
HP 64768

70433 Emulator
Terminal Interface

User’s Guide

HP Part No. 64768-97004
Printed in Japan
May 1995

Edition 3

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993,1995 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark in United States and other countries,
licenced exclusively through X/Open Company Limited.

V55PI is trademark of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD
U.S.Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64768-97000, March 1993

Edition 2 64768-97002, October 1993

Edition 3 64768-97004, May 1995

Using this Manual

This manual will show you how to use HP 64768 emulators with the
Terminal Interface.

This manual will:

Show you how to use emulation commands by executing them
on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.
Show you how to use the emulator in-circuit (connected to a
target system).
Describe the command syntax which is specific to the 64768
emulator.

This manual will not:

Describe every available option to the emulation commands;
this is done in the HP 64700 Emulators Terminal Interface:
User’s Reference.

For the most part, the HP 647680A and HP 64768B emulators all
operate the same way. Differences of between the emulators are
described where they exist. Both the HP 64768A and HP 64768B
emulators will be referred to as the "HP 64768 emulator" or "70433
emulator".

Organization

Chapter 1 Introduction to the 64768 Emulator. This chapter briefly introduces
you to the concept of emulation and lists the basic features of the 64768
emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, use software breakpoints, search
memory for data, and perform coverage tests on emulation memory.

Chapter 3 Emulation Topics. This chapter shows you how to: restrict the
emulator to real-time execution, use the analyzer trigger to cause
breaks, and run the emulator from target system reset.

Chapter 4 In-Circuit Emulation Topics. This chapter shows you how to: install
the emulator probe into a target system, select a target system clock
source, allow the target system to insert wait states, and use the features
which allow you to debug target system ROM.

Appendix A 64768 Emulator Specific Command Syntax. This appendix describes
the command syntax which is specific to the 64768 emulator. Included
are: emulator configuration items, address syntax, display and access
modes.

Appendix B Using the Optional Foreground Monitor. This appendix describes how
to use the foreground monitor.

Contents

1 Introduction to the 64768 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the HP 64768 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-3
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-4
Reset Support . 1-4
Configurable Target System Interface 1-4
Foreground or Background Emulation Monitor 1-4
Real-Time Operation . 1-5
Easy Products Upgrades . 1-5

Limitations, Restrictions . 1-6
Reset, Hold Request While in Background Monitor 1-6
User Interrupts While in Background Monitor 1-6
Interrupts While Executing Step Command 1-6
Unbreaking into the Monitor 1-6
CLKOUT enable bit . 1-6
DMA Support . 1-7
Accessing SFR . 1-7
Accessing Reserved Area of I/O Space 1-7
Evaluation Chip . 1-7

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

A Look at the Sample Program 2-2
Using the "help" Facility . 2-6

Becoming Familiar with the System Prompts 2-7
Initializing the Emulator . 2-8

Contents-1

Other Types of Initialization 2-9
Set Up the Proper Emulation Configuration 2-10

Set Up Emulation Condition 2-10
Set Up Access/Display Modes 2-11

Mapping Memory . 2-11
Which Memory Locations Should be Mapped? 2-12

Getting the Sample Program into Emulation Memory 2-14
Standalone Configuration . 2-14
Transparent Configuration 2-15
Remote Configuration . 2-16
For More Information . 2-17

Loading an ASCII Symbol File 2-17
Displaying Memory In Mnemonic Format 2-18
Stepping Through the Program 2-20
Displaying Registers . 2-21

Combining Commands . 2-22
Using Macros . 2-22
Command Recall . 2-23
Repeating Commands . 2-23
Command Line Editing . 2-23

Modifying Memory . 2-24
Specifying the Access and Display Modes 2-24

Running the Sample Program 2-25
Searching Memory for Data . 2-25
Breaking into the Monitor . 2-26
Using Software Breakpoints . 2-26

Displaying and Modifying the Break Conditions 2-28
Defining a Software Breakpoint 2-28

Using the Analyzer . 2-29
Predefined Trace Labels . 2-29
Predefined Status Equates . 2-29
Specifying a Simple Trigger 2-30
Trigger Position . 2-32
For a Complete Description 2-34

Copying Memory . 2-34
Testing for Coverage . 2-35
Resetting the Emulator . 2-37

3 Emulation Topics

Introduction . 3-1
Prerequisites . 3-1

2-Contents

Execution Topics . 3-2
Address Expression . 3-2
Default Physical to Logical Run Address Conversion 3-4
Restricting the Emulator to Real-Time Runs 3-5
Setting Up to Break on an Analyzer Trigger 3-5
Making Coordinated Measurements 3-6

Analyzer Topics . 3-7
Analyzer Status Qualifiers . 3-7
Specifying Data for Trigger Condition or Store Condition . . . 3-7

Monitor Option Topics . 3-8
Background Monitor . 3-8
Foreground monitor . 3-8

Other Topics . 3-9
Accessing Internal RAM/SFR 3-9

4 In-Circuit Emulation Topics

Introduction . 4-1
Prerequisites . 4-1
Installing the Emulator Probe into a Target System 4-2

Pin Protector . 4-3
Conductive Pin Guard . 4-3
Installing into a PGA Type Socket 4-4
Installing into a QFP Type Socket 4-4

Execution Topics . 4-6
Specifying the Emulator Clock Source 4-6
DMA Cycles . 4-6
Run from Target System Reset 4-6

Emulator Probe Signal Topics . 4-7
Allowing the Target System to Insert Wait States 4-7
Accepting the DMA Request Signals from Target System 4-8

Target ROM Debug Topics . 4-8
Using Software Breakpoints with ROMed Code 4-8
Coverage Testing ROMed Code 4-9
Modifying ROMed Code . 4-9

Pin State in Background . 4-10
Electrical Characteristics . 4-11
Target System Interface . 4-19

A 64768 Emulator Specific Command Syntax

ACCESS_MODE . A-2
ADDRESS . A-3

Contents-3

CONFIG_ITEMS . A-5
DISPLAY_MODE . A-13
REGISTER CLASS and NAME A-15

B Using the Optional Foreground Monitor

Comparison of Foreground and Background Monitors B-1
Background Monitors . B-1
Foreground Monitors . B-2

An Example Using the Foreground Monitor B-3
Modify EQU Statement . B-3
Assemble and Link the Monitor B-3
Initialize the Emulator . B-4
Configure the Emulator . B-4
Load the Foreground Monitor B-4
Load the Sample Program . B-5
Disable Tracing Refresh Cycle B-5
Set Analyzer Master Clock Qualifiers B-5
Reset to Break . B-6
Monitor to User Program . B-7
User Program Run to Break . B-9

Single Step and Foreground Monitors B-10
Software Breakpoint and Foreground Monitors B-10
Limitations of Foreground Monitors B-11

Synchronized measurements B-11
Instruction Using BRK flag B-11
Stepping . B-11
Break from Halt/Stop state B-11

Illustrations

Figure 1-1 HP 64768 Emulator for uPD70433 1-2
Figure 2-1 Sample program listing 2-3
Figure 4-1 Installing into a 70433 PGA type socket 4-5

4-Contents

Tables

Table 3-1 Address Expression Matrix 3-3
Table 4-1 AC Electrical Specifications 4-11
Table 4-2 AC Electrical Specifications 4-15

Contents-5

Notes

6-Contents

1

Introduction to the 64768 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 64768 emulator is designed to replace the 70433 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1 HP 64768 Emulator for uPD70433

1-2 Introduction

Features of the HP
64768 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The 132-pin PGA type of 70433 microprocessor is supported.The HP
64768 emulator probe has a 132-pin PGA connector.When you use
120-pin QFP type microprocessor, you must use with PGA to QFP
adapter; refer to the "In-Circuit Emulation Topics "chapter in this
manual.

Clock Speeds The HP 64768A emulator runs with an internal clock speed of
12.5MHz (system clock), or with target system clocks from 4 to 25
MHz.

The HP 64768B emulator runs with an internal clock speed of
12.5MHz (system clock), or with target system clocks from 4 to 32
MHz.

Emulation memory The HP 64768 emulator is used with one of the following Emulation
Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and at
least 256 byte in length). The monitor occupies 2K bytes leaving
126K,510K,1022K bytes of emulation memory which you may
use.You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or guarded
memory. The emulator generates an error message when accesses are
made to guarded memory locations. You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution.

Introduction 1-3

Analysis The HP 64768 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704 80-channel Emulation Bus Analyzer
HP 64703 64-channel Emulation Bus Analyzer and
16-channel State/Timing Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70433 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
emulation monitor.

You can also define software breakpoints in your program. The
emulator uses the 70433 BRK 3 instruction to provide software
breakpoint. When you define a software breakpoint, the emulator
places a BRK 3 instruction at the specified address; after the BRK 3
instruction causes emulator execution to break out of your program, the
emulator replaces BRK 3 with the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70433 instructions which read the

1-4 Introduction

target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which the
emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background. User program
execution is suspended so that emulation processor can be used to
access target system resources. The background monitor does not
occupy any processor address space.

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O, or single-step are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A Card Cage. This means that you’ll be able to update product
firmware, if desired, without having to call an HP field representative
to your site.

Introduction 1-5

Limitations,
Restrictions

Reset, Hold Request
While in Background

Monitor

If you use background monitor, RESET and HLDRQ from target
system are ignored while in monitor.

User Interrupts While
in Background

Monitor

If you use the background monitor, NMI and INTP0-5 from target
system are suspended until the emulator goes into foreground
operation. Other interrupts are ignored.

Interrupts While
Executing Step

Command

While stepping user program with the foreground monitor used,
interrupts are accepted if they are enabled in the foreground monitor
program.

While stepping user program with the background monitor used,
interrupts are ignored.

Note You should not use step command in case the interrupt handler’s
punctuality is critical.

Unbreaking into the
Monitor

The emulator can not break into the monitor if the microprocessor is in
hold state. The emulator will break into the monitor after hold state
because break request is suspended.

The emulator can not break into the monitor if the microprocessor is in
reset state by RESET signal from target system.

CLKOUT enable bit CLKOUT signal can be enabled/disabled by ENCLK bit, which is bit 5
of PRC register. You must not clear ENCLK bit(ENCLK bit is "1" in

1-6 Introduction

reset). The emulator will not work properly if CLKOUT signal is
disabled

DMA Support Direct memory access to emulation memory by external DMA
controller is not permitted.

Accessing SFR When you access SFR(Special Function Registers), you must use reg
commands. If you access SFR with m commands, you will access to
the actual memory you mapped(as target system ROM or RAM,
emulation ROM or RAM).

Accessing Reserved
Area of I/O Space

When you access reserved area of I/O space(0FF80h-0FFFFh) with
"io" commands in the background monitor, the emulator operates
exceptionally. When you display reserved area of I/O space,
theemulator displays "FFh" . When you modify reserved area of
I/Ospace, the emulator does not modify value.

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
Evaluation chip in the emulator.

Introduction 1-7

Notes

1-8 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64768 emulator for the 70433 microprocessor.

This chapter will:

Describe the sample program used for this chapter’s examples.

Show you how to use the "help" facility.

Show you how to use the memory mapper.

Show you how to enter emulation commands to view
execution of the sample program. The commands described in
this chapter include:
– Displaying and modifying memory
– Stepping
– Displaying registers
– Defining macros
– Searching memory
– Running
– Breaking
– Using software breakpoints
– Copying memory
– Testing coverage

Getting Started 2-1

Before You Begin Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Completed hardware installation of the HP 64700 emulator in
the configuration you intend to use for your work:

– Standalone configuration
– Transparent configuration
– Remote configuration
– Local Area Network configuration

References: HP 64700 Series Installation/Service manual

2. If you are using the Remote configuration, you must have
completed installation and configuration of a terminal
emulator program which will allow your host to act as a
terminal connected to the emulator. In addition, you must start
the terminal emulator program before you can work the
examples in this chapter.

3. If you have properly completed steps 1 and 2 above, you
should be able to hit <RETURN> (or <ENTER> on some
keyboards) and get one of the following command prompts on
your terminal screen:

U>
R>
M>

If you do not see one of these command prompts, retrace your
steps through the hardware and software installation
procedures outlined in the manuals above, verifying all
connections and procedural steps.

In any case, you must have a command prompt on your
terminal screen before proceeding with the tutorial.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

2-2 Getting Started

NAME cmd_rds

PUBLIC Msgs,Init,Cmd_Input,Msg_Dest

COMN SEGMENT PARA COMMON ’COMN’
;**
; Command input byte.
;**
Cmd_Input DB ?
;**
; Destination of the command message.
;**
Msg_Dest DB 20H DUP (?)
 EVEN
 DW 6FH DUP (?) ; Stack area.
Stk LABEL WORD
COMN ENDS

DATA SEGMENT PARA PUBLIC ’DATA’
Msgs LABEL BYTE
Msg_A DB "Command A entered "
Msg_B DB "Command B entered "
Msg_I DB "Invalid Command "
End_Msgs LABEL BYTE
DATA ENDS

CODE SEGMENT PARA PUBLIC ’CODE’
 ASSUME PS:CODE,DS0:DATA,DS1:COMN,SS:COMN
;**
; The following instructions initialize segment
; regsiters and set up the stack pointer.
;**
Init: MOV AW,DATA
 MOV DS0,AW
 MOV AW,COMN
 MOV DS1,AW
 MOV SS,AW
 MOV SP,OFFSET Stk
;**
; Clear previous command
;**
Read_Cmd: MOV Cmd_Input,0
 NOP
;**
; Read command input byte. If no command has been
; entered, continue to scan for command input.
;**
Scan: MOV AL,Cmd_Input
 CMP AL,0
 BE Scan
;**
; A command has been entered. Check if it is
; command A, command B, or invalid.
;**

Figure 2-1 Sample program listing

Getting Started 2-3

Exe_Cmd: CMP AL,41H
 BE Cmd_A
 CMP AL,42H
 BE Cmd_B
 BR Cmd_I
;**
; Command A is entered. CW = the number of bytes in
; message A. BP = location of the message. Jump to
; the routine which writes the message.
;**
Cmd_A: MOV CW,Msg_B-Msg_A
 MOV IX,OFFSET Msg_A
 BR Write_Msg
;**
; Command B is entered.
;**
Cmd_B: MOV CW,Msg_I-Msg_B
 MOV IX,OFFSET Msg_B
 BR Write_Msg
;**
; An invalid command is entered.
;**
Cmd_I: MOV CW,End_Msgs-Msg_I
 MOV IX,OFFSET Msg_I
;**
; Message is written to the destination.
;**
Write_Msg: MOV IY,OFFSET Msg_Dest
 REP MOVBK Msg_Dest,Msgs
;**
; The rest of the destination area is filled
; with zeros.
;**
Fill_Dest: XOR AL,AL
 MOV CW,OFFSET Msg_Dest+20H
 SUB CW,IY
 REP STM Msg_Dest
;**
; Go back and scan for next command
;**
 BR Read_Cmd
CODE ENDS
 END Init

Figure 2-1 Sample program (Cont’d)

2-4 Getting Started

Data Declarations

The area at DATA segment defines the messages used by the program
to respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

Initialization

The program instructions from the Init label to the Read_Cmd label
perform initialization. The segment registers are loaded and the stack
pointer is set up.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to see if a command is entered
(a value other than 0H).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41H), execution is transferred
to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42H), execution is transferred
to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", i.e. an invalid
command has been entered, then execution is transferred to the
instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I load register CW
with the length of the message to be displayed and register IX with the
starting location of the appropriate message. Then, execution transfers
to Write_Msg where the appropriate message is written to the
destination location, Msg_Dest.

Getting Started 2-5

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20H bytes long.) Then, the program jumps back to read the next
command.

The Destination Area

The area at COMN segment declares memory storage for the command
input byte, the destination area, and the stack area.

Using the "help"
Facility

The HP 64700 Series emulator’s Terminal Interface provides an
excellent help facility to provide you with quick information about the
various commands and their options. From any system prompt, you
can enter "help" or "?" as shown below.

R> help

Commands are grouped into various classes. To see the commands
grouped into a particular class, you can use the help command with that
group. Viewing the group help information in short form will cause the
commands or the grammar to be listed without any description.

For example, if you want to get some information for group gram, enter
"help gram". Following help information should be displayed.

R> help gram

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 sys - system commands
 emul - emulation commands
 trc - analyzer trace commands
 * - all command groups

2-6 Getting Started

Help information exists for each command. Additionally, there is help
information for each of the emulator configuration items.

Becoming Familiar
with the System

Prompts

A number of prompts are used by the HP 64700 Series emulators.
Each of them has a different meaning, and contains information about
the status of the emulator before and after the commands execute.
These prompts may seem cryptic at first, but there are two ways you
can find out what a certain prompt means.

Using "help proc" to View Prompt Description

The first way you can find information on the various system prompts
is to look at the proc help text.

R> help proc

 gram - system grammar

 --- SPECIAL CHARACTERS ---
 # - comment delimiter ; - command separator Ctl C - abort signal
 {} - command grouping "" - ascii string ‘‘ - ascii string
 Ctl R - command recall Ctl B - recall backwards

 --- EXPRESSION EVALUATOR ---
 number bases: t-ten y-binary q-octal o-octal h-hex
 repetition and time counts default to decimal - all else default to hex
 operators: () ~ * / % + - << <<< >> >>> & ^ | &&

 --- PARAMETER SUBSTITUTION ---
 &token& - pseudo-parameter included in macro definition
 - cannot contain any white space between & pairs
 - performs positional substitution when macro is invoked
 Example
 Macro definition: mac getfile={load -hbs"transfer -t &file&"}
 Macro invocation: getfile MYFILE.o
 Expanded command: load -hbs"transfer -t MYFILE.o"

Getting Started 2-7

Using the Emulation Status Command (es) for Description
of Current Prompt

When using the emulator, you will notice that the prompt changes after
entering certain commands. If you are not familiar with a new prompt
and would like information about that prompt only, enter the es
(emulation status) command for more information about the current
status.

U> es
N70433--Running user program

Initializing the
Emulator

If you plan to follow this tutorial by entering commands on your
emulator as shown in this chapter, verify that no one else is using the
emulator. To initialize the emulator, enter the following command:

R> init
Limited initialization completed

The init command with no options causes a limited initialization, also
known as a warm start initialization. Warm start initialization does not

 --- Address format -----
 32 bit (seg:off) logical, extended 32 bit (seg::off) logical,
 24 physical, or 9 bit physical (@iram)

 --- Emulation Prompt Status Characters ---
 U - running user code M - running in monitor
 c - slow clock r - target reset
 R - emulation reset s - stop
 h - halt b - slow bus cycle
 g - hold T - awaiting target reset
 W - awaiting CMB ready ? - unknown state

 --- Analyzer STATUS Field Equates ---
 exec - execute instruction dma - DMA memory access
 fetch - program fetch int - interrupt acknowledge
 read - read refresh - refresh cycle
 write - write halt - halt
 mem - memory access hold - hold acknowledge
 io - I/O accesscpu stop - stop
 sfr - SFR access wrrom - write to rom
 cpu - cpu cycle grd - guarded memory access
 ms - macro service fg - foreground
 memio - mem io dma bg - background
 memsfr - mem SFR dma

2-8 Getting Started

affect system configuration. However, the init command will reset
emulator and analyzer configurations. The init command:

Resets the memory map.

Resets the emulator configuration items.

Resets the break conditions.

Clears software breakpoints.

The init command does not:

Clear any macros.

Clear any emulation memory locations; mapper terms are
deleted, but if you respecify the same mapper terms, you will
find that the emulation memory contents are the same.

Other Types of
Initialization

There are two options to init . The -p option specifies a powerup
initialization, also known as a cold start initialization. It initializes the
emulator, analyzer, system controller, and communications port;
additionally, performance verification tests are run.

The -c option also specifies a cold start initialization, except that
performance verification tests are not run.

Getting Started 2-9

Set Up the Proper
Emulation
Configuration

Emulation configuration is needed to adapting to your specific
development. As you have initialized the emulator, the emulation
configuration items have default value.

Set Up Emulation
Condition

The emulator allows you to set the emulator’s configuration setting
with the cf command. Enter the help cf to view the information with
the configuration command.

R> help cf

To view the current emulator configuration setting, enter the following
command.

R> cf

cf - display or set emulation configuration

 cf - display current settings for all config items
 cf <item> - display current setting for specified <item>
 cf <item>= <value> - set new <value> for specified <item>
 cf <item> <item>=<v alue> <item> - set and display can be combined

 help cf <item> - display long help for specified <item>

 --- VALID CONFIGURATION NAMES ---
 clk - select clock source
 dsize - select data bus width
 hold - en/dis HLDRQ input from the target system
 mne - select mnemonic for inverse assembly
 mon - select foreground or background monitor
 nmi - en/dis NMI from the target system
 rad - select run address translation method
 rdy - relationship between emulator and target ready
 rrt - en/dis restriction to real time runs
 rsp - specify stack pointer after emulation reset
 rst - en/dis RESET input from the target system
 tdma - en/dis tracing DMA cycles
 trfsh - en/dis tracing of refresh cycles

 cf clk=int
 cf dsize=16
 cf hold=en
 cf mne=70433
 cf mon=bg
 cf nmi=en
 cf rad=minseg
 cf rdy=lk
 cf rrt=dis
 cf rsp=0000:8000
 cf rst=en
 cf tdma=en
 cf trfsh=en

2-10 Getting Started

The individual configuration items won’t be explained in this section;
refer to the "CONFIG_ITEMS" in the "64768 Emulator Specific
Command Syntax" appendix for details

Set Up
Access/Display

Modes

To avoid problems later while modifying and displaying memory
locations, enter the following command:

R> mo -ab -db

This sets the access and display modes for memory operation to byte.(if
they are left at the default mode of word,the memory modification and
display examples will not function correctly.)

Mapping Memory Depending on the memory board, emulation memory consists of 128K
, 512K or 1M bytes, mappable in 256 byte blocks. The monitor
occupies 2K bytes, leaving 126K , 510K or 1022K bytes of emulation
memory which you may use. The emulation memory system does not
introduce wait states.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

Note Target system devices that take control of the bus (for example,
external DMA controllers), cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will also generate "break to monitor" requests if the
rom break condition is enabled. Memory is mapped with the map
command. To view the memory mapping options, enter:

Getting Started 2-11

M> help map

Enter the map command with no options to view the default map
structure.

M> map

Which Memory
Locations Should be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. A linker load map listing will
show what memory locations your program will occupy. One for the
sample program is shown below.

 map - display or modify the processor memory map
 map - display the current map structure
 map <addr>..<addr> <type> - define address range as memory type
 map other <type> - define all other ranges as memory type
 map -d <term#> - delete specified map term
 map -d * - delete all map terms
 --- VALID <type> OPTIONS ---
 eram - emulation ram
 erom - emulation rom
 tram - target ram
 trom - target rom
 grd - guarded memory

 # remaining number of terms : 16
 # remaining emulation memory : 1f8000h bytes
 map other tram

Hewlett-Packard ldv20 Tue Jul 2 13:18:08 1991

HPB1445-19300 A.03.00 09Oct91 Copr. HP 1990
Command line: ldv20 -c cmd_rds.k -Lh

NAME cmd_rds
SEG /COMN=400h
SEG /DATA=600h
SEG /CODE=800h
LOAD cmd_rds.o
END

OUTPUT MODULE NAME: cmd_rds
OUTPUT MODULE FORMAT: HP64000 absolute

MODULE SUMMARY

2-12 Getting Started

From the load map listing, you can see that the sample program
occupies three address ranges. The program area, which contains the
opcodes and operands, occupies locations 800 through 859 hex. The
data area, which contains the ASCII values of the messages the
program transfers, occupies locations 600 through 635 hex. The
destination area, which contains the command input byte and the
locations of the message destination, occupies locations 400 through
4FF hex.

Since the program writes to the destination area, the mapper block of
destination area should not be characterized as ROM. Enter the
following commands to map memory for the sample program and
display the memory map.

R> map 0..4ff eram
R> map 600..9ff erom
R> map

When mapping memory for your target system programs, you should
characterize emulation memory locations containing programs and
constants (locations which should not be written) as ROM. This will
prevent programs and constants from being written over accidentally.
Break will occur when instructions or commands attempt to do so (if
the rom break condition is enabled).

MODULE SEGMENT CLASS HP SECTION START END

cmd_rds /usr/hp64000/demo/emul/hp64768/cmd_rds.o
 CODE CODE PROG 00800 00859
 COMN COMN DATA 00400 004FF
 DATA DATA COMMON 00600 00635

SEGMENT SUMMARY

SEGMENT CLASS GROUP START END LENGTH ALIGNMENT COMBINE

COMN COMN 00400 004FF 00100 Paragraph Common
DATA DATA 00600 00635 00036 Paragraph Public
CODE CODE 00800 00859 0005A Paragraph Public
??SEG 00000 00000 00000 Paragraph Public
??DATA1 ??INIT 00000 00002 00003 Byte Common

START ADDRESS: 00080:00000 - 00800
Load completed.

 # remaining number of terms : 14
 # remaining emulation memory : 1ef00h bytes
 map 0000000..00004ff eram # term 1
 map 0000600..00009ff erom # term 2
 map other tram

Getting Started 2-13

Getting the
Sample Program
into Emulation
Memory

This section assumes you are using the emulator in one of the following
three configurations:

1. Connected only to a terminal, which is called the standalone
configuration. In the standalone configuration, you must
modify memory to load the sample program.

2. Connected between a terminal and a host computer, which is
called the transparent configuration. In the transparent
configuration, you can load the sample program by
downloading from the "other" port.

3. Connected to a host computer and accessed via a terminal
emulation program (for example, the terminal window of the
PC Interface). This configurations is called remote
configurations. In the remote configuration, you can load the
sample program by downloading from the same port.

Standalone
Configuration

If you are operating the emulator in the standalone configuration, the
only way to load the sample program into emulation memory is by
modifying emulation memory locations with the m (memory
display/modification) command.

You can enter the sample program into memory with the m command
as shown below.

R> m -db 800=0b8,60,0,8e,0d8,0b8,40,0,8e,0c0,8e,0d0,0bc,0,1,26
R> m -db 810=0c6,6,0,0,0,26,0a0,0,0,3c,0,74,0f8,3c,41,74
R> m -db 820=0d,90,90,3c,42,74,12,90,90,0eb,19,90,90,90,0b9,12
R> m -db 830=0,0be,0,0,0eb,14,90,90,90,0b9,12,0,0be,12,0,0eb
R> m -db 840=09,90,90,90,0b9,12,0,0be,24,0,0bf,1,0,0f3,0a4,32
R> m -db 850=0c0,0b9,21,0,2b,0cf,0f3,0aa,0eb,0b5
R> m -db 600="Command A entered Command B entered Invalid command "

After entering the opcodes and operands, you would typically display
memory in mnemonic format to verify that the values entered are
correct (see the example below). If any errors exist, you can modify
individual locations. Also, you can use the cp (copy memory)

2-14 Getting Started

command if, for example, a byte has been left out, but the locations
which follow are correct.

Note Be careful about using this method to enter programs from the listings
of relocatable source files. If source files appear in relocatable sections,
the address values of references to locations in other relocatable
sections are not resolved until link-time. The correct values of these
address operands will not appear in the assembler listing.

Transparent
Configuration

 If your emulator is connected between a terminal and a host computer,
you can download programs into memory using the load command
with the -o (from other port) option. The load command will accept
absolute files in the following formats:

HP absolute.

Intel hexadecimal.

Tektronix hexadecimal.

Motorola S-records.

The examples which follow will show you the methods used to
download HP absolute files and the other types of absolute files.

HP Absolutes

Downloading HP format absolute files requires the
transfer protocol. The example below assumes that the transfer utility
has been installed on the host computer (HP 64884 for HP 9000 Series
500, or HP 64885 for HP 9000 Series 300).

Getting Started 2-15

Note Notice that the transfer command on the host computer is terminated
with the <ESCAPE>g characters; by default, these are the characters
which temporarily suspend the transparent mode to allow the emulator
to receive data or commands.

R> load -hbo <RETURN> <RETURN>
$ transfer -rtb cmd_rds.X <ESCAPE>g

 ####
 R>

Other Supported Absolute Files

 The example which follows shows how to download Intel hexadecimal
files by the same method (but different load options) can be used by
load Tektronix hexadecimal and Motorola S-record files as well.

R> load -io <RETURN> <RETURN>
$ cat ihexfile <ESCAPE>g

 #####
 Data records = 00003 Checksum error = 00000
 R>

Remote Configuration If the emulator is connected to a host computer, and you are accessing
the emulator from the host computer via a terminal emulation program,
you can also download files with the load command. However, in the
remote configuration, files are loaded from the same port that
commands are entered from. For example, if you wish to download a
Tektronix hexadecimal file from a Vectra personal computer, you
would enter the following commands.

R> load -t <RETURN>

After you have entered the load command, exit from the terminal
emulation program to the MS-DOS operating system. Then, copy your
hexadecimal file to the port connected to the emulator, for example:

C:\copy thexfile com1: <RETURN>

Now you can return to the terminal emulation program and verify that
the file was loaded correctly.

2-16 Getting Started

For More Information For more information on downloading absolute files, refer to the load
command description in the HP 64700 Emulators Terminal Interface:
User’s Reference manual.

Loading an ASCII
Symbol File

The 64768 emulator supports the use of symbolic references in the
terminal interface. The symbols can be loaded with a program file, as is
the case with Intel OMF files . They can also be loaded from an ASCII
text file on a host system.

The symbols used are defined in a file using a text editor, or any other
means to create the file. Refer to the HP 64700-Series Emulators
Terminal Interface Reference for information on the format of the file.
The file is then transferred to the emulator using the load command.

You can create a text file named "cmd_rds.SYM" on your HP-UX host
system. The file will look something like as follows.

#
cmd_rds:
Init 800
Read_Cmd 80f
Scan 815
Exe_Cmd 81d
Cmd_A 82e
Cmd_B 839
Cmd_I 844
Write_Msg 84a
Fill_Dest 84f
#

Use the "-S" option on the load command to transfer the file.
R> load -Sos "cat cmd_rds.SYM"

The symbols can then be manipulated with the "sym" command, and
used in commands at the command line. If the load is not successful,
the nature of the error will be reported.

R> sym

Getting Started 2-17

 sym cmd_rds:Init=000800
 sym cmd_rds:Read_Cmd=00080f
 sym cmd_rds:Scan=000815
 sym cmd_rds:Exe_Cmd=00081d
 sym cmd_rds:Cmd_A=00082e
 sym cmd_rds:Cmd_B=000839
 sym cmd_rds:Cmd_I=000844
 sym cmd_rds:Write_Msg=00084a
 sym cmd_rds:Fill_Dest=00084f

Refer to the "Execution Topics" section in the "Emulation Topics"
chapter and the "ADDRESS" section in the "64768 Emulator Specific
Command Syntax" appendix.

Displaying
Memory In
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format.

 R> m -dm 800..858

 0000800 - MOV AW,0060
 0000803 - MOV DS0,AW | MOV AW,0040
 0000808 - MOV DS1,AW | MOV SS,AW | MOV SP,010
 000080f - MOV DS1:BYTE PTR 0000,00
 0000815 - MOV AL,DS1:BYTE PTR 0000
 000081a - CMP AL,00
 000081c - BE/Z 00815
 000081e - CMP AL,41
 0000820 - BE/Z 0082e
 0000821 - NOP
 0000822 - NOP
 0000823 - CMP AL,42
 0000825 - BE/Z 00439
 0000827 - NOP
 0000828 - NOP
 0000829 - BR SHORT 00844
 000082b - NOP
 000082c - NOP
 000082d - NOP
 000082e - MOV CW,0012
 0000831 - MOV IX,0000
 0000834 - BR SHORT 0084a
 0000836 - NOP
 0000837 - NOP
 0000838 - NOP
 0000839 - MOV CW,0012
 000083c - MOV IX,0012
 000083f - BR SHORT 0084a
 0000841 - NOP
 0000842 - NOP

2-18 Getting Started

If you display memory in mnemonic format and do not recognize the
instructions listed or see some illegal instructions or opcodes, go back
and make sure the memory locations you have typed are mapped
properly. If the memory map is not the problem, recheck the linker load
map listing to verify that the absolute addresses of the program match
with the locations you are trying to display.

If you have loaded symbols with the sample program, the display will
include the symbols in the memory display.

 0000843 - NOP
 0000844 - MOV CW,0012
 0000847 - MOV IX,0024
 000084a - MOV IY,0001
 000084d - REP/E/Z MOVBKB
 000084f - XOR AL,AL
 0000851 - MOV CW,0021
 0000854 - SUB CW,IY
 0000856 - REP/E/Z STMB
 0000858 - BR SHORT 0080f

 0000800 cmd_rds:Init MOV AW,0060
 0000803 - MOV DS0,AW | MOV AW,0040
 0000808 - MOV DS1,AW | MOV SS,AW | MOV SP,010
 000080f md_rds:Read_Cmd MOV DS1:BYTE PTR 0000,00
 0000815 cmd_rds:Scan MOV AL,DS1:BYTE PTR 0000
 0000819 - CMP AL,00
 000081b - BE/Z cmd_Rds:Scan
 000081d cmd_rds:Exe_Cmd CMP AL,41
 000081f - BE/Z cmd_rds:Cmd_A
 0000821 - NOP
 0000822 - NOP
 0000823 - CMP AL,42
 0000825 - BE/Z cmd_rds:Cmd_B
 0000827 - NOP
 0000828 - NOP
 0000829 - BR SHORT cmd_Rds:Cmd_I
 000082b - NOP
 000082c - NOP
 000082d - NOP
 000082e cmd_rds:Cmd_A MOV CW,0012
 0000831 - MOV IX,0000
 0000834 - BR SHORT cmd_rds:Write_Msg
 0000836 - NOP
 0000837 - NOP
 0000838 - NOP
 0000839 cmd_rds:Cmd_B MOV CW,0012
 000083c - MOV IX,0012
 000083f - BR SHORT cmd_rds;Write_Msg
 0000841 - NOP
 0000842 - NOP
 0000843 - NOP
 0000844 cmd_rds:Cmd_I MOV CW,0012
 0000847 - MOV IX,0024
 000084a d_rds:Write_Msg MOV IY,0001
 000084d - REP/E/Z MOVBKB

Getting Started 2-19

Note The command processor retains the name of the last module referenced.
If a symbol does not contain a module name, the list of global symbols
is searched. If the symbol is not found, the list of user symbols is
searched. If the symbol is still not found, the system searches the last
module referenced. If it doesn’t find it there, the rest of the modules are
searched.

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with the s (step) command. Enter the help s to view the
options available with the step command.

R> help s

A step count of 0 will cause the stepping to continue "forever" (until
some break condition, such as "write to ROM", is encountered, or until
you enter <CTRL>c). The following command will step from the first
address of the sample program.

R> s 1 0:800

 s - step emulation processor

 s - step one from current PC
 s <count> - step <count> from current PC
 s <count> $ - step <count> from current PC
 s <count> <addr> - step <count> from <addr>
 s -q <count> <addr> - step <count> from <addr>, quiet mode
 s -w <count> <addr> - step <count> from <addr>, whisper mode

 --- NOTES ---
 STEPCOUNT MUST BE SPECIFIED IF ADDRESS IS SPECIFIED!
 If <addr> is not specified, default is to step from current PC.
 A <count> of 0 implies step forever.

 000084f d_rds:Fill_Dest XOR AL,AL
 0000851 - MOV CW,0021
 0000854 - SUB CW,IY
 0000856 - REP/E/Z STMB
 0000858 - BR SHORT cmd_rds:Read_Cmd

2-20 Getting Started

Note There are cases in which the emulator can not step. Step command is
not accepted between each of the following instructions and the next
instruction.
1) Instructions that manipulate for sreg or xreg: MOV sreg,reg16,
 MOV sreg,mem16, POP sreg, MOV xsreg,reg16,
 MOV xsreg,mem16, POP xsreg.
2) Prefix instructions: PS:, SS:, DS0:, DS1:, DS2:, DS3:, IRAM,
 REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ,
 BUSLOCK.
3) EI, DI, RETI, RETRBI.
4) POP PSW.
5) FINT.
6) BRKCS, BRK 3, BRK imm8, BRKV(V=1),
 CHKIND(mem32>reg16 or (mem32+2)<reg16), FPO1 fp-op;
 FPO1 fp-op,mem;, FPO2 fp-op;, FPO2 fp-op,mem;, TSKSW,
 MOVSPB, MOVSPA.
7) RSTWDT.
8) The first instruction of interrupt processing routine.

Displaying
Registers

The step command shown above executed the MOV AW,0060H
instruction. Enter the following command to view the contents of the
registers.

M> reg *

The register contents are displayed in a "register modify" command
format. This allows you to save the output of the reg command to a
command file which may later be used to restore the register contents.

 00000:00800 cmd_rds:Init MOV AW,0060
 PC = 00000:00803

 reg ps=0000 pc=0803 psw=f002 aw=0060 bw=0000 cw=0000 dw=0000 sp=8000 bp=0000
 reg ix=0000 iy=0000 ds0=0000 ds1=0000 ds2=0000 ds3=0000 ss=0000

Getting Started 2-21

(Refer to the po (port options) command description in the erminal
Interface: User’s Reference for more information on command files.)

Refer to the "REGISTER CLASS and NAME" section in the "64768
Emulator Specific Command Syntax" appendix for more information
on the register names and classes.

Combining
Commands

More than one command may be entered in a single command line. The
commands must be separated by semicolons (;). For example, you
could execute the next instruction(s) and display the registers by
entering the following.

M> s;reg

The sample above shows you that MOV DS0,AW and MOV
AW,0040H are executed by step command. Refer to the Note above,
for the reason why two instructions are executed.

Using Macros Suppose you want to continue stepping through the program and
displaying registers after each step. You could continue entering s
commands followed by reg commands, but you may find this tiresome.
It is easier to use a macro to perform a sequence of commands which
will be entered again and again.

Macros allow you to combine and store commands. For example, to
define a macro which will display registers after every step, enter the
following command.

M> mac st={s;reg}

Once the st macro has been defined, you can use it as you would use
any other command.

M> st

 00000:00803 - MOV DS0,AW | MOV AW,0040
 PC = 00000:00808
 reg ps=0000 pc=0808 psw=f002 aw=0040 bw=0000 cw=0000 dw=0000 sp=8000 bp=0000
 reg ix=0000 iy=0000 ds0=0060 ds1=0000 ds2=0000 ds3=0000 ss=0040

 # s ; reg
 00000:00808 - MOV DS1,AW | MOV SS,AW | MOV SP,010
 PC = 00000:0080f
 reg ps=0000 pc=080f psw=f002 aw=0040 bw=0000 cw=0000 dw=0000 sp=0100 bp=0000
 reg ix=0000 iy=0000 ds0=0060 ds1=0040 ds2=0000 ds3=0000 ss=0040

2-22 Getting Started

Command Recall The command recall feature is yet another, easier way to enter
commands again and again. You can press <CTRL>r to recall the
commands which have just been entered. If you go past the command
of interest, you can press <CTRL>b to move forward through the list of
saved commands. To continue stepping through the sample program,
you could repeatedly press <CTRL>r to recall and <RETURN> to
execute the st macro.

Repeating Commands The rep command is also helpful when entering commands
repetitively. You can repeat the execution of macros as well as normal
commands. For example, you could enter the following command to
cause the st macro to be executed four times.

M> rep 4 st

Command Line
Editing

The terminal interface supports the use of HP-UX ksh(1)-like editing
of the command line. The default is for the command line editing
feature to be disabled to be compatible with earlier versions of the
interface. Use the cl command to enable command line editing.

M> cl -e

Refer to "Command Line Editing" in the HP 64700-Series Emulators
Terminal Interface Reference for information on using the command
line editing feature.

 # s ; reg
 00000:0040f MOV DS1:0000,00
 PC = 00000:00815
 reg ps=0000 pc=0815 psw=f002 aw=0040 bw=0000 cw=0000 dw=0000 sp=0100 bp=0000
 reg ix=0000 iy=0000 ds0=0060 ds1=0040 ds2=0000 ds3=0000 ss=0040
 # s ; reg
 00000:00815 - MOV AL,DS1:BYTE PTR 0000,00
 PC = 00000:00819
 reg ps=0000 pc=0819 psw=f002 aw=0000 bw=0000 cw=0000 dw=0000 sp=0100 bp=0000
 reg ix=0000 iy=0000 ds0=0060 ds1=0040 ds2=0000 ds3=0000 ss=0040
 # s ; reg
 00000:00819 - CMP AL,00
 PC = 00000:0081b
 reg ps=0000 pc=081b psw=f046 aw=0000 bw=0000 cw=0000 dw=0000 sp=0100 bp=0000
 reg ix=0000 iy=0000 ds0=0060 ds1=0040 ds2=0000 ds3=0000 ss=0040
 # s ; reg
 00000:0081b MOV AL,DS1:0000
 PC = 00000:00815
 reg ps=0000 pc=0815 psw=f046 aw=0000 bw=0000 cw=0000 dw=0000 sp=0100 bp=0000
 reg ix=0000 iy=0000 ds0=0060 ds1=0040 ds2=0000 ds3=0000 ss=0040

Getting Started 2-23

Modifying Memory The preceding step and register commands show the sample program is
executing Scan loop, where it continually reads the command input
byte to check if a command had been entered. Use the m (memory)
command to modify the command input byte.

M> m 400=41

To verify that 41H has been written to 400H, enter the following
command.

M> m -db 400
0000400..0000400 41

When memory was displayed in byte format earlier, the display mode
was changed to "byte". The display and access modes from previous
commands are saved and they become the defaults.

Specifying the
Access and Display

Modes

There are a couple different ways to modify the display and access
modes. One is to explicitly specify the mode with the command you are
entering, as with the command m -db 400. The mo (display and access
mode) command is another way to change the default mode. For
example, to display the current modes, define the display mode as
"word", and redisplay 400H, enter the following commands.

M> mo
mo -ab -db

M> mo -dw
M> m 400

0000400..0000400 0041

To continue the rest of program.

M> r
U>

Display the Msg_Dest memory locations (destination of the message,
401H) to verify that the program moved the correct ASCII bytes. At
this time you want to see correct byte values, so "-db" option (display
with byte) is used.

U> m -db 401..420
0000401..0000410 43 6f 6d 61 6e 64 20 41 20 65 6e 74 65 72 65
0000411..0000420 64 20 00 00 00 00 00 00 00 00 00 00 00 00 00

2-24 Getting Started

Running the
Sample Program

The emulator allows you to execute a program in memory with the r
command. The r command by itself causes the emulator to begin
executing at the current program counter address. The following
command will begin running the sample program from 800h.

M> r 800

Note The defaults number base for address and data values within HP 64700
Terminal Interface is hexadecimal. Other number bases may be
specified. Refer to the "Expressions" chapter or the HP 64700 Terminal
Interface Reference manual for further details.

The r rst command specifies that the emulator begin to executing from
target system reset (see the "Execution Topics" section in the
"In-Circuit Emulation" chapter).

Searching
Memory for Data

The ser (search memory for data) command is another way to verify
that the program did what it was supposed to do.

U> ser 400..420="Command A entered "
pattern match at address: 0000401

If any part of the data specified in the ser command is not found, no
match is displayed (No message displayed).

Getting Started 2-25

Breaking into the
Monitor

You can use the break command (b) command to generate a break to
the monitor. While the break will occur as soon as possible, the actual
stopping point may be many cycles after the break request (depending
on the type of instruction being executed and whether the processor is
in a special state).

U> b
M>

Note If DMA transfer is in progress with BURST or DEMAND-RELEASE
transfer mode, the emulator breaks into monitor after such DMA
transfers are completed.

Using Software
Breakpoints

Software breakpoints are handled by the 70433 BRK 3 instruction.
When you define or enable a software breakpoint(whit the bp
command), the emulator will replace the opcode at the software
breakpoint address with a breakpoint interrupt instruction(BRK 3).

Caution Software breakpoints should not be set, enabled, disabled, or removed
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

2-26 Getting Started

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed.
Further, your program won’t work correctly.

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Note Because software breakpoints are implemented by replacing opcodes
with the BRK 3 instructions, you cannot define software breakpoints in
target ROM.

You can, however, copy target ROM into emulation memory(see the
"Target ROM Debug Topics" section of the "In-Circuit Emulation"
chapter). Then you can use software breakpoints.

When software breakpoints are enabled and the emulator detects the
BRK 3 interrupt instruction, it generates a break into the monitor. Since
the system controller knows the locations of defined software
breakpoints, it can determine whether the BRK 3 interrupt was
generated by an enabled software breakpoint or by a BRK 3 instruction
in your target program.

If the BRK 3 interrupt was generated by a software breakpoint,
execution breaks to the monitor, and the breakpoint interrupt
instruction(BRK 3) is replaced by the original opcode. A subsequent
run or step command will execute from this address.

If the BRK 3 interrupt was generated by a BRK 3 interrupt instruction
in the target program, execution still breaks to the monitor,and an
"undefined breakpoint" status message is displayed. To continue

Getting Started 2-27

program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

Displaying and
Modifying the Break

Conditions

Before you can define software breakpoints, you must enable software
breakpoints with the bc (break conditions) command. To view the
default break conditions and change the software breakpoint condition,
enter the bc command with no option. This command displays current
configuration of break conditions.

M> bc
bc -d bp #disable
bc -e rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

To enable the software break point feature enter

M> bc -e bp

Defining a Software
Breakpoint

Now that the software breakpoint feature is enabled, you can define
software breakpoints. Enter the following command to break on the
address of the Cmd_I (address 844H) label.

M> bp 844
M> bp

BREAKPOINT FEATURE IS ENABLED
bp 0000844 #enabled

Run the program, and verify that execution broke at the appropriate
address.

M> r 0:800
U> m 400=43

!ASYNC_STAT 615! Software breakpoint: 00000:00844

M> st
s;reg
00000:00844 - MOV CW,0012
PC = 00000:00847
reg ps=0000 pc=0847 psw=f002 aw=00043 bw=0000 cw=0012 dw=0000 sp=0100 bp=0000
reg ix=0012 iy=0021 ds0=0060 ds1=0040 ds2=0000 ds3=0000 ss=0040

When a breakpoint is hit, it becomes disabled. You can use the -e
option with the bp command to re-enable the software breakpoint.

M> bp
BREAKPOINT FEATURE IS ENABLED
bp 0000844 #disabled

2-28 Getting Started

M> bp -e 000844
M> bp

BREAKPOINT FEATURE IS ENABLED
bp 0000844 #enabled

M> r
U> m 400=43

!ASYNC_STAT 615! Software breakpoint: 00000:00844

M> bp
BREAKPOINT FEATURE IS ENABLED
bp 0000844 #disabled

Refer to the "Execution Topics" section in the "Emulation Topics"
chapter and "ADDRESS" section in the "64768 Emulato r Specific
Command Syntax" appendix.

Using the Analyzer

Predefined Trace
Labels

Three trace labels are predefined in the 64768 emulator. You can view
these labels by entering the tlb (trace label) command with no options.

M> tlb
Emulation trace labels
tlb addr 0..23
tlb data 24..39
tlb stat 40..57

Predefined Status
Equates

Common values for the 64768 status trace signals have been
predefined. You can view these predefined equates by entering the equ
command with no options.

M> equ

Getting Started 2-29

These equates may be used to specify values for the stat trace label
when qualifying trace conditions.

Specifying a Simple
Trigger

The tg analyzer command is a simple way to specify a condition on
which to trigger the analyzer. Suppose you wish to trace the states of
the program after the read of a "B" (42 hex) command from the
command input byte. Enter the following commands to set up the trace,
run the program, issue the trace, and display the trace status. (Note that
the analyzer is to search for a lower byte read of 42H because the
address is even.)

M> tg addr=400 and data=0xx42

If you wish to trace the odd address and the data, enter the following
command to set up the trace (Note that the data value should be entered
like as 0xx42 or 42xx when you specify that CPU’s data bus size is 16
bits in configuration.): tg addr=401 and data=42xx

M> t
emulation trace started

M> r 0:800
U> ts

 ### Equates ###
 equ bg=0xxxxxxxxxxxxxxxx0xy
 equ cpu=0x0000xx01xxx1xxxxy
 equ dma=0xx0000xx11xxx1xxxxy
 equ exec=0xxxx01xxxxxxxxxxxxy
 equ fetch=0xx0000xx10xxx1xxxxy
 equ fg=0xxxxxxxxxxxxxxxx1xy
 equ grd=0xxxx00xxxxxxx1x0xxy
 equ halt=0xx11xxxxxxxxx1xxxxy
 equ hold=0xxxxxxxxxxxxx0xxxxy
 equ int=0xxxx10xxxxxxxxxxxxy
 equ io=0xx0000xx01x001xxxxy
 equ mem=0x10000xxxxxxx1xxxxy
 equ memio=0xx00000111xxx1xxxxy
 equ memsfr=0xx00000011xxx1xxxxy
 equ ms=1x0000xx01xxx1xxxxy
 equ read=0xx0000xxx10xx1xxxxy
 equ refresh=0xx0000xx001xx1xxxxy
 equ sfr=0xx0000xx01x111xxxxy
 equ stop=0xx10xxxxxxxxx1xxxxy
 equ write=0xx0000xxx11xx1xxxxy
 equ wrrom=0xxxx00xxxxxxx10xxxy

2-30 Getting Started

--- Emulation Trace Status ---
New User trace running
Arm ignored
Trigger not in memory
Arm to trigger ?
States ? (512) ?..?
Sequence term 1
Occurrence left 1

The trace status shows that the trigger condition has not been found.
You would not expect the trigger to be found because no commands
have been entered. Modify the command input byte to "B"(42H) and
display the trace status again.

U> m 400=42
U> ts

---Emulation Trace Status ---
New User trace complete
Arm ignored
Trigger in memory
Arm to trigger ?
States 512 (512) 0..511
Sequence term 2
Occurrence left 1

The trace status shows that the trigger has been found, and that 512
states have been stored in trace memory. Enter the following command
to display the first 20 states of the trace.

U> tl -t 20

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 000400 xx42 read mem --- +
 1 000819 INSTRUCTION--opcode unavailable 0.320 uS .
 2 00081c 3cf8 fetch 1.600 uS .
 3 00081b INSTRUCTION--opcode unavailable 0.320 uS .
 4 08b923 xxxx refresh 1.600 uS .
 5 00081e 7441 fetch 1.920 uS .
 6 00081d CMP AL,41 0.320 uS .
 7 000820 900d fetch 1.600 uS .
 8 00081f BE/Z 0082e 0.320 uS .
 9 000822 3c90 fetch 1.600 uS .
 10 000821 NOP 0.320 uS .
 11 000822 NOP 1.280 uS .
 12 000824 7442 fetch 0.320 uS .
 13 000823 CMP AL,42 0.960 uS .
 14 08b925 xxxx refresh 0.960 uS .
 15 000826 9012 fetch 1.920 uS .
 16 000825 BE/Z 00839 0.320 uS .
 17 000828 eb90 fetch 1.600 uS .
 18 000839 b9xx fetch 1.920 uS .
 19 00083a 0012 fetch 1.920 uS .

Getting Started 2-31

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0.

To list the next lines of the trace, enter the following command.

U> tl

Trigger Position You can specify where the trigger state will be positioned with in the
emulation trace list. The following three basical trigger positions are
defined.

s start
c center
e end

When s(start) trigger position is selected, the trigger is positioned at the
start of the trace list. You can trace the states after the trigger state.

When c(center) trigger position is selected, the trigger is positioned at
the center of the trace list. You can trace the states around the trigger.

When e(end) trigger position is selected, the trigger is positioned at the
end of the trace list. You can trace the state before the trigger.

In the above section, you have traced the states of the program after a
certain state, because the default trigger position was s(start). If you

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 20 000839 MOV CW,0012 0.320 uS .
 21 08b927 xxxx refresh 1.600 uS .
 22 00083c 12be fetch 1.920 uS .
 23 00083c MOV IX,0012 0.320 uS .
 24 00083e eb00 fetch 1.600 uS .
 25 000840 9009 fetch 1.920 uS .
 26 00083f BR SHORT 0084a 0.320 uS .
 27 000842 9090 fetch 1.600 uS .
 28 00084a 01bf fetch 1.920 uS .
 29 00084a MOV IY,0001 0.320 uS .
 30 08b929 xxxx refresh 1.600 uS .
 31 00084c f300 fetch 1.920 uS .
 32 00084e 32a4 fetch 1.920 uS .
 33 00084d REP/E/Z MOVBKB 0.640 uS .
 34 000850 b9c0 fetch 1.280 uS .
 35 000852 0021 fetch 1.920 uS .
 36 08b92b xxxx refresh 1.920 uS .
 37 000612 xx43 read mem 1.920 uS .
 38 000401 43xx write mem 2.880 uS .
 39 000613 6fxx read mem 1.920 uS .

2-32 Getting Started

want to trace the states of the program around a certain state, you need
to change the trigger position.

For example, if you wish to trace the transition to the command A
process, change the trigger position to "center" and specify the trigger
condition.

To specify the trigger position, enter the following command.

U> tp c

Specify the trigger condition by typing

U> tg addr=82e and stat=exec

Enter the trace command to start the trace.

U> t
Emulation trace started

Modify the command input byte to "A" and display the trace status
again.

U> m 400=41
U> ts

--- Emulation Trace Status ---
New User trace complete
Arm ignored
Trigger not in memory
Arm to trigger ?
States 512 (512) -257..254
Sequence term 2
Occurrence left 1

The trace status shows that the trigger has been found. Enter the
following command to display the states about the execution state of
address 82eH.

U> tl -10..9

Getting Started 2-33

The transition states to the process for the command A are displayed.

For a Complete
Description

For a complete description of the HP 64700 Series analyzer, refer to the
HP 64700 Emulators Terminal Interface: Analyzer User’s Guide.

Copying Memory The cp (copy memory) command gives you the ability to copy the
contents of one range of memory to another. This is a handy feature to
test things like the relocatability of programs, etc. To test if the sample
program is relocatable within the same segment, enter the following
command to copy the program to an unused, but mapped, area of
emulation memory. After the program is copied, run it from its new
start address to verify that the program is indeed relocatable.

U> cp 900=800..859
U> r 0:900
U>

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 -10 000819 CMP AL,00 0.320 uS .
 -9 00081c 3cf8 fetch 1.600 uS .
 -8 00081b BE/Z 00815 0.320 uS .
 -7 0489f1 xxxx refresh 1.600 uS .
 -6 00081e 7441 fetch 1.920 uS .
 -5 00081d CMP AL,41 0.320 uS .
 -4 000820 900d fetch 1.600 uS .
 -3 00081f BE/Z 0082e 0.320 uS .
 -2 000822 3c90 fetch 1.600 uS .
 -1 00082e 12b9 fetch 1.920 uS .
 0 00082e MOV CW,0012 0.320 uS +
 1 0489f3 xxxx refresh 1.600 uS .
 2 000830 be00 fetch 1.920 uS .
 3 000832 0000 fetch 1.920 uS .
 4 000831 MOV IX,0000 0.320 uS .
 5 000834 14eb fetch 1.600 uS .
 6 000834 BR SHORT 0084a 0.320 uS .
 7 000836 9090 fetch 1.600 uS .
 8 0489f5 xxxx refresh 1.920 uS .
 9 00084a 01bf fetch 1.920 uS .

2-34 Getting Started

The prompt shows that the emulator is executing user code, so it looks
as if the program is relocatable. You may want to issue a simple trace
to verify that the program works while running from its new location.

U> tg any
U> t

Emulation trace started

U> tl

Testing for
Coverage

For each byte of emulation memory, there is an additional bit of
emulation RAM used by the emulator to provide coverage testing.
When the emulator is executing the target program and an access is
made to a byte in emulation memory, the corresponding bit of coverage
memory is set. With the cov command, you can see which bytes in a
range of emulation memory have (or have not) been accessed.

For example, suppose you want to determine how extensive some test
input is in exercising a program (in other words, how much of the
program is covered by using the test input). You can run the program
with the test input and then use the cov command to display which
locations in the program range were accessed.

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 0 000915 INSTRUCTION--opcode unavailable --- +
 1 000918 3c00 fetch 1.280 uS .
 2 00091a 7400 fetch 1.920 uS .
 3 000400 xx00 read mem 1.920 uS .
 4 000919 CMP AL,00 0.320 uS .
 5 00091c 3cf8 fetch 1.600 uS .
 6 00091b BE/Z 00915 0.320 uS .
 7 06193d xxxx refresh 1.600 uS .
 8 000915 26xx fetch 1.920 uS .
 9 000916 00a0 fetch 1.920 uS .
 10 000915 MOV AL,DS1:BYTE PTR 0000 0.640 uS .
 11 000918 3c00 fetch 1.280 uS .
 12 00091a 7400 fetch 1.920 uS .
 13 000400 xx00 read mem 1.920 uS .
 14 000919 CMP AL,00 0.320 uS .
 15 06193f xxxx refresh 1.600 uS .
 16 00091c 3cf8 fetch 1.920 uS .
 17 00091b BE/Z 00915 0.320 uS .
 18 00091e 7441 fetch 1.600 uS .
 19 000915 26xx fetch 1.920 uS .

Getting Started 2-35

The examples which follow use the cov command to perform coverage
testing on the sample program. Before performing coverage tests, reset
all coverage bits to non-accessed by entering the following command.

U> cov -r

Run the program from the start address (00000:00400H) and use the
cov command to display how much of the program is accessed before
any commands are entered (refer to the "Execution Topics" section in
the "Emulation Topics" chapter and "ADDRESS" section in the "64768
Emulator Specific Command Syntax" appendix).

U> r 800
R> cov -a 800..859

coverage list - list of address ranges accessed
0000800..000081f

percentage of memory accessed: % 35.6

Now enter the sample program commands "A", "B", and an invalid
command ("C" will do); display the coverage bits for the address range
of the sample program after each command. You can see that more of
the sample program address range is covered after each command is
entered.

U> m 400=41
U> cov -a 800..859

coverage list - list of address ranges accessed
0000800..0000823
000082e..0000839
000084a..0000859

percentage of memory accessed: % 71.1

U> m 400=42
U> cov -a 800..859

coverage list - list of address ranges accessed
0000800..0000829
000082e..0000843
000084a..0000859
percentage of memory accessed: % 88.9

U> m 400=43
U> cov -a 800..859

coverage list - list of address ranges accessed
0000800..0000859

percentage of memory accessed: % 100.0

2-36 Getting Started

Resetting the
Emulator

To reset the emulator, enter the following command.

U> rst
R>

The emulator is held in a reset state (suspended) until a b (break), r
(run), or s (step) command is entered. A CMB execute signal will also
cause the emulator to run if reset.

The -m option to the rst command specifies that the emulator begin
executing in the monitor after reset instead of remaining in the
suspended state.

R> rst -m
M>

Getting Started 2-37

Notes

2-38 Getting Started

3

Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which are unique to the 64768 emulator such as the cf command which
allows you t o specify emulator configuration.

A reference-type description of the 64768 emulator configuration items
can be found in the "CONFIG_ITEMS" section in the "64768 Emulator
Specific Command Syntax" appendix.

This chapter will:

Describe how to run in real-time and how to break on an
analyzer trigger,how to specify the address form, how to
specify the default interpretation of physical run addresses,
and how to break on an analyzer trigger. These topics are
related to program execution in general.

Describe how to locate the monitor, These topics are related to
the monitor options.

Describe how to do other things which do not fall into the
categories mentioned above: how to access internal RAM/SFR.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

Emulation Topics 3-1

Execution Topics The descriptions in this section are of emulation tasks which involve
program execution in general.

Address Expression The 64768 emulator allow you to use address forms as the following.

physical address form: (e.g.,0ffff0)

function code address form: (e.g.,0ef@iram)

logical address form: (e.g.,0fff0:00ff)

extended logical address form: (e.g.,0fff0::00ff)

You must specify addresses in function code address form(the iram
information), when you access Internal RAM space(addresses from
000@iram to 1ff@iram).

If you specify the address in 1M bytes memory space, you can specify
addresses in either physical address form(00000 to 0fffff) or logical
address form.

If you specify the address in 16M bytes memory space, you can specify
addresses in either physical address form (000000 to 0ffffff) or
extended logical address form.

3-2 Emulation Topics

The address expression is restricted by emulation commands as shown
below.

Table 3-1 Address Expression Matrix

Command
group

Terminal
command

PHY_ADDR IRAM_ADDR
@iram

<SEGMENT>:
<OFFSET>

<XSEGMENT>::
<XOFFSET>

Memory
commands

cp,dump,
m,ser

OK OK OK OK

cim OK OK (*1) OK OK

cov OK ERROR OK OK

Run
commands

(*2)

r,xr,s,ss
(rad=maxseg)

OK ERROR OK ERROR

r,xr,s,ss
(rad=minseg)

OK ERROR OK ERROR

r,xr,s,ss
(rad=curseg)

<SEGMENT>
(0-0FFFFH)

ERROR OK ERROR

I/O
command

io OK
(0-0FFFFH)

ERROR ERROR ERROR

Map
command

map OK ERROR ERROR ERROR

Breakpoints
command

bp OK
(0-0FFFFFH)

ERROR OK ERROR

Symbols
command

sym OK OK OK OK

*1 : The emulator ignores a function code.

*2 : Refer to the "cf rad" command in "CONFIG_ITEMS" section of "Emulation Specific
Command Syntax"

Emulation Topics 3-3

Note When you specify address range, you can not specify end address and
start address in different address form respectively. But following form
are permitted.

physical..physical@iram(physical@iram..physical)
 physical address is recognized as function code address.
segment:offset..physical(physical..segment:offset)
 physical address is recognized as offset, and segment is
 same value.
xsegment::xoffset..physical(physical..xsegment::xoffset)
 physical address is recognized as xoffset, and xsegment is
same value.

Default Physical to
Logical Run Address

Conversion

The run and step commands allows you to enter addresses in ether
logical address form(segment:offset) or physical address form.

When a physical address(non-segment) is entered with either a run or
step command, the emulator must convert it to a
logical(segment:offset) address. By default, a physical run address is
converted such that the low 16 bits of the address become the offset
value. The physical address is right-sifted 4 bits and ANDed with
0F000H to yield segment.Use the cf(configuration) command with
rad(run address default conversion) configuration item to specify how
the low 4 bits of physical address become the offset. The physical
address is right-sifted 4 bits to yield the segment value.

R> cf rad=minseg

#phys_addr =
((phys_addr >4) & 0xf000h):(phys_addr & 0xffff)

R> cf rad=maxseg

#phys_addr =
(phys_addr >4):(phys_addr & 0xf)

3-4 Emulation Topics

To configure so that the physical address(0h-0ffffh) becomes the offset
value, enter following command. The value of current program
segment(PS) becomes the segment value.

R> cf rad=curseg

#phys_addr=(current segment):(entered value)

If you use logical addresses other than the three methods shown above,
you must enter run and step addresses in logical form.

Restricting the
Emulator to

Real-Time Runs

By default, the emulator is not restricted to real-time runs. However,
you may wish to restrict runs to real-time to prevent accidental breaks
that might cause target system problems. Use the cf (configuration)
command to enable the rrt configuration item.

R> cf rrt=en

When runs are restricted to real-time and the emulator is running user
code, the system refuses all commands that cause a break except rst
(reset), r (run), s (step), and b (break to monitor).

Because the emulator contains dual-port emulation memory, commands
which access emulation memory are allowed while runs are restricted
to real-time.

The following commands are not allowed when runs are restricted to
real-time:

reg (register display/modification).

m (memory display/modification) commands that access
target system memory.

io (I/O display/modification).

The following command will disable the restriction to real-time runs
and allow the system to accept commands normally.

R> cf rrt=dis

Setting Up to Break
on an Analyzer

Trigger

The analyzer may generate a break request to the emulation processor.
To set up to break on an analyzer trigger, follow the steps below.

Emulation Topics 3-5

Specify the Signal Driven when Trigger is Found

Use the tgout (trigger output) command to specify which signal is
driven when the analyzer triggers. Either the "trig1" or the "trig2"
signal can be driven on the trigger.

R> tgout trig1

Enable the Break Condition

Enable the "trig1" break condition.

R> bc -e trig1

After you specify the trigger to drive "trig1" and enable the "trig1"
break condition, set up the trace, issue the t (trace) command, and run
the program.

Making Coordinated
Measurements

Coordinated measurements are measurements made between multiple
HP 64700 Series emulators which communicate via the Coordinated
Measurement Bus (CMB). Coordinated measurements can also include
other instruments which communicate via the BNC connector. A
trigger signal from the CMB or BNC can break emulator execution into
the monitor, or it can arm the analyzer. An analyzer can send a signal
out on the CMB or BNC when it is triggered. The emulator can send an
EXECUTE signal out on the CMB when you enter the x (execute)
command.

Coordinated measurements can be used to start or stop multiple
emulators, start multiple trace measurements, or to arm multiple
analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or
BNC trigger signals are interpreted as a "request to break". The
emulator looks at the state of the CMB READY (active high) line to
determine if it should break. It does not interact with the EXECUTE
(active low) or TRIGGER (active low) signals.

For information on how to make coordinated measurements, refer to
the HP 64700 Emulators Terminal Interface: Coordinated
Measurement Bus User’s Guide manual.

3-6 Emulation Topics

Analyzer Topics

Analyzer Status
Qualifiers

The follwing are the analyzer status labels which may be used in the
"tg" and "tsto" analyzer commands.

Specifying Data for
Trigger Condition or

Store Condition

The analyzer captures the data of the 70433 microprocessor. When you
specify a data in the analyzer trigger condition or store condition, the
ways of analyzer data specifications differ according to the data size.

To trigger the analyzer when the 70744 microprocessor accesses the
word data 1234H at address 1000H in 8bit data bus size. the data bus
activity of the cycles will be as follows.

Sequencer level Address bus Data bus
 1 1000H xx34
 2 1001H xx12

In this case, you need to use the analyzer sequential trigger capabilites.
We do not describe the detail about the sequential trigger feature. Only
how to trigger the analyzer at this example is described. To specify the
condition of sequencer level 1, enter:

M> tif 1 addr=1000 and data=0xx34

Qualifier Status bits Description
bg 0xxxxxxxxxxxxxxxx0xy background
cpu 0x0000xx01xxx1xxxxy cpu cycle
dma 0xx0000xx11xxx1xxxxy DMA memory access
exec 0xxxx01xxxxxxxxxxxxy execute instruction
fetch 0xx0000xx10xxx1xxxxy program fetch
fg 0xxxxxxxxxxxxxxxx1xy foreground
grd 0xxxx00xxxxxxx1x0xxy guarded memory access
halt 0xx11xxxxxxxxx1xxxxy halt
hold 0xxxxxxxxxxxxx0xxxxy hold acknowledge
int 0xxxx10xxxxxxxxxxxxy interrupt acknowledge
io 0xx0000xx01x001xxxxy I/O access
mem 0x10000xxxxxxx1xxxxy memory access
memio 0xx00000111xxx1xxxxy memory to io
memsfr 0xx00000011xxx1xxxxy memory to sfr
ms 01x0000xx01xxx1xxxxy macro service
read 0xx0000xxx10xx1xxxxy read
refresh 0xx0000xx001xx1xxxxy refresh cycle
sfr 0xx0000xx01x111xxxxy sfr access
stop 0xx10xxxxxxxxx1xxxxy stop
write 0xx0000xxx11xx1xxxxy write
wrrom 0xxxx00xxxxxxx10xxxy write to rom

Emulation Topics 3-7

To specify the condition of sequencer level 2, enter:

M> tif 2 addr=1001 and data=0xx12

To restart sequencer when any states except for "exec" status are
generated between sequencer term 1 and 2.

M> telif stat!=exec

Monitor Option
Topics

The monitor is a program which is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the processor
instructions which access the target system. After the monitor has
performed its task, execution returns to the target program.

The background monitor does not take up any processor address space
and does not need to be linked to the target program. The monitor
resides in dedicated background memory.

Background Monitor When the emulator is powered up or initialized, the background
monitor is selected by default.

Foreground monitor The default emulator configuration selects the background monitor.
You can change the emulator configuration to select the foreground
monitor. When you select the foreground monitor, processor address
space is taken up. The foreground monitor takes up 2K bytes of
memory. Use the cf command to select the foreground monitor.

R> cf mon=fg..1000

1000 defines an hexadecimal address (on a 2K byte boundary) where
the monitor will be located. (Note: this will not load the monitor, it
only specifies its location.) The start address of the foreground monitor

3-8 Emulation Topics

must be 2k boundary and between 800H and 0FF000H. The foreground
monitor must then be loaded into emulation memory. A memory
mapper term is automatically created when you execute the cf mon=fg
command to reserve 2K bytes of memory space for the monitor. The
memory map is reset any time cf mon=bg is entered. It is only reset
when the cf mon=bg command is entered if the emulator is not already
configured to use the background monitor. Refer to the "Using the
Optional Foreground Monitor" appendix.

Note The foreground monitor provided with 64768 emulator should not be
located at a base address 0 or 0ff800 hex; because the 70433
microprocessor’s vector table or SFR are located respectively.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

Other Topics This section describes how other emulation tasks, which did not fit into
the previous groupings, are performed.

Accessing Internal
RAM/SFR

When you access internal RAM ,you can use the m command with
function code and the reg command. If you display/modify register in
the current register bank, you must use reg command instead of the m
command. Otherwise you will destroy the monitor program.

When you access SFR(Special Function Registers), you must use the
reg command with their register name instead of the m command. You
can access SFR regardless of memory mapping.

Emulation Topics 3-9

Notes

3-10 Emulation Topics

4

In-Circuit Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Describe how to set up the emulator to use a target system
clock, how to execute program from target reset and how to
allow DMA accesses to emulation memory. These topics are
related to program execution in general.

Describe how to use software breakpoints with ROMed code,
how to perform coverage testing on ROMed code, and how to
test patches to ROMed code. These topics relate to the
debugging of target system ROM.

Describe some of restrictions and considerations.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 4-1

Installing the
Emulator Probe
into a Target
System

The 64768 emulator probe has a 132-pin PGA connector;
The emulator probe is also provided with a conductive pin protector to
protect the delicate gold-plated pins of the probe connector from
damage due to impact. Since the protector is non-conductive, you may
run performance verification with no adverse effects when the emulator
is out-of-circuit.

Caution Protect against static discharge. The emulator probe contains devices
that are susceptible to damage by static discharge. Therefore,
precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by static
electricity.

Caution Make sure target system power is OFF. Do not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

Caution Make sure pin 1 of probe connector is aligned with pin 1 of the
socket. When installing the emulation probe, be sure that probe is
inserted into the processor socket so that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator probe will result if the
probe is incorrectly installed.

4-2 In-Circuit Emulation

Caution Protect your target system CMOS components. If you target system
contains any CMOS components, turn ON the target system first, then
turn ON the emulator. Likewise, turn OFF your emulator first, then turn
OFF the target system.

Pin Protector The target system probe has a pin protector that prevents damage to the
prove when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room to accommodate the
plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

Conductive Pin Guard HP emulators are shipped with a conductive plastic or conductive foam
pin guard over the target system probe pins. This guard is designed to
prevent impact damage to the pins and should be left in place while you
are not using the emulator. However, when you do use the emulator,
either for normal emulation tasks, or to run performance verification on
the emulator, you must remove this conductive pin guard to avoid
intermittent failures due to the target system probe lines being shorted
together.

Caution Always use the pin protectors and guards as described above.
Failure to use these devices may result in damage to the target system
probe pins. Replacing the target system probe is expensive; the entire
probe and cable assembly must be replaced because of the wiring
technology employed.

In-Circuit Emulation 4-3

Installing into a PGA
Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70433 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Caution DO NOT use the microprocessor connector without using a pin
protector. The pin protector is provided to prevent damage to the
microprocessor connector when connecting and removing the
microprocessor connector from the target system PGA socket.

Installing into a QFP
Type Socket

To connect the 64768 emulator microprocessor connector to the NEC
EV-9200GD-120 socket on the target system, use the NEC
EV-9501GD-120 adapter.

4-4 In-Circuit Emulation

Figure 4-1 Installing into a 70433 PGA type socket

In-Circuit Emulation 4-5

Execution Topics The descriptions in this section are of emulation tasks which involve
program execution in general.

Specifying the
Emulator Clock

Source

The default 64768 emulator configuration selects the internal 12.5MHz
(system clock speed) clock as the emulator clock source. You should
configure the 64768 emulator to select an external target system clock
source for the "in-circuit" emulation. Use the cf (configuration)
command and the clk configuration item to specify that the emulator
use a target system clock.

R> cf clk=ext

To reconfigure the emulator to use its internal clock, enter the
following command.

R> cf clk=int

DMA Cycles Cycles from the emulation processor’s internal DMA controller is
allowed to access emulation memory. If DMA controller is
programmed to transfer with BURST or DEMAND RELEASE mode,
the emulator can not break in monitor until transfers are
completed.With other DMA modes, the emulator break into the
monitor(background) upon request, however, DMA transfers are
continued. DMA cycles are sent to the analyzer.

Note Target system DMA controller access to emulation memory is not
allowed. Only internal DMA controller can access emulation memory.

Run from Target
System Reset

You can use "r rst " command to execute program from target system
reset. If you use background monitor, you will see T> system prompt
when you enter "r rst". In this status, the emulator accept target system
reset. Then program stars if reset signal from target system is released.

If you use foreground monitor, reset signal from target system is
always accepted.

4-6 In-Circuit Emulation

Note In the "Awaiting target reset" status(T>), you can not break into the
monitor. If you enter "r rst" in out-of-circuit or in the configuration that
emulator does not accepted target system reset(cf rst=dis), you must
reset the emulator.

The 64768 emulator supports power on reset. If you want program to
be executed by power on reset, execute the following process.

1) Enter "rst"

2) Turn OFF your target system

3) Enter "r rst"

4) Turn On your target system

Note When you enter "r rst", you will see c> system prompt if you use
external clock(cf clk=ext). This status is the same as "Awaiting target
reset" status.

Emulator Probe
Signal Topics

The descriptions in this section are of emulation tasks which involve
emulator probe signals while in background or while accessing
emulation memory.

Allowing the Target
System to Insert Wait

States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready lines while emulation memory is being accessed. Use the cf
(configuration) command with the rdy configuration item to cause
emulation memory accesses to honor target system ready signals.

R> cf rdy=lk

In-Circuit Emulation 4-7

To reconfigure so that emulation memory accesses do not honor target
system ready signals, enter the following command.

R> cf rdy=unlk

Accepting the DMA
Request Signals from

Target System

Even if the emulator is running in the background monitor, DMARQ0,
DMARQ1 signals from target system can be accepted.

Note Frequent DMA requests will slow down the monitor operation. It may
cause a failure.

Target ROM
Debug Topics

The descriptions in this section are of emulation tasks which involve
debugging target ROM. The tasks described below are made possible
by the cim (copy target system memory image) command.

The cim command allows you to read the contents of target memory
into the corresponding emulation memory locations. Moving target
ROM contents into emulation memory is the key which allows you to
perform the tasks described below. For example, if target ROM exists
at locations 400H through 0A38H, you can copy target ROM into
emulation memory with the following commands.

R> map 400..0bff erom
R>cim 400..0a38

Using Software
Breakpoints with

ROMed Code

You cannot define software breakpoints in target ROM memory.
However, you can copy target ROM into emulation memory which
does allow you to use software breakpoints.

Once target ROM is copied into emulation memory, software
breakpoints may be used normally at addresses in these emulation
memory locations.

R> bc -e bp

4-8 In-Circuit Emulation

R> bp 440

Coverage Testing
ROMed Code

Coverage testing (as described in the "Getting Started" chapter) can
only be performed on emulation memory. However, if you wish to
perform coverage tests on code in target system ROM, you can copy
target ROM into emulation memory and perform the coverage tests on
your ROMed code.

Once target ROM is copied into emulation memory, coverage testing
may be done normally at addresses in these emulation memory
locations.

U> cov -a 400..0a38

Modifying ROMed
Code

Suppose that, while debugging your target system, you begin to suspect
a bug in some target ROM code. You might want to fix or "patch" this
code before programming new ROMs. This can also be done by
copying target system ROM into emulation memory with the cim
(copy target memory image) command. Once the contents of target
ROM are copied into emulation memory, you can modify emulation
memory to "patch" your suspected code.

In-Circuit Emulation 4-9

Pin State in
Background

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance otherwise you direct the
emulator to access target memory. When accessing
target memory, I/O by background monitor, same
as foreground.

ASTB Same as foreground.

DEX Same as foreground

WRL,WRH Always high level, except accessing target memory,
I/O by background monitor.

RD Same as foreground except for emulation memory
write. When accessing emulation memory, low.

Other Same as foreground

4-10 In-Circuit Emulation

Electrical
Characteristics

The AC characteristics of the HP 64768A/B emulators are listed in the
following table

Table 4-1 AC Electrical Specifications

uPD70433

12.5MHz

HP 64768A

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

CLKOUT Low to Address Valid tDKA 5 30 1 39 16.8 ns

CLKOUT High to Address Invalid tHKA 5 1 16.8 ns

CLKOUT High to Address-Data Bus High
Impedance

tFKT 40 43 8.3 ns

Address Valid to ASTB Asserted tSAST 15 5 36.0 ns

ASTB Asserted to Address Invalid tHSTA 25 17 30.4 ns

CLKOUT Low to ASTB Negated tDKSTL 0 25 -4 32 7.6 ns

CLKOUT Low to ASTB Negated tDKSTH 0 25 -4 32 6.0 ns

ASTB Width High tWSTH 65 60 79.6 ns

CLKOUT High to RD Asserted(Read) tDKRL 0 25 -1 42 26.4 ns

CLKOUT High to RD Negated(Read) tDKRH 0 25 -1 40 15.6 ns

RD Width Low (Read) tWRL 105 100 112.4 ns

Address-Data Bus High Impedance to RD
Asserted(Read)

tFARL 0 -21 18.1 ns

RD Negated to Address Valid(Read) tDRA 40 4 30.4 ns

In-Circuit Emulation 4-11

Table 4-1 AC Electrical Specification(Cont’d)

uPD70433

12.5MHz

HP 64768A

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

CLKOUT Low to DEX Asserted,Negated tDKDX 0 30 -4 39 - ns

CLKOUT Low to DEX Asserted,Negated tHKDX 0 -4 - ns

CLKOUT Low to Data-In Valid tSDK 15 33 21.0 ns

CLKOUT Low to Data-In Invalid tHKDR 0 0 ns

CLKOUT Low to WR Asserted(Write) tDKWL 0 25 -1 42 18.4 ns

CLKOUT Low to WR Negated(Write) tDKWH 0 25 -1 40 14.4 ns

WR Width Low (Write) tWWL 65 60 72.8 ns

CLKOUT High to Data-out Valid(Write) tDKD 3 30 -1 39 14.4 ns

CLKOUT Low to Data-out Invalid(Write) tHKDW 0 -4 14.8 ns

WR Negated to ASTB Negated(Write) tDWSTH 0 -15 -7.6 ns

CLKOUT High to RAS Asserted tDKRAL 0 25 -4 34 - ns

CLKOUT High to RAS Negated tDKRAH 0 25 -4 29 - ns

RAS Width High tWRAH 65 63 - ns

WR Asserted to RAS Negated tSWRA 30 10 - ns

4-12 In-Circuit Emulation

Table 4-1 AC Electrical Specification(Cont’d)

uPD70433

12.5MHz

HP 64768A

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

READY Asserted Input Setup Time tSRYHK 18 41 30.0 ns

READY Asserted Input Hold Time tHKRYL 15 15 ns

READY Negated Input Setup Time tSRYLK 18 41 30.0 ns

READY Negated input Hold Time tHKRYH 15 15 ns

RESET Width Low (Stop/PWR on RST) tWRSL1 30 30 ms

RESET Width Low (System Reset) tWRSL2 5 5 us

NMI Width High tWNIH 5 5 us

NMI Width Low tWNIL 5 5 us

POLL Setup Time tSPLK 30 43 - ns

HLDREQ Setup Time tSHQK 30 70 - ns

CLKOUT Low to HLDACWR Asserted tDKHA 0 30 -4 39 - ns

HLDAK Asserted to Bus Control (*2) High
Impedance

tFCHA 0 -3 - ns

HLDAK Negated to Bus Control (*2) Driven tDHAC 40 42 - ns

HLDREQ Negated to HLDAC Negated tDHQHA 280 326 - ns

In-Circuit Emulation 4-13

Table 4-1 AC Electrical Specification(Cont’d)

uPD70433

12.5MHz

HP 64768A

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

HLDREQ Negated to Bus control (*2) Driven tDHQC 90 87 - ns

HLDREQ Width Low tWHQL 160 155 - ns

HLDAK Width Low tWHAL 240 235 - ns

CLKOUT Low to BUSLOCK Asserted tDKBL 2 25 -2 34 - ns

RD,IORD Negated to ASTB Negated tDRST 0 -15 - ns

WR,IOWR Negated to RD,IORD Negated tDWR 0 -12 - ns

CLKOUT High to DMAAKm Asserted tDKDA 0 30 -4 39 - ns

DMAAKm Width Low tWDAL 230 220 - ns

CLKOUT High to TCEm Asserted tDKTE 0 30 -4 39 - ns

TCEm Width Low tWTCL 70 60 - ns

WDTOUT Width low tWWTL 2550 - 2550 ns

*1 Typical outputs measured with 50pF load

*2 ASTB,RD,WRH,WRL,DEX,RAS , BUSLOCK,IORD, IOWR,AD0-AD15,A16-A23

4-14 In-Circuit Emulation

Table 4-2 AC Electrical Specifications

uPD70433

16MHz

HP 64768B

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

CLKOUT Low to Address Valid tDKA 5 27 1 36 16.4 ns

CLKOUT High to Address Invalid tHKA 0 -4 16.4 ns

CLKOUT High to Address-Data Bus High
Impedance

tFKT 36 39 8.3 ns

Address Valid to ASTB Asserted tSAST 6 -4 36.0 ns

ASTB Asserted to Address Invalid tHSTA 16 8 19.8 ns

CLKOUT Low to ASTB Negated tDKSTL 0 22 -4 29 12.8 ns

CLKOUT Low to ASTB Negated tDKSTH 0 22 -4 29 9.6 ns

ASTB Width High tWSTH 47 42 62.0 ns

CLKOUT High to RD Asserted(Read) tDKRL 0 22 -1 39 26.8 ns

CLKOUT High to RD Negated(Read) tDKRH 0 22 -1 37 15.2 ns

RD Width Low (Read) tWRL 78 73 84.0 ns

Address-Data Bus High Impedance to RD
Asserted(Read)

tFARL 0 -21 18.5 ns

RD Negated to Address Valid(Read) tDRA 31 -2 36.4 ns

In-Circuit Emulation 4-15

Table 4-2 AC Electrical Specification(Cont’d)

uPD70433

16MHz

HP 64768B

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

CLKOUT Low to DEX Asserted,Negated tDKDX 0 27 -4 36 - ns

CLKOUT Low to DEX Asserted,Negated tHKDX 0 -4 - ns

CLKOUT Low to Data-In Valid tSDK 11 32 - ns

CLKOUT Low to Data-In Invalid tHKDR 0 0 - ns

CLKOUT Low to WR Asserted(Write) tDKWL 0 22 -1 39 18.8 ns

CLKOUT Low to WR Negated(Write) tDKWH 0 22 -1 37 12.8 ns

WR Width Low (Write) tWWL 50 45 51.2 ns

CLKOUT High to Data-out Valid(Write) tDKD 3 27 -1 36 26.8 ns

CLKOUT Low to Data-out Invalid(Write) tHKDW 0 -4 10.8 ns

WR Negated to ASTB Negated(Write) tDWSTH 0 -15 -7.2 ns

CLKOUT High to RAS Asserted tDKRAL 0 22 -4 31 - ns

CLKOUT High to RAS Negated tDKRAH 0 22 -4 26 - ns

RAS Width High tWRAH 47 45 - ns

4-16 In-Circuit Emulation

Table 4-2 AC Electrical Specification(Cont’d)

uPD70433

16MHz

HP 64768B

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

READY Asserted Input Setup Time tSRYHK 18 41 30.0 ns

READY Asserted Input Hold Time tHKRYL 12 12 - ns

READY Negated Input Setup Time tSRYLK 18 41 30.0 ns

READY Negated input Hold Time tHKRYH 12 12 - ns

RESET Width Low (Stop/PWR on RST) tWRSL1 30 30 - ms

RESET Width Low (System Reset) tWRSL2 1 1 - us

NMI Width High tWNIH 5 5 - us

NMI Width Low tWNIL 5 5 - us

POLL Setup Time tSPLK 25 38 - ns

HLDREQ Setup Time tSHQK 25 65 - ns

CLKOUT Low to HLDACWR Asserted tDKHA 0 27 -4 36 - ns

HLDAK Asserted to Bus Control (*2) High
Impedance

tFCHA 0 -3 - ns

HLDAK Negated to Bus Control (*2) Driven tDHAC 39 41 - ns

HLDREQ Negated to HLDAC Negated tDHQHA 252 298 - ns

In-Circuit Emulation 4-17

Table 4-2 AC Electrical Specification(Cont’d)

uPD70433

16MHz

HP 64768B

Unit

Worst Case Typical
(*1)

Characteristic Symbol Min Max Min Max

HLDREQ Negated to Bus control (*2) Driven tDHQC 76 73 - ns

HLDREQ Width Low tWHQL 124 119 - ns

HLDAK Width Low tWHAL 176 171 - ns

CLKOUT Low to BUSLOCK Asserted tDKBL 0 27 -4 36 - ns

RD,IORD Negated to ASTB Negated tDRSTH 0 -15 - ns

WR,IOWR Negated to RD,IORD Negated tDWRH 0 -15 - ns

CLKOUT High to DMAAKm Asserted tDKDA 0 27 -4 36 - ns

DMAAKm Width Low tWDAL 176 166 - ns

CLKOUT High to TCEm Asserted tDKTE 0 27 -4 36 - ns

TCEm Width Low tWTCL 52 42 - ns

WDTOUT Width low tWWTL 1974 - - ns

*1 Typical outputs measured with 50pF load

*2 ASTB,RD,WRH,WRL,DEX,RAS , BUSLOCK,IORD, IOWR,AD0-AD15,A16-A23

4-18 In-Circuit Emulation

Target System
Interface

P1(0:6)
HLDRQ

These signals are connected to 74ACT14
through 51 ohm series register and 100K ohm
pull-down register.

P6(0:3) These signals are connected to 64768 emulation
processor and FET Switch through 1K ohm
register.

P0(0:7) P2(0:5)
P3(0:6) P4(0:7)
P5(0:2) P7(0:7)
P8(0:1)

These signals are connected to 64768 emulation
processor through 51 ohm register and 10K
ohm pull-up register.

In-Circuit Emulation 4-19

RESET This signal is connected to 74ACT14 through
51 ohm register and 10K ohm pull-up register.

Other signals These signals are connected to 74FCT245 or
74FCT244 through 51 ohm register and 10K
ohm pull-up register.

4-20 In-Circuit Emulation

A

64768 Emulator Specific Command Syntax

The following pages contain descriptions of command syntax specific
to the HP 64768 emulator. The following syntax items are included
(several items are part of other command syntax):

<ACCESS_MODE>. May be specified in the mo (display
and access mode), m (memory), and io (I/O port) commands.
The access mode is used when the m or io commands modify
target memory or I/O locations.

<ADDRESS>. May be specified in emulation commands
which allow addresses to be entered.

<CONFIG_ITEMS>. May be specified in the cf (emulator
configuration) and help cf commands.

<DISPLAY_MODE>. May be specified in the mo (display
and access mode), m (memory), io (I/O port), and ser (search
memory for data) commands. The display mode is used when
memory locations are displayed or modified.

<REG_NAME> and <REG_CLASS>. May be specified in
the reg (register) command.

Emulator Specific Command Syntax A-1

ACCESS_MODE

Summary Specify cycles used by monitor when accessing target system memory
or I/O.

Syntax

Function The <ACCESS_MODE> specifies the type of microprocessor cycles
that are used by the monitor program to access target memory or I/O
locations. When a command requests the monitor to read or write to
target system memory or I/O, the monitor program will look at the
access mode setting to determine whether byte or word instructions
should be used.

Parameters

b Byte. Selecting the byte access mode specifies that
the emulator will access target memory using upper
and lower byte cycles (one byte at a time).

w Word. Selecting the word access mode specifies
that the emulator will access target memory using
word cycles (one word at a time) at an even address.
At an odd address, the emulator will access target
memory using byte cycles.

Defaults In the HP 64768, the <ACCESS_MODE> is b at power up
initialization. Access mode specifications are saved; that is, when a
command changes the access mode, the new access mode becomes the
current default.

Related Commands mo (specify display and access modes)

A-2 Emulator Specific Command Syntax

ADDRESS

Address Syntax Address specifications used in emulation commands.

Syntax

Function The <ADDRESS> parameter used in emulation commands may be
specified as a logical address, extended logical address, physical
address(though a physical address in run or step command is converted
to logical address by the emulation system), function code address.

Parameters

<SEGMENT> This expression (0-0FFFF hex) is the segment
portion of the logical address. The value specified is
placed in the 70433 PS register before running or
stepping.

Emulator Specific Command Syntax A-3

<OFFSET> This expression (0-0FFFF hex) is the offset portion
of the logical address. The value specified is placed
in the 70433 PC register before running or stepping.

 <XSEGMENT> This expression (0-0FFFF hex) is the segment
portion of the extended logical address.

 <XOFFSET> This expression (0-0FFFF hex) is the offset portion
of the extended logical address.

<PHY_ADDR> This expression (0-0FFFFFF hex) is a physical
address in the 70433 address range. In run and step
commands, the only expression (0-0FFFFF hex) is
permitted, and the emulation system converts this
physical address to a logical address as specified by
the rad (run address default) configuration item
(see the <CONFIG_ITEM> description).

<IRAM_ADDR> This expression (0-1FF hex) with function code is a
address in the 70433 internal RAM address range.
This expression should be used in memory
command.

<I/O_ADDR> This expression (0-0FFFF hex) with no function
code is a address in the 70433 I/O address range.
This expression should be used in I/O command.

Defaults If no number base is specified, values entered are interpreted as
hexadecimal numbers.

Related Commands <CONFIG_ITEMS> (70433 specific items specified with the cf
command)

A-4 Emulator Specific Command Syntax

CONFIG_ITEMS

Summary HP 64768 emulator configuration items.

Syntax

Emulator Specific Command Syntax A-5

Function The <CONFIG_ITEMS> are the HP 64768 specific configuration
items which can be displayed/modified using the cf (emulator
configuration) command. If the "=" portion of the syntax is not used,
the current value of the configuration item is displayed.

Parameters

hold Respond to Target Hold . This configuration item
allows you to specify whether or not the emulator
accepts hold signal generated by the target system.

Setting hold equal to dis specifies that the emulator
ignores hold signal from target system completely.

Setting hold equal to en specifies that the emulator
accepts hold signal. When the hold is accepted, the
emulator will respond as actual microprocessor.

nmi Enable/disable user NMI. This configuration item
allows you to specify whether user NMI is accepted
or ignored by the emulator.

To accept user NMI, set nmi equal to en. To ignore
user NMI, set nmi to dis.

 Note When target NMI signal is enabled , it is in effect while the emulator is
running in the target program. While the emulator is running
background monitor, NMI will be suspended until the monitor is
finished.

rrt Restrict to Real-Time Runs. This configuration
item allows you to specify whether program
execution should take place in real-time or whether
commands should be allowed to cause breaks to the
monitor during program execution.

To restrict execution to real-time, set rrt equal to
en. To allow breaks to the monitor during program

A-6 Emulator Specific Command Syntax

execution, set rrt equal to dis. When runs are
restricted to real-time, commands which access
target system resources (display registers,
display/modify target system memory or I/O) are
not allowed.

rst Respond to Target Reset. This configuration item
allows you to specify whether or not the emulator
respond target system reset while running in user
program or waiting for target system reset.

While running in background monitor, the HP
64768 emulator ignores target system reset
completely independent on this setting.

Specifying "cf rst=en", this is a default
configuration, make the emulator to respond to reset
from target system. In this configuration, emulator
will accept reset and execute from reset vector in
the same manner as actual microprocessor after
reset is inactivated.

You can ignore reset from target system completely
by specifying "cf rst=dis". In this configuration
emulator ignore reset from target system.

 Note When you use the r rst (run from reset) command in-circuit to run
form processor reset after the target reset input, you must use "cf
rst=en" configuration setting.

Emulator Specific Command Syntax A-7

tdma Trace Internal DMA cycles. This configuration
item allows you to specify whether or not the
analyzer trace the HP 64768 emulation processor’s
internal DMA cycles.

Setting tdma equal to en specifies that the analyzer
will trace the HP 64768 internal DMA cycles.

Setting tdma equal to dis specifies that the analyzer
will not trace the HP 64768 internal DMA cycles.

 clk Clock Source. This configuration item allows you
to specify whether the emulator clock source is to
be internal (int , provided by the emulator) or
external (ext, provided by the target system).

In the HP 64768A/B emulators, the internal clock
speed is 12.5 MHz (system clock).

The HP 64768A emulator will operate at external
clock speed from 4 to 25 MHz (entered clock).

The HP 64768B emulator will operate at external
clock speed from 4 to 32 MHz (entered clock).

The HP 64768 emulator is reset often after
specifying this configuration item.

dsize Data Bus size. This configuration item allows you
to specify whether the data bus size is to be 8(8,data
bus size is 8 bits) or 16(16,data bus size is 16 bits).

The HP 64768 emulator is reset state after
specifying this configuration item.

A-8 Emulator Specific Command Syntax

Note The HP 64768 emulator operates in accordance with this configuration
instead of D8/16 signal from target system. D8/16 signal from target
system is ignored.

mne Type of Mnemonic. This configuration item allows
you to specify the type of mnemonic that are used
by display memory and display trace command.

Setting mne equal to 70433 specifies that emulator
will display memory in uPD70433 mnemonic.

Setting mne equal to 8086 specifies that emulator
will display memory in iAPX86/10(8086)
mnemonic.

Note The instruction that is not included iAPX86/10 mnemonic is displayed
with uPD70433 mnemonic, even if you specify mne=8086.

mon Monitor Options. This configuration item is used to
select the type of monitor to be used by the
emulator.

If bg (background monitor) is selected, all monitor
functions are performed in background.
If fg (foreground monitor) is selected, all monitor
functions are performed in foreground. You should
use the 20 bits physical address expression to locate
the foreground monitor on a 2K byte boundary

The HP 64768 emulator is reset after specifying this
configuration item.

Emulator Specific Command Syntax A-9

Note The start address of the foreground monitor should not be located at a
base address 0 or 0ff800 hex;because the 70433 microprocessor’s
vector table or SFR are located respectively. Refer to the "Using the
Optional Foreground Monitor" appendix in this manual.

rad Physical to Logical Run Address Conversion. This
configuration item allows you to specify the default
method in which the emulation system will convert
physical addresses specified in run and step
commands to logical addresses.

Setting rad equal to maxseg specifies that the low
nibble of the physical address become the offset
value; the high four nibbles become the segment
value.

Setting rad equal to minseg specifies that the low
four nibbles of the physical address become the
offset value; the high nibble and three hex zeros
will become the segment value.

Setting rad equal to curseg specifies that the value
which is entered in a run or step command will
become the offset value.

rdy Allow Target Ready Signals to Insert Wait States.
This configuration item allows you to specify
whether the emulator should honor target system
ready signals on accesses to emulation memory.

Setting rdy equal to lk specifies that target ready
signals be honored on emulation memory accesses.
Setting rdy equal to unlk specifies that target ready
signals be ignored on emulation memory accesses.

A-10 Emulator Specific Command Syntax

rsp Specify the Stack Location. This configuration item
allows you to specify the stack location value ;
(SS:SP) after the emulation reset. The stack
segment (SS) and stack pointer (SP) will be set on
entrance to the emulation monitor initiated RESET
state.
You should use the logical address expression to
locate the stack area.

Note When you are using the foreground monitor, this address should be
defined in an emulation memory or a target system RAM area.

trfsh Trace Refresh cycles. This configuration item
allows you to specify whether or not the analyzer
trace the HP 64768 emulation processor’s refresh
cycles.

Setting trfsh equal to en specifies that the analyzer
will trace refresh cycles.

Setting trfsh equal to dis specifies that the analyzer
will not trace refresh cycles.

Defaults The default values of HP 64768 emulator configuration items are listed
below.

cf clk=int
cf dsize=16
cf hold=en
cf mne=70433
cf mon=bg
cf nmi=en
cf rad=minseg
cf rdy=lk
cf rrt=dis
cf rsp=0000:8000
cf rst=en
cf tdma=en
cf thold=en
cf trfsh=en
mo -aw -dw

Emulator Specific Command Syntax A-11

Related Commands You can get an on line help information for particular configuration
items by typing:

R> help cf <CONFIG_ITEM>

A-12 Emulator Specific Command Syntax

DISPLAY_MODE

Summary Specify the memory display format or the size of memory locations to
be modified.

Syntax

Function The <DISPLAY_MODE> specifies the format of the memory display
or the size of the memory which gets changed when memory is
modified.

Parameters

b Byte. Memory is displayed in a byte format, and
when memory locations are modified, bytes are
changed.

w Word. Memory is displayed in a word format, and
when memory locations are modified, words are
changed.

d Double-word. Memory is displayed in a
double-word format, and when memory locations
are modified, double-words are changed.

m Mnemonic. Memory is displayed in mnemonic
format; that is, the contents of memory locations are
inverse-assembled into mnemonics and operands.
When memory locations are modified, the last
non-mnemonic display mode specification is used.

Emulator Specific Command Syntax A-13

You cannot specify this display mode in the ser
(search memory for data) command.

Defaults At powerup or after init,in the HP 64768 Emulator, the
<ACCESS_MODE> and <DISPLAY_MODE> are b.

Display mode specifications are saved; that is, when a command
changes the display mode, the new display mode becomes the current
default.

Related Commands mo (specify access and display modes)

m (memory display/modify)

io (I/O display/modify)

ser (search memory for data)

A-14 Emulator Specific Command Syntax

REGISTER CLASS
and NAME

Summary 70433 register designator. All available register class names and
register names are listed below.

<REG_CLASS>

<REG_NAME> Description

*(All basic registers)

aw, bw
cw, dw
bp, ix, iy
ds0, ds1,
ds2, ds3
ss, sp
pc, ps, psw

BASIC registers.

Emulator Specific Command Syntax A-15

port (Port registers)

p0
p1
p2
p3
p4
p5
p6
p7
p8
pm0
pm2
pm3
pm4
pm5
pm7
pm8
pmc2
pmc3
pmc4
pmc5
pmc7
pmc8
prdc

Port 0
Port 1 (Read Only)
Port 2
Port 3
Port 4
Port 5
Port 6 (Read Only)
Port 7
Port 8
Port 0 mode
Port 2 mode
Port 3 mode
Port 4 mode
Port 5 mode
Port 7 mode
Port 8 mode
Port 2 mode control
Port 3 mode control
Port 4 mode control
Port 5 mode control
Port 7 mode control
Port 8 mode control
Port read control

 rop (Real-time Output port registers)

rtpc
rtpd
p7l
p7h
rtp

Real-time output port control
Real-time output port delay display
Port 7 buffer(Low)
Port 7 buffer(high)
Real-time output port

A-16 Emulator Specific Command Syntax

 tim (Timer registers)

tm0
tm1
tm2
tm3
ct00
ct01
ct10
cm00
cm01
cm10
cm11
cm20
cm21
cm22
cm23
cm30
cm31
tmc
toc
stc
stmc

Timer 0
Timer 1
Timer 2
Timer 3
Timer capture 00
Timer capture 01
Timer capture 10
Timer compare 00
Timer compare 01
Timer compare 10
Timer compare 11
Timer compare 20
Timer compare 21
Timer compare 22
Timer compare 23
Timer compare 30
Timer compare 31
Timer control
Timer output control
Software timer counter (Read Only)
Software timer counter compare

 pwmu (PWM uint registers)

pwm
pwmc

PWM
PWM control

Emulator Specific Command Syntax A-17

 dma (DMA registers)

dmam0
dmam1
dmac0
dmac1
tc0
tc1
tcm0
tcm1
mar0
mar1
udc0
udc1
dcm0
dcm1
dptc0
dptc1
dmas

DMA mode 0
DMA mode 1
DMA control 0
DMA control 1
Terminal counter 0
Terminal counter 1
Terminal counter modulo 0
Terminal counter modulo 1
DMA memory address 0
DMA memory address 1
DMA up/down counter 0
DMA up/down counter 1
DMA compare 0
DMA compare 1
DMA read/write pointer 0
DMA read/write pointer 1
DMA status

pi (Parallel I/F registers)

pab
pac0
pac1
pas
pai1

pai2

Parallel interface buffer
Parallel interface control 0
Parallel interface control 1
Parallel interface status
Parallel interface acknowledge interval 1
 (Write Only)
Parallel interface acknowledge interval 2
 (Write Only)

A-18 Emulator Specific Command Syntax

ad (Analog-Digital conversion registers)

adm
adcr0
adcr1
adcr2
adcr3

A/D convertor mode
A/D conversion result 0 (Read Only)
A/D conversion result 1 (Read Only)
A/D conversion result 2 (Read Only)
A/D conversion result 3 (Read Only)

uart (UART registers)

asp
uartm0
uartm1
uarts0
uarts1
rxb0
rxb1
txb0
tx b1
prs0
prs1
rxbrg0
rxbrg1
txbrg0
txbrg1

Protocol select
UART mode 0
UART mode 1
UART status 0
UART status 1
Receive buffer 0 (Read Only)
Receive buffer 1 (Read Only)
UART transfer buffer 0 (Write Only)
UART transfer buffer 1 (Write Only)
Prescaler 0
Prescaler 1
Receive baud rate generator 0
Receive baud rate generator 1
Transfer baud rate generator 0
Transfer baud rate generator 1

Emulator Specific Command Syntax A-19

 csi (Clocked serial I/F registers)

asp
csim0
csim1
sbic0
rxb0
rxb1
sio0
sio1
prs0
prs1
txbrg0
txbrg1

Protocol select
Clocked serial interface mode 0
Clocked serial interface mode 1
SBI control 0
Receive buffer 0
Receive buffer 1
Clocked serial I/O shift 0 (Write Only)
Clocked serial I/O shift 1 (Write Only)
Receive baud rate generator 0
Receive baud rate generator 1
Transfer baud rate generator 0
Transfer baud rate generator 1

proc (Processor status registers)

stbc
prc
pwc0
pwc1
rfm
mbc
wdm

Standby control
Processor control
Programmable wait control 0
Programmable wait control 1
Refresh mode
Memory block control
Watchdog timer mode

A-20 Emulator Specific Command Syntax

intc (Interrupt control registers)

imc
mk0
mk1
ic09
ic10
ic11
ic12
ic13
ic14
ic16
ic17
ic18
ic19
ic20
ic21
ic22
ic23
ic24
ic25
ic26
ic27
ic28
ic29
ic30
ic31
ic32
ic36
ic37
i spr
intm

Interrupt mode control
Interrupt mask flag 0
Interrupt mask flag 1
Interrupt request control 09
Interrupt request control 10
Interrupt request control 11
Interrupt request control 12
Interrupt request control 13
Interrupt request control 14
Interrupt request control 16
Interrupt request control 17
Interrupt request control 18
Interrupt request control 19
Interrupt request control 20
Interrupt request control 21
Interrupt request control 22
Interrupt request control 23
Interrupt request control 24
Interrupt request control 25
Interrupt request control 26
Interrupt request control 27
Interrupt request control 28
Interrupt request control 29
Interrupt request control 30
Interrupt request control 31
Interrupt request control 32
Interrupt request control 36
Interrupt request control 37
In-service priority (Read Only)
External interrupt mode

Emulator Specific Command Syntax A-21

bank<N> (register bank)

ps_<N>
pc_<N>
psw_<N>
aw_<N>
bw_<N>
cw_<N>
dw_<N>
sp_<N>
bp_<N>
ix_<N>
iy_<N>
ds0_<N >
ds1_<N>
ds2_<N>
vpc_<N>
ss_<N>

ps of register bank <N>
pc of register bank <N>
psw of register bank <N>
aw of register bank <N>
bw of register bank <N>
cw of register bank <N>
dw of register bank <N>
sp of register bank <N>
bp of register bank <N>
ix of register bank <N>
iy of register bank <N>
ds0 of register bank <N>
ds1 of register bank <N>
ds2 of register bank <N>
vpc of register bank <N>
ss of register bank <N>

Function The <REG_CLASS> names may be used in the reg(register)
command to display a class of 70433 registers.

The <REG_NAME> names may be used with the reg command to
either display or modify the contents of 70433 registers.

Refer to your 70433 use’s manual for complete details on the use of the
70433 registers.

Related Commands reg (register display/modify)

A-22 Emulator Specific Command Syntax

B

Using the Optional Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

The monitor programs named fmon70433.s is to be assembled and
linked into target program by the HP 64873 Cross Assembler/Linker.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then be
read by the emulator system controller without further interference.

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region.

Usually, a background monitor is easier to work. The monitor is
immediately available upon powerup, and you don’t have to worry
about linking in the monitor code or allocating space for the monitor.
No assumptions are made about the target system environment;
therefore, you can test and debug hardware before any target system
code has been written. All of the processor’s address space is available
for target system use, since the monitor memory is overlaid on
processor memory, rather than subtracted from processor memory.
Processor resources such as interrupts are not fully taken by the
background monitor.

Using Foreground Monitor B-1

However, all background monitors sacrifice some level of support for
the target system. For example, while the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
applications that rely on the microprocessor for real-time, non-intrusive
support. Also, the background monitor code resides in emulator
firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more interrupt intensive
applications. A foreground monitor is a block of code that runs in the
same memory space as your program. You link this monitor into your
code so that when control is passed to monitor program, the emulator
can still service real-time events, such as interrupts or watchdog timers.
For most multitasking, you will need to use a foreground monitor. You
can tailor the foreground monitor to meet your needs, such as servicing
target system interrupts. However, the foreground monitor does use
part of the processor’s address space, which may cause problems in
some applications. You must also properly configure the emulator to
use a foreground monitor (see the "Emulation topics" chapter and the
examples in this appendix).

B-2 Using Foreground Monitor

An Example Using
the Foreground
Monitor

In the following example, we will illustrate how to link a foreground
monitor. By using the emulation analyzer, we will also show how the
emulator switches from state to state using a foreground monitor.

For this example, We will locate the monitor at 1000 hex; the sample
program will be located at 800 hex with its data at 600 hex and its
common at 400 hex.

Modify EQU
Statement

To use the monitor, you must modify the EQU statement near the top
of the monitor some code to point to the segment start address where
the monitor will be loaded. In this example, the monitor will be located
at 1000 hex, so the modified EQU statement looks like this:

MONSEGMENT EQU 0100H

Notice that the EQU statement is indented from the left margin; if it is
not indented, the assembler will attempt to interpret the EQU as a label
and will generate an error when processing the address portion of the
statement. You can load the monitor at any base address on a 2k byte
boundary.

Note You should not load the foreground monitor at the base address 0 or
0ff800 hex, because the 70433 microprocessor’s vector table and SFR
are located respectively.

Assemble and Link
the Monitor

You can assemble and link the foreground monitor program with the
following commands by using the HP 64853 Cross Assembler/Linker:

$ asv20 -f optimize fmon70433 <RETURN>
$ ldv20 -o fmon70433.X fmon70433.o <RETURN>

Using Foreground Monitor B-3

Initialize the Emulator To initialize the emulator to a known state for this example, type:

M> init -p

Configure the
Emulator

You need to tell the emulator that you will be using a foreground
monitor and allocate the memory space for the monitor. This is all
done with one configuration command. To locate the monitor on a 2k
boundary starting at 1000 hex, type:

R> cf mon=fg..001000

To see the new memory mapper term allocated for the foreground
monitor, type:

R> map
remaining number of terms : 15
remaining emulation memory : 1f800h bytes
map 0001000..00017ff eram # term 1
map other tram

Notice that a 2k byte block from 1000 through 17ff hex was mapped.

Now, you need to map memory space for the sample program. Let’s
map the memory from 0 through 4ff hex to emulation RAM and map
the memory from 600 through 9ff hex to emulation ROM.

R> map 0..4ff eram
R> map 600..9ff erom

Load the Foreground
Monitor

Now it’s time to load the sample program and monitor. In the example
shown, we’re loading the program from a host with the emulator in
Transparent Configuration. If you’re using the standalone
configuration with a data terminal, you will need to enter the data using
the m command. (You can get the data from your assembly listings.)
Load the program by typing:

R> load -hbs "transfer -tb fmon70433.X"
##############

B-4 Using Foreground Monitor

Load the Sample
Program

Assuming the sample program has been assembled and linked as shown
in "Getting Start" chapter, you can load the sample program by typing:

R> load -hbs "transfer -tb cmd_rds.X"
#####

Disable Tracing
Refresh Cycle

If you wish to disable the analyzer from tracing refresh cycles, you can
use the cf trfsh command ; the refresh cycles are not detected by the
analyzer. Type:

M> cf trfsh=dis

Set Analyzer Master
Clock Qualifiers

We want to view the transitions made between the different emulator
states; reset to break, break to run, run to break. Since the foreground
monitor is actually entered via a few cycles in the emulator’s built-in
background monitor, we need to be able to view the background states.
We can do this by modifying the emulation analyzer’s master clock
qualifier to include tracing of background code. To see the initial clock
qualifier, type:

M> tck
tck -r L -u -s S

Modify this as follows:

M> tck -r L -ub -s S
Now, reset the processor so we can make the first measurement from a
known state:

M> rst

Using Foreground Monitor B-5

Reset to Break We want to see the monitor’s transition from the reset state to running
in the foreground monitor. Since the foreground monitor occupies the
address range from 1000 through 17ff hex, we can simply trigger on
any access to that range:

R> tg addr=1000..17ff

We also want see the states leading up to the transition between reset
and foreground monitor execution. We can position the trigger so that
there are 20 states before the trigger as follows:

R> tp -b 20

Start the measurement:

R> t
Emulation trace started

Now, break the emulator into the monitor:

R> b

Display 20 disassembled states of the trace from the top the trace:

M> tl -td 20

At line -6, the processor began executing code; it executed in the
background monitor. To see the transition from background execution
to foreground monitor program execution, type:

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 -7 0ffff2 0007 fetch BGM --- .
 -6 000020 0000 write mem BGM 1.920 uS .
 -5 000022 ffff write mem BGM 1.920 uS .
 -4 000024 f002 write mem BGM 1.920 uS .
 -3 000008 0200 read mem BGM 3.840 uS .
 -2 0ffff4 fe01 fetch BGM 1.920 uS .
 -1 00000a 0100 read mem BGM 1.920 uS .
 0 001200 a32e fetch BGM 2.880 uS +
 1 001202 002c fetch BGM 3.840 uS .
 2 001200 MOV PS:WORD PTR 002c,AW 0.320 uS .
 3 001204 892e fetch BGM 1.600 uS .
 4 00102c f080 write mem BGM 1.920 uS .
 5 001206 2e2e fetch BGM 1.920 uS .
 6 001204 MOV PS:WORD PTR 002e,BP 0.320 uS .
 7 001208 2e00 fetch BGM 3.520 uS .
 8 00120a 20a1 fetch BGM 1.920 uS .
 9 001209 MOV AW,PS:WORD PTR 0020 0.640 uS .
 10 00102e 00fa write mem BGM 1.280 uS .
 11 00120c 2e00 fetch BGM 1.920 uS .
 12 001020 0000 read mem BGM 3.840 uS .

B-6 Using Foreground Monitor

M> tl 45..65

The foreground monitor start at states 57.

Monitor to User
Program

We can look at the transition from the foreground monitor to running
the user program by triggering the trace on a user program address.
Type:

M> tg addr=800

We will leave the trigger position where it was for the last
measurement(20 states are retained before the trigger position). Start
the measurement:

M> t
Emulation trace started

Now, run the sample program:

M> r 800

Display trace states from -15 to +5 in inverse-assembled form as
follows:

U> tl -d -15..5

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 45 001230 00a1 fetch BGM 1.920 uS .
 46 00122f MOV AW,PS:WORD PTR 0000 0.640 uS .
 47 001022 0100 write mem BGM 1.280 uS .
 48 001232 0f00 fetch BGM 3.840 uS .
 49 001234 0427 fetch BGM 1.920 uS .
 50 001000 0000 read mem BGM 1.920 uS .
 51 001233 illegal opcode, data = 0f 27 0.320 uS .
 52 001236 0000 fetch BGM 1.600 uS .
 53 000024 f002 read mem BGM 1.920 uS .
 54 000022 0100 read mem BGM 3.840 uS .
 55 001238 0400 fetch BGM 1.920 uS .
 56 000020 0332 read mem BGM 1.920 uS .
 57 001332 f62e fetch 2.880 uS .
 58 001334 1906 fetch 3.840 uS .
 59 001332 TEST PS:BYTE PTR 0019,01 0.320 uS .
 60 001336 0100 fetch 1.600 uS .
 61 001338 c62e fetch 1.920 uS .
 62 00133a 1b06 fetch 1.920 uS .
 63 001019 01xx read mem 1.920 uS .
 64 001338 MOV PS:BYTE PTR 001b,02 0.320 uS .
 65 00133c 0200 fetch 3.520 uS .

Using Foreground Monitor B-7

At state -7 in the trace listing, the processor executed the RETI
instruction to transfer execution to the user program at state 0.

Note As you can see in the trace list, user stack pointer is used when context
is changed from foreground monitor to user program, or from user
program to foreground monitor program. If you are configuring the
emulator to background monitor, the user stack is not used.

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 -15 00151b MOV DS0,WORD PTR 0046 0.320 uS .
 -14 00151e 2e00 fetch 1.600 uS .
 -13 001520 06c6 fetch 1.920 uS .
 -12 001046 0060 read mem 1.920 uS .
 -11 00151f MOV PS:BYTE PTR 0016,80 0.320 uS .
 -10 001522 0016 fetch 3.520 uS .
 -9 001524 cf80 fetch 1.920 uS .
 -8 001526 0e8b fetch 1.920 uS .
 -7 001525 RETI 0.320 uS .
 -6 001016 xx80 write mem 1.600 uS .
 -5 0004fa 0800 read mem 3.840 uS .
 -4 001528 0014 fetch 1.920 uS .
 -3 0004fc 0000 read mem 1.920 uS .
 -2 00152a 3e8e fetch 1.920 uS .
 -1 0004fe f046 read mem 1.920 uS .
 0 000800 60b8 fetch 3.840 uS +
 1 000800 MOV AW,0060 0.320 uS .
 2 000802 8e00 fetch 1.600 uS .
 3 000804 b8d8 fetch 1.920 uS .
 4 000803 MOV DS0,AW 0.320 uS .
 5 000806 0040 fetch 1.600 uS .

B-8 Using Foreground Monitor

User Program Run to
Break

You can trace the execution from the user program run to the
foreground monitor due to a break condition by setting as follows:

U> tg stat=bg

Start the measurement:

U> t
Emulation trace started

Satisfy the trigger condition by break the emulator into the monitor:

U> b

Now, display trace states from -10 to +10 in disassembled form as
follows:

M> tl -10..10

At state 0 of the trace list, the processor entered the background
monitor to make the transition. And actual foreground monitor program
start at after several background monitor execution. To see the starting
point of foreground monitor, type:

M> tl 55..75

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 -10 00081b BE/Z 00815 0.320 uS .
 -9 00081e 7441 fetch 1.600 uS .
 -8 000815 26xx fetch 1.920 uS .
 -7 000816 00a0 fetch 1.920 uS .
 -6 000815 MOV AL,DS1:BYTE PTR 0000 0.640 uS .
 -5 000818 3c00 fetch 3.200 uS .
 -4 00081a 7400 fetch 1.920 uS .
 -3 000400 xx00 read mem 1.920 uS .
 -2 000815 xxxx intack 0.320 uS .
 -1 00081c 3cf8 fetch 1.600 uS .
 0 000020 0819 write mem BGM 3.840 uS +
 1 000022 0000 write mem BGM 1.920 uS .
 2 000024 f046 write mem BGM 1.920 uS .
 3 000008 0200 read mem BGM 1.920 uS .
 4 00000a 0100 read mem BGM 3.840 uS .
 5 001200 a32e fetch BGM 2.880 uS .
 6 001202 002c fetch BGM 1.920 uS .
 7 001200 MOV PS:WORD PTR 002c,AW 0.320 uS .
 8 001204 892e fetch BGM 1.600 uS .
 9 00102c 0000 write mem BGM 3.840 uS .
 10 001206 2e2e fetch BGM 1.920 uS .

Using Foreground Monitor B-9

At state 62, the foreground monitor program starts.

Single Step and
Foreground
Monitors

To use the "step" command to step through processor instructions with
the foreground monitor listed in this chapter, you must modify the
processor’s interrupt vector table. The entry that you must modify is
the "BRK flag" interrupt vector, located at 4H thru 7H. The "BRK
flag" interrupt vector must point to the "SINGLE_STEP_ENTRY" in
the foreground monitor. The address of the "SINGLE_STEP_ENTRY"
is 300H plus the beginning of the foreground monitor.

Software
Breakpoint and
Foreground
Monitors

To use the software breakpoint with the foreground monitor listed in
this chapter, you must modify the processor’s interrupt vector table.
The entry that you must modify is the "BRK 3"interrupt vector, located
at 0CH thru 0FH. The PC portion of the "BRK 3" interrupt vector must
be 1234H and the PS portion must be 5678H.

 Line addr,H 70433 mnemonic,H count,R seq
 ----- ------ ----------------------------------- --------- ---
 55 001000 0000 read mem BGM 1.920 uS .
 56 001233 illegal opcode, data = 0f 27 0.320 uS .
 57 000024 f046 read mem BGM 3.520 uS .
 58 001236 0000 fetch BGM 1.920 uS .
 59 000022 0100 read mem BGM 1.920 uS .
 60 001238 0400 fetch BGM 1.920 uS .
 61 000020 0332 read mem BGM 1.920 uS .
 62 001332 f62e fetch 3.840 uS .
 63 001334 1906 fetch 1.920 uS .
 64 001332 TEST PS:BYTE PTR 0019,01 0.320 uS .
 65 001336 0100 fetch 1.600 uS .
 66 001338 c62e fetch 3.840 uS .
 67 001019 00xx read mem 2.560 uS .
 68 00133a 1b06 fetch 1.920 uS .
 69 001338 MOV PS:BYTE PTR 001b,02 0.320 uS .
 70 00133c 0200 fetch 1.600 uS .
 71 00133e 4475 fetch 3.840 uS .
 72 00133e BNE/Z 01384 0.960 uS .
 73 00101b 02xx write mem 1.600 uS .
 74 001340 a12e fetch 1.920 uS .
 75 001342 0026 fetch 1.920 uS .

B-10 Using Foreground Monitor

Limitations of
Foreground
Monitors

Synchronized
measurements

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
use background monitor.

Instruction Using
BRK flag

If user program includes instruction using the BRK flag(in PSW
register), you can not use foreground monitor because the foreground
monitor uses the BRK flag in step command.

Stepping You can not use step command in the following instruction.

HALT/STOP
POP PSW
BRK 3/BRK imm8/BRKV
CHKIND
FPO
TSKSW/BRKCS
RETRBI

Break from Halt/Stop
state

When the processor is in halt or stop state, the program counter(PC)
indicates the next address of HALT or STOP instruction. If you use
commands which require temporary break(display/modify register,or
display/modify target system memory or I/O), the program will run
from the address that PC indicates.

Using Foreground Monitor B-11

Notes

B-12 Using Foreground Monitor

Index

A absolute files, downloading 2-15
accepting the DMA request signal 4-8
access mode, specifying 2-24
ACCESS_MODE syntax A-2
address expression in "cf mon" command A-10
ADDRESS syntax A-3
analyzer

features of 1-4
analyzer status

predefined equates 2-29
assemblers 2-12
assembling foreground monitor B-3

B b (break to monitor) command 2-26
background 1-5
background monitor 3-8, B-1

pin state 4-10
selecting 3-8
things to be aware of 3-8

bc (break conditions) command 2-28
BNC connector 3-6
break conditions 2-28

after initialization 2-9
break on analyzer trigger 3-5
breakpoints 2-9

C cautions
installing the target system probe 4-2

cf (emulator configuration) command 3-1
cf mon command 3-8
characterization of memory 2-11
checksum error count 2-16
cim (copy target system memory image) command 4-8
clk (clock source) emulator configuration item 4-6
clk, emulator configuration A-8
CLKOUT enable bit 1-6

Index-1

clock source
external 4-6
internal 4-6

CMB (coordinated measurement bus) 3-6
cold start initialization 2-9
combining commands on a single command line 2-22
command files 2-21
command groups, viewing help for 2-6
command recall 2-23
command syntax, specific to HP 64768 emulator A-1
commands

combining on a single command line 2-22
Comparison of foreground/background monitors B-1
CONFIG_ITEMS syntax A-5
configuration

clk A-8
dsize A-8
hold A-6
mne A-9
mon A-9
nmi A-6
rad A-10
rdy A-10
rrt A-6
rsp A-11
rst A-7
tdma A-8
trfsh A-11

configuration (hardware)
remote 2-14
standalone 2-14
transparent 2-14

coordinated measurements 3-6, 3-9
cov (reset/display coverage) command 2-36
coverage testing 2-35

on ROMed code 4-9
cp (copy memory) command 2-34

D display mode, specifying 2-24
DISPLAY_MODE syntax A-13
DMA 1-7

external 2-11

2-Index

downloading absolute files 2-15
dsize, emulator configuration A-8
dual-port emulation memory 3-5

E electrical characteristics 4-11
emulation analyzer 1-4
emulation memory

after initialization 2-9
dual-port 3-5
note on target accesses 2-11
size of 2-11

emulation monitor
foreground or background 1-4

emulation RAM and ROM 2-11
emulator

feature list 1-3
purpose of 1-1
supported 1-3

emulator config items
rad 3-4

emulator configuration
after initialization 2-9
on-line help for 2-7

emulator configuration items
clk 4-6
mon A-9
rdy 4-7
rrt 3-5

Emulator features
emulation memory 1-3

emulator probe
installing 4-2

emulator specific command syntax A-1
ENCLK bit 1-6
equates predefined for analyzer status 2-29
eram, memory characterization 2-12
erom, memory characterization 2-12
es (emulator status) command 2-8
escape character (default) for the transparent mode 2-16
evaluation chip 1-7
EXECUTE (CMB signal) 3-6
extended logical address 3-2

Index-3

F file formats, absolute 2-15
foreground 1-5
foreground monitor 3-8, B-2

assembling/linking B-3
example of using B-3
selecting 3-8
single-step processor B-10

function code
useable address form 3-2

function code address 3-2

G getting started 2-1
grd, memory characterization 2-11
guarded memory accesses 2-11

H help facility, using the 2-6
help information on system prompts 2-7
hold request

during background monitor 1-6
hold,emulator configuration A-6
HP absolute files, downloading 2-15

I in-circuit emulation 4-1
init (emulator initialization) command 2-8
initialization, emulator 2-8

cold start 2-9
warm start 2-9

Intel hexadecimal files, downloading 2-16
Intel OMF files 2-17
internai RAM access

using m command 3-9
internal RAM 3-9
interrupt

during background monitor 1-6
from target system 1-6
while stepping 1-6

L labels (trace), predefined 2-29
limitation

step 2-21
linkers 2-12
linking foreground monitor B-3
load (load absolute file) command 2-15

4-Index

load map 2-12
locating the foreground monitor 3-8
logical address 3-2
lower byte accesses 2-30

M m (memory display/modification) 2-14
m (memory display/modification) command 2-24
macros

after initialization 2-9
using 2-22

map (memory mapper) command 2-12
Map command

command syntax 2-13
mapping memory 2-11
memory

displaying in mnemonic format 2-18
dual-port emulation 3-5

memory map
after initialization 2-9

memory, mapping 2-11
mne, emulator configuration A-9
mo (specify display and access modes) command 2-24
modifying ROMed code 4-9
mon, emulator configuration A-9
monitor

background 3-8, B-1
comparison of foreground/background B-1
foreground 3-8

monitor program 3-8
monitor program memory, size of 2-11
Motorola S-record files,downloading 2-16

N nmi, emulator configuration A-6
Note

address expression in "cf mon" command A-10
notes

target accesses to emulation memory 2-11

O on-line help, using the 2-6

P physical address 3-2
physical run address

conversion to logical address 3-4

Index-5

Pin guard
target system probe 4-2

pin protector 4-3
predefined equates 2-29
predefined trace labels 2-29
prompts 2-7

help information on 2-7
using "es" command to describe 2-8

R rad(run address default) emulator config. item 3-4
rad, emulator configuration A-10
RAM

mapping emulation or target 2-11
rdy (target system wait states) configuration item 4-7
rdy, emulator configuration A-10
READY (CMB signal) 3-6
real-time runs

commands not allowed during 3-5
commands which will cause break 3-5
restricting the emulator to 3-5

recalling commands 2-23
refresh cycle

disable tracing B-5
reg (register display/modification) command 2-21
register commands 1-4
relocatable files 2-12
remote configuration 2-14
rep (repeat) command 2-23
reset

commands which cause exit from 2-37
during background monitor 1-6
target system 4-1

ROM
debug of target 4-8
mapping emulation or target 2-11
writes to 2-11

rrt (restrict to real-time) configuration item 3-5
rrt, emulator configuration A-6
rsp, emulator configuration A-11
rst (reset emulator) command 2-37
rst, emulator configuration A-7
run from reset 4-1, 4-6

6-Index

S s (step) command 2-20
sample program

description 2-2
load map listing 2-13
loading the 2-14

ser (search memory) command 2-25
SFR 3-9
SFR access

using reg command 1-7, 3-9
simple trigger, specifying 2-30
Single step

in foreground monitor B-10
software breakpoints 2-26

after initialization 2-9
and NMI 2-27
defining 2-28
in foreground monitor B-10
using with ROMed code 4-8

standalone configuration 2-14
stat (emulation analyzer status) trace label 2-30
symbols

loading from a text file 2-17
syntax (command), specific to HP 64768 emulator A-1

T target reset
run form reset A-7

target system
interface 4-19

Target system probe
pin guard 4-2

target system RAM and ROM 2-12
target system reset

run from reset 4-6
tdma, emulator configuration A-8
Tektronix hexadecimal files, downloading 2-16
tg (specify simple trigger) command 2-30
tgout (trigger output) command 3-6
tl (trace list) command 2-31
tlb (display/modify trace labels) command 2-29
tp(specify trigger position) command 2-32
trace

even address 2-30

Index-7

odd address 2-30
trace labels, predefined 2-29
tram, memory characterization 2-12
transfer utility 2-15
transparent configuration 2-14
transparent mode 2-16
trfsh,emulator configuration A-11
trig1 and trig2 internal signals 3-6
trigger

break on 3-5
specifying a simple 2-30

TRIGGER (CMB signal) 3-6
trigger position 2-32
trom, memory characterization 2-12
ts (trace status) command 2-30

U unbreak into the monitor 1-6

W wait states, allowing the target system to insert 4-7
warm start initialization 2-9

X x (execute) command 3-6

8-Index

	Using this Manual
	Contents
	Introduction to the 64768 Emulator
	Getting Started
	Emulation Topics
	In-Circuit Emulation Topics
	64768 Emulator Specific Command Syntax
	Using the Optional Foreground Monitor
	Index

