
HP 64758

70632 Emulator
PC Interface

User’s Guide

HP Part No. 64758-97005
Printed in U.S.A.
March, 1993

Edition 3

NoticeNotice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1990,1993 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett Packard Comapny.

IBM and PC AT are registered trademark of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

V70 is trademark of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S.A. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2)

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64758-97001, August 1990

Editon 2 64759-97003, November 1990

Edition 3 64758-97005, April 1993

Using This manual

This manual introduces you to the HP 64758G/H 70632 Emulator as
used with the PC Interface.

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator to
real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual does not:

Show you how to use every PC Interface command and
option. See the HP 64700 Emulators PC Interface: User’s
Reference for further details.

Organization

Chapter 1 Introduction. This chapter lists the 70632 emulator features and
describes how they can help you in developing new hardware and
software.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. The chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, set software breakpoints, search
memory for data, and use the analyzer.

Chapter 3 Virtual Mode Emulation Topics. This chapter shows you how to use
emulator in virtual mode. The chapter describes a sample program and
how to: load programs into the emulator, display on-chip MMU
registers, privilege registers and TCB, set software breakpoints, and use
the analyzer in virtual mode.

Chapter 4 Configuring the Emulator. You can configure the emulator to adapt
it to your specific development needs. This chapter describes the
options available when configuring the emulator, and how to save and
restore particular configurations.

Chapter 5 Using the Emulator. This chapter describes emulation topics that are
not covered in the "Getting Started" and "Virtual Mode Emulation
Topics" chapters (for example, coordinated measurements and storing
memory).

Chapter 6 In-Circuit Emulation. This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Appendix A File Format Readers. This appendix describes how to use the Readers
from MS-DOS or PC Interface, load absolute files into the emulator,
use global and local symbols with the PC Interface.

Contents

1 Introduction to the 70632 Emulator

Purpose of the 70632 Emulator . 1-1
Features of the 70632 Emulator 1-3

Supported Microprocessor . 1-3
Clock Speeds . 1-3
Emulation Memory . 1-3
Analysis . 1-4
FPU . 1-4
MMU . 1-4
FRM . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-5
Reset Support . 1-5
Software Debugging . 1-5
Configurable Target System Interface 1-5
Real-Time Operation . 1-5
Foreground or Background Emulation Monitor 1-6
Out-of-Circuit or In-Circuit Emulation 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2
Assembling and Linking the Sample Program 2-5

Starting Up the 70632 PC Interface 2-6
Selecting PC Interface Commands 2-6
Emulator Status . 2-6

Mapping Memory . 2-7
Which Memory Locations Should Be Mapped? 2-8

Loading Programs into Memory 2-11
File Format . 2-11
Memory Type . 2-11

Contents-1

Force Absolute File Read . 2-11
File Format Options . 2-12
Absolute File Name . 2-12

Displaying Symbols . 2-12
Displaying Global Symbols 2-12
Loading and Displaying Local Symbols 2-13
Transfer Symbols to the Emulator 2-15

Displaying Memory in Mnemonic Format 2-16
Stepping Through the Program 2-17

Specifying a Step Count . 2-18
Modifying Memory . 2-19
Running the Program . 2-20
Searching Memory for Data . 2-20
Breaking into the Monitor . 2-20
Using Software Breakpoints . 2-21

Defining a Software Breakpoint 2-21
Displaying Software Breakpoints 2-22
Setting a Software Breakpoint 2-23
Clearing a Software Breakpoint 2-23

Using the Analyzer . 2-23
Resetting the Analysis Specification 2-23
Specifying a Simple Trigger 2-23
Starting the Trace . 2-26
Displaying the Trace . 2-26
Changing the Trace Format 2-28
Trigger Position . 2-30
For a Complete Description 2-33

Copying Memory . 2-34
Resetting the Emulator . 2-34
Exiting the PC Interface . 2-35

3 Virtual Mode Emulation Topics

Sample Program for Virtual Mode Emulation 3-2
Assembling and Linking the Sample Program 3-9
Setting up the Emulator . 3-10

Mapping Memory . 3-10
Loading Program into Memory 3-11
Displaying and Transferring the Symbols for os.x 3-12

Getting into Virtual Mode . 3-13
Displaying Registers . 3-16
Tracing the Program Execution 3-17

2-Contents

Changing Symbols . 3-19
Specifying Virtual Space . 3-21
Breakpoints . 3-24
Displaying Address Translation Tables 3-24
Displaying TCB . 3-25
Tracing Virtual Address . 3-25

Address Mode Suffixes . 3-30

4 Configuring the 70632 Emulator

Introduction . 4-1
Prerequisites . 4-2
General Configuration . 4-2

Internal Clock . 4-3
Real-Time Mode . 4-3
Break on ROM Writes . 4-4
Software Breakpoints . 4-4
Trace Hold Tag . 4-5
Load Real Address . 4-5
Trace Execution Cycles . 4-5
Trace Real Address . 4-6
CMB Interaction? . 4-6
V70 Inverse Assemble . 4-7
Respond to HLDRQ . 4-7
Respond to Target NMI . 4-7
Target Interrupts . 4-8
Target Bus Freeze . 4-8
Drive Background Cycles . 4-8
Target Memory Access Size 4-9
Address Bits A31-A8 . 4-9
Monitor Type . 4-9
Foreground Monitor Location? 4-10

Storing an Emulator Configuration 4-11
Loading an Emulator Configuration 4-11

5 Using The Emulator

Prerequisites . 5-2
Register Manipulation . 5-2

Stack Pointer Modification . 5-2
Displaying/Modifying Registers In Floating-Format 5-3

Analyzer Topics . 5-4
Analyzer Status Qualifiers . 5-4

Contents-3

Specifying Trigger Condition at Desired Instruction
Execution . 5-4
Disassembles In Trace Listing 5-5
Execution States Location in Trace Listing 5-6
Specifying Data For Trigger Condition or Store Condition . . . 5-6
Analyzer Clock Speed . 5-7
Finding Out the Cause of a Monitor Break 5-7

Hardware Breakpoints . 5-9
Using the Analyzer Trigger to Break into the Monitor 5-9

Software Breakpoints . 5-10
Target Memory Access . 5-13

Commands Not Allowed when Real-Time
Mode is Enabled . 5-13
Breaking out of Real-Time Execution 5-13

FPU Support . 5-14
MMU Support . 5-15
Making Coordinated Measurements 5-15
Unfamiliar Status . 5-16

Waiting for Target Ready . 5-16
Halt or Machine Fault . 5-17

70108/70116 Emulation Mode 5-18
Displaying Memory In 70108/70116 Mnemonic Format 5-18
Single-stepping . 5-18
Tracing States In Both Mode 5-18

Real-time Emulation Memory Access 5-19
Virtual Address Translation . 5-20

Using the Caches of Area Table Register Pairs 5-20
Specifying Virtual Address Space 5-21

Storing Memory Contents to an Absolute File 5-23
Register Names and Classes . 5-24
Foreground Monitor . 5-26

Foreground Monitor Configuration 5-26
Loading the Monitor into Emulator 5-26

Restrictions and Considerations

6 In-Circuit Emulation Topics

Introduction . 6-1
Prerequisites . 6-2
Installing the Emulator Probe into a Target System 6-2

Pin Protector . 6-3
Conductive Pin Guard . 6-3

4-Contents

Installing the Target System Probe 6-5
In-Circuit Configuration Options 6-5
Allowing the Target System to Insert Wait States 6-6

The Usage of I/O Command . 6-7

A File Format Readers

Using the HP 64000 Reader . A-1
What the Reader Accomplishes A-1
Location of the HP 64000 Reader Program A-3
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-4
If the Reader Won’t Run . A-5
Including RHP64000 in a Make File A-6

Using the NEC COFF Reader . A-6
What the NEC COFF Reader Accomplishes A-6
Location of the NEC COFF Reader Program A-8
Using the NEC COFF Reader from MS-DOS A-9
Including RDNEC70 in a Make File A-11

Index

Contents-5

Illustrations

Figure 1-1. HP 64758 Emulator for the 70632 1-2
Figure 2-1. Sample Program Source 2-3
Figure 2-2. PC Interface Display 2-7
Figure 2-3. Load Map Listing for the Sample Program 2-8
Figure 2-4. Memory Map Configuration 2-10
Figure 2-5. Modifying the Trace Specification 2-25
Figure 2-6. Modifying the Pattern Specification 2-25
Figure 2-7. Modifying the Trace Format 2-29
Figure 3-1. Sample Program Source os.s 3-2
Figure 3-2. Sample Program Source task_a.s 3-5
Figure 3-3. Sample Program Source task_b.s 3-5
Figure 3-4. Configurator Command File 3-9
Figure 3-5. Loading the Sample Program into Memory 3-11
Figure 4-1. General Emulator Configuration 4-2
Figure 5-1. Cross Trigger Configuration 5-10
Figure 6-1. Installing Emulation Probe Into PGA Socket 6-4

Tables

Table A-1. How to Access Variables (HP64000 Format) A-3
Table A-2. How to Access Variables (NEC COFF Format) A-8

6-Contents

1

Introduction to the 70632 Emulator

Introduction The topics in the chapter include:

Purpose of the emulator

Features of the emulator

Purpose of the
70632 Emulator

The 70632 emulator is designed to replace the NEC uPD70632
microprocessor in your target system to help you integrate target
system software and hardware. The 70632 emulator performs just like
the NEC uPD70632 microprocessor, but at the same time, it gives you
information about the operation of the processor. The emulator gives
you control over target system execution and allows you to view or
modify the contents of processor registers and, target system memory.

Introduction 1-1

Figure 1-1. HP 64758 Emulator for the 70632

1-2 Introduction

Features of the
70632 Emulator

Supported
Microprocessor

The emulator probe has a 132-pin PGA connector. The HP 64758G/H
emulator supports the NEC uPD70632 microprocessor.

Clock Speeds Measurements can be made using the emulator’s internal 20 MHz
clock or an external clock from 8 MHz to 20 MHz with no wait states
added to target memory.

Emulation Memory Depending on the emulator model number, there are 512K/1M bytes of
emulation memory. Memory mapping configuration maps physical
memory only. If the MMU is enabled, the user is responsible for
knowing user physical memory usage.

Dual-ported memory allows you to display or modify physical
emulation memory without stopping the processor. Flexible memory
mapping lets you define address ranges over the entire 4 Gbyte address
range of the 70632. You can define up to 8 memory ranges (at 4 Kbyte
boundaries and at least 4Kbytes in length). The monitor occupies 4K
bytes leaving 508K or 1020K bytes of emulation memory which you
may use. You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or as
guarded memory. The emulator generates an error message when
accesses are made to guarded memory locations; additionally, you can
configure the emulator so that writes to memory defined as ROM cause
emulator execution to break out of target program execution. You can
select whether the memory accesses honor /READY and /BERR
signals from target system for each emulation memory range.

Introduction 1-3

Analysis The integrated emulation bus analyzer provides real-time analysis of all
bus-cycle activity. You can define break conditions based on address
and data bus cycle activity. In addition to hardware break, software
breakpoints can be used for execution breakpoints.

The 70632 microprocessor has on-chip MMU which provides a 4
Giga-byte virtual space for each task. When you use the on-chip MMU,
you will want to analyze either actual or virtual address space. You can
configure which address space should be recognized by the emulation
analyzer. Analysis functions include trigger, storage, count, and
context directives. The analyzer can capture up to 1024 events,
including all address, data, and status lines.

FPU The emulation bus analyzer can capture bus states accessing to a
Floating Point Processor.

MMU The emulator will support development when using the internal
Memory Management Unit.

FRM The emulator supports the master mode of the 70632 FRM function. In
the master mode, you can use the analyzer feature of the emulator. If
signal is asserted by your target system, the emulator bus signals are
held. So the emulator does not work as checker.

Registers You can display or modify the 70632 internal CPU register contents.
This includes the ability to modify the program counter (PC) value so
you can control where the emulator starts a program run. You can also
display or modify the 70632 MMU register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

1-4 Introduction

Breakpoints You can set the emulator/analyzer interaction so the emulator will
break to the monitor program when the analyzer finds a specific state
or states, allowing you to perform post-mortem analysis of the program
execution. You can also set software breakpoints in your program.
With the 70632 emulator, setting a software breakpoint inserts a 70632
BRK instruction into your program at the desired location.

Reset Support The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Software Debugging The HP 64758G/H Real-Time Emulator for 70632 microprocessors is a
powerful tool for both software and hardware designers. Using the HP
64758G/H Emulator’s emulation memory (up to 512 Kilo/1 Mega
bytes), software debugging can be done without functional target
system memory.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait and
retry requests when accessing emulation memory. Additionally, the
processor signals /READY, /BERR, BFREZ, RT/EP, /NMI, INT, and
/HLDRQ may be enabled or disabled independently of the 70632
processor.

Real-Time Operation Real-time signifies continuous execution of your program at full rated
processor speed without interference from the emulator. (Such
interference occurs when the emulator needs to break to the monitor to
perform an action you requested, such as displaying target system
memory.) Emulator features performed in real time include: running
and analyzer tracing. Emulator features not performed in real time
include: display or modify of target system memory; load/dump of
target memory, and display or modification of registers and some
virtual related functionality.

Introduction 1-5

Foreground or
Background

Emulation Monitor

The emulation monitor is a program executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, the
monitor program executes 70632 instructions to read the target
memory locations and send their contents to the emulation controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program also can execute in background, the emulator
mode in which foreground operation is suspended so the emulation
processor can access target system resources. The background monitor
does not occupy processor address space.

Out-of-Circuit or
In-Circuit Emulation

The 70632 emulator can be used for both out-of-circuit emulation and
in-circuit emulation. The emulation can be used in multiple emulation
systems using other HP 64700 Series emulators/analyzers.

1-6 Introduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64758G/H 70632 emulaotor with the PC
Interface.

This chapter will:

Tell you what must be done before you can use the emulator
as shown in the tutorial examples.

Describe the sample program used for this chapter’s examples.

Briefly describe how PC Interface commands are entered and
how emulator status is displayed.

This chapter will show you how to:

Start up the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the media
containing the PC Interface software. The HP64700
Emulators PC Interface: User’s Reference manual contains
additional information on the installation and setup of the PC
Interface.

3. In addition, it is recommended, although not required, that you
read and understand the concepts of emulation presented in
the Concepts of Emulation and Analysis manual. The
Installation /Service also covers HP 64700 Series system
architecture. A brief understanding of these concepts may
help avoid questions later.

You should read the HP 64700 Emulators PC Interface:
User’s Reference manual to learn how to use the PC Interface
in general. For the most part, this manual contains
information specific to the 70632 emulator.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

2-2 Getting Started

 .file "cmd_rds.s"

 .equ Dest_Size,0x30
 .equ Stack_Size,0x100

 .globl Command_Input, Init, Message_Dest
 .data "sbt" (RW) >0x00000000
 .org .+0x34
 .word Dummy_Text

 .text (RX) >0x00010000
 .align 4

Init: mov.w #Stack+Stack_Size,sp
 movea.w Command_Input,r0
 movea.w Message_Dest,r1
 mov.b #’ ’,r26

Clear: mov.b #0x00,[r0]

Read_Input: mov.b [r0],r2
 cmp.b #0x00,r2
 je Read_Input

Process_Comm: cmp.b #’A’,r2
 je Command_A
 cmp.b #’B’,r2
 je Command_B
 jr Unrecognized

Command_A: movea.w Message_A,r3
 mov.w #Message_B-Message_A,r4
 jr Output

Command_B: movea.w Message_B,r3
 mov.w #Invalid_Input-Message_B,r4
 jr Output

Unrecognized: movea.w Invalid_Input,r3
 mov.w #Message_End-Invalid_Input,r4

Output: movcfu.b [r3],r4,Message_Dest,#Dest_Size
Text_End: jr Clear

Dummy_Text: halt

 .data (R) >0x00020000

Message_A: .str "THIS IS MESSAGE A"
Message_B: .str "THIS IS MESSAGE B"
Invalid_Input: .str "INVALID COMMAND"
Message_End:

 .bss (RW) >0x00030000
 .lcomm Command_Input, 1,1
 .lcomm Message_Dest,Dest_Size,4
 .lcomm Stack,Stack_Size,4

Figure 2-1. Sample Program Source

Getting Started 2-3

System Base Table

The "sbt" section defines 70632 System Base Table containing the
vectors for 70632 interrupts and exceptions. The sample program
defines BRK instruction vector pointing to an address in the "text"
section. This is requirement for emulation software breakpoints feature.
Refer to "Using Software Breakpoints" section in this chapter for
details.

Data Declarations

The "data" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Message_A, Message_B, and Message_I.

The Destination Area

The "bss" section declares memory storage for the command input byte
(Command_Input), the destination area (Message_Dest), and the
stack area.

Initialization

The program instructions from the Init label to the Clear label perform
initialization. The stack pointer is set up and the addresses labeled
Command_Input and Message_Dest are loaded into registers; R0 and
R1.

Register R26 is set up to 20H for filling remaining locations after
transferring a message to the destination area (Message_Dest) with
blank.

Reading Input

The instruction at the Clear label clears any random data or previous
commands from the Cmd_Input byte. The Read_Input loop
continually reads the Cmd_Input byte to see if a command is entered
(a value other than 0H).

2-4 Getting Started

Processing Commands

When a command is entered, the instructions from Process_Comm to
Command_A determine whether the command was "A", "B", or an
invalid command.

If the command input byte is "A" (ASCII 41H), execution is transferred
to the instructions at Command_A.

If the command input byte is "B" (ASCII 42H), execution is transferred
to the instructions at Command_B.

If the command input byte is neither "A" nor "B", an invalid command
has been entered, and execution is transferred to the instructions at
Unrecognized.

The instructions at Command_A, Command_B, and Unrecognized
each load register R3 with the starting location of the appropriate
message and register R4 with the length of the message to be
displayed. Then, execution transfers to Output which writes the
appropriate message to the destination location, Message_Dest. At the
same time, the remaining locations are filled with blanks; the content
of register R26.

Then, the program jumps back to read the next command.

Assembling and
Linking the Sample

Program

The sample program is written for the HP 64879 70632
Assembler/Linker hosted on HP-UX. You can use other software
development tools to generate absolute files. When using these
assembler/linker, a few changes must be made to the sample program.
The PC Interface can load one of the following formats:

HP64000 absolute.
NEC COFF absolute.
Raw HP64000 absolute.
Intel hexadecimal.
Tektronix hexadecimal.
Motorola S-records.

Following commands were used to generate the absolute file with HP
64879 70632 Assembler/Linker. The assembler and linker are hosted on
HP-UX.

$as70616 -a cmd_rds.s >cmd_rds.lis<RETURN>

$ld70616 -o cmd_rds.x -m cmd_rds.o > cmd_rds.map<RETURN>

Getting Started 2-5

Starting Up the
70632 PC Interface

If you have set up the emulator device table and the HP64700 shell
environment variable as shown in the HP 64700 Emulators PC
Interface: User’s Reference (this is done automatically when you use
the install program to load the PC Interface software on your
computer), you can start up the 70632 PC Interface by entering the
following command from the MS-DOS prompt:

C> pcv70 <emulname>
where <emulname> is emul_com1 if your emulator is connected to the
COM1 port or emul_com2 if it is connected to the COM2 port. If you
edited the \hp64700\tables\64700tab file to change the emulator name,
substitute the appropriate name for <emulname> in the above
command.

In the command above, pcv70 is the command to start the 70632 PC
Interface; "<emulname>" is the logical emulator name given in the
emulator device table. If this command is successful, you will see the
display shown in figure 2-2. If this command is not successful, you
will be given an error message and returned to the MS-DOS prompt.
Error messages are described in the PC Interface: User’s Reference
manual.

Selecting PC
Interface Commands

This manual tells you to “select” commands. You can select commands
or command options by using the left and right arrow keys to highlight
the option. Then press the Enter key. Or, you can simply type the first
letter of that option. If you select the wrong option, press the ESC key
to retrace the command tree.

When a command or option is highlighted, the bottom line of the
display shows the next level of options or a short message describing
the current option.

Emulator Status The emulator status is shown on the line above the command options.
The PC Interface periodically checks the status of the emulator and
updates the status line.

2-6 Getting Started

Mapping Memory Depending on the emulator model number, user mappable emulation
memory consists of 508 or 1020 kilobytes, mappable in 4 Kbyte
blocks. The emulation memory system does not introduce any wait
states.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM. If you are using the emulator in in-circuit,
additionally; you can choose whether the emulation accesses honor
/READY or /BERR signals from the target system (wait or retry cycles
are inserted if requested).

Figure 2-2. PC Interface Display

Getting Started 2-7

Note Target system accesses of emulation memory are not allowed.
Target system devices that take control of the bus (for example,
external DMA controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Break
on ROM write" configuration item is enabled (see the "Configuring the
Emulator" chapter).The memory mapper allows you to define up to 8
different map terms.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file.

The linker load map listing will show what locations your program will
occupy in memory. For example, the HP 64879 linker load map listing
for the sample program is shown in figure 2-3.

 LINK EDITOR MEMORY MAP

output input virtual
section section address size

sbt 00000000 00000038
 sbt 00000000 00000038 cmd_rds.o

avail 00000038 0000ffc8

.text 00010000 00000070
 .text 00010000 00000070 cmd_rds.o

avail 00010070 0000ff90

.data 00020000 00000034
 .data 00020000 00000034 cmd_rds.o

avail 00020034 0000ffcc

.bss 00030000 00000134 uninitialized
 .bss 00030000 00000134 cmd_rds.o

avail 00030134 fffcfecb

Figure 2-3. Load Map Listing for the Sample Program

2-8 Getting Started

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The system base table area,
which contains the breakpoint instruction trap vector, occupies
locations 0H through 0fffH. The program area, which contains the
opcodes and operands which make up the sample program, occupies
locations 10000H through 1006fH. The data area, which contains the
ASCII values of the messages the program displays, is occupies
locations 20000H through 20033H. The destination area, which
contains the command input byte and the locations of the message
destination and the stack, occupies locations 30000H through 30133H.

Four mapper terms will be specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

To map memory for the sample program, select:

Config, Map, Modify
By default, unmapped area attribute is defined as target RAM.
However, when emulation without plugging the emulator into your
target system, unmapped area should be defined as "guarded" to detect
the illegal accesses to the area.

As the cursor is in the "Unmapped memory type" field now, press the
TAB key to select the grd (guarded memory) type.

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

0..0fff
Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the eram (emulation RAM) type.

Move the cursor to the "address range" field of term 2 and enter:

10000..10fff
Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the erom (emulation ROM) type.

Move the cursor to the "address range" field of term 3 and enter:

20000..20fff
Move the cursor to the "memory type" field of term 3, and press the
TAB key to select the erom (emulation ROM) type.

Move the cursor to the "address range" field of term 4 and enter:

Getting Started 2-9

30000..30fff
Move the cursor to the "memory type" field of term 4, and press the
TAB key to select the eram (emulation RAM) type.

To save your memory map, use the right arrow key or the Enter key to
exit the field in the lower right corner. (The End key on Vectra
keyboards moves the cursor directly to the last field.) The memory
configuration display is shown as follows.

When mapping memory for your target system programs, you may
wish to characterize emulation memory locations containing programs
and constants (locations which should not be written to) as ROM.

This will prevent programs and constants from being written over
accidentally, and will cause breaks when instructions attempt to do so.

Figure 2-4. Memory Map Configuration

2-10 Getting Started

Loading Programs
into Memory

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

File Format Use Tab and Shift-Tab to select the format of your absolute file. The
emulator accepts absolute files in the following formats:

HP64000 absolute.

NEC COFF absolute.

Raw HP64000 absolute.

Intel hexadecimal.

Tektronix hexadecimal.

Motorola S-records.

For this tutorial, choose the NEC_COFF format.

Memory Type The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, or both.

Since emulation memory is mapped to for sample program locations,
you can select either "Emulation" or "Both".

Force Absolute File
Read

This option is only available for the HP64000 and NEC COFF formats.
It forces the file format readers to regenerate the emulator absolute file
(.hpa) and symbol database (.hps) before loading the code. Normally,
these files are only regenerated whenever the file you specify (the
output of your language tools) is newer than the emulator absolute file
and symbol database.

For more information, refer to the File Format Readers appendix.

Getting Started 2-11

File Format Options Some of the formats, such as the NEC COFF format, have special
options. Refer to the File Format Readers appendix of this manual for
more information. For this example, you do not need to change this
configuration.

Absolute File Name Enter the name of your absolute file ("cmd_rds.x" in this example) in
the last field, and press Enter to start the memory download.

Displaying
Symbols

The following pages show you how to display global and local symbols
for the sample program. For more information on symbol display, refer
to the PC Interface Reference.

Displaying Global
Symbols

When you load HP64000 or NEC COFF format absolute files into the
emulator, the corresponding symbol database is also loaded.

The symbol database also can be loaded with the “System, Symbols,
Global, Load” command. Use this command when you load multiple
absolute files into the emulator. You can load the various symbol
databases corresponding to each absolute file. When you load a symbol
database, information from a previous symbol database is lost. That is,
only one symbol database can be present at a time.

After a symbol database is loaded, both global and local symbols can
be used when entering expressions. You enter global symbols as they
appear in the source file or in the global symbols display.

To display global symbols, select:

System, Symbols, Global, Display
 The symbols window automatically becomes the active window

because of this command. You can press <CTRL>z to zoom the
window. The resulting display follows.

2-12 Getting Started

The global symbols display has two parts. The first part lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-sensitive. For example, if you wish to make
a measurement using the symbol Cmd_Input , you must specify
Cmd_Input . The strings cmd_input and CMD_INPUT are not valid
symbol names here.

Loading and
Displaying Local

Symbols

To display local symbols, select:

System Symbols Local Display
 Enter the name of the module you want to display (from the first part of

the global symbols list; in this case, cmd_rds) and press Enter. The
resulting display follows.

Getting Started 2-13

After you display local symbols with the “System Symbols Local
Display” command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol
Remember that the only valid module names are those listed in the first
part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that
module becomes the default local symbol module, as with the “System
Symbols Local Display” command.

Local symbols must be from assembly modules that form the absolute
whose symbol database is currently loaded. Otherwise, no symbols will
be found (even if the named assembler symbol file exists and contains
information).

2-14 Getting Started

One thing to note: It is possible for a symbol to be local in one module
and global in another, which may result in some confusion. For
example, suppose symbol “XYZ” is a global in module A and a local
in module B and that these modules link to form the absolute file. After
you load the absolute file (and the corresponding symbol database),
entering “XYZ” in an expression refers to the symbol from module A.
Then, if you display local symbols from module B, entering “XYZ” in
an expression refers to the symbol from module B, not the global
symbol. Now, if you again want to enter “XYZ” to refer to the global
symbol from module A, you must display the local symbols from
module A (since the global symbol is also local to that module).
Loading local symbols from a third module, if it was linked with
modules A and B and did not contain an “XYZ” local symbol, would
also cause “XYZ” to refer to the global symbol from module A.

Transfer Symbols to
the Emulator

You can use the emulator’s symbol-handling capability to improve
measurement displays. You do this by transferring the symbol database
information to the emulator. To transfer the global symbol information
to the emulator, use the command:

System Symbols Global Transfer
Transfer the local symbol information for all modules by entering:

System Symbols Local Transfer All
You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

Getting Started 2-15

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format. To do this, select:

Memory, Display, Mnemonic
Enter the address range "10000..1006B". (You could also specify this
address range using symbols, for example,
"Init..cmd_rds:Text_End".) The Emulation window automatically
becomes the active window as a result of this command. You can press
<CTRL>z to zoom the window. Use the Home key to view the
memory contents from the top of the display. The resulting display
follows.

2-16 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the sample
program, select:

Processor, Step, Address
Enter a step count of 1, enter the symbol Init (defined as a global in the
source file), and press Enter to step from program’s first address,
10000H. The Emulation window remains active. Press <CTRL>z to
view a full screen of information. The executed instruction, the
program counter address, and the resulting register contents are
displayed as shown in the following.

Note You cannot display registers if the processor is reset.
Use the "Processor Break" command to cause the emulator to start
executing in the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator execution
will temporarily break to the monitor.

Getting Started 2-17

To continue stepping through the program, you can select:

Processor, Step, Pc
After selecting the command above, you have to opportunity to change
the previous step count. If you wish to step the same number of times,
you can press Enter to start the step.

To save time when single-stepping, you can use the function key macro
<F1>, which executes the command:

Processor Step Pc 1

For more information, see the Emulator PC Interface Reference
chapter on Function Key Macros.

To repeat the previous command, you can press <CTRL>r .

Specifying a Step
Count

If you wish to continue to step a number of times from the current
program counter, select:

Processor, Step, Pc
The previous step count is displayed in the "number of instructions"
field. You can enter a number from 1 through 99 to specify the number
times to step. Type 5 into the field, and press Enter. The resulting
display follows.

2-18 Getting Started

Modifying Memory The preceding step commands show the sample program is executing
in the Read_Input loop, where it continually reads the command input
byte to check if a command has been entered. To simulate the entry of
a sample program command, you can modify the command input byte
by selecting:

Memory, Modify, Bytes
Now enter the address of the memory location to be modified, an equal
sign, and new value of that location, for example,
"Command_Input=41". (The Command_Input label was defined as
a global symbol in the source file.)

To verify that 41H was indeed written to Command_Input (30000H),
select:

Memory, Display, Bytes
Type the address 30000 or the symbol Command_Input, and press
Enter. This command will automatically activate the Emulation
window. The resulting display is shown below.

You can continue to step through the program as shown earlier in this
chapter to view the instructions which are executed when an "A" (41H)
command is entered.

Getting Started 2-19

Running the
Program

To start the emulator executing the sample program, select:

Processor, Go, Pc
The status line will show that the emulator is "Running user program".

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command "A" (41H) was entered above, so the "THIS
IS MESSAGE A" message should have been written to the
Message_Dest locations. Because you must search for hexadecimal
values, you will want to search for a sequence of characters which
uniquely identify the message, for example,
" A" or 20H and 41H. To search the destination memory location for
this sequence of characters, select:

Memory, Find
Enter the range of the memory locations to be searched,
"30004..30033" (You can also enter
"Message_Dest..Message_Dest+2f".), and enter the data "20,41" (or, "
","A"). The resulting message shows you that the message was
indeed written as it was supposed to have been.

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and search
for " B" (20H and 42H), or you can modify the command input byte to
"C" and search for "D C" (44H, 20H, and 43H).

Breaking into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor, Break

2-20 Getting Started

The status line shows that the emulator is "Running in monitor". While
the break will occur as soon as possible, the actual stopping point may
be many cycles after the break request (dependent on the type of
instruction being executed and whether the processor is in a hold state).

Using Software
Breakpoints

Software breakpoints are realized by the 70632 BRK instruction.
When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with a breakpoint
interrupt instruction (BRK).

If the BRK interrupt was generated by a software breakpoint, execution
breaks to the monitor, and the breakpoint interrupt instruction (BRK) is
replaced by the original opcode. A subsequent run or step command
will execute from this address.

Note When using software breakpoints feature of the emulator, you must
define the BRK instruction vector to point to an address where
instruction fetches is allowed; typically in the program code area. In
this sample program, the BRK instruction vector points to a "HALT"
instruction. When a software breakpoint occurs, the emulator reads the
BRK interrupt vector, push the next PC and PSW to stack, fetch one
word of instruction pointed by the vector same as the real CPU. And
then, break occurs but the instruction, "HALT" in this example, will
never be executed.

There are some notices to use the software breakpoints features. Refer
to the "Software Breakpoints" section of the "Using the Emulator"
chapter.

Defining a Software
Breakpoint

Now that software breakpoints are enabled, you can define software
breakpoints. To define a breakpoint at the address of the
Unrecognized label of the sample program (10053H), select:

Breakpoints, Add
Enter the local symbol "cmd_rds:Unrecognized". After the
breakpoint is added, the breakpoint window becomes active and shows

Getting Started 2-21

that the breakpoint is set. You can add multiple breakpoints in a single
command by separating each one with a semicolon. For example, you
could type 2010;2018;2052 to set three breakpoints. Run the program
by selecting:

Processor, Go, Pc
The status line shows that the emulator is running the user program.
Modifying the command input byte to an invalid command (for
example, 75H).

Memory, Modify, Byte
Type "Command_Input=75". The following messages will be
displayed.

ALERT: Software breakpoint: 000010053@r
STATUS: Running in monitor

To continue program execution, select:

Processor, Go, Pc

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display
The resulting display shows that the breakpoint has been cleared.

2-22 Getting Started

Setting a Software
Breakpoint

When a breakpoint is hit, it becomes disabled. To re-enable the
software breakpoint, you can select:

Breakpoints, Set, Single
The address of the breakpoint you just added is still in the address
field; to set this breakpoint again, press Enter. As with the
"Breakpoints Add" command, the Emulation window becomes active
and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints, Clear, Single
The address of the breakpoint set in the previous section is still in the
address field; to clear this breakpoint again, press Enter.

Using the Analyzer The analyzer collects data at each pulse of a clock signal, and saves the
data (a trace state) if it meets a "storage qualification" condition.

Resetting the
Analysis

Specification

To be sure that the analyzer is in its default or power-up state, select:

Analysis, Trace, Reset

Specifying a Simple
Trigger

Suppose you wish to trace the states of the sample program which
follow the read of a "B" (42H) command from the command input
byte. To do this, you must modify the default analysis specification by
selecting:

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right arrow key
to move to the “Trigger on” field. Type “a” and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the

Getting Started 2-23

address of the command input byte, using either the global symbol
Command_Input or address 30000 hex, and press Enter.

The “Data” field is now highlighted. Type 0XXXXXX42 hex and press
Enter. 42H is the value of the “B” command and the “X”s specify
“don’t care” values. When 42H is read from the command input byte
(30000H), a lower byte read is performed because the address is a
multiple of four.

The status qualifiers are defined as follows.

70632 Analysis Status Qualifiers

This trace command example uses the status qualifier “read”. The
following analysis status qualifiers also can be used with the 70632
emulators.

 fetch 0x1xxxxxxxxxx011x code fetch
 fetchbr 0x1xxxxxxxxxx0111 code fetch after branch
 read 01xxxxxxxxxxxxxxx read
 write 00xxxxxxxxxxxxxxx write
 data 0xxxxxxxxxxxx0011 data access (read/write)
 io 0xxxxxxxxxxxx1011 i/o access (read/write)
 exec 0xxxxxxxxxxxx0000 execution state
 sdata 0xxxxxxxxxxxx0010 data access (read/write) with short path
 sysbase 0xxxxxxxxxxxx0100 system base table access
 trans 0xxxxxxxxxxxx0101 translation table access (read/write)
 coproc 0xxxxxxxxxxxx1000 co-processor access(read/write)
 shortrd 0x1xxxxxxxxxx0010 data access read with short path
 shortwr 0x0xxxxxxxxxx0010 data access write with short path
 iord 0x1xxxxxxxxxx1011 i/o access read
 iowr 0x0xxxxxxxxxx1011 i/o access write
 transrd 0x1xxxxxxxxxx0101 translation table access read
 transwr 0x0xxxxxxxxxx0101 translation table access write
 coprocrd 0x1xxxxxxxxxx1000 co-processor access read
 coprocwr 0x0xxxxxxxxxx1000 co-processor access write
 fault 0xxxxxxxxxxxx1100 machine fault acknowledge
 halt 0xxxxxxxxxxxx1101 halt acknowledge
 intack 0xxxxxxxxxxxx1110 interrupt acknowledge
 grdacc 0xxxxxxxxxx0x0xxx guarded memory access
 wrrom 0x0xxxxxxx0xx0xxx write to ROM
 monitor 0xxxxxxxxxxx0xxxx background monitor cycle
 lock 0xxxxxxxx0xxxxxxx bus lock
 retry 00xxxxxxxxxxxxxxx retry
 hold 0xxxxxxxxxxxx0001 bus hold

2-24 Getting Started

Figure 2-5. Modifying the Trace Specification

Figure 2-6. Modifying the Pattern Specification

Getting Started 2-25

Note You can combine qualifiers to form more specific qualifiers. For
example, the expression read&data matches only data reads. See the
Emulator PC Interface Reference for more information.

Select the read status and press Enter. Figure 2-5 and figure 2-6 show
the resulting analysis specification. To save the new specification, use
End Enter to exit the field in the lower right corner. You’ll return to
the trace specification. Press End to move to the trigger spec field.
Press Enter to exit the trace specification.

Starting the Trace To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is running.
You would not expect the trigger to be found because no commands
have been entered. Modify the command input byte to "B" by
selecting:

Memory, Modify, Bytes
Enter "Command_Input=42". The status line now shows that the trace
is complete. (If you have problems, you may be running in monitor.
Select Processor Go Pc to return to the user program.)

Displaying the Trace To display the trace, select:

Analysis, Display
You are now given two fields in which to specify the states to display.
Use the right arrow key to move the cursor to the "Ending state to
display" field. Type 40 into the ending state field, press Enter, and use
<CTRL>z to zoom the Analysis window.

Note If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

2-26 Getting Started

The resulting trace is similar to trace shown in the following display.
(You may need to press the Home key to get to the top of the trace.)

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0. The other states show
the exit from the Command_Input loop, the Process_Comm and
Command_B instructions.

Press the PgDn key to see more lines of the trace.

The resulting display shows the Command_B instructions and the
branch to Out_put and the beginning of the instructions which move
the "THIS IS MESSAGE B" message to the destination locations
(Message_Dest).

Getting Started 2-27

Changing the Trace
Format

You can modify the trace list format to suit your needs. You can:

Widen the address column to accommodate longer symbol
names.

Change the port base; to octal; for example.

Change the count from relative to absolute.
To change the trace format, select:

Analysis, Format
The bottom part of the "Analysis, Format" display is used to specify
which trace labels appear in which column of the display. Several trace
labels are predefined for the internal emulation analyzer.

The default trace display format for the 70632 emulator includes the
trace line number (which is always displayed), the hexadecimal
address, the 70632 mnemonic and counter field. The default width of
the address column is eight characters. The counter field is for
displaying either time or occurrence of bus states. By default, analyzer

2-28 Getting Started

counter is turned off because the clock rate of bus sampling is
high-speed. Therefore, the counter field is displayed with "********".
You may want to widen the address column to accommodate longer
symbol names instead of the senseless counter field.

You can change this by specifying the address column with the
optional width parameter. A width of 18 characters is often wide
enough to accommodate most symbol names.

Move the cursor to the "Width" field of the addr trace label. Enter 18.

Use the down arrow key to move to the field labeled "count." Press
Tab until it says "--OFF--" and press End, then Enter.

If you display the trace list with the "Analysis, Display" command, the
trace will look like the following.

Figure 2-7. Modifying the Trace Format

Getting Started 2-29

Trigger Position You can specify where the trigger state will be positioned with in the
emulation trace list. The following three basic trigger positions are
defined.

Start

Center

End

When Start trigger position is selected, the trigger is positioned at the
start of the trace list. You can trace the states after the trigger state.

When Center trigger position is selected, the trigger is positioned at
the center of the trace list. You can trace the states around the trigger
state.

When End trigger position is selected, the trigger is positioned at the
end of the trace list. You can trace the states before the trigger.

In the above section, you have traced the states of the program after a
certain state, because the default trigger position was Start. If you want

2-30 Getting Started

to trace the states of the program around a certain state, you need to
change the trigger position.

For example, if you wish to trace the transition to the command A
process, change the trigger position to "Center".

To reset the analyzer specification defined in previous section by
selecting:

Analysis, Trace, Reset
Modify the analysis specification by selecting:

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right arrow key
to move to the “Trigger on” field. Type “a” and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the
address of the command A process, using either the global symbol
Command_A or address 10033, and press Enter.

To skip the data specification, press Enter key.

Now the "Status" field is highlighted. Use the TAB key to select the
status "exec". The following display shows the resulting analysis
specification.

Getting Started 2-31

To save the new specification, use End Enter to exit the field in the
lower right corner. You’ll return to the trace specification. Move the
cursor to the "Trigger Position" field. Select the "Center" by pressing
the TAB key.

Press End to move to the trigger spec field. Press Enter to exit the
trace specification.

To save the new specification, use the Enter key to exit out of the field
in the lower right corner.

To start the trace, select:

Analysis, Begin
A message on the status line will show you that the trace is running.
You would not expect the trigger to be found because no commands
have been entered. Modify the command input byte to "A" (41H) with
"Memory, Modify, Byte" command.

The status line now shows that the trace is complete.

To display the trace, select:

Analysis, Display
and press End Enter.

2-32 Getting Started

The transition states to the process for the command A are displayed.

For a Complete
Description

For a complete description of the HP 64700 Series analyzer with the
PC Interface, refer to the HP 64700 Emulators PC Interface: Analyzer
User’s Guide.

Getting Started 2-33

Copying Memory You can copy the contents of one range of memory to another. This is
a useful feature to test things like the relocatability of programs. To
test if the sample program is relocatable within the same segment, copy
the program to an unused, but mapped, area of emulation memory. For
example, select:

Memory, Copy
For program code area, enter 10000H through 1006dH (10000..1006d)
as the source memory range to be copied, and enter 10800 as the
destination address. Repeat the "Memory, Copy" command. For
message data area, enter 20000H through 20031H (20000..20031) as
the source memory range to be copied, and enter 20800 as the
destination address.

To verify that the program is relocatable, run it from its new address
by selecting:

Processor, Go, Address
Enter 10800. The status line shows that the emulator is "Running user
program". You may wish to trace program execution or enter valid and
invalid commands and search the message destination area (as shown
earlier in this chapter) to further verify that the program is working
correctly from its new address.

Resetting the
Emulator

To reset the emulator, select:

Processor, Reset, Hold
The emulator is held in a reset state (suspended) until a "processor
break", "processor go", or "processor step" command is entered. A
CMB execute signal will also cause the emulator to run if reset.

You can also specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state. To do this,
select:

Processor, Reset, Monitor

2-34 Getting Started

Exiting the PC
Interface

There are two different ways to exit the PC Interface. You can exit the
PC Interface using the “locked” option, which restores the current
configuration next time you start the PC Interface. You can select this
option as follows.

System Exit Locked
Another way to execute the PC Interface is with the “unlocked” option,
which presents the default configuration next time you start the PC
Interface. Select this option with the following command.

System Exit Unlocked
Or , you can exit the PC Interface without saving the current
configuration using the command:

System Exit No_Save
See the Emulator PC Interface Reference for a complete description of
the system exit options and their effect on the emulator configuration.

Getting Started 2-35

Notes

2-36 Getting Started

3

Virtual Mode Emulation Topics

Introduction The on-chip Memory Management Unit (MMU) of the 70632
microprocessor translates virtual addresses to physical (actual)
addresses that are placed on the processor address bus. This chapter
shows you how to use the emulator when the 70632 MMU is active.

This chapter:

Describes the sample program used for this chapter’s
examples.
Shows you how to enter emulation commands to view
execution of the sample program. The commands described in
this chapter include:
– loading the sample program files into the emulator.
– using virtual address expression in command lines.
– displaying on-chip MMU registers and privilege registers.
– displaying address translation tables.
– displaying TCB.
– using software breakpoint.
– using XMMU function.
– using the analyzer.
– specifying address mode with suffix.

Virtual Mode Emulation Topics 3-1

Sample Program
for Virtual Mode
Emulation

The sample program consists of the following files.

os.s
task_a.s
task_b.s

These are listed in Figure 3-1 through 3-3. The sample program is a
multi-task system which consists of a simple operating system and two
tasks. Each of two tasks transfers its own message from an independent
area to a common area.

 .file "os.s"

 .equ isp,0
 .equ l0sp,1
 .equ l1sp,2
 .equ l2sp,3
 .equ l3sp,4
 .equ sbr,5
 .equ tr,6
 .equ sycw,7
 .equ tkcw,8
 .equ pir,9
 .equ psw2,15
 .equ atbr0,16
 .equ atlr0,17
 .equ atbr1,18
 .equ atlr1,19
 .equ atbr2,20
 .equ atlr2,21
 .equ atbr3,22
 .equ atlr3,23
 .equ trmod,24
 .equ adtr0,25
 .equ adtr1,26
 .equ adtmr0,27
 .equ adtmr1,28

 .equ Stack_Size,0x1000
 .equ Dest_Size,0x20

 .globl Sys_SBT, Current_Task, Num_Of_Task, TCB_Entry, ATE0
 .globl ATE1_A, ATE1_B, PTE0, PTE!_A, PTE1_B, Sys_Stack, Sys_Init
 .globl Setup_Task, Start_Ini_Task, Sys_Trap, Switch_Task, Message_Dest

Figure 3-1. Sample Program Source os.s

3-2 Virtual Mode Emulation Topics

 .data "sys_sbt" (RW) >0x00000000
Sys_SBT:
 .org 0x34
 .word Dummy_Text
 .org 0xc0
 .word Sys_Trap

 .data "sys_tcb" (RW) >0x00001000
Current_Task: .word 0
Num_Of_Task: .word 2

TCB_Entry: .word TCB_A
 .word 0x7f000000
 .word 0x00000000
 .word 0x40000000
 .word 0x40002000
 .word 0

 .word TCB_B
 .word 0x7f000000
 .word 0x00000000
 .word 0x40000000
 .word 0x40002000
 .word 0

TCB_A: .word 0x0000e000
 .space 8*4
 .word 0x00002009,0x00000000

TCB_B: .word 0x0000e000
 .space 8*4
 .word 0x00002011,0x00000000

 .data "sys_ate" (RW) >0x00002000
ATE0: .word 0x00003003,0x00000500

ATE1_A: .word 0x00003103,0x00000300
ATE1_B: .word 0x00003203,0x00000300

 .data "sys_pte" (RW) >0x00003000
PTE0: .word 0x00000e05
 .word 0x00001e05
 .word 0x00002e05
 .word 0x00003e05
 .word 0x00004e05
 .word 0x00005e05

 .org 0x100
PTE1_A: .word 0x00007e05
 .word 0x00008e05
 .word 0x00009e05
 .word 0x00006e05

 .org 0x200
PTE1_B: .word 0x0000ae05
 .word 0x0000be05

Figure 3-1. Sample Program Source os.s (Cont’d)

Virtual Mode Emulation Topics 3-3

 .word 0x0000ce05
 .word 0x00006e05

 .bss "sys_stk" (RW) >0x00004000
 .lcomm Sys_Stack,Stack_Size,4

 .text "sys_text" (RX) >0x00005000
 .align 4

Sys_Init: mov.w #Sys_Stack+Stack_Size,sp
 ldpr #Sys_SBT,#sbr

 ldpr #0x2001,#atbr0
 ldpr #0x00000000,#atlr0
 ldpr #0,#atbr1
 ldpr #0,#atbr2
 ldpr #0,#atbr3

 ldpr #0x2171,#sycw

Setup_Task: mov.w Num_Of_Task,r0
 mov.w #TCB_Entry,r1
Setup_Task_0: ldtask 4[r1],[r1]
 mov.w 0x10[r1],r2
 mov.w #0,[-r2]
 mov.w 8[r1],[-r2]
 mov.w 12[r1],[-r2]
 mov.w r2,4[[r1]]
 add.w #0x18,r1
 dbr r0,Setup_Task_0

 ldtask TCB_Entry+4,TCB_Entry
Start_Ini_Task: retis #4

 .align 4
Sys_Trap: mov.w Current_Task,r0
 mov.w r0,r2
 mul.w #0x6,r2
 mov.w #TCB_Entry,r1
 sttask 4[r1](r2)
 inc.w r0
 cmp.w r0,Num_Of_Task
 jnz Sys_Trap_0
 xor.w r0,r0
Sys_Trap_0: mov.w r0,Current_Task
 mul.w #0x6,r0
 ldtask 4[r1](r0),[r1](r0)
Switch_Task: retis #4

Dummy_Text: halt

 .bss "shr_mem" (RW) >0x40003000
 .lcomm Message_Dest, Dest_Size,4

Figure 3-1. Sample Program Source os.s (Cont’d)

3-4 Virtual Mode Emulation Topics

 .file "task_a.s"

 .equ Stack_Size,0x1000
 .equ Message_Dest,0x40003000
 .equ Dest_Size,0x20

 .globl Transfer_A, Stack_A, Message_A

 .text "text_a" (RW) >0x40000000
Transfer_A: mov.w #’ ’,r26
 mov.w #Message_A_End-Message_A,r24
 movcfu.b Message_A,r24,/Message_Dest,#Dest_Size
 trap #0xa0
Trans_A_End: jmp Transfer_A

 .bss "stack_a" (RW) > 0x40001000
 .lcomm Stack_A,Stack_Size,4

 .data "data_a" (RW) >0x40002000
Message_A: .str "THIS IS TASK A MESSAGE."
Message_A_End:

Figure 3-2. Sample Program Source task_a.s

 .file "task_b.s"

 .equ Stack_Size,0x1000
 .equ Message_Dest,0x40003000
 .equ Dest_Size,0x20

 .globl Transfer_B, Stack_B, Message_B

 .text "text_b" (RW) >0x40000000
Transfer_B: mov.w #’ ’,r26
 mov.w #Message_B_End-Message_B,r24
 movcfu.b Message_B,r24,/Message_Dest,#Dest_Size
 trap #0xa0
Trans_B_End: jmp Transfer_B

 .bss "stack_b" (RW) > 0x40001000
 .lcomm Stack_B,Stack_Size,4

 .data "data_b" (RW) >0x40002000
Message_B: .str "Task B : Running..."
Message_B_End:

Figure 3-3. Sample Program Source task_b.s

Virtual Mode Emulation Topics 3-5

os.s

System Base Table The "sys_sbt" section defines the 70632
Break-point instruction trap vector and the Software trap 0 vector. The
break-point instruction vector is required for the software breakpoint
feature of the emulator. The software trap 0 vector is used for aborting
task and transfering execution to the operating system.

Task Context Block The "sys_tcb" section defines task context
block. The operating system manages tasks with this block.

The address labeled Current_Task contains a task number which is
currently executed. Tasks are numbered from 0. This address initialized
to 0 when the program is started. First, the task numbered 0 will be
executed.

The address labeled Num_Of_Task contains the number of tasks the
operating system manages. This program has two tasks, which are
alternately executed. So this address contains the value "2".

The address labeled TCB_Entry contains task control blocks for each
task. Each block consists of pointer and register list of TCB managed
under the 70632 processor, and the initial values of registers PSW, PC
and SP, and a word of flags.

The address labeled TCB_A contains the TCB, managed under the
processor, for one of the tasks. This task will be called as "Task A" in
this example. The task number mentioned above is "0".

The address labeled TCB_B contains the TCB for the other task, which
will be called as "Task B". The task number is "1".

Area Table Entry The "ate" section defines the 70632 Area Table
Entry.

The address labeled ATE0 contains Area Table Entry (ATE) in Section
0. In this example, Section 0 is a common part between Task A and
Task B. Section 0 has one area.

The address labeled ATE1_A and ATE1_B contains ATE in Section 1
for each task. Section 1 is independent between Task A and Task B.
ATE1_A is for Task A, and ATE1_B is for Task B. Section 1 has one
area each other.

3-6 Virtual Mode Emulation Topics

Page Table Entry The "pte" section defines the 70632 Page Table
Entry.

The address labeled PTE0 contains Page Table Entry (PTE) in Section
0, Area 0. This area has six pages.

The addresses labeled PTE1_A and PTE1_B contains PTE in Section
1, Area 0 for each task. PTE1_A is for Task A, and PTE1_B is for
Task B. Each area has four pages.

System Stack The "sys_stk" section defines a stack for the
operating system. The stack is pointed by the register ISP.

System Program Code The "sys_text" section defines program
codes for the operating system.

The program instructions from the Sys_Init label to the Setup_Task
perform initialization of the operating system. The privilege registers
are set up and the processor address mode is switched to virtual mode.

The instructions from the Setup_task to Start_Ini_Task perform
initialization for the tasks. The stack for each task is set up with initial
PC and PSW.

The instructions from Start_Ini_Task transfer the execution to initial
task (Task A).

The instructions from Sys_Trap perform switching task. When a task
aborts the execution, the processor executes from the address labeled
Sys_Trap. The instructions store the task execution environment of the
aborted task to corresponding TCB, update the Current_Task to the
another task number to be switched, load the TCB, and switch the
execution.

Common Destination Area The "common" section defines
common destination of message from both Task A and Task B tasks.

The real location is at 00006000H through 00006fffH. Both locations
of the Task A and Task B virtual space are at the same address range
40003000H through 40003fffH.

Virtual Mode Emulation Topics 3-7

task_a.s

Task A Program Code The "text_a" section defines program codes
of Task A. This section is located at 40000000H through 40000fffH by
the on-chip MMU.

Task A transfers a message of character string data from the address
labeled Message_A to the address labeled Message_Dest. After the
transfer, the processor executes trap instruction. The trap instruction
causes the execution aborting into the operating system. At this time,
the execution of Task A is stopped until next dispatch by the operating
system.

Task A Stack The "stack_a" section defines stack of Task A. The
location of the Task A virtual space is at 40001000H through
40001fffH.

Task A Data The "data_a" section defines the message transferred
by Task A.

The virtual location is 40002000H through 40002fffH.

task_b.s

Task B Program Code The "text_b" section defines program codes
of Task B.

The virtual location is 40000000H through 40000fffH as same as Task
A. Task B does same as Task A except for the message data, which is
located at address labeled Message_B.

Task B Stack The "stack_b" section defines stack of Task B. The
location of the Task B virtual space is at 40001000H through
40001fffH as same as Task A.

Task B Data The "data_b" section defines the message transferred
by Task B.

This virtual location is 40002000H through 40002fffH as same as Task
A.

3-8 Virtual Mode Emulation Topics

Assembling and
Linking the
Sample Program

The sample program source files os.s, task_a.s and task_b.s are written
for the HP 64879 70632 Assembler/Linker hosted on HP-UX.

Following commands were used to generate the absolute files with HP
64879 70632 Assembler/Linker.

$as70616 -a os.s> os.lis<RETURN>

$as70616 -a task_a.s> task_a.lis<RETURN>

$as70616 -a task_b.s> task_b.lis<RETURN>

$ld70616 -m -o os os.o >os.map<RETURN>

$ld70616 -m -o task_a task_a.o > task_a.map<RETURN>

$ld70616 -m -o task_b task_b.o >task_b.map<RETURN>

$cf70616 -m -o mul_task.a mul_task.cfc >mul_task.cfm<RETURN>

$ar70616 -x mul_task.a os.cf<RETURN>

$ar70616 -x mul_task.a task_a.cf<RETURN>

$ar70616 -x mul_task.a task_b.cf<RETURN>

The assembler, linker and the other tools are hosted on HP-UX. File
mul_task.cfc is a command file for the configurator cf70616. The
command file is shown in Figure 3-4.

SPACE(OS) 0x0 < {os}
SPACE(TASK_A) < {task_a}
SPACE(TASK_B) < {task_b}

Figure 3-4. Configurator Command File

Virtual Mode Emulation Topics 3-9

Setting up the
Emulator

Start up the 70632 PC Interface by entering the following command
from MS-DOS prompt:

C>pcv70 <emulname>
The following tasks are required to set up the emulator for the sample
program mul_task.

Mapping Memory To map memory for the sample program, select:

Config, Map, Modify
To change the unmapped area attribute to "guarded", select grd by
using the TAB key. The sample program mul_task occupies address
range 0 through 0cfffH of actual memory.

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

0..0cfff
Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the eram (emulation RAM) type. To save your
memory map, use the right arrow key or the Enter key to exit the field
in the lower right corner. (The End key on Vectra keyboards moves
the cursor directly to the last field.)

3-10 Virtual Mode Emulation Topics

Loading Program
into Memory

Load the absolute file by selecting:

Memory, Load
Select the "NEC_COFF" for the format of the absolute files. Select the
either "Emulation" or "Any" for the memory type to be loaded. The
absolute files to be loaded into memory are os.cf, task_a.cf and
task_b.cf. First, you must load os.x.

To load os.cf, select yes in the "Generate load address information in
real addresses" field, and select yes in the "Add address attributes to
the symbol file" field.

Type os.cf in the last field and press Enter.

The task_a.cf and task_b.cf should be loaded after its virtual space is
set up.

Figure 3-5. Loading the Sample Program into Memory

Virtual Mode Emulation Topics 3-11

Displaying and
Transferring the

Symbols for os.x

The sample program is executed from the address Sys_Init. Display
the global symbols by selecting:

System, Symbol, Global, Display
Type <CTRL>z to zoom the symbol window.

The os.x includes the module os, display the local symbols of the
module os.

System, Symbol, Local, Display
Specify the module name to be displayed, by typing os and pressing
Enter.

3-12 Virtual Mode Emulation Topics

Getting into
Virtual Mode

Before starting the program, define software breakpoint at the address
Start_Ini_Task. This address is the exit of the operating system.

Breakpoints, Add
Enter Start_Ini_Task and press Enter.

Then start the program from the address Sys_Init.

Processor, Go, Address
Enter Sys_Init and press Enter.

You will see the following line in the status lines.

ALERT: Software breakpoint: 0000005084@v

Virtual Mode Emulation Topics 3-13

The processor executed the following tasks from Sys_Init to
Start_Ini_Task.

Initializing privilege registers (stack pointer and area table
registers)
Initializing Task Context Blocks for Task A and Task B.
Switching to Task A

Loading the Absolute File in Virtual Mode (task_a.cf)

The emulator broke just before the transition from operating system to
Task A. Since the current virtual space is for Task A, you can load the
absolute file task_a.cf. Before loading the file, you must change the
configuration option "Load real address", select:

Config, General
Move the cursor to the "Load real address" field, and enter "n". Move
the cursor to the bottom field and press Enter to save this configuration.

To load the file task_a.cf, select:

Memory, Load

3-14 Virtual Mode Emulation Topics

Move the cursor to the "Generate load address information in real
address" field and select "no", and move the cursor to the "Absolute
file name" field, and type the task_a.cf then press Enter.

Since loading an absolute file clears previous loaded symbols, you
should reload the symbols for os.cf, select:

System, Symbol, Global, Load
Press Enter to load the symbol file os.hps.
Define software breakpoint at the address Switch_Task. This address
is the exit of the task dispatcher.

Breakpoints, Add
Enter Switch_Task and press Enter.

Continue the execution.

Processor, Go, Pc
You will see the following line in the status lines.

ALERT: Software breakpoint: 00000050bf@v

The processor executed the following tasks.

Transferring the message of Task A
Exiting the execution of Task A
Storing the Task Context for Task A
Loading the Task Context for Task B
Switching to Task B

Virtual Mode Emulation Topics 3-15

Loading the Absolute File, task_b.cf

The emulator broke just before the transition from task dispatcher to
Task B. Since the current virtual space is for Task B, you can load the
absolute file task_b.cf.

To load the file task_b.cf, select:

Memory, Load
Move the cursor to the "Absolute file name" field, and type the
task_b.cf then press Enter.

Reload the symbols for os.cf, select:

System, Symbol, Global, Load
Press Enter to load the symbol file os.hps.

Transfer the symbols to the emulator by selecting.

System, Symbol, Global, Transfer
System, Symbol, Local, Transfer, All

Displaying
Registers

Display basic registers by selecting:

Register, Display, Basic
Type <CTRL>z to zoom the Emulation window.

You can also display privilege and on-chip MMU registers, select:

Register, Display, Class
Use the TAB key to select priv and press Enter.

Register, Display, Class
Use the TAB key to select mmu and press Enter.

3-16 Virtual Mode Emulation Topics

Tracing the
Program
Execution

Suppose that you wish to trace the program from the current address.

Modifying Trace Format

For widening the address column of the trace listing, do the following.

To change the trace format, select:

Analysis, Format
Move the cursor to the "Width" field of the addr trace label. Enter 18.

Use the down arrow key to move to the field labeled count. Press Tab
until it says "--OFF--" and press End, then Enter.

Resetting Trace Specification

To be sure that the analyzer is in its default state, select:

Virtual Mode Emulation Topics 3-17

Analysis, Trace, Reset
The default trace specification triggers the analyzer as soon as possible
if the program is running user program. The emulator is running in
monitor because the software breakpoint has hit. To trace the program
execution from the current address, you do not have to change the
initial trace specifications. Start the trace and continue the program.

Analysis, Begin
Processor, Go, Pc

The status line shows that the emulation trace is completed.

To display the trace listing, select:

Analysis, Display
Use the right arrow key to move the cursor to the "Ending state to
display" field. Type 100 into the ending state field, press Enter and use
<CTRL>z to zoom the analysis window. Press the Home key to get to
the top of the display. The resulting trace is similar to the following
display.

The trace listing shows the beginning of the execution by task
dispatcher. Press the PgDn key to see more lines of the trace.

The display shows the execution of Task B, and you can find that the
address fields of the trace are displayed in real address. Regardless of

3-18 Virtual Mode Emulation Topics

address mode, addresses which the analyzer captures are real addresses
by default.

Changing Symbols The program executes Task A and Task B alternately. Suppose that you
wish to note to Task B. In this case, you should load the symbols for
Task B.

Load the symbols for Task B, select:

System, Symbol, Global, Load
Type the symbol file name task_b.hps and press Enter.

Display the global symbols you have loaded, select:

System, Symbol, Global, Display
Press <CTRL>z key to zoom the symbol window.

The global symbols for Task B are displayed.

Virtual Mode Emulation Topics 3-19

When loading new global symbols, the old global symbols are
removed. This means that only one symbol file can be stored in the
emulator.
To display local symbols, select:

System, Symbol, Local, Display
Enter task_b. The resulting display follows.

3-20 Virtual Mode Emulation Topics

Transfer the symbols to the emulator, select:

System, Symbol, Global, Transfer
System, Symbol, Local, Transfer, All

Specifying Virtual
Space

The emulator uses the current value of the 70632 address table register
pairs by default when you specify an address in virtual address in a
command.

Suppose that you would like to debug a certain task executed in
multiple virtual space without stopping the execution. You will be
unable to specify the virtual address in desired virtual space, because
the address space is dynamically changed.

The XMMU function provides you to specify a desired virtual address
space. Regardless of the current virtual space, you can specify the
address space you want to note to. The emulator has the optional
XMMU class registers. These registers consist of eight XMMU register
pairs and one XMMU mode register. The XMMU register pairs
correspond to the actual 70632 area table register pairs. You can
specify a virtual address space by modifying the XMMU class
registers. These registers are not actual registers of the 70632 processor.

When you set the contents of the XMMU class registers and activate
the XMMU function, the XMMU class registers are used for the
address translation of the virtual address you specify in a command,
instead of the actual area table register pairs of the 70632
microprocessor.

The XMMU class registers consist of the following registers.

XMMU class registers corresponded actual registers
xatbr0 atbr0
xatlr0 atlr0
xatbr1 atbr1
xatlr1 atlr1
xatbr2 atbr2
xatlr2 atlr2
xatbr3 atbr3
xatlr3 atlr3

mmumod --None--

If you set the value of the mmumod register in the above table to "1",
the emulator translates the virtual address in a command line with the
contents of the XMMU class registers instead of the actual area table
register pairs. Oppositely, if you want to make the emulator to translate
the virtual address in a command line with the actual table register

Virtual Mode Emulation Topics 3-21

pairs, in other words the virtual address in the current address space,
reset the value of the mmumod register to "0".

To display the XMMU class registers, select:

Register, Display, Class
Select xmmu by using the TAB key, and press Enter.

Press <CTRL>z key to zoom the Emulation window.

The resulting display shows the contents of XMMU class registers. The
display also includes the contents of on-chip MMU registers, you
displayed in previous section, and these values define virtual space for
Task B.

Since you want to note to Task B, modify the XMMU class registers as
the same value as the value of on-chip MMU registers in the display.
Select:

Register, Modify
Use the TAB key to select (or enter) xatbr0 and press Enter. Type
2001, press Enter.

Register, Modify
Use the TAB key to select xatbr1 and press Enter. Type 2011, press
Enter.

3-22 Virtual Mode Emulation Topics

To make the emulator use the configured address space you entered,
select:

Register, Modify
Use the TAB key to select mmumod and press Enter. Type 1, press
Enter.

To confirm the XMMU class registers you have modified, select:

Register, Display, Class
Use the TAB key to select xmmu, and press Enter.

To display the contents of memory at address range Transfer_B
through Trans_B_End. The label Trans_B_End is local symbol.

Select:

Memory, Display, Mnemonic
Enter the address range "Transfer_B..task_b:Trans_B_End", and
press Enter. Enter <CTRL>z to zoom the window.

Virtual Mode Emulation Topics 3-23

Breakpoints Before defining the breakpoint, break the emulator by selecting:

Processor, Break
To define a breakpoint at the address of Transfer_B, select:

Breakpoints, Add
Enter the address label Transfer_B, and press Enter.

Now that the software breakpoint is set, start the execution. Select:

Processor, Go, Pc
The status line shows as follows.

ALERT: Software breakpoint: 040000000@v

Displaying Address
Translation Tables

You can display the 70632 Area Table Entry (ATE) and Page Table
Entry (PTE). These features are provided with Terminal Interface. To
entering the Terminal Interface, select:

System, Terminal
To display the ATE corresponding with address Transfer_B, enter:

ate Transfer_B
1:000 at 000002010 Present
 PTB=000003200 Limit=003 Growth=positive
 Execute level=0 Write level=0 Read level=0

3-24 Virtual Mode Emulation Topics

To display the PTE corresponding with address Transfer_B, enter:

pte Transfer_B
1:000:000 at 000003200 Present
 Page base=00000a000 Executable Writable Readable
 Not modified Accessed User=0 Not locked

Displaying TCB You can display TCB contents of current task by using the tcb
Terminal Interface command. Specify the register list with -l option.
The register list specifies registers to be stored to or loaded from TCB
when the task is switched. The format of the register list is same as the
70632 processor’s LDTASK or STTASK instruction operand. Since
the register list of current task is 7f000000H, enter:

tcb -l 7f000000
To exit the Terminal Interface window, type <CTRL>\.

Tracing Virtual
Address

The analyzer can capture virtual address by modifying configuration.

To configure to make the analyzer capture the virtual address, select:

Config, General

Virtual Mode Emulation Topics 3-25

Use the arrow key to the "Trace real address" configuration option
field. Enter "n" to change trace address from real to virtual. Move the
cursor to the bottom field, and press Enter to save the configuration.

Specifying Trigger

To trigger the analyzer when reading from the address Message_B.

Analysis, Trace, Modify
The emulation analysis specification is shown. Use the right arrow key
to move to the “Trigger on” field. Type “a” and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the
global symbol Message_B and press Enter.

To skip the data specification, press Enter key.

Now the "Status" field is highlighted. Use the TAB key to select the
status "read".

The following display shows the resulting analysis specification. To
save the new specification, use End Enter to exit the field in the lower
right corner.

3-26 Virtual Mode Emulation Topics

You’ll return to the trace specification. Move the cursor to the "Trigger
Position" field. Select the "Center" by pressing the TAB key.

Press End to move to the trigger spec field. Press Enter to exit the
trace specification.

Move the cursor to "Trigger Position" field, and select Center. Move
the cursor to the lower right corner, and press Enter to save the trace
specification.

To save the new specification, use the Enter key to exit out of the field
in the lower right corner.

To start the trace, select:

Analysis, Begin
The status line shows that the trace is running.

To continue the execution, select:

Processor, Go, Pc
The trace status changes to "Emulation trace complete".

To display the trace, select:

Analysis, Display

Virtual Mode Emulation Topics 3-27

Press End Enter, and use <CTRL>z to zoom the window.

The resulting display shows the transfer of the Task B message.

Press the <CTRL>r key to see more lines. Then you will see the
transition from Task B to the task dispatcher.

3-28 Virtual Mode Emulation Topics

Press the <CTRL>r key several times until the Task A execution is
displayed (The states of Task B will be stored from line 134).

As you can see some address are replaced with the symbols for Task B.
You may confuse the states with Task B’s one. The reason is because
Task A and Task B occupy the same virtual address (not the same
virtual space) each other.

Virtual Mode Emulation Topics 3-29

Address Mode
Suffixes

When you issue a command, the emulator displays the result of the
command. According to circumstance, the resulting display includes
address information such as "00004000@r" or "00008000@v".

The suffix "@r" indicates that the address is displayed in real address
mode. The suffix "@v" indicates that the address is displayed in virtual
address. When the emulator displays an address information, the
address mode will be different as the case may be.

Specifying An Address Mode

When you designate addresses, you can also select either real or virtual
address by adding a suffix. The following suffixes are allowed.

"@r" real address

"@v" virtual address
You can also designate addresses with no suffix. In this case, the
address mode, which is required to evaluate the addresses, is
determined as follows.

1. When the processor is reset, the addresses are evaluated as
real address.

2. When the processor never runs in virtual mode after reset, the
addresses are evaluated as real address.

3. Once the processor has run in virtual mode after reset, the
addresses are evaluated as virtual address.

Note If the processor has ever run in virtual mode since the processor was
reset, the address expression without suffix is evaluated as virtual
address, even if the processor is running in real mode.

3-30 Virtual Mode Emulation Topics

If you specify a virtual address in a command, the emulator has to
translate the virtual address, which you have specified,to the real
address. The method of the address translation is same as the actual
70632 microprocessor. In this case, the emulator use the current value
of the 70632 address table register pairs, ATBR0, ATLR0, ATBR1,
to translate the address by default. The details of the address translation
are shown in chapter 4.

Symbols supported by the PC Interface can include the suffixes. To
include the suffixes in symbols, use the "-a" option for the rdnec70
converter.

Note The following commands do not accept inconsistent suffix.

" Processor, Go, Address"
" Processor, Step, Address"
" Processor, Go, CMB, Address"

For example, when the emulator is in real mode, you can not specify a
virtual address (with "@v" suffix) in one of the above command.

Virtual Mode Emulation Topics 3-31

Notes

3-32 Virtual Mode Emulation Topics

4

Configuring the 70632 Emulator

Introduction Your 70632 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used in place of, or along with, target
system memory. You can use the emulator’s internal clock or the
target system clock. You can execute target programs in real-time or
allow emulator execution to be diverted into the monitor when
commands request access of target system resources (target system
memory, register contents, etc.) The emulator is a flexible instrument
and it may be configured to suit your needs at any stage of the
development process. This chapter describes the options available
when configuring the 70632 emulator.

This chapter will:

Show you how to access the emulator configuration options.

Describe the emulator configuration options

Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the Emulator 4-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

General
Configuration

Select:

Config, General
When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Figure 4-1. General Emulator Configuration

4-2 Configuring the Emulator

Note It is possible to use the System Terminal window to modify the
emulator configuration. However, if you do this, some PC Interface
features may no longer work properly. We recommend that you only
modify the emulator configuration by using the options presented in
the PC Interface.

Internal Clock This configuration item allows you to select whether the emulator will
be clocked by the internal clock source or by a target system clock
source.

Yes The internal 20 MHz clock (system clock speed) is
the emulator clock source. This is the default.

No An external target system clock is the emulator
clock source. External clock sources must be within
the range of 8-20 MHz.

Real-Time Mode If it is important that the emulator execute target system programs in
real-time, you can enable the real-time emulator mode. In other words,
when you execute target programs (with the "Processor, Go"
command), the emulator will execute in real-time.

No The default emulator configuration disables the
real-time mode. When the emulator is executing
the target program, you are allowed to enter
emulation commands that require access to target
system resources (display/modify: registers, target
system memory, or target system I/O etc.). If one
of these commands is entered, the system controller
will temporarily break emulator execution into the
monitor. These command are described in the
"Target Memory Access" section of chapter 5.

Yes If your target system program requires real-time
execution, you should enable the real-time mode in
order to prevent temporary breaks that might cause
target system problems.

Configuring the Emulator 4-3

Break on ROM Writes Emulator execution may optionally break into the monitor when the
target (user) program writes data to a location mapped as ROM.

Yes Emulator execution will break into the monitor
when the target program writes to ROM locations.

No Target program writes to ROM locations will not
cause emulator execution to break into the monitor.

Software Breakpoints The software breakpoint feature uses the BRK instruction. When you
add or set a software breakpoint (and software breakpoints are
enabled), the emulator will replace the opcode at the software
breakpoint address with the BRK instruction. When the emulator
executes the BRK instruction, execution breaks into the monitor.

If your target program uses BRK instruction and contains a breakpoint
interrupt routine, you may wish to disable the software breakpoints
feature so that BRK instructions do not cause breaks to the monitor.
Refer to the "Software Breakpoints" section of chapter 5 for
information to use software breakpoints.

No The software breakpoints feature is disabled. This
is specified by the default emulator configuration,
so you must change this configuration item before
you can use software breakpoints.

Yes The software breakpoints feature is enabled. The
emulator breaks to the monitor when an BRK
instruction is executed. If the interrupt instruction
is a software breakpoint, the original opcode is
restored in the user program. A subsequent run or
step from the instruction pointer (program counter)
will execute from the breakpoint address.

If the BRK instruction is not a software breakpoint,
an "undefined breakpoint" status message is
displayed. To continue with program execution,
you must run or step from the target program’s
breakpoint interrupt vector address.

4-4 Configuring the Emulator

Trace Hold Tag This configuration option specifies whether or not the analyzer traces
target bus hold sequence.

Yes The analyzer traces bus hold cycles.

No The analyzer traces no bus hold cycles.

Load Real Address This configuration option specifies whether the emulator should load
absolute files into virtual address or real address when you use the
"Memory, Load" command. In other words, you can specify that in
which address space the address location information are recorded in
the absolute files.

Yes The emulator interprets the location address
information in the absolute files as real address.

No The emulator interprets the location address
information in the absolute files as virtual address.

Trace Execution
Cycles

This configuration option specifies whether or not the analyzer traces
instruction execution cycles.

Yes Both exec states and bus states are captured by the
emulation analyzer. You will see the disassembles
of executed instructions in trace listing. Lines with
disassembles indicate exec states of the instructions.

No Only bus states are captured by the emulation
analyzer. When you display trace listing, the
emulator disassembles with "fetch" states, and their
disassembled processor mnemonics is displayed at
the "fetch" states which are the first byte of the
instructions. In this mode, the analyzer can trace
with time tagging or # of states counter.

Refer to the "Using the Emulator" chapter for more details of the
analyzer features.

Configuring the Emulator 4-5

Trace Real Address This configuration option specifies whether the analyzer should trace
virtual address or real address.

Yes The analyzer captures real address bus which is the
same that the actual microprocessor outputs to.

No The analyzer captures virtual address.

CMB Interaction? Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated measurement.
CMB signals READY and /EXECUTE are used to perform multiple
emulator start/stop.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

No The emulator ignores the /EXECUTE and READY
lines, and the READY line is not driven.

Yes Multiple emulator start/stop is enabled. If the

Processor, CMB, Go, ...
command is entered, the emulator will start
executing code when a pulse on the /EXECUTE
line is received. The READY line is driven false
while the emulator is running in the monitor; it goes
true whenever execution switches to the user
program.

4-6 Configuring the Emulator

Note CMB interaction will also be enabled when the

Processor, CMB, Execute

command is entered.

V70 Inverse
Assemble

This configuration specifies inverse assembler for either 70108/70116
or 70632 microprocessor. The 70632 microprocessor has the
70108/70116 emulation mode. In this mode, the 70632 executes the
instruction as 70108/70116 microprocessor’s one. The emulator
provides both inverse assemblers for 70108/70116 and 70632.

Yes The 70632 inverse assembler is used when you
display memory in mnemonic format.

No The 70108/70116 inverse assembler is used when
you display memory in mnemonic format.

Respond to HLDRQ This configuration option specifies whether /HLDRQ signal from
target system is accepted or ignored by the emulator.

Yes The emulator accepts Hold Request from target
system.

No The emulator ignores Hold Request (/HLDRQ
signal input) from target system.

Respond to Target
NMI

This configuration option specifies whether or not the emulation
processor accepts to /NMI signal generated by the target system.

Yes The emulator accepts NMI signal generated by the
target system. When the NMI signal is accepted,
the emulator calls the NMI procedure as actual
microprocessor.

No The emulator ignores NMI signal from target
system completely.

Configuring the Emulator 4-7

Target Interrupts This configuration option specifies whether or not the emulation
processor accepts to INT signal generated by the target system.

Yes The emulator accepts INT signal generated by the
target system. When the INT signal is accepted, the
emulator calls the INT procedure as actual
microprocessor.

No The emulator ignores INT signal from target system
completely.

Target Bus Freeze This configuration option specifies whether BFREZ from target system
is accepted or ignored by the emulator.

Yes The emulator accepts BFREZ signal from target
system.

No The emulator ignores BFREZ signal input from
target system.

Drive Background
Cycles

This configuration option specifies whether or not the emulator’s bus
cycles are driven to your target system bus when the emulator is in
background cycle. If your target system requires bus cycle activities
constantly, you will need to drive the emulation bus cycles to your
target system bus.

No The emulator does not drive any bus cycles to
target system bus in background operation.

Yes The emulator drives its bus cycles to target system
bus whether or not the emulator executed in the
background cycles. If your target system have some
circuitry which monitors bus activities, you may
need to enable this configuration. related
configuration .

4-8 Configuring the Emulator

Target Memory
Access Size

Specify cycles used by monitor when accessing target system memory
or I/O.

This configuration option specifies the type of microprocessor cycles
that are used by the monitor program to access target memory. When a
command requests the monitor to read or write target system memory
or I/O, the monitor program will look at the access mode setting to
determine whether byte, halfword, or word instructions should be used.

bytes Selecting the byte access mode specifies that the
emulator will access target memory using byte
cycles (one byte at a time).

half Selecting the word access mode specifies that the
emulator will access target memory using halfword
cycles (one word at a time).

words Selecting the word access mode specifies that the
emulator will access target memory using word
cycles (one word at a time).

Address Bits A31-A8 This configuration option specifies the location of the background
monitor program. The monitor may be located on any 4K byte
boundary. If the address specified is not on a 4K boundary, the 4K
boundary below the address is used. The location of background
monitors may be important because background cycles of the 70632
emulator are always visible to the target system. In default, the
monitor is located on 00000H through 00FFFH (actual address).

This configuration does not make sense when the "Drives Background
Cycles" question is answered "No".

Monitor Type This configuration option allows you to select and use a foreground
emulation monitor program. The default monitor is background
monitor.

Configuring the Emulator 4-9

Background Specify monitor type as background monitor.
When you select background monitor, you can
specify the background monitor location.

Foreground Specify monitor type as foreground monitor. When
you select foreground monitor, you must specify
correct foreground monitor start address with next
configuration question (foreground monitor
address). After you completed the configuration
setting, you need to load foreground monitor
program to the emulator with "Memory, Load"
feature. The foreground monitor program must
already assembled and linked with appropriate
location specification. Refer to the HP 64758
70632 Terminal Interface User’s Guide for more
information.

Note If you select a foreground monitor, a 4 kilobyte block is automatically
mapped at the address specified by the next question.

Foreground Monitor
Location?

You can relocate the monitor from the default monitor location to any
4K byte boundary. The location of the foreground monitor is important
because it will occupy part of the processor address space. Foreground
monitor location must not overlap the location of target system
programs. The default foreground monitor location is "00000000H".
When entering monitor block addresses, you must only specify
addresses on 4K byte boundaries; otherwise, an invalid syntax message
is displayed.

Note Relocating the monitor causes all memory mapper terms to be removed.

Specify the real memory location of foreground monitor in the "[real
address]" field. When using the foreground monitor in virtual mode,
you must also specify the virtual location in the "[virtual address]" field.

4-10 Configuring the Emulator

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration so
that it may be reloaded later. The following information is saved in the
emulator configuration.

Emulator configuration items.
Key macro specifications.
Memory map.
Break conditions.
Trace specification and format.
Window specifications.

To store the current emulator configuration, select:

Config Store
Enter the name of a file in which to save the configuration.

Loading an
Emulator
Configuration

If you want to reload a previously stored emulator configuration, select:

Config Load
Enter the configuration file name and press Enter. The emulator will
be reconfigured with the values specified in the configuration file.

Configuring the Emulator 4-11

Notes

4-12 Configuring the Emulator

5

Using The Emulator

Introduction Many of the important topics described in this chapter involve the
commands or features which relate to using the emulator. The "Getting
Started" and "Virtual Mode Emulation Topics" chapters shows you
how to use the basic features of the 70632 emulator. This chapter
describes more information or notices of the emulator.

This chapter contains the following topics.

Register Manipulation
– Stack Pointer and Program Status Word Modification.
– Floating-Point Format Display or Modification

Analyzer Topics
– Analyzer Status Labels
– Analyzer Trigger Condition
– Trace Listing Disassembler
– Execution States
– Analyzer Data Bus Condition
– Analyzer Clock Speed
– Cause of Monitor Break

Hardware Breakpoints
Software Breakpoints
Target Memory Access
FPU Support
MMU Support
Coordinated Measurement
Unfamiliar Prompts
70118/70116 Emulation Mode
FRM Support
Real-time Emulation Memory Access
Virtual Address Translation
Storing the Contents of Memory into Absolute File
Register Names and Classes
Foreground Monitor
Restrictions and Considerations

Using the Emulator 5-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
and "Virtual Mode Emulation Topics" chapters of this manual.

Register
Manipulation

Stack Pointer
Modification

In the 70632 microprocessor, one of the five privileged registers
(L0SP, L1SP, L2SP, L3SP, ISP) is selected as stack pointer according
to the EL and IS flags of the PSW, and the stack pointer is cached by
SP. The contents of the stack pointer corresponding to the execution
level are not always the same as the stack pointer (SP). The stack
pointer corresponding to the execution level is updated only when the
execution level is changed.

The emulation monitor is executed in execution level 0. When the
emulator returns from emulation monitor to user program, for example
when you issue "Processor Go" command, the emulator changes
execution level from 0 to user program’s execution level which is
determined by the IS flag and EL field in the program status word
(PSW).

For this reason, in emulation monitor, the stack pointer (SP) and the
stack pointer corresponding to the execution level need to have the
same value. The monitor intends to keep the stack pointer (SP) and the
current level stack pointer to have the same value.

When breaking into monitor, the current level stack pointer is modified
to the value of SP.

5-2 Using the Emulator

If you modify registers PSW, L0SP, L1SP, L2SP, L3SP or SP in
monitor, note the following.

When you modify the EL or IS flag of the PSW, the SP is
modified to the value of the stack pointer corresponding to the
execution level which is determined by the EL or IS flag of
the PSW you have modified.

When you modify the stack pointer corresponding to the
current execution level (L0SP, L1SP, L2SP, L3SP, ISP), the
stack pointer SP is modified to the same value.

When you modify the stack pointer SP, the stack pointer
corresponding to the execution level (L0SP, L1SP, L2SP,
L3SP or ISP; the one selected depending on the contents of
the PSW) is modified with the same value.

Displaying/Modifying
Registers In

Floating-Format

You can display/modify general purpose registers (R0 through R31) in
floating-point format with "Register, Float" command. The IEEE-754
standard data type is supported.

Display register R0 in floating-point format by selecting:

Register, Float, Display
Use the TAB key to select the r0.

Modify register R4 to the value 12345.678, by selecting:

Register, Float, Modify
Use the TAB key to select the r4 and press Enter. Type the value
12345.678 and press Enter.

Using the Emulator 5-3

Analyzer Topics

Analyzer Status
Qualifiers

The following are the analyzer status labels which may be used in the
"Analysis, Trace, Modify" analyzer commands.

 fetch 0x1xxxxxxxxxx011x code fetch
 fetchbr 0x1xxxxxxxxxx0111 code fetch after branch
 read 01xxxxxxxxxxxxxxx read
 write 00xxxxxxxxxxxxxxx write
 data 0xxxxxxxxxxxx0011 data access (read/write)
 io 0xxxxxxxxxxxx1011 i/o access (read/write)
 exec 0xxxxxxxxxxxx0000 execution state
 sdata 0xxxxxxxxxxxx0010 data access (read/write) with short path
 sysbase 0xxxxxxxxxxxx0100 system base table access
 trans 0xxxxxxxxxxxx0101 translation table access (read/write)
 coproc 0xxxxxxxxxxxx1000 co-processor access(read/write)
 shortrd 0x1xxxxxxxxxx0010 data access read with short path
 shortwr 0x0xxxxxxxxxx0010 data access write with short path
 iord 0x1xxxxxxxxxx1011 i/o access read
 iowr 0x0xxxxxxxxxx1011 i/o access write
 transrd 0x1xxxxxxxxxx0101 translation table access read
 transwr 0x0xxxxxxxxxx0101 translation table access write
 coprocrd 0x1xxxxxxxxxx1000 co-processor access read
 coprocwr 0x0xxxxxxxxxx1000 co-processor access write
 fault 0xxxxxxxxxxxx1100 machine fault acknowledge
 halt 0xxxxxxxxxxxx1101 halt acknowledge
 intack 0xxxxxxxxxxxx1110 interrupt acknowledge
 grdacc 0xxxxxxxxxx0x0xxx guarded memory access
 wrrom 0x0xxxxxxx0xx0xxx write to ROM
 monitor 0xxxxxxxxxxx0xxxx background monitor cycle
 lock 0xxxxxxxx0xxxxxxx bus lock
 retry 00xxxxxxxxxxxxxxx retry
 hold 0xxxxxxxxxxxx0001 bus hold

Specifying Trigger
Condition at Desired

Instruction Execution

In the "Using the Analyzer" section of the "Getting Started" chapter,
you used the analyzer to trace the states of the program after that the
instruction located at address 10033H was executed.

As you know, the 70632 processor has the prefetch unit (PFU) to
prefetch the instruction string to be executed.

If you had not specified the "exec" status label in the trigger status
field, unexpected trigger would have occurred at the prefetch state of
the address 10033H.

This discussion is significant when you specify the trigger condition at
the execution of the instruction which follows a branch instruction like:

5-4 Using the Emulator

 000020012@r - CMP.B #00H,R2
 000020016@r - BZ 00020000H
 000020018@r - MOV.W #0000000fH,R0

Assume that the processor executes instructions at address range
20000H through 20016H normally, and the instruction at address
20018H is executed at long intervals.

If you wish to trigger the analyzer at the execution of the address
20018H, you should specify the "exec" status label into status field.

If you would not specify the "exec" status label, the trigger will always
occur at the prefetch of the address 20018H whether or not the branch
condition at address 20016H is satisfied.

Disassembles In
Trace Listing

As you can see disassembles in analyzer trace listing, the emulator has
disassemble capability in trace listing. When the emulator disassembles
instructions in stored trace information, the prefetch cycles of each
instruction are required.

In the "Using the Analyzer" section of the "Getting Started" chapter,
you configured the analyzer to trace the states of the program after the
read states from the Command_Input byte and 0xxxxxx42H in the
data field.

When you displayed the results of analyzer trace, some lines which
include "No fetch cycle found" messages were displayed. Each line
was instruction execution cycle at the address in the left side of the
line. However, the disassembles of these instructions were not
displayed because the prefetch states for the instructions were not
stored by the analyzer.

The trigger position was at the start of the trace listing, because you
wished to trace the states of the program after the triggered state.

Note that the "No fetch cycle found" messages may be displayed
around line 0 (trigger point) when the "Trigger Position" is "Start".

To display complete disassembles in trace listing, you should modify
location of trigger state in trace list, referred to as the "trigger position".

Execution States
Location in Trace

Listing

The emulation analyzer stores execution states of the program in
addition to actual bus cycles, if configuration option "Trace execution
cycle" is answered "yes".

Using the Emulator 5-5

When the processor executes an instruction, the execution state of the
instruction is generated before its bus state(s) by the execution of the
instruction.

However, it is possible that the execution states are inserted after or
between the actual bus states of these activities, since the clock rate of
bus sampling is high-speed.

The following trace listing shows the example that the execution state,
numbered 64, falls behind its bus activity.

 61 00003004 00001e05 00001e05H trans table read *********
 62 00003004 00001e85 00001e85H trans table write *********
 63 00001004 00000002 00000002H data read *********
 64 00005043 00000002 MOV.W 00001004H,R0 *********
 65 0000504a 00000002 MOV.W #00001008H,R1 *********
 66 00005060 2da20801 fetch *********

Specifying Data For
Trigger Condition or

Store Condition

The analyzer captures the data bus of the 70632 microprocessor. When
you specify a data in the analyzer trigger condition or store condition,
the ways of the analyzer data specifications differ according to the data
size and the address. Suppose that you wish to trigger the analyzer
when the processor accesses to the byte data 41H in a 1000H address.
You should not specify the data field of the trigger condition like
"41H".

The data condition will be considered as 00000041H. The bit 31
through bit 8 of data bus is unpredictable because of the byte data. You
will unable to trigger as you desire. You should have specified the data
field with "0xxxxxx41h".

Where x’s are "don’t care" bits.

When the address that you want to trigger is not a multiple of 4, the
data bus specification is different from the above. If you trigger the
analyzer at the address 1001H instead of the address 1000H, the data
41H will be output to the bit 7 through bit 4 of the data bus. You
should specify the data field with "0xxxx41xxh".

Analyzer Clock
Speed

The emulation analyzer can capture both the exec states and bus states.

Bus states show actual processor’s bus activity.

5-6 Using the Emulator

Exec states indicate the address of the first byte of an executed opcode.
Only the address and processor status fields are valid during these
states.

The analyzer has a counter which allows to count either time or
occurrence of bus states. Tracing both bus cycles and exec states,
effectively doubles the clock rate to the analyzer.

By default, the analyzer time counter is turned off because the analyzer
time counter cannot be used at high-speed clock rate. If it is desired to
use the analyzer counter, configure the analyzer to trace only bus
cycles. The clock speed can be effectively halved if execution states
are NOT traced. To do this, you should answer "no" at the "Trace
execution cycle" question. Refer to the "Trace Execution Cycle"
section of the "Configuring the Emulator" chapter for more information.

Finding Out the
Cause of a Monitor

Break

If the emulator breaks into monitor unwillingly, you can examine the
cause of the break by using the analyzer. When you issue the following
commands, you can capture the behavior of the program just before the
monitor break.

Reset the trigger condition, select:

Analysis, Trace, Reset
Specify the trigger condition that the analyzer is never triggered.

Analysis, Trace, Modify
Use the right arrow key to move to the “Trigger on” field. Use the
TAB key to select "no state" , and press Enter. To save the trace
specification, move the cursor to the lower right corner, and press
Enter.

Start the trace.

Analysis, Begin
After starting your program, the unexpected break will occur. To show
the cause of the break, stop the trace and display the trace listing.

Analysis, Halt
Analysis, Display

Specify the trace lines to be displayed as -19 through 0.

The trace listing displays will show the cause of the break. If you
cannot find the cause of the break, display the previous states. If the
trace listing does not include the fundamental problem, you need to

Using the Emulator 5-7

change the trigger condition to capture the problem, and then restart the
trace and the program.

This is also useful to detect the causes other than monitor breaks like a
processor halt.

5-8 Using the Emulator

Hardware
Breakpoints

The analyzer may generate a break request to the emulation processor.
To set up a break condition upon an analyzer trigger, follow the steps
below.

Using the Analyzer
Trigger to Break into

the Monitor

 To cause emulator execution to break into the monitor when the
analyzer trigger condition is found, you must modify the trigger
configuration. To access the trigger configuration, select:

Config, Trigger
The trigger configuration display contains two diagrams, one for each
of the internal TRIG1 and TRIG2 signals.

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted "Analyzer"
field in the TRIG1 portion of the display, and use the TAB key to
select the "----->>" arrow which shows that the analyzer is driving
TRIG1.

Next, move the cursor to the highlighted "Emulator" field and use the
TAB key to select the arrow pointing towards the emulator (<<-----);
this specifies that emulator execution will break into the monitor when
the TRIG1 signal is driven.

The trigger configuration display is shown in figure 5-1.

Using the Emulator 5-9

Software
Breakpoints

Software breakpoints are realized by the 70632 BRK instruction. When
you define or enable a software breakpoint, the emulator will replace
the opcode at the software breakpoint address with a breakpoint
interrupt instruction (BRK). When the BRK instruction is executed, the
emulator breaks into monitor and compares the address that the break
occurred.

If the address is defined as software breakpoint, the emulator displays
that the breakpoint hit. The emulator disable the breakpoint and replace
the BRK instruction with the original opcode.

If the BRK interrupt was generated by a BRK interrupt instruction in
the target system, execution still breaks to the monitor, and an
"undefined breakpoint" status message is displayed. To continue with
program execution, you must run or step from the target program’s
breakpoint interrupt vector address.

There are some attentions when you use the software breakpoint
features.

Figure 5-1. Cross Trigger Configuration

5-10 Using the Emulator

1. Software Breakpoints Should Be Set at only Locations which
Contain Instruction Opcodes

You must only set software breakpoints at memory locations
which contain instruction opcodes (not operands or data). If a
software breakpoint is set at a memory location which is not
an instruction opcode, the software breakpoint instruction will
never be executed and the break will never occur.

2. Software Breakpoints Should Be Set When The Emulator Is
Running In Monitor

Software breakpoints should not be set, enabled, disabled, or
removed while the emulator is running user code. If any of
these commands are entered while the emulator is running
user code, and the emulator is executing code in the area
where the breakpoint is being modified, program execution
may be unreliable.

3. Software breakpoints cannot be set in target ROM

Because software breakpoints are implemented by replacing
opcodes with the BRK instructions, you cannot define
software breakpoints in target ROM.

You can, however, copy target ROM into emulation memory
(see the "Target ROM Debug Topics" section of the
"In-Circuit Emulation" chapter).

4. BRK instruction vector must be set up

You must define the 70632 break-point instruction trap vector
to point to an address which is allowed instruction fetch;
typically in the program code area.

When a software breakpoint occurred, the emulator breaks
into the monitor after the BRK instruction has been executed.
However the instruction which is pointed by the BRK
instruction vector is never executed.

If you didn’t set up the vector and a software break has
occurred, an access to the address pointed by the vector may
drive the emulator into unpredictable state. The 70632

Using the Emulator 5-11

break-point instruction vector is defined in the 70632 system
base table. The vector is located at 0XXXXXX34H; where
"XXXXXX" is determined by the contents of the privilege
register SBR (defaults is "000000").

This table location depends on the content of 70632 SBR
register.

5. More Three Words Of The Stack Area Must Be Prepared

When the BRK instruction is executed, the emulator stores the
exception information to stack as the same as the 70632
microprocessor does.

So, you should prepare more three words (12 bytes) for stack
in addition. The stack, which is used when the breakpoint
occurs, is normally the level 0 stack which is pointed by
L0SP. When the software breakpoint occurs, if the program
uses interrupt stack, the three words of the interrupt stack
pointed by ISP is modified by the emulator instead of level 0
stack.

6. Software Breakpoint Manipulation In Virtual Mode

When you enable disable or remove a software breakpoint
which you have set by using virtual address, you must issue its
command in same virtual space when you have set.

The notices related to software breakpoint manipulation in
virtual mode are described in chapter 3.

5-12 Using the Emulator

Target Memory
Access

Commands Not
Allowed when

Real-Time Mode is
Enabled

When emulator execution is restricted to real-time and the emulator is
running in user code, the system refuses all commands that require
access to processor registers or target system memory or I/O. The
following commands are not allowed when runs are restricted to
real-time:

Register display/modification (except for XMMU class
registers).
Target system memory display/modification. Because the
emulator contains dual-port emulation memory, commands
which access emulation memory do not require breaks and are
allowed while runs are restricted to real-time.
I/O display/modification.
Step.
Area Table Entry display (which is in target system memory).
Page Table Entry display (when the PTE or the dependent
ATE is/are in target system memory).
Any other commands with virtual address designation (which
cause target system memory accesses for address translation).
When you specifies virtual addresses in commands, the
emulator will refer to the address translation tables to translate
the virtual addresses to the corresponded real addresses. If the
address translation tables which are required to translate the
specified virtual addresses is in target system memory, the
address translation will be failed.

If the real-time mode is enabled, these resources can only be displayed
or modified while running in the monitor.

Breaking out of
Real-Time Execution

The only commands which are allowed to break real-time execution
are:

" Processor, Reset", " Processor, Go",
" Processor, Break"

Using the Emulator 5-13

FPU Support The emulation analyzer can capture co-processor cycles. FPU register
display and modification are not supported.

There are following considerations to display co-processor mnemonics
in trace or memory display.

FMOVCR instruction

FMOVCR instruction will be displayed as follows:

FMOVCTW instead of FMOVCR OP1, FCTW
FMOVPTW instead of FMOVCR OP1, FPTW
FMOVSTW instead of FMOVCR OP1, FSTW

Instructions with no operand

Dummy operands are displayed when dis-assembling instructions
without any operand. As a sign, "#" is displayed just after Opcode
mnemonics as follows.

0000fe86a@r - FRPUSH # FR0,FR0

Two "FR0"s are dummy operands. The following instructions relate
this.

FADD3M.S FADD3M.L FADD4M.S FADD4M.L
FSUB3M.S FSUB3M.L FSUB4M.S FSUB4M.L
FMUL3M.S FMUL3M.L FMUL4M.S FMUL4M.L
FRPUSH FRPOP FAFFECT

Instructions with one operand

Dummy operand is displayed when dis-assembling instructions with
only one operand. As a sign, "* " is displayed just after Opcode
mnemonics as follows.

0000fe87a@r - FRREL * /00000100H,FR0

The "FR0" is a dummy operand. The following instructions relate this.

FIPV.S FIPV.L FRPINC FRREL

5-14 Using the Emulator

MMU Support The ate and pte Terminal Interface commands allow you to display
Area Table Entry and Page Table Entry for an address you specified in
the commands. These commands are useful to examine in which
address space the program are executed, and detect the address
translation error of the program. Examples of these command usages
are described in chapter 3. These command syntax are described in the
HP 64758 70632 Emulator Terminal Interface User’s Guide.

Making
Coordinated
Measurements

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and some other
instrument connected to the BNC connector.

This chapter will describe coordinated measurements made from the
PC Interface which involve the emulator. These types of coordinated
measurements are:

Running the emulator on reception of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution into
the monitor.

 Three signal lines on the CMB are active and serve the following
functions:

/TRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When CMB run
control interaction is enabled, all emulators are

Using the Emulator 5-15

required to break to background upon reception of a
false READY signal and will not return to
foreground until this line is known to be in a true
state.

/EXECUTE Active low. This line serves as a global interrupt
signal. Upon reception of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
typically, run the emulator or start a trace
measurement.

Unfamiliar Status When you are using the emulator, one of the following message is
displayed in the status line normally.

N70632--Emulation reset
N70632--Running user program
N70632--Running in monitor

If your target system has a defect or you does not configure the
emulator appropriately, the following prompts may be displayed.

N70632--Waiting for ready

N70632--Halted

 Waiting for Target
Ready

The status "Waiting for ready" indicates that the emulator is waiting for
target ready signal.

If you map the unused memory locations as target memory and your
program accesses to these locations by a defect (in case of in-circuit,
also if a target memory is accessed by an emulation command), the
emulator is waiting for an impossible ready signal infinitely because
the /READY signal is internally pulled up. When you encounter this
status, the emulator cannot break into monitor. All you can do is to
reset the processor.

5-16 Using the Emulator

If you are using the emulator in in-circuit mode, the reason is that the
emulator intends to access to a memory location for which your target
system does not generate ready signal.

If you are using the emulator in out-of-circuit mode, the reason is that
the emulator intends to access to a target memory location by your
program. To prevent this, all of memory locations, which are not used,
should be mapped as guarded memory. When you direct the emulator
to access a target memory location, the emulator will return an error
message.

Halt or Machine Fault The status "Halted" indicates that the emulator is halted or in machine
fault.

In case of machine fault, all you can do will be to reset the processor
because the emulator cannot break into monitor.

One of the causes is the exception by a address translation failure. In
this case, one of the solution is to use the analyzer. The analyzer will
capture states which causes the emulator to halt. Refer to the "Finding
out the Cause of a Monitor Break" description of the "Analyzer
Topics" section in this chapter, for the analyzer configuration.

Using the Emulator 5-17

70108/70116
Emulation Mode

The 70632 microprocessor has the 70108/70116 emulation mode. In
this mode, the 70632 executes instructions as 70108/70116
microprocessor’s ones.

The emulator provides the following functions for both 70108/70116
and 70632.

Display memory contents in processor mnemonic format.

Single-stepping

Analyzer trace

Displaying Memory
In 70108/70116

Mnemonic Format

The emulator can display contents of memory in mnemonic format for
both 70108/70116 and 70632. The emulator provides both inverse
assemblers for 70108/70116 and 70632. You can select one of the
inverse assemblers to display memory contents by using configuration
option "V70 inverse assemble ".

To display memory contents in 70108/70116 mnemonic, change the
disassembler by answering:

no
To display memory contents in 70632 mnemonic (default), answer:

yes

Single-stepping You can also single-step the instructions in the 70108/70116 emulation
mode. When you single-step the instructions, mnemonics of the
executed instruction is displayed in corresponded processor’s ones.

However, when you modify the contents of PSW to change the mode
with the "Register, Modify" command, a mnemonic of next one
instruction is displayed in wrong processor mnemonic.

Tracing States In
Both Mode

You can also trace the bus states and exec states in the 70108/70116
emulation mode. When tracing the execution of the program,
mnemonics of the executed instructions are included in trace listing.
The corresponded processor mnemonics are displayed automatically.

5-18 Using the Emulator

Real-time
Emulation
Memory Access

The dual-port memory for the emulation memory allows emulation
displays and modifications of emulation memory without breaking the
processor into the monitor during emulation.

This is referred to as the Real-time Emulation Memory Access
capability.

If you issue emulation memory display/modification command while
the emulation program is running, HP 64700 emulation controller, not
the emulation processor, intends to access the dual-port emulation
memory with the cycle-stealing method. The emulation memory
accesses without breaking the processor into the monitor are
accomplished for this reason.

When cycle-stealing to access to the emulation memory, the emulation
controller watches for idle cycles in the 70632 bus cycles. When the
idle cycles are found, the emulation controller can access to the
emulation memory at the interval of the 70632 bus cycles with
cycle-stealing.

However, in case that the emulation controller cannot find any idle
cycles, the emulation controller holds the 70632 bus cycles (not but
breaking into the monitor) in order to access to the emulation memory.

If your target system inserts some wait states to access to memory, no
idle cycle may be generated. It is depended on WHAT instructions are
executed when the emulation memory access command is issued, or
HOW much wait states are inserted.

When there is no idle cycle within 160 mS, the hold request will be
generated to the emulation processor except that the emulator is held,
bus-frozen or reset.

Using the Emulator 5-19

Virtual Address
Translation

When you specify virtual addresses in emulation commands, the
emulator intends to translate these virtual addresses to actual memory
addresses in order to manipulate contents of these memory locations.

For the address translation, the 70632 microprocessor uses its area
table register pairs, which define a virtual address space. Similarly, the
emulator requires values which corresponds to the 70632 area table
register pairs.

Using the Caches of
Area Table Register

Pairs

The emulator has the caches of the area table register pairs, which
allow the emulator to refer the corresponded area table for the address
translations even if the emulator cannot to or is not allowed to break
into the monitor.

Each time the emulator breaks into monitor, the caches are updated by
the contents of the 70632 area table register pairs.

By default, the emulator uses the caches to translate the addresses
which you specify in emulation commands. The caches contain the
base addresses and the lengths of the area tables as the same as the
70632 area table register pairs. The emulator refers to the corresponded
area table and page table by using the caches.

If the emulator is restricted to real-time runs by the "Real-time mode "
configuration option, the caches will keep the values while you do not
break the emulator into the monitor intentionally. Only when you issue
"Processor, Break", "Processor, Step" or "Processor, Reset" command
or a break condition (such as software breakpoint) is satisfied, the
caches are updated.

If the emulator is not restricted to real-time runs (default), the caches
are updated by the contents of the area table register pairs every time
the emulator breaks into monitor whether with or without your
intention. When you issue commands with virtual addresses, the
emulator breaks into the monitor to access the area table register if
possible. As the result, the emulator will use the current virtual address
space for address translations.

In the both cases, when the emulator cannot break into monitor, for
example the processor is reset, the emulator uses the caches for the
address translation.

5-20 Using the Emulator

Specifying Virtual
Address Space

When you specify virtual addresses in emulation commands, the
emulator translates the virtual address to corresponded real addresses.
The translated real addresses depends on a virtual address space. The
virtual address space can be defined by the values of area table base
and length for each section. In 70632 microprocessor, these
informations are stored in its area table register pairs.

In case that the caches mentioned above are used for the address
translation, it is difficult to specify an virtual address in your desirable
virtual address space during running user program. If your program
performs in multiple virtual space, you may want to specify a virtual
address space for address translations in order to watch for the
execution of a certain task.

This is accomplished by using the XMMU function. The XMMU
function allows you to fix a virtual address space for address
translations. The emulator has the optional XMMU class registers.
These registers consist of eight XMMU register pairs and one XMMU
mode register. The XMMU register pairs correspond to the actual
70632 area table register pairs. You can specify a virtual address space
by modifying the XMMU class registers. The format of the XMMU
class registers is the same as the 70632 actual area table register pairs.
The XMMU class registers also include the XMMU mode register
(mmumod), which determines whether the caches or the contents of the
XMMU register pairs are used for address translations. By default, the
caches are selected.

If you activate the XMMU function, the emulator uses the contents of
the XMMU register pairs for address translations whether or not the
emulator is restricted to real-time runs.

The XMMU class registers consist of the following registers.

XMMU class registers corresponded actual registers
xatbr0 atbr0
xatlr0 atlr0
xatbr1 atbr1
xatlr1 atlr1
xatbr2 atbr2
xatlr2 atlr2
xatbr3 atbr3
xatlr3 atlr3

mmumod --None--

Using the Emulator 5-21

To specify a virtual address space which is used for address
translations, modify the contents of the XMMU register pairs
corresponded to the area table registers by using the "Register,
Modify" command or the cpmmu (copy current virtual address space
to XMMU registers) Terminal Interface command. See also the "Using
the XMMU function" section of chapter 3. For the "cpmmu" command
syntax, refer to the HP 64758 70632 Terminal Interface User’s Guide.

After you have modify the contents of the XMMU register pairs,
activate the XMMU function by changing the contents of XMMU
mode register (mmumod) to the value 1.

Register, Modify
Select mmumod for the register name, and type 1 for the value to be
modified.

To use the caches of the area table register pairs for address
translations, modify mmumod register to 0 (default).

Register, Modify
Select mmumod for the register name, and type 0 for the value to be
modified.

Besides by using the "Register Modify" command, the mmumod
register is reset when the emulator breaks into monitor in the following
causes.

Break by software breakpoint

Break by single-stepping

Break by writing to ROM

Break by access to guarded memory
In these case, the mmumod register is reset to "0". As the result, the
address translation of the virtual address in a command uses the actual
area table register pairs.

5-22 Using the Emulator

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

Memory, Store

Note The first character of the absolute file name must be a letter. You can
name the absolute file with a total of 8 alphanumeric characters, and
optionally, you can include an extension of up to 3 alphanumeric
characters. If the file is stored in HP 64000 format, its extension must
be ".X".

Caution The "Memory Store" command writes over an existing file if it has the
same name that is specified with the command. You may wish to
verify beforehand that the specified filename does not already exist.

Using the Emulator 5-23

Register Names
and Classes

The following register names and classes may be used with the
"Register, Display/Modify" commands.

BASIC Class

Register Name Description

pc psw r0 r1 r2
r3 r4 r5 r6 r7
r8 r9 r10 r11
r12 r13 r14 r15
r16 r17 r18 r19
r20 r21 r22 r23
r24 r25 r26 r27
r28 r29 r30 r31
ap fp sp

All basic registers.
The ap and r29, fp and r30, sp and r31 have same
values because of only difference of their register
mnemonics.

priv (Privilege
registers)

isp l0sp l1sp l2sp
l3sp sbr tr sycw
tkcw pir psw2

mmu (MMU registers)

atbr0 atlr0 atbr1
atlr1 atbr2 atlr2
atbr3 atlr3

Area Table Register Pairs

debg (Debug registers)

trmod adtr0 adtr1
adtmr0 adtmr1

5-24 Using the Emulator

xmmu (XMMU function
registers)

mmumod
xatbr0 xatlr0
xatbr1 xatlr1
xatbr2 xatlr2
xatbr3 xatlr3

XMMU function registers. These registers are not
actual 70632 registers. Refer to the XMMU
function section of the "Using the Emulator"
chapter for the detail.

Using the Emulator 5-25

Foreground
Monitor

This section describe the PC Interface specific notification for using the
foreground monitor. Refer to the HP 64758 70632 Emulator Terminal
Interface User’s Guide, for more information of the foreground
monitor.

Foreground Monitor
Configuration

Before loading the foreground monitor into the emulator, you must
answer some configuration option questions.

Select:

Config, General
Move the cursor to "Monitor type" field, select foreground, and press
Enter.

In the next field, you must specify the foreground monitor location
(real address), type the address of the monitor, and press Enter. The
address must be specified in 4 Kbyte boundary. The monitor location is
automatically mapped as emulation ram (eram).

In case of virtual mode application, you must also specify the virtual
location of the monitor. Specify the address in the "[virtual address]"
field.

Loading the Monitor
into Emulator

To load the monitor, select:

Memory, Load
Specify the file format and press Enter.

Now the "Memory Type" field is high-lighted, select "F_Monitor " to
load the foreground monitor, and press Enter.

Specify the file name and press Enter.

The emulation monitor will have been loaded into emulator.

After you have loaded the monitor program, map the memory and load
your program.

5-26 Using the Emulator

Restrictions and
Considerations

When the microprocessor accesses data which are not aligned, the
microprocessor generates more than twice memory access cycles.
If the microprocessor accepts interrupt while microprocessor reads the
data which are not aligned, the microprocessor stop accessing the data
and generates invalid memory write cycle.
But, memory is not changed because bus enable signals(BS0-BS3) are
inactive, and stopped memory read cycles are reexecuted after interrupt
routine.

If you specify that the emulator break into the monitor upon attempts to
write to memory mapped as ROM and if microproccessor generates
invalid memory write cycle described above in user’s program, the
emulator break into the monitor.

Using the Emulator 5-27

Notes

5-28 Using the Emulator

6

In-Circuit Emulation Topics

Introduction Many of the topics described in this chapter involve the commands
which relate to using the emulator in-circuit, that is, connected to a
target system.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

In-Circuit Emulation 6-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

Installing the
Emulator Probe
into a Target
System

The emulator probe has a PGA connector. The emulator probe is also
provided with a conductive pin protector to protect the delicate
gold-plated pins of the probe connector from damage due to impact.

Caution Protect against static discharge. The emulation probe contains
devices that are susceptible to damage by static discharge. Therefore,
precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by static
electricity.

Caution Make sure target system power is OFF. Do not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

6-2 In-Circuit Emulation

Caution Make sure pin 1 of probe connector is aligned with pin 1 of the
socket. When installing the emulation probe, be sure that the probe is
inserted into the processor socket so that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator probe will result if the
probe is incorrectly installed.

Caution Protect your target system CMOS components. If you target system
contains any CMOS components, turn ON the target system first, then
turn ON the emulator. Likewise, turn OFF your emulator first, then
turn OFF the target system.

Pin Protector The target system probe has a pin protector that prevents damage to the
prove when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room to accommodate the
plastic shoulders of the probe socket. If this occurs, another pin
protector may be stacked onto the existing pin protector.

Conductive Pin Guard HP emulators are shipped with a conductive plastic or conductive foam
pin guard over the target system probe pins. This guard is designed to
prevent impact damage to the pins and should be left in place while
you are not using the emulator. However, when you do use the
emulator, either for normal emulation tasks, or to run performance
verification on the emulator, you must remove this conductive pin
guard to avoid intermittent failures due to the target system probe lines
being shorted together.

In-Circuit Emulation 6-3

Caution Always use the pin protectors and guards as described above.
Failure to use these devices may result in damage to the target system
probe pins. Replacing the target system probe is expensive; the entire
probe and cable assembly must be replaced because of the wiring
technology employed.

Figure 6-1. Installing Emulation Probe Into PGA Socket

6-4 In-Circuit Emulation

Installing the Target
System Probe 1. Remove the 70632 microprocessor from the target system

socket. Note the location of pin 1 on the processor and on the
target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic foam).

3. Install the target system probe into the target system
microprocessor socket. Remember to use the pin protector!

In-Circuit
Configuration

Options

The 70632 emulator provides configuration options for the following
in-circuit emulation issues. Refer to the "Configuring the Emulator"
chapter for the configuration.

Selecting the Emulator Clock Source

The default emulator configuration selects the internal 20 MHz clock
as the emulator clock source. You can configure the emulator to select
an external target system clock source in the range of 8-20 MHz.

Driving Background Cycles to the Target System

You can choose whether emulator bus cycles are driven to your target
system bus when the emulator is in background cycle. If your target
system requires bus cycle activities constantly, such as /BCYST, will
need to drive the emulation bus cycles to your target system bus. By
default, no bus cycles are driven to the target system in background
operation.

Selecting Memory Block during Background Cycles

You can select the value of the 70632 address bus which should be
driven to your target system. Pin A31 through A8 of the address bus is
configurable. This configuration is meaningful when the "Driving
Background Cycles to Target System" configuration mentioned above
is activated.

In-Circuit Emulation 6-5

Allowing /HLDRQ Signal from Target System

You can specify whether the emulator accepts or ignores the /HLDRQ
signal from your target system. By default, the emulator accepts the
/HLDRQ signal from the target system.

Allowing BFREZ Signal from Target System

You can specify whether the emulator accepts or ignores the BFREZ
signal from your target system. By default, the emulator accepts the
BFREZ signal from the target system.

Allowing INT Signal from Target System

You can specify whether the emulator accepts or ignores the INT
signal from your target system. By default, the emulator accepts the
INT signal from the target system.

Allowing /NMI Signal from Target System

You can specify whether the emulator accepts or ignores the /NMI
signal from your target system. By default, the emulator accepts the
/NMI signal from the target system.

Allowing the Target
System to Insert Wait

States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
/READY, /BERR, RT/EP lines while emulation memory is being
accessed.

You can specify whether the emulation memory accesses are honored
by these target system signals or not, in a memory mapping term.
When you map emulation memory, if you would like to cause the
emulation memory to honor these target system signals, use the
"eram_lock" or "erom_lock" attribute for emulation memory type.

When the ready relationship is locked to the target system by using
"eram_lock" or "erom_lock" attribute, the emulation memory
accesses honor /READY, /BERR, RT/EP signals from the target
system (wait states or retry cycles are inserted if requested).

6-6 In-Circuit Emulation

If you do not specify the "lock" attribute, the ready relationship is not
locked to the target system, and the emulation memory accesses ignore
these signals from the target system (no wait states are inserted).

The Usage of I/O
Command

The emulator has "Processor, I /O" command, you can manipulate an
I/O address by using this command. You can specify an I/O address in
either virtual or real address space as well as the "Memory" command.

There are two I/O spaces according to methods for accessing to I/O in
the 70632 microprocessor.

The first I/O space can be accessed by using an IN/OUT instruction. In
this section, this I/O space is referred as "Isolated I/O space"
distinguish from Memory Mapped I/O described below.

The second I/O space can be accessed by simply reading from or
writing to the memory. The I/O space can be mapped to the virtual
address space and known as Memory Mapped I/O.

How to Access an Isolated I/O space

If you would like to manipulate an Isolated I/O space which is accessed
by using an IN/OUT instruction of the microprocessor, designate the
I/O address in real address.

How to Access a Memory Mapped I/O space

If you would like to manipulate a Memory Mapped I/O space which is
accessed by reading from or writing to a memory. designate the I/O
address in virtual address. The I/O mapped bit of the page table entry
which includes the I/O address must be set to 1, in other word, the
address is mapped as I/O.

In-Circuit Emulation 6-7

Notes

6-8 In-Circuit Emulation

A

File Format Readers

Using the HP 64000
Reader

An HP 64000 “reader” is provided with the PC Interface. The
HP 64000 Reader converts the files into two files that are usable with
your emulator. This means that you can use available language tools to
create HP 64000 absolute files, then load those files into the emulator
using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or as a
separate process. When operating the HP 64000 Reader, it may be
necessary to execute it as a separate process if there is not enough
memory on your personal computer to operate the PC Interface and HP
64000 Reader simultaneously. You can also operate the reader as part
of a “make file.”

What the Reader
Accomplishes

Using the HP 64000 files (<file.X>, <file.L>, <scr1.A>, <scr2.A>, ...)
the HP 64000 Reader will produce two new files, an “absolute” file and
an ASCII symbol file, that will be used by the PC Interface. These new
files are named: “<file>.hpa” and “<file>.hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file (<file>.hpa)
is created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools such as a “C” compiler, program
line numbers. Local symbols evaluate to a fixed (static, not stack
relative) address.

File Format Readers A-1

Note You must use the required options for your specific language tools to
include symbolic (“debug”) information in the HP 64000 symbol files.
The HP 64000 Reader will only convert symbol information present in
the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 012345678
global_symbol2 056789ABC
...
global_symbolN 09ABCDEF0
|module_name1|# 1234 76543210
|module_name1|local_symbol1 0CBA98765
|module_name1|local_symbol2 087654321
...
|module_name1|local_symbolN 0FEDCBA98

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN is a
five digit decimal line number. The addresses associated with global
and local symbols are specific to the processor for which the HP 64000
files were generated.

A-2 File Format Readers

Note If your emulator can store symbols internally, symbols will appear in
disassembly. When the line number symbol is displayed in the
emulator, it appears in brackets. Therefore, the symbol “MODNAME:
line 345” will be displayed as “MODNAME:[345]” in mnemonic
memory and trace list displays.

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “MAIN.C:count” as shown below.

Table A-1. How to Access Variables (HP64000 Format)

Module Name Variable Name You Enter:

MAIN.C count MAIN.C:count

MAIN.C line number 23 MAIN.C: line 23

You access line number symbols by entering the following on one line
in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

MAIN.C: line 23

Location of the
HP 64000 Reader

Program

The HP 64000 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64000 Reader and PC Interface
to operate properly. The PATH is usually defined in the
“\autoexec.bat” file.

File Format Readers A-3

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

Using the Reader
from MS-DOS

The command name for the HP 64000 Reader is RHP64000.EXE. To
execute the Reader from the command line, for example, enter:

C:\HP64700\BIN\RHP64000 [-q] <filename>

-q This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA” and
“TESTPROG.HPS”

RHP64000 TESTPROG.L

Using the Reader
from the PC Interface

The PC Interface has a file format option under the “Memory Load”
command. After you select HP64000 as the file format, the HP 64000
Reader will operate on the file you specify. After this completes
successfully, the PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.

2. Select “Memory Load.” The memory load menu will appear.

3. Specify the file format as “HP64000.” This will appear as the
default file format.

4. Specify the name of an HP 64000 linker symbol file
(TESTFILE.L for example).

Using the HP 64000 file that you specify (TESTFILE.L, for example),
the PC Interface performs the following:

A-4 File Format Readers

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64000 linker
symbol file creation date/time, the HP 64000 Reader recreates
them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date and time for
the HP 64000 linker symbol file, the HP 64000 Reader will
not recreate TESTFILE.HPA. The current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface. When
running the HP 64000 Reader at the MS-DOS command line prompt,
the HP 64000 Reader will always update the absolute and symbol files.

When the HP 64000 Reader operates on a file, a status message will be
displayed indicating that it is reading an HP 64000 file. When the HP
64000 Reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

The PC Interface executes the Reader with the “-q” (quiet) option by
default.

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, you will
need to exit the PC Interface and execute the program at the MS-DOS
command prompt to create the files that are downloaded to the
emulator.

File Format Readers A-5

Including RHP64000
in a Make File

You may wish to incorporate the “RHP64000” process as the last step
in your “make file,” as a step in your construction process, to eliminate
the possibility of having to exit the PC Interface due to space
limitations describe above. If the files with “.HPA” and “.HPS”
extensions are not current, loading an HP 64000 file will automatically
create them.

Using the NEC
COFF Reader

The 70632 PC Interface provides with the NEC COFF Reader.

The Reader converts an absolute file into two files that are usable with
the HP 64758 emulator. This means that you can use those available
language tools to create absolute files, then load those files into the
emulator using the 70632 PC Interface. The Reader can operate from
within the PC Interface or as a separate process. When operating the
Reader, it may be necessary to execute it as a separate process if there
is not enough memory on your personal computer to operate the PC
Interface and Reader simultaneously. You can also operate the reader
as part of a "make file".

What the NEC COFF
Reader

Accomplishes

Using absolute file in the form "<file>.<ext>", the NEC COFF Reader
will produce two new files, an "absolute" file and an ASCII symbol
file, that will be used by the 70632 PC Interface. These new files are
named: "<file>.hpa" and "<file>.hps".

The Absolute File

During execution of the NEC COFF Reader, an absolute file
(<file>.hpa) is created. This absolute file is a binary memory image
which is optimized for efficient downloading into the emulator.

A-6 File Format Readers

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the NEC COFF
Reader contains global symbols, module names, local symbols, and,
when using applicable development tools such as a "C" Compiler,
program line number. Local symbols evaluate to a fixed (static, not
stack relative) address.

Note You must use the required options for your specific language tools to
include symbolic ("debug") information in the absolute file. The NEC
COFF Reader will only convert symbol information that is present in
the input absolute file.

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
module_nameN
global_symbol1 01001234
global_symbol2 01005678
...
global_symbolN 0100ABCD
|module_name|# 1234 02000872
|module_name|local_symbol1 02000653
|module_name|local_symbol2 02000872
...
|module name|local_symbolN 02000986

Each of the symbols is sorted alphabetically in the order: module
manes, global symbols, and local symbols.

The space preceding module names is required. Although formatted
for readability here, a single tab separates symbol and address.

The local symbols are scoped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “MAIN:count.” See table A-2.

File Format Readers A-7

Table A-2. How to Access Variables (NEC COFF Format)

Module Name Variable Name You Enter:

main count main:count

main line number 23 main: line 23

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is a
five digit decimal number.

Note When the line number symbol is displayed in the emulator, it appears
in brackets. Therefore, the symbol "MODNAME:# 345" will be
displayed as "MODNAME:[345]" in mnemonic memory and trace list
displays.

Line number symbols are accessed by entering the following on one
line in the order shown:

module name
colon (:)
space
the word "line"
space
the decimal line number

For example:

MAIN.C: line 23

Location of the NEC
COFF Reader

Program

The NEC COFF Reader is located at the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the NEC COFF Reader and PC
Interface to operate properly. This is usually defined in the
"\autoexec.bat" file. The following examples assume that you have
"\hp64700\bin" include in your PATH variable. If not, you must
supply the directory name when executing the NEC COFF Reader
program.

A-8 File Format Readers

Using the NEC COFF
Reader from MS-DOS

The command names for the NEC COFF Reader are shown below.

RDNEC70.EXE
To execute the NEC COFF Reader from the command line, for
example...

ENTER: RDNEC70 [-q] [-u] [-r] [-a] <filename>

-q specifies the "quiet" mode. This option suppress
the display of messages.

-u defeats removal of a leading underscore in the
symbol name (for example, "_symbol"). When
used, a symbol name containing a leading
underscore will be left alone.

-r generates load address information in real address.
If this option is not specified, the load address is
generated in virtual. The HP 64758 emulator can
load a program in real address or virtual address. It
is determined by configuration option "Object file
address attribute". If you want to load a program in
real address, use this option. In case of real mode
application, this option is senseless because the
address is the same between real address and virtual
address.

-a adds address attributes to the symbol file (.HPS).
You can add address attributes to symbols. The
address attributes are determined by the load
address attribute specified by the above option. If
load address attribute is real, "@r" suffix is added
to address. If load address attribute is virtual, "@v"
suffix is added to address. In case of virtual mode
application, this option should be specified for
accurate manipulation of symbols.

<filename> is the same of the file containing the absolute
program. You can include an extension in the file
name.

File Format Readers A-9

Using the NEC COFF Reader from the PC Interface

The 70632 PC Interface has a file format option under the "Memory
Load" command.

For example, after you select NEC COFF as the file format, the NEC
COFF Reader will operate on the file you specify. After this completes
successfully, the 70632 PC Interface will accept the absolute file and
symbol files produced by the NEC COFF Reader.

To use the NEC COFF Reader from the PC Interface:

1. Start up the 70632 PC Interface.

2. Select "Memory, Load". The memory load menu will appear.

3. Specify the file format as "NEC COFF". This will appear as
the default file format.

4. Specify a file in NEC COFF format ("TESTFILE.X", for
example). The file extension can be something other than
".X", but ".HPA" or ".HPS" cannot be used.

The PC Interface performs the following:

It checks to see if files with the same base name and
extensions ".HPS" and ".HPA" already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the NEC
COFF Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the NEC COFF file
creation date/time, the NEC COFF Reader recreates them.
The new absolute file, TESTFILE.HPA, is then loaded into
emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are earlier than the creation date and time for
the NEC COFF file, the NEC COFF Reader will not recreate

A-10 File Format Readers

TESTFILE.HPA. The current absolute file, TESTFILE.HPA,
is then loaded into emulator.

Note Date/time checking only done within the PC Interface. When running
the Reader at the MS-DOS command line prompt, the Reader will
always update the absolute and symbol files.

When the Reader operates on a file, a status message will be displayed
indicating that it is reading an absolute file. When the Reader
completes its processing, another message will be displayed indicating
the absolute file is being loaded. The PC Interface executes the Reader
with the "-q" (quiet) option by default. The other options (-u , -r and
-a) are not in effect by default. If you wish to use these options, you
must execute the Reader from the MS-DOS prompt.

If the NEC COFF Reader Won’t Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file used. If this condition
occurs, you will need to exit the PC Interface and execute that are
downloaded to the emulator.

Note If you use the HP 64879 assembler/linker, specify module name in
your source file by using ".file" directive for the local symbols.

Including RDNEC70
in a Make File

You may want to incorporate the “RDNEC70” process as the last step
in your “make” file, or as a step in your construction process, so as to
eliminate the possibility of having to exit the PC Interface due to space
limitations describe above. If the “-.HPA” and “-.HPS” files are not
current, loading an NEC COFF file will automatically create them.

File Format Readers A-11

Notes

A-12 File Format Readers

Index

A absolute files
<file>.hpa created by HP 64000 Reader, A-1
format, 2-11
loading, 2-11
storing, 5-23

access
emulation memory, 5-19
target memory, 5-13

access size
target memory, 4-9

adding breakpoints, 3-24
address bus

background cycles, 4-9
address mode suffix, 3-30
address translation, 5-20
address translation tables

displaying, 3-24
analysis begin, 2-26
analysis display, 2-26
analysis specification

resetting the, 2-23
saving, 2-26
trigger condition, 2-23

analyzer, 1-4
cause of break, 5-7
clock speed, 5-7
data trigger, 5-6
disassemble, 5-5
emulation mode, 5-18
execution state, 5-4, 5-6
hardware break, 5-9
qualifiers, 5-4
state count, 5-7
status label, 5-4
time tagging, 5-7
trace, 3-17

Index-1

tracing virtual address, 3-25
analyzer, using the, 2-23
area table entry

displaying, 3-24
ASCII symbol file (<file>.hps), A-1
assemblers, 2-8
assembling

sample program, 3-9
assembling and linking the getting started sample program, 2-5

B background, 1-6
background cycle

address bus, 4-9
signals to target system, 4-8

background monitor, 4-9
BERR

from target system, 6-6
BFREZ signal

responding, 4-8
BNC connector, 5-15
break

monitor, 5-7
target memory access, 5-13

break command, 2-20
break conditions, 4-11
breaking into the monitor on trigger, 5-9
breakpoints, 1-5

adding, 3-24
hardware, 5-9
software, 5-10

breaks on writes to ROM, 4-4
BRK instruction, 2-21

C cautions
filenames in the memory store command, 5-23
installing the probe into socket, 6-3
protect against static discharge, 6-2
protect your target system CMOS components, 6-3
target system power must be off when installing the probe, 6-2
use the pin protectors, 6-4

changing symbols, 3-19
changing trace format, 2-28

2-Index

characterization of memory, 2-7
clock source

external, 4-3
internal, 4-3

clock speed, 1-3
CMB (coordinated measurement bus), 5-15
CMB interaction, enabling, 4-6
CMB signals, 5-15
CMOS target system components, protecting, 6-3
commands (PC Interface), selecting, 2-6
configuration

foreground monitor, 5-26
general, 4-2
load real address, 3-14
trace virtual or real address, 3-26

configuration (emulator), 4-1
loading, 4-11
storing, 4-11

Configuration options
 respond to HLDRQ signal, 4-7
breaks on writes to ROM, 4-4
drive background cycles to the target system, 4-8
emulator clock source, 4-3
enable CMB interaction, 4-6
enable software breakpoints, 4-4
locating the monitor block, 4-10
memory inverse assemble type, 4-7
monitor type, 4-9
object file address attribute, 4-5
real-time mode, 4-3
respond to target bus freeze, 4-8
respond to target NMI, 4-7
respond to target system interrupt, 4-8
target memory access size, 4-9
trace execution cycles, 4-5
trace hold tag, 4-5
trace real address, 4-6
value for address bits A31-A8 during background operation, 4-9

connector, 1-3
converter

NEC COFF format, A-6

Index-3

coordinated measurements
break on analyzer trigger, 5-9
definition, 5-15
multiple emulator start/stop, 4-6

coprocessors and access of emulation memory, 2-8
copy memory command, 2-34
count, step command, 2-18

D data bus
trace, 5-6

device table, emulator, 2-6
disassemble

trace listing, 5-5
disassembler

selecting, 4-7
displaying

address translation tables, 3-24
I/O, 6-7
memory, 2-16
memory emulation mode, 5-18
mmu register, 3-16
privilege register, 3-16
TCB, 3-25
trace, 2-26

dissemble
FPU, 5-14

DMA
external, 2-8

driving
background cycles to the target system, 4-8

E emulation feature
foreground or background monitor, 1-6
out-of-circuit or in-circuit emulation, 1-6

emulation memory, 1-3
note on target accesses of, 2-8
real time access, 5-19
size of, 2-7

emulation mode, 5-18
memory inverse assembler, 4-7

emulation monitor
foreground or background, 1-6

4-Index

monitor, 1-6
emulation RAM and ROM, 2-7
emulator

configuration, 4-2
device table, 2-6
purpose, 1-1
reset, 2-34
status, 2-6
usage, 5-1

emulator configuration
configuration options, 4-1

emulator feature, 1-3
analyzer, 1-4
breakpoints, 1-5
clock speed, 1-3
connector, 1-3
emulation memory, 1-3
FPU, 1-4
FRM, 1-4
MMU, 1-4
processor reset control, 1-5
register display/modify, 1-4
restrict to real-time runs, 1-5
single-step processor, 1-4
software debugging, 1-5
target interface, 1-5

emulator probe
installing, 6-2

enabling
NMI input from target system, 4-7
responding to HLDRQ signal, 4-7
tracing execution cycles, 4-5

eram, memory characterization, 2-8
erom, memory characterization, 2-8
EXECUTE

CMB signal, 5-16
executing programs, 2-20
execution cycles

tracing, 4-5
execution state

analyzer, 5-4

Index-5

trace, 5-6
exiting the PC Interface, 2-35
external clock source, 4-3

F feature of the emulator, 1-3
file formats

HP64000, A-4
file formats, absolute, 2-11
find data in memory, 2-20
floating point

register, 5-3
foreground, 1-6
foreground monitor, 4-9, 5-26
FPU, 1-4

disassemble, 5-14
FRM, 1-4

G general configuration, 4-2
getting started, 2-1

prerequisites, 2-2
global symbols, 2-12, 2-17
grd, memory characterization, 2-8
guarded memory acceses, 2-9
guarded memory accesses, 2-8

H halted, 5-16
hardware breakpoints, 5-9
HLDRQ signal

responding, 4-7
hold

tracing, 4-5
HP 64000 Reader, A-1

 using with PC Interface, A-4
HP 64000 Reader command (RHP64000.EXE), A-4
HP 64700 environment variable, 2-6
HP64000 file format, A-4

I I/O
display/modify, 6-7

in-circuit
READY, BERR, RT/EP, 6-6

in-circuit emulation, 6-1
inserting wait state, 6-6

6-Index

install, software installation program, 2-6
installation

software, 2-2
instruction execution

triggering analyzer, 5-4
INT

from target system, 4-8
internal clock source, 4-3
interrupt (INT)

from target system, 4-8
interrupt (NMI)

from target system, 4-7
inverse assembler

selecting, 4-7

L line numbers, 2-27
linkers, 2-8
linking

sample program, 3-9
linking the getting started sample program, 2-5
load address mode, 4-5
load map, 2-8
loading

address attribute, 3-14
foreground monitor, 5-26
sample program, 3-11

loading absolute files, 2-11
loading symbols, 3-12, 3-19
local symbols, 2-13, 2-22, A-3, A-7
locating the monitor, 4-10
locked, PC Interface exit option, 2-35

M make file, A-1
mapping memory, 2-7, 3-10
memory

copy range, 2-34
displaying in mnemonic format, 2-16
emulation mode, 5-18
mapping, 2-7, 3-10
modifying, 2-19
searching for data, 2-20

memory characterization, 2-7

Index-7

memory inverse assembler
selecting, 4-7

MMU, 1-4, 5-15
mmu register

displaying, 3-16
mnemonic

trace listing, 5-5
modifying

I/O, 6-7
memory, 2-19
stack pointer, 5-2

monitor
background, 4-9
breaking into, 2-20
foreground, 4-9, 5-26
locating the, 4-10

monitor block, 4-10
monitor break

cause, 5-7

N NEC COFF reader, A-6
NMI

from target system, 4-7
notes

.file assembler directive for local symbols, A-11
absolute file names for stored memory, 5-23
CMB interaction enabled on execute command, 4-7
date checking only in PC Interface, A-5
default address evaluation in real mode, 3-30
displaying trace, 2-26
inconsistent address suffix, 3-31
line number symbols in memory and trace listings, A-8
mapper terms deleted when monitor is relocated, 4-10
mapping foreground monitor automatically, 4-10
Reader only checks date/time within the PC Interface, A-11
register command, 2-17
software breakpoints, 2-21
symbolic information is required in absolute file, A-7
target accesses of emulation memory, 2-8
use required options to include symbols, A-2
using terminal window to modify configuration, 4-3

8-Index

P page table entry
displaying, 3-24

PC Interface
exiting the, 2-35
HP 64000 Reader, A-4
selecting commands, 2-6
starting the, 2-6

prerequisites for getting started, 2-2
privilege register

displaying, 3-16
purpose of the emulator, 1-1

Q qualifiers
analyzer, 5-4

qualifiers, analyzer status, 2-24

R RAM, mapping emulation or target, 2-8
reader

NEC COFF format, A-6
READY

from target system, 6-6
READY, CMB signal, 5-15
real address

tracing, 4-6
real time access

emulation memory, 5-19
real-time execution, 4-3
real-time runs, 1-5, 5-13
register

displaying (privilege, mmu), 3-16
floating-point, 5-3
modification, 5-2
xmmu, 3-21

register command, 2-17
register display/modify, 1-4
registers

names and classes, 5-24
XMMU, 5-20

relocatable files, 2-8
reset (emulator), 2-34
reset control, 1-5
resetting the analyzer specifications, 2-23

Index-9

resetting trace specification, 3-18
respond to target system interrupt, 4-8
responding

target bus freeze (BFREZ), 4-8
restrict real-time runs, 5-13
restrict to real-time runs, 1-5
ROM

mapping emulation or target, 2-8
writes to, 2-8

RT/EP
from target system, 6-6

running programs, 2-20

S sample program
assembling, 2-5
description, 2-2
linking, 2-5
loading into emulator, 3-11
virtual mode, 3-2

saving analysis specifications, 2-26
searching for data in memory, 2-20
selecting memory inverse assembler, 4-7
selecting PC Interface commands, 2-6
signals

background cycle, 4-8
simple trigger, specifying, 2-23
single-step, 2-17

emulation mode, 5-18
single-step processor, 1-4
software breakpoints, 1-5, 2-21, 5-10

clearing, 2-23
defining (adding), 2-21
displaying, 2-22
enabling, 4-4
note on BRK instruction vector, 2-21
setting, 2-23

software debugging, 1-5
software installation, 2-2
specifications

analysis specification, 2-23
specifing virtual address space, 5-21
specifying virtual space, 3-21

10-Index

stack pointer
modification, 5-2

starting the trace, 2-26
state count, 5-7
static discharge, protecting the emulator probe against, 6-2
status

halted, 5-16
machine fault, 5-16
waiting for ready, 5-16

status (analyzer) qualifiers, 2-24
status label

analyzer, 5-4
status line, 2-6
step, 2-17

emulation mode, 5-18
step count, 2-18
storing

absolute files, 5-23
suffix

address mode, 3-30
symbols, 2-12

.HPS file format, A-2
changing, 3-19
global, 2-17
loading, 3-12, 3-19
local, 2-22, A-2
transferring, 3-12

system command
exit, 2-35

T target interface, 1-5
target memory access, 5-13
target system

signals during background cycles, 4-8
target system RAM and ROM, 2-8
TCB

displaying, 3-25
terget memory access size, 4-9
time tagging, 5-7
trace

analyzer, 3-17
cause of break, 5-7

Index-11

clock speed, 5-7
data trigger, 5-6
description of listing, 2-27
disassemble, 5-5
displaying the, 2-26
emulation mode, 5-18
execution cycles, 4-5
execution state, 5-6
hold tag, 4-5
starting the, 2-26
state count, 5-7
time tagging, 5-7
trigger position, 2-30
virtual address, 3-25
virtual or real address, 4-6

trace format
changing, 2-28

trace signals, 2-23
trace specification

resetting, 3-18
tram, memory characterization, 2-8
transferring symbols, 3-12
translation table

displaying, 3-24
TRIG1, TRIG2 internal signals, 5-9
trigger

breaking into monitor on, 5-9
specifying a simple, 2-23

trigger condition, 2-23
instruction execution, 5-4

trigger position, 2-30
TRIGGER, CMB signal, 5-15
trom, memory characterization, 2-8

U unlocked, PC Interface exit option, 2-35
using the emulator, 5-1
using the HP 64000 file reader, A-1

V virtual address
tracing, 3-25, 4-6

virtual address translation, 5-20
virtual mode

12-Index

emulation, 3-1
virtual space

specifying, 3-21, 5-21

W wait state
target ready signal, 6-6

waiting for ready, 5-16

X xmmu function, 3-21, 5-20
xmmu registers, 3-21

Z zoom, window, 2-12, 2-16

Index-13

Notes

14-Index

	Using This manual
	Contents
	Introduction to the 70632 Emulator
	Getting Started
	Virtual Mode Emulation Topics
	Configuring the 70632 Emulator
	Using The Emulator
	In-Circuit Emulation Topics
	File Format Readers
	Index

