
HP 64756/7

70136/70236 Emulator
PC Interface

User’s Guide

HP Part No. 64756-97012
Printed in U.S.A.
July 1994

Edition 5

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1990, 1993, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

IBM and PC AT are a registered trademark of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Coporation.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S.Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5

64756-97001, April 1990
64756-97004, August 1990
64756-97006, October 1990
64756-97009, August 1993
64756-97012, July 1994

Using this Manual

This manual covers the following emulators as used with the PC
Interface.

HP 64756F 70136 emulator
HP 64757F 70236 emulator
HP 64757G 70236A emulator

For the most part, the 70136, 70236 and 70236A emulators all operate
the same way. Differences between the emulators are described where
they exist. All of the 70136, 70236 and 70236A emulators will be
referred to as the "70136 emulator" in this manual where they are alike.
In the specific instances where 70236 or 70236A emulator differs from
the 70136 emulator, it will be referred as the "70236 emulator" or
"70236A emulator".

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.

This manual will not:

Show you how to use every PC Interface command and
option. The PC Interface is described in the HP 64700
Emulator’s PC Interface: User’s Reference.

Organization

Chapter 1 "Introduction" -This chapter lists the 70136 emulator features and
describes how they can help you in developing new hardware and
software.

Chapter 2 "Getting Started" -This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to:

load programs into the emulator
map memory
display and modify memory
display registers
step through programs
run programs
set software breakpoints
search memory for data
use the analyzer

Chapter 3 "In-Circuit Emulation" -This chapter shows you how to plug the
emulator into a target system, and how to use the "in-circuit" emulation
features.

Chapter 4 "Configuring the Emulator" -You can configure the emulator to
adapt it to your specific development needs. This chapter describes the
emulator configuration options and how to save and restore particular
configurations.

Chapter 5 "Using the Emulator" -This chapter describes emulation topics that
are not covered in the "Getting Started" chapter (for example,
coordinated measurements and storing memory).

Appendix A. "File Format Reader" -This appendix describes how to use the File
Format Reader from MS-DOS or PC Interface, load absolute files into
the emulator, use global and local symbols with the PC Interface.

Contents

1 Introduction to the 70136 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70136 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-4
Emulation memory . 1-4
Analysis . 1-4
Registers . 1-5
Single-Step . 1-5
Breakpoints . 1-5
Reset Support . 1-5
Configurable Target System Interface 1-5
Foreground or Background Emulation Monitor 1-6
Real-Time Operation . 1-6
Easy Products Upgrades . 1-6

Limitations, Restrictions . 1-7
DMA Support . 1-7
User Interrupts . 1-7
Interrupts While Executing Step Command 1-7
Accessing Internal I/O Registers 1-7
PC relative addressing in trace list 1-8
"BRKXA" and "RETXA" Instructions in Stepping 1-8
Stepping at Software Breakpoint 1-8
Evaluation Chip . 1-8

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
The sample program . 2-2

Figuer 2-1. Sample Program Listing (Cont’d) 2-4
Assembling and Linking the Sample Program 2-6

Starting Up the 70136 PC Interface 2-7

Contents-1

Selecting PC Interface Commands 2-8
Emulator Status . 2-8

Mapping Memory . 2-8
Which Memory Locations Should Be Mapped? 2-9

Loading Programs into Memory 2-12
File Format . 2-12
Target Memory Type for Memory Load 2-12
Force the Absolute File to Be Read 2-13
File Format Options . 2-13
Absolute File Name . 2-13

Displaying Symbols . 2-14
Displaying Global Symbols 2-15
Loading and Displaying Local Symbols 2-17
Transfer Symbols to the Emulator 2-19

PGR register . 2-19
Displaying Memory in Mnemonic Format 2-20
Stepping Through the Program 2-21

Specifying a Step Count . 2-23
Modifying Memory . 2-24
Running the Program . 2-25
Searching Memory for Data . 2-25
Breaking into the Monitor . 2-26
Using Software Breakpoints . 2-26

Defining a Software Breakpoint 2-29
Displaying Software Breakpoints 2-29
Setting a Software Breakpoint 2-30
Clearing a Software Breakpoint 2-30

Using the Analyzer . 2-31
Resetting the Analysis Specification 2-31
Specifying a Simple Trigger 2-31
Starting the Trace . 2-35
Change the Analyzer Display Format 2-35
Displaying the Trace . 2-36
For a Complete Description 2-38

Copying Memory . 2-39
Resetting the Emulator . 2-39
Exiting the PC Interface . 2-40

2-Contents

3 In-Circuit Emulation

Introduction . 3-1
Prerequisites . 3-1
Installing the Target System Probe 3-2

Pin Protector (70236/70236A Emulator Only) 3-3
Auxiliary Output Lines . 3-3

Installing into a 70136 PLCC Type Socket 3-5
Installing into a 70136 PGA Type Socket 3-6
Installing into a 70136 QFP Type Socket 3-7
Installing into a 70236/236A PGA Type Socket 3-8
Installing into a 70236/70236A QFP Type Socket 3-8
In-Circuit Configuration Options 3-10

Using the Target System Clock Source 3-10
Allowing the Target System to Insert Wait States 3-10
Enabling NMI and RESET Input from the Target System . . . 3-10

Running the Emulator from Target Reset 3-11
Pin State in Background (70136) 3-12
Pin State in Background (70236/70236A) 3-13
Target System Interface (70136) 3-14
Target System Interface (70236/70236A) 3-17

4 Configuring the 70136 Emulator

Introduction . 4-1
Prerequisites . 4-2
Accessing the Emulator Configuration Options 4-2
Internal Clock . 4-4
Real-Time Mode . 4-5
Break on ROM Writes . 4-6
Software Breakpoints . 4-6
CMB Interaction . 4-8
Target Interrupts . 4-9
Target RESET . 4-10
Lock RDY Signal . 4-10
Read PGR Registers . 4-11
AEX Through to Target . 4-12
uPD72291 FPU . 4-12
20 Bit Address Mode . 4-13
Release bus by HOLD . 4-13
Trace DMA Cycles . 4-13
Trace Refresh Cycles . 4-14
Wait count of DMA . 4-14

Contents-3

DMA cycle in Background . 4-14
Trace Dummy HALTACK . 4-15
Bus Sizing Signal for Emul_mem 4-15
Bus Sizing Signal for Target_mem 4-16
Seg:off Translation Method . 4-17
Background Monitor Location 4-18
Monitor Type . 4-18
Foreground Monitor Address? 4-20
Storing an Emulator Configuration 4-21
Loading an Emulator Configuration 4-21

5 Using the Emulator

Introduction . 5-1
Address Syntax . 5-2
Address Expression . 5-4

Memory Commands . 5-5
Load/Dump Address . 5-6
Run Commands . 5-7
I/O Command . 5-8
Map Command . 5-8
Define the data bus size . 5-8
Breakpoints Command . 5-10

REGISTER NAMES and CLASSES (70136 Emulator) 5-11
BASIC(*) class . 5-11
NOCLASS . 5-11
PGR class . 5-11

REGISTER NAMES and CLASSES
(70236/70236A Emulator) . 5-12

BASIC(*) class . 5-12
NOCLASS . 5-12
PGR class . 5-12
SIO class . 5-13
ICU class . 5-14
TCU class . 5-14
SCU class . 5-15
DMA71 class . 5-15
DMA37 class . 5-16

Making Coordinated Measurements 5-17
Running the Emulator at /EXECUTE 5-18
Breaking on the Analyzer Trigger 5-18

Storing Memory Contents to an Absolute File 5-20

4-Contents

A File Format Readers

Introduction . A-1
Using the OMF86, NEC30, NEC33 Reader A-2

What the Reader Accomplishes A-2
Location of the Reader Program A-4
Using the Reader from MS-DOS A-4
Using the Reader from the PC Interface A-6
If the Reader Won’t Run . A-8
Including Reader in a Make File A-8

Using the HP 64000 Reader . A-9
What the Reader Accomplishes A-9
Location of the HP 64000 Reader Program A-12
Using the Reader from MS-DOS A-12
Using the Reader from the PC Interface A-12
If the Reader Won’t Run . A-14
Including RHP64000 in a Make File A-14

Contents-5

Illustrations

Figure 1-1. HP 64756/7 Emulator for uPD70136/70236 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. PC Interface Display 2-7
Figure 2-3. Sample Program Load Map Listing 2-9
Figure 2-4. Memory Map Configuration 2-11
Figure 2-5. Modifying the Trace Specification 2-34
Figure 2-6. Modifying the Pattern Specification 2-34
Figure 3-1. Auxiliary Output Lines (70136 Emulator) 3-3
Figure 3-2. Installing into a 70136 PLCC type socket 3-5
Figure 3-3. Installing into a 70136 PGA type socket 3-6
Figure 3-4. Installing into a 70136 QFP type socket 3-7
Figure 3-5. Installing into a 70236 PGA type socket 3-9
Figure 4-1. General Emulator Configuration (70136) 4-2
Figure 4-2. General Emulator Configuration (70236) 4-3

Tables

Table 5-1. Address expression syntax 5-4
Table A-1. How to Access Variables A-3
Table A-2. How to Access Variables A-11

6-Contents

1

Introduction to the 70136 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70136 emulator is designed to replace the 70136 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1. HP 64756/7 Emulator for uPD70136/70236

1-2 Introduction

Features of the
70136 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The 70136 emulator probe has a 68-pin PLCC connector. Also
provided is the adapter, HP PART No. 64756-61612, that will allow
the PLCC probe to connect to the NEC EV-9200G-74 socket which
replaces the 74-pin QFP package of 70136 microprocessor.

The HP 64756 emulator supports the following packages of 70136
microprocessor.

68-pin PLCC

68-pin PGA
(With using PLCC to PGA adapter; refer to the "In-Circuit
Emulation Topics" chapter in this manual)

74-pin QFP
(With using PLCC to QFP adapter (HP PART No.
64756-61612) and NEC EV-9200G-74 socket)

The 70236 and 70236A emulator probe has an 132-pin PGA connector.
Also provided is the NEC EV-9500GD-120 adapter that will allow the
PGA probe to connect to the NEC EV-9200GD-120 socket which
replaces the 120-pin QFP package of 70236 microprocessor.

The HP 64757 emulator supports the following packages of 70236 or
70236A microprocessor.

132-pin PGA

120-pin QFP
(With using NEC EV-9500GD-120 adapter and NEC
EV-9200GD-120 socket)

Introduction 1-3

Clock Speeds The 70136 emulator runs with an internal clock speed of 16 MHz
(system clock), or with target system clocks from 2-16 MHz.

The 70236 emulator runs with an internal clock speed of 16 MHz
(system clock), or with target system clocks from 4-32 MHz.

The 70236A emulator runs with an internal clock speed of 16 MHz
(system clock), or with target system clocks from 4-40 MHz.

Emulation memory The HP 70136 emulator is used with one of the following Emulation
Memory Cards.

HP 64726 128K byte Emulation Memory Card
HP 64727 512K byte Emulation Memory Card
HP 64728 1M byte Emulation Memory Card
HP 64729 2M byte Emulation Memory Card

You can define up to 16 memory ranges (at 256 byte boundaries and at
least 256 byte in length). The monitor occupies 4K bytes leaving
124K, 508K, 1020K or 2044K bytes of emulation memory which you
may use.You can characterize memory ranges as emulation RAM,
emulation ROM, target system RAM, target system ROM, or guarded
memory. The emulator generates an error message when accesses are
made to guarded memory locations. You can also configure the
emulator so that writes to memory defined as ROM cause emulator
execution to break out of target program execution.

Analysis The HP 70136 emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP 64704 80-channel Emulation Bus Analyzer
HP 64703 64-channel Emulation Bus Analyzer and
16-channel State Timing Analyzer

The HP 70236/70236A emulator is used with one of the following
analyzers which allows you to trace code execution and processor
activity.

HP 64704 80-channel Emulation Bus Analyzer
HP 64703 64-channel Emulation Bus Analyzer and
16-channel State Timing Analyzer
HP 64794A/C/D Deep Emulation Bus Analyzer

When you use the HP 70236A emulator over 16MHz, you have to use
the HP 64794 Deep Emulation Bus Analyzer.

1-4 Introduction

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus. The HP 64703 64-channel Emulation Bus
Analyzer and 16-channel State/Timing Analyzer allows you to probe
up to 16 different lines in your target system.

Registers You can display or modify the 70136 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
background monitor.

You can also define software breakpoints in your program. The
emulator uses one of 70136 undefined opcode (F1 hex) as software
breakpoint interrupt instruction. When you define a software
breakpoint, the emulator places the breakpoint interrupt instruction (F1
hex) at the specified address; after the breakpoint interrupt instruction
causes emulator execution to break out of your program, the emulator
replaces the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory. You can configure the
emulator so that it presents cycles to, or hides cycles from, the target
system when executing in background.

Introduction 1-5

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70136 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background, the emulator
mode in which foreground operation is suspended so that emulation
processor can be used to access target system resources. The
background monitor does not occupy any processor address space.

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under the real-time restriction,
commands which display/modify registers, display/modify target
system memory or I/O, or single-step are not allowed.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700A/B Card Cage. This means that you’ll be able to update
product firmware, if desired, without having to call an HP field
representative to your site.

1-6 Introduction

Limitations,
Restrictions

DMA Support In the 70136 Emulator, Direct memory access to the emulation
memory by DMA controller is not permitted.

In the 70236 and the 70236A Emulator, Direct memory access to the
emulator by external DMA controller is not permitted.

User Interrupts If you use the background monitor in the 70136 emulator, interrupts are
suspended or ignored during background operation. NMI is suspended
until the emulator goes into foreground operation. INT interrupt is
ignored.

If you use the background monitor in the 70236 and the 70236A
emulator, interrupts from target system are suspended during
background operation. NMI, and INTP0-INTP7 are suspended until
the emulator goes into foreground operation.

Interrupts While
Executing Step

Command

While executing user program code in stepping in the foreground
monitor, interrupts are accepted if they are enabled in the foreground
monitor program. When using the foreground monitor you will see the
following error message, if the interrupts are acknowledged before
stepping user program code.

ERROR: Stepping failed

Although the error message above appears, the code is executed as you
expected to do.

Accessing
Internal I/O Registers

When you access internal I/O registers of the emulator, you should use
the "display/modify register" command with their register name instead
of the "display/modify io_port" command.

Introduction 1-7

PC relative
addressing
in trace list

When you use the following setting in your program, the branch
address forming in PC relative addressing may change to a wrong
value only in disassemble list.

The program is running in the extended address mode.
The effective address for the PC relative addressing is in the
other page.
The order of the pages is not in sequence in extended address.

"BRKXA" and
"RETXA"

Instructions in
Stepping

When the "BRKXA" and "RETXA" instructions are executed in
stepping, the emulator reads memory for disassembly after stepping.
When you execute "BRKXA" instruction in stepping, the normal
address where the "BRKXA" instruction is located is extended to read
memory for disassemble after stepping.
When you execute "RETXA" instruction in stepping, the normal
address which is extended to point the "RETXA" instruction is not
extended to read memory for disassemble after stepping.

Stepping at Software
Breakpoint

When you execute step commands in the foreground monitor, you
should not step at the address which the "Software Breakpoint" was
set; the stepping will be failed.

ERROR: Stepping failed

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
70136/70236/70236A Evaluation chip in the emulator.

1-8 Introduction

2

Getting Started

Introduction This chapter leads you through a basic tutorial that shows how to use
the 70136 emulator with the PC Interface.

This chapter will:

Tell you what to do before you use the emulator in the tutorial.

Describe the sample program used for this chapter’s examples.

Briefly describe how to enter PC Interface commands and
how emulator status is displayed.

This chapter will show you how to:

Start up the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view sample program execution.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Connected the emulator to your computer. The HP 64700
Series Installation/Service manual shows you how to do this.

2. Installed the PC Interface software on your computer.
Software installation instructions are shipped with the media
containing the PC Interface software. The HP 64700
Emulators PC Interface: User’s Reference manual contains
additional information on the installation and setup of the PC
Interface.

3. In addition, it is recommended, although not required, that you
read and understand the concepts of emulation presented in
the Concepts of Emulation and Analysis manual. The
Installation/Service also covers HP 64700 Series system
architecture. A brief understanding of these concepts may
help avoid questions later.

The sample program The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

programs;for getting started

We will show you how to use the emulator to:

load this program into emulation memory
execute the program
monitor the program’s operation with the analyzer
simulate entry of different commands using the Memory
Modify emulation command.

2-2 Getting Started

LOCATION OBJECT CODE LINE SOURCE LINE

 1 "70116"
 2 GLB Msgs,Init,Cmd_Input,Msg_Dest
 3
 4 DATA
 0000 5 Msgs
 0000 436F6D6D61 6 Msg_A DB "Command A entered "
 0005 6E64204120
 000A 656E746572
 000F 656420
 0012 436F6D6D61 7 Msg_B DB "Command B entered "
 0017 6E64204220
 001C 656E746572
 0021 656420
 0024 496E76616C 8 Msg_I DB "Invalid Command "
 0029 696420436F
 002E 6D6D616E64
 0033 202020
 0036 9 End_Msgs
 10
 11 PROG
 12 ASSUME DS0:DATA,DS1:COMN
 13 **
 14 * The following instructions initialize segment
 15 * regsiters and set up the stack pointer.
 16 **
 0000 B80000 17 Init MOV AW,SEG Msg_A
 0003 8ED8 18 MOV DS0,AW
 0005 B80000 19 MOV AW,SEG Cmd_Input
 0008 8EC0 20 MOV DS1,AW
 000A 8ED0 21 MOV SS,AW
 000C BC00F9 22 MOV SP,OFFSET Stk
 23 **
 24 * Clear previous command
 25 **
 000F 26C6060000 26 Rrad_Cmd MOV Cmd_Input,#0
 0014 0090
 27 **
 28 * Read command input byte. If no command has been
 29 * entered, continue to scan for command input.
 30 **
 0016 26A00000 31 Scan MOV AL,Cmd_Input
 001A 3C00 32 CMP AL,#0
 001C 74F8 33 BE Scan
 34 **
 35 * A command has been entered. Check if it is
 36 * command A, command B, or invalid.
 37 **
 001E 3C41 38 Exe_Cmd CMP AL,#41H
 0020 7407 39 BE Cmd_A
 0022 3C42 40 CMP AL,#42H
 0024 740C 41 BE Cmd_B
 0026 E91200 42 BR Cmd_I
 43 **
 44 * Command A is entered. CW = the number of bytes in
 45 * message A. BP = location of the message. Jump to

Figure 2-1. Sample Program Listing

Getting Started 2-3

Data Declarations

The "DATA" section defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

 46 * the routine which writes the message.
 47 **
 0029 B91200 48 Cmd_A MOV CW,#Msg_B-Msg_A
 002C BE0000 49 MOV IX,OFFSET Msg_A
 002F E90F00 50 BR Write_Msg
 51 **
 52 * Command B is entered.
 53 **
 0032 B91200 54 Cmd_B MOV CW,#Msg_I-Msg_B
 0035 BE0012 55 MOV IX,OFFSET Msg_B
 0038 E90600 56 BR Write_Msg
 57 **
 58 * An invalid command is entered.
 59 **
 003B B91200 60 Cmd_I MOV CW,#End_Msgs-Msg_I
 003E BE0024 61 MOV IX,OFFSET Msg_I
 62 **
 63 * Message is written to the destination.
 64 **
 0041 BF0001 65 Write_MSG MOV IY,OFFSET Msg_Dest
 0044 F3A4 66 REP MOVBKB
 67 **
 68 * The rest of the destination area is filled
 69 * with zeros.
 70 **
 0046 C60500 71 Fill_Dest MOV BYTE PTR [IY],#0
 0049 47 72 INC IY
 004A 81FF0021 73 CMP IY,#Msg_Dest+20H
 004E 75F6 74 BNE Fill_Dest
 75 **
 76 * Go back and scan for next command
 77 **
 0050 EBBD 78 BR Read_Cmd
 79
 80 COMN
 81 **
 82 * Command input byte.
 83 **
 0000 84 Cmd_Input DBS 1
 85 **
 86 * Destination of the command message.
 87 **
 0001 88 Msg_Dest DDS 3EH
 00F9 89 Stk DWS 1 ; Stack area.
 <0000> 90 END Init

Figuer 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Initialization

The program instructions from the Init label to the Read_Cmd label
perform initialization. The segment registers are loaded and the stack
pointer is set up.

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to look for a command (a value
other than 0 hex).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A decide whether the command was "A", "B", or an invalid
command.

If the command input byte is "A" (ASCII 41 hex), execution transfers
to the instructions at Cmd_A.

If the command input byte is "B" (ASCII 42 hex), execution transfers
to the instructions at Cmd_B.

If the command input byte is neither "A" nor "B", an invalid command
was entered, and execution transfers to the instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
CW with the displayed message’s length and register IX with the
message’s starting location. Then, execution transfers to Write_Msg,
which writes the appropriate message to the destination location,
Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20 hex bytes long.) Then, the program jumps back to read the next
command.

Getting Started 2-5

The Destination Area

The "COMN" section declares memory storage for the command input
byte, the destination area, and the stack area.

Assembling and
Linking the Sample

Program

The sample program is written for the HP 64853 Cross
Assembler/Linker.

Use the following command to assemble and link the sample program.

 C> asm -oe cmd_rds.s > cmd_rds.o <RETURN>

 C> lnk -o > cmd_rds.m <RETURN>

 object files cmd_rds.R <RETURN>
 library files <RETURN>
 Load addresses: PROG,DATA,COMN 400H,600H,800H <RETURN>
 more files (y or n) N <RETURN>
 absolute file name cmd_rds.X <RETURN>

2-6 Getting Started

Starting Up the
70136 PC Interface

If you built the emulator device table and set the HPTABLES shell
environment variable as shown in the HP 64700 Emulators PC
Interface: User’s Reference, you can start up the 70136 PC Interface by
entering the following command from the MS-DOS prompt:

C> pcv33 <emulname>
where <emulname> is emul_com1 if your emulator is connected to the
COM1 port or emul_com2 if it is connected to the COM2 port. If you
edited the \hp64700\tables\64700tab file to change the emulator name,
substitute the appropriate name for <emulname> in the above
command.

In the command above, pcv33 is the command to start the PC
Interface; "<emulname>" is the logical emulator name given in the
emulator device table. (To start the version of the PC Interface that
supports external timing analysis, substitute ptv33 for pcv33 in this
command.) If this command is successful, you will see the display
shown in figure 2-2. Otherwise, you will see an error message and
return to the MS-DOS prompt.

Figure 2-2. PC Interface Display

Getting Started 2-7

Selecting PC
Interface Commands

This manual will tell you to "select" commands. You can select
commands or command options by using the left and right arrow keys
to highlight the option. Then press the Enter key. Or, you can simply
type the first letter of that option. If you select the wrong option, press
the ESC key to retrace the command tree.

When a command or option is highlighted, the bottom line of the
display shows the next level of options or a short message describing
the current option.

Emulator Status The emulator status is shown on the line above the command options.
The PC Interface periodically checks the status of the emulator and
updates the status line.

Mapping Memory The 70136 emulator contains high-speed emulation memory (no wait
states required) that can be mapped at a resolution of 256 bytes.

Note When you use the NEC uPD72291 coprocessor on your target system
connected to 70136 microprocessor, the uPD72291 can access 70136
emulation memory on coprocessor memory read/write cycles. In this
case, you should reset the target system to connect the 70136 emulator
to the uPD72291 coprocessor before starting emulation session.

Refer to "In-Circuit Emulation Topics" chapter for more information
about accesses to emulation memory.

2-8 Getting Started

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

Note Target system accesses to emulation memory are not allowed.
Target system devices that take control of the bus (for example, DMA
controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will generate "break to monitor" requests if the "Enable
breaks on writes to ROM?" configuration item is enabled (see the
"Configuring the Emulator" chapter).
The memory mapper allows you to define up to 16 different map terms.

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory. For
example, the HP 64853 linker load map listing for the sample program
is shown in figure 2-3.

HP 64000+ Linker

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE

CMD_RDS.R 00000400 00000600 00000800

next address 00000452 00000636 000008FB
XFER address = 00000400 Defined by CMD_RDS.R
Absolute file name = CMD_RDS.X
Total number of bytes loaded = 00000183

Figure 2-3. Sample Program Load Map Listing

Getting Started 2-9

From the load map listing, you can see that the sample program
occupies locations in three address ranges. The program area, which
contains the opcodes and operands which make up the sample program,
occupies locations 400 hex through 451 hex. The data area, which
contains the ASCII values of the messages the program displays, is
occupies locations 600 hex through 635 hex. The destination area,
which contains the command input byte and the locations of the
message destination and the stack, occupies locations 800 hex through
8FA hex.

Two mapper terms will be specified for the example program. Since
the program writes to the destination locations, the mapper block
containing the destination locations should not be characterized as
ROM memory.

To map memory for the sample program, select:

Config, Map, Modify

Using the arrow keys, move the cursor to the "address range" field of
term 1. Enter:

0..07ff@e

Notice that "@e" must be added in mapping memory; "@e" is the
function code to define as an extended address. Refer to the "Address
Expression" section in "Using the Emulator" chapter.

Move the cursor to the "memory type" field of term 1, and press the
TAB key to select the erom (emulation ROM) type. Move the cursor
to the "address range" field of term 2 and enter:

0800..09ff@e

Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the eram (emulation ROM) type. To save your
memory map, use the right arrow key or the Enter key to exit the field
in the lower right corner. (The End key on Vectra keyboards moves
the cursor directly to the last field.) The memory configuration display
is shown in figure 2-4.

2-10 Getting Started

For your programs (not the sample), you may want to map emulation
memory locations containing programs and constants (locations that
should not be written to) as ROM. This will prevent programs and
constants from being written over accidentally, and will cause breaks
when instructions attempt to do so.

Note The memory mapper reassigns blocks of emulation memory after the
insertion or deletion of mapper terms. Suppose you modified the
contents of 400H-7FFH above, deleted term 1, then displayed locations
400H-7FFH. You’ll notice the contents of those locations differ before
and after you delete the mapper term.

Figure 2-4. Memory Map Configuration

Getting Started 2-11

Loading Programs
into Memory

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory, Load

File Format Use Tab and Shift-Tab to select the format of your absolute file. The
emulator accepts absolute files in the following formats:

Intel OMF86 absolute.

NEC30 absolute.

– (This absolute file is generated by NEC LK70136 linker
for uPD70136.)

NEC33 absolute.

– (This absolute file is the extended load module format file
which is generated by NEC EL70136 extended mode
locator for uPD70136.)

HP64000 absolute.

Raw HP64000 absolute.

Intel hexadecimal.

Motorola S-records.

Tektronix hexadecimal.

For this tutorial, choose the HP64000 format.

Target Memory Type
for Memory Load

The second field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, both emulation and target system memory.

Since emulation memory is mapped for sample program locations, you
can select either "emulation" or "both". Use Tab key and Shift-Tab to
cycle through the choices.

2-12 Getting Started

Force the Absolute
File to Be Read

This option is only available for the Intel OMF86, NEC30, NEC33, and
HP64000 absolute file formats.

It forces the file format reader to regenerate the emulator absolute file
(.hpa) and symbol database (.hps) before loading the code. Normally,
these files are only regenerated whenever the file you specify (the
output of your language tools) is newer than the emulator absolute file
and symbol database.

For more information, refer to the File Format Readers appendix.

File Format Options Some of the formats, such as the Intel OMF86 format, have special
options.

Refer to the File Format Readers appendix of this manual for more
information.

Absolute File Name For most formats, you enter the name of your absolute file in the last
field. The HP64000 format requires the linker symbol filename instead.
Type cmd_rds.l, and press Enter to start the memory load.

Getting Started 2-13

 Displaying
Symbols

Symbol files are created when you generate absolute files with the
HP 64000-PC Cross Assembler/Linkers. When you assemble a source
file, an assembler symbol file (with the same base name as the source
file and a .a extension) is created. The assembler symbol file contains
local symbol information. When you link relocatable assembly
modules, a linker symbol file (with the same base name as the absolute
file and a .l extension) is created. The linker symbol file contains
global symbol information and information about the relocatable
assembly modules that combine to form the absolute file.

When you load a file using the HP64000 file format, the file format
reader collects global symbol information from the linker symbol file
and local symbol information from the assembler symbol files. It uses
this information to create a single symbol database with the extension
.hps.

If you load a file using the following formats, the file format reader
obtains all the global and local symbol information from the absolute
file and builds a symbol database with extension .hps.

Intel OMF86 absolute.

NEC30 absolute.

NEC33 absolute.

The following pages show you how to display global and local symbols
for the sample program. For more information on symbol display, refer
to the PC Interface Reference.

2-14 Getting Started

Displaying Global
Symbols

When you load a file using the following formats into the emulator, the
corresponding symbol database is also loaded.

Intel OMF86 absolute.

NEC30 absolute.

NEC33 absolute.

HP64000 absolute.

The symbol database also can be loaded with the System, Symbols,
Global, Load command. Use this command when you load multiple
absolute files into the emulator. You can load the various symbol
databases corresponding to each absolute file. When you load a symbol
database, information from a previous symbol database is lost. That is,
only one symbol database can be present at a time.

After a symbol database is loaded, both global and local symbols can
be used when entering expressions. You enter global symbols as they
appear in the source file or in the global symbols display.

Getting Started 2-15

To display global symbols, select:

System Symbols Global Display

The symbols window automatically becomes the active window
because of this command. You can press <CTRL>z to zoom the
window. The resulting display follows.

The global symbols display has two parts. The first part lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-sensitive. For example, if you wish to make
a measurement using the symbol Cmd_Input , you must specify
Cmd_Input .

The strings cmd_input and CMD_INPUT are not valid symbol names
here.

2-16 Getting Started

Loading and
Displaying Local

Symbols

To display local symbols, select:

System Symbols Local Display

Enter the name of the module you want to display (from the first part of
the global symbols list; in this case, CMD_RDS.S) and press Enter.
The resulting display follows.

After you display local symbols with the System Symbols Local
Display command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

Getting Started 2-17

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the first
part of the global symbols display, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of an source file with a local symbol, that
module becomes the default local symbol module, as with the System
Symbols Local Display command.

Local symbols must be from assembly modules that form the absolute
whose symbol database is currently loaded. Otherwise, no symbols will
be found (even if the named assembler symbol file exists and contains
information).

One thing to note: It is possible for a symbol to be local in one module
and global in another, which may result in some confusion. For
example, suppose symbol XYZ is a global in module A and a local in
module B and that these modules link to form the absolute file. After
you load the absolute file (and the corresponding symbol database),
entering XYZ in an expression refers to the symbol from module A.
Then, if you display local symbols from module B, entering XYZ in
an expression refers to the symbol from module B, not the global
symbol. Now, if you again want to enter XYZ to refer to the global
symbol from module A, you must display the local symbols from
module A (since the global symbol is also local to that module).
Loading local symbols from a third module, if it was linked with
modules A and B and did not contain an XYZ local symbol, would
also cause XYZ to refer to the global symbol from module A.

2-18 Getting Started

Transfer Symbols to
the Emulator

You can use the emulator’s symbol-handling capability to improve
measurement displays. You do this by transferring the symbol
database information to the emulator. To transfer the global symbol
information to the emulator, use the command:

System Symbols Global Transfer

Transfer the local symbol information for all modules by entering:

System Symbols Local Transfer All

You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

PGR register You can configure the 70136 emulator to break to the monitor to read
the current value of page registers when the emulation system needs to
convert normal address to extended address.

However, the normal address mode is only used in this sample program.

You should change the configuration not to break to the monitor to
read page registers in the general emulator configuration. Select:

Config, General

Use the arrow keys to move the cursor to the "Read PGR register"
field, answer [n], press End to move to the lower right corner, and
press Enter to exit the general emulator configuration.

See the "Configuring the Emulator" chapter for a complete description
of the emulator configuration.

Getting Started 2-19

Displaying
Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format. To do this, select:

Memory, Display, Mnemonic

Enter the address range "400H..429H". You could also specify this
address range using symbols.

For example,
"Init..Cmd_A " or "Init..Init+29H ".

The Emulation window remains active. You can press <CTRL>z to
zoom the memory window. The resulting display follows.

If you want to see the rest of the sample program memory locations,
you can select "Memory, Display, Mnemonic" command and enter the
range from 42AH to 451H.

2-20 Getting Started

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with step command. To begin stepping through the sample
program, select:

Processor, Step, Address

Enter a step count of 1, enter the symbol Init (defined as a global in the
source file), and press Enter to step from program’s first address,
400H. The Emulation window remains active. Press <CTRL>z to
view a full screen of information. The executed instruction, the
program counter address (PS:PC), and the resulting register contents
are displayed as shown in the following.

Note You cannot display registers if the processor is reset.
Use the "Processor Break" command to cause the emulator to start
executing in the monitor.

You can display registers while the emulator is executing a user
program (if execution is not restricted to real-time); emulator execution
will temporarily break to the monitor.

Getting Started 2-21

Note There are a few cases in which the emulator can not step. Step
command is not accepted between each of the following instructions
and the next instruction.

1) Manipulation instructions for sreg :
MOV sreg,reg16; MOV sreg,mem16; POP sreg.

2) Prefix instructions: PS:, SS:, DS0:, DS1:, REPC, REPNC,
REP, REPE, REPZ, REPNE, REPNZ, BUSLOCK.

3) EI, RETI, DI.

Note You cannot use over 100000 hex address in "Processor Step" command.

To continue stepping through the program, you can select:

Processor, Step, Pc

After selecting this command, you can change the previous step count.
If you wish to step the same number of times, just press Enter to start
the step.

To save time when single-stepping, you can use the function key macro
<F1>, which executes the command:

Processor Step Pc 1

For more information, see the Emulator PC Interface Reference
chapter on Function Key Macros.

To repeat the previous command, you can press <CTRL>r .

2-22 Getting Started

Specifying a Step
Count

If you want to step sevral times from the current program counter,
select:

Processor, Step, Pc

The previous step count is displayed in the "number of instructions"
field. You can enter a number from 1 through 99 to specify the number
times to step. Type 5 into the field, and press Enter. The resulting
display follows.

When you specify step counts greater than 1, only the last instruction
and the register contents after that instruction are displayed.

Getting Started 2-23

Modifying Memory The preceding step commands show the sample program is executing
in the Scan loop, where it continually reads the command input byte to
look for a command.

To simulate the entry of a sample program command, you can modify
the command input byte by selecting:

Memory, Modify, Byte
Now enter the address of the memory location to be modified, an equal
sign, and new value of that location, for example, Cmd_Input="A" .
(The Cmd_Input label was defined as a global symbol in the source
file.)

To verify that "A" was indeed written to Cmd_Input (800 hex), select:

Memory, Display, Byte
Type the address 800H or the symbol Cmd_Input , and press Enter.
The resulting display is shown below.

You can continue to step through the program as shown earlier in this
chapter to view the instructions which are executed when an "A" (41
hex) command is entered.

2-24 Getting Started

Running the
Program

To start the sample program, select:

Processor, Go, Pc

The status line will show that the emulator is "Running user program".

Note You can not use over 100000 hex address in "Processor Go" command.

Searching
Memory for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command "A" (41 hex) was entered above, so the
"Command A entered " message should have been written to the
Msg_Dest locations. Because you must search for hexadecimal values,
you will want to search for a sequence of characters which uniquely
identify the message, for example,
" A " or 20 hex, 41 hex, and 20 hex. To search the destination memory
location for this sequence of characters, select:

Memory, Find

Enter the range of the memory locations to be searched, "800H..820H",
and enter the data " A " or 20H, 41H, and 20H. The resulting
information in the Emulation window shows you that the message
write occurred correctly. The message is:

Pattern match at address: 0000808@p

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to "B" and search
for " B " (20 hex, 42 hex, and 20 hex), or you can modify the command
input byte to "C" and search for "d C" (64 hex, 20 hex, and 43 hex).

Getting Started 2-25

Breaking into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor, Break

The status line shows that the emulator is "Running in monitor".

While the break will occur as soon as possible, the actual stopping
point may be many cycles after the break request. This depends on the
type of instruction being executed, and whether the processor is in a
hold state.

Using Software
Breakpoints

Software breakpoints are provided with one of 70136 undefined
opcode (F1 hex) as breakpoint interrupt instruction.

When you define or enable a software breakpoint, the emulator will
replace the opcode at the software breakpoint address with the
breakpoint interrupt instruction.

Caution Software breakpoints should not be set, cleared, enabled, or disabled
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code, and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

2-26 Getting Started

Caution When you use extended address mode, care should be taken for
software breakpoints. If you change the relation between the physical
address and the extended address after you set a software breakpoint
(ex. change address mode or change the contents of the page register),
emulation system may not recognize the software breakpoint.

In this case, the breakpoint interrupt instruction (F1 hex) is left in
memory and the software break will not occur at the specified address.
When you set a software breakpoint with using symbols, you also
should not change the relation between the physical address and the
extended address after setting a software breakpoint.

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed and
the break will never occur.

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Note Because software breakpoints are implemented by replacing opcodes
with the breakpoint interrupt instruction, you cannot define software
breakpoints in target ROM. You can use the Terminal Interface cim
command to copy target ROM into emulation memory (see the
Terminal Interface Reference manual for information on the cim
command).

Getting Started 2-27

Note Do not set, clear, enable or disable software breakpoints while the
emulator is running user code. If you enter any of these commands
while the emulator is executing user code in the area of the breakpoint
you are modifying, program execution may be unreliable.

Note Software breakpoint will be ignored, when software breakpoint and
other emulation break (for example, break command, trigger command,
etc.) occur at the same time. Refer to PC Interface: User’s Reference
manual.

When software breakpoints are enabled and emulator detects the
breakpoint interrupt instruction (F1 hex), it generates a break to
background request which as with the "processor break" command.
Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (F1 hex) is a software breakpoint or opcode in your target
program.

If it is a software breakpoint, execution breaks to the monitor, and the
breakpoint interrupt instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.

If it is an opcode of your target program, execution still breaks to the
monitor, and an "Undefined software breakpoint" status message is
displayed.

When software breakpoints are disabled, the emulator replaces the
breakpoint interrupt instruction with the original opcode.
Up to 32 software breakpoints may be defined.

2-28 Getting Started

Defining a Software
Breakpoint

To define a breakpoint at the address of the Cmd_I label of the sample
program (43B hex), select:

Breakpoints, Add

Enter the local symbol "Cmd_I". After the breakpoint is added, the
Emulation window becomes active and shows that the breakpoint is set.

You can add multiple breakpoints in a single command by separating
them with a semicolon. For example, you could type
"2010h;2018h;2052h" to set three breakpoints.

Run the program by selecting:

Processor, Go, Pc

The status line shows that the emulator is running the user program.
Modify the command input byte to an invalid command by selecting:

Memory, Modify, Byte

Enter an invalid command, such as "Cmd_Input=75h". The following
messages result:

ALERT: Software breakpoint: 00000:0043b
STATUS: Running in monitor

To continue program execution, select:

Processor, Go, Pc

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints, Display

The display shows that the breakpoint was cleared.

Getting Started 2-29

Setting a Software
Breakpoint

A breakpoint is disabled when it is hit. To re-enable the software
breakpoint, you can select:

Breakpoints, Set, Single

The address of the breakpoint you just added is still in the address field.
To set this breakpoint again, press Enter.

As with the "Breakpoints Add" command, the Emulation window
becomes active and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints, Clear, Single

The address of the breakpoint set in the previous section is still in the
address field. To clear this breakpoint, press Enter.

2-30 Getting Started

Using the Analyzer The analyzer collects data at each pulse of a clock signal, and saves the
data (a trace state) if it meets a "storage qualification" condition.

Note Emulators which have the optional external analyzer will display the
"Internal/External " option after commands in the following examples.
Select Internal to execute the example commands.

Resetting the
Analysis

Specification

To be sure that the analyzer is in its default or power-up state, select:

Analysis, Trace, Reset

Specifying a Simple
Trigger

Suppose you wish to trace the states of the sample program which
follow the read of a "B" (42 hex) command from the command input
byte. To do this, you must modify the default analysis specification by
selecting:

Analysis, Trace, Modify

The emulation analysis specification is shown. Use the right allow key
to move the "Trigger on" field. Type "a" and press Enter.

You’ll enter the pattern expression menu. Press the up arrow key until
the addr field directly opposite the pattern a= is highlighted. Type the
address of the command input byte, using either the global symbol
Cmd_Input or address 800H, and press Enter.

The Data field is now highlighted. Type 0XX42 and press Enter. "42"
is the hexadecimal value of the B command and the "X"s specify
"don’t care" values. When 42H is read from the command input byte
(800H), a lower byte read is performed because the address is even. If
the address is odd, you must specify the data to 42XX.

Now the Status field is highlighted. Use the TAB key to view the
status qualifier choices.

Getting Started 2-31

70136 Analysis Status Qualifiers

This trace command example uses the status qualifier "read". The
following analysis status qualifiers also can be used with the 70136
emulator.

 Qualifier Status Bits Description
 bs16 0xx xx1x xxxx xxxxB Bus size 16
 bs8 0xx xx0x xxxx xxxxB Bus size 16
 coproc 0x0 xxxx x101 x0xxB Co-processor access
 cprd 0x0 xxxx x101 x01xB Co-processor read
 cpwr 0x0 xxxx x101 x00xB Co-processor write
 exec 0x0 xxxx x0xx xxxxB Executed code
 extaddr 0xx 1xxx xxxx xxxxB Extended address mode
 extmemrd 0x0 1xxx 1110 x11xB memory read in extended address mode
 extmemwr 0x0 1xxx 1110 x10xB memory write in extended address mode
 fetch 0x0 xxxx 1100 x11xB Program fetch
 grdacc 0xx xxxx 0xxx x1xxB Guarded access
 haltack 0x0 xxxx x111 x00xB Halt acknowledge
 holdack 0x1 xxxx xxxx xxxxB Hold acknowledge
 intack 0x0 xxxx x100 x01xB Interrupt acknowledge
 io 0x0 xxxx x110 x0xxB I/O access
 ioread 0x0 xxxx x110 x01xB I/O read
 iowrite 0x0 xxxx x110 x00xB I/O write
 memory 0x0 xxxx 1110 x1xxB memory access
 memforcp 0x0 xxxx 1101 x1xxB memory access for cp
 memread 0x0 xxxx 1110 x11xB memory read
 memrdcp 0x0 xxxx 1101 x11xB memory read for cp
 memwrite 0x0 xxxx 1110 x10xB memory write
 memwrcp 0x0 xxxx 1101 x10xB memory write for cp
 mon 0xx x0xx xxxx xxxxB monitor cycle
 nmladdr 0xx 0xxx xxxx xxxxB normal address mode
 nmlmemrd 0x0 0xxx 1110 x11xB memory read in normal address mode
 nmlmemwr 0x0 0xxx 1110 x10xB memory write in normal address mode
 read 0x0 xxxx x1xx xx1xB read cycle
 write 0x0 xxxx x1xx xx0xB write cycle
 wrrom 0xx xxx0 xxxx xx0xB write to ROM

2-32 Getting Started

70236 Analysis Status Qualifiers

This trace command example uses the status qualifier "read". The
following analysis status qualifiers also can be used with the 70236
emulator.

 Qualifier Status Bits Description
 bs16 1xxx xx1x xxxx xxxxB bus size 16
 bs8 1xxx xx0x xxxx xxxxB bus size 8
 coproc 1xx0 xxxx x101 00xxB co-processor access
 cprd 1xx0 xxxx x101 001xB co-processor read
 cpwr 1xx0 xxxx x101 000xB co-processor write
 dma_mem 1xx0 xxxx x110 11xxB DMA cycle
 dma_memrd 1xx0 xxxx x110 111xB DMA read cycle
 dma_memwr 1xx0 xxxx x110 110xB DMA write cycle
 dma_cscd 0xxx xxxx xxxx xxxxB DMA cascade
 ext_io 1xx0 xxxx x110 00xxB external I/O access
 ext_iord 1xx0 xxxx x110 001xB external I/O read
 ext_iowr 1xx0 xxxx x110 000xB external I/O write
 exec 1xx0 xxxx x0xx xxxxB executed code
 extaddr 1xxx 1xxx xxxx xxxxB extended address mode
 extmemrd 1xx0 1xxx 1110 011xB memory read in extended address mode
 extmemwr 1xx0 1xxx 1110 010xB memory write in extended address mode
 fetch 1xx0 xxxx 1100 011xB program fetch
 grdacc 1xxx xxxx 0xxx xxxxB guarded access
 haltack 1xx0 xxxx x111 000xB halt acknowledge
 holdack 1xx1 xxxx xxxx xxxxB hold acknowledge
 intacki 1xx0 xxxx x100 101xB interrupt acknowledge (ICU)
 intacks 1xx0 xxxx x100 001xB interrupt acknowledge (SLAVE)
 int_io 1xx0 xxxx x110 10xxB internal I/O access
 int_iord 1xx0 xxxx x110 101xB internal I/O read
 int_iowr 1xx0 xxxx x110 100xB internal I/O write
 memory 1xx0 xxxx 1110 01xxB memory access
 memforcp 1xx0 xxxx 1101 01xxB memory access for cp
 memread 1xx0 xxxx 1110 011xB memory read
 memrdcp 1xx0 xxxx 1101 011xB memory read for cp
 memwrite 1xx0 xxxx 1110 010xB memory write
 memwrcp 1xx0 xxxx 1101 010xB memory write for cp
 mon 1xxx x0xx xxxx xxxxB monitor cycle
 nmladdr 1xxx 0xxx xxxx xxxxB normal address mode
 nmlmemrd 1xx0 0xxx 1110 011xB memory read in normal address mode
 nmlmemwr 1xx0 0xxx 1110 010xB memory write in normal address mode
 read 1xx0 xxxx x1xx xx1xB read cycle
 refresh 1xx0 xxxx x100 111xB refresh cycle
 write 1xx0 xxxx x1xx xx0xB write cycle
 wrrom 1xxx xxx0 x1xx xx0xB write to ROM

Getting Started 2-33

Figure 2-5. Modifying the Trace Specification

Figure 2-6. Modifying the Pattern Specification

2-34 Getting Started

Note You can combine qualifiers to form more specific qualifiers. For
example, the expression memory&&read matches only memory
reads. See the Emulator PC Interface Reference for more information.

Select the read status and press Enter.

The resulting analysis specification is shown in figure 2-5. To save the
new specification, use End Enter to exit the field in the lower right
corner. You’ll return to the trace specification. Press End to move the
"trigger position" field. Use the TAB key until it says center, then
press Enter to exit the trace specification.

Starting the Trace To start the trace, select:

Analysis, Begin

A message on the status line will show you that the trace is running.
You do not expect the trigger to be found, because no commands have
been entered. Modify the command input byte to "B" by selecting:

Memory, Modify, Byte

Enter Cmd_Input="B". The status line now shows that the trace is
complete. (If you have problems, you may be running in monitor.
Select Processor Go Pc to return to the user program.)

Change the Analyzer
Display Format

To change the analyzer display format, enter the command:

Analysis Format

Use the down arrow key to move to the field labeled addr. And, use
the right arrow key to move the field labeld Width above. The default
width of the address column is six characters. A width of 17 characters
is often wide enough to accommodate most symbol names. Type 17 to
change the width of the address column, and press End, then Enter.

Displaying the Trace To display the trace, select:

Getting Started 2-35

Analysis, Display

You are now given two fields in which to specify the states to display.
Use the End key to move the cursor to the "Ending state to display"
field. Type 60 into the press Enter. The resulting trace is similar to
trace shown in the following display (use <CTRL>z to zoom the trace
window). You may need to press the Home key to get to the top of the
trace.

Note The character displayed in the right side of disassemble list specifies
the following information.

 | Character | Information |
 |---|
 | N | Normal address mode |
 | E | Extended address mode |
 | M | Monitor cycle (background) |

2-36 Getting Started

Note Running in the user program, symbols can not be displayed in the trace
list.

Note When you use the following setting in your program, the branch
address forming in PC relative addressing may change to a wrong
value in disassemble trace list.

The program is running in the extended address mode.

The effective address for the PC relative addressing is in the
other page.

The order of the pages is not in sequence in extended address.

Note If you choose to dump a complete trace into the trace buffer, it will
take a few minutes to display the trace.

Getting Started 2-37

Line 0 in the above trace list shows the analyzer trigger state. The
trigger state is always on line 0. The other states show the exit from
the Scan loop and the Exe_Cmd instructions.

Processor, Break
Analysis, Display

The resulting display shows the Cmd_B instructions, the branch to
Write_Msg, and the beginning of the instructions that move the
Entered B command message to the destination locations.

For a Complete
Description

For a complete description of using the HP 64700 Series analyzer with
the PC Interface, refer to the Analyzer PC Interface User’s Guide.

2-38 Getting Started

Copying Memory You can copy the contents of one range of memory to another. This is
a useful feature to test things like the relocatability of programs. To
test if the sample program is relocatable within the same segment, copy
the program to an unused, but mapped, area of emulation memory. For
example, select:

Memory, Copy

Enter 400H through 452H as the source memory range to be copied,
and enter 500H as the destination address.

To verify that the program is relocatable, run it from its new address
by selecting:

Processor, Go, Address

Enter 500H. The status line shows that the emulator is "Running user
program". You may wish to trace program execution or enter valid and
invalid commands and search the message destination area (shown
earlier in this chapter) to verify that the program works correctly at its
new address.

Resetting the
Emulator

To reset the emulator, select:

Processor, Reset, Hold

The emulator is reset (suspended) until you enter a "Processor Break",
"Processor Go", or "Processor Step" command. A CMB execute
signal also will run the emulator if reset.

You also can specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state.

To do this, select:

Processor, Reset, Monitor

Getting Started 2-39

Exiting the PC
Interface

There are three different ways to exit the PC Interface. You can exit
the PC Interface using the "locked" option which restores the current
configuration next time you start the PC Interface. You can select this
option as follows.

System, Exit, Locked

Another way to execute the PC Interface is with the "unlocked"
option, which presents the default configuration the next time you start
the PC Interface. You can select this option with the following
command.

System, Exit, Unlocked

Or , you can exit the PC Interface without saving the current
configuration using the command:

System Exit No_Save

See the Emulator PC Interface Reference for a complete description of
the system exit options and their effect on the emulator configuration.

2-40 Getting Started

3

In-Circuit Emulation

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics which relate to in-circuit emulation.

This chapter will:

Describe the issues concerning the installation of the emulator
probe into target systems.

Show you how to install the emulator probe.

Show you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emualtion and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 3-1

Installing the
Target System
Probe

The 70136 emulator probe has a 68-pin PLCC connector;
the 70236 and 70236A emulator probe has a 132-pin PGA connector.

Caution OBSERVE THESE PRECAUTIONS TO AVOID EMULATOR
CIRCUIT DAMAGE. Take the following precautions while using
the 70136 emulator.

Power Down Target System. Turn off power to the user target
system and to the 70136 emulator before inserting the user plug to
avoid circuit damage resulting from voltage transients or mis-insertion
of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target
system microprocessor socket and Pin 1 of the user plug are properly
aligned before inserting the user plug in the socket. Failure to do so
may result in damage to the emulator circuitry.

Protect Against Static Discharge. The 70136 emulator contains
devices which are susceptible to damage by static discharge.
Therefore, take precautions before handling the user plug to avoid
emulator damage.

Protect Target System CMOS Components. If your target system
includes any CMOS components, turn on the target system first, then
turn on the 70136 emulator. When powering down, turn off the
emulator first, then turn off power to the target system.

3-2 In-Circuit Emulation

Pin Protector
(70236/70236A
Emulator Only)

The target system probe has a pin protector that prevents damage to the
probe when inserting and removing the probe from the target system
microprocessor socket. Do not use the probe without a pin protector
installed. If the target system probe is installed on a densely populated
circuit board, there may not be enough room for the plastic shoulders
of the probe socket. If this occurs, another pin protector may be stacked
onto the existing pin protector.

Auxiliary Output
Lines

Two auxiliary output lines, "TARGET BUFFER DISABLE " and
"SYSTEM RESET", are provided with the 70136 emulator. The
"TARGET BUFFER DISABLE " output line is also provided with the
70236 and 70236A emulator.

Caution DAMAGE TO THE EMULATOR PROBE WILL RESULT IF
THE AUXILIARY OUTPUT LINES ARE INCORRECTLY
INSTALLED.

When installing the auxiliary output lines into the end of the emulator
probe cable, make sure that the ground pins on the auxiliary output
lines (labeled with white dots) are matched with the ground receptacles
in the end of the emulator probe cable.

Figure 3-1. Auxiliary Output Lines (70136 Emulator)

In-Circuit Emulation 3-3

TARGET BUFFER DISABLE ---This active-high output is used
when the co-processor memory accesses to emulation memory will be
operated. This output is used to tristate (in other words, select the high
Z output) any target system devices on the 70136 data bus. Target
system devices should be tristated because co-processor memory reads
from emulation memory will cause data to be output on the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the
following timing in the co-processor memory access cycle.

SYSTEM RESET (70136 only) ---This active-high, CMOS output
should be used to synchronously reset the emulator and the target
system.

3-4 In-Circuit Emulation

Installing into a
70136 PLCC Type
Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70136 microprocessor (PLCC type) from the
target system socket. Note the location of pin 1 on the
microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket.

Figure 3-2. Installing into a 70136 PLCC type socket

In-Circuit Emulation 3-5

Installing into a
70136 PGA Type
Socket

The 70136 emulator is provided with an AMP 821574-1 socket and a
pin protector in order to plug into the target system socket of an PGA
type. You may use this AMP socket with the pin protector to connect
the microprocessor connector to the target system.
To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70136 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.
Store the microprocessor in a protected environment (such as
antistatic form).
Place the microprocessor connector with an AMP socket and a
pin protector (see figure 3-3), attached to the end of the probe
cable, into the target system microprocessor socket.

Figure 3-3. Installing into a 70136 PGA type socket

3-6 In-Circuit Emulation

Installing into a
70136 QFP Type
Socket

To connect the 70136 emulator microprocessor connector to the
NEC EV-9200G-74 socket on the target system, you should use the
adapter, HP PART NO. 64756-61612, that will allow the PLCC
microprocessor connector to connect to the QFP socket.

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Note the location of pin 1 on the NEC EV-9200G-74 socket
on the target system.
Place the microprocessor connector with the adapter (see
figure 3-4), attached to the end of the probe cable, into the
target system microprocessor socket.

Figure 3-4. Installing into a 70136 QFP type socket

In-Circuit Emulation 3-7

Installing into a
70236/236A PGA
Type Socket

To connect the microprocessor connector to the target system,
proceeded with the following instructions.

Remove the 70236 or 70236A microprocessor (PGA type)
from the target system socket. Note the location of pin A1 on
the microprocessor and on the target system socket.

Store the microprocessor in a protected environment (such as
antistatic form).

Install the microprocessor connector into the target system
microprocessor socket with a pin protector (see figure 3-5).

Caution DO NOT use the microprocessor connector without using a pin
protector. The pin protector is provided to prevent damage to the
microprocessor connector when connecting and removing the
microprocessor connector from the target system PGA socket.

Installing into a
70236/70236A
QFP Type Socket

To connect the 70236 or 70236A emulator microprocessor connector to
the NEC EV-9200GD-120 socket on the target system, you should use
the NEC EV-9500GD-120 adapter that will allow the PGA
microprocessor connector to connect to the QFP socket.

3-8 In-Circuit Emulation

Figure 3-5. Installing into a 70236 PGA type socket

In-Circuit Emulation 3-9

In-Circuit
Configuration
Options

The 70136 emulator provide configuration options for the following
in-circuit emulation issues. Refer to the chapter on "Configuring the
Emulator" for more information on these configuration options.

Using the Target
System Clock Source

The default 70136, 70236 and 70236A emulator configuration selects
the internal 16 MHz (system clock speed) clock as the emulator clock
source.

You should configure the emulator to select an external target system
clock source for the "in-circuit" emulation.

Allowing the Target
System to Insert Wait

States

High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready line while emulation memory is being accessed.

Note When you use the NEC uPD72291 coprocessor on your target system
connected to 70136 microprocessor, the uPD72291 can access 70136
emulation memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70136
emulator to the uPD72291 coprocessor before starting emulation
session.

Enabling NMI and
RESET Input from
the Target System

You can configure whether the emulator should accept or ignore the
NMI and RESET signals from the target system.

3-10 In-Circuit Emulation

Running the
Emulator from
Target Reset

You can specify that the emulator begins executing from target system
reset. When the target system RESET line becomes active and then
inactive, the emulator will start reset sequence (operation) as actual
microprocessor.

At First, you must specify the emulator responds to RESET signal by
the target system (see the "Enable RESET Input From Target?"
configuration in Chapter 4 of this manual).

To specify a run from target system reset, select:

Processor Go Reset <RESET>

The status now shows that the emulator is "Awaiting target reset".
After the target system is reset, the status line message will change to
show the appropriate emulator status.

In-Circuit Emulation 3-11

Pin State in
Background
(70136)

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance except accessing target.
When accessing target by background monitor,
same as foreground.

R/W,M/IO
BUSST0

Always high level except accessing target. When
accessing target by background monitor, same as
foreground.

BUSST1 Always low level except accessing target. When
accessing target by background monitor, same as
foreground.

Other Same as foreground

3-12 In-Circuit Emulation

Pin State in
Background
(70236/70236A)

While the emulator is running in the background monitor, probe pins
are in the following state.

Address Bus Same as foreground

Data Bus Always high impedance except accessing target.
When accessing target by background monitor,
same as foreground.

 R/W,M/IO,
IORD,IOWR,
MWR

Always high level except accessing target. When
accessing target by background monitor, same as
foreground.

MRD Same as foreground except for emulation memory
write. When accessing emulation memory write,
low.

Other Same as foreground

In-Circuit Emulation 3-13

Target System
Interface
(70136)

R/W M/IO
BUSST2-1

These singals are connected to 70136 through
FCT257 and 10K ohm pull-up register.

A23-A0
UBE

These singals are connected to 70136 through
FCT244 and 10K ohm pull-up register.

3-14 In-Circuit Emulation

BCYST DSTB These singals are connected to 70136 through
19.6 ohm.

D15-D0 These singals are connected to 70136 through
FCT245 and 10K ohm pull-up register.

READY
 BS8/BS16

These singals are connected to 70136 through
GAL and 10K ohm pull-up register.

In-Circuit Emulation 3-15

HLDRQ
 NMI
RESET

These singals are connected to 70136 through
ACT14 and 4.7K ohm pull-up and 10K ohm
pull-down registers.

OTHER These singals are connected to 70136 through
FCT244 and 4.7K ohm pull-up and 10K ohm
pull-down registers.

3-16 In-Circuit Emulation

Target System
Interface
(70236/70236A)

R/W M/IO
IORD IOWR
MRD MWR
BUSST2-0

These singals are connected to 70236/70236A
through FCT257 and 10K ohm pull-up register.

OTHER(INPUT) These singals are connected to 70236/70236A
through FCT244 and 10K ohm pull-up register.

In-Circuit Emulation 3-17

D15-D0 These singals are connected to 70236/70236A
through FCT245 and 10K ohm pull-up register.

READY
 BS8/BS16

These singals are connected to 70236/70236A
through GAL and 10K ohm pull-up register.

OTHER(OUTPUT) These singals are connected to 70236/70236A
through FCT244 and 4.7K ohm pull-up and
10K ohm pull-down registers.

3-18 In-Circuit Emulation

4

Configuring the 70136 Emulator

Introduction Your 70136 emulator can help you in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software and in-circuit when
integrating software with hardware. You can use the emulator’s
internal clock or your target system clock. Emulation memory can be
used with your target system memory, and it can be mapped as RAM
or ROM. You can execute your target programs in real-time or allow
emulator execution to be diverted into the monitor when commands
request access of target system resources (target system memory,
register contents, etc.)

The emulator is a versatile instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the emulator configuration options.

This chapter will:

Show you how to access the emulator configuration options.

Describe the emulator configuration options.

Show you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the 70136 Emulator 4-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the HP
64700 Emulators: Concepts of Emulation and Analysis manual and the
"Getting Started" chapter of this manual.

Accessing the
Emulator
Configuration
Options

Select:
Config, General

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Figure 4-1. General Emulator Configuration (70136)

4-2 Configuring the 70136 Emulator

Note You can use the System Terminal window to modify the emulator
configuration. If you do this, some PC Interface features may no
longer work properly. We recommend that you modify the emulator
configuration using only the PC Interface.

Figure 4-2. General Emulator Configuration (70236)

Configuring the 70136 Emulator 4-3

Internal Clock This configuration item allows you to select whether the emulator will
be clocked by the internal clock source or by a target system clock
source.

Yes Selects the internal clock oscillator as the emulator
clock source.

The internal clock speed of the 70136, 70236 and
70236A are 16 MHz (system clock). This is the
default.

No An external target system clock is the emulator
clock source.

In the 70136 emulator, external clock sources must
be within the range of 2-16 MHz.

In the 70236 emulator, external clock sources must
be within the range of 4-32 MHz.

In the 70236A emulator, external clock sources
must be within the range of 4-40 MHz.

Note When the 70136 emulator is plugged into the target system, you should
use the external target system clock source to synchronize the emulator
with the target system.

Note Changing the clock source drives the emulator into the reset state.

4-4 Configuring the 70136 Emulator

Real-Time Mode The "Real-Time mode" question lets you configure the emulator to
refuse commands that cause an emulator break to monitor during user
program runs.

No All commands, whether or not they require a break
to the emulation monitor, are accepted by the
emulator.

Yes When runs are restricted to real-time and the
emulator is running the user program, all
commands that cause a break (except "Processor
Reset", "Processor Break", "Processor Go", and
"Processor Step") are refused. For example, the
following commands are not allowed when runs are
restricted to real-time:

Display/modify registers.
Display/modify target system memory.
Display/modify I/O.

Caution Restrict emulator to real-time runs with certain target systems. If your
target system circuitry depends on constant program execution, you
should restrict the emulator to real-time runs. This helps avoid target
system damage. Remember that you still can execute the "Processor
Reset", "Processor Break", and "Processor Step" commands. You
should use caution when executing these commands.

Note When program execution should take place in real-time and the
emulator should break to the monitor to read page registers (refer to
"Read PGR registers" section in this chapter), the following commands
are not allowed with using physical or <segment>:<offset> address
expression.

Display/modify emulation memory.

Configuring the 70136 Emulator 4-5

Break on ROM
Writes

This question allows you to specify that the emulator break to the
monitor upon attempts to write to memory space mapped as ROM. The
emulator will prevent the processor from writing to memory mapped as
emulation ROM. It cannot prevent writes to target system RAM
locations mapped as ROM, though the write to ROM break is enabled.

Yes Causes the emulator to break into the emulation
monitor whenever the user program attempts to
write to a memory region mapped as ROM.

No The emulator will not break to the monitor upon a
write to ROM.

Note The wrrom analysis specification status option allows you to use write
to ROM cycles as trigger and storage qualifiers.

Software
Breakpoints

This question allows you to enable or disable the software breakpoints
feature.
When you define (add) a breakpoint, software breakpoints are
automatically enabled.

No The software breakpoints feature is disabled. This
is the default emulator configuration, so you must
change this item before you can use software
breakpoints.

Yes Allows you to use the software breakpoints feature.
The emulator detects the breakpoint interrupt
instruction (F1 hex), it generates a break to
background request which as with the "processor
break" command.

4-6 Configuring the 70136 Emulator

When you define or enable a software breakpoint to a specified
address, the emulator will replace the opcode with one of 70136
undefined opcode (F1 hex) as breakpoint interrupt instruction. When
the emulator detects the breakpoint interrupt instruction (F1 hex), user
program breaks to the monitor, and the original opcode will be
replaced at the software breakpoint address. A subsequent run or step
command will execute from this address.

Since the system controller knows the locations of defined software
breakpoints, it can determine whether the breakpoint interrupt
instruction (F1 hex) is a software breakpoint or opcode in your target
program.

If it is a software breakpoint, execution breaks to the monitor,and the
breakpoint interrupt instruction is replaced by the original opcode. A
subsequent run or step command will execute from this address.

If it is an opcode of your target program, execution still breaks to the
monitor, and an "Undefined software breakpoint" status message is
displayed.

Refer to the "Getting Started" for information on using software
breakpoints.

Configuring the 70136 Emulator 4-7

CMB Interaction Coordinated measurements are measurements made synchronously in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators that communicate over the
Coordinated Measurement Bus (CMB).

Multiple emulator start/stop is one type of coordinated measurement.
The CMB signals READY and /EXECUTE are used to perform
multiple emulator start/stop.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

No The emulator ignores the /EXECUTE and READY
lines, and the READY line is not driven.

Yes Multiple emulator start/stop is enabled. If you enter
the

Processor, CMB, Go, ...

command, the emulator will start executing code
when a pulse on the /EXECUTE line is received.
The READY line is driven false while the emulator
is running in the monitor. It goes true whenever
execution switches to the user program.

Note CMB interaction also will be enabled when you enter the

Processor, CMB, Execute

command.

4-8 Configuring the 70136 Emulator

Target Interrupts This configuration option specifies whether or not the emulation
processor accepts to NMI signal generated by the target system.

Yes The emulator accepts NMI signal generated by the
target system. When the NMI signal is accepted,
the emulator calls the NMI procedure as actual
microprocessor.

No The emulator ignores NMI signal from target
system completely.

Note
You should not use "Processor Step" command if target system can
generates NMI.

When the emulator accepts NMI input in stepping, the following error
message will be shown.

ERROR : Stepping failed

In this case, you should configure that the emulator ignores NMI input
from the target system with this configuration.

Configuring the 70136 Emulator 4-9

Target RESET The 70136 emulator can respond or ignore target system reset while
running in user program or waiting for target system reset (refer to
"Processor Go Reset" command in "In-circuit Emulation" chapter).
While running in background monitor, the 70136 emulator ignores
target system reset completely independent on this setting.

Yes Specify that, this is a default configuration, make
the emulator to respond to reset from target system.
In this configuration, emulator will accept reset and
execute from reset vector (0FFFF0 hex) as same
manner as actual microprocessor after reset is
inactivated.

No If disabled, the emulator completely ignores the
reset signal from target system. This is true if the
emulator is in foreground (executing user program).

Lock RDY Signal High-speed emulation memory provides no-wait-state operation.
However, the emulator may optionally respond to the target system
ready lines while emulation memory is being accessed.

No When the ready relationship is not locked to the
target system, emulation memory accesses ignore
ready signals from the target system (no wait states
are inserted).

Yes When the ready relationship is locked to the target
system, emulation memory accesses honor ready
signals from the target system (wait states are
inserted if requested).

4-10 Configuring the 70136 Emulator

Read PGR
Registers

This configuration item allows you to specify whether the emulator
should break to the monitor to read page registers or whether the
emulator should use the copy of page registers when the emulation
system will convert logical address to extended address in the
following commands.

Display/modify memory with entering physical,
<SEGMENT>:<OFFSET>, or no function code address
expression.

Modify software breakpoints.

Yes Specifies that the emulator should break to the
monitor to get the current value of page registers on
accesses to emulation/target memory.

No Specifies that the emulator should use the copy of
page registers which is renewed at breaking to the
monitor or changing the value of page registers
with using the following PC Interface command.

Register Modify <pgr 1 .. pgr 64>

You should select this configuration when you only
use the normal address mode in your program or
the value of page registers is not changed after
initializing while executing your program.

Configuring the 70136 Emulator 4-11

AEX Through to
Target

This configuration option allows you to select the AEX (Address
Extension) signal level which is driven to the target system while in the
background monitor cycles.

Yes Specifies that the emulator will drive the AEX
signal with the level dependent on the address mode
in background monitor cycles. When you use the
extended address in an emulation command, the
AEX signal will be driven to high level in
background monitor.

No Specifies that the emulator will hold the AEX
signal with the level dependent on the last
foreground address mode just before entering
background monitor. When the program is running
on normal address mode, the emulator will hold the
AEX signal level low in background monitor.

uPD72291 FPU This configuration option allows you to select the assembler
mnemonics for FPU (Floating Point Unit) to display memory.

Yes Specifies that mnemonics for NEC uPD72291
floating point processor will be used to display
memory.

No Specifies that mnemonics for Intel 80287 numeric
processor extension will be used to display memory.

4-12 Configuring the 70136 Emulator

20 Bit Address
Mode

This configuration option allows you to specify the load address of an
absolute file in "Memory Lord" command.

No Specify that the emulator will interpret address in
absolute file as 24-bit extended address.

Yes Specifies that the emulator will interpret address in
absolute file as 20-bit physical address.

Release bus by
HOLD

(70236/70236A Emulator only) This configuration allows you to
specify whether or not the emulator accepts HLDRQ (Hold Request)
signal generated by the target system in background.

No The emulator ignores HLDRQ signal from target
system completely in background.

Yes The emulator accepts HLDRQ signal. When the
HLDRQ is accepted, the emulator will respond as
actual microprocessor.

Trace DMA Cycles (70236/70236A Emulator only) This question allows you to specify
whether or not the analyzer trace the emulation processor’s internal
DMA cycles.

Yes Specifies that the analyzer will trace the internal
DMA cycles.

No Specifies that the analyzer will not trace the
internal DMA cycles.

Configuring the 70136 Emulator 4-13

Trace Refresh
Cycles

(70236/70236A Emulator only) This question allows you to specify
whether or not the analyzer trace the emulation processor’s refresh
cycles.

Yes Specifies that the analyzer will trace the refresh
cycles.

No Specifies that the analyzer will not trace the refresh
cycles.

Wait count of DMA (70236/70236A Emulator only) When you want to trace internal
DMA cycles correctly with using the emulator, you must set the
number of wait count for internal DMA cycles.

The number is the same as the value of DMAW (Wait for the DMA
cycle) of the WCY4 (programmable wait, cycle 4) register (I/O address
FFF6 hex). See the "Trace DMA Cycles" in this chapter.

DMA cycle in
Background

(70236/70236A Emulator only) This configuration allows you to
specify whether or not the emulation processor’s internal DMA is
allowed while in background.

Yes The internal DMA is allowed while in background.

No The internal DMA is not allowed while in
background.

4-14 Configuring the 70136 Emulator

Trace Dummy
HALTACK

(70236 Emulator only) This question allows you to specify whether
or not the analyzer trace the emulation processor’s dummy HALT
acknowledge cycles.

Whenever breaks occur during the emulation processor is HALTed, the
HALT acknowledge cycle will be occurred one more time. This
configuration specifies that the analyzer trace or not this HALT
acknowledge cycles.

No Specifies that the analyzer will not trace the dummy
HALT acknowledge cycles.

Yes Specifies that the analyzer will trace the dummy
HALT acknowledge cycles.

Bus Sizing Signal
for Emul_mem

emul Specifies that the bus size of emulation memory is
selected from the setting of the map configuration.
Refer to the "Mapping Memory" command
description in "Using the Emulator" chapter.

tgt Specifies that the bus size of emulation memory is
defined from the BS8/BS16 input of the target
system.

Configuring the 70136 Emulator 4-15

Bus Sizing Signal
for Target_mem

tgt Specifies that the bus size of target memory is
defined from the BS8/BS16 input of the target
system.

emul Specifies that the bus size of target memory is
selected from the setting of the map configuration.
Refer to the "Mapping Memory" command
description in "Using the Emulator" chapter.

Note The data bus size of I/O accesses is only defined from the BS8/BS16
input of the target system.

4-16 Configuring the 70136 Emulator

Seg:off
Translation
Method

The run and step commands allow you to enter addresses in either
logical form (segment:offset, e.g., 0F000H:0000H) or physical form
(e.g., 0F000H). When a physical address (non-segmented) is entered
with either a run or step command, the emulator must convert it to a
logical (segment:offset) address.

minseg Specifies that the physical run address is converted
such that the low 16 bits of the address become the
offset value. The physical address is right-shifted 4
bits and ANDed with 0F000H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

maxseg Specifies that the low 4 bits of the physical address
become the offset. The physical address is
right-shifted 4 bits to yield the segment value.

logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

curseg Specifies that the value entered with either a run or
step command (0 thru 0ffff hex) becomes the offset.
In this selecting, the current segment value is not
changed.

logical_addr = (current segment):(entered value)

If you use logical addresses other than the three methods which follow,
you must enter run and step addresses in logical form.

Configuring the 70136 Emulator 4-17

Background
Monitor Location

You can relocate the monitor from the default monitor location to any
4K byte boundary. When entering monitor block addresses, you must
only specify addresses on 4K byte boundaries; otherwise, an invalid
syntax message is displayed. The location of background monitors
may be important because background cycles of the 70136 emulator
can be visible to the target system.

In default, the monitor is located on 0FF000 hex through 0FFFFF hex.

Note If your target system have some circuitry which monitors bus activities
to detect illegal access to resources, You may need to relocate monitor
address.

Monitor Type This configuration option allows you to select and use a foreground
emulation monitor program. The default monitor is background
monitor.

Note Halt instructions will cause "processor halted" emulation status.

In this status, the emulator cannot break to the monitor.

In this case, you should enter the "reset" command to reset the
emulator first.

background Specify monitor type as background monitor.
When you select background monitor, you can
specify the background monitor location.

4-18 Configuring the 70136 Emulator

Note While running in background monitor, the 70136 emulator ignores
target system reset.

foreground Specify monitor type as foreground monitor. When
you select foreground monitor, you must specify
correct foreground monitor start address with next
configuration question (foreground monitor
address). After you completed the configuration
setting, you need to load foreground monitor
program to the emulator with "Memory, Load"
feature. The foreground monitor program must
already assembled and linked with appropriate
location specification. Refer to the HP 64756
70136 Emulator Terminal Interface User’s Guide
for more information.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

Note If you select a foreground monitor, a 4 kilobyte block is automatically
mapped at the address specified by the next question.

Configuring the 70136 Emulator 4-19

Foreground
Monitor Address?

The location of the foreground monitor is important because it will
occupy part of the processor address space. Foreground monitor
location must not overlap the location of target system programs. The
default foreground monitor location is "0F0000H".

When entering monitor block addresses, you must only specify
addresses on 4K byte boundaries; otherwise, an invalid syntax message
is displayed.

Note Relocating the monitor causes all memory mapper terms to be removed.

Note You should not load the foreground monitor provided with the 70136
emulator at the base address 0 or 0ff000 hex; the 70136
microprocessor’s vector table is located.

And, You can not load the foreground monitor at the base address over
100000 hex.

4-20 Configuring the 70136 Emulator

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration so
that it may be re-loaded later. The following information is saved in the
emulator configuration.

Emulator configuration items.

Key macro specifications.

Memory map.

Break conditions.

Trigger configuration.

Window specifications.

To store the current emulator configuration, select:

Config, Store

Enter the name of a file in which to save the emulator configuration.

Loading an
Emulator
Configuration

If you want to reload a previously stored emulator configuration, select:

Config, Load

Enter the configuration file name and press Enter. The emulator will
be reconfigured with the values specified in the configuration file.

Configuring the 70136 Emulator 4-21

Notes

4-22 Configuring the 70136 Emulator

5

Using the Emulator

Introduction In the "Getting Started" chapter, you learned how to use the basic
features of the 70136 emulator. This chapter describes the more
in-depth features of the emulator.

This chapter shows you how to:

Address syntax in emulation commands.

Address expression in emulation commands.

Register names and classes.

Make coordinated measurements.

Store the contents of memory into absolute files.

Using the Emulator 5-1

Address Syntax

Syntax

The address used in emulation commands may be specified as a
segment:offset address, physical address, or as an extended address
(though a physical address in run commands (see table 5-1) is
converted to a <segment>:<offset> address and a extended address in
memory commands (see table 5-1) is converted to a value of the page
register and a <segment>:<offset> address by the emulation system).

The physical and extended address specifications are of the following
form. "@e" and "@p" are the function codes to define as an extended
or a physical address.

Extended address EXT_ADDR@e

Physical address PHY_ADDR@p

Expressions are defined in the HP 64700 Emulators Terminal
Interface: User’s Reference manual.

5-2 Using the Emulator

Parameters

<SEGMENT> This expression (0-0FFFF hex) is the segment
portion of the logical address. The value specified
is placed in the 70136 PS register.

<OFFSET> This expression (0-0FFFF hex) is the offset portion
of the logical address. The value specified is placed
in the 70136 PC register.

<PHY_ADDR> This expression (0-0FFFFF hex) with "@p"
function code is a physical address in the 70136
address range. In run commands (see table 5-1),
the emulation system converts this physical address
to a <segment>:<offset> address as specified by the
"Seg:off translation method" configuration option
in "Configuring the 70136 Emulator" chapter.

<EXT_ADDR> This expression (0-0FFFFFF hex) with "@e"
function code is a extended address in the 70136
address range. In memory commands (see table
5-1), the emulation system converts this extended
address to a value of the page register and a
<segment>:<offset> address to access the memory.

<I/O_ADDR> This expression (0-0FFFF hex) with no function
code is a 70136 I/O address. This expression
should be used in I/O command (see table 5-1).

Using the Emulator 5-3

Address
Expression

Table 5-1 is the address expression matrix used in emulation
commands.

--
| Command | <EXT_ADDR> | <PHY_ADDR> |<SEGMENT>:<OFFSET>| No function |
| group | (@e) | (@p) | | code |
--
| Memory commands | OK | OK(*1) | OK(*1) | same as |
				<PHY_ADDR>	
Run	maxseg	ERROR	OK	OK	same as
commands					<PHY_ADDR>
(*2)	--				
	minseg	ERROR	OK	OK	same as
					<PYH_ADDR>
	--				
	curseg	ERROR	ERROR	OK	<OFFSET>
					(0-0FFFFH)
--					
I/O command	ERROR	ERROR	ERROR	OK	
				(0-0FFFFH)	
--					
Map command	OK	ERROR	ERROR	ERROR	
--					
Breakpoints command	OK	OK(*1)	OK(*1)	same as	
				<PHY_ADDR>	
--

*1 : Emulator breaks to the monitor on accesses to emulation memory
 (refer to the "Read PGR registers" in "Configuring the 70136 Emulator" chapter.)

*2 : Refer to "Seg:off Translation Method" in "Configuring the 70136 Emulator" chapter.

Table 5-1. Address expression syntax

5-4 Using the Emulator

Memory Commands The following commands are included in memory commands.

Memory, Display
Memory, Modify
Memory, Store
Memory, Copy
Memory, Find

You can use the following address expression in memory commands
(refer to "Read PGR registers" configuration item in "Configuring the
70136 Emulator" chapter).

 --
 | | <EXT_ADDR> | <PHY_ADDR> | <SEGMENT>:<OFFSET> |
 |-----------------|--------------|--------------|----------------------|
 | Read PGR : YES | OK | OK* | OK* |
 | Read PGR : NO | OK | OK | OK |
 --

 (* - Emulator breaks into the monitor on accesses to emulation memory)

When you set the emulator to read PGR on address translation, the
emulator should break to the monitor to get the current value of page
register on address translation.

When you set the emulator not to read PGR on address translation, the
emulator should use the copy of page registers which is renewed at
breaking to the monitor or changing the value of page registers. In this
case, the emulator does not break to the monitor.

Note You may answer "NO" to "Read PGR registers" configuration item
when you only use normal address mode in your program or the value
of page registers is not changed after initializing while executing your
program.

Using the Emulator 5-5

Note When program execution should take place in real-time (refer to
"Configuring the 70136 Emulator" chapter) and the emulator should
break to the monitor to read page registers, the commands showing
above which need physical to extended address conversion are not
allowed in running user program. If you entered, the following error
message will be shown:

ERROR: Restricted to real time runs

Load/Dump Address When you download programs into memory using "Memory Load"
command, the emulator will interpret an address in the absolute file
owing to the following configuration setting (refer to "20 bit address
mode" configuration item in "Configuring the 70136 Emulator"
chapter).

 --
 | configuration | address mode |
 |---------------------------|--------------------|
 | 20 bit address mode : no | extended address |
 | 20 bit address mode : yes | physical address |
 --

When you dump memory to a host file using "Memory Store"
command, the address information saved to host file is defined from
the address expression used in the "Memory Load" command.

 --
 | Address expression | address information |
 | (in dump command) | (to a host file) |
 |----------------------|-----------------------|
 | <EXT_ADDR> ("@e") | extended address |
 | <PHY_ADDR> ("@p") | physical address |
 | <SEGMENT>:<OFFSET> | physical address |
 | No function code | physical address |
 --

Note When you download the host file made by "Memory Store" command
before, you should set the same "Address mode for file loading"
configuration item that you enter the "Memory Store" command.
Otherwise, the memory image is not the same as when you enter the
"Memory Store" command to make the host file.

5-6 Using the Emulator

Note When you download the host file with physical address information
made by "Memory Store" command, you should set up the same value
to page registers (PGR 1 - PGR 64) that you enter the "Memory
Store" command. Otherwise, the memory image is not same as when
you enter the "Memory Store" command to make the host file.

Run Commands The following commands are included in run commands.

Processor, Go, Address
Processor, CMB, Go, Address
Processor, Step, Address

You can use the following address expression in run commands.

(refer to "Seg:off translation method" configuration item in
"Configuring the 70136 Emulator" chapter)

 --
	<EXT_ADDR>	<PHY_ADDR>	<SEGMENT>:<OFFSET>	No function code
Seg:off maxseg	ERROR	OK	OK	SAME AS <PHY_ADDR>
Seg:off minseg	ERROR	OK	OK	SAME AS <PHY_ADDR>
Seg:off curseg	ERROR	ERROR	OK	<OFFSET>

You should not use the extended address expression in run commands.

If you use extended address expression, the following error messages
will be shown.

ERROR: Extended address can not be used

Using the Emulator 5-7

I/O Command The following command is included in I/O command.

Processor, I /O

You can only use the I/O address expression ; this expression (0-0ffff
hex) with no function code defines a 70136 I/O address.

Note You should not access 70136 page registers (PGR 1 - PGR 64) with
using "Processor, I /O" command. You should use "Register" command
to access page registers.

Map Command The following command is included in map command.

Config, Map, Modify

You can only use the extended address expression ; this expression
(0-0ffffff hex and with "@e" function code) defines a 70136 extended
address.

Define the data bus
size

The data bus size for memory accesses can be defined in map
command. For example, enter the following command to map memory
(The extended address expression should be used in map command).

Config, Map, Modify

Using the arrow keys, move the cursor to the "Address range" field of
term 1. Enter:

0..7ff@e

Move the cursor to the "Memory type" field of term 1, and press the
TAB key to select the erom (emulation ROM) type. Move the cursor
to the "Bus size" field of term 1, and enter "16" to map this emulation
ROM with 16-bit data bus. Move the cursor to the "address range"
field of term 2 and enter:

800..9ff@e

5-8 Using the Emulator

Move the cursor to the "memory type" field of term 2, and press the
TAB key to select the eram (emulation ROM) type. Move the cursor
to the "Bus size" field of term 2, and enter "8" to map this emulation
RAM with 8-bit data bus.

To save your memory map, use the right arrow key or the Enter key to
exit the field in the lower right corner. (The End key on Vectra
keyboards moves the cursor directly to the last field.) The memory
configuration display is shown in below.

The other memory ranges are mapped as target RAM with 16-bit data
bus (if the data bus size is not specified in map command, the address
ranges will be mapped with 16-bit data bus by default).

Note The data bus size for memory accesses also can be defined from the
BS8/BS16 input of the target system.

Refer to "Bus size signal for emulation/target memory" configuration
items in "Configuring the 70136 Emulator" chapter.

Using the Emulator 5-9

Note The data bus size of I/O accesses (external I/O only) is defined from
the BS8/BS16 input of the target system.

Breakpoints
Command

The following commands are included in breakpoints command.

Breakpoints

You can use the following address expression in breakpoints command
(refer to "Read PGR registers" configuration item in "Configuring the
70136 Emulator" chapter).

 --
 | | <EXT_ADDR> | <PHY_ADDR> | <SEGMENT>:<OFFSET> |
 |-----------------|--------------|--------------|----------------------|
 | Read PGR : YES | OK | OK* | OK* |
 | Read PGR : NO | OK | OK | OK |
 --

 (* - Emulator breaks into the monitor on accesses to emulation memory)

When you set the emulator to read PGR on address translation, the
emulator should break to the monitor to get the current value of page
register to convert logical address to extended address using in
emulation system.

When you set the emulator not to read PGR on address translation, the
emulator should use the copy of page registers which is renewed at
breaking to the monitor or changing the value of page registers. In this
case, the emulator does not break to the monitor.

Note You may answer "NO" to "Read PGR registers" configuration item
when you only use normal address mode in your program or the value
of page registers is not changed after initializing while executing your
program.

5-10 Using the Emulator

REGISTER
NAMES and
CLASSES
(70136 Emulator)

The following register names and classes are used with the "Register
Display/Modify" commands in 70136 emulator.

BASIC(*) class

Register name Description

aw, bw
cw, dw
bp, ix, iy
ds0, ds1, ss
sp, pc, ps, psw

BASIC registers.

NOCLASS

Register name Description

al, ah, bl, bh
cl, ch, dl, dh

PGR class (page registers)

Register name Description

pgr1
pgr2
 :
 :
pgr63
pgr64
xam

PGR 1 register
PGR 2 register
 :
 :
PGR 63 register
PGR 64 register
XAM register (Read only)

Using the Emulator 5-11

REGISTER
NAMES and
CLASSES
(70236/70236A
Emulator)

The following register names and classes are used with the "Register
Display/Modify" commands in 70236 emulator.

BASIC(*) class

Register name Description

aw, bw
cw, dw
bp, ix, iy
ds0, ds1, ss
sp, pc, ps, psw

BASIC registers.

NOCLASS

Register name Description

al, ah, bl, bh
cl, ch, dl, dh

PGR class (Page registers)

Register name Description

pgr1
pgr2
 :
 :
pgr63
pgr64
xam

PGR 1 register
PGR 2 register
 :
 :
PGR 63 register
PGR 64 register
XAM register (Read only)

5-12 Using the Emulator

SIO class (System I/O registers)

Register name Description

 bsel
badr
brc
wmb0
wcy1
wcy0
wac

tcks
sbcr
refc
wmb1
wcy2
wcy3
wcy4
sula
tula
iula
dula
opha
opsel
sctl

Bank selection register
Bank address register
Baud rate counter
Programmable wait, memory boundary 0 register
Programmable wait, cycle 1 register
Programmable wait, cycle 0 register
Programmable wait, memory address control
register
Timer clock selection register
Stand-by control register
Refresh control register
Programmable wait, memory boundary 1 register
Programmable wait, cycle 2 register
Programmable wait, cycle 3 register
Programmable wait, cycle 4 register
SCU low address register
TCU low address register
ICU low address register
DMAU low address register
On-chip peripheral high address register
On-chip peripheral selection register
System control register

Using the Emulator 5-13

ICU class (Interrupt Control Unit registers)

Register name Description

 imkw
irq
iis
ipol
ipfw

imdw
iiw1
iiw2
iiw3
iiw4

Interrupt mask word register
Interrupt request register (Read only)
Interrupt in-service register (Read only)
Interrupt polling register (Read only)
Interrupt priority and finish word register
(Write only)
Interrupt mode word register (Write only)
Interrupt initialize word 1 register (Write only)
Interrupt initialize word 2 register (Write only)
Interrupt initialize word 3 register (Write only)
Interrupt initialize word 4 register (Write only)

Caution When ipol register is displayed, interruptis are suspended until the FI
command is published.

TCU class (Timer Control Unit registers)

Register name Description

tct0
tst0
tct1
tst1
tct2
tst2
tmd

Timer/counter 0 register
Timer status 0 register (Read only)
Timer/counter 1 register
Timer status 1 register (Read only)
Timer/counter 2 register
Timer status 2 register (Read only)
Timer/counter mode register (Write only)

5-14 Using the Emulator

SCU class (Serial Control Unit registers)

Register name Description

srb
sst
stb
scm
smd
simk

Serial receive data buffer (Read only)
Serial status register (Read only)
Serial transmit data buffer (Write only)
Serial command register (Write only)
Serial mode register (Write only)
Serial interrupt mask register (Write only)

DMA71 class (DMA Control Unit registers (for uPD71071 mode)

Register name Description

 dicm
dch
dbc/dcc0
dbc/dcc1
dbc/dcc2
dbc/dcc3
dba/dca0
dba/dca1
dba/dca2
dba/dca3
dmd0
dmd1
dmd2
dmd3
ddc
dst
dmk

DMA initialize register (Write only)
DMA channel register
DMA base/current count register channel 0
DMA base/current count register channel 1
DMA base/current count register channel 2
DMA base/current count register channel 3
DMA base/current address register channel 0
DMA base/current address register channel 1
DMA base/current address register channel 2
DMA base/current address register channel 3
DMA mode control register channel 0
DMA mode control register channel 1
DMA mode control register channel 2
DMA mode control register channel 3
DMA device control register
DMA status register (Read only)
DMA mask register

Using the Emulator 5-15

DMA37 class (DMA Control Unit register (for uPD71037 mode)

Register name Description

 cmd
bank0
bank1
bank2
bank3
adr0
adr1
adr2
adr3
cnt0
cnt1
cnt2
cnt3
sfrq

smsk

mode
clbp
init
cmsk
amsk

DMA read status/write command register
DMA bank register channel 0
DMA bank register channel 1
DMA bank register channel 2
DMA bank register channel 3
DMA current address register channel 0
DMA current address register channel 1
DMA current address register channel 2
DMA current address register channel 3
DMA current count register channel 0
DMA current count register channel 1
DMA current count register channel 2
DMA current count register channel 3
Software DMA write request register
(Write only)
DMA write single mask register
(Write only)
DMA write mode register
DMA clear byte pointer F/F (Write only)
DMA initialize register (Write only)
DMA clear mask register (Write only)
DMA write all mask register bit (Write only)

5-16 Using the Emulator

Making
Coordinated
Measurements

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700 Series emulators, which communicate over
the Coordinated Measurement Bus (CMB). Coordinated
measurements can also be made between an emulator and another
instrument connected to the BNC connector.

This chapter will describe coordinated measurements made from the
PC Interface which involve the emulator. These types of coordinated
measurements are:

Running the emulator on reception of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution into
the monitor.

Three signal lines on the CMB are active and serve the following
functions:

/TRIGGER Active low. The analyzer trigger line on the CMB
and on the BNC serve the same logical purpose.
They provide a means for the analyzer to drive its
trigger signal out of the system, or for external
trigger signals to arm the analyzer or break the
emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator start and stop. When you enable
CMB run control interaction, all emulators must
break to background on receipt of a false READY
signal and will not return to foreground until this
line is true.

/EXECUTE Active low. This line serves as a global interrupt
signal. On receipt of an enabled /EXECUTE
signal, each emulator is to interrupt whatever it is
doing and execute a previously defined process,
such as run the emulator or start a trace
measurement.

Using the Emulator 5-17

Running the
Emulator at
/EXECUTE

Before you can specify that the emulator run on receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config, General

Use the arrow keys to move the cursor to the "CMB Interaction? [n]"
question, and type "y". Use the Enter key to exit out of the lower
right-hand field in the configuration display.

To begin executing a program on receipt of the /EXECUTE signal,
select:

Processor, CMB, Go

Now you may select either the current program counter ("Pc", in other
words, the current PS:PC), or a specific address.

The command you enter is saved, and is executed when the
/EXECUTE signal becomes active. Also, you will see the message
"ALERT: CMB execute; run started".

Breaking on the
Analyzer Trigger

To break emulator execution into the monitor when the analyzer trigger
condition occurs, you modify the trigger configuration. To access the
trigger configuration, select:

Config, Trigger

The trigger configuration display contains two diagrams, one for each
internal TRIG1 and TRIG2 signal.

5-18 Using the Emulator

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted "Analyzer"
field in the TRIG1 portion of the display. Use the TAB key to select
the "----->>" arrow pointing from the analyzer to TRIG1. Next, move
the cursor to the highlighted "Emulator" field and use the TAB key to
select the arrow pointing toward the emulator (<<-----). This specifies
that emulator execution will break into the monitor when the TRIG1
signal is driven. The trigger configuration display appears as follows:

Using the Emulator 5-19

Storing Memory
Contents to an
Absolute File

The "Getting Started" chapter shows you how to load absolute files
into emulation or target system memory. You can also store emulation
or target system memory to an absolute file with the following
command.

Memory, Store

When you store memory using "Memory, Store" command, the address
information saved to an absolute file is defined from the address
expression used in the "Memory Store" command. refer to "Address
Expression in Emulation Commands" section in this chapter.

Note The first character of the absolute file name must be a letter. You can
name the absolute file with a total of 8 alphanumeric characters. You
also can include an extension of up to 3 alphanumeric characters. If
the file is stored in HP 64000 format, its extension must be ".X".

Caution The "Memory Store" command writes over an existing file if it has the
same name that is specified with the command. You may wish to
verify beforehand that the specified filename does not already exist.

5-20 Using the Emulator

A

File Format Readers

Introduction The 70136 PC Interface is provided with the following "reader".

Intel Object Module Format (OMF86) Reader

– (This Reader is for the Intel OMF86 absolute file)

NEC30 Reader

– (This Reader is for the load module format file which is
generated by NEC LK70136 linker for uPD70136)

NEC33 Reader

– (This Reader is for the extended load module format file
which is generated by NEC EL70136 extended mode
locator for uPD70136)

HP64000 Reader

The Reader converts the file(s) into two files that are usable with the
HP 64756 emulator. This means that you can use available language
tools to create absolute files, then load those files into the emulator
using the 70136 PC Interface.

The Reader can operate from within the PC Interface or as a separate
process. When operating the Reader, it may be necessary to execute it
as a separate process if there is not enough memory on your personal
computer to operate the PC Interface and Reader simultaneously. You
can also operate the reader as part of a "make file".

File Format Readers A-1

Using the OMF86,
NEC30, NEC33
Reader

What the Reader
Accomplishes

The Reader accepts as input an absolute file in the form "<file>.<ext>",
and creates two new files that are used by the PC Interface: an
"absolute" file, and an ASCII symbol file.

The Absolute File

During execution of the Reader, an absolute file (<file>.HPA) is
created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.HPS) produced by the Reader contains
global symbols, module names, local symbols, and, when using
applicable development tools such as a "C" Compiler, program line
number. Local symbols evaluate to a fixed (static, not stack relative)
address.

Note You must use the required options for your specific language tools to
include symbolic ("debug") information in the absolute file. The
Reader will only convert symbol information that is present in the input
absolute file.

A-2 File Format Readers

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 0100:1234
global_symbol2 0100:5678
...
global_symbolN 0100:ABCD
|module_name|# 1234 0200:0872
|module_name|local_symbol1 0200:0653
|module_name|local_symbol2 0200:0872
...
|module name|local_symbolN 0200:0986

The space preceding module names is required. A single tab separates
symbol and address.

Each of the symbols is sorted alphabetically in the order: module
manes, global symbols, and local symbols.

The local symbols are scooped. This means that to access a variable
named "count" in a function named "foo" in a source file module
named "main.c", you would enter "main.c:foo.count". See table A-1.

Line numbers will appear similar to a local symbol except that
"local_symbolX" will be replaced by "#NNNNN" where NNNNN is a
five digit decimal number. Line numbers should appear in ascending
order.

 --
 | Module Name | Function Name | Variable Name | You Enter: |
 |--|
 | MAIN.C | FOO | COUNT | MAIN.C:FOO.COUNT |
 | MAIN.C | BAR | COUNT | MAIN.C:BAR.COUNT |
 | MAIN.C | line number 23 | MAIN.C: line 23 |
 --

Table A-1. How to Access Variables

File Format Readers A-3

Note When the line number symbol is displayed in the emulator, it appears
in brackets. Therefore, the symbol "modname:# 345" will be displayed
as "modname:[345]" in mnemonic memory and trace list displays.

Line number symbols are accessed by entering the following on one
line in the order shown:

module name
colon (:)
space
the word "line"
space
the decimal line number

For example:

MAIN.C: line 23

Location of the
Reader Program

The Reader is located in the directory named \hp64700\bin by default,
along with the PC Interface. This directory must be in the environment
variable PATH for the Reader and PC Interface to operate properly.
This is usually defined in the "\autoexec.bat" file. The following
examples assume that you have "\hp64700\bin" include in your
PATH variable. If not, you must supply the directory name when
executing the Reader program.

Using the Reader
from MS-DOS

The command names for the Reader are shown below.

Intel OMF86
Reader

RDOMF86.EXE

NEC30
Reader

RDNEC30.EXE

NEC33
Reader

RDNEC33.EXE

A-4 File Format Readers

You can execute the Reader from the command line with the following
command syntax:

C:\HP64700\BIN\<READER> [-q] [-u] [-m]
<filename> <RETURN>

<READER> is the name of the command name for the Reader

[-q] Specifies the "quiet" mode. This option suppress
the display of messages.

[-u] Specifies that the first leading underscore ("_") of a
symbol is not removed.

[-m] (RDOMF86.EXE only) Specifies that the OMF86
Reader removes duplicate module names generated
by some construction tools. Some tools enclose all
of the functions and variables in a module within a
block (or function) whose name is the same as that
of the module (or source file). When this option is
used, the Intel OMF86 Reader will ignore the first
enclosing block in a module is its name matches the
module name.

<filename> Specifies the same of the file containing the
absolute program. You can include an extension in
the file name.

The following commands will create the files "TESTPROG.HPA" and
"TESTPROG.HPS".

ENTER: RDOMF86 TESTPROG.ABS
ENTER: RDNEC30 TESTPROG.LNK
ENTER: RDNEC33 TESTPROG.EXL

File Format Readers A-5

Using the Reader
from the PC Interface

The 70136 PC Interface has a file format option under the "Memory
Load" command.

After you select OMF86 as the file format, the Intel OMF86 Reader
will operate on the file you specify. After the Reader completes
successfully, the 70136 PC Interface will load the absolute and symbol
files produced by the Reader.

To use the Reader from the PC Interface, follow these steps:

1. Start up the 70136 PC Interface.

2. Select "Memory, Load". The memory load menu will appear.

3. Specify the file format as "OMF86". This will appear as the
default file format.

4. Specify the memory to be loaded (emulation, target, or both).

5. Specify to force the file format reader to regenerate the
emulator absolute file (.HPA) and symbol database (.HPS)
before loading the code. Normally, these files are only
regenerated whenever the file you specify (the output of your
language tools) is newer than the emulator absolute file and
symbol database.

6. Specify that the OMF86 Reader removes duplicate module
names generated by some construction tools. Some tools
enclose all of the functions and variables in a module within a
block (or function) whose name is the same as that of the
module (or source file). When this option is used, the Intel
OMF86 Reader will ignore the first enclosing block in a
module is its name matches the module name.

7. Specify that the first leading underscore ("_") of a symbol is
not removed.

A-6 File Format Readers

8. Specify a file in Intel OMF86 format ("TESTFILE.OMF", for
example). The file extension can be something other than
".OMF", but ".HPA" or ".HPS" cannot be used.

Using the Intel OMF86 file that you specify (TESTFILE.OMF, for
example), the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the Intel
OMF86 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the Intel OMF86 file
creation date/time, the Intel OMF86 Reader recreates them.
The new absolute file, TESTFILE.HPA, is then loaded into
emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date/time for the
Intel OMF86 file, the current absolute file, TESTFILE.HPA,
is then loaded into the emulator.

Note Date/time checking only done within the PC Interface. When you run
the Reader at the MS-DOS command line prompt, the Reader will
always update the absolute and symbol files.

When the Reader operates on a file, a status message will be displayed
indicating that it is reading an absolute file. When the Reader
completes its processing, another message will be displayed indicating
the absolute file is being loaded.

File Format Readers A-7

Note When you use NEC33 Reader and load an absolute file, you should
configure that the emulator interprets address in the absolute file as
extended address. Refer to "20 Bit Address Mode" section in
"Configuring the 70136 Emulator" chapter.

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, exit the PC
Interface and execute the Reader program at the MS-DOS command
prompt.

Including Reader in a
Make File

You may want to incorporate the "RDOMF86", "RDNEC30", or
"RDNEC33" process as the last step in your "make" file, or as a step in
your construction process, so as to eliminate the possibility of having to
exit the PC Interface due to space limitations describe above. If the file
with "-.HPA" and "-.HPS" extensions are not current, loading an
absolute file will automatically create them.

A-8 File Format Readers

Using the
HP 64000 Reader

An HP 64000 “reader” is provided with the PC Interface. The
HP 64000 Reader converts the files into two files that are usable with
your emulator. This means that you can use available language tools to
create HP 64000 absolute files, then load those files into the emulator
using the PC Interface.

The HP 64000 Reader can operate from within the PC Interface or as a
separate process. When operating the HP 64000 Reader, it may be
necessary to execute it as a separate process if there is not enough
memory on your personal computer to operate the PC Interface and HP
64000 Reader simultaneously. You can also operate the reader as part
of a “make file.”

What the Reader
Accomplishes

Using the HP 64000 files (<file.X>, <file.L>, <scr1.A>, <scr2.A>, ...)
the HP 64000 Reader will produce two new files, an “absolute” file and
an ASCII symbol file, that will be used by the PC Interface. These new
files are named: “<file>.hpa” and “<file>.hps.”

The Absolute File

During execution of the HP 64000 Reader, an absolute file (<file>.hpa)
is created. This absolute file is a binary memory image which is
optimized for efficient downloading into the emulator.

The ASCII Symbol File

The ASCII symbol file (<file>.hps) produced by the HP 64000 Reader
contains global symbols, module names, local symbols, and, when
using applicable development tools such as a “C” compiler, program
line numbers. Local symbols evaluate to a fixed (static, not stack
relative) address.

File Format Readers A-9

Note You must use the required options for your specific language tools to
include symbolic (“debug”) information in the HP 64000 symbol files.
The HP 64000 Reader will only convert symbol information present in
the HP 64000 symbol files (<file.L>, <src1.A>, <src2.A>, ...).

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 0100:1234
global_symbol2 0100:5678
...
global_symbolN 0100:ABCD
|module_name1|# 1234 0200:0872
|module_name1|local_symbol1 0200:0653
|module_name1|local_symbol2 0200:0872
...
|module_name1|local_symbolN 0200:0986

Each of the symbols is sorted alphabetically in the order: module
names, global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN is a
five digit decimal line number. The addresses associated with global
and local symbols are specific to the processor for which the HP 64000
files were generated.

A-10 File Format Readers

Note If your emulator can store symbols internally, symbols will appear in
disassembly. When the line number symbol is displayed in the
emulator, it appears in brackets. Therefore, the symbol “MODNAME:
line 345” will be displayed as “MODNAME:[345]” in mnemonic
memory and trace list displays.

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols are scooped. This means that to access a variable
named “count” in a source file module named “main.c,” you would
enter “MAIN.C:COUNT” as shown below.

You access line number symbols by entering the following on one line
in the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

MAIN.C: line 23

Module Name Variable Name You Enter:

MAIN.C COUNT MAIN.C:COUNT

MAIN.C line number 23 MAIN.C: line 23

Table A-2. How to Access Variables

File Format Readers A-11

Location of the
HP 64000 Reader

Program

The HP 64000 Reader is located in the directory named \hp64700\bin
by default, along with the PC Interface. This directory must be in the
environment variable PATH for the HP 64000 Reader and PC Interface
to operate properly. The PATH is usually defined in the
“\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the
directory name when executing the Reader program.

Using the Reader
from MS-DOS

The command name for the HP 64000 Reader is RHP64000.EXE. To
execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

[-q] This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA”and
“TESTPROG.HPS”

RHP64000 TESTPROG.L

Using the Reader
from the PC Interface

The PC Interface has a file format option under the “Memory Load”
command. After you select HP64000 as the file format, the HP 64000
Reader will operate on the file you specify. After this completes
successfully, the PC Interface will accept the absolute and symbol files
produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the PC Interface.
2. Select “Memory Load.” The memory load menu will appear.
3. Specify the file format as “HP64000.” This will appear as the

default file format.
4. Specify the name of an HP 64000 linker symbol file

(TESTFILE.L for example).

A-12 File Format Readers

Using the HP 64000 file that you specify (TESTFILE.L, for example),
the PC Interface performs the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the HP
64000 Reader produces them. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the HP 64000 linker
symbol file creation date/time, the HP 64000 Reader recreates
them. The new absolute file, TESTFILE.HPA, is then loaded
into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
dates and times are later than the creation date and time for
the HP 64000 linker symbol file, the HP 64000 Reader will
not recreate TESTFILE.HPA. The current absolute file,
TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is only done within the PC Interface. When
running the HP 64000 Reader at the MS-DOS command line prompt,
the HP 64000 Reader will always update the absolute and symbol files.

When the HP 64000 Reader operates on a file, a status message will be
displayed indicating that it is reading an HP 64000 file. When the HP
64000 Reader completes its processing, another message will be
displayed indicating the absolute file is being loaded.

The PC Interface executes the Reader with the “-q” (quiet) option by
default.

File Format Readers A-13

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. If this occurs, you will
need to exit the PC Interface and execute the program at the MS-DOS
command prompt to create the files that are downloaded to the
emulator.

Including RHP64000
in a Make File

You may wish to incorporate the “RHP64000” process as the last step
in your “make file,” as a step in your construction process, to eliminate
the possibility of having to exit the PC Interface due to space
limitations describe above. If the files with “.HPA” and “.HPS”
extensions are not current, loading an HP 64000 file will automatically
create them.

A-14 File Format Readers

Index

A absolute files
<file>.hpa created by HP 64000 Reader, A-9
Intel OMF86, A-1
loading, 2-12
NEC30, A-1
NEC33, A-1
storing, 5-20

address expression
breakpoints command, 5-10
emulation commands, 5-4
I/O command, 5-8
load/dump commands, 5-6
map command, 5-8
memory commands, 5-5
run Commands, 5-7
step command, 2-25

Address expression syntax, 5-4
Address Mode, emulator configuration, 4-13
Address Syntax, 5-2
analysis begin, 2-35
analysis display, 2-36
analysis specification

resetting the, 2-31
trigger condition, 2-31

analyzer
features of, 1-4

analyzer, using the, 2-31
apapter

PGA to QFP package of the uPD70236 and uPD70236, 1-3
PLCC to QFP package of the uPD70136, 1-3

ASCII symbol file (<file>.hps), A-9
assemblers, 2-9
assembling and linking the getting started sample program, 2-6

B background, 1-6
background monitor, 4-18

Index-1

locating the, 4-18
pin state, 3-12/3-13

BNC connector, 5-17
break command, 2-26
breaking on analyzer trigger, 5-18
breakpoint interrupt instruction

software breakpoints (70136), 2-26
Breakpoints command

address expression, 5-10
breaks

software breakpoints, 2-26
breaks on ROM writes, 4-6
BRKXA and RETXA instructions, 1-8
BS8/BS16 input

 emulation memory, 4-15
 I/O accesses, 4-16, 5-10
 memory accesses, 5-9
 target memory, 4-16

Bus size
map command, 5-8

C caution statements
change page registers after software breakpoints defined, 2-27
real-time dependent target system circuitry, 4-5
software breakpoint cmds. while running user code, 2-26

cautions
filenames in the memory store command, 5-20
installing the target system probe, 3-2

characterization of memory, 2-9
cim, Terminal Interface command, 2-27
clock source

external, 3-10, 4-4
in-circuit, 4-4
internal, 3-10, 4-4

CMB (coordinated measurement bus), 5-17
CMB interaction, 4-8
CMB signals, 5-17
commands (PC Interface), selecting, 2-8
configuration (emulator), 4-1

loading, 4-21
storing, 4-21

configuration options

2-Index

 20 bit address mode, 4-13
 DMA cycle in background (70236 only), 4-14
 FPU, 4-12
 wait count of DMA (70236/70236A only), 4-14
accessing, 4-2
AEX signal, 4-12
background monitor location, 4-18
breaks on ROM writes, 4-6
bus sizing signal for emulation memory, 4-15
bus sizing signal for target memory, 4-16
CMB interaction, 4-8
emulator clock source, 4-4
foreground monitor address, 4-20
in-circuit, 3-10
lock READY signal, 4-10
monitor type, 4-18
read PGR registers, 4-11
real-time mode, 4-5
release bus by HOLD (70236/70236A only), 4-13
segment:offset translation method, 4-17
software breakpoints, 4-6
target interrupts, 4-9
target reset, 4-10
trace DMA cycles (70236/70236A only), 4-13
trace dummy HALT acknowledge (70236/70236A only), 4-15
trace refresh cycles (70236/70236A only), 4-14

configuration(hardware), installing the emulator, 2-2
coordinated measurements

break on analyzer trigger, 5-18
definition, 5-17
multiple emulator start/stop, 4-8
run at /EXECUTE, 5-18

coprocessor
access emulation memory, 2-8, 3-10

copy memory command, 2-39
count, step command, 2-23
cur segment method, 4-17

D device table, emulator, 2-7
displaying the trace, 2-36
DMA

external, 2-9

Index-3

DMA (70136), 1-7
DMA cycle

 background (70236/70236A only), 4-14
dump command

interpret address, 5-6

E emulation analyzer, 1-4
Emulation commands

address expression, 5-4
emulation memory

access by uPD72291 coprocessor, 2-8, 3-10
note on target accesses, 2-9
size of, 2-8

emulation monitor
foreground or background, 1-6

emulation RAM and ROM, 2-9
emulator

device table, 2-7
feature list, 1-3
purpose of, 1-1
reset, 2-39
running from target reset, 3-10/3-11
status, 2-8
supported microprocessor package, 1-3

emulator configuration
configuration options, 4-1
loading, 4-21
storing, 4-21

Emulator features
emulation memory, 1-4

emulator probe
installing, 3-2

eram, memory characterization, 2-9
erom, memory characterization, 2-9
Evalution Chip, 1-8
EXECUTE

CMB signal, 5-17
run at, 5-18

executing programs, 2-25
exiting the PC Interface, 2-40
external clock source, 4-4

4-Index

F file formats
HP64000, A-12

file formats, absolute, 2-12
find data in memory, 2-25
foreground, 1-6
foreground monitor, 4-18

locating the, 4-20
FPU, emulator configuration, 4-12

G getting started, 2-1
prerequisites, 2-2

global symbols, 2-15, 2-21
grd, memory characterization, 2-9
guarded memory accesses, 2-9

H halt instructions, 4-18
hardware installation, 2-2
HP 64000 Reader, A-9

 using with PC Interface, A-12
HP 64000 Reader command (RHP64000.EXE), A-12
HP64000 file format, A-12
HPTABLES environment variable, 2-7

I I/O command
address expression, 5-8

IEEE-695 reader, A-2
in-circuit configuration options, 3-10
in-circuit emulation, 3-1
installation

hardware, 2-2
software, 2-2

internal clock source, 4-4
internal I/O register access, 1-7
internal I/O registers

display, 1-7
modify, 1-7

interrupt
from target system, 3-10
from target system (70136), 1-7
from target system (70236), 1-7
while stepping, 1-7

interrupts
from target system, 4-9

Index-5

L line numbers, 2-37
linkers, 2-9
linking the getting started sample program, 2-6
load command

interpret address, 5-6
load map, 2-9
loading absolute files, 2-12
local symbols, 2-17, 2-29, A-3, A-11
locating the foreground monitor, 4-20
location address

 foreground monitor, 4-20
locked, PC Interface exit option, 2-40
logical run address, conversion from physical address, 4-17

M make file, A-9
Map command

 command expression, 5-8
 data bus size, 5-8
address expression, 5-8

mapping memory, 2-8
max segment method, 4-17
memory

copy range, 2-39
displaying in mnemonic format, 2-20
modifying, 2-24
reassignment of emulation memory blocks, 2-11
searching for data, 2-25

Memory commands
address expression, 5-5

memory memory
access by coprocessor, 2-9

memory, mapping, 2-8
method, cur segment, 4-17
method, max segment, 4-17
method, min segment, 4-17
microprocessor package, 1-3
microprocessor socket

 for QFP package of uPD70136, 1-3
 for QFP package of uPD70236 and uPD70236, 1-3

min segment method, 4-17
monitor

background, 4-18

6-Index

foreground, 4-18
monitor block, 4-20
monitor program memory, size of, 2-8

N NEC30
reader, A-1

NEC33
reader, A-1

NMI signal
from target system, 4-9

note
PC relative addressing in disassemble list, 2-37
step address not allowed over 1M hex, 2-22

note statements
reassignment of emul. mem. blocks by mapper, 2-11

notes
absolute file names for stored memory, 5-20
break to read page registers, 5-5, 5-10
changing internal clock forces reset, 4-4
CMB interaction enabled on execute command, 4-8
coordinated measurements require background. monitor, 4-19
date checking only in PC Interface, A-13
displaying complete traces, 2-37
line number symbols in memory and trace listings, A-4
mapper terms deleted when monitor is relocated, 4-20
mapping foreground monitor automatically, 4-19
Reader only checks date/time within the PC Interface, A-7
register command, 2-21
software breakpoints not allowed in target ROM, 2-27
software breakpoints only at opcode addresses, 2-27
step not accepted, 2-22
symbolic information is required in absolute file, A-2
target accesses to emulation memory, 2-9
use required options to include symbols, A-10
using NEC33 Reader, A-8
using terminal window to modify configuration, 4-3
write to ROM analyzer status, 4-6

O OMF86
reader, A-1

P PC Interface
exiting the, 2-40

Index-7

HP 64000 Reader, A-12
selecting commands, 2-8
starting the, 2-7

physical run address, conversion to logical run address, 4-17
pin protector

target system probe (70236/70236A only), 3-3
prerequisites for getting started, 2-2

Q qualifiers, analyzer status (70136 emulator), 2-32
qualifiers, analyzer status (70236 emulator), 2-33

R RAM, mapping emulation or target, 2-9
RDY signal from target, 4-10
READY, CMB signal, 5-17
real-time mode, 4-5
register command, 2-21
register commands, 1-5
registers

classes (70136 emulator), 5-11
classes (70236 emulator), 5-12
names (70136 emulator), 5-11
names (70236 emulator), 5-12

release bus by HOLD (70236/70236A only), 4-13
relocatable files, 2-9
RESET

from target system, 4-10
reset (emulator), 2-39

running from target reset, 3-11
RESET signal, 3-10
resetting the analyzer specifications, 2-31
respond to target HLDRQ during background operation
(70236/70236A only), 4-13
restrict to real-time runs

permissible commands, 4-5
target system dependency, 4-5

ROM
writes to, 2-9

ROM, mapping emulation or target, 2-9
run address, conversion from physical address, 4-17
run at /EXECUTE, 5-18
Run commands

address expression, 5-7

8-Index

run from target reset, 3-10/3-11, 4-10
running programs, 2-25

S sample , 2-2
sample program

assembling, 2-6
linking, 2-6

searching for data in memory, 2-25
selecting PC Interface commands, 2-8
simple trigger, specifying, 2-31
single step, 2-21
software breakpoint

 70136 breakpoint interrupt instruction, 4-7
stepping, 1-8

software breakpoints, 2-26, 4-6
and NMI, 2-27
clearing, 2-30
defining (adding), 2-29
displaying, 2-29
ignored, 2-28
setting, 2-30

software installation, 2-2
specifications

analysis specification, 2-31
starting the trace, 2-35
status (analyzer) qualifiers, 70136 emulator, 2-32
status (analyzer) qualifiers, 70236 emulator, 2-33
status line, 2-8
step, 2-21
step count, 2-23
Stepping

at software breakpoint, 1-8
BRKXA and RETXA instructions, 1-8

stepping failed, 1-7/1-8
symbols, 2-14

.HPS file format, A-10
global, 2-21
local, 2-29, A-9

system command
exit, 2-40

Index-9

T target reset
running from, 3-11

target reset, running from, 3-10
target system

dependency on executing code, 4-5
interface, 3-14, 3-17

target system probe
cautions for installation, 3-2
pin protector (70236/70236A only), 3-3

target system RAM and ROM, 2-9
trace

description of listing, 2-37
displaying the, 2-36
starting the, 2-35

Trace list
extended address mode, 2-36
normal address mode, 2-36
PC relative addressing in disassemble list, 1-8

trace signals, 2-31
tracing dummy HALT acknowledge (70236/70236A only), 4-15
tracing internal DMA cycles (70236/70236A only), 4-13
tracing refresh cycles (70236/70236A only), 4-14
tram, memory characterization, 2-9
TRIG1, TRIG2 internal signals, 5-18
trigger

breaking into monitor on, 5-18
specifying a simple, 2-31

trigger condition, 2-31
TRIGGER, CMB signal, 5-17
trom, memory characterization, 2-9

U undefined software breakpoint, 2-28, 4-7
unlocked, PC Interface exit option, 2-40
using the HP 64000 file reader, A-9

W wait count of DMA (70236/70236A only), 4-14
wait states, allowing the target system to insert, 4-10

Z zoom, window, 2-16, 2-20

10-Index

	Using this Manual
	Contents
	Introduction to the 70136 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the 70136 Emulator
	Using the Emulator
	File Format Readers
	Index

