
HP 64752

70732 Emulator
Terminal Interface

User’s Guide

HP Part No. 64752-97002
Printed in U.S.A.
July 1994

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1993, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

V810 is trademark of NEC Electronics Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication,or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software Clause at DFARS 252.227-7013. Hewlett-Packard Company,
3000 Hanover Street, Palo Alto, CA 94304 U.S.A. Rights for
non-DOD U.S.Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes and,
manual corrections may be done without accompanying product
changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64752-97000, August 1993

Edition 2 64752-97002, July 1994

Using this Manual

This manual will show you how to use HP 64752A emulators with the
Terminal Interface.

This manual will:

Show you how to use emulation commands by executing them
on a sample program and describing their results.
Show you how to configure the emulator for your
development needs. Topics include: restricting the emulator
to real-time execution, selecting a target system clock source,
and allowing the target system to insert wait states.
Show you how to use the emulator in-circuit (connected to a
demo board/target system).
Describe the command syntax which is specific to the 70732
emulator.

This manual will not:

Describe every available option to the emulation commands;
this is done in the HP 64700 Emulators Terminal Interface:
User’s Reference.

Organization

Chapter 1 Introduction to the 70732 Emulator. This chapter briefly introduces
you to the concept of emulation and lists the basic features of the
70732 emulator.

Chapter 2 Getting Started. This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to: load programs into the
emulator, map memory, display and modify memory, display registers,
step through programs, run programs, use software breakpoints, search
memory for data, and perform coverage tests on emulation memory.

Chapter 3 Using the Emulator. This chapter shows you how to: restrict the
emulator to real-time execution, use the analyzer, use the instruction
cache, and run the emulator from target system reset.

Chapter 4 In-Circuit Emulation Topics . This chapter shows you how to: install
the emulator probe into a demo board/target system, allow the target
system to insert wait states, and use the features which allow you to
debug target system ROM.

Appendix A 70732 Emulator Specific Command Syntax. This appendix
describes the command syntax which is specific to the 70732 emulator.
Included are: emulator configuration items, display and access modes,
register class and name.

Appendix B Using the Optional Foreground Monitor. This appendix describes
how to use the foreground monitor.

Contents

1 Introduction to the 70732 Emulator

Introduction . 1-1
Purpose of the Emulator . 1-1
Features of the 70732 Emulator 1-3

Supported Microprocessors . 1-3
Clock Speeds . 1-3
Emulation memory . 1-3
Analysis . 1-4
Registers . 1-4
Single-Step . 1-4
Breakpoints . 1-4
Reset Support . 1-4
Configurable Target System Interface 1-4
Foreground or Background Emulation Monitor 1-4
Real-Time Operation . 1-5
Coverage . 1-5
Easy Products Upgrades . 1-5

Limitations, Restrictions . 1-6
Reset While in Background Monitor 1-6
User Interrupts While in Background Monitor 1-6
Interrupts While Executing Step Command 1-6

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

A Look at the Sample Program 2-2
Using the "help" Facility . 2-6

Becoming Familiar with the System Prompts 2-7
Initializing the Emulator . 2-8

Other Types of Initialization 2-9
Set Up the Proper Emulation Configuration 2-10

Set Up Emulation Condition 2-10
Set Up Access/Display Modes 2-11

Mapping Memory . 2-11

Contents - 1

Which Memory Locations Should be Mapped? 2-13
Getting the Sample Program into Emulation Memory 2-14

Standalone Configuration . 2-14
Transparent Configuration 2-15
Remote Configuration . 2-16
For More Information . 2-17

Loading an ASCII Symbol File 2-17
Displaying Memory In Mnemonic Format 2-18
Stepping Through the Program 2-20
Displaying Registers . 2-21

Combining Commands . 2-21
Using Macros . 2-22
Command Recall . 2-22
Repeating Commands . 2-23
Command Line Editing . 2-24

Modifying Memory . 2-24
Specifying the Access and Display Modes 2-24

Running the Sample Program 2-25
Searching Memory for Data . 2-26
Breaking into the Monitor . 2-26
Using Software Breakpoints . 2-26

Displaying and Modifying the Break Conditions 2-28
Defining a Software Breakpoint 2-28

Using the Analyzer . 2-29
Predefined Trace Labels . 2-29
Predefined Status Equates . 2-29
Specifying a Simple Trigger 2-30
 Specifying a Trace mode . 2-32
Trigger Position . 2-33
For a Complete Description 2-35

Copying Memory . 2-35
Resetting the Emulator . 2-36

3 Using the Emulator

Introduction . 3-1
Prerequisites . 3-2
Execution Topics . 3-2

Restricting the Emulator to Real-Time Runs 3-2
Setting Up to Break on an Analyzer Trigger 3-3
Making Coordinated Measurements 3-3

Manipulation as 32-bit Real Numbers 3-4

2 - Contents

Register Manipulation . 3-4
Memory Manipulation . 3-5

Memory Mapping . 3-5
Analyzer Topics . 3-7

Analyzer Status Qualifiers . 3-7
Specifying Trace configuration 3-7
Specifying Trace disassemblely option 3-11
Specifying Data for Trigger or Store Condition 3-11
Analyzer Clock Speed . 3-13

Instruction Cache . 3-14
Emulation Memory Access . 3-15
Monitor Option Topics . 3-15

Background Monitor . 3-15
Foreground monitor . 3-15

4 In-Circuit Emulation Topics

Introduction . 4-1
Prerequisites . 4-1
Installing the Emulator Probe Cable 4-2
Installing the Emulation Memory Module 4-5
Installing into the Demo Target System 4-7
Installing the Emulator Probe into a Target System 4-9

Installing into a PGA Type Socket 4-10
Installing into a QFP Type Socket 4-10

In-Circuit configuration Options 4-11
Execution Topics . 4-13

Run from Target System Reset 4-13
Target ROM Debug Topics . 4-14

Using Software Breakpoints with ROMed Code 4-14
Modifying ROMed Code . 4-15

Pin State in Background . 4-16
Electrical Characteristics . 4-17
Target System Interface . 4-19

A 70732 Emulator Specific Command Syntax

ACCESS_MODE . A-2
CONFIG_ITEMS . A-4
DISPLAY_MODE . A-15
REGISTER CLASS and NAME A-17

Contents - 3

B Using the Optional Foreground Monitor

Comparison of Foreground and Background Monitors B-1
Background Monitors . B-1
Foreground Monitors . B-2

Using Built-in Foreground Monitor B-2
Using Custom Foreground Monitor B-3

Assemble and Link the monitor B-3
Load the Foreground Monitor B-4

An Example Using the Foreground Monitor B-4
Mapping Memory for the Example B-4
Load the Sample Program . B-4
Set Analyzer Master Clock Qualifiers B-4
Reset to Break . B-5
Monitor to User Program . B-7
User Program Run to Break . B-7

Limitations of Foreground Monitors B-9
Synchronized measurements B-9

Illustrations

Figure 1-1 HP 64752A Emulatoor for uPD70732 1-2
Figure 2-1 Sample program listing 2-3
Figure 2-2 Linker Command File 2-4

Tables

Table 3-1 Analyzer Counter . 3-13
Table 4-1 AC Electrical Specifications 4-17

4 - Contents

1

Introduction to the 70732 Emulator

Introduction The topics in this chapter include:

Purpose of the emulator

Features of the emulator

Limitations and Restrictions of the emulator

Purpose of the
Emulator

The 70732 emulator is designed to replace the 70732 microprocessor in
your target system to help you debug/integrate target system software
and hardware. The emulator performs just like the processor which it
replaces, but at the same time, it gives you information about the bus
cycle operation of the processor. The emulator gives you control over
target system execution and allows you to view or modify the contents
of processor registers, target system memory, and I/O resources.

Intruduction 1-1

Figure 1-1 HP 64752A Emulatoor for uPD70732

1-2 Intruduction

Features of the
70732 Emulator

This section introduces you to the features of the emulator. The
chapters which follow show you how to use these features.

Supported
Microprocessors

The 176-pin PGA type of 70732 microprocessor is supported. The HP
64752A emulator probe has a 176-pin PGA connector. When you use
120-pin QFP type microprocessor, you must use with PGA to QFP
adapter; refer to the "In-Circuit Emulation Topics" chapter in this
manual.

Clock Speeds The 70732 emulator runs with a target system clock from 8 to 25 MHz.

Emulation memory The HP 64752A emulator is used with one or two of the following
Emulation Memory Module.

HP 64171A 256K byte Emulation Memory Module(35 ns)
HP 64171B 1M byte Emulation Memory Module(35 ns)
HP 64172A 256K byte Emulation Memory Module(20 ns)
HP 64172B 1M byte Emulation Memory Module(20 ns)

You can define up to 16 memory ranges (at 4K byte boundaries and at
least 4k byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target system RAM, target system
ROM, or guarded memory. HP 64172A/B can be accessed with no
wait. HP64171A/B can be accessed with no wait when clock speed is
less than or equal to 20 MHz, and with one wait when clock speed is
greater than 20 MHz. The emulator generates an error message when
accesses are made to guarded memory locations. You can also
configure the emulator so that writes to memory defined as ROM cause
emulator execution to break out of target program execution.

Intruduction 1-3

Analysis The HP 64752A emulator is used with one of the following analyzers
which allows you to trace code execution and processor activity.

HP64704A 80-channel Emulation Bus Analyzer
HP64794A/C/D Deep Emulation Bus Analyzer

The Emulation Bus Analyzer monitors the emulation processor using
an internal analysis bus.

The emulator can dequeu in real-time when analyzer trace execution
states and bus states.

The emulator can trace all bus cycles in real-time when analyzer trace
only actual bus states.

Registers You can display or modify the 70732 internal register contents.

Single-Step You can direct the emulation processor to execute a single instruction
or a specified number of instructions.

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break to the
emulation monitor.

You can also define software breakpoints in your program. The
emulator uses the BRKRET instruction to provide software breakpoint.
When you define a software breakpoint, the emulator places a
BRKRET instruction at the specified address; after the BRKRET
instruction causes emulator execution to break out of your program, the
emulator replaces BRKRET with the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator so that it honors target system wait
requests when accessing emulation memory.

1-4 Intruduction

Foreground or
Background

Emulation Monitor

The emulation monitor is a program that is executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, it is
the monitor program that executes 70732 instructions which read the
target memory locations and send their contents to the emulation
controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program can also execute in background. User program
execution is suspended so that emulation processor can be used to
access target system resources. The background monitor does not
occupy any processor address space.

Real-Time Operation Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when
the emulator temporarily breaks to the monitor so that it can access
register contents or target system memory or I/O.)

When your program is running, the emulator accesses emulation
memory by holding emulation microprocessor for 12 clock cycles, not
breaking to the monitor. You can restrict the emulator to real-time
execution. When the emulator is executing your program under the
real-time restriction, commands which display/modify registers,
display/modify target system memory or I/O are not allowed.

Coverage The 70732 emulator does not support coverage test.

Easy Products
Upgrades

Because the HP 64700 Series development tools (emulator, analyzer,
LAN board) contain programmable parts, it is possible to reprogram
the firmware and some of the hardware without disassembling the HP
64700B Card Cage. This means that you’ll be able to update product
firmware, if desired, without having to call an HP field representative
to your site.

Intruduction 1-5

Limitations,
Restrictions

Reset While in
Background Monitor

If you use background monitor, RESET from target system are ignored
while in monitor.

User Interrupts While
in Background

Monitor

If you use the background monitor, NMI from target system are
suspended until the emulator goes into foreground operation. Other
interrupts are ignored.

Interrupts While
Executing Step

Command

While stepping user program with the foreground monitor used,
interrupts are accepted if they are enabled in the foreground monitor
program.

While stepping user program with the background monitor used,
interrupts are ignored.

Note You should not use step command in case the interrupt handler’s
punctuality is critical.

Evaluation Chip Hewlett-Packard makes no warranty of the problem caused by the
70732 Evaluation chip in the emulator.

1-6 Intruduction

2

Getting Started

Introduction This chapter will lead you through a basic, step by step tutorial that
shows how to use the HP 64752A emulator for the 70732
microprocessor.

This chapter will:

Describe the sample program used for this chapter’s examples.

Show you how to use the "help" facility.

Show you how to use the memory mapper.

Show you how to enter emulation commands to view
execution of the sample program. The commands described
in this chapter include:
– Displaying and modifying memory
– Stepping
– Displaying registers
– Defining macros
– Searching memory
– Running
– Breaking
– Using software breakpoints
– Copying memory

Getting Started 2-1

Before You Begin Before beginning the tutorial presented in this chapter, you must have
completed the following tasks:

1. Completed hardware installation of the HP64700 emulator in
the configuration you intend to use for your work:

– Standalone configuration
– Transparent configuration
– Remote configuration
– Local Area Network configuration

References: HP 64700 Series Installation/Service manual

2. If you are using the Remote configuration, you must have
completed installation and configuration of a terminal
emulator program which will allow your host to act as a
terminal connected to the emulator. In addition, you must start
the terminal emulator program before you can work the
examples in this chapter.

3. If you have properly completed steps 1 and 2 above, you
should be able to hit <RETURN> (or <ENTER> on some
keyboards) and get one of the following command prompts on
your terminal screen:

U>
R>
M>

If you do not see one of these command prompts, retrace your
steps through the hardware and software installation
procedures outlined in the manuals above, verifying all
connections and procedural steps.

In any case, you must have a command prompt on your
terminal screen before proceeding with the tutorial.

A Look at the Sample
Program

The sample program used in this chapter is listed in figure 2-1. The
program emulates a primitive command interpreter.

2-2 Getting Started

A-X- 00000000 1 .file "cmd_rds.s"
A-X- 00000000 2
A-X- 00000000 3 .set Dest_Size,0x20
A-X- 00000000 4 .set Stack_Size,0x100
A-X- 00000000 5
A-X- 00000000 6 .text
A-X- 00000000 7 .align 4
A-X- 00000000 8
A-X- 00000000 9 Init: mov #Stack+Stack_Size,sp
A-X- 00000000 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000004 61A00000 -- movea 0x0,r1,sp
A-X- 00000008 10 mov #Cmd_Input,r4
A-X- 00000008 20BC0000 -- movhi 0x0,zero,r1
A-X- 0000000C 81A00000 -- movea 0x0,r1,gp
A-X- 00000010 11
A-X- 00000010 04DC0000 12 Clear: st.w r0,[r4]
A-X- 00000014 13 mov #Msg_Dest,r5
A-X- 00000014 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000018 A1A00000 -- movea 0x0,r1,tp
A-X- 0000001C 14
A-X- 0000001C C4C00000 15 Scan: ld.b [r4],r6
A-X- 00000020 C04C 16 cmp 0x00,r6
A-X- 00000022 FA85 17 je Scan
A-X- 00000024 18
A-X- 00000024 19 Process_Cmd: cmp 0x41,r6
A-X- 00000024 20A04100 -- movea 0x41,zero,r1
A-X- 00000028 C10C -- cmp r1,r6
A-X- 0000002A 0E84 20 je Command_A
A-X- 0000002C 21 cmp 0x42,r6
A-X- 0000002C 20A04200 -- movea 0x42,zero,r1
A-X- 00000030 C10C -- cmp r1,r6
A-X- 00000032 1A84 22 je Command_B
A-X- 00000034 00A82C00 23 jr Command_I
A-X- 00000038 24
A-X- 00000038 25 Command_A: mov #Message_A,r7
A-X- 00000038 20BC0000 -- movhi 0x0,zero,r1
A-X- 0000003C E1A00000 -- movea 0x0,r1,r7
A-X- 00000040 26 mov #Message_B,r8
A-X- 00000040 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000044 01A10000 -- movea 0x0,r1,r8
A-X- 00000048 00A82800 27 jr Write_Msg
A-X- 0000004C 28
A-X- 0000004C 29 Command_B: mov #Message_B,r7
A-X- 0000004C 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000050 E1A00000 -- movea 0x0,r1,r7
A-X- 00000054 30 mov #Message_I,r8
A-X- 00000054 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000058 01A10000 -- movea 0x0,r1,r8
A-X- 0000005C 00A81400 31 jr Write_Msg
A-X- 00000060 32
A-X- 00000060 33 Command_I: mov #Message_I,r7
A-X- 00000060 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000064 E1A00000 -- movea 0x0,r1,r7
A-X- 00000068 34 mov #Message_End,r8
A-X- 00000068 20BC0000 -- movhi 0x0,zero,r1
A-X- 0000006C 01A10000 -- movea 0x0,r1,r8
A-X- 00000070 35

Figure 2-1 Sample program listing

Getting Started 2-3

A-X- 00000070 27C10000 36 Write_Msg: ld.b [r7],r9
A-X- 00000074 25D10000 37 st.b r9,[r5]
A-X- 00000078 A144 38 add 0x01,r5
A-X- 0000007A E144 39 add 0x01,r7
A-X- 0000007C 070D 40 cmp r7,r8
A-X- 0000007E F295 41 jne Write_Msg
A-X- 00000080 42 Fill_Dest: mov #Msg_Dest+Dest_Size,r10
A-X- 00000080 20BC0000 -- movhi 0x0,zero,r1
A-X- 00000084 41A10000 -- movea 0x0,r1,r10
A-X- 00000088 05D00000 43 st.b r0,[r5]
A-X- 0000008C A144 44 add 0x01,r5
A-X- 0000008E 450D 45 cmp r5,r10
A-X- 00000090 F09D 46 jge Fill_Dest
A-X- 00000092 FFAB7EFF 47 jr Clear
A-X- 00000096 48
AW-- 00000000 49 .data
AW-- 00000000 50
AW-- 00000000 436F6D6D616E6420 51 Message_A: .str "Command A entered "
 4120656E74657265
 6420
AW-- 00000012 436F6D6D616E6420 52 Message_B: .str "Command B entered "
 4220656E74657265
 6420
AW-- 00000024 496E76616C696420 53 Message_I: .str "Invalid Command "
 436F6D6D616E6420
AW-- 00000034 54 Message_End:
AW-- 00000034 55
AW-- 00000000 56 .bss
AW-- 00000000 57
AW-- 00000000 58 .lcomm Cmd_Input,4,4
AW-- 00000004 59 .lcomm Msg_Dest,Dest_Size,4
AW-- 00000024 60 .lcomm Stack,Stack_Size,4
AW-- 00000124 61

Figure 2-1 Sample program listing(Cont’d)

COMN : !LOAD ?RW V0x500 {
 .bss = $NOBITS ?AW;
};

DATA : !LOAD ?RW V0x800 {
 .data = $PROGBITS ?AW;
};

TEXT : !LOAD ?RWX V0x10000 {
 .text = $PROGBITS ?AX;
};

__tp_TEXT @ %TP_SYMBOL;
__gp_DATA @ %GP_SYMBOL &__tp_TEXT;

Figure 2-2 Linker Command File

2-4 Getting Started

Data Declarations

The area at DATA segment defines the messages used by the program
to respond to various command inputs. These messages are labeled
Message_A, Message_B, and Message_I.

Initialization

The program instructions from the Init label to the Clear label perform
initialization. The segment registers are loaded and the stack pointer is
set up.

Reading Input

The instruction at the Clear label clears any random data or previous
commands from the Cmd_Input byte. The Scan loop continually
reads the Cmd_Input byte to see if a command is entered (a value
other than 0H).

Processing Commands

When a command is entered, the instructions from Process_Cmd to
Command_A determine whether the command was "A", "B", or an
invalid command.

If the command input byte is "A" (ASCII 41H), execution is transferred
to the instructions at Command_A.

If the command input byte is "B" (ASCII 42H), execution is transferred
to the instructions at Command_B.

If the command input byte is neither "A" nor "B", i.e. an invalid
command has been entered, then execution is transferred to the
instructions at Command_I.

The instructions at Command_A, Command_B, and Command_I
load register R6 with the starting location of the message to be
displayed and register R7 with the ending location of the appropriate
message. Then, execution transfers to Write_Msg where the
appropriate message is written to the destination location, Msg_Dest.

Getting Started 2-5

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20H bytes long.) Then, the program jumps back to read the next
command.

The Destination Area

The area at COMN segment declares memory storage for the command
input byte, the destination area, and the stack area.

Using the "help"
Facility

The HP 64700 Series emulator’s Terminal Interface provides an
excellent help facility to provide you with quick information about the
various commands and their options. From any system prompt, you
can enter "help" or "?" as shown below.

R>help

Commands are grouped into various classes. To see the commands
grouped into a particular class, you can use the help command with that
group. Viewing the group help information in short form will cause the
commands or the grammar to be listed without any description.

For example, if you want to get some information for group gram, enter
"help gram". Following help information should be displayed.

R>help gram

 help - display help information

 help <group> - print help for desired group
 help -s <group> - print short help for desired group
 help <command> - print help for desired command
 help - print this help screen

 --- VALID <group> NAMES ---
 gram - system grammar
 proc - processor specific grammar

 hidden - special use commands normally hidden from user
 sys - system commands
 emul - emulation commands
 hl - highlevel commands (hp internal use only)
 trc - analyzer trace commands
 * - all command groups

2-6 Getting Started

Help information exists for each command. Additionally, there is help
information for each of the emulator configuration items.

Becoming Familiar
with the System

Prompts

A number of prompts are used by the HP 64700 Series emulators. Each
of them has a different meaning, and contains information about the
status of the emulator before and after the commands execute. These
prompts may seem cryptic at first, but there are two ways you can find
out what a certain prompt means.

Using "help proc" to View Prompt Description

The first way you can find information on the various system prompts
is to look at the proc help text.

R>help proc

 gram - system grammar

 --- SPECIAL CHARACTERS ---
 # - comment delimiter ; - command separator Ctl C - abort signal
 {} - command grouping "" - ascii string ‘‘ - ascii string
 Ctl R - command recall Ctl B - recall backwards

 --- EXPRESSION EVALUATOR ---
 number bases: t-ten y-binary q-octal o-octal h-hex
 repetition and time counts default to decimal - all else default to hex
 operators: () ~ * / % + - << <<< >> >>> & ^ | &&

 --- PARAMETER SUBSTITUTION ---
 &token& - pseudo-parameter included in macro definition
 - cannot contain any white space between & pairs
 - performs positional substitution when macro is invoked
 Example
 Macro definition: mac getfile={load -hbs"transfer -t &file&"}
 Macro invocation: getfile MYFILE.o
 Expanded command: load -hbs"transfer -t MYFILE.o"

Getting Started 2-7

Using the Emulation Status Command (es) for Description
of Current Prompt

When using the emulator, you will notice that the prompt changes after
entering certain commands. If you are not familiar with a new prompt
and would like information about that prompt only, enter the es
(emulation status) command for more information about the current
status.

U>es
N70732--Running user program

Initializing the
Emulator

If you plan to follow this tutorial by entering commands on your
emulator as shown in this chapter, verify that no one else is using the
emulator. To initialize the emulator, enter the following command:

R>init
Limited initialization completed

The init command with no options causes a limited initialization, also
known as a warm start initialization. Warm start initialization does not

 --- Address format ---
 32 bit address for memory or I/O addresses

 --- Emulation Prompt Status Characters ---
 R - emulator in reset state c - no target system clock
 U - running user program r - target system reset active
 M - running monitor program h - halt or machine fault
 W - waiting for CMB to become ready w - waiting for target ready
 T - waiting for target reset g - bus grant
 ? - unknown state

 --- Analyzer STATUS Field Equates ---
 exec - execution cycle fetch - fetch cycle
 fetchbr - fetch after branch data - data cycle
 mem - memory cycle io - io cycle
 read - read cycle write - write cycle
 byte - byte cycle hword - half word cycle
 word - word cycle fault - machine fault acknowledge
 halt - halt acknowledge hold - hold acknowledge
 buslock - bus lock wrrom - write to rom
 grd - guarded memory fg - foreground
 bg - background

2-8 Getting Started

affect system configuration. However, the init command will reset
emulator and analyzer configurations. The init command:

Resets the memory map.

Resets the emulator configuration items.

Resets the break conditions.

Clears software breakpoints.

The init command does not:

Clear any macros.

Clear any emulation memory locations; mapper terms are
deleted, but if you respecify the same mapper terms, you will
find that the emulation memory contents are the same.

Other Types of
Initialization

There are two options to init . The -p option specifies a powerup
initialization, also known as a cold start initialization. It initializes the
emulator, analyzer, system controller, and communications port;
additionally, performance verification tests are run.

The -c option also specifies a cold start initialization, except that
performance verification tests are not run.

Getting Started 2-9

Set Up the Proper
Emulation
Configuration

Emulation configuration is needed to adapting to your specific
development. As you have initialized the emulator, the emulation
configuration items have default value.

Set Up Emulation
Condition

The emulator allows you to set the emulator’s configuration setting
with the cf command. Enter the help cf to view the information with
the configuration command.

R>help cf

To view the current emulator configuration setting, enter the following
command.

R>cf

 cf - display or set emulation configuration

 cf - display current settings for all config items
 cf <item> - display current setting for specified <item>
 cf <item>=<value> - set new <value> for specified <item>
 cf <item> <item>=<value> <item> - set and display can be combined

 help cf <item> - display long help for specified <item>

 --- VALID CONFIGURATION <item> NAMES ---
 bussize - select the data bus width
 cache - en/dis instruction cache
 coh - enable/disable restriction to real time runs
 dasms - en/dis access memory to disassemble trace list
 dbc - en/dis drive of background cycles to the target system
 hld - en/dis Target HLDRQ(-) signal
 mon - selection of a foreground or background monitor
 monloc - selection of monitor address
 nmi - en/dis Target NMI(-) signal
 rdy - en/dis READY(-) interlock
 rrt - enable/disable restriction to real time runs
 rst - en/dis Target RESET(-) signal
 szrq - en/dis Target SZRQ(-) signal
 tradr - tracing bus address as data
 trfetch - en/dis tracing fetch cycle
 trmode - select analyzer mode
 waitb0 - determine if insert wait cycle on bank0
 waitb1 - determine if insert wait cycle on bank1

2-10 Getting Started

The individual configuration items won’t be explained in this section;
refer to the "CONFIG_ITEMS" in the "70732 Emulator Specific
Command Syntax" appendix for details.

Set Up
Access/Display

Modes

To avoid problems later while modifying and displaying memory
locations, enter the following command:

R>mo -ab -db

This sets the access and display modes for memory operation to byte.(if
they are left at the default mode of word,the memory modification and
display examples will not function correctly.)

Mapping Memory Depending on the memory module, emulation memory consists of
256K, 512K, 1M, 1.25M or 2M bytes, mappable in 4K byte blocks.

The memory mapper allows you to characterize memory locations. It
allows you specify whether a certain range of memory is present in the
target system or whether you will be using emulation memory for that
address range. You can also specify whether the target system memory
is ROM or RAM, and you can specify that emulation memory be
treated as ROM or RAM.

 cf bussize=32
 cf cache=en
 cf coh=dis
 cf dasms=dis
 cf dbc=en
 cf hld=en
 cf mon=bg
 cf monloc=0
 cf nmi=en
 cf rdy=en
 cf rrt=dis
 cf rst=en
 cf szrq=en
 cf tradr=dis
 cf trfetch=en
 cf trmode=exe
 cf waitb0=en
 cf waitb1=en

Getting Started 2-11

Note Target system devices that take control of the bus (for example,
external DMA controllers), cannot access emulation memory.

Blocks of memory can also be characterized as guarded memory.
Guarded memory accesses will generate "break to monitor" requests.
Writes to ROM will also generate "break to monitor" requests if the
rom break condition is enabled. Memory is mapped with the map
command. To view the memory mapping options, enter:

M>help map

 Enter the map command with no options to view the default map
structure.

M>map
remaining number of terms : 16
remaining emulation memory : 80000h bytes
map other tram

 map - display or modify the processor memory map

 map - display the current map structure
 map <addr>..<addr> <type> - define address range as memory type
 map <addr>..<addr> <type> <attr> - define address range as memory type
 with optional memory attribute
 map other <type> <attr> - define all other ranges as memory type
 with optional memory attribute
 map -d <term#> - delete specified map term
 map -d * - delete all map terms

 --- VALID <type> OPTIONS ---
 eram - emulation ram
 erom - emulation rom
 tram - target ram
 trom - target rom
 grd - guarded memory

 --- VALID <attr> OPTIONS ---
 b0_d32 - using bank0 and 32 bit data bus
 b0_d16 - using bank0 and 16 bit data bus
 b1_d32 - using bank1 and 32 bit data bus
 b1_d16 - using bank1 and 16 bit data bus
 b0 - using bank0 and 32 bit data bus
 b1 - using bank1 and 32 bit data bus

2-12 Getting Started

Which Memory
Locations Should be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. A linker load map listing will
show what memory locations your program will occupy. One for the
sample program is shown below.

 From the load map listing, you can see that the sample program
occupies three address ranges. The program area, which contains the
opcodes and operands, occupies locations 10000 through 10096 hex.
The data area, which contains the ASCII values of the messages the
program transfers, occupies locations 800 through 834 hex. The
destination area, which contains the command input byte and the
locations of the message destination, occupies locations 500 through
624 hex.

Since the program writes to the destination area, the mapper block of
destination area should not be characterized as ROM. Enter the
following commands to map memory for the sample program and
display the memory map.

R>map 0..fff eram
R>map 10000..10fff erom
R>map

 ******** LINK EDITOR ALLOCATION MAP ********

OUTPUT INPUT VIRTUAL SIZE INPUT
SECTION SECTION ADDRESS FILE

.bss 0x00000500 0x00000124
 .bss 0x00000500 0x00000124 cmd_rds.o

.data 0x00000800 0x00000034
 .data 0x00000800 0x00000034 cmd_rds.o

.text 0x00010000 0x00000096
 .text 0x00010000 0x00000096 cmd_rds.o

.symtab 0x00000000 0x00000220
 .symtab 0x00000000 0x00000220 *(nil)*

.strtab 0x00000000 0x0000011b
 .strtab 0x00000000 0x0000011b *(nil)*

.shstrtab 0x00000000 0x0000002c
 .shstrtab 0x00000000 0x0000002c *(nil)*

Getting Started 2-13

When mapping memory for your target system programs, you should
characterize emulation memory locations containing programs and
constants (locations which should not be written) as ROM. This will
prevent programs and constants from being written over accidentally.
Break will occur when instructions or commands attempt to do so(if
the rom break condition is enabled).

Getting the
Sample Program
into Emulation
Memory

This section assumes you are using the emulator in one of the
following three configurations:

1. Connected only to a terminal, which is called the standalone
configuration. In the standalone configuration, you must
modify memory to load the sample program.

2. Connected between a terminal and a host computer, which is
called the transparent configuration. In the transparent
configuration, you can load the sample program by
downloading from the "other" port.

3. Connected to a host computer and accessed via a terminal
emulation program. This configurations is called remote
configurations. In the remote configuration, you can load the
sample program by downloading from the same port.

Standalone
Configuration

If you are operating the emulator in the standalone configuration, the
only way to load the sample program into emulation memory is by
modifying emulation memory locations with the m (memory
display/modification) command.

You can enter the sample program into memory with the m command
as shown below.

 # remaining number of terms : 14
 # remaining emulation memory : 7e000h bytes
 map 000000000..000000fff eram # term 1
 map 000010000..000010fff erom # term 2
 map other tram

2-14 Getting Started

R>m -dw 10000=0000bc20,0624a061,0000bc20,0500a081
R>m -dw 10010=0000dc04,0000bc20,0504a0a1,0000c0c4
R>m -dw 10020=85fa4cc0,0041a020,840e0cc1,0042a020
R>m -dw 10030=841a0cc1,002ca800,0000bc20,0800a0e1
R>m -dw 10040=0000bc20,0812a101,0028a800,0000bc20
R>m -dw 10050=0812a0e1,0000bc20,0824a101,0014a800
R>m -dw 10060=0000bc20,0824a0e1,0000bc20,0834a101
R>m -dw 10070=0000c127,0000d125,44e144a1,95f20d07
R>m -dw 10080=0000bc20,0524a141,0000d005,0d4544a1
R>m -dw 10090=0abff9df0,ffffff7e
R>m -db 800="Command A entered Command B entered Invalid command "

After entering the opcodes and operands, you would typically display
memory in mnemonic format to verify that the values entered are
correct (see the example below). If any errors exist, you can modify
individual locations. Also, you can use the cp (copy memory)
command if, for example, a byte has been left out, but the locations
which follow are correct.

Note Be careful about using this method to enter programs from the listings
of relocatable source files. If source files appear in relocatable sections,
the address values of references to locations in other relocatable
sections are not resolved until link-time. The correct values of these
address operands will not appear in the assembler listing.

Transparent
Configuration

 If your emulator is connected between a terminal and a host computer,
you can download programs into memory using the load command
with the -o (from other port) option. The load command will accept
absolute files in the following formats:

HP absolute.

Intel hexadecimal.

Tektronix hexadecimal.

Motorola S-records.

The examples which follow will show you the methods used to
download HP absolute files and the other types of absolute files.

Getting Started 2-15

HP Absolutes

Downloading HP format absolute files requires the
 transfer protocol. The example below assumes that the transfer
utility has been installed on the host computer (HP 64884 for HP 9000
Series 500, or HP 64885 for HP 9000 Series 300).

Note Notice that the transfer command on the host computer is terminated
with the <ESCAPE>g characters; by default, these are the characters
which temporarily suspend the transparent mode to allow the emulator
to receive data or commands.

R>load -hbo <RETURN> <RETURN>
$ transfer -rtb cmd_rds.X <ESCAPE>g

 ####

 R>

Other Supported Absolute Files

 The example which follows shows how to download Intel
hexadecimal files by the same method (but different load options) can
be used by load Tektronix hexadecimal and Motorola S-record files as
well.

R>load -io <RETURN> <RETURN>
$ cat ihexfile <ESCAPE>g

 #####
 Data records = 00003 Checksum error = 00000

 R>

Remote Configuration If the emulator is connected to a host computer, and you are accessing
the emulator from the host computer via a terminal emulation program,
you can also download files with the load command. However, in the
remote configuration, files are loaded from the same port that
commands are entered from. For example, if you wish to download a
Tektronix hexadecimal file from a Vectra personal computer, you
would enter the following commands.

R>load -t <RETURN>

2-16 Getting Started

After you have entered the load command, exit from the terminal
emulation program to the MS-DOS operating system. Then, copy your
hexadecimal file to the port connected to the emulator, for example:

C:\copy thexfile com1: <RETURN>

Now you can return to the terminal emulation program and verify that
the file was loaded correctly.

For More Information For more information on downloading absolute files, refer to the load
command description in the HP 64700 Emulators Terminal Interface:
User’s Reference manual.

Loading an ASCII
Symbol File

The 70732 emulator supports the use of symbolic references in the
terminal interface. The symbols can be loaded with a program file, as is
the case with Intel OMF files . They can also be loaded from an ASCII
text file on a host system.

The symbols used are defined in a file using a text editor, or any other
means to create the file. Refer to the HP64700-Series Emulators
Terminal Interface Reference for information on the format of the file.
The file is then transferred to the emulator using the load command.

You can create a text file named "cmd_rds.SYM" on your HP-UX host
system. The file will look something like as follows.

#
cmd_rds:
Init 10000
Clear 10010
Scan 1001c
Process_Cmd 10024
Command_A 10038
Command_B 1004c
Command_I 10060
Write_Msg 10070
Fill_Dest 10080
#

Use the "-S" option on the load command to transfer the file.

R>load -Sos "cat cmd_rds.SYM"

Getting Started 2-17

The symbols can then be manipulated with the "sym" command, and
used in commands at the command line. If the load is not successful,
the nature of the error will be reported.

R>sym

Displaying
Memory In
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program has indeed been loaded by displaying memory in
mnemonic format.

R>m -dm 10000..10095

sym cmd_rds:Init=000010000
sym cmd_rds:Clear=000010010
sym cmd_rds:Scan=00001001c
sym cmd_rds:Process_Cmd=000010024
sym cmd_rds:Command_A=000010038
sym cmd_rds:Command_B=00001004c
sym cmd_rds:Command_I=000010060
sym cmd_rds:Write_Msg=000010070
sym cmd_rds:Fill_Dest=000010080

 000010000 - MOVHI 0x0000,R0,R1
 000010004 - MOVEA 0x0624,R1,R3
 000010008 - MOVHI 0x0000,R0,R1
 00001000c - MOVEA 0x0500,R1,R4
 000010010 - ST.W R0,0x0000[R4]
 000010014 - MOVHI 0x0000,R0,R1
 000010018 - MOVEA 0x0504,R1,R5
 00001001c - LD.B 0x0000[R4],R6
 000010020 - CMP 0x00,R6
 000010022 - JZ/JE 0x0001001c
 000010024 - MOVEA 0x0041,R0,R1
 000010028 - CMP R1,R6
 00001002a - JZ/JE 0x00010038
 00001002c - MOVEA 0x0042,R0,R1
 000010030 - CMP R1,R6
 000010032 - JZ/JE 0x0001004c
 000010034 - JR 0x00010060
 000010038 - MOVHI 0x0000,R0,R1
 00001003c - MOVEA 0x0800,R1,R7
 000010040 - MOVHI 0x0000,R0,R1
 000010044 - MOVEA 0x0812,R1,R8
 000010048 - JR 0x00010070
 00001004c - MOVHI 0x0000,R0,R1
 000010050 - MOVEA 0x0812,R1,R7
 000010054 - MOVHI 0x0000,R0,R1
 000010058 - MOVEA 0x0824,R1,R8
 00001005c - JR 0x00010070
 000010060 - MOVHI 0x0000,R0,R1
 000010064 - MOVEA 0x0824,R1,R7

2-18 Getting Started

If you display memory in mnemonic format and do not recognize the
instructions listed or see some illegal instructions or opcodes, go back
and make sure the memory locations you have typed are mapped
properly. If the memory map is not the problem, recheck the linker load
map listing to verify that the absolute addresses of the program match
with the locations you are trying to display.

If you have loaded symbols with the sample program, the display will
include the symbols in the memory display.

 000010068 - MOVHI 0x0000,R0,R1
 00001006c - MOVEA 0x0834,R1,R8
 000010070 - LD.B 0x0000[R7],R9
 000010074 - ST.B R9,0x0000[R5]
 000010078 - ADD 0x01,R5
 00001007a - ADD 0x01,R7
 00001007c - CMP R7,R8
 00001007e - JNZ/JNE 0x00010070
 000010080 - MOVHI 0x0000,R0,R1
 000010084 - MOVEA 0x0524,R1,R10
 000010088 - ST.B R0,0x0000[R5]
 00001008c - ADD 0x01,R5
 00001008e - CMP R5,R10
 000010090 - JGE 0x00010080
 000010092 - JR 0x00010010

 000010000 cmd_rds:Init MOVHI 0x0000,R0,R1
 000010004 - MOVEA 0x0624,R1,R3
 000010008 - MOVHI 0x0000,R0,R1
 00001000c - MOVEA 0x0500,R1,R4
 000010010 cmd_rds:Clear ST.W R0,0x0000[R4]
 000010014 - MOVHI 0x0000,R0,R1
 000010018 - MOVEA 0x0504,R1,R5
 00001001c cmd_rds:Scan LD.B 0x0000[R4],R6
 000010020 - CMP 0x00,R6
 000010022 - JZ/JE 0x0001001c
 000010024 rds:Process_Cmd MOVEA 0x0041,R0,R1
 000010028 - CMP R1,R6
 00001002a - JZ/JE 0x00010038
 00001002c - MOVEA 0x0042,R0,R1
 000010030 - CMP R1,R6
 000010032 - JZ/JE 0x0001004c
 000010034 - JR 0x00010060
 000010038 d_rds:Command_A MOVHI 0x0000,R0,R1
 00001003c - MOVEA 0x0800,R1,R7
 000010040 - MOVHI 0x0000,R0,R1
 000010044 - MOVEA 0x0812,R1,R8
 000010048 - JR 0x00010070
 00001004c d_rds:Command_B MOVHI 0x0000,R0,R1
 000010050 - MOVEA 0x0812,R1,R7
 000010054 - MOVHI 0x0000,R0,R1
 000010058 - MOVEA 0x0824,R1,R8
 00001005c - JR 0x00010070
 000010060 d_rds:Command_I MOVHI 0x0000,R0,R1
 000010064 - MOVEA 0x0824,R1,R7

Getting Started 2-19

 Note The command processor retains the name of the last module
referenced. If a symbol does not contain a module name, the list of
global symbols is searched. If the symbol is not found, the list of user
symbols is searched. If the symbol is still not found, the system
searches the last module referenced. If it doesn’t find it there, the rest
of the modules are searched.

Stepping Through
the Program

The emulator allows you to execute one instruction or a number of
instructions with the s (step) command. Enter the help s to view the
options available with the step command.

R>help s

 000010068 - MOVHI 0x0000,R0,R1
 00001006c - MOVEA 0x0834,R1,R8
 000010070 d_rds:Write_Msg LD.B 0x0000[R7],R9
 000010074 - ST.B R9,0x0000[R5]
 000010078 - ADD 0x01,R5
 00001007a - ADD 0x01,R7
 00001007c - CMP R7,R8
 00001007e - JNZ/JNE 0x00010070
 000010080 d_rds:Fill_Dest MOVHI 0x0000,R0,R1
 000010084 - MOVEA 0x0524,R1,R10
 000010088 - ST.B R0,0x0000[R5]
 00001008c - ADD 0x01,R5
 00001008e - CMP R5,R10
 000010090 - JGE 0x00010080
 000010092 - JR 0x00010010

 s - step emulation processor

 s - step one from current PC
 s <count> - step <count> from current PC
 s <count> $ - step <count> from current PC
 s <count> <addr> - step <count> from <addr>
 s -q <count> <addr> - step <count> from <addr>, quiet mode
 s -w <count> <addr> - step <count> from <addr>, whisper mode

 --- NOTES ---
 STEPCOUNT MUST BE SPECIFIED IF ADDRESS IS SPECIFIED!
 If <addr> is not specified, default is to step from current PC.
 A <count> of 0 implies step forever.

2-20 Getting Started

A step count of 0 will cause the stepping to continue "forever" (until
some break condition, such as "write to ROM", is encountered, or until
you enter <CTRL>c). The following command will step from the first
address of the sample program.

R>s 1 10000

Displaying
Registers

The step command shown above executed the "MOVHI
0x0000,R0,R1" instruction. Enter the following command to view the
contents of the registers.

M>reg *

The register contents are displayed in a "register modify" command
format. This allows you to save the output of the reg command to a
command file which may later be used to restore the register contents.
(Refer to the po (port options) command description in the Terminal
Interface: User’s Reference for more information on command files.)

Refer to the "REGISTER CLASS and NAME" section in the "70732
Emulator Specific Command Syntax" appendix for more information
on the register names and classes.

Combining
Commands

More than one command may be entered in a single command line.
The commands must be separated by semicolons (;). For example, you
could execute the next instruction(s) and display the registers by
entering the following.

M>s;reg

 000010000 - MOVHI 0x0000,R0,R1
 PC = 000010004

 reg pc=00010004 psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000000 r4=00000000
 reg r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000

Getting Started 2-21

The sample above shows you that "MOVEA 0x0624,R1,R3" is
executed by step command.

Using Macros Suppose you want to continue stepping through the program and
displaying registers after each step. You could continue entering s
command followed by reg command, but you may find this tiresome. It
is easier to use a macro to perform a sequence of commands which will
be entered again and again.

Macros allow you to combine and store commands. For example, to
define a macro which will display registers after every step, enter the
following command.

M>mac st={s;reg}

Once the st macro has been defined, you can use it as you would use
any other command.

M>st

Command Recall The command recall feature is yet another, easier way to enter
commands again and again. You can press <CTRL>r to recall the
commands which have just been entered. If you go past the command
of interest, you can press <CTRL>b to move forward through the list

 000010004 - MOVEA 0x0624,R1,R3
 PC = 000010008
 reg pc=00010008 psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000000
 reg r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000

 # s ; reg
 000010008 - MOVHI 0x0000,R0,R1
 PC = 00001000c
 reg pc=0001000c psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000000
 reg r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000

2-22 Getting Started

of saved commands. To continue stepping through the sample program,
you could repeatedly press <CTRL>r to recall and <RETURN> to
execute the st macro.

Repeating Commands The rep command is also helpful when entering commands
repetitively. You can repeat the execution of macros as well as normal
commands. For example, you could enter the following command to
cause the st macro to be executed four times.

M>rep 4 st

 # s ; reg
 00001000c - MOVEA 0x0500,R1,R4
 PC = 000010010
 reg pc=00010010 psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000500
 reg r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000
 # s ; reg
 000010010 - ST.W R0,0x0000[R4]
 PC = 000010014
 reg pc=00010014 psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000500
 reg r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000
 # s ; reg
 000010014 - MOVHI 0x0000,R0,R1
 PC = 000010018
 reg pc=00010018 psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000500
 reg r5=00000000 r6=00000000 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000
 # s ; reg
 000010018 - MOVEA 0x0504,R1,R5
 PC = 00001001c
 reg pc=0001001c psw=00008001
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000500
 reg r5=00000504 r6=00000000 r7=00000812 r8=00000812 r9=00000020
 reg r10=00000524 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000

Getting Started 2-23

Command Line
Editing

The terminal interface supports the use of HP-UX ksh(1)-like editing
of the command line. The default is for the command line editing
feature to be disabled to be compatible with earlier versions of the
interface. Use the cl command to enable command line editing.

M>cl -e

Refer to "Command Line Editing" in the HP64700-Series Emulators
Terminal Interface Reference for information on using the command
line editing feature.

Modifying Memory The preceding step and register commands show the sample program is
executing Scan loop, where it continually reads the command input
byte to check if a command had been entered. Use the m (memory)
command to modify the command input byte.

M>m 500=41

To verify that 41H has been written to 500H, enter the following
command.

M>m -db 500
000000500 41

When memory was displayed in byte format earlier, the display mode
was changed to "byte". The display and access modes from previous
commands are saved and they become the defaults.

Specifying the
Access and Display

Modes

There are a couple different ways to modify the display and access
modes. One is to explicitly specify the mode with the command you
are entering, as with the command m -db 500. The mo (display and
access mode) command is another way to change the default mode. For
example, to display the current modes, define the display mode as
"word", and redisplay 500H, enter the following commands.

M>mo
mo -ab -db

M>mo -dw
M>m 500

000000500 00000041

2-24 Getting Started

To continue the rest of program.

M>r
U>

Display the Msg_Dest memory locations (destination of the message,
504H) to verify that the program moved the correct ASCII bytes. At
this time you want to see correct byte values, so "-db" option (display
with byte) is used.

U>m -db 504..523
000000504 43 6f 6d 6d 61 6e 64 20 41 20 65 6e 74 65 72 65
000000514 64 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Running the
Sample Program

The emulator allows you to execute a program in memory with the r
command. The r command by itself causes the emulator to begin
executing at the current program counter address. The following
command will begin running the sample program from 10000H.

M> r 10000

Note The defaults number base for address and data values within HP 64700
Terminal Interface is hexadecimal. Other number bases may be
specified. Refer to the "Expressions" chapter or the HP 64700
Terminal Interface Reference manual for further details.

The r rst command specifies that the emulator begin to executing from
target system reset (see the "Execution Topics" section in the
"In-Circuit Emulation" chapter).

Getting Started 2-25

Searching
Memory for Data

The ser (search memory for data) command is another way to verify
that the program did what it was supposed to do.

U>ser 500..523="Command A entered "
pattern match at address: 000000504

If any part of the data specified in the ser command is not found, no
match is displayed (No message displayed).

Breaking into the
Monitor

You can use the break command (b) command to generate a break to
the monitor. While the break will occur as soon as possible, the actual
stopping point may be many cycles after the break request (depending
on the type of instruction being executed and whether the processor is
in a special state).

U>b
M>

Using Software
Breakpoints

Software breakpoints are handled by the 70732 BRKRET instruction.
When you define or enable a software breakpoint(with the bp
command), the emulator will replace the opcode at the software
breakpoint address with a breakpoint interrupt instruction(BRKRET).

Caution Software breakpoints should not be set, enabled, disabled, or removed
while the emulator is running user code. If any of these commands are
entered while the emulator is running user code and the emulator is
executing code in the area where the breakpoint is being modified,
program execution may be unreliable.

2-26 Getting Started

Note You must only set software breakpoints at memory locations which
contain instruction opcodes (not operands or data). If a software
breakpoint is set at a memory location which is not an instruction
opcode, the software breakpoint instruction will never be executed.
Further, your program won’t work correctly.

Note NMI will be ignored, when software breakpoint and NMI occur at the
same time.

Note Because software breakpoints are implemented by replacing opcodes
with the BRKRET instructions, you cannot define software breakpoints
in target ROM.

You can, however, copy target ROM into emulation memory(see the
"Target ROM Debug Topics" section of the "In-Circuit Emulation"
chapter). Then you can use software breakpoints.

When software breakpoints are enabled and the emulator detects the
BRKRET instruction, it generates a break into the monitor. Since the
system controller knows the locations of defined software breakpoints,
it can determine whether the BRKRET was generated by an enabled
software breakpoint or by a BRKRET instruction in your target
program.

If the BRKRET was generated by a software breakpoint, execution
breaks to the monitor, and the breakpoint interrupt
instruction(BRKRET) is replaced by the original opcode. A subsequent
run or step command will execute from this address.

If the BRKRET was generated by a BRKRET instruction in the target
program, execution still breaks to the monitor,and an "undefined
breakpoint" status message is displayed. To continue program

Getting Started 2-27

execution, you must run or step from the target program’s breakpoint
interrupt vector address.

Displaying and
Modifying the Break

Conditions

Before you can define software breakpoints, you must enable software
breakpoints with the bc (break conditions) command. To view the
default break conditions and change the software breakpoint condition,
enter the bc command with no option. This command displays current
configuration of break conditions.

M>bc
bc -d bp #disable
bc -e rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable

To enable the software break point feature enter

M>bc -e bp

Defining a Software
Breakpoint

Now that the software breakpoint feature is enabled, you can define
software breakpoints. Enter the following command to break on the
address of the Command_I (address 10060H) label.

M>bp 10060
M>bp

BREAKPOINT FEATURE IS ENABLED
bp 000010060 #enabled

Run the program, and verify that execution broke at the appropriate
address.

M>r 10000
U>m 500=43

!ASYNC_STAT 615! Software breakpoint: 000010060

M>st

 # s ; reg
 000010060 - MOVHI 0x0000,R0,R1
 PC = 000010064
 reg pc=00010064 psw=00008000
 reg r0=00000000 r1=00000000 r2=00000000 r3=00000624 r4=00000500
 reg r5=00000504 r6=00000043 r7=00000000 r8=00000000 r9=00000000
 reg r10=00000000 r11=00000000 r12=00000000 r13=00000000 r14=00000000
 reg r15=00000000 r16=00000000 r17=00000000 r18=00000000 r19=00000000
 reg r20=00000000 r21=00000000 r22=00000000 r23=00000000 r24=00000000
 reg r25=00000000 r26=00000000 r27=00000000 r28=00000000 r29=00000000
 reg r30=00000000 r31=00000000

2-28 Getting Started

When a breakpoint is hit, it becomes disabled. You can use the -e
option with the bp command to re-enable the software breakpoint.

M>bp
BREAKPOINT FEATURE IS ENABLED
 bp 000010060 #disabled

M>bp -e 10060
M>bp

BREAKPOINT FEATURE IS ENABLED
 bp 000010060 #enabled

M>r
U>m 500=43

!ASYNC_STAT 615! Software breakpoint: 000010060

M>bp
BREAKPOINT FEATURE IS ENABLED
bp 000010060 #disabled

Using the Analyzer

Predefined Trace
Labels

Three trace labels are predefined in the 70732 emulator. You can view
these labels by entering the tlb (trace label) command with no options.

M>tlb
Emulation trace labels
tlb addr 0..31
tlb data 32..63
tlb stat 64..79

Predefined Status
Equates

Common values for the 70732 status trace signals have been
predefined. You can view these predefined equates by entering the equ
command with no options.

M>equ

Getting Started 2-29

These equates may be used to specify values for the stat trace label
when qualifying trace conditions.

Specifying a Simple
Trigger

The tg analyzer command is a simple way to specify a condition on
which to trigger the analyzer. Suppose you wish to trace the states of
the program after the read of "B"(42H) command from the command
input byte. Enter the following commands to set up the trace, run the
program, issue the trace, and display the trace status.(Note that the
analyzer is to search for a lower byte read of 42H because the
command input byte address(500H) is a multiple of four)

M>tg addr=500 and data=0xxxxxx42 and
stat=read
M>t

emulation trace started

M>r 10000
U>ts

--- Emulation Trace Status ---
New User trace running
Arm ignored
Trigger not in memory
Arm to trigger ?
States ? (512) ?..?
Sequence term 1
Occurrence left 1

 ### Equates ###
 equ bg=0xxxxxxxxxxxxxxxy
 equ buslock=0xx1xxxx1xxxxxxxxy
 equ byte=0xx1xxxxxxxxxx0xxy
 equ data=0xx1xxxxxxx010xxxy
 equ exec=0xxx1xxxxxxxxxxxxy
 equ fault=0xx1xxxxxxx101xxxy
 equ fetch=0xx1xxxxxx1011xxxy
 equ fetchbr=0xx1xxxxxx1001xxxy
 equ fg=1xxxxxxxxxxxxxxxy
 equ grd=0xx1xx0xxxx0xxxxxy
 equ halt=0xx1xxxxxxx111xxxy
 equ hold=0xx00xxxxxxxxxxxxy
 equ hword=0xx1xxxxxxxxxx10xy
 equ io=0xx1xxxxxxx110xxxy
 equ mem=0xx1xxxxxxx0xxxxxy
 equ read=0xx1xxxxxx1xxxxxxy
 equ word=0xx1xxxxxxxxxx110y
 equ write=0xx1xxxxxx0xxxxxxy
 equ wrrom=0xx1x0xxxx00xxxxxy

2-30 Getting Started

The trace status shows that the trigger condition has not been found.
You would not expect the trigger to be found because no commands
have been entered. Modify the command input byte to "B"(42H) and
display the trace status again.

U>m 500=42
U>ts

---Emulation Trace Status ---
New User trace complete
Arm ignored
Trigger in memory
Arm to trigger ?
States 512 (512) 0..511
Sequence term 2
Occurrence left 1

The trace status shows that the trigger has been found, and that 512
states have been stored in trace memory. Enter the following command
to display the first 15 states of the trace.

U>tl -t 15

Line 0 in the trace list above shows the state which triggered the
analyzer. The trigger state is always on line 0. When you display trace
list, the emulator disassembles "fetch" states, and their disassembled
processor mnemonic is displayed at the "fetch" states which are the
first byte of the instruction.

To list the next lines of the trace, enter the following command.

U>tl

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 00000500 42 data read byte ---
 1 00010024 0041a020 fetch 0.120 uS
 2 00010028 840e0cc1 fetch 0.120 uS
 3 0001002c 0042a020 fetch 0.120 uS
 4 00010030 841a0cc1 fetch 0.120 uS
 5 00010034 002ca800 fetch 0.120 uS
 6 00010038 0000bc20 fetch 0.120 uS
 7 0001004c MOVHI 0x0000,R0,R1 0.120 uS
 8 00010050 MOVEA 0x0812,R1,R7 0.120 uS
 9 00010054 MOVHI 0x0000,R0,R1 0.120 uS
 10 00010058 MOVEA 0x0824,R1,R8 0.120 uS
 11 0001005c JR 0x00010070 0.120 uS
 12 00010060 MOVHI 0x0000,R0,R1 0.120 uS
 13 00010070 LD.B 0x0000[R7],R9 0.120 uS
 14 00010074 ST.B R9,0x0000[R5] 0.120 uS

Getting Started 2-31

 Specifying a Trace
mode

By default, the 70732 instruction cache is enabled. In this case, the
emulator can not trace execution status even if you specify that the
analyzer trace bus states and execution states("cf trmode=exe"). If
you want to trace bus status and execution status, you must specify that
the 70732 instruction cache is disabled. Enter the following command.

M>cf cache=dis
M>cf trmode=exe

If bus cycle and execution are occurred simultaneously, bus address
can not be traced. Refer "Analyzer Topics" section in the "Using the
Emulator" chapter and "CONFIG_ITEM" section in the "70732
Emulation Specific Command Syntax" appendix.

The emulator analyzer has a time or state counter which is affected by
clock speed. The analyzer can capture all types of bus cycles correctly
up to the maximum clock of 25MHz(clock on the demo board is
25MHz), but it can not count states nor time at those high speeds for
certain bus cycle type. Enter the following command:

M>tcq none
M>tck -s VF

Refer "Analyzer Topics " section in the "Using the Emulator" chapter.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 15 00000810 ..43.... data read byte 0.120 uS
 16 00010078 ADD 0x01,R5 0.120 uS
 =0001007a ADD 0x01,R7
 17 00000504 43 data write byte 0.120 uS
 18 0001007c CMP R7,R8 0.120 uS
 =0001007e JNZ/JNE 0x00010070
 19 00010080 MOVHI 0x0000,R0,R1 0.120 uS
 20 00010084 MOVEA 0x0534,R1,R10 0.120 uS
 21 00010070 LD.B 0x0000[R7],R9 0.160 uS
 22 00010074 ST.B R9,0x0000[R5] 0.120 uS
 23 00000810 6f...... data read byte 0.120 uS
 24 00010078 ADD 0x01,R5 0.120 uS
 =0001007a ADD 0x01,R7
 25 00000504 6f.. data write byte 0.120 uS
 26 0001007c CMP R7,R8 0.120 uS
 =0001007e JNZ/JNE 0x00010070
 27 00010080 MOVHI 0x0000,R0,R1 0.120 uS
 28 00010084 MOVEA 0x0534,R1,R10 0.120 uS
 29 00010070 LD.B 0x0000[R7],R9 0.160 uS

2-32 Getting Started

 Trigger Position You can specify where the trigger state will be positioned with in the
emulation trace list. The following three basical trigger positions are
defined.

s start
c center
e end

When s(start) trigger position is selected, the trigger is positioned at the
start of the trace list. You can trace the states after the trigger state.

When c(center) trigger position is selected, the trigger is positioned at
the center of the trace list. You can trace the states around the trigger.

When e(end) trigger position is selected, the trigger is positioned at the
end of the trace list. You can trace the state before the trigger.

In the above section, you have traced the states of the program after a
certain state, because the default trigger position was s(start). If you
want to trace the states of the program around a certain state, you need
to change the trigger position.

For example, if you wish to trace the transition to the command A
process, change the trigger position to "center" and specify the trigger
condition.

To specify the trigger position, enter the following command.

U>tp c

Specify the trigger condition by typing

U>tg addr=10038 and stat=exec

Enter the trace command to start the trace.

U>t
Emulation trace started

Modify the command input byte to "A" and display the trace status
again.

U>m 500=41
U>ts

Getting Started 2-33

--- Emulation Trace Status ---
New User trace complete
Arm ignored
Trigger not in memory
Arm to trigger ?
States 512 (512) -257..254
Sequence term 2
Occurrence left 1

The trace status shows that the trigger has been found. Enter the
following command to display the states about the execution state of
address 10038H.

U>tl -5..5

The transition states to the process for the command A are displayed.

Note The character displayed in the right side of trace list specifies the
following information.

 +------------+--+
 | Character | Information |
 +------------+--+
 | GSS | Emulator guessed execution address |
 | ADR | Processor masked low bit of address bus by 0 |
 | BGM | Background monitor cycles |
 +------------+--+

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 -5 00010022 JZ/JE 0x0001001c GSS *********
 840e0cc1 fetch
 -4 00010024 MOVEA 0x0041,R0,R1 *********
 -3 00010028 CMP R1,R6 GSS *********
 0042a020 fetch
 -2 0001002a JZ/JE 0x00010038 GSS *********
 841a0cc1 fetch
 -1 00010038 0000bc20 fetch after branch *********
 0 00010038 MOVHI 0x0000,R0,R1 *********
 0800a0e1 fetch
 1 0001003c MOVEA 0x0800,R1,R7 GSS *********
 0000bc20 fetch
 2 00010040 MOVHI 0x0000,R0,R1 GSS *********
 0812a101 fetch
 3 00010044 MOVEA 0x0812,R1,R8 GSS *********
 0028a800 fetch
 4 00010048 JR 0x00010070 GSS *********
 0000bc20 fetch
 5 00010070 0000c127 fetch after branch *********

2-34 Getting Started

For a Complete
Description

For a complete description of the HP 64700 Series analyzer, refer to
the HP 64700 Emulators Terminal Interface: Analyzer User’s Guide.

Copying Memory The cp (copy memory) command gives you the ability to copy the
contents of one range of memory to another. This is a handy feature to
test things like the relocatability of programs, etc. To test if the sample
program is relocatable within the same segment, enter the following
command to copy the program to an unused, but mapped, area of
emulation memory. After the program is copied, run it from its new
start address to verify that the program is indeed relocatable.

U>cp 10500=10000..10095
U>r 10500
U>

The prompt shows that the emulator is executing user code, so it looks
as if the program is relocatable. You may want to issue a simple trace
to verify that the program works while running from its new location.

U>tg any
U>t

Emulation trace started

U>tl

Getting Started 2-35

Resetting the
Emulator

To reset the emulator, enter the following command.

U>rst
R>

The emulator is held in a reset state (suspended) until a b (break), r
(run), or s (step) command is entered. A CMB execute signal will also
cause the emulator to run if reset.

The -m option to the rst command specifies that the emulator begin
executing in the monitor after reset instead of remaining in the
suspended state.

R>rst -m
M>

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 0001051c INSTRUCTION--opcode unavailable *********
 85fa4cc0 fetch
 1 00000500 00 data read byte *********
 2 00010520 INSTRUCTION--opcode unavailable *********
 3 00010524 0041a020 fetch *********
 4 00010522 JZ/JE 0x0001051c GSS *********
 840e0cc1 fetch
 5 0001051c 0000c0c4 fetch after branch *********
 6 0001051c LD.B 0x0000[R4],R6 *********
 85fa4cc0 fetch
 7 00000500 00 data read byte *********
 8 00010520 CMP 0x00,R6 GSS *********
 9 00010524 0041a020 fetch *********
 10 00010522 JZ/JE 0x0001051c GSS *********
 840e0cc1 fetch

2-36 Getting Started

3

Using the Emulator

Introduction Many of the topics described in this chapter involve the commands
which are unique to the 70732 emulator such as the cf command which
allows you to specify emulator configuration.
A reference-type description of the 70732 emulator configuration items
can be found in the "CONFIG_ITEMS" section in the "70732 Emulator
Specific Command Syntax" appendix.

This chapter will:

Execution Topics
– Restricting the Emulator to Real-Time Runs
– Setting Up to Break on an Analyzer Trigger
– Making Coordinated Measurements

Manipulation as 32-bit real numbers
– Register Manipulation
– Memory Manipulation

Memory Mapping

Analyzer Topics
– Analyzer Status Qualifiers
– Specifying Trace Configuration
– Specifying Data for Trigger or Store Condition

Instruction Cache

Real-time Emulation Memory Access

Monitor Option Topics

Using the Emulator 3-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

Execution Topics The description in this section are of emulation tasks which involve
program execution in general.

Restricting the
Emulator to

Real-Time Runs

By default, the emulator is not restricted to real-time runs. However,
you may wish to restrict runs to real-time to prevent accidental breaks
that might cause target system problems. Use the cf (configuration)
command to enable the rrt configuration item.

R>cf rrt=en

When runs are restricted to real-time and the emulator is running user
code, the system refuses all commands that cause a break except rst
(reset), r (run), s(step), and b (break to monitor).

Because the emulator accesses emulation memory by holding
microprocessor for 12 clock cycles(not breaking), commands which
access emulation memory are allowed while runs are restricted to
real-time.

The following commands are not allowed when runs are restricted to
real-time:

reg (register display/modification).

m (memory display/modification) commands that access
target system memory.

io (I/O display/modification).

The following command will disable the restriction to real-time runs
and allow the system to accept commands normally.

R>cf rrt=dis

3-2 Using the Emulator

Setting Up to Break
on an Analyzer

Trigger

The analyzer may generate a break request to the emulation processor.
To set up to break on an analyzer trigger, follow the steps below.

Specify the Signal Driven when Trigger is Found

Use the tgout (trigger output) command to specify which signal is
driven when the analyzer triggers. Either the "trig1" or the "trig2"
signal can be driven on the trigger.

R>tgout trig1

Enable the Break Condition

Enable the "trig1" break condition.

R>bc -e trig1

After you specify the trigger to drive "trig1" and enable the "trig1"
break condition, set up the trace, enter the t (trace) command, and run
the program.

Making Coordinated
Measurements

 Coordinated measurements are measurements made between multiple
HP 64700 Series emulators which communicate via the Coordinated
Measurement Bus (CMB). Coordinated measurements can also include
other instruments which communicate via the BNC connector. A
trigger signal from the CMB or BNC can break emulator execution into
the monitor, or it can arm the analyzer. An analyzer can send a signal
out on the CMB or BNC when it is triggered. The emulator can send an
EXECUTE signal out on the CMB when you enter the x (execute)
command.

Coordinated measurements can be used to start or stop multiple
emulators, start multiple trace measurements, or to arm multiple
analyzers.

As with the analyzer generated break, breaks to the monitor on CMB or
BNC trigger signals are interpreted as a "request to break". The
emulator looks at the state of the CMB READY (active high) line to
determine if it should break. It does not interact with the EXECUTE
(active low) or TRIGGER (active low) signals.

Using the Emulator 3-3

For information on how to make coordinated measurements, refer to
the HP 64700 Emulators Terminal Interface: Coordinated
Measurement Bus User’s Guide manual.

Manipulation as
32-bit Real
Numbers

You can display/modify register and memory as
32-bit(single-precision) real numbers.

Register Manipulation You can display/modify general purpose registers(R0 through R31) as
32-bit(single-precision) real numbers with reg command.

To display all general purpose registers as 32-bit real numbers, enter
the following command:

M>reg -f

You can specify register(s) to be displayed. To display two registers R5
and R7 as 32-bit real numbers, enter the following command:

M>reg -f r5 r7
reg r5=+3.7554799e-0042
reg r7=+5.2559930e+0022

To modify register R5 to the value 12345.678, enter the following
command:

 reg r0=+true zero r1=+4.0777785e-0043
 reg r2=+7.6464751e-0039 r3=+3.0183969e-0042
 reg r4=+2.5243344e-0029 r5=+3.7554799e-0042
 reg r6=-3.9134964e-0024 r7=+5.2559930e+0022
 reg r8=+6.8348333e-0041 r9=+2.2043172e-0038
 reg r10=+true zero r11=+true zero
 reg r12=+true zero r13=+true zero
 reg r14=+true zero r15=+true zero
 reg r16=+true zero r17=+true zero
 reg r18=+true zero r19=+true zero
 reg r20=+true zero r21=+true zero
 reg r22=+true zero r23=+true zero
 reg r24=+true zero r25=+true zero
 reg r26=+true zero r27=+true zero
 reg r28=+true zero r29=+true zero
 reg r30=+true zero r31=+true zero

3-4 Using the Emulator

M>reg -f r5=12345.678

Memory Manipulation You can display/modify memory values as 32-bit(single-precision) real
numbers by m command with "-df" option. This "-df" option does not
change current display option. And you can not use mo command with
"-df" option.

To display memory 100H value as 32-bit real numbers, enter the
following command:

M>m -df 100
000000100 +4.9ab873e+0003

To modify memory 100H to the value 12345.678, enter the follwoing
command:

M>m -df 100=12345.678

Memory Mapping You can define up to 16 memory ranges(at 4K byte boundaries and at
least 4K byte in length). You can characterize memory ranges as
emulation RAM, emulation ROM, target RAM, target ROM, or
guarded memory. The emulator distinguish left side memory
module(bank 0) from right side ones(bank 1) because you can select
memory modules whose access speed is different on each bank. When
you characterize memory ranges as emulation RAN/ROM, you can
specify whether bank number is to be bank 0(b0) or bank 1(b1) and
whether data bus size is to be 16(d16) or 32(d32) as attributes. When
you do not specify bank number, the emulator interprets that bank
number is "b0". If you do not specify data bus size, the emulator
interprets that data bus size is "d32".

Attributes control specific functionality on a term-by-term basic.
Attributes can be the following.

b0_d32 Using emulation memory of bank 0 and data bus
width is 32 bits.

b0_d16 Using emulation memory of bank 0 and data bus
width is 16 bits.

Using the Emulator 3-5

b1_d32 Using emulation memory of bank 1 and data bus
width is 32 bits.

b1_d16 Using emulation memory of bank 1 and data bus
width is 16 bits.

b0 Using emulation memory of bank 0 and data bus
width is 32 bits.

b1 Using emulation memory of bank 1 and data bus
width is 32 bits.

You can specify whether mapping attribute or SZRQ signal from target
system is to be valid with "cf szrq". If you specify that "cf
bussize=16", data bus width is 16 regardless of the mapping attribute.
Refer "CONFIG_ITEM" section in the "70732 Emulator Specific
Command Syntax" appendix.

You can not specify the data bus size for memory mapped as target
RAM/ROM. The data bus size for target RAM/ROM is settled by
SZRQ signal from target system or "cf bussize" configuration.

3-6 Using the Emulator

Analyzer Topics

Analyzer Status
Qualifiers

The following are the analyzer status labels which may be used in the
"tg" and "tsto" analyzer commands.

Specifying Trace
configuration

You can specify trace configuration with "cf" command, when you use
analyzer. The differences depend on configuration will be shown using
following example.

 000020000 - MOVEA 0x1000,R0,R4
 000020004 - ST.W R0,0x0000[R4]
 000020008 - LD.B 0x0000[R4],R5
 00002000c - CMP 0x00,R5
 00002000e - JZ/JE 0x00020008
 000020010 - MOVEA 0x0500,R1,R6
 000020014 - JR 0x00020000

Trace Mode

If you wish to make analyzer trace bus status only, enter the following
command:

M>cf trmode=bus

In this case, analyzer can not trace execution state. When you display
trace list, the emulator disassembles with "fetch" states, and their
disassembled processor mnemonics is displayed at the "fetch" states
which are the first byte of the instruction. This is significant when
specify the trigger condition at the execution of the instruction which

backgrnd 0xxxxxxxxxxxxxxxy background
addrerr 0xx1xxxx1xxxxxxxxy bus lock
byte 0xx1xxxxxxxxxx0xxy byte access
data 0xx1xxxxxxx010xxxy data access
exec 0xxx1xxxxxxxxxxxxy execute instruction
fault 0xx1xxxxxxx101xxxy machine fault acknowledge
fetch 0xx1xxxxxx1011xxxy code fetch
fetchbr 0xx1xxxxxx1001xxxy code fetch after branch
foregrnd 01xxxxxxxxxxxxxxxy foreground
grdacc 0xx1xx0xxxx0xxxxxy guarded memory access
halt 0xx1xxxxxxx111xxxy halt acknowledge
hold 0xx00xxxxxxxxxxxxy hold acknowledge
halfwd 0xx1xxxxxxxxxx10xy half word access
io 0xx1xxxxxxx110xxxy I/O access
mem 0xx1xxxxxxx0xxxxxy memory access
read 0xx1xxxxxx1xxxxxxy read cycle
word 0xx1xxxxxxxxxx110y word access
write 0xx1xxxxxx0xxxxxxy write cycle
wrrom 0xx1x0xxxx00xxxxxy write to ROM

Using the Emulator 3-7

follows a branch instruction like above. Assume that the process
execution instruction of the address range 20000H through 2000eH
normally, and the instruction at address 20010H and 20014H are
executed at long intervals. If you wish to trigger the analyzer at
execution of the address 20010H and you would enter the following
command because analyzer can not trace execution state, the trigger
will always occur at the fetch of the address 20010H whether or not the
branch condition at address 2000eH is satisfied.

U>tg addr=20010

If you want to trace execution state and bus state, enter the following
command:

M>cf cache=dis
M>cf trmode=exe

Tracing Bus Address

When you specify that the analyzer trace the execute state and bus
state, the 70732 emulator transfer execution address to analyzer
preferentially. You can specify whether or not forcing the analyzer to
trace the bus address as it data when bus cycle and execution are
occurred simultaneously. To trace bus address surely, the 70732
emulator transfer bus address as its data to analyzer. So bus data are
lost. To trace bus address, enter the following command:

U>cf tradr=en

 When you set this configuration, you will see trace list like follows.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 00020008 LD.B 0x0000[R4],R5 *********
 =0002000c ******** fetch
 1 00001000 ** data read byte *********
 2 0002000c CMP 0x00,R5 *********
 3 00020010 ******** fetch *********
 4 0002000e JZ/JE 0x00020008 *********
 =00020014 ******** fetch
 5 00020008 ******** fetch after branch *********
 6 00020008 LD.B 0x0000[R4],R5 *********
 =0002000c ******** fetch
 7 00001000 ** data read byte *********
 8 0002000c CMP 0x00,R5 *********
 9 00020010 ******** fetch *********

3-8 Using the Emulator

To trace bus data when bus cycle and execution are occurred
simultaneously, enter the following command:

U>cf tradr=dis

When you set this configuration, you will see trace list like follows.

 Tracing Fetch Cycles

You can specify whether or not analyzer trace fetch cycles. Not to trace
fetch cycle, enter the following command:

U>cf trfetch=dis

When you set this configuration, you will see trace list like follows.

 To trace fetch cycle, enter following command:

U>cf trfetch=en

If you specify that analyzer trace only bus state("cf trmode=bus"), the
analyzer will trace fetch cycle regardless of this configuration.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 00001000 00 data read byte *********
 1 0002000c CMP 0x00,R5 *********
 2 0002000e JZ/JE 0x00020008 *********
 3 00020008 LD.B 0x0000[R4],R5 *********
 4 00001000 00 data read byte *********
 5 0002000c CMP 0x00,R5 *********
 6 0002000e JZ/JE 0x00020008 *********
 7 00020008 LD.B 0x0000[R4],R5 *********
 8 00001000 00 data read byte *********
 9 0002000c CMP 0x00,R5 *********

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 00020010 1100a0c0 fetch *********
 1 0002000e INSTRUCTION--opcode unavailable *********
 ffecabff fetch
 2 00020008 0000c0a4 fetch after branch *********
 3 00020008 LD.B 0x0000[R4],R5 *********
 85fa4ca0 fetch
 4 00001000 00 data read byte *********
 5 0002000c CMP 0x00,R5 GSS *********
 6 00020010 1100a0c0 fetch *********
 7 0002000e JZ/JE 0x00020008 GSS *********
 ffecabff fetch
 8 00020008 0000c0a4 fetch after branch *********
 9 00020008 LD.B 0x0000[R4],R5 *********
 85fa4ca0 fetch

Using the Emulator 3-9

Disassembling Trace List

You can specify whether the 70732 emulator read data from memory
or from trace list when the 70732 emulator disassembles trace list.
When the emulator disassembles instructions in stored trace
information, the fetch cycles of each instruction are required. When
you displayed the trace in mnemonic, some lines which include
"INSTRUCTION--opcode unavailable" message were displayed. Each
line was instruction execution cycle at the address in the left side of the
displayed because the fetch states for the instructions were not stored
by the analyzer. To display complete trace list in mnemonic, enter the
following command:

U>cf dasms=en

In this case, the emulator read data from memory to disassemble. When
you set this configuration, you will see trace list like follows.

To read data from trace list, enter the following command:

U>cf dasms=dis

If you specify that analyzer trace bus address as data("cf tradr=en") or
analyzer does not trace fetch cycles("cf trfetch=dis"), the emulator
read data from memory regardless of this configuration. If you specify
that you trace bus state only("cf trmode=bus" or "cf cache=en"), the
emulator read data from trace list regardless of this configuration.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 00020008 LD.B 0x0000[R4],R5 *********
 85fa4ca0 fetch
 1 00001000 00 data read byte *********
 2 0002000c CMP 0x00,R5 *********
 3 00020010 1100a0c0 fetch *********
 4 0002000e JZ/JE 0x00020008 *********
 ffecabff fetch
 5 00020008 0000c0a4 fetch after branch *********
 6 00020008 LD.B 0x0000[R4],R5 *********
 85fa4ca0 fetch
 7 00001000 00 data read byte *********
 8 0002000c CMP 0x00,R5 *********
 9 00020010 1100a0c0 fetch *********

3-10 Using the Emulator

Specifying Trace
disassemblely option

If you do not want to see fetch cycles in trace list, specify the -od
option. To show all bus cycles, specify the -on option.

When the analyzer trace actual bus states, you can force disassembly to
begin with higher half-word of first trace state by using the -oh option.
If the disassembled trace list is not what you expected, specify the this
option.

Specifying Data for
Trigger or Store

Condition

The analyzer captures the actual bus states of the 70732
microprocessor, if you specify that "cf trmode=bus". When you
specify a data in the analyzer trigger condition or store condition, the
ways of the analyzer data specification differ according to the data size
and address. Suppose that you wish to trigger the analyzer when the
processor accesses to the byte data 41H in the address 1000H. You
should not specify the trigger condition like this.

M>tg addr=1000 and data=41

The data condition will be considered as 00000041H. The bit 31
through bit 8 of data bus is unpredictable because of the byte data. You
will unable to trigger as you desire. You should have entered as follows.

M>tg addr=1000 and data=0xxxxxx41

Where x’ are "don’t care" bits.

When the address that you want to trigger is not a multiple of 4, the
data bus specification is different from above. If you wish trigger the
analyzer at address 1001H instead of the address 1000H, the bit 0
through bit 1 of address are masked by 0 and the data 41H will be
output to bit 4 through bit 7 of data bus. You should enter:

M>tg addr=1000 and data=0xxxx41xx

In case of halfword or word access to data bus, it will be the same.

If user’s program access word or halfword data which are not aligned,
the 70732 microprocessor mask low bit of address bus(bit 0,1:word
data, bit0 :halfword data) by 0. Assume that the processor accesses to
the half-word data 1234H in the address 1001H. In this case the
following trace list is shown.

Using the Emulator 3-11

The "ADR"s in the trace list indicate that the 70732 microprocessor
masked low bit of address bus by 0.

To trigger the analyzer when the 70732 microprocessor accesses the
word data 12345678H at address 1002H in 16 data bus size. The data
bus activity of this cycles will be as follows.

Sequencer level Address bus Data bus
 1 00001000 xxxx5678
 2 00001002 xxxx1234

In this case, you need to use the analyzer sequential trigger capabilities.
We do not describe the detail about the sequential trigger feature. Only
how to trigger the analyzer at this example is described. To specify the
condition of sequencer level 1, enter:

M>tif 1 addr=1000 and data=0xxxx5678

To specify the condition of sequencer level 2, enter:

M>tif 2 addr=1002 and data=0xxxx1234

Note When you trigger/store the analyzer, you should note follows:

1) When you specify "cf tradr=dis", you can not specify address in the
analyzer trigger or store condition.
2) When you specify "cf tradr=en", what you specify data in the
analyzer trigger or store condition means that you specify address.
3) When execution state and bus state simultaneously, both states are
stored in case that both states satisfy store condition.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 0 00020000 MOVEA 0x1001,R0,R4 *********
 1 00020004 MOVEA 0x1234,R0,R5 *********
 2 00020008 ST.H R5,0x0000[R4] *********
 3 0002000c LD.H 0x0000[R4],R6 *********
 4 00020010 JR 0x00020000 *********
 5 00001000 1234 data write hword ADR *********
 6 00001000 1234 data read hword ADR *********
 7 00020000 MOVEA 0x1001,R0,R4 *********
 8 00020004 MOVEA 0x1234,R0,R5 *********
 9 00020008 ST.H R5,0x0000[R4] *********

3-12 Using the Emulator

Analyzer Clock Speed The emulation analyzer can capture both the execution states and bus
states. The analyzer has a counter which allows to count either time or
occurrence of bus states.

If you use 64794A/C/D Deep emulation analyzer, the tarce state and
time counter quilifiers can be used regardless of clock speed. If you use
64704A emulation analyzer, the trace state and time counter qualifiers
are limited by clock speed as the following.

Table 3-1 Analyzer Counter

Clock Speed Analyzer Speed Setting Valid count qualifier options

clock =< 16MHz S(slow) counting <state>
counting time

16MHz < clock =< 20MHz F(fast) counting <state>

20MHz < clock =< 25MHz VF(very fast) counting off

By default, the analyzer trace only actual bus states, and analyzer
counter is turned on. In this case, you can count time and state because
the clock speed can be effectively halved even if clock speed is greater
than 20MHz.

If you wish to trace both execute states and bus states, you must specify
analyzer clock speed.

If your target system clock is equal to 16MHz or less than 16MHz, you
can use analyzer time and state counter.

If your target system clock is between 16MHz and 20MHz, you can
use the analyzer state counter. In this case, the analyzer state counter
counts occurrences of the states which you specify. Assume that you
would like to count occurrences of the state which the processor read a
data.

M>tcq stat=read
M>tck -s F

Using the Emulator 3-13

If you use the system clock or your target system clock is greater than
20MHz, you can not use the analyzer counter. Enter the following
command:

M>tcq none
M>tck -s VF

Instruction Cache You can display/modify/clear instruction cache with "cache" command

When the 70732 microprocessor uses instruction cache, entre the
following command to view of contents of the instruction cache.

M>cache 0..8

The contents of instruction cache are displayed in the following format.

[Entry No.]:[Valid bit] [Physical Address]:[Data 8 byte]

When you modify instruction cache, you should specify that address is
multiple of 8 byte(bit 0-bit 2 is 0) and that bit 3 through bit 9 is equal to
entry number. Enter the following command to modify instruction
cache.

M>cache
07=00,00010038,20,89,00,00,54,80,00,08

You can clear all entry of instruction cache with "cache -cl" command.

 00:00 00000000:ff ff ff ef 00 00 02 41
 01:00 00000008:ff a7 df 4e 10 19 00 00
 02:00 00000010:ff ff ff ef 00 00 02 41
 03:00 00000018:ff a7 df 4e 10 19 00 00
 04:00 00000020:ff ff ff ef 00 00 02 41
 05:00 00000028:ff a7 df 4e 10 19 00 00
 06:00 00000030:ff ff ff ef 00 00 02 41
 07:00 00000038:ff a7 df 4e 10 19 00 00
 08:00 00000040:ff ff ff ef 00 00 02 41

3-14 Using the Emulator

Emulation
Memory Access

If you enter display/modify emulation memory command while the
user’s program is running, HP64700 emulation controller, not the
70732 microprocessor, intends to access the emulation memory. In this
case, the emulation controller hold the 70732 bus cycles(not but
breaking into the monitor) for 12 clock cycles in order to access to the
emulation memory.

Monitor Option
Topics

The monitor is a program which is executed by the emulation
processor. It allows the emulation system controller to access target
system resources. For example, when you enter a command that
requires access to target system resources (display target memory, for
example), the system controller writes a command code to a
communications area and breaks the execution of the emulation
processor into the monitor. The monitor program then reads the
command from the communications area and executes the processor
instructions which access the target system. After the monitor has
performed its task, execution returns to the target program.

The background monitor does not take up any processor address space
and does not need to be linked to the target program. The monitor
resides in dedicated background memory.

Background Monitor When the emulator is powered up or initialized, the background
monitor is selected by default.

Foreground monitor The default emulator configuration selects the background monitor.
The 70732 emulator provides two kinds of foreground monitor. One is
included in the 70732 emulator, the other is provided with assembler
source file. You can change the emulator configuration to select the
foreground monitor. When you select the foreground monitor,
processor address space is taken up. The foreground monitor takes up
8K bytes of memory. Use the cf command to select the foreground
monitor.

R>cf mon=fg
R>cf monloc=1000

Using the Emulator 3-15

1000 defines an hexadecimal address (on a 8K byte boundary) where
the monitor will be located. (Note: this will not load the monitor, it
only specifies its location.) The start address of the foreground monitor
must be 8k boundary. The foreground monitor must then be loaded into
emulation memory. A memory mapper term is automatically created
when you execute the cf mon=fg command to reserve 8K bytes of
memory space for the monitor. The memory map is reset any time cf
mon=bg is entered. It is only reset when the cf mon=bg command is
entered if the emulator is not already configured to use the background
monitor. Refer to the "Using the Optional Foreground Monitor"
appendix.

Note You must not use the foreground monitor if you wish to perform
coordinated measurements.

3-16 Using the Emulator

4

In-Circuit Emulation Topics

Introduction Many of the topics described in this chapter involve the installation,
and the commands which relate to using the emulator in-circuit, that is,
connected to a target system or demo target board.

This chapter will:

Show you how to install the emulator probe cable

Show you how to install the emulation memory module.

Show you how to install the emulator probe to demo target
board.

Describe the issues concerning the installation of the emulator
probe into target systems.

Describe how to execute program from target reset. This
topics is related to program execution in general.

Describe how to use software breakpoints with ROMed code,
and how to test patches to ROMed code. These topics relate to
the debugging of target system ROM.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with how the emulator operates in general. Refer to the
Concepts of Emulation and Analysis manual and the "Getting Started"
chapter of this manual.

In-Circuit Emulation 4-1

Installing the
Emulator Probe
Cable

The probe cables consist of three ribbon cables. The longest cable
connects to J1 of the emulation control card, and to J1 of the probe.
The shortest cable connects to J3 of the emulation control card and J3
of the probe. The ribbon cables are held in place on the emulation
control card by a cable clamp attached with two screws. No clamp
holds the ribbon cables in the probe.

1. Secure the cable on the emulation control card with cable
clamp and two screws.

4-2 In-Circuit Emulation

2. When insert the ribbon cables into the appropriate sockets,
press inward on the connector clops so that they into the
sockets as shown.

In-Circuit Emulation 4-3

3. Connect the other ends of the cable s to the emulation probe.

4-4 In-Circuit Emulation

Installing the
Emulation
Memory Module

There are four types of emulation memory modules that can be inserted
into sockets on the probe.

1. Remove plastic rivets that secure the plastic cover on the top
of the emulator probe, and remove the cover. The bottom
cover is only removed when you need to replace a defective
active probe on the exchange program.

In-Circuit Emulation 4-5

2. Insert emulation memory module on the emulation probe.
There is a cutout on one side of the memory modules so that
they can only be installed one way.

To install memory modules, place the memory module into
the socket groove at an angle. Firmly press the memory
module into the socket to make sure it is completely seated.
Once the memory module is seated in the connector groove,
pull the memory module forward so that the notches on the
socket fit into the holes on the memory module. There are two
latches on the sides of the socket that hold the memory
module in place.

3. Replace the plastic cover, and insert new plastic rivets to
secure the cover.

4-6 In-Circuit Emulation

Installing into the
Demo Target
Board

To connect the microprocessor connector to the demo target board,
proceeded with the following instructions.

1. Remove front bezel and connect the power cable to connector
the HP 64700B front panel. Refer to HP 64700 Series
Installation/Service manual.

2. With HP 64700B power OFF, connect the emulator probe to
the demo target board. When you install the probe into the
demo target board, be careful not to bend any of the pins.

After connecting the probe to the demo target board, set the
TEST/NORMAL MODE jumper. Use TEST MODE position
when you run performance verification tests, and use
NORMAL MODE position when you use emulator normally.

In-Circuit Emulation 4-7

3. Connect the power cable supply wires from the emulator to
demo target board. When attaching the wire cable to the demo
target board, make sure the connector is aligned properly so
that all three pins are connected.

4-8 In-Circuit Emulation

Installing the
Emulator Probe
into a Target
System

The 70732 emulator probe has a 176-pin PGA connector;
The emulator probe is also provided with a conductive pin protector to
protect the delicate gold-plated pins of the probe connector from
damage due to impact.

Caution Protect against electrostatic discharge. The emulator probe contains
devices that are susceptible to damage by electrostatic discharge.
Therefore, precautionary measures should be taken before handling the
microprocessor connector attached to the end of the probe cable to
avoid damaging the internal components of the probe by electrostatic
electricity.

Caution Make sure target system power is OFF. Do not install the emulator
probe into the target system microprocessor socket with power applied
to the target system. The emulator may be damaged if target system
power is not removed before probe installation.

Caution Make sure pin 1 of probe connector is aligned with pin 1 of the
socket. When installing the emulation probe, be sure that probe is
inserted into the processor socket so that pin 1 of the connector aligns
with pin 1 of the socket. Damage to the emulator probe will result if the
probe is incorrectly installed.

In-Circuit Emulation 4-9

 Installing into a PGA
Type Socket

To connect the emulator probe to the target system, proceeded with the
following instructions.

1. Remove the 70732 microprocessor (PGA type) from the target
system socket. Note the location of pin A1 on the
microprocessor and on the target system socket.

2. Store the microprocessor in a protected environment (such as
antistatic form).

3. Install the emulator probe into the target system
microprocessor socket.

Caution DO NOT use the emulator probe without using a pin protector.
The pin protector is provided to prevent damage to the emulator probe
when connecting and removing the emulator probe from the target
system PGA socket.

Note PGA-PGA flexible extender.You can use PGA-PGA flexible
extender. When you want to use PGA-PGA flexible extender, you must
order E3426A.

 Installing into a QFP
Type Socket

To connect the 70732 emulator probe to the QFP socket on the target
system, use the NEC EV-9503-GD-120.

1. Attach the QPF socket to your target system.

2. Connect the NEC EV-9503-GD-120 to QPF socket on your
target system.

3. Connect the IC-Socket(1200-1710) to the ZIP socket on NEC
EV-9503-GD-120.

4. Place the 70732 emulator probe to the NEC EV-9503-GD-120
with IC-Socket.

4-10 In-Circuit Emulation

Note Contact NEC Electronics Inc. to purchase QFP socket.

In-Circuit Emulation 4-11

In-Circuit
configuration
Options

The 70732 emulator provides configuration options for the following
in-circuit emulation issues. Refer to the "CONFIG_ITEM" section in
the "70732 Emulator Specific Command Syntax" appendix.

Driving Background Cycles to the Target System

You can specify whether emulator bus cycles are driven to your target
system bus when the emulator is in the background cycle. If your target
system requires bus cycles activities constantly, such as BCYST, will
need to drive the emulation bus cycles to your target system bus. By
default, bus cycles are driven to the target system in background
operation.

The configuration item is "dbc"

Allowing HLDRQ Signal from Target System

You can specify whether the emulator accepts or ignores the HLDRQ
signal from target system. By default, the emulator accepts the
HLDRQ signal from the target system.

The configuration item is "hld"

Allowing NMI Signal from Target System

You can specify whether the emulator accepts or ignores the NMI
signal from target system. By default, the emulator accepts the NMI
signal from the target system.

The configuration item is "nmi"

Allowing READY SIgnal from Target System

You can specify whether the emulator accepts or ignores the READY
signel from target system. By default, the emulator accepts the
READY signal from the target system.

The configuration item is "rdy "

4-12 In-Circuit Emulation

Allowing RESET SIgnal from Target System

You can specify whether the emulator accepts ot ignores the RESET
signel from target system. By default, the emulator accepts the RESET
signal from the target system.

The configuration item is "rst"

Allowing SZRQ SIgnal from Target System

You can specify whether the emulator accepts ot ignores the SZRQ
signel from target system. By default, the emulator accepts the SZRQ
signal from the target system.

The configuration item is "szrq"

Execution Topics The descriptions in this section are of emulation tasks which involve
program execution in general.

Run from Target
System Reset

You can use "r rst" command to execute program from target system
reset. If you use background monitor, you will see "T>" system prompt
when you enter "r rst". In this status, the emulator accept target system
reset. Then program stars if reset signal from target system is released.

If you use foreground monitor, reset signal from target system is
always accepted.

Note In the "Awaiting target reset" status(T>), you can not break into the
monitor. If you enter "r rst" in the configuration that emulator ignores
target system reset(cf rst=dis), you must reset the emulator.

In-Circuit Emulation 4-13

The 70732 emulator supports power on reset. If you want program to
be executed by power on reset, execute the following process.

1) Enter "r rst"

2) Turn OFF your target system

3) Turn On your target system

Note When you turn OFF your target system, RESET signal must become
low level before voltage become lower than 4V. When you turn ON
your target system, RESET signal must be continued in low level for
20 clock cycles after voltage become upper than 4V.

Target ROM
Debug Topics

The descriptions in this section are of emulation tasks which involve
debugging target ROM. The tasks described below are made possible
by the cim (copy target system memory image) command.

The cim command allows you to read the contents of target memory
into the corresponding emulation memory locations. Moving target
ROM contents into emulation memory is the key which allows you to
perform the tasks described below. For example, if target ROM exists
at locations 400H through 0A38H, you can copy target ROM into
emulation memory with the following commands.

R>map 400..0bff erom
R>cim 400..0a38

Using Software
Breakpoints with

ROMed Code

You cannot define software breakpoints in target ROM memory.
However, you can copy target ROM into emulation memory which
does allow you to use software breakpoints.

4-14 In-Circuit Emulation

Once target ROM is copied into emulation memory, software
breakpoints may be used normally at addresses in these emulation
memory locations.

R>bc -e bp
R>bp 440

Modifying ROMed
Code

Suppose that, while debugging your target system, you begin to suspect
a bug in some target ROM code. You might want to fix or "patch" this
code before programming new ROMs. This can also be done by
copying target system ROM into emulation memory with the cim
(copy target memory image) command. Once the contents of target
ROM are copied into emulation memory, you can modify emulation
memory to "patch" your suspected code.

In-Circuit Emulation 4-15

Pin State in
Background

The probe pins of the emulator are in the following state. While the
emulator is running in the background monitor, the pins state are
different according to the configuration item "cf dbc".

Address Bus Same as foreground

Data Bus Always high impedance otherwise you direct the
emulator to access target memory. When accessing
target memory, I/O by background monitor, same
as foreground.

DA
(cf dbc=en) Same as foreground.

(cf dbc=dis) Always high impedance otherwise you direct the
emulator to access target memory. When accessing
target memory, I/O by background monitor, same
as foreground.

R/W Always high level, except accessing target memory,
I/O by background monitor.

BCYST
(cf dbc=en) Same as foreground.

(cf dbc=dis) Always high level, except accessing target memory,
I/O by background monitor.

Other Same as foreground

4-16 In-Circuit Emulation

Electrical
Characteristics

The AC characteristics of the HP 64752A emulator are listed in the
following table

Table 4-1 AC Electrical Specifications

Characteristic Symbol

uPD70732

25MHz

HP 64752A

Unit

Worst Case Typical
(*1)

Min Max Min Max

RESET Width Low thvr *2 *2 ns

RESET Setup Time tsrk 10 17.5 ns

RESET Hold Time thrk 10 9 ns

RESET Width Low twrl 20 20 tcykr

Cycle Time tcykr 40 125 40 125 ns

CLOCK Width High tkkhr 17 18 ns

CLOCK Width Low tkklr 17 18 ns

Input Setup Time(HLDRQ, ICHEEN, NMI) tsik 4 11.5 ns

Input Setup Time(INT, INTV0-3) tsik 4 5 ns

Input Setup Time(SZRQ) tsik 4 12.4 8.6 ns

Input Hold Time(HLDRQ, ICHEEN, NMI) thki 4 3 ns

Input Hold Time(INI, INTV0-3) thki 4 3 ns

In-Circuit Emulation 4-17

Table 4-1 AC Electrical Specification(Cont’d)

Input Hold Time(SZRQ) thki 4 9.2 0 ns

Input Setup Time(READY) tsryk 4 12.4 7.8 ns

Input Hold Time(READY) thkry 4 9.2 0 ns

Input Setup Time(D0-31) tsdk 4 11.2 5.4 ns

Input Hold Time(D0-31) thkd 4 3 0 ns

Output active delay(D0-31) tdkd 3 15 4 22.7 17.2 ns

Output inactive delay(D0-31) thkd 3 15 4 22.7 17.5 ns

Output active delay(A1-31, BE0-3, DA, R/W,
MRQ, ST0-1, BLOCK, BCYST)

tdka 3 15 4 16 11.8 ns

Output inactive delay(A1-31, BE0-3, DA,
R/W, MRQ, ST0-1, BLOCK, BCYST)

thka 3 15 4 16 12.6 ns

Floating delay(D0-31) tfkd 3 20 4 27.2 20.6 ns

Active delay(D0-31) tdkd 3 20 4 27.2 19.8 ns

Floating delay(A1-31, BE0-3, DA, R/W,
MRQ, ST0-1, BLOCK, BCYST)

tfka 3 20 4 22 ns

Active delay(A1-31, BE0-3, DA, R/W, MRQ,
ST0-1, BLOCK, BCYST)

tdka 3 20 4 22 ns

*1 Typical outputs measured with 20pF load
*2 20 t cykr + 1us

4-18 In-Circuit Emulation

Target System
Interface

D0-D31 These signals are connected to 74ABT16245.

A(1:31)
BE(0:3) BCYST
DA ST(0:1)
R/W MRQ

These signals are connected to 70732 emulation
processor through 10k ohm pull-up register.

HLDAK BLOCK
ADRSERR

These signals are connected to 74ABT16244.

In-Circuit Emulation 4-19

INT
INTV(0:3)

These signals are connected to 70732 emulation
processor through 10k ohm pull-up register.

SZRQ
READY

These signals are connected to P16L8 through
10k ohm pull-up register.

HLDRQ NMI
RESET

These signals are connected to P20V8R
through 10k ohm pull-up register.

4-20 In-Circuit Emulation

A

70732 Emulator Specific Command Syntax

The following pages contain descriptions of command syntax specific
to the 70732 emulator. The following syntax items are included
(several items are part of other command syntax):

<ACCESS_MODE>. May be specified in the mo (display
and access mode), m (memory), and io (I/O port) commands.
The access mode is used when the m or io commands modify
target memory or I/O locations.

<CONFIG_ITEMS>. May be specified in the cf (emulator
configuration) and help cf commands.

<DISPLAY_MODE>. May be specified in the mo (display
and access mode), m (memory), io (I/O port), and ser (search
memory for data) commands. The display mode is used when
memory locations are displayed or modified.

<REG_NAME> and <REG_CLASS>. May be specified in
the reg (register) command.

Emulator Specific Command Syntax A-1

ACCESS_MODE

Summary Specify cycles used by monitor when accessing target system memory
or I/O.

Syntax

Function The <ACCESS_MODE> specifies the type of microprocessor cycles
that are used by the monitor program to access target memory or I/O
locations. When a command requests the monitor to read or write to
target system memory or I/O, the monitor program will look at the
access mode setting to determine whether byte or word instructions
should be used.

Parameters

b Byte. Selecting the byte access mode specifies that
the emulator will access target memory using byte
cycles (one byte at a time).

h Halfword. Selecting the halfword access mode
specifies that the emulator will access target
memory using halfword cycles (one halfword at a
time).

w Word. Selecting the word access mode specifies
that the emulator will access target memory using
word cycles (one word at a time).

A-2 Emulator Specific Command Syntax

Defaults In the 70732, the <ACCESS_MODE> is b at power up initialization.
Access mode specifications are saved; that is, when a command
changes the access mode, the new access mode becomes the current
default.

Related Commands mo (specify display and access modes)

Emulator Specific Command Syntax A-3

CONFIG_ITEMS

Summary 70732 emulator configuration items.

Syntax

A-4 Emulator Specific Command Syntax

Function The <CONFIG_ITEMS> are the 70732 specific configuration items
which can be displayed/modified using the cf (emulator configuration)
command. If the "=" portion of the syntax is not used, the current
value of the configuration item is displayed.

Parameters

cache Instruction Cache. This configuration item allows
you to specify whether enable or disable the
instruction cache memory.

The analyzer can not trace transactions that are
completed using the processor’s instruction cache.
Without these transactions, the analyzer may show
confusing trace displays, or it may fail to trigger.

Setting cache equal to en specifies that the
instruction cache is enabled.

Setting cache equal to dis specifies that the
instruction cache is disabled.

The 70732 emulator is reset state after specifying
this configuration item.

Note The 70732 emulator operates in accordance with this configuration
instead of ICHEEN signal from target system. ICHEEN signal from
target system is ignored.

dasms Disassemble Data Source. This configuration item
allows you to specify whether data are read from
memory or from trace list in disassembling trace list.

Setting dasms equal to dis specifies that data are
read from trace list when the emulator disassembles
trace list.

Emulator Specific Command Syntax A-5

Setting dasms equal to en specifies that data are
read from memory when the emulator disassembles
trace list.

Note If you specify that "cf tradr=en" or "cf trfetch=dis", the data are read
from memory regardless of this configuration, If you specify that "cf
trmode=bus" or "cf cache=en", the data are read from trace list
regardless of this configuration.

coh Coherence of Instruction Cache and Memory.
This configuration item allows you to specify
whether or not memory is coherent with instruction
cache when the emulator modify memory.

Setting coh equal to dis specifies that cache will not
be kept coherent with memory. The emulator does
not check the cache contents when the emulator
writes to the memory.

Setting coh equal to en specifies that cache will be
kept coherent with memory. The emulator breaks
into the monitor to keep cache coherence whenever
the emulator writes to the memory.

Note When you specify that "cf rrt=en " and "cf coh=en", the emulator can
not modify emulation memory while the emulator is running the user
program.

A-6 Emulator Specific Command Syntax

dbc Bus Driven During Background Operation. This
configuration item allows you to specify whether
emulator bus cycles are driven to your target system
bus when the emulator is in background cycle. If
your target system requires bus cycle activities
constantly, you will need to drive the emulation bus
cycles to your target system bus.

Setting dbc equal to en specifies that the emulator
drives its bus cycles to target system bus whether or
not the emulator executed in the background cycles.

Setting dbd equal to dis specifies that the emulator
does not driven any bus cycles to target system bus
in background operation.

The 70732 emulator is reset state after specifying
this configuration item.

hld Respond to Target Hold. This configuration item
allows you to specify whether or not the emulator
accepts hold signal generated by the target system.

Setting hld equal to en specifies that the emulator
accepts hold signal. When the hold is accepted, the
emulator will respond as actual microprocessor.

Setting hld equal to dis specifies that the emulator
ignores hold signal from target system.

nmi Enable/disable user NMI. This configuration item
allows you to specify whether user NMI is accepted
or ignored by the emulator.

Setting nmi equal to en specifies that the emulator
accepts user NMI.

Emulator Specific Command Syntax A-7

Setting nmi equal to dis specifies that the emulator
ignores user NMI.

The 70732 emulator is reset state after specifying
this configuration item.

Note When target NMI signal is enabled , it is in effect while the emulator is
running in the target program. While the emulator is running
background monitor, NMI will be suspended until the monitor is
finished.

rdy Allow Target Ready Signals. This configuration
item allows you to specify whether the emulator
should honor target system ready signals on
accesses to emulation memory.

Setting rdy equal to en specifies that target ready
signals be honored on emulation memory accesses.

Setting rdy equal to dis specifies that target ready
signals be ignored on emulation memory accesses.

rrt Restrict to Real-Time Runs. This configuration
item allows you to specify whether program
execution should take place in real-time or whether
commands should be allowed to cause breaks to the
monitor during program execution.

Setting rrt equal to en specifies that the emulator’s
execution is restricted to real-time. In this setting,
commands which access target system resources
(display registers, display/modify target system
memory or I/O) are not allowed.

A-8 Emulator Specific Command Syntax

setting rrt equal to dis specifies that the emulator
breaks to the monitor during program execution.

rst Respond to Target Reset. This configuration item
allows you to specify whether or not the emulator
responds target system reset while running in user
program or waiting for target system reset.

While running in background monitor, the 70732
emulator ignores target system reset completely
independent on this setting.

Settingrst equal to en specifies that the emulator
responds to reset from target system. In this
configuration, emulator will accept reset and
execute from reset vector in the same manner as
actual microprocessor after reset is inactivated.

Setting rst equal to dis specifies that the emulator
ignores reset from target system.

The 70732 emulator is reset state after specifying
this configuration item.

 Note When you use the r rst (run from reset) command in-circuit to run
form processor reset after the target reset input, you must use "cf
rst=en" configuration setting.

Emulator Specific Command Syntax A-9

szrq Respond to Bus Size Request. This configuration
item allows you to specify whether or not the
emulator responds bus size request signal from
target system.

Setting szrq equal to en specifies that the emulator
accepts bus size request signal from target system.
In this setting, mapping attribute is ignored.

Setting szrq equal to dis specifies that the emulator
ignores bus size request signal from target system.
In this setting, the emulator operates according to
mapping attribute.

 tradr Tracing Bus Address. This configuration item
allows you to specify whether or not forcing the
analyzer to trace address of bus cycles as its data.

Setting tradr equal to dis specifies that the analyzer
traces execution address, bus data and bus status
when execution state and bus state occurs
simultaneously. The analyzer trace bus address
when bus state only occurs.

Setting tradr equal to en specifies that the analyzer
traces execution address, bus address as its data and
bus status when execution state and bus state occurs
simultaneously. The analyzer traces bus address
and bus status when bus state only occures.

trfsh Trace Refresh cycles. This configuration item
allows you to specify whether or not the analyzer
trace the 70732 emulation processor’s refresh
cycles.

Setting trfsh equal to en specifies that the analyzer
will trace 70732 refresh cycles.

A-10 Emulator Specific Command Syntax

Setting trfsh equal to dis specifies that the analyzer
will not trace 70732 refresh cycles.

Note
If you specify that "cf trmode=bus" or "cf cache=en", the analyzer
will trace fetch cycles regardless of this configuration

waitb0 Wait Cycle for Bank0 This configuration item
allow you to specify whether or not the emulator
insert wait state when bank0 memory is accessed.

Setting waitb0 equal to en specifies that 1 wait
cycle is inserted when emulation memory of bank 0
is accessed. When you use HP64171A/B memory
modules and clock speed is above 20MHz, you
must specify "waitb0=en"

Setting waitb0 equal to dis specifies that no wait
cycle is inserted when emulation memory of bank 0
is accessed.

The 70732 emulator is reset state after specifying
this configuration item.

waitb1 Wait Cycle for Bank1 This configuration item
allow you to specify whether or not the emulator
insert wait state when bank1 memory is accessed.

Setting waitb1 equal to en specifies that 1 wait
cycle is inserted when emulation memory of bank 1
is accessed. When you use HP64171A/B memory
modules and clock speed is above 20MHz, you
must specify "waitb1=en"

Setting waitb1 equal to dis specifies that no wait
cycle is inserted when emulation memory of bank 1
is accessed.

Emulator Specific Command Syntax A-11

The 70732 emulator is reset state after specifying
this configuration item.

Note Accesses to emulation memory require 0 or 1 wait state depending
upon the speed of the target system’s clock and the memory module.
The following table shows whether you need to insert 1 wait on
emulation memory accesses.

 +-----------------+--+
 | frequency of the| Memory Module |
 | external clock | HP64171A/B (35ns) | HP64172A/B (20ns) |
 |==|
 | 20MHz or less | no-wait | no-wait |
 |-----------------+--------------------+---------------------|
 | above 20MHz | 1-wait | no-wait |
 +-----------------+--------------------+---------------------+

bussize Data Bus size. This configuration item allows you
to specify whether the data bus size is to be 16(data
bus size is 16 bits) or 32(data bus size is 32 bits).

Setting bussize equal to 32 specifies that data bus
width is 32 bit.

Setting bussize equal to 16 specifies that data bus
width is 16 bit.

The 70732 emulator is reset state after specifying
this configuration item.

Note The 70732 emulator operates in accordance with this configuration
instead of SZ16B signal from target system. SZ16B signal from target
system is ignored.

A-12 Emulator Specific Command Syntax

mon Monitor Options. This configuration item is used
to select the type of monitor to be used by the
emulator.

Setting mon equal to bg(background monitor)
specifies that all monitor functions are performed in
background.

Setting mon equal to fg(foreground monitor)
specifies that all monitor functions are performed in
foreground.

The 70732 emulator is reset after specifying this
configuration item.

monloc Monitor Location This configuration item allows
you specify location of monitor program. The
monitor must be located on a 8K boundary.

If you use background monitor, setting this
configuration specifies that driven address to target
system in background cycle. The low 16 bits of
address are actual address of the 70732
microprocessor.

If you use foreground monitor, setting this
configuration specifies that start address of
foreground monitor program.

The 70732 emulator is reset after specifying this
configuration item. Refer to the "Using the
Optional Foreground Monitor" appendix in this
manual.

trmode Trace Mode. This configuration item allows you to
specify whether or not the analyzer trace execution
address.

Setting trmode equal to bus specifies that the
analyzer traces bus access only.

Emulator Specific Command Syntax A-13

Setting trmode equal to exe specifies that the
analyzer trace bus access and execution address.
When bus state and execution state occures
simultaneously, the analyzer can not trace bus
address. Refer to "cf tradr " configuration item.

If you specify "cf cache=en", the analyzer traces
bus access only regardless of this configuration.

Defaults The default values of 70732 emulator configuration items are listed
below.

 cf bussize=32
 cf cache=en
 cf coh=dis
 cf dasms=dis
 cf dbc=en
 cf hld=en
 cf mon=bg
 cf monloc=0
 cf nmi=en
 cf rdy=en
 cf rrt=dis
 cf rst=en
 cf szrq=en
 cf tradr=dis
 cf trfetch=en
 cf trmode=exe
 cf waitb0=en
 cf waitb1=en

Related Commands help

You can get an on line help information for particular configuration
items by typing:

R>help cf <CONFIG_ITEM>

A-14 Emulator Specific Command Syntax

DISPLAY_MODE

Summary Specify the memory display format or the size of memory locations to
be modified.

Syntax

Function The <DISPLAY_MODE> specifies the format of the memory display
or the size of the memory which gets changed when memory is
modified.

Parameters

b Byte. Memory is displayed in a byte format, and
when memory locations are modified, bytes are
changed.

h Halfword . Memory is displayed in a halfword
format, and when memory locations are modified,
halfwords are changed.

w Word . Memory is displayed in a word format, and
when memory locations are modified, words are
changed.

f Float. Memory is displayed in a short-float format,
and when memory locations are modified,
short-floats are changed. When this display mode
used, the current default display mode is not
changed.

Emulator Specific Command Syntax A-15

m Mnemonic. Memory is displayed in mnemonic
format; that is, the contents of memory locations
are inverse-assembled into mnemonics and
operands. When memory locations are modified,
the last non-mnemonic display mode specification
is used. You cannot specify this display mode in the
ser (search memory for data) command.

Defaults At powerup or after init,in the 70732 Emulator, the
<ACCESS_MODE> and <DISPLAY_MODE> are b.

Display mode specifications are saved; that is, when a command
changes the display mode, the new display mode becomes the current
default.

Related Commands mo (specify access and display modes)

m (memory display/modify)

io (I/O display/modify)

ser (search memory for data)

A-16 Emulator Specific Command Syntax

REGISTER CLASS
and NAME

Summary 70732 register designator. All available register class names and
register names are listed below.

<REG_CLASS>

<REG_NAME> Description

*(All basic registers)

pc psw
r0 r1 r2 r3 r4
r5 r6 r7 r8 r9
r10 r11 r12 r13
r14 r15 r16 r17
r18 r19 r20 r21
r22 r23 r24 r25
r26 r27 r28 r29
r30 r31

BASIC registers.

sys(System Control registers)

eipc
eipsw
fepc
fepsw
ecr
pir
tkcw
chcw
adtre

Exception/Interrupt PC
Exception/Interrupt PSW
Fatal error PC
Fatal error PSW
Exception cause (Read Only)
Processor ID (Read Only)
Task control word (Read Only)
Cache control word
Address trap

Emulator Specific Command Syntax A-17

Function The <REG_CLASS> names may be used in the reg(register)
command to display a class of 70732 registers.

The <REG_NAME> names may be used with the reg command to
either display or modify the contents of 70732 registers.

Refer to your 70732 use’s manual for complete details on the use of the
70732 registers.

Related Commands reg (register display/modify)

A-18 Emulator Specific Command Syntax

B

Using the Optional Foreground Monitor

By using and modifying the optional Foreground Monitor, you can
provide an emulation environment which is customized to the needs of
a particular target system.

Comparison of
Foreground and
Background
Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor. For
example, when you request a register display, the emulation processor
is forced into the monitor. The monitor code has the processor dump
its registers into certain emulation memory locations, which can then
be read by the emulator system controller without further interference.

Background Monitors A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region.

Usually, a background monitor is easier to work. The monitor is
immediately available upon powerup, and you don’t have to worry
about linking in the monitor code or allocating space for the monitor.
No assumptions are made about the target system environment;
therefore, you can test and debug hardware before any target system
code has been written. All of the processor’s address space is available
for target system use, since the monitor memory is overlaid on
processor memory, rather than subtracted from processor memory.
Processor resources such as interrupts are not fully taken by the
background monitor.

However, all background monitors sacrifice some level of support for
the target system. For example, while the emulation processor enters
the monitor code to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for

Using the Foreground Monitor B-1

applications that rely on the microprocessor for real-time, non-intrusive
support. Also, the background monitor code resides in emulator
firmware and can’t be modified to handle special conditions.

Foreground Monitors A foreground monitor may be required for more interrupt intensive
applications. A foreground monitor is a block of code that runs in the
same memory space as your program. You link this monitor into your
code so that when control is passed to monitor program, the emulator
can still service real-time events, such as interrupts or watchdog timers.
For most multitasking, you will need to use a foreground monitor.

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground monitor
does use part of the processor’s address space, which may cause
problems in some applications. You must also properly configure the
emulator to use a foreground monitor (see the "Emulation topics"
chapter and the examples in this appendix).

Using Built-in
Foreground
Monitor

The 70732 emulator includes foreground monitor. The built-in
foreground monitor saves your tasks for assembling, linking and
loading the monitor program. To use the built-in foreground monitor,
all you have to do is to specify the location of the monitor. The location
is specified by the configuration item "cf monloc". Specify the monitor
location as follows.

R>cf monloc=<address>

After you issued the configuration command, the built-in foreground
monitor is set up automatically.

B-2 Using the Foreground Monitor

Using Custom
Foreground
Monitor

The custom foreground monitor allows you customize the monitor for
your target system. To use the monitor, you need to assemble, link and
load the monitor program into emulator.

If you use NEC K&R-C compiler, you must modify the link directive
file ’fm70732.d’ to use the monitor. In this example, the monitor will
be located at 20000 hex, so the modified link detective file like this:

TEXT : !LOAD ?RX V0x00020000 {
 .text = $PROGBITS ?AX;
};

If you use Green Hills Software C-Compiler, you must modify the
following statement of the monitor program ’gfm70732.s’ to use the
monitor. In this example , the monitor will be located 20000 hex, so the
modified statement looks like this:

MON_ADDR = 0x000020000

You can load the monitor at any base address on a 8k byte boundary.

Assemble and Link
the monitor

If you use NEC K&R-C Compiler, you can assemble and link the
foreground monitor program with the following commands:

$ as732 fm70732.s <RETURN>
$ ld732 -D fm70732.d -o fm70732.abs
fm70732.o <RETURN>
$ v810cnv -x fm70732 <RETURN>

If you use Green Hills Software C-Compiler, you can assemble and
link the foreground monitor program with the following commands:

$ as810 gfm70732.s -o gfm70732.o <RETURN>
$ lx -sec @gfm70732.d -o gfm70732.x
gfm70732.o <RETURN>
$ v810cnv -x gfm70732.x <RETURN>

Using the Foreground Monitor B-3

You need to tell the emulator that you will be using a foreground
monitor and allocate the memory space for the monitor. This is all
done with one configuration command. To locate the monitor on a 8k
boundary starting at 20000 hex, type:

R> cf monloc=0x20000

Load the Foreground
Monitor

Now it’s time to load the sample program and monitor. In the example
shown, we’re loading the program from a host with the emulator in
Transparent Configuration. If you’re using the standalone
configuration with a data terminal, you will need to enter the data using
the m command. (You can get the data from your assembly listings.)
Load the program by typing:

R> load -hbs "transfer -tb fm70732.X"
##############

An Example Using
the Foreground
Monitor

In the following example, we will show how the emulator switches
from state to state using a foreground monitor.

Mapping Memory for
the Example

When you specify a foreground monitor and enter the monitor address,
all existing memory mapper terms are deleted and a term for the
monitor block will be added. Add the additional term to map memory
for the demo program.

Load the Sample
Program

Assuming the sample program has been assembled and linked as
shown in "Getting Start" chapter, you can load the sample program by
typing:

R> load -hbs "transfer -tb cmd_rds.X"
#####

Set Analyzer Master
Clock Qualifiers

We want to view the transitions made between the different emulator
states; reset to break, break to run, run to break. Since the foreground
monitor is actually entered via a few cycles in the emulator’s built-in
background monitor, we need to be able to view the background states.

B-4 Using the Foreground Monitor

We can do this by modifying the emulation analyzer’s master clock
qualifier to include tracing of background code. To see the initial clock
qualifier, type:

M> tck
tck -r L -u -s S

Modify this as follows:

M> tck -r L -ub -s S
Now, reset the processor so we can make the first measurement from a
known state:

M> rst

Reset to Break We want to see the monitor’s transition from the reset state to running
in the foreground monitor. Since the foreground monitor occupies the
address range from 20000 through 21fff hex, we can simply trigger on
any access to that range:

R> tg addr=20000..21fff

We also want see the states leading up to the transition between reset
and foreground monitor execution. We can position the trigger so that
there are 20 states before the trigger as follows:

R> tp -b 15

Start the measurement:

R> t
Emulation trace started

Now, break the emulator into the monitor:

R> b

Display 20 disassembled states of the trace from the top the trace:

M> tl -td 15

Using the Foreground Monitor B-5

At line -11, the processor began executing code; it executed in the
background monitor. To see the transition from background execution
to foreground monitor program execution, type:

M> tl 15..25

The foreground monitor start at states 20.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 15 00021a10 NOP BGM 0.120 uS
 =00021a12 BRKRET 0x01 BGM
 16 00021a14 MOV R0,R0 BGM 0.080 uS
 =00021a16 MOV R0,R0 BGM
 17 00021a18 MOV R0,R0 BGM 0.080 uS
 =00021a1a MOV R0,R0 BGM
 18 00000000 00008000 data read word BGM 0.360 uS
 19 00000004 00020380 data read word BGM 0.080 uS
 20 00020380 LD.B 0x00f8[R29],R31 0.280 uS
 21 00020384 CMP 0x00,R31 0.080 uS
 =00020386 JNZ/JNE 0x0002041e
 22 00020388 ST.W R0,0x0030[R29] 0.080 uS
 23 000200f8 01 data read byte 0.080 uS
 24 0002038c ST.W R1,0x0034[R29] 0.080 uS
 25 0002041c dc1d0010 unused fetch 0.200 uS
 =0002041e ST.W R0,0x00a4[R29]

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 -12 fffffff8 OUT.W R31,-0x0001[R31] BGM ---
 -11 00000000 00008000 data write word BGM 0.360 uS
 -10 00000004 fffffff0 data write word BGM 0.080 uS
 -9 ffffffe0 ST.W R31,0x00ac[R0] BGM 0.440 uS
 -8 ffffffe4 ST.W R29,0x00a4[R0] BGM 0.080 uS
 -7 ffffffe8 LD.W 0x0200[R0],R29 BGM 0.080 uS
 -6 ffffffec JMP [R29] BGM 0.080 uS
 =ffffffee MOV R0,R0 BGM
 -5 000000ac 00000001 data write word BGM 0.080 uS
 -4 000000a4 00020000 data write word BGM 0.080 uS
 -3 00000200 00020300 data read word BGM 0.080 uS
 -2 fffffff0 MOV R0,R0 BGM 0.080 uS
 =fffffff2 MOV R0,R0 BGM
 -1 fffffff4 MOV R0,R0 BGM 0.080 uS
 =fffffff6 MOV R0,R0 BGM
 0 00020300 MOVEA 0x0300,R0,R31 BGM 0.080 uS
 1 00020304 SUB R31,R29 BGM 0.080 uS
 =00020306 LD.W 0x0004[R29],R31 BGM
 2 00020308 dffd0004 fetch BGM 0.080 uS

B-6 Using the Foreground Monitor

Monitor to User
Program

We can look at the transition from the foreground monitor to running
the user program by triggering the trace on a user program address.
Type:

M> tg addr=10000

We will leave the trigger position where it was for the last
measurement(20 states are retained before the trigger position). Start
the measurement:

M> t
Emulation trace started

Now, run the sample program:

M> r 10000

Display trace states from -15 to +5 in inverse-assembled form as
follows:

U> tl -d -10..5

At state -8 in the trace listing, the processor executed the BRKRET
instruction to transfer execution to the user program at state 0.

User Program Run to
Break

You can trace the execution from the user program run to the
foreground monitor due to a break condition by setting as follows:

U> tg stat=bg

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 -10 00021a08 LD.W 0x0038[R29],R2 0.080 uS
 -9 00021a0c LD.W 0x00a4[R29],R29 0.080 uS
 -8 00021a10 NOP 0.080 uS
 =00021a12 BRKRET 0x01
 -7 00020020 04 data write byte 0.080 uS
 -6 00020038 00000000 data read word 0.080 uS
 -5 000200a4 00000000 data read word 0.080 uS
 -4 00021a14 MOV R0,R0 0.080 uS
 =00021a16 MOV R0,R0
 -3 00021a18 MOV R0,R0 0.080 uS
 =00021a1a MOV R0,R0
 -2 00000000 00008000 data read word 0.360 uS
 -1 00000004 00010000 data read word 0.080 uS
 0 00010000 MOVHI 0x0000,R0,R1 0.320 uS
 1 00010004 MOVEA 0x0634,R1,R3 0.120 uS
 2 00010008 MOVHI 0x0000,R0,R1 0.120 uS
 3 0001000c MOVEA 0x0500,R1,R4 0.120 uS
 4 00010010 ST.W R0,0x0000[R4] 0.120 uS
 5 00010014 MOVHI 0x0000,R0,R1 0.120 uS

Using the Foreground Monitor B-7

Start the measurement:

U> t
Emulation trace started

Satisfy the trigger condition by break the emulator into the monitor:

U> b

Now, display trace states from -10 to +10 in disassembled form as
follows:

M> tl -5..5

At state 0 of the trace list, the processor entered the background
monitor to make the transition. And actual foreground monitor
program start at after several background monitor execution.

To see the starting point of foreground monitor, type:

M> tl 25..35

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 -5 0001001c LD.B 0x0000[R4],R6 0.120 uS
 -4 00010020 CMP 0x00,R6 0.120 uS
 =00010022 JZ/JE 0x0001001c
 -3 00000500 00 data read byte 0.120 uS
 -2 00010024 MOVEA 0x0041,R0,R1 0.120 uS
 -1 00010028 CMP R1,R6 0.120 uS
 =0001002a JZ/JE 0x00010038
 0 00000000 00008001 data write word BGM 0.320 uS
 1 00000004 00010022 data write word BGM 0.080 uS
 2 ffffffe0 ST.W R31,0x00ac[R0] BGM 0.440 uS
 3 ffffffe4 ST.W R29,0x00a4[R0] BGM 0.080 uS
 4 ffffffe8 LD.W 0x0200[R0],R29 BGM 0.080 uS
 5 ffffffec JMP [R29] BGM 0.080 uS
 =ffffffee MOV R0,R0 BGM

B-8 Using the Foreground Monitor

At state 31, the foreground monitor program starts.

Limitations of
Foreground
Monitors

Synchronized
measurements

You cannot perform synchronized measurements over the CMB when
using a foreground monitor. If you need to make such measurements,
use background monitor.

 Line addr,H N70732 Mnemonic count,R
 ----- -------- ------------------------------------ ---------
 25 00020324 MOV R0,R0 BGM 0.080 uS
 =00020326 MOV R0,R0 BGM
 26 00021a10 NOP BGM 0.120 uS
 =00021a12 BRKRET 0x01 BGM
 27 00021a14 MOV R0,R0 BGM 0.080 uS
 =00021a16 MOV R0,R0 BGM
 28 00021a18 MOV R0,R0 BGM 0.080 uS
 =00021a1a MOV R0,R0 BGM
 29 00000000 00008001 data read word BGM 0.360 uS
 30 00000004 00020380 data read word BGM 0.080 uS
 31 00020380 LD.B 0x00f8[R29],R31 0.280 uS
 32 00020384 CMP 0x00,R31 0.080 uS
 =00020386 JNZ/JNE 0x0002041e
 33 00020388 ST.W R0,0x0030[R29] 0.080 uS
 34 000200f8 00 data read byte 0.080 uS
 35 0002038c ST.W R1,0x0034[R29] 0.080 uS

Using the Foreground Monitor B-9

Notes

B-10 Using the Foreground Monitor

Index

A absolute files, downloading, 2-15
access mode, specifying, 2-24
ACCESS_MODE syntax, A-2
analyzer

clock speed, 3-13
features of, 1-4
status qualifiers, 3-7

analyzer status
predefined equates, 2-29

assemble
monitor, B-3

assemblers, 2-13

B b (break to monitor) command, 2-26
background, 1-5
background monitor, 3-15, B-1

pin state, 4-16
selecting, 3-15
things to be aware of, 3-15

bc (break conditions) command, 2-28
BNC connector, 3-3
break conditions, 2-28

after initialization, 2-9
break on analyzer trigger, 3-3
breakpoints, 2-9
bussize, emulator configuration, A-12
byte data

trace, 3-11

C cache,emulator configuration, A-5
cautions

installing the target system probe, 4-9
cf (emulator configuration) command, 3-1
cf mon command, 3-15
characterization of memory, 2-11
checksum error count, 2-16
cim (copy target system memory image) command, 4-14

Index - 1

CMB (coordinated measurement bus), 3-3
coh,emulator configuration, A-6
cold start initialization, 2-9
combining commands on a single command line, 2-21
command files, 2-21
command groups, viewing help for, 2-6
command recall, 2-22
command syntax, specific to 70732 emulator, A-1
commands

combining on a single command line, 2-21
Comparison of foreground/background monitors, B-1
CONFIG_ITEMS syntax, A-4
configuration

bussize, A-12
cache, A-5
coh, A-6
dasms, A-5
dbc, 4-12, A-7
hld, 4-12, A-7
mon, A-13
monloc, A-13
nmi, 4-12, A-7
rdy, 4-12, A-8
rrt, A-8
rst, 4-12, A-9
szrq, 4-13
tdma, A-10
tradr, A-10
trfsh, A-10
trmode, A-13
waitb0, A-11
waitb1, A-11

configuration (hardware)
remote, 2-14
standalone, 2-14
transparent, 2-14

coordinated measurements, 3-3, 3-16
cp (copy memory) command, 2-35

D dasms,emulator configuration, A-5
data bus

trace, 3-11

2 - Index

dbc,emulator configuration, A-7
demo board

installing, 4-7
disassembling trace list, 3-10
display mode, specifying, 2-24
DISPLAY_MODE syntax, A-15
DMA

external, 2-12
downloading absolute files, 2-15

E electrical characteristics, 4-17
emulation analyzer, 1-4
emulation memory

after initialization, 2-9
installing, 4-5
note on target accesses, 2-12
size of, 2-11

emulation memory access, 3-15
emulation monitor

foreground or background, 1-4
emulation probe cable

installing, 4-2
emulation RAM and ROM, 2-11
emulator

feature list, 1-3
purpose of, 1-1
supported, 1-3

emulator configuration
after initialization, 2-9
on-line help for, 2-7

emulator configuration items
rrt, 3-2

Emulator features
emulation memory, 1-3

emulator probe
installing, 4-9

emulator specific command syntax, A-1
equates predefined for analyzer status, 2-29
eram, memory characterization, 2-13
erom, memory characterization, 2-13
es (emulator status) command, 2-8

Index - 3

escape character (default) for the transparent mode, 2-16
EXECUTE (CMB signal), 3-3

F file formats, absolute, 2-15
foreground, 1-5
foreground monitor, 3-15, B-2

built-in, B-2
custom, B-3
selecting, 3-15

G getting started, 2-1
grd, memory characterization, 2-12
guarded memory accesses, 2-12

H help facility, using the, 2-6
help information on system prompts, 2-7
hld,emulator configuration, A-7
hold request

during background monitor, 1-6
HP absolute files, downloading, 2-16

I in-circuit emulation, 4-1
init (emulator initialization) command, 2-8
initialization, emulator, 2-8

cold start, 2-9
warm start, 2-8

Intel hexadecimal files, downloading, 2-16
Intel OMF files, 2-17
interrupt

during background monitor, 1-6
from target system, 1-6
while stepping, 1-6

L labels (trace), predefined, 2-29
link

monitor, B-3
linkers, 2-13
load (load absolute file) command, 2-15
load map, 2-13
locating the foreground monitor, 3-16

M m (memory display/modification) , 2-14
m (memory display/modification) command, 2-24
macros

4 - Index

after initialization, 2-9
using, 2-22

map (memory mapper) command, 2-12
Map command

command syntax, 2-13
mapping memory, 2-11
memory

displaying in mnemonic format, 2-18
memory map

after initialization, 2-9
memory, mapping, 2-11
mo (specify display and access modes) command, 2-24
modifying ROMed code, 4-15
mon, emulator configuration, A-13
monitor

background, 3-15, B-1
comparison of foreground/background, B-1
foreground, 3-15

monitor program, 3-15
monitor program memory, size of, 2-11
monloc, emulator configuration, A-13
Motorola S-record files,downloading, 2-16

N nmi,emulator configuration, A-7
notes

target accesses to emulation memory, 2-12

O on-line help, using the, 2-6

P Pin guard
target system probe, 4-9

predefined equates, 2-29
predefined trace labels, 2-29
prompts, 2-7

help information on, 2-7
using "es" command to describe, 2-8

R RAM
mapping emulation or target, 2-12

rdy, emulator configuration, A-8
READY (CMB signal), 3-3
real-time runs

commands not allowed during, 3-2

Index - 5

commands which will cause break, 3-2
restricting the emulator to, 3-2

recalling commands, 2-22
reg (register display/modification) command, 2-21
register commands, 1-4
relocatable files, 2-13
remote configuration, 2-14
rep (repeat) command, 2-23
reset

commands which cause exit from, 2-36
during background monitor, 1-6
target system, 4-1

ROM
debug of target, 4-14
mapping emulation or target, 2-12
writes to, 2-12

rrt (restrict to real-time) configuration item, 3-2
rrt, emulator configuration, A-8
rst (reset emulator) command, 2-36
rst, emulator configuration, A-9
run from reset, 4-1, 4-13

S s (step) command, 2-20
sample program

description, 2-2
load map listing, 2-13
loading the, 2-14

ser (search memory) command, 2-26
simple trigger, specifying, 2-30
software breakpoints, 2-26

after initialization, 2-9
and NMI, 2-27
defining, 2-28
using with ROMed code, 4-14

standalone configuration, 2-14
stat (emulation analyzer status) trace label, 2-30
symbols

loading from a text file, 2-17
syntax (command), specific to 70732 emulator, A-1

T target reset
run form reset, A-9

6 - Index

target system
interface, 4-19

Target system probe
pin guard, 4-9

target system RAM and ROM, 2-13
target system reset

run from reset, 4-13
tdma, emulator configuration, A-10
Tektronix hexadecimal files, downloading, 2-16
tg (specify simple trigger) command, 2-30
tgout (trigger output) command, 3-3
tl (trace list) command, 2-31
tlb (display/modify trace labels) command, 2-29
tp(specify trigger position) command, 2-33
trace

bus states, 3-7
disassembly option, 3-11
execution states, 3-7

trace configuration, 3-7
data from memory, 3-10
data from trace list, 3-10
trace bus address, 3-8
trace bus data, 3-9
trace fetch cycle, 3-9

trace labels, predefined, 2-29
trace mode, 2-32, 3-7
tracing bus address, 3-8
tracing fetch cycles, 3-9
tradr, emulator configuration, A-10
tram, memory characterization, 2-13
transfer utility, 2-16
transparent configuration, 2-14
transparent mode, 2-16
trfsh,emulator configuration, A-10
trig1 and trig2 internal signals, 3-3
trigger

break on, 3-3
specifying a simple, 2-30

TRIGGER (CMB signal), 3-3
trigger position, 2-33
trmode, emulator configuration, A-13

Index - 7

trom, memory characterization, 2-13
ts (trace status) command, 2-30

W waitb0,emulator configuration, A-11
waitb1,emulator configuration, A-11
warm start initialization, 2-8

X x (execute) command, 3-3

8 - Index

	Using this Manual
	Contents
	Introduction to the 70732 Emulator
	Getting Started
	Using the Emulator
	In-Circuit Emulation Topics
	70732 Emulator Specific Command Syntax
	Using the Optional Foreground Monitor
	Index

