HP 64758 70632 Emulator PC Interface

User's Guide

HP Part No. 64758-97005 Printed in U.S.A. March, 1993

Edition 3

Notice	Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
	Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.
	© Copyright 1990,1993 Hewlett-Packard Company.
	This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.
	HP is a trademark of Hewlett Packard Comapny.
	IBM and PC AT are registered trademark of International Business Machines Corporation.
	MS-DOS is a trademark of Microsoft Corporation.
	UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
	V70 [™] is trademark of NEC Electronics Inc.
	Hewlett-Packard Company P.O. Box 2197 1900 Garden of the Gods Road Colorado Springs, CO 80901-2197, U.S.A.
	RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.A. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2)

Printing History

New editions are complete revisions of the manual. The date on the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of the software product at the time the manual was issued. Many product updates and fixes do not require manual changes, and manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual revisions.

Edition 3	64758-97005, April 1993
Editon 2	64759-97003, November 1990
Edition 1	64758-97001, August 1990

Using This manual

This manual introduces you to the HP 64758G/H 70632 Emulator as used with the PC Interface.

This manual:

- Shows you how to use emulation commands by executing them on a sample program and describing their results.
- Shows you how to use the emulator in-circuit (connected to a target system).
- Shows you how to configure the emulator for your development needs. Topics include: restricting the emulator to real-time execution, selecting a target system clock source, and allowing the target system to insert wait states.

This manual does not:

Show you how to use every PC Interface command and option. See the HP 64700 Emulators PC Interface: User's Reference for further details.

Organization

- **Chapter 1** Introduction. This chapter lists the 70632 emulator features and describes how they can help you in developing new hardware and software.
- **Chapter 2** Getting Started. This chapter shows you how to use emulation commands by executing them on a sample program. The chapter describes the sample program and how to: load programs into the emulator, map memory, display and modify memory, display registers, step through programs, run programs, set software breakpoints, search memory for data, and use the analyzer.
- **Chapter 3** Virtual Mode Emulation Topics. This chapter shows you how to use emulator in virtual mode. The chapter describes a sample program and how to: load programs into the emulator, display on-chip MMU registers, privilege registers and TCB, set software breakpoints, and use the analyzer in virtual mode.
- **Chapter 4 Configuring the Emulator.** You can configure the emulator to adapt it to your specific development needs. This chapter describes the options available when configuring the emulator, and how to save and restore particular configurations.
- **Chapter 5** Using the Emulator. This chapter describes emulation topics that are not covered in the "Getting Started" and "Virtual Mode Emulation Topics" chapters (for example, coordinated measurements and storing memory).
- **Chapter 6** In-Circuit Emulation. This chapter shows you how to plug the emulator into a target system, and how to use the "in-circuit" emulation features.
- **Appendix A** File Format Readers. This appendix describes how to use the Readers from MS-DOS or PC Interface, load absolute files into the emulator, use global and local symbols with the PC Interface.

Contents

1 Introduction to the 70632 Emulator

2

Purpose of the 70632 Emulator
Features of the 70632 Emulator
Supported Microprocessor
Clock Speeds
Emulation Memory
Analysis
FPU
MMU
FRM
Registers
Single-Step
Breakpoints
Reset Support
Software Debugging
Configurable Target System Interface 1-5
Real-Time Operation
Foreground or Background Emulation Monitor 1-6
Out-of-Circuit or In-Circuit Emulation 1-6
Getting Started
Introduction
Before You Begin
Prerequisites
A Look at the Sample Program
Assembling and Linking the Sample Program 2-5
Starting Up the 70632 PC Interface
Selecting PC Interface Commands
Emulator Status
Mapping Memory
$W_{1} = 1 M_{2} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
which Memory Locations Should Be Mapped?
Loading Programs into Memory
Which Memory Locations Should Be Mapped? 2-8 Loading Programs into Memory 2-11 File Format 2-11

Contents-1

Force Absolute File Read	2-11
File Format Options	2-12
Absolute File Name	2-12
Displaying Symbols	2-12
Displaying Global Symbols	2-12
Loading and Displaying Local Symbols	2-13
Transfer Symbols to the Emulator	2-15
Displaying Memory in Mnemonic Format	2-16
Stepping Through the Program	2-17
Specifying a Step Count	2-18
Modifying Memory	2-19
Running the Program	2-20
Searching Memory for Data	2-20
Breaking into the Monitor	2-20
Using Software Breakpoints	2-21
Defining a Software Breakpoint	2-21
Displaying Software Breakpoints	2-22
Setting a Software Breakpoint	2-23
Clearing a Software Breakpoint	2-23
Using the Analyzer	2-23
Resetting the Analysis Specification	2-23
Specifying a Simple Trigger	2-23
Starting the Trace	2-26
Displaying the Trace	2-26
Changing the Trace Format	2-28
Trigger Position	2-30
For a Complete Description	2-33
Copying Memory	2-34
Resetting the Emulator	2-34
Exiting the PC Interface	2-35

3 Virtual Mode Emulation Topics

Sample Program for Virtual Mode Emulation
Assembling and Linking the Sample Program
Setting up the Emulator
Mapping Memory
Loading Program into Memory
Displaying and Transferring the Symbols for os.x
Getting into Virtual Mode
Displaying Registers
Tracing the Program Execution 3-1

2-Contents

Changing Symbols	3-19
Specifying Virtual Space	3-21
Breakpoints	3-24
Displaying Address Translation Tables	3-24
Displaying TCB	3-25
Tracing Virtual Address	3-25
Address Mode Suffixes	3-30

4 Configuring the 70632 Emulator

Introduction
Prerequisites
General Configuration
Internal Clock
Real-Time Mode 4-3
Break on ROM Writes
Software Breakpoints
Trace Hold Tag
Load Real Address
Trace Execution Cycles
Trace Real Address
CMB Interaction?
V70 Inverse Assemble
Respond to HLDRQ
Respond to Target NMI
Target Interrupts 4-8
Target Bus Freeze 4-8
Drive Background Cycles
Target Memory Access Size
Address Bits A31-A8
Monitor Type
Foreground Monitor Location?
Storing an Emulator Configuration
Loading an Emulator Configuration

5 Using The Emulator

Prerequisites
Register Manipulation
Stack Pointer Modification
Displaying/Modifying Registers In Floating-Format 5-3
Analyzer Topics
Analyzer Status Qualifiers

Contents-3

Specifying Trigger Condition at Desired Instruction	
Execution	. 5-4
Disassembles In Trace Listing	. 5-5
Execution States Location in Trace Listing	. 5-6
Specifying Data For Trigger Condition or Store Condition	. 5-6
Analyzer Clock Speed	. 5-7
Finding Out the Cause of a Monitor Break	. 5-7
Hardware Breakpoints	. 5-9
Using the Analyzer Trigger to Break into the Monitor	. 5-9
Software Breakpoints	5-10
Target Memory Access	5-13
Commands Not Allowed when Real-Time	
Mode is Enabled	5-13
Breaking out of Real-Time Execution	5-13
FPU Support	5-14
MMU Support	5-15
Making Coordinated Measurements	5-15
Unfamiliar Status	5-16
Waiting for Target Ready	5-16
Halt or Machine Fault	5-17
70108/70116 Emulation Mode	5-18
Displaying Memory In 70108/70116 Mnemonic Format	5-18
Single-stepping	5-18
Tracing States In Both Mode	5-18
Real-time Emulation Memory Access	5-19
Virtual Address Translation	5-20
Using the Caches of Area Table Register Pairs	5-20
Specifying Virtual Address Space	5-21
Storing Memory Contents to an Absolute File	5-23
Register Names and Classes	5-24
Foreground Monitor	5-26
Foreground Monitor Configuration	5-26
Loading the Monitor into Emulator	5-26
Restrictions and Considerations	

6 In-Circuit Emulation Topics

Introduction	. 6-1
Prerequisites	. 6-2
Installing the Emulator Probe into a Target System	. 6-2
Pin Protector	. 6-3
Conductive Pin Guard	. 6-3

4-Contents

Installing the Target System Probe					6-5
In-Circuit Configuration Options					6-5
Allowing the Target System to Insert Wait States					6-6
The Usage of I/O Command	•				6-7

A File Format Readers

Using the HP 64000 Reader
What the Reader Accomplishes
Location of the HP 64000 Reader Program
Using the Reader from MS-DOS
Using the Reader from the PC Interface
If the Reader Won't Run
Including RHP64000 in a Make File
Using the NEC COFF Reader
What the NEC COFF Reader Accomplishes
Location of the NEC COFF Reader Program
Using the NEC COFF Reader from MS-DOS
Including RDNEC70 in a Make File

Index

Illustrations

Figure 1-1. HP 64758 Emulator for the 70632 1-2
Figure 2-1. Sample Program Source
Figure 2-2. PC Interface Display
Figure 2-3. Load Map Listing for the Sample Program 2-8
Figure 2-4. Memory Map Configuration
Figure 2-5. Modifying the Trace Specification 2-25
Figure 2-6. Modifying the Pattern Specification
Figure 2-7. Modifying the Trace Format
Figure 3-1. Sample Program Source os.s 3-2
Figure 3-2. Sample Program Source task_a.s
Figure 3-3. Sample Program Source task_b.s
Figure 3-4. Configurator Command File
Figure 3-5. Loading the Sample Program into Memory 3-11
Figure 4-1. General Emulator Configuration
Figure 5-1. Cross Trigger Configuration
Figure 6-1. Installing Emulation Probe Into PGA Socket 6-4

Tables

Table A-1. How to Access Variables (HP64000 Format). A-3Table A-2. How to Access Variables (NEC COFF Format). A-8

6-Contents

Introduction to the 70632 Emulator

Introduction	The topics in the chapter include:Purpose of the emulatorFeatures of the emulator	
Purpose of the 70632 Emulator	The 70632 emulator is designed to replace the NEC uPD70632 microprocessor in your target system to help you integrate target system software and hardware. The 70632 emulator performs just like the NEC uPD70632 microprocessor, but at the same time, it gives you information about the operation of the processor. The emulator gives you control over target system execution and allows you to view or modify the contents of processor registers and, target system memory.	

Introduction 1-1

1

Figure 1-1. HP 64758 Emulator for the 70632

1-2 Introduction

Features of the 70632 Emulator

Supported Microprocessor	The emulator probe has a 132-pin PGA connector. The HP 64758G/H emulator supports the NEC uPD70632 microprocessor.
Clock Speeds	Measurements can be made using the emulator's internal 20 MHz clock or an external clock from 8 MHz to 20 MHz with no wait states added to target memory.
Emulation Memory	Depending on the emulator model number, there are 512K/1M bytes of emulation memory. Memory mapping configuration maps physical memory only. If the MMU is enabled, the user is responsible for knowing user physical memory usage.
	Dual-ported memory allows you to display or modify physical emulation memory without stopping the processor. Flexible memory mapping lets you define address ranges over the entire 4 Gbyte address range of the 70632. You can define up to 8 memory ranges (at 4 Kbyte boundaries and at least 4Kbytes in length). The monitor occupies 4K bytes leaving 508K or 1020K bytes of emulation memory which you may use. You can characterize memory ranges as emulation RAM, emulation ROM, target system RAM, target system ROM, or as guarded memory. The emulator generates an error message when accesses are made to guarded memory locations; additionally, you can configure the emulator so that writes to memory defined as ROM cause emulator execution to break out of target program execution. You can select whether the memory accesses honor /READY and /BERR signals from target system for each emulation memory range.

Introduction 1-3

Analysis	The integrated emulation bus analyzer provides real-time analysis of all
	bus-cycle activity. You can define break conditions based on address
	and data bus cycle activity. In addition to hardware break, software
	breakpoints can be used for execution breakpoints.

The 70632 microprocessor has on-chip MMU which provides a 4 Giga-byte virtual space for each task. When you use the on-chip MMU, you will want to analyze either actual or virtual address space. You can configure which address space should be recognized by the emulation analyzer. Analysis functions include trigger, storage, count, and context directives. The analyzer can capture up to 1024 events, including all address, data, and status lines.

- **FPU** The emulation bus analyzer can capture bus states accessing to a Floating Point Processor.
- **MMU** The emulator will support development when using the internal Memory Management Unit.
- **FRM** The emulator supports the master mode of the 70632 FRM function. In the master mode, you can use the analyzer feature of the emulator. If signal is asserted by your target system, the emulator bus signals are held. So the emulator does not work as checker.
- **Registers** You can display or modify the 70632 internal CPU register contents. This includes the ability to modify the program counter (PC) value so you can control where the emulator starts a program run. You can also display or modify the 70632 MMU register contents.
- **Single-Step** You can direct the emulation processor to execute a single instruction or a specified number of instructions.

1-4 Introduction

Breakpoints	You can set the emulator/analyzer interaction so the emulator will break to the monitor program when the analyzer finds a specific state or states, allowing you to perform post-mortem analysis of the program execution. You can also set software breakpoints in your program. With the 70632 emulator, setting a software breakpoint inserts a 70632 BRK instruction into your program at the desired location.
Reset Support	The emulator can be reset from the emulation system under your control; or your target system can reset the emulation processor.
Software Debugging	The HP 64758G/H Real-Time Emulator for 70632 microprocessors is a powerful tool for both software and hardware designers. Using the HP 64758G/H Emulator's emulation memory (up to 512 Kilo/1 Mega bytes), software debugging can be done without functional target system memory.
Configurable Target System Interface	You can configure the emulator so that it honors target system wait and retry requests when accessing emulation memory. Additionally, the processor signals /READY, /BERR, BFREZ, RT/EP, /NMI, INT, and /HLDRQ may be enabled or disabled independently of the 70632 processor.
Real-Time Operation	Real-time signifies continuous execution of your program at full rated processor speed without interference from the emulator. (Such interference occurs when the emulator needs to break to the monitor to perform an action you requested, such as displaying target system memory.) Emulator features performed in real time include: running and analyzer tracing. Emulator features not performed in real time include: display or modify of target system memory; load/dump of target memory, and display or modification of registers and some virtual related functionality.

Foreground or T Background P Emulation Monitor

The emulation monitor is a program executed by the emulation processor. It allows the emulation controller to access target system resources. For example, when you display target system memory, the monitor program executes 70632 instructions to read the target memory locations and send their contents to the emulation controller.

The monitor program can execute in *foreground*, the mode in which the emulator operates as would the target processor. The foreground monitor occupies processor address space and executes as if it were part of the target program.

The monitor program also can execute in *background*, the emulator mode in which foreground operation is suspended so the emulation processor can access target system resources. The background monitor does not occupy processor address space.

Out-of-Circuit or In-Circuit Emulation

The 70632 emulator can be used for both out-of-circuit emulation and in-circuit emulation. The emulation can be used in multiple emulation systems using other HP 64700 Series emulators/analyzers.

1-6 Introduction

Getting Started

Introduction

This chapter will lead you through a basic, step by step tutorial that shows how to use the HP 64758G/H 70632 emulaotor with the PC Interface.

This chapter will:

- Tell you what must be done before you can use the emulator as shown in the tutorial examples.
- Describe the sample program used for this chapter's examples.
- Briefly describe how PC Interface commands are entered and how emulator status is displayed.

This chapter will show you how to:

- Start up the PC Interface from the MS-DOS prompt.
- Define (map) emulation and target system memory.
- Load programs into emulation and target system memory.
- Enter emulation commands to view execution of the sample program.

Before You Begin

Prerequisites

Before beginning the tutorial presented in this chapter, you must have completed the following tasks:

- 1. Connected the emulator to your computer. The *HP* 64700 Series Installation/Service manual shows you how to do this.
- 2. Installed the PC Interface software on your computer. Software installation instructions are shipped with the media containing the PC Interface software. The HP64700 *Emulators PC Interface: User's Reference* manual contains additional information on the installation and setup of the PC Interface.

3. In addition, it is recommended, although not required, that you read and understand the concepts of emulation presented in the *Concepts of Emulation and Analysis* manual. The *Installation /Service* also covers HP 64700 Series system architecture. A brief understanding of these concepts may help avoid questions later.

You should read the *HP* 64700 *Emulators PC Interface: User's Reference* manual to learn how to use the PC Interface in general. For the most part, this manual contains information specific to the 70632 emulator.

A Look at the Sample Program

The sample program used in this chapter is listed in figure 2-1. The program emulates a primitive command interpreter.

2-2 Getting Started

	.file	"cmd_rds.s"
	.equ .equ	Dest_Size,0x30 Stack_Size,0x100
	.glob] .data .org .word	L Command_Input, Init, Message_Dest "sbt" (RW) >0x00000000 .+0x34 Dummy_Text
	.text (H .align	RX) >0x00010000 4
Init:	mov.w movea.w movea.w mov.b	<pre>#Stack+Stack_Size,sp Command_Input,r0 Message_Dest,r1 #' ',r26</pre>
Clear:	mov.b	#0x00,[r0]
Read_Input:	mov.b cmp.b je	[r0],r2 #0x00,r2 Read_Input
Process_Comm:	cmp.b je cmp.b je jr	<pre>#'A',r2 Command_A #'B',r2 Command_B Unrecognized</pre>
Command_A:	movea.w mov.w jr	Message_A,r3 #Message_B-Message_A,r4 Output
Command_B:	movea.w mov.w jr	Message_B,r3 #Invalid_Input-Message_B,r4 Output
Unrecognized:	movea.w mov.w	Invalid_Input,r3 #Message_End-Invalid_Input,r4
Output: Text_End:	movcfu.k jr	D [r3],r4,Message_Dest,#Dest_Size Clear
Dummy_Text:		halt
	.data (H	R) >0x00020000
Message_A: Message_B: Invalid_Input: Message_End:	.str .str .str	"THIS IS MESSAGE A" "THIS IS MESSAGE B" "INVALID COMMAND"
	.bss (RW .lcomm .lcomm .lcomm	N) >0x00030000 Command_Input, 1,1 Message_Dest,Dest_Size,4 Stack,Stack_Size,4

Figure 2-1. Sample Program Source

System Base Table

The "sbt" section defines 70632 System Base Table containing the vectors for 70632 interrupts and exceptions. The sample program defines BRK instruction vector pointing to an address in the "text" section. This is requirement for emulation software breakpoints feature. Refer to "Using Software Breakpoints" section in this chapter for details.

Data Declarations

The "data" section defines the messages used by the program to respond to various command inputs. These messages are labeled **Message_A**, **Message_B**, and **Message_I**.

The Destination Area

The "bss" section declares memory storage for the command input byte (**Command_Input**), the destination area (**Message_Dest**), and the stack area.

Initialization

The program instructions from the **Init** label to the **Clear** label perform initialization. The stack pointer is set up and the addresses labeled **Command_Input** and **Message_Dest** are loaded into registers; R0 and R1.

Register R26 is set up to 20H for filling remaining locations after transferring a message to the destination area (**Message_Dest**) with blank.

Reading Input

The instruction at the **Clear** label clears any random data or previous commands from the **Cmd_Input** byte. The **Read_Input** loop continually reads the **Cmd_Input** byte to see if a command is entered (a value other than 0H).

Processing Commands

When a command is entered, the instructions from **Process_Comm** to **Command_A** determine whether the command was "A", "B", or an invalid command.

If the command input byte is "A" (ASCII 41H), execution is transferred to the instructions at **Command_A**.

If the command input byte is "B" (ASCII 42H), execution is transferred to the instructions at **Command_B**.

If the command input byte is neither "A" nor "B", an invalid command has been entered, and execution is transferred to the instructions at **Unrecognized**.

The instructions at **Command_A**, **Command_B**, and **Unrecognized** each load register R3 with the starting location of the appropriate message and register R4 with the length of the message to be displayed. Then, execution transfers to **Output** which writes the appropriate message to the destination location, **Message_Dest**. At the same time, the remaining locations are filled with blanks; the content of register R26.

Then, the program jumps back to read the next command.

Assembling and Linking the Sample Program

The sample program is written for the *HP 64879 70632 Assembler/Linker* hosted on HP-UX. You can use other software development tools to generate absolute files. When using these assembler/linker, a few changes must be made to the sample program. The PC Interface can load one of the following formats:

- HP64000 absolute.
- NEC COFF absolute.
- Raw HP64000 absolute.
- Intel hexadecimal.
- Tektronix hexadecimal.
- Motorola S-records.

Following commands were used to generate the absolute file with *HP* 64879 70632 Assembler/Linker. The assembler and linker are hosted on HP-UX.

\$as70616 -a cmd_rds.s >cmd_rds.lis<RETURN>
\$ld70616 -o cmd_rds.x -m cmd_rds.o > cmd_rds.map<RETURN>

Starting Up the 70632 PC Interface	If you have set up the emulator device table and the HP64700 shell environment variable as shown in the <i>HP 64700 Emulators PC</i> <i>Interface: User's Reference</i> (this is done automatically when you use the install program to load the PC Interface software on your computer), you can start up the 70632 PC Interface by entering the following command from the MS-DOS prompt:
	C> pcv70 <emulname> where <emulname> is emul_com1 if your emulator is connected to the COM1 port or emul_com2 if it is connected to the COM2 port. If you edited the \hp64700\tables\64700tab file to change the emulator name, substitute the appropriate name for <emulname> in the above command.</emulname></emulname></emulname>
	In the command above, pcv70 is the command to start the 70632 PC Interface; " <emulname></emulname> " is the logical emulator name given in the emulator device table. If this command is successful, you will see the display shown in figure 2-2. If this command is not successful, you will be given an error message and returned to the MS-DOS prompt. Error messages are described in the <i>PC Interface: User's Reference</i> manual.
Selecting PC Interface Commands	This manual tells you to "select" commands. You can select commands or command options by using the left and right arrow keys to highlight the option. Then press the Enter key. Or, you can simply type the first letter of that option. If you select the wrong option, press the ESC key to retrace the command tree.
	When a command or option is highlighted, the bottom line of the display shows the next level of options or a short message describing the current option.
Emulator Status	The emulator status is shown on the line above the command options. The PC Interface periodically checks the status of the emulator and updates the status line.

2-6 Getting Started

Emulation	
Analysis—	
STATUS: N70632Emulation reset Emulation trace halted	
Window System Register Processor Breakpoints Memory Config Analysis	
Active Delete Erase Load Open Store Utility Zoom	

Mapping Memory

Depending on the emulator model number, user mappable emulation memory consists of 508 or 1020 kilobytes, mappable in 4 Kbyte blocks. The emulation memory system does not introduce any wait states.

The memory mapper allows you to characterize memory locations. It allows you specify whether a certain range of memory is present in the target system or whether you will be using emulation memory for that address range. You can also specify whether the target system memory is ROM or RAM, and you can specify that emulation memory be treated as ROM or RAM. If you are using the emulator in in-circuit, additionally; you can choose whether the emulation accesses honor /READY or /BERR signals from the target system (wait or retry cycles are inserted if requested).

Note

Target system accesses of emulation memory are not allowed. Target system devices that take control of the bus (for example, external DMA controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory. Guarded memory accesses will generate "break to monitor" requests. Writes to ROM will generate "break to monitor" requests if the "Break on ROM write" configuration item is enabled (see the "Configuring the Emulator" chapter). The memory mapper allows you to define up to 8 different map terms.

Which Memory Locations Should Be Mapped?

Typically, assemblers generate relocatable files and linkers combine relocatable files to form the absolute file.

The linker load map listing will show what locations your program will occupy in memory. For example, the HP 64879 linker load map listing for the sample program is shown in figure 2-3.

output section	input section	virtual address	size	
sbt	sbt	00000000 00000000	00000038 00000038	cmd_rds.o
avail		0000038	0000ffc8	
.text	.text	00010000 00010000	00000070 00000070	cmd_rds.o
avail		00010070	0000ff90	
.data	.data	00020000 00020000	00000034 00000034	cmd_rds.o
avail		00020034	0000ffcc	
.bss	.bss	00030000 00030000	00000134 00000134	uninitialized cmd_rds.o
avail		00030134	fffcfecb	

LINK EDITOR MEMORY MAP

Figure 2-3. Load Map Listing for the Sample Program

2-8 Getting Started

From the load map listing, you can see that the sample program occupies locations in three address ranges. The system base table area, which contains the breakpoint instruction trap vector, occupies locations 0H through 0fffH. The program area, which contains the opcodes and operands which make up the sample program, occupies locations 10000H through 1006fH. The data area, which contains the ASCII values of the messages the program displays, is occupies locations 20000H through 20033H. The destination area, which contains the contains the command input byte and the locations of the message destination and the stack, occupies locations 30000H through 30133H.

Four mapper terms will be specified for the example program. Since the program writes to the destination locations, the mapper block containing the destination locations should not be characterized as ROM memory.

To map memory for the sample program, select:

Config, Map, Modify By default, unmapped area attribute is defined as target RAM. However, when emulation without plugging the emulator into your target system, unmapped area should be defined as "guarded" to detect the illegal accesses to the area.

As the cursor is in the "Unmapped memory type" field now, press the **TAB** key to select the **grd** (guarded memory) type.

Using the arrow keys, move the cursor to the "address range" field of term 1. Enter:

0..0fff

Move the cursor to the "memory type" field of term 1, and press the **TAB** key to select the **eram** (emulation RAM) type.

Move the cursor to the "address range" field of term 2 and enter:

10000..10fff

Move the cursor to the "memory type" field of term 2, and press the **TAB** key to select the **erom** (emulation ROM) type.

Move the cursor to the "address range" field of term 3 and enter:

20000..20fff

Move the cursor to the "memory type" field of term 3, and press the **TAB** key to select the **erom** (emulation ROM) type.

Move the cursor to the "address range" field of term 4 and enter:

30000..30fff

Move the cursor to the "memory type" field of term 4, and press the **TAB** key to select the **eram** (emulation RAM) type.

To save your memory map, use the right arrow key or the **Enter** key to exit the field in the lower right corner. (The **End** key on Vectra keyboards moves the cursor directly to the last field.) The memory configuration display is shown as follows.

	———Мемогу	Map Conf	iguration—		
	Unmapped	memory	type grd		
Term 1 00fff 2 1000010fff 3 2000020fff 4 3000030fff 5 Empty 6 Empty 7 Empty 8 Empty	Address Range			Мемогу Туре (eram erom eram grd grd grd grd	Attribute
+t↓→ ∶Interfield	movement Ctrl	←→ ∶Fie	ld editing	TAB :Scroll	choices
STATUS: N70632Emul	ation reset		Emulation	n trace halted	

Use the TAB and Shift-TAB keys to pick memory type for mapped range.

Figure 2-4. Memory Map Configuration

When mapping memory for your target system programs, you may wish to characterize emulation memory locations containing programs and constants (locations which should not be written to) as ROM.

This will prevent programs and constants from being written over accidentally, and will cause breaks when instructions attempt to do so.

2-10 Getting Started

Loading Programs into Memory	If you have already assembled and linked the sample program, you can load the absolute file by selecting:			
	Memory, Load			
File Format	Use Tab and Shift-Tab to select the format of your absolute file. The emulator accepts absolute files in the following formats:			
	■ HP64000 absolute.			
	■ NEC COFF absolute.			
	Raw HP64000 absolute.			
	Intel hexadecimal.			
	■ Tektronix hexadecimal.			
	■ Motorola S-records.			
	For this tutorial, choose the NEC_COFF format.			
Memory Type	The second field allows you to selectively load the portions of the absolute file which reside in emulation memory, target system memory, or both.			
	Since emulation memory is mapped to for sample program locations, you can select either " Emulation " or " Both ".			
Force Absolute File Read	This option is only available for the HP64000 and NEC COFF formats. It forces the file format readers to regenerate the emulator absolute file (.hpa) and symbol database (.hps) before loading the code. Normally, these files are only regenerated whenever the file you specify (the output of your language tools) is newer than the emulator absolute file and symbol database.			
	For more information, refer to the File Format Readers appendix.			

File Format Options	Some of the formats, such as the NEC COFF format, have special options. Refer to the File Format Readers appendix of this manual for more information. For this example, you do not need to change this configuration.
Absolute File Name	Enter the name of your absolute file (" cmd_rds.x " in this example) in the last field, and press Enter to start the memory download.
Displaying Symbols	The following pages show you how to display global and local symbols for the sample program. For more information on symbol display, refer to the <i>PC Interface Reference</i> .
Displaying Global Symbols	When you load HP64000 or NEC COFF format absolute files into the emulator, the corresponding symbol database is also loaded.
	The symbol database also can be loaded with the "System, Symbols, Global, Load" command. Use this command when you load multiple absolute files into the emulator. You can load the various symbol databases corresponding to each absolute file. When you load a symbol database, information from a previous symbol database is lost. That is, only one symbol database can be present at a time.
	After a symbol database is loaded, both global and local symbols can be used when entering expressions. You enter global symbols as they appear in the source file or in the global symbols display.
	To display global symbols, select:
	S ystem, S ymbols, G lobal, D isplay The symbols window automatically becomes the active window because of this command. You can press < CTRL > z to zoom the window. The resulting display follows.

	Symbols
Modules	
cmd_rds	
Address	Symbol
000030000	Command Input
300010000	Init
000030004	Message Dest
000020034	edata
00030134	end
300000038	esbt
300010070	etext
TATUS: N700	532Emulation reset Emulation trace halted
indou Syst	tem Register Processor Breakpoints Memory Config Analysis
Command fil	le Wait MS-DOS Log Terminal Symbols Exit

The global symbols display has two parts. The first part lists all the modules that were linked to produce this object file. These module names are used by you when you want to refer to a local symbol, and are case-sensitive. The second part of the display lists all global symbols in this module. These names can be used in measurement specifications, and are case-sensitive. For example, if you wish to make a measurement using the symbol **Cmd_Input**, you must specify **Cmd_Input**. The strings **cmd_input** and **CMD_INPUT** are not valid symbol names here.

Loading and Displaying Local Symbols

To display local symbols, select:

System Symbols Local Display Enter the name of the module you want to display (from the first part of the global symbols list; in this case, **cmd_rds**) and press **Enter**. The resulting display follows.

Symbols					
Address	Symbo 1				
000010019	Clear				
000010033	Command_A				
000010043	Command_B				
00001006D	Dummy_Text				
000020022	Invalid_Input				
000020000	Message_A				
000020011	Message_B				
000020031	Message_End				
000010061	Output				
000010025	Process_Comm				
00001001D	Read_Input				
000030034	Stack				
00001006B	Text_End				
000010053	Unrecognized				
STATUS: N70632Emulation reset Emulation trace halted					
Window Syst	tem Register Processor Breakpoints Memory Config Analysis				
Command_fi	Ie Wait MS-DOS Log Terminal Symbols Exit				

After you display local symbols with the "System Symbols Local Display" command, you can enter local symbols as they appear in the source file or local symbol display. When you display local symbols for a given module, that module becomes the default local symbol module.

If you have not displayed local symbols, you can still enter a local symbol by including the name of the module:

module_name:symbol Remember that the only valid module names are those listed in the first part of the global symbols display, and are case-sensitive for compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that module becomes the default local symbol module, as with the "System Symbols Local Display" command.

Local symbols must be from assembly modules that form the absolute whose symbol database is currently loaded. Otherwise, no symbols will be found (even if the named assembler symbol file exists and contains information). One thing to note: It is possible for a symbol to be local in one module and global in another, which may result in some confusion. For example, suppose symbol "XYZ" is a global in module A and a local in module B and that these modules link to form the absolute file. After you load the absolute file (and the corresponding symbol database), entering "XYZ" in an expression refers to the symbol from module A. Then, if you display local symbols from module B, entering "XYZ" in an expression refers to the symbol from module B, **not the global symbol**. Now, if you again want to enter "XYZ" to refer to the global symbol from module A, you must display the local symbols from module A (since the global symbol is also local to that module). Loading local symbols from a third module, if it was linked with modules A and B and did not contain an "XYZ" local symbol, would also cause "XYZ" to refer to the global symbol from module A.

Transfer Symbols to the Emulator

You can use the emulator's symbol-handling capability to improve measurement displays. You do this by transferring the symbol database information to the emulator. To transfer the global symbol information to the emulator, use the command:

System Symbols Global Transfer Transfer the local symbol information for all modules by entering:

System Symbols Local Transfer All You can find more information on emulator symbol handling commands in the *Emulator PC Interface Reference*.

Displaying Memory in Mnemonic Format

Once you have loaded a program into the emulator, you can verify that the program has indeed been loaded by displaying memory in mnemonic format. To do this, select:

Memory, Display, Mnemonic

Enter the address range "**10000..1006B**". (You could also specify this address range using symbols, for example,

"Init..cmd_rds:Text_End".) The Emulation window automatically becomes the active window as a result of this command. You can press <CTRL>z to zoom the window. Use the Home key to view the memory contents from the top of the display. The resulting display follows.

Address	Symbol	Mnemonic	
 000010000@r	Init	MOV.W	 #00030134H, SP
000010007@r	-	MOVEA.W	Command_Input,R0
00001000e@r	-	MOVEA.W	Message_Dest,R1
000010015@r	-	MOV.B	#20H, R26
0000100190r	cmd_rds:Clear	MOV.B	#0H,[R0]
00001001d@r	_rds:Read_Input	MOV.B	[R0], R2
000010020©r		CMP.B	#0H, R2
0000100230r	-	BE/Z	cmd_rds:Read_Input
000010025©r	ds:Process_Comm	CMP.B	#41H, R2
0000100290r	-	BE/Z	cmd_rds:Command_A
00001002b©r	-	CMP.B	#42H, R2
00001002f@r	-	BE/Z	смd_rds:Command_B
0000100310r	-	BR	cmd_rds:Unrecognized
0000100330r	d_rds:Command_A	MOVEA.W	смd_rds:Message_A,R3
00001003a©r	-	MOV.W	#00000011H,R4
0000100410r	-	BR	cmd_rds:Output
0000100430r	d_rds:Command_B	MOVEA. W	cmd_rds:Message_B,R3
STATUS: N7063	2Emulation reset		Emulation trace halted
lindou Syste Display Mod	m Register Proce ify Load Store	essor Brea Copy Find	kpoints <mark>Memory</mark> Config Analysis Report

2-16 Getting Started

Stepping Through the Program

The emulator allows you to execute one instruction or a number of instructions with step command. To begin stepping through the sample program, select:

Processor, Step, Address

Enter a step count of 1, enter the symbol **Init** (defined as a global in the source file), and press **Enter** to step from program's first address, 10000H. The Emulation window remains active. Press <CTRL>z to view a full screen of information. The executed instruction, the program counter address, and the resulting register contents are displayed as shown in the following.

		EMULATIO	on	
00001004a@r -	-	MOV.W	#00000011H, R4	
000010051@r -	-	BR	cmd_rds:Output	
0000100530r d	ds:Unrecognized	MOVEA. W	cmd_rds:Invalid_Inp	u, R3
00001005a@r -	-	MOV.W	#0000000fH,R4	
0000100610r d	cmd_rds:Output	MOVCFU.B	[R3], R4, Message_Des	t,#30H
00001006b@r 1	nd_rds:Text_End	BR	cmd_rds:Clear	
000010000@r	Init	MOU.W i	#00030134H, SP	
PC = 000010007	70r			
pc= 00010007	7 sp= 00030134	fp= 0000000	0 ap= 00000000 psw=	10000000
r0= 0000000	0 r1= 00000000	r2= 0000000	0 r3= 00000000 r4=	00000000
r5= 0000000	00000000 r6=	r7= 0000000	0 r8= 00000000 r9=	00000000
r10= 0000000	0 r11= 00000000	r12= 0000000	0 r13= 00000000 r14=	00000000
r15= 0000000	0 r16= 00000000	r17= 0000000	0 r18= 00000000 r19=	00000000
r20= 0000000	0 r21= 00000000	r22= 0000000	0 r23= 00000000 r24=	00000000
r25= 0000000	0 r26= 00000000	r27= 0000000	0 r28= 00000000 r29=	00000000
r30= 0000000	0 r31= 00030134			
STATUS: N70632-	Running in mor	nitor	Emulation trace h	alted
Window System	Register Proc	essor Break	points Memory Conf	ig Analysis
Go Break Res	set I/O CMB S	Step		
	•			
Noto	Von d	annot display r	existers if the processo	is reset
note	I I UUC	annot display I	egisters if the processor	15 10501.

Use the "**P**rocessor **B**reak" command to cause the emulator to start executing in the monitor.

You can display registers while the emulator is executing a user program (if execution is not restricted to real-time); emulator execution will temporarily break to the monitor.

To continue stepping through the program, you can select:

Processor, **S**tep, **P**c After selecting the command above, you have to opportunity to change the previous step count. If you wish to step the same number of times, you can press **Enter** to start the step.

To save time when single-stepping, you can use the function key macro <F1>, which executes the command:

Processor Step Pc 1

For more information, see the *Emulator PC Interface Reference* chapter on Function Key Macros.

To repeat the previous command, you can press <CTRL>r.

Specifying a Step Count

If you wish to continue to step a number of times from the current program counter, select:

Processor, **S**tep, **P**c The previous step count is displayed in the "number of instructions" field. You can enter a number from 1 through 99 to specify the number times to step. Type **5** into the field, and press Enter. The resulting display follows.

	Emulat	ion	
r30= 00000000 r31= 00030134			
0000100150r - 0000100190r cmd_rds:Clear 0000100100r mdc:Pood Input	MOU.B MOU.B MOU.B	#20H, R26 #0H, [R0]	
000010010020@r - 000010023@r - 000010023@r -	CMP.B BE/Z	#0H, R2 cmd rds: Read Input	
PC = 00001001d@r pc= 0001001d sp= 00030134 r0= 00030000 r1= 00030004 r5= 00000000 r6= 00000000 r10= 00000000 r11= 00000000 r15= 00000000 r16= 00000000 r20= 00000000 r21= 00000000	fp= 000000 r2= 000000 r7= 000000 r12= 000000 r17= 000000 r22= 000000		u=10000001 4=00000000 9=00000000 4=00000000 9=00000000 4=00000000
r25= 00000000 r26= 00000020 r30= 00000000 r31= 00030134	r27= 000000	00 r28= 0000000 r2	9=0000000
STATUS: N70632Running in mo	nitor	Emulation trace	halted
Jindow System Register Pro	cessor Brea	kpoints Memory Co	nfig Analysis
Go Break Reset I/O CMB	Step		

2-18 Getting Started
Modifying Memory

The preceding step commands show the sample program is executing in the **Read_Input** loop, where it continually reads the command input byte to check if a command has been entered. To simulate the entry of a sample program command, you can modify the command input byte by selecting:

Memory, Modify, Bytes

Now enter the address of the memory location to be modified, an equal sign, and new value of that location, for example,

"Command_Input=41". (The Command_Input label was defined as a global symbol in the source file.)

To verify that 41H was indeed written to **Command_Input** (30000H), select:

Memory, Display, Bytes

Type the address 30000 or the symbol **Command_Input**, and press **Enter**. This command will automatically activate the Emulation window. The resulting display is shown below.

	Emulation	n	
000010019©r cmd_rds:Clear	MOV.B #I	0H,[R0]	
00001001d@r _rds:Read_Input	MOV.B []	R0], RZ	
000010020@r -	CMP.B #1	0H, R2	
000010023@r -	BE/Z ci	md_rds:Read_Input	
PC = 00001001d@r			
pc= 0001001d sp= 00030134	fp= 00000000	ap= 00000000 psw=10000001	
r0= 00030000 r1= 00030004	r2= 00000000	r3= 00000000 r4=00000000	
r5= 00000000 r6= 00000000	r7= 00000000	r8= 00000000 r9=00000000	
r10= 00000000 r11= 00000000	r12= 00000000	r13= 00000000 r14=00000000	
r15= 00000000 r16= 00000000	r17= 00000000	r18= 00000000 r19=00000000	
r20= 00000000 r21= 00000000	r22= 00000000	r23= 00000000 r24=00000000	
r25= 00000000 r26= 00000020	r27= 00000000	r28= 00000000 r29=00000000	
r30= 00000000 r31= 00030134			
Address Data (hex)		Ascii	
 000030000@r 41		 А	
STATUS: N70632Running in mor	nitor	Emulation trace halted	
Window System Register Proc	essor Breakp	oints Memory Config Analysis	

Display Modify Load Store Copy Find Report

You can continue to step through the program as shown earlier in this chapter to view the instructions which are executed when an "A" (41H) command is entered.

Getting Started 2-19

Running the Program	To start the emulator executing the sample program, select:		
	P rocessor, G o, P c The status line will show that the emulator is "Running user program".		
Searching Memory for Data	You can search the message destination locations to verify that the sample program writes the appropriate messages for the allowed commands. The command "A" (41H) was entered above, so the "THIS IS MESSAGE A" message should have been written to the Message_Dest locations. Because you must search for hexadecimal values, you will want to search for a sequence of characters which uniquely identify the message, for example, " A" or 20H and 41H. To search the destination memory location for this sequence of characters, select: Memory , F ind Enter the range of the memory locations to be searched, " 3000430033 " (You can also enter " Message DestMessage Dest+2f ".), and enter the data " 20.41 " (or, "		
	 ","A"). The resulting message shows you that the message was indeed written as it was supposed to have been. To verify that the sample program works for the other allowed commands, you can modify the command input byte to "B" and search for "B" (20H and 42H), or you can modify the command input byte to "C" and search for "D C" (44H, 20H, and 43H). 		
Breaking into the Monitor	To break emulator execution from the sample program to the monitor program, select:		
	Processor, Break		

2-20 Getting Started

	The status line shows that the emulator is "Running in monitor". While the break will occur as soon as possible, the actual stopping point may be many cycles after the break request (dependent on the type of instruction being executed and whether the processor is in a hold state).
Using Software Breakpoints	Software breakpoints are realized by the 70632 BRK instruction. When you define or enable a software breakpoint, the emulator will replace the opcode at the software breakpoint address with a breakpoint interrupt instruction (BRK).
	If the BRK interrupt was generated by a software breakpoint, execution breaks to the monitor, and the breakpoint interrupt instruction (BRK) is replaced by the original opcode. A subsequent run or step command will execute from this address.
Note	When using software breakpoints feature of the emulator, you must define the BRK instruction vector to point to an address where instruction fetches is allowed; typically in the program code area. In this sample program, the BRK instruction vector points to a "HALT" instruction. When a software breakpoint occurs, the emulator reads the BRK interrupt vector, push the next PC and PSW to stack, fetch one word of instruction pointed by the vector same as the real CPU. And then, break occurs but the instruction, "HALT" in this example, will never be executed.
	There are some notices to use the software breakpoints features. Refer to the "Software Breakpoints" section of the "Using the Emulator" chapter.
Defining a Software Breakpoint	Now that software breakpoints are enabled, you can define software breakpoints. To define a breakpoint at the address of the Unrecognized label of the sample program (10053H), select: Breakpoints , A dd Enter the local symbol " cmd_rds:Unrecognized ". After the breakpoint is added, the breakpoint window becomes active and shows

Getting Started 2-21

that the breakpoint is set. You can add multiple breakpoints in a single command by separating each one with a semicolon. For example, you could type 2010;2018;2052 to set three breakpoints. Run the program by selecting:

Processor, **G**o, **P**c The status line shows that the emulator is running the user program. Modifying the command input byte to an invalid command (for example, 75H).

Memory, Modify, Byte Type "Command_Input=75". The following messages will be displayed.

ALERT: Software breakpoint: 000010053@r STATUS: Running in monitor

To continue program execution, select:

Processor, Go, Pc

Displaying Software Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display The resulting display shows that the breakpoint has been cleared.

r25= 00000000 r26= 00000020 r27= 00000000 r28= 00000000 r29=00000000 r30= 00000000 r31= 00030134 Data (hex) Address Ascii 000030000@r 41 A pattern match at address: 000030013@r Address Status Set 0000100530r Status Address Clear 0000100530r STATUS: N70632--Running user program Emulation trace halted Window System Register Processor Breakpoints Memory Config Analysis Display Add Remove Set Clear

2-22 Getting Started

Setting a Software Breakpoint	When a breakpoint is hit, it becomes disabled. To re-enable the software breakpoint, you can select:
	Breakpoints, Set, Single The address of the breakpoint you just added is still in the address field; to set this breakpoint again, press Enter. As with the "Breakpoints Add" command, the Emulation window becomes active and shows that the breakpoint is set.
Clearing a Software Breakpoint	If you wish to clear a software breakpoint that does not get hit during program execution, you can select:
	Breakpoints, Clear, Single The address of the breakpoint set in the previous section is still in the address field; to clear this breakpoint again, press Enter.
Using the Analyzer	The analyzer collects data at each pulse of a clock signal, and saves the data (a trace state) if it meets a "storage qualification" condition.
Resetting the Analysis Specification	To be sure that the analyzer is in its default or power-up state, select:
	Analysis, Trace, Reset
Specifying a Simple Trigger	Suppose you wish to trace the states of the sample program which follow the read of a "B" (42H) command from the command input byte. To do this, you must modify the default analysis specification by selecting: Analysis, Trace, Modify
	The emulation analysis specification is shown. Use the right arrow key to move to the "Trigger on" field. Type " a " and press Enter .
	You'll enter the pattern expression menu. Press the up arrow key until the addr field directly opposite the pattern $a=$ is highlighted. Type the

Getting Started 2-23

address of the command input byte, using either the global symbol **Command_Input** or address 30000 hex, and press **Enter**.

The "Data" field is now highlighted. Type **0XXXXX42** hex and press **Enter**. 42H is the value of the "B" command and the "X"s specify "don't care" values. When 42H is read from the command input byte (30000H), a lower byte read is performed because the address is a multiple of four.

The status qualifiers are defined as follows.

70632 Analysis Status Qualifiers

This trace command example uses the status qualifier "**read**". The following analysis status qualifiers also can be used with the 70632 emulators.

fetch	0x1xxxxxxxxxx011x	code fetch
fetchbr	0x1xxxxxxxxx0111	code fetch after branch
read	01xxxxxxxxxxxxxxxxx	read
write	00xxxxxxxxxxxxxx	write
data	0xxxxxxxxxx0011	data access (read/write)
io	0xxxxxxxxxxx1011	i/o access (read/write)
exec	0xxxxxxxxx0000	execution state
sdata	0xxxxxxxxxxx0010	data access (read/write) with short path
sysbase	0xxxxxxxxxxx0100	system base table access
trans	0xxxxxxxxxx0101	translation table access (read/write)
coproc	0xxxxxxxxxx1000	co-processor access(read/write)
shortrd	0x1xxxxxxxxx0010	data access read with short path
shortwr	0x0xxxxxxxxx0010	data access write with short path
iord	0x1xxxxxxxxx1011	i/o access read
iowr	0x0xxxxxxxx1011	i/o access write
transrd	0x1xxxxxxxxx0101	translation table access read
transwr	0x0xxxxxxxxx0101	translation table access write
coprocrd	0x1xxxxxxxxx1000	co-processor access read
coprocwr	0x0xxxxxxxx1000	co-processor access write
fault	0xxxxxxxxxx1100	machine fault acknowledge
halt	0xxxxxxxxxx1101	halt acknowledge
intack	0xxxxxxxxxxx1110	interrupt acknowledge
grdacc	0xxxxxxxxx0x0xxxx	guarded memory access
wrrom	0x0xxxxxx0xx0xx0	write to ROM
monitor	0xxxxxxxxxx0xxxx	background monitor cycle
lock	0xxxxxx0xxxxxx	bus lock
retry	00xxxxxxxxxxxxxx	retry
hold	0xxxxxxxxxx0001	bus hold

2-24 Getting Started

TAB selects a pattern or press ENTER to modify this field and the pattern values

Figure 2-5. Modifying the Trace Specification

Figure 2-6. Modifying the Pattern Specification

Getting Started 2-25

Note	You can combine qualifiers to form more specific qualifiers. For example, the expression read&data matches only data reads. See the <i>Emulator PC Interface Reference</i> for more information.
	Select the read status and press Enter . Figure 2-5 and figure 2-6 show the resulting analysis specification. To save the new specification, use End Enter to exit the field in the lower right corner. You'll return to the trace specification. Press End to move to the trigger spec field. Press Enter to exit the trace specification.
Starting the Trace	To start the trace, select:
	Analysis, Begin A message on the status line will show you that the trace is running. You would not expect the trigger to be found because no commands have been entered. Modify the command input byte to "B" by selecting:
	Memory, Modify, Bytes Enter "Command_Input=42". The status line now shows that the trace is complete. (If you have problems, you may be running in monitor. Select Processor Go Pc to return to the user program.)
Displaying the Trace	To display the trace, select:
	Analysis, Display You are now given two fields in which to specify the states to display. Use the right arrow key to move the cursor to the "Ending state to display" field. Type 40 into the ending state field, press Enter, and use <ctrl>z to zoom the Analysis window.</ctrl>
Note	If you choose to dump a complete trace into the trace buffer, it will take a few minutes to display the trace.

2-26 Getting Started

The resulting trace is similar to trace shown in the following display. (You may need to press the **Home** key to get to the top of the trace.)

			Analysis	
Line	addr,H	data,H	uPD70632 Mnemonic,H	count,
	ad_Input	ffffff4Z	No fetch cycle found	 ********
0	nd Input	ffffff4Z	42H data read	******
1	00010020	64226a14	No fetch cycle found	******
Z	00010030	44226a14	fetch	*****
3	00010023	44226a14	No fetch cycle found	******
4	00010034	ffcdf223	fetch	******
5	ess Comm	ffcdf223	No fetch cycle found	*****
6	00010029	ffcdf223	No fetch cycle found	******
7	00010038	242d0000	fetch	******
8	0001002ь	242d0000	No fetch cycle found	******
9	0001003c	000011f4	fetch	******
10	0001002f	44ffffff	No fetch cycle found	******
11	ommand B	44ffffff	fetch aft br	******
12	00010044	ffcef223	fetch	******
13	00010048	242d0000	fetch	******
14	0001004c	000011f4	fetch	*****
15	00010050	44106a00	fetch	*****
STATUS: N	70632Runr	ing user p	program Emulation trace co	mplete
Window Sy	ystem Regi	ster Proc	essor Breakpoints Memory Confi	Analysis
Begin Ha	alt CMB F	'ormat Tra	ce Display	
		.		

Line 0 in the trace list above shows the state which triggered the analyzer. The trigger state is always on line 0. The other states show the exit from the **Command_Input** loop, the **Process_Comm** and **Command_B** instructions.

Press the **PgDn** key to see more lines of the trace.

The resulting display shows the **Command_B** instructions and the branch to **Out_put** and the beginning of the instructions which move the "THIS IS MESSAGE B" message to the destination locations (**Message_Dest**).

			Analy	sis	
15	00010050	44106a00		fetch	******
16	00010054	ffcff223		fetch	******
17	оммand_В	242d0000	MOVEA.W	cmd_rds:Message_B,R3	******
18	00010058	242d0000		fetch	******
19	0001004a	00000ff4	MOV.W	#00000011H,R4	******
20	0001005c	00000ff4		fetch	******
Z1	s:Output	638a58ff		fetch aft br	******
22	00010051	ffa3f284	BR	cmd_rds:Output	******
23	00010064	ffa3f284		fetch	******
24	00010068	6a300001		fetch	******
25	0001006c	000000ae		fetch	******
26	etext	efffffb7		fetch	******
27	00010074	dfffe9f3		fetch	******
28	s:Output	dfffe9f3	MOVCFU. B	[R3],R4,Message_Dest,#30H	******
29	00010078	d5655757		fetch	******
30	essage_B	ffff54ff	54.	.H data read	******
31	00020012	ff48ffff	48	.H data read	******
32	age_Dest	00000054	5	4H data write	******
33	00020013	49ffffff	49	.H data read	******
Status: N7	'0632Runn	ing user pr	rogram	Emulation trace complete	9
Windou Sy	stem Regi	ster Proce	essor Brea	kpoints Memory Config Ana	lysis
Begin Ha	lt CMB F	'ormat Trac	e Display	l	

Changing the Trace Format

You can modify the trace list format to suit your needs. You can:

- Widen the address column to accommodate longer symbol names.
- Change the port base; to octal; for example.
- Change the count from relative to absolute.

To change the trace format, select:

Analysis, Format

The bottom part of the "Analysis, Format" display is used to specify which trace labels appear in which column of the display. Several trace labels are predefined for the internal emulation analyzer.

The default trace display format for the 70632 emulator includes the trace line number (which is always displayed), the hexadecimal address, the 70632 mnemonic and counter field. The default width of the address column is eight characters. The counter field is for displaying either time or occurrence of bus states. By default, analyzer

counter is turned off because the clock rate of bus sampling is high-speed. Therefore, the counter field is displayed with "*******". You may want to widen the address column to accommodate longer symbol names instead of the senseless counter field.

You can change this by specifying the address column with the optional width parameter. A width of 18 characters is often wide enough to accommodate most symbol names.

Move the cursor to the "Width" field of the addr trace label. Enter 18.

Use the down arrow key to move to the field labeled "**count**." Press **Tab** until it says "--**OFF**--" and press **End**, then **Enter**.

If you display the trace list with the "Analysis, **D**isplay" command, the trace will look like the following.

Use the TAB and Shift-TAB keys to select a label or enter a new one.

Figure 2-7. Modifying the Trace Format

Getting Started 2-29

Analysis			
Line	addr,H	data,H	uPD70632 Mnemonic,H
0	Command_Input	ffffff4Z	42H data read
1	00010020	64226a14	No fetch cycle found
Z	00010030	44226a14	fetch
З	00010023	44226a14	No fetch cycle found
4	00010034	ffcdf223	fetch
5	d_rds:Process_Comm	ffcdf223	No fetch cycle found
6	00010029	ffcdf223	No fetch cycle found
7	00010038	242d0000	fetch
8	0001002ь	242d0000	No fetch cycle found
9	0001003c	000011£4	fetch
10	0001002£	44ffffff	No fetch cycle found
11	смd_rds:Соммand_В	44ffffff	fetch aft br
12	00010044	ffcef223	fetch
13	00010048	242d0000	fetch
14	0001004c	000011£4	fetch
15	00010050	44106a00	fetch
status: N7	0632Running user p	rogram	Emulation trace complete
Window Sy	stem Register Proc	essor Bre	akpoints Memory Config <mark>Analysis</mark>
Begin Ha	lt CMB Format Tra	ce Displa	y

Trigger Position

You can specify where the trigger state will be positioned with in the emulation trace list. The following three basic trigger positions are defined.

- Start
- Center
- End

When **Start** trigger position is selected, the trigger is positioned at the start of the trace list. You can trace the states after the trigger state.

When **Center** trigger position is selected, the trigger is positioned at the center of the trace list. You can trace the states around the trigger state.

When **End** trigger position is selected, the trigger is positioned at the end of the trace list. You can trace the states before the trigger.

In the above section, you have traced the states of the program after a certain state, because the default trigger position was **Start**. If you want

2-30 Getting Started

to trace the states of the program around a certain state, you need to change the trigger position.

For example, if you wish to trace the transition to the command A process, change the trigger position to "**Center**".

To reset the analyzer specification defined in previous section by selecting:

Analysis, Trace, Reset Modify the analysis specification by selecting:

Analysis, Trace, Modify The emulation analysis specification is shown. Use the right arrow key to move to the "Trigger on" field. Type "a" and press **Enter**.

You'll enter the pattern expression menu. Press the up arrow key until the **addr** field directly opposite the pattern \mathbf{a} = is highlighted. Type the address of the command A process, using either the global symbol **Command_A** or address 10033, and press **Enter**.

To skip the data specification, press Enter key.

Now the "Status" field is highlighted. Use the **TAB** key to select the status "**exec**". The following display shows the resulting analysis specification.

Use the TAB and Shift-TAB keys to select a trigger position or enter a number.

Getting Started 2-31

To save the new specification, use **End Enter** to exit the field in the lower right corner. You'll return to the trace specification. Move the cursor to the "Trigger Position" field. Select the "**Center**" by pressing the **TAB** key.

Range (r) Label <mark>addr =</mark> Pat	thru data	stat
a = cmd_rds:Command_A b = c = d =	Set. 2	exec
e = f = g = h = arm		
Expressions have the form: <set1) a<br="">b,c,d,r, !r> and set2 consists of <e inimed with !(or) or ~(nor), but no</e </set1)>	<pression< td=""><td>. consists of Ka, thin a set can b or e ! f ! g ! h</td></pression<>	. consists of Ka, thin a set can b or e ! f ! g ! h
Pattern Expression: a	a bean broupies of a	

TAB selects a simple pattern or enter an expression or move up to edit patterns.

Press **End** to move to the trigger spec field. Press **Enter** to exit the trace specification.

To save the new specification, use the **Enter** key to exit out of the field in the lower right corner.

To start the trace, select:

Analysis, Begin

A message on the status line will show you that the trace is running. You would not expect the trigger to be found because no commands have been entered. Modify the command input byte to "A" (41H) with "Memory, Modify, Byte" command.

The status line now shows that the trace is complete.

To display the trace, select:

Analysis, Display and press End Enter.

2-32 Getting Started

Analysis				
Line	addr,H	data,H	uPD70632	Mnemonic,H
-7	00010029	 44fdffff	BE/Z	cmd_rds:Command_A
-6	cmd_rds:Command_A	44ffffff		fetch aft br
-5	00010034	ffcdf223		fetch
-4	00010038	242d0000		fetch
-3	0001003c	000011£4		fetch
-2	00010040	44206a00		fetch
-1	00010044	ffcef223		fetch
0	cmd_rds:Command_A	242d0000	MOVEA.W	смd_rds:Message_A,R3
1	00010048	242d0000		fetch
2	0001003a	000011£4	MOV.W	#00000011H,R4
3	0001004c	000011£4		fetch
4	cmd_rds:Output	638a58ff		fetch aft br
5	00010041	ffa3f284	BR	cmd_rds:Output
6	00010064	ffa3f284		fetch
7	00010068	6a300001		fetch
8	0001006c	000000ae		fetch
Status:	N70632Running user p	program	Emula	ation trace complete
Window Begin	System Register Proc Halt CMB Format Tra	cessor Bre ace Displa	akpoints Y	Memory Config Analysis

The transition states to the process for the command A are displayed.

For a Complete
DescriptionFor a complete description of the HP 64700 Series analyzer with the
PC Interface, refer to the HP 64700 Emulators PC Interface: Analyzer
User's Guide.

Getting Started 2-33

Copying Memory You can copy the contents of one range of memory to another. This is a useful feature to test things like the relocatability of programs. To test if the sample program is relocatable within the same segment, copy the program to an unused, but mapped, area of emulation memory. For example, select: Memory, Copy For program code area, enter 10000H through 1006dH (10000..1006d) as the source memory range to be copied, and enter 10800 as the destination address. Repeat the "Memory, Copy" command. For message data area, enter 20000H through 20031H (20000..20031) as the source memory range to be copied, and enter 20800 as the destination address. To verify that the program is relocatable, run it from its new address by selecting: Processor, Go, Address Enter **10800**. The status line shows that the emulator is "Running user program". You may wish to trace program execution or enter valid and invalid commands and search the message destination area (as shown earlier in this chapter) to further verify that the program is working correctly from its new address.

Resetting the Emulator

To reset the emulator, select:

Processor, Reset, Hold

The emulator is held in a reset state (suspended) until a "processor break", "processor go", or "processor step" command is entered. A CMB execute signal will also cause the emulator to run if reset.

You can also specify that the emulator begin executing in the monitor after reset instead of remaining in the suspended state. To do this, select:

Processor, Reset, Monitor

2-34 Getting Started

Exiting the PC Interface	There are two different ways to exit the PC Interface. You can exit the PC Interface using the "locked" option, which restores the current configuration next time you start the PC Interface. You can select this option as follows.	
	System Exit Locked Another way to execute the PC Interface is with the "unlocked" option, which presents the default configuration next time you start the PC Interface. Select this option with the following command.	
	S ystem E xit U nlocked Or, you can exit the PC Interface without saving the current configuration using the command:	
	S ystem E xit N o_Save See the <i>Emulator PC Interface Reference</i> for a complete description of the system exit options and their effect on the emulator configuration.	

Notes

3

Virtual Mode Emulation Topics

Introduction

The on-chip Memory Management Unit (MMU) of the 70632 microprocessor translates virtual addresses to physical (actual) addresses that are placed on the processor address bus. This chapter shows you how to use the emulator when the 70632 MMU is active.

This chapter:

- Describes the sample program used for this chapter's examples.
- Shows you how to enter emulation commands to view execution of the sample program. The commands described in this chapter include:
 - loading the sample program files into the emulator.
 - using virtual address expression in command lines.
 - displaying on-chip MMU registers and privilege registers.
 - displaying address translation tables.
 - displaying TCB.
 - using software breakpoint.
 - using XMMU function.
 - using the analyzer.
 - specifying address mode with suffix.

Sample Program for Virtual Mode Emulation

The sample program consists of the following files.

- OS.S
- task_a.s
- task_b.s

These are listed in Figure 3-1 through 3-3. The sample program is a multi-task system which consists of a simple operating system and two tasks. Each of two tasks transfers its own message from an independent area to a common area.

.file	"os.s"
.equ	isp,0
.equ	10sp,1
.equ	llsp,2
.equ	12sp,3
.equ	13sp,4
.equ	sbr,5
.equ	tr,6
.equ	sycw,7
.equ	tkcw,8
.equ	pir,9
.equ	psw2,15
.equ	atbr0,16
.equ	atlr0,17
.equ	atbr1,18
.equ	atlr1,19
.equ	atbr2,20
.equ	atlr2,21
.equ	atbr3,22
.equ	atlr3,23
.equ	trmod, 24
.equ	adtr0,25
.equ	adtr1,26
.equ	adtmr0,27
.equ	adtmr1,28
0.001	Storik Size 0x1000
.equ	Stack_Size, 0x20
.equ	Dest_Size, 0x20
alobi	Svs SBT, Current Task, Num Of Task, TCB Entry, ATEO
alobi	ATEL A. ATEL B. PTEO, PTEL A. PTEL B. SVS Stack, SVS Init
.globl	Setup Task, Start Ini Task, Svs Trap, Switch Task, Message Dest
	.file .equ .equ .equ .equ .equ .equ .equ .eq

Figure 3-1. Sample Program Source os.s

Que CDT.	.data	"sys_sbt" (RW) >0x0000000
575_551.	.org .word .org .word	0x34 Dummy_Text 0xc0 Sys_Trap
Current_Task: Num_Of_Task:	.data .word .word	"sys_tcb" (RW) >0x00001000 0 2
TCB_Entry:	.word .word .word .word .word .word	TCB_A 0x7f000000 0x0000000 0x40000000 0x40002000 0
	.word .word .word .word .word .word	TCB_B 0x7f000000 0x00000000 0x4000000 0x40002000 0
TCB_A:	.word .space .word	0x0000e000 8*4 0x00002009,0x0000000
TCB_B:	.word .space .word	0x0000e000 8*4 0x00002011,0x00000000
ATE0:	.data .word	"sys_ate" (RW) >0x00002000 0x00003003,0x00000500
ATE1_A: ATE1_B:	.word .word	0x00003103,0x00000300 0x00003203,0x00000300
PTE0:	.data .word .word .word .word .word .word	"sys_pte" (RW) >0x00003000 0x00000e05 0x00001e05 0x00002e05 0x00003e05 0x00004e05 0x00004e05 0x00005e05
PTE1_A:	.org .word .word .word .word	0x100 0x00007e05 0x00008e05 0x00009e05 0x00006e05
PTE1_B:	.org .word .word	0x200 0x0000ae05 0x0000be05

Figure 3-1. Sample Program Source os.s (Cont'd)

Virtual Mode Emulation Topics 3-3

	.word .word	0x0000ce05 0x00006e05
	.bss .lcomm	"sys_stk" (RW) >0x00004000 Sys_Stack,Stack_Size,4
	.text .align	"sys_text" (RX) >0x00005000 4
Sys_Init:	mov.w ldpr	#Sys_Stack+Stack_Size,sp #Sys_SBT,#sbr
	ldpr ldpr ldpr ldpr ldpr	<pre>#0x2001,#atbr0 #0x00000000,#atlr0 #0,#atbr1 #0,#atbr2 #0,#atbr3</pre>
	ldpr	#0x2171,#sycw
Setup_Task:	mov.w mov.w	Num_Of_Task,r0 #TCB_Entry,r1
Setup_Task_0:	ldtask mov.w mov.w mov.w mov.w add.w dbr	<pre>4[r1],[r1] 0x10[r1],r2 #0,[-r2] 8[r1],[-r2] 12[r1],[-r2] r2,4[[r1]] #0x18,r1 r0,Setup_Task_0</pre>
Start_Ini_Task:	ldtask retis	TCB_Entry+4,TCB_Entry #4
Sys_Trap:	.align mov.w mov.w mov.w sttask inc.w cmp.w jnz xor.w	4 Current_Task,r0 r0,r2 #0c6,r2 #TCB_Entry,r1 4[r1](r2) r0 r0,Num_Of_Task Sys_Trap_0 r0.r0
Sys_Trap_0:	mov.w mul.w ldtask	r0,Current_Task #0x6,r0 4[r1](r0),[r1](r0)
Switch_Task:	retis	#4
Dummy_Text:	halt	
	.bss .lcomm	"shr_mem" (RW) >0x40003000 Message_Dest, Dest_Size,4

Figure 3-1. Sample Program Source os.s (Cont'd)

3-4 Virtual Mode Emulation Topics

	.file	"task_a.s"
	.equ .equ .equ	Stack_Size,0x1000 Message_Dest,0x40003000 Dest_Size,0x20
	.globl	Transfer_A, Stack_A, Message_A
Transfer_A: Trans_A_End:	.text mov.w mov.w movcfu. trap jmp	"text_a" (RW) >0x40000000 #' ',r26 #Message_A_End-Message_A,r24 b Message_A,r24,/Message_Dest,#Dest_Size #0xa0 Transfer_A
	.bss .lcomm	"stack_a" (RW) > 0x40001000 Stack_A,Stack_Size,4
Message_A: Message_A_End:	.data .str	"data_a" (RW) >0x40002000 "THIS IS TASK A MESSAGE."

	.file	"task_b.s"
	.equ .equ .equ	Stack_Size,0x1000 Message_Dest,0x40003000 Dest_Size,0x20
	.globl	Transfer_B, Stack_B, Message_B
Transfer_B: Trans_B_End:	.text mov.w mov.w movcfu.k trap jmp	<pre>"text_b" (RW) >0x40000000 #' ',r26 #Message_B_End-Message_B,r24 p Message_B,r24,/Message_Dest,#Dest_Size #0xa0 Transfer_B</pre>
	.bss .lcomm	"stack_b" (RW) > 0x40001000 Stack_B,Stack_Size,4
Message_B: Message_B_End:	.data .str	"data_b" (RW) >0x40002000 "Task B : Running"

Figure 3-3. Sample Program Source task_b.s

OS.S

System Base Table The "sys_sbt" section defines the 70632 Break-point instruction trap vector and the Software trap 0 vector. The break-point instruction vector is required for the software breakpoint feature of the emulator. The software trap 0 vector is used for aborting task and transfering execution to the operating system.

Task Context Block The "sys_tcb" section defines task context block. The operating system manages tasks with this block.

The address labeled **Current_Task** contains a task number which is currently executed. Tasks are numbered from 0. This address initialized to 0 when the program is started. First, the task numbered 0 will be executed.

The address labeled **Num_Of_Task** contains the number of tasks the operating system manages. This program has two tasks, which are alternately executed. So this address contains the value "2".

The address labeled **TCB_Entry** contains task control blocks for each task. Each block consists of pointer and register list of TCB managed under the 70632 processor, and the initial values of registers PSW, PC and SP, and a word of flags.

The address labeled **TCB_A** contains the TCB, managed under the processor, for one of the tasks. This task will be called as "*Task A*" in this example. The task number mentioned above is "0".

The address labeled **TCB_B** contains the TCB for the other task, which will be called as "*Task B*". The task number is "1".

Area Table Entry The "ate" section defines the 70632 Area Table Entry.

The address labeled **ATE0** contains Area Table Entry (ATE) in Section 0. In this example, Section 0 is a common part between *Task A* and *Task B*. Section 0 has one area.

The address labeled **ATE1_A** and **ATE1_B** contains ATE in Section 1 for each task. Section 1 is independent between *Task A* and *Task B*. **ATE1_A** is for *Task A*, and **ATE1_B** is for *Task B*. Section 1 has one area each other.

Page Table Entry The "pte" section defines the 70632 Page Table Entry.

The address labeled **PTE0** contains Page Table Entry (PTE) in Section 0, Area 0. This area has six pages.

The addresses labeled **PTE1_A** and **PTE1_B** contains PTE in Section 1, Area 0 for each task. **PTE1_A** is for *Task A*, and **PTE1_B** is for *Task B*. Each area has four pages.

System Stack The "sys_stk" section defines a stack for the operating system. The stack is pointed by the register ISP.

System Program Code The "sys_text" section defines program codes for the operating system.

The program instructions from the **Sys_Init** label to the **Setup_Task** perform initialization of the operating system. The privilege registers are set up and the processor address mode is switched to virtual mode.

The instructions from the **Setup_task** to **Start_Ini_Task** perform initialization for the tasks. The stack for each task is set up with initial PC and PSW.

The instructions from **Start_Ini_Task** transfer the execution to initial task (*Task A*).

The instructions from **Sys_Trap** perform switching task. When a task aborts the execution, the processor executes from the address labeled **Sys_Trap**. The instructions store the task execution environment of the aborted task to corresponding TCB, update the **Current_Task** to the another task number to be switched, load the TCB, and switch the execution.

Common Destination Area The "common" section defines common destination of message from both *Task A* and *Task B* tasks.

The real location is at 00006000H through 00006fffH. Both locations of the *Task A* and *Task B* virtual space are at the same address range 40003000H through 40003fffH.

task_a.s

Task A Program Code The "text_a" section defines program codes of *Task A*. This section is located at 40000000H through 40000fffH by the on-chip MMU.

Task A transfers a message of character string data from the address labeled **Message_A** to the address labeled **Message_Dest**. After the transfer, the processor executes trap instruction. The trap instruction causes the execution aborting into the operating system. At this time, the execution of *Task A* is stopped until next dispatch by the operating system.

Task A Stack The "stack_a" section defines stack of *Task A*. The location of the *Task A* virtual space is at 40001000H through 40001fffH.

Task A Data The "data_a" section defines the message transferred by *Task A*.

The virtual location is 40002000H through 40002fffH.

task_b.s

Task B Program Code The "text_b" section defines program codes of *Task B*.

The virtual location is 40000000H through 40000fffH as same as *Task A*. *Task B* does same as *Task A* except for the message data, which is located at address labeled **Message_B**.

Task B Stack The "stack_b" section defines stack of *Task B*. The location of the *Task B* virtual space is at 40001000H through 40001fffH as same as *Task A*.

Task B Data The "data_b" section defines the message transferred by *Task B*.

This virtual location is 40002000H through 40002fffH as same as *Task A*.

Assembling and Linking the Sample Program

The sample program source files *os.s*, *task_a.s* and *task_b.s* are written for the *HP* 64879 70632 *Assembler/Linker* hosted on HP-UX.

Following commands were used to generate the absolute files with *HP* 64879 70632 Assembler/Linker.

```
$as70616 -a os.s> os.lis<RETURN>
$as70616 -a task_a.s> task_a.lis<RETURN>
$as70616 -a task_b.s> task_b.lis<RETURN>
$ld70616 -m -o os os.o >os.map<RETURN>
$ld70616 -m -o task_a task_a.o > task_a.map<RETURN>
$ld70616 -m -o task_b task_b.o >task_b.map<RETURN>
$cf70616 -m -o mul_task.a mul_task.cfc >mul_task.cfm<RETURN>
$ar70616 -x mul_task.a task_a.cf<RETURN>
$ar70616 -x mul_task.a task_a.cf<RETURN>
$ar70616 -x mul_task.a task_a.cf<RETURN>
$ar70616 -x mul_task.a task_b.cf<RETURN>
```

The assembler, linker and the other tools are hosted on HP-UX. File *mul_task.cfc* is a command file for the configurator *cf70616*. The command file is shown in Figure 3-4.

SPACE(OS) 0x0 < {os} SPACE(TASK_A) < {task_a} SPACE(TASK_B) < {task_b}</pre>

Figure 3-4. Configurator Command File

Setting up the Emulator	Start up the 70632 PC Interface by entering the following command from MS-DOS prompt:
	C>pcv70 <emulname> The following tasks are required to set up the emulator for the sample program <i>mul_task</i>.</emulname>
Mapping Memory	To map memory for the sample program, select:
	Config, Map, Modify To change the unmapped area attribute to "guarded", select grd by using the TAB key. The sample program <i>mul_task</i> occupies address range 0 through 0cfffH of actual memory.
	Using the arrow keys, move the cursor to the "address range" field of term 1. Enter:
	00cfff Move the cursor to the "memory type" field of term 1, and press the TAB key to select the eram (emulation RAM) type. To save your memory map, use the right arrow key or the Enter key to exit the field in the lower right corner. (The End key on Vectra keyboards moves the cursor directly to the last field.)

	Memory	Map Configu	ration——		
	Unмарре	d memory typ	e grd		
Term 1 00cfff 2 Empty 3 Empty 4 Empty 5 Empty 6 Empty 7 Empty 8 Empty	Address Rang	e		Мемогу Туре (eram grd grd grd grd grd grd grd	Attribute
+↑↓→ :Interfield STATUS: N70632Emul	movement Ctr ation reset	l ↔ :Field	editing Mulation t	TAB :Scroll race halted	choices
Add	ress range to	be mapped.	(ex. 1000.	. 1fff)	

3-10 Virtual Mode Emulation Topics

Loading Program Load the absolute file by selecting: into Memory

Memory, Load

Select the "**NEC_COFF**" for the format of the absolute files. Select the either "**Emulation**" or "**Any**" for the memory type to be loaded. The absolute files to be loaded into memory are *os.cf*, *task_a.cf* and *task_b.cf*. First, you must load *os.x*.

To load *os.cf*, select **yes** in the "Generate load address information in real addresses" field, and select **yes** in the "Add address attributes to the symbol file" field.

Type os.cf in the last field and press Enter.

The *task_a.cf* and *task_b.cf* should be loaded after its virtual space is set up.

Memory Load Configuration————————————————————————————————————	
File Format	NEC_COFF
Target memory type for memory load	Both
Force the absolute file to be read	no
Delete a leading underscore character from symbol names	yes
Generate load address information in real addresses	yes
Add address attributes to the symbol file	yes
Absolute file name	
ostc: ←↑↓→ :Interfield movement Ctrl ↔→ :Field editing TAB	Siscroll choices
TATUS: N70632Emulation reset Emulation trace	halted
Inter the name of an NEC COFF file.	

Figure 3-5. Loading the Sample Program into Memory

Displaying and Transferring the Symbols for os.x

The sample program is executed from the address **Sys_Init**. Display the global symbols by selecting:

System, Symbol, Global, Display
Type <CTRL>z to zoom the symbol window.

	Symbols
Modules	
05	
Address	Symbol
000002000@r	ATE0
000002008@r	ATE1_A
0000020100r	ATE1_B
000001000@r	Current_Task
000006000@r	Message_Dest
000001004@r	Num_Of_Task
0000003000@r	PTE0
0000031000r	PTE1_A
0000032000r	PTE1_B
0000050430r	Setup_Task
000005084@r	Start_Ini_Task
0000050BF@r	Switch_Task
000005000@r	Sys_Init
TATUS: N706	B2Emulation reset Emulation trace halted
lindow <mark>Syst</mark> e	em Register Processor Breakpoints Memory Config Analysis
Command_file	e Wait MS-DOS Log Terminal Symbols Exit

The *os.x* includes the module *os*, display the local symbols of the

module os.

System, Symbol, Local, Display Specify the module name to be displayed, by typing os and pressing Enter.

	Symbols	
Address	Symbol Symbol	
0000050C10r 0000050510r 0000050AE0r 0000010380r 0000010640r	Dumy_Text Setup_Task_0 Sys_Trap_0 TCB_A TCB_B	
STATUS: N7063	B2Emulation reset Emulation trace halted	-
Window Syste Command_file	em Register Processor Breakpoints Memory Config Analysis e Wait MS-DOS Log Terminal Symbols Exit	

Getting into Virtual Mode	Before starting the program, define software breakpoint at the address Start_Ini_Task . This address is the exit of the operating system.
	Breakpoints, Add Enter Start_Ini_Task and press Enter.
	Then start the program from the address Sys_Init.
	P rocessor, G o, A ddress Enter Sys_Init and press Enter .
ALERT: Software breakpoint:	You will see the following line in the status lines.

The processor executed the following tasks from **Sys_Init** to **Start_Ini_Task**.

- Initializing privilege registers (stack pointer and area table registers)
- Initializing Task Context Blocks for *Task A* and *Task B*.
- Switching to *Task A*

Loading the Absolute File in Virtual Mode (task_a.cf)

The emulator broke just before the transition from operating system to *Task A*. Since the current virtual space is for *Task A*, you can load the absolute file *task_a.cf*. Before loading the file, you must change the configuration option "Load real address", select:

Config, **G**eneral

Move the cursor to the "Load real address" field, and enter "**n**". Move the cursor to the bottom field and press **Enter** to save this configuration.

General Emulation Configuration				
Internal clock	Real-time mode	[n] Break on ROM w	rites [y]	
Software brkpoints [y]	Trace HOLD Tag	[y] Load real addre	ess [n]	
Trace execution cycle [y]	Trace real address	[y] CMB interaction	n (n)	
V70 inverse assemble [y]	Respond to HLDRQ	[y] Respond to targ	get NMI <mark>(y)</mark>	
Target interrupts	Target bus freeze	[y] Drive backgrnd	cycles <mark>[n]</mark>	
Target memory access size	bytes Address	s bits A31-A8 0		
Monitor type	background			
+↑↓→ :Interfield movemen	t Ctrl ↔ :Field e	editing TAB :Scroll	l choices	
STATUS: N70632Running in monitor Emulation trace halted				
When 'yes' is selected, object files will be loaded in real address mode.				
Otherwise, object files wil	l be loaded in virtu	ual address mode.		
Тс	load the file task a.cf,	select:		

Memory, Load

3-14 Virtual Mode Emulation Topics

Move the cursor to the "Generate load address information in real address" field and select "**no**", and move the cursor to the "Absolute file name" field, and type the **task_a.cf** then press **Enter**.

Memory Load Configuration	
File Format	NEC COFF
Target memory type for memory load	Both
Force the absolute file to be read	no
Delete a leading underscore character from symbol names	no
Generate load address information in real addresses	no
Add address attributes to the symbol file	yes
Absolute file name task_a.cf	
$\uparrow \downarrow \rightarrow$:Interfield movement Ctrl \leftrightarrow :Field editing TAB	3 :Scroll choices
ATUS: N70632Running in monitor Emulation trace	halted
ter the name of an NEC COFF file.	

Since loading an absolute file clears previous loaded symbols, you should reload the symbols for *os.cf*, select:

System, Symbol, Global, Load Press Enter to load the symbol file os.hps. Define software breakpoint at the address Switch_Task. This address is the exit of the task dispatcher.

Breakpoints, Add Enter Switch_Task and press Enter.

Continue the execution.

Processor, **G**o, **P**c You will see the following line in the status lines.

ALERT: Software breakpoint: 0000050bf@v

The processor executed the following tasks.

- Transferring the message of *Task A*
- Exiting the execution of *Task A*
- Storing the Task Context for *Task A*
- Loading the Task Context for *Task B*
- Switching to *Task B*

Loading the Absolute File, task_b.cf

The emulator broke just before the transition from task dispatcher to *Task B*. Since the current virtual space is for *Task B*, you can load the absolute file *task_b.cf*.

To load the file *task_b.cf*, select:

Memory, Load Move the cursor to the "Absolute file name" field, and type the task_b.cf then press Enter.

Reload the symbols for os.cf, select:

System, Symbol, Global, Load Press Enter to load the symbol file os.hps.

Transfer the symbols to the emulator by selecting.

System, Symbol, Global, Transfer System, Symbol, Local, Transfer, All

Displaying Registers

Display basic registers by selecting:

Register, Display, Basic Type <CTRL>z to zoom the Emulation window.

You can also display privilege and on-chip MMU registers, select:

Register, Display, Class Use the TAB key to select priv and press Enter.

Register, Display, Class Use the TAB key to select mmu and press Enter.

3-16 Virtual Mode Emulation Topics

```
Emulation
  Clear
          000005084@r
          0000050bf@r
  Set
   pc= 000050bf sp= 40001ff4 fp= 0000000
                                             ap= 00000000 psw=8000000
   r0= 00000006
                r1= 00001008 r2= 00000000
                                             r3= 00000000 r4=00000000
   r5= 00000000 r6= 00000000 r7= 00000000 r8= 00000000 r9=00000000
  r10= 00000000 r11= 00000000 r12= 00000000 r13= 00000000 r14=00000000
  r15= 00000000 r16= 00000000 r17= 00000000 r18= 00000000 r19=00000000
  r20= 00000000 r21= 00000000 r22= 00000000 r23= 00000000 r24=00000000
  r25= 00000000 r26= 00000000 r27= 00000000 r28= 00000000 r29=00000000
  r30= 00000000 r31= 40001ff4
    sbr= 00000000
                     tr= 00001064 sycw= 00002171 tkcw= 0000e000
    pir= 00007006
                   isp= 00005000 psw2= 0000f002
   10sp= 40001ff4
                  l1sp= 00000000
                                   12sp= 00000000
                                                    13sp= 00000000
                    atbr1= 00002011
                                     atbr2= 00000000
                                                      atbr3= 00000000
   atbr0= 00002001
   atlr0= 00000000
                    atlr1= 00000000
                                     atlr2= 00000000
                                                       atlr3= 00000000
STATUS: N70632--Running in monitor
                                             Emulation trace halted
Window System <mark>Register</mark> Processor
Display Modify Float
                                     Breakpoints Memory Config Analysis
```

```
Tracing the
Program
Execution
```

Suppose that you wish to trace the program from the current address.

Modifying Trace Format

For widening the address column of the trace listing, do the following.

To change the trace format, select:

Analysis, Format Move the cursor to the "Width" field of the **addr** trace label. Enter **18**.

Use the down arrow key to move to the field labeled **count**. Press **Tab** until it says "--**OFF**--" and press **End**, then **Enter**.

Resetting Trace Specification

To be sure that the analyzer is in its default state, select:

Analysis, Trace, Reset

The default trace specification triggers the analyzer as soon as possible if the program is running user program. The emulator is running in monitor because the software breakpoint has hit. To trace the program execution from the current address, you do not have to change the initial trace specifications. Start the trace and continue the program.

Analysis, **B**egin

Processor, **G**o, **P**c The status line shows that the emulation trace is completed.

To display the trace listing, select:

Analysis, **D**isplay

Use the right arrow key to move the cursor to the "Ending state to display" field. Type **100** into the ending state field, press **Enter** and use <CTRL>z to zoom the analysis window. Press the **Home** key to get to the top of the display. The resulting trace is similar to the following display.

The trace listing shows the beginning of the execution by task dispatcher. Press the **PgDn** key to see more lines of the trace.

Analysis				
Line	addr,H	data,H	uPD70632 Mnemonic,H	
0	ATE0	E00E0000	00003003H trans table read	
1	00002004	00000500	00000500H trans table read	
Z	00003014	00005e85	00005e85H trans table read	
3	Switch_Task	faffffff	fetch aft br	
4	000050c0	000000e4	fetch	
5	esys_text	02064001	fetch	
6	000050c8	aaa92eba	fetch	
7	000050cc	0aa2b8aa	fetch	
8	ATE1_B	00003203	00003203H trans table read	
9	00002014	00000300	00000300H trans table read	
10	00003204	0000bf85	0000bf85H trans table read	
11	0000bff4	4000000	40000000H data read	
12	Switch_Task	0000000	RETIS #4H	
13	0000bff8	0000000	0000000H data read	
14	ATE1_B	00003203	00003203H trans table read	
15	00002014	00000300	00000300H trans table read	
16	PTE1_B	0000ae05	0000ae05H trans table read	
STATUS: N70632Running user program Emulation trace complete				
Window System Register Processor Breakpoints Memory Config Analysis				
Begin Halt CMB Format Trace Display				

The display shows the execution of *Task B*, and you can find that the address fields of the trace are displayed in real address. Regardless of

3-18 Virtual Mode Emulation Topics
		Analys	sis
16	PTE1_B	0000ae05	0000ae05H trans table read
17	PTE1_B	0000ae85	0000ae85H trans table write
18	0000a000	20£43a2d	fetch aft br
19	0000a004	Zd000000	fetch
20	0000a008	0013£438	fetch
21	0000a00c	8a580000	fetch
22	0000a000	8a580000	MOV.W #0000020H,R26
23	0000a010	001ff2f2	fetch
24	0000a014	00£39800	fetch
25	0000a007	20400030	MOV.W #0000013H,R24
26	0000a018	20400030	fetch
27	0000a01c	d6a0f4f8	fetch
28	0000a020	ffffe1fZ	fetch
29	0000a024	000000ff	fetch
30	0000a028	5755d755	fetch
31	ATE1_B	00003203	00003203H trans table read
32	00002014	00000300	00000300H trans table read
33	00003208	0000ce05	0000ce05H trans table read
34	00003208	0000ce85	0000ce85H trans table write
STATUS:	N70632Running u	ser program	Emulation trace complete
Uindou	Sustem Register	Processor Break	conints Memory Config Analysis

Window System Register Processor Breakpoints Мемоry Config <mark>Analysis</mark> Begin Halt CMB Format Trace Display address mode, addresses which the analyzer captures are real addresses

by default.

Changing Symbols

The program executes *Task A* and *Task B* alternately. Suppose that you wish to note to *Task B*. In this case, you should load the symbols for *Task B*.

Load the symbols for *Task B*, select:

System, Symbol, Global, Load Type the symbol file name task_b.hps and press Enter.

Display the global symbols you have loaded, select:

$$\label{eq:system} \begin{split} s_{\texttt{ystem}}, \ s_{\texttt{ymbol}}, \ \texttt{G} \texttt{lobal}, \ \texttt{D} \texttt{isplay} \\ Press <\!\!CTRL\!\!>\!\!z \ \texttt{key} \ \texttt{to} \ \texttt{zoom} \ \texttt{the symbol} \ \texttt{window}. \end{split}$$

The global symbols for *Task B* are displayed.

Virtual Mode Emulation Topics 3-19

task b		
- Address	Symbo 1	
 040002000@v	 Message B	
040001000Qv	Stack_B	
040000000Qv	Transfer_B	
040002014@v	edata_b	
040002000@v	estack_b	
1400000280v	etext_b	

Window System Register Processor Breakpoints Memory Config Analysis Command_file Wait MS-DOS Log Terminal Symbols Exit

When loading new global symbols, the old global symbols are removed. This means that only one symbol file can be stored in the emulator.

To display local symbols, select:

System, Symbol, Local, Display Enter task_b. The resulting display follows.

3-20 Virtual Mode Emulation Topics

Transfer the symbols to the emulator, select:

System, Symbol, Global, Transfer
System, Symbol, Local, Transfer, All

Specifying Virtual Space

The emulator uses the current value of the 70632 address table register pairs by default when you specify an address in virtual address in a command.

Suppose that you would like to debug a certain task executed in multiple virtual space without stopping the execution. You will be unable to specify the virtual address in desired virtual space, because the address space is dynamically changed.

The XMMU function provides you to specify a desired virtual address space. Regardless of the current virtual space, you can specify the address space you want to note to. The emulator has the optional XMMU class registers. These registers consist of eight XMMU register pairs and one XMMU mode register. The XMMU register pairs correspond to the actual 70632 area table register pairs. You can specify a virtual address space by modifying the XMMU class registers. These registers are not actual registers of the 70632 processor.

When you set the contents of the XMMU class registers and activate the XMMU function, the XMMU class registers are used for the address translation of the virtual address you specify in a command, instead of the actual area table register pairs of the 70632 microprocessor.

The XMMU class registers consist of the following registers.

corresponded actual registers atbr0 atbr1 atbr1 atbr2 atlr2 atbr3 atlr3 --None--

If you set the value of the **mmumod** register in the above table to "1", the emulator translates the virtual address in a command line with the contents of the XMMU class registers instead of the actual area table register pairs. Oppositely, if you want to make the emulator to translate the virtual address in a command line with the actual table register

Virtual Mode Emulation Topics 3-21

	-	
XMMU	class	registers
xatbr	0	
xatlr	0	
xatbr	1	
xatlr	1	
xatbr	2	
xatlr	2	
xatbr	3	
xatlr	3	

mmumod

pairs, in other words the virtual address in the current address space, reset the value of the **mmumod** register to "0".

To display the XMMU class registers, select:

Register, Display, Class Select **xmmu** by using the **TAB** key, and press **Enter**.

Press <CTRL>z key to zoom the Emulation window.

Emulation

```
r1= 00001008
                                                       r4=00000000
  r0=0000006
                            r2= 00000000 r3= 00000000
  r5= 00000000 r6= 00000000 r7= 00000000 r8= 00000000 r9=00000000
 r10= 0000000 r11= 0000000 r12= 0000000 r13= 0000000 r14=0000000
 r15= 00000000 r16= 00000000 r17= 00000000 r18= 00000000 r19=00000000
 r20= 00000000 r21= 00000000 r22= 00000000 r23= 00000000 r24=00000000
 r25= 00000000 r26= 00000000 r27= 00000000 r28= 00000000 r29=00000000
 r30= 00000000 r31= 40001ff4
   sbr= 00000000
                   tkcw= 0000e000
   pir= 00007006
                  isp= 00005000 psu2= 0000f002
                                               13sp= 00000000
  10sp= 40001ff4
                 l1sp= 00000000
                                12sp= 00000000
  atbr0= 00002001 atbr1= 00002011 atbr2= 00000000
                                                 atbr3= 00000000
  atlr0= 00000000 atlr1= 00000000 atlr2= 00000000 atlr3= 00000000
  mmumod= 0000000
  xatbr0= 00000000
                   xatbr1= 00000000 xatbr2= 00000000 xatbr3= 00000000
  xatlr0= 00000000
                   xatlr1= 00000000
                                    xatlr2= 00000000 xatlr3= 00000000
STATUS: N70632--Running user program
                                          Emulation trace complete
                       Processor Breakpoints Memory Config Analysis
```

Window System <mark>Register</mark> Display Modify Float

The resulting display shows the contents of XMMU class registers. The display also includes the contents of on-chip MMU registers, you displayed in previous section, and these values define virtual space for Task B.

Since you want to note to Task B, modify the XMMU class registers as the same value as the value of on-chip MMU registers in the display. Select:

Register, Modify Use the TAB key to select (or enter) xatbr0 and press Enter. Type 2001, press Enter.

Register, Modify Use the TAB key to select xatbr1 and press Enter. Type 2011, press Enter.

3-22 Virtual Mode Emulation Topics

To make the emulator use the configured address space you entered, select:

Register, Modify Use the TAB key to select mmumod and press Enter. Type 1, press Enter.

To confirm the XMMU class registers you have modified, select:

Register, Display, Class Use the TAB key to select xmmu, and press Enter.

Emu la	at ion
r20 = 00000000 r21 = 00000000 r22 = 0000	9999 r23= 99999999 r24=99999999
$r_{25} = 00000000 r_{26} = 00000000 r_{27} = 00000000000000000000000000000000000$	0000 n28- 00000000 n29-00000000
20- 00000000 120- 00000000 121- 00000 20- 00000000 231- 40001£f4	
F111000F -1C1 0000000 -0C1	
SDr- 00000000 tr- 00001064 Sycw	- 00002171 TKCW- 00000000
pir= 00007006 isp= 00005000 psu2:	= 0000±002
10sp= 40001ff4 11sp= 00000000 12sp:	= 00000000 13sp= 00000000
	brZ= 00000000 atbr3= 00000000
atlr0= 00000000 atlr1= 00000000 at	lr2= 00000000 atlr3= 00000000
mmumod= 0000000	
xatbr0= 00000000 xatbr1= 00000000 x	xatbr2= 00000000 xatbr3= 00000000
xatlr0= 00000000 xatlr1= 00000000 x	xatlr2= 00000000 xatlr3= 00000000
mmumod= 00000001	
xatbr0= 00002001 xatbr1= 00002011 x	xatbr2= 00000000 xatbr3= 00000000
xatlr0= 0000000 xatlr1= 00000000	xatlr2= 00000000 xatlr3= 0000000
TATUS: N70632Running user program	Emulation trace complete
initios. In oose naming user program	Endiación crace compiete

Window System <mark>Register</mark> Processor Breakpoints Memory Config Analysis Display Modify Float

To display the contents of memory at address range **Transfer_B** through **Trans_B_End**. The label **Trans_B_End** is local symbol.

Select:

Memory, Display, Mnemonic Enter the address range "Transfer_B.task_b:Trans_B_End", and press Enter. Enter <CTRL>z to zoom the window.

Virtual Mode Emulation Topics 3-23

		Emulati	on
atbr0= 0000	02001 atbr1= 00002	2011 atbr2	= 00000000 atbr3= 00000000
atlr0= 0000	00000 atlr1= 0000	0000 atlr2	= 00000000 atlr3= 00000000
mmumod= 000	00000		
xatbr0= 000	000000 xatbr1= 00	000000 xat	br2= 00000000 xatbr3= 00000000
xatlr0= 000	000000 xatlr1= 00	000000 xat	lr2= 00000000 xatlr3= 00000000
mmumod= 000	000001		
xatbr0= 000	002001 xatbr1= 00	002011 xat	brZ= 00000000 xatbr3= 00000000
xatlr0= 000	000000 xatlr1= 00	000000 xat	lr2= 00000000 xatlr3= 00000000
Address	Symbol	Mnemonic	
0400000000	Transfer R		#0000020H P26
04000000000000000000000000000000000000		MOULU	#00000013H B24
040000001@0	_	MOUCEU B	Message B R74 /40003000H #7
04000000200 04000001 c@u	_	TROP	#=0H
04000001CeV	k h:Trans R Fod	IMP	Transfer B
0.000001160	<u>n_p, n cuiz_p_nu</u>	0111	
STATUS: N70632	2Running user pro	ogram	Emulation trace complete

Display Modify Load Store Copy Find Report

Breakpoints Before defining the breakpoint, break the emulator by selecting:

Processor, Break
To define a breakpoint at the address of Transfer_B, select:

Breakpoints, Add Enter the address label **Transfer_B**, and press **Enter**.

Now that the software breakpoint is set, start the execution. Select:

Processor, **G**o, **P**c The status line shows as follows.

ALERT: Software breakpoint: 04000000@v

Displaying Address Translation Tables

You can display the 70632 Area Table Entry (ATE) and Page Table Entry (PTE). These features are provided with Terminal Interface. To entering the Terminal Interface, select:

System, **T**erminal To display the ATE corresponding with address **Transfer_B**, enter:

ate Transfer_B

1:000 at 000002010 Present PTB=000003200 Limit=003 Growth=positive Execute level=0 Write level=0 Read level=0

3-24 Virtual Mode Emulation Topics

To display the PTE corresponding with address **Transfer_B**, enter:

pte Transfer_B

1:000:000 at 000003200 Present Page base=00000a000 Executable Writable Readable Not modified Accessed User=0 Not locked

Displaying TCB

You can display TCB contents of current task by using the **tcb** Terminal Interface command. Specify the register list with **-1** option. The register list specifies registers to be stored to or loaded from TCB when the task is switched. The format of the register list is same as the 70632 processor's LDTASK or STTASK instruction operand. Since the register list of current task is 7f000000H, enter:

tcb -1 7f000000

To exit the Terminal Interface window, type <CTRL>\.

Press Ctrl 🔪 to abort

Tracing VirtualThe analyzer can capture virtual address by modifying configuration.Address

To configure to make the analyzer capture the virtual address, select:

Config, General

Virtual Mode Emulation Topics 3-25

Use the arrow key to the "Trace real address" configuration option field. Enter "**n**" to change trace address from real to virtual. Move the cursor to the bottom field, and press **Enter** to save the configuration.

Specifying Trigger

To trigger the analyzer when reading from the address Message_B.

Analysis, Trace, Modify The emulation analysis specification is shown. Use the right arrow key to move to the "Trigger on" field. Type "a" and press **Enter**.

You'll enter the pattern expression menu. Press the up arrow key until the **addr** field directly opposite the pattern **a**= is highlighted. Type the global symbol **Message_B** and press **Enter**.

To skip the data specification, press Enter key.

Now the "Status" field is highlighted. Use the **TAB** key to select the status "**read**".

The following display shows the resulting analysis specification. To save the new specification, use **End Enter** to exit the field in the lower right corner.

The TAB key selects whether the pattern matches the values or not the values.

3-26 Virtual Mode Emulation Topics

You'll return to the trace specification. Move the cursor to the "Trigger Position" field. Select the "**Center**" by pressing the **TAB** key.

Use the TAB and Shift-TAB keys to select a trigger position or enter a number.

Press **End** to move to the trigger spec field. Press **Enter** to exit the trace specification.

Move the cursor to "Trigger Position" field, and select **Center**. Move the cursor to the lower right corner, and press **Enter** to save the trace specification.

To save the new specification, use the **Enter** key to exit out of the field in the lower right corner.

To start the trace, select:

Analysis, **B**egin The status line shows that the trace is running.

To continue the execution, select:

Processor, **G**o, **P**c The trace status changes to "Emulation trace complete".

To display the trace, select:

Analysis, Display

Virtual Mode Emulation Topics 3-27

Press **End Enter**, and use <CTRL>**z** to zoom the window.

		Analy	usis
Line	addr,H	data,H	uPD70632 Mnemonic,H
7	ATE1_B	00003203	00003203H trans table read
-6	00002014	00000300	00000300H trans table read
-5	00003208	0000ce85	0000ce85H trans table read
-4	ATE1_B	00003203	00003203H trans table read
-3	00002014	00000300	00000300H trans table read
-2	0000320c	00006f85	00006f85H trans table read
-1	4000000e	00006f85	MOVCFU.B Message_B,R24,/40003000H,
0	Message_B	ffffff54	54H data read
1	40002001	ffff61ff	61H data read
Z	40003000	00000054	54H data write
З	40002002	ff73ffff	73H data read
4	40003001	00006100	61H data write
5	40002003	6bffffff	6bH data read
6	40003002	00730000	73H data write
7	40002004	ffffff20	20H data read
8	40003003	6Ъ000000	6bH data write
STATUS: N	70632Running	user program	Emulation trace complete
Window Sy	ystem Register	Processor Brea	akpoints Memory Config <mark>Analysis</mark>
Begin Ha	alt CMB Forma	t Trace Display	J

The resulting display shows the transfer of the *Task B* message.

Press the <CTRL>**r** key to see more lines. Then you will see the transition from *Task B* to the task dispatcher.

		Anal	usis	
Line	addr,H	data,H	uPD70632 Mnemonic,	4
9	40002005	 ffff42ff	42H data	read
10	40003004	0000020	20H data	write
11	40002006	ff20ffff	20H data	read
12	40003005	00004200	42H data	write
13	40002007	3affffff	3aH data	read
14	40003006	00200000	20H data	write
15	40002008	ffffff20	20H data	read
16	40003007	3a000000	3aH data	write
17	40002009	ffff52ff	52H data	read
18	40003008	0000020	20H data	write
19	4000200a	ff75ffff	75H data	read
20	40003009	00005200	52H data	write
21	4000200ь	6efffff	6eH data	read
22	4000300a	00750000	75H data	write
23	4000200c	ffffff6e	6eH data	read
24	4000300ь	6e000000	6eH data	write
STATUS: N7	70632Running	user program	Emulation trace	e complete
Window Sy	ystem Registe	r Processor Bre	akpoints Memory Co	onfig Analysis
Begin Ha	alt CMB Form	at Trace Displa	y	

Press the <CTRL>r key several times until the Task A execution is displayed (The states of Task B will be stored from line 134).

		Anal	ysis
Line	addr,H	data,H	uPD70632 Mnemonic,H
121	0000105c	00002009	00002009H data read
122	00001060	0000000	00000000H data read
123	00001064	0000e000	0000e000H data read
124	000050bf	fafffff	fetch aft br
125	000050c0	00000e4	fetch
126	000050c4	02064001	fetch
127	000050c8	aaa92eba	fetch
128	000050cc	0aa2b8aa	fetch
129	ATE1_A	00003103	00003103H trans table read
130	0000200c	0000000	00000300H trans table read
131	00003104	00008£85	00008f85H trans table read
132	40001ff4	4000001f	4000001fH data read
133	000050bf	0000000	RETIS #4H
134	40001ff8	0000000	0000000H data read
135	ATE1_A	00003103	00003103H trans table read
136	0000200c	0000000	00000300H trans table read
STATUS: N7	20632Runnin	g user program	Emulation trace complete
Lindou C.	nten Destat	na Daaaaaaa Daa	akaninta Mawayu Canfig Avaluaia

Window System Register Processor Breakpoints Memory Config <mark>Analysis</mark> Begin Halt CMB Format Trace Display

ine	addr,H	data,H	uPD70632	Mnemonic,H
137	 PTE1_A	00007e85	00007e	85H trans table read
138	task_b:Trans_B_End	46ffffff		fetch aft br
139	40000020	ffffe1fZ		fetch
140	40000024	000000ff		fetch
141	etext_b	5550c511		fetch
14Z	4000002c	75315575		fetch
143	Transfer_B	20£43a2d		fetch aft br
144	task_b:Trans_B_End	Zd000000	JMP	Transfer_B
145	40000004	2d000000		fetch
146	40000008	0017£438		fetch
147	4000000c	8a580000		fetch
148	Transfer_B	8a580000	MOV.W	#00000020H,R26
149	40000010	001ff2f2		fetch
150	40000014	00£39800		fetch
151	40000007	20400030	MOV.W	#00000017H,R24
152	40000018	20400030		fetch

Window System Register Processor Breakpoints Memory Config Analysis Begin Halt CMB Format Trace Display

As you can see some address are replaced with the symbols for *Task B*. You may confuse the states with Task B's one. The reason is because *Task A* and *Task B* occupy the same virtual address (not the same virtual space) each other.

Virtual Mode Emulation Topics 3-29

Address Mode Suffixes

When you issue a command, the emulator displays the result of the command. According to circumstance, the resulting display includes address information such as "00004000@r" or "00008000@v".

The suffix "@r" indicates that the address is displayed in real address mode. The suffix "@v" indicates that the address is displayed in virtual address. When the emulator displays an address information, the address mode will be different as the case may be.

Specifying An Address Mode

When you designate addresses, you can also select either real or virtual address by adding a suffix. The following suffixes are allowed.

- "@r" real address
- "@v" virtual address

You can also designate addresses with no suffix. In this case, the address mode, which is required to evaluate the addresses, is determined as follows.

- 1. When the processor is reset, the addresses are evaluated as real address.
- 2. When the processor never runs in virtual mode after reset, the addresses are evaluated as real address.
- 3. Once the processor has run in virtual mode after reset, the addresses are evaluated as virtual address.

Note

If the processor has ever run in virtual mode since the processor was reset, the address expression without suffix is evaluated as virtual address, even if the processor is running in real mode.

3-30 Virtual Mode Emulation Topics

If you specify a virtual address in a command, the emulator has to translate the virtual address, which you have specified, to the real address. The method of the address translation is same as the actual 70632 microprocessor. In this case, the emulator use the current value of the 70632 address table register pairs, ATBRO, ATLRO, ATBR1, to translate the address by default. The details of the address translation are shown in chapter 4.

Symbols supported by the PC Interface can include the suffixes. To include the suffixes in symbols, use the "**-a**" option for the *rdnec70* converter.

Note

The following commands do not accept inconsistent suffix.

```
"Processor, Go, Address"
"Processor, Step, Address"
"Processor, Go, CMB, Address"
```

For example, when the emulator is in real mode, you can not specify a virtual address (with "@v" suffix) in one of the above command.

Virtual Mode Emulation Topics 3-31

Notes

3-32 Virtual Mode Emulation Topics

Configuring the 70632 Emulator

Introduction

Your 70632 emulator can be used in all stages of target system development. For instance, you can run the emulator out-of-circuit when developing target system software, or you can use the emulator in-circuit when integrating software with target system hardware. Emulation memory can be used in place of, or along with, target system memory. You can use the emulator's internal clock or the target system clock. You can execute target programs in real-time or allow emulator execution to be diverted into the monitor when commands request access of target system resources (target system memory, register contents, etc.) The emulator is a flexible instrument and it may be configured to suit your needs at any stage of the development process. This chapter describes the options available when configuring the 70632 emulator.

This chapter will:

- Show you how to access the emulator configuration options.
- Describe the emulator configuration options
- Show you how to save a particular emulator configuration, and load it again at a later time.

Prerequisites

Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the *Concepts of Emulation and Analysis* manual and the "Getting Started" chapter of this manual.

General Configuration

Select:

Config, **G**eneral

When you position the cursor to a configuration item, a brief description of the item appears at the bottom of the display.

Gen	eral Emulation Confi	qurati	on
		J	
Internal clock	Real-time mode	[n]	Break on ROM writes [y]
Software brkpoints [n]	Trace HOLD Tag	[y]	Load real address [y]
Trace execution cycle [y]	Trace real address	[y]	CMB interaction [n]
V70 inverse assemble [y]	Respond to HLDRQ	[y]	Respond to target NMI[y]
Target interrupts	Target bus freeze	[y]	Drive backgrnd cycles[n]
Target memory access size	bytes Address	bits	A31-A8 0
Monitor type	background		
←↑↓→ ∶Interfield movemen	t Ctrl ↔ ∶Field e	diting	TAB :Scroll choices
CTATUS: NZOCZZ-Ewylation	eest Eu	ulatia	a twood balted
Uber 'upp' is calcoled the	eset EM	uratio	l clock in coulction and
when yes is selected, the	emulator uses the 1	ncerna	The the surlation pool.
otherwise, the clock input	from the target syst	EM_CIO	cks the emulator.

Figure 4-1. General Emulator Configuration

4-2 Configuring the Emulator

Note	It is possible to us emulator configur features may no lo modify the emula the PC Interface.	e the System Terminal window to modify the ation. However, if you do this, some PC Interface onger work properly. We recommend that you only tor configuration by using the options presented in		
Internal Clock	This configuration item allows you to select whether the emulator will be clocked by the internal clock source or by a target system clock source.			
	Yes	The internal 20 MHz clock (system clock speed) is the emulator clock source. This is the default.		
	No	An external target system clock is the emulator clock source. External clock sources must be within the range of 8-20 MHz.		
Real-Time Mode	If it is important the real-time, you can when you executed command), the end	hat the emulator execute target system programs in enable the real-time emulator mode. In other words, target programs (with the " P rocessor, G o" nulator will execute in real-time.		
	Νο	The default emulator configuration disables the real-time mode. When the emulator is executing the target program, you are allowed to enter emulation commands that require access to target system resources (display/modify: registers, target system memory, or target system I/O etc.). If one of these commands is entered, the system controller will temporarily break emulator execution into the monitor. These command are described in the "Target Memory Access" section of chapter 5.		
	Yes	If your target system program requires real-time execution, you should enable the real-time mode in order to prevent temporary breaks that might cause target system problems.		

Configuring the Emulator 4-3

Break on ROM Writes	Emulator executi target (user) prog	or execution may optionally break into the monitor when the user) program writes data to a location mapped as ROM.	
	Yes	Emulator execution will break into the monitor when the target program writes to ROM locations.	
	No	Target program writes to ROM locations will not cause emulator execution to break into the monitor.	
Software Breakpoints	The software breakpoint feature uses the BRK instruction. When you add or set a software breakpoint (and software breakpoints are enabled), the emulator will replace the opcode at the software breakpoint address with the BRK instruction. When the emulator executes the BRK instruction, execution breaks into the monitor.		
	If your target pro- interrupt routine, feature so that BF Refer to the "Soft information to us	gram uses BRK instruction and contains a breakpoint you may wish to disable the software breakpoints RK instructions do not cause breaks to the monitor. tware Breakpoints" section of chapter 5 for e software breakpoints.	
	No	The software breakpoints feature is disabled. This is specified by the default emulator configuration, so you must change this configuration item before you can use software breakpoints.	
	Yes	The software breakpoints feature is enabled. The emulator breaks to the monitor when an BRK instruction is executed. If the interrupt instruction is a software breakpoint, the original opcode is restored in the user program. A subsequent run or step from the instruction pointer (program counter) will execute from the breakpoint address.	
		If the BRK instruction is not a software breakpoint, an "undefined breakpoint" status message is displayed. To continue with program execution, you must run or step from the target program's breakpoint interrupt vector address.	

Trace Hold Tag	This configuration option specifies whether or not the analyzer traces target bus hold sequence.		
	Yes	The analyzer traces bus hold cycles.	
	No	The analyzer traces no bus hold cycles.	
Load Real Address	This configuration option specifies whether the emulator should load absolute files into virtual address or real address when you use the "Memory, Load" command. In other words, you can specify that in which address space the address location information are recorded in the absolute files.		
	Yes	The emulator interprets the location address information in the absolute files as real address.	
	No	The emulator interprets the location address information in the absolute files as virtual address.	
Trace Execution Cycles	This configuration instruction execut	n option specifies whether or not the analyzer traces tion cycles.	
	Yes	Both exec states and bus states are captured by the emulation analyzer. You will see the disassembles of executed instructions in trace listing. Lines with disassembles indicate exec states of the instructions.	
	No	Only bus states are captured by the emulation analyzer. When you display trace listing, the emulator disassembles with "fetch" states, and their disassembled processor mnemonics is displayed at the "fetch" states which are the first byte of the instructions. In this mode, the analyzer can trace with time tagging or # of states counter.	
	Refer to the "Usir analyzer features.	ng the Emulator" chapter for more details of the	

Configuring the Emulator 4-5

Trace Real Address	This configuratio virtual address or	n option specifies whether the analyzer should trace real address.	
	Yes	The analyzer captures real address bus which is the same that the actual microprocessor outputs to.	
	No	The analyzer captures virtual address.	
CMB Interaction?	Coordinated measurements are measurements synchronously made in multiple emulators or analyzers. Coordinated measurements can be made between HP 64700 Series emulators which communicate over the Coordinated Measurement Bus (CMB).		
	Multiple emulator start/stop is one type of coordinated measurement. CMB signals READY and /EXECUTE are used to perform multiple emulator start/stop.		
	This configuratio the READY and TRIGGER, is una	n item allows you to enable/disable interaction over /EXECUTE signals. (The third CMB signal, affected by this configuration item.)	
	No	The emulator ignores the /EXECUTE and READY lines, and the READY line is not driven.	
	Yes	Multiple emulator start/stop is enabled. If the	
	Processo	c, CMB, Go, command is entered, the emulator will start executing code when a pulse on the /EXECUTE line is received. The READY line is driven false while the emulator is running in the monitor; it goes true whenever execution switches to the user program.	

Ν	ote

U.S

CMB interaction will also be enabled when the

Processor, **C**MB, **E**xecute

command is entered.

V70 Inverse Assemble	This configuration specifies inverse assembler for either 70108/70116 or 70632 microprocessor. The 70632 microprocessor has the 70108/70116 emulation mode. In this mode, the 70632 executes the instruction as 70108/70116 microprocessor's one. The emulator provides both inverse assemblers for 70108/70116 and 70632.	
	Yes	The 70632 inverse assembler is used when you display memory in mnemonic format.
	No	The 70108/70116 inverse assembler is used when you display memory in mnemonic format.
Respond to HLDRQ	This configuration target system is ac	option specifies whether /HLDRQ signal from cepted or ignored by the emulator.
	Yes	The emulator accepts Hold Request from target system.
	No	The emulator ignores Hold Request (/HLDRQ signal input) from target system.
Respond to Target NMI	This configuration option specifies whether or not the emulation processor accepts to /NMI signal generated by the target system.	
	Yes	The emulator accepts NMI signal generated by the target system. When the NMI signal is accepted, the emulator calls the NMI procedure as actual microprocessor.
	No	The emulator ignores NMI signal from target system completely.

Configuring the Emulator 4-7

Target Interrupts	This configuration option specifies whether or not the emulation processor accepts to INT signal generated by the target system.		
	Yes	The emulator accepts INT signal generated by the target system. When the INT signal is accepted, the emulator calls the INT procedure as actual microprocessor.	
	No	The emulator ignores INT signal from target system completely.	
Target Bus Freeze	This configuration option specifies whether BFREZ from target system is accepted or ignored by the emulator.		
	Yes	The emulator accepts BFREZ signal from target system.	
	No	The emulator ignores BFREZ signal input from target system.	
Drive Background Cycles	This configuration option specifies whether or not the emulator's bus cycles are driven to your target system bus when the emulator is in background cycle. If your target system requires bus cycle activities constantly, you will need to drive the emulation bus cycles to your target system bus.		
	No	The emulator does not drive any bus cycles to target system bus in background operation.	
	Yes	The emulator drives its bus cycles to target system bus whether or not the emulator executed in the background cycles. If your target system have some circuitry which monitors bus activities, you may need to enable this configuration. related configuration.	

4-8 Configuring the Emulator

Target Memory
Access SizeSpecify cycles used by monitor when accessing target system memory
or I/O.

This configuration option specifies the type of microprocessor cycles that are used by the monitor program to access target memory. When a command requests the monitor to read or write target system memory or I/O, the monitor program will look at the access mode setting to determine whether byte, halfword, or word instructions should be used.

bytes	Selecting the byte access mode specifies that the emulator will access target memory using byte cycles (one byte at a time).
half	Selecting the word access mode specifies that the emulator will access target memory using halfword cycles (one word at a time).
words	Selecting the word access mode specifies that the emulator will access target memory using word cycles (one word at a time).

Address Bits A31-A8 This configuration option specifies the location of the background monitor program. The monitor may be located on any 4K byte boundary. If the address specified is not on a 4K boundary, the 4K boundary below the address is used. The location of background monitors may be important because background cycles of the 70632 emulator are always visible to the target system. In default, the monitor is located on 00000H through 00FFFH (actual address).

This configuration does not make sense when the "Drives Background Cycles" question is answered "No".

Monitor Type This configuration option allows you to select and use a foreground emulation monitor program. The default monitor is background monitor.

Configuring the Emulator 4-9

	Background Specify monitor type as background monitor. When you select background monitor, you can specify the background monitor location.			
	Foreground	Specify monitor type as foreground monitor. When you select foreground monitor, you must specify correct foreground monitor start address with next configuration question (foreground monitor address). After you completed the configuration setting, you need to load foreground monitor program to the emulator with "Memory, Load" feature. The foreground monitor program must already assembled and linked with appropriate location specification. Refer to the <i>HP</i> 64758 70632 Terminal Interface User's Guide for more information.		
Note	If you select a fo mapped at the ad	reground monitor, a 4 kilobyte block is automatically dress specified by the next question.		
Foreground Monitor Location?	You can relocate 4K byte boundar because it will or monitor location programs. The d When entering m addresses on 4K is displayed.	the monitor from the default monitor location to any y. The location of the foreground monitor is important coupy part of the processor address space. Foreground must not overlap the location of target system efault foreground monitor location is "00000000H". onitor block addresses, you must only specify byte boundaries; otherwise, an invalid syntax message		
Note	Relocating the m	onitor causes all memory mapper terms to be removed.		
	Specify the real 1 address]" field. V you must also sp	nemory location of foreground monitor in the "[real When using the foreground monitor in virtual mode, ecify the virtual location in the "[virtual address]" field.		

4-10 Configuring the Emulator

Storing an Emulator Configuration

The PC Interface lets you store a particular emulator configuration so that it may be reloaded later. The following information is saved in the emulator configuration.

- Emulator configuration items.
- Key macro specifications.
- Memory map.
- Break conditions.
- Trace specification and format.
- Window specifications.

To store the current emulator configuration, select:

Config Store Enter the name of a file in which to save the configuration.

Loading an Emulator Configuration

If you want to reload a previously stored emulator configuration, select:

Config **L**oad

Enter the configuration file name and press **Enter**. The emulator will be reconfigured with the values specified in the configuration file.

Configuring the Emulator 4-11

Notes

4-12 Configuring the Emulator

Using The Emulator

Introduction

Many of the important topics described in this chapter involve the commands or features which relate to using the emulator. The "Getting Started" and "Virtual Mode Emulation Topics" chapters shows you how to use the basic features of the 70632 emulator. This chapter describes more information or notices of the emulator.

This chapter contains the following topics.

- Register Manipulation
 - Stack Pointer and Program Status Word Modification.
 - Floating-Point Format Display or Modification
- Analyzer Topics
 - Analyzer Status Labels
 - Analyzer Trigger Condition
 - Trace Listing Disassembler
 - Execution States
 - Analyzer Data Bus Condition
 - Analyzer Clock Speed
 - Cause of Monitor Break
- Hardware Breakpoints
- Software Breakpoints
- Target Memory Access
- FPU Support
- MMU Support
- Coordinated Measurement
- Unfamiliar Prompts
- 70118/70116 Emulation Mode
- FRM Support
- Real-time Emulation Memory Access
- Virtual Address Translation
- Storing the Contents of Memory into Absolute File
- Register Names and Classes
- Foreground Monitor
- Restrictions and Considerations

Using the Emulator 5-1

Prerequisites

Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the *Concepts of Emulation and Analysis* manual and the "Getting Started" and "Virtual Mode Emulation Topics" chapters of this manual.

Register Manipulation

Stack Pointer Modification	In the 70632 microprocessor, one of the five privileged registers (LOSP, L1SP, L2SP, L3SP, ISP) is selected as stack pointer according to the EL and IS flags of the PSW, and the stack pointer is cached by SP. The contents of the stack pointer corresponding to the execution level are not always the same as the stack pointer (SP). The stack pointer corresponding to the execution level is updated only when the execution level is changed.
	The emulation monitor is executed in execution level 0. When the emulator returns from emulation monitor to user program, for example when you issue "Processor Go" command, the emulator changes execution level from 0 to user program's execution level which is determined by the IS flag and EL field in the program status word (PSW).
	For this reason, in emulation monitor, the stack pointer (SP) and the stack pointer corresponding to the execution level need to have the same value. The monitor intends to keep the stack pointer (SP) and the current level stack pointer to have the same value.
	When breaking into monitor, the current level stack pointer is modified to the value of SP.

5-2 Using the Emulator

If you modify registers PSW, L0SP, L1SP, L2SP, L3SP or SP in monitor, note the following.

- When you modify the EL or IS flag of the PSW, the SP is modified to the value of the stack pointer corresponding to the execution level which is determined by the EL or IS flag of the PSW you have modified.
- When you modify the stack pointer corresponding to the current execution level (LOSP, L1SP, L2SP, L3SP, ISP), the stack pointer SP is modified to the same value.
- When you modify the stack pointer SP, the stack pointer corresponding to the execution level (LOSP, L1SP, L2SP, L3SP or ISP; the one selected depending on the contents of the PSW) is modified with the same value.

Displaying/Modifying Registers In Floating-Format

You can display/modify general purpose registers (R0 through R31) in floating-point format with "**R**egister, **F**loat" command. The IEEE-754 standard data type is supported.

Display register R0 in floating-point format by selecting:

Register, Float, Display Use the TAB key to select the r0.

Modify register R4 to the value 12345.678, by selecting:

Register, Float, Modify Use the TAB key to select the r4 and press Enter. Type the value 12345.678 and press Enter.

Analyzer Topics

io

Analyzer Status The following are the analyzer status labels which may be used in the "Analysis, Trace, Modify" analyzer commands. Qualifiers

fetch 0x1xxxxxxxx011x code fetch fetchbr 0x1xxxxxxxx0111 code fetch after branch read 01xxxxxxxxxxxxxxx read write 00xxxxxxxxxxxx write data 0xxxxxxxxx0011 data access (read/write) 0xxxxxxxx1011 i/o access (read/write) exec 0xxxxxxxx0000 execution state 0xxxxxxxxx0010 data access (read/write) with short path sdata system base table access sysbase 0xxxxxxxxx0100 translation table access (read/write) 0xxxxxxxxx0101 trans co-processor access(read/write) coproc 0xxxxxxxx1000 shortrd data access read with short path 0x1xxxxxxx0010 shortwr 0x0xxxxxxx0010 data access write with short path iord 0x1xxxxxxx1011 i/o access read iowr 0x0xxxxxxx1011 i/o access write transrd 0x1xxxxxxx0101 translation table access read 0x0xxxxxxx0101 translation table access write transwr coprocrd 0x1xxxxxxx1000 co-processor access read 0x0xxxxxxxx1000 co-processor access write coprocwr 0xxxxxxxxx1100 fault machine fault acknowledge halt halt acknowledge 0xxxxxxxxx1101 interrupt acknowledge intack 0xxxxxxxxx1110 guarded memory access grdacc 0xxxxxxxx0x0x0xxx 0x0xxxxxx0xx0xx0xxx write to ROM wrrom monitor 0xxxxxxxxxx0xxxx background monitor cycle lock 0xxxxxx0xxxxxx bus lock retrv 00xxxxxxxxxxxxxxx retrv bus hold hold 0xxxxxxxxx0001

Specifying Trigger **Condition at Desired** Instruction Execution

In the "Using the Analyzer" section of the "Getting Started" chapter, you used the analyzer to trace the states of the program after that the instruction located at address 10033H was executed.

As you know, the 70632 processor has the prefetch unit (PFU) to prefetch the instruction string to be executed.

If you had not specified the "exec" status label in the trigger status field, unexpected trigger would have occurred at the prefetch state of the address 10033H.

This discussion is significant when you specify the trigger condition at the execution of the instruction which follows a branch instruction like:

5-4 Using the Emulator

000020012@r - 000020016@r - 000020018@r -	CMP.B BZ MOV.W	#00H,R2 00020000H #0000000fH,R0
	Assume that the 20000H throug 20018H is exec	e processor executes instructions at address range h 20016H normally, and the instruction at address uted at long intervals.
	If you wish to t 20018H, you sh	rigger the analyzer at the execution of the address nould specify the "exec" status label into status field.
	If you would no occur at the pre condition at add	ot specify the "exec" status label, the trigger will always fetch of the address 20018H whether or not the branch dress 20016H is satisfied.
Disassembles Trace Listi	As you can see disassemble cap instructions in s instruction are	disassembles in analyzer trace listing, the emulator has pability in trace listing. When the emulator disassembles stored trace information, the prefetch cycles of each required.
	In the "Using the you configured read states from data field.	the Analyzer" section of the "Getting Started" chapter, the analyzer to trace the states of the program after the the Command_Input byte and 0xxxxxx42H in the
	When you disp include " No fet was instruction line. However, displayed becau stored by the ar	layed the results of analyzer trace, some lines which ch cycle found " messages were displayed. Each line execution cycle at the address in the left side of the the disassembles of these instructions were not use the prefetch states for the instructions were not nalyzer.
	The trigger pos wished to trace	ition was at the start of the trace listing, because you the states of the program after the triggered state.
	Note that the "I around line 0 (t	No fetch cycle found " messages may be displayed rigger point) when the "Trigger Position" is "Start".
	To display com location of trigg	plete disassembles in trace listing, you should modify ger state in trace list, referred to as the "trigger position".
Execution Stat Location in Tra Listi	The emulation addition to acture cycle" is answe	analyzer stores execution states of the program in al bus cycles, if configuration option "Trace execution red " yes ".

Using the Emulator 5-5

When the processor executes an instruction, the execution state of the instruction is generated before its bus state(s) by the execution of the instruction.

However, it is possible that the execution states are inserted after or between the actual bus states of these activities, since the clock rate of bus sampling is high-speed.

The following trace listing shows the example that the execution state, numbered 64, falls behind its bus activity.

61	00003004	00001e05	00001e	e05H trans t	able re	ad	* * * * * * * * *
62	00003004	00001e85	000016	e85H trans t	able wr	ite	* * * * * * * * *
63	00001004	00000002	000000	02H data r	ead		*******
64	00005043	00000002	MOV.W	00001004H	I,RO		*******
65	0000504a	00000002	MOV.W	#00001008	H,R1		* * * * * * * * *
66	00005060	2da20801		fetch			* * * * * * * * *

Specifying Data For Trigger Condition or Store Condition

The analyzer captures the data bus of the 70632 microprocessor. When you specify a data in the analyzer trigger condition or store condition, the ways of the analyzer data specifications differ according to the data size and the address. Suppose that you wish to trigger the analyzer when the processor accesses to the byte data 41H in a 1000H address. You should not specify the data field of the trigger condition like "41H".

The data condition will be considered as 00000041H. The bit 31 through bit 8 of data bus is unpredictable because of the byte data. You will unable to trigger as you desire. You should have specified the data field with "0xxxxx41h".

Where x's are "don't care" bits.

When the address that you want to trigger is not a multiple of 4, the data bus specification is different from the above. If you trigger the analyzer at the address 1001H instead of the address 1000H, the data 41H will be output to the bit 7 through bit 4 of the data bus. You should specify the data field with "0xxxx41xxh".

Analyzer Clock The emulation analyzer can capture both the exec states and bus states. Speed

Bus states show actual processor's bus activity.

5-6 Using the Emulator

Exec states indicate the address of the first byte of an executed opcode. Only the address and processor status fields are valid during these states.

The analyzer has a counter which allows to count either time or occurrence of bus states. Tracing both bus cycles and exec states, effectively doubles the clock rate to the analyzer.

By default, the analyzer time counter is turned off because the analyzer time counter cannot be used at high-speed clock rate. If it is desired to use the analyzer counter, configure the analyzer to trace only bus cycles. The clock speed can be effectively halved if execution states are NOT traced. To do this, you should answer "no" at the "Trace execution cycle" question. Refer to the "Trace Execution Cycle" section of the "Configuring the Emulator" chapter for more information.

Finding Out the Cause of a Monitor Break

If the emulator breaks into monitor unwillingly, you can examine the cause of the break by using the analyzer. When you issue the following commands, you can capture the behavior of the program just before the monitor break.

Reset the trigger condition, select:

Analysis, Trace, Reset Specify the trigger condition that the analyzer is **never** triggered.

Analysis, Trace, Modify

Use the right arrow key to move to the "Trigger on" field. Use the **TAB** key to select "**no state**", and press **Enter**. To save the trace specification, move the cursor to the lower right corner, and press **Enter**.

Start the trace.

Analysis, Begin After starting your program, the unexpected break will occur. To show the cause of the break, stop the trace and display the trace listing.

Analysis, Halt
Analysis, Display
Specify the trace lines to be displayed as -19 through 0.

The trace listing displays will show the cause of the break. If you cannot find the cause of the break, display the previous states. If the trace listing does not include the fundamental problem, you need to

change the trigger condition to capture the problem, and then restart the trace and the program.

This is also useful to detect the causes other than monitor breaks like a processor halt.

5-8 Using the Emulator

Hardware Breakpoints	The analyzer may generate a break request to the emulation processor. To set up a break condition upon an analyzer trigger, follow the steps below.
Using the Analyzer Trigger to Break into the Monitor	To cause emulator execution to break into the monitor when the analyzer trigger condition is found, you must modify the trigger configuration. To access the trigger configuration, select:
	C onfig, T rigger The trigger configuration display contains two diagrams, one for each of the internal TRIG1 and TRIG2 signals.
	To use the internal TRIG1 signal to connect the analyzer trigger to the emulator break line, move the cursor to the highlighted "Analyzer" field in the TRIG1 portion of the display, and use the TAB key to select the ">>" arrow which shows that the analyzer is driving TRIG1.
	Next, move the cursor to the highlighted "Emulator" field and use the TAB key to select the arrow pointing towards the emulator (<<); this specifies that emulator execution will break into the monitor when the TRIG1 signal is driven.

The trigger configuration display is shown in figure 5-1.

Figure 5-1. Cross Trigger Configuration

Software Software breakpoints are realized by the 70632 BRK instruction. When you define or enable a software breakpoint, the emulator will replace **Breakpoints** the opcode at the software breakpoint address with a breakpoint interrupt instruction (BRK). When the BRK instruction is executed, the emulator breaks into monitor and compares the address that the break occurred. If the address is defined as software breakpoint, the emulator displays that the breakpoint hit. The emulator disable the breakpoint and replace the BRK instruction with the original opcode. If the BRK interrupt was generated by a BRK interrupt instruction in the target system, execution still breaks to the monitor, and an "undefined breakpoint" status message is displayed. To continue with program execution, you must run or step from the target program's breakpoint interrupt vector address. There are some attentions when you use the software breakpoint features.

5-10 Using the Emulator
1. Software Breakpoints Should Be Set at only Locations which Contain Instruction Opcodes

You must only set software breakpoints at memory locations which contain instruction opcodes (not operands or data). If a software breakpoint is set at a memory location which is not an instruction opcode, the software breakpoint instruction will never be executed and the break will never occur.

2. Software Breakpoints Should Be Set When The Emulator Is Running In Monitor

Software breakpoints should not be set, enabled, disabled, or removed while the emulator is running user code. If any of these commands are entered while the emulator is running user code, and the emulator is executing code in the area where the breakpoint is being modified, program execution may be unreliable.

3. Software breakpoints cannot be set in target ROM

Because software breakpoints are implemented by replacing opcodes with the BRK instructions, you cannot define software breakpoints in target ROM.

You can, however, copy target ROM into emulation memory (see the "Target ROM Debug Topics" section of the "In-Circuit Emulation" chapter).

4. BRK instruction vector must be set up

You must define the 70632 break-point instruction trap vector to point to an address which is allowed instruction fetch; typically in the program code area.

When a software breakpoint occurred, the emulator breaks into the monitor after the BRK instruction has been executed. However the instruction which is pointed by the BRK instruction vector is never executed.

If you didn't set up the vector and a software break has occurred, an access to the address pointed by the vector may drive the emulator into unpredictable state. The 70632 break-point instruction vector is defined in the 70632 system base table. The vector is located at 0XXXXX34H; where "XXXXXX" is determined by the contents of the privilege register SBR (defaults is "000000").

This table location depends on the content of 70632 SBR register.

5. More Three Words Of The Stack Area Must Be Prepared

When the BRK instruction is executed, the emulator stores the exception information to stack as the same as the 70632 microprocessor does.

So, you should prepare more three words (12 bytes) for stack in addition. The stack, which is used when the breakpoint occurs, is normally the level 0 stack which is pointed by LOSP. When the software breakpoint occurs, if the program uses interrupt stack, the three words of the interrupt stack pointed by ISP is modified by the emulator instead of level 0 stack.

6. Software Breakpoint Manipulation In Virtual Mode

When you enable disable or remove a software breakpoint which you have set by using virtual address, you must issue its command in same virtual space when you have set.

The notices related to software breakpoint manipulation in virtual mode are described in chapter 3.

5-12 Using the Emulator

Target Memory Access

Commands Not Allowed when Real-Time Mode is Enabled

When emulator execution is restricted to real-time and the emulator is running in user code, the system refuses all commands that require access to processor registers or target system memory or I/O. The following commands are not allowed when runs are restricted to real-time:

- Register display/modification (except for XMMU class registers).
- Target system memory display/modification. Because the emulator contains dual-port emulation memory, commands which access emulation memory do not require breaks and are allowed while runs are restricted to real-time.
- I/O display/modification.
- Step.
- Area Table Entry display (which is in target system memory).
- Page Table Entry display (when the PTE or the dependent ATE is/are in target system memory).
- Any other commands with virtual address designation (which cause target system memory accesses for address translation). When you specifies virtual addresses in commands, the emulator will refer to the address translation tables to translate the virtual addresses to the corresponded real addresses. If the address translation tables which are required to translate the specified virtual addresses is in target system memory, the address translation will be failed.

If the real-time mode is enabled, these resources can only be displayed or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands which are allowed to break real-time execution are:

```
"Processor, Reset", "Processor, Go", "Processor, Break"
```

Using the Emulator 5-13

FPU Support

The emulation analyzer can capture co-processor cycles. FPU register display and modification are not supported.

There are following considerations to display co-processor mnemonics in trace or memory display.

FMOVCR instruction

FMOVCR instruction will be displayed as follows:

FMOVCTW	instead	of	FMOVCR	OP1,	FCTW
FMOVPTW	instead	of	FMOVCR	OP1,	FPTW
FMOVSTW	instead	of	FMOVCR	OP1,	FSTW

Instructions with no operand

Dummy operands are displayed when dis-assembling instructions without any operand. As a sign, "#" is displayed just after Opcode mnemonics as follows.

FRPUSH #

FRPUSH # FR0, FR0

Two "FR0"s are dummy operands. The following instructions relate this.

FADD3M.SFADD3M.LFADD4M.SFADD4M.LFSUB3M.SFSUB3M.LFSUB4M.SFSUB4M.LFMUL3M.SFMUL3M.LFMUL4M.SFMUL4M.LFRPUSHFRPOPFAFFECT

Instructions with one operand

Dummy operand is displayed when dis-assembling instructions with only one operand. As a sign, "*" is displayed just after Opcode mnemonics as follows.

FRREL * /00000100H,FR0
The "FR0" is a dummy operand. The following instructions relate this.
FIPV.S FIPV.L FRPINC FRREL

0000fe87a@r -

0000fe86a@r -

5-14 Using the Emulator

MMU Support

The **ate** and **pte** Terminal Interface commands allow you to display Area Table Entry and Page Table Entry for an address you specified in the commands. These commands are useful to examine in which address space the program are executed, and detect the address translation error of the program. Examples of these command usages are described in chapter 3. These command syntax are described in the *HP 64758 70632 Emulator Terminal Interface User's Guide*.

Making Coordinated Measurements

Coordinated measurements are measurements synchronously made in multiple emulators or analyzers. Coordinated measurements can be made between HP 64700 Series emulators which communicate over the Coordinated Measurement Bus (CMB). Coordinated measurements can also be made between an emulator and some other instrument connected to the BNC connector.

This chapter will describe coordinated measurements made from the PC Interface which involve the emulator. These types of coordinated measurements are:

- Running the emulator on reception of the CMB /EXECUTE signal.
- Using the analyzer trigger to break emulator execution into the monitor.

Three signal lines on the CMB are active and serve the following functions:

/TRIGGER	Active low. The analyzer trigger line on the CMB and on the BNC serve the same logical purpose. They provide a means for the analyzer to drive its trigger signal out of the system or for external trigger signals to arm the analyzer or break the emulator into its monitor.
READY	Active high. This line is for synchronized, multi-emulator start and stop. When CMB run control interaction is enabled, all emulators are

Using the Emulator 5-15

	required to break to background upon reception of a false READY signal and will not return to foreground until this line is known to be in a true state.
/EXECUTE	Active low. This line serves as a global interrupt signal. Upon reception of an enabled /EXECUTE signal, each emulator is to interrupt whatever it is doing and execute a previously defined process, typically, run the emulator or start a trace measurement.

Unfamiliar Status	 When you are using the emulator, one of the following message is displayed in the status line normally. N70632Emulation reset N70632Running user program N70632Running in monitor If your target system has a defect or you does not configure the emulator appropriately, the following prompts may be displayed. N70632Waiting for ready N70632Halted
Waiting for Target	The status "Waiting for ready" indicates that the emulator is waiting for target ready signal.
Ready	If you map the unused memory locations as target memory and your program accesses to these locations by a defect (in case of in-circuit, also if a target memory is accessed by an emulation command), the emulator is waiting for an impossible ready signal infinitely because the /READY signal is internally pulled up. When you encounter this status, the emulator cannot break into monitor. All you can do is to reset the processor.

5-16 Using the Emulator

If you are using the emulator in in-circuit mode, the reason is that the emulator intends to access to a memory location for which your target system does not generate ready signal.

If you are using the emulator in out-of-circuit mode, the reason is that the emulator intends to access to a target memory location by your program. To prevent this, all of memory locations, which are not used, should be mapped as guarded memory. When you direct the emulator to access a target memory location, the emulator will return an error message.

Halt or Machine Fault The status "Halted" indicates that the emulator is halted or in machine fault.

In case of machine fault, all you can do will be to reset the processor because the emulator cannot break into monitor.

One of the causes is the exception by a address translation failure. In this case, one of the solution is to use the analyzer. The analyzer will capture states which causes the emulator to halt. Refer to the "Finding out the Cause of a Monitor Break" description of the "Analyzer Topics" section in this chapter, for the analyzer configuration.

70108/70116 Emulation Mode	The 70632 microprocessor has the 70108/70116 emulation mode. In this mode, the 70632 executes instructions as 70108/70116 microprocessor's ones.	
	The emulator provides the following functions for both 70108/70116 and 70632.	
	 Display memory contents in processor mnemonic format. 	
	■ Single-stepping	
	 Analyzer trace 	
Displaying Memory In 70108/70116 Mnemonic Format	The emulator can display contents of memory in mnemonic format for both 70108/70116 and 70632. The emulator provides both inverse assemblers for 70108/70116 and 70632. You can select one of the inverse assemblers to display memory contents by using configuration option " V70 inverse assemble ".	
_	To display memory contents in 70108/70116 mnemonic, change the disassembler by answering:	
	n o To display memory contents in 70632 mnemonic (default), answer:	
-	y es	
Single-stepping	You can also single-step the instructions in the 70108/70116 emulation mode. When you single-step the instructions, mnemonics of the executed instruction is displayed in corresponded processor's ones.	
	However, when you modify the contents of PSW to change the mode with the " R egister, M odify" command, a mnemonic of next one instruction is displayed in wrong processor mnemonic.	
Tracing States In Both Mode	You can also trace the bus states and exec states in the 70108/70116 emulation mode. When tracing the execution of the program, mnemonics of the executed instructions are included in trace listing. The corresponded processor mnemonics are displayed automatically.	

5-18 Using the Emulator

Real-time Emulation Memory Access	The dual-port memory for the emulation memory allows emulation displays and modifications of emulation memory without breaking the processor into the monitor during emulation.
	This is referred to as the Real-time Emulation Memory Access capability.
	If you issue emulation memory display/modification command while the emulation program is running, HP 64700 emulation controller, not the emulation processor, intends to access the dual-port emulation memory with the cycle-stealing method. The emulation memory accesses without breaking the processor into the monitor are accomplished for this reason.
	When cycle-stealing to access to the emulation memory, the emulation controller watches for idle cycles in the 70632 bus cycles. When the idle cycles are found, the emulation controller can access to the emulation memory at the interval of the 70632 bus cycles with cycle-stealing.
	However, in case that the emulation controller cannot find any idle cycles, the emulation controller holds the 70632 bus cycles (not but breaking into the monitor) in order to access to the emulation memory.
	If your target system inserts some wait states to access to memory, no idle cycle may be generated. It is depended on WHAT instructions are executed when the emulation memory access command is issued, or HOW much wait states are inserted.
	When there is no idle cycle within 160 mS, the hold request will be generated to the emulation processor except that the emulator is held, bus-frozen or reset.

Virtual Address Translation	When you specify virtual addresses in emulation commands, the emulator intends to translate these virtual addresses to actual memory addresses in order to manipulate contents of these memory locations.
	For the address translation, the 70632 microprocessor uses its area table register pairs, which define a virtual address space. Similarly, the emulator requires values which corresponds to the 70632 area table register pairs.
Using the Caches of Area Table Register Pairs	The emulator has the caches of the area table register pairs, which allow the emulator to refer the corresponded area table for the address translations even if the emulator cannot to or is not allowed to break into the monitor.
	Each time the emulator breaks into monitor, the caches are updated by the contents of the 70632 area table register pairs.
	By default, the emulator uses the caches to translate the addresses which you specify in emulation commands. The caches contain the base addresses and the lengths of the area tables as the same as the 70632 area table register pairs. The emulator refers to the corresponded area table and page table by using the caches.
	If the emulator is restricted to real-time runs by the " Real-time mode " configuration option, the caches will keep the values while you do not break the emulator into the monitor intentionally. Only when you issue " P rocessor, B reak", " P rocessor, S tep" or " P rocessor, R eset" command or a break condition (such as software breakpoint) is satisfied, the caches are updated.
	If the emulator is not restricted to real-time runs (default), the caches are updated by the contents of the area table register pairs every time the emulator breaks into monitor whether with or without your intention. When you issue commands with virtual addresses, the emulator breaks into the monitor to access the area table register if possible. As the result, the emulator will use the current virtual address space for address translations.
	In the both cases, when the emulator cannot break into monitor, for example the processor is reset, the emulator uses the caches for the address translation.

5-20 Using the Emulator

Specifying Virtual Address Space

When you specify virtual addresses in emulation commands, the emulator translates the virtual address to corresponded real addresses. The translated real addresses depends on a virtual address space. The virtual address space can be defined by the values of area table base and length for each section. In 70632 microprocessor, these informations are stored in its area table register pairs.

In case that the caches mentioned above are used for the address translation, it is difficult to specify an virtual address in your desirable virtual address space during running user program. If your program performs in multiple virtual space, you may want to specify a virtual address space for address translations in order to watch for the execution of a certain task.

This is accomplished by using the XMMU function. The XMMU function allows you to fix a virtual address space for address translations. The emulator has the optional XMMU class registers. These registers consist of eight XMMU register pairs and one XMMU mode register. The XMMU register pairs correspond to the actual 70632 area table register pairs. You can specify a virtual address space by modifying the XMMU class registers. The format of the XMMU class registers is the same as the 70632 actual area table register pairs. The XMMU class registers also include the XMMU mode register (mmumod), which determines whether the caches or the contents of the XMMU register pairs are used for address translations. By default, the caches are selected.

If you activate the XMMU function, the emulator uses the contents of the XMMU register pairs for address translations whether or not the emulator is restricted to real-time runs.

The XMMU class registers consist of the following registers.

corresponded actual registers
atbr0
atlr0
atbr1
atbr2
atlr2
atbr3
atlr3
--None--

XMMU class	registers
xatbr0	
xatlr0	
xatbr1	
xatlr1	
xatbr2	
xatlr2	
xatbr3	
xatlr3	

mmumod

Using the Emulator 5-21

To specify a virtual address space which is used for address translations, modify the contents of the XMMU register pairs corresponded to the area table registers by using the "Register, Modify" command or the **cpmmu** (copy current virtual address space to XMMU registers) Terminal Interface command. See also the "Using the XMMU function" section of chapter 3. For the "**cpmmu**" command syntax, refer to the *HP* 64758 70632 Terminal Interface User's Guide.

After you have modify the contents of the XMMU register pairs, activate the XMMU function by changing the contents of XMMU mode register (mmumod) to the value 1.

Register, Modify Select **mmumod** for the register name, and type **1** for the value to be modified.

To use the caches of the area table register pairs for address translations, modify mmumod register to 0 (default).

Register, Modify Select mmumod for the register name, and type 0 for the value to be modified.

Besides by using the "**R**egister **M**odify" command, the **mmumod** register is reset when the emulator breaks into monitor in the following causes.

- Break by software breakpoint
- Break by single-stepping
- Break by writing to ROM
- Break by access to guarded memory

In these case, the **mmumod** register is reset to "0". As the result, the address translation of the virtual address in a command uses the actual area table register pairs.

Storing Memory Contents to an Absolute File	The "Getting Started" chapter shows you how to load absolute files into emulation or target system memory. You can also store emulation or target system memory to an absolute file with the following command.
	Memory, Store
Note	The first character of the absolute file name must be a letter. You can name the absolute file with a total of 8 alphanumeric characters, and optionally, you can include an extension of up to 3 alphanumeric characters. If the file is stored in HP 64000 format, its extension must be ".X".
Caution 🍟	The "Memory Store" command writes over an existing file if it has the same name that is specified with the command. You may wish to verify beforehand that the specified filename does not already exist.

Reg	ister	Names
and	Clas	ses

The following register names and classes may be used with the "Register, Display/Modify" commands.

BASIC Class

Register Name	Description
pc psw r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31	All basic registers. The ap and r29 , fp and r30 , sp and r31 have same values because of only difference of their register mnemonics.
սի ւի շի	

priv (Privilege registers)

isp l0sp l1sp l2sp l3sp sbr tr sycw tkcw pir psw2

mmu (MMU registers)

atbr0 atlr0 atbr1 Area Table Register Pairs atlr1 atbr2 atlr2 atbr3 atlr3

debg (Debug registers)

trmod adtr0 adtr1 adtmr0 adtmr1

5-24 Using the Emulator

xmmu (XMMU function registers)

mmumod xatbr0 xatlr0 xatbr1 xatlr1 xatbr2 xatlr2 xatbr3 xatlr3 XMMU function registers. These registers are **not actual 70632 registers**. Refer to the XMMU function section of the "Using the Emulator" chapter for the detail.

Foreground Monitor	This section describe the PC Interface specific notification for using the foreground monitor. Refer to the <i>HP 64758 70632 Emulator Terminal Interface User's Guide</i> , for more information of the foreground monitor.
Foreground Monitor Configuration	Before loading the foreground monitor into the emulator, you must answer some configuration option questions.
	Select: Config, General Move the cursor to "Monitor type" field, select foreground, and press Enter.
	In the next field, you must specify the foreground monitor location (real address), type the address of the monitor, and press Enter . The address must be specified in 4 Kbyte boundary. The monitor location is automatically mapped as emulation ram (eram).
	In case of virtual mode application, you must also specify the virtual location of the monitor. Specify the address in the "[virtual address]" field.
Loading the Monitor into Emulator	To load the monitor, select:
	Memory, Load Specify the file format and press Enter.
	Now the "Memory Type" field is high-lighted, select " F_Monitor " to load the foreground monitor, and press Enter .
	Specify the file name and press Enter.
	The emulation monitor will have been loaded into emulator.
	After you have loaded the monitor program, map the memory and load your program.

5-26 Using the Emulator

Restrictions and Considerations

When the microprocessor accesses data which are not aligned, the microprocessor generates more than twice memory access cycles. If the microprocessor accepts interrupt while microprocessor reads the data which are not aligned, the microprocessor stop accessing the data and generates invalid memory write cycle.

But, memory is not changed because bus enable signals(BS0-BS3) are inactive, and stopped memory read cycles are reexecuted after interrupt routine.

If you specify that the emulator break into the monitor upon attempts to write to memory mapped as ROM and if microproccessor generates invalid memory write cycle described above in user's program, the emulator break into the monitor.

Notes

5-28 Using the Emulator

In-Circuit Emulation Topics

Introduction

Many of the topics described in this chapter involve the commands which relate to using the emulator in-circuit, that is, connected to a target system.

This chapter will:

- Describe the issues concerning the installation of the emulator probe into target systems.
- Show you how to install the emulator probe.
- Show you how to use features related to in-circuit emulation.

Prerequisites	Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the <i>Concepts of Emulation and Analysis</i> manual and the "Getting Started" chapter of this manual.
Installing the Emulator Probe into a Target System	The emulator probe has a PGA connector. The emulator probe is also provided with a conductive pin protector to protect the delicate gold-plated pins of the probe connector from damage due to impact.
Caution 🕌	Protect against static discharge. The emulation probe contains devices that are susceptible to damage by static discharge. Therefore, precautionary measures should be taken before handling the microprocessor connector attached to the end of the probe cable to avoid damaging the internal components of the probe by static electricity.
Caution 🌵	Make sure target system power is OFF. Do not install the emulator probe into the target system microprocessor socket with power applied to the target system. The emulator may be damaged if target system power is not removed before probe installation.

6-2 In-Circuit Emulation

Caution 🗳	Make sure pin 1 of probe connector is aligned with pin 1 of the socket. When installing the emulation probe, be sure that the probe is inserted into the processor socket so that pin 1 of the connector aligns with pin 1 of the socket. Damage to the emulator probe will result if the probe is incorrectly installed.
Caution	Protect your target system CMOS components. If you target system contains any CMOS components, turn ON the target system first, then turn ON the emulator. Likewise, turn OFF your emulator first, then turn OFF the target system.
Pin Protector	The target system probe has a pin protector that prevents damage to the prove when inserting and removing the probe from the target system microprocessor socket. Do not use the probe without a pin protector installed. If the target system probe is installed on a densely populated circuit board, there may not be enough room to accommodate the plastic shoulders of the probe socket. If this occurs, another pin protector may be stacked onto the existing pin protector.
Conductive Pin Guard	HP emulators are shipped with a conductive plastic or conductive foam pin guard over the target system probe pins. This guard is designed to prevent impact damage to the pins and should be left in place while you are not using the emulator. However, when you do use the emulator, either for normal emulation tasks, or to run performance verification on the emulator, you must remove this conductive pin guard to avoid intermittent failures due to the target system probe lines being shorted together.

In-Circuit Emulation 6-3

Caution

Always use the pin protectors and guards as described above. Failure to use these devices may result in damage to the target system probe pins. Replacing the target system probe is expensive; the entire probe and cable assembly must be replaced because of the wiring technology employed.

Figure 6-1. Installing Emulation Probe Into PGA Socket

6-4 In-Circuit Emulation

Installing the Target System Probe

- 1. Remove the 70632 microprocessor from the target system socket. Note the location of pin 1 on the processor and on the target system socket.
- 2. Store the microprocessor in a protected environment (such as antistatic foam).
- 3. Install the target system probe into the target system microprocessor socket. Remember to use the pin protector!

In-Circuit Configuration Options

The 70632 emulator provides configuration options for the following in-circuit emulation issues. Refer to the "Configuring the Emulator" chapter for the configuration.

Selecting the Emulator Clock Source

The default emulator configuration selects the internal 20 MHz clock as the emulator clock source. You can configure the emulator to select an external target system clock source in the range of 8-20 MHz.

Driving Background Cycles to the Target System

You can choose whether emulator bus cycles are driven to your target system bus when the emulator is in background cycle. If your target system requires bus cycle activities constantly, such as /BCYST, will need to drive the emulation bus cycles to your target system bus. By default, no bus cycles are driven to the target system in background operation.

Selecting Memory Block during Background Cycles

You can select the value of the 70632 address bus which should be driven to your target system. Pin A31 through A8 of the address bus is configurable. This configuration is meaningful when the "Driving Background Cycles to Target System" configuration mentioned above is activated.

Allowing /HLDRQ Signal from Target System

You can specify whether the emulator accepts or ignores the /HLDRQ signal from your target system. By default, the emulator accepts the /HLDRQ signal from the target system.

Allowing BFREZ Signal from Target System

You can specify whether the emulator accepts or ignores the BFREZ signal from your target system. By default, the emulator accepts the BFREZ signal from the target system.

Allowing INT Signal from Target System

You can specify whether the emulator accepts or ignores the INT signal from your target system. By default, the emulator accepts the INT signal from the target system.

Allowing /NMI Signal from Target System

You can specify whether the emulator accepts or ignores the /NMI signal from your target system. By default, the emulator accepts the /NMI signal from the target system.

Allowing the Target System to Insert Wait States

High-speed emulation memory provides no-wait-state operation. However, the emulator may optionally respond to the target system /READY, /BERR, RT/EP lines while emulation memory is being accessed.

You can specify whether the emulation memory accesses are honored by these target system signals or not, in a memory mapping term. When you map emulation memory, if you would like to cause the emulation memory to honor these target system signals, use the "**eram_lock**" or "**erom_lock**" attribute for emulation memory type.

When the ready relationship is locked to the target system by using "**eram_lock**" or "**erom_lock**" attribute, the emulation memory accesses honor /READY, /BERR, RT/EP signals from the target system (wait states or retry cycles are inserted if requested).

6-6 In-Circuit Emulation

If you do not specify the "**lock**" attribute, the ready relationship is not locked to the target system, and the emulation memory accesses ignore these signals from the target system (no wait states are inserted).

The Usage of I/O Command	The emulator has " P rocessor, I /O" command, you can manipulate an I/O address by using this command. You can specify an I/O address in either virtual or real address space as well as the " M emory" command.
	There are two I/O spaces according to methods for accessing to I/O in the 70632 microprocessor.
	The first I/O space can be accessed by using an IN/OUT instruction. In this section, this I/O space is referred as "Isolated I/O space" distinguish from Memory Mapped I/O described below.
	The second I/O space can be accessed by simply reading from or writing to the memory. The I/O space can be mapped to the virtual address space and known as Memory Mapped I/O.
	How to Access an Isolated I/O space
	If you would like to manipulate an Isolated I/O space which is accessed by using an IN/OUT instruction of the microprocessor, designate the I/O address in real address.
	How to Access a Memory Mapped I/O space
	If you would like to manipulate a Memory Mapped I/O space which is accessed by reading from or writing to a memory. designate the I/O address in virtual address. The I/O mapped bit of the page table entry which includes the I/O address must be set to 1, in other word, the address is mapped as I/O.

In-Circuit Emulation 6-7

Notes

6-8 In-Circuit Emulation

File Format Readers

Using the HP 64000 Reader	An HP 64000 "reader" is provided with the PC Interface. The HP 64000 Reader converts the files into two files that are usable with your emulator. This means that you can use available language tools to create HP 64000 absolute files, then load those files into the emulator using the PC Interface.
	The HP 64000 Reader can operate from within the PC Interface or as a separate process. When operating the HP 64000 Reader, it may be necessary to execute it as a separate process if there is not enough memory on your personal computer to operate the PC Interface and HP 64000 Reader simultaneously. You can also operate the reader as part of a "make file."
What the Reader Accomplishes	Using the HP 64000 files (<file.x>, <file.l>, <scr1.a>, <scr2.a>,) the HP 64000 Reader will produce two new files, an "absolute" file and an ASCII symbol file, that will be used by the PC Interface. These new files are named: "<file>.hpa" and "<file>.hps."</file></file></scr2.a></scr1.a></file.l></file.x>
	The Absolute File
	During execution of the HP 64000 Reader, an absolute file (<file>.hpa) is created. This absolute file is a binary memory image which is optimized for efficient downloading into the emulator.</file>
	The ASCII Symbol File
	The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader contains global symbols, module names, local symbols, and, when using applicable development tools such as a "C" compiler, program line numbers. Local symbols evaluate to a fixed (static, not stack relative) address.</file>

File Format Readers A-1

Α

Note

You must use the required options for your specific language tools to include symbolic ("debug") information in the HP 64000 symbol files. The HP 64000 Reader will only convert symbol information present in the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

The symbol file contains symbol and address information in the following form:

```
module_name1
module_name2
 . . .
module nameN
global_symbol1
                012345678
global_symbol2
                056789ABC
global_symbolN
                09ABCDEF0
module_name1|# 1234
                              76543210
module_name1|local_symbol1
                              0CBA98765
module_name1 local_symbol2
                              087654321
 . .
module_name1|local_symbolN
                              0FEDCBA98
```

Each of the symbols is sorted alphabetically in the order: module names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that "local_symbolX" will be replaced by "#NNNNN" where NNNNN is a five digit decimal line number. The addresses associated with global and local symbols are specific to the processor for which the HP 64000 files were generated.

Note

If your emulator can store symbols internally, symbols will appear in disassembly. When the line number symbol is displayed in the emulator, it appears in brackets. Therefore, the symbol "MODNAME: line 345" will be displayed as "MODNAME:[345]" in mnemonic memory and trace list displays.

The space preceding module names is required. Although formatted for readability here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable named "count" in a source file module named "main.c," you would enter "MAIN.C:count" as shown below.

Table A-1. How to Access Variables (HP64000 Format)

Module Name	Variable Name	You Enter:
MAIN.C	count	MAIN.C:count
MAIN.C	line number 23	MAIN.C: line 23

You access line number symbols by entering the following on one line in the order shown:

module name colon (:) space the word "line" space the decimal line number

For example:

MAIN.C: line 23

Location of the HP 64000 Reader Program

The HP 64000 Reader is located in the directory named \hp64700\bin by default, along with the PC Interface. This directory must be in the environment variable PATH for the HP 64000 Reader and PC Interface to operate properly. The PATH is usually defined in the "\autoexec.bat" file.

File Format Readers A-3

	 The following examples assume that you have "\hp64000\bin" included in your PATH variable. If not, you must supply the directory name when executing the Reader program. The command name for the HP 64000 Reader is RHP64000.EXE. To execute the Reader from the command line, for example, enter: 	
Using the Reader from MS-DOS		
	C:\HP647(00\BIN\RHP64000 [-q] <filename></filename>
	-q	This option specifies the "quiet" mode, and suppresses the display of messages.
	<filename></filename>	This represents the name of the HP 64000 linker symbol file (file.L) for the absolute file to be loaded.
	The following co "TESTPROG.HP	mmand will create the files "TESTPROG.HPA" and S"
	RHP64000	TESTPROG.L
Using the Reader from the PC Interface	The PC Interface command. After Reader will opera successfully, the produced by the I	has a file format option under the "Memory Load" you select HP64000 as the file format, the HP 64000 ate on the file you specify. After this completes PC Interface will accept the absolute and symbol files Reader.
	To use the Reade	r from the PC Interface:
	1. Start up	the PC Interface.
	2. Select "I	Memory Load." The memory load menu will appear.
	3. Specify default f	the file format as "HP64000." This will appear as the file format.
	4. Specify (TESTF)	the name of an HP 64000 linker symbol file ILE.L for example).
	Using the HP 640 the PC Interface	000 file that you specify (TESTFILE.L, for example), performs the following:

A-4 File Format Readers

	 It checks to see if two files with the same base name and extensions .HPS and .HPA already exist (for example, TESTFILE.HPS and TESTFILE.HPA).
	 If TESTFILE.HPS and TESTFILE.HPA don't exist, the HP 64000 Reader produces them. The new absolute file, TESTFILE.HPA, is then loaded into the emulator.
	• If TESTFILE.HPS and TESTFILE.HPA already exist but the create dates and times are earlier than the HP 64000 linker symbol file creation date/time, the HP 64000 Reader recreates them. The new absolute file, TESTFILE.HPA, is then loaded into the emulator.
	If TESTFILE.HPS and TESTFILE.HPA already exist but the dates and times are later than the creation date and time for the HP 64000 linker symbol file, the HP 64000 Reader will not recreate TESTFILE.HPA. The current absolute file, TESTFILE.HPA, is then loaded into the emulator.
Note	Date/time checking is only done within the PC Interface. When running the HP 64000 Reader at the MS-DOS command line prompt, the HP 64000 Reader will always update the absolute and symbol files.
	When the HP 64000 Reader operates on a file, a status message will be displayed indicating that it is reading an HP 64000 file. When the HP 64000 Reader completes its processing, another message will be displayed indicating the absolute file is being loaded.
	The PC Interface executes the Reader with the "- q " (quiet) option by default.
If the Reader Won't Run	If your program is very large, the PC Interface may run out of memory while attempting to create the database file. If this occurs, you will need to exit the PC Interface and execute the program at the MS-DOS command prompt to create the files that are downloaded to the emulator.

File Format Readers A-5

Including RHP64000 in a Make File	You may wish to incorporate the "RHP64000" process as the last step in your "make file," as a step in your construction process, to eliminate the possibility of having to exit the PC Interface due to space limitations describe above. If the files with ".HPA" and ".HPS" extensions are not current, loading an HP 64000 file will automatically create them.
Using the NEC COFF Reader	The 70632 PC Interface provides with the NEC COFF Reader.
	The Reader converts an absolute file into two files that are usable with the HP 64758 emulator. This means that you can use those available language tools to create absolute files, then load those files into the emulator using the 70632 PC Interface. The Reader can operate from within the PC Interface or as a separate process. When operating the Reader, it may be necessary to execute it as a separate process if there is not enough memory on your personal computer to operate the PC Interface and Reader simultaneously. You can also operate the reader as part of a "make file".
What the NEC COFF Reader Accomplishes	Using absolute file in the form " <file>.<ext>", the NEC COFF Reader will produce two new files, an "absolute" file and an ASCII symbol file, that will be used by the 70632 PC Interface. These new files are named: "<file>.hpa" and "<file>.hps".</file></file></ext></file>
	The Absolute File
	During execution of the NEC COFF Reader, an absolute file (<file>.hpa) is created. This absolute file is a binary memory image</file>

which is optimized for efficient downloading into the emulator.

A-6 File Format Readers

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the NEC COFF Reader contains global symbols, module names, local symbols, and, when using applicable development tools such as a "C" Compiler, program line number. Local symbols evaluate to a fixed (static, not stack relative) address.

Note

You must use the required options for your specific language tools to include symbolic ("debug") information in the absolute file. The NEC COFF Reader will only convert symbol information that is present in the input absolute file.

The symbol file contains symbol and address information in the following form:

```
module_name1
module_name2
...
module_nameN
global_symbol1 01001234
global_symbol2 01005678
...
global_symbolN 0100ABCD
module_name # 1234 02000872
module_name local_symbol1 02000653
module_name local_symbol2 02000872
...
module_name local_symbolN 02000986
```

Each of the symbols is sorted alphabetically in the order: module manes, global symbols, and local symbols.

The space preceding module names is required. Although formatted for readability here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable named "count" in a source file module named "main.c," you would enter "MAIN:count." See table A-2.

Module Name	Variable Name	You Enter:
main	count	main:count
main	line number 23	main: line 23
	Line numbers will appear similar to "local_symbolX" will be replaced by five digit decimal number.	a local symbol except that / "#NNNNN" where NNNNN is a
Note	When the line number symbol is displayed in the emulator, it appears in brackets. Therefore, the symbol "MODNAME:# 345" will be displayed as "MODNAME:[345]" in mnemonic memory and trace list displays.	
	Line number symbols are accessed b line in the order shown: module name colon (:) space the word "line" space the decimal line number	y entering the following on one
	For example: MAIN.C: line 23	
Location of the NEC COFF Reader Program	The NEC COFF Reader is located at the directory named \hp64700\bir by default, along with the PC Interface. This directory must be in the environment variable PATH for the NEC COFF Reader and PC Interface to operate properly. This is usually defined in the "\autoexec.bat" file. The following examples assume that you have "\hp64700\bin" include in your PATH variable. If not, you must supply the directory name when executing the NEC COFF Reader program.	

Table A-2. How to Access Variables (NEC COFF Format)

A-8 File Format Readers

Using the NEC COFF Reader from MS-DOS

The command names for the NEC COFF Reader are shown below.

RDNEC70.EXE To execute the NEC COFF Reader from the command line, for example... ENTER: RDNEC70 [-q] [-u] [-r] [-a] <filename> specifies the "quiet" mode. This option suppress -q the display of messages. defeats removal of a leading underscore in the -u symbol name (for example, "_symbol"). When used, a symbol name containing a leading underscore will be left alone. generates load address information in real address. -r If this option is not specified, the load address is generated in virtual. The HP 64758 emulator can load a program in real address or virtual address. It is determined by configuration option "Object file address attribute". If you want to load a program in real address, use this option. In case of real mode application, this option is senseless because the address is the same between real address and virtual address. adds address attributes to the symbol file (.HPS). -a You can add address attributes to symbols. The address attributes are determined by the load address attribute specified by the above option. If load address attribute is real, "@r" suffix is added to address. If load address attribute is virtual, "@v" suffix is added to address. In case of virtual mode application, this option should be specified for accurate manipulation of symbols. <filename> is the same of the file containing the absolute program. You can include an extension in the file name.

Using the NEC COFF Reader from the PC Interface

The 70632 PC Interface has a file format option under the "Memory Load" command.

For example, after you select NEC COFF as the file format, the NEC COFF Reader will operate on the file you specify. After this completes successfully, the 70632 PC Interface will accept the absolute file and symbol files produced by the NEC COFF Reader.

To use the NEC COFF Reader from the PC Interface:

- 1. Start up the 70632 PC Interface.
- 2. Select "Memory, Load". The memory load menu will appear.
- 3. Specify the file format as "NEC COFF". This will appear as the default file format.
- 4. Specify a file in NEC COFF format ("TESTFILE.X", for example). The file extension can be something other than ".X", but ".HPA" or ".HPS" cannot be used.

The PC Interface performs the following:

- It checks to see if files with the same base name and extensions ".HPS" and ".HPA" already exist (for example, TESTFILE.HPS and TESTFILE.HPA).
- If TESTFILE.HPS and TESTFILE.HPA don't exist, the NEC COFF Reader produces them. The new absolute file, TESTFILE.HPA, is then loaded into the emulator.
- If TESTFILE.HPS and TESTFILE.HPA already exist but the create dates and times are earlier than the NEC COFF file creation date/time, the NEC COFF Reader recreates them. The new absolute file, TESTFILE.HPA, is then loaded into emulator.
- If TESTFILE.HPS and TESTFILE.HPA already exist but the dates and times are earlier than the creation date and time for the NEC COFF file, the NEC COFF Reader will not recreate
TESTFILE.HPA. The current absolute file, TESTFILE.HPA, is then loaded into emulator.

Note

Date/time checking only done within the PC Interface. When running the Reader at the MS-DOS command line prompt, the Reader will always update the absolute and symbol files.

When the Reader operates on a file, a status message will be displayed indicating that it is reading an absolute file. When the Reader completes its processing, another message will be displayed indicating the absolute file is being loaded. The PC Interface executes the Reader with the "-q" (quiet) option by default. The other options (-u, -r and -a) are not in effect by default. If you wish to use these options, you must execute the Reader from the MS-DOS prompt.

If the NEC COFF Reader Won't Run

If your program is very large, the PC Interface may run out of memory while attempting to create the database file used. If this condition occurs, you will need to exit the PC Interface and execute that are downloaded to the emulator.

If you use the HP 64879 assembler/linker, specify module name in your source file by using ".file" directive for the local symbols.

Including RDNEC70 in a Make File

You may want to incorporate the "RDNEC70" process as the last step in your "make" file, or as a step in your construction process, so as to eliminate the possibility of having to exit the PC Interface due to space limitations describe above. If the "-.HPA" and "-.HPS" files are not current, loading an NEC COFF file will automatically create them.

File Format Readers A-11

Notes

Index

Α absolute files <file>.hpa created by HP 64000 Reader, A-1 format, **2-11** loading, 2-11 storing, 5-23 access emulation memory, 5-19 target memory, 5-13 access size target memory, 4-9 adding breakpoints, 3-24 address bus background cycles, 4-9 address mode suffix, **3-30** address translation, 5-20 address translation tables displaying, 3-24 analysis begin, 2-26 analysis display, 2-26 analysis specification resetting the, 2-23 saving, **2-26** trigger condition, 2-23 analyzer, 1-4 cause of break, 5-7 clock speed, 5-7 data trigger, 5-6 disassemble, 5-5 emulation mode, **5-18** execution state, 5-4, 5-6 hardware break, 5-9 qualifiers, 5-4 state count, 5-7 status label, 5-4 time tagging, 5-7 trace, 3-17

tracing virtual address, **3-25** analyzer, using the, **2-23** area table entry displaying, **3-24** ASCII symbol file (<file>.hps), **A-1** assemblers, **2-8** assembling sample program, **3-9** assembling and linking the getting started sample program, **2-5**

B background, **1-6**

background cycle address bus, 4-9 signals to target system, 4-8 background monitor, **4-9** BERR from target system, 6-6 **BFREZ** signal responding, 4-8 BNC connector, 5-15 break monitor, 5-7 target memory access, 5-13 break command, 2-20 break conditions, 4-11 breaking into the monitor on trigger, 5-9 breakpoints, 1-5 adding, 3-24 hardware, 5-9 software, 5-10 breaks on writes to ROM, 4-4 BRK instruction, 2-21

C cautions

filenames in the memory store command, **5-23** installing the probe into socket, **6-3** protect against static discharge, **6-2** protect your target system CMOS components, **6-3** target system power must be off when installing the probe, **6-2** use the pin protectors, **6-4** changing symbols, **3-19** changing trace format, **2-28**

characterization of memory, 2-7 clock source external, 4-3 internal, 4-3 clock speed, 1-3 CMB (coordinated measurement bus), 5-15 CMB interaction, enabling, 4-6 CMB signals, 5-15 CMOS target system components, protecting, 6-3 commands (PC Interface), selecting, 2-6 configuration foreground monitor, 5-26 general, 4-2 load real address, 3-14 trace virtual or real address, 3-26 configuration (emulator), 4-1 loading, 4-11 storing, 4-11 Configuration options respond to HLDRQ signal, 4-7 breaks on writes to ROM, 4-4 drive background cycles to the target system, 4-8 emulator clock source, 4-3 enable CMB interaction, 4-6 enable software breakpoints, 4-4 locating the monitor block, 4-10 memory inverse assemble type, 4-7 monitor type, 4-9 object file address attribute, 4-5 real-time mode, 4-3 respond to target bus freeze, 4-8 respond to target NMI, 4-7 respond to target system interrupt, 4-8 target memory access size, 4-9 trace execution cycles, 4-5 trace hold tag, 4-5 trace real address, 4-6 value for address bits A31-A8 during background operation, 4-9 connector, 1-3 converter NEC COFF format, A-6

coordinated measurements break on analyzer trigger, 5-9 definition, 5-15 multiple emulator start/stop, 4-6
coprocessors and access of emulation memory, 2-8
copy memory command, 2-34
count, step command, 2-18

D da

Ε

size of, **2-7** emulation mode, **5-18**

emulation monitor

memory inverse assembler, 4-7

foreground or background, 1-6

data bus trace. 5-6 device table, emulator, 2-6 disassemble trace listing, 5-5 disassembler selecting, 4-7 displaying address translation tables, 3-24 I/O, 6-7 memory, 2-16 memory emulation mode, 5-18 mmu register, 3-16 privilege register, 3-16 TCB, 3-25 trace, 2-26 dissemble FPU, 5-14 DMA external, 2-8 driving background cycles to the target system, 4-8 emulation feature foreground or background monitor, 1-6 out-of-circuit or in-circuit emulation, 1-6 emulation memory, 1-3 note on target accesses of, 2-8 real time access, 5-19

monitor, 1-6 emulation RAM and ROM, 2-7 emulator configuration, 4-2 device table, 2-6 purpose, 1-1 reset, 2-34 status, 2-6 usage, 5-1 emulator configuration configuration options, 4-1 emulator feature, 1-3 analyzer, 1-4 breakpoints, 1-5 clock speed, 1-3 connector, 1-3 emulation memory, 1-3 FPU, 1-4 FRM, 1-4 MMU, 1-4 processor reset control, 1-5 register display/modify, 1-4 restrict to real-time runs, 1-5 single-step processor, 1-4 software debugging, 1-5 target interface, 1-5 emulator probe installing, 6-2 enabling NMI input from target system, 4-7 responding to HLDRQ signal, 4-7 tracing execution cycles, 4-5 eram, memory characterization, 2-8 erom, memory characterization, 2-8 EXECUTE CMB signal, 5-16 executing programs, 2-20 execution cycles tracing, 4-5 execution state analyzer, 5-4

trace, 5-6 exiting the PC Interface, 2-35 external clock source, 4-3 F feature of the emulator, 1-3 file formats HP64000, A-4 file formats, absolute, 2-11 find data in memory, 2-20 floating point register, 5-3 foreground, 1-6 foreground monitor, 4-9, 5-26 FPU, 1-4 disassemble, 5-14 FRM, 1-4 G general configuration, 4-2 getting started, 2-1 prerequisites, 2-2 global symbols, 2-12, 2-17 grd, memory characterization, 2-8 guarded memory acceses, 2-9 guarded memory accesses, 2-8 н halted, 5-16 hardware breakpoints, 5-9 HLDRQ signal responding, 4-7 hold tracing, 4-5 HP 64000 Reader, A-1 using with PC Interface, A-4 HP 64000 Reader command (RHP64000.EXE), A-4 HP 64700 environment variable, 2-6 HP64000 file format, A-4 L I/O

display/modify, **6-7** in-circuit READY, BERR, RT/EP, **6-6** in-circuit emulation, **6-1** inserting wait state, **6-6**

install, software installation program, 2-6 installation software, 2-2 instruction execution triggering analyzer, 5-4 INT from target system, 4-8 internal clock source, **4-3** interrupt (INT) from target system, 4-8 interrupt (NMI) from target system, 4-7 inverse assembler selecting, 4-7 line numbers, 2-27 linkers, 2-8 linking sample program, 3-9 linking the getting started sample program, 2-5 load address mode, 4-5 load map, **2-8** loading address attribute, 3-14 foreground monitor, 5-26 sample program, 3-11 loading absolute files, 2-11 loading symbols, 3-12, 3-19 local symbols, 2-13, 2-22, A-3, A-7 locating the monitor, **4-10** locked, PC Interface exit option, 2-35 make file, A-1 mapping memory, 2-7, 3-10 memory

L

Μ

memory copy range, 2-34 displaying in mnemonic format, 2-16 emulation mode, 5-18 mapping, 2-7, 3-10 modifying, 2-19 searching for data, 2-20 memory characterization, 2-7

```
memory inverse assembler
   selecting, 4-7
MMU, 1-4, 5-15
mmu register
   displaying, 3-16
mnemonic
  trace listing, 5-5
modifying
  I/O, 6-7
  memory, 2-19
   stack pointer, 5-2
monitor
  background, 4-9
  breaking into, 2-20
   foreground, 4-9, 5-26
   locating the, 4-10
monitor block, 4-10
monitor break
  cause, 5-7
NEC COFF reader, A-6
NMI
   from target system, 4-7
notes
   .file assembler directive for local symbols, A-11
   absolute file names for stored memory, 5-23
   CMB interaction enabled on execute command, 4-7
   date checking only in PC Interface, A-5
   default address evaluation in real mode, 3-30
   displaying trace, 2-26
   inconsistent address suffix, 3-31
   line number symbols in memory and trace listings, A-8
   mapper terms deleted when monitor is relocated, 4-10
   mapping foreground monitor automatically, 4-10
```

Ν

Reader only checks date/time within the PC Interface, A-11 register command, 2-17

software breakpoints, **2-21** symbolic information is required in absolute file, **A-7**

target accesses of emulation memory, **2-8**

use required options to include symbols, A-2

using terminal window to modify configuration, 4-3

Ρ page table entry displaying, 3-24 PC Interface exiting the, 2-35 HP 64000 Reader, A-4 selecting commands, 2-6 starting the, **2-6** prerequisites for getting started, 2-2 privilege register displaying, 3-16 purpose of the emulator, 1-1 Q qualifiers analyzer, 5-4 qualifiers, analyzer status, 2-24 R RAM, mapping emulation or target, 2-8 reader NEC COFF format, A-6 READY from target system, 6-6 READY, CMB signal, 5-15 real address tracing, 4-6 real time access emulation memory, 5-19 real-time execution, 4-3 real-time runs, 1-5, 5-13 register displaying (privilege, mmu), 3-16 floating-point, 5-3 modification, 5-2 xmmu, 3-21 register command, 2-17 register display/modify, 1-4 registers names and classes, 5-24 XMMU, 5-20 relocatable files, 2-8 reset (emulator), 2-34 reset control, 1-5 resetting the analyzer specifications, 2-23

resetting trace specification, 3-18 respond to target system interrupt, 4-8 responding target bus freeze (BFREZ), 4-8 restrict real-time runs, 5-13 restrict to real-time runs, 1-5 ROM mapping emulation or target, 2-8 writes to, 2-8 RT/EP from target system, 6-6 running programs, 2-20 sample program assembling, 2-5 description, 2-2 linking, 2-5 loading into emulator, 3-11 virtual mode, 3-2 saving analysis specifications, 2-26 searching for data in memory, 2-20 selecting memory inverse assembler, 4-7 selecting PC Interface commands, 2-6 signals background cycle, 4-8 simple trigger, specifying, 2-23 single-step, 2-17 emulation mode, 5-18 single-step processor, 1-4 software breakpoints, 1-5, 2-21, 5-10 clearing, 2-23 defining (adding), 2-21 displaying, 2-22 enabling, 4-4 note on BRK instruction vector, 2-21 setting, 2-23 software debugging, 1-5 software installation, 2-2 specifications analysis specification, 2-23 specifing virtual address space, 5-21 specifying virtual space, 3-21

S

stack pointer modification, 5-2 starting the trace, 2-26 state count, 5-7 static discharge, protecting the emulator probe against, 6-2 status halted, 5-16 machine fault, 5-16 waiting for ready, 5-16 status (analyzer) qualifiers, 2-24 status label analyzer, 5-4 status line, 2-6 step, 2-17 emulation mode, 5-18 step count, 2-18 storing absolute files, 5-23 suffix address mode, 3-30 symbols, 2-12 .HPS file format, A-2 changing, 3-19 global, 2-17 loading, 3-12, 3-19 local, 2-22, A-2 transferring, 3-12 system command exit, 2-35 target interface, 1-5 target memory access, 5-13 target system signals during background cycles, 4-8 target system RAM and ROM, 2-8 TCB

displaying, **3-25** terget memory access size, **4-9** time tagging, **5-7** trace analyzer, **3-17** cause of break, **5-7**

Т

clock speed, 5-7 data trigger, 5-6 description of listing, 2-27 disassemble, 5-5 displaying the, 2-26 emulation mode, 5-18 execution cycles, 4-5 execution state, 5-6 hold tag, 4-5 starting the, 2-26 state count, 5-7 time tagging, 5-7 trigger position, 2-30 virtual address, 3-25 virtual or real address, 4-6 trace format changing, 2-28 trace signals, 2-23 trace specification resetting, 3-18 tram, memory characterization, 2-8 transferring symbols, 3-12 translation table displaying, 3-24 TRIG1, TRIG2 internal signals, 5-9 trigger breaking into monitor on, 5-9 specifying a simple, 2-23 trigger condition, 2-23 instruction execution, 5-4 trigger position, 2-30 TRIGGER, CMB signal, 5-15 trom, memory characterization, 2-8

- U unlocked, PC Interface exit option, 2-35 using the emulator, 5-1 using the HP 64000 file reader, A-1
- V virtual address tracing, **3-25**, **4-6** virtual address translation, **5-20** virtual mode

emulation, **3-1** virtual space specifying, **3-21, 5-21**

W wait state

target ready signal, **6-6** waiting for ready, **5-16**

- X xmmu function, 3-21, 5-20 xmmu registers, 3-21
- **Z** zoom, window, **2-12**, **2-16**

Notes

