HP 64756/7

70136/70236 Emulator Terminal Interface

User's Guide

HP Part No. 64756-97011 Printed in U.S.A. July 1994

Edition 4

Notice	Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
	Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.
	© Copyright 1990, 1993, 1994, Hewlett-Packard Company.
	This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.
	HP is a trademark of Hewlett-Packard Company.
	UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
	V33 TM , V53 TM and V53A TM are trademark of NEC Electronics Inc.
	Torx is a registered trademark of Camcar Division of Textron, Inc.
	Hewlett-Packard Company P.O. Box 2197 1900 Garden of the Gods Road Colorado Springs, CO 80901-2197, U.S.A.
	RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for non-DOD U.S.Government Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Printing History

New editions are complete revisions of the manual. The date on the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of the software product at the time the manual was issued. Many product updates and fixes do not require manual changes and, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual revisions.

Edition 4	64756-97011, July 1994
Edition 3	64756-97008, August
Edition 2	64756-97003, August 1990
Edition 1	64756-97000, April 1990

Using this Manual

This manual will show you how to use the following emulators with the firmware resident Terminal Interface.

- HP 64756F 70136 emulator
- HP 64757F 70236 emulator
- HP 64757G 70236A emulator

For the most part, the 70136, 70236 and 70236A emulators all operate the same way. Differences between the emulators are described where they exist. All of the 70136, 70236 and 70236A emulators will be referred to as the "70136 emulator" in this manual where they are alike. In the specific instances where 70236 or 70236A emulator differs from the 70136 emulator, it will be referred as the "70236 emulator" or "70236A emulator".

This manual will:

- Show you how to use emulation commands by executing them on a sample program and describing their results.
- Show you how to configure the emulator for your development needs. Topics include: restricting the emulator to real-time execution, selecting a target system clock source, and allowing the target system to insert wait states.
- Show you how to use the emulator in-circuit (connected to a target system).
- Describe the command syntax which is specific to the 70136 emulator.

This manual will not:

 Describe every available option to the emulation commands; this is done in the HP 64700 Emulators Terminal Interface: User's Reference.

Organization

- **Chapter 1** Introduction to the 70136 Emulator. This chapter briefly introduces you to the concept of emulation and lists the basic features of the 70136 emulator.
- **Chapter 2** Getting Started. This chapter shows you how to use emulation commands by executing them on a sample program. This chapter describes the sample program and how to: load programs into the emulator, map memory, display and modify memory, display registers, step through programs, run programs, use software breakpoints, search memory for data, and perform coverage tests on emulation memory.
- **Chapter 3 Emulation Topics**. This chapter shows you how to: restrict the emulator to real-time execution, use the analyzer trigger to cause breaks, and run the emulator from target system reset.
- **Chapter 4** In-Circuit Emulation Topics. This chapter shows you how to: install the emulator probe into a target system, select a target system clock source, allow the target system to insert wait states, and use the features which allow you to debug target system ROM.
- Appendix A 70136 Emulator Specific Command Syntax. This appendix describes the command syntax which is specific to the 70136 emulator. Included are: emulator configuration items, address syntax, display and access modes.
- **Appendix B** Using the Optional Foreground Monitor. This appendix describes how to use the foreground monitor.
- **Appendix C** 70136 Emulator Specific Error Messages. This appendix describes the error messages which is specific to the 70136 emulator.

Contents

1 Introduction to the 70136 Emulator

2

Introduction
Purpose of the Emulator
Features of the 70136 Emulator
Supported Microprocessors
Clock Speeds
Emulation memory
Analysis
Registers
Single-Step
Breakpoints
Reset Support
Configurable Target System Interface
Foreground or Background Emulation Monitor 1-6
Real-Time Operation
Easy Products Upgrades
Limitations, Restrictions
DMA Support
User Interrupts
Interrupts While Executing Step Command
Accessing Internal I/O Registers
PC relative addressing in trace list
"BRKXA" and "RETXA" Instructions in Stepping 1-8
Stepping at Software Breakpoint
Evaluation Chip
Getting Started
Introduction
Before You Begin
A Look at the Sample Program
Using the "help" Facility 2-7
Becoming Familiar with the System Prompts
Initializing the Emulator
Other Types of Initialization

Contents-1

Mapping Memory				2-11
Which Memory Locations Should be Mapped?				2-13
Getting the Sample Program into Emulation Memory .				2-14
Standalone Configuration				2-15
Transparent Configuration				2-16
Remote Configuration				2-17
Displaying Memory In Mnemonic Format				2-18
Stepping Through the Program				2-19
Displaying Registers				2-20
Combining Commands				2-20
Using Macros				2-21
Command Recall				2-21
Repeating Commands				2-22
Command Line Editing				2-22
Modifying Memory				2-23
Specifying the Access and Display Modes				2-23
Searching Memory for Data				2-24
Breaking into the Monitor				2-24
Using Software Breakpoints				2-24
Displaying and Modifying the Break Conditions				2-26
Defining a Software Breakpoint				2-27
Using the Analyzer				2-28
Predefined Trace Labels				2-28
Predefined Status Equates				2-28
Specifying a Simple Trigger				2-30
For a Complete Description				2-32
Copying Memory				2-33
Testing for Coverage				2-34
Resetting the Emulator				2-36
Emulation Topics				
Introduction	 			 3-1
Prerequisites				3-1
Execution Topics				3-2
Restricting the Emulator to Real-Time Runs				3-2
Setting Up to Break on an Analyzer Trigger				3-3
Making Coordinated Measurements				3-3
Monitor Option Topics				3-4
Background Monitor				3-4
Locating the Background Monitor				3-5
Foreground monitor				3-5
5	-		-	-

2-Contents

3

	Other Topics
	Selecting Accept Or Ignore Target System Reset 3-6
4	In-Circuit Emulation Topics
	Introduction
	Prerequisites
	Installing the Emulator Probe into a Target System
	Auxiliary Output Lines
	Installing into a 70136 PLCC Type Socket
	Installing into a PGA Type Socket
	Installing into a 70136 QFP Type Socket
	Installing into a 70236/70236A PGA Type Socket
	Installing into a 70236/70236A QFP Type Socket
	Execution Topics
	Specifying the Emulator Clock Source
	Emulator Probe Signal Topics
	Allowing the Target System to Insert Wait States 4-10
	Target ROM Debug Topics 4-11
	Using Software Breakpoints with ROMed Code 4-11
	Coverage Testing ROMed Code
	Modifying ROMed Code
	Pin State in Background(70136)
	Pin State in Background(70236/70236A)
	Electrical Characteristics(70136)
	Electrical Characteristics(70236)
	Electrical Characteristics(70236A)
	Target System Interface(70136)
	Target System Interface(70236/70236A)
Α	70136 Emulator Specific Command Syntax
	ACCESS_MODE
	ADDRESS A-4
	Address Syntax
	ADDRESS_
	EXPRESSION A-6
	Summary
	Memory Commands
	Load/Dump Commands

Default Physical to Logical Run Address Conversion A-11

4

Contents-3
0011101110 0

Map Command
Define the data bus size
Breakpoints Command
Symbols Command
CONFIG_ITEMS
DISPLAY_MODE
REGISTER NAMES and CLASSES(70136 Emulator) A-32
BASIC(*) class
PGR class
REGISTER NAMES and CLASSES(70236 Emulator) A-33
BASIC(*) class
PGR class
SIO class
ICU class
TCU class
SCU class
DMA71 class
DMA37 class

B Using the Optional Foreground Monitor

Comparison of Foreground and Background Monitors B-1
Background Monitors
Foreground Monitors
An Example Using the Foreground Monitor
Modify EQU Statement
Assemble and Link the Monitor
Initialize the Emulator
Configure the Emulator
Load the Program Code
Load the Sample Program
Disable Tracing Refresh Cycle(70236/70236A Emulator only) . B-5
Set Analyzer Master Clock Qualifiers
Reset to Break
Monitor to User Program
User Program Run to Break
Single Step and Foreground Monitors
Extended Address Mode
Limitations of Foreground Monitors
Synchronized measurements

C 70136 Emulator Specific Error Messages

Illustrations

Figure 1-1. HP 64756/7 Emulator for uPD70136/70236 1-2
Figure 2-1. Sample Program Listing
Figure 4-1. Auxiliary Output Lines (70136 Emulator) 4-3
Figure 4-2. Installing into a 70136 PLCC type socket 4-5
Figure 4-3. Installing into a 70136 PGA type socket 4-6
Figure 4-4. Installing into a 70136 QFP type socket 4-7
Figure 4-5. Installing into a 70236 PGA type socket 4-9

Tables

Table 4-1 70136 AC Electrical Specifications .	•	•	•	•				4-15
Table 4-2 70236 AC Electrical Specifications .								4-18
Table 4-3 70236A AC Electrical Specifications	•		•	•			•	4-25

Contents-5

Notes

6-Contents

1

Introduction to the 70136 Emulator

Introduction	The topics in this chapter include:
	 Purpose of the emulator
	 Features of the emulator
	 Limitations and Restrictions of the emulator
Purpose of the Emulator	The 70136 emulator is designed to replace the 70136 microprocessor in your target system to help you debug/integrate target system software and hardware. The emulator performs just like the processor which it replaces, but at the same time, it gives you information about the bus cycle operation of the processor. The emulator gives you control over target system execution and allows you to view or modify the contents of processor registers, target system memory, and I/O resources.

Introduction 1-1

Figure 1-1. HP 64756/7 Emulator for uPD70136/70236

1-2 Introduction

Features of the 70136 Emulator	This section introduces you to the features of the emulator. The chapters which follow show you how to use these features.
Supported Microprocessors	The 70136 emulator probe has a 68-pin PLCC connector. Also provided is the adapter, HP PART No. 64756-61612, that will allow the PLCC probe to connect to the NEC EV-9200G-74 socket which replaces the 74-pin QFP package of 70136 microprocessor.
	The HP 64756 emulator supports the following packages of 70136 microprocessor.
	■ 68-pin PLCC
	 68-pin PGA (With using PLCC to PGA adapter; refer to the "In-Circuit Emulation Topics" chapter in this manual)
	 74-pin QFP (With using PLCC to QFP adapter (HP PART No. 64756-61612) and NEC EV-9200G-74 socket)
	The 70236 and 70236A emulator probe has an 132-pin PGA connector. Also provided is the NEC EV-9500GD-120 adapter that will allow the PGA probe to connect to the NEC EV-9200GD-120 socket which replaces the 120-pin QFP package of 70236 microprocessor.
	The HP 64757 emulator supports the following packages of 70236 or 70236A microprocessor.
	■ 132-pin PGA

 120-pin QFP (With using NEC EV-9500GD-120 adapter and NEC EV-9200GD-120 socket)

Clock Speeds	The 70136 emulator runs with an internal clock speed of 16 MHz (system clock), or with target system clocks from 2-16 MHz.
	The 70236 emulator runs with an internal clock speed of 16 MHz (system clock), or with target system clocks from 4-32 MHz.
	The 70236A emulator runs with an internal clock speed of 16 MHz (system clock), or with target system clocks from 4-40 MHz.
Emulation memory	The HP 70136 emulator is used with one of the following Emulation Memory Cards.
	 HP 64726 128K byte Emulation Memory Card HP 64727 512K byte Emulation Memory Card HP 64728 1M byte Emulation Memory Card HP 64729 2M byte Emulation Memory Card
	You can define up to 16 memory ranges (at 256 byte boundaries and at least 256 byte in length). The monitor occupies 4K bytes leaving 124K, 508K, 1020K or 2044K bytes of emulation memory which you may use.You can characterize memory ranges as emulation RAM, emulation ROM, target system RAM, target system ROM, or guarded memory. The emulator generates an error message when accesses are made to guarded memory locations. You can also configure the emulator so that writes to memory defined as ROM cause emulator execution to break out of target program execution.
Analysis	The HP 70136 emulator is used with one of the following analyzers which allows you to trace code execution and processor activity.
	 HP 64704 80-channel Emulation Bus Analyzer HP 64703 64-channel Emulation Bus Analyzer and 16-channel State Timing Analyzer HP 64794A/C/D Deep Emulation Bus Analyzer
	When you use the HP 70236A emulator over 16MHz, you have to use the HP 64794 Deep Emulation Bus Analyzer.
	The Emulation Bus Analyzer monitors the emulation processor using an internal analysis bus. The HP 64703 64-channel Emulation Bus Analyzer and 16-channel State/Timing Analyzer allows you to probe up to 16 different lines in your target system.

1-4 Introduction

Registers	You can display or modify the 70136 internal register contents.
Single-Step	You can direct the emulation processor to execute a single instruction or a specified number of instructions.
Breakpoints	You can set up the emulator/analyzer interaction so that when the analyzer finds a specific state, emulator execution will break to the background monitor.
	You can also define software breakpoints in your program. The emulator uses one of 70136 undefined opcode (F1 hex) as software breakpoint interrupt instruction. When you define a software breakpoint, the emulator places the breakpoint interrupt instruction (F1 hex) at the specified address; after the breakpoint interrupt instruction causes emulator execution to break out of your program, the emulator replaces the original opcode.
Reset Support	The emulator can be reset from the emulation system under your control, or your target system can reset the emulation processor.
Configurable Target System Interface	You can configure the emulator so that it honors target system wait requests when accessing emulation memory. You can configure the emulator so that it presents cycles to, or hides cycles from, the target system when executing in background.

Foreground or Background Emulation Monitor	The emulation monitor is a program that is executed by the emulation processor. It allows the emulation controller to access target system resources. For example, when you display target system memory, it is the monitor program that executes 70136 instructions which read the target memory locations and send their contents to the emulation controller.
	The monitor program can execute in <i>foreground</i> , the mode in which the emulator operates as would the target processor. The foreground monitor occupies processor address space and executes as if it were part of the target program.
	The monitor program can also execute in <i>background</i> , the emulator mode in which foreground operation is suspended so that emulation processor can be used to access target system resources. The background monitor does not occupy any processor address space.
Real-Time Operation	Real-time operation signifies continuous execution of your program without interference from the emulator. (Such interference occurs when the emulator temporarily breaks to the monitor so that it can access register contents or target system memory or I/O.)
	You can restrict the emulator to real-time execution. When the emulator is executing your program under the real-time restriction, commands which display/modify registers, display/modify target system memory or I/O, or single-step are not allowed.
Easy Products Upgrades	Because the HP 64700 Series development tools (emulator, analyzer, LAN board) contain programmable parts, it is possible to reprogram the firmware and some of the hardware without disassembling the HP 64700A/B Card Cage. This means that you'll be able to update product firmware, if desired, without having to call an HP field representative to your site.

1-6 Introduction

Limitations, Restrictions

DMA Support	In the 70136 Emulator, Direct memory access to the emulation memory by DMA controller is not permitted.
	In the 70236 and the 70236A Emulator, Direct memory access to the emulator by external DMA controller is not permitted.
User Interrupts	If you use the background monitor in the 70136 emulator, interrupts are suspended or ignored during background operation. NMI is suspended until the emulator goes into foreground operation. INT interrupt is ignored.
	If you use the background monitor in the 70236 and the 70236A emulator, interrupts from target system are suspended during background operation. NMI, and INTPO-INTP7 are suspended until the emulator goes into foreground operation.
Interrupts While Executing Step Command	While executing user program code in stepping in the foreground monitor, interrupts are accepted if they are enabled in the foreground monitor program. When using the foreground monitor you will see the following error message, if the interrupts are acknowledged before stepping user program code.
	ERROR: Stepping failed
	Although the error message above appears, the code is executed as you expected to do.
Accessing Internal I/O Registers	When you access internal I/O registers of the emulator, you should use the "display/modify register" command with their register name instead of the "display/modify io_port" command.

Introduction 1-7

PC relative addressing in trace list	When you use the following setting in your program, the branch address forming in PC relative addressing may change to a wrong value only in disassemble list.
	 The program is running in the extended address mode. The effective address for the PC relative addressing is in the other page. The order of the pages is not in sequence in extended address.
"BRKXA" and "RETXA" Instructions in Stepping	When the "BRKXA" and "RETXA" instructions are executed in stepping, the emulator reads memory for disassembly after stepping. When you execute "BRKXA" instruction in stepping, the normal address where the "BRKXA" instruction is located is extended to read memory for disassemble after stepping. When you execute "RETXA" instruction in stepping, the normal address which is extended to point the "RETXA" instruction is not extended to read memory for disassemble after stepping.
Stepping at Software Breakpoint	When you execute step commands in the foreground monitor, you should not step at the address which the "Software Breakpoint" was set; the stepping will be failed. ERROR: Stepping failed
Evaluation Chip	Hewlett-Packard makes no warranty of the problem caused by the 70136/70236/70236A Evaluation chip in the emulator.

1-8 Introduction

Getting Started

Introduction

This chapter will lead you through a basic, step by step tutorial that shows how to use the HP 64756 emulator for the 70136 microprocessor.

This chapter will:

- Describe the sample program used for this chapter's examples.
- Show you how to use the "help" facility.
- Show you how to use the memory mapper.
- Show you how to enter emulation commands to view execution of the sample program. The commands described in this chapter include:
 - Displaying and modifying memory
 - Stepping
 - Displaying registers
 - Defining macros
 - Searching memory
 - Running
 - Breaking
 - Using software breakpoints
 - Copying memory
 - Testing coverage

Before You Begin	Before beginning the tutorial presented in this chapter, you must have completed the following tasks:
_	1. Completed hardware installation of the HP64700 emulator in the configuration you intend to use for your work:
	 Standalone configuration Transparent configuration Remote configuration Local Area Network configuration
	References: HP 64700 Series Installation/Service manual
	2. If you are using the Remote configuration, you must have completed installation and configuration of a terminal emulator program which will allow your host to act as a terminal connected to the emulator. In addition, you must start the terminal emulator program before you can work the examples in this chapter.
	3. If you have properly completed steps 1 and 2 above, you should be able to hit <return> (or <enter> on some keyboards) and get one of the following command prompts on your terminal screen:</enter></return>
	U> R> M>
	If you do not see one of these command prompts, retrace your steps through the hardware and software installation procedures outlined in the manuals above, verifying all connections and procedural steps.
	In any case, you must have a command prompt on your terminal screen before proceeding with the tutorial.
A Look at the Sample Program	The sample program used in this chapter is listed in figure 2-1. The program emulates a primitive command interpreter.

2-2 Getting Started

\$MODV33 \$OPTIMIZE NAME cmd_rds PUBLIC Msgs, Init, Cmd_Input, Msg_Dest SEGMENT PARA COMMON 'COMN' COMN ;***** **** Cmd_Input DB ? ; Destination of the command message. Msg_Dest DB 20H DUP (?) EVEN DW 6FH DUP (?) ; Stack area. LABEL WORD Stk COMN ENDS SEGMENT PARA PUBLIC 'DATA' DATA Msgs LABEL BYTE "Command A entered " Msg_A DB DB DB "Command B entered " Msg_B "Invalid Command Msg_I LABEL BYTE End_Msgs DATA ENDS CODE SEGMENT PARA PUBLIC 'CODE' ; The following instructions initialize segment ; regsiters and set up the stack pointer. MOV Init: AW, DATA MOV DS0,AW MOV AW, COMN Read_Cmd: MOV Cmd_Input,0 ; Read command input byte. If no command has been ; entered, continue to scan for command input. Scan: MOV AL, Cmd_Input یں , Cn AL , O CMP BE Scan ; A command has been entered. Check if it is

Figure 2-1. Sample Program Listing

Getting Started 2-3

```
; command A, command B, or invalid.
                    * * * * * * * * * * * * * * * * *
Exe_Cmd:
        CMP
           AL,41H
            Cmd_A
        BE
; Command A is entered. CW = the number of bytes in ; message A. BP = location of the message. Jump to
; the routine which writes the message.
                      *****
; Command B is entered.
; An invalid command is entered.
Cmd_I: MOV CW,End_Msgs-Msg_I
; Message is written to the destination.
Write_Msg: MOV IY,OFFSET Msg_Dest
******
; The rest of the destination area is filled
; with zeros.
Fill_Dest:
       XOR
            AL,AL
           AL,AL
CW,OFFSET Msg_Dest+20H
        MOV
        SUB
            CW,IY
BR
           Read_Cmd
CODE ENDS
        END
            Init
```

Figure 2-1. Sample Program Listing (Cont'd)

2-4 Getting Started

Data Declarations

The area at DATA segment defines the messages used by the program to respond to various command inputs. These messages are labeled **Msg_A**, **Msg_B**, and **Msg_I**.

Initialization

The program instructions from the **Init** label to the **Read_Cmd** label perform initialization. The segment registers are loaded and the stack pointer is set up.

Reading Input

The instruction at the **Read_Cmd** label clears any random data or previous commands from the **Cmd_Input** byte. The **Scan** loop continually reads the **Cmd_Input** byte to see if a command is entered (a value other than 0H).

Processing Commands

When a command is entered, the instructions from **Exe_Cmd** to **Cmd_A** determine whether the command was "A", "B", or an invalid command.

If the command input byte is "A" (ASCII 41H), execution is transferred to the instructions at **Cmd_A**.

If the command input byte is "B" (ASCII 42H), execution is transferred to the instructions at **Cmd_B**.

If the command input byte is neither "A" nor "B", an invalid command has been entered, and execution is transferred to the instructions at **Cmd_I**.

The instructions at **Cmd_A**, **Cmd_B**, and **Cmd_I** each load register CW with the length of the message to be displayed and register IX with the starting location of the appropriate message. Then, execution transfers to **Write_Msg** which writes the appropriate message to the destination location, **Msg_Dest**.

After the message is written, the instructions at **Fill_Dest** fill the remaining destination locations with zeros. (The entire destination area is 20H bytes long.) Then, the program jumps back to read the next command.

The Destination Area

The area at COMN segment declares memory storage for the command input byte, the destination area, and the stack area.

The program emulates a primitive command interpreter.

2-6 Getting Started

Using the "help" Facility

The HP 64700 Series emulator's Terminal Interface provides an excellent help facility to provide you with quick information on the various commands and their options. From any system prompt, you can enter "**help**" or "?" as shown below.

R>**help**

help – display help i	Information
help <group> help -s <group> help <command/> help</group></group>	 print help for desired group print short help for desired group print help for desired command print this help screen
VALID <group> NAME</group>	ES
gram - system gr	rammar
proc - processor	r specific grammar
sys - system co	ommands
emul - emulation	1 commands
trc - analyzer	trace commands
xtrc - external	trace analysis commands
* - all comma	and groups

Commands are grouped into various classes. To see the commands grouped into a particular class, you can use the help command with that group. Viewing the group help information in short form will cause the commands or the grammar to be listed without any description.

Getting Started 2-7

For example, if you want to get some information for group gram, enter "**help gram**". Following help information should be displayed.

```
R>help gram
```

```
gram - system grammar
--- SPECIAL CHARACTERS ---
  # - comment delimiter ; - command separator Ctl C - abort signal
{} - command grouping "" - ascii string `` - ascii string
Ctl R - command recall Ctl B - recall backwards
--- EXPRESSION EVALUATOR ---
  number bases: t-ten y-binary q-octal o-octal h-hex
  repetition and time counts default to decimal - all else default to hex
                                   & < < > > - + %
  operators:
                   ()
                            * /
                                                                        & &
--- PARAMETER SUBSTITUTION ---
  &token& - pseudo-parameter included in macro definition

    cannot contain any white space between & pairs
    performs positional substitution when macro is invoked

  Example
     Macro definition: mac getfile={load -hbs"transfer -t &file&"}
     Macro invocation: getfile MYFILE.o
```

Help information exists for each command. Additionally, there is help information for each of the emulator configuration items.

Becoming Familiar with the System Prompts

A number of prompts are used by the HP 64700 Series emulators. Each of them has a different meaning, and contains information about the status of the emulator before and after the commands execute. These prompts may seem cryptic at first, but there are two ways you can find out what a certain prompt means if you are not familiar with it.

Using "help proc" to View Prompt Description

The first way you can find information on the various system prompts is to look at the **proc** help text.

R>help proc

2-8 Getting Started

```
Address format -----
Memory address -- 32 bit (seg:off) logical or 20 bit physical (@p) or 24 bit extended (@e) address
IO address -- 16 bit address
--- Emulation Prompt Status Characters ---
U - running user code M - running in monitor
c - slow clock w - waiting for target ready line
R - emulation reset r - target reset
h - halted g - bus grant
b - slow bus cycle W - awaiting CMB ready
T - awaiting target reset ? - unknown state
--- Analyzer STATUS Field Equates ---
memrd - memory read memwr - memory write
iord - I/O read iowr - I/O write
fetch - fetch cycle exec - first instruction byte
mem - memory access io - I/O access
read - read cycle write - write cycle
intack - interrupt ack haltack - halt ack
cprd - coproc read cpwr - coproc write
memrdcp - mem rd for cp memwrcp - mem wr for cp
coproc - coproc cycle memforcp - memory cycle for cp
bs8 - bus size 8 bs16 - bus size 16
muladdr - normal address extaddr - extended address
grd - guarded access wrrom - write to ROM
holdack - hold ack mon - monitor cycle
```

Using the Emulation Status Command (es) for Description of Current Prompt

When using the emulator, you will notice that the prompt changes after entering certain commands. If you are not familiar with a new prompt and would like information about that prompt only, enter the **es** (emulation status) command for more information about the status of the emulator.

U>es

N70136--Running user program

Initializing the Emulator

If you plan to follow this tutorial by entering commands on your emulator as shown in this chapter, verify that no one else is using the emulator. To initialize the emulator, enter the following command:

R>**init**

Limited initialization completed

The **init** command with no options causes a limited initialization, also known as a warm start initialization. Warm start initialization does not affect system configuration. However, the **init** command will reset emulator and analyzer configurations. The **init** command:

- Resets the memory map.
- Resets the emulator configuration items.
- Resets the break conditions.
- Clears software breakpoints.

The init command does not:

- Clear any macros.
- Clear any emulation memory locations; mapper terms are deleted, but if you respecify the mapper terms, you will find that the emulation memory contents are the same.

Other Types of Initialization

There are two options to the **init** command which specify other types of initializations. The **-p** option specifies a powerup initialization, also known as a cold start initialization. The cold start initialization sequence includes the emulator, analyzer, system controller, and communications port initialization; additionally, performance verification tests are run.

The **-c** option also specifies a cold start initialization, except that performance verification tests are not run.

2-10 Getting Started

Mapping Memory

Depending on the memory board, emulation memory consists of 128K, 512K, 1M or 2M bytes, mappable in 256 byte blocks. The monitor occupies 4K bytes, leaving 124K, 508K, 1020K or 2044K bytes of emulation memory which you may use. The emulation memory system does not introduce wait states.

When you use the NEC uPD72291 coprocessor on your target system connected to 70136 microprocessor, the uPD72291 can access 70136 emulation memory on coprocessor memory read/write cycles.

In this case, you should reset the target system to connect the 70136 emulator to the uPD72291 coprocessor before starting emulation session.

Refer to "In-Circuit Emulation Topics" chapter for more information about accesses to emulation memory.

The memory mapper allows you to characterize memory locations. It allows you specify whether a certain range of memory is present in the target system or whether you will be using emulation memory for that address range. You can also specify whether the target system memory is ROM or RAM, and you can specify that emulation memory be treated as ROM or RAM.

Note

Target system accesses to emulation memory are not allowed. Target system devices that take control of the bus (for example, DMA controllers) cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory. Guarded memory accesses will generate "break to monitor" requests. Writes to ROM will generate "break to monitor" requests if the **rom** break condition is enabled. Memory is mapped with the **map** command. To view the memory mapping options, enter:

M>help map

Enter the **map** command with no options to view the default map structure.

M>map

```
# remaining number of terms : 16
# remaining emulation memory : 1f000h bytes
map other tram
```

2-12 Getting Started

Which Memory Locations Should be Mapped?

Typically, assemblers generate relocatable files and linkers combine relocatable files to form the absolute file. The linker load map listing will show what memory locations your program will occupy in memory. A linker load map listing for the sample program is shown below.

Command line: ldv33 -h -L -o cmd_rds.XCommand line: ldv33 -c cmd_rds.k -h -L -o cmd_rds.X SEG /CODE=400h SEG /DATA=600h SEG /COMN=800h LOAD cmd_rds.o END OUTPUT MODULE NAME: cmd_rds OUTPUT MODULE FORMAT: HP64000 absolute MODULE SUMMARY MODULE SEGMENT CLASS HP SECTION START END cmd_rds /users/jlomktg/miizuka/emul/V53A/termdemo/cmd_rds.o CODE PROG 00400 0044D CODE COMN COMN 00800 008FF DATA DATA COMMON 00600 00635 DATA SEGMENT SUMMARY SEGMENT GROUP START END LENGTH ALIGNMENT COMBINE CLASS 0004E CODE CODE 00400 0044D Paragraph Public DATA DATA 00600 00635 00036 Paragraph Public COMN COMN 00800 008FF 00100 Paragraph Common ??SEG 00000 00000 00000 Paragraph Public ??DATA1 ??INIT 00000 00002 00003 Byte Common

From the load map listing, you can see that the sample program occupies three address range. The program area, which contains the opcodes and operands which make up the sample program, occupies locations 400 through 44D hex. The data area, which contains the ASCII values of the messages the program transfers, is occupies locations 600 through 635 hex. The destination area, which contains the command input byte and the locations of the message destination, occupies locations 800 through 8FF hex.

Getting Started 2-13

Since the program writes to the destination locations, the mapper block of destination area should not be characterized as ROM memory. Enter the following command to map memory for the sample program, and display the memory map.

R>map 0..7ff erom R>map 800..9ff eram R>map

remaining number of terms : 14
remaining emulation memory : 1e600h bytes
map 000000@e..00007ff@e erom # term 1
map 0008000@e..00009ff@e eram # term 2
map other tram

When mapping memory for your target system programs, you may wish to characterize emulation memory locations containing programs and constants (locations which should not be written to) as ROM. This will prevent programs and constants from being written over accidentally, and will cause breaks when instructions or commands attempt to do so (if the **rom** break condition is enabled).

Getting the Sample Program into Emulation Memory

This section assumes you are using the emulator in one of three configurations:

- 1. Connected only to a terminal, which is called the *standalone* configuration. In the standalone configuration, you must modify memory to load the sample program.
- 2. Connected between a terminal and a host computer, which is called the *transparent* configuration. In the transparent configuration, you can load the sample program by downloading from the "other" port.

2-14 Getting Started

3. Connected to a host computer and accessed via a terminal emulation program (for example, the terminal window of the PC Interface). Configurations in which the emulator is connected to, and accessed from, a host computer are called *remote* configurations. In the remote configuration, you can load the sample program by downloading from the same port.

Standalone Configuration

If you are operating the emulator in the standalone configuration, the only way to get the sample program into emulation memory is by modifying emulation memory locations with the **m** (memory display/modification) command.

You can enter the sample program into memory with the **m** command as shown below.

```
R>m -db 400=0b8,60,0,8e,0d8,0b8,80,0,8e,0c0,8e,0d0,0bc,0,1
R>m -db 40f=26,0c6,6,0,0,0,90,26,0a0,0,0,3c,0,74,0f8
R>m -db 41e=3c,41,74,7,3c,42,74,0a,0eb,10,0b9
R>m -db 429=12,0,0be,0,0,0eb,0e,0b9,12,0,0be,12,0,0be,06,0b9,12,0
R>m -db 43b=0be,24,0,0bf,1,0,0f3,0a4,32,0c0,0b9
R>m -db 446=21,0,2b,0cf,0f3,0aa,0eb,0c1
R>m -db 600="Command A entered Command B entered Invalid command
```

After entering the opcodes and operands, you would typically display memory in mnemonic format to verify that the values entered are correct (see the example below). If any errors exist, you can modify individual locations. Also, you can use the **cp** (copy memory) command if, for example, a byte has been left out, but the locations which follow are correct.

Note

Be careful about using this method to enter programs from the listings of relocatable source files. If source files appear in relocatable sections, the address values of references to locations in other relocatable sections are not resolved until link-time. The correct values of these address operands will not appear in the assembler listing.

Transparent Configuration

If your emulator is connected between a terminal and a host computer, you can download programs into memory using the **load** command with the **-o** (from other port) option. The **load** command will accept absolute files in the following formats:

- HP absolute.
- Intel hexadecimal.
- Tektronix hexadecimal.
- Motorola S-records.

The examples which follow will show you the methods used to download HP absolute files and the other types of absolute files.

HP Absolutes

Downloading HP format absolute files requires the **transfer** protocol. The example below assumes that the **transfer** utility has been installed on the host computer (HP 64884 for HP 9000 Series 500, or HP 64885 for HP 9000 Series 300).

Notice that the transfer command on the host computer is terminated with the <ESCAPE>g characters; by default, these are the characters which temporarily suspend the transparent mode to allow the emulator to receive data or commands.

```
R>load -hbo <RETURN> <RETURN>
$ transfer -rtb cmd_rds.X <ESCAPE>g
#####
R>
```

Other Supported Absolute Files

The example which follows shows how to download Intel hexadecimal files, but the same method (and a different **load** option) can be used to load Tektronix hexadecimal and Motorola S-record files as well.

2-16 Getting Started
R>load -io <RETURN> <RETURN> \$ cat ihexfile <ESCAPE>g

######
Data records = 00003 Checksum error = 00000
R>

Remote Configuration

If the emulator is connected to a host computer, and you are accessing the emulator from the host computer via a terminal emulation program, you can also download files with the **load** command. However, in the remote configuration, files are loaded from the same port that commands are entered from. For example, if you wish to download a Tektronix hexadecimal file from a Vectra personal computer, you would enter the following commands.

R>load -t <RETURN>

After you have entered the **load** command, exit from the terminal emulation program to the MS-DOS operating system. Then, copy your hexadecimal file to the port connected to the emulator, for example:

C:\copy thexfile com1: <RETURN>

Now you can return to the terminal emulation program and verify that the file was loaded.

Displaying Memory In Mnemonic Format

Once you have loaded a program into the emulator, you can verify that the program has indeed been loaded by displaying memory in mnemonic format.

R>m -dm 400..44d

000400@p 000403@p 000408@p 00040f@p 000415@p 000416@p 00041a@p 00041c@p 00041e@p _ 000420@p 000422@p 000424@p _ 000426@p 000428@p 00042b@p _ 00042e@p 000430@p _ 000433@p 000436@p _ 000438@p 00043b@p _ 00043e@p 000441@p 000443@p 000445@p _ 000448@p _ 00044a@p 00044c@p _

MOV AW, #0060 MOV DS0,AW MOV AW, #0080 MOV DS1,AW MOV SS, AW | MOV SP, #010 MOV DS1:0000,#00 NOP MOV AL, DS1:0000 CMP AL,#00 BE/Z 000416 CMP AL,#41 BE/Z 000428 CMP AL,#42 BE/Z 000430 BR SHORT 000438 MOV CW,#0012 MOV IX,#0000 BR SHORT 00043e MOV CW,#0012 MOV IX,#0012 BR SHORT 00043e MOV CW, #0012 MOV IX,#0024 MOV IY,#0001 REP/E/Z MOVBKB XOR AL,AL MOV CW, #0021 SUB CW, IY REP/E/Z STMB BR SHORT 00040f

If you display memory in mnemonic format and do not recognize the instructions listed or see some illegal instructions or opcodes, go back and make sure the memory locations you are trying to display have been mapped. If the memory map is not the problem, recheck the linker load map listing to verify that the absolute addresses of the program agree with the locations you are trying to display.

2-18 Getting Started

Stepping Through the Program

The emulator allows you to execute one instruction or a number of instructions with the s (step) command. Enter the **help s** to view the options available with the step command.

R>help s

s - step emulation processor s - step one from current PC s <count> - step <count> from current PC s <count> \$ - step <count> from current PC s <count> <addr> - step <count> from <addr> s -q <count> <addr> - step <count> from <addr>, quiet mode s -w <count> <addr> - step <count> from <addr>, whisper mode --- NOTES ---STEPCOUNT MUST BE SPECIFIED IF ADDRESS IS SPECIFIED! If <addr> is not specified, default is to step from current PC. A <count> of 0 implies step forever.

MOV AW, #0060

A step count of 0 will cause the stepping to continue "forever" (until some break condition, such as "write to ROM", is encountered, or until you enter <<u>CTRL>c</u>). The following command will step from the first address of the sample program.

R>s 1 0:400

00000:00400 -PC = 00000:00403

There are a few cases in which the emulator can not step. Step command is not accepted between each of the following instructions and the next instruction. 1) Manipulation instructions for sreg: MOV sreg,reg16; MOV sreg,mem16; POP sreg. 2) Prefix instructions: PS:, SS:, DS0:, DS1:, REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ, BUSLOCK. 3) EI, RETI, DI.

Displaying Registers

The step command shown above executed a MOV AW,#0060H instruction. Enter the following command to view the contents of the registers.

M>reg *

reg ps=0000 pc=0403 psw=f002 aw=0060 bw=4ec0 cw=0000 dw=ff80 sp=0fff bp=1566 reg ix=fffd iy=0180 ds0=0000 ds1=0000 ss=0000

The register contents are displayed in a "register modify" command format. This allows you to save the output of the **reg** command to a command file which may later be used to restore the register contents. (Refer to the **po** (port options) command description in the *Terminal Interface: User's Reference* for more information on command files.)

You can also display page registers. Refer to the "70136 Emulator Specific Command Syntax" appendix for more information on the register names and classes.

Combining Commands

More than one command may be entered in a single command line if the commands are separated by semicolons (;). For example, you could execute the next instruction(s) and display the registers by entering the following.

M>**s;reg**

00000:00403 - MOV DS0,AW | MOV AW,#0080 PC = 00000:00408 reg ps=0000 pc=0408 psw=f002 aw=0080 bw=4ec0 cw=0000 dw=ff80 sp=0fff bp=1566 reg ix=fffd iy=0180 ds0=0060 ds1=0000 ss=0000

The sample above shows you that MOV DS0,AW and MOV AW,#0080H are executed by step command. Refer to the Note above.

Using Macros Suppose you want to continue stepping through the program, displaying registers after each step. You could continue entering s command followed by **reg** command, but you may find this tiresome. It is easier to use a macro to perform a sequence of commands which will be entered again and again.

Macros allow you to combine and store commands. For example, to define a macro which will display registers after every step, enter the following command.

M>mac st={s;reg}

Once the **st** macro has been defined, you can use it as you would any other command.

M>st

s ; reg 00000:00408 - MOV DS1,AW | MOV SS,AW | MOV SP,#0100 PC = 00000:0040f reg ps=0000 pc=040f psw=f002 aw=0080 bw=4ec0 cw=0000 dw=ff80 sp=0100 bp=1566 reg ix=fffd iy=0180 ds0=0060 ds1=0080 ss=0080

Command Recall

The command recall feature is yet another, easier way to enter commands again and again. You can press <CTRL>r to recall the commands which have just been entered. If you go past the command of interest, you can press <CTRL>b to move forward through the list of saved commands. To continue stepping through the sample program, you could repeatedly press <CTRL>r to recall and <RETURN> to execute the **st** macro.

Repeating Commands

The **rep** command is also helpful when entering commands repetitively. You can repeat the execution of macros as well commands. For example, you could enter the following command to cause the **st** macro to be executed four times.

M>rep 4 st

s ; reg 00000:0040f MOV DS1:0000,#00 PC = 00000:00415reg ps=0000 pc=0415 psw=f002 aw=0080 bw=4ec0 cw=0000 dw=ff80 sp=0100 bp=1566 reg ix=fffd iy=0180 ds0=0060 ds1=0080 ss=0080 # s ; reg 00000:00415 NOP PC = 00000:00416reg ps=0000 pc=0416 psw=f002 aw=0080 bw=4ec0 cw=0000 dw=ff80 sp=0100 bp=1566 reg ix=fffd iy=0180 ds0=0060 ds1=0080 ss=0080 # s ; reg 00000:00416 MOV AL, DS1:0000 PC = 00000:0041areg ps=0000 pc=041a psw=f002 aw=0000 bw=4ec0 cw=0000 dw=ff80 sp=0100 bp=1566 reg ix=fffd iy=0180 ds0=0060 ds1=0080 ss=0080 # s ; reg 00000:0041a CMP AL, #00 PC = 00000:0041creg ps=0000 pc=041c psw=f046 aw=0000 bw=4ec0 cw=0000 dw=ff80 sp=0100 bp=1566 reg ix=fffd iy=0180 ds0=0060 ds1=0080 ss=0080

Command Line Editing

The terminal interface supports the use of HP-UX **ksh(1)**-like editing of the command line. The default is for the command line editing feature to be disabled to be compatible with earlier versions of the interface. Use the **cl** command to enable command line editing.

M>cl -e

Refer to "Command Line Editing" in the *HP 64700-Series Emulators Terminal Interface Reference* for information on using the command line editing feature.

Modifying Memory	The preceding step and register commands show the sample program is executing Scan loop, where it continually reads the command input			
	byte to check if a command had been entered. Use the \mathbf{m} (memory) command to modify the command input byte.			
	M>m 800=41 To verify that 41H has been written to 800H, enter the following command.			
000800@p000800@p 41	M>m -db 800			
	When memory was displayed in byte format earlier, the display mode was changed to "byte". The display and access modes from previous commands are saved and they become the defaults.			
Specifying the Access and Display Modes	There are a couple different ways to modify the display and access modes. One is to explicitly specify the mode with the command you are entering, as with the command m -db 800. The mo (display and access mode) command is another way to change the default mode. For example, to display the current modes, define the display mode as "word", and redisplay 800H, enter the following commands.			
	M>mo			
mo -ab -db	Mamo -du			
	M>m 800			
000800@p000800@p 0041				
	No manual set of program.			
	M>L U>			
	Display the Msg_Dest memory locations (destination of the message, 801H) to verify that the program moved the correct ASCII bytes. At this time we want to see correct byte value, so "-db" option (display with byte) is used.			
000801@p000810@p 43 6f 6d 000811@p000820@p 64 20 00	U>m -db 801820 1 6d 61 6e 64 20 41 20 65 6e 74 65 72 65 00 00 00 00 00 00 00 00 00 00 00 00 00			

Searching Memory for Data	The ser (search memory for data) command is another way to verify that the program did what it was supposed to do.			
pattern match at address: (U>ser 800820="Command A entered " 000801@p If any part of the data specified in the ser command is not found, no match is displayed (No message displayed).			
Breaking into the Monitor	You can use the break command (b) command to generate a break to the background monitor. While the break will occur as soon as possible, the actual stopping point may be many cycles after the break request (depend on the type of instruction being executed and whether the processor is in a hold state). U> b M>			
Using Software Breakpoints	You can stop program execution at specific address by using bp (software breakpoint) command. When you define or enable a software breakpoint to a specified address, the emulator will replace the opcode with one of 70136 undefined opcode (F1 hex) as breakpoint interrupt instruction. When the emulator detects the breakpoint interrupt instruction (F1 hex), user program breaks to the monitor, and the original opcode will be replaced at the software breakpoint address. A subsequent run or step command will execute from this address.			
	If the breakpoint interrupt instruction (F1 hex) was not inserted as the result of bp command (in other words, it is part of the user program), the "Undefined software breakpoint" message is displayed.			

2-24 Getting Started

Caution	Software breakpoints should not be set, enabled, disabled, or removed while the emulator is running user code. If any of these commands are entered while the emulator is running user code, and the emulator is executing code in the area where the breakpoint is being modified, program execution may be unreliable.
Caution	When you use extended address mode, care should be taken for software breakpoints. If you change the relation between the physical address and the extended address after you set a software breakpoint (ex. change address mode or change the contents of the page register), emulation system may not recognize the software breakpoint.
	In this case, the breakpoint interrupt instruction (F1 hex) is left in memory and the software break will not occur at the specified address. When you set a software breakpoint with using symbols, you also should not change the relation between the physical address and the extended address after setting a software breakpoint.
Note	You must only set software breakpoints at memory locations which contain instruction opcodes (not operands or data). If a software breakpoint is set at a memory location which is not an instruction opcode, the software breakpoint instruction will never be executed and the break will never occur.
Note	NMI will be ignored, when software breakpoint and NMI occur at the same time.

Getting Started 2-25

Note	 Because software breakpoints are implemented by replacing opcodes with the breakpoint interrupt code (F1 hex), you cannot define software breakpoints in target ROM. You can, however, copy target ROM into emulation memory (see the "Target ROM Debug Topics" section of the "In-Circuit Emulation" chapter).

Note

Software breakpoint will be ignored, when software breakpoint and other emulation break (for example, break command (**b**), simple trigger command (**tg**), etc.) occur at the same time. Refer to *HP 64700 Emulators Terminal Interface: User's Reference* manual.

Displaying and Modifying the Break Conditions

Before you can define software breakpoints, you must enable software breakpoints with the **bc** (break conditions) command. To view the default break conditions and change the software breakpoint condition, enter the **bc** command with no option. This command displays current configuration of break conditions.

M>bc

bc	-d	bp #di	sable
bc	-e	rom #e	nable
bc	-d	bnct #	disable
bc	-d	cmbt #	disable
bc	-d	trigl	#disable
bc	-d	trig2	#disable

To enable the software break point feature enter

M>bc -e bp

Defining a Software Breakpoint

Now that the software breakpoint feature is enabled, you can define software breakpoints. Enter the following command to break on the address of the Cmd_I (address 438H) label.

M>**bp 438** M>**bp**

bp 000438@p #enabled

Run the program, and verify that execution broke at the appropriate address.

M>r 0:400 U>m 800=43

!ASYNC_STAT 615! Software breakpoint: 00000:000438

M>st

s;reg 00000:00438 - MOV CW,#0012 PC = 00000:0043b reg ps=0000 pc=043b psw=f002 aw=0043 bw=0000 cw=0012 dw=ff80 sp=0100 bp=0000 reg ix=0012 iy=0021 ds0=0060 ds1=0080 ss=0080

When a breakpoint is hit, it becomes disabled. You can use the **-e** option to the **bp** command to re-enable the software breakpoint.

M>bp

BREAKPOINT FEATURE IS ENABLED
bp 000438@p #disabled

M>bp -e 438

M>bp ### BREAKPOINT FEATURE IS ENABLED ### bp 000438@p #enabled

M>r

U>m 800=43

!ASYNC_STAT 615! Software breakpoint: 000438@p

M>bp

BREAKPOINT FEATURE IS ENABLED
bp 000438@p #disabled

Refer to the "ADDRESS" and "ADDRESS_EXPRESSION" section in the "70136 Emulator Specific Command Syntax" appendix.

Using the Analyzer

Predefined Trace Labels

Three trace labels are predefined in the 70136 emulator. You can view these labels by entering the **tlb** (trace label) command with no options.

M>tlb

Emulation trace labels
tlb addr 0..23
tlb data 24..39
tlb stat 40..53

Predefined Status Equates

Common values for the 70136 status trace signals have been predefined. You can view these predefined equates by entering the **equ** command with no options.

M>equ

###	Equates	#‡	ŧ#				
equ	bs16	=	0xx	xx1x	XXXX	xxxxy	;bus size 16
equ	bs8	=	0xx	xx0x	XXXX	xxxxy	;bus size 8
equ	coproc	=	$0 \ge 0$	XXXX	x101	x0xxy	;co-processor access
equ	cprd	=	$0 \ge 0$	xxxx	x101	x01xy	;co-processor read
equ	cpwr	=	$0 \ge 0$	XXXX	x101	x00xy	;co-processor write
equ	exec	=	$0 \ge 0$	XXXX	x0xx	xxxxy	;executed code
equ	extaddr	=	0 xx	1xxx	XXXX	xxxxy	;extended address mode
equ	fetch	=	$0 \ge 0$	xxxx	1100	x11xy	;program fetch
equ	grd	=	0xx	XXXX	0xxx	x1xxy	;guarded access
equ	haltack	=	$0 \ge 0$	xxxx	x111	x00xy	;halt acknowledge
equ	holdack	=	0x1	XXXX	XXXX	xxxxy	;hold acknowledge
equ	intack	=	$0 \ge 0$	XXXX	x100	x01xy	;interrupt acknowledge
equ	io	=	$0 \ge 0$	xxxx	x110	x0xxy	;I/O access
equ	iord	=	$0 \ge 0$	XXXX	x110	x01xy	;I/O read
equ	iowr	=	$0 \ge 0$	xxxx	x110	x00xy	;I/O write
equ	mem	=	$0 \ge 0$	xxxx	1110	xlxxy	memory access
equ	memforcp)=	$0 \ge 0$	XXXX	1101	x1xxy	;memory access for cp
equ	memrd	=	$0 \ge 0$	XXXX	1110	xllxy	;memory read
equ	memrdcp	=	$0 \ge 0$	xxxx	1101	xllxy	;memory read for cp
equ	memwr	=	$0 \ge 0$	XXXX	1110	x10xy	;memory write
equ	memwrcp	=	$0 \ge 0$	xxxx	1101	x10xy	;memory write for cp
equ	mon	=	0xx	x0xx	xxxx	xxxxy	;monitor cycle
equ	nmladdr	=	0xx	0xxx	XXXX	xxxxy	;normal address mode
equ	read	=	$0 \ge 0$	XXXX	xlxx	xx1xy	;read cycle
equ	write	=	$0 \ge 0$	xxxx	x1xx	xx0xy	;write cycle
equ	wrrom	=	0 xx	xxx0	xxxx	xx0xy	;write to ROM

These equates may be used to specify values for the **stat** trace label when qualifying trace conditions.

2-28 Getting Started

In the 70236 emulator, the common values for the status trace signals have been predefined as follows:

###	Equates	##	ŧ#				
equ	bs16	=	0xxx	xx1x	XXXX	xxxxy	;bus size 16
equ	bs8	=	0xxx	xx0x	XXXX	xxxxy	;bus size 8
equ	coproc	=	0xx0	xxxx	x101	00xxy	;co-processor access
equ	cprd	=	0xx0	xxxx	x101	001xy	;co-processor read
equ	cpwr	=	0xx0	XXXX	x101	000xy	;co-processor write
equ	dma	=	0xx0	XXXX	x110	11xxy	;DMA cycle
equ	dmard	=	0xx0	xxxx	x110	111xy	;DMA read cycle
equ	dmawr	=	0xx0	XXXX	x110	110xy	;DMA write cycle
equ	dmac	=	1xxx	xxxx	xxxx	xxxxy	;DMA cascade
equ	eio	=	0xx0	xxxx	x110	00xxy	;external I/O access
equ	eiord	=	0xx0	XXXX	x110	001xy	;external I/O read
equ	eiowr	=	0xx0	XXXX	x110	000xy	;external I/O write
equ	exec	=	0xx0	xxxx	x0xx	xxxxy	;executed code
equ	extaddr	=	0xxx	1xxx	xxxx	xxxxy	;extended address mode
equ	fetch	=	0xx0	XXXX	1100	011xy	;program fetch
equ	grd	=	0xxx	XXXX	0xxx	xxxxy	;guarded access
equ	haltack	=	0xx0	XXXX	x111	000xy	;halt acknowledge
equ	holdack	=	0xx1	XXXX	XXXX	xxxxy	;hold acknowledge
equ	intacki	=	0xx0	XXXX	x100	101xy	;interrupt acknowledge (ICU)
equ	intacks	=	0xx0	xxxx	x100	001xy	;interrupt acknowledge (SLAVE)
equ	iio	=	0xx0	XXXX	x110	10xxy	;internal I/O access
equ	iiord	=	0xx0	XXXX	x110	101xy	;internal I/O read
equ	iiowr	=	0xx0	xxxx	x110	100xy	;internal I/O write
equ	mem	=	0xx0	XXXX	1110	01xxy	;memory access
equ	memforc	>=	0xx0	XXXX	1101	01xxy	;memory access for cp
equ	memrd	=	0xx0	XXXX	1110	011xy	;memory read
equ	memrdcp	=	0xx0	XXXX	1101	011xy	;memory read for cp
equ	memwr	=	0xx0	xxxx	1110	010xy	;memory write
equ	memwrcp	=	0xx0	XXXX	1101	010xy	;memory write for cp
equ	mon	=	0xxx	x0xx	XXXX	xxxxy	;monitor cycle
equ	nmladdr	=	0xxx	0xxx	XXXX	xxxxy	inormal address mode
equ	read	=	0xx0	XXXX	x1xx	xx1xy	;read cycle
equ	refresh	=	0xx0	xxxx	x100	111xy	;refresh cycle
equ	write	=	0xx0	xxxx	x1xx	xx0xy	;write cycle
equ	wrrom	=	0xxx	xxx0	x1xx	xx0xy	;write to ROM

Specifying a Simple Trigger

The **tg** analyzer command is a simple way to specify a condition on which to trigger the analyzer. Suppose you wish to trace the states of the program after the read of a "B" (42 hex) command from the command input byte. Enter the following commands to set up the trace, run the program, issue the trace, and display the trace status. (Note that the analyzer is to search for a lower byte read of 42H because the address is even.)

M>tg addr=800 and data=0xx42

If you wish to trace the odd address and the data, enter the following command to set up the trace (Note that the data value should be entered like as **0xx42 or 42xx** when using the 70136 emulator.): tg addr=801 and data=42xx

M>t

emulation trace started

M>r 0:400 U>ts

--- Emulation Trace Status ---New User trace running Arm ignored Trigger not in memory Arm to trigger ? States ? (512) ?..? Sequence term 1 Occurrence left 1

> The trace status shows that the trigger condition has not been found. You would not expect the trigger to be found because no commands have been entered. Modify the command input byte to "B"(42H) and display the trace status again.

U>m 800=42 U>ts

---Emulation Trace Status ---New User trace complete Arm ignored Trigger in memory Arm to trigger ? States 512 (512) 0..511 Sequence term 2 Occurrence left 1

The trace status shows that the trigger has been found, and that 512 states have been stored in trace memory. Enter the following command to display the first 20 states of the trace.

U>tl -t 20

2-30 Getting Started

Line	addr,H	70136	mnemonic,H			count,R	seq
0	000800	xx42	memorv read		 N		+
1	00041a	INSTRUC	CTIONopcode	unavailable		0.040 uS	
2	00041e	413c	prefetch		N	0.080 uS	
3	00041c	INSTRUC	CTIONopcode	unavailable		0.040 uS	
4	000420	0674	prefetch		N	0.080 uS	
5	00041e	CMP	AL,#41			0.120 uS	
6	000422	423c	prefetch		N	0.120 uS	
7	000420	BE/Z	000428			0.080 uS	
8	000424	0a74	prefetch		N	0.040 uS	
9	000422	CMP	AL,#42			0.080 uS	
10	000426	10eb	prefetch		N	0.120 uS	
11	000424	BE/Z	000430			0.080 uS	
12	000428	12b9	prefetch		N	0.040 uS	
13	000430	12b9	prefetch		N	0.120 uS	
14	000432	be00	prefetch		N	0.120 uS	
15	000434	0012	prefetch		N	0.120 uS	
16	000430	MOV	CW,#0012			0.080 uS	
17	000436	06eb	prefetch		N	0.040 uS	
18	000433	MOV	IX,#0012			0.080 uS	
19	000438	12b9	prefetch		N	0.080 uS	

Line 0 in the trace list above shows the state which triggered the analyzer. The trigger state is always on line 0.

Note

The character displayed in the right side of disassemble list specifies the following information.

Character		Information
N E M		Normal address mode Extended address mode Monitor cycle (background)

Note

When you use the following setting in your program, the branch address forming in PC relative addressing may change to a wrong value in disassemble trace list.

- The program is running in the extended address mode.
- The effective address for the PC relative addressing is in the other page.
- The order of the pages is not in sequence in extended address.

To list the next lines of the trace, enter the following command.

U>tl

Line	addr,H	70136 r	nnemonic,H		count,R	_seq
20	000436	BR	SHORT 00043e		0.040 uS	
21	00043a	be00	prefetch	N	0.080 uS	
22	00043e	01bf	prefetch	N	0.160 uS	
23	000440	£300	prefetch	N	0.160 uS	
24	000442	32a4	prefetch	N	0.120 uS	
25	00043e	MOV	IY,#0001		0.040 uS	
26	000444	b9c0	prefetch	N	0.080 uS	
27	000446	0021	prefetch	N	0.120 uS	
28	000441	REP/E/Z	MOVBKB		0.080 uS	
29	000448	cf2b	prefetch	N	0.040 uS	
30	000612	xx43	memory read	N	0.200 uS	
31	000801	43xx	memory write	N	0.160 uS	
32	000613	6fxx	memory read	N	0.200 uS	
33	000802	ххбf	memory write	N	0.200 uS	
34	000614	xx6d	memory read	N	0.160 uS	
35	000803	6dxx	memory write	N	0.200 uS	
36	000615	6dxx	memory read	N	0.200 uS	
37	000804	xx6d	memory write	N	0.200 uS	
38	000616	xx61	memory read	N	0.160 uS	
39	000805	61xx	memory write	N	0.200 uS	

For a Complete Description

For a complete description of the HP 64700 Series analyzer, refer to the HP 64700 Emulators Terminal Interface: Analyzer User's Guide.

Copying Memory

The **cp** (copy memory) command gives you the ability to copy the contents of one range of memory to another. This is a handy feature to test things like the relocatability of programs, etc. To test if the sample program is relocatable within the same segment, enter the following command to copy the program to an unused, but mapped, area of emulation memory. After the program is copied, run it from its new start address to verify that the program is indeed relocatable.

U>cp 500=400..44d U>r 0:500 U>

The prompt shows that the emulator is executing user code, so it looks as if the program is relocatable. You may want to issue a simple trace to verify that the program works while running from its new location.

U>**tg any** U>**t**

Emulation trace started

U>tl

Line	addr,H	70136	mnemonic,H			count,R	seq
0	00051a	003c	prefetch		N		+
1	000516	INSTRUC	TIONopcode un	navailable		0.080 uS	
2	00051c	£874	prefetch		Ν	0.040 uS	
3	00800	xx00	memory read		Ν	0.200 uS	
4	00051a	CMP	AL,#00			0.080 uS	
5	00051e	413c	prefetch		Ν	0.040 uS	
6	00051c	BE/Z	000516			0.080 uS	
7	000520	0674	prefetch		Ν	0.040 uS	
8	000516	a026	prefetch		Ν	0.200 uS	
9	000518	0000	prefetch		Ν	0.120 uS	
10	00051a	003c	prefetch		Ν	0.120 uS	
11	000516	MOV	AL,DS1:0000			0.080 uS	
12	00051c	£874	prefetch		Ν	0.040 uS	
13	00800	xx00	memory read		N	0.200 uS	
14	00051a	CMP	AL,#00			0.080 uS	
15	00051e	413c	prefetch		Ν	0.040 uS	
16	00051c	BE/Z	000516			0.080 uS	
17	000520	0674	prefetch		Ν	0.040 uS	
18	000516	a026	prefetch		N	0.200 uS	
19	000518	0000	prefetch		N	0.120 uS	

Testing for Coverage

For each byte of emulation memory, there is an additional bit of emulation RAM used by the emulator to provide coverage testing. When the emulator is executing the target program and an access is made to a byte in emulation memory, the corresponding bit of coverage memory is set. With the **cov** command, you can see which bytes in a range of emulation memory have (or have not) been accessed.

For example, suppose you want to determine how extensive some test input is in exercising a program (in other words, how much of the program is covered by using the test input). You can run the program with the test input and then use the **cov** command to display which locations in the program range were accessed.

The examples which follow use the **cov** command to perform coverage testing on the sample program. Before performing coverage tests, reset all coverage bits to non-accessed by entering the following command.

U>cov -r

Run the program from the start address (00000:00400H) and use the **cov** command to display how much of the program is accessed before any commands are entered (refer to the "ADDRESS" and "ADDRESS_EXPRESSION" section in the "70136 Emulator Specific Command Syntax" appendix).

U>r 400 R>cov -a 400..44d@e # coverage list - list of address ranges accessed

0000400@e..0000423@e

percentage of memory accessed: % 46.2

2-34 Getting Started

Now enter the sample program commands "A", "B", and an invalid command ("C" will do); display the coverage bits for the address range of the sample program after each command. You can see that more of the sample program address range is covered after each command is entered.

U>m 800=41 U>cov -a 400..44d@e # coverage list - list of address ranges accessed 0000400@e..0000425@e 0000428@e..0000433@e 000043@@e..000044d@e percentage of memory accessed: % 84.6 U>m 800=42 U>cov -a 400..44d@e # coverage list - list of address ranges accessed 000040@e..000043@e percentage of memory accessed: % 97.4 U>m 800=43 U>cov -a 400..44d@e # coverage list - list of address ranges accessed 000040@e..000044d@e

percentage of memory accessed: % 100.0

Resetting the Emulator	To reset the emulator, enter the following command.
	U> rst R>
	The emulator is held in a reset state (suspended) until a b (break), r (run), or s (step) command is entered. A CMB execute signal will also cause the emulator to run if reset.
Note	When the emulator is held in a reset state, the emulator is set to normal address mode.
	The -m option to the rst command specifies that the emulator begin executing in the monitor after reset instead of remaining in the suspended state.
	R> rst -m M>

Emulation Topics

Introduction

Many of the topics described in this chapter involve the commands which are unique to the 70136 emulator such as the **cf** command which allows you to specify emulator configuration. A reference-type description of the 70136 emulator configuration items can be found in the "70136 Emulator Specific Command Syntax" appendix.

This chapter will:

- Describe how to run in real-time and how to break on an analyzer trigger. These topics are related to program execution in general.
- Describe how to locate the monitor, These topics are related to the monitor options.
- Describe how to do other things which do not fall into the categories mentioned above: how to specify a run from reset.

Prerequisites

Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the *Concepts of Emulation and Analysis* manual and the "Getting Started" chapter of this manual.

Emulation Topics 3-1

Execution Topics

Restricting the Emulator to Real-Time Runs

The descriptions in this section are of emulation tasks which involve program execution in general.

By default, the emulator is not restricted to real-time runs. However, you may wish to restrict runs to real-time to prevent accidental breaks that might cause target system problems. Use the **cf** (configuration) command to enable the **rrt** configuration item.

R>cf rrt=en

When runs are restricted to real-time and the emulator is running user code, the system refuses all commands that cause a break except **rst** (reset), \mathbf{r} (run), \mathbf{s} (step), and \mathbf{b} (break to monitor).

Because the emulator contains dual-port emulation memory, commands which access emulation memory are allowed while runs are restricted to real-time.

But, when the emulator should break to the monitor to read page registers (**''cf pgrd=en''**), the memory command which need to Logical to Extended Address Conversion is not allowed even if accessing emulation memory; see the "CONFIG_ITEMS" section of the "70136 Emulator Specific Command Syntax" appendix.

The following commands are not allowed when runs are restricted to real-time:

- **reg** (register display/modification).
- m (memory display/modification) commands that access target system memory.
- io (I/O display/modification).

The following command will disable the restriction to real-time runs and allow the system to accept commands normally.

R>cf rrt=dis

3-2 Emulation Topics

Setting Up to Break on an Analyzer Trigger

The analyzer may generate a break request to the emulation processor. To set up to break on an analyzer trigger, follow the steps below.

Specify the Signal Driven when Trigger is Found

Use the **tgout** (trigger output) command to specify which signal is driven when the analyzer triggers. Either the "trig1" or the "trig2" signal can be driven on the trigger.

R>tgout trig1

Enable the Break Condition

Enable the "trig1" break condition.

R>**bc** -e trig1 After you specify the trigger to drive "trig1" and enable the "trig1" break condition, set up the trace, issue the t (trace) command, and run the program.

Making Coordinated Coordinated Measurements HP 64700 Se

Coordinated measurements are measurements made between multiple HP 64700 Series emulators which communicate via the Coordinated Measurement Bus (CMB). Coordinated measurements can also include other instruments which communicate via the BNC connector. A trigger signal from the CMB or BNC can break emulator execution into the monitor, or it can arm the analyzer. An analyzer can send a signal out on the CMB or BNC when it is triggered. The emulator can send an EXECUTE signal out on the CMB when you enter the **x** (execute) command.

Coordinated measurements can be used to start or stop multiple emulators, start multiple trace measurements, or to arm multiple analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or BNC trigger signals are interpreted as a "request to break". The emulator looks at the state of the CMB READY (active high) line to determine if it should break. It does not interact with the EXECUTE (active low) or TRIGGER (active low) signals.

Emulation Topics 3-3

For information on how to make coordinated measurements, refer to the HP 64700 Emulators Terminal Interface: Coordinated Measurement Bus User's Guide manual.

Monitor Option Topics	The monitor is a program which is executed by the emulation processor. It allows the emulation system controller to access target system resources. For example, when you enter a command that requires access to target system resources (display target memory, for example), the system controller writes a command code to a communications area and breaks the execution of the emulation processor into the monitor. The monitor program then reads the command from the communications area and executes the processor instructions which access the target system. After the monitor has performed its task, execution returns to the target program.
	It does not take up any processor address space and does not need to be linked to the target program. The monitor resides in dedicated background memory.
Note	Halt instructions will cause "processor halted" emulation status (the "h>" prompt is shown).
	In this status, the 70136 emulator does not break to the monitor. If you want to continue emulation session, you should enter the " rst " command to reset the emulator first.
	The 70236 and 70236A emulator can break to the monitor in "processor halted" emulation status. Refer to "CONFIG_ITEMS" section in the "70136 Emulator Specific Command Syntax" appendix.
Background Monitor	When the emulator is powered up or initialized, the background monitor is selected by default.

3-4 Emulation Topics

Locating the Background Monitor

The default emulator configuration locates the monitor at 0FF000 hex. You can relocate the monitor to any 4K byte boundary. Use the **cf** (configuration) command with the **loc** configuration item to specify the location of the monitor.

R>cf loc=20000

Any valid physical address may be specified when relocating the monitor; however, the monitor address range will be placed on the 4K byte boundary at or below the address specified (for example, the monitor is placed at 20000 hex after the command shown above).

Foreground monitor

The default emulator configuration selects the background monitor. You can change the emulator configuration to select the foreground monitor. When you select the foreground monitor, processor address space is taken up. The foreground monitor takes up 4K bytes of memory. Use the **cf** command to select the foreground monitor.

R>cf mon=fg..2000

2000 defines an hexadecimal address (on a 4K byte boundary) where the monitor will be located. (Note: this will not load the monitor, it only specifies its location.) A memory mapper term is automatically created when you execute the **cf mon=fg** command to reserve 4K bytes of memory space for the monitor. The memory map is reset any time **cf mon=bg** is entered. It is only reset when the **cf mon=bg** command is entered if the emulator is not already configured to use the background monitor.

Note 🥵	The foreground monitor provided with the 70136 emulator should not be located at a base address 0 or 0ff000 hex; because the 70136 microprocessor's vector table is located. Also, the foreground monitor can not be located at the base address over 100000 hex.
Note 🖷	You must not use the foreground monitor if you wish to perform coordinated measurements.
Other Topics	This section describes how other emulation tasks, which did not fit into the previous groupings, are performed.
Selecting Accept Or Ignore Target System Reset	The 70136 emulator can respond or ignore target system reset while running in user program or waiting for target system reset (refer to " cf trst " configuration setting in "70136 Emulator specific Command Syntax" appendix).
	While running in background monitor, the 70136 emulator ignores target system reset completely independent on this setting.
	You can ignore reset from target system completely by specifying " cf trst=dis ". In this configuration emulator ignore any reset from target system. Specifying " cf trst=en ", this is a default configuration, make the emulator to respond to reset from target system. In this configuration, emulator will accept reset and execute from reset vector (0FFFF0 hex) as same manner as actual microprocessor after reset is inactivated

In-Circuit Emulation Topics

Introduction

Many of the topics described in this chapter involve the commands which relate to using the emulator in-circuit, that is, connected to a target system.

This chapter will:

 Describe the issues concerning the installation of the emulator probe into target systems.

4

- Show you how to install the emulator probe.
- Describe how to use software breakpoints with ROMed code, how to perform coverage testing on ROMed code, and how to test patches to ROMed code. These topics relate to the debugging of target system ROM.
- Describe some of restrictions and considerations.

Prerequisites

Before performing the tasks described in this chapter, you should be familiar with how the emulator operates in general. Refer to the *Concepts of Emualtion and Analysis* manual and the "Getting Started" chapter of this manual.

In-Circuit Emulation Topics 4-1

Installing the Emulator Probe into a Target System

Caution

The 70136 emulator probe has a 68-pin PLCC connector; the 70236 and 70236A emulator probe has a 132-pin PGA connector. The 70236 and 70236A emulator is shipped with a pin protector over the target system probe. This guard is designed to prevent impact damage to the pins and should be left in place while you are not using the emulator.

DAMAGE TO THE EMULATOR CIRCUITRY MAY RESULT IF THESE PRECAUTIONS ARE NOT OBSERVED. The following precautions should be taken while using the 70136 emulator.

Power Down Target System. Turn off power to the user target system and to the 70136 emulator before inserting the user plug to avoid circuit damage resulting from voltage transients or mis-insertion of the user plug.

Verify User Plug Orientation. Make certain that Pin 1 of the target system microprocessor socket and Pin 1 of the user plug are properly aligned before inserting the user plug in the socket. Failure to do so may result in damage to the emulator circuitry.

Protect Against Static Discharge. The 70136 emulator contains devices which are susceptible to damage by static discharge. Therefore, operators should take precautionary measures before handling the user plug to avoid emulator damage.

Protect Target System CMOS Components. If your target system includes any CMOS components, turn on the target system first, then turn on the 70136 emulator; when powering down, turn off the emulator first, then turn off power to the target system.

4-2 In-Circuit Emulation Topics

Auxiliary Output Lines Two auxiliary output lines, "TARGET BUFFER DISABLE" and "SYSTEM RESET", are provided with the 70136 emulator. The "TARGET BUFFER DISABLE" output line is also provided with the 70236 and 70236A emulator.

Caution

DAMAGE TO THE EMULATOR PROBE WILL RESULT IF THE AUXILIARY OUTPUT LINES ARE INCORRECTLY INSTALLED.

When installing the auxiliary output lines into the end of the emulator probe cable, make sure that the ground pins on the auxiliary output lines (labeled with white dots) are matched with the ground receptacles in the end of the emulator probe cable.

Figure 4-1. Auxiliary Output Lines (70136 Emulator)

In-Circuit Emulation Topics 4-3

TARGET BUFFER DISABLE ---This active-high output is used when the co-processor memory accesses to emulation memory will be operated. This output is used to tristate (in other words, select the high Z output) any target system devices on the 70136/70236/70236A data bus. Target system devices should be tristated because co-processor memory reads from emulation memory will cause data to be output on the user probe.

This "TARGET BUFFER DISABLE" output will be driven with the following timing in the co-processor memory access cycle.

SYSTEM RESET (70136 only) --- This active-high, CMOS output should be used to synchronously reset the emulator and the target system.

4-4 In-Circuit Emulation Topics

Installing into a 70136 PLCC Type Socket

To connect the microprocessor connector to the target system, proceeded with the following instructions.

- Remove the 70136 microprocessor (PLCC type) from the target system socket. Note the location of pin 1 on the microprocessor and on the target system socket.
- Store the microprocessor in a protected environment (such as antistatic form).
- Install the microprocessor connector into the target system microprocessor socket.

Figure 4-2. Installing into a 70136 PLCC type socket

In-Circuit Emulation Topics 4-5

Installing into a PGA Type Socket

The emulator is provided with an AMP 821574-1 socket and a pin protector in order to plug into the target system socket of an PGA type. You may use this AMP socket with the pin protector to connect the microprocessor connector to the target system. To connect the microprocessor connector to the target system, proceeded with the following instructions.

- Remove the 70136 microprocessor (PGA type) from the target system socket. Note the location of pin A1 on the microprocessor and on the target system socket.
- Store the microprocessor in a protected environment (such as antistatic form).
- Place the microprocessor connector with an AMP socket and a pin protector (see figure 4-3), attached to the end of the probe cable, into the target system microprocessor socket.

Figure 4-3. Installing into a 70136 PGA type socket

4-6 In-Circuit Emulation Topics

Installing into a 70136 QFP Type Socket

To connect the 70136 emulator microprocessor connector to the NEC EV-9200G-74 socket on the target system, you should use the adapter, HP PART NO. 64756-61612, that will allow the PLCC microprocessor connector to connect to the QFP socket.

To connect the microprocessor connector to the target system, proceeded with the following instructions.

- Note the location of pin 1 on the NEC EV-9200G-74 socket on the target system.
- Place the microprocessor connector with the adapter (see figure 4-4), attached to the end of the probe cable, into the target system microprocessor socket.

Figure 4-4. Installing into a 70136 QFP type socket

In-Circuit Emulation Topics 4-7

Installing into a 70236/70236A PGA Type Socket

To connect the microprocessor connector to the target system, proceeded with the following instructions.

- Remove the 70236 or 70236A microprocessor (PGA type) from the target system socket. Note the location of pin A1 on the microprocessor and on the target system socket.
- Store the microprocessor in a protected environment (such as antistatic form).
- Install the microprocessor connector into the target system microprocessor socket with a pin protector (see figure 4-5).

Caution

DO NOT use the microprocessor connector without using a pin protector. The pin protector is provided to prevent damage to the microprocessor connector when connecting and removing the microprocessor connector from the target system PGA socket.

Installing into a 70236/70236A QFP Type Socket

To connect the 70236 or 70236A emulator microprocessor connector to the

NEC EV-9200GD-120 socket on the target system, you should use the NEC EV-9500GD-120 adapter that will allow the PGA microprocessor connector to connect to the QFP socket.

4-8 In-Circuit Emulation Topics

Figure 4-5. Installing into a 70236 PGA type socket

In-Circuit Emulation Topics 4-9

Execution Topics	The descriptions in this section are of emulation tasks which involve program execution in general.
Specifying the Emulator Clock Source	The default 70136, 70236 and 70236A emulator configuration selects the internal 16 MHz (system clock speed) clock as the emulator clock source.
	You should configure the emulator to select an external target system clock source for the "in-circuit" emulation. Use the cf (configuration) command and the clk configuration item to specify that the emulator use a target system clock.
	R>cf clk=ext
	To reconfigure the emulator to use its internal clock, enter the following command.
	R>cf clk=int
Emulator Probe Signal Topics	The descriptions in this section are of emulation tasks which involve emulator probe signals while in background or while accessing emulation memory.
Allowing the Target System to Insert Wait States	High-speed emulation memory provides no-wait-state operation. However, the emulator may optionally respond to the target system ready lines while emulation memory is being accessed. Use the cf
	(configuration) command with the rdy configuration item to cause emulation memory accesses to honor target system ready signals.
	(configuration) command with the rdy configuration item to cause emulation memory accesses to honor target system ready signals. R> cf rdy=lk When the ready relationship is locked to the target system, emulation memory accesses honor ready signals from the target system (wait states are inserted if requested).
	 (configuration) command with the rdy configuration item to cause emulation memory accesses to honor target system ready signals. R>cf rdy=lk When the ready relationship is locked to the target system, emulation memory accesses honor ready signals from the target system (wait states are inserted if requested). To reconfigure so that emulation memory accesses do not honor target system ready signals, enter the following command.
When the ready relationship is not locked to the target system, emulation memory accesses ignore ready signals from the target system (no wait states are inserted).

Target ROM Debug Topics	The descriptions in this section are of emulation tasks which involve debugging target ROM. The tasks described below are made possible by the cim (copy target system memory image) command. The cim command allows you to read the contents of target memory into the corresponding emulation memory locations. Moving target ROM contents into emulation memory is the key which allows you to perform the tasks described below. For example, if target ROM exists at locations 400H through 0A38H, you can copy target ROM into emulation memory with the following commands.
	R>map 4000bff erom R>cim 4000a38@e Note that the target ROM location must be defined as the extended address (refer to the "ADDRESS" section the "70136 Emulator Specific Command Syntax" appendix).
Using Software Breakpoints with ROMed Code	You cannot define software breakpoints in target ROM memory. However, you can copy target ROM into emulation memory which does allow you to use software breakpoints.
	Once target ROM is copied into emulation memory, software breakpoints may be used normally at addresses in these emulation memory locations.
	R> bc -e bp R> bp 440

Coverage Testing Coverage testing (as described in the "Getting Started" chapter) can **ROMed Code**

only be performed on emulation memory. However, if you wish to perform coverage tests on code in target system ROM, you can copy target ROM into emulation memory and perform the coverage tests on your ROMed code.

Once target ROM is copied into emulation memory, coverage testing may be done normally at addresses in these emulation memory locations (refer to the "ADDRESS" section the "70136 Emulator Specific Command Syntax" appendix).

U>cov -a 400..0a38@e

Modifying ROMed Code

Suppose that, while debugging your target system, you begin to suspect a bug in some target ROM code. You might want to fix or "patch" this code before programming new ROMs. This can also be done by copying target system ROM into emulation memory with the cim (copy target memory image) command. Once the contents of target ROM are copied into emulation memory, you can modify emulation memory to "patch" your suspected code.

4-12 In-Circuit Emulation Topics

Pin State in Background (70136)

Address Bus Same as foreground Data Bus Always high impedance except accessing target. When accessing target by background monitor, same as foreground. R/W,M/IO Setting the "cf cyc=dis", always high impedance **BUSSTO** except accessing target. When accessing target by background monitor, same as foreground. Setting the "cf cyc=en", always high level except accessing target. When accessing target by background monitor, same as foreground. BUSST1 Setting the "cf cyc=dis", always high impedance except accessing target. When accessing target by background monitor, same as foreground. Setting the "cf cyc=en", always low level except accessing target. When accessing target by background monitor, same as foreground. UBE Setting the "cf cyc=dis", always high impedance except accessing target. When accessing target by background monitor, same as foreground. Setting the "cf cyc=en", Same as foreground. Other Same as foreground

While the emulator is running in the background monitor, probe pins

are in the following state.

Pin State in Background (70236/70236A)

While the emulator is running in the background monitor, probe pins are in the following state.

Address Bus	Same as foreground
Data Bus	Always high impedance except accessing target. When accessing target by background monitor, same as foreground.
<u>R/W,M/IO,</u> <u>IORD</u> ,IOWR, MWR	Setting the "cf cyc=dis", always high impedance except accessing target. When accessing target by background monitor, same as foreground.
	Setting the "cf cyc=en", always high level except accessing target. When accessing target by background monitor, same as foreground.
MRD	Setting the "cf cyc=dis", always high impedance except accessing target. When accessing target by background monitor, same as foreground.
	Setting the "cf cyc=en" same as foreground except for emulation memory write. When accessing emulation memory write, low.
<u>BUSST2-0,</u> <u>UBE,BCYST,</u> DSTB,BUFEN	Setting the "cf cyc=dis", always high impedance except accessing target. When accessing target by background monitor, same as foreground.
	Setting the "cf cyc=en", Same as foreground.
Other	Same as foreground

4-14 In-Circuit Emulation Topics

Electrical Characteristics (70136)

The AC characteristics of the 70136 emulator are listed in the following table

		uPD70136 16MHz		I			
				Worst Case		Typical	
Characteristic	Symbol	Min	Max	Min	Max		Unit
CLK Cycle Time	t _{CYK}	62.5	500	62.5	500		ns
CLK High Level Width	t _{KKH}	25		25			ns
CLK Low Level Width	t _{KKL}	25		25			ns
CLK Rise Time	t _{KR}		5		5		ns
CLK Fall Time	t _{KF}		5		5		ns
RESET Release Delay Time (Vdd)	tDURST	1000		1000			ns
RESET Setup Time (CLK)	t _{SRSTK}	10		25			ns
RESET Hold Time (CLK)	t _{HKRST}	15		13			ns
RESET High Level Width	twrsth	375		375			ns
CLK Low To BCYST Delay Time	tDKBC	5	40	8	52		ns
BCYST High Level Width(*1)	tBCBCH	52.5		54.5			ns
BCYST Low Level Width	tBCBCL	52.5		54.5			ns
CLK Low To Address Delay Time	t _{DKA}	5	40	8	54.1		ns

Table 4-1 70136 AC Electrical Specifications

CLK Low To Status Delay Time	t DKST	5	40	8	54.1	ns
CLK To Float Delay Time	tFK	0	50	1	35.35	ns
CLK High To DSTB Low Delay Time	t _{DKDS}	5	40	8	52	ns
DSTB High Level Width	tDSDSH	21.25		23.25		ns
DSTB Low Level Width (*1)	tDSDSL	52.5		54.5		ns
CLK To DSTB High Delay Time	t DKDS H	5	40	8	52	ns
Address/Status To DSTB Low Delay Time	tDADSL	16.25		12.15		ns
DSTB High To Address/Status Hold Time	thdsha	16.25		12.15		ns
DSTB High To Data Delay Time	t _{DDSHD}	16.25		12.15		ns
Address/Status To Data Delay Time	tDAD	16.25		12.15		ns
CLK High To Data Delay Time	t _{DKD}	5	40	8	49.1	ns
Data Setup Time (CLK)	tSDK	7		17.1		ns
Data Hold Time (CLK)	thkd.	10		18.1		ns
Data Hold Time (DSTB)	tHDSD	0		2.2		ns
Data Hold Time (Address/Status)	tHASD	0		2.2		ns
READY Setup Time (CLKOUT)	tsryk.	7		21.2		ns
READY Hold Time (CLKOUT)	t _{HKRY}	15		23.1		ns
BS8/BS16 Setup Time (CLKOUT)	tSBSK	7		21.2		ns
BS8/BS16 Hold Time (CLKOUT)	tHKBS	15		23.1		ns

Table 4-1 70136 AC Electrical Specification(Cont'd)

4-16 In-Circuit Emulation Topics

HLDRQ Setup Time (CLK)	tshqk	7	21.2		ns
HLDRQ Hold Time (CLK)	tнкнq	15	23.1		ns
NMI ,INTPn(n=0-7), CPBUSY Setup Time (CLKOUT)	t _{SIK}	10	19.1		ns
NMI ,INTPn(n=0-7), CPBUSY Hold Time (CLKOUT)	t _{HKI}	10	13.1		ns

Table 4-1 70136 AC Electrical Specification(Cont'd)

*1 No wait State

Electrical Characteristics (70236)

The AC characteristics of the 70236 emulator are listed in the following table

		uPD70236		E			
		16N	1Hz	Wors	t Case	Typical	
Characteristic	Symbol	Min	Max	Min	Max		Unit
External Clock Cycle Times	t _{CYX}	31.25	250	31.25	250		ns
External Clock High Level Width	t _{KKH}	13		13			ns
External Clock Low Level Width	t _{KKL}	13		13			ns
External Clock Rise Time	txkr		5		5		ns
External Clock Fall Time	txkF		5		5		ns
CLKOUT Cycle Time	tCYK	62.5	500	62.5	500		ns
CLKOUT High Level Width	t _{KKH}	24.25		26.25			ns
CLKOUT Low Level Width	t _{KKL}	24.25		26.25			ns
CLKOUT Rise Time	t _{KR}		7		5		ns
CLKOUT Fall Time	tKF		7		5		ns
CLKOUT Delay Time (External Clock)	tDXK	10	35	15	65		ns
PCLKOUT Cycle Time	ŧрсук	125	1000	125	1000		ns
PCLKOUT High Level Width	t _{PKH}	55.5		57.5			ns

Table 4-2 70236 AC Electrical Specifications

4-18 In-Circuit Emulation Topics

	1)
PCLKOUT Low Level Width	tPKL	55.5		57.5		ns
PCLKOUT Rise Time	t PKR		7		5	ns
PCLKOUT Fall Time	t _{PKF}		7		5	ns
Input Rise Time (*1)	t _{IR}		12		12	ns
Input Fall Time (*1)	tıF		10		10	ns
Output Rise Time (*1)	tor		12		5	ns
Output Fall Time (*1)	tOF		10		5	ns
RESET Setup Time	t _{SRSTK}	30			58.6	ns
RESET Hold Time	t _{HKRST}	15			12.2	ns
RESETOUT Delay Time (CLKOUT)	t D KRO	0	40	-2.8	42.8	ns
RESET Low Level width	twrstl	375		375		ns
BCYST Low Level width	tBCBCL	52.5		57.5		ns
BCYST High Level width(*2)	tBCBCH	52.5		52.5		ns
CLKOUT Low To BCYST Delay Time	tDKBC	5	40	2.2	42.8	ns
CLKOUT Low To Address Delay Time	tDKA	5	40	2.2	42.8	ns
CLKOUT Low To Status Delay Time	t _{DKST}	5	40	2.2	42.8	ns
CLKOUT To Float Delay Time	t _{FK}	0	30	-3.1	33.1	ns
CLKOUT High To DSTB Low Delay Time	t _{DKDS}	5	40	2.2	52.8	ns
DSTB High Level Width	tdsdsh	21.25		21.25		ns

Table 4-2 70236 AC Electrical Specification(Cont'd)

DSTB Low Level Width (*2)	tDSDSL	52.5		52.5		ns
CLKOUT To DSTB High Delay Time	t d kdsh	5	40	2.2	52.8	ns
Address/Status To DSTB Low Delay Time	tDADSL	16.25		13.45		ns
DSTB High To Address/Status Hold Time	t _{HDSHA}	16.25		13.45		ns
DSTB High To Oputput Set Time	t DLZ	15.62		11.92		ns
DSTB Low To Output Floating Time	tDHZ		0		3.1	ns
DSTB High To Data Delay Time	t _{DDSHD}	16.25		13.45		ns
Address/Status To Data Delay Time	t _{DAD}	16.25		13.45		ns
CLKOUT High To Data Delay Time	t _{DKD}	5	40	2.2	43.1	ns
Data Setup Time (CLKOUT)	tsdk	10		30.9		ns
Data Hold Time (CLKOUT)	t _{HKD}	7		4		ns
Data Hold Time (DSTB)	t _{HDSD}	0		-3		ns
Data Hold Time (Address/Status)	tHASD	0		-3		ns
Data Hold Time (R/\overline{W})	t _{HRWD}	0		-3		ns
READY Setup Time (CLKOUT)	t SRYK	7		35.6		ns
READY Hold Time (CLKOUT)	t _{HKRY}	15		12		ns
BS8/BS16 Setup Time (CLKOUT)	tSBSK	7		35.6		ns
BS8/BS16 Hold Time (CLKOUT)	t _{HKBS}	10		7		 ns
HLDRQ Setup Time (CLKOUT)	tshqk	7		35.6		ns

Table 4-2 70236 AC Electrical Specification(Cont'd)

4-20 In-Circuit Emulation Topics

HLDRQ Hold Time (CLKOUT)	tнкнq	15		12		ns
CLKOUT High To HLDAK Delay Time	tdkha	5	40	2.2	42.8	ns
Output Float To HLDAK Delay Time	t _{DFHA}	16.25		13.45		ns
NMI ,INTPn(n=0-7), CPBUSY Setup Time (CLKOUT)	t _{SIK}	10		29.6		ns
NMI ,INTPn(n=0-7), CPBUSY Hold Time (CLKOUT)	tHKI	10		7		ns
CLKOUT To IOWR Delay Time	t DKIW	0	40	-2.8	42.8	ns
CLKOUT To IORD Delay Time	t _{DKIR}	0	40	-2.8	42.8	ns
CLKOUT To MRD Delay Time	t _{DKMR}	0	40	-2.8	42.8	ns
CLKOUT To MWR Delay Time	t _{DKMW}	0	40	-2.8	42.8	ns
Address/Status To MRD, IORD Low Delay Time	tDARL	16.25		13.45		ns
Data Hold Time (MRD, IORD)	t _{HRD}	0		-2.8		ns
Address/Status To MWR, IOWR Low Delay Time	t _{DAWL}	16.25		13.45		ns
MWR, IOWR Low Level Width (*2)	twwL	52.5		52.5		ns
MWR High To Address/Status Hold Time	thmwha	16.25		13.45		ns
TCTLn(n=0-2) Setup Time (CLKOUT)	tsgk	50		69.6		ns
TCTLn(n=0-2) Hold Time (CLKOUT)	t _{HKG}	100		97.2		ns
TCTLn(n=0-2) High Level Width	tggh	50		50		ns

Table 4-2 70236 AC Electrical Specification(Cont'd)

TCTLn(n=0-2) Low Level Width	tGGL	50		50		ns
TOUTn(n=0-2) Delay Time (CLKOUT)	tdkt0		100		102.8	ns
TCLK Rise Time	t _{TKR}		15		15	ns
TCLK Fall Time	t _{TKF}		15		15	ns
TCLK High Level Width	tткткн	30		30		ns
TCLK Low Level Width	t TKTKL	45		45		ns
TCLK Cycle Time	t CYTK	100		100		ns
TCTLn(n=0-2) Setup Time (TCLK)	tsgtk	50		52.8		ns
TCTLn(n=0-2) Hold Time (TCLK)	^t HTKG	100		102.8		ns
TOUTn(n=0-2) Delay Time (TCLK)	tdtkt0		100		119.6	ns
TOUTn(n=0-2) Delay Time (TCTL)	tdgt0		100		119.6	ns
RxD Setup Time (SCU Interanl Clock)	t _{SRX}	1000		1019		ns
RxD Hold Time (SCU Interanl Clock)	tHRX	1000		997		ns
TOUT1 High To TxD Delay Time	tDTX		500		502.8	ns
CLKOUT To CONTROL1 DelayTime(*3)	tDKCT1		40		42.8	ns
CLKOUT To CONTROL2 DelayTime(*4)	tDKCT2		40		42.8	ns
CLKOUT Low To MWR , IOWR High Delay Time	tDKRH		40		42.8	ns
CLKOUT Low To MWR , IOWR Low Delay Time	t _{DKRL}		40		42.8	ns

Table 4-2 70236 AC Electrical Specification(Cont'd)

4-22 In-Circuit Emulation Topics

CLKOUT High To DMAKn(n=0-3) Delay Time	tDKHDA		40		42.8	ns
IORD , IOWR Low Delay Time (MDAAKn(n=0-3))	tDDARW	16.25		13.45		ns
$\overline{\text{DMAAKn}}$ (n=0-3) High Delay Time (IORD)	t _{DRHDAW}	16.25		13.45		ns
$\frac{\overline{\text{IORD}}}{\text{MRD}} \text{ High Delay Time } (\overline{\text{MWR}})$ $\overline{\text{MRD}} \text{ High Delay Time } (\overline{\text{IOWR}})$	tDWHRH	5	40	2.2	42.8	ns
TC Delay Time (CLKOUT)	t DKTCL		40		42.8	ns
TC OFFDelay Time (CLKOUT)(*5)	t DKTCF		40		42.8	ns
TC Pullup Delay Time (CLKOUT)(*5)	^t DKTCH		40		42.8	ns
END Setup Time(CLKOUT)	tSEDK	35		54.6		ns
END Low Level Width	tEDEDL	100		100		ns
IORD, MRD Low Level Width	t _{RR}	85		82.2		ns
IOWR , MWR Low Level Width (Extended Write)	t _{WW1}	85		82.2		ns
IOWR , MWR Low Level Width (Normal Write)	t _{WW2}	22.5		19.7		ns
TC Low Level Width	t TCTCL	47.5		47.5		ns
DMARQn(n=0-3) Setup Time (CLKOUT)	tsdqk	20		39.6		ns
CLKOUT HighTo DMAAKn(n=0-3) Delay Time	tDKLDA	0	40	-2.8	42.8	ns

Table 4-2 70236 AC Electrical Specification(Cont'd)

Table 4-2 70236	AC	Electrical S	pecification	(Cont'd)	
-----------------	----	---------------------	--------------	----------	--

INTPn(n=0-7) Low Level Width	tIPIPL	100	100		ns
*1 Except CLKOUT, PLKOUT					

*2 No wait State

*3 MWR, IOWR during DMA cycl

*4 BEFEN, INTAK, REFRQ

*5 TC must be pulled up by 2.2K

4-24 In-Circuit Emulation Topics

Electrical Characteristics (70236A)

The AC characteristics of the 70236A emulator are listed in the following table

		uPD7	uPD70236A		HP 64757G				
		16N	/IHz	Wors	t Case	Typical (*1)			
Characteristic	Symbol	Min	Max	Min	Max	(1)	Unit		
External Clock Cycle Times	t _{CYX}	25	250	25	250		ns		
External Clock High Level Width	t _{KKH}	11		11			ns		
External Clock Low Level Width	t _{KKL}	11		11			ns		
External Clock Rise Time	txkr		3		3		ns		
External Clock Fall Time	tXKF		3		3		ns		
CLKOUT Cycle Time	tCYK	50	500	50	500		ns		
CLKOUT High Level Width	t _{KKH}	20		15			ns		
CLKOUT Low Level Width	t _{KKL}	20		15			ns		
CLKOUT Rise Time	t _{KR}		5		5		ns		
CLKOUT Fall Time	t _{KF}		5		5		ns		
CLKOUT Delay Time (External Clock)	t DXK	10	35	15	65		ns		
PCLKOUT Cycle Time	t PCYK	100	1000	100	1000		ns		
PCLKOUT High Level Width	tPKH	45		45			ns		

Table 4-3 70236A AC Electrical Specifications

	T	1	r	T	T		1
PCLKOUT Low Level Width	t PKL	45		45			ns
PCLKOUT Rise Time	t PKR		5		5		ns
PCLKOUT Fall Time	tPKF		5		5		ns
Input Rise Time (*2)	t _{IR}		10		10		ns
Input Fall Time (*2)	tIF		10		10		ns
Output Rise Time (*2)	tor		10		5		ns
Output Fall Time (*2)	tOF		10		5		ns
RESET Setup Time	t _{SRSTK}	25		45.6			ns
RESET Hold Time	t _{HKRST}	12		12.2			ns
RESETOUT Delay Time (CLKOUT)	t D KRO	0	40	-2.8	42.8		ns
RESET Low Level width	twrstl	300		300			ns
BCYST Low Level width	tBCBCL	43		40		43	ns
BCYST High Level width(*3)	tBCBCH	43		40		46	ns
CLKOUT Low To BCYST Delay Time	tDKBC	5	25	2.2	27.8	18	ns
CLKOUT Low To Address Delay Time	tDKA	5	25	2.2	27.8	12	ns
CLKOUT Low To Status Delay Time	t _{DKST}	5	25	2.2	27.8	13	ns
CLKOUT To Float Delay Time	t _{FK}	0	25	-3.1	28.1	14	ns
CLKOUT High To DSTB Low Delay Time	tDKDS	5	25	2.2	34.8	16	ns
DSTB High Level Width	tdsdsh	18		15		20	ns

Table 4-3 70236A AC Electrical Specification(Cont'd)

4-26 In-Circuit Emulation Topics

DSTB Low Level Width (*3)	tDSDSL	43		40		42	ns
CLKOUT To DSTB High Delay Time	t D KDSH	5	25	2.2	34.8	22	ns
Address/Status To DSTB Low Delay Time	tDADSL	13		10.2		28	ns
DSTB High To Address/Status Hold Time	t _{HDSHA}	13		10.2		21	ns
DSTB High To Oputput Set Time	tDLZ	12.5		10.8		12	ns
DSTB Low To Output Floating Time	t _{DHZ}		0		3.1	2	ns
DSTB High To Data Delay Time	t _{DDSHD}	13		10.2		29	ns
Address/Status To Data Delay Time	t _{DAD}	13		10.2		25	ns
CLKOUT High To Data Delay Time	t _{DKD}	5	25	2.2	28.1	11	ns
Data Setup Time (CLKOUT)	tsdk	10		19.9		12	ns
Data Hold Time (CLKOUT)	t _{HKD}	7		4		2	ns
Data Hold Time (DSTB)	t _{HDSD}	0		-3		-5	ns
Data Hold Time (Address/Status)	tHASD	0		-3		-5	ns
Data Hold Time (R/\overline{W})	t _{HRWD}	0		-3		-4	ns
READY Setup Time (CLKOUT)	t SRYK	5		22.6		18	ns
READY Hold Time (CLKOUT)	t _{HKRY}	12		12		6	ns
BS8/BS16 Setup Time (CLKOUT)	tsbsk	5		22.6		19	ns
BS8/BS16 Hold Time (CLKOUT)	t _{HKBS}	7		12		6	ns
HLDRQ Setup Time (CLKOUT)	tshqk	5		22.6		19	ns

Table 4-3 70236A AC Electrical Specification(Cont'd)

HLDRQ Hold Time (CLKOUT)	thkhq	12		12		7	ns
CLKOUT High To HLDAK Delay Time	tDKHA	5	25	2.2	27.8		ns
Output Float To HLDAK Delay Time	tDFHA	10		7.2			ns
NMI ,INTPn(n=0-7),CPBUSY Setup Time (CLKOUT)	t _{SIK}	7		16.6			ns
NMI ,INTPn(n=0-7),CPBUSY Hold Time (CLKOUT)	tHKI	7		7			ns
CLKOUT To IOWR Delay Time	t DKIW	0	25	-2.8	27.8	18	ns
CLKOUT To IORD Delay Time	t _{DKIR}	0	25	-2.8	27.8	19	ns
CLKOUT To MRD Delay Time	t _{DKMR}	0	25	-2.8	27.8	19	ns
CLKOUT To MWR Delay Time	t _{DKMW}	0	25	-2.8	27.8	20	ns
Address/Status To MRD, IORD Low Delay Time	tDARL	13		10.2		26	ns
Data Hold Time (MRD , IORD)	t _{HRD}	0		-2.8		-4	ns
Address/Status To MWR, IOWR Low Delay Time	t _{DAWL}	13		10.2		25	ns
$\overline{\text{MWR}}$, $\overline{\text{IOWR}}$ Low Level Width (*3)	twwL	43		40		45	ns
MWR High To Address/Status Hold Time	thmwha	13		10.2			ns
TCTLn(n=0-2) Setup Time (CLKOUT)	tsgk	50		69.6			ns
TCTLn(n=0-2) Hold Time (CLKOUT)	^t HKG	100		97.2			ns
TCTLn(n=0-2) High Level Width	tGGH	50		50			ns

Table 4-3 70236A AC Electrical Specification(Cont'd)

4-28 In-Circuit Emulation Topics

[1	1		1		1
TCTLn(n=0-2) Low Level Width	tGGL	50		50		ns
TOUTn(n=0-2) Delay Time (CLKOUT)	tdkt0		100		102.8	ns
TCLK Rise Time	t _{TKR}		15		15	ns
TCLK Fall Time	t _{TKF}		15		15	ns
TCLK High Level Width	ttktkh	30		30		ns
TCLK Low Level Width	t TKTKL	45		45		ns
TCLK Cycle Time	tCYTK	100		100		ns
TCTLn(n=0-2) Setup Time (TCLK)	tsgtk	50		52.8		ns
TCTLn(n=0-2) Hold Time (TCLK)	^t HTKG	100		102.8		ns
TOUTn(n=0-2) Delay Time (TCLK)	tdtkt0		100		119.6	ns
TOUTn(n=0-2) Delay Time (TCTL)	tdgto		100		119.6	ns
RxD Setup Time (SCU Interanl Clock)	t _{SRX}	1000		1019		ns
RxD Hold Time (SCU Interanl Clock)	tHRX	1000		997		ns
TOUT1 High To TxD Delay Time	t DTX		500		502.8	ns
CLKOUT To CONTROL1 DelayTime(*4)	tDKCT1		35		37.8	ns
CLKOUT To CONTROL2 DelayTime(*5)	tDKCT2		35		37.8	ns
CLKOUT Low To $\overline{\mathrm{MWR}}$, $\overline{\mathrm{IOWR}}$ High Delay Time	t _{DKRH}		35		37.8	ns
CLKOUT Low To MWR , IOWR Low Delay Time	t _{DKRL}		35		37.8	ns

Table 4-3 AC Electrical Specification(Cont'd)

CLKOUT High To DMAKn(n=0-3) Delay Time	tDKHDA		35		37.8	ns
IORD , IOWR Low Delay Time (MDAAKn(n=0-3))	tDDARW	13		10.2		ns
DMAAKn(n=0-3) High Delay Time (IORD)	t _{DRHDAW}	13		10.2		ns
IORDHigh Delay Time (MWR)MRDHigh Delay Time (IOWR)	t _{DWHRH}	5	35	2.2	37.8	ns
TC Delay Time (CLKOUT)	t DKTCL		35		37.8	ns
TC OFFDelay Time (CLKOUT)(*6)	t DKTCF		35		37.8	ns
TC Pullup Delay Time (CLKOUT)(*6)	t _{DKTCH}		35		37.8	ns
END Setup Time(CLKOUT)	tSEDK	35		54.6		ns
END Low Level Width	tEDEDL	100		100		ns
IORD , MRD Low Level Width	trr	65		62.2		ns
IOWR , MWR Low Level Width (Extended Write)	t _{WW1}	65		62.2		ns
IOWR , MWR Low Level Width (Normal Write)	t _{WW2}	15		12.2		ns
TC Low Level Width	tTCTCL	38		38		ns
DMARQn(n=0-3) Setup Time (CLKOUT)	tsdqk	12		33.6		ns
CLKOUT HighTo DMAAKn(n=0-3) Delay Time	tDKLDA	0	25	-2.8	27.8	ns

Table 4-3 70236A AC Electrical Specification(Cont'd)

4-30 In-Circuit Emulation Topics

Table 4-3 70236A	AC	Electrical S	pecification	(Cont'd)	
------------------	----	---------------------	--------------	----------	--

INTPn(n=0-7) Low Level Width	tIPIPL	100		100		ns
MRD High Level Width	t _{MRMRH}	18		15		ns
MRD High To Data Setup Time	t _{DMRHLZ}	12.5		10.8		ns
MRD High To Data Delay Time	t _{DMRHD}	13		10.2		ns
CLKOUT To Cascade Address Delay Time	t DKCA	5	25	2.2	27.8	ns

*1 Typical outputs measured with 20pF load

*2 Except CLKOUT, PLKOUT

*3 No wait State

*4 MWR, IOWR during DMA cycl

*5 BEFEN, INTAK, REFRQ

*6 TC must be pulled up by 1.1K

Target System Interface (70136)

R/W M/IO BUSST2-1

These singals are connected to 70136 through FCT257 and 10K ohm pull-up register.

 $\frac{A23}{UBE}$ A0

These singals are connected to 70136 through FCT244 and 10K ohm pull-up register.

4-32 In-Circuit Emulation Topics

D15-D0

These singals are connected to 70136 through FCT245 and 10K ohm pull-up register.

These singals are connected to 70136 through GAL and 10K ohm pull-up register.

In-Circuit Emulation Topics 4-33

HLDRQ NMI RESET These singals are connected to 70136 through ACT14 and 4.7K ohm pull-up and 10K ohm pull-down registers.

OHTER

These singals are connected to 70136 through FCT244 and 4.7K ohm pull-up and 10K ohm pull-down registers.

4-34 In-Circuit Emulation Topics

Target System Interface (70236/70236A)

R/W M/IO IORD IOWR MRD MWR BUSST2-0

These singals are connected to 70236/70236A through FCT257 and 10K ohm pull-up register.

OTHER(INPUT)

These singals are connected to 70236/70236A through FCT244 and 10K ohm pull-up register.

These singals are connected to 70236/70236A through GAL and 10K ohm pull-up register.

OTHER(OUTPUT) These singals are connected to 70236/70236A through FCT244 and 4.7K ohm pull-up and 10K ohm pull-down registers.

4-36 In-Circuit Emulation Topics

70136 Emulator Specific Command Syntax

The following pages contain descriptions of command syntax specific to the 70136 emulator. The following syntax items are included (several items are part of other command syntax):

- <ACCESS_MODE>. May be specified in the mo (display and access mode), m (memory), and io (I/O port) commands. The access mode is used when the m or io commands modify target memory or I/O locations.
- <ADDRESS>. May be specified in emulation commands which allow addresses to be entered.
- <ADDRESS_EXPRESSION>. May be specified in emulation commands which allow address expressions to be entered.
- CONFIG_ITEMS>. May be specified in the cf (emulator configuration) and help cf commands.
- <DISPLAY_MODE>. May be specified in the mo (display and access mode), m (memory), io (I/O port), and ser (search memory for data) commands. The display mode is used when memory locations are displayed or modified.
- <REG_NAME> and <REG_CLASS>. May be specified in the reg (register) command.

Emulator Specific Command Syntax A-1

ACCESS_MODE

Summary Specify cycles used by monitor when accessing target system memory or I/O.

Function The **<ACCESS_MODE>** specifies the type of microprocessor cycles that are used by the monitor program to access target memory or I/O locations. When a command requests the monitor to read or write to target system memory or I/O, the monitor program will look at the access mode setting to determine whether byte or word instructions should be used.

Parameters

b	Byte. Selecting the byte access mode specifies that the emulator will access target memory using upper and lower byte cycles (one byte at a time).
W	Word. Selecting the word access mode specifies that the emulator will access target memory using word cycles (one word at a time) at an even address.
	When the emulator read or write odd number of byte data, the emulator will read or write the last byte data using byte cycle. At an odd address, the emulator will access target memory using byte cycles

A-2 Emulator Specific Command Syntax

Defaults The **<ACCESS_MODE>** is **b** at power up initialization. Access mode specifications are saved; that is, when a command changes the access mode, the new access mode becomes the current default.

Related Commands mo (specify display and access modes)

Emulator Specific Command Syntax A-3

ADDRESS

Address Syntax

Address specifications used in emulation commands.

Syntax

Function The **<ADDRESS>** parameter used in emulation commands may be specified as a segment:offset address, physical address, or as an extended address (though a physical address in run commands (see table A-1) is converted to a segment:offset address and an extended address in memory commands (see table A-1) is converted to a value of the page register and a segment:offset address by the emulation system).

The physical and extended address specifications are of the following form. "@e" and "@p" are the function codes to define as an extended or a physical address.

Extended address	EXT_ADDR@e
Physical address	PHY_ADDR@p

Expressions are defined in the *HP* 64700 *Emulators Terminal Interface: User's Reference* manual.

A-4 Emulator Specific Command Syntax

Parameters

	<segment></segment>	This expression (0-0FFFF hex) is the segment portion of the logical address. The value specified is placed in the 70136 PS register.
	<offset></offset>	This expression (0-0FFFF hex) is the offset portion of the logical address. The value specified is placed in the 70136 PC register.
	<phy_addr></phy_addr>	This expression (0-0FFFFF hex) with "@p" function code is a physical address in the 70136 address range. In run commands (see table A-1), the emulation system converts this physical address to a segment:offset address as specified by the rad (run address default) configuration item (see the <config_item></config_item> description).
	<ext_addr></ext_addr>	This expression (0-0FFFFF hex) with "@e" function code is an extended address in the 70136 address range. In memory commands (see table A-1), the emulation system converts this extended address to a value of the page register and a segment:offset address to access the memory.
	<i o_addr=""></i>	This expression (0-0FFFF hex) with no function code is a 70136 I/O address. This expression should be used in I/O command (see table A-1).
Defaults	If no number base hexadecimal numb	is specified, values entered are interpreted as bers.

Related Commands <**CONFIG_ITEMS**> (70136 specific items specified with the **cf** command)

Emulator Specific Command Syntax A-5

ADDRESS_ **EXPRESSION**

Summary

Specify address expression used in emulation commands.

Table A-1 is the address expression matrix used in emulation commands.

Command group	Terminal command	<ext_addr> (@e)</ext_addr>	<phy_addr> (@p)</phy_addr>	<segment>:<offset></offset></segment>	No function code
Memory commands	cp,dump m,ser	ОК	OK(*1)	OK(*1)	same as <phy_addr></phy_addr>
	cim	OK	ERROR	ERROR	not accepted
	cov	OK	ERROR	ERROR	not accepted
Run commands (*2)	r,rx,s (rad=maxseg)	ERROR	OK	OK	same as <phy_addr></phy_addr>
	r,rx,s (rad=minseg)	ERROR	ок 	OK	same as <pyh_addr></pyh_addr>
	r,rx,s (rad=curseg)	ERROR	ERROR	OK	<pre><offset> (0-0FFFFH)</offset></pre>
I/O io command		ERROR	ERROR	ERROR	OK (0-0FFFFH)
Map command	 map	OK	ERROR	ERROR	same as <ext_addr></ext_addr>
Breakpoints command	dq	OK	OK(*1)	OK(*1)	same as <phy_addr></phy_addr>
Symbols command	sym	OK	ок 	OK	same as <pyh_addr></pyh_addr>

Table A-1. Address Expression Syntax

*1 : Emulator breaks to the monitor on accesses to emulation memory
 (refer to "cf pgrd" command in CONFIG_ITEMS section of this appendix.)

*2 : Refer to the "cf rad" command in CONFIG_ITEMS section of this appendix.

A-6 Emulator Specific Command Syntax

Memory Commands

The following commands are included in memory commands (refer to *HP 64700 Emulators Terminal Interface: User's Reference* manual).

- **cp** (Copy memory blocks)
- **dump** (Dump memory to a host file)
- **m** (Display/modify memory locations)
- **ser** (Search memory for values)

You can use the following address expression in memory commands (refer to **cf pgrd** command in this appendix).

	<ext_addr></ext_addr>	<pre><phy_addr></phy_addr></pre>	<segment>:<offset></offset></segment>	-
cf pgrd=en	OK	OK*	ОК*	
cf pgrd=dis	OK	OK	ОК	

(* - Emulator breaks into the monitor on accesses to emulation memory)

When you set **cf pgrd** equal to **en**, the emulator should break to the monitor to get the current value of page register to convert physical address to extended address using in emulation system.

When you set **cf pgrd** equal to **dis**, the emulator should use the copy of page registers which is renewed at breaking to the monitor or changing the value of page registers.

In this case, the emulator does not break to the monitor.

Note

You may use "**cf pgrd** = **dis**" configuration setting when you only use normal address mode in your program or the value of page registers is not changed after initializing while executing your program.

Note

When program execution should take place in real-time (refer to **cf rrt** command in this appendix) and the emulator should break to the monitor to read page registers (**cf pgrd** = **en**), the commands showing above which need physical to extended address conversion are not allowed in running user program (the "U>" prompt is shown). If you entered, the following error message will be shown:

!ERROR 145! Can not get extended address

The following commands are also included in memory commands.

cim (Copy target system memory to emulation memory) **cov** (Measure percentage of memory locations accessed)

You can use the following address expression in using above commands.

commands:cim,cov

<ext_addr></ext_addr>	<phy_addr></phy_addr>	<segment>:<offset></offset></segment>
OK	ERROR	ERROR

You should use the extended address expression to use the above commands.

If you use other address expression, the following error messages will be shown.

Command : cim

!ERROR 736! Memory not mapped as emulation:

Command : cov

!ERROR 143! Physical address can not be used

A-8 Emulator Specific Command Syntax

Load/Dump Commands

When you download programs into memory using load command, the emulator will interpret an address in the absolute file owing to the following configuration setting (refer to the cf lad command in CONFIG ITEMS section in this appendix).

commands; load

configuration	address mode	
cf lad = ext	extended address	
cf lad = phy	physical address	

When you dump memory to a host file using **dump** command, the address information saved to host file is defined from the address expression used in the **dump** command.

commands;dump

Address expression (in dump command)	address information (to a host file)
<pre><ext_addr> ("@e") <phy_addr> ("@p") <segment>:<offset> No function code</offset></segment></phy_addr></ext_addr></pre>	extended address physical address physical address physical address physical address

(Refer to the "ADDRESS" section in this appendix and HP 64700 Emulators Terminal Interface: User's Reference manual.)

When you download the host file made by **dump** command before, you should set the same **cf lad** configuration that you enter the **dump** command.

Otherwise, the memory image is not the same as when you enter the **dump** command to make the host file.

Note

When you download the host file with physical address information made by **dump** command, you should set up the same value to page registers (PGR 1 - PGR 64) that you enter the dump command. Otherwise, the memory image is not same as when you enter the dump command to make the host file.

Emulator Specific Command Syntax A-9

Run Commands The following commands are included in run commands (refer to *HP* 64700 *Emulators Terminal Interface: User's Reference* manual).

r (Run the emulator from current PC or specified location)
rx (Specify starting address for emulator run upon CMB execution)
s (Step the emulation processor one or more instructions)

You can use the following address expression in run commands.

commands:r,rx,s

	<ext_addr></ext_addr>	<phy_addr></phy_addr>	<pre><segment>:<offset></offset></segment></pre>	No function code
cf rad = maxseg	ERROR	OK	OK	SAME AS <phy_addr></phy_addr>
cf rad = minseg	ERROR	OK	OK	SAME AS <phy_addr></phy_addr>
cf rad = curseg	ERROR	ERROR	OK	<offset></offset>

Refer to the "Default Physical to Logical Run Address Conversion" section in this appendix.

You should not use the extended address expression in run commands.

If you use extended address expression, the following error messages will be shown.

!ERROR 144! Extended address can not be used.

A-10 Emulator Specific Command Syntax
Default Physical to Logical Run Address Conversion

The run and step commands allow you to enter addresses in either logical form (segment:offset, e.g., 0F000:0FFFF) or physical form (e.g., 0FFFFF@p; @p is the function code as physical address; refer to the "ADDRESS" section in this appendix).

When a physical address (with @p) is entered with either a run or step command, the emulator must convert it to a logical (segment:offset) address. By default, a physical run address is converted such that the low 16 bits of the address become the offset value. Use the **cf** (configuration) command with the **rad** (run address default conversion) configuration item to specify that the low 4 bits of the physical address become the offset. The physical address is right-shifted 4 bits to yield the segment value.

R>cf rad=maxseg

logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

To reconfigure so that the low 16 bits of the physical address become the offset value, enter the following command. The physical address is right-shifted 4 bits and ANDed with 0F000H to yield the segment value.

R>cf rad=minseg

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xfff)

To configure that the value (0 through 0FFFF hex; with no function code) entered with either a run or step command becomes the offset value, enter the following command. In this configuration, the current segment value is not changed.

R>cf rad=curseg # logical_addr = (current segment):(entered value)

If you use logical addresses other than the three methods shown above, you must enter run and step addresses in **SEGMENT>:<OFFSET>** form.

I/O Command	The following command is included in I/O command.
	io (Display/modify I/O locations)
	You can only use the I/O address expression ; this expression (0-0ffff hex) with no function code defines an 70136 I/O address.
Note	You should not change the value of the 70136 internal I/O registers with using io command. You should use the reg command to change the value of internal I/O registers.
Map Command	The following command is included in map command.
	map (Map emulation and target system memory)
Define the data bus size	The data bus size for memory accesses can be defined in map command. For example, enter the following command to map memory, and display the memory map (The extended address expression should be used in map command).
R>map 07ff@e erom 16 R>map 8009ff@e eram 8 R>map other tram R>map	
<pre># remaining number of terms # remaining emulation memor map 0000000@e00007ff@e map 0000800@e00009ff@e map other tram</pre>	: 14 y : le600h bytes erom 16
	As you can see, from 0 hex through 7ff hex is mapped as emulation ROM with 16-bit data bus: from 800 hex through 9ff hex is mapped a

as emulation RAM with 8-bit data bus; the other memory ranges are app mapped as target RAM with 16-bit data bus (if the data bus size is not specified in map command, the address ranges will be mapped with 16-bit data bus by default).

A-12 Emulator Specific Command Syntax

Note	The data bus size for memory accesses also can be defined from the BS8/BS16 input of the target system. Refer to the ebs and tbs command descriptions in "CONFIG_ITEMS" section in this appendix.
Note	The data bus size of I/O accesses (external I/O only) is defined from the BS8/BS16 input of the target system.
Breakpoints Command	The following commands are included in breakpoints command (refer to <i>HP 64700 Emulators Terminal Interface: User's Reference</i> manual).
	bp (Insert or modify software breakpoints)

You can use the following address expression in breakpoints command (refer to **cf pgrd** command in this appendix).

commands: **bp**

	<ext_addr></ext_addr>	<phy_addr></phy_addr>	<segment>:<offset></offset></segment>	
cf pgrd=en	OK	OK*	OK*	
cf pgrd=dis	OK	OK	OK	

(* - Emulator breaks into the monitor on accesses to emulation memory)

When you set **cf pgrd** equal to **en**, the emulator should break to the monitor to get the current value of page register to convert physical address to extended address using in emulation system.

When you set **cf pgrd** equal to **dis**, the emulator should use the copy of page registers which is renewed at breaking to the monitor or changing the value of page registers. In this case, the emulator does not break to the monitor.

Symbols Command

The following command is included in symbols command.

sym (Manage the emulator symbol table)

You can use following address expression in **sym** command. If you define symbols with the following address expression, the symbol has the following address information.

Address expression	address information
(in sym command)	(in the symbol)
<ext_addr> ("@e")</ext_addr>	extended address
<phy_addr> ("@p")</phy_addr>	physical address
<segment>:<offset></offset></segment>	<segment>:<offset></offset></segment>
No function code	physical address

(Refer to the "ADDRESS" section in this appendix and *HP* 64700 *Emulators Terminal Interface: User's Reference* manual.)

Caution

The emulation system uses 24-bit extended address information to trace the execution of program (refer to the **tlb** command in "Getting Started" chapter).

When you specify trace condition in analyzer commands with using the symbol which has physical or <segment>:<offset> address information, the trace condition may be ignored in executed in extended address mode.

Related Commands <**CONFIG_ITEMS**> (70136 specific items specified with the **cf** command)

A-14 Emulator Specific Command Syntax

CONFIG_ITEMS

Summary 70136 emulator configuration items.

Syntax

Function The **<CONFIG_ITEMS>** are the 70136 specific configuration items which can be displayed/modified using the **cf** (emulator configuration) command. If the "=" portion of the syntax is not used, the current value of the configuration item is displayed.

A-16 Emulator Specific Command Syntax

Parameters

clk

Clock Source. This configuration item allows you to specify whether the emulator clock source is to be internal (**int**, provided by the emulator) or external (**ext**, provided by the target system).

The internal clock speed of 70216, 70236 and 70236A emulator is 16 MHz (system clock).

The 70136 emulator will operate at external clock speed from 2-16 MHz (entered clock). The 70236 emulator will operate at external clock speed from 4-32 MHz (entered clock). The 70236A emulator will operate at external clock speed from 4-40 MHz (entered clock).

Note

When the 70136 emulator is plugged into the target system, you should use the external target system clock source to synchronize the emulator with the target system.

rrt

Restrict to Real-Time Runs. This configuration item allows you to specify whether program execution should take place in real-time or whether commands should be allowed to cause breaks to the monitor during program execution.

To restrict execution to real-time, set **rrt** equal to **en**.

To allow breaks to the monitor during program execution, set **rrt** equal to **dis**. When runs are restricted to real-time, commands which access target system resources (display registers, step, or display/modify target system memory or I/O) are not allowed.

Monitor Options. This configuration item is used to select the type of monitor to be used by the emulator.

If **bg** (background monitor) is selected, all monitor functions are performed in background. If **fg** (foreground monitor) is selected, all monitor functions are performed in foreground. (Breaks to the monitor still put the emulator into the background mode, but the monitor program returns to foreground before performing any functions.)

Note

mon

You should not use the physical or segment:offset address expression to locate the foreground monitor.

Refer to the "Using the Optional Foreground Monitor" appendix in this manual

cyc Visible/Hidden Background Cycles. This (70136 Emulator) configuration allows you to select whether or not the 70136 emulator will drive the bus status lines (M/IO, BUSST1, BUSST0, R/W) on all background monitor cycles to the target system.

Note

All address bus (A23 to A0), BCYST, and DSTB are always driven to the target system on all background monitor cycles independent on this configuration item.

All data bus (D15 to D0) are never driven to the target system on all background monitor cycles.

Setting **cyc** equal to **en** specifies that the emulator will drive the bus status lines to the target system. All cycles appear to the target system as memory read cycles (M/IO = 1, BUSST1 = 0, BUSST0 = 1, R/W = 1) from the address range of the monitor. It is possible to place the monitor at different locations if read cycles from the current range cause an undesired interaction (see the **loc** configuration item).

Setting **cyc** equal to **dis** specifies that <u>the</u> bus status lines (M/IO, BUSST1, BUSST0, R/W) are not driven to the target system.

	cyc (70236/70236A Emulator)	Visible/Hidden Background Cycles. This configuration allows you to select whether or not the <u>70236 emulator</u> will drive the bus status <u>lines</u> (M/IO, R/W, BUSST2, BUSST1, BUSST0, UBE, BCYST, DSTB) on all background monitor cycles to the target system.
Note 🥵	All address bus (are always driver cycles independe All data bus (D1 background mon	A23 to A0), AEX, BUSLOCK, REFRQ, and HLDAK n to the target system on all background monitor ent on this configuration item. 5 to D0) are never driven to the target system on all itor cycles.
Note	The emulator wil the background n	I drive all bus lines on all DMA and refresh cycles in nonitor to the target system.
		Setting cyc equal to en specifies that the emulator will drive the bus status lines to the target system. All cycles appear to the target system as read cycles for memory ($M/IO = 1$, $R/W = 1$) from the address range of the monitor. It is possible to place the monitor at different locations if read cycles from the current range cause an undesired interaction (see the loc configuration item).
		Setting cyc equal to dis specifies that the bus status $\frac{1}{2}$

lines (M/IO, R/W, BUSST2, BUSST1, BUSST0, UBE, BCYST, DSTB) are not driven to the target system. Monitor Location. This configuration item allows you to specify the location of the background monitor program. The monitor may be located on any 4K byte boundary. If the <ADDRESS> specified is not on a 4K boundary, the 4K boundary below the address is used. The location of background monitors may be important because background cycles of the 70136 emulator can be visible to the target system.

If your target system have some circuitry which monitors bus activities to detect illegal access to resources, You may need to relocate monitor

Note

Physical to Logical Run Address Conversion. This configuration item allows you to specify the default method in which the emulation system will convert physical addresses specified in run and step commands to logical addresses.

Setting **rad** equal to **maxseg** specifies that the low nibble of the physical address become the offset value; the high four nibbles become the segment value.

Setting **rad** equal to **minseg** specifies that the low four nibbles of the physical address become the offset value; the high nibble and three hex zeros will become the segment value.

Setting **rad** equal to **curseg** specifies that the value which is entered in a run or step command is placed in the 70136 PC register. The segment value which is in the 70136 PS register is not changed.

Emulator Specific Command Syntax A-21

loc

address.

rad

Refer to the "Default Physical to Logical Run Address Conversion" section in this appendix.

The 70136 emulator can respond or ignore target system reset while running in user program or waiting for target system reset.

While running in background monitor, the 70136 emulator ignores target system reset completely independent on this setting.

Specifying "**cf trst=en**", this is a default configuration, make the emulator to respond to reset from target system. In this configuration, emulator will accept reset and execute from reset vector (0FFFF0 hex) as same manner as actual microprocessor after reset is inactivated.

You can ignore reset from target system completely by specifying "**cf trst=dis**". In this configuration emulator ignore any reset from target system.

When you use the **r rst** (run from reset) command in-circuit to run form processor reset after the target reset input, you should use **"cf trst=en"** configuration setting.

nmi

Enable/disable user NMI. This configuration item allows you to specify whether user NMI is accepted or ignored by the emulator. To accept user NMI, set **nmi** equal to **en**. To ignore user NMI, set **nmi** to **dis**. When **nmi** is set to **dis**, the emulator ignores user NMI input.

A-22 Emulator Specific Command Syntax

Note

trst

Note

You should not use step command when if target system can generates NMI.

When the emulator accepts NMI input in stepping, the following error message will be shown.

ERROR : Stepping failed

In this case, you should configure that the emulator ignores NMI input from the target system in this configuration setting.

rdy Allow Target Ready Signals to Insert Wait States. This configuration item allows you to specify whether the emulator should honor target system ready signals on accesses to emulation memory. Setting **rdy** equal to **lk** specifies that target ready signals be honored on emulation memory accesses. Setting rdy equal to unlk specifies that target ready signals be ignored on emulation memory accesses. ebs Setting ebs equal to tgt specifies that the bus size of emulation memory is defined from the BS8/BS16 input of the target system. Setting **ebs** equal to **emul** specifies that the bus size of emulation memory is selected from the setting of the map configuration. Refer to the map command description in "ADDRESS_EXPRESSION" section of this appendix.

Setting **tbs** equal to **tgt** specifies that the bus size of target memory is defined from the BS8/BS16 input of the target system.

Setting **tbs** equal to **emul** specifies that the bus size of target memory is selected from the setting of the map configuration.

Refer to the **map** command description in "ADDRESS_EXPRESSION" section of this appendix.

Allow to break to the monitor to read page registers in Physical to Extended Address Conversion. This configuration item allows you to specify whether the emulator should break to the monitor to read page registers or whether the emulator should use the copy of page registers when the emulation system will convert physical address specified in the following commands to extended address.

cp (Copy memory blocks)
dump (Dump memory to a host file)
m (Display/modify memory locations)
ser (Search memory for values)
bp (Insert or modify software breakpoints)

Setting **pgrd** equal to **en** specifies that the emulator should break to the monitor to get the current value of page registers on accesses to emulation/target memory.

Setting **pgrd** equal to **dis** specifies that the emulator should use the copy of page registers which is renewed at breaking to the monitor or changing the value of page registers with using **reg** command (refer to *HP 64700 Emulators Terminal Interface: User's Reference* manual).

A-24 Emulator Specific Command Syntax

tbs

pgrd

Note	You may use "cf pgrd = dis" configuration setting not to break to the monitor to read page registers when you only use the normal address mode in your program or the value of page registers is not changed after initalizing while executing your program.		
Note	When program ex command in this a monitor to read pa above which need allowed. Refer to	ecution should take place in real-time (refer to cf rrt appendix) and the emulator should break to the age registers (pgrd = en), the commands showing physical to extended address conversion are not Table A-1 in this appendix.	
	lad	Specify the Load Address of an absolute file. If you specify ext for this configuration item, emulator will interpret address in absolute file as extended address.	
		If you specify phy for this configuration item, emulator will interpret address in absolute file as physical address.	
	aex	Select the AEX (Address Extension) signal level in background monitor cycles. This configuration item allows you to select the AEX signal level which is driven to the target system while in the background monitor cycles.	
		Setting aex equal to hd specifies that the emulator will hold the AEX signal with the level dependent on the last foreground address mode just before entering background monitor. When the program is running on normal address mode, the emulator will hold the AEX signal level low while the background monitor cycles with this configuration.	

Setting **aex** equal to **unhd** specifies that the emulator will drive the **AEX** signal with the level dependent on the address mode in the background monitor cycles. When you use the extended address in using the memory commands (see table A-1) in background monitor, the **AEX** signal will be driven to high level with this configuration.

Select the assembler mnemonics for FPU (Floating Point Unit) to display memory.

Setting **fpu** equal to **72291** specifies that mnemonics for NEC uPD72291 floating point processor will be used to display memory.

Setting **fpu** equal to **80287** specifies that mnemonics for Intel 80287 numeric processor extension will be used to display memory.

(70236 /70236A Emulator only) Respond to target HLDRQ during background operation. This configuration allows you to specify whether or not the emulator accepts HLDRQ (Hold Request) signal generated by the target system in background.

Setting **tghld** equal to **dis** specifies that the emulator ignores HLDRQ signal from target system completely in background.

Setting **tghld** equal to **en** specifies that the emulator accepts HLDRQ signal. When the HLDRQ is accepted, the emulator will respond as actual microprocessor.

fpu

tghld

A-26 Emulator Specific Command Syntax

(70236/70236A Emulator only) Trace Internal DMA cycles. This question allows you to specify whether or not the analyzer trace the emulation processor's internal DMA cycles.

Setting **tdma** equal to **en** specifies that the analyzer will trace the internal DMA cycles.

Setting **tdma** equal to **dis** specifies that the analyzer will not trace the internal DMA cycles.

(70236/70236A Emulator only) Trace refresh cycles. This question allows you to specify whether or not the analyzer trace the 70236 emulation processor's refresh cycles.

Setting **trf** equal to **en** specifies that the analyzer will trace the 70236 refresh cycles.

Setting **trf** equal to **dis** specifies that the analyzer will not trace the refresh cycles.

(70236/70236AEmulator only) Wait states for internal DMA cycles. When you want to trace internal DMA cycles correctly with using the emulator, you must set the number of wait states for internal DMA cycles.

The number is the same as the value of DMAW (Wait for the DMA cycle) of the WCY4 (programmable wait, cycle 4) register (I/O address FFF6 hex). Refer to the **cf tdma** command in this section.

Emulator Specific Command Syntax A-27

trf

dmaiw

tdma

bgdma	(70236 /70236A Emulator only) Enabling internal DMA during background operation. This configuration allows you to specify whether or not the emulation processor's internal DMA is allowed while in background.
	Setting bgdma equal to en specifies that the internal DMA is allowed while in background.
	Setting bgdma equal to dis specifies that the internal DMA is not allowed while in background.
dmyt	 (70236Emulator only) Trace dummy cycles during HALT acknowledge. This question allows you to specify whether or not the analyzer trace the emulation processor's dummy cycles during HALT acknowledge. Whenever breaks occur during the emulation processor is halted, the HALT acknowledge cycle will be occurred one more time. This configuration specifies that the analyzer trace or not this HALT acknowledge cycles occurred by the breaks during the emulation processor is halted.
	Setting dmyt equal to dis specifies that the analyzer will not trace the dummy cycles during HALT acknowledge.
	Setting dmyt equal to en specifies that the analyzer will trace the dummy cycles during HALT acknowledge.

Defaults	The default values of the 70136 emulator configuration items are listed
	below.

cf rrt=dis cf mon=bg cf cyc=en cf loc=Off000 cf rad=minseg cf trst=en cf nmi=en cf rdy=unlk cf ebs=emul cf tbs=tgt cf pgrd=en cf lad=ext cf aex=unhd cf fpu=72291

cf clk=int

The default values of the 70236 emulator configuration items are also listed below.

cf clk=int cf rrt=dis cf mon=bg cf cyc=en cf loc=0ff000 cf rad=minseg cf trst=en cf ndy=unlk cf ebs=emul cf tbs=tgt cf pgrd=en cf lad=ext cf aex=unhd cf fpu=72291 cf tghld=dis cf trf=en cf dmaiw=7 cf bgdma=en cf dmyt=dis

Related Commands help

You can get an on line help information for particular configuration items by typing:

R>help cf <CONFIG_ITEM>

DISPLAY_MODE

Summary Specify the memory display format or the size of memory locations to be modified.

Syntax

Function The **<DISPLAY_MODE>** specifies the format of the memory display or the size of the memory which gets changed when memory is modified.

Parameters

b	Byte . Memory is displayed in a byte format, and when memory locations are modified, bytes are changed.
W	Word . Memory is displayed in a word format, and when memory locations are modified, words are changed.
d	Double Word . Memory is displayed in a double word format, and when memory locations are modified, double words are changed.
m	Mnemonic . Memory is displayed in mnemonic format; that is, the contents of memory locations are inverse-assembled into mnemonics and operands. When memory locations are modified, the last non-mnemonic display mode specification is used. You cannot specify this display mode in the

ser (search memory for data) command.

A-30 Emulator Specific Command Syntax

Defaults The **<DISPLAY_MODE>** is **b** at power up initialization. Display mode specifications are saved; that is, when a command changes the display mode, the new display mode becomes the current default.

Related Commands mo (specify access and display modes)

m (memory display/modify)

io (I/O display/modify)

ser (search memory for data)

REGISTER
NAMES and
CLASSES
(70136 Emulator)

The following register names and classes are used with the display/modify registers commands in 70136 emulator.

BASIC(*) class

PGR class

Register name	Description
aw, bw cw, dw bp, ix, iy ds0, ds1, ss sp, pc, ps, psw	BASIC registers.
(page registers)	
Register name	Description
pgr1 pgr2 : pgr63 pgr64 xam	PGR 1 register PGR 2 register : PGR 63 register PGR 64 register XAM register (Read only)

A-32 Emulator Specific Command Syntax

REGISTER NAMES and CLASSES (70236 Emulator)

The following register names and classes are used with the display/modify registers commands in 70236 emulator.

BASIC(*) class

Register name	Description
aw, bw cw, dw bp, ix, iy ds0, ds1, ss sp, pc, ps, psw	BASIC registers.
(Page registers)	
Register name	Description
pgr1 pgr2 : pgr63 pgr64 xam	PGR 1 register PGR 2 register : PGR 63 register PGR 64 register XAM register (Read only)
	Register name aw, bw cw, dw bp, ix, iy ds0, ds1, ss sp, pc, ps, psw (Page registers) Register name pgr1 pgr2 : : : pgr63 pgr64 xam

SIO class (System I/O registers)

Register name	Description
bsel	Bank selection register
badr	Bank address register
brc	Boud rate counter
wmb0	Programmable wait, memory boundary 0 register
wcy1	Programmable wait, cycle 1 register
wcy0	Programmable wait, cycle 0 register
wac	Programmable wait, memory address control
	register
tcks	Timer clock selection register
sbcr	Stand-by control register
refc	Refresh control register
wmb1	Programmable wait, memory boundary 1 register
wcy2	Programmable wait, cycle 2 register
wcy3	Programmable wait, cycle 3 register
wcy4	Programmable wait, cycle 4 register
sula	SCU low address register
tula	TCU low address register
iula	ICU low address register
dula	DMAU low address register
opha	On-chip peripheral high address register
opsel	On-chip peripheral selection register
sctl	System control register

A-34 Emulator Specific Command Syntax

ICU class (Interrupt Control Unit registers)

Register name	Description		
imkw	Interrupt mask word register		
irq	Interrupt request register	(Read only)	
iis	Interrupt in-service register	(Read only)	
ipol	Interrupt polling register	(Read only)	
ipfw	Interrupt priority and finish word register (Write only)		
imdw	Interrupt mode word register	(Write only)	
iiw1	Interrupt initialize word 1 register	(Write only)	
iiw2	Interrupt initialize word 2 register	(Write only)	
iiw3	Interrupt initialize word 3 register	(Write only)	
iiw4	Interrupt initialize word 4 register	(Write only)	

Caution

' | (

When **ipol** register is displayed, interruptis are suspended until the FI command is published.

TCU class (Timer Control Unit registers)

Register name	Description	
tct0	Timer/counter 0 register	
tst0	Timer status 0 register	(Read only)
tct1	Timer/counter 1 register	
tst1	Timer status 1 register	(Read only)
tct2	Timer/counter 2 register	
tst2	Timer status 2 register	(Read only)
tmd	Timer/counter mode register	(Write only)

SCU class (Serial Control Unit registers)

Register name	Description	
srb	Serial receive data buffer	(Read only)
sst	Serial status register	(Read only)
stb	Serial transmit data buffer	(Write only)
scm	Serial command register	(Write only)
smd	Serial mode register	(Write only)
simk	Serial interrupt mask register	(Write only)

DMA71 class (DMA Control Unit registers (for uPD71071 mode)

Register name	Description				
dicm	DMA initialize register	(Write only)			
dch	DMA channel register				
dbc/dcc0	DMA base/current count register cha	nnel 0			
dbc/dcc1	DMA base/current count register channel 1				
dbc/dcc2	DMA base/current count register channel 2				
dbc/dcc3	DMA base/current count register channel 3				
dba/dca0	DMA base/current address register channel 0				
dba/dca1	DMA base/current address register channel 1				
dba/dca2	DMA base/current address register channel 2				
dba/dca3	DMA base/current address register channel 3				
dmd0	DMA mode control register channel 0				
dmd1	DMA mode control register channel 1				
dmd2	DMA mode control register channel 2	2			
dmd3	DMA mode control register channel 3				
ddc	DMA device control register				
dst	DMA status register (Read only)				
dmk	DMA mask register				

A-36 Emulator Specific Command Syntax

DMA37 class (DMA Control Unit register (for uPD71037 mode)

Register name	Description		
emd	DMA read status/write command re	gister	
bank0	DMA bank register channel 0	6	
bank1	DMA bank register channel 1		
bank2	DMA bank register channel 2		
bank3	DMA bank register channel 3		
adr0	DMA current address register chann	el 0	
adr1	DMA current address register chann	el 1	
adr2	DMA current address register chann	el 2	
adr3	DMA current address register channel 3		
cnt0	DMA current count register channel 0		
cnt1	DMA current count register channel 1		
cnt2	DMA current count register channel 2		
cnt3	DMA current count register channel 3		
sfrq	Software DMA write request register		
	(Write only)		
smsk	DMA write single mask register		
	(Write only)		
mode	DMA write mode register(Write onl	y)	
clbp	DMA clear byte pointer F/F	(Write only)	
init	DMA initialize register	(Write only)	
cmsk	DMA clear mask register	(Write only)	
amsk	DMA write all mask register bit	(Write only)	

Related Commands reg (register display/modify)

Notes

A-38 Emulator Specific Command Syntax

Using the Optional Foreground Monitor

By using and modifying the optional Foreground Monitor, you can provide an emulation environment which is customized to the needs of a particular target system.

The monitor programs named **FM70136.S** and **FM70236.S** are for the HP 64853 Cross Assembler/Linker.

Note

Use the appropriate monitor; "FM70136.S" for the 70136 emulator and "FM70236.S" for the 70236 and 70236A emulator. "FM70136.S" foreground monitor program is used in this example. If your emulator is for the 70236 or 70236A, read this appendix by replacing "FM70136" with "FM70236".

Comparison of Foreground and Background Monitors

An emulation monitor is required to service certain requests for information about the target system and the emulation processor. For example, when you request a register display, the emulation processor is forced into the monitor. The monitor code has the processor dump its registers into certain emulation memory locations, which can then be read by the emulator system controller without further interference.

Using a Foreground Monitor B-1

Background Monitors

A *background* monitor is an emulation monitor which overlays the processor's memory space with a separate memory region.

Usually, a background monitor will be easier to work with in starting a new design. The monitor is immediately available upon powerup, and you don't have to worry about linking in the monitor code or allocating space for the monitor to use the emulator. No assumptions are made about the target system environment; therefore, you can test and debug hardware before any target system code has been written. All of the processor's address space is available for target system use, since the monitor memory is overlaid on processor memory, rather than subtracted from processor memory. Processor resources such as interrupts are not fully taken by the background monitor.

However, all background monitors sacrifice some level of support for the target system. For example, when the emulation processor enters the monitor code to display registers, it will not respond to target system interrupt requests. This may pose serious problems for complex applications that rely on the microprocessor for real-time, non-intrusive support. Also, the background monitor code resides in emulator firmware and can't be modified to handle special conditions.

Foreground Monitors A *foreground* monitor may be required for more complex debugging and integration applications. A foreground monitor is a block of code that runs in the same memory space as your program. You link this monitor with your code so that when control is passed to your program, the emulator can still service real-time events, such as interrupts or watchdog timers. For most multitasking, interrupt intensive applications, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as servicing target system interrupts. However, the foreground monitor does use part of the processor's address space, which may cause problems in some target systems. You must also properly configure the emulator to use a foreground monitor (see the "Emulation topics" chapter and the examples in this appendix).

B-2 Using a Foreground Monitor

An Example Using the Foreground Monitor	In the following example, we will illustrate how to link a foreground monitor. By using the emulation analyzer, we will also show how the emulator switches from state to state using a foreground monitor.
	For this example, We will locate the monitor at 1000 hex; the sample program will be located at 400 hex with its data at 600 hex and its common at 800 hex.
Modify EQU Statement	To use the monitor, you must modify the EQU statement near the top of the monitor listing to point to the segment start address where the monitor will be loaded. In this example, the monitor will be located at 1000 hex, so the modified EQU statement looks like this:
MONSEGMENT EQU	Notice that the EQU statement is indented from the left margin; if it is not indented, the assembler will attempt to interpret the EQU as a label and will generate an error when processing the address portion of the statement. You can load the monitor at any base address on a 4k byte boundary.
Note	You should not load the foreground monitor at the base address 0 or 0ff000 hex; because the 70136 microprocessor's vector table is located.
	Also, the foreground monitor can not be located at the base address over 100000 hex.

Assemble and Link the Monitor You can assemble and link the foreground monitor program with the following commands in using the HP 64853 Cross Assembler/Linker:

\$ asm -o FM70136.S > FM70136.LIS <RETURN> \$ lnk <RETURN> object files FM70136.R <RETURN> library files <RETURN> Load addresses: PROG,DATA,COMN 0,0,0 <RETURN> more files (y or n) n <RETURN> absolute file name FM70136.X <RETURN> If you haven't already assembled and linked the sample program, do that now. Refer to the "Getting Started" chapter for instructions on assembling and linking the sample program.

Initialize the Emulator To initialize the emulator to a known state for this example, type:

M> init -p

Copyright (c) Hewlett-Packard Co. 1987 All Rights Reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under copyright laws.

HP64700 Series Emulation System Version: A.02.02 24Jan90

HP64756 NEC 70136 emulator HP64740 Emulation Analyzer with External State/Timing Analyzer

Configure the Emulator

You need to tell the emulator that you will be using a foreground monitor and allocate the memory space for the monitor. This is all done with one configuration command. To locate the monitor on a 4k boundary starting at 1000 hex, type:

R> cf mon=fg..001000

To see the new memory mapper term allocated for the foreground monitor, type:

R> map

remaining number of terms : 15
remaining emulation memory : 1f000h bytes
map 0001000@e..0001fff@e eram 16 # term 1
map other tram

Notice that a 4k byte block from 1000 through 1fff hex was mapped.

B-4 Using a Foreground Monitor

	Now, you need to map memory space for the sample program. Let's map the memory from 0 through 5ff hex to emulation ROM and map the memory from 600 through 9ff hex to emulation RAM in this example.
	R> map 05ff erom R> map 6009ff eram
Load the Program Code	Now it's time to load the sample program and monitor. In the example shown, we're loading the program from a host with the emulator in Transparent Configuration. If you're using the standalone configuration with a data terminal, you will need to enter the data using the m command. (You can get the data from your assembly listings.) Load the program by typing:
****	R> load -hbs "transfer -tb FM70136.X"
Load the Sample Program	Assuming the sample program has been assembled and linked as shown in Chapter 2, you can load the sample program by typing:
#####	<pre>R> load -hbs "transfer -tb cmd_rds.X"</pre>
Disable Tracing Refresh Cycle (70236/70236A Emulator only)	If you wish to disable the analyzer from tracing refresh cycles, you can use the cf trf command ; the refresh cycles are not detected by the analyzer. Type:
	M> cf trf=dis

Using a Foreground Monitor B-5

Set Analyzer Master Clock Qualifiers	We want to view the transitions made between the different emulator states: reset to break, break to run, run to break. Since the foreground monitor is actually entered via a few cycles in the emulator's built-in background monitor, we need to be able to view the background states. We can do this by modifying the emulation analyzer's master clock qualifier to include tracing of background code. To see the initial clock qualifier, type:
tak -r I -u -a S	M> tck
	Modify this as follows:
	M> tck -r L -ub -s S Now, reset the processor so we can make the first measurement from a known state:
	M> rst
Reset to Break	We want to see the monitor's transition from the reset state to running in the foreground monitor. Since the foreground monitor occupies the address range from 1000 through 1fff hex, we can simply trigger on any access to that range:
	R> tg addr=10001fff
	We also want to see the states leading up to the transition between reset and foreground monitor execution. We can position the trigger so that there are 20 states before the trigger as follows:
	R> tp -b 20 Start the measurement:
	R> t
Emulation trace started	Now, break the emulator into the monitor:
	R> b
	Display 20 disassembled states of the trace from the top of the trace:
	M> tl -td 20

B-6 Using a Foreground Monitor

Line	addr,H	70136	mnemonic,H		count,R	seq
-3	Offff4	ffff	prefetch	N		
-2	000008	0310	memory read	М	0.160 uS	
-1	00000a	0100	memory read	М	0.200 uS	
0	001310	c62e	prefetch	М	0.320 uS	+
1	001312	0e06	prefetch	М	0.200 uS	
2	0000fe	£002	undefined	М	0.160 uS	
3	0000fc	ffff	undefined	М	0.200 uS	
4	0000fa	0000	undefined	М	0.200 uS	
5	001314	0002	prefetch	М	0.120 uS	
б	001316	a32e	prefetch	М	0.120 uS	
7	001310	MOV	PS:020e,#00		0.080 uS	
8	001318	00e6	prefetch	М	0.040 uS	
9	00120e	xx00	memory write	М	0.200 uS	
10	001316	MOV	PS:00e6,AW		0.040 uS	
11	00131a	892e	prefetch	М	0.080 uS	
12	0010e6	0011	memory write	М	0.160 uS	
13	00131c	ec16	prefetch	М	0.160 uS	
14	00131e	8b00	prefetch	М	0.120 uS	
15	001320	25c4	prefetch	M	0.120 uS	
16	00131a	MOV	PS:00ec,DW		0.080 uS	•

At state -2, the processor began executing code, actually starting to read the data; it executed in the background monitor. To see the transition from background execution to foreground monitor program execution, type:

M> tl 140..160

Line	addr,H	70136 t	nnemonic,H			cour	nt,R	seq
140 141	00142c 00142d	NOP NOP				0.080	uS uS	•
142	001434	0200	prefetch		М	0.120	uS	
143	00142e	illegal	opcode, data = Of	cf		0.160	uS	
144	0000fa	0500	undefined		М	0.240	uS	•
145	0000fc	0100	undefined		М	0.160	uS	
146	0000fe	£002	undefined		М	0.200	uS	•
147	001500	8c2e	prefetch		Ν	0.200	uS	•
148	001502	fa16	prefetch		Ν	0.120	uS	•
149	001504	2e00	prefetch		N	0.120	uS	
150	001506	2689	prefetch		N	0.120	uS	
151	001500	MOV	PS:00fa,SS			0.080	uS	•
152	001508	00ee	prefetch		N	0.040	uS	
153	0010fa	0000	memory write		N	0.120	uS	
154	001505	MOV	PS:00ee,SP			0.080	uS	
155	00150a	892e	prefetch		Ν	0.080	uS	
156	0010ee	0100	memory write		Ν	0.160	uS	
157	00150c	e81e	prefetch		Ν	0.120	uS	
158	00150e	2e00	prefetch		N	0.120	uS	
159	001510	0e89	prefetch		N	0.160	uS	
160	00150a	MOV	PS:00e8,BW			0.040	uS	

The foreground monitor start at states 147.

Using a Foreground Monitor B-7

Monitor to User
ProgramWe can look at the transition from the foreground monitor to running
the user program by triggering the trace on a user program address.
Type:

M> tg addr=400

We will leave the trigger position where it was for the last measurement (20 states are retained before the trigger position). Start the measurement:

M> t

Emulation trace started

Now, run the sample program:

M > r 400Display trace states from -15 to +5 in disassembled form as follows:

U> tl -d -15..5

Line	addr,H	70136	mnemonic,H		count,R	seq
-15	0010f8	0000	memory read	N	0.160 uS	
-14	001970	fal6	prefetch	N	0.120 uS	•
-13	001972	2e00	prefetch	N	0.160 uS	•
-12	001974	268b	prefetch	N	0.120 uS	•
-11	00196e	MOV	SS,PS:00fa		0.040 uS	•
-10	001976	00ee	prefetch	N	0.080 uS	•
-9	0010fa	0100	memory read	N	0.120 uS	
-8	001973	MOV	SP,PS:00ee		0.080 uS	•
-7	001978	00cf	prefetch	N	0.040 uS	•
-6	0010ee	Off4	memory read	N	0.200 uS	•
-5	001978	RETI			0.080 uS	•
-4	00197a	0000	prefetch	N	0.040 uS	•
-3	001ff4	0400	memory read	N	0.200 uS	•
-2	001ff6	0000	memory read	N	0.160 uS	•
-1	001ff8	£002	memory read	N	0.200 uS	•
0	000400	60b8	prefetch	N	0.200 uS	+
1	000402	8e00	prefetch	N	0.120 uS	•
2	000404	b8d8	prefetch	N	0.120 uS	•
3	000400	MOV	AW,#0060		0.080 uS	•
4	000406	0080	prefetch	N	0.040 uS	•
5	000403	MOV	DS0,AW		0.080 uS	

At state -5 in the trace listing, the processor executed the **RETI** instruction to transfer execution to the user program at state 0.

B-8 Using a Foreground Monitor
Note

As you can see in the trace list, user stack pointer is used when context is changed from foreground monitor to user program, or from user program to foreground monitor program. If you are configuring the emulator to background monitor, the user stack is not used.

User Program Run to Break

You can trace the execution from the user program run to the foreground monitor due to a break condition by setting as below.

U> tg stat=mon Start the measurement:

U> t

Emulation trace started

Satisfy the trigger condition by breaking the emulator into the monitor:

U> **b**

Now, display states -10 through 10 of the trace list in disassembled format:

M> tl -10..10

Line	addr,H	70136	mnemonic,H		count,R	seq
-10	000416	MOV	AL,DS1:0000		0.080 uS	
-9	00041c	£874	prefetch	N	0.040 uS	
-8	00800	xx00	memory read	N	0.200 uS	
-7	00041a	CMP	AL,#00		0.040 uS	
-б	00041e	413c	prefetch	N	0.080 uS	
-5	00041c	BE/Z	000416		0.080 uS	
-4	000420	0674	prefetch	N	0.040 uS	
-3	000416	a026	prefetch	N	0.200 uS	
-2	000418	0000	prefetch	N	0.120 uS	
-1	00041a	003c	prefetch	N	0.120 uS	
0	000008	0310	memory read	М	0.240 uS	+
1	00000a	0100	memory read	М	0.200 uS	
2	001310	c62e	prefetch	М	0.320 uS	
3	001312	0e06	prefetch	М	0.160 uS	
4	0008fe	£046	undefined	М	0.200 uS	
5	0008fc	0000	undefined	М	0.200 uS	
б	0008fa	0416	undefined	М	0.160 uS	
7	001314	0002	prefetch	М	0.120 uS	
8	001316	a32e	prefetch	М	0.160 uS	
9	001310	MOV	PS:020e,#00		0.040 uS	
10	001318	00e6	prefetch	М	0.080 uS	

Using a Foreground Monitor B-9

At state 0 of the trace list, the processor entered the background state to make the transition. And actual foreground monitor program start at after several background monitor execution. To see the starting point of foreground monitor, type:

M> tl 140..160

Line	addr,H	70136 r	nnemonic,H			count	,R seq
140	00142b	NOP				0.120 u	s .
141	001432	a02e	prefetch		М	0.120 u	s.
142	00142c	NOP	-			0.040 u	s.
143	00142d	NOP				0.200 u	s.
144	001434	0200	prefetch		М	0.120 u	s.
145	00142e	illegal	opcode, data = 0	f cf		0.120 u	s.
146	0008fa	0500	undefined		М	0.240 u	s.
147	0008fc	0100	undefined		М	0.200 u	s.
148	0008fe	£046	undefined		М	0.200 u	s.
149	001500	8c2e	prefetch		Ν	0.160 u	s.
150	001502	fa16	prefetch		Ν	0.160 u	s.
151	001504	2e00	prefetch		Ν	0.120 u	s.
152	001506	2689	prefetch		Ν	0.120 u	s.
153	001500	MOV	PS:00fa,SS			0.080 u	s.
154	001508	00ee	prefetch		Ν	0.040 u	s.
155	0010fa	0080	memory write		Ν	0.120 u	s.
156	001505	MOV	PS:00ee,SP			0.080 u	s.
157	00150a	892e	prefetch		Ν	0.040 u	s.
158	0010ee	0100	memory write		Ν	0.200 u	s.
159	00150c	e81e	prefetch		Ν	0.120 u	s.
160	00150e	2e00	prefetch		Ν	0.120 u	s.

At state 149, the foreground monitor program starts.

B-10 Using a Foreground Monitor

Single Step and Foreground Monitors	To use the "step" command to step through processor instructions with the foreground monitor listed in this chapter, you must modify the processor's interrupt vector table. The entry that you must modify is the "BRK flag" interrupt vector, located at 4H thru 7H. The "BRK flag" interrupt vector must point to the identifier UEE_BRK_FLAG in the foreground monitor.
Extended Address Mode	To use the foreground monitor in the extended mode, in defalt, you can not use page register 0, page register 64 and other one page register to locate the foreground monitor.
	You must modify the processor's interrupt vector indicated "FGMON_VECNO" in the foreground monitor source.
	You must set common stack area for the nomarl and exteded address mode, because the foreground moniter temporay move into the normal mode.

Limitations of Foreground Monitors

Synchronized	You cannot perform synchronized measurements over the CMB when
measurements	using a foreground monitor. If you need to make such measurements,
	set the foreground/background configuration option to cf mon=bg .

Using a Foreground Monitor B-11

Notes

B-12 Using a Foreground Monitor

70136 Emulator Specific Error Messages

	The following pages document the error messages which are specific to the 70136 emulator. The cause of the error is described, as well as the action you must take to remedy the situation.
Message	140 : Second term is smaller than first term
	Cause
	This error occurs when you attempt to enter the address range with the first term is smaller than the second term.
	Action
	Enter the address range with the first term is not smaller than the second term.
Message	141 : Range terms must be the same type
	Cause
	This error occurs when you attempt to enter the address range with the address expression of the first term is different from the second term.
	Action
	Use the same address expression to enter the address range. Refer to "ADDRESS" section of the appendix A of this manual for more information.
Message	142 : Range terms must be in the same segment
	70136 Emulator Specific Error Messages C-1

Cause

This error occurs when you attempt to enter the address range with <SEGMENT>:<OFFSET> address expression and the <SEGMENT> value of first term is different from the <SEGMENT> value of second term.

Action

Use the same <SEGMENT> value to enter the address range with <SEGMENT>:<OFFSET> address expression.

Message 143 : Physical address can not be used

Cause

This error occurs when you attempt to enter the address with physical address expression in the emulation commands which physical address expression cannot be used in.

Action

Use the other address expression which can be used in the emulation commands. Refer the "ADDRESS_EXPRESSION" section of the Appendix A in this manual.

C-2 70136 Emulator Specific Error Messages

Message 144 : Extended address can not be used

Cause

This error occurs when you attempt to enter the address with extended address expression in the emulation commands which extended address expression cannot be used in.

Action

Use the other address expression which can be used in the emulation commands. Refer the "ADDRESS_EXPRESSION" section of the Appendix A in this manual.

Message 145 : Can not get extended address

Cause

This error occurs when program execution should take place in real-time (refer to **cf rrt** command in Appendix A), the emulator should break to the monitor to read page registers (refer to **cf pgrd** command in Appendix A), and the emulation commands which need physical to extended address conversion are entered in running user program (the "U>" prompt is shown).

Action

Use the extended address expression not to need the physical to extended address conversion in the emulation commands. Refer the "ADDRESS_EXPRESSION" section of the Appendix A in this manual.

If you want to use the "**bp**" command, you should break to the monitor to set software breakpoints correctly. Refer the "Using Software Breakpoints" section of the chapter 2 in this manual.

Message 146 : I/O address range overflow

Cause

This error occurs when you attempt to enter the I/O address which is over I/O address range (0-0FFFF hex) after executing the I/O command.

Action

Use the I/O address which is not over the I/O address range after executing the I/O command.

Message 150 : DMA controller is 71071 mode (70236/70236A Emulator only)

Cause

This error occurs when you attempt to access the DMA37 class registers (refer to "REGISTER NAMES and CLASSES" section in Appendix A) and the 70236/70236A internal DMA Control Unit is uPD71071 mode.

Action

Change the mode of 70236/70236A internal DMA Control Unit to uPD71037 mode.

Message 151 : DMA controller is 71037 mode (70236/70236 Emulator only)

Cause

This error occurs when you attempt to access the DMA71 class registers (refer to "REGISTER NAMES and CLASSES" section in Appendix A) and the 70236/70236A internal DMA Control Unit is uPD71037 mode.

Action

Change the mode of 70236/70236A internal DMA Control Unit to uPD71071 mode.

Message 152 : Device not enable (70236/70236A Emulator only)

Cause

This error occurs when you attempt to access registers in the 70236/70236A internal peripheral (ICU, TCU, SCU, and DMAU) and the internal peripheral is disabled.

Action

Enable the internal peripheral to modify the OPSEL register (on-chip peripheral selection register) with using "reg" command (refer to "REGISTER NAMES and CLASSES" section in Appendix A).

70136 Emulator Specific Error Messages C-5

Notes

Index

Α	absolute files, downloading, 2-16
	access mode, specifying, 2-23
	ACCESS_MODE syntax, A-2
	Address expression
	breakpoints command, A-13
	emulation commands, A-6
	I/O command, A-12
	load/dump commands, A-9
	map command, A-12
	memory commands, A-7
	run Commands, A-10
	symbols command, A-14
	address expression in "cf mon" command, 3-6, A-18
	Address expression syntax, A-6
	Address information using in the analyzer, A-14
	ADDRESS syntax, A-4
	aex, emulator configuration, A-25
	analyzer
	features of, 1-4
	analyzer status
	predefined equates, 2-28
	apapter
	PGA to QFP package of the uPD70236 and uPD70236, 1-3
	PLCC to QFP package of the uPD70136, 1-3
	assemblers, 2-13
	assembling foreground monitor, B-4
в	b (break to monitor) command, 2-24
	background, 1-6
	background monitor, 3-4, B-2
	pin state, 4-13/4-14
	selecting, 3-5
	things to be aware of, 3-4
	bc (break conditions) command, 2-26
	bgdma, emulator configuration (70236 emulator only), A-28

BNC connector, 3-3

break conditions, 2-26 after initialization, 2-10 break on analyzer trigger, 3-3 breakpoints, 2-10 Breakpoints command address expression, A-13 BRKXA and RETXA instructions, 1-8 BS8/BS16 input emulation memory, A-23 I/O accesses, A-13 memory accesses, A-13 target memory, A-24 Bus size emulation memory, A-23 map command, A-12 target memory, A-24 bus status line (70136 emulator) driven on the background cycle, A-19 bus status line (70236 emulator) driven on the background cycle, A-20 caution statements change page registers after software breakpoints defined, 2-25 cautions installing the target system probe, 4-2 cf (configuration) command, 3-2 cf (emulator configuration) command, 3-1 cf mon command, 3-5 characterization of memory, 2-11 checksum error count, 2-16 cim (copy target system memory image) command, 4-11 clk (clock source) emulator configuration item, 4-10 clk, emulator configuration, A-17 clock source external, 4-10 in-circuit, A-17 internal, 4-10 CMB (coordinated measurement bus), 3-3 cold start initialization, 2-10 combining commands on a single command line, 2-20 command files, 2-20 command groups, viewing help for, 2-7

С

command recall, 2-21 command syntax, specific to 70136 emulator, A-1 commands combining on a single command line, 2-20 Comparison of foreground/background monitors, B-1 CONFIG_ITEMS syntax, A-15 configuration aex, A-25 bgdma (70236 emulator only), A-28 clk, A-17 cyc (70136 emulator), A-19 cyc (70236/70236A emulator), A-20 dmaiw (70236 emulator only), A-27 dmyt (70236 emulator only), A-28 ebs, A-23 fpu, A-26 lad, A-25 loc, A-21 mon, A-18 nmi, A-22 pgrd, A-24 rad, A-21 rdy, A-23 rrt, A-17 tbs, A-24 tdma (70236 emulator only), A-27 tghld (70236 emulator only), A-26 trf (70236 emulator only), A-27 trst, A-22 configuration (hardware) remote, 2-15 standalone, 2-14 transparent, 2-14 coordinated measurements, 3-3, 3-6 coprocessor access emulation memory, 2-11 cov (reset/display coverage) command, 2-34 coverage testing, 2-34 on ROMed code, 4-12 cp (copy memory) command, 2-33

cyc, emulator configuration (70136 emulator), A-19 cyc, emulator configuration (70236 /70236A emulator), A-20 D display mode, specifying, 2-23 DISPLAY_MODE syntax, A-30 DMA external, 2-11 DMA (70136), 1-7 dmaiw, emulator configuration (70236 emulator only), A-27 dmyt, emulator configuration (70236 emulator only), A-28 downloading absolute files, 2-16 dual-port emulation memory, 3-2 dump command interpret address, A-9 Е ebs, emulator configuration, A-23 electrical characteristics, 4-15, 4-18, 4-25 emulation analyzer, 1-4 **Emulation commands** address expression, A-6 emulation memory access by uPD72291 coprocessor, 2-11 after initialization, 2-10 dual-port, 3-2 note on target accesses, 2-11 size of, 2-11 emulation monitor foreground or background, 1-6 emulation RAM and ROM, 2-11 emulator feature list. 1-3 purpose of, 1-1 supported microprocessor package, 1-3 emulator configuration after initialization, 2-10 on-line help for, **2-8** emulator configuration items clk, 4-10 loc, 3-5 mon, A-18 rad, A-11 rdy, 4-10

rrt, 3-2 Emulator features emulation memory, 1-4 emulator probe installing, 4-2 emulator specific command syntax, A-1 equates predefined for analyzer status, 2-28 eram, memory characterization, 2-13 erom, memory characterization, 2-13 es (emulator status) command, 2-9 escape character (default) for the transparent mode, 2-16 Evalution Chip, 1-8 EXECUTE (CMB signal), 3-3 F file formats, absolute, 2-16 foreground, 1-6 foreground monitor, 3-5, B-2 assembling/linking, B-4 example of using, **B-3** selecting, 3-5 single-step processor, B-11 fpu, emulator configuration, A-26 G getting started, 2-1 grd, memory characterization, 2-12 guarded memory accesses, 2-12 н halt instructions, 3-4 help facility, using the, 2-7 help information on system prompts, 2-8 HP absolute files, downloading, 2-16 Т I/O command address expression, A-12 in-circuit emulation, 4-1 init (emulator initialization) command, 2-10 initialization, emulator, 2-10 cold start, 2-10 warm start, 2-10 Intel hexadecimal files, downloading, 2-16 internal I/O register access, 1-7 internal I/O registers

display, 1-7

modify, **1-7** interrupt from target system (70136), 1-7 from target system (70236), 1-7 while stepping, 1-7 L labels (trace), predefined, 2-28 lad, emulator configuration, A-25 limitation step, 2-19 linkers, 2-13 linking foreground monitor, B-4 load (load absolute file) command, 2-16 load command interpret address, A-9 load map, 2-13 loc (monitor location) configuration item, 3-5 loc, emulator configuration, A-21 locating the background monitor, 3-5 locating the foreground monitor, 3-5 logical run address, conversion from physical address to, A-11 lower byte accesses, **2-30** Μ m (memory display/modification), 2-15 m (memory display/modification) command, 2-23 macros after initialization, 2-10 using, 2-21 map (memory mapper) command, 2-12 Map command command expression, A-12 data bus size, A-12 address expression, A-12 command syntax, 2-13 mapping memory, **2-11** memory displaying in mnemonic format, 2-18 dual-port emulation, 3-2 Memory commands address expression, A-7 memory map after initialization, 2-10

memory, mapping, 2-11 microprocessor package, 1-3 microprocessor socket for QFP package of uPD70136, 1-3 for QFP package of uPD70236 and uPD70236, 1-3 mo (specify display and access modes) command, 2-23 modifying ROMed code, 4-12 mon, emulator configuration, A-18 monitor background, 3-4, B-2 comparison of foreground/background, B-1 foreground, 3-5 locating the, 3-5 monitor program, 3-4 monitor program memory, size of, 2-11 Motorola S-record files, downloading, 2-16 Ν nmi, emulator configuration, A-22 Note address expression in "cf mon" command, 3-6, A-18 PC relative addressing in disassemble list, 2-32 notes break to read page registers, A-7, A-25 target accesses to emulation memory, 2-11 use the appropriate foreground monitor program, B-1 0 on-line help, using the, 2-7 pgrd, emulator configuration, A-24 physical run address, conversion to logical run address, A-11 Pin guard target system probe, **4-2** predefined equates, 2-28 predefined trace labels, 2-28 prompts, 2-8 help information on, 2-8 using "es" command to describe, 2-9 rad (physical run address default) emulator config. item, A-11 rad, emulator configuration, A-21 RAM mapping emulation or target, 2-12

Ρ

R

rdy (target system wait states) configuration item, 4-10

rdy, emulator configuration, A-23 READY (CMB signal), 3-3 real-time runs commands not allowed during, 3-2 commands which will cause break, 3-2 restricting the emulator to, 3-2 recalling commands, 2-21 refresh cycle disable tracing (70236 emulator), B-5 reg (register display/modification) command, 2-20 register commands, 1-5 registers classes (70136 emulator), A-32 classes (70236 emulator), A-33 names (70136 emulator), A-32 names (70236 emulator), A-33 relocatable files, 2-13 remote configuration, 2-15 rep (repeat) command, 2-22 reset commands which cause exit from, 2-36 target system, 3-6 ROM debug of target, 4-11 mapping emulation or target, 2-12 writes to, 2-12 rrt (restrict to real-time) configuration item, 3-2 rrt, emulator configuration, A-17 rst (reset emulator) command, 2-36 run address, conversion from physical address, A-11 Run commands address expression, A-10

S

s (step) command, **2-19** sample program description, **2-2** load map listing, **2-13** loading the, **2-14** ser (search memory) command, **2-24** simple trigger, specifying, **2-30** software breakpoint 70136 breakpoint interrupt instruction, **2-24**

stepping, 1-8 software breakpoints, 2-24 after initialization, 2-10 and NMI, 2-25 defining, 2-27 ignored, 2-26 using with ROMed code, 4-11 standalone configuration, 2-14 stat (emulation analyzer status) trace label, 2-28 Stepping at software breakpoint, 1-8 BRKXA and RETXA instructions, 1-8 stepping failed, **1-7/1-8** Symbols command address expression, A-14 syntax (command), specific to 70136 emulator, A-1 Target reset input run form reset, A-22 target system interface, 4-32, 4-35 Target system probe cautions for installation, 4-2 pin guard, 4-2 target system RAM and ROM, 2-13 target system reset accept, ignore, 3-6 tbs, emulator configuration, A-24 tdma, emulator configuration (70236 emulator only), A-27 Tektronix hexadecimal files, downloading, 2-16 tg (specify simple trigger) command, 2-30 tghld, emulator configuration (70236 emulator only), A-26 tgout (trigger output) command, 3-3 tl (trace list) command, 2-30 tlb (display/modify trace labels) command, 2-28 trace even address, 2-30 odd address. 2-30 trace labels, predefined, 2-28

т

Trace list extended address mode, 2-31 normal address mode, 2-31

PC relative addressing in disassemble list, **1-8** tram, memory characterization, **2-13** transfer utility, **2-16** transparent configuration, **2-14** transparent mode, **2-16** trf, emulator configuration (70236 emulator only), **A-27** trig1 and trig2 internal signals, **3-3** trigger break on, **3-3** specifying a simple, **2-30** TRIGGER (CMB signal), **3-3** trom, memory characterization, **2-13** trst, emulator configuration, **A-22** ts (trace status) command, **2-30**

- **U** UEE_BRK_FLAG, foreground monitor label, **B-11**
- W wait states, allowing the target system to insert, 4-10 warm start initialization, 2-10
- X (execute) command, 3-3