
HP 64762/3

8086/8088 Emulators
Softkey Interface

User’s Guide

HP Part No. 6 4762-97003
Printed in U.S.A.
August, 1992

Edition 3

Certification and W arranty

Certification Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer’s
facility only upon HP’s prior agreement and Buyer shall pay HP’s
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1989, 1990, 1992, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

IBM and PC AT are registered trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64762-90902, February 1989 E0289

Edition 2 64762-97001, July 1990

Edition 3 64762-97003, August 1992

Using this Manual

This manual will show you how to use the HP 64762/3 (8086/88)
emulators with the Softkey Interface.

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected
to a target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the
emulator to real-time execution, selecting a target system
clock source, and allowing the target system to insert wait
states.

This manual does not:

Show you how to use every Softkey Interface command
and option. The Softkey Interface Reference describes the
interface command syntax in detail.

Organization

Chapter 1 “Introduction to the 8086/8088 Emulator.” This chapter introduces
emulation concepts and lists the basic features of the 8086/8088
emulator.

Chapter 2 “Getting Started.” This chapter shows you how to use emulation
commands, using a sample program. The chapter describes the
sample program and how to:

load programs into the emulator
display and modify memory
display registers
step through programs
run programs
set software breakpoints
use the analyzer

This chapter also includes information about the OMF-86 file
format and symbol tree, when not to enable software breakpoints,
and behavior of the processor while single-stepping.

Chapter 3 “In-Circuit Emulation.” This chapter shows you how to install the
emulator probe into a target system and discusses other “in-circuit”
emulation topics. It also shows how to connect SYS RESET to a
target system.

Chapter 4 “Configuring the Emulator.” This chapter describes the emulation
configuration options. These options include:

restricting the emulator to real-time execution
selecting a target system clock source
allowing background cycles to be seen by the target system
allowing the target system to insert wait states
selecting foreground or background emulation monitors
adding code to the background monitor
allowing DMA accesses to emulation memory
selecting the internal 8087 numeric coprocessor

Chapter 5 “Using the Emulator.” This chapter describes emulation topics not
covered in the “Getting Started” chapter. It explains how to save
memory to absolute files, and how to use the Terminal Interface
features from within the Softkey Interface.

Appendix A “Foreground Monitor Description.” This appendix describes the
foreground monitor program. The foreground monitor is resident
in the emulator firmware, but it also comes with the emulation
software so that you may customize it, if necessary.

Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command
syntax.

bold italic Commands, options, and parts of command
syntax which may be entered by pressing
softkeys.

normal User specified parts of a command.

$ Represents the HP-UX prompt. Commands
which follow the "$” are entered at the
HP-UX prompt.

<RETURN> The carriage return key.

Notes

Contents

1 Introduction to the 8086/8088 Emulator

Purpose of the Emulator . 1-1
Features of the 8086/8088 Emulator 1-1

Supported Microprocessors . 1-1
Internal 8087 Coprocessor . 1-1
Internal or External Clock Sources 1-3
Emulation Memory . 1-3
External DMA Access to Emulation Memory 1-3
Analysis . 1-3
Register Display and Modification 1-3
Single-Step . 1-3
Breakpoints . 1-4
Reset Support . 1-4
Configurable Target System Interface 1-4
Foreground or Background Emulation Monitor 1-4
Real-Time Execution . 1-5

2 Getting Started

Introduction . 2-1
Before You Begin . 2-1

A Look at the Sample Program 2-2
Data Declarations . 2-2
Initialization . 2-2
Reading Input . 2-2
Processing Commands . 2-5
The Destination Area . 2-5

Assembling the Sample Program 2-5
Linking the Sample Program 2-6

Entering the Softkey Interface . 2-7
From the “pmon” User Interface 2-7
From the HP-UX Shell . 2-8
Using the Default Configuration 2-9

On-Line Help . 2-9
Softkey Driven Help . 2-9

Contents-1

Pod Command Help . 2-10
Loading Absolute Files . 2-11
Displaying Symbols . 2-12

OMF-86 examples . 2-13
OMF-86 Symbol Tree . 2-14
SRU searches for symbols . 2-15
For More Information About Symbols 2-17
Displaying Global Symbols 2-18
Displaying Local Symbols . 2-19

Displaying Data . 2-20
Displaying Memory in Mnemonic Format 2-21
Running the Program . 2-22

From Transfer Address . 2-22
From Reset . 2-22

Displaying Memory Repetitively 2-22
Modifying Memory . 2-22
Breaking into the Monitor . 2-23
Using Software Breakpoints . 2-24

Enabling/Disabling Software Breakpoints 2-25
Setting a Software Breakpoint 2-26
Displaying Software Breakpoints 2-26
Clearing a Software Breakpoint 2-27

Displaying Registers . 2-27
Stepping Through the Program 2-28
Using the Analyzer . 2-29

Specifying a Simple Trigger 2-29
Displaying the Trace . 2-29
8086/8088 Analysis Status Qualifiers 2-32
For a Complete Description 2-33

Exiting the Softkey Interface . 2-33
End Release System . 2-33
Ending to Continue Later . 2-33
Ending Locked from All Windows 2-34
Selecting the Measurement System Display
or Another Module . 2-34

3 In-Circuit Emulation

Introduction . 3-1
Prerequisites . 3-1
Installing the Emulator Probe into a Target System 3-1

Auxiliary Output Lines . 3-3

2-Contents

TGT BUF DISABLE . 3-3
8087 INT . 3-3
SYSTEM RESET . 3-5

In-Circuit Configuration Options 3-5
Using the Target System Clock Source 3-5
Allowing the Target System to Insert Wait States 3-5
Selecting Visible/Hidden Background Cycles 3-5
Defining the Emulator’s Queue Status in Background . . . 3-5

Running the Emulator from Target Reset 3-6
Connecting SYSTEM RESET to the Target System 3-6

4 Configuring the Emulator

Introduction . 4-1
General Emulator Configuration: 4-1
Memory Configuration: . 4-1
Emulator Pod Configuration 4-2
Debug/Trace Configuration 4-2

Simulated I/O Configuration. 4-2
Interactive Measurement Configuration. 4-2
External Analyzer Configuration. 4-2

General Emulator Configuration 4-2
Micro-processor Clock Source? 4-2

internal . 4-2
external . 4-3

Enter Monitor After Configuration? 4-3
Restrict to Real-Time Runs? 4-3

Memory Configuration . 4-4
Monitor Type? . 4-4

background . 4-6
user_background . 4-6

Restrictions on User Code Loaded into Background. . . 4-6
Background Monitor Name? 4-7
foreground . 4-13

More About the Foreground Monitor. 4-13
Using the Foreground Monitor. 4-14

user_foreground . 4-14
Foreground Monitor Name? 4-16

Reset Map? . 4-16
Monitor Segment? and Monitor Offset? 4-17
Mapping Memory . 4-17

Determining the Locations to be Mapped 4-18

Contents-3

Emulator Pod Configuration . 4-20
Enable READY Inputs From Target System? 4-20
Enable Max Segment Algorithm? 4-20
Target Memory Access Size? 4-21

bytes . 4-21
words . 4-21

Enable Background Cycles to Target System? 4-21
Send Flush Queue Status to Target System? 4-22
Enable Internal Numeric Coprocessor? 4-23

Internal Numeric Coprocessor RQ/GT Pin? 4-23
INTR Input Source? . 4-24

Internal Interrupt Vector? 4-24
Enable DMA Access To/From Emulation Memory? 4-25

Debug/Trace Configuration . 4-25
Break Processor on Write to ROM? 4-26
Trace Background or Foreground Operation? 4-26

foreground . 4-26
background . 4-26
both . 4-27

Simulated I/O Configuration . 4-27
Interactive Measurement Configuration 4-27
External Analyzer Configuration 4-27
Saving a Configuration . 4-27
Loading a Configuration . 4-28

5 Using the Emulator

Introduction . 5-1
Register Names and Classes . 5-1
Features Available via Pod Commands 5-2
Storing Memory Contents to an Absolute File 5-3
Displaying I/O Port Locations . 5-4
Coordinated Measurements . 5-4
Address/Symbol Entry and Display 5-4

Using Symbols . 5-5
Using Physical Addresses . 5-6
Using Segment:Offset . 5-7
Recovering the Symbol Display 5-9

4-Contents

A Foreground Monitor Description

Introduction . A-1
Breaks into the Monitor . A-1
Emulator Modes (Foreground, Background, etc.) A-1

Foreground . A-2
Background . A-2
Modes in Which the Foreground Monitor Operates . . . A-2
Other Background Modes A-2

Loading Foreground Monitors Larger than 2K Bytes A-3
Listing . A-3
Flowchart . A-4

Contents-5

Illustrations

Figure 1-1. The HP 64762/3 Emulator for the 8086/8088 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Softkey Interface Display 2-9
Figure 3-1. Connecting the Emulator Probe 3-4
Figure 3-2. Connecting SYS RESET and
TGT BUF DISABLE . 3-7
Figure 4-1. /usr/hp64000/monitor/bmon8086.S 4-8
Figure 4-2. /usr/hp64000/monitor/v8086.S 4-15
Figure 4-3. Example Load Map Listing 4-18
Figure 4-4. Memory Mapper Display 4-19

6-Contents

1

Introduction to the 8086/8088 Emulator

Purpose of the
Emulator

The HP 64762/3 8086/8088 emulator replaces the 8086/8088
microprocessor in your target system to help you integrate target
system software and hardware. The emulator performs just like the
processor that it replaces, while giving information about the
operation of the processor. The emulator allows you to control
target system execution. You can view or modify the contents of
processor registers, target system memory, and I/O resources.

Features of the
8086/8088
Emulator

This section introduces the emulator features. The chapters that
follow show you how to use these features.

Supported
Microprocessors

The emulator probe has a 40-pin DIP connector. The HP 64762/3
emulators support Intel 8086/8088 microprocessors and other
processors that conform to the specifications of the 8086/8088.

Internal 8087
Coprocessor

The HP 64762/3 emulators contain an 8087 numeric data
processor. You can enable the internal 8087 with an emulator
configuration command. You can select which RQ/GT pin the
internal 8087 will use (if enabled). Additionally, you can select the
internal 8087 as the driver of the 8086/88 INTR input, and specify
the internal interrupt vector (if the internal 8087 drives the 8086/88
INTR input).

Introduction to the 8 086/8088 Emulator 1-1

Figure 1-1. The HP 6 4762/3 Emulator for the 8086/8088

1-2 Introduction to the 8 086/8088 Emulator

Internal or External
Clock Sources

The emulator runs with an internal clock speed of 8 MHz, or with
target system clocks from 2-10 MHz.

Emulation Memory There are either 126K or 510K bytes of emulation memory,
depending on which emulator model you have. You can define up
to 16 memory ranges (beginning on 1K byte boundaries and at least
1K bytes in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target
system ROM, or as guarded memory. The emulator issues an error
message for guarded memory accesses. You can configure the
emulator so that writes to memory defined as ROM cause a break
in emulator execution (into the emulation monitor program).

External DMA Access
to Emulation Memory

You can enable DMA access to emulation memory with an
emulator configuration command. Target system devices that
reside on the local 8086/8088 bus and conform to the 808X MAX
mode bus timing (for example, an external 8087) can access
emulation memory.

Analysis The analyzer supplied with the emulator, called the emulation
analyzer, captures emulator bus cycle information. The emulation
analyzer captures bus cycle states synchronously with the
emulation clock.

The optional external analyzer allows you to capture data on up to
16 signals external to the emulator. You can configure the external
analyzer to make state or timing analysis measurements.

Refer to the Analyzer Softkey Interface User’s Guide for a complete
list of analyzer features.

Register Display and
Modification

You can display or modify the 8086/88 internal register contents,
and you can display the contents of the 8087 numeric coprocessor
registers. The 8087 register display shows the register stack in
scientific decimal notation.

Single-Step You can direct the emulation processor to execute one or more
instructions.

Introduction to the 8 086/8088 Emulator 1-3

Breakpoints You can set up the emulator/analyzer interaction to break
emulator execution into the background monitor when the
analyzer finds a specific state.

You also can define software breakpoints in your program. The
emulator uses the 8086/88 single-byte interrupt facility for software
breakpoints. When you define a software breakpoint, the emulator
places an INT 3 instruction at the specified address. After the INT
3 instruction breaks emulator execution to from your program into
the monitor, the emulator replaces the original opcode.

Reset Support You can reset the emulator from the emulation system. Or, your
target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator to

honor target system wait requests when accessing
emulation memory;
present cycles to, or hide cycles from, the target system
when executing in background;
present either a FLUSH or a NOP queue status to the
target system while in background (and in the maximum
mode);
allow external DMA access to emulation memory.

Foregr ound or
Background

Emulation Monitor

The emulation monitor is a program executed by the emulation
processor. It allows the emulation controller to access target
system resources. For example, when you display target system
memory, the monitor program executes 8086 instructions to read
the target memory locations and send their contents to the
emulation controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The
foreground monitor occupies processor address space and executes
as if it were part of the target program.

The monitor program also can execute in background. This
emulator mode suspends foreground operation so that the

1-4 Introduction to the 8 086/8088 Emulator

emulation processor can access target system resources. The
background monitor does not occupy processor address space.

Real-Time Execution Real-time operation is continuous execution of your program
without interference from the emulator. (Such interference occurs
when the emulator temporarily breaks into the monitor so that it
can access register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When
restricted to real-time, emulator commands which display/modify
registers, or display/modify target system memory or I/O are not
allowed.

Introduction to the 8 086/8088 Emulator 1-5

Notes

1-6 Introduction to the 8 086/8088 Emulator

2

Getting Started

Introduction This chapter will lead you through a basic tutorial that shows how
to use the HP 64762 and HP 64763 emulators (for the 8086 and
8088 microprocessors) with the Softkey Interface.

This chapter will:

Tell you what to do before you use the emulator in the
tutorial.

Describe the sample program used for this chapter’s
examples.

This chapter will show you how to:

Start the Softkey Interface.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the
sample program.

Before You Begin Before beginning the tutorial presented in this chapter, you must
do the following:

1. Connect the emulator to your computer. The
HP 64700-Series Emulators Softkey Interface Installation
Notice and the HP 64700-Series Emulators Hardware
Installation and Configuration manual show how to do this.

Getting Started 2-1

2. Install the Softkey Interface software on your computer.
Refer to the HP 64700 Series Emulators Softkey Interface
Installation Notice for instructions on installing software.

3. In addition, you should read and understand the concepts
of emulation presented in the HP 64700 System Overview
Manual. The System Overview also covers HP 64700 system
architecture. A brief understanding of these concepts may
help you avoid questions later.

You should read the Softkey Interface Reference manual to
learn general operation of the Softkey Interface. This
manual contains information specific to the 8086 and 8088
emulators.

A Look at the Sample
Program

Figure 2-1 lists the sample program used in this chapter. The
program is a primitive command interpreter. The sample program
is shipped with the Softkey Interface and may be copied from the
following location.

/usr/hp64000/demo/emul/hp64762/cmd_rds.S (8086)
/usr/hp64000/demo/emul/hp64763/cmd_rds.S (8088)

Data Declarations

The DATA area defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

Initialization

The program instructions from the Init label to the Read_Cmd
label perform initialization. The segment registers are loaded and
the stack pointer is set up.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to look for a command (a
value other than 0H).

2-2 Getting Started

HEWLETT-PACKARD: 8086 Assembler
FILE: /users/guest/dir86/cmd_rds.S
LOCATION OBJECT CODE LINE SOURCE LINE

 1 "8086"
 2 GLB Msgs,Init,Cmd_Input,Msg_Dest
 3 DATA
 0000 4 Msgs
 0000 436F6D6D61 5 Msg_A DB "Command A entered "
 0005 6E64204120
 000A 656E746572
 000F 656420
 0012 456E746572 6 Msg_B DB "Entered B command "
 0017 6564204220
 001C 636F6D6D61
 0021 6E6420
 0024 496E76616C 7 Msg_I DB "Invalid Command "
 0029 696420436F
 002E 6D6D616E64
 0033 20
 0034 8 End_Msgs
 9
 10 ORG 0FFFF0000H
 0000 EA00000000 11 JMP FAR PTR Init
 12
 13 PROG
 14 ASSUME DS:DATA,ES:COMN
 15 **
 16 * The following instructions initialize segment
 17 * registers and set up the stack pointer.
 18 **
 0000 B80000 19 Init MOV AX,SEG Msg_A
 0003 8ED8 20 MOV DS,AX
 0005 B80000 21 MOV AX,SEG Cmd_Input
 0008 8EC0 22 MOV ES,AX
 000A 8ED0 23 MOV SS,AX
 000C BC00F9 24 MOV SP,OFFSET Stk
 25 **
 26 * Clear previous command.
 27 **
 000F 26C6060000 28 Read_Cmd MOV Cmd_Input,#0
 0014 0090
 29 **
 30 * Read command input byte. If no command has been
 31 * entered, continue to scan for command input.
 32 **
 0016 26A00000 33 Scan MOV AL,Cmd_Input
 001A 3C00 34 CMP AL,#0
 001C 74F8 35 JE Scan
 36 **
 37 * A command has been entered. Check if it is
 38 * command A, command B, or invalid.
 39 **
 001E 3C41 40 Exe_Cmd CMP AL,#41H
 0020 7407 41 JE Cmd_A

Figure 2-1. Sample Program Listing

Getting Started 2-3

 0022 3C42 42 CMP AL,#42H
 0024 740C 43 JE Cmd_B
 0026 E91200 44 JMP Cmd_I
 45 **
 46 * Command A is entered. CX = the number of bytes in
 47 * message A. SI = location of the message. Jump to
 48 * the routine which writes the messages.
 49 **
 0029 B91200 50 Cmd_A MOV CX,#Msg_B-Msg_A
 002C BE0000 51 MOV SI,OFFSET Msg_A
 002F E90F00 52 JMP Write_Msg
 53 **
 54 * Command B is entered.
 55 **
 0032 B91200 56 Cmd_B MOV CX,#Msg_I-Msg_B
 0035 BE0012 57 MOV SI,OFFSET Msg_B
 0038 E90600 58 JMP Write_Msg
 59 **
 60 * An invalid command is entered.
 61 **
 003B B91000 62 Cmd_I MOV CX,#End_Msgs-Msg_I
 003E BE0024 63 MOV SI,OFFSET Msg_I
 64 **
 65 * Message is written to the destination.
 66 **
 0041 8D3E0001 67 Write_Msg LEA DI,Msg_Dest
 0045 F3A4 68 REP MOVSB
 69 **
 70 * The rest of the destination area is filled
 71 * with zeros.
 72 **
 0047 C60500 73 Fill_Dest MOV BYTE PTR [DI],#0
 004A 47 74 INC DI
 004B 81FF0021 75 CMP DI,#Msg_Dest+20H
 004F 75F6 76 JNE Fill_Dest
 77 **
 78 * Go back and scan for next command.
 79 **
 0051 EBBC 80 JMP Read_Cmd
 81
 82 COMN
 83 **
 84 * Command input byte.
 85 **
 0000 86 Cmd_Input DBS 1
 87 **
 88 * Destination of the command messages.
 89 **
 0001 90 Msg_Dest DDS 3EH
 00F9 91 Stk DWS 1 ; Stack area.
 92 END Init

Errors= 0

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A decide whether the command was “A,” “B,” or an invalid
command.

If the command input byte is “A” (ASCII 41H), execution transfers
to the instructions at Cmd_A.

If the command input byte is “B” (AS CII 42H), execution transfers
to the instructions at Cmd_B.

If the command input byte is neither “A” nor “B,” it is an invalid
command, and execution transfers to the instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
CX with the display message length and register SI with the
appropriate message’s starting location. Then, execution transfers
to Write_Msg, which writes the message to the destination
location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination
area is 20H bytes long.) Then, the program jumps back to read the
next command.

The Destination Area

The COMN area declares memory storage for the command input
byte, the destination area, and the stack area.

Assembling the
Sample Program

The sample program is written for and assembled with the
HP 64853 8086/88 Series Cross Assembler/Linker. Use the
following command to assemble the sample program.

$ asm -oe cmd_rds.S > cmd_rds.O <RETURN>

The assembly process creates the assembler listing (cmd_rds.O)
and two other files.

The “cmd_rds.R” file is the relocatable file. You link
relocatable files to form the absolute file, which you load
into the emulator.

Getting Started 2-5

The “cmd_rds.A” file is the assembler symbol file. It
contains information on the local symbols in the sample
program.

Linking the Sample
Program

Use the following command to generate the absolute file:

$ lnk -o > cmd_rds.M <RETURN>
object files cmd_rds.R <RETURN>
library files <RETURN>
Load addresses: PROG,DATA,COMN
400h,500h,600h <RETURN>
more files (y or n) n <RETURN>
absolute file name cmd_rds.X <RETURN>

Link creates the linker load map listing (cmd_rds.M) and three
other files.

The “cmd_rds.x” file is the file that contains the absolute
code to be loaded into the emulator.

The “cmd_rds.L” file is the linker symbol file. It contains
information on the global symbols in the sample program
and the relocatable files that combine to form the absolute
file.

The “cmd_rds.K” file is the linker command file. It
contains the answers to the questions asked with the above
lnk command. You can specify the linker command file in
the lnk command to avoid reanswering the questions
shown above (for example, “lnk -o cmd_rds.K >
cmd_rds.M”).

2-6 Getting Started

Note You no longer need to use the -h option when linking programs
generated by HP-AxLS language tools. The emulator will work
directly with symbolic information contained in the new .x files.
The HP-OMF file (.X) is no longer needed. The linker generates
the new .x files by default. See the SRU User’s Guide for more
information.

Entering the
Softkey Interface

If you have installed your emulator and Softkey Interface software
as directed in the HP 64700 Series Emulators Softkey Interface
Installation Notice, you are ready to enter the interface. The
Softkey Interface can be entered through the pmon User Interface
Software or from the HP-UX shell.

If you have used previous HP 64200-Series emulators, you
may be familiar with the pmon, msinit, and msconfig
method of entering the emulation interface.

If you want to run the Softkey Interface in multiple
windows, you must enter from the HP-UX shell using the
emul700 command. Refer to the Softkey Interface
Reference manual for more information on running in
multiple windows.

From the “pmon”
User Interface

If your PATH environment variable includes /usr/hp64000/bin, you
can enter the pmon User Interface as follows:

$ pmon <RETURN>

If you have not already created a measurement system for the
emulator, you can do so with the following commands. First, you
must initialize the measurement system:

MEAS_SYS msinit <RETURN>

Getting Started 2-7

When this completes, enter the configuration interface with the
following command.

msconfig <RETURN>

To define a measurement system for the 8086 emulator, enter:

 make_sys em86 <RETURN>

Now, to add the emulator to the measurement system, enter:

 add <module_number> naming_it i8086 <RETURN>

Enter the following command to exit the measurement system
configuration interface.

 end <RETURN>

If the measurement system and emulation module are named
“em86” and “i8086” as above, you can enter the emulation system
with the following command:

em86 default i8086 <RETURN>

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file
was loaded. If the command is not successful, you will be given an
error message and returned to the pmon User Interface. The
Softkey Interface Reference manual documents error messages.

For more information on creating measurement systems, refer to
the Softkey Interface Reference manual.

From the HP-UX Shell If your PATH environment variable includes /usr/hp64000/bin, you
also can enter the Softkey Interface with the following command.

$ emul700 <emul_name> <RETURN>

The “emul_name” in the command above is the logical emulator
name given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab).

If this command is successful, you will see a display similar to figure
2-2. The status message shows that the default configuration file
was loaded. If the command is not successful, you will be given an
error message and returned to the HP-UX prompt. The Softkey
Interface Reference manual documents error messages.

2-8 Getting Started

Using the Default
Configuration

The following examples use the default emulator configuration.
The address ranges 0 through 1EFFFH and 0FFC00H through
0FFFFFH map to emulation RAM. The background monitor is
selected, and software breakpoints are disabled.

On-Line Help There are two ways to get on-line help in the Softkey Interface. The
first uses the Softkey Interface help facility. The second method
allows you to access the firmware resident Terminal Interface
on-line help information.

Softkey Driven Help To access the Softkey Interface on-line help information, type
either “help” or “?” on the command line. You will notice a new
set of softkeys. By pressing one of these softkeys and
< RETURN> , you can display information on that topic.

 HP64762A004 A.02.00 18July90
 8086 EMULATION SERIES 64700

 A Hewlett-Packard Software Product
 Copyright Hewlett-Packard Co. 1990

 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 RESTRICTED RIGHTS LEGEND

 Use , duplication , or disclosure by the Government is subject to
 restrictions as set forth in subparagraph (c) (1) (II) of the Rights
 in Technical Data and Computer Software clause at DFARS 52.227-7013.
 HEWLETT-PACKARD Company , 3000 Hanover St. , Palo Alto, CA 94304-1181

STATUS: Loaded configuration file_____________________________________...R....

 run trace step display modify break end ---ETC--

Figure 2-2. Softkey Interface Display

Getting Started 2-9

For example, you enter the following command to access “system
command” help information.

? system_commands <RETURN>

The help information scrolls onto the screen. If there is more than
a screen of information, you must press the space bar to see the
next screen, or the < RETURN> key to see the next line, just as
you do with the HP-UX more command. When all the information
on the topic has been displayed (or after you press “q” to quit
scrolling through information), press < RETURN> to return to
the Softkey Interface.

Pod Command Help To access the emulator’s firmware resident Terminal Interface help
information, use the following commands.

display pod_command <RETURN>

pod_command ’help cf mon’ <RETURN>

The command enclosed in string delimiters (", ’, or ^) is any
Terminal Interface command. The command’s output is seen in the
pod_command display. The Terminal Interface help (or ?)
command may be used to provide information on any Terminal
Interface command or any emulator configuration option (as the
above example shows).

---SYSTEM COMMANDS---

? displays the possible help files
help displays the possible help files
! fork a shell (specified by shell variable SH)
!<shell cmd> fork a shell and execute a shell command
cd <directory> change the working directory
pwd print the working directory
cws <SYMB> change the working symbol - the working symbol also
 gets updated when displaying local symbols and
 displaying memory mnemonic
pws print the working symbol
<FILE> p1 p2 p3 ... execute a command file passing parameters p1, p2, p3

log_commands to <FILE> logs the next sequence of commands to file <FILE>
log_commands off discontinue logging commands
name_of_module get the "logical" name of this module (see 64700tab)
set <ENVVAR> = <VALUE> set and export a shell environment variable
set HP64KPATH = <MYPATH> set and export the shell environment variable that
 specifies the search path for command files
wait pause until <cntrl-c> (SIGINT)
--More--(42%)

2-10 Getting Started

Loading Absolute
Files

The load command allows you to load absolute files into emulation
or target system memory. Use the “load emul_mem” syntax to load
only that portion of the absolute file that resides in memory
mapped as emulation RAM or ROM. To load only the portion of
the absolute file that resides in memory mapped as target RAM,
use the “load user_mem” syntax. Do not specify “emul_mem” or
“user_mem” if you want to load both emulation and target
memory. For example:

load cmd_rds <RETURN>

Normally, you will configure the emulator and map memory before
you load the absolute file. The default configuration is sufficient
for the sample program.

Pod Commands
 Time Command
 monitor option
 cf mon=bg
 cf mon=fg
 cf mon=ubg
 cf mon=ufg
 This configuration item allows you to select the desired monitor option.
 bg-- Default background monitor.
 fg-- Default foreground monitor.
 ubg--Default background monitor with the addition of a user supplied
 routine which is executed while in the monitor. User code must
 first be loaded using the -g option of the load command.
 ufg--User supplied foreground monitor. Allows use of a foreground
 monitor that has been tailored to a specific target system. User
 code must first be loaded using the -f option of the load command.
 ALL MAP TERMS ARE DELETED WHEN THE MONITOR OPTION IS CHANGED!!!
 THE SINGLE STEP VECTOR MUST BE LOADED WHEN USING A FOREGROUND MONITOR!!!

STATUS: 8086--Running in monitor______________________________________...R....
 pod_command ’help cf mon’

pod_cmd perfinit perfrun perfend ---ETC--

Getting Started 2-11

Displaying
Symbols

The HP 64762 and HP 64763 emulators can read absolute files in
HP-OMF and OMF-86 formats. When you load a program for the
first time, the emulator uses the Symbolic Retrieval Utilities
(SRU) to build a symbol database for each module. This database
associates symbol names and symbol type information (not data
types) with logical addresses. You will see a message on screen
indicating the module for which the database is being built.

Once a symbol database is created for a particular module, it does
not need to be rebuilt unless the module is changed. You can
rebuild modules using the srubuild utility (see the SRU User’s
Guide). Or, if you reenter emulation without building symbols, the
emulator software will automatically rebuild portions of the
symbol database as you reference symbols in modified modules.

Global symbol information is immediately available for the file
that you loaded. To obtain local symbol information, you need to
specify the module that contains the symbols.

You can use the symbol names instead of addresses when entering
expressions as part of an emulation command. Therefore, you don’t
have to remember segment:offset information to make a
measurement. Also, the emulator can display symbols as part of a
measurement, using the set symbols on command. This helps you
relate the measurement to your original program.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and
referencing. Symbols are arranged in a “tree” structure that mimics
the natural scoping of your source language as much as possible.

Each absolute file has its own symbol tree. Each entry in the
symbol tree has a type and a name. If you are not sure what your
“language tree” looks like, you can use the sruprint program to
print portions of your tree.

All emulation references to symbols (both input from the keyboard
and output displays) make use of the tree structure to show the
scoping of symbols and to make evident the symbols that have the
same name but different scopes.

2-12 Getting Started

OMF-86 examples The following short C code example should help illustrate how
OMF-86 symbols are maintained by SRU and referenced in your
emulation commands.

int *port_one;
main ()
{

int port_value;

 port_one = 255;
 port_value = 10;

 process_port (port_one, port_value);

} /* end main */

/users/dave/control.c

process_port (int *port_num, int port_data)
{
static int i;
static int i2;

 for (i = 0; i <= 64; i++) {
 *port_num = port_data;
 delay ();
 i = 3;
 port_data = port_data + i;
 }
} /* end of process_port */

/system/project1/porthand.c

delay()
{

int i,j;
int waste_time;

 for (i = 0; i <= 256000; i++)
 for (j = 0; j <= 256000; j++)
 waste_time = 0;

} /* end delay */

/system/project1/utils.c

Getting Started 2-13

OMF-86 Symbol Tree The OMF-86 symbol tree as built by SRU would appear as follows
(this is not a complete symbol tree):

SRU does not build tree nodes for variables that are dynamically
allocated on the stack at run-time, such as i and j within the
delay () procedure. SRU has no way of knowing where these
variables will be at run time and therefore cannot build a
corresponding symbol tree entry with run-time addresses.

2-14 Getting Started

These are examples of referencing different symbols in the
programs shown earlier are:

control.c:main

control.c:port_one

SRU searches for
symbols

SRU has symbol-searching capability. It also has the ability to
explicitly set a “current working symbol” (cws), which allows you to
refer to symbols relative to the cws.

When the shell variable HP64KSYMBPATH is set to be a
blank-separated list of symbols, a “search list” is set. When a
symbol is entered without the leading colon or dot, which forces it
to be global, the following happens:

The current working symbol (if there is one) is prefixed to the
entered symbol. If the resulting symbol exists, it will be the symbol
that is used.

For each entry in HP64KSYMBPATH:

Prefix the entry with the entered symbol. If the symbol
exists, that is the symbol to use.

Otherwise, remove the last entry in the
HP64KSYMBPATH’s symbol and repeat the previous
step.

In addition to the “HP64KSYMBPATH” environment variable
and cws, a search algorithm to resolve symbol references on the
command line is used. These actions will occur when using the
filename as an element of the symbol in the command line.

If the first element of the entered symbol is a filename,
SRU will construct a module name from the filename. The
module is defined as the basename of the filename, with
the extension removed. For example, modulename
“PORTHAND” is derived from the path and filename
“/system/project1/porthand.c”.

– If the request was for the address of a line number,
SRU will check to see if the symbol
< modulename> .< filename> exists. If it does, it will

Getting Started 2-15

assume that is the symbol you want. Otherwise it will
return the message “symbol not found”.

– If the request was not for the address of a line number,
SRU will check to see if the symbol with the
< filename> replaced with < modulename> exists. If
the new symbol exists, SRU will assume that is the
symbol you want. Otherwise it will return the message
“symbol not found”.

If no module was derived from the filename, SRU will
return the message “symbol not found”.

You can reference different variables with matching identifiers by
specifying the complete scope. You can also save on keystrokes by
specifying a scope with cws. For example, if you are making many
measurements involving symbols in the file “porthand.c”, you
could specify:

cws porthand.c:process_port

Then

i

BLOCK_1.i

are prefixed with “porthand.c:process_port” before the database
lookup.

If a symbol search with the current working symbol prefix is not
successful, the last scope on the current working symbol is stripped.
The symbol you specified is then retested with the modified current
working symbol. This does not change the actual current working
symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_1

and made a reference to symbol i2, the retrieval utilities attempt to
find a symbol called

porthand.c:process_port.BLOCK_1.i2

which would not be found.

2-16 Getting Started

The symbol utilities would then strip BLOCK_1 from the current
working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol. If this is still not a valid symbol, this
process is repeated until the symbol is found or until there are no
more elements in the cws.

You can also specify the symbol type if conflicts arise. Although
not shown in the tree, assume that a procedure called “port_one” is
also defined in “control.c”. This would conflict with the identifier
“port_one” which declares an integer pointer.

SRU can resolve the difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

For More Information
About Symbols

For information about using a special default prefix for low-level
symbols, when working with 3rd party symbols, see the file
langinfo.hp. That file also describes the language used to reduce
ambiguous error messages.

More information about symbols and SRU is contained in the SRU
User’s Guide and in the --SYMB-- syntax pages in the Softkey
Interface Reference. If you received a separate manual describing
SRU, you can refer to it if this chapter does not contain all of the
information you need.

Getting Started 2-17

Displaying Global
Symbols

To display global symbols, enter the following command.

display global_symbols <RETURN>

Listed are: address ranges associated with a symbol, the segment
with which the symbol is associated, and the offset of that symbol
within the segment.

The module names are listed under the heading “Filename
Symbols.” For programs where several different object files are
linked to form a single absolute, you will see several names listed
here. You can enter these names as part of a symbol expression to
specify symbols local to a particular module.

Global symbols in cmd_rds
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_Input 0000:0600 COMM 0000
Init 0000:0400 PROG 0000
Msg_Dest 0000:0601 COMM 0001
Msgs 0000:0500 DATA 0000

Filename symbols
Filename __
cmd_rds.S

STATUS: 8086--Running in monitor______________________________________........

2-18 Getting Started

Displaying Local
Symbols

When displaying local symbols, you must include the name of the
source file in which the symbols are defined. For example,

display local_symbols_in cmd_rds.S: <RETURN>

Symbols in cmd_rds.S:
Static symbols
Symbol name ____________________ Address range __ Segment _____________ Offset
Cmd_A 0000:0429 PROG 0029
Cmd_B 0000:0432 PROG 0032
Cmd_I 0000:043B PROG 003B
Cmd_Input 0000:0600 COMM 0000
End_Msgs 0000:0534 DATA 0034
Exe_Cmd 0000:041E PROG 001E
Fill_Dest 0000:0447 PROG 0047
Init 0000:0400 PROG 0000
Msg_A 0000:0500 DATA 0000
Msg_B 0000:0512 DATA 0012
Msg_Dest 0000:0601 COMM 0001
Msg_I 0000:0524 DATA 0024
Msgs 0000:0500 DATA 0000
Read_Cmd 0000:040F PROG 000F
Scan 0000:0416 PROG 0016

STATUS: 8086--Running in monitor______________________________________........

Getting Started 2-19

Displaying Data You can display the data values of a variable in your program using
the display data command. For example, suppose you want to see
the values of the Cmd_Input byte and all the message strings. Enter:

set symbols on <RETURN>

display data Cmd_Input char, Msg_A thru
Msg_B-1 char, Msg_B thru Msg_I-1 char, Msg_I
thru End_Msgs char <RETURN>

You’ll see the following display:

The command set symbols on displays the label column, which
indicates the symbol associated with each address. It also enables
symbol display in other measurement screens, such as display
memory, display registers, and display trace.

 Data :update
 address label type data
 0000 0600 CO|Cmd_Input char .
 0000 0500 DATA|Msgs char[] Command A entered
 0000 0512 cmd_rd:Msg_B char[] Entered B command
 0000 0524 cmd_rd:Msg_I char[] Invalid Command

STATUS: 8086--Running user program Emulation trace complete________........

2-20 Getting Started

Displaying
Memory in
Mnemonic Format

You can display the absolute code in memory in mnemonic format.
To display the memory of the “cmd_rds” program, enter:

display memory Init mnemonic <RETURN>

Notice that you can use symbols when specifying expressions. The
command above uses the global symbol Init to specify the starting
address for memory display.

 Memory :mnemonic :file = cmd_rds.S:
 address label data
 0000 0400 PROG|Init B80000 MOV AX,#0000H
 0000 0403 8ED8B80000 MOV DS,AX | MOV AX,#0000H
 0000 0408 8EC08ED0BC MOV ES,AX | MOV SS,AX | MOV SP,#06F9H
 0000 040F cmd:Read_Cmd 26C6060006 MOV ES:BYTE PTR COMM|Cmd_Input,#00H
 0000 0415 90 NOP
 0000 0416 cmd_rds:Scan 26A00006 MOV AL,ES:COMM|Cmd_Input
 0000 041A 3C00 CMP AL,#00H
 0000 041C 74F8 JZ P|cmd_rds.S:Scan
 0000 041E cmd_:Exe_Cmd 3C41 CMP AL,#41H
 0000 0420 7407 JZ |cmd_rds.S:Cmd_A
 0000 0422 3C42 CMP AL,#42H
 0000 0424 740C JZ |cmd_rds.S:Cmd_B
 0000 0426 E91200 JMP NEAR PTR |cmd_rds.S:Cmd_I
 0000 0429 cmd_rd:Cmd_A B91200 MOV CX,#0012H
 0000 042C BE0005 MOV SI,#0500H
 0000 042F E90F00 JMP NEAR PTR cmd_rd:Write_Msg

STATUS: 8086--Running user program____________________________________........

Getting Started 2-21

Running the
Program

The run command lets you execute a program in memory. Entering
the run command by itself causes the emulator to begin executing
at the current program counter address. The run from command
allows you to specify an address at which execution is to start.

From Transfer
Address

The run from transfer_address command begins code execution at
a previously defined “start address.” Transfer addresses are defined
in assembly language source files with the END assembler directive
(pseudo instruction). For example, the sample program defines the
address of the label Init as the transfer address. The following
command will start execution at the address of the Init label.

run from transfer_address <RETURN>

From Reset The run from reset command specifies that the emulator begin
executing from target system reset (see the “Running From Reset”
section in the “In-Circuit Emulation” chapter).

Displaying
Memory
Repetitively

You can display memory locations repetitively to constantly update
the screen information. For example, to display the Msg_Dest
locations of the sample program repetitively (in blocked byte
format), enter the following command.

display memory Msg_Dest repetitively blocked
bytes <RETURN>

Modifying Memory The sample program is a primitive command interpreter. The
program receives commands through a byte sized memory location
labeled Cmd_Input . You can use the modify memory feature to
send a command to the program. For example, to enter the
command “A” (41H), use the following command.

modify memory Cmd_Input bytes to 41h <RETURN>

2-22 Getting Started

Or:

modify memory Cmd_Input string to ’A’
<RETURN>

After the memory location is modified, the repetitive memory
display shows that the “Command A entered ” message is written
to the destination locations.

Breaking into the
Monitor

The break command allows you to divert emulator execution from
the user program to the monitor. You can continue user program
execution with the run command. To break emulator execution
from the sample program to the monitor, enter the following
command.

break <RETURN>

 Memory :bytes :blocked :repetitively
 address data :hex :ascii
 0000 0601-08 43 6F 6D 6D 61 6E 64 20 C o m m a n d
 0000 0609-10 41 20 65 6E 74 65 72 65 A e n t e r e
 0000 0611-18 64 20 00 00 00 00 00 00 d
 0000 0619-20 00 00 00 00 00 00 00 00
 0000 0621-28 00 00 00 00 00 00 00 00
 0000 0629-30 00 00 00 00 00 00 00 00
 0000 0631-38 00 00 00 00 00 00 00 00
 0000 0639-40 00 00 00 00 00 00 00 00
 0000 0641-48 00 00 00 00 00 00 00 00
 0000 0649-50 00 00 00 00 00 00 00 00
 0000 0651-58 00 00 00 00 00 00 00 00
 0000 0659-60 00 00 00 00 00 00 00 00
 0000 0661-68 00 00 00 00 00 00 00 00
 0000 0669-70 00 00 00 00 00 00 00 00
 0000 0671-78 00 00 00 00 00 00 00 00
 0000 0679-80 00 00 00 00 00 00 00 00

STATUS: 8086--Running user program____________________________________........

Getting Started 2-23

Using Software
Breakpoints

Software breakpoints are handled by the 8086/88 single-byte
interrupt (SBI) facility. When you define or enable a software
breakpoint, the emulator will replace the opcode at the software
breakpoint address with a breakpoint interrupt instruction (INT 3).

Note The user program must define a stack for correct software
breakpoint operation.

Note You must only set software breakpoints at memory locations that
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location that is not an instruction
opcode, the software breakpoint instruction will never execute, and
the break will never occur.

Note Do not add, set, remove, or disable software breakpoints while the
emulator is running user code. If you enter any of these commands
while the emulator is executing user code in the area of the
breakpoint modification, program execution may be unreliable.

Note Because software breakpoints are implemented by replacing
opcodes with the single-byte interrupt instructions, you cannot
define software breakpoints in target ROM.

When software breakpoints are enabled and the emulator detects a
vector fetch from the single-byte interrupt area (in other words, the
INT 3 instruction has executed), it generates a break to background
request. This causes an NMI response, as with the break command.

2-24 Getting Started

Since the system controller knows the locations of defined software
breakpoints, it can decide whether the SBI was an enabled software
breakpoint or a single-byte interrupt instruction in your target
program.

If the SBI was a software breakpoint, execution breaks to the
monitor, and the breakpoint interrupt instruction (INT 3) is
replaced by the original opcode. A subsequent run or step
command will execute from this address.

If the SBI was generated by a single-byte interrupt instruction in
the target system, execution still breaks to the monitor, and an
“undefined breakpoint” status message is displayed. To continue
program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

When software breakpoints are disabled, the emulator executes
INT 3 instructions as the 8086 processor normally would.

Enabling/Disabling
Software Breakpoints

When you initially enter the Softkey Interface, software
breakpoints are disabled. If your program contains single-byte
interrupt (INT 3) instructions, you may want to disable the
software breakpoints feature. This allows your program to operate
normally (that is, the execution of these instructions will not cause
execution to break into the monitor). To enable the software
breakpoints feature, enter the following command.

modify software_breakpoints enable <RETURN>

When software breakpoints are enabled and you set a software
breakpoint, an INT 3 instruction will be placed at the specified
address. When the INT 3 is executed, program execution will break
into the monitor.

Because there is no way to distinguish between a vector fetch and a
normal memory read, problems can arise if your code reads from
address location 0000C hexadecimal while software breakpoints
are enabled. The result will be a break into the monitor,
accompanied by the message “undefined breakpoint.”

This may be a problem, for example, in memory test code. The only
solution is to not enable software breakpoints during the execution
of this code.

Getting Started 2-25

You can often use the analysis break capability to work around this
problem by setting an analysis break after the test code. At that
point normal software breakpoints can be enabled.

Setting a Software
Breakpoint

To set a software breakpoint at the address of the Cmd_I label,
enter the following command.

modify software_breakpoints set
cmd_rds.S:Cmd_I <RETURN>

Notice that when you use local symbols in expressions, you must
include the source file that defines the symbol.

Enter the following command to continue executing the sample
program:

run <RETURN>

Now, modify the command input byte to an invalid command for
the sample program.

modify memory Cmd_Input bytes to 75h <RETURN>

A message on the status line shows that the software breakpoint
was hit. The status line also shows that the emulator is now
executing in the monitor.

Displaying Software
Breakpoints

To display software breakpoints, enter the following command.

display software_breakpoints <RETURN>

The software breakpoints display shows the inactivated breakpoint.
When breakpoints are hit, they become inactivated. To reactivate
the breakpoint so that it is “pending,” you must reenter the modify
software_breakpoints set command.

2-26 Getting Started

Clearing a Software
Breakpoint

To remove software breakpoint defined above, enter the following
command.

modify software_breakpoints clear
cmd_rds.S:Cmd_I <RETURN>

The breakpoint is removed from the list, and the original opcode is
restored if the breakpoint was pending.

To clear all software breakpoints, you can enter the following
command.

modify software_breakpoints clear <RETURN>

Displaying
Registers

Enter the following command to display registers. You can display
the basic registers, or an individual register.

display registers <RETURN>

Software breakpoints :enabled
 address label status
 0000 043B cmd_rd:Cmd_I inactivated

STATUS: 8086--Running in monitor Software break: 00000:0043b___........

Getting Started 2-27

Stepping Through
the Program

The step command allows you to step through program execution
one or more instructions at a time. Also, you can step from the
current program counter or from a specific address. To step
through the example program from the address of the software
breakpoint set earlier, enter the following command.

step <RETURN> <RETURN> <RETURN> ...

You can continue to step through the program just by pressing the
< RETURN> key. When any command appears on the command
line, it may be entered by pressing < RETURN> .

Enter the following command to continue sample program
execution from the current program counter.

run <RETURN>

During the process of breaking into the monitor, the HP 64762
emulator “jams” reads from the NMI vector. These “jams” modify
the data seen by the processor. This can result in unexpected
behavior when stepping instructions that read from the NMI vector
location (00008-0000B).

Registers

 AX 0075 BX 00FA CX 0000 DX FFFF BP 00EA FL F006 p

Step_PC 0000:043BH MOV CX,#0010H
Next CS:IP 0000:043EH
 IP 043E SP 06F9 SI 0512 DI 0621 CS 0000 SS 0000 DS 0000 ES 0000
 AX 0075 BX 00FA CX 0010 DX FFFF BP 00EA FL F006 p

Step_PC 0000:043EH MOV SI,#0524H
Next CS:IP 0000:0441H
 IP 0441 SP 06F9 SI 0524 DI 0621 CS 0000 SS 0000 DS 0000 ES 0000
 AX 0075 BX 00FA CX 0010 DX FFFF BP 00EA FL F006 p

Step_PC 0000:0441H LEA DI,COMM|Msg_Dest
Next CS:IP 0000:0445H
 IP 0445 SP 06F9 SI 0524 DI 0601 CS 0000 SS 0000 DS 0000 ES 0000
 AX 0075 BX 00FA CX 0010 DX FFFF BP 00EA FL F006 p

STATUS: 8086--Stepping complete_______________________________________........

2-28 Getting Started

For example, stepping through the instruction

MOV AX,WORD PTR 8

with a DS value of “0” will load unexpected data into AX. You can
use software breakpoints at times to work around this limitation, if
the state of the processor must be interrogated immediately after
such an instruction.

Using the Analyzer HP 64700 emulators contain an emulation analyzer. The emulation
analyzer has 47 trace signals, which monitor the internal emulation
lines (address, data, and status). Optionally, you may have an
additional 16 trace signals, which monitor external input lines. The
analyzer collects data at each pulse of a clock signal, and saves the
data (a trace state) if it meets a “storage qualification” condition.

Specifying a Simple
Trigger

Suppose you want to trace program execution after the sample
program reads a “B” (42H) command from the command input
byte. The following command makes this trace specification.

trace after Cmd_Input data 0xx42h status
memread <RETURN>

The message “Emulation trace started” will appear on the status
line. Now, modify the command input byte to “B” with the
following command.

modify memory Cmd_Input bytes to 42h <RETURN>

The status line now shows “Emulation trace complete.”

Displaying the Trace The following trace listings are of program execution on the 8086
emulator. Trace listings of program execution on the 8088
emulator look different because of the multiplexed data bus. For
example, opcodes are fetched a byte at a time.

Make sure to enable symbol display by typing:

set symbols on <RETURN>

Getting Started 2-29

To display the trace, enter:

display trace <RETURN>

Line 0 (labeled “after”) in the trace list above shows the state that
triggered the analyzer. The trigger state is always on line 0.

The other states show the exit from the Scan loop, the Exe_Cmd
and Cmd_B instructions. Notice that the trace list includes
prefetches of instructions that are not executed (lines 11 and 13).

Notice also that the data values for internal cycles (line 4, line 6, on
line 8, etc.) are zero. Since internal cycles can happen at any time,
the actual data on the bus may be changing. Therefore, the data
and status fields of internal cycles are set to zero.

To list the next lines of the trace, press the < PGDN> or
< NEXT> key.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols relative
after COMM|Cmd_Input 4942 xx42H, mem read ------------
+001 cmd_rds.S:+0001A 0000 INSTRUCTION--opcode unavailable 360 nS
+002 cmd_rds.S:+0001C F874 F874H, opcode fetch 120 nS
+003 cmd_rds.:Exe_Cmd 413C 413CH, opcode fetch 520 nS
+004 cmd_rds.S:+0001C 0000 JZ P|cmd_rds.S:Scan 120 nS
+005 cmd_rds.S:+00020 0774 0774H, opcode fetch 360 nS
+006 cmd_rds.:Exe_Cmd 0000 CMP AL,#41H 120 nS
+007 cmd_rds.S:+00022 423C 423CH, opcode fetch 400 nS
+008 cmd_rds.S:+00020 0000 JZ |cmd_rds.S:Cmd_A 120 nS
+009 cmd_rds.S:+00024 0C74 0C74H, opcode fetch 360 nS
+010 cmd_rds.S:+00022 0000 CMP AL,#42H 120 nS
+011 cmd_rds.S:+00026 12E9 12E9H, opcode fetch 400 nS
+012 cmd_rds.S:+00024 0000 JZ |cmd_rds.S:Cmd_B 120 nS
+013 cmd_rds.S:+00028 B900 B900H, opcode fetch 360 nS
+014 |cmd_rds.S:Cmd_B 12B9 12B9H, opcode fetch 1.3 uS

STATUS: 8086--Running user program Emulation trace complete______........

2-30 Getting Started

The resulting display shows the branch to Write_Msg and the
beginning of the instructions that move the “Entered B command ”
message to the destination locations.

Trace List Offset=0
Label: Address Data Opcode or Status time count
Base: symbols hex mnemonic w/symbols relative
+015 cmd_rds.S:+00034 BE00 BE00H, opcode fetch 480 nS
+016 |cmd_rds.S:Cmd_B 0000 MOV CX,#0012H 120 nS
+017 cmd_rds.S:+00036 0512 0512H, opcode fetch 400 nS
+018 cmd_rds.S:+00035 0000 MOV SI,#0512H 120 nS
+019 cmd_rds.S:+00038 06E9 06E9H, opcode fetch 360 nS
+020 cmd_rds.S:+0003A B900 B900H, opcode fetch 520 nS
+021 cmd_rds.S:+00038 0000 JMP NEAR PTR cmd_rd:Write_Msg 120 nS
+022 cmd_rds.S:+0003C 0010 0010H, opcode fetch 360 nS
+023 cmd_rd:Write_Msg 8D05 8DxxH, opcode fetch 1.2 uS
+024 cmd_rds.S:+00042 013E 013EH, opcode fetch 520 nS
+025 cmd_rd:Write_Msg 0000 LEA DI,COMM|Msg_Dest 120 nS
+026 cmd_rds.S:+00044 F306 F306H, opcode fetch 360 nS
+027 cmd_rds.S:+00046 C6A4 C6A4H, opcode fetch 520 nS
+028 cmd_rds.S:+00048 0005 0005H, opcode fetch 480 nS
+029 cmd_rds.S:+00045 0000 REP MOVSB 120 nS

STATUS: 8086--Running user program Emulation trace complete______........

Getting Started 2-31

8086/8088 Analysis
Status Qualifiers

The above example used the status qualifier “memread.” The
following analysis status qualifiers also can be used with the
8086/8088 emulators.

Qualifier Status Bits (46..36) Description

exec 0xx xxxx xxxxB Executed instruction state.

procopf 1xx xx01 x100B Processor opcode fetch cycle.

procmr 1xx xx01 x101B Processor memory read cycle.

procmw 1xx xx01 x110B Processor memory write cycle.

procior 1xx xx01 x001B Processor I/O read cycle.

prociow 1xx xx01 x010B Processor I/O write cycle.

dmaior 1xx xxx0 x001B DMA I/O read cycle.

dmaiow 1xx xxx0 x010B DMA I/O write cycle.

dmamr 1xx xxx0 x101B DMA memory read cycle.

dmamw 1xx xxx0 x110B DMA memory write cycle.

procinta 1xx xx01 x000B Processor interrupt
acknowledge cycle.

prochalt 1xx xx01 x011B Processor halt acknowledge
cycle.

opcode 1xx xxxx x100B Opcode fetch.

memread 1xx xxxx x101B Memory read cycle.

memwrite 1xx xxxx x110B Memory write cycle.

ioread 1xx xxxx x001B I/O port read cycle.

iowrite 1xx xxxx x010B I/O port write cycle.

proc 1xx xx01 xxxxB Processor (not DMA) cycle.

dma 1xx xxx0 xxxxB DMA cycle.

coproc 1xx xx11 xxxxB Coprocessor cycle.

2-32 Getting Started

Qualifier Status Bits (46..36) Description

intack 1xx xxxx x000B Interrupt acknowledge cycle.

halt 1xx xxxx x011B Halt acknowledge cycle.

grd 1xx x1xx xxxxB Guarded memory access.

rom 1xx 1xxx xxxxB Access to ROM cycle.

procr 1xx xx01 xx01B Processor read cycle.

procw 1xx xx01 xx10B Processor write cycle.

For a Complete
Description

For a complete description of using the HP 64700-Series analyzer
with the Softkey Interface, refer to the Analyzer Softkey Interface
User’s Guide.

Exiting the
Softkey Interface

There are several options when exiting the Softkey Interface:

exiting and releasing the emulation system
exiting with the intent of reentering (continuing)
exiting locked from multiple emulation windows
exiting (locked) and selecting the measurement system
display or another module

End Release System To exit the Softkey Interface, releasing the emulator for use by
others, enter the following command.

end release_system <RETURN>

Ending to Continue
Later

You also can exit the Softkey Interface without specifying any
options. This locks the emulator. When locked, other users cannot
use it. The emulator configuration is saved so that it can be
restored the next time you enter (continue) the Softkey Interface.

end <RETURN>

Getting Started 2-33

Ending Locked from
All Windows

When you use the Softkey Interface within window systems, the
“end” command with no options exits only that window. To end
locked from all windows, enter the following command.

end locked <RETURN>

This option only appears when you enter the Softkey Interface via
the emul700 command. When you enter the Softkey Interface via
pmon and MEAS_SYS, only one window is permitted.

Refer to the Softkey Interface Reference manual for more
information on using the Softkey Interface with window systems.

Selecting the
Measurement System

Display or Another
Module

When you enter the Softkey Interface via pmon and MEAS_SYS,
you can select the measurement system display or another module
in the measurement system when exiting the Softkey Interface. This
type of exit is also “locked.” That is, you can continue the
emulation session later. For example, to exit and select the
measurement system display, enter the following command.

end select measurement_system <RETURN>

This option is not available if you entered the Softkey Interface
using the emul700 command.

2-34 Getting Started

3

In-Circuit Emulation

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics on in-circuit emulation.

This chapter will:

Describe the issues concerning the installation of the
emulator probe into target systems.

Show you how to install the emulator probe.

Discuss features of in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should
be familiar with general emulator operation. Refer to the
HP 64700 Concepts of Emulation And Analysis manual and the
“Getting Started” chapter of this manual.

Installing the
Emulator Probe
into a Target
System

The emulator probe has a 40-pin Dual In-Line Package (DIP)
connector.

In-Circuit Emulation 3-1

Caution Possible Damage to the Emulator Probe. The emulator probe comes
with a pin extender. Do not use the probe without a pin extender
installed. Replacing a broken pin extender is much less expensive
than replacing the emulator probe.

HP discourages the use of more than one pin extender, since pin
extenders degrade signal quality. Some installations need the pin
extender for mechanical clearance.

The emulator probe also comes with a foam pin protector to: (1)
protect the probe from damage due to electrostatic discharge
(ESD), and (2) protect the delicate gold-plated pins of the probe
connector from impact damage. Remove the foam pin protector
before running performance verification (see the Terminal
Interface pv command).

Caution Possible Damage to the Emulator Probe. The emulation probe
contains devices that are susceptible to damage by static discharge.
Take precautions before handling the microprocessor connector
attached to the end of the probe cable to avoid damaging the
internal components of the probe by static electricity.

Caution Possible Damage to the Emulator. Make sure target system power is
OFF before installing the emulator probe into the target system.
Do not install the emulator probe into the processor socket with
power applied to the target system.

3-2 In-Circuit Emulation

Caution Incorrect Probe Installation Will Damage the Emulator Probe. Make
sure pin 1 of probe connector is aligned with pin 1 of the socket.
When you install the emulation probe, insert the probe into the
processor socket so that pin 1 of the connector aligns with pin 1 of
the socket (as shown in figure 3-1).

Auxiliary Output Lines There are three auxiliary output lines provided by the HP 64762/3
emulators:

Caution Damage to the Emulator Probe Will Result if the Auxiliary Output
L ines are Incorrectly Installed. When installing the auxiliary output
lines into the end of the emulator probe cable, make sure that the
ground pins on the auxiliary output lines (labeled with white dots)
match the ground receptacles in the end of the emulator probe
cable.

TGT BUF DISABLE This active-high output is used when the
emulator is configured to allow external DMA accesses to
emulation memory (see the “Configuring the Emulator” chapter).
Use the signal to tristate (in other words, select the high Z output)
of any target system devices on the 808X address/data bus. Target
system devices should be tristated, because reads from emulation
memory (by the emulation processor or an external device) will
output data on the user probe.

The TGT BUF DISABLE signal goes true at the start of clock
cycle T2 in any bus cycle that accesses emulation memory if
external DMA is enabled. It goes false during T4.

8087 INT This active-high output is the internal 8087’s INT
output. If you have enabled the internal 8087 (see the “Configuring
the Emulator” chapter), are using the internal 8087 interrupts, but
have not configured the internal 8087 to drive the 808X INTR
input, this output must be connected to the target system interrupt
controller.

In-Circuit Emulation 3-3

Figure 3-1. Connecting the Emulator Probe

3-4 In-Circuit Emulation

SYSTEM RESET This active-high CMOS output should be used
to synchronously reset the emulator and the target system. You
need to use this output when an 8089 I/O processor is in the target
system, because the coprocessor interpretation of the channel
attention (CA) input is relative to the last reset.

In-Circuit
Configuration
Options

The 8086/8088 emulators provide configuration options for the
following in-circuit emulation items. Refer to the chapter on
“Configuring the 8086/8088 Emulator” for more information on
these options.

Using the Target System Clock Source

You can configure the emulator to use the external target system
clock source.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation.
But, the emulator may optionally respond to the target system
ready lines during emulation memory accesses.

Selecting Visible/Hidden Background Cycles

Emulation processor activity while executing in background can
either be visible to the target system (cycles are sent to the
emulator probe) or hidden (cycles are not sent to the emulator
probe).

Defining the Emulato r’s Queue Status in Background

When the 8086 is in maximum mode, the queue status is output on
lines QS0 and QS1. You can configure the emulator to output
either a FLUSH or NOP queue status while it is executing in
background.

In-Circuit Emulation 3-5

Running the
Emulator from
Target Reset

You can specify that the emulator begin executing from target
system reset. When the target system RESET line becomes active
and then inactive, the 8086/8088 registers are initialized, and the
emulator begins running from 0FFFF0H. (This occurs within a few
cycles of the RESET signal). To specify a run from target reset,
select:

run from reset <RETURN>

The status now shows that the emulator is “Awaiting target reset.”
After the target system is reset, the status line message changes to
show the appropriate emulator status.

You also can enter the run from reset command with the target
system powered down. The emulator will respond with the “Slow
clock” status (because the external clock is automatically selected).
The emulator will prepare itself internally for foreground
operation. When the target is powered up and asserts and negates
RESET, the emulator will run from 0FFFF0H.

Note Though the external clock is automatically selected when the “run
from reset” command is entered, the emulation configuration does
not reflect this change if the internal clock was previously selected.
Attempting to modify the emulator configuration (prior to target
power up) to select an internal clock does not work. (But, you can
enter the cf clk= int pod command to reselect the internal clock.)

Connecting
SYS RESET and
TGT BUF DISABLE
to the Target
System

The following diagram shows an example of how the SYS RESET
and TGT BUF DISABLE auxiliary signals could be connected in a
target system.

Suppose that you want an 8087 processor in the target system to
access emulation memory for instructions and/or data. In that case,
the emulator configuration would be set to allow direct memory
access to emulation memory.

3-6 In-Circuit Emulation

The TGT BUF DISABLE signal would be connected to disable any
target memory devices that might drive the data bus during
emulation memory accesses. (The emulator will drive “read” data
out from the emulation probe.)

The SYS RESET signal is driven high any time the emulation
processor is being reset, regardless of whether the source of the
reset is the target system or an emulation command. Any devices in
the target system that must be reset in unison with the 8086/88
processor should be driven with the SYS RESET signal so that
they will be reset in response to an emulation command. This is not
necessary if you always start the emulator with a run from reset
command, because then the target RESET signal can reset all
devices.

Note that you should not use SYS RESET to assert the RES input of
an 8284, because this will result in a latched reset condition.

Figure 3-2. Connecting SYS RESET and TGT BUF DISABLE

In-Circuit Emulation 3-7

Notes

3-8 In-Circuit Emulation

4

Configuring the Emulator

Introduction Your 8086 or 8088 emulator can be used in all stages of target
system development. For instance, you can run the emulator
out-of-circuit when developing target system software, or you can
use the emulator in-circuit when integrating software with target
system hardware. Emulation memory can be used for or with target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time.
Or, you can allow emulator execution to be diverted into the
monitor when commands request access of target system resources
(target system memory, register contents, and so on).

The emulator is a versatile instrument and it may be configured to
suit your needs at any stage of the development process. This
chapter describes the options available when configuring the
HP 64762/3 emulators.

Access the configuration options with the following command:

modify configuration <RETURN>

After entering the command above, you will be asked questions
regarding the emulator configuration. The configuration questions
are listed below, grouped by class.

General Emulator Configuration:
Specifying the emulator clock source (internal/external).
Selecting monitor entry after configuration.
Restricting to real-time execution.

Memory Configuration:
Selecting the emulation monitor type.
Specifying the monitor segment.
Specifying the monitor offset.
Mapping memory.

Configuring the Emulator 4-1

Emulator Pod Configuration
Enabling READY inputs from target system.
Enabling max segment algorithm for physical run
addresses.
Selecting the size of target memory accesses.
Enabling background cycles to target system.
Selecting queue status to target system.
Enabling the internal numeric coprocessor (internal 8087
configuration questions follow).
Enabling DMA access to/from emulation memory.

Debug/Trace Configuration
Enabling breaks on writes to ROM.
Specifying tracing of foreground/background cycles.

Simulated I/O Configuration. See the Simulated I/O reference
manual.

Interactive Measurement Configuration. See the chapter on
coordinated measurements in the Softkey Interface Reference
manual.

External Analyzer Configuration. See the Analyzer Softkey
Interface User’s Guide.

General Emulator
Configuration

The configuration questions in this section determine general
emulator operation.

Micro-processor
Clock Source?

This configuration question allows you to select whether the
emulator will be clocked by the internal clock source or by a target
system clock source.

internal

Selects the internal 8 MHz clock oscillator as the emulator clock
source.

4-2 Configuring the Emulator

external

Selects an external target system clock source between 2 and 10
MHz.

Note Changing the clock source drives the emulator into the reset state.
If you answer “yes” to the “Enter monitor after configuration?”
question that follows, the emulator resets (due to the clock source
change) then breaks into the monitor when you save the
configuration.

Enter Monitor After
Configuration?

This question allows you to select whether the emulator will be
running in the monitor or held in the reset state on completion of
the emulator configuration.

The answer to this configuration question is important in some
situations. For example, when the external clock is selected and the
target system is turned off, do not select reset to monitor.
Otherwise, configuration will fail. When an external clock source is
specified, this question becomes “Enter monitor after
configuration (using external clock)?” and the default answer
becomes “no.”

yes

When you select reset to monitor, the emulator will be running in
the monitor after configuration is complete. If the reset to monitor
fails, the previous configuration will be restored.

no

After the configuration is complete, the emulator will be held in
the reset state.

Restrict to Real-Time
Runs?

The “restrict to real-time” question lets you configure the emulator
to refuse commands which cause the emulator to break to monitor.

Configuring the Emulator 4-3

no

The emulator accepts all commands, despite whether they require a
break to the emulation monitor.

yes

When runs are restricted to real-time and the emulator is running
the user program, all commands that cause a break (except reset,
break, run , and step) are refused. For example, the following
commands are not allowed when runs are restricted to real-time:

Display/modify registers.

Display/modify target system memory.

Display/modify I/O.

Caution If your target system circuitry depends on constant program
execution, you should restrict the emulator to real-time runs. This
will help prevent target system damage. But, remember that you
can still execute the reset, break, and step commands. Use caution
when executing these commands.

Memory
Configuration

The memory configuration questions allow you to select the
monitor type, to select the segment and offset address of the
monitor, and to map memory. To access the memory configuration
questions, you must answer “yes” to the following question.

Modify memory configuration?

Monitor Type? The monitor is a program executed by the emulation processor. It
allows the emulation system controller to access target system
resources. For example, when you enter a command that requires
access to target system resources (display target memory, for

4-4 Configuring the Emulator

example), the system controller writes a command code to a
communications area. This breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the
processor instructions which access the target system. After the
monitor has performed its task, execution returns to the target
program. Monitor program execution can take place in the
“background” or “foreground” emulator modes.

In the foreground emulator mode, the emulator operates as would
the target system processor.

In the background emulator mode, foreground execution is
suspended so that the emulation processor may be used for
communication with the system controller, typically to perform
tasks that access target system resources.

A background monitor program operates entirely in the background
emulator mode. That is, the monitor program does not execute as
if it were part of the target program. The background monitor does
not use any processor address space and does not need to be linked
to the target program. The monitor resides in dedicated
background memory.

A foreground monitor program performs its tasks in the foreground
emulator mode. That is, the monitor program executes as if it were
part of the target program. Breaks into the monitor always put the
emulator in the background mode. However, foreground monitors
switch back to the foreground mode before performing monitor
functions.

The default emulator configuration selects the background
monitor. You can change the configuration to select the
foreground monitor. Also, you can select two other options: the
user background monitor, or the user foreground monitor.

Note All memory mapper terms are deleted when the monitor type
changes!

Configuring the Emulator 4-5

background

The default emulator configuration selects the background
monitor. When using the background monitor:

Target programs should set up the stack in memory
mapped as emulation or target RAM. The stack must be
present to use software breakpoints.

Guarded memory accesses can occur if no vector table is
loaded and the vector table area, 0-3FFH, maps to
“guarded memory.” (If locations 0-3FFH are unmapped, a
default memory type of “guarded” specifies these locations
as guarded memory.)

Halt instructions will cause “processor halted” emulation
status. A subsequent break command, followed by a run
or step command, repeats the halt instruction.

Note Stepping into a HLT instruction will not halt the processor
because the 8086 processor will not halt if an interrupt occurs
while a HLT instruction is executed.

user_background

The emulator allows you to insert code into the background
monitor. Limit your code to four sections of 128 bytes each. The
absolute file should be less than 2048 bytes long. Code in the first
section executes on monitor entry. Code in the second section
executes once for each loop through the monitor. Code in the third
section executes on monitor exit. Code in the fourth section
executes when entering the monitor from reset.

Restrictions on User Code Loaded into Background. Here
are the restrictions on the code that you load into the background
monitor:

User code must be at 400H. This is not the absolute
address of the user code, it is the offset within the monitor

4-6 Configuring the Emulator

segment. A template for user code programs comes with
the emulator and is shown below. Always refer to the
shipped file for the most recent version.

The user code must not contain instructions that use the
stack (PUSH, POP, CALL, RET, and so on.). The
background monitor makes no assumptions about the
existence of a stack in foreground code and does not
contain any instructions that use the stack. Six bytes of
monitor memory save values normally saved on the stack:
CS, IP, and the flags.

The user code must not write to monitor locations outside
the user code restricted area. The background monitor
uses locations in the reserved 2K bytes to communicate
with the emulation system controller.

The user code must not jump to locations outside its
restricted area. Other locations in the 2K bytes reserved
for the monitor contain the monitor program and data.
Also, jumping to certain locations outside the user code
restricted range will put the emulator into different modes.
These modes allow the background monitor to access
target system resources when executing emulation
commands. Refer to the “Other Emulator Modes”
description in the “Foreground Monitor Description”
appendix.

The user code must not change the contents of the CS or
SS registers.

Background Monitor Name?

This question will be asked when you select the “user_background”
monitor type. Enter the name of the absolute file that contains the
code to be inserted into the background monitor. This file will be
loaded at the end of the configuration session.

You can reload the background code while in emulation with the
following command.

load bkg_mon abs_file <RETURN>

Configuring the Emulator 4-7

"8086"
;@(mktid) (01.00 19Jan89)

; Template for using background monitor features in user background code
;
; Following is a memory map of the background monitor. The monitor always
; occupies 2Kbytes of space. User code is always installed at offset 400H.
;
;---
;
; 000H **
; * IP,CS and flag jam area (all 8 bytes used) *
; 008H **
; * Vector area *
; 00CH **
; * Communications area *
; 020H **
; * I/O area 0 *
; 030H **
; * I/O area 1 *
; 038H **
; * Set BGCPCYC flag *
; 040H **
; * Set JAMBKGR flag *
; 048H **
; * Reset JAMBKGW flag *
; 050H **
; * Set BKGPS flag *
; 058H **
; * Reset BKGPS flag *
; 060H **
; * Set BKGWTT flag *
; 068H **
; * Reset BKGWTT flag *
; 070H **
; * Set BKGRFT flag *
; 078H **
; * Reset BKGRFT flag *
; 080H **
; * Monitor Area *
; 380H **
; * Register Area *
; 400H **
; * Execute on Entry User code area *
; 480H **
; * Execute while in Monitor User code area *
; 500H **
; * Execute on Exit User code area *
; 580H **
; * Execute on Reset User code area *
; 6E0H **
; * Monitor buffer area *
; 7F0H **
; * Background reset area *
; 7FFH **

;

Figure 4-1. /usr/hp 64000/monitor/bmon 8086.S

4-8 Configuring the Emulator

;---
; I/O Area 0
;
; A read from this area will bring in the following emulator status flags:
;
; Bit Flag
;
; 0 Break request
; 1 Run request
; 2 Was Halted
; 3 Sixteen bit processor
;
; A write to this area will set the ready flag true.
;---
; I/O Area 1
;
; A read from this area does the same thing as a read from I/O area 0.
;
; A write to this area sets the jam counter to the value written (only bit
; D0 is used).
;---
; Locations 38H thru 7FH are special in that they require an opcode
; fetch from the appropriate range to set or reset the indicated flag.
; In all cases except for setting the jam read flag, JAMBKGR, the desired
; function must be called using the macro sfunc (sfunc guarantees that only
; opcode fetches are generated).
;---

JAMAREA EQU 000H
VECTAREA EQU 008H
COMMAREA EQU 00CH
IOAREA0 EQU 020H
IOAREA1 EQU 030H
MONAREA EQU 080H

REGAREA EQU 380H

ENTRYUAREA EQU 400H
CONTUAREA EQU 480H
EXITUAREA EQU 500H
RESETUAREA EQU 580H

BUFAREA EQU 6E0H
RESETAREA EQU 7F0H
TRUE EQU 1
FALSE EQU 0

SPECEN0 EQU 00001100000B
SPECEN1 EQU 00001000000B
SPECEN2 EQU 00000100000B

BPA EQU 00000B
BPB EQU 01000B

BPC EQU 10000B
BPD EQU 11000B

Figure 4-1. /usr/hp 64000/monitor/bmon 8086.S (Cont’d)

Configuring the Emulator 4-9

IRETTOFG EQU 00001000000B ;SPECEN1 + BPA
CLRJAMBKGW EQU 00001001000B ;SPECEN1 + BPB

BREAKMASK EQU 0001B
RUNMASK EQU 0010B
WASHALTEDMASK EQU 0100B
SXTNSELMASK EQU 1000B
CMDAVAIL EQU 0
CMDCOMPLETE EQU 0FFFFH
INRFGLOOP EQU 0FFFFH

; These functions may be useful. They are called in the following manner:
;
; SFUNC <name>
;
; Where <name> (in lower case!!!) is one of the following:

; Force internal co-processor memory accesses to go to background memory
SETBGCPCYC EQU 00000111000B ;SPECEN2 + BPD
setbgcpcyc ORG SETBGCPCYC

; Present real status to the target system.
SETBKGPS EQU 00001011000B ;SPECEN1 + BPD
setbkgps ORG SETBKGPS

; Substitute either nothing or memory read for real status to the target
; (Depending on the setting of the ^cyc^ configuration item)
CLRBKGPS EQU 00001010000B ;SPECEN1 + BPC
clrbkgps ORG CLRBKGPS

; Send background writes to the target system.
SETBKGWTT EQU 00001101000B ;SPECEN0 + BPB
setbkgwtt ORG SETBKGWTT

; Send background writes to monitor memory.
CLRBKGWTT EQU 00001100000B ;SPECEN0 + BPA
clrbkgwtt ORG CLRBKGWTT

; Get background reads from monitor memory.
CLRBKGRFT EQU 00001110000B ;SPECEN0 + BPC
clrbkgrft ORG CLRBKGRFT

; Get background reads from the target system.
SETBKGRFT EQU 00001111000B ;SPECEN0 + BPD
setbkgrft ORG SETBKGRFT

;
; Macros
;
;

SFUNC MACRO &SUBADDR
 MOV BP,#($+6)
 JMP NEAR PTR &SUBADDR
 MEND

Figure 4-1. /usr/hp 64000/monitor/bmon 8086.S (Cont’d)

4-10 Configuring the Emulator

SFUNCRET MACRO
 JMP BP
 MEND

MONCALL MACRO
 MOV BX,#($+5)
; JMP [SI]
 DB 0FFH,024H
 MEND

MONRET MACRO
 JMP BX
 MEND

; User code macros
;
; These macros are used to get to and return from user routines. Note that
; if BX is to be used, it must be saved and restored before executing a
; UCODERET.

UCODECALL MACRO &ULOC
 MOV BX,#($+6)
 JMP NEAR PTR &ULOC
 MEND

UCODERET MACRO
 JMP BX
 MEND

 ASSUME CS:ORG,DS:ORG,ES:ORG

 ORG ENTRYUAREA

; User code that is to execute on monitor entry goes here
;
; 1. dont use the stack
; 2. called on entry into the monitor
; 3. dont modify BX!!

 UCODERET

 ORG CONTUAREA

; User code that is to execute on a continuous basis goes here. This code
; is called whenever the monitor has nothing else to do.
;
; 1. dont use the stack

; 2. called once each monitor loop
; 3. dont modify BX!!
; ##
; Example to refresh DRAM
;
; This routine simply reads a word from every memory location below 80000H.
; This might be used as a replacement for DMA type refresh while in

Figure 4-1. /usr/hp 64000/monitor/bmon 8086.S (Cont’d)

Configuring the Emulator 4-11

; background.

 LDS SI,CS:userptr ;get word ptr to loc to read
 LODSW ;read it and inc si
 MOV WORD PTR CS:userptr,SI ;save it for next time
 CMP SI,0 ;is SI zero?
 JE modseg ;if so skip
 UCODERET ;return
modseg:
 MOV SI,DS ;get ds
 CMP SI,7000H ;is it 7000H?
 JE zeroseg ;if so skip
 ADD SI,1000H ;else add 1000H
 MOV WORD PTR CS:userptr+2,SI ;save it
 UCODERET ;return
zeroseg:
 MOV SI,0 ;clear si
 MOV WORD PTR CS:userptr+2,SI ;put in seg location
 UCODERET ;return

; Define data
userptr DD 0

; ##
; End example

 ORG EXITUAREA

; User code that is to execute on monitor exit goes here
;
; 1. dont use the stack
; 2. called on exit from the monitor
; 3. dont modify BX!!

 UCODERET

 ORG RESETUAREA

; User code that is to execute on monitor reset goes here
;
; 1. dont use the stack
; 2. called when the monitor is reset

; 3. dont modify BX!
; 4. a good place to set up memory/peripheral select lines

 UCODERET

Figure 4-1. /usr/hp 64000/monitor/bmon 8086.S (Cont’d)

4-12 Configuring the Emulator

foreground

Selecting the foreground monitor uses processor address space.
The foreground monitor occupies 2K bytes of memory at 0FF800H
by default. See the “Monitor Segment?” and “Monitor Offset?”
configuration questions.

Note Do not use the foreground monitor if you want to make
coordinated measurements.

More About the Foreground Monitor. The monitor, whether
background or foreground, is the interface between the emulation
system controller and the target system. The monitor carries out
commands that

display/modify the contents of target system memory
display/modify the contents of memory mapped I/O ports
display/modify the contents of emulation processor
registers
step through program execution.

The background monitor’s execution is normally hidden from the
target system. (You can choose to drive background cycles to the
target system with the “Enable Background Cycles to Target
System?” configuration question). When the emulator is executing
in the monitor, it appears to the target system as if it has suspended
operation.

When you select the foreground monitor, the monitor performs its
tasks in the foreground emulator mode. The monitor remains in
the 2K bytes of emulation memory reserved, and you still have
126K bytes (or 510K bytes, depending on the emulator model
number) of remaining emulation memory. When you select the
foreground monitor, the monitor occupies 2K bytes of 8086
memory space.

When the foreground monitor is selected, breaking into the
monitor still occurs in background, but the rest of the monitor
program executes in foreground.

Configuring the Emulator 4-13

Using the Foreground Monitor. When using the foreground
monitor:

Your program must set up a stack. The foreground
monitor assumes that there is a stack in the foreground
program. This stack is used to save CS, IP, and the flag
word on monitor entry.

You must set up your vector table to point to locations in
the foreground monitor program. The vector table (shown
in figure 4-2) contains assembly language pseudo-ops that
define vectors which point to the proper locations in the
foreground monitor. The “step” feature of the emulator
uses the single-step interrupt vector, and the software
breakpoints feature uses the breakpoint interrupt vector.
The segment portion of the logical addresses defined in
your vector table should match the location you choose for
the monitor program. (The segment values in the vector
table file that follows match the default location of the
monitor.)

To change the segment location, modify the EQU
statement for the MONSEGMENT variable to the
appropriate segment address.

If you change the “Monitor Offset?” response (later in this
section) you must modify the vector table statements
which calculate the address offsets.

You must assemble, link and load the vector table. The
load address you specify is unimportant, since all addresses
are defined with ORG statements.

If you use the standard foreground monitor, you don’t
need to assemble, link or load it. It is already resident in
ROM. If you customize the monitor, you must assemble,
link and load it like any other program.

user_foreground

If you need a customized monitor, you can load it into the reserved
2K byte area. When customizing the foreground monitor, you must
maintain the communication protocol between the monitor and

4-14 Configuring the Emulator

"8086"
;@(mktid) (01.00 19Jan89)

; Vector table
;
; This table defines monitor entry points other than by breaking. To use
; these entry points, the processors vector table must be loaded with
; pointers to these locations.

VTABLEAREA EQU 00420H
MONSEGMENT EQU 0FF80H
ENTRYSIZE EQU 0000AH
SBIAREA EQU 007E8H
NUMEXCVECT EQU 00040H
USERVECT EQU 00080H

 ORG 0

 DW VTABLEAREA+ENTRYSIZE*0 ; zero divide
 DW MONSEGMENT

; This vector MUST be present to single step!!!
 DW VTABLEAREA+ENTRYSIZE*1 ; single step
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*2 ; user nmi
 DW MONSEGMENT

; This vector MUST be present to allow the monitor to handle breakpoints
; properly.
 DW SBIAREA ; single byte int.
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*4 ; overflow
 DW MONSEGMENT

 ORG NUMEXCVECT

 DW VTABLEAREA+ENTRYSIZE*5 ; numeric exception
 DW MONSEGMENT

 ORG USERVECT

 DW VTABLEAREA+ENTRYSIZE*6
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*7
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*8
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*9
 DW MONSEGMENT

Figure 4-2. /usr/hp 64000/monitor/v 8086.S

Configuring the Emulator 4-15

the emulation system controller. The foreground monitor program
source file comes with the emulator and is described in the
“Foreground Monitor Description” appendix.

Foreground Monitor Name?

This question will be asked when you select the “user_foreground”
monitor type. Enter the name of the absolute file that contains the
code to be inserted into the background monitor. This file will be
loaded at the end of the configuration session.

While you are in emulation, you can reload the foreground
monitor ‘with the following command.

load fg_mon abs_file <RETURN>

Reset Map? This question will be asked if you change the monitor type or
relocate the monitor (see the “Monitor Segment? and Monitor
Offset?” section that follows). Changes in the monitor type or
location reset the memory map. This question reminds you that the
map will be reset and allows you to confirm your decision.

no

The memory map is not reset, and the monitor type or monitor
location (whichever changed and prompted the question) is not
changed.

 DW VTABLEAREA+ENTRYSIZE*10
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*11
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*12
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*13
 DW MONSEGMENT

Figure 4-2. /usr/hp 64000/monitor/v 8086.S (Cont’d)

4-16 Configuring the Emulator

yes

The memory map is reset due to the change in monitor type or
location.

Monitor Segment?
and Monitor Offset?

The default emulator configuration locates the monitor at
0FF800H (monitor segment = 0FF80H and monitor offset = 0H).
You can relocate the monitor to any 2K byte boundary. The
location of the background monitor may be important. It will
specify which target system locations are read if background cycles
are made visible to the target system (which is the default). The
location of a foreground monitor is important because it will
occupy part of the processor address space. Foreground monitor
locations must not overlap target system programs.

When you enter monitor block addresses, you must only specify
addresses on 2K byte boundaries. Otherwise, the configuration is
invalid, and the previous configuration is restored.

If you relocate the foreground monitor segment, remember to
modify the MONSEGMENT definition in the vector table
(described earlier). If you change the offset, you need to modify the
offset address calculations. Remember to assemble, link and load
the vector table program.

Note Relocating the monitor removes all memory mapper terms.

Mapping Memory Depending on the emulator model number, emulation memory has
128 or 512 kilobytes, mappable in 1 kilobyte blocks. The monitor
occupies 2 kilobytes, leaving 126 or 510 kilobytes of emulation
memory which you may use. The emulation memory system does
not need wait states.

The memory mapper allows you to characterize memory locations.
You can specify whether a certain range of memory is present in
the target system or whether you will use emulation memory for
that address range. You also can specify whether the target system
memory is ROM or RAM, and you can specify that emulation
memory be treated as ROM or RAM.

Configuring the Emulator 4-17

When you select a foreground or user foreground monitor, a 2
kilobyte block is automatically mapped at the address specified by
the “Monitor segment?” and “Monitor offset?” questions.

Blocks of memory also can be characterized as guarded memory.
Guarded memory accesses will generate “break to monitor”
requests. Writes to ROM will generate “break to monitor”
requests if the “Enable breaks on writes to ROM?” configuration
item is enabled (see the “Debug/Trace Configuration” section
which follows).

Determining the Locations to be Mapped

Typically, assemblers generate relocatable files and linkers
combine relocatable files to form the absolute file. The linker load
map listing will show what locations your program will occupy in
memory. Figure 4-3 shows a sample linker load map listing.

From the load map listing, you can see that the sample program
occupies locations in four address ranges. The program and
absolute areas, which contain the opcodes and operands of the
sample program, occupy locations 400H through 452H and
0FFFF0H through 0FFFF4H. The data area, which contains the
ASCII values of the messages the program displays, occupies
locations 500H through 533H. The destination area, which
contains the command input byte and the locations of the message
destination and the stack, occupies locations 600H through 6FAH.

HP 64000+ Linker

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE
--
cmd_rds.R 00000400 00000500 00000600 FFFF0000-FFFF0004

next address 00000453 00000534 000006FB
XFER address = 00000400 Defined by cmd_rds.R
Current working directory = /users/guest/dir86
Absolute file name = cmd_rds.X

Figure 4-3. Example Load Map Listing

4-18 Configuring the Emulator

Two mapper terms must be specified. Since the program writes to
the destination locations, the mapper block containing 600H
through 6FAH should not be mapped as ROM memory. To map
memory for the sample program, enter the following mapper
commands:

delete all <RETURN>

400h thru 7ffh emulation ram <RETURN>

0ffc00h thru 0fffffh emulation rom <RETURN>

end <RETURN>

Figure 4-4 shows the memory mapper display.

When mapping memory for your target system programs, you may
want to map emulation memory locations containing programs and
constants (locations that should not be written to) as ROM. This
will prevent programs and constants from being accidentally
overwritten, and will cause breaks when instructions attempt to do
so.

Emulation memory blocks: available = 124 mapped = 2 size = 1k bytes
entry range type
 1 400H- 7FFH EMUL/RAM
 2 FFC00H- FFFFFH EMUL/ROM

STATUS: Mapping emulation memory, default unspecified blocks: guarded...R....
 end

Figure 4-4. Memory Mapper Display

Configuring the Emulator 4-19

Emulator Pod
Configuration

To access the emulator pod configuration questions, you must
answer “yes” to the following question.

Modify emulator pod configuration?

Enable READY Inputs
From Target System?

High-speed emulation memory provides no-wait-state operation.
But the emulator may optionally respond to the target system
ready line during emulation memory accesses.

no

When ready inputs from the target system are disabled, emulation
memory accesses ignore the ready signal from the target system (no
wait states are inserted).

yes

When ready inputs from the target system are enabled, emulation
memory accesses honor ready signals from the target system (wait
states are inserted if requested).

Enable Max Segment
Algorithm?

The run and step commands allow you to enter addresses in either
logical form (segment:offset, for example, 0F000:0FFFF) or
physical form (for example, 0FFFFF).

When you enter a physical address (non-segmented) with either a
run or step command, the emulator must convert it to a logical
(segment:offset) address.

If you use logical addresses other than the two methods that follow,
you must enter run and step addresses in logical form.

4-20 Configuring the Emulator

no

By default, a physical run address is converted such that the low 16
bits of the address become the offset value. The physical address is
right-shifted 4 bits and ANDed with 0F000H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

yes

Specifies that the low 4 bits of the physical address become the
offset. The physical address is right-shifted 4 bits to yield the
segment value.

logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

Target Memory
Access Size?

When a command requests the monitor to read or write target
system memory or I/O, the monitor program will use this
configuration item to decide whether to use byte or word
instructions.

bytes

Selecting the byte access mode specifies that the emulator will
access target memory using upper and lower byte cycles (one byte
at a time). The default emulator configuration specifies a data
access width of bytes.

words

Selecting the word access mode specifies that the emulator will
access target memory using word cycles (one word at a time).

Enable Background
Cycles to Target

System?

Emulation processor activity while running in the background
monitor can either be visible to the target system (cycles are sent to
the emulator probe) or hidden (cycles are not sent to the emulator
probe).

Configuring the Emulator 4-21

yes

The default emulator configuration specifies that background
activity is visible.

If your target system requires that the emulator always appears
running (for example, to refresh dynamic memories), you should
allow background cycles to be visible to the target system.

When background cycles are visible, they appear to the target
system as “reads” from the address range of the monitor. If you
must locate the monitor in memory where read operations will not
cause an undesired interaction, you can change the base address of
the monitor. (Refer to the “Monitor Segment?” and “Monitor
Offset?” configuration questions).

no

When a break occurs and background cycles are disabled (hidden),
the emulator appears to the target system to have suspended
operation until a return to foreground. When cycles are disabled,
background cycles are blocked (S0-S2 remain high and /RD, /WR,
/DEN, ALE, and /INTA remain inactive).

Send Flush Queue
Status to Target

System?

When the 8086 is in maximum mode, the queue status is output on
lines QS0 and QS1. The QS0 and QS1 signals allow external
processors that receive instructions and operands via the ESC
instruction to track the ESC instruction through the queue to see if
it executes.

no

By default (if in maximum mode), the emulator outputs a NOP
status on lines QS0 and QS1 while in background.

yes

The emulator (if in maximum mode) outputs a FLUSH queue
status while in background.

4-22 Configuring the Emulator

Enable Internal
Numeric

Coprocessor?

The HP 64762/3 emulators contain an internal 8087 numeric
coprocessor. You use the internal 8087 when target system
hardware containing an 8087 is not yet developed. The internal
8087 allows you to execute and debug code, typically out of circuit,
that contains instructions for the 8087 coprocessor. When the
target system hardware is developed, the internal 8087 is typically
disabled and external DMA is enabled (see the “Enable DMA
Access To/From Emulation Memory?” section which follows).

no

When the internal 8087 is disabled, the internal 8087 will not
operate and numeric op-codes are ignored by the emulator (unless
there is an 8087 in the target system and external DMA is enabled).
Both RQ/GT lines are available to the target system when the
internal numeric coprocessor is disabled.

yes

When the internal 8087 numeric coprocessor is enabled, the
emulator’s internal 8087 coprocessor will respond to numeric
op-codes in the instruction stream. One of the 8086/8088 RQ/GT
lines is taken by the 8087 when it is enabled (see the “Internal
Numeric Coprocessor RQ/GT Pin?” section below).

When the internal numeric coprocessor is enabled, you have
additional configuration options.

Selecting the RQ/GT line for the internal 8087.

Selecting the 8086/8088 INTR source.

Internal Numeric Coprocessor RQ/GT Pin?

If the internal 8087 numeric coprocessor is enabled, one of the two
8086/8088 RQ/GT lines allows the 8087 to acquire the local bus.
The other RQ/GT line is available for target system use.

RQ_GT0 The RQ/GT0 line is used by the internal
8087. If the internal 8087 is enabled, the
emulator will ignore this line from the target
system.

Configuring the Emulator 4-23

RQ_GT1 The RQ/GT1 line is used by the internal
8087. If the internal 8087 is enabled, the
emulator will ignore this line from the target
system.

INTR Input Source?

When the internal 8087 is enabled, you can select either the target
system or the internal 8087 to drive the 8086/88 INTR input.

If the internal 8087 is enabled but does not drive the 808X INTR
input, use the 8087 INT auxiliary output line to drive the interrupt
controller in the target system. See the “Auxiliary Output Lines”
section in the “In-Circuit Emulation” chapter.

target When the target system is selected as the
INTR source, the signal appearing on the
INTR input of the user probe is applied to
the emulation processor.

ncp When the internal 8087 is selected as the
INTR source, the INT output of the internal
8087 numeric coprocessor drives the INTR
input.

When the 8086/8088 INTR source is the
internal 8087, an additional configuration
option allows you to specify the internal
interrupt vector (see the “Internal Interrupt
Vector?” section below).

Internal Interrupt Vector? If the internal 8087 is selected as the
source for the emulation processor INTR input, the value specified
for this configuration question is jammed onto the data bus during
interrupt acknowledge cycles.

The default emulator configuration specifies a value of 10H, which
points to the numeric exception interrupt vector.

4-24 Configuring the Emulator

Enable DMA Access
To/From Emulation

Memory?

If you enable external DMA access to emulation memory, target
system devices which reside on the local 8086/8088 bus and
conform to the 808X MAX mode bus timing can access emulation
memory. For example, an external 8087 meets this requirement.

no

If you disable external DMA, external devices cannot access
emulation memory and cannot track the operation of emulation
memory instructions. Here, the TGT BUF DISABLE line need not
be used. (See below.)

yes

If you enable external DMA, you must connect the auxiliary output
line TGT BUF DISABLE to target system devices that can drive
the 808X address/data bus. The devices should be tristated (set to
high Z output) when TGT BUF DISABLE is high. This is because
any reads from emulation memory by the emulation processor or
an external device will output data at the user probe. (The TGT
BUF DISABLE signal goes active at the start of T2 in any bus cycle
that accesses emulation memory; it goes inactive in T4.)

Enabling DMA access to/from emulation memory automatically
sends “flush” queue status to the target system while the emulator
is in background. See the previous topic “Send Flush Queue Status
to Target System?”. Queue status can subsequently be set back to
NOP although this is not recommended.

Debug/Trace
Configuration

The debug/trace configuration questions allow you to specify
breaks on writes to ROM and that the analyzer trace
foreground/background execution. To access the debug/trace
configuration questions, you must answer “yes” to the following
question.

Modify debug/trace options?

Configuring the Emulator 4-25

Break Processor on
Write to ROM?

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as
ROM. The emulator always prevents the processor from actually
writing to memory mapped as emulation ROM. The emulator
cannot prevent writes to target system RAM locations mapped as
ROM, though the write to ROM break is enabled.

yes

The emulator will break into the emulation monitor whenever the
user program attempts to write to a memory region mapped as
ROM.

no

The emulator will not break to the monitor on a write to ROM.

Note The rom trace command status option allows you to use “write to
ROM” cycles as trigger and storage qualifiers. For example, you
could use the following command to trace about a write to ROM:

trace about status rom <RETURN>

Trace Backgr ound or
Foreground
Operation?

This question allows you to specify whether the analyzer trace only
foreground emulation processor cycles, only background cycles, or
both foreground or background cycles. When background cycles
are stored in the trace, all but mnemonic lines are tagged as
background cycles.

foreground

Specifies that the analyzer trace only foreground cycles. This is the
default.

background

Specifies that the analyzer trace only background cycles. (This is
rarely a useful setting.)

4-26 Configuring the Emulator

both

Specifies that the analyzer trace both foreground and background
cycles. You may wish to specify this option so that all emulation
processor cycles may be viewed in the trace display.

Simulated I/O
Configuration

See the Simulated I/O reference manual for descriptions of the
simulated I/O feature and configuration options.

Interactive
Measurement
Configuration

The interactive measurement configuration questions are
described in the chapter on coordinated measurements in the
Softkey Interface Reference manual.

External Analyzer
Configuration

See the Analyzer Softkey Interface User’s Guide for descriptions of
the external analyzer configuration options.

Saving a
Configuration

The last configuration question allows you to save the
configuration specifications in a file, which can be loaded into the
emulator later.

Configuration f ile name? < FILE>

The name of the last configuration file is shown. No filename is
shown if you are modifying the default emulator configuration.

If you press < RETURN> without specifying a filename, the
configuration is saved to a temporary file. This file is deleted when

Configuring the Emulator 4-27

you exit the Softkey Interface with the “end release_system”
command.

When you specify a filename, the configuration will be saved to two
files with extensions of “.EA” and “.EB.” The file with the “.EA”
extension is the “source” copy of the file, and the file with the
“.EB” extension is the “binary” or loadable copy of the file.

Ending emulation (with the “end” command) saves the current
configuration, including the name of the most recently loaded
configuration file, into a “continue” file. The continue file is not
normally accessed.

Loading a
Configuration

Previously saved configuration files may be loaded with this
Softkey Interface command:

load configuration <FILE> <RETURN>

This feature is especially useful after you have exited the Softkey
Interface with the end release_system command. It saves you from
having to modify the default configuration and answer all the
questions again.

To reload the current configuration, you can enter the following
command.

load configuration <RETURN>

4-28 Configuring the Emulator

5

Using the Emulator

Introduction The “Getting Started” chapter showed you how to use the basic
features of the 8086/8088 emulator. This chapter describes more
advanced emulator features.

This chapter discusses:

Register names and classes.

Features available via pod_command.

This chapter shows you how to:

Store the contents of memory into absolute files.

Display I/O port locations.

Register Names
and Classes

The following table lists the register names and classes that may be
used with the display/modify register commands.

< REG CLASS> < REG NAME> Description

OTHER AH, AL, BH, BL, CH,
CL, DH, DL

8-Bit Registers

BASIC AX, BX, CX, DX, BP,
SI, DI, DS, ES, SS, SP,
IP, CS, FL

All Basic Registers

Using the Emulator 5-1

< REG CLASS> < REG NAME> Description

GEN AX, BX, CX, DX General Registers

SEG DS, ES, SS, CS Segment Registers

PTR BX, BP, SI, DI, DS, ES Pointer Registers

NCP
(Internal 8087 numeric
coprocessor registers)

CTRL
STAT
IPTR
OPTR
OPC
TAG
ST0, ST1, ST2, ST3,
ST4, ST5, ST6, ST7

Control Word
Status Word
Exception Pointer Instruction Address
Exception Pointer Operand Address
Exception Pointer Instruction Opcode
Tag Word
Register Stack

Features Available
via Pod
Commands

Several emulation features available in the Terminal Interface but
not in the Softkey Interface may be accessed via the following
emulation commands.

display pod_command <RETURN>

pod_command ’<Terminal Interface command>’
<RETURN>

Some Terminal Interface features not available in the Softkey
Interface are:

Copying memory.

Searching memory for strings or numeric expressions.

Performing coverage analysis.

Refer to your Terminal Interface documentation for information
on how to perform these tasks.

5-2 Using the Emulator

Note Be careful when using pod_command. The Softkey Interface and
the configuration files assume that the HP 64700 pod configuration
is changed only by the Softkey Interface. What you see in modify
configuration will NOT reflect the HP 64700 pod’s configuration if
you change the pod’s configuration with this command. Also, do
not use commands that affect the communications channel. Other
commands may confuse the protocol depending on their use. The
following commands are not recommended for use with
pod_command:

stty, po, xp - Do not use, will change channel operation and hang.
echo, mac - Usage may confuse the protocol in use on the channel.
wait - Do not use, will tie up the pod, blocking access.
init , pv - Will reset pod and force end release_system.
t - Do not use, will confuse trace status polling and unload.

Storing Memory
Contents to an
Absolute File

The “Getting Started” chapter shows you how to load absolute files
into emulation or target system memory. You also can store
emulation or target system memory to an absolute file with the
following command.

store memory 400h thru 452h to absfile
<RETURN>

The above command stores the contents of memory locations
400H-452H in the absolute file “absfile.X.” Notice the “.X”
extension appended to the specified filename.

Using the Emulator 5-3

Displaying I/O
Port Locations

The 8086/8088 Softkey Interface allows you to display I/O port
locations. For example:

display io_port absolute bytes <RETURN>

Note The size of the locations to be displayed (in other words, "bytes” or
“words") must agree with the answer given for the “Target memory
access size?” emulator pod configuration question.

Coordinated
Measurements

For information on coordinated measurements and how to use
them, refer to the “Coordinated Measurements” chapter in the
Softkey Interface Reference manual.

Address/Symbol
Entry and Display

You can enter addresses in expressions using physical addresses,
logical addresses (segment:offset) or symbols. The method you
choose affects the address and symbols displays in your
measurements (including memory and trace displays).

5-4 Using the Emulator

Using Symbols Suppose you want to display the sample program from chapter 2.

set symbols on

display memory Init mnemonic

The emulator uses the SRU symbol database information to find
the corresponding address for Init , which has a logical address of
0000:0400h (physical address of 400h). The emulator then displays
memory starting at that location. Symbols are displayed.

 Memory :mnemonic :file = cmd_rds.S:
 address label data
 0000 0400 PROG|Init B80000 MOV AX,#0000H
 0000 0403 8ED8B80000 MOV DS,AX | MOV AX,#0000H
 0000 0408 8EC08ED0BC MOV ES,AX | MOV SS,AX | MOV SP,#06F9H
 0000 040F cmd:Read_Cmd 26C6060006 MOV ES:BYTE PTR COMM|Cmd_Input,#00H
 0000 0415 90 NOP
 0000 0416 cmd_rds:Scan 26A00006 MOV AL,ES:COMM|Cmd_Input
 0000 041A 3C00 CMP AL,#00H
 0000 041C 74F8 JZ P|cmd_rds.S:Scan
 0000 041E cmd_:Exe_Cmd 3C41 CMP AL,#41H
 0000 0420 7407 JZ |cmd_rds.S:Cmd_A
 0000 0422 3C42 CMP AL,#42H
 0000 0424 740C JZ |cmd_rds.S:Cmd_B
 0000 0426 E91200 JMP NEAR PTR |cmd_rds.S:Cmd_I
 0000 0429 cmd_rd:Cmd_A B91200 MOV CX,#0012H
 0000 042C BE0005 MOV SI,#0500H
 0000 042F E90F00 JMP NEAR PTR cmd_rd:Write_Msg

STATUS: 8086--Running in monitor______________________________________........

Using the Emulator 5-5

Using Physical
Addresses

The emulator keeps a cache of the most recently used logical
addresses. This cache is used to interpret physical address entries.
When you enter a physical address, the cache is searched for a
logical address that corresponds to the physical address. If one is
found, it will be used for symbol database lookups.

The cache is initialized with all global symbols in the SRU symbol
database. Therefore, symbol lookup will work correctly for all
addresses until you enter a segment:offset value that cannot be
found in the cache. See “Recovering the Symbol Display” later in
this section.

Suppose you enter:

display memory 400h mnemonic

The cache is searched for any logical addresses which match the
physical address of 400h. Since you entered the symbol Init earlier,
which had a logical address of 0000h:0400h, a match is found,
which makes the symbol lookup possible. The memory locations
are displayed starting at physical address 400h. Note that physical
addresses are displayed in the address column, rather than the
segment:offset representation.

 Memory :mnemonic :file = cmd_rds.S:
 address label data
 00400 PROG|Init B80000 MOV AX,#0000H
 00403 8ED8B80000 MOV DS,AX | MOV AX,#0000H
 00408 8EC08ED0BC MOV ES,AX | MOV SS,AX | MOV SP,#06F9H
 0040F cmd:Read_Cmd 26C6060006 MOV ES:BYTE PTR COMM|Cmd_Input,#00H
 00415 90 NOP
 00416 cmd_rds:Scan 26A00006 MOV AL,ES:COMM|Cmd_Input
 0041A 3C00 CMP AL,#00H
 0041C 74F8 JZ P|cmd_rds.S:Scan
 0041E cmd_:Exe_Cmd 3C41 CMP AL,#41H
 00420 7407 JZ |cmd_rds.S:Cmd_A
 00422 3C42 CMP AL,#42H
 00424 740C JZ |cmd_rds.S:Cmd_B
 00426 E91200 JMP NEAR PTR |cmd_rds.S:Cmd_I
 00429 cmd_rd:Cmd_A B91200 MOV CX,#0012H
 0042C BE0005 MOV SI,#0500H
 0042F E90F00 JMP NEAR PTR cmd_rd:Write_Msg

STATUS: 8086--Running user program Emulation trace complete________........

5-6 Using the Emulator

Using Segment:Offset If you prefer to enter addresses directly in segment:offset form, you
can do so. For example:

display memory 0000h:0400h mnemonic

This displays the same memory locations as before. Symbol
information is displayed, since the segment:offset matches the
address assigned to the label Init in the symbols database. The
address column returns to segment:offset display.

 Memory :mnemonic :file = cmd_rds.S:
 address label data
 0000 0400 PROG|Init B80000 MOV AX,#0000H
 0000 0403 8ED8B80000 MOV DS,AX | MOV AX,#0000H
 0000 0408 8EC08ED0BC MOV ES,AX | MOV SS,AX | MOV SP,#06F9H
 0000 040F cmd:Read_Cmd 26C6060006 MOV ES:BYTE PTR COMM|Cmd_Input,#00H
 0000 0415 90 NOP
 0000 0416 cmd_rds:Scan 26A00006 MOV AL,ES:COMM|Cmd_Input
 0000 041A 3C00 CMP AL,#00H
 0000 041C 74F8 JZ P|cmd_rds.S:Scan
 0000 041E cmd_:Exe_Cmd 3C41 CMP AL,#41H
 0000 0420 7407 JZ |cmd_rds.S:Cmd_A
 0000 0422 3C42 CMP AL,#42H
 0000 0424 740C JZ |cmd_rds.S:Cmd_B
 0000 0426 E91200 JMP NEAR PTR |cmd_rds.S:Cmd_I
 0000 0429 cmd_rd:Cmd_A B91200 MOV CX,#0012H
 0000 042C BE0005 MOV SI,#0500H
 0000 042F E90F00 JMP NEAR PTR cmd_rd:Write_Msg

STATUS: 8086--Running user program Emulation trace complete________........

Using the Emulator 5-7

On the 8018X series processors, many different segment:offset
combinations can produce the same physical address. For example:

display memory 003fh:0010h mnemonic

The same memory locations are displayed as before. But, there is
no corresponding symbol entry for any of the segment:offset
addresses, so no symbols are displayed.

Remember that the cache stores the address translations in a most
recently used order. If you now enter a physical address of 400h,
the cache matches it with a segment:offset of 003fh:0010h. Symbols
will not be displayed.

Note The size of the cache is limited only by system memory.

 Memory :mnemonic
 address label data
 003F 0010 B80000 MOV AX,#0000H
 003F 0013 8ED8B80000 MOV DS,AX | MOV AX,#0000H
 003F 0018 8EC08ED0BC MOV ES,AX | MOV SS,AX | MOV SP,#06F9H
 003F 001F 26C6060006 MOV ES:BYTE PTR 0600H,#00H
 003F 0025 90 NOP
 003F 0026 26A00006 MOV AL,ES:0600H
 003F 002A 3C00 CMP AL,#00H
 003F 002C 74F8 JZ 0026H
 003F 002E 3C41 CMP AL,#41H
 003F 0030 7407 JZ 0039H
 003F 0032 3C42 CMP AL,#42H
 003F 0034 740C JZ 0042H
 003F 0036 E91200 JMP NEAR PTR 004BH
 003F 0039 B91200 MOV CX,#0012H
 003F 003C BE0005 MOV SI,#0500H
 003F 003F E90F00 JMP NEAR PTR 0051H

STATUS: 8086--Running in monitor______________________________________........

5-8 Using the Emulator

Recovering the
Symbol Display

If you lose the symbol display, you entered an address in a form
that can’t be translated to anything matching the available symbols:

A physical address for which no corresponding logical
address exists in the translation cache.

A segment:offset value having no corresponding symbol
value in the symbol database.

To recover the symbol display, enter addresses with the proper
segment:offset, or use the symbol itself. Or, you can reload the
symbol database with the load symbols command to reinitialize the
address translation cache for all global symbols.

Using the Emulator 5-9

Notes

5-10 Using the Emulator

A

Foreground Monitor Description

Introduction The monitor program is the interface between the emulation
system controller and the target system. The emulation system
controller uses its own microprocessor to accept and execute
emulation, system, and analysis commands. The emulation
microprocessor (in this case, an 8086 or 8088) executes the
monitor program.

The monitor program makes possible emulation commands to
access target system resources. (The only way to access target
system resources is through the emulation processor.) For
example, when you enter a command to modify target system
memory, the monitor program executes instructions to write the
new values.

When the emulation system controller sees an emulation command
that needs to access target system resources, it writes a command
code to a communications area and breaks into the monitor. The
monitor reads this command (and any associated parameters) from
the communications area and executes the appropriate 8086/88
instructions to access these target system resources.

Breaks into the
Monitor

When a break condition occurs, the emulation processor’s NMI is
used to enter the monitor. The IP, CS, and flag information,
normally saved on the stack during an NMI, are jammed into
monitor program storage locations. (The background portion of
the monitor makes no assumptions about the existence of a stack.)

Emulator Modes
(Foreground,

Background, etc.)

The primary emulator modes are foreground and background.

Foreground Monitor Description A-1

Foreground

Foreground is the mode in which all emulation processor cycles
appear on the emulation probe, and the emulator executes as if it
were a real 8086/8088 microprocessor. In foreground mode, the
emulation microprocessor typically executes from target system or
emulation memory. (It may operate from memory reserved for the
monitor when a foreground monitor is selected.)

Background

In background mode, instruction execution does not appear
normally on the emulator probe. Background cycles may be visible
(on the emulator probe), or hidden from the target system. But,
when background cycles are visible, they appear as reads. When
background cycles are hidden, the emulator appears suspended to
the target system. In background mode, the emulation
microprocessor executes from memory reserved for the monitor.

Modes in Which the Foreground Monitor Operates

The foreground monitor operates in both background and
foreground. When a background monitor is used, all monitor
functions execute in background. When the foreground monitor is
used, the monitor functions execute in foreground. Part of the
foreground monitor executes in background because emulator
breaks always put the emulator in the background mode. The
portion of the foreground monitor that executes in background
sets the IP, CS, and flags for return to foreground (where execution
of monitor functions takes place).

Other Background Modes

The emulator may be operated in additional modes while in
background. These additional emulator modes can:

Present unmodified cycles (real status) to the target system
(allows the emulator to perform writes to target memory
while in background).

Allow background writes to target system memory.

A-2 Foreground Monitor Description

Allow background reads from target system memory.

These additional modes are set and reset by opcode fetches to
special locations in the monitor area (40H through 7FH). These
modes (and the instructions which set and reset them) are
documented in the foreground monitor listing. The portion of the
foreground monitor that executes in background does not use any
of these additional modes.

Loading
Foreground
Monitors Larger
than 2K Bytes

Two kilobytes of emulation memory are reserved for the monitor
program. It is possible to use custom foreground monitors that are
greater than 2 kilobytes in length. You must take special steps:

1. Do NOT configure the emulator to enter the monitor after
emulator configuration.

2. After configuration, reload the monitor program (as you
would a normal program).

When you specify a foreground monitor name during emulator
configuration, the configuration process loads only the 2 kilobytes
of memory reserved for the monitor.

Listing The foreground monitor is resident in the emulator, and it may be
selected without having to load any code. The foreground monitor
comes with the Softkey Interface so that you may customize it, if
necessary. Refer to the foreground monitor source file for the
latest listing of the monitor. The foreground monitor can be copied
from the following location.

/usr/hp64000/monitor/fmon8086.S (8086)
/usr/hp64000/monitor/fmon8088.S (8088)

Foreground Monitor Description A-3

Flowchart

A-4 Foreground Monitor Description

Foreground Monitor Description A-5

A-6 Foreground Monitor Description

Foreground Monitor Description A-7

Notes

A-8 Foreground Monitor Description

Index

A absolute files, 2-6
loading, 2-11
storing, 5-3

access width of memory-I/O data, 4-21
algorithm, max segment, 4-20
analyzer

8086/8088 status qualifiers, 2-32
configuring the external, 4-27
features of, 1-3
using the, 2-29

assembler symbol files, 2-6
assemblers, 4-18
assembling the getting started sample program, 2-5
auxiliary output lines, 3-3

B background, 1-4, 4-5, A-2
background cycles

making visible or hidden, 4-21
tracing, 4-26

background modes, additional, A-2
background monitor, 4-5

adding user code, 4-6
restrictions on user code, 4-6
things to be aware of, 4-6

bkg_mon, option to load background code, 4-7
blocked byte memory display, 2-22
breakpoints, 1-4
breaks

break command, 2-23
guarded memory accesses, 4-18
into the monitor, A-1
software breakpoints, 2-24
write to ROM, 4-26

Index-1

C cautions
do not use probe without pin extender, 3-2
make sure of auxiliary output pin alignment, 3-3
make sure of emulator probe pin alignment, 3-3
protect emulator against static discharge, 3-2
real-time dependent target system circuitry, 4-4
target power must be OFF when installing probe, 3-2

characterization of memory, 4-17
clearing software breakpoints, 2-27
clock source, 1-3

external, 4-3
internal, 4-2

configuration options
background cycles to target, 4-21
DMA access to/from emulation memory, 4-25
honor target wait states, 4-20
in-circuit, 3-5
internal interrupt vector, 4-24
internal numeric coprocessor enable/disable, 4-23
INTR input source, 4-24
map reset, 4-16
max segment algorithm, 4-20
memory-I/O data access width, 4-21
monitor offset, 4-17
monitor segment, 4-17
monitor type, 4-4
queue status while in background, 4-22
RQ/GT pin for internal numeric coprocessor, 4-23

connecting SYSTEM RESET to target system, 3-6
coordinated measurements, 5-4
copy memory, 5-2
coverage analysis, 5-2
current working symbol (cws), 2-15
customized foreground monitors, 4-14

D data access width, 4-21
default emulator configuration, 2-9
default prefix for low-level symbols, 2-17
device table file, 2-8
disp07, 2-23

2-Index

display command
I/O port locations, 5-4
memory mnemonic, 2-21
memory repetitively, 2-22
registers, 2-27
software breakpoints, 2-26
symbols, 2-12
trace, 2-29

DMA access (external) of emulation memory, 1-3, 4-25
dual in-line package (DIP) probe connector, 3-1

E 8089 I/O coprocessor, 3-5
8087 INT, auxiliary output line, 3-3
electrostatic discharge, 3-2
emul700, command to enter the Softkey Interface, 2-8, 2-34
emulation analyzer, 1-3, 2-29
emulation memory, 1-3

external DMA access of, 1-3
loading absolute files, 2-11
RAM and ROM characterization, 4-17
size of, 4-17

emulation monitor
foreground or background, 1-4
See also monitor

emulator
before using, 2-1
configuration, 4-1
device table file, 2-8
features of, 1-1
modes, A-1
prerequisites, 2-1
probe installation, 3-1
purpose of, 1-1
running from target reset, 3-6
supported microprocessors, 1-1
using the default configuration, 2-9

Index-3

emulator configuration
break processor on write to ROM, 4-26
clock selection, 4-2
default, 2-9
loading, 4-28
monitor entry after, 4-3
restrict to real-time runs, 4-3
saving, 4-27
trace background/foreground operation, 4-26

END assembler directive (pseudo instruction), 2-22
end command, 2-33, 4-28
exit, Softkey Interface, 2-33
external analyzer, 1-3, 2-29

configuration, 4-27
external clock source, 4-3
external DMA access to emulation memory, 1-3

F features of the emulator, 1-1
fg_mon, option to load background code, 4-16
file extensions

.EA and .EB, configuration files, 4-28
files

absolute, 2-6
assembler symbol, 2-6
linker command, 2-6
linker symbol, 2-6
relocatable, 2-5

FLUSH queue status while in background, 4-22
foreground, 1-4, 4-5, A-2

tracing, 4-26
foreground monitor, 4-5, 4-13

description, 4-13
emulator modes used, A-2
flowchart, A-4
listing, A-3
loading monitors larger than 2K bytes, A-3
things to be aware of, 4-14
using a customized, 4-14

4-Index

G getting started, 2-1
global symbol information, 2-12
global symbols, 2-21

displaying, 2-18
guarded memory accesses, 4-18

to vector table area, 4-6

H halt instructions
continuing after break to background monitor, 4-6

hardware installation, 2-1
help

on-line, 2-9
pod command information, 2-10
softkey driven information, 2-9

HP64KSYMBPATH
entries, 2-15
shell variable, 2-15

I I/O data access width, 4-21
I/O port locations, displaying, 5-4
in-circuit emulation, 3-1

configuration options, 3-5
installation

hardware, 2-1
software, 2-2

interactive measurements, 4-27
internal 8087, 1-1

configuration, 4-23
internal clock source, 4-2
internal interrupt vector, 4-24
INTR input source, 4-24

L language tree, 2-12
lines (output), auxiliary, 3-3
linker command file, 2-6
linker symbol files, 2-6
linkers, 4-18
linking the getting started sample program, 2-6
load map, 4-18
loading absolute files, 2-11
loading emulator configurations, 4-28

Index-5

local symbols, 2-26
displaying, 2-19

locating the monitor, 4-17
locked, end command option, 2-34
logical run address, conversion from physical address, 4-20

M mapping memory, 4-17
map reset during configuration, 4-16

MAX mode, 808X, 1-3
max segment algorithm, 4-20
measurement system, 2-34

creating, 2-8
initialization, 2-7

memory
characterization, 4-17
copying, 5-2
data access width, 4-21
mapping, 4-17
mnemonic display, 2-21
modifying, 2-22
repetitive display, 2-22
searching for strings or expressions, 5-2

microprocessors, supported by HP 64762/3 emulators, 1-1
mnemonic memory display, 2-21
modes, emulator, A-1
modify command

configuration, 4-1
memory, 2-22
software breakpoints clear, 2-27
software breakpoints set, 2-26

module, 2-34
emulation, 2-8

monitor
background, 4-5
breaking into, 2-23
description, 4-4
foreground, 4-5, A-1
locating the, 4-17
memory reserved for (2K bytes), 4-17
selecting entry after configuration, 4-3
types, 4-5

6-Index

N NOP queue status while in background, 4-22
notes

coordinated measurements require bkgnd. monitor, 4-13
I/O port size when displaying, 5-4
mapper terms deleted when monitor is relocated, 4-17
mapper terms deleted when monitor type is changed, 4-5
pod commands that should not be executed, 5-3
selecting internal clock forces reset, 4-3
software breakpoint cmds. while running user code, 2-24
software breakpoints not allowed in target ROM, 2-24
software breakpoints only at opcode addresses, 2-24
software breakpoints require stack in user program, 2-24
stepping into a HLT instruction, 4-6
write to ROM analyzer status, 4-26

numeric coprocessor (internal), 4-23

O OMF-86
file format, 2-12
symbol examples, 2-13
symbol tree, 2-14

on-line help, 2-9
output lines, auxiliary, 3-3

P PATH, HP-UX environment variable, 2-7 - 2-8
performance verification, 3-2
physical run address, conversion to logical run address, 4-20
pin extender, 3-2
pmon, User Interface Software, 2-7, 2-34
pod_command, 2-10

features available with, 5-2
help information, 2-10

prerequisites for using the emulator, 2-1
probe cable installation, 3-1
purpose of the emulator, 1-1

Q queue status
while in background, 4-22

R RAM, mapping emulation or target, 4-18
ready signal, 4-20
real-time execution, 1-5

restricting the emulator to, 4-3
rebuilding modules using srubuild, 2-12

Index-7

registers, 1-3
classes, 5-1
display/modify, 2-27
names, 5-1

release_system
end command option, 2-33, 4-28

relocatable files, 2-5, 4-18
repetitive display of memory, 2-22
reset (emulator), 1-4

running from target reset, 2-22, 3-6
restrict to real-time runs

emulator configuration, 4-3
permissible commands, 4-4
target system dependency, 4-4

ROM
mapping emulation or target, 4-18
writes to, 4-18

RQ/GT pin for internal numeric coprocessor, 4-23
run address, conversion from physical address, 4-20
run command, 2-22

from target reset, 3-6
run from reset command, 2-22, 3-6 - 3-7

S sample program
description, 2-2

saving the emulator configuration, 4-27
search algorithm used to resolve symbol references, 2-15
set symbols on command, 2-12
simulated I/O, 4-27
single-byte interrupt (SBI), 1-4, 2-24

note on requirement of stack for software breakpoints, 2-24
single-step, 1-3
softkey driven help information, 2-9
Softkey Interface

entering, 2-7
exiting, 2-33
on-line help, 2-9

software breakpoints, 2-24
clearing, 2-27
displaying, 2-26
enabling/disabling, 2-25
foreground monitor operation, 4-14

8-Index

setting, 2-26
software installation, 2-2
SRU

handles symbol scoping and referencing, 2-12
symbol-searching capability, 2-15

SRU User’s Guide, 2-12
sruprint

use to print portions of symbol trees, 2-12
stack

using the background monitor, 4-6
using the foreground monitor, 4-14

static discharge, protecting the emulator probe against, 3-2
status qualifiers (8086/8088), 2-32
step command, 2-28

foreground monitor operation, 4-14
string delimiters, 2-10
symbol database, 2-12
symbol scoping and referencing

handled by SRU, 2-12
symbol tree for each absolute file, 2-12
Symbolic Retrieval Utilities (SRU), 2-12
symbols, displaying, 2-12
SYS RESET signal, 3-6 - 3-7
system overview, 2-2
SYSTEM RESET, auxiliary output line, 3-5

T target memory
loading absolute files, 2-11
RAM and ROM characterization, 4-18

target reset, running from, 3-6
target system

dependency on executing code, 4-4
interface with emulator (probe & connector), 1-4

Terminal Interface, 2-10, 5-2
TGT BUF DISABLE signal, 3-6 - 3-7
TGT BUF DISABLE, auxiliary output line, 3-3, 4-25
trace signals, 2-29
trace, displaying the, 2-29
tracing background operation, 4-26
transfer address, running from, 2-22
tree structure

symbol/language, 2-12

Index-9

trigger state, 2-30
trigger, specifying, 2-29

U undefined breakpoint, 2-25
user (target) memory, loading absolute files, 2-11

V visible background cycles, 4-22

W wait states, allowing the target system to insert, 4-20
window systems, 2-34
write to ROM break, 4-26

10-Index

	Using this Manual
	Contents
	Introduction to the 8086/8088 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the Emulator
	Using the Emulator
	Foreground Monitor Description
	Index

