uS
+004	000008	0200	0200	read mem	BGM	3.8	uS
+005	0FFFF4	FE01	FE01	fetch	BGM	1.9	uS
+006	A00000	0100	0100	read mem	BGM	1.9	uS
+007	001200	A32E	A32E	fetch	BGM	2.9	uS
+008	001202	002C	002C	fetch	BGM	3.8	uS
+009	001200	002C	MOV PS:W	NORD PTR 002C,AW		320	nS
+010	001204	892E	892E	fetch	BGM	1.6	uS
+011	00102C	F080	F080	write mem	BGM	1.9	uS
+012	001206	2E2E	2E2E	fetch	BGM	1.9	uS
+013	001204	2E2E	MOV PS:W	NORD PTR 002E, BP		320	nS
+014	001208	2E00	2E00	fetch	BGM	3.5	uS
	001200	2200	2200	200011	2011	5.5	ab
STATUS:	n70433-	Running	in monit	or Emulation	trace complete	R	
display	trace						
arspray	01000						
run	trace	step	displav	modify	y break end	ET(2
							-

The trace listing shows that the processor began executing code; it executed in background monitor. The "BGM"s in the trace listing indicate the background monitor cycles.

To see the transition from background monitor to the foreground monitor, press the <NEXT> key to page down until the background cycles go.

Trace List Offset=0						
Label:	Address	Data	Opcode d	or Status	time cou	int
Base:	hex	hex	mnen	nonic	relativ	7e
+057	001000	0000	0000 read mem	BGM	1.9	uS
+058	001233	0000	illegal opcode, data	a = 0F 27	320	nS
+059	001236	0000	0000 fetch	BGM	1.6	uS
+060	000024	F002	F002 read mem	BGM	1.9	uS
+061	000022	0100	0100 read mem	BGM	3.8	uS
+062	001238	0400	0400 fetch	BGM	1.9	uS
+063	000020	0332	0332 read mem	BGM	1.9	uS
+064	001332	F62E	F62E fetch		2.9	uS
+065	001334	1906	1906 fetch		3.8	uS
+066	001332	1906	TEST PS:BYTE PTR 001	9,01	320	nS
+067	001336	0100	0100 fetch		1.6	uS
+068	001338	C62E	C62E fetch		1.9	uS
+069	00133A	1B06	1B06 fetch		1.9	uS
+070	001019	01FF	01xx read mem		1.9	uS
+071	001338	01FF	MOV PS:BYTE PTR 0018	3,02	320	nS
	E 0400					
STATUS:	n70433-	Running	in monitor Emul	lation trace com	pleteR.	•••
display	trace					
run	trace	step	display n	nodify break	endETC	2

You will see the transition from the background monitor to the foreground monitor in the display.

Tracing from Monitor to User Program

We can look at the transition from the foreground monitor to running the user program by triggering the trace on a user program address. Enter:

trace about ___main <RETURN>

Because you'd like to see the states leading up to the transition from monitor to user program, trace "about" so that states before the trigger are captured.

Now, run the demo program:

run from transfer_address <RETURN>

A-8 Using the Foreground Monitor

Trace List Offset=0				
Label:	Address	Data	Opcode or Status time count	
Base:	hex	hex	mnemonic relative	
-007	001528	8BCF	RETI 960 nS	
-006	00152A	140E	140E fetch 960 nS	
-005	001016	0080	xx80 write mem 1.9 uS	
-004	01EFFA	00C2	00C2 read mem 3.8 uS	
-003	00152C	8E00	8E00 fetch 1.9 uS	
-002	01EFFC	8000	8000 read mem 1.9 uS	
-001	01EFFE	F002	F002 read mem 2.9 uS	
about	0800C2	00B8	00B8 fetch 3.8 uS	
+001	0800C2	00B8	MOV AW,1500 320 nS	
+002	0800C4	8E15	8E15 fetch 1.6 uS	
+003	0800C6	33D8	33D8 fetch 1.9 uS	
+004	0800C5	33D8	MOV DS0,AW 320 nS	
+005	0800C8	8EC0	8EC0 fetch 1.6 uS	
+006	0800C7	8EC0	XOR AW,AW 320 nS	
+007	0800CA	26C0	26C0 fetch 3.5 uS	
STATUS: run fro	n70433- m transfer	Running r_address	user program Emulation trace completeR	
run	trace	step	display modify break endETC	

The user program began execution at state 0. Now, you will know the processor executed the **RETI** instruction to transfer execution to the user program at state 0.

Tracing from User Program to Break

You can trace the execution from the user program to the foreground monitor due to a break condition. Since the foreground monitor occupies the address range from 1000h through 17ffh, we can simply trigger on any access to that range.

trace about range 1000h thru 17ffh <RETURN>

Satisfy the trigger condition by breaking the emulator into the monitor: break <RETURN>

Trace List Offset=0							
Label:	Address	Data		Opcode or Sta	atus	time cou	int
Base:	hex	hex		mnemonic		relativ	/e
-007	08054E	FF29	FF29	fetch		1.6	uS
-006	000020	015C	015C	write mem	BGM	1.9	uS
-005	000022	803F	803F	write mem	BGM	1.9	uS
-004	000024	F283	F283	write mem	BGM	1.9	uS
-003	000008	0200	0200	read mem	BGM	3.8	uS
-002	080550	6300	6300	fetch	BGM	1.9	uS
-001	00000A	0100	0100	read mem	BGM	1.9	uS
about	001200	A32E	A32E	fetch	BGM	4.16	uS
+001	001202	002C	002C	fetch	BGM	1.9	uS
+002	001200	002C	MOV PS:	WORD PTR 002C,AW		320	nS
+003	001204	892E	892E	fetch	BGM	1.6	uS
+004	00102C	1009	1009	write mem	BGM	1.9	uS
+005	001206	2E2E	2E2E	fetch	BGM	1.9	uS
+006	001204	2E2E	MOV PS:	WORD PTR 002E,BP		320	nS
+007	001208	2E00	2E00	fetch	BGM	3.5	uS
STATUS: break	n70433-	Running	in moni	tor Emulation	n trace complete	R.	
run	trace	step	displa	y modify	v break end	ETC	2

Now, the trace listing shows that the processor entered the background state to make the transition.

Single Step and Foreground Monitors

To use the "step" command to step through processor instructions with the foreground monitor listed in this chapter, you must modify the processor's interrupt vector table. The entry that you **must** modify is the "BRK flag" interrupt vector, located at 4H thru 7H. The "BRK flag" interrupt vector must point to the identifier SINGLE_STEP_ENTRY in the foreground monitor. The address of the SINGLE_STEP_ENTRY is 300H plus the beginning of the foreground monitor. To modify the "BRK flag" interrupt vector to point to the SINGLE_STEP_ENTRY, enter the following command:

modify memory 4h words to 0300h,0100h
<RETURN>

When you load the foreground monitor at the different base address, you should modify the "BRK flag" interrupt vector to point to the identifier SINGLE_STEP_ENTRY with same way.

Software Breakpoint and Foreground Monitor

To use the software breakpoint with the foreground monitor listed in this chapter, you must modify the processor's interrupt vector table. The entry that you must modify is the "BRK 3" interrupt vector, located at 0CH thru 0FH. Enter the following command:

modify memory 0ch words to 1234h,5678h
<RETURN>

This address is not change even if you load the foreground monitor at the different base address.

Limitations of Foreground Monitors	Listed below are limitations or restrictions present when using a foreground monitor.
Synchronized MeasurementsCMB	You cannot perform synchronized measurements over the CMB when using a foreground monitor. If you need to make such measurements, use the background monitor.
Instruction Using BRK flag	If user program includes instruction using the BRK flag(in PSW register), you can not use the foreground monitor because foreground monitor uses the BRK flag in "step" command.
Stepping	You can not use "step" command in the following instructions.
	HALT/STOP POP PSW BRK 3/BRK imm8/BRKV CHKIND FPO TSKSW/BRKCS RETRBI

Break from Halt/Stop state

When the processor is in halt or stop state, the program counter(PC) indicates the next address of HALT or STOP instruction. If you use commands which require temporary break(display/modify register, or display/modify target system memory or I/O), the program will run from the address that PC indicates

A-12 Using the Foreground Monitor

Using the Format Converter

	Absolute f into the 70 Interface p	Tiles generated by InterTools language tool can not be loaded 0433 emulator directly. Therefore, the 70433 Softkey provides a format converter.
How to use the Converter	The forma files for 70	at converter generates HP format files from InterTools format 0433.
	To execut	e the converter program, use the following command:
	\$ v 5	<pre>5cnv [options] <file_name></file_name></pre>
	<file_nam created by will read t format file</file_nam 	e> is the name of InterTools format file(.abs) which is the InterTools linking locator(llink). The converter program he InterTools format file. It will generate the following HP es:
	∎ H	IP Absolute file(with .X suffix)
	∎ H	IP Linker symbol file(with .L suffix)
	■ H	IP Assembler symbol file(with .A suffix)
	The conve	erter accepts the following options.
	-X	This option specifies to generate HP format absolute file (with .X suffix).
	-1	This option specifies to generate HP format linker symbol file (with .L suffix).

Using the Format Converter B-1

-a	This option specifies to generate HP format assembler symbol file for all of source module information available in the <file_name>. (with .A suffix).</file_name>
-A module	This option specifies to generate HP assembler symbol file specified. This option may appear as many as required. If option -a, described above, is used simultaneously, specifications by this option takes precedence so that assembler symbols for modules specified by this option are generated.
-f module_list_file	This option specifies to read a list of modules to generate HP OMF assembler symbol files from module_list_file. Assembler symbol files associated to modules listed in module_list_file are generated. No other assembler symbol files are not generated. If option -a is used simultaneously, specifications by this option takes precedence so that assembler symbols for modules listed in module_list_file are generated.
-q	Suppress warning messages.
-m <i>anonymous</i>	Use anonymous module name anonymous instead of default "zzzzlib"

Restrictions and Considerations

Listed below are restrictions or considerations present when using the format converter.

The converter can not generate symbols in more than 1M bytes memory space.

The converter uses anonymous module(default: zzzzlib) when the converter generates linker symbol files. When you load absolute file, the emulator displays error message which means that there is not

B-2 Using the Format Converter

assembler symbol file(default: zzzzlib.A). But, this error will cause no damage on your operation.

You can use the [a-z],[A-Z],[0-9] characters to indicate symbols. Any other characters will be changed to "_". Symbols are truncated to 15 characters.

You can not treat symbols which is defined with "EQU" directive in assembler source file.

As for local symbols of C source file, the converter generates the symbols which are scoped on file.

Assuming that all files(source files and object files) exist in current directory, the converter operates. Therefore, No two files shear the same file name even if they exist in different directory, and if you want to reference C source line, C source files must exist in current directory.

Using the Format Converter B-3

Notes

Index

Α	absolute files	
	loading	2-13
	storing	5-16
	address	
	symbolic	2-20
	algorithm, cur segment	4-12
	algorithm, max segment	4-12
	algorithm, min segment	4-12
	analyzer	
	features of	1-4
	sequencing	5-14
	status qualifiers	2-37
	analyzer, using the	2-30
	assemblers	4-10
	assembling foreground monitor	A-4
в	background	1-5, 4-6
	background cycles	
	tracing	4-17
	background monitor	4-6 - 4-7,
		A-1
	pin state	3-8
	things to be aware of	4-7
	breaks	
	break command	2-22
	guarded memory accesses	4-10
	software breakpoints	2-23
	write to ROM	4-16
С	caution statements	
	real-time dependent target system circuitry	4-5
	software breakpoint cmds. while running user code	2-23
	cautions	
	installing the target system probe	3-2
	characterization of memory	4-10
	Clearing software breakpoints	2-27

Index -1

	CLKOUT enable bit	1-6
	clock source	
	external	3-6, 4-4
	internal	3-6, 4-4
	command	
	code, (cmd_code)	2-4
	comparison of foreground/background monitors	A-1
	compiling the demo program	2-7
	compress mode, trace display	2-34
	configuration	
	example of using foreground monitor	A-4
	for running example program	2-10
	configuration option	
	data bus size	4-11
	mnemonic type	4-11
	configuration options	
	accept target NMI	4-13
	break processor on write to ROM	4-16
	enable READY input	4-14
	foreground monitor location	4-8
	honor target reset	4-13
	in-circuit	3-6
	monitor filename	4-9
	monitor type	4-6
	segment algorithm	4-12
	target memory access	4-15
	trace background/foreground operation	4-17
	trace internal DMA cycles	4-17
	trace refresh cycles	4-17
	coordinated measurements	4-18, 5-16
	copy memory	5-14
	coverage analysis	5-14
	cur segment algorithm	4-12
D	data bus size	4-11
	demo program	
	description	2-2
	device table file	2-9
	display command	• · -
	memory mnemonic	2-17
	memory mnemonic with symbols	2-18
	registers	2-27

2- Index

software breakpoints	2-25
symbols	2-14
with source code	2-19
DMA	1-7
external	4-10
emul700, command to enter the Softkey Interface	2-9, 2-38
emulation analyzer	1-4
emulation memory	
loading absolute files	2-13
note on target accesses	4-10
RAM and ROM characterization	4-10
size of	4-9
emulation monitor	
foreground or background	1-4
emulator	
before using	2-2
configuration	4-1
configure the emulator for example	2-10
device table file	2-9
feature list	1-3
prerequisites	2-2
purpose of	1-1
running from target reset	3-6
supported	1-3
emulator configuration	
break processor on write to ROM	4-16
clock selection	4-4
for example	2-10
loading	4-19
monitor entry after	4-4
restrict to real-time runs	4-5
saving	4-18
trace background/foreground operation	4-17
trace internal DMA cycles	4-17
trace refresh cycles	4-17
Emulator features	
emulation memory	1-3
emulator probe	
installing	3-2
ENCLK bit	1-6
END assembler directive (pseudo instruction)	2-20

Е

Index -3

	end command	2-38, 4-18
	evaluation chip	1-7
	execution state	2-36
	exit, Softkey Interface	2-38
	external clock source	4-4
F	file extension	
	.EA, configuration file	4-18
	files	
	skdemo.A	2-7
	skdemo.L	2-7
	foreground	1-5, 4-6
	foreground monitor	
	example of using	A-3
	foreground monitor	4-6, 4-8,
		A-2
	assembling/linking	A-4
	configuration for demo program	A-4
	location	4-8
	location of shipped files	A-1
	monitor program	4-9
	relocating	A-3
	single-step processor	A-10
	software breakpoint	A-11
	things to be aware of	4-9
	transition from monitor to user program	A-8
	transition from reset to break	A-6
	transition from user program to break	A-9
	using the	A-1
	foreground operation, tracing	4-17
G	generate HP absolute file	2-7
	getting started	2-1
	global symbols	2-3, 2-17
	globsl symbols	
	displaying	2-14
	guarded memory accesses	4-10
н	hardware breakpoints	5-10
	help	
	on-line	2-11
	pod command information	2-12

4-Index

	softkey driven information	2-11
	HLDRQ signal	3-6
	hold request	
	during background monitor	1-6
I	in-circuit configuration options	3-6
	in-circuit emulation	3-1
	installation	2-2
	software	2-2
	interactive measurements	4-18
	internal clock source	4-4
	interrupt	
	accepting NMI from target system	4-13
	during background monitor	1-6
	from target system	1-6, 3-6
	while stepping	1-6
L	linkers	4-10
	linking foreground monitor	A-4
	linking the demo program	2-7
	load map	4-10
	loading absolute files	2-13
	loading emulator configurations	4-19
	loading:extended memory space	5-10
	local symbols	
	displaying	2-15
	static	2-3
	location address	
	foreground monitor	4-9, A-3
	locked, end command option	2-38
	logical run address, conversion from physical address	4-12
Μ	mapping memory	4-9
	max segment algorithm	4-12
	measurement system	2-39
	creating	2-8
	memory	
	characterization	4-10
	copying	5-14
	mapping	4-9
	mnemonic display	2-17
	mnemonic display with symbols	2-18

Index -5

modifying	2-21
searching for strings or expressions	5-14
with source code	2-19
memory display mnemonic	4-11
min segment algorithm	4-12
mnemonic memory display	2-17
modify command	
configuration	4-1
memory	2-21
software breakpoints clear	2-27
software breakpoints set	2-24
module	2-39
module, emulation	2-8
monitor	
background	4-6 - 4-7,
	A-1
breaking into	2-22
comparison of foreground/background	A-1
description	4-6
foreground	4-6, 4-8,
	A-2
foreground monitor file	4-9
foreground monitor location	4-8
selecting entry after configuration	4-4
using the foreground monitor	A-1
no fetch cycle in trace display	2-37
nosymbols	2-14
note	
executable files are included	2-7
pod command from keyboard	2-12
status line error	2-13
notes	
coordinated measurements require background. monitor	4-8
mapper terms deleted when monitor type is changed	4-7
pod commands that should not be executed	5-15
selecting internal clock forces reset	4-4
software breakpoints not allowed in target ROM	2-23
software breakpoints only at opcode addresses	2-23
step not accepted	2-29
target accesses to emulation memory	4-10
write to ROM analyzer status	4-16

6- Index

Ν

0	on-line help	2-11
Ρ	PATH, HP-UX environment variable physical run address, conversion to logical run address	2-8 - 2-9 4-12
	Pin guard	2.2
	target system probe	3-2
	pmon User Interface Software	5-5 7 38
	pod command	2-38
	features available with	2-12 5-14
	help information	2-12
	prerequisites for using the emulator	2-2
R	RAM, mapping emulation or target	4-10
	READY signal	4-14
	READY signals on accesses to emulation memory	4-10
	real-time execution	
	restricting the emulator to	4-5
	register commands	1-4
	registers	
	display/modify	2-27
	release_system	2 20
	end command option	2-38,
		4-18 - 4-19
	relocatable files	4-10
	relocating foreground monitor	A-3
	reset	1.6
	during background monitor	1-0
	reset (emulator)	2 20 2 6
	reset (reset emulator) command	2-20, 5-0
	DESET signal	2-30
	restrict to real time runs	5-0, 4-15
	emulator configuration	15
	permissible commands	4-5 1-5
	target system dependency	4-5
	ROM	- J
	manning emulation or target	4-10
	writes to	4-10
	run address, conversion from physical address	4-12
	run command	2-20
	run from target reset	3-6, 4-13

Index -7

S	saving the emulator configuration	4-18
	semaphore	2-4
	sequencer, analyzer	5-14
	set	
	source on inverse video	2-30
	SFR access	
	using reg command	1-7
	using register command	2-28
	simulated I/O	4-18
	SINGLE_STEP_ENTRY, foreground monitor label	A-10
	softkey driven help information	2-11
	Softkey Interface	
	entering	2-8
	exiting	2-38
	on-line help	2-11
	software breakpoints	2-23
	and NMI	2-23
	clearing	2-27
	displaying	2-25
	enabling/disabling	2-24
	setting	2-24
	software installation	2-2
	source line referencing	2-30
	source lines	
	displaying	2-16
	stacks	
	using the foreground monitor	4-9
	status qualifiers	2-37
	step command	2-28
	stop_trace command	2-35
	storage qualifier	2-35
	string delimiters	2-12
	symbolic	
	addresses	2-20
	constants	2-3
	symbols	
	displaying	2-14
	synchronized measurement	A-11
	system overview	2-2
т	target memory	
	loading absolute files	2-13

8- Index

	RAM and ROM characterization	4-10
	target reset	
	running from	3-6
	target reset, running from	3-6
	target system	
	dependency on executing code	4-5
	interface	3-9
	Target system probe	
	pin guard	3-2
	terminal interface	2-12
	trace	
	no fetch cycle	2-37
	only	2-35
	simple trigger	2-30
	trace, displaying with time count absolute	2-33
	trace, reducing the trace depth	2-34
	trace, displaying with compress mode	2-34
	tracing background operation	4-17
	tracing internal DMA cycles	4-17
	tracing refresh cycles	4-17
	transfer address, running from	2-20
	trigger position	2-37
U	unbreak into the monitor	1-6
	user (target) memory	
	loading absolute files	2-13
w	wait states, allowing the target system to insert	4-14
	window systems	2-38
	write to ROM break	4-16

Notes

10- Index